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Abstract: Novel silylium ions with N-heterocyclic imines were successfully synthesized. The reaction of
trimethylsilyl imidazolin-2-imine Me3SiNIPr (NIPr = bis(2,6-diisopropylphenyl)-imidazolin-2-imino)
with B(C6F5)3 leads to dimeric imino-substituted silylium ions through a methyl group abstraction
on the silicon atom. Meanwhile, the intermolecular imino-coordinated silylium ion is formed by
using the less sterically crowded imine Me3SiNItBu (NItBu = bis(tert-butyl)-imidazolin-2-imino).
Furthermore, the treatment of dimethylchlorosilane Me2(Cl)SiNIPr with AgOTf affords the
contact ion pair Me2(OTf)SiNIPr by substitution of the chloride. A novel complex with the
formula [Me2(DMAP)SiNIPr][OTf] was prepared by coordination with 4-dimethylamino-pyridine
(DMAP). In the solid state, the DMAP adduct [Me2(DMAP)SiNIPr][OTf] contains a distinct
[Me2(DMAP)SiNIPr]+ moiety.
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1. Introduction

For decades, silicon analogues of carbenium ions, mostly referred to as silylium ions, have
been attractive synthetic targets both for fundamental and applied research due to their electronic
properties with strong Lewis acidity [1]. Since the pioneering work on silylium ions via hydride
abstraction utilizing trityl cation by Corey and co-workers [2], several silylium ions were reported,
although a weak interaction exists between a pronounced electrophilic silicon center and either solvent
molecules or counteranions [3–6]. It should be emphasized that the first structurally authenticated
free silylium ion I (Figure 1) was reported by Lambert, Reed and co-workers in 2002 [7]. Since then,
several further examples of silyl cations have been reported [8–10]. On the other hand, the utilization
of silylium ions as catalysts has also been an area of intense research interest and their catalytic
activity has been examined in various reactions [11,12]. For example, the groups of Ozerov as well
as Müller have independently reported the defluorination of fluoro- and perfluoro-alkyl groups by
using silylium ions [13–15]. Moreover, Sawamura implemented a silylium ion as Lewis acid catalyst in
Mukaiyama aldol and Diels-Alder reactions [16]. Catalytic C–C bond forming reactions have also been
reported [17,18]. Recently, Oestreich and co-workers demonstrated that a ferrocene-based silylium
ion II (Figure 1) displays catalytic activity in Diels-Alder reactions [19]. To date, most isolable silylium
ions are typically limited to alkyl and aryl substituents and heteroatom-substituted silylium derivatives
have remained extremely scarce. However, introduction of a heteroatom such as N, O, or S to the
silylium center [20–22] produced silylium ions with good catalytic activity [23].
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Tamm and co-workers developed a facile synthetic method for imidazolin-2-imino ligands
and reported a number of metal complexes with these ligands [24–27]. During the last years,
N-heterocyclic imines (NHIs) have been exploited for the syntheses of various unique main group
compounds [28]. In Group 14, several metallylenes were synthesized by using NHIs as ligand [29–32],
and two-coordinated metallyliumylidenes III (Figure 1) were also successfully isolated owing to
stabilization of the NHI ligand by its high σ-donation together with delocalization of a positive charge
around the imino fragment [31,32]. Shortly after, it was also demonstrated the NHIs effectively stabilize
a spacer-separated bis(germyliumylidene) IV (Figure 1) [33]. Interestingly, their strong coordination
ability enables the synthesis and isolation of a rare halogen-substituted stannylenoid V (Figure 1) [34]
by coordinating of the imino-nitrogen to a Li cation, preventing the liberation of LiCl to form divalent
tin species. Very recently, several imino-substituted borane compounds, of which the dichloro
derivative VI (Figure 1) has a significant allenic-type character VI’ (Figure 1) were reported [35].
Note that these iminoboranes act as Frustrated Lewis Pairs (FLPs), showing dehydrogenation of
amine-borane. Motivated by this report and from the view point of their isoelectronic nature to
silylium ions, iminosilylium ions would be an interesting synthetic target.
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Figure 1. Selected group silylium ions I and II and metallyliumylidenes III and IV as
well as bis(imino)stannylenoid V. Dichloroiminoborane VI and its canonical structure VI’.
Dip = 2,6-diisopropylphenyl. ArF = 3,5-bis(trifluoromethyl)phenyl.

