
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Dissertation in Informatik

Characterizing the Strength of Software
Obfuscation Against Automated Attacks

Sebastian-Emilian Bănescu

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Lehrstuhl XXII - Software Engineering

Characterizing the Strength of Software
Obfuscation Against Automated Attacks

Sebastian-Emilian Bănescu

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Alfons Kemper, Ph.D.

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Alexander Pretschner

2. Prof. Saumya Debray, Ph.D.,

University of Arizona, USA

Die Dissertation wurde am 28.04.2017 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 29.06.2017 angenommen.

Acknowledgments

Motto: In theory, theory and practice are the same, but in practice, they are different.
When I embarked on the journey of pursuing a PhD, I was aware of how it would be

like in theory. I have since realized that it was different in practice. However, throughout
this journey I have learned a lot from the amazing people I met along the way. Therefore, I
would like to use the following paragraphs to thank some of the people who have helped,
supported and motivated me throughout my journey until this point.

Innumerable thanks to my supervisor Prof. Dr. Alexander Pretschner for giving me the
opportunity to define and pursue my own PhD topic. Your invaluable support and feedback
has guided me throughout the entire development of this thesis. I have learned so many
important things from you over the years, like: being concise when sharing ideas, not being
afraid to admit when I do not know something and being critical, but not over the top.

I would like to thank my second supervisor Prof. Dr. Saumya Debray for the kindness
he showed me during our conversations and during my visit to Tucson. His feedback,
encouragement and suggestions have helped me in the toughest period of my PhD. One
important thing I have learned from you is to analyze things from a broader perspective.

Thank you to my mentor Assist. Prof. Dr. Martı́n Ochoa for his patience in listening to
my half-baked ideas and steering me in the right direction when I was getting side-tracked
with irrelevant details. From you, I learned how to focus, in order to get things done.

I am also grateful to Assoc. Prof. Dr. Christian Collberg, Assist. Prof. Dr. Vijay Ganesh
and the Google engineers for their feedback and suggestions on the papers which we have
collaborated on. Their points of view taught me to analyze ideas from different angles.

To my present and former colleagues at TU Munich – the list of names is too long, but
you know who you are :) – many thanks for always cheering me up and encouraging me
when my moral was down. From you girls and boys, I have learned how to enjoy lunch
and coffee breaks at work, as well as how to collaborate with colleagues.

Thanks to all of the reviewers of this thesis and to the Bachelor and Master students who
have helped me develop and improve my thesis.

I would also like to share my gratitude to my family and friends for their continuous
support and encouragement. My parents have taught me many important lessons through-
out my life, one of which was that no one can steal the knowledge from your head, which makes
education the most valuable asset that I can ever own. Special thanks to my friend Radu, who
sparked my interest in academic research, which led me to pursue a PhD.

Finally and most importantly, I would like to thank my wife Iulia for her endless love,
support, encouragement and patience. Without all the sacrifices you have done for me, I
would have not been able to successfully complete this journey. There is not enough paper
in the world for me to express my gratitude, but I will try to show it to you every day.

v

Zusammenfassung

Softwareverschleierung bezeichnet eine Art der Transformationstechniken für Compu-
tercode, die von Software Entwicklern eingesetzt wird, um digitales Eigentum (z.B. pro-
prietäre Algorithmen, geheime Schlüssel, etc.) gegen böswillige Endbenutzer zu schützen.
In den letzten drei Jahrzehnten sind Dutzende Verschleierungstransformationen in der
Literatur beschrieben worden. Einige Forscher haben sich darauf konzentriert, die Stärken
dieser Transformationen gegen semi-automatisierte Analysen zu beschreiben und zu mes-
sen. Im Vergleich dazu wurden weniger Fortschritte darin gemacht, die Stärken dieser
Transformationen gegen voll-automatisierte Angriffen zu beschreiben und zu messen. Der
hauptsächliche Grund hierfür ist, dass die übliche Form der Softwaredistribution (auch
“Software Monokultur” genannt), davon ausgeht, dass eine Anwendung einmal verschleiert
wird und die gleiche ausführbare Datei an alle Endnutzer verteilt wird. Daher kann, falls
ein böswilliger Endnutzer in der Lage ist die schützende Verschleierung zu überwinden,
der gleiche Angriff bei allen anderen Endnutzern der gleichen Anwendung angewendet
werden. Mit dem Aufkommen der Softwarediversität erhalten verschiedene Endnutzer der
Software verschiedene, aber funktionsgleiche, Versionen des gleichen Programms, die mit
verschiedenen Kombinationen von Transformationen verschleiert wurden. Idealerweise
bedeutet das, dass ein und derselbe Angriff nicht mehr auf alle Endnutzer anwendbar
ist und semi-automatisierte Analysen mit den Millionen verschiedenen Varianten eines
Programms, die jeden Tag erscheinen, nicht mehr mithalten können. Softwarediversität
wird in großen Maßen von Schadsoftware-Entwicklern eingesetzt, um nicht von Antiviren-
Scannern entdeckt zu werden. Auch ist Softwarediversität mit Hilfe von Verschleierung als
Abwehrmechanismus für gutartige Programme gegen Angriffe vorgeschlagen worden, die
darauf abzielen, die Integrität der Anwendung durch Manipulationen am Computercode
(engl. “Tampering”), das Einfügen von Computercode oder dem Wiederverwenden von
Computercode zu verletzen. Nichtsdestotrotz stehen Fachleute dem Einsatz von Verschleie-
rung zum Schutz ihrer eigenen Software skeptisch gegenüber. Dies liegt zum Teil daran,
dass nicht klar ist, wie die Stärke von Software Verschleierung charakterisiert werden kann.

In dieser Dissertation entwickeln wir eine Grundstruktur, in der wir die automatische
Analyse als Suchprobleme formalisieren, deren Komplexität von Eigenschaften der Software
abhängt. Mit dieser Grundstruktur lassen sich die Stärken gegen Angriffe durch automati-
sierte Analyse beschreiben und vergleichen. Dies hilft Entwicklern dabei, die Verschleie-
rungtransformationen auszuwählen, die die Eigenschaften der Software so verändern, dass
Heuristiken nicht mehr angewendet werden können oder der benötigte Aufwand für die
Suche aus wirtschaftlicher Sicht nicht mehr attraktiv ist. Wir stellen mehrere Fallstudien
unter Einbezug von verschiedenen Software-Anwendungen, Verschleierungstransformatio-
nen und einem automatisierten Angriff bassierend auf symbolischer Ausführung vor, die
unsere Hypothese untermauern. Mit Hilfe der Erkenntnisse unseres Ansatzes zur Charak-
terisierung der Stärken von Verschleierung, sind wir in der Lage den Stand der Technik bei
Verschleierungstransformationen voranzutreiben.

vii

Abstract

Software obfuscation is a category of code transformation techniques employed by soft-
ware developers to protect digital assets (e.g. proprietary algorithms, secret keys, etc.),
against malicious end users of their applications. Dozens of obfuscating code transforma-
tions have been published in the last three decades, and some researchers have focused on
quantifying and characterizing the strength of these transformations against human-assisted
analysis. Relatively fewer advances have been made in quantifying and characterizing the
strength of these transformations against automated analysis. This is because the general
software distribution model (also called the “software monoculture”) assumes that an
application is obfuscated once and the same executable code is distributed to all end-users.
Therefore, if one malicious end-user is able to bypass the obfuscation which protects an
application, then the same attack can be applied to all other end-users of the same ap-
plication. However, with the dawn of “software diversity” different software end-users
receive different instances of the same software, obfuscated using different combinations
of code transformations. Ideally, this means that the same attack is no longer applicable
to all end-users and human-assisted analysis no longer scales when millions of software
instances appear every day. On the one hand, software diversity is heavily employed by
malware developers, in order to evade detection by anti-virus engines. On the other hand,
software diversity via code obfuscating transformations has been proposed as a defense
mechanism of benign software against attacks aiming to violate the integrity of software
behavior via code manipulation (i.e. tampering), code injection and code reuse. However,
practitioners are skeptical about employing obfuscation for protection of their own software.
This is, in part, due to the fact that it is not clear how to characterize the strength of software
obfuscation.

In this thesis, we develop a framework for the characterization of software obfuscation
strength against automated analysis attacks. We do this by formulating automated analysis
as search problems, whose complexities depend on various software characteristics. These
characteristics become apparent after an attack is formulated using our framework. This
helps developers to choose obfuscating transformations, which change those software
characteristics, such that heuristics are no longer applicable or to increase the search effort
to an extent that it is no longer economically attractive. We present multiple experiments
involving various software applications, obfuscating transformations and an automated
attack based on symbolic execution, whose results support our hypothesis. Using the
insights gained from this approach towards obfuscation strength characterization, we are
able to improve the state of the art of obfuscating transformations.

ix

Outline of the Thesis

CHAPTER 1: INTRODUCTION

This chapter presents an introduction to the topic and to the fundamental issues addressed
by this thesis. It discusses context, motivation, goals and limitations of this work.

CHAPTER 2: OBFUSCATION IN THEORY

This chapter presents a brief overview of cryptographic obfuscation and why it is currently
far from being practical. Parts of this chapter have previously appeared in a peer-reviewed
publication [14], co-authored by the author of this thesis.

CHAPTER 3: OBFUSCATION IN PRACTICE

This chapter presents an overview of obfuscation and software diversity transformations
employed in practice. It also describes challenges of building practical obfuscators. Parts
of this chapter have also appeared in a publication [22], co-authored by the author of this
thesis.

CHAPTER 4: AUTOMATED MATE ATTACKS

This chapter presents the main contribution of this thesis: a model for reasoning about
obfuscation strength by representing different steps of all automated Man-At-The-End
(MATE) attacks as search problems. Parts of this chapter have previously appeared in a
peer-reviewed publication [21], co-authored by the author of this thesis.

CHAPTER 5: CODE OBFUSCATION AGAINST SYMBOLIC EXECUTION ATTACKS

This chapter presents a characterization of automated symbolic execution attacks based on
the model from Chapter 4. These characteristics are used to reason about and compare the
resilience of a subset of obfuscation transformations from Chapter 3. Parts of this chapter
have been published in a peer-reviewed publication [18] co-authored by the author of this
thesis.

CHAPTER 6: PREDICTING COST OF SYMBOLIC EXECUTION ATTACKS ON OBFUSCATED

CODE

This chapter presents a framework for predicting the time required by a successful symbolic
execution attack, on obfuscated programs. The framework requires the metrics stated in
Chapter 5. Parts of this chapter have appeared in a publication [19] co-authored by the
author of this thesis.

CHAPTER 7: IMPROVING OBFUSCATION TRANSFORMATIONS AGAINST SYMBOLIC EXECU-
TION

This chapter presents novel obfuscation transformations, which aim to raise the bar against
symbolic execution attacks. These transformations specifically target the program charac-

xi

teristics derived using the search model from Chapter 4. Parts of this chapter have been
published in two peer-reviewed publications [18, 20] co-authored by the author of this
thesis.

CHAPTER 8: RELATED WORK

This chapter presents related work in the sub-field of obfuscation strength evaluation and
alternative solutions to software obfuscation and diversity for the purpose of software
protection. Parts of this chapter have been published in peer-reviewed publications [21, 18,
17, 112] co-authored by the author of this thesis.

CHAPTER 9: CONCLUSIONS

This chapter first presents a summary of what has been done throughout the chapters of
this thesis. Subsequently, we state the results of the thesis and the lessons learned during
the development of this work. Afterwards, we discuss limitations and avenues for future
work.

N.B.: Multiple chapters of this dissertation are based on different publications authored or co-
authored by the author of this dissertation. Such publications are mentioned in the short descriptions
above. Due to the obvious content overlapping, quotes from such publications within the respective
chapters are not marked explicitly.

xii

Contents

Acknowledgements v

Zusammenfassung vii

Abstract ix

Outline of the Thesis xi

Contents xiii

I. Introduction and Background 1

1. Introduction 3
1.1. Benefits of Software Obfuscation . 4
1.2. Attacker Model . 6
1.3. The Need for Characterizing the Strength of Software Obfuscation 8
1.4. Goal . 9
1.5. Problem Statement and Research Questions 9
1.6. Thesis Statement . 10
1.7. Solution . 10
1.8. Contributions . 11
1.9. Structure . 13

2. Obfuscation in Theory 15
2.1. Impossibility of Black-Box Obfuscation . 15

2.1.1. Definition of Black-Box Obfuscation 16
2.1.2. Sketch of Impossibility Proof . 16

2.2. Indistinguishability Obfuscation . 18
2.2.1. Branching Programs . 19
2.2.2. Universal Circuits and Kilian’s Protocol 20
2.2.3. Multilinear Jigsaw Puzzle (MJP) . 21

2.3. Applicability in Practical Scenarios . 22
2.3.1. Implementation . 22
2.3.2. Benchmarking . 23

xiii

Contents

2.4. Summary . 25

3. Obfuscation in Practice 27
3.1. Practical Challenges of Code Transformations 27
3.2. Classification of Code Obfuscation and Diversity Transformations 28

3.2.1. Abstraction Level of Transformations 28
3.2.2. Time of Transformations . 29
3.2.3. Unit of Transformations . 29
3.2.4. Dynamics of Transformations . 30
3.2.5. Target of Transformations . 30
3.2.6. Summary of Obfuscation Transformation Classification 31

3.3. Survey of Obfuscation and Diversity Transformations 32
3.3.1. Data Transformations . 32
3.3.2. Code Transformations . 37
3.3.3. Summary of Survey . 44

II. The Core 45

4. Automated MATE Attacks 47
4.1. Classification of Automated MATE Attacks 47

4.1.1. Attack Type Dimension . 48
4.1.2. Dynamics Dimension . 49
4.1.3. Interpretation Dimension . 49
4.1.4. Alteration Dimension . 50
4.1.5. Summary of MATE Attack Classification 50

4.2. Definition of Automated MATE Attacks . 51
4.2.1. Formalization of Automated MATE Attacks 53
4.2.2. Search Model . 55
4.2.3. Estimating Search Cost . 61
4.2.4. Power of MATE Attacker . 63
4.2.5. Benefits of Search Model . 64

4.3. Survey of Automated MATE Attacks . 65
4.3.1. Syntactic Attacks . 66
4.3.2. Semantic Attacks . 75

4.4. Summary . 79

5. Code Obfuscation Against Symbolic Execution Attacks 81
5.1. A Common Subgoal of Automated MATE Attacks 82

5.1.1. The Effect of Obfuscation on Automated Test Case Generation 83
5.1.2. Instantiating the Search Model for Symbolic Execution Attacks . . . 84

xiv

Contents

5.2. Case Study . 92
5.2.1. Obfuscator and Analysis Implementations 92
5.2.2. Experiment with First Dataset . 93
5.2.3. Experiment with Second Dataset . 100

5.3. Summary and Threats to Validity . 104

6. Predicting Cost of Symbolic Execution Attacks on Obfuscated Code 107
6.1. A General Framework for Predicting the Cost of Automated MATE Attacks 108

6.1.1. Selecting Relevant Features . 109
6.2. Case-Study . 110

6.2.1. Experimental Setup . 111
6.2.2. Feature Selection Results . 115
6.2.3. Regression Results . 120

6.3. Summary and Threats to Validity . 125

7. Improving Obfuscation Transformations Against Symbolic Execution 129
7.1. The Impact of Obfuscation on Search Problems 129
7.2. Existing Anti-Symbolic Execution Obfuscations 131

7.2.1. Path Explosion . 131
7.2.2. Path Divergence . 132
7.2.3. Complex Constraints . 132

7.3. Proposed Obfuscation Transformations . 133
7.3.1. Range Dividers . 133
7.3.2. Input Invariants . 135

7.4. Summary . 141

III. Related Work and Conclusion 143

8. Related Work 145
8.1. Characterizing Obfuscation Strength . 145

8.1.1. Formal Approaches . 145
8.1.2. User Studies . 146
8.1.3. Code Metrics Based Approaches . 147

8.2. Alternatives to Diverse Obfuscation . 149
8.2.1. Encryption via Trusted Hardware . 149
8.2.2. Server-Side Execution . 149
8.2.3. Code Tamper-detection and Tamper-proofing 150

8.3. Summary . 152

9. Conclusions 153
9.1. Results and Lessons Learned . 154

xv

Contents

9.2. Limitations . 156
9.3. Future Work . 157

Bibliography 159

Glossary 179

Index 181

List of Figures 183

Listings 185

List of Tables 187

xvi

Part I.

Introduction and Background

1

1. Introduction

The Man-In-The-Middle (MITM) attacker model, formalized by Dolev-Yao in the early
1980s [72], has become the de facto standard in research papers dealing with secure commu-
nication. The goals of a MITM attacker include violating the confidentiality and integrity of
information in transit between two trusted parties. A MITM attacker is an external third
party, who does not have direct access to any internal states of the trusted parties. Originally,
the MITM could eavesdrop on the communication between two trusted parties, hence,
confidentiality was the main concern. MITM actions were extended to tampering with
messages or impersonating a trusted party, raising the issues of integrity and authentication.

Research in the filed of security and cryptography, has led to mature protocols which
are in wide-spread use since the 1990s and can withstand MITM attacks. On the other
hand, the Man-At-The-End (MATE) attacker model [54], assumes that the attacker has
(limited) control of one end, of a two-party interaction, e.g. the MATE is the end-user of an
application developed by another party. The goals of a MATE attacker include violating
the confidentiality of algorithms or other data inside of a software program and/or the
integrity of software behavior as intended by the developer. Practically, any device under
the control of an end-user (e.g. PC, TV, game console, mobile device, smart meter, etc.),
running proprietary software is exposed to MATE attacks. The adversary is no longer a
third party, in between two trusted parties, but rather one of them with physical, local or
remote access to the target device.

A model of the MATE attacker capabilities, akin to the degree of formalization of the
MITM attacker, is still missing from scientific literature. However, MATE attackers are
assumed to be extremely powerful. They can examine software both statically using manual
or automatic static analysis, or dynamically using state of the art software decompilers
and debuggers [142]. Shamir et al. [189], present a MATE attack, which can retrieve a
secret key used by a black-box cryptographic primitive to protect the system, if it is stored
somewhere in non-/volatile memory. Moreover, the memory state can be inspected or
modified during program execution and CPU or external library calls can be intercepted
(forwarded or dropped) [225]. Software behavior modifications can also be performed
by the MATE attacker by tampering with instructions (code) and data values directly on
the program binary or after they are loaded in memory. The MATE attacker can even
simulate the hardware platform on which software is running and alter or observe all
information during software operation [53]. The only remaining line of defense in case of
MATE attacks, is to increase the complexity of an implementation to such an extent that it
becomes economically unattractive to perform an attack [53].

3

1. Introduction

1.1. Benefits of Software Obfuscation

MATE attacks have raised the need for software protection mechanisms. Several techniques
for software protection have emerged over the last two decades. The implementation of
these different protection techniques can be done using: only software, software running
on trusted hardware and/or software communicating with a trusted remote party (server).
Using software-only protection techniques is the most attractive idea since it does not
restrict the number users to those who have trusted hardware and eliminates the costs of
setting up and maintaining a trusted remote server.

Implementations of such software-only protection mechanisms such as those offered
by Irdeto Cloakware [115], Arxan [9], and whiteCryption [114] started being integrated in
commercial products in the late 1990s when software vendors realized that a significant
amount of end-users would rather crack their software, than buy a license for it [54].
Moreover, these cracks were applicable to all copies of that software and were easily
distributed to other users. Therefore, they caused a loss in potential revenue for the
software vendors. Nowadays, software protection is still heavily employed by malware
developers, Digital Rights Management (DRM) systems, mobile applications, etc. Yet little
is known about the how we can characterize the strength of such protection mechanisms.
This leads to skepticism about any claimed security guarantees and to slow progress in the
field of software protection.

Falcarin et al. [80], put the existing software-only protection techniques into four cate-
gories:

• Obfuscation, which thwarts reverse-engineering attacks by concealing its logic, data
and identifiers.

• Tamper-proofing, which protects the integrity of software.

• Watermarking, which is used to trace back the original owner of unauthorized software
copies.

• Birthmarking, which is used to determine code that has been copied from one program
and used illegally in another program.

Given the large difference of attacker goals for each of the four categories of software
protection techniques, in this thesis we choose to focus on obfuscation. Obfuscation is also
divided in two major areas of research: (1) cryptographic obfuscation and (2) practical code
obfuscation. Cryptographic obfuscation offers concrete security guarantees, nevertheless,
they are currently far from being practical [25]. In this thesis we will briefly discuss the
practical issues behind cryptographic obfuscation, however, the main focus will be on
practical code obfuscation, which we will refer to simply as obfuscation. Obfuscation consists
of software transformations at the level of source code, intermediate representation and/or
native code, which aim to hide sensitive information available in the software application,
from MATE attackers. Such sensitive information includes but is not limited to: the

4

1. Introduction

algorithm performed by the software, the location of instructions which perform a certain
functionality (e.g. decryption of a media stream, integrity checks, etc.), metadata (properties)
of the program (e.g. whether it is malicious or not, which function it performs, which tools
have been used to obfuscate the program, etc.) and confidential data (e.g. hard-coded keys,
passwords, IP addresses, etc.).

Unfortunately, obfuscation cannot withstand a MATE attacker for an indeterminate
period of time. History has repeatedly shown that given the right motivation a MATE
attacker will be able to circumvent the obfuscation-based protection of a particular binary
program [197]. This is particularly dangerous because of the current software development
and distribution model called software monoculture, where all end-users receive a copy of the
same binary for each software application. In software monocultures attacks are developed
once and can subsequently be executed on all other software copies, running on systems
of other end-users. Software diversity aims to decrease the applicability of MATE attacks
on software by creating syntactically diverse, but functionally equivalent instances of one
software program [86]. This does not stop the MATE from executing an attack against
one particular software instance, and then create a tool which automatically applies this
attack. Nevertheless, it increases the chances that the attack tool will not work against other
instances of the same software, which eliminates the economical attractiveness of the attack
tool.

Analogy with Cryptography Commercial obfuscation developers often keep the obfus-
cation algorithm and/or the details of its implementation secret, violating Kerckhoff’s
principle which states that a system should be secure even if everything about the system,
except the key, is public knowledge [127]. Therefore, obfuscation is often associated with
the term security by obscurity. However, by combining the ideas of software diversity and
obfuscation we can move away from security by obscurity, towards something similar to
cryptography, where only the key is kept secret, not the algorithm.

Similarly to cryptographic ciphers, the input configuration (e.g. sequence of obfuscation
transformations, their parameters and random seeds) to a software obfuscation engine
can be seen as a randomly chosen key, which characterizes the output of the engine in a
unique way. We can attain software diversity by using different keys to protect different
instances of the same software application. Ideally, this forces a MATE attacker to invest a
similar amount of effort for attacking each different instance of the same software, similar
to a cryptanalysis attack on ciphertexts encrypted with different keys. Therefore, it would
be safe to make the obfuscation algorithms public and only protect the random key, akin
to cryptographic ciphers. In this thesis we will always assume that the attacker has full
knowledge about the implementation of the obfuscation transformations applied to the
programs being attacked, nonetheless, s/he does not know the input configuration used for
obfuscating that program.

As opposed to cryptographic ciphers, a successful MATE attack against an obfuscated
application does not require recovering the secret key (except for metadata recovery at-

5

1. Introduction

tacks [179] where the goal of the attacker is to recover the key). This is because obfuscation
transformations (generally) do not have an inverse transformation, such as encryption and
decryption. The reason why obfuscation transformations do not have an inverse is that
many such transformations (similarly to compiler optimizations), destroy information about
symbol names, comments, control flow, etc. Often this information cannot be recovered
automatically by an inverse transformation. However, a MATE attacker’s goal may be
different from recovering the original (unobfuscated) version of the program, e.g. bypassing
a check does not require recovering the original program, it just requires finding the location
of the check in the obfuscated code and disabling it. Section 1.2 describes the capabilities
and goals of the attacker which this thesis will focus on.

1.2. Attacker Model

Characterizing the strength of obfuscation against all MATE attacks is challenging, since
this depends on: the goal of the attacker, the degree of knowledge of the attacker and the
techniques and tools the attacker uses. The goals of the MATE attacker that this thesis will
focus on are:

• Recovering hidden data (e.g. a password), from an obfuscated program.

• Exploring all executable code of an obfuscated program, e.g. in order to locate integrity
checks or trigger conditions.

Moreover, in this thesis we focus on MATE attackers in the context of software diversity,
where MATE attackers are not successful if they can achieve their goal on a single software
instance. In the context of software diversity MATE attackers are only successful if they
can automate their attacks such that they are applicable to all (or a majority of) obfuscated
instances of a given software. If we make another analogy with cryptography here, then our
attacker model is similar to the ciphertext-only attack, where the attacker is assumed to have
access only to the ciphertext and no access to the corresponding plaintext. One interesting
observation is that MATE attackers are not always malicious, they can also be benign. In the
following paragraphs we present two scenarios where MATE attackers employ automated
attacks for malicious and benign reasons, respectively.

Malicious MATE Malicious MATE attackers perform (often illegal) attacks which cause
monetary loss for software vendors and/or end-users. One example of automated attacks
is called code patching. Code patching modifies the code of a program (statically and/or
dynamically) in order to change the input-output (IO) behavior of that program. Starting
from the late 2000s some organizations started to automate such code patching attacks
targeting popular applications (e.g. web browsers) in order to change their behavior in a
way that would bring financial gains to those organizations. Such automated attacks, which
change the behavior of applications without the explicit request of the end-users fall into a

6

1. Introduction

category called Potentially Unwanted Programs (PUPs). PUPs are often bundled together
with (seemingly) useful software, which leads end-users into unknowingly installing them.
Once installed, PUPs change the behavior of popular programs by tampering with process
memory, locally stored resources or the environment in which they run. Examples of
PUP behavior include: changing the default search engine of a web-browser, aggressively
displaying pop-up advertisements, tracking actions of end-users, causing an overall system
slowdown and asking for fees to “fix performance”. On the one hand, this change creates
some form of financial gain for the organizations that own the PUPs. On the other hand,
this change is detrimental for the vendor of the popular software and dangerous for its
end-users. Recent work investigating the distribution of PUPs indicates that Google Safe
Browsing generates on average over 60 million warnings related to PUPs per week, three
times that of malware warnings [208]. Techniques employed by PUPs (e.g. code injection
in the process memory, run-time memory patching, system call interposition) generally,
do not raise any alarms in anti-virus software, because they are also performed by non-
malicious third party software including anti-virus software, accessibility and graphics
driver tools [207]. Some anti-virus products are able to detect PUPs. However, the vendors
of popular software applications (e.g. web browsers) cannot assume that such anti-virus
software is present on all end-user systems. Therefore, developers of popular applications
incorporate protection mechanisms based on software diversity and obfuscation, inside of
their own products, which introduce a tolerable amount of overhead and are transparent
for end-users. Malicious MATE attackers therefore aim to develop PUPs which can bypass
such protection mechanisms.

Benign MATE Not all software developers are benign. An example of malicious software
developers are malware developers. Malware often performs illegal actions on the environ-
ment of a victim end-user, e.g. steal confidential information such as credit card numbers,
passport numbers, passwords, etc. Malware developers also heavily employ obfuscation
and software diversity because:

1. Diversely obfuscated binaries break signature-based malware detection, which lets
malware developers infect as many end-users as possible.

2. Malware developers do not want any of these end-users (i.e. victims of their malware),
to be able to reverse engineer the malware binaries and neutralize them.

Hence, benign MATE attackers are often malware analysts working for antivirus companies
who want to understand what the malware is doing in order to disarm and remove it.
Malware analysts are faced with millions of malware samples per day, which makes manual
analysis unscalable. Therefore, they are forced to develop automated attacks which can
handle diversely obfuscated code. These automated attacks will then be distributed as
updates to the anti-virus engines of all end-users (probably having diverse instances of the
malware), in order to stop the malware if it is present or detect it when it is transfered to
the end-user’s machine.

7

1. Introduction

1.3. The Need for Characterizing the Strength of Software
Obfuscation

In order to understand the some specific terms which will be used throughout the remainder
of this thesis, this section describes the seminal work of Collberg et al. [58, 59], who proposed
four dimensions for characterizing the quality of code transformations. These dimensions
are:

• Potency against human-assisted analysis attacks.

• Resilience against automated analysis attacks.

• Stealth which refers to the effort of identifying the transformed (part of the) code
inside a given program.

• Cost of the transformed program compared to the original program, which includes:
run-time, memory and file size overhead.

Each of these dimensions can be associated with a discrete scale of values, e.g. low, medium
and high. They can also be associated with one or more integer numbers. For instance, cost
values are associated with metrics indicating the average or maximum overhead in terms of:
run-time, memory usage and file sizes, for a certain set of program executions. However, for
the values of potency, resilience and stealth it is not clear which measures to use. Collberg
et al. [58] propose using various code complexity metrics for measuring potency, namely:
program length [102], cyclomatic complexity [149], nesting complexity [103], data flow
complexity [165], fan-in/-out complexity [105], data structure complexity [157], object
oriented design metrics [47]. These metrics are believed to be correlated with the difficulty
of understanding code for humans, nevertheless, there have been user studies which
argued that this correlation is weak [199]. Collberg et al. [59] argue that the degree of stealth
strongly depends on the program being transformed, because some transformations may
produce stealthy code in some contexts (i.e. where the surrounding code is similar to the
obfuscation output) and un-stealthy code in others. Several researchers have discussed
possible measures of resilience [124, 7, 143, 155]. Despite the numerous efforts in this area,
a recent survey of most of the common obfuscating transformations and deobfuscation
attacks indicates that after more than two decades of research, we are still lacking reliable
concepts for evaluating the resilience of code obfuscation against attacks [184].

Intuitively, a defender is chiefly interested in a quantifiable expression over his/her
program and all attackers, saying that attacking a particular obfuscation transformation is
bounded below by a certain work-factor. However, we believe this to be a very lofty goal. On
the other hand, an attacker is mainly interested in developing an attack which outperforms
any prior known attacks, especially if these attacks are not efficient in the attacker’s context.
We believe that these two perspectives complement each other. Therefore, we propose
a model for quantifying obfuscation resilience by stipulating a – possibly hypothetical,

8

1. Introduction

unknown, non-computable – lower bound. This reflects the perspective of the defender’s
interests. In practice, we are confined to providing single data points; their values define
upper bounds for the lower bounds. These are interesting if a defender can conclude that
even though s/he may not know the lower bound, available data already suggests that the
obfuscation mechanism is too weak, assuming the best known attackers, according to today’s
knowledge.

1.4. Goal

The overarching goal of this thesis is to provide a framework for the quantitative charac-
terization of the resilience of software code obfuscation transformations w.r.t. automated
MATE attacks. This framework will aid the decision making process of an obfuscating party
regarding which obfuscation transformations to employ for different scenarios involving
automated attacks. Moreover, this framework will also guide the development of new
obfuscation transformations to help defend against automate MATE attacks.

1.5. Problem Statement and Research Questions

Since there exist multiple obfuscation transformations and multiple automated MATE
attacks, it is unclear how to quantify the effect of different obfuscation transformations
w.r.t. different attacks. Moreover, it is unclear if cryptographic obfuscation may be of practi-
cal use for some scenarios, or which combination of practical code obfuscation techniques
to choose when defending against a particular set of MATE attacks. Therefore, the problem
addressed in this work is that of characterizing the strength of obfuscated programs against auto-
mated MATE attacks. To solve this problem statement and to achieve the goal of this thesis,
the following research questions must be answered:

1. What is the overhead of using cryptographic obfuscation? (answered in Chapter 2)

2. What practical code obfuscation transformations have been proposed in the literature?
(answered in Chapter 3)

3. How can we characterize the strength of obfuscation transformations using a general
model that covers all attacks? (answered in Chapter 4)

4. Are there common (sub-)goals that must be achieved in order for a group of automated
MATE attacks to be successful? (answered in Chapter 5)

5. Is there a way to determine an upper limit to the number of obfuscation transforma-
tions to apply? (answered in Chapter 5)

6. Which obfuscation transformations hinder automated attacks, by how much and at
what cost? (answered in Chapter 5)

9

1. Introduction

7. How can we determine which code features have the highest impact on different
automated MATE attacks? (answered in Chapter 6)

8. How can we build obfuscation transformations that are stronger than current ones?
(answered in Chapter 7)

9. What are the state of the art approaches for evaluating or characterizing the strength
of obfuscation? (answered in Chapter 8)

1.6. Thesis Statement

This work focuses on answering the research questions from Section 1.5 in order to support
the hypothesis that:

All automated MATE attacks involve search problems. The effort needed to solve such search
problems can be quantified based on: (1) the attacker goal, (2) the characteristics of the program,
which is the object of the attack, (3) the search strategy and (4) the heuristic function employed by
attacker.

Elaborating on the hypothesis, the core of this work shows that by formulating automated
MATE attacks as search problems, one is able to:

• Determine the program characteristics (e.g. size of program, McCabe cyclomatic
complexity [149], etc.), which influence the effort of the automated MATE attack (see
Chapter 4).

• Choose only those existing obfuscation transformations that affect program character-
istics such that the automated MATE attack effort is increased (see Chapter 5).

• Predict the effort (e.g. time) needed to perform an automated MATE attack based on
the characteristics of the program (see Chapter 6).

• Develop new obfuscation transformations that change the program characteristics
such that the automated MATE attacks are prevented or hampered (see Chapter 7).

All of these previously enumerated results substantiate our thesis.

1.7. Solution

The general challenge of software obfuscation is to find transformations that are both
practical and secure against any MATE attacker. In this respect we discuss how secure
we can make practical obfuscations and how practical provably secure obfuscations are.
However, we restrict the scope of this work to a special class of automated MATE attacks
(i.e. attacks which use: symbolic execution, pattern matching, pattern recognition, taint
analysis, etc.), because human assisted analysis is highly dependent on factors beyond our

10

1. Introduction

control (e.g. knowledge, ingenuity, etc.) and relatively more expensive to perform, due to
humans which need to be involved to perform attacks.

In this scope we propose a framework which is able to characterize the strength of
obfuscation based on the effort of automated MATE attacks. Our framework is instantiated
for common state-of-the-art obfuscation transformations and automated attacks based on
symbolic execution. We implemented and published obfuscation transformations for which
we did not find a freely available implementation. We then performed different case-studies
where we obfuscated a set of programs and measured their impact on different attacks
w.r.t. the original (unobfuscated) counterparts. The results lead to an intuition as to which
obfuscation transformations can withstand which automated attacks given a certain amount
of computing resources and time to execute the attack. More importantly, we identify key
software features that are able to characterize the strength of obfuscation w.r.t. symbolic
execution attacks. To show the importance of these features, we build a model leveraging
them, in order to predict the effort needed by automated MATE attacks.

The benefits of our framework do not end with characterizing the strength of obfuscation
based on the effort needed by automated MATE attacks. By using the information regarding
which software features have a high impact on the attack effort, we are able to develop new
obfuscation techniques that increase the effort by leveraging those features.

Since it is not possible to envision attack techniques that are yet to be published or
developed, we do not claim that our results provide a lower bound on the resilience of an
obfuscation transformation against arbitrary attacks. Instead, we provide an upper bound
on the lower bound, i.e. we claim that the best attacker will not be worse than shown by our
results. More importantly, we claim that the effort of any automated MATE attack – which
is developed after the publication of this thesis – can be characterized using our framework.
Therefore, the upper bound on the lower bound must be updated whenever a new attack
becomes available.

1.8. Contributions

This thesis makes the following contributions:

• A framework for characterizing the strength of obfuscation with respect to known
automated MATE attacks. The strength is measured using the effort needed by the
best known attack. Using our framework we can formulate all automated MATE
attacks as search problems, which facilitates reasoning about how to characterize the
effort of the attack.

• Several instantiations of our framework for various attacker goals and automated
attacks. We present an in-depth study of automated MATE attacks based on symbolic
execution. We find that symbolic execution is able to bypass several popular obfusca-
tion transformations with no human assistance. We discuss why different obfuscation
transformations have different effects on the time needed to successfully complete a

11

1. Introduction

symbolic execution attack. Moreover, we identify the most important features needed
to characterize the strength of obfuscation against such attacks. We use these features
to build a regression model which can predict the time needed for an attack, with
high accuracy.

• Implementations of obfuscation transformations that help improve resilience against
specific automated attacks. Based on our findings from the case-study on symbolic
execution attacks, we develop two novel obfuscation transformations, which can
exponentially increase the effort of such attacks.

Parts of the contributions of this thesis have previously appeared in the following peer-
reviewed publications, co-authored by the author of this thesis:

1. Banescu, S; Collberg, C; Ganesh, V; Newsham, Z; Pretschner, A. Code Obfuscation
Against Symbolic Execution Attacks. In Proceedings of the 32nd Annual Computer
Security Applications Conference (ACSAC), 2016. Best Paper Award.

2. Salem, A; Banescu, S. Metadata Recovery From Obfuscated Programs Using Machine Learn-
ing. In Proceedings of the 6th Software Security, Protection and Reverse Engineering
Workshop (SSPREW), 2016. Best Paper Award.

3. Banescu, S; Lucaci, C; Krämer, B; Pretschner, A. VOT4CS: A Virtualization Obfuscation
Tool for C#. In Proceedings of 2nd International Workshop on Software Protection
(SPRO), 2016.

4. Banescu, S; Wuechner, T; Salem, A; Guggenmos, M; Ochoa, M; Pretschner, A. A
Framework for Empirical Evaluation of Malware Detection Resilience Against Behaviour
Obfuscation. In Proceedings of 10th International Conference on Malicious and Un-
wandted Software (MALWARE), 2015.

5. Banescu, S; Ochoa, M; Pretschner, A. A Framework for Measuring Software Resilience
Against Automated Attacks. In Proceedings of the 1st International Workshop on
Software Protection (SPRO), 2015.

6. Banescu, S; Ochoa, M; Kunze, N; Pretschner, A. Idea: Benchmarking indistinguishability
obfuscation - A candidate implementation. In Proceedings of the International Symposium
on Engineering Secure Software and Systems (ESSoS), 2015.

In addition to the previously enumerated papers, the author of this thesis has co-authored
the following peer-reviewed publications, which tackle relevant problems, related to the
topic of this thesis, but are not part of this thesis:

8. Banescu, S; Ahmadvand, M; Pretschner, A; Shield, R; Hamilton, C. Detecting Patching
of Executables without System Calls. In Proceedings of the 7th ACM Conference on Data
and Application Security and Privacy (CODASPY), 2017.

12

1. Introduction

9. Ibrahim, A; Banescu, S. StIns4CS: A State Inspection Tool for C#. In Proceedings of 2nd
International Workshop on Software Protection (SPRO), 2016.

10. Fedler, R; Banescu, S; Pretschner, A. ISA2R: Improving Software Attack and Analysis
Resilience via Compiler-Level Software Diversity. In Proceedings of 34th International
Conference on Safety, Reliability, and Security (SAFECOMP), 2015.

11. Banescu, S; Pretschner, A; Battre, D; Cazzulani, S; Shield, R; Thompson, G. Software-
Based Protection against “Changeware”. In Proceedings of the 5th ACM Conference on
Data and Application Security and Privacy (CODASPY), 2015.

1.9. Structure

Chapter 2 provides an overview of theoretical obfuscation constructions and issues that
hinder their application in practice. Chapter 3 provides a classification and a survey of
obfuscation transformations. Chapter 4 describes our framework for characterizing the
strength of obfuscation against automated MATE attacks. Chapter 5 presents a case study
where we instantiate the framework for dynamic symbolic execution attacks with the goal
of extracting a license key from obfuscated programs. Chapter 6 presents another case study
where we aim to extract the most relevant features that characterize the effort of a symbolic
execution attack, in order to build prediction models to estimate the time needed for such
attacks. Chapter 7 presents novel obfuscation techniques to hinder symbolic execution
attacks. Chapter 8 presents related work. Chapter 9 presents conclusions, insights and
future work.

13

2. Obfuscation in Theory

This chapter presents a brief overview of cryptographic obfuscation and why it is
currently far from being practical. Parts of this chapter have previously appeared
in a peer-reviewed publication [14], co-authored by the author of this thesis.

The first formal study of obfuscation was published in 2001 by Barak et al. [26]. They
proposed that an ideal obfuscator should be able to take any program and transform it into
a virtual black box, i.e. a MATE attacker would be able to interact with it in the same manner
as with a program running on a remote server, however, the attacker would not be able to
learn anything from the program in addition to what can be learned from its input-output
behavior. In Section 2.1 we show the formal definition of this ideal (black-box) obfuscator
as given in [26], as well as a sketch of the proof that such an obfuscator cannot exist.

Over a decade later, Garg et al. [90] proposed a construction for indistinguishability
obfuscation, a different obfuscation notion than black-box obfuscation, which guarantees that
the obfuscations of two programs implementing the same functionality are computationally
indistinguishable. This was a major breakthrough in cryptography, since a few years earlier
it was proven by Goldwasser and Rothblum [97] that indistinguishability obfuscation is
the best possible type of obfuscation that can be achieved for all programs. Therefore, we
are currently seeing a revival of interest in obfuscation from the cryptographic community,
because the construction of Garg et al. [90] may be employed to construct functional
encryption, public key encryption, digital signatures, etc. We describe this construction in
Section 2.2. Afterwards, we present our own implementation of this construction and its
applicability in practice in Section 2.3

2.1. Impossibility of Black-Box Obfuscation

As opposed to practical obfuscation which describes transformations directly on computer
programs, cryptographic obfuscation often talks about transformations on boolean circuits,
which can be translated to computer programs, however, they are not as expressive as
most programing languages used in practice (e.g. boolean circuits do not allow loops such
as C/C++, Java, etc.). A boolean circuit C is a directed acyclic graph, where nodes are
represented by conjunction, disjunction and/or negation gates with maximum 2 inputs
(fan-in-2), which process only boolean values. The inputs of a circuit are all gates with
in-degree 0, while the outputs are gates with out-degree 0. If C has n inputs and x ∈ {0, 1}n,
then we denote by C(x) ∈ {0, 1}m, the m-bit output of C when given input x. Therefore, a

15

2. Obfuscation in Theory

circuit C can be defined as a function C : {0, 1}n → {0, 1}m. The size of a circuit (denoted
|C|) is equal to the total number of gates in that circuit. The following sections will also
overload the semantics of the vertical bars (| · |) operator, which denotes the absolute value
when applied to a real number. The depth of a circuit is the length of the longest path from
input to output gate, in the circuit. If S is a Probabilistic Polynomial Time Turing Machine
(PPT), we denote by SC(x) the output of S when given input x and oracle access to the
circuit C. Oracle access is not limited to a single circuit, e.g, SC,D(x) denotes the output of
S when given input x and oracle access to both circuits: C and D. Finally, note that circuits
are also represented using a string of binary digits of a certain maximum size. Therefore,
circuits can also be treated as input data of PPTs.

2.1.1. Definition of Black-Box Obfuscation

In this context an obfuscator must satisfy three properties. Firstly it must preserve the input-
output behavior of its input program. Secondly, it must not induce more than a polynomial
overhead. Finally, a PPT attacker must not able to compute any predicate (property) of
the original program from the obfuscated program, which property the attacker could not
compute given only oracle access to that original program. These properties are formally
described in the following definition.

Definition 2.1. (Circuit Obfuscator [26]) A probabilistic algorithm O is a circuit obfuscator if the
following conditions hold:

• (functionality) For every circuit C, the stringO(C) describes a circuit that computes the same
function as C.

• (polynomial slowdown) The description length and running time of O(C) are at most poly-
nomially larger than that of C. That is, there is a polynomial p such that for every circuit C,
|O(C)| ≤ p(|C|).

• (virtual black box property) For any PPT A, there is a PPT S and a negligible function α such
that for all circuits C∣∣∣Pr[A(O(C)) = 1]− Pr[SC(1|C|) = 1]

∣∣∣ ≤ α(|C|).

We say that O is efficient if it runs in polynomial time.

2.1.2. Sketch of Impossibility Proof

Barak et al. [26] state in a theorem that such an obfuscator does not exist for all circuits
(programs). However, note that the theorem does not say that it is impossible to build
a black-box obfuscator for a particular set of circuits (programs). Moreover, the virtual
black-box property is not always necessary in practice. Therefore, this impossibility result
has not discouraged other researchers looking into practical obfuscation transformations.

16

2. Obfuscation in Theory

The proof of the previous theorem is based on a counter example. In this section we do
not provide the entire proof, instead, we only show the counter example to give the reader
an intuitive understanding of the impossibility result and we refer to the original paper [26]
for the full proof.

If a black-box obfuscator exists for all programs, then even if an attacker is given two or
more obfuscated programs, s/he should not be able to infer any property about any of these
programs by combining them in some way. This statement is defined by Barak et al. [26] as:

Definition 2.2. (2-circuit Obfuscator [26]) A 2-circuit obfuscator is defined in the same way as a
circuit obfuscator (see Definition 2.1), except that the “virtual black-box” property is replaced by the
following:

• (virtual black-box property) For any PPT A, there is a PPT S and a negligible function α such
that for all circuits C,D∣∣∣Pr[A(O(C),O(D)) = 1]− Pr[SC,D(1|C|+|D|) = 1]

∣∣∣ ≤ α(min{|C|, |D|})

Barak et al. [26] show that 2 circuits can be merged into one. Hence, after proving that
2-circuit obfuscators do not exist for all programs, it is straightforward to prove that circuit
obfuscators do not exist as well. Here we will only show the proof that 2-circuit obfuscators
do not exist for all programs. The essence of the proof is that there is a fundamental
difference between having oracle access to a function and having a program that computes
that function. If a function is (exactly) learnable via a polynomial number p(k) of queries to
the oracle, then this difference is insignificant. Therefore, the proof assumes the existence of
one-way functions which are unlearnable by a PPT attacker via queries to an oracle, e.g.:

Cα,β(x) =

{
β if x = α

0 otherwise

The second circuit Dα,β that will be obfuscated is a point function, which interprets its input
as a function (C), and distinguishes whether this function outputs a particular value (β)
when given a particular input (α), i.e.:

Dα,β(C) =

{
1 C(α) = β

0 otherwise

The MATE attacker is a PPT A, which given two circuits as arguments, simply applies the
second argument on the first argument, i.e. A(C,D) = D(C). Hence, if Cα,β and Dα,β can
be represented with Θ(k) bits of information, then for any α, β ∈ {0, 1}k,

Pr[A(O(Cα,β,O(Dα,β) = 1] = 1 (2.1)

17

2. Obfuscation in Theory

On the other hand, a PPT attacker S, with only oracle access to Cα,β and Dα,β will only
have a probability of 2−Ω(k) of guessing an input that will cause either of the two oracles to
produce an output different from 0, i.e.:∣∣∣Pr[SCα,β ,Dα,β (1k) = 1]− Pr[SZk,Dα,β (1k) = 1]

∣∣∣ ≤ 2−Ω(k), (2.2)

where Zk is a circuit which outputs zero for all inputs. However, from the definition of the
MATE attacker A we have:

Pr[A(O(Zk),O(Dα,β)) = 1] = 0 (2.3)

Equations 2.1, 2.2 and 2.3 show that there does not exist a 2-circuit obfuscator for all
programs, because there exists a class of functions for which the virtual black-box property
does not hold.

Note that this proof has focused on an adversary which aims to compute any 1-bit pred-
icate (property) of a program. In Barak et al. [26], we also find a more general type of
adversary, than the one who wants to compute a property of the program. This adver-
sary’s goal is to generate an output distribution given only oracle access to P , which is
computationally distinguishable from anything s/he can compute given O(p). This type of
adversary is the focus of indistinguishability obfuscation, which we discuss in Section 2.2.

2.2. Indistinguishability Obfuscation

This section presents the definition and candidate indistinguishability obfuscation construc-
tion developed by Garg et al. [90] applied to boolean circuits in NC1 [8], preceded by the
concepts needed to understand this construction.

An indistinguishability obfuscator must satisfy two properties: (1) it must preserve the
input-output behavior of the unobfuscated circuit and (2) given two circuits C1, C2 ∈ Cλ
and their obfuscated counterparts iO(λ,C1), iO(λ,C2), a PPT adversary will not be able to
distinguish which obfuscated circuit originates from which original circuit with significant
probability (the advantage of the adversary is bounded by a negligible function of the
security parameter λ). This definition is formally specified by Garg et al. [90] in the following
definition.

Definition 2.3. (Indistinguishability Obfuscator (iO) [90]) A uniform PPT iO is called an indis-
tinguishability obfuscator for a circuit class {Cλ} if the following conditions are satisfied:

• For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr[iO(λ,C)(x) = C(x)] = 1

• For any PPT distinguisher D, there exists a negligible function α such that the following
holds: For all security parameters λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ, we have that if
C0(x) = C1(x) for all inputs x, then

|Pr[D(iO(λ,C0)) = 1]− Pr[D(iO(λ,C1)) = 1]| ≤ α(λ)

18

2. Obfuscation in Theory

(a) Boolean circuit.

(b) Branching Program (BP).

Figure 2.1.: Boolean circuit and its corresponding Branching Program (BP).

The previous definition does not indicate how to construct iO. In the following we
present the mathematical building blocks needed for the candidate construction proposed
by Garg et al. [90].

