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Abstract

In this PhD thesis, adaptive control methods are investigated in terms of application
in aircraft Flight Control Systems (FCS). Adaptive control is a promising approach in
order to increase robustness of the closed-loop containing aircraft and FCS against
uncertainties, which could also be caused by faults.
More specifically, the focus of the work at hand lies on the application of L1 Adaptive
Control with piecewise constant update laws. Compared to most other adaptive
control approaches, L1 Adaptive Control with piecewise constant update laws offers a
significant advantage, because its application results in a linear control law. This could
be beneficial with regard to potential FCS certification.
For this reason, L1 Adaptive Control with piecewise constant update laws is utilized
to design adaptive augmentations on the one hand, which enhance a Differential PI
(DPI) baseline controller, and an adaptive standalone controller on the other hand.
Delays, actuator model and filter dynamics are directly taken into account right from
the beginning of the controller design process. Thereby, a hedging strategy is proposed,
which restores the robust stability properties phase and gain margin to the level of a
baseline-controller-only configuration. This is a major advantage, because adaptive
augmentations usually decrease robust stability of the closed-loop drastically. In order
to apply the hedging strategy, measurement of the actuator deflection is required.
Moreover, two different augmentation architectures are presented and compared in
detail.
The adaptive standalone controller uses a novel combination of L1 Adaptive Control
with piecewise constant update laws and Eigenstructure Assignment, which is con-
tributed by this thesis. L1 Adaptive Control with Eigenstructure Assignment enables
to design a standalone adaptive controller and at the same time offers the possibility
to precisely adjust plant dynamics according to requirements by means of exact pole
placement. Thereby, delays, actuator model and filter dynamics can also be directly
incorporated into the design process.
Performance and robust stability assessments of the proposed controllers are carried
out in combination with a longitudinal, nonlinear F-16 aircraft model. In order to
investigate the impact of reality effects on the controller performance, the analyses also
include more realistic sensor models, discrete-time controller implementation with
limited sampling time, filters and atmospheric disturbances, i.e. turbulence and gust.
For this, the individual effects are also applied considering parameter variations.





Zusammenfassung

In dieser Doktorarbeit werden adaptive Regelungsmethoden im Bezug auf ihre An-
wendbarkeit in Flugregelungssystemen untersucht. Adaptive Regelung ist ein vielver-
sprechender Ansatz um die Robustheit des geschlossenen Regelkreises, der Flugzeug
und Flugregelungssystem enthält, gegen Unsicherheiten zu erhöhen, deren Ursache
ebenso Defekte sein können.
Der Fokus dieser Arbeit liegt insbesondere in der Anwendung der L1 adaptiven
Regelung mit stückweise konstanten Aktualisierungsgesetzen. Im Vergleich zu den
meisten anderen adaptiven Regelungsverfahren bietet die L1 adaptive Regelung mit
stückweise konstanten Aktualisierungsgesetzen einen signifikaten Vorteil, da ihre
Anwendung in einem linearen Regelgesetz mündet. Dies könnte sich im Bezug auf
eine mögliche Flugreglerzertifizierung als günstig erweisen.
Aus diesem Grund wird die L1 adaptive Regelung mit stückweise konstanten Aktu-
alisierungsgesetzen auf der einen Seite verwendet, um adaptive Augmentierungen
zu entwerfen, die einen differenzierenden PI Basisregler erweitern, auf der anderen
Seite wird hiermit ein eigenständiger adaptiver Regler gestaltet. Verzögerungen, ein
Aktuatormodell und Filterdynamiken werden im Entwurfsprozess des Reglers von
Anfang an mit einbezogen. Dabei wird eine Hedging Strategie vorgeschlagen, mit
deren Hilfe die Robustheitseigenschaften Phasenrand und Amplitudenreserve auf das
Level einer Basisreglerkonfiguration angehoben werden können. Dies ist ein großer
Vorteil, da adaptive Augmentierungen üblicherweise die Robustheitseigenschaften des
geschlossenen Regelkreises drastisch reduzieren. Um die Hedging Strategie anzuwen-
den, wird die Messung des Aktuatorausschlages benötigt. Darüber hinaus werden
zwei unterschiedliche Architekturen zur Augmentierung präsentiert und detailliert
verglichen.
Der eigenständige adaptive Regler nutzt eine neuartige Kombination aus L1 adaptiver
Regelung mit stückweise konstanten Aktualisierungsgesetzen und Eigenstrukturvor-
gabe, welche durch diese Arbeit beigesteuert wird. L1 adaptive Regelung mit Eigen-
strukturvorgabe ermöglicht es, einen eigenständigen adaptiven Regler zu entwerfen
und bietet gleichzeitig die Möglichkeit, die Streckendynamik mit Hilfe von genauer
Polvorgabe präzise anzupassen. Dabei können Verzögerungen, ein Aktuatormodell
und Filterdynamiken direkt in den Entwurfsprozess eingebunden werden.
Untersuchungen bezüglich Performanz und Robustheitseigenschaften der vorgeschla-
genen Regelungsentwürfe werden in Kombination mit einem nichtlinearen Längsbewe-
gungsmodell eines F-16 Flugzeugs durchgeführt. Um in der Lage zu sein, den Einfluss