It is noteworthy that the syntheses of phosphinoimido complexes of silylium ions were described
by Stephan and co-workers and they exist as a dimer VII or a phosphinoimido-coordinated
monomer VIII depending on the steric crowding of the substituents (tBu vs. iPr and Ph)
(Scheme 1) [36].
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Scheme 1. Syntheses of silylium ions VII and VIII via a methyl abstraction with B(C6F5)3.
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Herein we describe the facile synthesis of novel imino-substituted silylium ions by the abstraction
of methyl group of the trimethylsilyl ligand. Moreover, base-coordinated silylium ion was also
prepared by treatment of Me2(OTf)SiNIPr with DMAP by expelling the OTf anion.

2. Results and Discussion

Reaction of Me3SiNIPr (1, NIPr = bis(2,6-diisopropylphenyl)imidazolin-2-imino) with B(C6F5)3

in benzene results in the formation of a biphasic mixture, in which the dark-red lower layer was
found to contain the silylium ion 2[MeB(C6F5)3]2 (Scheme 2). A signal was observed in the 29Si-NMR
spectrum at δ = 17.3 ppm, which is significant low-field shifted compared to that of the precursor 1
(−22.3) [37]. This value is very similar to that of phosphinoimino complex of the silylium ion
(δ(29Si) = 7.9 ppm) [36], illustrating the existence of dimer 2[MeB(C6F5)3]2 in solution. The calculated
chemical shift of optimized structure of 2 (8.1 ppm) corresponds well with the experimental
value, supporting the presence of dimeric structure with a tetracoordinate silicon environment in
2[MeB(C6F5)3]2. The 19F-NMR spectrum displays three distinct signals characteristic of [MeB(C6F5)3]
due to the ortho, meta, and para F atoms of the C6F5 groups, which appear at similar shifts to those
observed in III that have [MeB(C6F5)3] as a counterion [31,32]. Unfortunately, repeated efforts to grow
single crystals of 2[MeB(C6F5)3]2 suitable for X-ray diffraction analysis were all unsuccessful.
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Scheme 2. Synthesis of the dimeric silylium ion 2[MeB(C6F5)3]. Dip = 2,6-diisopropylphenyl.

