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Abstract
Background

Stent-assisted coil embolization (SACE) plays an important role in the treatment of intracra-

nial aneurysms. The purpose of this study was to investigate geometrical changes caused

by closed-cell design stents in bifurcation and sidewall aneurysms.

Methods

31 patients with 34 aneurysms underwent SACE with closed-cell design stents. Inflow

angle α, determined by aneurysm neck and afferent vessel, and angle between afferent and

efferent vessel close to (δ1), respectively, more remote from the aneurysm neck (δ2) were

graphically determined in 2D angiography projections.

Results

Stent assisted coiling resulted in a significant increase of all three angles from a mean value

(±SEM) of α = 119° (±6.5°) pretreatment to 130° (±6.6°) posttreatment (P� .001), δ1 = 129°

(±6.4°) to 139° (±6.1°), (P� .001) and δ2 = 115° (±8.4°) to 126° (±7.5°), (P� .01). Angular

change of δ1 in AcomA aneurysms was significant greater compared to sidewall aneurysms

(26°±4.9° versus 8°± 2.3°, P� .05). The initial angle of δ1 and δ2 revealed a significantly

inverse relationship to the angle increase (δ1: r = -0.41, P� .05 and δ2: r = -0.47, P� .01).

Moreover, angle δ1 was significantly higher in unruptured compared to ruptured aneurysms

(135°±7.1° versus 103°±10.8°, P� .05).

Conclusion

Stent deployment modulates the geometry of the aneurysm-vessel complex, which may

lead to favorable hemodynamic changes more similar to unruptured than to ruptured aneu-

rysms. Our findings also suggest that the more acute-angled aneurysm-vessel anatomy,

the larger the angular change. Further studies are needed to investigate whether these

changes improve the clinical outcome.
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Introduction
Stent-assisted coil embolization (SACE) is a well-established endovascular therapy of cerebral
aneurysms with wide necks or low dome-to-neck ratios [1–3]. Advantages of SACE over coiling
alone are not only mechanical characteristics of the stent, which prevent coil prolapse and allow
higher packing density, but also potential hemodynamic effects by diverting the blood flow [4–7].
Besides direct reduction of flow by the stent struts, one of the relevant hemodynamic effects by
stent placement seems to be straightening of vessels-aneurysm complex [8]. Especially stents with
closed-cell design show this capability of angular remodeling. The closed-cell design makes the
stent work as a whole body, immediately transmitting a force used at one end to the other end
[9,10]. This leads to effective straightening of a curved vessel in which the stent is implemented [9–
11]. Stents with open-cell design show significantly less angular remodeling [11], however, con-
form better to curved vascular segments by having several independent segments instead [9,10].

Originally, stents have been designed to treat sidewall aneurysms, but it has been shown
that stent implementation is also suitable for many bifurcation aneurysms [9]. Advances in
SACE have led to a variety of different stent-placement methods, also allowing treatment of a
subset of wide-necked aneurysms not amenable to reconstruction with a single-stent due to
anatomical conformation. These methods include for example “crossing Y-stent technique”,
indicating that a second stent is advanced through the first stent interstices and into the contra-
lateral branch vessel [9,12]. Thus a variety of complex aneurysm can be treated with SACE.
Previous studies even suggest stent treatment without coiling, already changing hemodynamics
sufficiently enough to induce intra-aneurysmal thrombosis [13–15]. Zenteno et al attributed
this therapeutic effect to the straightening of the vessel-aneurysm complex induced by balloon
inflation during balloon-mounted stent deployment [11,13]. Results of computational flow and
ideal aneurysm model analysis also suggest that the straightening of the parent vessel is associ-
ated with a favorable outcome [16,17], as it leads to smaller pressure, inflow volume rate and
inflow velocity in the aneurysm [16,18]. To investigate the effect of closed-cell stent remodeling
in real patients in a clinical setting, we measured structural changes of the vessel–aneurysm
complex of bifurcation and sidewall aneurysms treated at our institution.