2.2.1. Branching Programs

Even though at an abstract level iO applies to boolean circuits, in the candidate construction
proposed by Garg et al. [90] all circuits are transformed into Branching Programs (BPs). A
BP – also called a Binary Decision Diagram (BDD) – is a rooted, connected, directed, acyclic
graph, which is used to compute a boolean function. A BP has two types of nodes, namely
decision nodes with out-degree equal to two and terminal nodes with out-degree equal to
zero. All decision nodes are associated with exactly one input variable – representing an
input of the circuit – and the two outgoing arcs represent logical values 0 and 1 assigned
to the input associated to that node. All terminal nodes are of two types, namely logical
0 or 1, representing the output value of the circuit. Figure 2.1b shows an example of a BP
corresponding to the simple circuit from Figure 2.1a, which computes the following boolean
function: f(x, y, z) = x ∧ (y ∨ z). A layer of a BP is defined as the set of non-terminal nodes
with the same distance from the root node. All nodes in the same layer are associated with
the same input variable. The BP in Figure 2.1b has three layers corresponding to input
variables x, y and z. The length of the BP is equal to its number of layers.

In [90], each layer i of a BP is encoded as two square permutation matrices of size m,
i.e. Ai,0, Ai,1 ∈ {0, 1}m×m. The two permutation matrices correspond to the logical values 0
and 1, that may be assigned to the input variable associated to layer i. The result of such
a BP is computed by choosing one of the two permutation matrices corresponding to the
logical value assigned to the input variable associated to each layer. These matrices are
then multiplied and the result is compared with two pre-computed permutation matrices,
corresponding to the two terminal nodes 0 and 1, i.e. A0, A1 ∈ {0, 1}m×m. This encoding of
a BP is called an oblivious linear branching program and is formally defined subsequently.

19

2. Obfuscation in Theory

Definition 2.4. (Oblivious Linear Branching Program [90]) Let A0, A1 ∈ {0, 1}m×m be two
distinct arbitrarily chosen permutation matrices. An (A0, A1) oblivious BP of length n for circuits
with `-bit inputs, is a sequence of instructions BP = ((inp(i), Ai,0, Ai,1))ni=1, where Ai,b ∈
{0, 1}m×m, and inp : {1, n} → {1, `} is a mapping from BP instruction index to circuit input bit
index. The function computed by the BP is

fBP,A0,A1(x) =


0 if Πn

i=1Ai,xinp(i) = A0

1 if Πn
i=1Ai,xinp(i) = A1

undef otherwise

The transformation from a circuit to an oblivious linear branching program (hereafter
simply BP) is made possible by Barrington’s theorem [29], which states that any fan-in-2,
depth-d boolean circuit (i.e. all circuits from class NC1 [8]) can be transformed into a BP of
length at most 4d using only permutation matrices of size 5× 5, that computes the same
function as the circuit.

2.2.2. Universal Circuits and Kilian’s Protocol

The family of circuits Cλ is characterized by ` inputs, λ gates, O(logλ) depth and one output.
Cλ has a corresponding polynomial-sized Universal Circuit (UC), which is a function
Uλ : {0, 1}f(λ) × {0, 1}` → {0, 1}, where f(λ) is some function of λ. Uλ can encode all
circuits in Cλ, i.e. ∀C ∈ Cλ, ∀z ∈ {0, 1}`,∃Cb ∈ {0, 1}f(λ) : Uλ(Cb, z) = C(z). It is important
to note that the input of Uλ is a f(λ) + ` bit string and that by fixing any f(λ) bits, one
obtains a circuit in Cλ.

UCs are part of the candidate iO construction, because they enable running Kilian’s
protocol [128], which allows two parties (V and E), to evaluate any NC1 circuit (e.g. Uλ)
on their joint input X = (x|y), without disclosing their inputs to each other, where x, y
are the inputs of V , respectively E. This is achieved by transforming the circuit into a
BP, BP = ((inp(i), Ai,0, Ai,1))ni=1 by applying Barrington’s theorem [29]. Subsequently, V
chooses n random invertible matrices {Ri}ni=1 over Zp, computes their inverses and creates
a new Randomized Branching Program (RBP),RBP = ((inp(i), Ãi,0, Ãi,1))ni=1, where Ãi,b =
Ri−1Ai,bR

−1
i for all i ∈ {1, n}, b ∈ {0, 1} and R0 = Rn. It can be shown that RBP and BP

compute the same function. Subsequently, V sendsE only the matrices corresponding to her
part of the input {Ãi,b : i ∈ {1, n}, inp(i) < |x|} and E only gets the matrices corresponding
to one specific input via oblivious transfer. E can now compute the result of RBP without
finding out V ’s input. Kilian’s protocol is related to the notion of program obfuscation, if
we think of V as a software vendor who wants to hide (obfuscate) a program that is going
to be distributed to end-users (E). However, Kilian’s protocol [128] is modified in [90], by
sending all matrices corresponding to any input of E, which allows E to run the RBP with
more that one input. This modified version is vulnerable to partial evaluation attacks, mixed
input attacks and also non-multilinear attacks, which extract information about the secret
input of V .

20

2. Obfuscation in Theory

Figure 2.2.: Overview of the candidate construction for indistinguishability obfuscation

To prevent partial evaluation attacks Garg et al. [90] transform the 5× 5 matrices of BP
into higher order matrices, having dimension 2m+ 5, where m = 2n+ 5 and n is the length
of BP . Subsequently, they add 2 bookend vectors of size 2m+ 5 in order to neutralize the
multiplication with the random entries in the higher order matrices. To prevent mixed input
attacks a multiplicative bundling technique is used, which leads to an encoded output of BP .
To decode the output of the BP an additional BP of equal length with BP , which computes
the constant 1 function, is generated and the same multiplicative bundling technique is
applied to it. Subtracting the results of the two BPs executed on the same inputs, will
decode the output of BP . To prevent non-multilinear attacks, the candidate construction of
Garg et al. [90] employs the Multi-linear Jigsaw Puzzle (MJP).

2.2.3. Multilinear Jigsaw Puzzle (MJP)

An overview of MJP is illustrated in Figure 2.2 and consists of two entities, i.e. the Jigsaw
Generator (JGen) and the Jigsaw Verifier (JVer). The JGen is part of the circuit obfuscator. It
takes as input a security parameter (λ), a UC (Uλ) and the number of input bits (`) of any
circuit simulated by Uλ. JGen first applies Barrington’s theorem [29] to transform Uλ into a
Universal Branching Program (UBP), UBP of length n. Subsequently, the Instance Generator
takes λ and the multilinearity parameter (k = n+ 2) as inputs and outputs a prime number
p and a set of public system parameters (including a large random prime q and a small
random polynomial g ∈ Z[X]/(Xm + 1)). Afterwards, UBP is transformed into a RBP by:
(1) transforming the BP matrices into higher order matrices, (2) applying multiplicative

21

2. Obfuscation in Theory

bundling and (3) the first step of Kilian’s protocol. The output of JGen is a set of public
system parameters and the randomized UBP (÷RND(UBPλ)) with all matrices encoded by
the Encoder component.

The output of JGen can be used to obfuscate a circuit C ∈ Cλ by fixing a part of the inputs
(garbling) of ÷RND(UBPλ) such that it encodes C for all z ∈ {0, 1}`. Garbling is done by
discarding the matrices of ÷RND(UBPλ) which correspond to values not chosen for the
fixed input bits. The result of this step is iO(λ,C), the candidate of Garg et al. [90]. It is
sent to an untrusted party which evaluates it by fixing the rest of its inputs and providing
it as input to the JVer. The JVer outputs 1 if the evaluation of iO(λ,C) is successful and 0,
otherwise.

2.3. Applicability in Practical Scenarios

Although the proposers of indistinguishability obfuscation acknowledge that their construc-
tion is not practical as of today [75], concrete details had not been published at the time
that the author of this thesis co-authored [14]. The motivation of [14] was thus to better
understand how far the candidate construction is from being used in real applications. To
do so, we prototypically implemented the algorithm described in [90] and benchmarked its
space and time performance depending on various parameters. Details are presented in the
following.

2.3.1. Implementation

Our proof-of-concept implementation was done in Python, leveraging the SAGE computer
algebra system and can be downloaded from the Internet [93]. It consists of the following
modules, corresponding to the light blue rectangles from Figure 2.2: (1) building blocks
for UC creation, (2) Barrington’s theorem for transforming boolean circuits to BPs, (3)
transformation from BP matrices into higher order matrices and applying multiplicative
bundling (4) 1st step of Kilian’s protocol for creating RBPs from BPs, (5) instance generator
for MJP, (6) encoder for MJP, (7) circuit encoder into input for UC, (8) partial input fixer for
RBPs, and (9) zero testing of jigsaw verifier.

Technical challenges faced Although commonly used in the literature, we could not find
a readily available implementation of Universal Circuits (UC) that was easily adaptable to
our setting. Therefore we decided to implement our own UC component, following the
less performant algorithm of [182]. For the sake of performance, this component can be
improved by following for instance the more performant (but more complex) algorithm
suggested in [182] or [210].

Challenges interpreting [90] We also faced some challenges while interpreting the candi-
date construction description, in particular their suggested encoding function. For instance
it was difficult to come up with concrete values for some parameters, since the relation

22

2. Obfuscation in Theory

Figure 2.3.: Generation of UCs (X-axis: no. inputs (`), no. gates of input circuit (λ))

between them is given using the big O notation. On the other hand, the Encoder function
requires to reduce an element a ∈ Zp modulo a polynomial g of degree ≥ 1. We could
not think of a better canonical representative for this reduction than a itself, which makes
us believe that either the modulo reduction is redundant or Garg et al. [90] had another
canonical representative in mind (a polynomial) which is unclear how to compute.

Summary of current status Currently, our implementation can perform most steps of the
candidate construction, with the exception of the zero test. We believe this is a result of
an incorrect choice of the canonical representative of a modulo g or/and of the concrete
parameters as discussed above. We have raised these issues in popular mathematics and
cryptography forums and contacted Garg et al. [90] for clarification with no success at the
moment of elaborating this document. However, note from Figure 2.2 that the improper
functioning of the zero test does not affect the results of benchmarking the Circuit Obfuscator
presented in the next section, because it is part of the Jigsaw Verifier.

2.3.2. Benchmarking

We executed our experiments on a machine with average hardware, i.e. four 2,6 GHz cores
and 64 GBs of memory. The first experiment aims to investigate the resources required to
obfuscate a circuit consisting only of AND gates as a function of its number of inputs and
gates. As illustrated in Figure 2.2 the first step of obfuscation consists of generating the UC,
corresponding to the first step of our experiment. The number of circuit inputs were varied
between 2 and 4, while the number of gates between 1 and 10. The recorded outputs are
shown in Figure 2.3 and consist of the: number of gates, memory usage, output file and
generation time needed for the UC. Observe that increasing the number of inputs causes a
linear increase in each measured output of the experiment, while increasing the number of
gates causes an exponential increase. The memory usage is around one order of magnitude
higher than the file size due to the compression algorithm we use to store UCs.

23

2. Obfuscation in Theory

Figure 2.4.: Generation of BPs (X-axis: no. inputs (`), no. gates of input circuit (λ))

The second step of our experiment consisted of transforming the previously generated
UCs into BPs using our implementation of Barrington’s theorem [29]. However, it was
infeasible to transform all the previously generated UCs because of the fast polynomial
increase in memory usage and file size, illustrated in Figure 2.4. We estimated the size of
generating a BP for a UC which encodes a circuit by applying following recursive formula
(corresponding to our implementation), to the output gate of a UC:

l(gate) =


1 if type(gate) = Input

l(gate.input) if type(gate) = NOT

2l(gate.input1) + 2l(gate.input2) if type(gate) = AND

The estimated memory usage of a universal BP which encodes 4 inputs and 6 gates, corre-
sponding to the largest UC we show in Figure 2.3, is over 4.47 Peta Bytes, which is infeasible
to generate on our machine.

The third step of our experiment was to transform the BPs generated previously into
RBPs by transforming the BP matrices into higher order matrices, applying multiplicative
bundling and the first step of Kilian’s protocol [128]. The results of this experiment are
shown in Figure 2.5. Additionally to the number of inputs and gates, in this experiment we
also have the matrix dimension increase (m) and the choice of the prime (p) corresponding
to Zp in which Kilian’s protocol operates. The choice of m influences both the generation
time and the file size polynomially. Observe that the memory usage remains constant for
different values of m. This is due to compatibility issues between SAGE and our memory
profiler. However, we observed that the actual memory usage is still one order of magnitude
higher than the file size. On the one hand, p influences the generation time linearly. On the
other hand, the memory usage and file size are affected only if the data type width (range)
of p grows, e.g. from a byte to an integer. Note that, the memory usage is not shown in
Figure 2.5 since it could not be measured reliably due to technical limitations of our memory
profiler. We estimate that the memory usage is approximately one order of magnitude
higher than the file size.

24

2. Obfuscation in Theory

Figure 2.5.: Generation of RBPs (X-axis: no. inputs (`), no. gates of input circuit (λ), matrix
dimension (m), prime number (p)). Legend is the same as Figure 2.4.

2.4. Summary

In this section we have presented a non-trivial upper bound on the size and performance
of the obfuscated versions of small circuits. To give an idea about the practicality of this
construction, consider a 2-bit multiplication circuit. It requires 4 inputs and between 1 and
8 AND gates for each of its 4 output bits. An obfuscation would be generated in about
1027 years on a 2,6 GHz CPU and would require 20 Zetta Bytes of memory for m = 1 and
p = 1049. Executing this circuit on the same CPU would take 1.3× 108 years. This clearly
indicates that for the time being the candidate construction is highly unpractical.

However, this upper bound can still be tightened (perhaps even dramatically) by improv-
ing upon our preliminary implementation. In particular, there exist better algorithms for
the generation of UCs, which directly affect the size of the obfuscation [182, 210]. There
is an inherent limitation for this improvement due to the fact that the output of gates in
UCs are reused by other gates, which causes duplication of matrices in BPs when using
Barrington’s theorem [29]. Therefore, one improvement is to avoid using Barrington’s
theorem as suggested by Ananth et al. [4]. On the other hand, we have only implemented
the construction for NC1 circuits: the candidate construction includes an extension to
cope with bigger circuit classes, that includes the use of fully homomorphic encryption.
As research advances towards practical fully homomorphic encryption, we expect our
open implementation of the candidate indistinguishability obfuscation algorithm to foster
improvements by the community.

25

3. Obfuscation in Practice

This chapter presents an overview of obfuscation and software diversity transfor-
mations employed in practice. It also describes challenges of building practical
obfuscators. Parts of this chapter have also appeared in a publication [22],
co-authored by the author of this thesis.

A practical obfuscator is in essence a compiler that takes a program as input, and outputs a
functionally equivalent program, which is harder to understand and analyze than the input
program. The meaning of the phrases “functionally equivalent” and “harder to understand
and analyze” are different in practice than in theory (see Chapter 2) and this difference will
be discussed in this chapter. For instance, some classical compiler optimizations are also
considered obfuscation transformations, because in order to make the code more efficient,
such optimizations may replace control-flow abstractions that are easy to understand by
developers (e.g. loops), with other constructs which are less straightforward (e.g. goto
statements).

One of the first works which proposed practical code (obfuscation) transformations for
the purpose of software diversity, was published by Cohen in 1993 [53]. In his work, Cohen
describes the ultimate attack (which is equivalent to the MATE attacker we described in
Chapter 1), and the ultimate defense in this context, which can be done by increasing the
complexity of the attack by means of code (obfuscation) transformations, trusted hardware
or a combination of the two. Cohen also proposes a set of thirteen code transformations,
which he suggests should be mixed according to the application and the security goals
of the software developer. The work of Cohen has been extended by numerous authors.
Some authors have focused on obfuscation [58, 184], others on software diversity [134, 31],
however, it is clear that by employing (different) obfuscation transformations on the same
input program we can obtain a multitude of diverse software instances.

3.1. Practical Challenges of Code Transformations

This chapter provides a conceptual overview of code transformations and does not focus on
any particular implementation. Nevertheless, it is important to also keep implementation
challenges in mind when talking about code transformations. Therefore, here we give an
indication of one of the most important challenges facing obfuscation implementations in
practice, i.e. correctness.

27

3. Obfuscation in Practice

As stated in the informal definition of obfuscation, at the beginning of this chapter:
obfuscators are a type of compilers. Therefore, similarly to compilers, obfuscators may
introduce bugs, i.e. change the IO behavior (functionality) of their input program [106].
Since such a change in functionality is undesirable, several researchers have tackled this
problem in the field of compilers. One approach for solving this issue is to build a formally
verified compiler [136]. Nonetheless, such a task is, for the time being, time consuming and
resource intensive for practical compiler developers.

Another approach for solving the previous issue is to directly test if the output of the
compiler (obfuscator) is functionally equivalent to its input. However, from Rice’s theorem
we know that this problem is in general undecidable. Nevertheless, there are works
[118, 192, 82], which employ equivalence checking heuristics on logic circuits or programs
that can be clearly mapped onto logic circuits. Conversely, Holling et al. [109] have proposed
an automatic tool for testing non-equivalence of programs, i.e. given a certain time budget
the tool performs a symbolic analysis on the input and output programs and tries to find
inputs for which outputs do not match. This is less expensive to perform than equivalence
checking, nonetheless, it has issues with scalability as well.

The most scalable and successful approach for solving the previous issue is to directly test
compilers for bugs. Random testing has been applied to many compilers for over 50 years
with relatively high levels of success [34]. Yang et al. [229] employed random differential
testing [151], i.e. randomly generating C programs and comparing the outputs of several
compilers, e.g. different versions of the GNU C Compiler (GCC) and Low Level Virtual
Machine (LLVM) compilers. They found more than 300 previously unknown bugs.

3.2. Classification of Code Obfuscation and Diversity
Transformations

Several surveys and taxonomies for software obfuscation and diversity have been proposed
in the literature [58, 13, 147, 134, 31, 184]. This section describes the most common classi-
fication dimensions presented in those works. The following sections present the actual
transformations based on these dimensions.

3.2.1. Abstraction Level of Transformations

One common dimension of code transformations is the level of abstraction at which these
transformations have a noticeable effect, i.e. source code, intermediate representation and binary
machine code. Such a distinction is relevant for usability purposes, e.g. a JavaScript developer
will mostly be interested in source code level transformations and a C developer will mainly
be interested in binary level. However, none of the previously mentioned taxonomies
and surveys classify transformations according to the abstraction level. This is due to the
fact that some obfuscation transformations have an effect at multiple abstraction levels.

28

3. Obfuscation in Practice

Moreover, it is common for papers to focus only on a specific abstraction level, disregarding
transformations at other levels.

3.2.2. Time of Transformations

The time point at which a transformation can be applied is a classification dimension
proposed by Larsen et al. [134]. The possible times when a transformation can be employed
are: implementation, compilation & linking, installation, loading, execution and update. This
dimension is related to the abstraction level of transformations, from Section 3.2.1, because
implementation time is always associated with the source code level of abstraction and
compilation & linking is always associated with intermediate representation. However, it
is not completely overlapping, e.g. Java bytecode is an intermediate representation which
can be transformed also after compilation & linking. Applying code transformations
earlier in the development or distribution stage may or may not provide a higher level of
security [140]. Moreover, it may also be more costly for the developer to do so [53, 87, 23].

3.2.3. Unit of Transformations

Larsen et al. [134] proposed classifying transformations according to the of granularity at
which they are applied. Therefore they propose the following levels of granularity:

• Instruction level transformations are applied to individual instructions or sequences
of instructions. Larsen et al. [134] assume the intermediate representation level of
abstraction. However, this unit of transformation can be translated easily to binary
machine code. Also at source code level we can consider a code statement as one or
more instructions.

• Basic block level transformations affect the position of one or more basic blocks. Basic
blocks are a list of sequential instructions that have a single entry point and end in a
branch instruction.

• Loop level transformations alter the familiar loop constructs added by developers.

• Function level transformations affect several instructions and basic blocks of a partic-
ular subroutine. Moreover, they may also affect the stack and heap memory corre-
sponding to the function.

• Program level transformations affect several functions inside an application. However,
they also affect the data segments of the program and the memory allocated by that
program.

• System level transformations target the operating system or the runtime environment
and they affect how other programs interact with them.

29

3. Obfuscation in Practice

The unit of transformation is important in practice because developers can choose the
appropriate level of granularity according to the asset they must protect. For example, loop
level transformations are not appropriate for hiding data, but they are appropriate for hiding
algorithms. However, the same problem, as for the previous classification dimensions,
arises for the unit of transformation, namely the same obfuscation transformation may be
applicable to different units of transformation.

3.2.4. Dynamics of Transformations

Another classification dimension which is related to the time of transformation from Sec-
tion 3.2.2, is the dynamics of transformation used by Schrittwieser et al. [184]. The dynamics
of transformation indicate whether a transformation is applied to the program or its data
statically or dynamically. Static transformations are applied once during: implementation,
compilation & linking, installation or update, i.e. the program and its data does not change
during execution. Dynamic transformations are applied at the same time points as static
transformations, however, the program or its data also change during loading or execution.
Even though dynamic code transformations are generally considered stronger against
MATE attacks than static ones, they require the code pages to be both writable and exe-
cutable. This opens the door for remote attacks (e.g. code injection attacks [203]), which are
more dangerous for end-users than MATE attacks. Moreover, dynamic transformations
generally have a higher performance overhead than static transformations, because code
has to first be written (generated or modified) and then executed. Therefore, on the one
hand, many benign software developers avoid dynamic transformations entirely. On the
other hand, dynamic transformations are heavily used by malware developers.

3.2.5. Target of Transformations

The most common dimension for classifying obfuscation transformations is according to
the target of transformations. This dimension was first proposed by Collberg et al. [58], who
indicated four main categories: layout, data, control and preventive transformations. In a
later publication Collberg and Nagra [57] refined these categories into four broad classes:
abstraction, data, control and dynamic transformations. Since the last class of Collberg and
Nagra [57] (i.e. dynamic transformations), overlaps with the dynamics of transformation
dimension, described in Section 3.2.4, we will use a simplification of these two proposals
where we remove the dynamic transformations class and merge the abstraction, layout and
control classes. Therefore, the remaining transformation targets are:

• Data transformations, which change the representation and location of constant values
(e.g. numbers, strings, keys, etc.) hard-coded in an application, as well as variable
memory values used by the application.

• Code transformations, which transform the high-level abstractions (e.g. data structures,
variable names, indentation, etc.) as well as the algorithm and control-flow of the

30

3. Obfuscation in Practice

Dimension Possible values

Abstraction level
Source code
Intermediate representation
Binary machine code

Time

Implementation
Compilation & linking
Installation
Loading
Execution
Update

Unit

Instruction
Basic block
Loop
Function
Program
System

Dynamics
Static
Dynamic

Target
Data
Code

Table 3.1.: Classification dimensions for obfuscation transformations.

application.

This dimension is important for practitioners, because it indicates the goal of the defender,
i.e. whether the defender wants to protect data or code. Note that obfuscation transforma-
tions which target data may also affect the layout of the code and its control-flow, however,
their target is hiding data, not code. In practice data transformations are often used in com-
bination with code transformations, to improve the potency and resilience of the program
against MATE attacks.

3.2.6. Summary of Obfuscation Transformation Classification

Table 3.1 provides a summary of the classification dimensions described above along with
the possible discrete values that each dimension can take. In the next section we choose
to present a survey of obfuscation transformations classified according to their target of
transformation, because it entails a clear partition of transformations.

31

3. Obfuscation in Practice

3.3. Survey of Obfuscation and Diversity Transformations

The following presents a state of the art survey of practical obfuscation transformation
techniques, grouped according to their target of transformation, namely data and code.

3.3.1. Data Transformations

Data transformations can be divided into two subcategories, namely constant data and
variable data transformations. In the following we first present an overview of constant data
transformations, followed by an overview of variable data transformations.

Constant Data Transformations

Transformations in this category affect static (hard-coded) values. Abstractly, such trans-
formations are encoding functions which take one or more constant data items i (e.g. byte
arrays, integer variables, etc.), and convert them into one or more data items i′ = f(i). This
means that any value assigned to, compared to and based on i is also changed according to
the new encoding. There will be a trade-off between resilience and potency on one hand,
and cost on the other, because all operations performed on i require computing f−1(i),
unless f is homomorphic w.r.t. those operations.

Opaque predicates Collberg et al. [58] introduce the notion of opaque predicates. The truth
value of these opaque predicates is invariant w.r.t. the value of the variables which comprise
it, i.e. opaque predicates have a value which is fixed by the obfuscator e.g. the predicate
x2 + x ≡ 0 (mod 2) is always true. However, this property is hard for the attacker to
deduce statically. Collberg et al. [58] also present an application of opaque predicates,
which is called extending loop condition. This is done by adding an opaque predicate to loop
conditions, which does not change the value of the loop condition, but makes it harder for
an attacker to understand when the loop terminates.

Figure 3.1.: Opaque expressions based on linked lists.

32

3. Obfuscation in Practice

Opaque predicates can be created based on mathematical formulas which are hard to
solve statically, but they can also be built using any other problem which is difficult to
compute statically, e.g. aliasing. Aliasing is represented by a state of a program where a
certain memory location is referenced by multiple symbols (e.g. variables) in the program.
Several works in the literature show that pointer alias analysis (i.e. deciding at any given
point during execution, which symbols may alias a certain memory location), is undecidable
[133, 176, 111]. Therefore, Collberg et al. [58] propose to leverage this undecidability result
to build opaque predicates using pointers in linked lists. For instance, consider the linked
list illustrated in the top-left part of Figure 3.1. This circular list consists of four elements
and it has two pointers (i.e. q1 and q2) referencing its elements. After performing three list
operations, i.e. inserting another list element, splitting the list in two parts and then moving
the pointer q2 one element forward, the obfuscator knows that the element referenced by
q1 is higher than the element referenced by q2. However, this relation is hard to determine
using static analysis techniques, therefore q1 > q2 represents an opaque predicate, which is
always true. Wang et al. [216] employ such opaque expressions to hide code pointer values,
hence, obfuscating control flow via data obfuscation.

One extension of opaque predicates was made by Palsberg et al. [166], who propose
dynamic opaque predicates which change their truth values between different runs of the
program. A further extension appeared in the work of Majumdar and Thomborson [144],
who proposed distributed opaque predicates which change their truth values during the same
execution of a program, depending on the location in code, where they are evaluated.

Convert static data to procedural data (a.k.a. Encode Literals) A simple way of obfus-
cating a hard-coded constant is to convert it into a function (program) that produces the
constant at runtime [58]. This transformation implies choosing an invertible function (pro-
gram) f , feeding the constant to f as input and storing the output. During runtime the
inverse of that function, i.e. f−1 is applied to the output of f which was stored somewhere
in the program. Obfuscating a hard-coded constant value (e.g. 5), by using simple encoding
functions (e.g. f(i) = a · i + b), leads to small execution overheads. However, since i is a
constant, such functions can also be deobfuscated using compiler optimizations such as
constant folding [12]. Therefore, another way of hiding constants is to build expressions
dependent on external variables (e.g. user input). For instance, opaque expressions – similar to
opaque predicates except that their value is non-Boolean – always have a certain fixed value

Listing 3.1: Code before Encode Literals
1 int main(int ac, char* av[]) {
2 int a = 1;
3 // do stuff
4 return 0;
5 }

Listing 3.2: Code after Encode Literals
1 int main(int ac, char* av[]) {
2 double s = sin(atof(av[1]));
3 double c = cos(atof(av[1]));
4 int a = (int) (s * s + c * c);
5 // do stuff
6 return 0;
7 }

33

3. Obfuscation in Practice

Listing 3.3: Hiding the value of k = 0x876554321 using Mixed Boolean-Arithmetic.
1 int main(int argc, char* argv[]) { // compiled on a 32-bit architecture
2 int x = atoi(argv[1]);
3 int x1 = atoi(argv[2]);
4 int x2 = atoi(argv[3]);
5
6 int a = x*(x1 | 3749240069);
7 int b = x*((-2*x1 - 1) | 3203512843);
8 int d = ((235810187*x+281909696- x2) ˆ (2424056794+x2));
9 int e = ((3823346922*x+3731147903+2*x2) | (3741821003 + 4294967294*x2));
10
11 int k = 135832444*d +4159134852*e+272908530*a+409362795*x+136454265*b+2284837645 +

415760384*a*b+ 2816475136*a*d+1478492160*a*e+3325165568*b*b+2771124224*b*x +
1247281152*a*x+1408237568*b*d+2886729728*b*e+4156686336*x*x+4224712704*x*d +
415760384*a*a+70254592*x*e+1428160512*d*d+1438646272*d*e+1428160512*e*e;

12 // do stuff
13 return 0;
14 }

during program execution, e.g. cos2(x)+sin2(x) is always equal to 1, regardless of the value
of x. Therefore, the constant value 1 from the C code from Listing 3.1, can be encoded using
this opaque expression, which cannot be simplified away by the compiler. The resulting
code after this obfuscation is shown in Listing 3.2. This transformation can also be applied
to string constants, which can be split into substrings or even single characters, which can
be interpreted as integers. At runtime these substrings or characters would be concatenated
in the right order to form the original string.

Mixed Boolean-Arithmetic Zhou et al. [232], propose a data encoding technique called
Mixed Boolean-Arithmetic (MBA). MBA encodes data using linear identities involving
Boolean and arithmetic operations, together with invertible polynomial functions. The
resulting encoding is made dependent on external inputs such that it cannot be deobfuscated
using compiler optimization techniques. The following example is taken from [232] and it
aims to encode an integer value k = 0x87654321. The example gives k as an input to the
following second degree polynomial with coefficients in Z/(232):

f(x) = 727318528x2 + 3506639707x+ 6132886 (mod 232).

The output of computing f(k) is 1704256593. This value can be inverted back to the value
of k during runtime by using the following polynomial:

f−1(x) = 1428291584x2 + 1257694419x+ 4129091678 (mod 232).

Note that Zhou et al. [232] describe how to pick such polynomials and how to compute
their inverse. Since the polynomial f−1(x) does not depend on program inputs and the
value of f(k) is hard-coded in the program, an attacker can retrieve the value of k by using
constant propagation. In order to create a dependency of f−1(k) on program inputs, the

34

3. Obfuscation in Practice

following Boolean-arithmetic identity is used:

2y = −2(x ∨ (−y − 1))− ((−2x− 1) ∨ (−2y − 1))− 3.

This identity makes the computation of a constant value (i.e. 2y), dependent on a program
input value, i.e. x. Note that this relation can be applied multiple times for different program
inputs. The resulting Boolean-arithmetic relation is further obfuscated by applying the
following identity:

x+ y = (x⊕ y)− ((−2x− 1) ∨ (−2y − 1))− 1.

Making the computation of f−1(k) dependent on three 32-bit integer input arguments of
the program and applying the second Boolean-arithmetic relation multiple times gives the
code in Listing 3.3, which dynamically computes the original value of k = 0x87654321.
Note that in Listing 3.3, variables a, b, d and e are input dependent, common subexpressions
of the MBA expression of k.

White-box cryptography This transformation was pioneered by Chow et al. [49, 50], who
proposed the first White-Box Data Encryption Standard (WB-DES), respectively White-Box
Advanced Encryption Standard (WB-AES) ciphers in 2002. The goal of White-Box Cryp-
tography (WBC) is the secure storage of secret keys (used by cryptographic ciphers), in
software, without hardware keys or trusted entities. Instead of storing the secret key of
a cryptographic cipher separately from the actual cipher logic, white-box cryptography
embeds the key inside the cipher logic. For instance, for Advanced Encryption Standard
(AES) ciphers, the key can be embedded by multiplication with the T-boxes of each encryp-
tion round [83]. However, simply embedding the key in the T-boxes of AES is prone to key
extraction attacks since the specification of AES is publicly known. Therefore, WB-AES
implementations use complex techniques to prevent key extraction attacks, e.g., wide linear
encodings [226], perturbations to the cipher equations [37] and dual-ciphers [125].

The idea behind the white-box approach in [50] is to encode the internal AES cipher
logic (functions) inside Look-up Tables (LUTs). One extreme and impractical instance of
this idea is to encode all plaintext-ciphertext pairs corresponding to an AES cipher with a
128-bit key, as a LUT with 2128 entries, where each entry consists of 128-bits. Such a LUT
would leak no information about the secret-key but exceed the storage capacity of currently
available devices. However, this LUT-based approach also works for transforming internal
AES functions (e.g. XOR functions, AddRoundKey, SubBytes and MixColumns [83]) to
table lookups, which can be divided such that they have a smaller input and output size.
Moreover, LUTs can also be used to encode random invertible bijective functions, which
are used to further obfuscate the LUTs representing internal AES functions. This leads to
an implementation which is much more compact in terms of storage, in the order of a few
megabytes.

35

3. Obfuscation in Practice

One-way transformations One-way transformations refer to mapping data values from
one domain to another domain (e.g. f(i) = i′), without needing to perform the inverse
mapping f−1(i′) during runtime. This means that f must be homomorphic w.r.t. the
operations performed using i. For instance, a cryptographic hash function such a Secure
Hash Algorithm (SHA), e.g. SHA-256 (denotedH) may be used as a one-way transformation.
H can map a hard-coded string password s to a 256-bit value, i.e. v = H(s). Generally, the
only operation performed with a hard-coded password is an equality check with an external
user input i. Hence, v does not need to be mapped back to s during runtime. Instead, the
program can compute v′ = H(i) and verify the equality between the hard-coded value v
and the dynamically computed v′. Since the implementation of H for cryptographic hash
functions, does not disclose the inverse mapping H−1, the MATE attacker is forced to either
guess s, or identify the equality comparison and modify it such that it always indicates
equality regardless of i. The latter tampering attack can be hampered if the code of the
equality check is highly obfuscated, which can be achieved by applying code obfuscation
transformations, as presented in Section 3.3.2.

Variable Data Transformations

The transformations in this category modify the representation or structure of variable
memory values. The goal of such transformations is to hamper the development of auto-
mated MATE attacks, which can assume that a certain variable memory value will always
have a certain representation or a certain structure (e.g. an integer array of 100 contigu-
ous elements). If such assumptions hold then automated attacks are easier to develop,
because they mainly rely on pattern matching. Therefore, by employing the transformations
presented in this section, one can raise the bar for these kinds of attacks.

Split variables The idea behind this transformation is to substitute one variable by two
or more variables [58]. For instance, an integer variable i that only takes values between 0
and 7 can be split into three boolean variables b1, b2 and b3 that represent the integer i in
binary format, i.e. b1b2b3. This idea is similar to converting static data to procedural data,
except that splitting variables does not apply to constant values, but to any value that a
variable may hold at any moment during execution.

Merge variables Two or more variables can be merged into a single variable, if the ranges
of the combined variables fit within the precision of the compound variable [58]. For
example, up to four 8-bit variables can be packed into a 32-bit variable. Any operations on
the individual variables has to be carefully crafted in order not to affect the other variables,
which may increase cost. On the other hand, these specially crafted operations stand out to
a MATE attacker, who could figure out that multiple variables are stored in a compound
variable.

36

3. Obfuscation in Practice

Restructure arrays Similarly to variables, arrays can be split or merged [58]. However, in
addition to that, arrays can be folded (increasing the number of dimensions), or flattened
(decreasing the number of dimensions). Folding and flattening break code abstractions
put in by software developers (e.g. matrices are flattened into arrays), which force reverse
engineers to reason about the code in order to recover this useful abstraction.

Reorder variables This transformation targets locations of variables in program memory,
by permuting them [53]. It has low cost, but also low potency. The only improvement
is in terms of resilience. Pappas et al. [167] apply this transformation at binary level by
reassigning register operands at basic block level. They show that this transformation is
able to eliminate (on average) over 40% of Return Oriented Programming (ROP) gadgets in
different instances of the same program.

Dataflow Flattening Dataflow flattening, proposed by Anckaert et al. [6], is an advanced
version of variable reordering proposed by Cohen [53]. It periodically reorders data stored
on the heap via a memory management unit, such that the functionality of the program is
not altered. In addition to reordering the data on the heap, dataflow flattening also proposes
moving all local variables from the stack to the heap and scrambling pointers to hide the
relation between the different pointers returned to the program. This transformation has a
high potency and resilience, nonetheless, its execution overhead is also high.

Randomized stack frames This transformation assigns each newly allocated stack frame
a random position on the stack [86]. Additionally, it pads each stack frame internally
by a random amount, such that return address and local variable offsets are located at
unpredictable locations. The potency is low, but the resilience is increased.

Data space randomization Bhatkar and Sekar [33] introduce a data transformation tech-
nique which they call Data Space Randomization (DSR). The idea of this technique is to
XOR data values stored in program memory (e.g. stack and heap) with randomly generated
masks. The masks do not need to be fixed, they can be generated dynamically at runtime.
The technique is inspired by PointGuard [63], which encrypts code pointers. This technique
is reported to introduce an average run-time overhead of 15% and it can protect against
buffer- and heap-overflow attacks.

3.3.2. Code Transformations

This section presents transformations, which hide the algorithms (i.e. the logic) inside
programs, but also the high-level abstractions added by developers. As opposed to constant
data transformations, which in some cases perform one-way mappings of data to a com-
pletely different domain (e.g. hash functions), code transformations must always perform a

37

3. Obfuscation in Practice

Listing 3.4: Code before Encode
Arithmetic

1 int main(int ac, char* av[]) {
2 int x = atoi(av[1]);
3 int y = atoi(av[2]);
4 int w = atoi(av[3]);
5 int z = x + y + w;
6 // do stuff
7 return 0;
8 }

Listing 3.5: Code after Encode Arithmetic
1 int main(int ac, char* av[]) {
2 int x = atoi(av[1]);
3 int y = atoi(av[2]);
4 int w = atoi(av[3]);
5 int z = (((x ˆ y) + ((x & y) << 1)) | w) +
6 (((x ˆ y) + ((x & y) << 1)) & w);
7 // do stuff
8 return 0;
9 }

mapping to the same domain of executable code, because obfuscated code must be able to
run on the underlying machine where it is installed.

Instruction substitution This technique (first mentioned in [53]) is based on the fact that
in some programming languages as well as in different Instruction Set Architectures (ISAs),
there exist several (sequences of) equivalent instructions. This means that substituting
an instruction (sequence) with its equivalent will not change the semantic behavior of
the program, nevertheless, it will result in a different binary representation. A concrete
implementation and evaluation of this technique was first described by Jacob et al. [116]
and it is also used in the Hydan tool [77]. The transformation has a moderate cost, however,
it offers low potency, due to the fact that the number of transformations available is limited.
Regarding the resilience of this transformation, Pappas et al. [167] measured the effect of
this transformation at binary basic block level, against ROP attacks and discovered that
it reduces less than 20% of ROP gadgets. Moreover, the use of uncommon instructions
will decrease stealth, i.e. indicate to an attacker where the substitution occurred. In order
to improve the stealth of this transform, De Sutter et al. [69] proposed a technique called
instruction set limitation, which proposes candidates for substitution based on the statistical
distribution of instruction types in the program. Mason et al. [146] also proposed a similar
technique with the purpose of improving the stealth of shellcode by encoding it as text
written in the English language.

Encode Arithmetic This technique is proposed by Collberg [55] and it is a variant of
instruction substitution, which substitutes boolean or arithmetic expressions by expressions
involving both boolean and arithmetic operations, which are harder to understand. One
example of such a transformation is illustrated by Listing 3.5, which shows a C code snippet
after encode arithmetic has been applied to the right-hand side of the assignment to variable z
from line 5 of Listing 3.4. The drawback of this approach is that there are a limited number
of such Boolean-arithmetic identities available in the literature [220]. Eyrolles et al. [79]
have proposed writing a reverse transformation for each of them, after identifying MBA
expressions via pattern matching.

38

3. Obfuscation in Practice

Garbage insertion This technique implies inserting arbitrary sequences of instructions,
that are independent of the data flow of the original program and do not affect its IO behav-
ior (functionality) [53]. The possible sequences that may be inserted are virtually infinite,
nonetheless, the performance-cost grows proportionally to the number of inserted instruc-
tions. This technique changes the relative offset the original instructions of the program. It
also raises the complexity of reverse-engineering by cluttering the original code. However,
note that garbage code should be inserted only after performing compiler optimizations,
because it can be identified and eliminated via taint analysis. The transformation space
for this technique is limited only by physical or practical run-time constraints such as time
delays and memory consumption, because as opposed to dead code, garbage code is always
executed.

Insert dead code This technique is similar to Cohen’s garbage insertion technique [53] and
Forrest’s adding or deleting nonfunctional code [86]. Moreover, it also includes the modification
of control-flow such that a dead branch is added, i.e. a branch that is never taken during
runtime. Adding the dead branch is facilitated by opaque predicates. In order not to
disclose the truth value of opaque predicate by leaving the dead branch empty, Collberg
suggests inserting dead code (i.e. code that is never executed) on the dead branch. To
further confuse the attacker, the dead code can be a buggy version of the other branch,
which is always chosen.

Convert a reducible to a non-reducible flow graph This technique is based on the fact
that native or machine code can be more expressive than programming languages. This
enables language-breaking transformations [58], i.e. using instructions from an ISA, which
have no direct correspondent construct in the source language (e.g. the goto instruction
in Java bytecode has no direct correspondent statement in the Java source language). An
automated deobfuscator such as a decompiler will try to find a source language construct
that can simulate the lower level instruction, or it will fail. For example, a structured loop is
converted into a loop with multiple headers by adding a conditional jump to the middle of
the loop, guarded by an opaque predicate will confuse a decompiler.

Program encoding This technique keeps one or more instructions encoded (i.e. encrypted
[215, 41] or compressed [164]), while the program is off-line and decodes the sequence(s)
when the program is running [53]. The complexity of deobfuscation depends on the
algorithm used for encoding, e.g. a compression algorithm can be undone without a secret
key, while an encryption requires finding the key. However, the costs may also be relatively
high-compared to other techniques, because the code has to be decoded before it can be
executed. There is a trade-off between potency, resilience and cost depending on the level
of granularity at which this transformation is applied, i.e. if applied at instruction level,
the cost as well as potency and resilience are high, while if applied at program level these
measures are all low. Additionally, this technique does not protect well against dynamic

39

3. Obfuscation in Practice

analysis attacks, e.g. during execution the code is decoded in memory and it can be read or
modified directly in memory by the MATE attacker.

Virtualization obfuscation This technique is related to the program encoding technique,
because it also implies an encoding of instructions [53]. Additionally, it also requires
an interpretation engine (called “simulator” or “emulator”), which is able to decode the
instructions and execute them on the underlying platform. Moreover, the simulator may
also be running on top of another interpretation engine and so forth, giving an arbitrary
nesting level. Normally, this creates complexity for static-analysis attacks, because the
attacker has to first understand the custom interpreter logic and then the code running on
top of it. The most significant difference of virtualization w.r.t. program encoding is that
no code must be written to a memory location during decoding. However, the trade-off
between potency, resilience and cost for this transformation are the same as in the case of
program encoding.

Self-modifying code This technique has been discussed in several works [53, 141, 123,
147]. It implies adding, modifying and/or removing instructions of a program during its
execution. Therefore, it creates a high complexity for static-analysis attacks. Nevertheless,
it is not as effective against dynamic-analysis if the executed instructions are exactly the
same in different runs of the program with the same inputs. Moreover, if the executed
instructions randomly differ from one execution to the other, this technique also offers
protection against dynamic-analysis. Similarly to program encoding, this is a dynamic
transformation, however, in the case of self-modifying code, there is no dedicated decoder
routine. Instead, the existing code is “responsible” for modifying itself and the modifying
instructions are often spread throughout the entire program. The trade-off between potency,
resilience and cost is similar to that of program encoding and simulation. Self-modifying code
is seldom employed at low units of transformation such as instruction, basic block, loop or
function. The most common unit at which it is applied is program level because this leads
to a larger set of possible pairs of modifying and modified instructions.

Adding and removing calls This technique first proposed by Cohen [53], can be applied
at any unit of transformation. Adding a call to a sub-routine implies: (1) selecting an
arbitrary sequence of instructions, (2) creating a sub-routine using that sequence and (3)
finally, substituting a call to that sub-routine with the original sequence. Removing a call to
a sub-routine implies: (1) substitute the body of a subroutine with all calls to that routine
and (2) delete the sub-routine. This causes changes in the structure of a program, which
creates more complexity for MATE attacks. The cost of this technique grows or decreases
with the number of inserted, respectively removed subroutine calls.

This method has been extended by Banescu et al. [24], such that system calls are added
or existing system calls are substituted with equivalent ones. They call this transformation

40

3. Obfuscation in Practice

behavior obfuscation because it hides the system call trace analyzed by behavioral malware
analysis engines.

Merging and splitting functions These two techniques are the code correspondents to the
data obfuscation transformations of merging and splitting variables [53]. Merging is done
by creating larger functions with more inputs and outputs, some of which are independent.
Another approach towards merging functions or even basic blocks is proposed by Jacob
et al. [117]. They make use of the fact that some ISAs (e.g. Intel x86) have a variable
width encoding, which allows the program counter to jump in the middle of instructions
and then start interpreting those bytes as the beginning of another instruction. This way
two functions or basic blocks can share bytes of code by having their instruction bytes
overlapped with each other. The two overlapping functions (basic blocks) have a different
starting address and can therefore be executed unambiguously.

Splitting is done by dividing large functions into smaller functions, such that the output
of one function are used as inputs to the other. Similarly to the adding and removing calls
transformation, this technique changes the structure of the program, breaking abstractions
added by developers, which makes the code more difficult to understand. Moreover, the
cost of this transformation is increased or decreased with the number of split, respectively
merged functions.

Loop transformations Several loop transformations have been proposed as compiler
optimization passes by Bacon et al. [12]. Collberg et al. [58] argue that these loop trans-
formations also increase software complexity metrics and can therefore be considered
obfuscation transformations that increase potency. Loop tilling or blocking is intended to
improve cache locality, by dividing loop iteration lengths into parts that fit in the CPU cache.
This increases the nesting level of loops and is therefore more potent. Loop distribution or
fission breaks the independent instructions in a loop body into multiple loops with the
same iteration length, which increases the number of loops in the code. Loop unrolling repli-
cates the body of the loop a certain number of times and reduces the number of iterations
correspondingly, which increases the number of lines of code in the program.

Adding and removing jumps This technique changes the control-flow of the program by
adding spurious jumps or removing existing jumps [53]. Adding jumps can be done by
substituting an arbitrary sequence of instructions I by: (1) a jump to a random position,
(2) followed by I and (3) a jump to the instruction immediately following I in the original
version of the program. Removing jump instructions may also be done if it does not alter
the original semantics of the program, e.g. unconditional jumps may be removed. However,
in practice adding jumps is more frequently employed in order to increase the complexity
of the MATE attack. The transformation space of this technique is bounded by the length of
the program it is applied to. The cost of this method grows (decreases) with the number
of inserted (removed) jump instructions. The potency and resilience of adding jumps can

41

3. Obfuscation in Practice

be increased by further obfuscating the addresses of the jumps using data obfuscation
techniques such as opaque expressions or converting static data to procedural data.

Instruction reordering This technique targets sequences of instructions, which when
permuted, do not alter the original program execution [53]. The candidate instruction se-
quences targeted by this technique are also candidates of parallel processing optimizations,
because they can be independently performed by different execution threads, without any
danger of race conditions. The reordered sequence of instructions must be equivalent to the
original sequence. The cost and potency of this transformation are low. However, Pappas et
al. [167] have employed instruction reordering on binary basic block level and have shown
that this transformation reduces the number of ROP gadgets by over 30%, hence, increasing
the resilience against ROP attacks. Note that this transformation can be also performed
at basic block level, however, this would have a lower increase in potency and resilience
compared to instruction reordering.

Control flow flattening Wang et al. [216] and Chow et al. [51] proposed Control Flow
Flattening (CFF), which collapses all the basic blocks of a function into a flat (3-level) Control
Flow Graph (CFG), which hides the original control flow of the program. The first level of
the CFG is similar to an interpreter dispatcher, which chooses the right basic block where to
go on the second CFG level. The third level of the CFG is a common exit point for all basic
blocks on the second levels, which loops back to the basic block on the first CFG level. Such
a 3-level CFG may be implemented using a switch statement embedded inside an infinite
loop. The order in which the cases of the switch statement must be executed is indicated
by an integer (control) variable, which is updated by every case of the switch statement
accordingly, before, during or after part of the logic of the original program is executed.
The infinite loop is exited when a case contains a return or break statement.

Branch functions Linn and Debray [139] propose hiding the control flow of calls, con-
ditional and unconditional jumps, from static disassembly algorithms, by replacing them
with calls to a so called branch function. A branch function computes the actual target of
the jump dynamically using a parameter passed by the callee. Instead of returning to the
instruction immediately following the call instruction, the branch function either jumps to
the address of the original jump instruction which it replaced, or to several “junk” bytes
after the call instruction that it replaced. The structure of the control flow graph is also flat
similar to CFF, however, the switch-statement is replaced by the branch function.

Schrittwieser and Katzenbeisser [183] present an extension of branching functions, which
is explicitly aimed at defending against both static- and dynamic-analysis techniques. The
targets of the branch functions are ROP gadgets (i.e. short instruction sequences ending in a
return instruction) [188]. Additionally, they generate gadget graphs which add redundancy
such that the one path in the original code can have multiple paths in the obfuscated code.
This is meant to hamper dynamic analysis attacks by generating different traces for the

42

3. Obfuscation in Practice

same inputs. The disadvantage of this method is that its potency and resilience increases
inversely proportional to the size of the gadgets, while its cost decreases exponentially with
this size.

Remove comments and change formatting This transformation is only applicable to
programs which are delivered as source code (e.g. JavaScript). Comments are removed if
they exist and all space, tab and newline characters are also removed, which results in a
continuous string of code which is more potent against human attackers, than the original
code. The original formatting cannot be recovered [58]. The cost of this transformation is
also low and in many cases it even improves memory costs and execution speed. However,
a similar alignment can be automatically generated via static analysis. Therefore, the
resilience of this transformation is very low. However, they have found their way into
commercial products, such as: Stunnix [198], DashO [172], Dotfuscator [173], Thicket [186],
ProGuard [99] and yGuard [230].