In order to gain deeper insight into the electronic nature of the structure of 2, we performed a
Natural Resonance Theory (NRT) analysis. Evaluation of the relative contributions of all important
canonical forms for compound 2 shows that the imino-coordinated silylium ion formulation A1 (78.9%)
is dominant (Scheme 3). Additionally, compound 2 possesses significant imidazolium cation character
A2 (21.1%), where the formal positive charges reside on the both imidazoline rings. Consequently, the
optimized structure of 2 has relatively long C–Nimino bonds (1.321 Å) which are comparable to those
found in bis(germyliumylidene) IV (1.331(3), 1.335(2) Å) [33]. The calculated Si–Nimino bond length
(1.820 Å) is significantly longer than that in the starting material 1 (1.677(2) Å) [26], indicating the high
dative bond interaction between the silicon and the imino-nitrogen (Figure 2). The computed HOMO
for 2 shows major π contributions located on the Dip unit (Figure S2). The LUMO shows N–C and
C–C antibonding interactions on the imidazolium ring (Figure S2).
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The treatment of Me3SiNItBu 3 (NItBu = bis(tert-butyl)imidazolin-2-imino) with B(C6F5) in a 2:1 to
form a two-layer reaction mixture (Scheme 4), accompanied by a color change from colorless to dark-red
akin to 2[MeB(C6F5)3]2. Although our efforts to obtain X-ray-quality crystals of this species have
been unsuccessful, the NMR data as well as the ESI mass spectroscopy results are all consistent with
the formulation of silylium salt [NItBuSiMe2(NItBuSiMe3)][MeB(C6F5)3] (4[MeB(C6F5)3]) (Scheme 4).
This salt is formed by abstraction of a Si-bound methyl group, affording a silylium cation which is
stabilized by intermolecular coordination of a second Me3SiNItBu molecule. The 1H-NMR spectrum
shows two sets of signal for the imidazoline ligands. The two signals at δ = −0.01 and 0.34 in an
integral ratio of 2:3 can be attributed to the Si-bound methyl groups. The 29Si-NMR spectrum reveals
two resonances for 4[MeB(C6F5)3] (δ(29Si) = −32.0, 13.1 ppm), in which the latter is assigned to the
silicon atom of the silylium ion because this value is comparable to that of 2[MeB(C6F5)3]2. The signals
at −32.0 and 13.1 ppm are well reproduced by gauge-independent atomic orbitals (GIAO) calculation
of the optimized structure of 4 and confirmed the assignment (−33.1 and 12.6 ppm). We also
employed DFT calculations to assess the likely structure of the complex. The Me2Si–Nimino distance
of 1.686 Å is comparable to that in 3 1.655(2) Å) [24], meaning the covalent bond character. Alternatively,
the contact between the coordinating imino ligand and the silylium center of 1.855 Å is significantly
longer owing to the high dative bond character. The extent of the positive charge delocalization can be
evaluated by the bond length of CNHC–N bond in the imino moiety. In this context, the bond distance of
CNHC–N (1.374 Å) in the coordinating imine Me3SiNItBu is relatively longer than corresponding value
of the main framework of [Me2SiNItBu]+ (1.313 Å), indicating the positive charge density is mainly
delocalized into the coordinating silylimine ligand. Moreover, the bond angle of CNHC–N–Si (139.63◦)
shows a remarkably bent structure. This value is much larger than that in the iminosilylene-borane
adduct having a significant silaimine character [29], indicating the π-electron interaction between the
imino-nitrogen towards the silylium center can be neglected.
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Moreover, the bonding situation of 4 were analyzed by means of NRT analysis (Scheme 5). The
study shows that the dominant resonance form is B1 (56.6%), in which the iminosilane (Me3SiNItBu)
coordinates the vacant orbital on the silicon atom in the silylium ion (Scheme 5). As expected
for the calculated structure of 4, the resonance structure B2 also has considerable weight (35.8%),
with a positive charge being located on one of the imidazoline rings. In addition, compound 4
possesses a small contribution of the iminium ion B3 (8.1%) (Scheme 5). Akin to 2, HOMO is localized
on imidazolin-2-imine fragment while LUMO is mainly on the π-contribution of the coordinated
imidazolium ring (Figure S3).
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When an excess amount of B(C6F5)3 is utilized, dimeric silylium [Me2SiNItBu]2[MeB(C6F5)3]2 is
not formed. This different reactivity of Me3SiNIPr 1 and Me3SiNItBu 3 towards B(C6F5)3 can be caused
by the steric bulk of the imidazoline fragment. This trend of the reactivity with B(C6F5)3 is very similar
to phosphinoiminosilanes, where the bulky Me3SiNP(tBu)3 formed the dimeric silylium ion VII while
the less bulky silanes (Me3SiNP(R)3, R = iPr, Ph) led to the formations of phosphinoimine-coordinated
silylium ions VIII (Scheme 1) [36].

We next carried out the DFT calculations for elucidation of the mechanisms of formation of
silylium ions 2[MeB(C6F5)3]2 and 4[MeB(C6F5)3], respectively. The difference in the steric bulk of
the precursors 1 and 3 leads to different products based on the reaction kinetics. Figure 3 shows
the energy profile along the reaction path calculated at the B97-D/6-31G(d) level of theory which
has been successfully applied in low-valent silicon compounds [38–47]. The first step in the reaction
is the abstraction of a Me group of a Me3Si moiety by the B(C6F5)3 (TS1Dip) with the associated
energy of +18.9 kcal/mol for 2[MeB(C6F5)3]2. On the other hand, the calculation revealed that a
methyl-abstraction of 3 requires less energy (TS1tBu, +11.3 kcal/mol) than that of 1 mainly due
to the less sterically congested environment around the Si center of 3 (Figure 4). This finding is
consistent with the experimental results, in which the reaction of 1 with B(C6F5)3 only proceeds
at elevated temperature with prolonged reaction time, whereas 3 reacts with B(C6F5)3 instantly at
room temperature. After abstracting of the first methyl group, a methyl-abstraction from the second
Me3SiNIPr (TS2Dipp) with associated energy of +23.5 kcal/mol followed by the dimerization (TS3Dip)
to form dicationic 2[MeB(C6F5)3]2. Alternatively, coordination of the second Me3SiNItBu (TS2tBu) with
the associated energy of +12.6 kcal/mol leads to the imine-adduct 4[MeB(C6F5)3]. We also calculated
the reaction pathway with a concerted reaction that a precursor molecule supports a Me-group
abstraction with B(C6F5)3 via its coordination to the back side of the forming silylium ion. However,
it turned out that the corresponding transition state was not found. This is probably because the
severe steric hindrance makes coordination of the second imine Me3SiNItBu to the silicon center highly
unfavorable (Scheme S1).