Materials and Methods

Patient Selection
The study was approved by the ethical committee of the Technische Universität, München.
Patient records and information were anonymized and de-identified prior to analysis. We ret-
rospectively identified 50 patients with 57 intracranial aneurysms treated by stent-assisted coil-
ing with closed-cell design stents between June 2008 and July 2015. Patients with no recorded
follow-up angiography (n = 13), complication due to dislocation of the proximal part of the
stent into the aneurysm (n = 1), postoperative in-stent thrombosis (n = 1) or in-stent occlusion
(n = 2) were excluded. No measurement of angular remodeling was possible due to insufficient
image quality for the construction of the auxiliary elements in two cases, which were also
excluded. The final study population included 31 patients with 34 aneurysms.

Endovascular Treatment
Patients scheduled for elective stent-assisted coiling received oral acetylsalicylic acid (100 mg)
and oral clopidogrel (75 mg) for at least 5 days before the procedure. On the day of the proce-
dure platelet function was tested with Multiplate1 Analzyer (Roche Diagnostics, Mannheim,
Germany). In case of clopidogrel resistance, clopidogrel was replaced by prasugrel with a load-
ing dose of 60 mg and the procedure was performed the next day. All patients were kept on a
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regimen of both acetylsalicylic acid and clopidogrel for 3 months, after which clopidogrel was
no longer given

29 aneurysms were treated with single stent-assisted coiling of which 25 were treated with
Enterprise stents (Codman & Shurtleff, Inc., Raynham, MA, USA) and of which four aneu-
rysms were treated with Acandis Acclino stents (Acandis, Pforzheim, Germany). One aneu-
rysm was treated with one Enterprise stent and one Solitaire AB stent (Covidien, Irvine, CA,
USA), due to distal displacement of the Enterprise stent. From the total amount of 24 bifurca-
tion aneurysms, four were treated in Y-configuration: Two basilar artery (BA) bifurcation
aneurysms and one anterior communicating artery (AcomA) aneurysm were treated by placing
two Enterprise stents in Y-configuration; One BA bifurcation aneurysm was treated with one
Acandis Acclino stent and one Leo stent (Balt, Montmorency, France) in Y-configuration. As
Leo stents are made by wire braiding while Enterprise, Solitaire AB and Acandis Acclino stents
are laser-cut from nitinol hypotube, the angle formed by the Leo stent was excluded. The Soli-
taire stent had a diameter of 4 mm, all Acclino and Enterprise stents had a diameter of 4.5 mm.

Vascular Measurements
DSA was performed on a bi-planar Philips Allura Xper FD (Philips Medical Systems B.V., Best,
The Netherlands). For assessment of the vessel-aneurysm complex, standard 2DDSA projections
angled perpendicular to the longest axis of the aneurysm with the best view of aneurysm sac and
neck were analyzed before and after stent-assisted coiling. For graphical measurements of the vas-
cular angles we additionally constructed auxiliary elements with Siemens Solid Edge 2DDrafting
as follows (Fig 1). Two circles adjacent to the aneurysm neck were constructed in the efferent and
afferent vessel in sidewall aneurysms, respectively, in both efferent vessels in bifurcation aneu-
rysms, with the same diameter as the vessel they were positioned in. An aneurysm neck section
line tangential to both circles was drawn. (Fig 1B) A cycle tangential to the aneurysm neck section
line and to the afferent vessel was added in bifurcation aneurysms but not in sidewall aneurysms
(Fig 1C, lower row). Twomore cycles, again with the same diameter of the vessels in which they
were positioned in, were added tangentially to each of the previously constructed cycles (Fig 1C).
Centerlines were drawn between the centers of the adjacent cycles (Fig 1D). Inflow angle α was
determined by the aneurysm neck section line and the centerline of the afferent vessel close to the
aneurysm (Fig 1E). The angle close to the aneurysm neck (δ1) and more remote from the aneu-
rysm neck (δ2) were determined by centerlines of the efferent and afferent vessel close (δ1),
respectively, located more remotely from the aneurysm neck (δ2) (Fig 1F and 1G). Two neurora-
diologists (EB, SP) evaluated vascular measurements of all aneurysms in consensus reading.

Statistical Analysis
Differences were analyzed using two-tailed Wilcoxon signed rank test or two-tailed MannWhit-
ney test. Comparisons between three or more groups were analyzed by Kruskal-Wallis (KW) test
with post-hoc Dunn’s test. Correlation was tested by Pearson’s correlation analysis in normally
distributed data (prestenting angle) and by Spearman correlation in non-normally distributed
data (vessel diameter). Data is presented as means ± SEM. Statistical analysis was performed
using GraphPad Prism software (version 5.0a); p-values�0.05 were considered significant.