Scrambling identifier names This transformation implies changing all symbol names
(e.g. variables, constants, functions, classes, etc.) into random strings [58]. This is a one-way
transformation, because the names of the symbols cannot be automatically recovered by
a deobfuscator. Therefore, the MATE is forced to understand what a symbol is from a se-
mantics point of view. It has a much higher potency and resilience than formatting removal
since identifiers contain useful abstractions added by software developers. Similarly to
removing comments and changing formatting, this transformation has a very low cost and
it is also used as an optimization that reduces code size, because long symbol names can be
replaced by shorter ones.

Removing library calls and programming idioms Most programs perform calls to ex-
ternal libraries providing useful data structures (e.g. lists, maps, etc.) and algorithms
(e.g. sorting, searching, etc.). MATE attackers often start by inspecting calls made to external
libraries to give a high-level indication of what the program is doing. This transformation
implies replacing such dependencies on external libraries with own implementations where
possible [58]. Note that such a transformation is stronger than static linking, which only
copies the code of the library routines in the executable. Static linking can be easily reverse
engineered by pattern matching attacks [195]. Techniques from the field automatic program
recognition [222] can be used to identify common programming patterns and replace them
with less obvious ones. For example, consider iterating over a linked list; the standard list
data structure can be replaced with a less common one, such as cursors into an array of
elements.

Modify inheritance relations Programs written in some object-oriented programming
languages are distributed in some intermediate format to end-users (e.g. C#, Java, etc.).
These intermediate formats are only compiled to native code on the client’s machine

43

3. Obfuscation in Practice

and contain useful object-oriented programming abstractions. In such programs it is
important to break the useful abstractions offered by classes, their structure and their
relations (e.g. aggregation, inheritance, etc.). According to Collberg et al. [58], the complexity
of a class grows with its depth in the inheritance hierarchy and the number of its direct
descendants. This can be done by splitting classes and inserting dummy classes. One
variant of class insertion is called false refactoring [58]. False refactoring is performed on
two or more classes that have no common behavior. All instance variables of these classes
having the same type are moved into the new parent class. Methods of the parent class
can be buggy versions of methods from its child classes. This approach has been further
extended by Foket et al. [85], who propose a technique called class hierarchy flattening. In
this approach a common interface that contains all methods of all classes is created. All
classes implement this common interface and they have no other relationship between each
other. This effectively destroys class hierarchies and forces the attacker to analyze the code.

Function argument randomization Randomizing the order of formal parameters of meth-
ods and inserting bogus arguments is a technique implemented by tools such as Tigress [56].
The purpose of this transformation is to hide common function signatures across a large
diverse set of instances. This transformation is straightforward to perform for programs
which do not offer an external interface (e.g. libraries). However, if this obfuscation is
applied to a library, then it changes the interface (of that library), and all the corresponding
programs using that library will have to be updated as well. The potency, resilience and
cost of this transformation are low.

3.3.3. Summary of Survey

In the survey presented above, we have enumerated several practical data and code obfus-
cation transformations. On the one hand, these transformations can be applied to real-world
software applications, as opposed to cryptographic obfuscation, presented in Chapter 2.
On the other hand, practical obfuscation does not offer provable security guarantees like
cryptographic obfuscation does. Nevertheless, many contexts mandate the use of practical
obfuscation transformations to protect digital software assets, e.g. secret keys, premium con-
tent, intellectual property of code, etc. In such contexts, the goal is to raise the bar against the
majority of MATE attackers, not all possible attackers, e.g. developers are concerned about
malicious end-users, not governmental organizations, which are highly funded. Therefore,
it is crucial for software developers to determine which software protection techniques to
use in order to achieve this goal. The following chapters of this thesis describe a framework
which enables a characterization of software protection strength, by means of computing
the effort against automated MATE attacks. This framework aids software developers in
choosing the appropriate obfuscation transformations for their applications.

44

Part II.

The Core

45

4. Automated MATE Attacks

This chapter presents the main contribution of this thesis: a model for reasoning
about obfuscation strength by representing different steps of all automated MATE
attacks as search problems. Parts of this chapter have previously appeared in a
peer-reviewed publication [21], co-authored by the author of this thesis.

Man-At-The-End (MATE) attacks can be of two types: human-assisted or automated.
Human-assisted
attacks

Human-assisted attacks require non-trivial guidance by a human agent, who has experience
and intuition regarding the attack. Human-assisted attacks involve a trial-and-error ap-
proach to problem solving and often require creativity for reaching the goal. On the other
hand, Automated attacksautomated attacks involve a programmatic approach for reaching the goal, i.e. all of
the information and steps required by the attack are known and well defined such that they
are or can be implemented using a combination of software and hardware.

As discussed in Chapter 1, this thesis focuses on automated attacks, because human-
assisted attacks, do not scale when a large number of diverse software instances are targeted
by a MATE attacker. Moreover, the effectiveness of obfuscation against human-assisted
attacks is difficult to quantify, since it not only depends on the features of the tools used by
the MATE attacker, but also on the knowledge and skills of that attacker. For instance, given
the same deterministic obfuscated program and the same analysis tools (e.g. IDA Pro [73]), a
professional malware analyst is highly likely to complete the task of analyzing the program,
significantly faster than a computer science student who is familiar with the analysis tools,
but has little experience with obfuscated programs. On the other hand, executing an
automated attack multiple times – with the same seed, if the attack is randomized – on the
same obfuscated program, results in the same analysis time – minus a negligible delta due
to other background processes and the OS scheduler – regardless of the skills of the human
executing the attack.

4.1. Classification of Automated MATE Attacks

In contrast to the classification of software protection techniques (see Chapter 3), the
classification of MATE attacks has been the topic of relatively few publications [54, 1, 184].
This section presents the most relevant classification dimensions w.r.t. the contents of this
thesis.

47

4. Automated MATE Attacks

4.1.1. Attack Type Dimension

Basile et al. [30] argue that it is not feasible to consider every possible attacker goal since it
represents the desired end-result for the attacker, e.g. see the position of other players in
computer games, or play premium content without paying, etc. Therefore, in this thesis
we classify attacks according to their type, i.e. the means through which an attacker goal
can be achieved. According to Collberg et al. [55, 54], there are four types of information a
MATE attacker may be interested in recovering from an obfuscated program:

• The original or a simplified version of the source code. This is always the case for MATE
attackers who are interested in intellectual property theft, i.e. stealing a competitor’s
algorithm.

• A statically embedded or dynamically generated data item. Common examples of
such data items are decryption keys used by DRM technologies to play premium
content only on authorized devices, for authorized users. However, data items may
also include hard-coded passwords, IP addresses, etc.

• The sequence of obfuscation transformations and/or tools used to obfuscate (protect)
the program, also called metadata. This kind of information is often used by antivirus
engines to detect suspicious binaries, based on the fact that several previously seen
malware have used the same obfuscation transformations and/or tools.

• The location, (i.e. lines of code or bytes) of a particular function of the code. For
instance, the attacker may be interested in the module which performs premium
content decryption in order to copy it and reuse it in another program, without
necessarily understanding how it works.

We compare these four information types proposed by Collberg et al. [55, 54], with the
analyst’s aims proposed by Schrittwieser et al. [184]:

• Code understanding, which according to its description in the paper maps to the source
code information type described above. However, the name of this category suggests
a more general attack type than a full recovery of the entire source code, because it
could be sufficient to have a partial code understanding. For example, a malware
analysis engine can decide that a software is malicious using its observed behavior
(e.g. unsolicited calls to premium telephone numbers), which does not require full
understanding of the source code. Moreover, metadata recovery also falls inside of this
category of code understanding. Therefore, in this thesis we will use this more general
category, i.e. code understanding.

• Finding the location of data, which maps perfectly onto the data item information type
described above. However, the phrase location of data may be mistaken for the location
information type. Therefore, this thesis will simply use data item recovery.

48

4. Automated MATE Attacks

• Finding the location of program functionality, which maps onto the location information
type described above. However, Schrittwieser et al. [184] also add that this type of
information may be used to answer questions regarding if the program is malicious or
not. In this thesis we move such questions to the code understanding category, because
we believe an answer to such a question, requires some level of code understanding,
but not necessarily recovering the entire source code.

• Extraction of code fragments, which does not directly map onto any of the information
items described above. However, we believe that finding the location of program func-
tionality is a prerequisite to this aim of the analyst, because extraction can only be
done after the location of the code fragment has been recovered. Therefore, in this
thesis we associate this aim of the analyst with the location information type.

In sum, we use the following three categories of attack types with the meanings discussed
above: (1) code understanding, (2) data item recovery and (3) location recovery.

4.1.2. Dynamics Dimension

Dynamics is one of the most commonly used classification criteria for automated MATE
attacks and it refers to whether the attacked program is executed on a machine or not, i.e.:

• Static analysis attacks do not execute the program on the underlying (physical or
virtual) machine. The subject of the analysis is the static code of the program.

• Dynamic analysis attacks run the program and record executed instructions, function
calls and/or memory states during execution, which are the subject of analysis.

Static attacks are commonly faster than dynamic attacks. However, static analysis attacks
do not handle many code obfuscation transformations as well as dynamic analysis attacks.
This does not mean that dynamic analysis attacks can handle any kind of obfuscation
easily. For instance, it is challenging to dynamically analyze programs employing code
transformation techniques that achieve temporal diversity, i.e. the program has significantly
different execution traces and/or memory states on every execution. Moreover, dynamic
analysis is in general incomplete, i.e. it cannot explore or reason about all possible executions
of a program, as opposed to static analysis.

4.1.3. Interpretation Dimension

Code interpretation refers to whether the program’s code or the artifacts generated using
it (e.g. static disassembly, dynamic traces), are treated as text or are interpreted according
to a semantic meaning (e.g. operational semantics). Therefore the two types of code
interpretation considered in this thesis are:

49

4. Automated MATE Attacks

• Syntactic attacks which treat the program’s code or any other artifacts generated by
executing or processing it, as a string of bytes (e.g. characters). For example, pattern
matching on static code [195] and pattern recognition via machine learning traces of
instructions [24], treat the code as a sequence of bytes.

• Semantic attacks which interpret the code according to some semantics, e.g. denota-
tional semantics, operational semantics, axiomatic semantics and variations thereof
[84]. For example, abstract interpretation [62] uses denotational semantics, while
fuzzing [200] uses operational semantics.

Syntactic attacks are generally faster than semantic attacks due to the missing layer of
abstraction that interprets the code. Coincidentally, most syntactic attacks are performed
via static analysis and most semantic attacks are performed via dynamic analysis. However,
there are exceptions e.g. the syntactic analysis of dynamically generated execution traces
and semantic static analysis via abstract interpretation, which will be presented in more
detail in Section 4.3.

4.1.4. Alteration Dimension

Alteration refers to whether the automated MATE attack changes (alters) the code or not.
This type of classification is analogous to the message alteration classification of MITM attacks
on communication channels. Hence there are two types of code alteration:

• Passive attacks do not make any changes to the code or data of the program. For
instance, extracting a secret key or password from a program does not require any
code alterations.

• Active attacks make changes to the code or data of a program. For example, removing
data or code integrity checks (e.g. password checks), requires modifying the code of
the program. Also “disarming” malware may also involve tampering with its code.

If an attacker’s goal can be achieved via either passive or active attacks, then the type
of attack used depends on the complexity of the program under attack and the types of
protection the program has in place. For instance, if a program is protected via dynamically
verified checksums of the program input, then active attacks require finding and disabling
these checksumming instructions, which could be more costly than a passive attack.

4.1.5. Summary of MATE Attack Classification

Table 4.1 provides a summary of the classification dimensions described above along with
the possible discrete values that each dimension can take. In the remainder of this thesis we
will refer to these dimensions when describing attack implementations.

50

4. Automated MATE Attacks

Dimension Possible values

Attack type
Code understanding
Data recovery
Location recovery

Dynamics
Static
Dynamic

Code interpretation
Syntactic
Semantic

Alteration
Passive
Active

Table 4.1.: Classification dimensions for automated MATE attacks.

4.2. Definition of Automated MATE Attacks

Intuitively, an automated MATE attack as a collection of software applications, which are
linked together through inputs and outputs and which are able to satisfy the goal of a
MATE attacker. A MATE attacker aims to compromise the confidentiality, integrity or
availability of data or code in a software application, e.g. recovering a secret key from one
or more applications, modifying the behavior of one or more applications, etc. Therefore,
we model an automated MATE attack using a path in an attack net [150]. An Attack netattack net
is a petri net [158], where places represent digital items (i.e. data or code) and transitions
represent execution steps of an automated MATE attack. Places are connected to transitions
via directed arcs. The attack net has one or more starting places (sources), i.e. places which
have no incoming arcs, and one or more ending places (sinks), i.e. places which have no
outgoing arcs. An automated MATE attack is started by assigning a set of tokens to a subset
of sources, such that one or more transitions can fire. Tokens are consumed by transitions
and each transition execution produces a token. The attack ends when one of the sinks
contains a token. If we run all paths in parallel, the best (e.g. fastest) attack will generate
the first token in the sink. In practice, a MATE attacker would prefer to pick the best attack
path, instead of running all attacks in parallel. However, the attacker cannot determine the
best attack path without, at least, estimating the effort of each transition along each path.

For instance, consider the attack of bypassing a license check in a software application
such as a computer game. An example of the attack net corresponding to this attack is
shown in Figure 4.1, where places are represented by ovals and transitions are represented
by rectangles. Each step (i.e. transition) in this attack net is an algorithm with inputs and
outputs. Each of the four possible first steps of this attack net take the binary executable
code as input and each of the last steps outputs the digital item necessary to achieve the
attacker’s goal. In Figure 4.1 there are two possible sinks, i.e. (1) the attacker obtains the
license key without paying for it, or (2) the binary code is patched such that there is no need
for a license key anymore. There are five different possible paths that can be taken by the
MATE attacker from the source to one of the sinks:

1. The path at the top of Figure 4.1 shows an automated MATE attack where the license

51

4. Automated MATE Attacks

Figure 4.1.: Attack-net representing automated MATE attack for bypassing license check.

key is found via random testing the binary code, i.e. enumerating different program
inputs. According to our taxonomy from Section 4.1, this attack can be classified as:
type = data item recovery, dynamics = dynamic, interpretation = semantic and alteration
= passive. Further details about this attack are given in Section 4.3.2.

2. The second path in Figure 4.1 shows an automated attack where the license key is
extracted by first marking the input corresponding to the license key as symbolic
and then symbolically executing the code to gather path constraints (see Chapter 5).
Each path constraint is sent to a SAT-/SMT-solver, which either returns concrete
values to satisfy the constraints, or it returns that no such values were found. If
sufficient concrete values are found, symbolic execution continues until it finds a path
constraint equivalent to the license check. If this path constraint can be solved, by the
SAT-/SMT-solver, then the attacker obtains a correct license key. Note that this attack
has multiple steps (i.e. transitions) and different steps may be classified in different
categories of our taxonomy from Section 4.1. For instance, the first and third steps on
this path are static, while the second step is dynamic. If this is the case, then we will
classify the entire path as dynamic. All the other classification criteria are the same as
for the random testing attack path.

3. In the third attack path from Figure 4.1 all the hard-coded strings are extracted from
the binary in the first step. In the second step each of these strings is tried as an input
to the program, until all the strings are exhausted or the license key is found. The
classification of this attack is slightly different from the previous ones, i.e. type = data
item recovery, dynamics = static, interpretation = syntactic and alteration = passive.

52

4. Automated MATE Attacks

4. In the fourth path from Figure 4.1 the binary code is first disassembled and then
a pattern matching is applied to find the location of the license check(s). Finally,
the check is patched such that the binary executable no longer performs any license
checks. Note that the first two steps of this attack are passive and the last step is
active. Also the first step is semantic, while the second and third steps are syntactic.
Therefore, we classify the entire attack as: type = location recovery, dynamics = static,
interpretation = semantic and alteration = active.

5. The last path from Figure 4.1 shows an automated MATE attack similar to the previous
path, where the code is first disassembled. Afterwards the location of the license
checks is determined via information-flow analysis. Finally, the checks are patched
similarly to the previous attack path. This attack path is classified in the same way as
the previous attack. Note that in this case the second step of the attack is also semantic.
Further details about this attack are given in Section 4.3.2.

The overarching goal of this thesis is to characterize the strength of obfuscation. This is
achieved by characterizing the effort needed by different automated MATE attacks (as the
ones enumerated above), on obfuscated software. Therefore, we must be able to characterize
each of the steps (i.e. transitions) on a path from a source to a sink. One the one hand, some
of the transitions (e.g. Mark Input Symbolic or Patch License Checks in Code), may be trivial
to characterize, because they are deterministic, i.e. the output of the transition is the same
across multiple executions of that transition with the same input value. On the other hand,
other transitions are not as trivial to characterize (e.g. Symbolic Execution, SAT-/SMT-Solving),
because they involve non-deterministic search. This is the key observation of this thesis,
namely that all automated MATE attacks involve one or more search problems, which are not
trivial to characterize. However, not all problems are search problems. In the example
form Figure 4.1 all paths from source to sink imply one or more transitions which are solved
by searching, e.g. a search for the actual value of the license key or a search for the code
implementing the license check. In Section 4.2.2 we propose a search model, which can be
used to characterize the cost of each transition that implies search.

4.2.1. Formalization of Automated MATE Attacks

Code is represented by a sequence of bytes at syntactic level, however, at a semantic level it
consists of three types of information, which are valuable for a MATE attacker. The three
different information types stem from the attack type dimension presented in Section 4.1.1,
and they are denoted by:

• τ , which represents the logic/algorithm implemented by (a part of) the code. This
logic/algorithm can be represented using any level of abstraction (e.g. pseudo-code,
first order logic, etc.). This information type maps to code understanding.

• δ, which represents non-executable data hidden inside the code. This information
type maps to data recovery.

53

4. Automated MATE Attacks

• λ, which represents a location of one or more lines of code, which together perform a
certain function (e.g. a license check, a code integrity check, etc.). This information
type maps to location recovery.

Therefore we define code as the Cartesian product of these three information types, i.e.:

Code ⊆ Seq(τ)× Seq(δ)× Seq(λ),

where Seq(x) indicates a sequence of information items having type x. Given this definition
of code, an obfuscator that applies one or more transformations presented in Chapter 3,
is a function: obfx : Code → Code, where x ∈ 2 {τ,δ,λ}, i.e. an obfuscator aims to hide any
combination of: logic, data and locations. Not that if x = ∅, then obf∅ represents the identity
transformation. The previous definitions allow us to formalize an automated MATE attack
as finding an “inverse” function obf −1y such that:

x ∈ 2 {τ,δ,λ}, y ∈ {τ, δ, λ}, c ∈ Code : obf −1y (obfx (c))|y = c|y ,

where |y represents the projection of c ∈ Code to y ∈ {τ, δ, λ}. This means that even if the
obfuscator aims to hide the set of information types x (e.g. logic and location by applying
virtualization obfuscation), the MATE attacker is interested in recovering one information
type y (e.g. location, because s/he wants to disable license checks in the code).

The challenge for the MATE attacker is that s/he only has a specification for obf −1y ,
namely obf −1y (obfx (c))|y = c|y , but no implementation. Hence, the MATE attacker needs to
approximate the implementation by search. Note that the MATE attacker does not know
the exact value of c|y before the attack, but all MATE attacks are associated with a goal
function g : {Seq(τ),Seq(δ),Seq(λ)} → R+, such that:

g(c|y) = 0 ∧ ∀c′ ∈ Code, c′|y 6= c|y : g(c′|y) > g(c|y).

Function g is the function that indicates that the automated MATE attack has reached its
goal and the search can stop. The output of g may indicate an ordering relation between
different c′, c′′ ∈ Code, e.g. when removing sequences of dead code from code, g may
indicate the number of dead instructions still present in the code. However, g does not
necessarily indicate an ordering relation between c′, c′′ ∈ Code, i.e. g(c′|y) < g(c′′|y) does
not necessarily mean that c|y is somehow more similar to c′|y than it is to c′′|y. For instance,
when searching for a hard-coded symmetric key k inside obfδ(c), in order to decrypt a media
stream m encrypted with k, denoted e = enck (m). The MATE attacker does not know m,
however, s/he knows that the correct key k will result in a decryption of e – denoted deck (e)
– which has H.264 encoding and multiple frames have a high amount of green in the bottom
half, due to the color of the grass on the pitch. Therefore, g is defined as the number of
non-green pixels – in the bottom half of the frame – dived by the number of (all shades of)
green pixels, truncated to an integer. This definition of g indicates that if more than half
of the pixels in the bottom half of the frame are green, then the correct decryption key has
been found. Using the wrong decryption keys (e.g. k′ and k′′) leads to garbage content

54

4. Automated MATE Attacks

being decrypted, which highly likely results in non-zero values when applying g (e.g. 3 and
5, respectively). One cannot say that one of these keys is closer to the correct key k, because
its decrypted frame contains more green pixels.

If the MATE attacker had the implementation of obf −1y , then s/he could easily retrieve
the hidden information c|y . However, explicitly computing obf −1y is in general impossible,
because even if the MATE attacker knows obfy , s/he cannot compute its inverse. For
instance, when renaming variables, applying one-way transformations or even asymmetric
cryptography (when the private key is not known), it is not feasible to compute their
inverse transformations. Therefore, the only viable alternative for the MATE attacker is to
approximate obf −1y by cleverly enumerating (i.e. searching for) c′|y such that:

g(c′|y) = 0

This search can be performed statically on the obfuscated program obfx (c), e.g. when
searching for data in the code that corresponds to the license key. The search can also
be performed dynamically, e.g. when searching for an input i of obfx (c), which leads the
program to execute a certain instruction.

From a pragmatic perspective, it does not make a difference if the attack finds secret data
by enumerating (i.e. searching for) inputs to the code or by enumerating code, because
the MATE attacker will always pick the fastest way. However, for the defending party,
who wants to apply software obfuscation transformations to protect code and/or data, it is
important to be able to estimate the complexity of the attack and identify code characteristics,
which transformed by obfuscation, increase the time of an automated MATE attack. In
Section 4.2.2 we propose a search model to aid the defending party in this way. By being
able to approximate the complexity of an automated MATE attack, the defender knows if
additional defenses are required or not. Using our framework this can be done without
spending the resources to actually run the automated MATE attack, which could cost days
or months of computation time.

4.2.2. Search Model

Before presenting the search model we define the terms needed to understand this model.
The Goalgoal of automated MATE attackers is a digital item (i.e. data or executable code) having
a specified property, which must be recovered or obtained from another digital item. This
property of the goal is given by the definition of the goal function mentioned in Section 4.2.1.
Examples of goals – inspired from Figure 4.1 – include: (1) an input value for the license key
input of software X, which enables feature Y, or (2) a patch of one or more locations in software X,
which enables feature Y, or even (3) assembly code of software X. Moreover, each place (i.e. input
and output of a transition), in the attack-net from Figure 4.1 contains instances of digital
items. Digital items in automated MATE attacks can be categorized as: (i) parts of the
execution environment where the program is running (e.g. file-system, process-memory),
(ii) the binary or packaged code of the the target program, (iii) the program’s input space
and (iv) any digital items generated from or by the program (e.g. CFG, instruction traces).

55

4. Automated MATE Attacks

Data
struct.

Digital item Initial state Action(s) Goal state

1 String Program input Empty string Add or remove charac-
ters to string

Input string causing segmenta-
tion fault

2 Array Binary or pack-
aged code

No strings marked
in code

Move index back and
forth, mark as string

Set of hard-coded strings
marked in code

3 Set Set of hard-coded
strings

Random element
from set

Remove element from
set

Hard-coded password

4 List Disassembled or
decompiled code

No instructions
marked

Process or mark instruc-
tion

All integrity checks marked

5 Graph Control-flow
graph

Entry point node Add or remove nodes
(basic-blocks)

Shortest path from entry point
to block that outputs error

Table 4.2.: Search problem specification examples

AProblem problem is defined by a given input digital item and a desired output digital item, which
is the goal of the problem. A problem can be illustrated using the input and output places of a
transition in an attack net. The goal of a problem is not necessarily the goal of the MATE
attacker, because the goal of one problem, is used as the input of the subsequent problem in
the path from source to sink in the attack net. For a given attack-net the digital items in the
sink represents the goal of the MATE attacker. To reach their goal, MATE attackers must
solve one or more problems. Solving problems is done by executing anAlgorithm algorithm, which is a
computational process involving a set of instructions that must be followed in a specified
order. ASolution solution to a problem is a trace of each execution step of an algorithm, starting from
the input data and leading to the goal of that problem. In addition to finding a solution, an
algorithm also applies the solution to the input digital item of the problem and gives the
output digital item, instead of the solution itself. Therefore, an algorithm can be illustrated
using a transition in an attack net. Note that, at an abstract level any digital item is aData structure data
structure. Some examples of digital items and their corresponding data structures are shown
in the first two columns of Table 4.2. Treating inputs of algorithms as data structures, has
the advantage that we can analyze the effort of such algorithms – given a certain input –
as a function of the characteristics of these data structures. For some problems, it is trivial
to quantify the effort needed to find their solutions (e.g. the Make Input Symbolic transition
in Figure 4.1), because this is done by a deterministic algorithm. For other problems, the
process of finding a solution involves a non-deterministic search algorithm, which is less
trivial to quantify. Therefore, most of the effort of automated MATE attacks is spent solving
non-deterministic search problems. ASearch problem search problem is a type of problem that can be solved
by a computational process called aSearch algorithm search algorithm. Before solving a search problem using
a search algorithm, one must choose a certain level of abstraction to define the following
necessary elements, which represent building blocks for defining the search problem and
algorithm:

• AState state is a digital item (having a data structure d ∈ D), which may be annotated by
marking certain elements of the data structure. Markings are denoted as m ∈M . For
clarity, we will use a running example, where the digital item representing a program

56

4. Automated MATE Attacks

Figure 4.2.: Abstract UML model of search.

(i.e. a list of instructions), is annotated with the current instruction pointer. A state
may also be associated with one or more auxiliary digital items. In our running
example the auxiliary digital item associated to a list of instructions, is an array of
bytes representing the memory of the program. All states that are associated with the
same problem belong to a set of states S ⊆ D × Seq(M).

• An Actionaction is a transition function between a pair of states, i.e. ifA is the set of all actions
associated to the current search problem, then ∀a ∈ A, a : S → S. Each state in S has
a known set of actions, each leading to another state. Actions also have a semantic
meaning, as shown in the fourth column of Table 4.2. In our running example each
state has the possible action of executing the instruction immediately following it, or
in case of a jump instruction, the instruction where the control-flow jumps to.

According to the hypothesis of this thesis, characterizing the strength of different obfuscation
transformations against an automated attack is equivalent to characterizing the effort needed by
a search algorithm to solve a search problem. To facilitate the characterization of the effort
needed by a search algorithm to solve a search problem, we propose a model (illustrated
in Figure 4.21), involving a static (fixed) part, called the search problem specification and a
dynamic part, called the search algorithm execution, which will be defined next. The Search problem

specification
search

problem specification consists of the following elements:

1. An Initial stateinitial state (s0 ∈ S), which is the first state of the search algorithm execution (see
examples in column three of Table 4.2). In our running example the initial state is given
by annotating the program’s entry point as the current instruction and initializing the
digital item representing the memory of the program with all zero values.

2. A Successorsuccessor function (suc : S → 2A×S), which returns the set of all actions that can be
performed in a given state and indicates the states where these actions lead to. In our

1We have used terms similar to those in Chapter 3 of a textbook on Artificial Intelligence [178]

57

4. Automated MATE Attacks

running example we obtain the successor function by applying an action to a state,
e.g. executing the instruction indicated by the current state will lead to a state where
the instruction pointer is moved to the subsequent instruction and the memory is
updated according to the operational semantics of the executed instruction. Therefore,
one can derive the successor function using the definition of all possible actions.

3. AGoal test goal test function (g : S → R+), which indicates the distance of the state given as
input to the goal, i.e. if s ∈ S and g(s) = 0 then s is a goal state. The distance from the
goal has no standard measurement unit, i.e. it depends on the search problem. For
some problems, g(s) only has two possible outputs (i.e. a Boolean output), namely 0
if s is a goal state and 1 if s is not a goal state. Examples of states where a goal was
reached are given in column five of Table 4.2. In our running example, we choose the
goal state as the state where the current instruction pointer is set to a target instruction
that prints a distinctive message (e.g. “You win”), on standard output. Therefore, the
goal test is computed by counting the number of instructions between the current
instruction pointer and the target instruction.

4. A set ofCost cost metric units (C), which quantify the effort of all actions. Cost metric units
include various aspects of time (e.g. CPU hours) and space (e.g. bytes). In our running
example, a cost metric could be the number of CPU hours.

5. AStep cost step cost function (c : S × A → C), which quantifies the cost of taking a certain
action while in a certain state (see column six of Table 4.2). In our running example,
the step cost is the the number of CPU cycles needed to execute an instruction, move
the instruction pointer and update the memory.

TheSearch algorithm
execution

search algorithm execution requires a search problem specification. Additionally, it also
consists of the following elements:

1. ASearch tree search tree T = (Ss, As), where Ss and As are multi-sets containing elements from
S and A, respectively. The search tree is rooted in the initial state and it isExpanded expanded
by applying the successor function to this state, i.e. suc(s0). This expansion consists
of adding the arcs (i.e. actions) and nodes (i.e. states having a unique identifier) –
returned by the successor function – to the search tree. Note that each node in the
search tree has a unique identifier, which allows multiple nodes to contain the same
state in the search tree. It is important to note that the successor function does not impose
any order on its output set of (action, state) pairs. Therefore, a search algorithm cannot
pick the “left-most” or “right-most” node from the set of successors. Instead, any
node – from the set of successor nodes – is selected nondeterministically by a search
algorithm. Expansion of the search tree continues by applying the successor function
to other non-expanded nodes. There are no cycles in a search tree, which means that
there can be multiple nodes in the search tree representing the same state. Therefore,
the search tree holds the history of the search algorithm execution.

58

4. Automated MATE Attacks

2. A Fringefringe (F ⊆ Ss) is the set of nodes in the search tree which have not been expanded
yet, i.e. they are leaves of the tree. Intuitively, the fringe is an annotation on the
search tree which indicates the leaves of the tree. In each step of the search algorithm
execution a node on the fringe is expanded.

3. Zero, one or two Heuristicheuristic functions (h ∈ H). Heuristic functions may be associated
with: (1) the search strategy (see next bullet point for definition) or (2) the data structure
representing a state of the problem. If associated with the search strategy, heuristics
are defined as h : S → C, and they prioritize the states on the fringe by estimating
their utility. If associated with the data structure, heuristics are defined as h : D → D,
and they transform the data structure and hence the state space of the problem from
S to S′ such that the size (breadth and/or depth) of the search tree is smaller and/or
the cost of computing the g function is smaller. Such heuristics are generally applied
once, before starting the search algorithm execution (see example in Section 4.3.1).
Heuristic functions are derived from information about the search problem (i ∈ I),
e.g. side channels. Heuristic function derivation is generally a human-assisted process,
mathematically represented by the function drv : I → 2H . Note that a search execution
may use: (1) no heuristic, (2) one heuristic associated with the search strategy, (3)
one heuristic associated with the data structure or (4) two heuristics, where one is
associated with the search strategy and the other with the data structure.

4. A Search strategysearch strategy function (stg : 2S×H → S, where stg ∈ A), which selects a state from
the fringe of the search tree, optionally using a heuristic function. A common strategy
is to select the best state from the fringe, i.e. the greedy strategy. However, often
selecting the best state is not possible, because after applying the heuristic to all states
on the fringe, there are multiple states which have the same (highest) utility value. In
such cases – where there are multiple “best” states on the fringe – the strategy is used
to pick one state. Examples of strategies which do not use heuristic functions include:
breadth-first search, depth-first search and iterative deepening depth-first search.

5. A Search costsearch cost function (t : 2S×A → C), which quantifies the time and space of the
search algorithm execution. In order to do this the search cost function sums up: (1)
the step costs of all the (state, action) pairs in the search tree2, and (2) the cost needed
to compute the search strategy and heuristic functions on different states, in order to
generate the tree itself. For instance, the time complexity is the number of CPU hours
spent by the search algorithm execution, generating the search tree and visiting states,
until a goal state or the cutoff is reached, while the space complexity is the maximum
memory size used by the algorithm (e.g. for storing multiple states at the same time).

6. A Cutoffcutoff value (cut ∈ C), which is a concrete cost value used to stop the search if the
search cost exceeds this value. This value is generally used for search problems which

2Computing the search cost would not be feasible if the search tree would contain loops, because it would not
be clear how many iterations of the loop were executed.

59

4. Automated MATE Attacks

are NP-hard (e.g. optimization problems). Examples of cutoff values include a certain
number of hours or a certain number of GBs in memory usage.

Using this search model, we can map every transition – along with its input and output
places – from an automated MATE attack path, in an attack net. The input and output places
of a transition indicate the digital items representing the states and the search problem
specification, i.e. Spec = (s0, suc, g, C, c). Note that a search problem specification can
be solved in both a human-assisted and an automated way. This thesis focuses only on
the automatic approaches, which – as opposed to human-assisted approaches – can be
formulated as search algorithm executions, i.e. Exec = (Spec, T, F, i, h, stg, t, cut), where:

• h ∈ Href and Href ⊂ H is the set of reference heuristics applicable to Spec given i ∈ I ,
i.e. drv(i) = Href .

• stg ∈ Aref and Aref ⊂ A is the set of reference algorithms applicable given Spec and h.

The set Href , and Aref contain elements, which are publicly known, i.e. they have been
published in the literature. For any other heuristics, information or strategies, a human-
assisted task is required to develop such elements.

Best known attacker Intuitively, a search strategy and a heuristic function can be applied
to many different search problem specifications. In our model this translates to the fact
that there exist many possible search algorithm executions for the same search problem
specification. TheBest known attacker best known attacker for a given search problem specification Spec is the
search algorithm execution Exec iff:

∀Exec′ 6= Exec : t(T) ≤ t(T ′)
∧ Exec = (Spec, T, F, i, h, stg, t)
∧ Exec′ = (Spec, T ′, F ′, i′, h′, stg′, t),

where h, h′ ∈ Href and stg, stg′ ∈ Aref . Intuitively, this means that: given the same way
of computing the search cost, the best known attacker has the lowest search cost across
all other search algorithm executions, which consist of known information, heuristics and
search strategies Note that this does not include unknown information, heuristics and
strategies, which could be developed via a human-assisted MATE attack.

Search algorithm execution Using these notions we can describe the search algorithm
execution using Algorithm 1. The input of this algorithm is the search problem specification
Spec and the output is a state sg ∈ S. The first steps (lines 3-4) are to initialize the search
tree and the fringe F with a multiset, respectively set containing only the initial state s0.
The main body of the algorithm (lines 5-11) consists of a while loop which runs until one of
the following conditions is true: g(stg(F, h)) = 1 or t(T) ≥ cut. These are called theStopping conditions stopping
conditions of the search algorithm execution, i.e. the search stops whenever the state chosen

60

4. Automated MATE Attacks

ALGORITHM 1: Exec, i.e. search algorithm execution

1 Input: Spec = (s0, suc, g, C, c);
2 Output: sg ∈ S;
3 T = ({(s0, 1)}, ∅);
4 F = {s0};
5 while (g(stg(F, h)) > 0) and (t(T) < cut) do
6 s = stg(F, h);
7 F = F \ s;
8 T ′ = T] suc(s);
9 F = F ∪ {s|s ∈ S′s \ Ss ∧ T ′ = (S′s, A

′
s) ∧ T = (Ss, As)};

10 T = T ′;
11 end
12 return sg such that ∀s ∈ Ss : g(sg) ≤ g(s).

from the fringe, by the strategy is a goal state or when the search cost has reached the cutoff
value. The first step inside the loop is to apply the strategy and heuristic to select (line
6) and then remove a node from the fringe (line 7). The successor function is applied to
the selected state s and the result is added to the search tree (line 8); note that] denotes a
multiset union on both search nodes and arcs. Afterwards, the search nodes added to the
search tree are also added to the fringe and the search continues (lines 9-10). Finally, the
algorithm returns the state sg in the search tree, which is closest to the goal (line 12). Note
that this could be a goal node if g(stg(F, h)) = 0, however, it could also be a non-goal node,
if the cutoff caused the while loop to exit.

4.2.3. Estimating Search Cost

The search cost of the search algorithm execution from Algorithm 1 (i.e. t(T) on line 5), con-
sists of the total number of calls to the following functions: stg, h, suc and g. Theoretically,
the search cost could be estimated without actually running the search algorithm execution,
if the following values can be estimated:

• The actual cost of computing the stg, suc, h and g functions during each iteration.

• The number of while-loop iterations until a stopping condition is met.

Firstly, we note that all of these functions take as input one or more states. From an abstract
perspective, states – in our search model – consist of classical data structures such as: sets,
lists, trees or graphs. Hence, the computational cost of all of these functions will depend on
some characteristics of these data structures (e.g. size of a set, average fan-in of nodes in a
graph, depth of a tree, etc.). Generally, the computational cost of the four functions: stg,
suc, h and g is similar for different states having the same characteristics.

61

4. Automated MATE Attacks

Secondly, we note that the actual number of while-loop iterations until a stopping condi-
tion is met, depends on the order in which elements are stored in these data structures. This
thesis does not claim that we are able to give a formula for computing the actual search
cost based on code characteristics. Instead, this thesis focuses on estimating the average
cost of a search, which also implicitly includes estimating the depth of the goal and the
branching factor. For instance, the average cost of a depth-first search on a degenerate tree
representing a list of hard-coded strings, depends on the size of the list of strings. The
actual cost may be smaller or higher because the goal state is encountered as the first or last
element of the list, respectively.

Thirdly, the search cost does not only depend on branching factor and the minimum
depth of a solution in the search tree, but also on the effectiveness of the heuristic – used by
the search strategy – in prioritizing the states from the fringe, to be expanded in the next
iteration of the search algorithm execution. This is because heuristics have an important
impact on the number of while-loop iterations, until a stopping condition is met. Even if
the branching factor of the search tree is high, a good heuristic is able to prioritize all these
branches, such that only a small number of them are explored for each node in the search
tree. As we will see in Section 4.3, heuristics are the main differentiating factor between
most automated MATE attacks. Most of the research literature on automated MATE attacks
aims to improve the cost of previous attacks by using innovative heuristics. Therefore, it is
not enough to build a model for estimating the cost of an automated attack, only from data
structure characteristics and the characteristics of the search tree, we also need to factor
heuristics into our model, as discussed in the following paragraph.

Characterizing heuristics Heuristics have the role of simplifying the search problem
by prioritizing the choices that can be made – in each iteration of the while-loop from
Algorithm 1 – by the search strategy. In order to do this, heuristics are derived via a human-
assisted process using information about the search problem specification. Sources for this
information are broad and include results from empirical studies that solve similar search
problems, human intuition, etc.

Without the prioritization of choices, done by the heuristic, the search strategy makes
an uninformed choice from all possible choices until the goal state is reached. Therefore,
without heuristics, the characteristics of the search tree such as minimum depth of goal
state and branching factor, are enough to estimate the search cost. This is actually the case
for the search problem of guessing a random cryptographic key of n-bits given a (plaintext,
ciphertext) pair, i.e. the total number of states, |S| = 2n, gives an estimate of the number of
tries that the attacker must perform in order to guarantee a successful attack. As mentioned
previously, the actual number of tries may be as low as 1 if the attacker guesses the key
from the first try.

In practical attacks against cryptographic cipher implementations, attackers use informa-
tion sources such as cache timing side-channels [16]. Attackers formulate heuristic functions
on this information in order to prune branches of the search tree, such that it is feasible

62

4. Automated MATE Attacks

to do a brute-force enumeration on the remaining possible states (i.e. secret key values).
Therefore, heuristics can be seen as a way of reducing the number of explored branches of a
search tree. We can factor heuristics into our model by estimating the degree to which a
certain heuristic will “reduce” the branching factor of a search tree, by guiding the search
algorithm execution to visit only a subset of the possible successor states. This estimate also
depends on the characteristics of the data structure contained in a state of the search tree.

Deterministic and non-deterministic search algorithm execution If a heuristic is able to
perform a strictly monotonic ordering between all possible choices in all states, then the
search algorithm execution is fully deterministic. Often however, heuristics are only able to
reduce the possible choices to a certain set, where all states have the same (highest) utility
value. At this point the best-first strategy will choose one of these “best” states uniformly
at random, hence the search algorithm execution is non-deterministic. Many state-of-
the-art search algorithms employ such a random choice strategy and are therefore non-
deterministic. It is more difficult to predict the cost of non-deterministic search algorithm
executions in comparison to deterministic search algorithm executions. Nevertheless, we
can give an average estimate for it.

Average time-to-compromise Using the Big-O notation to characterize the worst case cost
of the search algorithm execution is not in accordance with common security principles [180].
According to these principles the defender is urged to assume the best case scenario for
attackers. However, using Big-Ω (Big-Omega) notation to characterize the best case scenario
for attackers, is too vague for practitioners. Pragmatically a entity who employs obfuscation
wants concrete numbers in terms of time (e.g. seconds) and computation power (e.g. a
machine with 8 cores of 3.5 GHz and 64 GBs of RAM), but this is not resolved using Big-O or
Big-Ω analyses. One approach along these lines is called Average

time-to-compromise
average time-to-compromise [152] and

it gives a quantitative estimate of the time that an IT system can withstand a cyber-attack.
This idea is borrowed from physical security, where the security of safes is measured by the
number of minutes it takes an attacker – having access to a certain fixed set of tools – to
brake the safe [132]. We use a similar approach, however, instead of manual attacks, we
measure the cost needed by automated attack steps (search algorithm executions) to reach a
goal state, given a certain amount of computation resources, i.e. CPUs and memory.

4.2.4. Power of MATE Attacker

In many security settings it is common to assume that the attacker has unlimited or very
high resources. For instance, in cryptographic settings, leaking the contents of a message
sent between two war allies, to their common enemy (a MITM), may have insurmountable
costs. Therefore, it is assumed that the MITM attacker is willing to spend a great amount
of resources to decrypt messages sent between two parties (e.g. allies). However, this

63

4. Automated MATE Attacks

assumption does not hold for several other scenarios. In this thesis we focus on software
protection scenarios, where MATE attackers, often do not have such great gains.

For instance, automatic attacks on software are relevant for scenarios where a software
developer employs software diversity [86, 87] via obfuscation (i.e. different end-users run
differently obfuscated versions of the same program), and a MATE attacker targets all
obfuscated versions of that program. This means that the amount of computing resources
an attacker can spend on an automated attack must be limited in order to cope with the
large amount of obfuscated versions. Moreover, automated attacks that target a large
population of end-users often come in the form of PUPs [148] or changeware [23], executed
on the machines of end-users, i.e. commodity hardware on average.

If software developers want to protect their applications (e.g. Google Chrome, Microsoft
Windows, etc.), against PUPs or changeware, by using software diversity via obfuscation,
then these protections must be able to withstand an automated attack with computation
power equivalent to commodity hardware and not a super computer. Furthermore, the
window of opportunity for such automated MATE attacks is limited (e.g. a few days, weeks,
months), because of continuous software updates bring new diverse software instances
containing different (combinations) of software protection, which force MATE attackers to
redesign and redistribute their automated attacks. Note that, software diversity is known
to cause high storage and distribution costs for software vendors who want to perform:
differential updates, crash-dump debugging and binary signing by the OS vendor [23].

Another example of automated attacks on software are attacks performed by anti-virus
and malware analysis engines. Similar to the previous scenario, these engines run on
the machines of end-users and they must analyze binary files – which potentially are
diversely obfuscated malware instances – in a matter of seconds. This means that for
a malware developer, who is interested in infecting as many victims as possible, it is
enough to protect his malicious software using enough obfuscation to be able to bypass an
automated attack executed by an anti-virus or malware analysis engine. Even organizations
performing malware analysis (e.g. McAfee, Symantec, etc.), who have more advanced
hardware capabilities must process millions of different malware variants per day [148, 201].
This means they cannot invest much more than a small quota of hardware power to analyze
each malicious binary.

Therefore, as opposed to encrypted communication (which must be secure against su-
percomputers running for a large amount of time), it is generally sufficient for software
developers if diversely obfuscated applications withstand an automated attack running on
commodity hardware for a limited amount of time (e.g. one hour, one month, etc.). This is
true for the context of software diversity and automated MATE attacks explicitly assumed
in this thesis (see Section 1.2).

4.2.5. Benefits of Search Model

Based on this model we develop a comprehensive way to characterize the effort required
by the steps (i.e. transitions in the attack net), of all automated MATE attacks. In order

64

4. Automated MATE Attacks

to characterize the strength of obfuscation transformations our frameworks enables: (1)
identifying the features of the data structures of states, which have a significant influence
on the cost of searching for a solution and then (2) identify how these features are affected
by different obfuscation transformations. Obfuscation transformations which have the
largest impact on such features and hence the effort of search, are “stronger” than other
transformations, w.r.t. the corresponding automated attack. This aspect is explored in a
case-study presented in Chapter 5.

The characterization of the effort required by the steps which involve search enables
reasoning about the overall cost of the automated MATE attacks. This gives software devel-
opers an indication of how much time their software would resist against an automated
MATE attack, because the attack will last at least as long as the search algorithm execution
for one transition in an attack-net path. Knowing this software developers can employ
additional software protection mechanisms – if necessary – in order to increase the time
needed for executing that attack step (i.e. transition). Moreover, we can use the identified
features of the data structures and a model of the strategy (optionally including a heuristic)
in order to predict the time needed by the automated attack, without actually performing
the search. This aspect is explored in Chapter 6.

Lastly, the data structure features and heuristics instantiated in the model, help us reason
about which kinds of obfuscation transformations would increase the cost of the attack.
In order to prevent or hamper paths from source to sink in an automated MATE attack,
we must apply or develop obfuscation transformations that affect these features and/or heuristics,
such that the search cost increases. Therefore, software developers can choose the strongest
transformations from the point of view of resilience against all known automated MATE
attacks. We will elaborate on this aspect in Chapter 7.

4.3. Survey of Automated MATE Attacks

As a support for our claim that: all automated MATE attacks can be seen as multi-step workflows
(i.e. paths from sources to sinks in an attack net), containing one or more search problems, this
section presents a survey of automated MATE attacks. We instantiate our search model
from Section 4.2 for several steps of automated MATE attacks. Note that the purpose of this
section is to illustrate the benefits of our model (see Section 4.2.5), on various automated
MATE attacks and it is, by no means, an exhaustive survey of such attacks. For this purpose
we indicate which software features are important for characterizing the effort of the attack.

Finally, different programming analysis techniques (e.g. pattern matching, taint-analysis,
etc.) are presented for each attack interpretation category (i.e. syntactic and semantic) and
for each attack type (i.e. code understanding, data recovery or location recovery). However,
any such analysis technique is only one step of a multi-step MATE attack. Therefore, other
attack types may also be achievable using the same program analysis technique within a
different multi-step MATE attack.

65

4. Automated MATE Attacks

4.3.1. Syntactic Attacks

Syntactic attacks do not interpret the program code or any artifacts (e.g. instruction trace)
generated by or from it. Note that in this section we do not classify the entire multi-step
MATE attack as static, instead, we refer to one particular step as being static. Such a step
could very well be preceded or followed by a dynamic analysis step. The advantage of this
category of attacks is that they are applicable to a broader range of programming languages
and artifacts, which increases re-usability and amortizes development cost. The disadvan-
tage is that these attacks can often be hindered by most obfuscation transformations, as will
be discussed in the following paragraphs.

Data recovery via pattern matching

As the name of this particular technique indicates, the MATE attacker provides a pattern
(e.g. a regular expression [131]), and this automated attack attempts to find all the exact
matches of this pattern. The data structure for pattern matching is generally a list of bytes or
bits (e.g. machine code, memory dumps). However pattern matching can also be performed
on graphs and trees, where patterns are represented by subgraphs.

Pattern matching is also used by antivirus engines or reverse engineering tools, such as
the Interactive Disassembler (IDA), where patterns are commonly called signatures. Such
signatures or patterns represent known pieces of (malicious) code, which if identified,
remove the burden of human-analysis needed to understand them. For instance, the
Fast Library Identification and Recognition Technology (FLIRT) built into IDA Pro [195],
recognizes library functions which have been statically linked inside of a binary executable
without any debugging symbols. This process is similar to that of disassembly. However,
FLIRT has a much larger database of functions, which it must recognize, compared to the
relatively lower number of possible assembly instructions that need to be recognized during
disassembly.

The attack-net corresponding to this automated MATE attack is illustrated in Figure 4.3.
FLIRT processes the binary machine code starting from the first byte, using a buffer which

Figure 4.3.: Attack-net representing data recovery attack via pattern matching

66

4. Automated MATE Attacks

Search Problem Specification
Goal A function name, whose code matches the contents of the FLIRT

buffer.
Data structure A set of sequences of machine code bytes and empty placeholders

representing patterns of library functions.
State A set of patterns and their associated function names.
Initial state A set containing all patterns and their associated names, from the

database.
Search Algorithm Execution

Actions Filter out patterns from current state, whose prefixes do not match
the current contents of the buffer.

Strategy Only patterns whose prefix exactly match the contents of the buffer
are selected.

Heuristic Store the set of patterns of library functions as a tree, where the
root is an empty sequence and each node contains a sequence of
machine code bytes and/or empty placeholders. The contents of
the nodes on each path from the root to a leaf represents a function
pattern. The contents of intermediate nodes are common code
bytes for all function patterns of its descendants.