To clarify the difference in the reactivity between Me3SiNIPr 1 and Me3SiNItBu 3,
the mechanism of the formation of [NIPrSiMe2(NIPrSiMe3)][MeB(C6F5)3] (5[MeB(C6F5)3]) and
[Me2SiNtBu]2[MeB(C6F5)3]2 (6[MeB(C6F5)3]2) were also carried out (see Supporting Materials).
The associated energy of the coordination of the second Me3SiNIPr is relatively high (TS2Dip’,
+26.7 kcal/mol) and the net energy gain of the formation 5[MeB(C6F5)3] is small (−15.8 kcal/mol)
mainly due to the steric repulsion between the bulky Dip groups (Figure S7). On the other hand,
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the net energy gain of the formation of the dication 6[MeB(C6F5)3]2 (−18.9 kcal/mol) is smaller than
that of 4[MeB(C6F5)3] (−23.2 kcal/mol) (Figure S8).Molecules 2016, 21, 1155 6 of 12 
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We also considered the possibility of the direct Me abstraction from 4[MeB(C6F5)3] to lead to
6[MeB(C6F5)3]2. However, the transition state in this reaction is relatively high (25.2 kcal/mol) and
it is an uphill process (+5.3 kcal/mol). Thus, this pathway to dimeric silylium ion 6[MeB(C6F5)3]2 is
both kinetic and thermodynamic unfavorable (Figure S9). Consequently, these theoretical results are
also in accordance with the experimental results.

To further explore the scope of iminosilylium ions, we have investigated different synthetic
approaches. Treatment of Me3SiNIPr with one equivalent of Me2SiCl2 affords the Me2(Cl)SiNIPr 7 in
high yield. The reaction of Me2(Cl)SiNIPr 7 with one equivalent of AgOTf results in the formation of
iminotriflatosilane Me2(OTf)SiNIPr 8 by substitution of the chloride with a triflate group (Scheme 6).
The observed 29Si resonance value for 8 (−18.5 ppm) was comparable with that of Me2Si(Cl)NIPr 7
(−19.2 ppm). Single crystal X-ray diffraction analysis of 8 reveals that it crystallizes as a contact ion
pair with the triflate anion in the solid state to form a tetrahedral silicon center with an Si–O bond
distance of 1.7696(17) Å (Figure 5). The bond angle of Si–N–C is 158.77(17)◦, which falls in the range
of the mono-imino-substituted tetravalent silanes [27,29]. Furthermore, the Si–Nimino bond distance
(1.6231(18) Å) is comparable to those reported for tetravalent silane bearing an imino ligand and
indicative of a negligible Si=N double bond character.
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DMAP = 4-dimethylaminopyridine).

The reaction of 8 in toluene at 25 ◦C with one equivalent of DMAP affords a Lewis base
adduct 9[OTf] (Scheme 6). This complexation leads to displacement of the TfO–Si interaction
in 8. The 29Si-NMR spectrum of 9[OTf] (in CD2Cl2) displays a singlet resonance at −16.4 ppm,
which is slightly downfield shifted compared to those in 7 (−19.2 ppm) and 8 (−18.5 ppm).
Compound 9[OTf] crystallizes in monoclinic space group P21/c as separated ion pairs (closest Si–anion
separation: 4.699 Å). The molecular structure of 9[OTf] is depicted in Figure 5. The Si–Nimino distance
(1.6350(19) Å) is significantly shorter than the Si–NDMAP separation (1.8470(18) Å), but is very close to
the Si–Nimino bond length in 6 (1.6231(18) Å). Also, the N–CNHC bond distance of 1.275(3) Å is a typical
value for carbon-nitrogen double bonds in neutral imidazolin-2-imino compounds [26,27], indicating
the delocalization of positive charge density into the imidazoline ring is negligible. Accordingly,
instead of observing a linear Si–N–C angle in 9, the Si–N–C angle is significantly bent (155.86(17)◦).
These structural features suggest little electron donation from the imino nitrogen to the silicon core,
exhibiting no allenic-type bonding character.