Results

Patient and Aneurysm Characteristics
The majority of the patients were women (74.2%) and the median age at stent implementation
was 54 years (inter quartile range [IQR]: 44–64 years). Patients presented with subarachnoid
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hemorrhage in 11 cases (35%). Bifurcation aneurysms (n = 21) were at the following locations:
BA (n = 6), middle cerebral artery (MCA) (n = 5) or AcomA (n = 10). Sidewall aneurysms
(SWA) (n = 13) were found at the following locations: BA (n = 2), MCA (n = 1), posterior infe-
rior cerebellar artery (PICA) (n = 1), superior cerebellar artery (SCA) (n = 1) or internal carotid
artery (ICA): ophthalmic segment (n = 2) and communicating segment (n = 6). Aneurysm size
defined as maximum diameter ranged from 1,5 to 20 mm (median: 7 mm). The size of the
aneurysm neck ranged from 1 to 8mm (median: 4mm) with 4 missing values due to absence of
calibration. Adjunctive stenting was performed either to treat wide neck aneurysms (n = 18),
aneurysm recurrence (n = 8) or due to prolapsed coil (n = 8). No intraprocedural aneurysm
rupture occurred during the stent-coiling procedures in any of the patients.

Follow-Up Analysis
For assessment of vessel anatomy, matching 2D projections of the angiograms before and after
stent-assisted coiling were analyzed with a median follow-up period of seven months (IQR:

Fig 1. Construction of the auxiliary elements and angular measurements in sidewall and bifurcation aneurysms. Inflow angle αwas determined by
the aneurysm neck section line and the centerline of the afferent vessel close to the aneurysm. The angle close to the aneurysm neck (δ1) and more remote
from the aneurysm neck (δ2) were determined by centerlines of the efferent and afferent vessel close (δ1), respectively, located more remotely from the
aneurysm neck (δ2).

doi:10.1371/journal.pone.0153403.g001
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4–11 months). Auxiliary elements for measurement of angle δ2 could not be constructed in five
cases. This was due to the vessel anatomy remote from the aneurysm neck with the course of
the vessel orthogonal to the image plane. The diameter of the afferent and efferent vessel was
calculated after correction of estimated radiographic magnification factor on digital subtraction
angiography. Missing values were due to absence of calibration (no calibration of DSA projec-
tions pretreatment = 19, posttreatment = 5), one patient was excluded who developed vaso-
spasm after subarachnoidal bleeding and was treated with nimodipine during follow-up
angiography, respectively.

Effective Straightening of the Aneurysm-Vessel Complex after Stent
Placement
Changes in all three angles α, δ1 and δ2 were detected after stent assisted coiling, suggesting that
stent deployment led to effective straightening of the affected vessel. Stent assisted coiling resulted
in a highly significant increase of the inflow angle α from a mean value (SEM) of 119° (±6.5°)
pretreatment to 130° (±6.6°) posttreatment (P� .001). Analysis of δ1 and δ2, measuring the
angle close to the aneurysm neck or more remote from the aneurysm neck respectively, also
showed a significant increase of δ1 from a pretreatment value of 129° (±6.4°) to 139° (±6.1°) post-
treatment (P� .001) and of δ2 with a pretreatment value of 129° (±6.4°) compared to 139°
(±6.1°) posttreatment (P� .01) (Table 1). The Kruskal-Wallis test with post-hoc Dunn's multiple
comparison test showed a significant greater angular change of δ1 in AcomA aneurysms com-
pared to sidewall aneurysms (26°±4.9° versus 8°± 2.3°, P� .05), but no significant change of
angle α and δ2. KW test on comparison for angular change between different bifurcation aneu-
rysms (AcomA, MCA and BA) also failed to show significant differences among them (Fig 2).

Relationship between Pretreatment Angle or Vessel Diameter and
Angular Change
We hypothesized that the degree of angular remodeling was dependent on the angle of the ves-
sel segment and on the vessel diameter, each before treatment. Analysis of the angular change

Table 1. Angle α, δ1 and δ2 before and after stent-assisted coiling.