Table 4.3.: Elements of search specification and execution for data recovery attack via pat-
tern matching.

is initially empty and performs the following steps:

1. Add the value at the current index of the machine code into the FLIRT buffer and
move the index to the next byte of machine code.

2. If end of machine code is reached, then stop.

3. If the current contents of the FLIRT buffer does not match the prefix of any function
templates in the FLIRT database, then empty the buffer and go to step 1.

4. If the current contents of the buffer matches the prefix of multiple function templates
in the FLIRT database, then perform step 1 again.

5. If the current contents of the FLIRT buffer matches exactly one of the function tem-
plates in the FLIRT database, then assign the function name to that machine code and
empty the buffer. Afterwards go to step 1.

Steps 3, 4 and 5 of the previous algorithm involve matching one of the thousands of patterns
of known functions to the current contents of the buffer. This matching step maps to
the transition called Search for Match in FLIRT Database transition in the attack-net from
Figure 4.3. In the following we instantiate our search model on this transition and we reason
about how to characterize its cost and by which means it could be hampered or prevented.

Table 4.3 contains the instance of our search model from Section 4.2.2 for the Search for
Match in FLIRT Database transition in the attack-net from Figure 4.3. The goal is finding

67

4. Automated MATE Attacks

Figure 4.4.: Initial part of search tree corresponding to data recovery attack via pattern
matching from Table 4.3.

a function name, whose code exactly matches the contents of the buffer, or no possible
match for the buffer contents. Note that it may be necessary to search for the same function
multiple times because the code is not necessarily 4 or 8 byte aligned, therefore, it is not
clear at which address a function ends and another beings. The data structure is a set of all
function patterns, which consist of machine code bytes and placeholders for bytes. The most
interesting part of this attack is the heuristic, which is applied to the data structure, instead
of the strategy, i.e. the heuristic is to store the list of function patterns inside a tree structure,
which coincides with the search tree as illustrated in Figure 4.4. In this tree, functions that
have matching prefixes share common ancestor nodes in the tree. Each different function
pattern is reconstructed via the nodes from the root to a leaf. This heuristic reduces the
effort needed for checking the content of the buffer against all possible functions in the
set, to only checking those functions that have the same prefix as the current contents of
the buffer. This happens because executing an action of the search by choosing a sub-tree
of the search tree from Figure 4.4, is equivalent to selecting only those function patterns
that correspond to that sub-tree. Differently from the previous attack, the search tree is
not infinite and it is known before the search starts, because it corresponds to the database
(i.e. set) of function patterns. Note that the same automated attack is also performed by code
disassembly. The only difference is that instead of matching function patterns, disassembly
matches instruction patterns. The search cost for this attack is characterized by the length
of the program in bytes (denoted N), the average depth of the search tree from Figure 4.4
(denoted D), the average branching factor of the search tree (denoted B) and the average
depth of the average size (in bytes) of the nodes in the tree (denoted S). If we assume that
cost of comparing two bytes takes cyc CPU cycles, then the expected time for the search
cost is:

E[t(T)] =
N

S
·D ·B · cyc.

Since this algorithm only involves equality comparison it is quite fast and hampering it
by increasing the size of the code or the number of libraries it can recognize, will not slow it

68

4. Automated MATE Attacks

Figure 4.5.: Attack-net representing code understanding attack via pattern recognition

down much. However, preventing such exact pattern matching attacks is straightforward,
because we can break the assumption that an exact match exists, by any code obfuscation
technique presented in Section 3.3.2. For instance, Ibrahim and Banescu [112] successfully
employ a virtualization obfuscation tool for C#, developed by Banescu et al. [20], in order
to hide the location of code integrity checks against pattern matching attacks. In their case
the pattern is encoded using a regular expression, which is a also a data structure heuristic,
because it can store a large set of possible values in a compact finite-state automaton.

Code understanding via pattern recognition

It is not always possible to manually generate patterns for attacks. However, in the context of
software diversity there are numerous instances of the same program. In pattern recognition,
artificial intelligence algorithms are employed to automatically extract patterns from a large
number of diverse software instances. The important difference is that these algorithms
can potentially discover highly complex patterns, which a human attacker would not have
detected.

Pattern recognition is used in behavioral malware analysis [24], which is a code understand-
ing MATE attack according to our classification criteria. In this context, Behaviorbehavior is defined
by the dynamic instruction trace or system call trace of a software application. Since there
are many such possible traces that could be generated by malware or benign applications
(i.e. goodware), supervised machine learning techniques are generally applied as part of
such multi-step automated MATE attacks. Therefore, a set of dynamic traces are labeled as
being generated by malware and another set of dynamic traces are labeled as originating
from goodware. This way the machine learning algorithm can also eliminate patterns that
are common to both malware and goodware.

Banescu et al. [24] employ Support Vector Machines (SVMs) [61] to identify patterns in
system call traces recorded during the execution of applications. The attack-net correspond-
ing to this automated MATE attack is illustrated in Figure 4.5, where system call traces are
obtained by executing the code with multiple input values. Each trace is divided using a
sliding window of n system calls, where n ∈ {3, 6, 9}. For each window position Banescu
et al. [24] extract a set of features, denoted ~xi, where i ∈ {1, 2, · · · , N} and N is the total
number of windows from all traces in the dataset. The number of features for each window
are equal to the size of the window itself, because each feature ~xi represents a unique code

69

4. Automated MATE Attacks

Search Problem Specification
Goal The tuple of Lagrange multipliers which solves the quadratic

programming problem, representing the dual of the constraint
optimization problem of finding hyperplane coefficients to dis-
criminate malware from goodware samples.

Data structure A tuple of Lagrange multipliers, i.e. positive real numbers.
State A tuple of Lagrange multipliers having assigned values.
Initial state A tuple of Lagrange multipliers with randomly assigned values.

Search Algorithm Execution
Actions Pick other values for one of the Lagrange multipliers.
Strategy Sequential Minimal Optimization (SMO), which uses a divide and

conquer approach, i.e. finds a pair of Lagrange multipliers at a
time.

Heuristic Select those values for one of the Lagrange multipliers in the pair,
which violate the Karush-Kuhn-Tucker conditions [35].

Table 4.4.: Elements of search specification and execution for the code understanding attack
via pattern recognition.

of a system call name. Each window position is a data point for the SVM and is labeled
with a value yi, indicating whether it is originating from a malicious (yi = −1) or benign
(yi = 1) application’s system call trace.

The goal of the SVM algorithm is to identify the coefficients of a hyperplane which can
discriminate malware from goodware samples (i.e. data points). ADiscriminant

function
discriminant function

tries to separate the data points such that all points labeled as malware are on one side of
the hyperplane (described by this function), and all other goodware points are on the other
side of the hyperplane. For instance, a discriminant function may look like f(~xi) = ~a~xi + b,
where ~a is a vector of weights and b is a constant. SVMs do not only separate points by a
hyperplane, instead they use twoSupport vectors support vectors, which are two hyperplanes at the boundary
of each class of points. The goal of the SVM algorithm is to equivalent to finding the values
of ~a and b, such that for all values of ~xi and yi in our dataset the following relation holds:
yi(~a~xi + b) ≥ 1. Support vectors are parallel to the hyperplane given by the discriminant
function and these support vectors are chosen such that the distance between them is as
large as possible. This is a constraint optimization problem, which can be reformulated as a
quadratic programming problem solvable by searching.

Quadratic programming problems can be solved by a variety of methods, including the
augmented Lagrangian algorithm [70], the generalized simplex method [66] and sequential
minimal optimization (SMO) [171]. Banescu et al. [24] use the latter method, which takes a
divide and conquer approach. Each subproblem contains one equation with two unknowns
and can be solved analytically using a heuristic based search [171].

Table 4.4 presents an instance of our search model from Section 4.2.2 for this quadratic
programming problem. A partial expansion of the search tree of this problem can be seen in
Figure 4.6, where c and c′ are two Lagrangian constants that must be determined such that

70

4. Automated MATE Attacks

Figure 4.6.: Initial part of search tree corresponding to code understanding attack via pattern
recognition from Table 4.4.

they maximize a quadratic function. Note that the branching factor and the depth of this tree
are both infinite. Such problems are NP-hard and different search algorithm executions may
take too much time to converge to an optimal solution, i.e. a hyperplane which perfectly
partitions malware samples from goodware samples. Therefore, it is common to employ a
cutoff time and take a suboptimal solution, e.g. Banescu et al. [24] employ a cutoff time of 3.5
hours in their experiments, which is also illustrated as the last transition in the attack-net
from Figure 4.5. In this context, a suboptimal solution means an error in the classification,
i.e. the precision and recall of the classifier are less than 100%.

These search problems are part of the SVM Training transition of the automated MATE
attack from Figure 4.5. After training, the (suboptimal) solution is used as a model to
classify other data points, as malicious or benign, based on their features. This is called the
testing phase and it does not involve search. Therefore, we should find features which can
characterize the search effort in the training phase. From the description of this automated
attack, we know that the convergence time grows as a factor of the number of features
n (i.e. the window size) of one data point and the number of points N in the data set.
Moreover, the number of points in the dataset N , grows proportionally to the length of
the system call traces used for training. If we consider that finding a pair of Lagrange
multipliers using the heuristic from Table 4.4, takes cyc CPU cycles, then the expected value
of the search cost is:

E[t(T)] = N · n · cyc.

The work of Banescu et al. [24] confirms this through their experiments which indicate that
given the same cutoff time, varying the size of the window results in classification models
having higher errors for higher window sizes (i.e. higher n). Moreover, using fewer traces
(i.e. lower N) for training, results in models with lower classification errors.

In order to defend against such an automated MATE attack, Banescu et al. [24] proposed
employing behavior obfuscation, which adds random noise (in the form of additional system
calls), to the system call traces used for the training phase. This noise increases the data
points in the dataset and also create more overlap between malware and goodware data

71

4. Automated MATE Attacks

Figure 4.7.: Attack-net representing key location recovery attack via pattern recognition

points, which causes the SVM algorithm to converge slower and therefore the classification
error is higher.

Location recovery via pattern recognition

Pattern recognition was also used by Shamir and Van Someren [189] to locate the secret key
of an RSA cipher hard-coded in binary programs. They assume that the key is stored in
memory as a contiguous sequence of v-bits chosen uniformly at random. As opposed to the
previous pattern matching attack, in this attack the pattern (i.e. the actual bit values of the
key), is not given. Instead, the “pattern” that is recognized is a noisy (i.e. high entropy) bit
sequence which represents the key with a high likelihood, because executable code or other
data values are, generally, significantly less noisy. The corresponding attack-net is depicted
in Figure 4.7, where the MATE attacker is looking for a hard-coded cryptographic key of
v-bits, inside of a memory dump of N -bits, where N � v. In the following we dive deeper
into the analysis of the search problem in the second transition of this attack-net.

Table 4.5 presents the following necessary elements of the search model from Section 4.2.2:
goal, data structure, state, initial state, actions, strategy and heuristic. The first four elements
are part of the search problem specification and the last three are part of the search algorithm
execution. We also depict a part of the search tree corresponding to this attack in Figure 4.8
(not all nodes have been expanded due to limited page width). Each node at an even
depth of the search tree, has a large branching factor i.e. if the node has a sequence of N
bits, the branching factor of that node is N/2 − 1, because one could choose any value
of x ∈ {2, 3, · · · , N/2} to expand next. Since the heuristic for these nodes (see Table 4.5),
assigns the same utility value to all subsequent states, the strategy picks one of these “best”
states uniformly at random. Each node at an odd depth of the search tree, has a different
branching factor equal to the value of 2x − 1, where x > 2 is the value selected by its
parent node (at the previous depth of the search tree). This happens because one can
also chose two consecutive partitions, not just individual partitions, i.e. as long as not all
partitions are selected. Consecutive partitions can be selected since one part of the secret
key could reside at the end of one partition and the remaining part would then reside in
the following partition. For instance, in Figure 4.8 at depth 1, the second child of the root
(x = 3) has 5 children, because we also consider the states where: the first and second
partitions are concatenated P1|P2 and the second and third partitions are concatenated
P2|P3. For these nodes, the heuristic assigns a utility equal to the entropy of that partition,

72

4. Automated MATE Attacks

Search Problem Specification
Goal The sequence of v bits representing the hard-coded cryptographic

key inside a memory dump of a program P (e.g. 2048-bits for an
RSA key, 128-bits for an AES key, etc.), which correctly decrypts a
media file associated to P .

Data structure A sequence of bits, representing a memory dump.
State Range of the memory dump, i.e. start and end index of sequence.
Initial state Range of N bits, i.e. beginning to end of the memory dump.

Search Algorithm Execution

Actions

•For nodes (i.e. states) at even depth in the search tree (see Fig-
ure 4.8) pick an integer value of x ∈ N∗, to partition range of the
memory dump into x chunks of bits.
•For nodes at odd depth in the search tree, pick the range of one
or more chunks to partition deeper.

Strategy Best-first search. If multiple “best” states, pick one of these states
uniformly at random.

Heuristic

•For nodes at even depth in the search tree, pick x ∈ N∗ greater
than 1 and less than the length of the range divided by 2.
•For nodes at odd depth in the search tree, pick chunks with
highest entropy, because according to good security practices,
RSA keys need to be randomly generated, uniformly distributed
sequences of bits.

Table 4.5.: Elements of search specification and execution for key location recovery attack
via pattern recognition.

which is a real number between 0 and 1. These values can be easily sorted and the “best”
states are picked as those having the highest entropy (highlighted using a red arc label in
Figure 4.8). However, note that even at odd levels in the search tree, there could be nodes
that have the same entropy values and then the best-first search strategy picks one of these
nodes uniformly at random.

Now that we have instantiated our search model, we continue with reasoning about how
to characterize the attacker effort (i.e. search cost), to improve the attack and to create a
defense (i.e. obfuscation transformation). The goal states are nodes in the search tree that
have the range size equal to v bits. Therefore, we can infer another heuristic that: at even
levels of the search tree we must not have states with ranges lower than v bits, because expanding
such states will not lead to a goal state. The search tree is not balanced, since always picking
the same value of x leads to a depth of logxN , which varies for different values of x. Hence,
a depth-first search strategy may end up exploring the deepest part of the tree, where goal
states are rare. The disadvantage of breadth-first search is the large branching factor at
even depths of the tree. Hence a good heuristic at even depths would dramatically reduce
the cost of the attack. One heuristic that Shamir and Van Someren [189] implicitly indicate
is choosing x = v/4. We believe that the reason for choosing this value is that it is coarse
enough to indicate a meaningful entropy value and granular enough to indicate subparts

73

4. Automated MATE Attacks

Figure 4.8.: Initial part of search tree corresponding to key location recovery attack via
pattern recognition from Table 4.5. For nodes at depth 1 the best next states,
have highlighted actions.

of the secret key. Using this heuristic the branching factor at even levels is reduced to
1. Moreover, the key can be found even at depth 4 in the worst case, depending on the
alignment of the key inside of the memory dump. If we use cyc to denote the number of
CPU cycles needed to compute the entropy of a chunk of x = v/4 bits, then the estimated
search cost for this attack is:

E[t(T)] =
N

x
· (cyc+ log2

N

x
).

The estimate represents the effort needed to compute the entropy of a list of N/x elements
of x bits and to sort these entropy values. Afterwards, the 4 consecutive elements with the
highest entropy will contain the key. Since this estimated search cost is linearithmic with
the size of the program, Shamir and Van Someren [189] indicate that there is stringent need
for data obfuscation methods to hide hard-coded keys in binaries. Nevertheless, the cost of
this automated attack is characterized by the values of u and v, as well as the choice of x
values. This attack can be stopped by breaking the last heuristic from Table 4.5, i.e. devise
an obfuscation transformation which replaces the continuous sequence of bits representing
the key in the memory dump, by some other data and/or code which at runtime will be
used to decrypt the media file. This kind of reasoning led to the development of WBC a
couple of years after this attack was published [50, 49].

74

4. Automated MATE Attacks

4.3.2. Semantic Attacks

Semantic attacks interpret the code of the program and/or the artifacts generated by or
from it. This means that moving from one state to another inside the search tree involves
interpreting code. The advantage of this category of attacks is that they are more accurate
than syntactic attacks. However, their disadvantage is that they are often specific to a
programming language or artifact (e.g. only applicable to source code, not machine code).

Data recovery via random testing

Random testingRandom testing, is a dynamic analysis technique, which randomly chooses input values
for a program P and records its outputs. Therefore, it treats the program as a black-box,
i.e. it does not base its decision about the next action it will take on the code of the program
or any past states. Consider the automated attack of recovering a license key of variable
length via random testing, which is illustrated as the top-most path in the attack-net from
Figure 4.1. Table 4.6 shows the instance of this attack based on our search model. In
this case the data structure is a string of characters and the initial state is the empty string.
Figure 4.9 shows a partial expansion of the search tree corresponding to this search problem.
Note that the branching factor of each node is equal to the size of the alphabet which is
used to create the string and the depth of the tree is infinite. In Figure 4.9, the nodes are
laid out in alphabetical order simply for ease of readability, however, they are actually
selected uniformly at random by random testing. Moreover, since the program is treated as a
black-box, there is no information to guide the search, therefore this attack does not use a
heuristic and it uses a breadth-first search strategy.

The cost of this automated attack depends on: (1) the depth of the goal nodes in the tree
(denoted D), (2) the branching factor – equal to the size of the alphabet – (denoted S) and
(3) the average number of CPU cycles needed to execute the program with a given input
until the attack script can discern whether the input is a correct license key or not (denoted
cyc). The expected value of the cost is therefore:

E[t(T)] = SD · cyc.

Note that in case D is known because the length of the license key is publicly known by the
attacker, the structure of the search tree is different, because it can have one level with SD

values on that level. Therefore, even in this case the expected value of the search cost is the
same as before. Any obfuscation transformation which slows the execution down for the
license checking process would hamper this attack (e.g. garbage code insertion). It would
delay the ability of the attacker to apply the goal test to the output of the program, because
of the longer execution times of an obfuscated program, w.r.t. an unobfuscated program.

Location recovery via taint analysis

Up until this point we have mainly discussed passive analysis attacks, where the attacker
may only observe the code of a program statically and/or dynamically. However, for several

75

4. Automated MATE Attacks

Search Problem Specification
Goal An input value for the license key parameter of program P , which

enables premium features.
Data structure A string of characters.
State A string of alphanumeric characters.
Initial state The empty string.

Search Algorithm Execution
Actions Append one character from the alphabet to the string in the current

state.
Strategy Breadth-first search.
Heuristic None.

Table 4.6.: Elements of search specification and execution for data recovery attack via ran-
dom testing.

Figure 4.9.: Initial part of search tree corresponding to data recovery attack via random
testing from Table 4.6.

attacker goals we must also consider active analysis attacks, where the attacker can modify
the code statically or while loaded in process memory [175, 159] a.k.a. tampering attacks.
In particular, the subgoal of identifying the location of self-checking code instructions is
necessarily followed by the subgoal of disabling those instructions by modifying the code.
Qiu et al. [175] propose such an attack based on taint-analysis.

Taint analysis Taint analysis is a program analysis technique, which can be applied both to static code
as well as to dynamically generated instruction traces. The purpose of taint analysis is to
analyze the information flow of so called tainted memory values, which are chosen by the
MATE attacker. These tainted memory values can be any location of memory. Popular
examples of tainted memory include: user inputs, return values of system calls, file contents,
etc. Taint analysis interprets code instruction-by-instruction, using an instruction pointer.
It propagates the taint to other memory areas which are either directly assigned tainted
values (explicit information flow) or whose value is affected by a conditional branch whose
boolean expression is dependent on one or more tainted values (implicit information flow).

The automated MATE attack proposed by Qiu et al. [175], is illustrated in the attack-net

76

4. Automated MATE Attacks

Figure 4.10.: Attack-net representing code location recovery attack via taint analysis

Search Problem Specification
Goal The set of all locations of code integrity checking instructions,

which if patched disable code integrity protection.
Data structure Code of program P , e.g. source code, binary code.
State Code of P with an instruction pointer (IP) at the current instruction

to be interpreted, the set of taint labels for each memory location
and the set of instructions which are checks that depend on tainted
memory.

Initial state IP is set to the entry point of P and only the memory locations
corresponding to the code segment are tainted, no instructions are
tainted.

Search Algorithm Execution
Actions Interpret one of the possible next instructions according to the

control-flow of the program.
Strategy Non Uniform Random Search (NURS), i.e. select a state randomly

according to a distribution given by the heuristic (below).
Heuristic Minimum distance to uncovered instruction.

Table 4.7.: Elements of search specification and execution for location recovery attack via
taint analysis.

from Figure 4.10. The intuition behind this attack is that if the memory area of the code
segment is tainted, then code integrity checks are conditional branch instructions whose
boolean expressions are dependent on tainted values. The attack requires an instruction
execution trace. It applies backward taint analysis to this trace, i.e. it taints all instructions
and traces the execution back to the memory locations which are treated as code or which
are used to create code (e.g. via decryption or unpacking). After it has identified these
memory locations, it taints them and performs forward taint analysis in order to identify the
instructions, which use the tainted memory as data, not code. Consequently, it performs a
pattern matching attack on the identified instructions in order to locate the code checksums.

Table 4.7 shows an instance of our search model for Forward Taint Analysis transition
from Figure 4.10. A state for taint analysis is a set of taint labels on memory and the set of
instructions which were found to be integrity checks. We describe the search algorithm
execution via a concrete example. Listing 4.1 shows a C code snippet illustrating an integrity
check on a code segment. Here we assume that the code segment was identified in the
backward taint analysis step of the attack by Qiu et al. [175], and it is pointed to by the variable

77

4. Automated MATE Attacks

Listing 4.1: Self-checksumming code example by Qiu et al. [175].
1 int checksum = 0;
2 for (int i = 0; i < N; i++){
3 checksum += buf[i];
4 }
5 if (checksum != V)
6 tamper_response();

buf, and has the length of N bytes. The checksum value is initialized on line 1 of Listing 4.1,
which acts as an accumulator where the checksum of the code will reside. On lines 2-4
each byte of the code segment is added into the accumulator. Finally, line 5 checks if the
dynamically computed checksum is different than a hard-coded expected value of V. If
so, the tamper response mechanism is called on line 6. Otherwise, the code continues its
normal execution.

Figure 4.11 illustrates a partial expansion of the search tree corresponding to the search
problem from Table 4.7 and the example code snippet from Listing 4.1. Note that each
state (i.e. node in the tree), consists of the oval where the code and instruction pointer
are illustrated, as well as the rectangle to its right which contains the taint labels for each
memory location and the set of instructions which are integrity checks. In the initial state,
the only tainted memory values correspond to the code segment (i.e. buf[0..N-1]) and
no integrity check instructions have been detected. After two steps the memory value of the
checksum accumulator is also tainted because it is assigned values of tainted memory. One
step later in the search tree, the attack identifies the first conditional branch instruction that
depends on a tainted memory value. Therefore, it adds the address of this instruction to the
set of integrity check instructions. Afterwards, it may continue on either the path where
the condition is false or on the path where the condition is true and the tamper response
mechanism is invoked. Regardless of which paths the search execution chooses to explore
first, taint-analysis needs to explore all n instructions of program P , in order to determine
which instructions are tainted and which not. If we denote by cyc the number of CPU cycles
needed to update the taint labels in memory, then the estimated search cost of this search
execution is as simple as:

E[t(T)] = n · cyc.

The drawback of taint analysis isOver-tainting over-tainting, which happens when memory values or
instructions that are not actually dependent on tainted values are marked as tainted. For
instance, we could add an opaque predicate after line 6 of Listing 4.1, which depends on
the checksum and is always true. In that case, taint-analysis would mark the if -statement
containing the opaque predicate as an integrity check instruction. Consequently, the if -
statement would be removed along with the code inside this if -statement. This would break
the functionality of the software after patching, by the attack.

Note that the goal of bypassing a license check may also be achieved by disabling
the conditional instructions which compare the input to the license key [159]. This was
indicated in the last path of the attack net in Figure 4.1. Therefore, an effective obfuscation

78

4. Automated MATE Attacks

Figure 4.11.: Initial part of search tree corresponding to location recovery attack via taint
analysis from Table 4.7.

transformation should not only hamper white-box test case generation, but also hamper
active attacks. For instance, data obfuscation techniques such as (cryptographic) hash
functions are most effective against passive attackers. However, they are easy to disable
by tampering attacks [218]. Hence, we expect control-flow obfuscation techniques [59] to
be more successful against active attacks. Basile et al. [30] and Varia [212] note the strong
relation between obfuscation and resistance against tampering attacks. They provide formal
models for tamper-resistance.

4.4. Summary

This chapter has presented the definition of an automated MATE attack as a multi-step
workflow, which can be described using an attack-net. In order to characterize the effort

79

4. Automated MATE Attacks

Attack Description Features for characterizing search
cost

Estimated search
cost

Syntactic data re-
covery via pattern
matching

Search for matching instruction in
FLIRT database

length of the program (N), average
depth of search tree (D), average
branching factor (B), average size
of nodes (S)

N/S ·D ·B · cyc

Syntactic code under-
standing via pattern
recognition

Search for hyperplane which can
discriminate malware from good-
ware samples

Number of features n and the num-
ber of points N in the data set

N · n · cyc

Syntactic location re-
covery via pattern
recognition

Search for decryption key in mem-
ory dump of program

Length of memory dump in bytes
(N), fraction of key size (x)

N/x·(cyc+log2N/x)

Semantic data recov-
ery via random test-
ing

Search for test case which represents
license key

Depth of the goal nodes in the tree
(D) and its branching factor (S)

SD · cyc

Semantic location re-
covery via taint anal-
ysis

Search for set of all locations of code
integrity checking instructions

Number of lines of code (n) n · cyc

Table 4.8.: Summary of automated MATE attack survey.

of an automated MATE attack, a search model was proposed to describe the steps on a
path from a source to a sink in the attack net. This model has been instantiated for a
few automated MATE attacks proposed in the literature, however, we believe that it is
possible to instantiate any automated MATE attack using our framework. A summary
of the instantiations presented in this chapter, is shown in Table 4.8. Note that the first
three attacks fall into the category of syntactic attacks, where code is treated as a string
of bytes. The remaining two attacks described in this chapter fall into the category of
semantic attacks, where code is interpreted according to its semantics. For both syntactic
and semantic attacks we randomly selected three attacks – from the literature – to illustrate
the three different attack types, i.e. data recovery, code understanding and location recovery.
The missing code understanding attack type for the semantic interpretation category is
done via symbolic execution and it will be presented in detail in Chapter 5, which is why
we do not present it in this chapter.

This instantiation has facilitated reasoning about features needed to characterize the
search cost of the automated MATE attacks (shown in the last two columns of Table 4.8),
as well as countermeasures against these attacks. Since the next three chapters focus on
automated MATE attacks based on symbolic execution, we have not discussed how to
characterize such attacks in this section. The next chapter dives deeper into the problem
of characterizing the effect of obfuscation on automated test case generation via symbolic
execution.

80

5. Code Obfuscation Against Symbolic
Execution Attacks

This chapter presents a characterization of automated symbolic execution attacks
based on the model from Chapter 4. These characteristics are used to reason
about and compare the resilience of a subset of obfuscation transformations
from Chapter 3. Parts of this chapter have been published in a peer-reviewed
publication [18] co-authored by the author of this thesis.

In Chapter 4 we introduced a search model that helps software developers reason about
the resilience of their software against all automated MATE attacks. Instantiating this
model for several steps of many different automated MATE attacks from an attack-net may
seem like a daunting task. In order to remove this burden, in this chapter we first argue
that there is a common step for many automated MATE attacks – even if these attacks
have different attacker goals – namely generating high coverage test suites. Consequently,
based on a survey state-of-the-art in test case generation by Anand et al. [2], we select
symbolic execution for our case studies, because it does not require human-assistance and
as opposed to black-box testing, it guides itself using the code of the program. We instantiate
the search model from Chapter 4 in order to formalize the process of symbolic execution
and we identify several relevant software characteristics that influence the effort of this
automated MATE attack. Finally, we use these software characteristics for a systematic
study of obfuscation resilience against automated attacks based on symbolic execution.
This confirms that the software characteristics identified by instantiating the framework
from Chapter 4, have a high impact on the effort of symbolic execution attacks.

As far as we are aware, there is no standard methodology for characterizing the resilience
of different obfuscation transformations w.r.t. each other, against automated attacks. We
are aware of works that focus on the empirical evaluation of the potency of obfuscation
against human-assisted analysis [43, 44]. However, according to the pioneering work of
Collberg et al. [58], obfuscation strength should be measured in terms of both potency against
human-assisted attacks and resilience against automated attacks. This chapter is concerned
with an empirical evaluation of the latter, with a focus on symbolic execution. Our work
is complementary to existing work focused on human-assisted attacks, as well as works
that evaluate the resilience of obfuscation against static analysis attacks [129, 65]. While
focusing on symbolic execution may seem narrow in scope, it has been reported that a large
number of deobfuscation techniques rely on symbolic execution [185].

81

5. Code Obfuscation Against Symbolic Execution Attacks

5.1. A Common Subgoal of Automated MATE Attacks

Schrittwieser et al. [184] note that motivations of MATE attackers are diverse. However,
their goals can be placed under the following 2 categories:

1. Extracting proprietary algorithms or data (e.g. keys, credentials) from programs.

2. Modification of software to change its behavior, also known as software-tampering.

These categories can be mapped to the two code alternation categories from Section 4.1.4,
namely passive and active, respectively. In Section 4.3 we saw that the goals in the passive
category can be achieved by several means, i.e. program analysis techniques. The goals in
the active category can be achieved by first identifying and disabling any integrity checks
on the code itself [175] and then modifying the actual functionality of the target program.
We believe that there is a common subgoal for both of these goals, namely automated test
case generation.

In order to identify this common subgoal we look towards the automated MATE attacks
presented in Section 4.3, as well as other state of the art automatic attacks. Automatic
MATE attacks are often specific to certain implementations of obfuscation transformations
(e.g. virtualization obfuscation [129, 100, 190, 60], opaque predicates [65], control-flow-
flattening [209]), or they are specific to certain attacker goals (e.g. CFG simplification [228],
identifying code self-checks [175], bypassing license checks [21]), or both. Except for those
automated MATE attacks, which only have static analysis steps in the path from source to
sink in an attack-net, e.g. [189, 129], all others use dynamic analysis often in combination
with some form of static analysis. The main reason for the use of dynamic analysis is that
obfuscation techniques such as run-time unpacking and self-modifying code cannot be
analyzed statically. However, a pre-requisite of dynamic analysis is the generation of valid
inputs for the program being analyzed. How these valid inputs are obtained is not always
described in works that present automatic MATE attacks. In some works they are picked
randomly, in others they are generated using a symbolic execution engine.

Random test case generation is not sufficient for common attacker goals. We argue that
certain automated MATE attacks (e.g. uncovering trigger-based behavior in obfuscated
malware [38]), require generation of test suites that achieve up to 100% reachable code
coverage. Firstly, consider the goal of simplifying the CFG of an obfuscated program as
presented by Yadegari et al. [228]. In order to ensure that the CFG is complete (i.e. there
are no missing statements, basic blocks or arcs), the analysis technique requires execution
traces that cover all the code of the program being analyzed. Secondly, consider the goal
of identifying code which verifies checksums of other parts of the code as presented by
Qiu et al.[175]. To ensure that all self-checking code instructions are identified (which is
mandatory in case there is a cyclic dependency between the instructions which perform
checking [45, 110]), the analysis technique requires execution traces that cover all the code
of the program being analyzed. Thirdly, consider the goal of bypassing a license check as
presented in [21]. If the license check is performed by a conditional statement based on

82

5. Code Obfuscation Against Symbolic Execution Attacks

an input to the program, generating a test suite that covers all the code of the program
guarantees that one of the test cases contains the license key. However, unlike the previous
two goals, a test suite that achieves 100% coverage of reachable code is sufficient, but not
necessary, because the license key may be guessed correctly before the test suite covers 100%
of the reachable code. Nevertheless, we believe that test case generation is a common pre-
requisite for all state of the art automatic MATE attacks. Hence, our proposal in this thesis
is to characterize the resilience of obfuscation transformations based on the increase in the
effort needed to generate test cases for the obfuscated program relative to its unobfuscated
counterpart.

We acknowledge the fact that after achieving this subgoal, an automatic MATE attack
may need to perform further tasks (i.e. transitions in the attack-net) to achieve its end
goal, because this subgoal is only one transition on a path from a source to a sink in the
attack-net. However, the following transitions are different for different attacker goals,
while the subgoal of automated test case generation is common for most state of the art
attacks. We claim that the effectiveness of an obfuscation transformation can be measured
by the increase in effort (i.e. slowdown) for automated test case generation.

5.1.1. The Effect of Obfuscation on Automated Test Case Generation

The main techniques for automated test case generation according to Anand et al. [2]
are: symbolic/concolic execution, model-based test case generation, combinatorial testing,
fuzzing, (adaptive) random testing and search-based testing. By “automated” we mean
that the user does not need to provide a list of possible input values to the test generation
method, only the program source or binary code, the type and number of inputs are
needed. These test case generation techniques can be further divided into white-box testing
techniques (i.e. symbolic/concolic execution), which analyze the program code to guide
test case generation and black-box testing techniques (i.e. model-based testing, combinatorial
testing, fuzzing, adaptive random testing and search-based testing), which do not analyze
but simply run the code.

Since obfuscation techniques change the code of a program but not its input-output
behavior, they only affect white-box testing techniques, modulo any overhead which is also
incurred by black-box testing techniques due to executing any additional instructions in
the obfuscated version of a program. We hence argue that the effectiveness of applying one
or more obfuscation transformations can be measured by the increase in effort needed for a
white-box testing technique to generate a test suite that covers all the reachable code of the
given program (e.g. for the goal of CFG simplification) or to find an input that leads to a
particular execution path (e.g. for the goal of extracting a license key).

If the absolute effort for a white-box testing technique to generate a test suite for an
obfuscated program surpasses the effort for a black-box testing technique to generate a
test suite that covers the same paths for the same program, then the attacker will use the
test suite output by the black-box testing technique. Hence, we recommend bounding the
number of obfuscation transformations applied (to protect a program), by the shortest time

83

5. Code Obfuscation Against Symbolic Execution Attacks

Listing 5.1: Program with easy to find test suite
1 if (x > 127)
2 // do this
3 else
4 // do that

needed for a black-box test case generator to produce a test suite that covers all the reachable
code of a given binary or to find an input that leads to a certain execution path. For instance,
consider a program with a simple control-flow structure such as the one from Listing 5.1,
where x is an unsigned character input value. Obfuscating this program using multiple
layers of obfuscation would certainly make it hard to analyze statically. However, from the
point of view of dynamic analysis this program has only 2 paths. Moreover, a black-box
testing technique has a 50% probability of finding a test case that covers each of the 2 paths
due to the fact that the if-statement on line 1 divides the range of input values into 2 equally
sized subranges. This probability changes depending on the range and number of input
arguments, as well as the types of conditional branches inside the code. For instance, for a
license checking function, which takes a 32 byte string as input and has only one correct
license key, the probability of a black-box test case generator of finding the correct license
key is 1

25632
, which is quite low. Therefore, it is more economically attractive for a MATE

attacker to analyze such a license checking function using a white-box approach.

5.1.2. Instantiating the Search Model for Symbolic Execution Attacks

Symbolic execution Symbolic execution as originally described by King [130], involves simulating the execution
of a program by replacing all input values of a program with “symbolic” values. As the
simulation of the execution progresses,Path constraints path constraints are added to “symbolic” values
whenever these values are processed. When a branch condition is encountered, the simula-
tion is forked into two paths: one path where the branch condition evaluates to true and the
other where it evaluates to false. These two opposite conditions are separately appended to
the path constraints existing before the branch, such that they generate two path constraints
corresponding to each path.

Concolic or Dynamic Symbolic Execution The premise behind symbolic execution is
that all code is available for simulation. However, in practice this may not hold, e.g. for
system calls, which execute at OS kernel level.Concolic execution Concolic execution stands for concrete +
symbolic execution and it solves the issue of missing code by assigning concrete values to
system call arguments and dynamically executing them [94, 40]. The concrete return values
and side effects of system calls are then used to continue symbolic execution. Concrete value
assignments are obtained by querying a Satisfiability Modulo Theories (SMT) solver using
the path constraints for a certain path [89]. An SMT solver tries to find an assignment of
concrete values to symbolic variables, which will satisfy all path constraints [28]. Internally

84

5. Code Obfuscation Against Symbolic Execution Attacks

Search Problem Specification
Goal Test suite which achieves 100% coverage of reachable program

code.
Data structure Code of program P , e.g. source code, binary code.
State Code of P with an instruction pointer (IP) at the current instruction

to be interpreted. Plus the associated memory state of P and the
path constraint.

Initial state IP is set to the entry point of P and its memory state is empty.
Search Algorithm Execution

Actions Interpret one of the possible next instructions according to the
control-flow of the program.

Strategy Non Uniform Random Search (NURS), i.e. select a state randomly
according to a distribution given by the heuristic (below).

Heuristic Minimum distance to uncovered instruction.

Table 5.1.: Elements of search specification and execution for code understanding attack
via symbolic execution.

SMT solvers often convert path constraints into boolean formulas and use a Boolean
satisfiability (SAT) solver to find a solution. Other analysis techniques which improve on
classical symbolic execution have been developed over the last decade also under the name
dynamic symbolic execution [39, 181, 193]. In this thesis we use the term symbolic execution to
refer to all the techniques which employ a mix between dynamic analysis and symbolic
execution.

Covering Code with Symbolic Execution

Brumley et al. [38] propose a code understanding attack based on symbolic execution, for
identifying and analyzing trigger-based behavior in malware. This is motivated by the fact
that malware often contains Trigger conditionstrigger conditions, which must be satisfied in order for malware
to exhibit its malicious (interesting) behavior, i.e. if trigger conditions are not met, then the
malware appears to be a benign program. Their idea for uncovering trigger conditions
is to explore as many paths as possible in the code by making different possible trigger
types (e.g. time, user inputs, network inputs) symbolic and keeping other variables concrete.
Any branch that depends on symbolic values is potentially a trigger condition inside the
malware. However, since malware may have several trigger conditions and these could
occur anywhere in the program, it is necessary to cover all code and as many paths as
possible, ideally all paths if their number is not infinite.

Table 5.1 shows an instantiation of our search model from Section 4.2.2, for this automated
attack. The data structure for this search problem is the code of the program being analyzed.
Additionally to this data structure the state also has the following three auxiliary digital

85

5. Code Obfuscation Against Symbolic Execution Attacks

Figure 5.1.: Initial part of search tree corresponding to code understanding attack via sym-
bolic execution from Table 5.1.

86

5. Code Obfuscation Against Symbolic Execution Attacks

Listing 5.2: Program containing a trigger condition, i.e. it only prints ”You Win” if the DBJ2
hash of the input is equal to a hard-coded value.

1 int main(int ac, char* av[]) {
2 int hash = 5381;
3 unsigned char *str = av[1];
4
5 while (int c = *str++) {
6 hash += (hash << 5) + c;
7 }
8
9 if (hash == 0x49a54935)
10 printf("You Win");
11
12 return 0;
13 }

items associated to it: (1) an instruction pointer, (2) the memory contents of the program
and (3) a path constraint. Consider the simple C program from Listing 5.2. This program
computes the DJB2 hash algorithm on the characters of the string passed as the first
argument (lines 2-7). If the result of the hash is equal to a hard-coded value, then a the
string “You Win” is printed on the standard output (lines 9-10). Otherwise, nothing is
printed and finally the program stops its execution (line 12). The boolean expression from
line 9 can be seen as a trigger condition for this program.

A partial expansion of the search tree corresponding to the symbolic execution of this
program, is presented in Figure 5.1, where the instruction pointer associated with the
state is denoted IP. Note that the depth of this tree is bounded by the length of the first
input argument, which is unbounded if that value is symbolic. The strategy and heuristic
first pick those states on the fringe of the search tree which lead to the interpretation of
an uncovered instruction. As symbolic execution moves from one state to another, it
records all operations performed on symbolic values as SMT formulas, i.e. path constraints.
At each branch instruction which depends on a symbolic value, there are two possible
paths corresponding to the true and false cases of the branch. Therefore, the symbolic
execution engine appends the boolean condition of the branch instruction, to the current
path constraints corresponding to that symbolic value and sends this as a query to an
SMT solver. The symbolic execution engine also sends another query corresponding to the
negation of the boolean condition. The SMT solver returns: (1) SAT if it finds a solution for
this query, (2) UNSAT if the query cannot be satisfied by any possible assignment, or (3)
TIMEOUT if it is cutoff due to the fact that a certain time limit was reached and the query
could not be proved to be SAT or UNSAT. If SAT is returned by the SMT solver, then it has
found an input to the program which can lead to that state of the program. Otherwise, if
UNSAT or TIMEOUT is returned, then the corresponding state cannot be reached and it is
discarded. Therefore, SMT-/SAT-solvers also perform a search algorithm execution, which
affects the overall effort of the symbolic execution engine. In the next section we map this
SMT/SAT search problem onto our search model, in order to identify relevant features for

87

5. Code Obfuscation Against Symbolic Execution Attacks

characterizing the search cost.
In Figure 5.1, the left-most leaf of the search tree indicates the state where “You Win” is

printed on the standard output after one iteration of the while-loop. Using the minimum
distance to an uncovered instruction as a heuristic, the Non Uniform Random Search
(NURS) strategy from Table 5.1, may try to reach this state first. This state cannot be reached,
because the following query to the SMT solver has no solution:

5381 + (5381 << 5) + c == 0x49a54935,

where c is an unsigned character, i.e. one byte value between 0 and 255. However, this does
not mean that the corresponding line of code can never be covered. The symbolic execution
search strategy performs another iteration of the while-loop of the program from Listing 5.2
(right sub-tree in Figure 5.1), and then it again tries to enter the if -statement in a subsequent
state. Such states are not shown in Figure 5.1 due to space limitations, however, they are
children of the states that execute the if -statement before the print statement.

From this search model of symbolic execution presented above, we can easily identify that
the search tree structure depends on the length and the number of control-flow statements of
the program. The more control structures dependent on symbolic values are in the program,
the more branches the search tree has. Moreover, the depth of the tree is determined by the
number of iterations of the loop. On the one hand, if the loop is bounded by a large integer
value, then the search tree is very deep, but the trigger condition may be satisfied before
the deepest node is reached. On the other hand, if the loop is bounded by a symbolic value,
then the symbolic execution engine will search for the right value such that it finds a node
in the search tree where the trigger condition is satisfied. The depth of the tree could be
further increased if the program had nested control-flow structures.

Solving Path Constraints via SMT-/SAT-solvers

SMT instances are a generalization of boolean satisfiability (SAT) instances by adding
equality, arithmetic, fixed-size bit-vectors, arrays, quantifiers, and other useful first-order
theories [68]. SMT-/SAT-instances are also solved via search. This means that each arc
of the search tree from Figure 5.1, involves another search performed by an SMT solver to
find a concrete value for symbolic variables, which satisfies the path constraints. Since
both SMT- and SAT-instances are similar, the same search algorithm can be applied to
solve both of them, e.g. DPLL [67]. There are hundreds of works proposing improvements
of various aspects of the DPLL algorithm published in the literature, some of the most
successful are: Conflict-Driven Clause Learning (CDCL) [194] and Chaff [156]. However, all
SMT-/SAT-solvers are in essence search engines, which seek a solution for any given query.

Table 5.2 shows the mapping of a random SAT problem to our search model. The
data structure corresponding to this problem is a SAT instance (i.e. a boolean query), in
conjunctive normal form, e.g.:

(!a+ b+ c) · (a+ c+ d) · (a+ c+!d) · (a+!c+ d) · (a+!c+!d) · (!b+!c+ d) · (!a+ b+ c) · (!a+!b+ c) == 1, (5.1)

88

5. Code Obfuscation Against Symbolic Execution Attacks

Search Problem Specification
Goal A test case to cover one new path in a program, i.e. a satisfiable

assignment to all literals of the SAT instance from Equation 5.1.
Data structure SAT instance in conjunctive normal form, i.e. a set of tuples of

literals, where each tuple is a disjunction of literals and tuples are
in conjunction with each other.

State A partial assignment, i.e. zero or more literals are assigned logical
values. True is represented by 1 and false by 0.

Initial state No literals are assigned.
Search Algorithm Execution

Actions Choose one literal or its negation to assign a logical value to.
Strategy Non Uniform Random Search (NURS), i.e. select a state randomly

according to a distribution given by the heuristic (below).
Heuristic First assign literals that have the highest frequency in the set and

tuples of the SAT instance.

Table 5.2.: Elements of search specification and execution for data recovery attack via SAT
solving.

where a, b, c and d are Boolean variables (i.e. 0 or 1) also called Literalsliterals, ! represents logical
negation, + represents logical OR and · represents logical AND. A Clauseclause is a group of
literals that are OR-ed (i.e. in disjunction) to each other. Note that the previous SAT instance
is a random example and it is not derived from the path constraints of the symbolic execu-
tion depicted in Figure 5.1, because such a path constraint consists of dozens of Boolean
variables (corresponding to each bit of the symbolic variables in that path constraint) and
hundreds of clauses, which would not be suitable as a human-readable example in this
thesis. When a literal is assigned a logical 1 value, the clauses to which this literal belongs
to, become true. Therefore a SAT instance is a conjunction of clauses. The goal of the SAT
solver is to find a assignment to all of the literals such that the SAT instance is satisfied.
In the context of symbolic execution attacks, this assignment gives the MATE attacker a
concrete test case to reach a new path in the symbolically executed program.

The pseudo-code for the DPLL [67] algorithm used for solving SMT-/SAT-instances is
illustrated in Algorithm 2, where DPLL is a recursive function which takes two arguments,
namely a SMT-/SAT-instance (denoted Θ) and a constant value for a literal in Θ. The first
step of the DPLL function is to propagate the constant value of the literal passed in as an
argument, to all clauses involving this literal, which is also called binary constant propagation.
Afterwards, DPLL returns true if all clauses in Θ are satisfied by the current assignment of
literals. If one or more clauses in Θ cannot be satisfied after the binary constant propagation,
then DPLL returns false. Otherwise, another unassigned Boolean variable is picked and
DPLL is called recursively for each truth value of this Boolean variable.

Algorithm 2 is deterministic and it can be illustrated using a BDD, where each level

89

5. Code Obfuscation Against Symbolic Execution Attacks

ALGORITHM 2: Davis–Putnam–Logemann–Loveland (DPLL)

1 Input: SMT-/SAT-instance, denoted Θ;
2 Output: A truth value indicating if the instance is SAT or UNSAT;
3 function DPLL(Θ, constant value for one literal ∈ Θ) {
4 Propagate constant value of literal to all clauses in Θ;
5 if satisfied: all clauses in Θ are true then
6 return true;
7 end
8 if conflict: one or more clauses in Θ is false then
9 return false;

10 end
11 for each literal ∈ Θ do
12 return DPLL(Θ, literal = 0) or DPLL(Θ, literal = 1);
13 end
14 }

corresponds to a certain Boolean variable. The algorithm simply enumerates all possible
combinations of values for all Boolean variables of an SMT-/SAT-instance, and stops when
a satisfying assignment is found. This is equivalent to traversing a BDD and stopping at a
leaf where the assignment to variables satisfies the SMT-/SAT-instance, which is the most
naı̈ve way of searching for a solution. It is similar to enumerating all possible key values
in order to guess the decryption key of a given plaintext-ciphertext pair. The complexity
of this naı̈ve way of searching is exponential in the number of Boolean variables of the
given SMT-/SAT-instance, and hence not practical. However, lines 11-13 of Algorithm 2
can be slightly modified to make a more informed decision based on what was observed
from previous literal assignments which caused the function to return false. The past
decades have seen significant advances in the time efficiency of SAT and SMT solving, due
to such changes to the DPLL algorithm, which employ heuristics for prioritizing the order
in which literals should be assigned [89]. The state of the art algorithm which performs
such a prioritization is called Conflict-Driven Clause Learning (CDCL) [194]. State of the
art solvers such as MiniSAT [76] and Z3 [68] employ CDCL. They also employ a tunable
degree of randomness in choosing the next literal to be assigned, because this has been
observed to give better solving times in practice. Nevertheless – since the problem of SAT
solving is NP-complete – in practical scenarios a cutoff is employed to stop the search after
a certain time.

Figure 5.2 shows a partial expansion of the search tree. The branching factor depends on
how many literals have not yet been assigned. In the initial state the branching factor is
equal to 8, because none of the literals have been assigned. Note that assigning a value to
one literal (e.g. !a) also assigned the opposite value to its negation (i.e. a), hence, at depth 1 in
the search tree, the branching factor is 6, and so on. The contents of some nodes of the search

90

5. Code Obfuscation Against Symbolic Execution Attacks

Figure 5.2.: Initial part of search tree corresponding to data recovery attack via SAT solving
from Table 5.2.

tree are not described in detail due to space limitations. However, for the nodes where the
state is given, we use green and red backgrounds to indicate the clauses of literals which are
satisfied and unsatisfied, respectively, by any previous assignment. This (un-)satisfiability
of clauses is determined by the process of Boolean constant propagation, once a literal is
assigned a constant values. Note that all but one of the leaves of the search tree in Figure 5.2
contains a solution, i.e. the penultimate leaf from left to right. The assignments to reach this
leaf were: a = 1, c = 1 and !b = 1. This also means that for this assignment both possible
values for d would also lead to a solution.