Judging from our NRT analysis, the relative contributions of resonance structures for compound 9
denotes that the DMAP-coordinated silylium ion C1 is dominant (51.2%) (Scheme 7). Furthermore,
9 possesses significant pyridinium character represented by C2. Interestingly, the resonance form
C3 bearing the Si–Nimino double bond character, with formal positive charge being located at the
imidazolium ring, has a non-negligible role in the description of 9 (18.5%, Scheme 7) despite the long
Si–Nimino bond and the short Nimino–C distance that observed in the X-ray structure.
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3. Experimental Section

3.1. General Information

All experiments and manipulations were conducted under dry oxygen-free nitrogen using
standard Schlenk techniques or in an MBraun glovebox workstation containing an atmosphere of
purified nitrogen. Solvents were dried by standard methods. NMR solvents were degassed by
multiple freeze-pump-thaw cycles and stored over molecular sieves (3 Å). Reagents were purchased
from commercial suppliers and processed as received if not stated otherwise. The starting material
1 and 3 was prepared according to the reported procedure [25,26]. 1H-, 11B-, 13C{1H}-, and 19F-spectra
were recorded on an Avance II 200 MHz or 400 MHz spectrometer (Bruker) and referenced to
residual solvent signals as internal standards (1H and 13C) or an external standard (Et2O·BF3 for
11B, and CFCl3 for 19F). Values for the chemical shift (δ) are given in parts per million. Abbreviations:
s = singlet; d = doublet; t = triplet; sept = septet. Elemental analyses and ESI-HRMS were carried out
by the microanalytical laboratory and the MS-Service of the Institut für Chemie, Technische Universität
Berlin, Germany, respectively.

3.2. Synthesis of 2[MeB(C6F5)3]2

A Schlenk tube equipped with a PTFE-coated magnetic stirring bar was charged with Me3SiNIPr 1
(157 mg, 0.330 mmol) and B(C6F5)3 (175 mg, 0.342 mmol). Benzene (5 mL) was transferred to the
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reaction vessel by cannula and the resulting mixture was stirred under reflux condition for 72 h,
resulting in a biphasic reaction mixture. The upper phase was removed, and the lower oily substance
was washed with benzene. The oily residue was subjected to prolonged drying in high vacuum
(6 h) to afford 2[MeB(C6F5)3]2 as a pale red oil (144 mg, 44%); 1H-NMR (400 MHz, CD2Cl2): δ −0.19
(s, superimposed, 6H, Si(CH3)2), −0.19 (s, superimposed, 3H MeB(C6F5)3), 1.23 (d, 3JHH = 7 Hz, 12H,
CH(CH3)2), 1.35 (d, 3JHH = 7 Hz, 12H, CH(CH3)2), 2.56 (sept, 3JHH = 7 Hz, 4H, CH(CH3)2), 7.01 (s, 2H,
NCH), 7.47 (d, 3JHH = 8 Hz, 4H, Ar-H), 7.67 (t, 3JHH = 8 Hz, 2H, Ar-H); 11B-NMR (64.2 MHz, CD2Cl2):
δ = −16.6. 13C{1H}-NMR (100.6 MHz, CD2Cl2): δ = 0.3 (Si(CH3)2), 23.1 (CH(CH3)2), 25.3 (CH(CH3)2),
29.7 (CH(CH3)2), 120.2 (NCH), 126.4 (Ar-C), 128.5 (Ar-C), 133.6 (Ar-C), 146.9 (Ar-C), 148.0 (NCN).
19F-NMR (188.3 MHz, CD2Cl2): δ = −133.0 (s, 6F), −163.7 (t, J = 20 Hz, 3F), −167.6 (t, J = 20 Hz, 6F).
29Si{1H}-NMR (79.5 MHz, CD2Cl2): δ = 17.3.