Location of the Angle Prestenting Angle Post-Stent-Coiling Angle

α δ1 δ2 α δ1 δ2

Total 119.2±6.5 129.0±6.4 115.0±8.4 130.1±6.6 139.0±6.1 126.2±7.5

(n = 37) (n = 37) (n = 32) *** *** **

Sidewall 134.8±12.2 145.4±10.8 128.7±14.3 142.0±12.5 153.8±10.5 134.2±14.2

(n = 13) (n = 13) (n = 10) * ** ns

Bifurcation 110.8±7.2 111.6±7.0 109.7±10.3 123.6±7.5 131.4±7.2 123.0±8.9

(n = 24) (n = 24) (n = 22) ** *** *

AcomA 115.8±10.6 124.4±9.6 126.2±14.4 138.5±10.4 150.8±9.9 145.4±14.5

Bifurcation (n = 11) (n = 11) (n = 10) * ** **

MCA 141.6±11.6 117.6±16.3 118.8±18.4 148.0±11.9 135.4±16.4 122.2±11.9

Bifurcation (n = 5) (n = 5) (n = 4) ns ns ns

BA 84.6±6.5 90.3±10.4 74.8±12.7 87.8±2.9 102.3±5.6 88.9±7.1

Bifurcation (n = 8) (n = 8) (n = 8) ns ns ns

The p-value applies to the prestenting angle versus the respective post-stent-coiling angle (ns: P>.05, *: P � .05, **: P � .01, ***: P � .001). Prestenting

angles have the same number (n) of angle values as post-stent-coiling angles (table shows mean ± SEM).

doi:10.1371/journal.pone.0153403.t001
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pre- and posttreatment and the pretreatment angle revealed a significantly inverse relationship
of angle δ1 and δ2 (δ1: r = -0.41, P� .05 and δ2: r = -0.47, P� .01). There was no significant
relationship of the angular change and the prestenting angle of inflow angle α (r = -0.26,
P = 0.14) (Fig 3). Analysis of the angular change and the presenting diameter of the proximal
(α: r = -0.50, P = 0.06, δ1: r = -0.05, P = 0.86 and δ2: r = 0.29, P = 0.33) and distal vessel (α: r =
-0.26, P = 0.38, δ1: r = -0.46, P = 0.11 and δ2: r = 0.07, P = 0.83) did not show a significant rela-
tionship either (n = 18 for α and δ1, n = 16 for δ2).

Change in Vessel Diameter of the Afferent and Efferent Vessel After
Stent Deployment
The diameter of the proximal (afferent) vessel and the distal (efferent) branch showed a slight
yet not significant trend towards an increase from 2.73mm (±0.2mm) pretreatment to 2.90mm
(±0.1mm) posttreatment (P = 0.18), and from 2.19mm (±0.2mm) to 2.43mm (±0,1mm),
(P = 0.25), respectively (Fig 4).

Angle Formation and Vessel Diameter in Ruptured Aneurysms
Compared to Unruptured Aneurysms
Before treatment, angle δ1 was significantly higher in the unruptured group at 135°±7.1° com-
pared to 103°±10.8° for the ruptured group (P� .05). Inflow angle α showed greater values in

Fig 2. Effective straightening of the aneurysm-vessel complex after stent placement. Angular differences of sidewall and bifurcation aneurysms pre-
and posttreatment (A). DSA-Angiography of a 41-year old patient with AcomA aneurysm, showing an effective straightening of the aneurysm-vessel complex
23 months after stent-assisted coiling (B), (graph shows mean ± SEM, *: P� .05, for n-values see Table 1).

doi:10.1371/journal.pone.0153403.g002

Fig 3. Inverse relationship between the angular change and the pretreatment angle (α, δ1 and δ2). α: n = 37, r = -0.26, P = 0.14 (A), δ1: n = 37, r = -0.41,
P� .05 (B) and δ2: n = 32, r = -0.47, P� .01 (C), x axis, angle α, δ1 or δ2 before treatment, y axis, angular difference between pre- and posttreatment.