From the search model of SMT-/SAT-solving presented above we can identify that the
size of the search tree depends on the number of literals, which in turn depends on the
size (range) of the symbolic values from the path constraints. Therefore, the data type of
the symbolic variables should have an impact on the effort needed by this attack, because
wider variables – in terms of number of bits – should result in SMT-/SAT-queries with more
literals. Also, different types of operators in program statements (e.g. addition, division,
modulo, etc.) entail different complexities of the resulting SMT-/SAT-queries. Moreover,
a higher nesting level of conditional branch statements is equivalent to having a more
complex boolean condition in one branch statement, which also affects the complexity

91

5. Code Obfuscation Against Symbolic Execution Attacks

of path constraints. All of these software features will be used in the case studies from
Section 5.2 and Section 6.2.

5.2. Case Study

In this section we leverage the software features that were uncovered by formalizing sym-
bolic execution attacks as two search problems. Moreover, we measure the execution time
overhead added by existing code obfuscation transformations to the symbolic execution of
different programs by state-of-the-art tools. We created 2 datasets of programs[15]. Using
the first dataset we analyze the symbolic execution slowdown of obfuscated programs,
w.r.t. their unobfuscated counterparts, for the attacker who wishes to attain 100% reachable
code coverage (Section 5.2.2), e.g. to simplify the CFG or to identify and disable self-checks.
Our goal in Section 5.2.2 is to determine which obfuscation transformations from 2 freely
available obfuscation tools are more resilient against symbolic execution and which trans-
formations should be used in combination with each other. Using the second dataset of
programs our goal is to compare different symbolic execution engines (Section 5.2.3) which
simulate the attacker that wants to reach a certain path, e.g. to bypass a license check.
Section 5.3 presents a summary and the threats to validity for this case study.

5.2.1. Obfuscator and Analysis Implementations

Commercial obfuscation tools such as Themida [205], Code Virtualizer [204], VMProtect
[214] and ExeCryptor [206] operate exclusively on the Microsoft portable executable (PE)
format. However, implementations of state-of-the-art test case generators for PEs such as
Microsoft SAGE [96] are not publicly available. Other tools such as KLEE [39], angr [193]
and Triton [181] have no or limited support for analyzing PEs. BitBlaze Vine [196] and
S2E [48] (based on KLEE), support the analysis of PEs, however, as existing work [227]
already points out, they have issues analyzing code obfuscated by the commercial tools
mentioned above. Commercial obfuscators employ anti-analysis tricks (e.g. obfuscated
jumps, symbolic code), which profit from the fact that the operational semantics of some
of the previously mentioned symbolic execution engines do not model all details of the
execution environment (e.g. the flags register). However, as shown in [227], these anti-
analysis tricks can be circumvented if the symbolic execution engine semantics are updated
accordingly. Hence, these anti-analysis tricks do not affect the search tree or the heuristic of
symbolic execution engines as discussed in Section 5.1.2. In this work we use obfuscation
transformations in the Tigress C Obfuscator [56] and Obfuscator-LLVM [120], which operate
at the C source code level, respectively LLVM intermediate representation level and we do
not employ anti-analysis tricks.

We used KLEE version 1.3.0 with LLVM version 3.4 and the POSIX runtime provided by
its custom klee-uclibc version 1.0.0 and the STP SMT solver [89] version 2.2.0. Additionally
to using KLEE, in Section 5.2.3 we also use angr version 4.6 and Triton version 0.3.

92

5. Code Obfuscation Against Symbolic Execution Attacks

Code Metric Min Med Avg Max
Calculations 0 2.0 1.84 4
Conditionals 1 2.5 2.68 4
Logical 1 2.0 1.84 2
Assignment 2 3.0 3.50 6
L1.Loops 0 1.0 0.68 2
L2.Loops 0 0.0 0.11 1
Total LOC 4 13.0 12.66 18
Average.CC1. 2 3.0 2.84 3

(a) Before obfuscation

Code Metric Min Med Avg Max
Calculations 4.0 90 144.38 1343
Conditionals 1.0 37 36.36 117
Logical 1.0 10 19.88 586
Assignment 1.0 57 61.64 205
L1.Loops 0.0 1 1.40 5
L2.Loops 0.0 0 0.33 11
Total LOC 18.0 215 264.19 1881
Average.CC1. 1.5 9 11.01 50

(b) After obfuscation

Table 5.3.: Overview of manually written programs before and after obfuscation.

5.2.2. Experiment with First Dataset

The first dataset (available online) [15] contains 48 manually written C programs consisting
of only one function, which prints strings on standard output after a few integer compar-
isons, summations and multiplications. Across all 48 programs, this function has between
4 and 18 Lines of Code (LOC) including: control-flow statements, integer arithmetic and
system calls to printf. Note that the previous numbers of LOC do not include func-
tion declarations, comments and lines containing only closing brackets or empty spaces.
Table 5.3a shows the minimum, median, average and maximum values of various code
metrics of only the original (un-obfuscated) set of programs, as computed by the Unified
Code Counter (UCC) tool [163]. This tool outputs a variety of code metrics including three
variations of the McCabe cyclomatic complexity (CC), their average and the number of: cal-
culations, conditional operations, assignments, logical operations, loops at different nesting
levels, pointer operations, mathematical operations, logarithmic operations, trigonometric
operations and total number of LOC. Each metric was computed on the main function of
the C file of each program.

We have deliberately designed these programs to be small for the following 2 reasons: (1)
the size of the obfuscated versions of these small programs increases between 18 and 1881
LOC (see Table 5.3b), and (2) we wanted to run a symbolic execution engine to cover 100%
of the reachable code of each program and all of its obfuscated versions without any cutoff
time, 10 times each, in order to check variability of the results. In case a symbolic execution
engine is not able to cover 100% of the reachable code of a program, we can still perform
relative overhead comparison. We can do this by simply stopping the symbolic execution of
the obfuscated program when the test suite it generated has the same code coverage as the
test suite generated by symbolically executing the un-obfuscated program. More generally,
we must always compare the times needed to generate two test suites that have the same
degree of code coverage when applied to the original or to the obfuscated program.

In Section 5.1.2 we discussed symbolic execution attacks as an instantiation of our search
model from Section 4.2.2. There we mentioned a few program characteristics (i.e. len-
gth of input, structure of control flow, type of loop bounds), that would influence the

93

5. Code Obfuscation Against Symbolic Execution Attacks

Input Size 1 byte 16 bytes
Mean 0.20 4.85
StdDev 0.52 13.54

Depth 1 2
Mean 0.05 2.63
StdDev 0.10 9.55

Ifs 1 2
Mean 0.01 0.02
StdDev 0.00 0.01

Input Dep. Ifs 0 1 2
Mean 0.01 0.01 0.02
StdDev 0.00 0.00 0.01

#Loops 1 2
Mean 0.03 3.63
StdDev 0.03 11.42

#Input Len. Dep. Loops 0 1 2
Mean 0.01 0.03 0.05
StdDev 0.01 0.03 0.04

#Input Dep. Loops 0 1 2
Mean 0.02 1.51 1.50
StdDev 0.02 5.90 1.42

Table 5.4.: KLEE execution time (in seconds) of original programs w.r.t. code characteristics
of 1st dataset.

search tree corresponding to a symbolic execution attack (see Figure 5.1). Therefore, when
creating these 48 programs we varied the following 7 code characteristics (not all possible
combinations) in order to increase the heterogeneity of the programs, as well as to analyze
the impact of each of these characteristics on symbolic execution. The values of these code
characteristics are listed in the headers of the sub-tables from Table 5.4:

1. The size of the input of the program measured in bytes. Larger input sizes are expected
to result in a larger number of literals in path constraints, but also in longer path
constraints for programs which have loops bounded by symbolic values.

2. The maximum depth of nested control flow instructions (conditional branches and
loops). Larger depth of control flow is expected to result in a larger branching factor
for the search tree corresponding to symbolic execution.

3. The total number of if-statements. If-statements not dependent on symbolic values
are not expected to increase the branching factor of the search tree corresponding to
symbolic execution.

4. The number of if-statements dependent on the value of the input (as an integer). A
larger number of if-statements dependent on symbolic values is expected to lead to
more queries sent to the SMT-/SAT-solver.

5. The total number of loops. Loops not dependent on symbolic values are not expected
to increase the branching factor of the search tree corresponding to symbolic execution.

6. The number of loops depending on the length of the input (in bytes). The longer the
input the larger the depth of the search tree corresponding to symbolic execution.

7. The number of loops depending on the value of the input (as an integer). This allows
variable upper bounds for loops, which is expected to result in a large depth of the
search tree corresponding to symbolic execution.

94

5. Code Obfuscation Against Symbolic Execution Attacks

Testbed description: For the experiment presented in this subsection we used KLEE to
generate test suites that cover all the code in each program1. We have used a machine with
an Ubuntu 14.04 64-bit operating system with 16GB of physical memory and an Intel Core
i7-3520M CPU with 4 logical cores each having a frequency of 2.90GHz.

Step 1 - Baseline symbolic execution time before obfuscation: We ran KLEE on every
original program 10 times and we analyzed the average values across these 10 runs. In this
and all the of following steps (including those with angr from Section 5.2.3) the coefficient
of variation cv (i.e. standard deviation divided by the mean) of the symbolic execution time
of the same program did not exceed 40% for any program. Moreover, cv was less than 25%
for over 90% of the symbolically executed programs. In other words the execution times for
the same program can be considered roughly constant.

Table 5.4 shows execution time of KLEE for obtaining 100% reachable code coverage
on the original (unobfuscated) programs w.r.t. the previous 7 code characteristics. It is
important to note that the high standard deviation w.r.t. the mean, is computed over all
programs from the dataset and denotes the heterogeneity of the dataset, which is crucial in
order to have some degree of generality for our findings. The top-left sub-table in Table 5.4
indicates that the time needed for symbolic execution increases with the size of the symbolic
input. The following sub-tables indicate that programs containing only if statements were
faster to symbolically execute than programs which contain loops. Moreover, nesting
if-statements inside loops and nested loops lead to higher symbolic execution times. Finally,
making the branch condition of if-statements or loops dependent on the value of the input
also increases symbolic execution time.

Step 2 - Compare symbolic execution overhead added by different obfuscation trans-
formations: We obfuscated each of the 48 programs using the following 30 different
configurations of Tigress:

1. EncodeLiterals (EncL): replaces constant strings and integers by code which dynami-
cally generates these constants during execution.

2. EncodeArithmetic (EncA): replaces arithmetic expressions with more complex equiva-
lent expressions.

3. Flatten (Flat): transforms the control-flow of a function into a flat-hierarchy of basic
blocks that all have the same predecessor and successor basic blocks.

4. Virtualize (Virt): transforms a function into an interpreter for a random language L,
translates the function’s code into L and saves it as bytecode.

1The KLEE command used for this purpose is the following: klee --optimize --emit-all-errors
--libc=uclibc --posix-runtime --only-output-states-covering-new
--max-time=3600 --write-smt2s ./filename.bc --sym-arg <input size>

95

5. Code Obfuscation Against Symbolic Execution Attacks

5-8. AddOpaque (AddO): inserts opaque predicates i.e. branch conditions that are either
always true or always false at runtime, but whose value is difficult to analyze statically.
UpdateOpaque (UpdO): assigns new values to the variables used in opaque predicates,
at runtime. We used 4 and 16 AddO, with and without UpdO.

9-28. Ordered combinations of every possible couple of the previous transformations,
except for combinations with: AddO4, AddO4-UpdO and AddO16-UpdO.

29-30. Flatten and Virtualize were each applied 2 times consecutively on the same program.

Note that the only Tigress options used were those indicating the transformation type
and the number of opaque predicates. For all other Tigress options we used the default
values in order to limit the number of obfuscated programs that we then used as inputs to
symbolic execution engines. The resulting code metrics as output by UCC for the obfuscated
programs are shown in Table 5.3b.

Each of the 48 programs were also obfuscated using the following 9 different configura-
tions of Obfuscator LLVM:

1. InstructionSubstitution (ISub): replaces arithmetic and boolean expressions with a
sequence of expressions which evaluate to the same result. This transformation is
similar to the EncodeLiterals transformation of Tigress.

2. ControlFlowFlattening (CFF): similar to the Flatten transformation of Tigress.

3. BogusControlFlow (BCF): similar to the AddOpaque transformation of Tigress.

4-9. Ordered combinations of every possible couple of the previous transformations.

All of the obfuscated programs corresponding to the first dataset were executed using
KLEE. We recorded the SMT queries corresponding to every path using the -write-smt2s
option. The value of the command line option -sym-arg indicates the length of the
symbolic input argument passed to the program, this was changed accordingly for programs
with input arguments having 1 byte and 16 bytes. We executed KLEE on every obfuscated
program 10 times and we analyzed the average values across the 10 executions.

We computed the slowdown of symbolic execution of an obfuscated program w.r.t. its
unobfuscated counterpart by: dividing the time needed for KLEE to analyze the obfuscated
program by the time needed to analyze the corresponding original program. Figure 5.3
presents the average slowdown (using circles) in ascending order from left to right w.r.t. each
employed transformations (X-axis) for the programs obfuscated using Tigress (left of vertical
bar in Figure 5.3) and Obfuscator LLVM (right of vertical bar in Figure 5.3). Figure 5.3 also
shows: the average increase in program size (plus signs), the percentage of time KLEE spent
waiting for the SMT solver to answer all queries (solid line, only line that uses linear Y-axis
on right of Figure 5.3), the average increase in total queries issued to the SMT solver (dashed
line) and the average query size measured as number of nodes in the abstract syntax tree of
an SMT query (dotted line). We make the following observations from Figure 5.3.

96

5. Code Obfuscation Against Symbolic Execution Attacks

1

5
10

50
100

500
1000

5000

Orig
Enc

L

Add
O4−

Upd
O

Add
O4

Enc
L−

Add
O16

Add
O16

−U
pd

O

Add
O16

Add
O16

−E
nc

L

Flat
−A

dd
O16

Virt
−E

nc
L

Virt

Enc
L−

Virt

Enc
A−E

nc
L
Enc

A

Enc
L−

Enc
A

Virt
−A

dd
O16

Enc
A−A

dd
O16

Add
O16

−V
irt

Flat
−V

irt

Virt
−E

nc
A

Flat
−E

nc
L

Enc
L−

Flat Flat

Flat
 x2

Flat
−E

nc
A

Enc
A−V

irt

Virt
−F

lat

Add
O16

−F
lat

Enc
A−F

lat

Add
O16

−E
nc

A

Virt
 x2 IS

ub

BCF−I
Sub

BCF

IS
ub

−B
CF

IS
ub

−C
FF

CFF−I
Sub

CFF

CFF−B
CF

BCF−C
FF

0

25

50

75

100

125

150Mean program size increase (factor)
Mean KLEE slowdown (factor)
% Time waiting for solver
Mean number of added queries (factor)
Mean query size increase (factor)

Figure 5.3.: Impact of obfuscation on the KLEE symbolic execution for programs in 1st
dataset. X-axis labels to the left of the vertical bar are Tigress transformations;
those to the right are Obfuscator LLVM transformations. Right Y-axis is linear
and applies only to “% Time waiting for solver” (solid line). Left Y-axis is
logarithmic and applies to all other curves.

Observation 1: The EncL and AddO transformations of Tigress (even when employed
together or in conjunction with UpdO), have a small impact on the slowdown of symbolic
execution compared to the other obfuscation transformations. The reason for this small
slowdown is the fact that the additional control-flow instructions introduced by these
transformations are not input dependent and they can easily be solved by the SMT solver.
This observation also applies to the corresponding transformations of Obfuscator LLVM,
i.e. ISub, respectively BCF.

Observation 2: EncL in conjunction with any of the 3 transformations: EncA, Flat, and
Virt, does not increase the slowdown more than simply employing those transformations
alone. The reason is that EncL only splits constant literals (e.g. from print statements)
into a sequence of instructions, which are concretely executed by KLEE, because they
do not depend on symbolic values. This observation also applies to the corresponding
transformations of Obfuscator LLVM, i.e. combining ISub with CFF does not increase the
slowdown more than CFF alone.

Observation 3: Resilience increases when applying Virt and Flat after any other transforma-
tion. The reason for this is that both of these 2 transformations construct an interpreter-like
structure whose complexity is proportional to the size of the given source code. The other 3
transformations of Tigress tend to add more code to the input program, hence applying
them before Virt and Flat results in larger interpreter-like structures. This observation
also applies to the CFF transformation in Obfuscator LLVM. Moreover, applying Flat after
Virtualize increases the slowdown.

Observation 4: The average percentage of time spent waiting for the SMT solver to solve
path constraints in the original program is equal to 66.35% for the original programs in the
first dataset. EncL, AddO, ISub and BCF do not have a significant impact on this value.

97

5. Code Obfuscation Against Symbolic Execution Attacks

This is because very few additional queries are added by EncL and ISub. Also KLEE can
simplify the majority of path constraints added by AddO and BCF via caching query results,
i.e. without calling the SMT solver for each path constraint. On the other hand, EncA, Flat,
and CFF each cause an increase of about 10% when used separately. EncA and Flat cause
an increase of about 15% when used together. However, applying Flat twice does not lead
to a 20% increase. Contrarily, Virt decreases the time spent waiting for the SMT solver by
about 5% when used alone (despite issuing more and larger queries) and by 5-45% when
used in combination with EncL, AddO and Virt.

Observation 5: Flat and CFF on average lead to an increase of 2 orders of magnitude in the
number of queries issued by KLEE to the SMT solver. The queries are also approximately
10 times larger than the original queries. This indicates that the slowdown is due to the
fact that KLEE is issuing many more large queries to the SMT solver which is expensive
in terms of time. These queries are generated due to branches which are dependent on
program input values. Programs which do not contain loops or if statements dependent on
input values have no increase in the number of issued queries. An important advantage of
flattening is that it has the smallest effect on program size compared to all other employed
transformations.

Observation 6: EncA increases the query size 20 times. This suggests that the slowdown
for this technique is due to the difficulty of solving the queries and not to the large number
of queries as was the case in Observation 5. These queries are more difficult to solve due to
the non-trivial complexity of the arithmetic expressions added by EncA. Remarkably, the
size of the program is affected less by this transformation than by Virt, AddO and even
EncL, because the complex expressions added by EncA are not as large as control flow
statements added by the other transformations.

Observation 7: Virt tends to reduce the time that KLEE waits for the SMT solver. The
reason for this reduction is due to the fact that this transformation adds more instructions
to the execution paths, i.e. loading bytecode values and data values for every original
statement of the program. Since all instructions have to be interpreted by the symbolic
execution engine, this translates into higher slowdown. Applying Virt multiple times yields
multiple levels of interpreter fetch-decode-dispatch instructions, hence the large slowdown
when virtualization is applied twice. Similarly to flattening, Virt induces a higher slowdown
on programs with loops or if-statements depending on program inputs.

Step 3 - Compare SMT instances of original and obfuscated programs: KLEE outputs
an SMT file for every path that it finds in the program it analyzes. These SMT instances
contain the path constraints necessary to generate a test case that leads to the corresponding
path. We compared the SMT instances output by KLEE for all programs in the dataset
(including the original programs).

Observation 8: The sets of SMT instances corresponding to each obfuscated version of a
program are practically identical to the set of SMT instances of the original (unobfuscated)
program, except for EncA, which were significantly larger. For all transformations (except

98

5. Code Obfuscation Against Symbolic Execution Attacks

RandomFunsOperators Parameter Value Description
PlusA, MinusA, Lt, Gt, Le, Ge, Eq, Ne Simple arithmetic and comparison operators
PlusA, MinusA, Mult, Div, Mod, Lt, Gt,
Le, Ge, Eq, Ne

Harder arithmetic and comparison operators

Shiftlt, Shiftrt, BAnd, BXor, BOr, Lt,
Gt, Le, Ge, Eq, Ne

Shift, bitwise and comparison operators

PlusA, MinusA, Mult, Div, Mod, Lt, Gt,
Le, Ge, Eq, Ne, Shiftlt, Shiftrt, BAnd,
BXor, BOr

Harder arithmetic, shift, bitwise and compari-
son operators

Table 5.5.: Operator parameter values given to C code generator used for generating dataset.

EncA) only small differences occur such as using shifting and adding instead of multiplica-
tion. This is due to the fact that KLEE uses concrete values for instructions added by the
majority of obfuscation transformations employed in this case-study. The concrete values
can be simplified away from path constraints even without calling the SMT solver. This in-
dicates that simply adding any additional computations is not enough to have a significant
impact on the path constraints, hence the queries sent to the SMT solver. In order to have a
significant impact on such queries the obfuscation transformation must add computations
involving variables which will be marked as symbolic and these computations must not
be trivial to solve via static techniques such as constant folding, common subexpression
elimination, etc.

Observation 9: The time the symbolic engine waits for the SMT solver to find an answer to
the query accounts for almost all the increase in effort added by obfuscating a program using
EncA. Therefore, one possibility for improving obfuscation is to make these expressions
more complex and difficult to solve by applying the EncA transformation multiple times
to the same program. However, such an obfuscation could be bypassed by an attacker
who knows all the substitution rules that the EncA transformation can use and then simply
applies them backwards. Rolles [177] has developed a method that could automatically
extract such substitution rules from programs by employing SMT solvers. In general, the
complexity of SMT instances can be increased by non-linear transformations such as those
employed in cryptographic hash functions (see Section 7.2).

Observation 10: None of the obfuscation transformations insert additional paths depen-
dent on input values to the program, i.e. the sizes of the sets of SMT instances corresponding
to each obfuscated version of a program have the same size as the set of SMT instances
of the original (unobfuscated) program. This may be counter intuitive since AddO and
BCF insert additional if statements. Since these if statements are not input dependent and
always have the same truth value, the SMT solver is able to eliminate the dead branches of
these if-statements, i.e. the symbolic execution engine will not analyze the code in those
dead branches.

99

5. Code Obfuscation Against Symbolic Execution Attacks

RandomFunsControlStructures Parameter Value Control-flow
depth

Number of if -
statements

Number of
Loops

(if (bb n) (bb n)) 1 1 0
(if (bb n))(if (bb n)) 1 2 0
(if (bb n))(if (bb n))(if (bb n)) 1 3 0
(if (if (bb n) (bb n)) (bb n)) 2 2 0
(if (if (bb n) (bb n)) (if (bb n) (bb n))) 2 3 0
(if (if (if (bb n) (bb n)) (bb n)) (bb n)) 3 3 0
(if (if (if (bb n) (bb n)) (if (bb n) (bb n))) (bb n)) 3 4 0
(if (if (if (bb n) (bb n)) (if (bb n) (bb n))) (if (bb n) (bb n))) 3 5 0
(for (bb n)) 1 0 1
(for (if (bb n) (bb n))) 2 1 1
(for (bb n))(for (bb n)) 1 0 2
(for (for (bb n))) 2 0 2
(for (if (if (bb n) (bb n)) (bb n))) 3 2 1
(for (if (bb n) (bb n))(if (bb n) (bb n))) 2 2 1
(for (if (if (bb n) (bb n)) (if (bb n) (bb n)))) 3 3 1
(for (for (if (bb n) (bb n)))) 3 1 2

Table 5.6.: Control structure parameter values given to C code generator used for generating
dataset.

5.2.3. Experiment with Second Dataset

The second dataset contains 4608 C programs consisting of a main function and another
function f randomly generated by the RandomFuns feature of Tigress. To generate the
programs in this dataset we have also leveraged the program features identified when
mapping symbolic execution to our search model, in Section 5.1.2. A set of parameters of
the RandomFuns feature of Tigress, were added – by the author of Tigress – in order to cater
to the code features we have identified in Section 5.1.2. The following is a list of parameters
and their corresponding values we used to generate this dataset:

• The random seed value: Seed ∈ {1,2,4} (3 values). This parameter has no effect on
symbolic execution time. However, we use it in order to generate more than one
program instance for the same values of all other parameters.

• The data type of variables: RandomFunsTypes ∈ {char, short, int, long} (4 values).
This parameter affects the complexity of path constraints because larger data types
for symbolic values leads to SMT-/SAT-instance with a larger number of literals.

• The bounds of for-loops: RandomFunsForBound ∈ {constant, input, boundedInput}
(3 values). This parameter affects the depth of the search tree corresponding to
symbolic execution, because in includes variable upper bounds for loops.

• The operators allowed in expressions: RandomFunsOperators presented in Ta-
ble 5.5 (4 values), which also describes each parameter value. This parameter affects
the complexity of path constraints, because different operator types impose various
degrees of difficulty for SMT-/SAT-solvers.

• The control structures: RandomFunsControlStructures presented in Table 5.6
(16 values), which also shows the depth of the control flow. The grammar for this

100

5. Code Obfuscation Against Symbolic Execution Attacks

Code Metric Min Med Avg Max
Calculations 10.00 27.00 34.64 152.00
Conditionals 7.00 10.00 10.02 16.00
Logical 4.00 9.00 12.17 69.00
Assignment 9.00 17.00 18.13 46.00
L1.Loops 2.00 3.00 2.85 4.00
L2.Loops 0.00 0.00 0.19 1.00
Total LOC 32.00 66.00 78.00 288.00
Average CC 2.67 3.33 3.21 4.00

(a) Before obfuscation

Code Metric Min Med Avg Max
Calculations 22.00 98.00 183.36 870.00
Conditionals 4.00 21.00 105.41 504.00
Logical 4.00 14.00 63.75 458.00
Assignment 10.00 32.00 222.88 1078.00
L1.Loops 2.00 3.00 2.99 10.00
L2.Loops 0.00 0.00 0.25 12.00
Total LOC 42.00 168.00 578.64 2932.00
Average CC 1.80 5.25 15.73 66.75

(b) After obfuscation

Table 5.7.: Overview of randomly generated programs.

parameter allows specifying a nested control-flow structure consisting of if and for
statements. Opening a parenthesis increases the nesting level of control flow. The
grammar also allows specifying the size of the basic blocks (denoted bb), via an
integer number n. This parameter influences the number of paths, hence queries sent
to the SMT-/SAT-solver.

• The number of statements per basic block was changed via the value of n ∈ {1, 2}
from Table 5.6. This parameter affects the length of the search tree for symbolic
execution as well as the length of path constraints.

The total number of combinations is therefore: 3 × 4 × 3 × 4 × 16 × 2 = 4608. All other
parameters were kept to their default values, except for the RandomFunsPointTest,
which was set to true, meaning that the return value of the randomly generated function
is checked against a constant value and if they are equal the program prints a distinctive
message, i.e. “You win!” to standard output. We have set this constant value to be equal
to the output of the randomly generated function when its input is equal to “12345”.
Therefore, all of the 4608 programs will print “You win!” on the standard output if their
input argument is “12345”.

Table 5.7a shows the minimum, median, average and maximum values of various code
metrics of only the original (un-obfuscated) set of programs, as computed by the UCC
tool [163] and the total number of LOC. Each metric was computed on the entire C file of
each program, which includes the randomly generated function and the main function.

Each generated function takes an array of primitive type (e.g. char, int) as input (i.e. in)
and outputs another array of primitive type (i.e. out), as shown in Listing 5.3. Each
function first expands the input array into a (typically larger) state array via a sequence
of assignment statements containing operations (e.g. arithmetic, bitwise, etc.) involving
the inputs (lines 3-5). After input expansion, the values in the state array are processed via
control flow statements containing various operations on the state variables (lines 6-17).
Finally, the state array is compressed into the (typically smaller) output array via assignment
statements (lines 18-19). These three phases represent a generic way to map data from an
input domain to an output domain, as a license check would do. The if -statement on lines

101

5. Code Obfuscation Against Symbolic Execution Attacks

Listing 5.3: Randomly generated program example.
1 void f(int *in, int *out) {
2 long s[2], local1 = 0;
3 // Expansion phase
4 s[0] = in[0] + 762;
5 s[1] = in[0] | (9 << (s[0] % 16 | 1));
6 // Mixing phase
7 while (local1 < 2) {
8 s[1] |= (s[0] & 15) << 3;
9 s[(local1 + 1) % 2] = s[local1];
10 local1 += 1;
11 }
12 if (s[0] > s[1]) {
13 s[0] |= (s[1] & 31) << 3;
14 } else {
15 s[1] |= (s[0] & 15) << 3;
16 }
17 s[0] = s[1];
18 // Compression phase
19 out[0] = (s[0] << (s[1] % 8 | 1));
20 }
21 void main(int ac, char* av[]) {
22 int out;
23 f(av[1], &out);
24 if (out == 0xa199abd8)
25 printf("You win!");
26 }

24-25 resembles a license check, where the output of the randomly generated function f is
compared against a hard-coded value. Note that the program illustrated in Listing 5.3 is an
overly simplified instance of the programs generated by the Tigress. The programs in our
dataset are larger and they also contain more complex control-flow structures and boolean
conditions (including disjunctions and conjunctions) in control-flow statements. Finding an
input value that passes this comparison is harder for a white-box test case generator to find,
than an input that would fail the comparison. Hence, this dataset resembles license checking
mechanisms, which would be part of larger programs such as games or professional editing
and design software, etc. Note that programs containing license checking mechanisms
are much larger than our randomly generated programs, however, an attacker would not
symbolically execute the entire program. Instead, an attacker would isolate the license
checking code and then proceed to symbolically execute only this fraction of the program.

Testbed description: For the experiment described in this subsection we used a machine
with more cores to enable running multiple symbolic executions in parallel. The machine
uses the Ubuntu 14.04 64-bit operating system and it has an Intel Xeon E5-1650v2 CPU with
12 logical cores each running at 3.50GHz and 64GB of physical memory.

Step 1 - Baseline symbolic execution time before obfuscation: The impact of these code
characteristics on the execution time of KLEE given the original (unobfuscated) programs

102

5. Code Obfuscation Against Symbolic Execution Attacks

Data Types char short int long
Mean 1.32 9.95 13.41 13.91
StdDev 0.98 6.48 7.86 8.34

Loop Bound Constant Bounded Input Input
Mean 8.45 8.43 10.62
StdDev 8.07 7.28 9.65

Operators Bitwise Simple Arith. Harder Arith. All
Mean 4.74 8.91 9.97 11.23
StdDev 5.60 6.81 8.60 8.60

Depth 1 2 3
Mean 7.75 9.35 9.96
StdDev 6.22 8.00 8.90

Total # Ifs 0 1 2 3 4 5
Mean 6.34 7.74 7.94 11.08 12.4 14.87
StdDev 4.92 5.90 6.51 9.22 9.35 11.97

Total # Loops 0 1 2
Mean 12.27 6.34 6.4
StdDev 9.64 4.57 5.11

Table 5.8.: KLEE execution time (seconds) on original programs w.r.t. code characteristics of
2nd dataset.

can be seen in Table 5.8. As was the case with the input size in Table 5.4, the symbolic
execution time increases with the size (ranges) of the data types. This is due to the fact that
for higher ranges of values it is more difficult for SAT solvers to find a solution to queries
derived from path constraints on symbolic values. Different types of bound conditions
placed on loop statements cause a mild difference on symbolic execution time, i.e. if the
loop iterates a constant number of times, then the symbolic execution engine will execute
faster on average than if the number of loop iterations depends on the program input.
Finally, the type of operators used by the program has an important impact on symbolic
execution, because these operators are used by path constraints which are issued as queries
to the SMT solver. We notice that bitwise operators are easier to solve than arithmetic
operators. The type of arithmetic operators does not cause a large difference in symbolic
execution. However, harder arithmetic tends to be slower to solve than simple arithmetic.
More importantly, combining all operators seems to have an additive effect w.r.t. the time
taken to solve path constraints.

Step 2 - Compare symbolic execution overhead of different tools after obfuscation: We
have obfuscated the f functions with 5 obfuscation transformations from the Tigress tool:
AddO, EncA, EncL, Flat and Virt. We only chose these 5 transformations, due to the fact
that Obfuscator LLVM transformations are very similar to AddO, EncL and Flat. Table 5.7b
shows the minimum, median, average and maximum values of various code metrics of only
the obfuscated set of programs, as computed by the UCC tool [163], and the total number
of LOC. Note that the majority of programs have now increased their LOC by one order of
magnitude.

For this experiment we used KLEE and angr as symbolic execution engines and we let
them run until they found the path in the program that prints a distinctive message on the
standard output or the timeout of 1 hour is reached. When this path is entered we know
that the check guarding that path has been bypassed by the symbolic execution engine. We
did not use angr in the previous experiment because angr does not aim to achieve 100%
code coverage, as opposed to KLEE. Note that we have also tried to employ the Triton
symbolic execution engine [181] on the obfuscated programs for both datasets. However,

103

5. Code Obfuscation Against Symbolic Execution Attacks

KLEE angr
Median Mean StdDev Median Mean StdDev

AddO16 0.97 1.03 0.26 1.72 2.25 2.49
EncA 1.14 1.21 0.37 1.39 1.79 1.90
EncL 0.98 0.99 0.22 1.40 2.22 4.60
Flat 1.15 1.22 0.44 3.77 4.45 2.85
Virt 1.53 2.08 1.27 7.32 8.85 5.01

Table 5.9.: Symbolic execution slowdown on programs obfuscated using Tigress, relative to
unobfuscated counterparts from 2nd dataset.

Triton crashed when symbolically executing programs obfuscated using Flat and Virt due
to insufficient memory. Triton transforms each assembly instruction into a sequence of SMT
constraints, which increases directly proportional to the execution trace, which is large for
programs obfuscated with Flat and Virt.

Table 5.9 shows the median, mean and standard deviation of symbolic execution slow-
down on programs obfuscated from the second dataset w.r.t. their unobfuscated counter-
parts. The slowdown is computed as the time needed to symbolically execute an obfuscated
program until the path in the program that prints the distinctive message on the standard
output is found, divided by the time need to symbolically execute the unobfuscated version
of the program to find the corresponding path. The median and standard deviation were
taken across 12713 obfuscated programs successfully analyzed by the KLEE and angr within
the 1 hour time limit. We make the following observations using Table 5.9.

Observation 11: KLEE incurs a lower slowdown than angr for all of the 5 obfuscation
transformations employed in this experiment. This indicates that KLEE is the best known
attacker for the obfuscation transformations we have employed in this chapter. Note that
KLEE also has limitations, e.g. it does not support goto instructions or in-line assembly in
C programs. However we see this as a technical, not a fundamental limitation.

Observation 12: The slowdown of finding the path that prints a distinctive message (“win”)
is much lower than the slowdown for covering all reachable code (which was the goal of
the attacker in Section 5.2.2). This is expected since the symbolic execution engine may
discover that particular path before covering all reachable code.

5.3. Summary and Threats to Validity

In Section 5.2.2, we have symbolically executed a set of programs obfuscated with 39
different configurations of 8 transformations from 2 obfuscation tools. We generated 100%
reachable code coverage test suites that would be used by an attacker who aims to simplify
the CFG of an obfuscated program. The results indicate that all the considered obfuscation
transformations can be broken with different computational effort, which also depends
on code characteristics of the original program. EncL and ISub are not effective against
symbolic execution. AddO and BCF have a mild effect on the slowdown. EncA slows
down symbolic execution due to the larger size of SMT queries. Flat and CFF slow down

104

5. Code Obfuscation Against Symbolic Execution Attacks

symbolic execution due to the larger number of SMT queries issued to the solver. Virt slows
down symbolic execution due to the high number of fetch-decode-dispatch instructions
added. The results also indicate in which order obfuscation transformations should be
applied to increase effectiveness, i.e. in general it is better to first add bogus code via opaque
predicates, instruction substitution or by transforming constant literals into code and then
applying control-flow and arithmetic obfuscation via Virt, Flat/CFF and EncA, respectively.
However, we note that none of these obfuscation transformations add input-dependent
paths to the programs. Therefore, in Chapter 7 we propose transformations which do insert
input-dependent paths and measure how they affect symbolic execution time.

In Section 5.2.3 we have symbolically executed another set of programs obfuscated with
5 representative transformations from Tigress used in Section 5.2.2. Transformations from
Obfuscator LLVM were not used in Section 5.2.3 because they had similar effects as their
corresponding transformations from Tigress. In this second experiment (from Section 5.2.3),
we compared the performance of different symbolic execution engines to find test cases
that lead to a certain (difficult to reach) path in the obfuscated programs. This goal is
different from obtaining 100% code coverage, which was the goal of the experiment from
Section 5.2.2, because it represents an attacker who wants to bypass a license check in a
program. Such an attacker does not necessarily need to generate a test suite that covers 100%
of the code, in order to obtain the correct license key. We observed that for this goal, KLEE
is most effective, followed by angr. However, the overhead of successfully recovering the
correct license key via symbolic execution is about one order of magnitude smaller than that
of covering 100% of the code. This indicates that protecting a license-checking mechanism
against symbolic execution, requires a combination of more obfuscation transformations,
than it would be necessary to protect against an attacker who aims to explore 100% of the
code.

The results from Section 5.2.2 and Section 5.2.3 do not generalize for all possible pro-
grams. However, we believe that they have some degree of generality due to our carefully
constructed datasets and the intuitive explanations we provide in our observations above.
Note that the observations regarding program characteristics which influence the attack
time (e.g. observation 3), are facilitated by the fact that we mapped symbolic execution and
SAT solving to our search model in Chapter 4. Moreover, for the attacker goal of bypassing
license checks – of the experiment from Section 5.2.3 – it is not feasible to simply take
random programs from open source repositories (e.g. Github), because not all programs
contain such checks. Artificially inserting checks into such programs would lead to the
same threat to external validity as mentioned in this paragraph.

Symbolic execution has several limitations when applied to large software programs [3,
185]. However, we note that symbolic execution is currently a highly active field of research
and has been successfully applied for finding bugs in Microsoft Windows 7 [95] and it
is being used by several teams in the DARPA Cyber Grand Challenge for automated
exploit generation [11]. Moreover, several deobfuscation techniques rely on symbolic
execution [185]. Also, in practice, a software developer will not obfuscate all the code of a
program, but only sensitive parts of it (e.g. license checking mechanisms). Furthermore,

105

5. Code Obfuscation Against Symbolic Execution Attacks

obfuscation is often applied only to parts of software which are not frequently executed
(i.e. so called “hot code”), in order to minimize performance impact [57], hence attackers
may isolate and symbolically analyze smaller parts of the software [3].

106

6. Predicting Cost of Symbolic Execution
Attacks on Obfuscated Code

This chapter presents a framework for predicting the time required by a successful
symbolic execution attack, on obfuscated programs. The framework requires the
metrics stated in Chapter 5. Parts of this chapter have appeared in a publication
[19] co-authored by the author of this thesis.

In Chapter 5 we saw that symbolic execution attacks are able to successfully analyze
programs obfuscated using a set of different data- and code-transformations. We have both
measured and compared the time needed for such an automated MATE attack when applied
to programs protected by different combinations of obfuscation transformations. However,
estimating the time an obfuscated program is able to withstand a given automated MATE
attack is still an open challenge for software obfuscation.

This chapter proposes a general framework for choosing the most relevant software
features to estimate the effort of automated attacks. Our framework uses these software
features to build regression models that can predict the resilience of different software
protection transformations against automated attacks.

ResilienceResilience is defined as a function of deobfuscator effort1 and programmer effort (i.e. the time
spent building the deobfuscator) [58]. Nonetheless, in many cases we can consider the
effort needed to build the deobfuscator to be negligible, because an attacker needs to invest
the effort to build a deobfuscator only once and can then reuse it or share it with others.
There have been works that propose measures for resilience. Udupa et al. [209] propose
using the edit distance between control flow graphs of the original code and deobfuscated
code. Mohsen and Pinto [155] propose using Kolmogorov complexity. Banescu et al. [21]
propose using the effort needed to run a deobfuscation attack. However, none of these
works attempt to predict the effort needed for deobfuscation, which has been identified
as a gap in this field [199]. In this chapter we focus on predicting the effort needed by a
deobfuscation attack.

1In this thesis we quantify deobfuscator effort via the time it takes to run a successful automated MATE attack
on a certain hardware platform; however, note that we could easily map time to CPU cycles, to provide a
hardware independent measure of attack effort.

107

6. Predicting Cost of Symbolic Execution Attacks on Obfuscated Code

Figure 6.1.: General attack time prediction framework.

6.1. A General Framework for Predicting the Cost of Automated
MATE Attacks

Our general approach is illustrated as a work-flow in Figure 6.1, where ovals depict inputs
and outputs of the software tools, which are represented by rectangles. The work-flow
in Figure 6.1 requires a dataset of original (un-obfuscated) programs to be able to start.
Afterwards, an obfuscation tool is then used to generate multiple obfuscated (protected)
versions of each of the original programs. Subsequently, an implementation of a deobfusca-
tion attack (e.g. control-flow simplification [228], secret extraction [21], etc.) is executed on
all of the obfuscated programs, and the time needed to successfully complete the attack for
each of the obfuscated programs is recorded. In parallel, feature values are extracted from
the obfuscated programs. These features are identified by first mapping the automated
MATE attack to our search model presented in Section 4.2.2, and then reasoning about
the characteristics that affect the search algorithm execution elements, namely search tree,
fringe, heuristic and search strategy.

Once the attack times are recorded and software features are extracted from all programs,
one could directly use this information to build a regression model for predicting the time
needed for deobfuscation. However, some features could be irrelevant to the deobfuscation

108

6. Predicting Cost of Symbolic Execution Attacks on Obfuscated Code

attack and/or they could be expensive to compute. Moreover, for most regression algo-
rithms the resource usage during the training phase grows linearly or even exponentially
with the number of different features used as predictors. Therefore, we add an extra step to
our approach, namely a Feature Selection Algorithm, which selects only the subset of features
which are most relevant to the attack. Feature selection can be performed in many ways.
Section 6.1.1 briefly describes how we approached feature selection. After the relevant
features are selected, the framework uses this subset of features to build a regression model
via a machine learning algorithm.

Note that the proposed approach is not limited to obfuscation and deobfuscation. One
can substitute the obfuscation tool in Figure 6.1, with any kind of software protection
mechanism (e.g. code layout randomization [167]) and the deobfuscation tool by any known
attack implementation corresponding to that software protection mechanism (e.g. ROPeme
[135]). This way the set of relevant features and the output prediction model will estimate
the strength of the chosen protection mechanism against the chosen attack implementation.

6.1.1. Selecting Relevant Features

Given a set of several software features (e.g. complexity metrics), it is unclear which software
features one should aim to change (by applying various obfuscating transformations),
such that the resulting obfuscated program is more resilient against certain automated
deobfuscation attacks. A conservative approach would be to simply use all available
software features in order to build a prediction model. However, this approach does not
scale for several regression algorithms (e.g. SVM), because of the large amount of resources
needed and also the time needed to train the model. There are several approaches for
feature selection published in the literature, e.g. using genetic algorithms [27] or simulated
annealing [138]. For our dataset – containing tens of thousands of entries and a few dozen
features – we noticed that such feature extraction algorithms are time consuming, i.e. they
require weeks of computation time. We have also experimented with principal component
analysis (PCA) [170], in order to reduce the number of features. However, this approach did
not yield a better prediction accuracy, for our dataset. Therefore, in this section we describe
a few light-weight approaches for selecting a subset of features, which are most relevant for
a particular deobfuscation attack. The first approach is based on computing correlations and
the second approach is based on variable importance in regression models. In Section 6.2
we compare these approaches by building regression models using the features selected by
each approach.

First approach: Pearson Correlation

One intuitive way to select relevant features, first proposed by Hall [101], is by computing
the Pearson correlation [169] between each of the software features and the attack time. The
Pearson correlation is a value in the range [−1, 1]. A positive value means that both the
time needed for deobfuscation and the software feature tend to have the same increasing

109

6. Predicting Cost of Symbolic Execution Attacks on Obfuscated Code

trend, while a negative value indicates that the deobfuscation time decreases as the software
feature increases. If the absolute value of this correlation is in: [0.8, 1] then the variables
are very strongly correlated, [0.6, 0.8) they are strongly correlated, [0.4, 0.6) moderately
correlated, [0.2, 0.4) weakly correlated, (0, 0.2) very weakly correlated and 0 indicates no
correlation at all.

After computing the correlation, we sort the features by their absolute correlation values
in descending order and store them in a list L. The caveat in selecting the top ten features
with the highest correlation is that several of those top ten features may contain couples
which are highly correlated with each other. This means that we could discard one of
them and still obtain about the same prediction accuracy. To avoid this issue, for each
pair of highly correlated features in L, we remove the one with a lower correlation to the
deobfuscation attack time. Afterwards, we select the remaining features with the highest
correlations.

Second approach: Variable Importance

Another way of selecting relevant features from a large set of features is to first build
a regression model (e.g. via random forest, support vector machines, neural networks,
etc.), using all available features and record the prediction error. Check the importance of
each variable (i.e. feature) using the technique described in [36], i.e. add random noise by
permuting values for the i-th variable and average the difference between the prediction
error after randomization and before. Repeat this for all i = {1, . . . , n}, where n is the total
number of variables. Rank the variables according to their average difference in prediction
error, i.e. the higher the prediction error, the more important the variable is for the accuracy
of the regression model.

Similarly, to the previous approach based on Pearson correlation, we select those features
which have the highest importance. In order to reduce over-fitting the regression model to
our specific dataset, we employ 10-fold-cross-validation, i.e. the dataset is partitioned into
10 equally sized subsets, training is performed on 9 subsets and testing is performed on the
remaining subset, for each combination of 9 subsets. Variable importance is averaged over
all of these 10 regression models. Then the features are ranked according to their average
importance, i.e. difference in prediction error when the values of that variable are permuted.
This procedure is called recursive feature elimination [98].

6.2. Case-Study

This section presents a case-study in which we evaluate the approach proposed in Section 6.1.
We are interested in answering the following research questions:

RQ1 Which features are most relevant for predicting the time needed to successfully run
the symbolic-execution attack presented in Chapter 5?

110

6. Predicting Cost of Symbolic Execution Attacks on Obfuscated Code

RQ2 Which regression algorithms generate models that can predict the attack effort with
the lowest error?

We focus on the deobfuscation attack based on symbolic execution presented in [21],
which is equivalent to extracting a secret license key hidden inside the code of the program
via obfuscation. However, in future work we plan to apply the approach proposed in
Section 6.1, to other types of automated attacks, such as control-flow simplification [228].
Note that even for other attacks the work-flow from Figure 6.1 remains unchanged, only
the details of the attacks and the software features will change.

6.2.1. Experimental Setup

All steps of the experiment were executed on a physical machine with a 64-bit version of
Ubuntu 14.04, an Intel Xeon CPU having 3.5GHz frequency and 64 GB of RAM. Subse-
quently we describe the tools that we have used and how we have used them. The following
subsections correspond to the top oval and the rectangles in Figure 6.1 (top to bottom).

Dataset of Original Programs

We have used the same dataset of 4608 programs generated by the RandomFuns feature
of Tigress, presented in Section 5.2.3. Since this set of 4608 programs might seem too
homogeneous for building a regression model, we used another set of 11 non-cryptographic
hash functions [168] in our experiments. Similarly to the randomly generated functions,
these hash functions, process the input string passed as argument to the program and it
compares the result to a fixed value. In the case of the hash functions we print a distinctive
message on standard output whenever the input argument is equal to “my license key”
in ASCII characters. To increase the number of programs in this set, we generated 275
different variants for each of the non-cryptographic hashes using combinations of multiple
obfuscation transformations. The point which we aim to show here is that even if we add a
small heterogeneous subset to our larger homogeneous set of programs, the smaller subset
is going to be predicted with the same accuracy as the programs from the larger set.

Table 6.1a shows the minimum, median, average and maximum values of various code
metrics of only the original (un-obfuscated) non-cryptographic hash functions, as computed
by the UCC tool and the total number of LOC. Each metric was computed on the entire C
file of each program, which includes the hash function and the main function.

Obfuscation Tool

In Chapter 5 we have seen that the similar transformations between Tigress and Obfuscator-
LLVM have a very similar behavior w.r.t. symbolic execution. Therefore, in this chapter
we have used only the five obfuscating transformations offered by Tigress [56], in order
to avoid redundancy. We generate five obfuscated versions of each of the 4608 randomly

111

6. Predicting Cost of Symbolic Execution Attacks on Obfuscated Code

Code Metric Min Med Avg Max
Calculations 4.00 6.00 6.45 12.00
Conditionals 3.00 3.00 3.27 4.00
Logical 2.00 6.00 5.36 11.00
Assignment 8.00 9.00 9.91 16.00
L1.Loops 1.00 1.00 1.00 1.00
L2.Loops 0.00 0.00 0.00 0.00
Total LOC 18.00 25.00 25.99 44.00
Average CC 2.00 2.00 2.14 2.50

(a) Before obfuscation

Code Metric Min Med Avg Max
Calculations 18.00 27.00 127.70 350.00
Conditionals 3.00 10.00 100.81 444.00
Logical 2.00 6.00 54.45 240.00
Assignment 11.00 17.00 217.36 963.00
L1.Loops 1.00 1.00 1.02 2.00
L2.Loops 0.00 0.00 0.36 3.00
Total LOC 35.00 61.00 501.70 2002.00
Average CC 1.50 3.33 18.80 76.00

(b) After obfuscation

Table 6.1.: Overview of programs containing simple hash functions.

generated programs. The obfuscating transformations we have used are the same as in
Chapter 5:

• Opaque predicates: introduce branch conditions in the original code, which are either
always true or always false for any possible program input. However, their truth
value is difficult to learn statically.

• Literal encoding: replaces integer/string constants by code that generates their value
dynamically.

• Arithmetic encoding: replaces integer arithmetic with more complex expressions, equiv-
alent to the original ones.

• Flattening: replaces the entire control-flow structure by a flat structure of basic blocks,
such that it is unclear which basic block follows which.

• Virtualization: replaces the entire code with bytecode that has the same functional
semantics and an emulator which is able to interpret the bytecode.