3.3. Synthesis of 4[MeB(C6F5)3]

A Schlenk tube equipped with a PTFE-coated magnetic stirring bar was charged with
Me3SiNItBu 2 (355 mg, 1.33 mmol) and B(C6F5)3 (340 mg, 0.67 mmol). Toluene (10 mL) was transferred
to the reaction vessel by cannula and the resulting mixture was stirred at room temperature for 1 h,
resulting in a biphasic reaction mixture. The upper phase was removed, and the lower oily substance
was washed with toluene. The oily residue was subjected to prolonged drying in high vacuum
(6 h) to afford 4[MeB(C6F5)3] as a pale red oil (672 mg, 48%); 1H-NMR (200 MHz, C6D6): δ −0.01
(s, 9H, Si(CH3)3), 0.34 (s, 6H, Si(CH3)2), 1.00 (s, 18H, N(CH3)3), 1.20 (s, 18H, N(CH3)3), 5.96 (s, 2H,
NCH), 6.34 (s, 2H, NCH); 11B-NMR (64.2 MHz, C6D6): δ = −14.3; 13C{1H}-NMR (50.3 MHz, C6D6):
δ = 4.3 (Si(CH3)3), 8.8 (Si(CH3)2), 28.7 (NC(CH3)3), 31.1 (NC(CH3)3), 55.2 (NC(CH3)3), 64.0 (NC(CH3)3),
108.6 (NCH), 117.7 (NCH), 141.9 (NCN), 147.0 (NCH). 19F-NMR (188.3 MHz, C6D6): δ = −131.8
(d, J = 20 Hz, 6F), −164.6 (t, J = 20 Hz, 3F), −167.0 (t, J = 20 Hz, 6F). 29Si{1H}-NMR (79.5 MHz, CD2Cl2):
δ = 13.1, −32.0; ESI-HRMS: m/z: 519.4031 (calcd. 519.4021 for [M − MeB(C6F5)3]+).

3.4. Synthesis of Me2(Cl)SiNIPr (7)

To a stirring mixture of Me3SiNIPr (1.88 g, 3.95 mmol) in toluene (10 mL) was added Me2SiCl2
(0.65 mL, 5.39 mmol) via syringe at −78 ◦C. The reaction mixture was stirred for 12 h while allowed
to slowly warm to room temperature. The solvent was removed under vacuum and washed
with hexane to give Me2(Cl)SiNIPr as a yellow solid (1.55 g, 79%). Recrystallization from hexane
(3 mL) afforded Me2(Cl)SiNIPr in the form of colorless crystals; 1H-NMR (200 MHz, C6D6): δ 0.10
(s, 6H, SiMe2), 1.16 (d, 3JHH = 7 Hz, 12H, CH(CH3)2), 1.39 (d, 3JHH = 7 Hz, 12H, CH(CH3)2), 3.07
(sept, 3JHH = 7 Hz, 4H, CH(CH3)2), 5.94 (s, 2H, NCH), 7.10–7.26 ppm (m, 6 H, Ar-H); 13C{1H}-NMR
(50.3 MHz, C6D6): δ 6.3 (Si(CH3)2), 23.5 (CH(CH3)2), 24.5 (CH(CH3)2), 29.0 (CH(CH3)2), 114.4 (NCH),
124.1 (Ar-C), 129.9 (Ar-C), 134.2 (Ar-C), 143.0 ppm (NCN), 147.7 (Ar-C); 29Si{1H}-NMR (79.5 MHz,
C6D6): δ −19.2; Elemental analysis calcd. (%) for C29H42ClN3Si: C 70.20, H 8.53, N 8.47; found:
C 69.69, H 8.33, N 9.10. m.p. at 155–158 ◦C (dec.).

3.5. Synthesis of Me2(OTf)SiNIPr (8)

A Schlenk tube equipped with a PTFE-coated magnetic stirring bar was charged with
Me2ClSiNIPr 7 (133 mg, 0.268 mmol) and Ag[OTf] (69 mg, 0.268 mmol). CH2Cl2 (5 mL) was transferred
to the reaction vessel by cannula at room temperature and the resulting mixture was stirred for 12 h.
The volatiles were removed under reduced pressure and the residue was recrystallized from CH2Cl2
(5 mL) at −30 ◦C to afford Me2(OTf)SiNIPr (8) as colorless crystals (107 mg, 65%). The batch contained
crystals suitable for single crystal X-ray diffraction analysis. 1H-NMR (200 MHz, C6D6): δ 0.00
(s, 6H, SiMe2), 1.10 (d, 3JHH = 7 Hz, 12H, CH(CH3)2), 1.30 (d, 3JHH = 7 Hz, 12H, CH(CH3)2), 2.91
(sept, 3JHH = 7 Hz, 4H, CH(CH3)2), 5.89 (s, 2H, NCH), 7.07–7.25 ppm (m, 6 H, Ar-H); 13C{1H}-NMR
(100.6 MHz, C6D6): δ 2.10 (Si(CH3)2), 23.3 (CH(CH3)2), 24.4 (CH(CH3)2), 29.0 (CH(CH3)2), 114.7 (NCH),
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124.3 (Ar-C), 130.2 (Ar-C), 133.4 (Ar-C), 143.5 ppm (NCN), 147.3 (Ar-C); 29Si{1H}-NMR (79.5 MHz,
C6D6): δ −18.5; ESI-HRMS: m/z: 462.3480 (calcd. 462.3299 for [M − OTf + 2 H]+). 208–210 ◦C (dec.).