doi:10.1371/journal.pone.0153403.g003
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the unruptured subset (138°±8.0°) compared to the ruptured subset (102°±9.7°), almost reach-
ing statistical significance (P = 0.0503). There was no statistically significant difference of angle
δ2 between unruptured aneurysms (119°±9.1°) and ruptured aneurysm (110°±16.3°),
(P = 0.28) (Fig 5A). Comparing the diameter of unruptured to ruptured aneurysms, we found a
slight trend that did not reach statistical significance towards a greater diameter in the unrup-
tured group compared to the ruptured group. The diameter of the afferent vessel of unruptured
aneurysms had a mean value of 2.90mm (±0.28mm) compared to 2.28mm (±0.24mm) of rup-
tured aneurysms (P = 0.15) and the diameter of the efferent vessel of unruptured aneurysms
had a mean value of 2.36mm (±0.22mm) compared to 1.74mm (±0.23mm) of ruptured aneu-
rysms (P = 0.14) (Fig 5B).

Fig 4. Slight yet not significant increase of the vessel diameter after stenting.Change in vessel
diameter of afferent and efferent vessel pre- and posttreatment, n = 18 for the presenting group and n = 30 for
the poststenting group (graphs shows mean ± SEM) (A). DSA-angiography of a 43-year old patient with MCA
aneurysm showing an increase in diameter especially of the efferent vessel 11 months after SACE (B).

doi:10.1371/journal.pone.0153403.g004

Fig 5. Aneurysm-vessel complex in ruptured aneurysms compared to unruptured aneurysms. Angle
of unruptered (α: n = 24, δ1: n = 24 and δ2: n = 19) and ruptured aneurysms (n = 13) before treatment (graph
shows mean ± SEM, *: P� .05), (A). Vessel size of unruptured (n = 13) and ruptured aneurysms (n = 5) (B).

doi:10.1371/journal.pone.0153403.g005
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Discussion
In our study, stent-assisted coil embolization led to effective straightening of the aneurysm-ves-
sel complex and a slight trend towards an increasing vessel diameter. These geometrical
changes in SACE are likely to contribute to favorable hemodynamics within the aneurysm.

Hemodynamic factors play an important role in the pathogenesis, progression, and rupture
of cerebral aneurysms and are especially sensitive to variations in vessel geometry [16,19–21].
A previous study that used ideal intracranial aneurysm models found a strong dependence of
aneurysm hemodynamics on the curvature of the parent artery; the straighter the parent vessel,
the smaller the pressure, inflow volume rate and inflow velocity in the aneurysm [16]. Reduc-
tion of blood flow into the aneurysm and of the flow velocity magnitude at the neck were
found to be related to thrombus formation, supporting a complete occlusion of the aneurysm
and a favorable outcome after endovascular treatment [16,17]. Similar results were reported in
a study about the hemodynamic effect of changes in key geometrical properties of the aneu-
rysms, using computational fluid dynamics (CFD). After changing a straight parent vessel into
a curved one, they observed a drastic change in blood flow dynamics, with an average velocity
about ten times higher in the aneurysm sac [18]. Further CFD analysis by Gao et al showed
that the bifurcation angle determines the hemodynamic environment of the aneurysm follow-
ing SACE by changing pressure and wall shear stress in a favorable direction. They could also
show that angular remodeling is more significant immediately after Y-stenting and during the
first six months of follow-up. Then, a steady state is seen because the potential energy of the
stent is mostly released [22,23]. All in all straightening of the aneurysm-vessel complex sug-
gests a favorable hemodynamic change within the aneurysm.

Previous studies mainly focused on vascular remodeling of either bifurcation aneurysms
[11,24,25] or sidewall aneurysms only [8,26]. In this study we compared bifurcation to sidewall
aneurysms, demonstrating that stent-assisted coiling led to a greater change in the angle of
bifurcation aneurysms of the anterior communicating artery compared to sidewall aneurysms.
Interestingly sidewall aneurysms, especially of the ACI, compared to bifurcation aneurysm,
such as AcomA, have a less acute angle formation before treatment and a greater diameter of
the parent vessel. This finding might suggest that the larger the pre-stenting angle and the
larger the vessel size, the smaller the angular change of δ1, δ2 and also inflow angle α [11].
Other studies on angle remodeling of bifurcation aneurysm after SACE also found this inverse
relation between extent of vascular modification and vessel diameter or pretreatment angle, lat-
ter corresponding with angle δ1 of our study [11,24]. In our study we could only show a signifi-
cant inverse relationship between angular change and presenting angle for angle δ1 and δ2 but
not between angular change and vessel diameter. The latter could be due to the fact that we had
to accept missing values of the vessel diameter (n = 19) because of the absence of calibration.