We obfuscated each of the generated programs using these transformations with all the
default settings (except for opaque predicates where we set the number of inserted pred-
icates to 16), we obtained 5 × 4608 = 23040 obfuscated programs. We obfuscated each
of the non-cryptographic hash functions with every possible pair of these 5 obfuscation
transformations and obtained 25× 11 = 275 obfuscated programs.

Table 6.1b shows the minimum, median, average and maximum values of various code
metrics of the obfuscated set of obfuscated programs involving simple hash functions, as
computed by the UCC tool. Each metric was computed on the entire C file of each program,
which includes the randomly generated function, the main function and other functions
generated by the obfuscating transformation which is applied. For instance, the encode
literals transformation generates another function which dynamically computes the values
of constants in the code using a switch statement with a branch for each constant. Due
to this reason we also notice that after applying the encode literals transformation to a
program, its average cyclomatic complexity (CC) is slightly reduced because this function
has CC=1 and it is averaged with two other functions with higher CCs.

112

6. Predicting Cost of Symbolic Execution Attacks on Obfuscated Code

Deobfuscation Tool

Since all of the original programs print a distinctive message (i.e. “You win!”) when a
particular input value is entered, we can define the deobfuscation attack goal as: finding
an input value that leads the obfuscated program to output “You win!”, without tampering with
the program. As presented in Chapter 5, this deobfuscation goal is equivalent to finding
a hidden secret key and can be achieved by employing an automated test case generator.
Since we have the C source code for the obfuscated programs, we chose to use KLEE as a
test case generator in this study; also KLEE was the fastest symbolic execution engine in
the experiments presented in Chapter 5. We ran KLEE with a symbolic argument length
of 5 characters, on all of the un-obfuscated and obfuscated programs generated by our
code generator, for 10 times each. All of the symbolic executions successfully generated a
test case where the input was “12345”, which is the input needed to achieve the attacker
goal. Similarly we ran KLEE with a symbolic argument length of 16 characters, on all of the
un-obfuscated and obfuscated non-cryptographic hash functions, for 10 times each. Again
the correct test cases were generated on all symbolic executions, but this time the input
was “my license key”. Note that this is only one way to attack an obfuscated program,
and that it does not produce a simplified version of the obfuscated code as in [228]. Rather,
it extracts a hidden license key value from the obfuscated code. We computed the mean
(M) and the standard deviation (SD) of the reported times across all the 10 runs of KLEE
and obtained that 83% of the programs have a relative standard deviation (RSD = SD/M)
under 0.25 and 94% have RSD ≤ 0.50. This means that the difference between multiple
runs of KLEE on the same program is small.

Software Feature Extraction Tools

In Chapter 5 we saw that the type of operators used by the program have an impact on
the time needed to symbolically analyze a program, because these operators affect the
path constraints, hence they also affect the query sent to the SMT solver. Other papers
[154, 191, 2] also suggest that the complexity of path constraints is a program characteristic
with high impact on symbolic execution. However, these papers do not clearly indicate
how this complexity should be measured. One way to do this is by first converting the
C program into a boolean satisfiability problem (SAT instance), and then extracting features
from this SAT instance. There are several tools that can convert a C program into a SAT
instance, e.g. the C bounded model checker (CBMC) [52] or the low-level bounded model
checker (LLBMC) [153], etc. However, the drawback of these tools is that the generated
SAT instances may be as large as 1GBs even for programs containing under 1000 lines of
code, because they are not optimized. Hence, for our dataset, the generated SAT instances
would require somewhere in the order of 10TBs of data and several weeks of computational
power, which is expensive.

Instead, we took a faster alternative approach for obtaining an optimized SAT instance
from a C program, which we describe next. KLEE generates a satisfiability modulo theories

113

6. Predicting Cost of Symbolic Execution Attacks on Obfuscated Code

(SMT) instance for each execution path of the C program. We selected the SMT instance
corresponding to theDifficult execution

path
difficult execution path, i.e. the path that prints out the distinctive

message on standard output. These SMT instances (corresponding to the difficult path),
were the most time consuming to solve by KLEE’s SMT solver, STP [89]. Many SMT solvers
including Microsoft’s Z3 [68], often internally convert SMT instances to SAT instances in
order to solve them. Hence, we modified the source code of Z3 to output the internal
SAT instance, which was saved in separate files for each of the programs in our dataset.
For extracting features from these SAT instances we used SATGraf [162], which computes
graph metrics for SAT instances, where each node represents a variable and there is an
edge between variables if they appear in the same clause (see Figure 6.4). ACommunity community in
a graph is a set of nodes which have a high number of connections between them and a
lower number of connections with other nodes of the graph. Connections between the node
of a community are calledIntra-community intra-community edges, while connections to nodes outside the
community structure are calledInter-community inter-community edges. To measure the degree of division of
a network into communities, theModularity modularity metric (also called Q value) is used. Graphs
with a high number of intra-community edges and a low number of inter-community edges
have a high modularity. The modularity decreases as the number of intra-community
edges decreases and the number of inter-community edges increases. SATGraf computes
features such as the number of community structures in the graph, their modularity, and
also the minimum, maximum, mean and standard deviation of nodes and edges, inside and
between communities. Such features have been shown to be correlated with the difficulty
of solving SAT instances [161]. Since symbolic execution includes many queries to an
SMT/SAT solver, as shown in [18], these features are expected to be good predictors for the
time needed for a symbolic execution based deobfuscation attack. In sum, we transform
the path that corresponds to a successful deobfuscation attack into a SAT instance (via an
SMT instance), and then compute characteristics of this formula, to be used as features for
predicting the effort of deobfuscating the program.

For computing source code features often used in software engineering, on both the origi-
nal and obfuscated programs, we used the UCC tool [163]. For the programs in our dataset
the last four metrics are all zeros, therefore, in our experiments we only used the other
eleven metrics, including the total number of LOC. Additionally, we also propose using
four other program features, namely: the execution time of the program, the maximum
RAM usage of the program, the compiled program file size and the type of obfuscating
transformation.

In total we have 64 features out of which 49 SAT features which characterize the com-
plexity of the constraints on symbolic variables and 15 program features which characterize
the structure and size of the code. In the following we show that not all of these features
are needed for good prediction results.

114

6. Predicting Cost of Symbolic Execution Attacks on Obfuscated Code

6.2.2. Feature Selection Results

This section presents the results for the Feature Selection Algorithms presented in Section 6.1.1.
However, before selecting the most relevant features, we identify how many features (pre-
dictor variables) are needed to get good prediction results. For this purpose we performed
a 10-fold-cross validation with linear and random forest (RF) regression models using all
combinations of 5, 10 and 15 metrics, as well as a models with all metrics. The results in
Figure 6.2 show that using 15 variables is enough to obtain a RF model with root-mean-
squared-error (RMSE) values, which are as good as those from RF models built using all
variables. Similar results were obtained for linear models, except that the overall RMSE was
higher w.r.t. that of the RF models. Therefore, in the experiments presented in the following
sections, we will only select the top best 15 features in both of the two approaches described
in Section 6.1.1.

First approach: Pearson Correlation

After employing the algorithm described in Section 6.1.1, we were left with a set of 25
features, with their Pearson correlation coefficients ranging from 0.4523 to -0.0302. The top
15 metrics in this range are shown in Figure 6.3a. The strongest Pearson correlation of the
time needed for running the deobfuscation attack is with the average size of clauses in the
SAT instance (mean clause), followed by: the average number of times any one variable
is used (meanvar), the standard deviation of the ratio of inter to intra community edges
(sdedgeratio), the average number of intra community edges (meanintra), the average number
of times a clause with the same variable (but different literals) is repeated (mean reused),
the average community size (meancom), the number of unique edges (unique edges), the
number of variables (vars), the standard deviation of the number of inter community
edges (sdinter), the maximum number of distinct communities any one community links to
(max community), the number of communities detected with the online community detection
algorithm (ol coms), the maximum ratio of inter to intra community edges within any

Number of Metrics

R
M

SE
 (R

ep
ea

te
d

C
ro

ss
−V

al
id

at
io

n)

51

52

53

54

10 20 30 40 50 60

●

Figure 6.2.: RF models with different feature subsets.

115

6. Predicting Cost of Symbolic Execution Attacks on Obfuscated Code

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

0.15 0.20 0.25 0.30 0.35 0.40 0.45

Pearson Correlation

mean_clause

meanvar

sdedgeratio

meanintra

mean_reused

meancom

unique_edges

vars

sdinter

max_community

ol_coms

maxedgeratio

maxinter

max_total

Trans

(a) Top 15 features via first approach.

●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

0.0e+00 4.0e+06 8.0e+06 1.2e+07

Variable Importance

weight

sdinter

ol_coms

meaninter

sdedgeratio

meancom

meanintra

sdcom

sdintra

ol_q

edgeratio

Risk

L1.Loops

max_clause

num_max_inter

(b) Top 15 features via second approach.

Figure 6.3.: Feature Selection Results

community (maxedgeratio), the maximum number of inter community edges (maxinter), the
maximum number of edges in a community (max total) and finally the type of obfuscation
transformation employed.

None of the previous features are very strongly correlated to deobfuscation time. The first
three features are moderately correlated, the following ten features are weakly correlated
and finally the last two features are very weakly correlated. However, notice that the top
fourteen features are all SAT features, and none are code metrics from the UCC tool or
program features such as execution time, memory usage or file size.

Second approach: Variable Importance

To rank our features according to variable importance we performed recursive feature
elimination via random forests, as indicated in Section 6.1.1. Figure 6.3b shows the top 15
features sorted by their variable importance. The features selected using this approach are
quite different from those selected in Section 6.2.2. The common features between these two
approaches are: sdinter, ol coms, sdedgeratio, meancom and meanintra. The first two common
features are ranked 2nd and 3rd according to variable importance, however, the most
important feature w.r.t. variable importance is the weight of the graph (weight), computed
as the sum of positive literals minus the sum of negative literals. The 4th most important
variable in Figure 6.3b is the average number of inter community edges (meaninter), followed
by: sdedgeratio, meancom, meanintra (see descriptions of these 3 features in Section 6.2.2), the
standard deviation of community sizes (sdcom), the standard deviation of intra community
edges (sdintra), the modularity of the SAT graph structure (ol q), the overall ratio of inter to

116

6. Predicting Cost of Symbolic Execution Attacks on Obfuscated Code

intra community edges (edgeratio), the category of the McCabe cyclomatic complexity [149]
(Risk), the number of outer-loops (L1.Loops), the size of the longest clause (max clause) and
the number of communities that have the maximum number of inter community edges
(num max inter).

Similarly, to the first approach, the majority of selected features are SAT features. The
only two features which are not SAT features: Risk and L1.Loops are computed by the UCC
tool. The number of loops was indeed indicated also in [18] as being an important feature.
The Risk has four possible values depending on the value of the cyclomatic complexity (CC),
i.e. low if CC ∈ [1, 10], moderate if CC ∈ [11, 20], high if CC ∈ [21, 50] and very high if CC is
above 50. CC gives a measure of the complexity of the branching structure in programs
(including if-statements, loops and jumps). However, it is remarkable that the CC value
was ranked lower than the Risk.

Insights from Feature Selection Results

SAT features are important for symbolic execution, because most of the time of the attack is
spent waiting for the SAT solver to find solutions for path constraints [18]. Taking a closer
look at the common SAT features of both feature selection approaches, we can characterize
those SAT instances, which are harder to solve. The graph representation of such an
instance has a large number of balanced community structures, i.e. a similar number of
intra- and inter-community edges. On the other hand, easy to solve instances tend to have
established community structures, i.e. many more intra-community, than inter-community
edges. To check this observation, we downloaded the Mironov-Zhang [154] and the Li-
Ye [137] benchmark suites for SAT solvers, containing solvable versions of more realistic
hash functions such as MD5 and SHA. All of these instances had balanced community
structures.

Figure 6.4 illustrates the graph representation2 of the SAT instance of the MD5-27-4 hash
function of the Li-Ye benchmark suite[137] proposed during the 2014 SAT Competition.
It is visible – from the number of yellow dots – that this graph has a high number of
variables. More importantly it is also visible that one cannot easily distinguish graph
community structures, because they are relatively small and well connected with other
communities. This kind of structure is hard to solve, because each assignment of a variable
has a large number of connections and therefore ramifications inside the graph at the time
when unit propagation is performed by the SAT solver. However, note that if the graph is
fully connected, then it is easy to solve. Therefore, there is a fine line between having too
many connections and too few, where the difficulty of SAT instances increases dramatically.
This last observation is similar to the constrainedness of search employed by Gent et al. [92],
when analyzing the likelihood of finding solutions to different instances of the same search
problem. This makes sense since a SAT solver is executing a search when it is trying to
solve a SAT instance.

2These graph representations were generated using the SATGraf tool [162].

117

6. Predicting Cost of Symbolic Execution Attacks on Obfuscated Code

Figure 6.4.: Graph representation of SAT instance corresponding to an MD5 hash with 27
rounds. Solving this instance takes approximately 25 seconds on our testbed.

Figure 6.5.: Graph representation of SAT instance corresponding to a program whose sym-
bolic execution time is under 1 second.

On the other hand, many of our randomly generated C programs which were fast
to deobfuscate, had established community structures. Figure 6.5 illustrates the graph
representation of a program generated using our C code generator. This program was
generated with the following parameter values:

• RandomFunsTypes was set to int, which means that the variable types are integer.

• RandomFunsForBound was set to a constant value, which means that the bound
does not depend on any symbolic variables, which reduces the number of branches of

118

6. Predicting Cost of Symbolic Execution Attacks on Obfuscated Code

(a) SAT instance corresponding to a pro-
gram containing a non-cryptographic
hash function, before obfuscation. This
instance is solved in about 7.5 seconds.

(b) SAT instance corresponding to same pro-
gram from Figure 6.6a, after being ob-
fuscated with virtualization and flattening.
This instance is solved in about 438 sec-
onds.

Figure 6.6.: The Effect of Obfuscation on SAT Instances.

the search tree.

• RandomFunsOperators was set to Shiftlt, Shiftrt, Lt, Gt, Le, Ge, Eq, Ne,
BAnd, BOr and BXor, which is the set of logical and bitwise operators, that were
shown to be fastest to solve in Chapter 5.

• RandomFunsControlStructures was set to (if (if (if (bb n) (bb n)) (if (bb n) (bb
n))) (if (bb n) (bb n))), which consists only of if statements, hence the search tree is not
deep.

• n = 1, which means that all basic blocks consist of only one statement.

• RandomFunsPointTest was set to true, which means that a license check is added
to the program in the form of an if statement.

This instance is expected to be fast to solve, because it does not involve any loops dependent
on symbolic inputs and it only involves logical and bitwise operators. Balanced community
structures translate to a high diffusion of the symbolic input to output bits, i.e. affecting
any bit of the input license key will affect the result of the output, which is the case for
collision-resistant hash functions, as well as the effect of obfuscation transformations like
virtualization, flattening and arithmetic encoding.

119

6. Predicting Cost of Symbolic Execution Attacks on Obfuscated Code

SVM RF GP NN
UCC (11 features) 0.019 0.016 0.018 0.018
Pearson (15 features) 0.017 0.013 0.015 0.015
Var. Importance (15 features) 0.019 0.013 0.015 0.015

Table 6.2.: The NRMSE between model prediction and ground truth (average over NRMSE
of 10 models)

The Effect of Obfuscation on SAT Instances

In this context of representing SAT instances as graphs, it is interesting to note the effect
of obfuscation transformations on SAT instances. For instance, Figure 6.6a illustrates the
SAT instance of a non-obfuscated, non-cryptographic hash function from our dataset. The
community structures of this hash function are established, hence, the instance can be solved
in about 7.5 seconds. However, after applying two layers of obfuscation, first using the
virtualization and then the flattening, transforms the SAT instance of this program into the
one illustrated in Figure 6.6b. This instance, has a balanced community structure, hence,
slower to solve (438 seconds) and shares a resemblance to the MD5 instance from Figure 6.4.
We have also noticed that the arithmetic encoding transformation has this effect on SAT
instance. However, the opaque predicate and literal encoding alone do not have such an effect.

6.2.3. Regression Results

For each of the regression algorithms presented next, we have used several different
configuration parameters. Due to space limitations, we only present the configuration
parameters which gave the best results. We randomly shuffled the programs in our 2
datasets of programs into one single dataset and performed 10-fold cross-validation for
each experiment. To interpret the root-mean-squared-error (RMSE) we normalize it by the
range between the fastest and slowest times needed to run the deobfuscation attack on
any program from our dataset. Since our dataset contains outliers (i.e. either very high
and very low deobfuscation times), the normalized RMSE (NRMSE) values are very low
for all algorithms, regardless of the selected feature subsets, as shown in Table 6.2. This
could be misinterpreted as extremely good prediction accuracy regardless of the regression
algorithm and feature set. However, we provide a clearer picture of the accuracy of each
regression model by computing the NRMSEs after removing 2% and 5% of outliers from
both the highest and the lowest deobfuscation times in the dataset. This means that in total
we remove 4%, respectively 10% of outliers. Instead of showing just the numeric values
of the NRMSE for each these three cases (0%, 4% and 10% of outliers removed), we show
cumulative distribution functions of the relative (normalized) error in the form of line plots,
e.g. Figure 6.7. These line plots show the maximum and the median errors for all the three
cases, where the x-axis represents the percentage of programs for which the relative error
(indicated on the y-axis) is lower than the plotted value.

120

6. Predicting Cost of Symbolic Execution Attacks on Obfuscated Code

R
el

at
iv

e
er

ro
r

Percentage of programs
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Type of error

Maximum error with 10% of outliers removed
Maximum error with 4% of outliers removed
Maximum error with 0% of outliers removed
Median error with 10% of outliers removed
Median error with 4% of outliers removed
Median error with 0% of outliers removed

Figure 6.7.: Relative prediction error of RF model.

R
el

at
iv

e
er

ro
r

Percentage of programs
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Type of error

Maximum error with UCC metrics
Maximum error with Pearson correlation metrics
Maximum error with variable importance metrics
Median error with UCC metrics
Median error with Pearson correlation metrics
Median error with variable importance metrics

Figure 6.8.: RF models with different feature sets.

Note that in addition to the following regression algorithms we have also employed both
linear models and generalized linear models [160]. However, the results of the models
generated by these algorithms were either much worse compared to the models presented
in the following, or the models did not converge after 24 hours.

Random Forests (RFs)

Random forests (RFs) were proposed by Breiman [36] as an extension of random feature
extraction, by including the idea of “bagging”, i.e. computing a mean of the prediction of
all random decision trees. In our experiments we constructed a RF containing 500 decision
trees.

Figure 6.7 shows the maximum and median relative errors for 0%, 4% and 10% of outliers
removed. As more outliers are removed the relative error increases due to a decrease in
the range of deobfuscation times in the dataset. However, even when 10% of outliers are
removed, the maximum error is under 17% and the median error is less than 4% for 90% of
the programs, which seems acceptable for most use cases.

Note that the model in Figure 6.7 was built using the 15 features selected via variable

121

6. Predicting Cost of Symbolic Execution Attacks on Obfuscated Code

R
el

at
iv

e
er

ro
r

Percentage of programs
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Type of error

Maximum error with 10% of outliers removed
Maximum error with 4% of outliers removed
Maximum error with 0% of outliers removed
Median error with 10% of outliers removed
Median error with 4% of outliers removed
Median error with 0% of outliers removed

Figure 6.9.: Relative prediction error of SVM model.

R
el

at
iv

e
er

ro
r

Percentage of programs
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Type of error

Maximum error with UCC metrics
Maximum error with Pearson correlation metrics
Maximum error with variable importance metrics
Median error with UCC metrics
Median error with Pearson correlation metrics
Median error with variable importance metrics

Figure 6.10.: SVM models with different feature sets.

importance, presented in Section 6.2.2. We chose to show the results from the model built
using these features because, they are better than those produced by models built using
other subsets of features. As we can see from Figure 6.8, the relative error values when
building models with UCC metrics only and with the Pearson correlation approach, give
worse results in terms of both maximum and median error rates.

Support Vector Machines (SVMs)

Support vector machines (SVMs) were proposed by Cortes and Vapnik [61] to classify
datasets having a high number of dimensions, which are not linearly separable.

Figure 6.9 shows the relative errors for the SVM model built using the features selected
via the second approach (see Section 6.2.2). The accuracy of this model is lower than the
RF model from Figure 6.7, i.e. the maximum relative error is just below 35% for 90% of the
programs, when we remove 10% of the outliers. However, the median error is less than
7% in the same circumstances. The reason why SVM performs worse than RF is due to the
bagging technique applied by RF, whereas SVM uses a single non-linear function.

Again we chose to show the SVM model built using the features selected via variable

122

6. Predicting Cost of Symbolic Execution Attacks on Obfuscated Code

R
el

at
iv

e
er

ro
r

Percentage of programs
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Type of error

Maximum error with 10% of outliers removed
Maximum error with 4% of outliers removed
Maximum error with 0% of outliers removed
Median error with 10% of outliers removed
Median error with 4% of outliers removed
Median error with 0% of outliers removed

Figure 6.11.: Relative prediction error of GP model.

importance in Figure 6.9, because, as we can see from Figure 6.10, the maximum and
median error rates for this model are much lower than the SVM models built using only
UCC metrics or the features selected via Pearson correlation. Note that the maximum error
of the model built using variable importance surpasses that of the other two models around
the 90% mark on the horizontal axis. This means that for 10% of the programs the maximum
error of the model built using the features selected by variable importance, is higher that
the error of the other two models. However, note that the median error is around 10% lower
in the same circumstances.

Genetic Programming (GP)

Given the set of all code features as a set of input variables, GP [108] searches for models that
combine the input variables using a given set of functions used to process and combine these
variables, i.e. addition, multiplication, subtraction, logarithm, sinus and tangent in our
experiments. GP aims to optimize the models such that a given fitness function is minimized.
For our experiments, we used the root-mean-square error (RMSE) between the actual time
needed for deobfuscation and the time predicted by the model, as a fitness function. The
output of GP is one of the generated models with the best fitness value. In our case this
member is a function of the code features, which has the smallest error in predicting the
time needed to execute the deobfuscation attack on every program. For instance, the best
GP model built using the features selected via variable importance is shown in equation 6.1:

time = (edgeratio + cos(ol coms) + cos(cos(sdcom + num max inter) + L1.Loops))

∗ (sdinter ∗ (sdedgeratio − sin(meanintra ∗ −1.27)))

∗ (sdedgeratio − sin(meanintra ∗ −1.27)) ∗ (1.03− sin(0.04 ∗ sdinter)) ∗ sdedgeratio + 10.2.

(6.1)

Note that only seven distinct features were selected by the GP algorithm for this model,
from the subset of 15 features. Figure 6.11 shows the maximum and median error values
for the GP model from equation 6.1. Note that the maximum and median error levels for
the dataset where 10% of outliers are removed, are 55%, respectively 19% for 90% of the

123

6. Predicting Cost of Symbolic Execution Attacks on Obfuscated Code

R
el

at
iv

e
er

ro
r

Percentage of programs
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Type of error

Maximum error with 10% of outliers removed
Maximum error with 4% of outliers removed
Maximum error with 0% of outliers removed
Median error with 10% of outliers removed
Median error with 4% of outliers removed
Median error with 0% of outliers removed

Figure 6.12.: Relative prediction error of NN model.

SVM RF GP NN
UCC (11 features) 370 499 12.5 0.48
Pearson (15 features) 2094 651 7.9 0.50
Var. Importance (15 features) 2094 651 7.3 0.50

Table 6.3.: Size of the prediction models (in MBs).

programs. This error rate is much higher than both RFs and SVMs and is due to the fact
that the GP model is a single equation.

Neural Networks (NNs)

Multi-layer neural networks (NNs) were introduced by Werbos [221] in the 1970s. Recently,
the interest in NNs has been revived due to the increase in computational resources available
in the cloud and in graphical processing units. A neural network has three characteristics.
Firstly, the architecture which describes the number of neuron layers, the size of each layer
and connection between the neuron layers. In our experiments we used a NN with five
hidden layers each containing 200 neurons. The input layer consists of the set of code
features and the output of the NN is a single value that predicts the time needed to run the
deobfuscation attack on a program. Secondly, the activation function which is applied to
the weighted inputs of each neuron. This function can be as simple as a binary function,
however it can also be continuous such as a Sigmoid function or a hyperbolic tangent. In
our experiments we use a ramp function. Thirdly, the learning rule which indicates how
the weights of a neuron’s input connections are updated. In our experiment we used the
Nesterov Accelerated Gradient as a learning rule.

Figure 6.12 shows the maximum and median error of the NN model built using all
metrics. Note that in the case of NNs it is feasible to use all metrics without incurring large
memory usage penalties such as is the case for SVMs. The performance of this model is
better than the SVM and GP models, but not better than the RF model.

124

6. Predicting Cost of Symbolic Execution Attacks on Obfuscated Code

R
el

at
iv

e
er

ro
r

Percentage of programs
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Type of error

Maximum error with Neural Networks
Maximum error with Support Vector Machines
Maximum error with Random Forest
Maximum error with Genetic Programming
Median error with Neural Networks
Median error with Support Vector Machines
Median error with Random Forest
Median error with Genetic Programming

Figure 6.13.: Comparison of regression algorithms.

6.3. Summary and Threats to Validity

Based on the results presented above, we answer the research questions elicited in the
beginning of Section 6.2. Firstly, in Figure 6.2 we have seen that given our large set of 64
program features, using only 15 is enough to obtain regression models with RMSEs as low
as the regression models where all the features are used. From Figures 6.3a and 6.3b we
have seen that both approaches to feature selection ranked SAT features above code metrics
commonly used to measure resilience, namely cyclomatic complexity or the size of the
program. This means that the most important characteristics for symbolic execution based
attacks is the complexity of the path constraints involving symbolic variables. The reason
why SAT features have a higher impact on symbolic execution is that most of the time
during symbolic execution is spent waiting for the SMT solver and these features indicate
the time that is needed by the SMT solver to find a counter example for path constraints.

Secondly, Table 6.2 shows the RMSE for different regression models normalized by the
fastest and slowest deobfuscation attacks in our dataset. Since our dataset contains outliers,
the results from Table 6.2 are misleading. Therefore we removed 4% and 10% of the outliers
from our dataset and plotted the cumulative distribution of the errors for each of the
regression models. From Figures 6.8 and 6.10 we observe that the second approach to
feature selection, based on variable importance, gives better results than the first approach,
based on Pearson correlation. Therefore, in Figure 6.13 we plot the maximum and median
errors of the models from the four different regression algorithms, where 10% of outliers
are removed from the dataset. From the first glance at Figure 6.13, one may conclude that
RF has the lowest overall maximum error rate, followed by NN, SVM and GP. However, the
median error of the RF, NN and SVM models are all lower than 8% for all programs. This
indicates that if the median error is the key performance indicator, it is much less important
whether we pick RF, NN or SVM as the regression algorithm. Another observation is
that the size of the prediction models from RF models are generally smaller than those of
SVM models as seen in Table 6.3. However, models obtained from GP and NN are one,
respectively two orders of magnitude smaller than RF models. The size of SVM, RF and GP

125

6. Predicting Cost of Symbolic Execution Attacks on Obfuscated Code

Figure 6.14.: Combining results with obfuscation tools.

models grows proportionally to the number of features used. An advantage of NN models
is their relatively small size of around 50 Kilobytes is constant for any number of features
used. This is understandable because the number of weights and neurons is negligibly
influenced by the number of features used to build the model.

In sum, the most relevant features for characterizing the deobfuscation attack based on
symbolic execution, are SAT features (RQ1). Moreover, the regression algorithm which
yields the highest prediction accuracy is random forest (RQ2).

These results can be used to build the Smart Obfuscation Engine (SObE) shown in Fig-
ure 6.14, where the ovals represent inputs and outputs. SObE takes three inputs: (1) the
original program source code, (2) the maximum allowed performance overhead of the re-
sulting obfuscated program and (3) the resource and time available to the attacker (attacker
budget). SObE first gives the original program to the Obfuscation Executive (OE) [104]. The
OE proposed by Heffner and Collberg [104], uses software complexity metrics and perfor-
mance measurements to choose a sequence of obfuscating transformations, that should
be applied to a program in order to increase its potency. Therefore, the OE in Figure 6.14
applies a set of obfuscation transformations that satisfy the maximum allowed overhead.
Afterwards, SObE computes the relevant features (determined in Section 6.2.2) on the
obfuscated program and then uses the best prediction model from Section 6.2.3 to estimate
the effort needed by the deobfuscation attack. If the effort is less than the attacker’s budget,
then this is signaled to the OE and the process restarts, otherwise the obfuscated program is
output.

Threats to Validity In our case study, we have generated a dataset of unobfuscated
programs of up to a few 100s of LOC. Obfuscating these programs generates programs
having up to a few 1000s of LOC. Therefore, the regression models generated in the case
study may not be accurate for all possible programs. In our experiments we have found
that the size of the program is very weakly correlated with the time needed to run the
deobfuscation attack based on symbolic execution. This is slightly counter-intuitive because,
one may think that more LOC implies more complex path constraints due to additional
computations. In reality, the length of the execution trace is more important than the LOC,

126

6. Predicting Cost of Symbolic Execution Attacks on Obfuscated Code

R
el

at
iv

e
er

ro
r

Percentage of programs
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Type of error

Maximum error with 10% of outliers removed
Maximum error with 4% of outliers removed
Maximum error with 0% of outliers removed
Median error with 10% of outliers removed
Median error with 4% of outliers removed
Median error with 0% of outliers removed

Figure 6.15.: Relative error of hash functions only.

i.e. even programs with less than 100 LOC may have loops which execute for millions of
iterations, as opposed to programs with 1000s of LOC, which do not contain loops with
such a high number of iterations.

The experiments in this chapter mainly focus on relatively small programs, because of
three issues of symbolic execution (which will be discussed in more detail in Section 7.2),
i.e.: (1) an explosion of the number of paths to be analyzed in the program, (2) a divergence
between the operational semantics of the program and the semantics implemented by the
symbolic execution engine and (3) path constraints which require a long processing time
by an SMT-/SAT-solver. These issues often arise when analyzing real-world programs,
which often employ OS API calls and third party library calls. Such functions generally
contain intricate control-flow structures to handle all possible inputs and errors. Moreover,
these functions highly likely make calls to other OS API functions or third party library
functions, a.s.o. Therefore, a program containing as few as 10 LOC, may cause a path
explosion if this program calls functions to: (1) read the contents of a file, whose name
is indicated by a symbolic variable, (2) archives the contents and (3) sends the result to
an IP address indicated by another symbolic variable. In this thesis we have limited the
number of function calls in the programs from our datasets (i.e. the only third library
functions called were printf, atoi and strtol), to be able to control the type and amount of
code that will be symbolically executed. Therefore, when applying our prediction model to
real-world programs it is necessary to inline any third party library functions that we have
not used. Moreover, our prediction model was built for programs, which were successfully
attacked by the KLEE symbolic execution engine before the cutoff time of 1 hour was
reached. This means that our prediction model may underestimate the resilience of more
complex (obfuscated) programs against symbolic execution. However, the value predicted
by our model – in the case of such complex programs – will be a conservative estimation of
the resilience against symbolic execution attacks.

We tested the prediction accuracy of our best RF model (from Figure 6.7) when including
a small non-artificial dataset of programs containing non-cryptographic hash functions.
Figure 6.15 indicates that the prediction error of our best RF model (trained using 10-fold-

127

6. Predicting Cost of Symbolic Execution Attacks on Obfuscated Code

Instance Name Solver(s) Predicted(s) Predicted
Solver

MD5-27-4 25.37 71.56 2.82
mizh-md5-47-3 681.29 950.43 1.39
mizh-md5-47-4 235.53 1069.19 4.53
mizh-md5-47-5 1832.96 437.98 0.23
mizh-md5-48-2 445.19 523.70 1.17
mizh-md5-48-5 227.05 644.38 2.83
mizh-sha0-35-2 330.48 158.57 0.47
mizh-sha0-35-3 139.93 213.03 1.52
mizh-sha0-35-4 97.62 214.61 2.19
mizh-sha0-35-5 164.71 193.49 1.17
mizh-sha0-36-2 85.44 222.07 2.59

Table 6.4.: Prediction results of realistic hash functions via RF model trained with SAT
features from Section 6.2.2. The solver and predicted time are given in seconds.

cross-validation on both datasets), for the samples in the smaller dataset alone, has similar
levels to the prediction error of the entire dataset.

We also performed a reality check, i.e. we verified that the SAT features we identified are
also relevant for the realistic hash functions. For this purpose we have first trained a RF
model using only the top 10 most important SAT features from Section 6.2.2, computed on
the SAT instances of our dataset or randomly generated programs and non-cryptographic
hash function. Afterwards, we have applied this RF model to the Mironov-Zhang [154]
and the Li-Ye [137] benchmark suites for SAT solvers, containing solvable versions of more
realistic hash functions such as MD5 and SHA. Table 6.4 shows the results obtained from
applying the RF model to the hash functions, which were solvable by the minisat solver
used by STP (KLEE’s SMT solver), on our machine. Note that the Li-Ye [137], suite contains
many other instances of MD5 with more rounds, however, those could not be solved within
a 10 hour time limit on our test machine. The last column of Table 6.4 gives the ratio
between the predicted and the actual time needed to solve each instance. Except for the
mizh-md5-47-4 and mizh-md5-47-5 SAT instances, which are the most over- and respectively
under-estimated, the rest of the predictions are quite encouraging, given that we have not
trained the RF model with any SAT instances corresponding to MD5 or SHA hash functions.

Other features which we have not used in our work and are yet to be discovered, may
further improve prediction. We plan to explore more features in future work. In this work
we have focused on a deobfuscation attack based on symbolic execution. Other attacks
which will be the topic of future work, may be predicted more accurately. Our choice
of feature extraction and regression algorithms is limited, however, we believe we have
covered a representative set of algorithms.

128

7. Improving Obfuscation Transformations
Against Symbolic Execution

This chapter presents novel obfuscation transformations, which aim to raise the
bar against symbolic execution attacks. These transformations specifically target
the program characteristics derived using the search model from Chapter 4. Parts
of this chapter have been published in two peer-reviewed publications [18, 20]
co-authored by the author of this thesis.

In Chapter 4 we saw that a software developer who wants to protect an application
against automated MATE attacks should first identify all likely attacks and describe them
using an attack-net (see Figure 4.1). Each path from the source(s) to one of the sinks of
an attack net, represents one automated MATE attack, which consists of several steps
(i.e. transitions of the petri-net). In Section 4.2, we proposed viewing each of the non-
trivially solvable transitions, as search problems. Therefore, we argue that the cost of an
automated MATE attack is equivalent to the sum of costs of solving each of the search
problems (i.e. executing each transition) in that attack.

Since MATE attackers are generally driven by economic incentives, they will most likely
choose the automated attack with the lowest cost. In the survey from Section 4.3, we
saw that different attack steps (i.e. search problems) have different costs on unprotected
(i.e. un-obfuscated) programs. We also mentioned some obfuscation techniques to hamper
various attacks. In this chapter we present two novel obfuscation techniques for raising the
bar against symbolic execution attacks. These obfuscation techniques were derived based
on an observation made in the case-studies about symbolic-execution attacks, presented
in Chapter 5. This observation states that existing obfuscation transformations do not add
execution paths dependent on symbolic variables, they only add paths dependent on other
variables. Therefore, the two transformations we propose both add such paths in different
ways.

7.1. The Impact of Obfuscation on Search Problems

Before jumping into the details of the proposed obfuscation techniques, we reiterate over
the automated MATE attack-net discussed in Section 4.2, to motivate the contributions of
this chapter. Consider the attack-defense tree from Figure 7.1, corresponding to the attack-net
Figure 4.1, representing the set of automated MATE attacks for bypassing license checks

129

7. Improving Obfuscation Transformations Against Symbolic Execution

Figure 7.1.: Attack-defense tree corresponding to attack-net from Figure 4.1.

in an application, e.g. a computer game. The ovals in the attack-defense tree represent
attacks, while the rectangles represent defenses (i.e. countermeasures for the associated
attack node). By successfully executing one of the automated MATE attacks corresponding
to the oval-leaves of the tree, the attacker achieves the goal of bypassing the license check.

The license check can be bypassed by employing different types of static and/or dynamic
analyses. One way is to dynamically execute the program with all possible inputs, until the
password is found (left-most child of the root in the tree from Figure 7.1). However, if the
defender increases the range of the license key by using several (e.g. >16) alphanumeric
characters and also includes special characters, this guessing attack is considered too costly.
The reason is that the search problem corresponding to this attack can be modeled as shown
in Table 4.9, which means that the attack tree has a branching factor equal to the number b
of different alphanumeric characters and a depth equal to the length of the license key l.
Therefore, the total number of leaves in the search tree corresponding to this attack is bl,
which is extremely large if b > 36 – because there are 36 alphanumeric characters – and
l > 16.

Another approach is to extract all hard-coded standard C-strings inside a program and
put them inside of a list (second child of the root in the tree from Figure 7.1). Then try each
entry from the list of hard-coded strings, as an input to the dynamic program execution,
until the key is found. Since this list is likely much smaller than the input space of the
program, the search cost is much smaller. A preceding step of this brute-force search for
the key in the list of hard-coded strings, is to extract all hard-coded strings from a binary
executable. The heuristic for that step is that by definition strings are consecutive sequences
of – more than 5 – printable ASCII characters ending with a null byte. This heuristic can
be broken by the convert static data to procedural data obfuscation transformation presented
in Section 3.3. If there defender uses this obfuscation transformation to break strings into
single (encoded) characters, which are dynamically (decoded and) stitched together in the
correct order, this attack is no longer feasible. Therefore, after applying this obfuscation
transformation, the attacker has to either find a better approach or roll-back to a brute-force

130

7. Improving Obfuscation Transformations Against Symbolic Execution

on the input space.
A further approach is to locate the checks inside the code and then patch them, such that

entering a correct license key is no longer necessary (right-most child of the root in the tree
from Figure 7.1). Locating the checks inside the code can be done in two different ways.
The first way is to use a static pattern for license checks and identify all instructions in the
code that match this pattern. However, such patterns can be erased by employing code
obfuscation transformations such as virtualization. The second way to locate checks it by
performing information-flow analysis, e.g. via taint analysis on the value given as input to
the license key argument. This way, any branch in the code that depends on a tainted value
can be considered a license check. Nevertheless, this attack can be hampered by adding
opaque predicates based on symbolic values, to every branch in the existing code. These
opaque predicates can be easily added such that they do not affect the original functionality
of the program. This would cause taint analysis to identify all branches as license checks,
which is incorrect.

Therefore, according to the attack-defense tree from Figure 7.1, another way to bypass the
license check is to extract the license key value from the code via symbolic execution. One
may object that symbolic execution could also be hampered by using a cryptographic hash
function on the input license key and comparing the result of the hash with a hard-coded
value. However, without applying any code obfuscation transformation on top of this hash
function, it would be easy to locate and patch using code pattern matching.

7.2. Existing Anti-Symbolic Execution Obfuscations

Anand et al. [2] indicate 3 fundamental issues of symbolic execution: (1) path explosion, (2)
path divergence and (3) complex constraints. Therefore, works that propose obfuscation
techniques against symbolic execution focus on exploiting at least one of these fundamental
issues, which we discuss in the following.

7.2.1. Path Explosion

Wang et al. [219] propose an approach based on an unsolved mathematical problem, which
involves only linear operations on integers, called the Collatz conjecture [91]. This obfusca-
tion implies adding a loop bounded by a symbolic value to an existing program. Such a loop
would generate a path explosion for the symbolic execution engine, however, executing
it dynamically, it will always converge to a fixed known value, i.e. 1 in the case of the
Collatz conjecture. Our work also proposes an approach that causes path explosion, how-
ever, in contrast to Wang et al. [219], our approach is not based on unsolved mathematical
conjectures.

131

7. Improving Obfuscation Transformations Against Symbolic Execution

7.2.2. Path Divergence

Yadegari and Debray [227], Sharif et al. [191] and Cavallaro et al. [42] show that converting
explicit control-flow into implicit control-flow hampers white-box test case generators based
on taint-analysis and symbolic execution. Path divergence refers to situations where the
symbolic execution engine cannot compute precise path constraints from the program code.
This leads to a divergence between generated tests and the actual program paths.

The key to transforming explicit to implicit control flow is using symbolic variables for
computing an address where the program jumps to unconditionally. This transformation
removes any comparisons between the symbolic variables and constants used by sym-
bolic execution engines. In the case of such obfuscation transformations one may employ
heuristics based on knowledge about the architecture of the CPU [227].

Another type of obfuscation transformation which is known to cause path divergence
is dynamically modifying code [10]. Such code cannot be analyzed statically, because its
static image changes at runtime while the code is executing. If the value of the instructions
that are being dynamically generated depend on input values, then the symbolic execution
engine must guess the right value of the instruction that is to be executed, which is difficult.
The drawback of dynamically modifying code is that it opens the door to remote attacks.
Since most software developers are more concerned about remote attacks than automatic
analysis attacks, they would avoid using such transformations and resort to obfuscation
transformations which do not induce this risk. Therefore, in this work we proposed
obfuscation transformations which do not introduce remote attacks.

7.2.3. Complex Constraints

Applying cryptographic hash functions to equality checks based on input values is a
type of data obfuscation transformation, which is problematic for symbolic execution. In
particular, the SMT solvers used by symbolic execution engines are known to have practical
limitations w.r.t. inverting cryptographic hash functions [154, 191]. However, we note that
cryptographic hash functions are based on large look-up tables containing random numbers
which are publicly known and easy to locate in code, if they are not obfuscated using one of
the transformations presented in Chapter 3. Therefore, we argue that an active MATE attack
will be able to locate and disable explicit checks which only use hash functions on input
values. Implicit checks cannot be disabled, however they may cause the application to
crash which is undesirable for many developers or even worse they may open the door for
remote attacks as discussed in the previous paragraph. Moreover, hash functions are only
applicable for equality comparisons and therefore range comparisons need to be protected
in a different way. In this chapter we discuss obfuscation transformations that hide the
location of checks via control-flow obfuscation.

132

7. Improving Obfuscation Transformations Against Symbolic Execution

Listing 7.1: Range divider with 2 branches
1 if (x > 42)
2 z = x + y + w
3 else
4 z = (((x ˆ y) + ((x & y) << 1)) | w) +
5 (((x ˆ y) + ((x & y) << 1)) & w);

Listing 7.2: Program with loop
1 int main(int argc, char* argv[]) {
2 unsigned char *str = argv[1];
3 unsigned int hash = 0;
4 for(int i = 0; i < strlen(str); str++, i++) {
5 hash = (hash << 7) ˆ (*str);
6 }
7
8 if (hash == 809267)
9 printf("You win!");
10
11 return 0;
12 }

7.3. Proposed Obfuscation Transformations

The proposed obfuscation transformations are inspired by observation 10 in step 3 of
the experiment described in Section 5.2.2, i.e. branch instructions added by control-flow
obfuscation transformations do not depend on program inputs. Therefore, we propose
making branch instructions added by control-flow obfuscation transformations dependent
on program inputs to increase the slowdown of symbolic execution by creating a path
explosion. Making such branch instructions input dependent may or may not be effective
for existing obfuscation transformations. For instance, making the opaque predicates p
added by Tigress input dependent, causes KLEE to issue a query that includes the branch
condition corresponding to p. However, the SMT solver always determines that p or ¬p
is unsatisfiable or it times out before it can find any satisfiable assignment and does not
analyze the code in such unfeasible paths. In the following we propose two obfuscation
transformations which introduce feasible paths in the original program.

7.3.1. Range Dividers

Our first proposal is an obfuscation transformation called range divider. Range dividersRange dividers
are branch conditions that can be inserted at an arbitrary position inside a basic block,
such that they divide the input range into multiple sets. In contrast to opaque predicates,
range divider predicates may have multiple branches, any of which could be true and false
depending on program input. This will cause a symbolic execution engine to explore all
branches of a range divider. In order to preserve the functionality property of an obfuscator,
we use equivalent instruction sequences in all branches of a range divider predicate, as

133

7. Improving Obfuscation Transformations Against Symbolic Execution

Listing 7.3: Program from Listing 7.2 obfuscated with range divider
1 int main(int argc, char* argv[]) {
2 unsigned char *str = argv[1];
3 unsigned int hash = 0;
4
5 for(int i = 0; i < strlen(str); str++, i++) {
6 char chr = *str;
7 if (chr > 42) {
8 hash = (hash << 7) ˆ chr;
9 } else {
10 hash = (hash * 128) ˆ chr;
11 }
12 }
13
14 if (hash == 809267)
15 printf("You win!");
16
17 return 0;
18 }

illustrated in Listing 7.1. To prevent compiler optimizations from removing range divider
predicates, due to equivalent code in their branches, we employ software diversity (on the
code of every branch) via different obfuscation configurations, e.g. in Listing 7.1 we used
the EncodeArithmetic transformation of Tigress, on the else branch. We have experimented
with all optimization levels of LLVM clang and none of them remove range divider predicates
if their branches are obfuscated. On the downside, range dividers increase the size of the
program proportionally to the total number of branches.

The effectiveness of a range divider predicate against symbolic execution depends on:

1. The number of branches of the predicate, denoted ρ; note that for switch-statements
ρ > 2 and is equal to the number of cases plus the default branch.

2. The number of times the predicate is executed, denoted τ .

More specifically, its number of paths increases according to the function: ρτ . For example,
consider the program from Listing 7.2, which computes a value (hash) based on its first
argument (argv[1]) and outputs “You win!” on the standard output if this value is equal
to 809267. It has an execution tree with 2 × strlen(argv[1]) paths, because it does
not contain a range divider. The search tree corresponding to applying symbolic execution
to this program is illustrated in Figure 7.2a. Note that – for the sake of brevity – the
nodes do not contain the entire source code, but just an indication of where the instruction
pointer is pointing to. We also only show branch conditions in all internal nodes, the
leaves are just the printf and the return statements. Note that the goal of the search
is to find a node where the instruction pointer is at printf and the node is SAT. The
depth of this tree is proportional to the length of the input. The program in Listing 7.3 is
obtained by obfuscating the program from Listing 7.2 using divide range predicate with
ρ = 2 branches. The resulting program has 2strlen(argv[1]) paths, because the predicate

134

7. Improving Obfuscation Transformations Against Symbolic Execution

(a) Search tree for program without
range divider (Listing 7.2). (b) Search tree for program with range divider (Listing 7.3).

Figure 7.2.: The effect of range dividers on the search tree.

is executed τ = strlen(argv[1]) times. The search tree corresponding to applying
symbolic execution to this program is illustrated in Figure 7.2b. Note the new nodes
labeled rd:if, which represents the if -statement corresponding to the range divider on line 7 of
Listing 7.3. Similarly to the search tree from Figure 7.2a, the depth of this tree is proportional
to the length of the input, but the number of paths is much larger.

Limitations of range dividers We can further increase the number of paths by adding
more branches to the divide range predicate from Listing 7.3. However, the number of
possible branches is upper-bounded by the cardinality of the type of the variable used in
the range divider. In the example from Listing 7.3 the maximum number of branches is
256 because variable chr is of type char. Therefore, the maximum number of branches
in this example is achieved by a switch-statement with 256 cases as shown in Listing 7.4.
This effectively results in a branching factor of ρ = 256 for each iteration of the loop. Hence,
the number of paths is 256strlen(argv[1]). The symbolic execution slowdown induced by
range dividers is caused by: (1) the increase in the number of paths, but also (2) the type of
obfuscation transformations applied on each branch of each range divider.

7.3.2. Input Invariants

The divide range obfuscation transformation proposed in Section 7.3.1 may induce a high
increase in the effort needed by symbolic execution engines. However, this depends on
the code which is being obfuscated. If the code does not include any loops (e.g. the
program from Listing 7.5), then obfuscating with range dividers will not induce a significant
slowdown of symbolic execution attacks. Therefore, in this section we propose obfuscation
transformations which are able to obfuscate even the simplest code, however, with the
cost of changing the exact input-output semantics of the program. That is, we deliberately
violate the functionality property of the obfuscator definition of Barak et al. [26], which states

135

7. Improving Obfuscation Transformations Against Symbolic Execution

Listing 7.4: Program from Listing 7.2 obfuscated with maximum number of branches of
range divider

1 int main(int argc, char* argv[]) {
2 unsigned char *str = argv[1];
3 unsigned int hash = 0;
4
5 for(int i = 0; i < strlen(str); str++, i++) {
6 char chr = *str;
7 switch (chr) {
8 case 1: hash = (hash << 7) ˆ chr;
9 break;
10 case 2: // obfuscated version of case 1
11 break;
12 ...
13 default: // obfuscated version of case 1
14 break;
15 }
16 }
17
18 if (hash == 809267)
19 printf("You win!");
20
21 return 0;
22 }

that if O(P) is the obfuscated version of program P : D → R, where D,R ⊂ {0, 1}∗ are the
input domain, respectively output range of the program, then ∀i ∈ D : P (i) = O(P)(i).
However, Barak et al. [26] also define an approximate obfuscator as a transformation for
which the functionality property holds with high probability. Similarly to an approximate
obfuscator, our obfuscation approach relaxes the functionality property, but does so in a
different way. In our approach the functionality property only holds for the set of inputs
that satisfy the input invariants (i.e. predicates over inputs), specified by the user to the
obfuscation engine. For all other input values the behavior of the program is undefined.
With this obfuscation approach, we are essentially extending the input domain and output
range of a program, i.e. O(P) : D′ → R′, where D ⊆ D′ and R ⊆ R′. In fact one could
imagine the extensions go even further, allowing O(P) to fail in different ways than P , such
as P crashing on bad inputs, while O(P) entering an infinite loop on the same bad inputs,
or producing the wrong results, etc. We believe this idea has very interesting implications
for future implementations of obfuscation transformations.