von Realitätseffekten auf die Performanz der Regler untersuchen zu können, enthalten
die Analysen ebenso realistischere Sensormodelle, zeitdiskrete Reglerimplementierun-
gen mit begrenzter Taktzeit, Filter und atmosphärische Störungen (Turbulenz und
Windböen). Hierfür werden die einzelnen Effekte auch unter Berücksichtigung von
Parametervariationen angewendet.
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1. Introduction

Controllers have for a long time become an integral part of our daily routine. We face
them for example while heating our homes, driving our cars, sometimes even while
operating a coffee machine. Whenever a physical state of a system is measured in order
to determine a suitable actuation command affecting this system, a feedback controller
is involved in the process. Controllers can be used, when a physical state should
be driven to a desired value and the system should exhibit a particular dynamical
behavior during the transient.
Mainly, there are two classes of controllers, which are Single Input Single Output (SISO)
[75] and Multiple Input Multiple Output (MIMO) [76] controllers. These can of course
also be mixed and result in Single Input Multiple Output (SIMO) and Multiple Input
Single Output (MISO) designs, respectively. It is then often distinguished between
state-feedback and output-feedback control design approaches. For the latter it is taken
into account that certain system states cannot be measured and thus, cannot be used
for controller computations. In fact, every real world system contains immeasureable
states and would therefore require the application of output-feedback control methods.
The mathematical tools needed to successfully design such controllers are delivered by
control theory. In particular, aviation applications played a key role in the progress of
control theory, which emerged around the beginning of the 20th century. One of the
first applications of control theory within aircraft was the design of pitch dampers [1,
p. 305]. Pitch dampers compensate insufficient natural damping of the short-period
eigenmode in high altitudes, in order to increase robustness w.r.t turbulence and
improve controllability of the aircraft for the pilot. This is achieved by measuring
pitch rate q and multiplication of q by an appropriate controller gain kq, which then
yields an elevator deflection ηcmd to be provided by the actuator additional to the pilot
command. The resulting control law is

ηcmd (t) = kq · q (t) . (1.1)