3.6. Synthesis of [Me2(DMAP)SiNIPr][OTf] 9[OTf]

A Schlenk tube equipped with a PTFE-coated magnetic stirring bar was charged with
Me2(OTf)SiNIPr 8 (106 mg, 0.174 mmol) and DMAP (26 mg, 0.213 mmol). CH2Cl2 (5 mL) was
transferred to the reaction vessel by cannula at room temperature and the resulting mixture was stirred
for 12 h. The volatiles were removed under reduced pressure and the residue was recrystallized from
CH2Cl2 (5 mL) at −30 ◦C to afford [Me2(DMAP)SiNIPr][OTf] (9[OTf]) as colorless crystals (53 mg,
42%). The batch contained crystals suitable for single crystal X-ray diffraction analysis. 1H-NMR
(400.1 MHz, CD3CN): δ = −0.21 (s, 6H, Si(CH3)2), 1.17 (d, 3JHH = 7 Hz, 12H, CH(CH3)2), 1.21
(d, 3JHH = 7 Hz, 12H, CH(CH3)2), 2.87 (sept, 3JHH = 7 Hz, 4 H, CH(CH3)2), 3.08 (s, 6H, N(CH3)2), 6.36
(d, 3JHH = 7 Hz, 2 H, DMAP-H-2,6 or -3,5), 6.82 (s, 2 H, NCH), 7.31 ppm (d, 3JHH = 7 Hz,
2H, DMAP-H-2,6 or -3,5), 7.40 (d, 3JHH = 8 Hz, 4H, Ar-H), 7.56 (t, 3JHH = 8 Hz, 2H, Ar-H);
13C{1H}-NMR (100.6 MHz, CD2Cl2): δ 1.6 (Si(CH3)2), 23.1 (CH(CH3)2), 24.7 (CH(CH3)2), 29.1
(CH(CH3)2), 40.1(N(CH3)2), 107.4 (DMAP-C-2,6 or -3,5), 115.5 (NCH), 124.7 (Ar-C), 130.6 (Ar-C),
133.3 (Ar-C), 142.8 (DMAP-C-2,6 or -3,5), 147.9 (Ar-C), 155.1 (DMAP-C-4), 156.8 ppm (NCN); 19F-NMR
(188.3 MHz, CD2Cl2): δ = −78.9; 29Si{1H}-NMR (79.5 MHz, CD2Cl2): δ = −16.4 ppm; ESI-HRMS:
m/z: 592.3985 (calcd. 592.3586 for [M − OTf]+). 173–176 ◦C (dec.).

3.7. X-ray Crystallography

X-ray data collection and structural refinement. Intensity data for compounds 7, 8 and 9[OTf]
collected on an Agilent SuperNova diffractometer, equipped with a CCDC area Atlas detector and
a mirror monochromator utilizing CuKα radiation (λ = 1.54184 Å). CCDC deposition numbers:
1491068 for 7, and 1491070 for 8, 1491069 for 9[OTf]. The data can be obtained free of charge
from the Cambridge Crystallography Data Center via http://www.ccdc.cam.ac.uk/conts/retrieving.
html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44 1223 336033;
E-mail: deposit@ccdc.cam.ac.uk).

4. Conclusions

In summary, we have synthesized imino-substituted silylium ions 2[MeB(C6F5)3]2 and
4[MeB(C6F5)3] by the straightforward Me-abstraction of trimethylsilylimines 1 and 2, respectively.
Depending on the steric demand of the imines, the reaction leads to an unusual dimeric silylium ion
bridged by the NHI ligands and a Me3SiNItBu-coordinated silicon monocation. The mechanistic details
of the formation of 2[MeB(C6F5)3]2 and 4[MeB(C6F5)3] was elucidated by theoretical calculations.
Moreover, the iminotriflatosilane and its DMAP adduct were also prepared. The former exhibits the
contact ion pair of the silylium and the triflate while 9[OTf] has a dative bond between the Si atom and
DMAP and no interaction with the triflate. Future investigations will be focused on the substitution
of a triflate group to a weakly coordinating anion such as B(C6F5)4

− or Al[OC(CF3)3]4
− in order to

isolate the three coordinate iminosilylium ion.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/21/
9/1155/s1.
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