An implementation of input invariants We have implemented this transformation on
top of the Virtualize transformation of Tigress [55]. We picked Virtualize because of its high
number of branches in the interpreter, however, note that this idea could be applied to
the control-flow flattening as well. Intuitively, we want to make all of the branches of the
interpreter dependent on a symbolic value, which in the case of bypassing license checks is
the input argument. Therefore, we use the resulting value of the input invariant predicate
as a key to encode the virtualized bytecode program, before sending it to the end-user. At

136

7. Improving Obfuscation Transformations Against Symbolic Execution

Listing 7.5: Point function program
1 int main(int argc, char* argv[]) { // Virtualization bytecode:
2 char branch_cond = 1; // a5 00 07
3
4 branch_cond &= argv[1][0] == ’1’; // 87 00 00 02
5 branch_cond &= argv[1][1] == ’2’; // 87 00 01 03
6 branch_cond &= argv[1][2] == ’3’; // 87 00 02 04
7 branch_cond &= argv[1][3] == ’4’; // 87 00 03 05
8 branch_cond &= argv[1][4] == ’5’; // 87 00 04 06
9
10 if (branch_cond) // 1f 00 02
11 printf("You win!\n"); // 03 00
12 return 0; // 42 01
13 }

runtime, the input invariant predicate will be applied to the input given by the end-user and
the result will be used to decode the bytecode, hence, causing all decoded bytecode values
to be symbolic. This means that on each iteration of the interpreter the branching factor for
the symbolic execution search tree is going to be equal to the number of instruction handlers
of the interpreter. Moreover, if the attacker enters an input for which the invariant does
not hold, then the functionality of the program is different from its intended functionality,
i.e. it may crash due to the fact that there is no suitable instruction handler for the decoded
bytecode instruction, or it may execute another instruction handler.

For clarity, we provide all of the steps of the Virtualize transformation, including the input
invariants for the program in Listing 7.5. This program prints the message “You win!” on
standard output if the first argument passed to this program is equal to “12345”, similar to
our license check programs from previous chapters. The virtualization transformation is
applied to this program using the following steps and the result is illustrated in Listing 7.6:

1. Map variables, function parameters and constants to entries in a common data array,
which represents the memory of the interpreter. This array is initialized on lines 3-4
in Listing 7.6. Its first position represents the branch cond variable from Listing 7.5
and the following entries represent constants such as the return value, the ASCII
codes of the characters from ’1’ to ’5’ and logical true encoded as 1.

2. Map all statements in a function to a new randomly chosen language, which represents
the instruction set architecture (ISA) of the interpreter. In our example the ISA is defined
by:

• Variable assignment is encoded using 3 bytes, namely the opcode (0xa5) and
the index of the left- and right-hand operands inside the data array.

• Equality comparison, followed by applying the logical AND operation to be-
tween the result and another variable. Examples of such instructions are shown
on lines 4-5 in Listing 7.5. Such an instruction is encoded using 4 bytes, namely
the opcode (0x87), the variable to which the boolean value is assigned and the
two other byte values which are compared for equality.

137

7. Improving Obfuscation Transformations Against Symbolic Execution

Listing 7.6: Point function program with virtualization and input invariants
1 int main(int argc, char* argv[]) {
2 char const *strings = "You win!\0";
3 unsigned char data[8] = {0, // branch_cond var
4 0, 49, 50, 51, 52, 53, 1}; // constants
5 unsigned char code[30] = {0xa5ˆ0x91, 0x00ˆ0x91, 0x07ˆ0x91, 0x87ˆ0x91, 0x00ˆ0x91,
6 0x00ˆ0x91, 0x02ˆ0x91, 0x87ˆ0x91, 0x00ˆ0x91, 0x01ˆ0x91, 0x03ˆ0x91, 0x87ˆ0x91,
7 0x00ˆ0x91, 0x02ˆ0x91, 0x04ˆ0x91, 0x87ˆ0x91, 0x00ˆ0x91, 0x03ˆ0x91, 0x05ˆ0x91,
8 0x87ˆ0x91, 0x00ˆ0x91, 0x04ˆ0x91, 0x06ˆ0x91, 0x1fˆ0x91, 0x00ˆ0x91, 0x02ˆ0x91,
9 0x03ˆ0x91, 0x00ˆ0x91, 0x42ˆ0x91, 0x01ˆ0x91};
10 unsigned char decode_var = str_hash(argv[1]);
11 for (int i = 0; i < 30; i++) {
12 code[i] ˆ= decode_var;
13 }
14 int vpc = 0;
15 while (1)
16 switch (code[vpc]) {
17 case 0xa5 : // variable assignment
18 data[code[vpc+1]] = data[code[vpc+2]];
19 vpc += 3;
20 break;
21 case 0x87 : // equality comparison plus and
22 data[code[vpc+1]] &=
23 (argv[1][code[vpc+2]] == data[code[vpc+3]]);
24 vpc += 4;
25 break;
26 case 0x1f : // if statement
27 vpc += (data[code[vpc+1]]) ? 0 : data[code[vpc+2]];
28 vpc += 3;
29 break;
30 case 0x03 : // printf string
31 printf("%s\n", strings + code[vpc+1]);
32 vpc += 2;
33 break;
34 case 0x42: // return
35 return data[code[vpc+1]];
36 }
37 }

• Conditional branch statements are encoded using 3 bytes, namely the opcode
(0x1f), the boolean variable which is tested and the number of bytes to jump
over if the variable is false.

• Printing a string on standard output is encoded using 2 bytes, namely the opcode
(0x03) and the index of the string to be printed in the list of hard-coded strings
of the function. In our example the list of hard-coded strings contains only one
string and is defined on line 2 of Listing 7.6.

• The return instruction is encoded using 2 bytes, namely the opcode (0x42) and
the value that should be returned by the program.

Now we can write virtualization bytecode corresponding to the C program in Fig-
ure 7.5, which is shown in the comments of the code from the same figure.

138

7. Improving Obfuscation Transformations Against Symbolic Execution

Listing 7.7: Hash function applied to strings
1 unsigned char str_hash(char* str) {
2 unsigned char hash = 0xAA;
3 unsigned int i = 0;
4 for(i = 0; *str != 0; str++, i++) {
5 hash ˆ= ((i & 1) == 0) ? ((hash << 7) ˆ (*str) * (hash >> 3)) :
6 (˜((hash << 11) + ((*str) ˆ (hash >> 5))));
7 }
8 return hash;
9 }

Listing 7.8: Function from [220], which checks if first parameter has a value between the
values of the second and third parameters.

1 int range_hash(int x, int lower, int upper) {
2 int p = ((x - lower) ˆ ((x ˆ lower) & ((x - lower) ˆ x))) >> 31;
3 int q = ((upper - x) ˆ ((upper ˆ x) & ((upper - x) ˆ upper))) >> 31;
4 return 1 & ˜(p | q);
5 }

3. Generate a (random) hash or checksumming function to map an input invariant to
an integer number. In our example we use the str hash function from Listing 7.7,
which maps a string to an unsigned char value. This function is appropriate when we
use input invariants that require the input to be equal to a certain value. For input
invariants where the input is expected to be an integer number between 10 and 25,
the function would like the one from Listing 7.8. Note that these functions could be
further obfuscated to raise the bar even further.

4. Use the hash or checksumming function to generate a key based on the input invariant.
Encode each byte of the code array using this key. In our example applying the
function from Listing 7.7 to “12345” returns value 0x91 and we XOR each byte of
the code array with this value. The encoded bytecode is stored inside the code array,
which is initialized on lines 5-9 in Listing 7.6.

5. Add bytecode decoder code to the function, based on the input value entered by
the user. The decoder code can be seen on lines 10-13 in Listing 7.6, and it involves
XOR-ing each byte of the code array with the result of applying the hash function
to the user input. If the user input satisfies the invariants the bytecode is correctly
decoded, otherwise the result is garbage bytecode, and the behavior of the program is
undefined.

6. Create an interpreter for the previously generated ISA, which can execute the in-
structions in the code array using the data array as its memory. The input-output
behavior of this execution must be the same as that of the original program. The inter-
preter can be seen on lines 15-36 of Listing 7.6. It consists of an infinite while loop,
which has a switch statement inside. Each case section of the switch statement is

139

7. Improving Obfuscation Transformations Against Symbolic Execution

an opcode handler, i.e. each possible opcode in the bytecode program is processed
by a dedicated part of the interpreter. The current instruction to be processed by the
interpreter is indicated by an integer variable of the interpreter called the virtual pro-
gram counter (VPC). The VPC is used to index the instructions in the code array and
it is initialized with the offset of the first instruction in that array. In every instruction
handler the operands of the current instruction are used to perform the operation(s)
corresponding to this instruction. Afterwards, the VPC is set to the offset of the
following bytecode instruction to be executed. This interpreter should be augmented
with cases representing bogus opcodes for all possible byte values in order to increase
the branching factor in the search tree associated to symbolic execution.

A user can specify the input invariants using: (1) the position of the argument in the list
of arguments, (2) the type of the argument (integer or string) or its length and (3) the exact
value or the interval of possible argument values. Note that different invariant types lead to
keys with different cardinalities. The invariants with the highest cardinality keys are those
that specify an integer or string argument with an exact value.

By using the invariant as a decoding key, we multiply the size of the search tree for
symbolic execution by the cardinality of the range of possible key values (denoted C).
However, if the number of different instruction opcodes (denoted O) is lower than C, then
the branching factor of the search tree associated to symbolic execution isO. If we denote the
length of a trace of a bytecode program – measured in number of random ISA instructions –
as L, then the number of paths in the obfuscated program is equal to min(C,O)L.

As opposed to range dividers, – which cause an exponential path explosion when the
original (un-obfuscated) program already contains a loop where the range divider predi-
cate is inserted – our virtualization obfuscation based implementation of input invariants
introduces a loop structure even if the original program does not contain one. Therefore,
input invariants offer a higher degree of resilience against symbolic execution attacks, to a
wider range of programs than range dividers.

Limitations of input invariants The effectiveness of this transformation against symbolic
execution engines is higher than any other transformation we have employed in our case-
study. To illustrate its effectiveness, we have chosen a program consisting of a single
if-statement shown in Listing 7.5, because it is representative of the simplest possible code
structure that one may want to protect against symbolic execution. We obfuscated this
program using our modified Virtualize transformation with the invariant that the input is
equal to 12345 and executed both the original program from Listing 7.5 and its obfuscated
counterpart using KLEE. The point function from the program in Listing 7.5 was analyzed
in approximately 500 milliseconds. While attempting to run the symbolic execution engine
uninterrupted, similar to experiment 2 from Section 5.2.2, we resorted to stopping the
analysis of the obfuscated program after it ran for 1 week. However, we note that the
test suite that would find the path that prints “You win!” (the goal of experiment 5 in
Section 5.2.3) was found in approximately 4980 seconds, which is still a slowdown by 4

140

7. Improving Obfuscation Transformations Against Symbolic Execution

orders of magnitude w.r.t. the unobfuscated counterpart. Contrast this with the smaller
slowdown factors from Table 5.9.

7.4. Summary

In this chapter we have seen that obfuscation can affect search problems in two different
ways, i.e.:

• Obfuscation can increase the branching factor and/or the depth of the goal state in
the search tree, e.g. increasing the range of the license key implies a goal state at a
greater depth in the search tree corresponding to random testing.

• Obfuscation can break the heuristic used by the search strategy, e.g. converting
constant strings to procedures – that reconstruct the constant strings at runtime –
breaks the heuristic used by the extraction of hard-coded standard C-strings.

Afterwards we have presented existing obfuscation transformations, specifically targeted
towards raising the bar against attacks based on symbolic execution. These transformations
are divided into three categories, named after the weakness of symbolic execution that they
target, namely: path explosion, path divergence and complex constraints. Subsequently,
we proposed two obfuscation transformations which result in a path explosion called:
range dividers and input invariants. We chose to focus on obfuscation transformations that
cause a path explosion, because in Chapter 5 we observed that many existing obfuscation
transformations that increase cyclomatic complexity of the program, do not cause a path
explosion. The two proposed obfuscation transformations are tunable according to the
application to be protected and cause an exponential increase in the number of paths in the
search tree corresponding to symbolic execution.

141

Part III.

Related Work and Conclusion

143

8. Related Work

This chapter presents related work in the sub-field of obfuscation strength eval-
uation and alternative solutions to software obfuscation and diversity for the
purpose of software protection. Parts of this chapter have been published in
peer-reviewed publications [21, 18, 17, 112] co-authored by the author of this
thesis.

The main contribution of this thesis is related to the characterization of obfuscation
strength. Therefore, we describe different existing approaches to this problem. Moreover,
we also present alternative and complementary approaches to software obfuscation and
diversity. Figure 8.1 shows a classification of protections against MATE attacks proposed
by Collberg et al. [58]. We will briefly discuss about each of these protection classes in
this chapter. The obfuscation class from Figure 8.1 can be generalized to any software-only
protection that does not rely on trusted entities. Consequently, we also present a few com-
plementary approaches to obfuscation that fit into this class. Complementary approaches
include those technical protections that should be mixed with software obfuscation and
code diversity to raise the bar against attacker.

8.1. Characterizing Obfuscation Strength

Since the obfuscation taxonomy of Collberg et al. [58], there have been several works that
tackle the problem of characterizing or quantifying the strength of obfuscation from a
variety of angles. In this section we classify them in three main categories, namely (1)
formal approaches, (2) empirical approaches based on human-assisted MATE attacks and
(3) empirical approaches based on automated MATE attacks. In the following we present
representative works from each of these classes and we contrast them to this thesis.

8.1.1. Formal Approaches

Dalla Preda [64] models attacks against obfuscation transformations as abstract domains
expressing certain properties of program behaviors. Since obfuscation transformations
are characterized by the most concrete preserved property, the complete lattice of abstract
domains allows comparing obfuscation transformations with respect to their potency
against various attackers. Therefore, an obfuscation transformation is either effective
against an attacker or not, regardless of the difference in effort needed to deobfuscate

145

8. Related Work

Figure 8.1.: Classification of protections against MATE attacks proposed in [58].

programs obfuscated with different transformations. Our work provides a more fine
grained characterization of the resilience of obfuscation transformations w.r.t. to the effort
required by the attacker to deobfuscate a program.

Pucella and Schneider [174] investigate the effectiveness of defenses based on software
diversity, in the context of memory safety. Their main result is to characterize such defenses
as to be probabilistically equivalent to strong typing which would guarantee memory safety
for buffers, thus reducing the security of the defense mechanism to the strength of strong
typing. In particular, they analyze address obfuscation [32], a defense mechanism against
memory corruption attacks, that uses a secret key to randomize the offsets of code and
data in heap memory. Their idea is to treat address obfuscation as a probabilistic type
checker, which has a certain probability p of crashing the program when a buffer overflow
occurs. As opposed to Pucella and Schneider [174], this thesis does not consider attacks
that exploit memory safety vulnerabilities, but automated MATE attacks. Moreover, we
provide a framework to reduce any automated MATE attack to search problems, whose
expected cost can be estimated using characteristics of the program under attack or any
artifact (e.g. instruction execution traces), generated by that program.

Ganesh et al. [88] propose the concept of attack resistance, which takes a crypto-like
approach towards quantifying the strength of defenses based on software diversity against
known attacks, e.g. code injection. As opposed to our framework which covers all MATE
attackers, attack resistance only focuses on code injection attacks, which exploit buffer
overflow vulnerabilities. Moreover, attack resistance quantifies the strength of a defense
mechanism (e.g. ISR [126]), by indicating the probability of a successful attack, while we
compute the average effort for an attack measured in time (e.g. CPU cycles) or memory
(e.g. MBs).

8.1.2. User Studies

Sutherland et al. [199] and Ceccato et al. [43, 44] characterize the strength of obfuscation
transformations by potency against human-assisted attacks, e.g. step-by-step debugging.
This involves user studies where test subjects are asked to perform some tasks (e.g. bypass a

146

8. Related Work

check or recover information) on code obfuscated with a limited number of transformations.
Such user-studies are inherently biased by small sets of test subjects. Moreover, test subjects
are generally bachelor or master students of computer science, which are seldom experi-
enced in reverse engineering obfuscated code. Nevertheless, such works are important
for measuring potency against human-assisted attacks; our work is complementary to this
approach.

Sutherland et al. [199] perform a user study, where they find that the ability/knowledge
of the MATE attacker is significantly correlated with the success rate of the subjects. On the
other hand they also present empirical results showing that the success rate of the human-
assisted MATE attacks are not strongly correlated with the number of LOC, cyclomatic
complexity or with any Halstead metrics. This result is similar to our finding from Chapter 6,
however, we have only focused on automated MATE attacks using symbolic execution, not
on human-assisted attacks.

Ceccato et al. [43] confirm the results of Sutherland et al. [199] for un-obfuscated programs,
however, they find that by obfuscating these programs, the gap between the success
rate of knowledgeable and less knowledgeable subjects decreases. This means that even
knowledgeable MATE attackers must spend a large amount of effort when dealing with
obfuscated code. In another work Ceccato et al. [44] investigate the relative strength of
two different obfuscation transformations, namely scrambling identifier names and opaque
predicates. They find that scrambling identifier names poses more challenges for human-
assisted attacks than opaque predicates. This holds in the context where identifiers in the
original program have a proper semantic meaning (in English). This finding emphasizes the
difference between human-assisted MATE attacks – which is the focus of user studies – and
automated MATE attacks – which is the focus of this thesis – because scrambling identifier
names has no effect on automated attacks.

8.1.3. Code Metrics Based Approaches

Udupa et al. [209] propose using the edit distance between control flow graphs of the
original code and deobfuscated code. Mohsen and Pinto [155] propose using Kolmogorov
complexity. However, they do not attempt to predict the effort needed for deobfuscation,
which has been identified as a gap in this field [199]. In this thesis we focus on predicting
the effort needed by a deobfuscation attack.

Karnick et al. [124] proposed to measure the quality of Java obfuscators by summing
up potency and resilience and subtracting cost of memory consumption, file storage size
and execution time from the sum. They measure potency with a subset of the features
proposed by Collberg et al. [58]. They measure resilience by using concrete implementations
of deobfuscators, measuring whether they were successful or if they encountered errors and
averaging the measurements across the total number of deobfuscators. We acknowledge that
using multiple concrete implementations of a deobfuscation attack (e.g. disassembly, CFG
simplification) is important to weed out any issues specific to a particular implementation.
In this work we aim to provide a more fine-grained measure of deobfuscation effort,

147

8. Related Work

instead of a categorical classification such as succeeded or failed for each deobfuscation attack
implementation, as done in [124]. Moreover, we also predict this fine-grained effort.

Anckaert et al. [7] propose applying concrete software complexity metrics on four pro-
gram properties (i.e. instructions, control flow, data flow and data), to measure resilience.
Several of the metrics indicated in [7] overlap with those proposed by Collberg et al. [58],
however, other metrics are included such as: number of operands of an instruction, the
number of different values of these operands, knot count [223], number of live values,
size of points-to sets, number of def-use pairs [202], distance between def-use pairs in
traces. Similarly to our work, Anckaert et al. [7] measure resilience of different obfuscating
transformations against concrete implementations of deobfuscation attacks. Nonetheless,
they apply deobfuscation attacks which are specific to different obfuscating transforma-
tions, while we use a general deobfuscation attack (based on symbolic execution) on all
obfuscating transformations. Moreover, they disregard the effort needed for deobfuscation
and measure the effect of different obfuscating transformations on software complexity
metrics and the subsequent effect of deobfuscation on these metrics. In this thesis we not
only measure but also predict the effort needed to run a successful deobfuscation attack.
Moreover, the experiments from Section 6.2 indicate that SAT features – that are most
important for slowing down symbolic execution – are not affected by applying control-
flow obfuscation transformations such as opaque predicates, even though code complexity
metrics are increased.

Vissagio et al. [213] propose using a combination of static code metrics (i.e. n-gram,
entropy and word size) in order to detect if a certain JavaScript program is obfuscated or not.
In the process they also compare which of the four different obfuscation transformations are
more resilient to this detection approach by comparing the p-values of different statistical
tests (i.e. Mann-Whithney and Kolmogorov-Smirnov). We see their work as complementary
to ours, however, as opposed to our approach, it does not give an indication of the effort
needed by the attacks.

Wang et al. [217] also use attack nets in order to quantify the cost of MATE attacks. As
opposed to our work, they assume a range of six discrete values for the cost of a transition,
i.e. {1, 5, 10, 15, 20, 25}where higher values indicate a higher cost of the transition. In this
thesis, we focus on a fine grained quantification of transitions.

Wu et al. [224] propose using a linear regression model over a fixed set of features, for
measuring the potency of obfuscating transformations. In contrast to our work, they do
not provide any evaluation of their approach. They suggest obtaining the ground truth
for training and testing a linear regression model, from security experts who manually
deobfuscate the obfuscated programs and indicate the effort required for each program,
which is far more expensive compared to our approach of using automated attacks. We
obtain our ground truth by running an automated attack and recording the effort (measured
in execution time), needed to deobfuscate programs. Moreover, we also propose a way of
selecting which features to use for building a regression model.

In sum, Collberg’s taxonomy [58] proposes evaluating obfuscation using four dimensions.
Most of the related work focuses on simply measuring potency, resilience and cost. Wu

148

8. Related Work

et al. [224] discuss estimating potency. Zhuang and Freiling [233] propose using a naive
Bayes algorithm to estimate the optimal sequence of obfuscating transformations, from a
performance point of view. Kanzaki et al. [122] propose code artificiality as a measure to
estimate stealth. However, there is a gap in estimating resilience, which we fill in this work.

8.2. Alternatives to Diverse Obfuscation

As indicated in Figure 8.1, there are several ways in which one could protect against MATE
attacks. Since in this thesis we focus on technical protection via obfuscation, we present the
other types of protections in the remainder of this chapter.

8.2.1. Encryption via Trusted Hardware

Software protection via encryption is usually enabled by trusted hardware, also called
trusted computing. Intel has released a hardware based technology [5], known as Software
Guard eXtension (SGX), which enables software developers to protect the confidentiality of
their applications’ code via protected execution areas called enclaves. Dewan et al. [71] also
use a trusted hypervisor to protect the sensitive memory of programs against unauthorized
access by leveraging trusted hardware. Feng et al. [81] propose performing randomly-timed
stealthy measurements which can be validated locally, using Intel’s Active Management
Technology [113]. These approaches provide high security guarantees. However, they
require trusted hardware to be available and the installation of a hypervisor. Software
developers of popular software (e.g. web browsers), generally do not want to restrict their
user base by imposing such requirements.

8.2.2. Server-Side Execution

Tamper protection via communication with trusted servers is employed in massive multi-
player online games (MMOGs) to detect cheating. Anti-cheat software such as PunkBuster
[78], Valve Anti-Cheat (VAC) [211], Fides [121] and Warden [107] perform client-side com-
putation, which are validated by a trusted server.

Martignoni et al. [145] and Seshandri et al. [187] propose establishing a trusted computing
base to achieve verifiable code execution on a remote un-trusted system. The trusted
computing base in the two methods is established using a verification function. The
verification function is composed of three components: (i) a checksum function, (ii) a send
function, and (iii) a checksum function. However, the main difference between the two
methods is the checksum function. In the work of Martignoni et al. [145] generates a new
checksum function each time and sends it encrypted to the un-trusted system. In the
work of Seshandri et al. [187], the checksum function is known a priori and the challenge
issued by the dispatcher consists in a seed that initializes this function. Since the remote
component in both methods knows precisely in which execution environment the function

149

8. Related Work

must be executed and knows the hardware characteristics of the un-trusted system, it can
compute the expected checksum value and can estimate the amount of time that will be
required by the un-trusted system to decrypt and execute the function, and to send back the
result. Since Intel x86 architecture, the architecture for which the approach of Seshandri et
al. [187], was developed, is full of subtle details, researchers have found ways to circumvent
the remote component. Also, a limitation of the approach of Martignoni et al. [145], is the
impossibility to bootstrap a tamper-proof environment on simultaneous multi threading
(SMT) or simultaneous multi processing (SMP) systems. On such systems, the attacker
can use the secondary computational resources (parallel threads for example) to forge
checksums or to regain control of the execution after attestation.

Jakobsson and Johansson [119] propose a similar technique for detecting malware on
mobile devices. Collberg et al. [56] propose tamper protection by pushing continuous
updates from a trusted server to the client, which force the attacker to repeat reverse
engineering and patching on each update. One disadvantage of these protection techniques
is their dependence on external trusted servers. This dependence may cause a denial-of-
service to end-users of the protected software applications which are also meant to be used
offline, in case Internet connectivity is unavailable. Therefore in this thesis we focus on
solutions that operate locally, i.e., without dependence on a trusted server.

8.2.3. Code Tamper-detection and Tamper-proofing

Code tamper-detection and tamper-proofing are complementary techniques to software
diversity and obfuscation and they aim to detect, respectively prevent unauthorized modifi-
cations of a program’s code. However, these techniques are not generally stealthy, and hence
they should be combined with diverse obfuscation in order to hamper MATE attackers
from disabling such mechanisms.

Chang and Atallah [45] propose building a network of code regions, where a region can
be a block of user code, a checker, or a responder. In this method checkers check each
other in addition to user code by comparing a known checksum of piece of code to runtime
checksum of the same code. If the checker has discovered that a region has been tampered
with, a responder will replace the tampered region with a copy stored elsewhere. An
important aspect of this algorithm is that it is not enough for checkers to check just the code,
they must check each other as well. If checkers are not checked, they are easy to remove.
Horne et al. [110] build on top of [45], by hiding the expected (precomputed checksum)
value which is easy to identify, because of its randomness. The idea is to construct the
checksum function such that unless the code has been tampered with, the function always
checksums to a known number (usually zero). Having this function allows to insert an
empty slot within the region under protection, and later give this slot a value that makes the
region checksum to zero. The technique of Horne et al. [110] randomly places large numbers
of checkers all over the program, but makes sure that every region of code is covered by
multiple checkers. To minimize pattern-matching attacks, this method describes how to
generate a large number of variants of lightweight checksum functions. The disadvantage

150

8. Related Work

of the code introspection approach used by both [45] and [110] is its stealthiness, because
code that reads itself is seldom used for other purposes.

Chen et al. [46] propose an idea called oblivious hashing, where the checksum value is
computed over the execution trace rather than the static code. The checksum can be computed
by inserting instructions that monitor changes to variables and the execution of instructions.
A problem with automating this technique, is that it is hard to predict what side effects a
function might have. It might destroy valuable global data or allocate extraneous dynamic
memory that will never be properly freed. Furthermore, there is a problem with non-
deterministic functions that depend on the time of day, network traffic, thread scheduling,
and so on, because they do not have a fixed output that can be checked. This technique
also faces the issue of automatically generating challenge data (test inputs) that most of
the code of a function. The approach by Ibrahim and Banescu [112] implements a variant
of oblivious hashing therefore it also suffers from the same disadvantages. However, we
address the last issue by proposing the use of symbolic execution in order to generate the
challenge data.

Jacob et al. [117] propose an approach which depends on a unique property of the x86
instruction set architecture (ISA). The x86 ISA has a variable instruction length (1-15 bytes)
with no alignment, this means instructions can start at any offset in the code. This results in
the possibility of having overlapping or even nested instructions. So the basic idea will be
that when a block is executed it computes a checksum of another block. For the purpose of
protecting the code, we need two blocks to share instruction bytes. Having two blocks to
share instruction bytes, can be achieved by interleaving the instructions and inserting jumps
to maintain semantics. The advantage in this technique is that the code checksumming
computations will not require reading the code explicitly. The disadvantage is mainly the
performance overhead of the added instructions. Jacob et al.[117] report that the protected
binary can be up to three times slower than the original. Even though this overhead may
be acceptable in many circumstances, this technique cannot be applied to programs that
execute on the Common Language Runtime such as programs written in C#.

Cappaert et al. [41] propose a technique that hinders both code analysis and tampering
attacks simultaneously through code encryption. During run-time, code decryption can be
done at a chosen granularity (e.g. one function at a time), when that part of code is needed
at run-time. This technique performs integrity-checking of the code by using it to compute
the keys for decryption and encryption. The basic idea is using the checksum value of a
function, as the decryption key of another function. The advantage of this technique is
that the encryption key is computed at run time, which means the key is not hard-coded
in the binary and therefore hard to find through static analysis. The disadvantage of this
technique is the run-time overhead as well as the its stealth.

151

8. Related Work

8.3. Summary

On the one hand, formal approaches to characterizing strength of software protection either
provide coarse grained quantification (e.g. resistant or not resistant against an attack) or
they focus on remote attacks. User studies generally focus on measuring the potency of
human-assisted MATE attacks. We focus on automated MATE attacks.

On the other hand, approaches based on code metrics focus only on measuring: potency,
resilience and cost, which also considers automated MATE attacks. We do not only measure
the resilience against automated MATE attacks, but also provide a search model that can be
used to reason about the characteristics which are most relevant for such attacks. Moreover,
we use the identified characteristics to predict the time needed by a symbolic execution to
successfully attack a given program. Finally, we also provide solutions in the form of novel
obfuscation transformations for raising the bar against such symbolic execution attacks.

Alternatives to obfuscation and software diversity that rely on trusted hardware or an
external trusted server, may offer stronger security guarantees than software obfuscation,
however, they also involve higher deployment costs. Other alternatives based on tamper-
detection and tamper-proofing are often mixed together with obfuscation and software
diversity in order to improve their stealthiness.

152

9. Conclusions

This chapter first presents a summary of what has been done throughout the
chapters of this thesis. Subsequently, we state the results of the thesis and the
lessons learned during the development of this work. Afterwards, we discuss
limitations and avenues for future work.

This thesis presents a general approach towards characterizing the strength of obfuscation
against any automated Man-At-The-End (MATE) attack in the context of software diversity.
Even though the framework is not specific to practical obfuscation transformations, we have
only applied it to such transformations, because cryptographically secure obfuscation is
still far from being practical (see Chapter 2). Since there are dozens of practical obfuscation
transformations proposed in the literature (see Chapter 3), it is difficult for practitioners
to choose which transformations to use, even if they know the capabilities of the MATE
attacker. Therefore, in Chapter 4 we propose formalizing different steps of an automated
MATE attack as search problems. This formalization facilitates reasoning about the software
features which are most relevant for estimating the effort of such attacks, because this
effort is proportional to the search cost. This estimation enables practitioners to select those
obfuscation transformations which affect the software features that increase the effort of the
attack.

Our framework is applicable to any automated MATE attack. However, since it is not
feasible to do an in-depth study of all existing MATE attacks in the span of one doctoral
thesis, we wanted to find common step for several automated MATE attacks and perform
an in-depth case-study on it. We identified a common subgoal for the majority of dynamic
MATE attacks, which include, but are not limited to the following three attacker goals:

• Simplifying the CFG of an obfuscated program, as proposed by Yadegari et al. [228].

• Identifying and disabling the integrity checks hidden inside of an obfuscated program,
as proposed by Qiu et al. [175].

• Bypassing the license check(s) in obfuscated software with premium features, as
proposed by Banescu et al. [21].

This common subgoal is test case generation for the purpose of executing all the code of the
obfuscated program and finding specific paths in an obfuscated program (see Chapter 5).
This common subgoal allows us to set a limit to the number of obfuscation transformations

153

9. Conclusions

that should be applied to a program in order to defend against the previously enumerated
attacker goals (see Chapter 5).

Since test case generators involve searching for different test cases, we can formalize state-
of-the-art test case generators as search problems using our framework from Chapter 4.
For this purpose we pick test case generators based on symbolic execution and perform
different case-studies using manually written and automatically generated programs. The
reasons why we picked symbolic execution is that it represents a state of the art technique
for white-box test case generation. As opposed to black-box test case generation – which
is not affected by code obfuscation – symbolic execution is affected by code obfuscation
transformations, which are the focus of this thesis. In the case-studies we measured the
search cost of symbolic execution for thousands of programs obfuscated with various
practical code obfuscation transformations. The results confirmed that the software features
which we identified by formalizing symbolic execution as a search problem, are actually
relevant to characterize the effort of this automated MATE attack (see Chapter 5).

The software features that were identified to be relevant for characterizing the effort of
an automated symbolic execution attack, could be measured using dozens of metrics. Since
it is unclear which metrics a software developer should focus on when aiming to produce
the highest increase in effort for symbolic execution attacks, we proposed an approach
to prioritize these metrics by using regression models to predict the attacker effort (see
Chapter 6). This way we determined which features are the most important when it comes
to predicting the time needed for such attacks.

Finally, we have leveraged the information regarding the most relevant software features
for symbolic execution to propose novel obfuscation techniques, which raise the bar against
such automated MATE attacks (see Chapter 7). An implementation of one of the obfuscation
transformations we proposed, was able to increase the effort of symbolic execution by four
orders of magnitude w.r.t. applying the same attack on a program that was not obfuscated
using our technique.

Overall Conclusion Altogether, the chapters of this thesis answer all the research ques-
tions posted in Section 1.5. This indicates reaching the goal of this thesis (see Section 1.4),
i.e. having a framework that can characterize the strength of obfuscation and aid practition-
ers in choosing and/or developing new obfuscation transformations against all automated
MATE attacks.

9.1. Results and Lessons Learned

In this section we highlight some of the most interesting results and discuss the lessons
learned during the development of this thesis.

Obfuscation strength is proportional to effort of the best known automated MATE at-
tack. The strength of obfuscation can be quantified by estimating the effort of the best

154

9. Conclusions

known automated MATE attack. There are multiple known automated MATE attacks that
can achieve a certain attacker goal. Depending on the obfuscation transformations applied
to a program, an attacker will choose to apply the cheapest – in terms of time and/or
memory – automated MATE attack. If the attacker does not know which of the attacks is
the cheapest, s/he can run all known attacks in parallel and chose the best/cheapest attack.

All automated MATE attacks can be formalized as one or more search problems. The
key insight of this thesis is that all automated MATE attack consist of one or more steps. At
least one of these steps is a search problem, whose average case complexity can be estimated
using characteristics of the data structure used by the search algorithm. Moreover, many
automated MATE attacks have common steps. One example of a common step identified in
this thesis is automated test case generation.

Several control-flow obfuscation transformations are weak against symbolic execution.
Our empirical case-studies indicate that for the datasets of programs used in this thesis,
a subset of the existing obfuscation transformations are weak against white-box test case
generation via symbolic execution, when applied once, individually. This subset includes
popular obfuscation transformations described in Chapter 3, such as:

• Encoding (converting) constant literals to procedures, which compute these constant
values dynamically.

• Adding bogus control flow and dead code via opaque predicates, which are expres-
sions whose values are invariant during runtime.

• Flattening the control-flow of an application into a giant switch statement.

• Virtualization obfuscation, which maps the original program to a randomly generated
ISA and an interpreter for that ISA.

The rationale behind this finding is that such obfuscation transformations do not add addi-
tional execution paths dependent on symbolic variable, even though they do add numerous
branches to the program. The most resilient obfuscation transformation w.r.t. symbolic
execution attacks has proved to be arithmetic encoding, because it is the transformation
that increases the SAT features of a program to the highest extent. However, we have also
observed that virtualization and control-flow flattening do increase the time needed by
symbolic execution due to other software features. Moreover, we have observed that by
combining multiple obfuscation transformations the cost of symbolic execution is increased
significantly.

SAT features are more important than cyclomatic complexity, w.r.t. characterizing the
effort of symbolic execution attacks. For programs for which our generated dataset is
representative, features such as the complexity of path constraints (measured via SAT

155

9. Conclusions

features), are more important than cyclomatic complexity, size of the program, number
of conditional operations, etc. This insight is different from other works that focus on
characterizing the strength of obfuscation, which often use cyclomatic complexity and
program size as metrics for obfuscation strength. The rationale behind this observation
is that SAT features capture the complexity from instructions involving only symbolic
variables, and do not include complexity added by other instructions – like other code
metrics do – which do not significantly impact the time needed to symbolically execute a
program.

The effort needed by an automated MATE attack can be estimated using regression
based on the software features identified using our search model. Using the software
features identified using our search model, we were able to build regression models that
could estimate the effort (i.e. time) needed by a symbolic execution attack. With a median
error of 4% our best regression model can accurately predict the time it takes to deobfuscate
a program using a symbolic execution based attack, for programs in our dataset. Moreover,
we have also obtained encouraging results with realistic hash functions such as MD5 and
SHA instances used in SAT competitions. Such a prediction of the effort for an attack on a
certain application is important for practitioners, who can thus easily decide if they must
protect their applications using additional obfuscation transformations, without actually
needing to invest the effort to run the attack themselves. Note that such an attack could
cost days or weeks of computation time and delay time to market.

9.2. Limitations

The most important limitation of this thesis is the use of small, artificially created programs,
as opposed to performing a case-study using real-world programs, namely programs
containing calls to functions from third party libraries, OS API functions, etc. The main
reason behind this limitation is due to the fact the current symbolic execution engines do
not scale for most large (real-world) programs. Symbolic execution has several limitations
when applied to large software programs (see Section 7.2). Applying symbolic execution
with a small cutoff value of 1 hour – as we did for the thousands of small programs in our
case-studies – to a large program, would lead to a timeout of the SAT-/SMT-solver or the
symbolic execution engine itself. Such a timeout would mean an unsuccessful attack in the
context of our case-studies. However, symbolic execution is currently a highly active field
of research and has been successfully applied for finding bugs in Microsoft Windows 7 [95]
and it is being used by several teams in the DARPA Cyber Grand Challenge for automated
exploit generation [11]. Moreover, several deobfuscation techniques rely on symbolic
execution [185]. Furthermore, obfuscation is often applied only to parts of software to
minimize performance impact [57], hence attackers may isolate and symbolically analyze
smaller parts of the software [3]. Nevertheless, we cannot claim that the results from our
case-studies from Chapter 5 and Chapter 6 generalize to all programs. Our results also

156

9. Conclusions

inherit all the limitations and bugs inside tools used in our experiments (e.g. Tigres, KLEE,
angr, etc.).

The search model – which is the main insight of this thesis – can be applied to any other
automated MATE attack, which may scale to real-world programs as well. Such attacks
include those executed by modern fuzzers (e.g. AFL [231]), which were not investigated in
this thesis. Although, such attacks are a main direction of future work.

Our framework of characterizing obfuscation strength based on the effort needed by the
best known automated MATE attack, does not take into account unknown (e.g. future)
attacks. This means that our framework can only provide an upper bound on the lower
bound of the attacker effort, not a lower bound, which would be ideal for establishing
formal security guarantees. However, we note that the strength of standard cryptographic
ciphers (e.g. AES, RSA, ECC, etc.) is also quantified in a similar manner [74], namely using
the strength of the best known attacks against such ciphers.

9.3. Future Work

One direction of future work is to instantiate our search based framework and perform
case-studies using other automate MATE attacks. In this thesis we have focused only on
attacks based on symbolic execution, because they require no manual adjustments when
applied against several different popular code obfuscation transformations. However, in
order to bring additional empirical support for our hypothesis, all of the attacks described
in Chapter 4 should be investigated in-depth, at least to the same extent as we have
investigated symbolic execution in Chapters 5, 6 and 7.

In future work we also plan to use datasets consisting of real-world programs and ad-
ditional obfuscation tools. We believe that obtaining representative datasets of programs
would also be of paramount importance for benchmarking both new and existing obfusca-
tion and deobfuscation techniques. Therefore, we believe the research area of benchmark
(program) generation needs much more work, since it could be a driving factor for the field
of software protection.

Another avenue for future work is to employ other machine learning techniques in order
to derive better prediction models for deobfuscation attacks. An interesting idea in this
direction is deriving software features relevant for increasing automated MATE attack effort
using deep neural networks. However, such a task would also require a set of representative
un-obfuscated programs, which stresses the importance of future work in the direction of
benchmark generation.

157

Bibliography

[1] Adnan Akhunzada, Mehdi Sookhak, Nor Badrul Anuar, Abdullah Gani, Ejaz Ahmed,
Muhammad Shiraz, Steven Furnell, Amir Hayat, and Muhammad Khurram Khan.
Man-at-the-end attacks: Analysis, taxonomy, human aspects, motivation and future
directions. Journal of Network and Computer Applications, 48:44–57, 2015.

[2] Saswat Anand, Edmund K Burke, Tsong Yueh Chen, John Clark, Myra B Cohen,
Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, Phil McMinn, et al. An
orchestrated survey of methodologies for automated software test case generation.
Journal of Systems and Software, 86(8):1978–2001, 2013.

[3] Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. Demand-driven composi-
tional symbolic execution. In Tools and Algorithms for the Construction and Analysis of
Systems, pages 367–381. Springer, 2008.

[4] P. Ananth, D. Gupta, Y. Ishai, and A. Sahai. Optimizing obfuscation: Avoiding
barrington’s theorem. IACR Cryptology ePrint Archive, 2014:222, 2014.

[5] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innovative technology
for cpu based attestation and sealing. In Proceedings of the 2nd international workshop
on hardware and architectural support for security and privacy, volume 13, 2013.

[6] Bertrand Anckaert, Mariusz H Jakubowski, Ramarathnam Venkatesan, and Chit Wei
Saw. Runtime protection via dataflow flattening. In 2009 Third International Conference
on Emerging Security Information, Systems and Technologies, pages 242–248. IEEE, 2009.

[7] Bertrand Anckaert, Matias Madou, Bjorn De Sutter, Bruno De Bus, Koen De Bosschere,
and Bart Preneel. Program obfuscation: a quantitative approach. In Proceedings of the
2007 ACM workshop on Quality of protection, pages 15–20. ACM, 2007.

[8] S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

[9] Arxan. Obfuscation. https://www.arxan.com/technology/obfuscation/.
Accessed: 2017-03-03.

[10] David Aucsmith. Tamper resistant software: An implementation. In Information
Hiding, pages 317–333, 1996.

159

https://www.arxan.com/technology/obfuscation/

Bibliography

[11] Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert, Edward J Schwartz, Maverick
Woo, and David Brumley. Automatic exploit generation. Communications of the ACM,
57(2):74–84, 2014.

[12] David F Bacon, Susan L Graham, and Oliver J Sharp. Compiler transformations for
high-performance computing. ACM Computing Surveys (CSUR), 26(4):345–420, 1994.

[13] Lee Badger, Larry D’Anna, Doug Kilpatrick, Brian Matt, Andrew Reisse, and Tom
Van Vleck. Self-protecting mobile agents obfuscation techniques evaluation report.
Network Associates Laboratories, Report, pages 01–036, 2002.

[14] S. Banescu, M. Ochoa, A. Pretschner, and N. Kunze. Benchmarking indistinguishabil-
ity obfuscation - a candidate implementation. In Proc. of 7th International Symposium
on ESSoS, number 8978 in LNCS, 2015.

[15] Sebastian Banescu. Obfuscation Benchmarks. https://github.com/tum-i22/
obfuscation-benchmarks. Accessed: 2017-03-12.

[16] Sebastian Banescu. Cache timing attacks. http://www.academia.edu/
download/31092493/report.pdf, 2011. Accessed: 2017-03-30.

[17] Sebastian Banescu, Mohsen Ahmadvand, Alexander Pretschner, Robert Shield, and
Chris Hamilton. Detecting patching of executables without system calls. In Proceedings
of the Conference on Data and Application Security and Privacy, CODASPY ’17, 2017.

[18] Sebastian Banescu, Christian Collberg, Vijay Ganesh, Zack Newsham, and Alexander
Pretschner. Code obfuscation against symbolic execution attacks. In Proc. of 2016
Annual Computer Security Applications Conference. ACM, 2016.

[19] Sebastian Banescu, Christian Collberg, and Alexander Pretschner. Predicting the
resilience of obfuscated code against symbolic execution attacks via machine learning.
In Proceedings of the 26th USENIX Security Symposium, 2017.

[20] Sebastian Banescu, Ciprian Lucaci, Benjamin Krämer, and Alexander Pretschner.
Vot4cs: A virtualization obfuscation tool for c. In Proceedings of the 2016 ACM Workshop
on Software PROtection, pages 39–49. ACM, 2016.

[21] Sebastian Banescu, Martı́n Ochoa, and Alexander Pretschner. A framework for
measuring software obfuscation resilience against automated attacks. In Software
Protection (SPRO), 2015 IEEE/ACM 1st International Workshop on, pages 45–51. IEEE,
2015.

[22] Sebastian Banescu and Alexander Pretschner. A tutorial on software obfuscation. In
Advances in Computers. Elsevier, 2018.

160

https://github.com/tum-i22/obfuscation-benchmarks
https://github.com/tum-i22/obfuscation-benchmarks
http://www.academia.edu/download/31092493/report.pdf
http://www.academia.edu/download/31092493/report.pdf

Bibliography

[23] Sebastian Banescu, Alexander Pretschner, Dominic Battré, Stéfano Cazzulani, Robert
Shield, and Greg Thompson. Software-based protection against changeware. In
Proceedings of the Conference on Data and Application Security and Privacy, CODASPY
’15, pages 231–242, 2015.

[24] Sebastian Banescu, Tobias Wuchner, Aleieldin Salem, Marius Guggenmos, Alexander
Pretschner, et al. A framework for empirical evaluation of malware detection re-
silience against behavior obfuscation. In 2015 10th International Conference on Malicious
and Unwanted Software (MALWARE), pages 40–47. IEEE, 2015.

[25] Boaz Barak. Hopes, fears, and software obfuscation. Communications of the ACM,
59(3):88–96, 2016.

[26] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vadhan, and Ke Yang. On the (im) possibility of obfuscating programs. In Advances
in Cryptology CRYPTO 2001, pages 1–18. Springer, 2001.

[27] Eda Sevim Barlak. Feature selection using genetic algorithms. 2007.

[28] Clark W Barrett, Roberto Sebastiani, Sanjit A Seshia, and Cesare Tinelli. Satisfiability
modulo theories. Handbook of satisfiability, 185:825–885, 2009.

[29] D. A. Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in nc1. In Proc. of the 18th Annual ACM Symp. on Theory of
Computing, STOC ’86, pages 1–5, New York, NY, USA, 1986. ACM.

[30] Cataldo Basile, Stefano Di Carlo, Thomas Herlea, Verizon Business, Jasvir Nagra, and
Brecht Wyseur. Towards a formal model for software tamper resistance. In Second
International Workshop on Remote Entrusting (ReTtust 2009), volume 16.

[31] Benoit Baudry and Martin Monperrus. The multiple facets of software diversity:
Recent developments in year 2000 and beyond. ACM Computing Surveys (CSUR),
48(1):16, 2015.

[32] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address obfuscation: an efficient
approach to combat a board range of memory error exploits. In Proceedings of the
USENIX Security Symposium, 2003.

[33] Sandeep Bhatkar and R. Sekar. Data space randomization. In Diego Zamboni, editor,
Detection of Intrusions and Malware, and Vulnerability Assessment, number 5137 in
Lecture Notes in Computer Science, pages 1–22. Springer Berlin Heidelberg, January
2008.

[34] Abdulazeez S Boujarwah and Kassem Saleh. Compiler test case generation methods:
a survey and assessment. Information and software technology, 39(9):617–625, 1997.

161

Bibliography

[35] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[36] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[37] Julien Bringer, Herve Chabanne, and Emmanuelle Dottax. White box cryptography:
Another attempt. located at, last visited on Jul, 22(2011):14, 2006.

[38] David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn Song, and
Heng Yin. Automatically identifying trigger-based behavior in malware. In Botnet
Detection, volume 36 of Advances in Information Security, pages 65–88. Springer US,
2008.

[39] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. Klee: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs. In OSDI,
2008.

[40] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R.
Engler. EXE: Automatically generating inputs of death. In Proceedings of the 13th ACM
Conference on Computer and Communications Security, CCS ’06, pages 322–335, New
York, NY, USA, 2006. ACM. 00041.

[41] Jan Cappaert, Bart Preneel, Bertrand Anckaert, Matias Madou, and Koen De Boss-
chere. Towards tamper resistant code encryption: Practice and experience. In Informa-
tion Security Practice and Experience, pages 86–100. Springer, 2008.

[42] Lorenzo Cavallaro, Prateek Saxena, and R Sekar. On the limits of information flow
techniques for malware analysis and containment. In Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 143–163. Springer, 2008.

[43] Mariano Ceccato, Massimiliano Di Penta, Jasvir Nagra, Paolo Falcarin, Filippo Ricca,
Marco Torchiano, and Paolo Tonella. The effectiveness of source code obfuscation:
an experimental assessment. In Program Comprehension, 2009. ICPC’09. IEEE 17th
International Conference on, pages 178–187. IEEE, 2009.

[44] Mariano Ceccato, Massimiliano Di Penta, Paolo Falcarin, Filippo Ricca, Marco Torchi-
ano, and Paolo Tonella. A family of experiments to assess the effectiveness and
efficiency of source code obfuscation techniques. Empirical Software Engineering,
19(4):1040–1074, February 2013.

[45] Hoi Chang and Mikhail J Atallah. Protecting software code by guards. In Security
and privacy in digital rights management, pages 160–175. Springer, 2001.

[46] Yuqun Chen, Ramarathnam Venkatesan, Matthew Cary, Ruoming Pang, Saurabh
Sinha, and Mariusz H Jakubowski. Oblivious hashing: A stealthy software integrity
verification primitive. In International Workshop on Information Hiding, pages 400–414.
Springer, 2002.

162

Bibliography

[47] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6):476–493, 1994.

[48] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2E: A Platform for
In-vivo Multi-path Analysis of Software Systems. ASPLOS XVI, pages 265–278, New
York, NY, USA, 2011. ACM.