It has to be noted that first implementations of such systems relied on fully mechanical
design without digitally computing parts [1, pp. 101-104].
In general, such a pitch damper belongs to the class of Stability Augmentation System
(SAS). SASs are applied, whenever eigenmotions of the aircraft exhibit insufficient
damping or their natural frequency needs to be adapted [122, pp. 287-303]. Moreover,
Control Augmentation System (CAS) addionally offer tracking of selected system states
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[122, pp. 303-322]. That means for example the pilot is directly able to command
desired angle of attack α, load factor nz or pitch rate q. These commands are translated
to suitable actuator commands by the controller leading to precise tracking of the
desired state. This is especially important for fighter aircraft [97, 94] [16, pp. 837-847],
which can even inherit unstable dynamics to be stabilized by means of a controller, but
is nowadays also quite common for FCS of large transport aircraft [16, pp. 849-865]
[50, 125]. These systems can be implemented easiest on FCS based on fly-by-wire. Fly-
by-wire means there exists no direct mechanical link between manual flight controls
operated by the pilot and the aircraft actuators. Instead, the FCS calculates commands
based on the manual flight controls input and sends them digitally to the aircraft
actuators [83, pp. 365 ff.]. Autopilots can be designed as an additional cascade around
the CAS. Here, for example a pitch rate command CAS can be used as an inner-
loop controller, which realizes qcmd demanded by an altitude hold autopilot [122, pp.
303-322].
One challenge in controller design is to select an appropriate architecture, as shown in
Eq. (1.1) for the simple pitch damper example. The other challenge is to systematically
calculate the associated gains e.g. kq such that the system dynamics are adjusted
according to the desired dynamics. Classical control theory approaches [75, 76] require
a precise model of the actual system dynamics, in order to generate controllers, which
accurately set up desired dynamics and good command tracking. On the other side,
dynamics of a real world system can never be predicted 100% exactly by means of
a system model. Thus, the system to be controlled consists of a known part, which
can be modeled and uncertainties, which are unknown even considering nominal
conditions1.
If the amount of uncertainties is too high, even a properly designed controller can at
worst destabilize the system. In order to provide robustness against destabilization,
a controller design is often required to offer certain phase and gain margins [75,
pp. 445-448]. Phase and gain margin can be determined by means of analyzing the
closed-loop system in the frequency domain [75, pp. 423 ff.]. It is important to note
that assessments based on these robust stability properties are also the foundation of
aircraft FCS certification w.r.t. robust stability of the control law [111, pp. 25-27].
Known changes of the aircraft dynamics in relation of its flight envelope can be
taken into account using gain scheduling during controller design process. In that
matter, controller gain computation is processed using many different aircraft models
each representing one single point within the flight envelope. These points can be
characterized using e.g. Mach number Ma and dynamic pressure q̄. Thus, the resulting
gains are scheduled and applied suitable to the current envelope point during flight
e.g. kq (Ma, q̄) for the pitch damper example shown in Eq. (1.1).
Although a certain amount of uncertainties can be handled by classical controllers,
these designs often reach their limits, when uncertainties are caused by faults. One

1System dynamics behave as expected, no faults occurred
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Figure 1.1. – Principle sketch of a closed-loop with adaptive controller

example could be change of aerodynamic properties and/or CG location due to
structural disintegration of or cargo dislocation inside the aircraft. In order to increase
the span of tolerable uncertainties, adaptive controllers can be used. As most adaptive
control approaches are based on reference models of the dynamics to be controlled,
these controllers often work according to the principle sketch shown in Fig. 1.1. Plant
outputs y (t) are measured and compared to estimated outputs ŷ (t) here, which stem
from a reference model containing the nominal, desired dynamics of the plant. The
adaptive control law uses the resulting error between measurement and estimation
e (t) = ŷ (t)− y (t) to calculate a suitable control command, in order to shape the plant
dynamics according to the reference dynamics. In this way, the controller can react to
both expected uncertainties e.g. caused by variance of system dynamics in dependence
of the current flight envelope point and unexpected uncertainties e.g. caused by system
faults.
It is important to note, that if it is decided to use adaptive controllers, they do not
necessarily need to fully replace the controller designed according to classical control
methods (baseline controller). The adaptive controller can rather assist the baseline
controller using augmentation approaches or can be used as a backup control law,
which is activated, if faults are detected. Most of the controller designs presented in
this thesis are adaptive augmentations.