Previous studies on vascular remodeling effects of SACE have focused on straightening of
the parent vessel [20,22,24,25]. In our study we could show that SACE did not only lead to
effective straightening but also showed a trend towards an increasing diameter of the parent
vessel, suggesting not only a bending [11] but also a radial force exerted by the deployed stent.
Studies have shown that specific locations on the cerebral vasculature, e.g. AcomA or distal ves-
sels, have a higher percentage of small ruptured aneurysms compared to other more proximal
locations, such as ICA, suggesting a higher rupture risk for aneurysms of vessels with small cal-
ibers and lower risks for larger-diameter vessels, independent from aneurysm size [27,28]. In
an aneurysm flow dynamics study, Tremmel et al demonstrated that only reducing the diame-
ter of the vessel parent, while keeping all other morphological parameters unchanged, already
leads to considerable change in flow patterns to more complex flow structures with multiple
associated vortices and an increase of the area exposed to low wall shear stress (<0.5 Pa) [29].
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Large areas with low wall shear stress on the aneurysm inner wall, which are known to trigger
atherosclerotic and inflammatory pathways [21,30,31], as well as complex flow patterns, have
been identified to correlate with aneurysm growth [32,33] and rupture [29,30]. Thus, increas-
ing the diameter of the parent vessel and by that decreasing hemodynamic risk factors for
aneurysm rupture could be an additional positive effect of SACE.

Comparing ruptured to unruptured aneurysms, ruptured aneurysms seem to have a more
acute-angled vessel configuration and a smaller vessel diameter than unruptured aneurysms
and by that presumably presenting a high-risk vascular configuration. Previous studies on dif-
ferences in aneurysm characteristics between ruptured and unruptured aneurysms regarding
aneurysm flow angles showed conflicting results [34–37]. Inconsistent results comparing geo-
metric and morphological aneurysm characteristics between patients with ruptured aneurysms
and unruptured aneurysms could be due to lack of adjustment for patient specific risk factors
for aneurysm rupture or use of different imaging techniques and measurement methodology
[37,38]. Moreover, although there is no study about the change of aneurysm-vessel configura-
tions after rupture, it is possible that the event of rupture itself leads to structural remodeling.

The results of our study should be viewed in consideration of its limitations. This was a retro-
spective study with a relatively small sample size of 31 patients with 34 aneurysms. Further stud-
ies with a larger number of patients frommultiple centers will be required to verify the findings.
This especially applies to the changes in vessel diameter after SACE, as we had to accept missing
values due to absence of calibration. Moreover, the sample size of subgroups comparing Enter-
prise stents with Acandis Acclino stents or Y-configuration with single-stents were too small for
statistical analysis. Our hypothesis that increasing the diameter and straightening of the parent
vessel contributes to favorable hemodynamics within the aneurysm is supported by previous
computational fluid dynamics studies [18,22,29] but has to be corroborated with clinical results
and with long-term follow-up angiographic outcomes focusing on recanalization rates.

For graphic analysis of the different angles we used freely available software (Siemens Solid
Edge 2D Drafting) and 2D working projections (DSA), which can be easily applied in clinical
practice. Although, attention should be paid when performing angle measurements because of
large variabilities depending on the viewing angle. As our standard procedure includes the
acquisition of a projection perpendicular to the aneurysm, usually by using a 3D DSA-angiog-
raphy, in order to plan the most effective treatment, we could minimize measurement errors.
3D projections before and after treatment would be preferable for more accurate measurements
but were less commonly performed for follow up imaging in our clinical practice.

In conclusion, stent-assisted coil embolization leads to effective straightening of the aneu-
rysm-vessel complex and a trend towards an increase in the diameter of the afferent vessel.
These geometrical changes in SACE are likely to contribute to favorable hemodynamics within
the aneurysm and are more similar to unruptured than to ruptured aneruysms. Further studies
are warranted to investigate whether these changes are associated with a favorable outcome of
the patient.
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