[49] Stanley Chow, Phil Eisen, Harold Johnson, and Paul C. Van Oorschot. A white-box
DES implementation for DRM applications. In Digital Rights Management, pages 1–15.
Springer, 2003.

[50] Stanley Chow, Philip Eisen, Harold Johnson, and Paul C. Van Oorschot. White-box
cryptography and an AES implementation. In Selected Areas in Cryptography, number
2595 in LNCS, pages 250–270. Springer Berlin Heidelberg, January 2003.

[51] Stanley Chow, Yuan Gu, Harold Johnson, and Vladimir A Zakharov. An approach
to the obfuscation of control-flow of sequential computer programs. In International
Conference on Information Security, pages 144–155. Springer, 2001.

[52] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C
programs. In Tools and Algorithms for the Construction and Analysis of Systems, volume
2988 of LNCS, pages 168–176. Springer, 2004.

[53] F. B. Cohen. Operating system protection through program evolution. Computers &
Security, 12(6):565–584, October 1993.

[54] C. Collberg, J. Davidson, R. Giacobazzi, Y. X. Gu, A. Herzberg, and F. Wang. Toward
digital asset protection. Intelligent Systems, IEEE, 26(6):8–13, 2011.

[55] Christian Collberg. The Tigress C Diversifier/Obfuscator. http://tigress.cs.
arizona.edu/. Accessed: 2016-11-29.

[56] Christian Collberg, Sam Martin, Jonathan Myers, and Jasvir Nagra. Distributed
application tamper detection via continuous software updates. In Proceedings of the
28th Annual Computer Security Applications Conference, ACSAC ’12, pages 319–328,
New York, NY, USA, 2012. ACM.

[57] Christian Collberg and Jasvir Nagra. Surreptitious software. Upper Saddle River, NJ:
Addision-Wesley Professional, 2010.

[58] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of obfuscating
transformations. Technical report, Department of Computer Science, The University
of Auckland, New Zealand, 1997.

163

http://tigress.cs.arizona.edu/
http://tigress.cs.arizona.edu/

Bibliography

[59] Christian Collberg, Clark Thomborson, and Douglas Low. Manufacturing cheap,
resilient, and stealthy opaque constructs. In Proceedings of the 25th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL ’98, pages 184–196,
New York, NY, USA, 1998. ACM.

[60] Kevin Coogan, Gen Lu, and Saumya Debray. Deobfuscation of virtualization-
obfuscated software: A semantics-based approach. In Proceedings of the 18th ACM
Conference on Computer and Communications Security, CCS ’11, pages 275–284, New
York, NY, USA, 2011. ACM.

[61] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[62] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 238–252. ACM, 1977.

[63] Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. Pointguard TM:
protecting pointers from buffer overflow vulnerabilities. In Proceedings of the 12th
conference on USENIX Security Symposium, volume 12, pages 91–104, 2003.

[64] Mila Dalla Preda. Code obfuscation and malware detection by abstract interpretation. PhD
thesis, University of Verona, 2007.

[65] Mila Dalla Preda and Roberto Giacobazzi. Control code obfuscation by abstract
interpretation. In Third IEEE International Conference on Software Engineering and
Formal Methods., pages 301–310. IEEE, 2005.

[66] George B Dantzig, Alex Orden, Philip Wolfe, et al. The generalized simplex method
for minimizing a linear form under linear inequality restraints. Pacific Journal of
Mathematics, 5(2):183–195, 1955.

[67] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

[68] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008.

[69] Bjorn De Sutter, Bertrand Anckaert, Jens Geiregat, Dominique Chanet, and Koen
De Bosschere. Instruction set limitation in support of software diversity. In Inter-
national Conference on Information Security and Cryptology, pages 152–165. Springer,
2008.

164

Bibliography

[70] Frédéric Delbos and Jean Charles Gilbert. Global linear convergence of an augmented
Lagrangian algorithm for solving convex quadratic optimization problems. PhD thesis,
INRIA, 2003.

[71] Prashant Dewan, David Durham, Hormuzd Khosravi, Men Long, and Gayathri
Nagabhushan. A hypervisor-based system for protecting software runtime memory
and persistent storage. In Proceedings of the 2008 Spring simulation multiconference,
pages 828–835. Society for Computer Simulation International, 2008.

[72] D. Dolev and A. C. Yao. On the security of public key protocols. In Proceedings of the
22nd Annual Symposium on Foundations of Computer Science, SFCS ’81, pages 350–357,
Washington, DC, USA, 1981. IEEE Computer Society.

[73] Chris Eagle. The IDA pro book: the unofficial guide to the world’s most popular disassembler.
No Starch Press, 2011.

[74] II ECRYPT. Yearly report on algorithms and keysizes (2011-2012), d. spa. 20 rev.
1.0. http://www.ecrypt.eu.org/ecrypt2/documents/D.SPA.20.pdf. Ac-
cessed: 2017-03-30.

[75] C. Edwards. Researchers probe security through obscurity. Communications of the
ACM, 57(8):11–13, 2014.

[76] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In International conference
on theory and applications of satisfiability testing, pages 502–518. Springer, 2003.

[77] Rakan El-Khalil and Angelos D Keromytis. Hydan: Hiding information in program
binaries. In International Conference on Information and Communications Security, pages
187–199. Springer, 2004.

[78] Evenbalance. PunkBuster — Online Countermeasures, 2015. http://www.
evenbalance.com/pbsetup.php, [Online; accessed 20-September-2016].

[79] Ninon Eyrolles, Louis Goubin, and Marion Videau. Defeating mba-based obfuscation.
In Proceedings of the 2016 ACM Workshop on Software PROtection, pages 27–38. ACM,
2016.

[80] Paolo Falcarin, Christian Collberg, Mikhail Atallah, and Mariusz Jakubowski. Guest
editors’ introduction: Software protection. Software, IEEE, 28(2):24–27, 2011.

[81] Wu-chang Feng, Ed Kaiser, and Travis Schluessler. Stealth measurements for cheat
detection in on-line games. In Proceedings of the 7th ACM SIGCOMM Workshop on
Network and System Support for Games, pages 15–20, 2008.

[82] Xiushan Feng and Alan J Hu. Cutpoints for formal equivalence verification of
embedded software. In Proceedings of the 5th ACM international conference on Embedded
software, pages 307–316. ACM, 2005.

165

http://www.ecrypt.eu.org/ecrypt2/documents/D.SPA.20.pdf
http://www.evenbalance.com/pbsetup.php
http://www.evenbalance.com/pbsetup.php

Bibliography

[83] PUB FIPS. 197: Advanced encryption standard (aes). National Institute of Standards
and Technology, 2001.

[84] Robert W Floyd. Assigning meanings to programs. Mathematical aspects of computer
science, 19(19-32):1, 1967.

[85] Christophe Foket, Bjorn De Sutter, Bart Coppens, and Koen De Bosschere. A novel
obfuscation: class hierarchy flattening. In Foundations and Practice of Security, pages
194–210. Springer, 2013.

[86] Stephanie Forrest, Anil Somayaji, and David H Ackley. Building diverse computer
systems. In Operating Systems, 1997., The Sixth Workshop on Hot Topics in, pages 67–72.
IEEE, 1997.

[87] Michael Franz. E unibus pluram: massive-scale software diversity as a defense
mechanism. In Proceedings of the 2010 workshop on New security paradigms, NSPW ’10,
pages 7–16, New York, NY, USA, 2010. ACM.

[88] Vijay Ganesh, Sebastian Banescu, and Martı́n Ochoa. Short paper: The meaning of
attack-resistant systems. In Proceedings of the 10th ACM Workshop on Programming
Languages and Analysis for Security, pages 49–55. ACM, 2015.

[89] Vijay Ganesh and David L Dill. A decision procedure for bit-vectors and arrays. In
Computer Aided Verification, pages 519–531. Springer, 2007.

[90] S. Garg, C. Gentry, S. Halevi, M. Raykova, A Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In Proc. of
the 54th Annual Symp. on Foundations of Computer Science, pages 40–49, 2013.

[91] Lynn E Garner. On the Collatz 3n + 1 algorithm. Proceedings of the American Mathemat-
ical Society, 82(1):19–22, 1981.

[92] Ian P Gent, Ewan MacIntyre, Patrick Prosser, Toby Walsh, et al. The constrainedness
of search. In AAAI/IAAI, Vol. 1, pages 246–252, 1996.

[93] GitHub. Obfusc8: Implementation of Candidate Indistinguishability Obfuscation.
https://github.com/tum-i22/indistinguishability-obfuscation.
Accessed: 2017-03-03.

[94] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed automated
random testing. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’05, pages 213–223, New York, NY, USA,
2005. ACM. 01494.

[95] Patrice Godefroid, Michael Y Levin, and David Molnar. Sage: whitebox fuzzing for
security testing. Queue, 10(1):20, 2012.

166

https://github.com/tum-i22/indistinguishability-obfuscation

Bibliography

[96] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. Automated whitebox fuzz
testing. In NDSS, volume 8, pages 151–166, 2008.

[97] S. Goldwasser and G. N. Rothblum. On best-possible obfuscation. In Theory of
Cryptography, pages 194–213. Springer, 2007.

[98] Pablo M Granitto, Cesare Furlanello, Franco Biasioli, and Flavia Gasperi. Recursive
feature elimination with random forest for ptr-ms analysis of agroindustrial products.
Chemometrics and Intelligent Laboratory Systems, 83(2):83–90, 2006.

[99] GuardSquare. ProGuard: The open source optimizer for Java bytecode. https:
//www.guardsquare.com/en/proguard. Accessed: 2017-03-03.

[100] Yoann Guillot and Alexandre Gazet. Automatic binary deobfuscation. Journal in
computer virology, 6(3):261–276, 2010.

[101] Mark A Hall. Correlation-based feature selection for machine learning. PhD thesis, The
University of Waikato, 1999.

[102] Maurice Howard Halstead. Elements of software science, volume 7. Elsevier New York,
1977.

[103] Warren A. Harrison and Kenneth I. Magel. A complexity measure based on nesting
level. SIGPLAN Not., 16(3):63–74, March 1981.

[104] Kelly Heffner and Christian Collberg. The obfuscation executive. In International
Conference on Information Security, pages 428–440. Springer, 2004.

[105] S. Henry and D. Kafura. Software structure metrics based on information flow. IEEE
Transactions on Software Engineering, SE-7(5):510–518, 1981.

[106] Tony Hoare. The verifying compiler: A grand challenge for computing research. In
Joint Modular Languages Conference, pages 25–35. Springer, 2003.

[107] Greg Hoglund. Hacking world of warcraft: An exercise in advanced rootkit design.
Black Hat, 2006.

[108] John H Holland. Adaptation in natural and artificial systems: an introductory analysis
with applications to biology, control, and artificial intelligence. U Michigan Press, 1975.

[109] Dominik Holling, Sebastian Banescu, Marco Probst, Ana Petrovska, and Alexander
Pretschner. Nequivack: Assessing mutation score confidence. In Software Testing,
Verification and Validation Workshops (ICSTW), 2016 IEEE Ninth International Conference
on, pages 152–161. IEEE, 2016.

[110] Bill Horne, Lesley Matheson, Casey Sheehan, and Robert E. Tarjan. Dynamic self-
checking techniques for improved tamper resistance. In Security and privacy in digital
rights management, pages 141–159. Springer, 2002.

167

https://www.guardsquare.com/en/proguard
https://www.guardsquare.com/en/proguard

Bibliography

[111] Susan Horwitz. Precise flow-insensitive may-alias analysis is np-hard. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 19(1):1–6, 1997.

[112] Amjad Ibrahim and Sebastian Banescu. Stins4cs: A state inspection tool for c. In
Proceedings of the 2016 ACM Workshop on Software PROtection, pages 61–71. ACM, 2016.

[113] Intel. Intel Active Management Technology — Query, Restore, Up-
grade, and Protect Devices Remotely, 2016. http://www.intel.
com/content/www/us/en/architecture-and-technology/
intel-active-management-technology.html, [Online; accessed 20-
September-2016].

[114] InterTrust. whiteCryption: Application Protection for a Hostile World. https://
www.intertrust.com/products/application-security/. Accessed: 2017-
03-03.

[115] Irdeto. Datasheet: Cloakware for Automotive - Software Protection Service.
https://irdeto.uberflip.com/solution-overviews-datasheets/
datasheet-cloakware-for-automotive-software-protection-service.
Accessed: 2017-03-03.

[116] Matthias Jacob, Mariusz H Jakubowski, Prasad Naldurg, Chit Wei Nick Saw, and
Ramarathnam Venkatesan. The superdiversifier: Peephole individualization for
software protection. In Advances in Information and Computer Security, pages 100–120.
Springer, 2008.

[117] Matthias Jacob, Mariusz H Jakubowski, and Ramarathnam Venkatesan. Towards inte-
gral binary execution: Implementing oblivious hashing using overlapped instruction
encodings. In Proceedings of the 9th workshop on Multimedia & security, pages 129–140.
ACM, 2007.

[118] Jawahar Jain, Amit Narayan, Masahiro Fujita, and A Sangiovanni-Vincentelli. A
survey of techniques for formal verification of combinational circuits. In Computer
Design: VLSI in Computers and Processors, 1997. ICCD’97. Proceedings., 1997 IEEE
International Conference on, pages 445–454. IEEE, 1997.

[119] Markus Jakobsson and Karl-Anders Johansson. Retroactive detection of malware
with applications to mobile platforms. In Proceedings of the 5th USENIX Conference
on Hot Topics in Security, HotSec’10, pages 1–13, Berkeley, CA, USA, 2010. USENIX
Association.

[120] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin. Obfuscator-LLVM
– software protection for the masses. In Brecht Wyseur, editor, Proceedings of the
IEEE/ACM 1st International Workshop on Software Protection, SPRO’15, Firenze, Italy,
May 19th, 2015, pages 3–9. IEEE, 2015.

168

http://www.intel.com/content/www/us/en/architecture-and-technology/intel-active-management-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/intel-active-management-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/intel-active-management-technology.html
https://www.intertrust.com/products/application-security/
https://www.intertrust.com/products/application-security/
https://irdeto.uberflip.com/solution-overviews-datasheets/datasheet-cloakware-for-automotive-software-protection-service
https://irdeto.uberflip.com/solution-overviews-datasheets/datasheet-cloakware-for-automotive-software-protection-service

Bibliography

[121] Edward Kaiser, Wu-chang Feng, and Travis Schluessler. Fides: Remote anomaly-
based cheat detection using client emulation. In Proceedings of the 16th ACM Conference
on Computer and Communications Security, CCS ’09, pages 269–279, New York, NY,
USA, 2009. ACM.

[122] Yuichiro Kanzaki, Akito Monden, and Christian Collberg. Code artificiality: a metric
for the code stealth based on an n-gram model. In Proc. of the 1st International Workshop
on Software Protection, pages 31–37. IEEE Press, 2015.

[123] Yuichiro Kanzaki, Akito Monden, Masahide Nakamura, and Ken-ichi Matsumoto.
Exploiting self-modification mechanism for program protection. In Computer Software
and Applications Conference, 2003. COMPSAC 2003. Proceedings. 27th Annual Interna-
tional, pages 170–179, 2003.

[124] Matthew Karnick, Jeffrey MacBride, Sean McGinnis, Ying Tang, and Ravi Ramachan-
dran. A qualitative analysis of java obfuscation. In proceedings of 10th IASTED
international conference on software engineering and applications, Dallas TX, USA, 2006.

[125] Mohamed Karroumi. Protecting white-box AES with dual ciphers. In Kyung-Hyune
Rhee and DaeHun Nyang, editors, Information Security and Cryptology - ICISC 2010,
number 6829 in Lecture Notes in Computer Science, pages 278–291. Springer Berlin
Heidelberg, January 2011.

[126] Gaurav S Kc, Angelos D Keromytis, and Vassilis Prevelakis. Countering code-injection
attacks with instruction-set randomization. In Proceedings of the 10th ACM conference
on Computer and communications security, pages 272–280. ACM, 2003.

[127] Auguste Kerckhoffs. La cryptographie militaire, ou, Des chiffres usités en temps de guerre:
avec un nouveau procédé de déchiffrement applicable aux systèmes à double clef. Librairie
militaire de L. Baudoin, 1883.

[128] J. Kilian. Founding crytpography on oblivious transfer. In Proc. of the 20th Annual
ACM Symp. on Theory of Computing, pages 20–31. ACM, 1988.

[129] J. Kinder. Towards static analysis of virtualization-obfuscated binaries. In 19th
Working Conference on Reverse Engineering (WCRE), pages 61–70, Oct 2012.

[130] James C King. Symbolic execution and program testing. Communications of the ACM,
19(7):385–394, 1976.

[131] Stephen Cole Kleene. Representation of events in nerve nets and finite automata.
Technical report, DTIC Document, 1951.

[132] Underwriters Laboratories. Ul 687 standard for burglary-resistant safes. https:
//standardscatalog.ul.com/standards/en/standard_687, 2011.

169

https://standardscatalog.ul.com/standards/en/standard_687
https://standardscatalog.ul.com/standards/en/standard_687

Bibliography

[133] William Landi. Undecidability of static analysis. ACM Letters on Programming Lan-
guages and Systems (LOPLAS), 1(4):323–337, 1992.

[134] Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. Sok: Automated
software diversity. In 2014 IEEE Symposium on Security and Privacy, pages 276–291.
IEEE, 2014.

[135] Long Le. Payload already inside: datafire-use for rop exploits. Black Hat USA, 2010.

[136] Xavier Leroy. Formal verification of a realistic compiler. Communications of the ACM,
52(7):107–115, 2009.

[137] Chu-Min Li and Bing Ye. Sat-encoding of step-reduced md5. SAT COMPETITION
2014, pages 94–95.

[138] Shih-Wei Lin, Zne-Jung Lee, Shih-Chieh Chen, and Tsung-Yuan Tseng. Parameter
determination of support vector machine and feature selection using simulated
annealing approach. Applied soft computing, 8(4):1505–1512, 2008.

[139] Cullen Linn and Saumya Debray. Obfuscation of executable code to improve resis-
tance to static disassembly. In Proceedings of the 10th ACM conference on Computer and
communications security, pages 290–299. ACM, 2003.

[140] Matias Madou, Bertrand Anckaert, Bruno De Bus, Koen De Bosschere, Jan Cappaert,
and Bart Preneel. On the effectiveness of source code transformations for binary
obfuscation. In Proceedings of the International Conference on Software Engineering
Research and Practice (SERP06), pages 527–533. CSREA Press, 2006.

[141] Matias Madou, Bertrand Anckaert, Patrick Moseley, Saumya Debray, Bjorn De Sutter,
and Koen De Bosschere. Software protection through dynamic code mutation. In
Information Security Applications, pages 194–206. Springer, 2006.

[142] A. Main and Paul C. van Oorschot. Software protection and application security:
Understanding the battleground. International Course on State of the Art and Evolution
of Computer Security and Industrial Cryptography,, 2003.

[143] Anirban Majumdar. Design and evaluation of software obfuscations. PhD thesis, The
University of Auckland New Zealand, 2008.

[144] Anirban Majumdar and Clark Thomborson. Manufacturing opaque predicates in
distributed systems for code obfuscation. In Proceedings of the 29th Australasian
Computer Science Conference-Volume 48, pages 187–196. Australian Computer Society,
Inc., 2006.

[145] Lorenzo Martignoni, Roberto Paleari, and Danilo Bruschi. Conqueror: tamper-proof
code execution on legacy systems. In International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, pages 21–40. Springer, 2010.

170

Bibliography

[146] Joshua Mason, Sam Small, Fabian Monrose, and Greg MacManus. English shellcode.
In Proceedings of the 16th ACM conference on Computer and communications security,
pages 524–533. ACM, 2009.

[147] Nikos Mavrogiannopoulos, Nessim Kisserli, and Bart Preneel. A taxonomy of self-
modifying code for obfuscation. Computers & Security, 30(8):679–691, November
2011.

[148] McAfee. McAfee Labs Threats Report. Technical Report March,
2016. http://www.mcafee.com/us/resources/reports/
rp-quarterly-threats-mar-2016.pdf.

[149] Thomas J McCabe. A complexity measure. IEEE Transactions on software Engineering,
(4):308–320, 1976.

[150] James P McDermott. Attack net penetration testing. In Proceedings of the 2000 workshop
on New security paradigms, pages 15–21. ACM, 2001.

[151] William M McKeeman. Differential testing for software. Digital Technical Journal,
10(1):100–107, 1998.

[152] Miles A McQueen, Wayne F Boyer, Mark A Flynn, and George A Beitel. Time-to-
compromise model for cyber risk reduction estimation. In Quality of Protection, pages
49–64. Springer, 2006.

[153] Florian Merz, Stephan Falke, and Carsten Sinz. Llbmc: Bounded model checking of c
and c++ programs using a compiler ir. In International Conference on Verified Software:
Tools, Theories, Experiments, pages 146–161. Springer, 2012.

[154] Ilya Mironov and Lintao Zhang. Applications of sat solvers to cryptanalysis of hash
functions. In Theory and Applications of Satisfiability Testing-SAT 2006, pages 102–115.
Springer, 2006.

[155] Rabih Mohsen and Alexandre Miranda Pinto. Evaluating obfuscation security: A
quantitative approach. In International Symposium on Foundations and Practice of
Security, pages 174–192. Springer, 2015.

[156] Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient sat solver. In Proceedings of the 38th annual
Design Automation Conference, pages 530–535. ACM, 2001.

[157] John C. Munson and Taghi M. Kohshgoftaar. Measurement of data structure com-
plexity. Journal of Systems and Software, 20(3):217–225, March 1993.

[158] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, 1989.

171

http://www.mcafee.com/us/resources/reports/rp-quarterly-threats-mar-2016.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threats-mar-2016.pdf

Bibliography

[159] Gleb Naumovich and Nasir Memon. Preventing piracy, reverse engineering, and
tampering. Computer, (7):64–71, 2003.

[160] John A Nelder and R Jacob Baker. Generalized linear models. Encyclopedia of statistical
sciences, 1972.

[161] Zack Newsham, Vijay Ganesh, Sebastian Fischmeister, Gilles Audemard, and Laurent
Simon. Impact of community structure on sat solver performance. In Theory and
Applications of Satisfiability Testing–SAT 2014, pages 252–268. Springer, 2014.

[162] Zack Newsham, William Lindsay, Vijay Ganesh, Jia Hui Liang, Sebastian Fischmeister,
and Krzysztof Czarnecki. Satgraf: Visualizing the evolution of sat formula structure
in solvers. In Theory and Applications of Satisfiability Testing–SAT 2015, pages 62–70.
Springer, 2015.

[163] Vu Nguyen. Improved size and effort estimation models for software maintenance. PhD
thesis, University of Southern California, 2010.

[164] MFXJ Oberhumer, László Molnár, and John F Reiser. Upx: the ultimate packer for
executables, 2004.

[165] Enrique I Oviedo. Control flow, data flow and program complexity. In Proc. IEEE
COMPSAC, pages 146–152, 1980.

[166] Jens Palsberg, Sowmya Krishnaswamy, Minseok Kwon, Di Ma, Qiuyun Shao, and
Yi Zhang. Experience with software watermarking. In Computer Security Applications,
2000. ACSAC’00. 16th Annual Conference, pages 308–316. IEEE, 2000.

[167] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. Smashing the
gadgets: Hindering return-oriented programming using in-place code randomization.
pages 601–615. IEEE, May 2012.

[168] Arash Partow. General Purpose Hash Function Algorithms. http://www.partow.
net/programming/hashfunctions. Accessed: 2017-03-12.

[169] Karl Pearson. Note on regression and inheritance in the case of two parents. Proc. of
the Royal Society of London, 58:240–242, 1895.

[170] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–
572, 1901.

[171] John Platt et al. Sequential minimal optimization: A fast algorithm for training
support vector machines. 1998.

[172] PreEmptiveSolutions. DashO: Java & Android Obfuscator & Runtime Protection.
https://www.preemptive.com/products/dasho. Accessed: 2017-03-03.

172

http://www.partow.net/programming/hashfunctions
http://www.partow.net/programming/hashfunctions
https://www.preemptive.com/products/dasho

Bibliography

[173] PreEmptiveSolutions. Dotfuscator: .NET App Self Protection and Obfuscation.
https://www.preemptive.com/products/dotfuscator. Accessed: 2017-03-
03.

[174] Riccardo Pucella and Fred B Schneider. Independence from obfuscation: A semantic
framework for diversity. Journal of Computer Security, 18(5):701–749, 2010.

[175] Jing Qiu, Babak Yadegari, Brian Johannesmeyer, Saumya Debray, and Xiaohong
Su. Identifying and understanding self-checksumming defenses in software. In
Proceedings of the 5th ACM Conference on Data and Application Security and Privacy,
pages 207–218. ACM, 2015.

[176] Ganesan Ramalingam. The undecidability of aliasing. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 16(5):1467–1471, 1994.

[177] Rolf Rolles. Program Synthesis in Reverse Engineering. http://www.
nosuchcon.org/talks/2014/D1_01_Rolf_Rolles_Program_Synthesis_
in_reverse_Engineering.pdf, 2014. NoSuchCon 2014, Accessed:2016-05-24.

[178] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson
Education, 2 edition, 2003.

[179] Aleieldin Salem and Sebastian Banescu. Metadata recovery from obfuscated programs
using machine learning. In Proceedings of the 6th Software Security, Protection and Reverse
Engineering Workshop, page 8. ACM, 2016.

[180] Jerome H Saltzer and Michael D Schroeder. The protection of information in computer
systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.

[181] Florent Saudel and Jonathan Salwan. Triton: A dynamic symbolic execution frame-
work. In Symposium sur la sécurité des technologies de l’information et des communications,
SSTIC, France, Rennes, June 3-5 2015, pages 31–54. SSTIC, 2015.

[182] T. Schneider. Practical secure function evaluation. Master’s thesis, Friedrich-
Alexander-Universität Erlangen-Nürnberg, 2008.

[183] Sebastian Schrittwieser and Stefan Katzenbeisser. Code obfuscation against static and
dynamic reverse engineering. In Information Hiding, pages 270–284, 2011.

[184] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merzdovnik,
and Edgar Weippl. Protecting software through obfuscation: Can it keep pace with
progress in code analysis? ACM Computing Surveys (CSUR), 49(1):4, 2016.

[185] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. All you ever wanted
to know about dynamic taint analysis and forward symbolic execution (but might
have been afraid to ask). In Security and Privacy (SP), 2010 IEEE Symposium on, pages
317–331. IEEE, 2010.

173

https://www.preemptive.com/products/dotfuscator
http://www.nosuchcon.org/talks/2014/D1_01_Rolf_Rolles_Program_Synthesis_in_reverse_Engineering.pdf
http://www.nosuchcon.org/talks/2014/D1_01_Rolf_Rolles_Program_Synthesis_in_reverse_Engineering.pdf
http://www.nosuchcon.org/talks/2014/D1_01_Rolf_Rolles_Program_Synthesis_in_reverse_Engineering.pdf

Bibliography

[186] SemanticDesigns. Thicket Family of Source Code Obfuscators. http://www.
semanticdesigns.com/Products/Obfuscators/. Accessed: 2017-03-03.

[187] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van Doorn, and
Pradeep Khosla. Pioneer: verifying code integrity and enforcing untampered code
execution on legacy systems. In ACM SIGOPS Operating Systems Review, volume 39,
pages 1–16. ACM, 2005.

[188] Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-libc
without function calls (on the x86). In Proceedings of the 14th ACM conference on
Computer and communications security, pages 552–561, 2007.

[189] Adi Shamir and Nicko Van Someren. Playing ’hide and seek’ with stored keys. In
Financial cryptography, pages 118–124, 1999.

[190] M. Sharif, A Lanzi, J. Giffin, and Wenke Lee. Automatic reverse engineering of
malware emulators. In Security and Privacy, 2009 30th IEEE Symposium on, pages
94–109, May 2009.

[191] Monirul I Sharif, Andrea Lanzi, Jonathon T Giffin, and Wenke Lee. Impeding malware
analysis using conditional code obfuscation. In NDSS, 2008.

[192] KC Shashidhar, Maurice Bruynooghe, Francky Catthoor, and Gerda Janssens. Verifica-
tion of source code transformations by program equivalence checking. In International
Conference on Compiler Construction, pages 221–236. Springer, 2005.

[193] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and Gio-
vanni Vigna. Firmalice - automatic detection of authentication bypass vulnerabilities
in binary firmware. 2015.

[194] João P Marques Silva and Karem A Sakallah. Grasp—a new search algorithm for
satisfiability. In Proceedings of the 1996 IEEE/ACM international conference on Computer-
aided design, pages 220–227. IEEE Computer Society, 1997.

[195] Igor Skochinsky. IDA F.L.I.R.T. Technology: In-Depth. https://www.hex-rays.
com/products/ida/tech/flirt/in_depth.shtml, 2013. Accessed: 2017-03-
03.

[196] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung Kang,
Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena. Bitblaze:
A new approach to computer security via binary analysis. In Information systems
security, pages 1–25. Springer, 2008.

[197] Frank Stevenson. Cryptanalysis of contents scrambling system. Online publication
http://www. dvd-copy. com/news/cryptanalysis-of-contents-scramblingsystem. htm, 1999.

174

http://www.semanticdesigns.com/Products/Obfuscators/
http://www.semanticdesigns.com/Products/Obfuscators/
https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml
https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml

Bibliography

[198] Stunnix. C/C++ Obfuscator. http://stunnix.com/prod/cxxo/. Accessed:
2017-03-03.

[199] Iain Sutherland, George E. Kalb, Andrew Blyth, and Gaius Mulley. An empirical
examination of the reverse engineering process for binary files. Computers & Security,
25(3):221–228, 2006.

[200] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: brute force vulnerability
discovery. Pearson Education, 2007.

[201] Symantec Corporation. Internet Security Threat Report 2016. Technical Report
April, 2016. https://www.symantec.com/content/dam/symantec/docs/
reports/istr-21-2016-en.pdf.

[202] Kuo-Chung Tai. A program complexity metric based on data flow information in
control graphs. In Proc. of the 7th international conference on Software engineering, pages
239–248. IEEE Press, 1984.

[203] PaX Team. Pax non-executable pages design & implementation. Avaliable: http://pax.
grsecurity. net, 2003.

[204] Oreans Technologies. Code Virtualizer: Total Obfuscation Against Reverse Engineer-
ing. http://oreans.com/codevirtualizer.php. Accessed: 2017-03-12.

[205] Oreans Technologies. Themida: Advanced Windows Software Protection System.
http://oreans.com/themida.php. Accessed: 2017-03-12.

[206] StrongBit Technologies. ExeCryptor: Stop crackers and software pirates. http:
//www.strongbit.com/execryptor.asp. Accessed: 2017-03-12.

[207] Kurt Thomas, Elie Bursztein, Chris Grier, Grant Ho, Nav Jagpal, Alexandros Kaprav-
elos, Damon McCoy, Antonio Nappa, Vern Paxson, Paul Pearce, et al. Ad injection at
scale: Assessing deceptive advertisement modifications. In 2015 IEEE Symposium on
Security and Privacy, pages 151–167. IEEE, 2015.

[208] Kurt Thomas, Juan Antonio Elices Crespo, Ryan Rasti, Jean-Michel Picod, Cait
Phillips, Chris Sharp, Fabio Tirelo, Ali Tofigh, Marc-Antoine Courteau, Lucas Ballard,
et al. Investigating Commercial Pay-Per-Install and the Distribution of Unwanted
Software. In USENIX Security Symposium, 2016.

[209] S.K. Udupa, S.K. Debray, and M. Madou. Deobfuscation: reverse engineering obfus-
cated code. In 12th Working Conference on Reverse Engineering, 2005.

[210] L. G. Valiant. Universal circuits (preliminary report). In Proc. of the 8th Annual ACM
Symp. on Theory of Computing, pages 196–203. ACM, 1976.

175

http://stunnix.com/prod/cxxo/
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
http://oreans.com/codevirtualizer.php
http://oreans.com/themida.php
http://www.strongbit.com/execryptor.asp
http://www.strongbit.com/execryptor.asp

Bibliography

[211] Valve. Valve Anti-Cheat System (VAC), 2015. https://support.steampowered.
com/kb_article.php?p_faqid=370, [Online; accessed 20-September-2016].

[212] Mayank Varia. Studies in program obfuscation. PhD thesis, School of Computer Science,
Tel Aviv University, 2010.

[213] Corrado Aaron Visaggio, Giuseppe Antonio Pagin, and Gerardo Canfora. An empiri-
cal study of metric-based methods to detect obfuscated code. International Journal of
Security & Its Applications, 7(2), 2013.

[214] VMPSoft. VMProtect. http://vmpsoft.com/products/vmprotect/. Ac-
cessed: 2017-03-12.

[215] Z Vrba. cryptexec: Next-generation runtime binary encryption using on-demand
function extraction. 2003.

[216] Chenxi Wang, J. Davidson, J. Hill, and J. Knight. Protection of software-based surviv-
ability mechanisms. In International Conference on Dependable Systems and Networks,
2001. DSN 2001, pages 193–202, 2001.

[217] Huaijun Wang, Dingyi Fang, Ni Wang, Zhanyong Tang, Feng Chen, and Yuanxiang
Gu. Method to evaluate software protection based on attack modeling. In High Perfor-
mance Computing and Communications & 2013 IEEE International Conference on Embedded
and Ubiquitous Computing (HPCC EUC), 2013 IEEE 10th International Conference on,
pages 837–844. IEEE, 2013.

[218] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. Taintscope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection. In Security and
privacy (SP), 2010 IEEE symposium on, pages 497–512. IEEE, 2010.

[219] Zhi Wang, Jiang Ming, Chunfu Jia, and Debin Gao. Linear obfuscation to combat
symbolic execution. In Computer Security–ESORICS 2011, pages 210–226. Springer,
2011.

[220] Henry S. Warren. Hacker’s Delight. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[221] Paul Werbos. Beyond regression: New tools for prediction and analysis in the
behavioral sciences. Ph.D. thesis, Harvard University.

[222] L. M. Wills. Automated program recognition: a feasibility demonstration. Artif. Intell.,
45(1-2):113–171, September 1990.

[223] Martin R. Woodward, Michael A. Hennell, and David Hedley. A measure of control
flow complexity in program text. IEEE Transactions on Software Engineering, (1):45–50,
1979.

176

https://support.steampowered.com/kb_article.php?p_faqid=370
https://support.steampowered.com/kb_article.php?p_faqid=370
http://vmpsoft.com/products/vmprotect/

Bibliography

[224] Yongdong Wu, Hui Fang, Shuhong Wang, and Zhifeng Qi. A framework for measur-
ing the security of obfuscated software. In Proc. of 2010 International Conference on Test
and Measurement, 2010.

[225] Brecht Wyseur. White-Box Cryptography. PhD thesis, KATHOLIEKE UNIVERSITEIT
LEUVEN, Kasteelpark Arenberg 10, 3001 Leuven-Heverlee, 2009.

[226] Yaying Xiao and Xuejia Lai. A secure implementation of white-box AES. In 2nd
International Conference on Computer Science and its Applications, 2009. CSA ’09, pages
1–6, 2009.

[227] Babak Yadegari and Saumya Debray. Symbolic execution of obfuscated code. In
Proceedings of the 22Nd ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS, volume 15, pages 732–744, 2015.

[228] Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya Debray. A generic
approach to automatic deobfuscation of executable code. In Security and Privacy (SP),
2015 IEEE Symposium on, pages 674–691. IEEE, 2015.

[229] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and Understanding
Bugs in C Compilers. SIGPLAN Not., 46(6):283–294, June 2011.

[230] yWorks. yGuard Java Bytecode Obfuscator and Shrinker. https://www.yworks.
com/products/yguard. Accessed: 2017-03-03.

[231] Michal Zalewski. American fuzzy lop. http://lcamtuf.coredump.cx/afl/.

[232] Yongxin Zhou, Alec Main, Yuan X Gu, and Harold Johnson. Information hiding
in software with mixed boolean-arithmetic transforms. In International Workshop on
Information Security Applications, pages 61–75. Springer, 2007.

[233] Yan Zhuang and Felix Freiling. Approximating Optimal Software Obfuscation for
Android Applications. In Proc. 2nd Workshop on Security in Highly Connected IT Systems,
pages 46–50, 2015.

177

https://www.yworks.com/products/yguard
https://www.yworks.com/products/yguard
http://lcamtuf.coredump.cx/afl/

Glossary

AES Advanced Encryption Standard. 35

BDD Binary Decision Diagram. 19, 89, 90

BP Branching Program. 19–22, 24, 25, 183

CFF Control Flow Flattening. 42

CFG Control Flow Graph. 42, 55, 82, 83, 153

DRM Digital Rights Management. 4, 48

GCC GNU C Compiler. 28

IDA Interactive Disassembler. 66

IO input-output. 6, 28, 39

ISA Instruction Set Architecture. 38, 39, 41, 155

LLVM Low Level Virtual Machine. 28

LOC Lines of Code. 93, 101, 103, 111, 112, 114, 126, 127, 147

LUT Look-up Table. 35

MATE Man-At-The-End. xi, 3–7, 9–11, 13, 15, 17, 18, 27, 30, 31, 36, 40, 41, 43, 44, 47–56, 60,
62, 64–66, 69, 71, 72, 76, 79–84, 89, 107, 108, 129, 130, 132, 145–150, 152–157, 183, 184,
187

MBA Mixed Boolean-Arithmetic. 34, 35, 38

MITM Man-In-The-Middle. 3, 50, 63

MJP Multi-linear Jigsaw Puzzle. 21, 22

PPT Probabilistic Polynomial Time Turing Machine. 16–18

179

Glossary

PUP Potentially Unwanted Program. 7, 64

RBP Randomized Branching Program. 20–22, 24, 25, 183

ROP Return Oriented Programming. 37, 38, 42

SAT Boolean satisfiability. 85, 87–91, 94, 100, 101, 103, 105, 113–120, 125–128, 134, 155, 156,
184, 188

SHA Secure Hash Algorithm. 36

SMT Satisfiability Modulo Theories. 84, 85, 87–92, 94, 96–101, 103–105, 113, 114, 125, 127,
128, 132, 133, 156

SVM Support Vector Machine. 69, 70, 72, 109

UBP Universal Branching Program. 21, 22

UC Universal Circuit. 20–22, 24, 25

UCC Unified Code Counter. 93, 96, 101, 103, 111, 114, 116, 117, 120, 122–124

WB-AES White-Box Advanced Encryption Standard. 35

WBC White-Box Cryptography. 35, 74

WB-DES White-Box Data Encryption Standard. 35

180

Index

Action, 57
Algorithm, 56
Attack net, 51
Automated attacks, 47
Average time-to-compromise, 63
Behavior, 69
Best known attacker, 60
Clause, 89
Community, 114
Concolic execution, 84
Cost, 58
Cutoff, 59
Data structure, 56
Difficult execution path, 114
Discriminant function, 70
Expanded, 58
Fringe, 59
Goal, 55
Goal test, 58
Heuristic, 59
Human-assisted attacks, 47
Initial state, 57
Inter-community, 114
Intra-community, 114

Literals, 89
Modularity, 114
Over-tainting, 78
Path constraints, 84
Problem, 56
Random testing, 75
Range dividers, 133
Resilience, 107
Search algorithm, 56
Search algorithm execution, 58
Search cost, 59
Search problem, 56
Search problem specification, 57
Search strategy, 59
Search tree, 58
Solution, 56
State, 56
Step cost, 58
Stopping conditions, 60
Successor, 57
Support vectors, 70
Symbolic execution, 84
Taint analysis, 76
Trigger conditions, 85

181

List of Figures

2.1. Boolean circuit and its corresponding Branching Program (BP). 19
2.2. Overview of the candidate construction for indistinguishability obfuscation 21
2.3. Generation of UCs (X-axis: no. inputs (`), no. gates of input circuit (λ)) . . . 23
2.4. Generation of BPs (X-axis: no. inputs (`), no. gates of input circuit (λ)) . . . 24
2.5. Generation of RBPs (X-axis: no. inputs (`), no. gates of input circuit (λ),

matrix dimension (m), prime number (p)). Legend is the same as Figure 2.4. 25

3.1. Opaque expressions based on linked lists. 32

4.1. Attack-net representing automated MATE attack for bypassing license check. 52
4.2. Abstract UML model of search. 57
4.3. Attack-net representing data recovery attack via pattern matching 66
4.4. Initial part of search tree corresponding to data recovery attack via pattern

matching from Table 4.3. 68
4.5. Attack-net representing code understanding attack via pattern recognition . 69
4.6. Initial part of search tree corresponding to code understanding attack via

pattern recognition from Table 4.4. 71
4.7. Attack-net representing key location recovery attack via pattern recognition 72
4.8. Initial part of search tree corresponding to key location recovery attack via

pattern recognition from Table 4.5. For nodes at depth 1 the best next states,
have highlighted actions. 74

4.9. Initial part of search tree corresponding to data recovery attack via random
testing from Table 4.6. 76

4.10. Attack-net representing code location recovery attack via taint analysis . . . 77
4.11. Initial part of search tree corresponding to location recovery attack via taint

analysis from Table 4.7. 79

5.1. Initial part of search tree corresponding to code understanding attack via
symbolic execution from Table 5.1. 86

5.2. Initial part of search tree corresponding to data recovery attack via SAT
solving from Table 5.2. 91

183

List of Figures

5.3. Impact of obfuscation on the KLEE symbolic execution for programs in 1st
dataset. X-axis labels to the left of the vertical bar are Tigress transformations;
those to the right are Obfuscator LLVM transformations. Right Y-axis is linear
and applies only to “% Time waiting for solver” (solid line). Left Y-axis is
logarithmic and applies to all other curves. 97

6.1. General attack time prediction framework. 108
6.2. RF models with different feature subsets. 115
6.3. Feature Selection Results . 116
6.4. Graph representation of SAT instance corresponding to an MD5 hash with 27

rounds. Solving this instance takes approximately 25 seconds on our testbed. 118
6.5. Graph representation of SAT instance corresponding to a program whose

symbolic execution time is under 1 second. 118
6.6. The Effect of Obfuscation on SAT Instances. 119
6.7. Relative prediction error of RF model. 121
6.8. RF models with different feature sets. 121
6.9. Relative prediction error of SVM model. 122
6.10. SVM models with different feature sets. 122
6.11. Relative prediction error of GP model. 123
6.12. Relative prediction error of NN model. 124
6.13. Comparison of regression algorithms. 125
6.14. Combining results with obfuscation tools. 126
6.15. Relative error of hash functions only. 127

7.1. Attack-defense tree corresponding to attack-net from Figure 4.1. 130
7.2. The effect of range dividers on the search tree. 135

8.1. Classification of protections against MATE attacks proposed in [58]. 146

184

Listings

3.1. Code before Encode Literals . 33
3.2. Code after Encode Literals . 33
3.3. Hiding the value of k = 0x876554321 using Mixed Boolean-Arithmetic. . . . 34
3.4. Code before Encode Arithmetic . 38
3.5. Code after Encode Arithmetic . 38

4.1. Self-checksumming code example by Qiu et al. [175]. 78

5.1. Program with easy to find test suite . 84
5.2. Program containing a trigger condition, i.e. it only prints ”You Win” if the

DBJ2 hash of the input is equal to a hard-coded value. 87
5.3. Randomly generated program example. 102

7.1. Range divider with 2 branches . 133
7.2. Program with loop . 133
7.3. Program from Listing 7.2 obfuscated with range divider 134
7.4. Program from Listing 7.2 obfuscated with maximum number of branches of

range divider . 136
7.5. Point function program . 137
7.6. Point function program with virtualization and input invariants 138
7.7. Hash function applied to strings . 139
7.8. Function from [220], which checks if first parameter has a value between the

values of the second and third parameters. 139

185

List of Tables

3.1. Classification dimensions for obfuscation transformations. 31

4.1. Classification dimensions for automated MATE attacks. 51
4.2. Search problem specification examples . 56
4.3. Elements of search specification and execution for data recovery attack via

pattern matching. 67
4.4. Elements of search specification and execution for the code understanding

attack via pattern recognition. 70
4.5. Elements of search specification and execution for key location recovery

attack via pattern recognition. 73
4.6. Elements of search specification and execution for data recovery attack via

random testing. 76
4.7. Elements of search specification and execution for location recovery attack

via taint analysis. 77
4.8. Summary of automated MATE attack survey. 80

5.1. Elements of search specification and execution for code understanding at-
tack via symbolic execution. 85

5.2. Elements of search specification and execution for data recovery attack via
SAT solving. 89

5.3. Overview of manually written programs before and after obfuscation. . . . 93
5.4. KLEE execution time (in seconds) of original programs w.r.t. code character-

istics of 1st dataset. 94
5.5. Operator parameter values given to C code generator used for generating

dataset. 99
5.6. Control structure parameter values given to C code generator used for gener-

ating dataset. 100
5.7. Overview of randomly generated programs. 101
5.8. KLEE execution time (seconds) on original programs w.r.t. code characteris-

tics of 2nd dataset. 103
5.9. Symbolic execution slowdown on programs obfuscated using Tigress, rela-

tive to unobfuscated counterparts from 2nd dataset. 104

6.1. Overview of programs containing simple hash functions. 112

187

List of Tables

6.2. The NRMSE between model prediction and ground truth (average over
NRMSE of 10 models) . 120

6.3. Size of the prediction models (in MBs). 124
6.4. Prediction results of realistic hash functions via RF model trained with SAT

features from Section 6.2.2. The solver and predicted time are given in seconds.128

188

	Acknowledgements
	Zusammenfassung
	Abstract
	Outline of the Thesis
	Contents
	I Introduction and Background
	1 Introduction
	1.1 Benefits of Software Obfuscation
	1.2 Attacker Model
	1.3 The Need for Characterizing the Strength of Software Obfuscation
	1.4 Goal
	1.5 Problem Statement and Research Questions
	1.6 Thesis Statement
	1.7 Solution
	1.8 Contributions
	1.9 Structure

	2 Obfuscation in Theory
	2.1 Impossibility of Black-Box Obfuscation
	2.1.1 Definition of Black-Box Obfuscation
	2.1.2 Sketch of Impossibility Proof

	2.2 Indistinguishability Obfuscation
	2.2.1 Branching Programs
	2.2.2 Universal Circuits and Kilian's Protocol
	2.2.3 Multilinear Jigsaw Puzzle (MJP)

	2.3 Applicability in Practical Scenarios
	2.3.1 Implementation
	2.3.2 Benchmarking

	2.4 Summary

	3 Obfuscation in Practice
	3.1 Practical Challenges of Code Transformations
	3.2 Classification of Code Obfuscation and Diversity Transformations
	3.2.1 Abstraction Level of Transformations
	3.2.2 Time of Transformations
	3.2.3 Unit of Transformations
	3.2.4 Dynamics of Transformations
	3.2.5 Target of Transformations
	3.2.6 Summary of Obfuscation Transformation Classification

	3.3 Survey of Obfuscation and Diversity Transformations
	3.3.1 Data Transformations
	3.3.2 Code Transformations
	3.3.3 Summary of Survey

	II The Core
	4 Automated MATE Attacks
	4.1 Classification of Automated MATE Attacks
	4.1.1 Attack Type Dimension
	4.1.2 Dynamics Dimension
	4.1.3 Interpretation Dimension
	4.1.4 Alteration Dimension
	4.1.5 Summary of MATE Attack Classification

	4.2 Definition of Automated MATE Attacks
	4.2.1 Formalization of Automated MATE Attacks
	4.2.2 Search Model
	4.2.3 Estimating Search Cost
	4.2.4 Power of MATE Attacker
	4.2.5 Benefits of Search Model

	4.3 Survey of Automated MATE Attacks
	4.3.1 Syntactic Attacks
	4.3.2 Semantic Attacks

	4.4 Summary

	5 Code Obfuscation Against Symbolic Execution Attacks
	5.1 A Common Subgoal of Automated MATE Attacks
	5.1.1 The Effect of Obfuscation on Automated Test Case Generation
	5.1.2 Instantiating the Search Model for Symbolic Execution Attacks

	5.2 Case Study
	5.2.1 Obfuscator and Analysis Implementations
	5.2.2 Experiment with First Dataset
	5.2.3 Experiment with Second Dataset

	5.3 Summary and Threats to Validity

	6 Predicting Cost of Symbolic Execution Attacks on Obfuscated Code
	6.1 A General Framework for Predicting the Cost of Automated MATE Attacks
	6.1.1 Selecting Relevant Features

	6.2 Case-Study
	6.2.1 Experimental Setup
	6.2.2 Feature Selection Results
	6.2.3 Regression Results

	6.3 Summary and Threats to Validity

	7 Improving Obfuscation Transformations Against Symbolic Execution
	7.1 The Impact of Obfuscation on Search Problems
	7.2 Existing Anti-Symbolic Execution Obfuscations
	7.2.1 Path Explosion
	7.2.2 Path Divergence
	7.2.3 Complex Constraints

	7.3 Proposed Obfuscation Transformations
	7.3.1 Range Dividers
	7.3.2 Input Invariants

	7.4 Summary

	III Related Work and Conclusion
	8 Related Work
	8.1 Characterizing Obfuscation Strength
	8.1.1 Formal Approaches
	8.1.2 User Studies
	8.1.3 Code Metrics Based Approaches

	8.2 Alternatives to Diverse Obfuscation
	8.2.1 Encryption via Trusted Hardware
	8.2.2 Server-Side Execution
	8.2.3 Code Tamper-detection and Tamper-proofing

	8.3 Summary

	9 Conclusions
	9.1 Results and Lessons Learned
	9.2 Limitations
	9.3 Future Work

	Bibliography
	Glossary
	Index
	List of Figures
	Listings
	List of Tables