1.1. State of the art

One of the most prominent approaches in adaptive control theory is Model Reference
Adaptive Control (MRAC) [89, 88, 90]. MRAC directly emerged as an evolution of
the M.I.T rule [96], which can be considered as one of the origins of adaptive control.
The application of MRAC results in a nonlinear controller design, which is quite
common for adaptive control approaches. An overview on existing modifications and
enhancements of MRAC in a uniform nomenclature can be found in [13].
A well-known problem of classical MRAC is that it produces control signals with com-
prehensive high-frequency content, whose amount is directly dependent on the choice
of adaptation rate. The higher the adaptation rate is chosen, the more amplification
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is put on the high-frequency content. Robust stability properties of the closed loop
are often decreased drastically due to this high-frequency control signal. Thus, the
following can be stated: In order to achieve good robustness against uncertainties
within the plant i.e. by setting high adaptation rates, highly reduced robust stability
properties have to be accepted.

L1 Adaptive Control has its roots in predictor-based MRAC. It introduces low-pass
filtering as an additional key feature, which is applied to the control signal generated by
the adaptive controller. Thereby, high frequency content stemming from the adaptation
process is prevented from entering the plant or at least damped to a level, at which it
is not harmful anymore. Thus, estimation loop and control loop can be decoupled to a
certain degree, which allows application of fast adaptation [59] and keeping robust
stability properties on an acceptable level at the same time. Moreover, the approach
offers guaranteed transient performance through its architecture, as stated in [140].

Furthermore, with the choice of piecewise constant parameter update laws first intro-
duced in [138], the tuning effort can be reduced drastically. This is, because adaptation
gains of the piecewise constant parameter update laws are calculated according to a
fixed formula using reference system knowledge i.e. matrices of the state-space system
and sampling time of the control law computation. As a beneficial side effect, the adap-
tation process does then not rely on persistency of excitation and the design results
in a linear control law [12]. Especially linearity is an advantage w.r.t. certification for
aircraft application according to [111], because necessary robustness assessments are
based on linear methods, as it is stated above. The rate of adaptation is theoretically
only limited by the available CPU power i.e. the smallest available sample time of the
embedded controller system. This correlation is also shown in detail in Section 3.2.

It is also worth noting, that the piecewise constant update law was favored over
integration-based update laws for flight tests evaluations of the L1 Adaptive Control
approach. The first was successful flight testing in the context of the Integrated
Resilient Aircaft Control (IRAC) Project on the NASA AirSTAR, which is a turbine
powered, subscaled model of a transport aircraft [42, 40, 41, 112, 58]. Only recently L1
Adaptive Control was applied to the manned Calspan’s Variable-Stability Learjet of
the Edwards Air Force Base in CA, USA, on which several artificial uncertainties were
induced during the flight and also effectively tackled by the adaptive controller [2, 22].

Successful applications of L1 Adaptive Control mostly based on simulations can also
be found for flight control laws of fighter aircraft [60, 103, 104, 87, 115, 43], large
transport aircraft [12, 124, 27, 131], high agility Unmanned Aerial Vehicle (UAV) [99,
71, 136, 38, 119], Micro Aerial Vehicle (MAV) [21], helicopters [11], missiles [101, 130,
17, 31], hypersonic gliders [105, 6], business jets [123] and multicopter UAV [128, 129,
77]. Applications can also be found for gust load alleviation [19] and aerial refueling
[136].

Further enhancements on the foundation of L1 Adaptive Control include modifications
to achieve Output-Feedback control [65, 10, 20, 18, 17, 66, 64], incorporation of actuator
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deflection saturation [72] and usage of nonlinear reference systems [133, 132, 77]
amongst others.
An interesting alternative approach tailored to cope with a nonlinear pitch-up phe-
nomenon is shown in [23, 98], where a reference model-based adaptive controller for
long range civil aircraft is presented. This approach is well thought out and makes
extensive use of aircraft dynamics knowledge rather than following complex control
theory.
Also related to MRAC is Adaptive Backstepping [67], which is based on systematic,
recursive construction of Lyapunov functions [117, pp. 40 ff.] in order to provide
inherent nonlinear stability proof together with the nonlinear controller design. Fur-
thermore, the extension Command Filtered Adaptive Backstepping [28, 36] can be used
to reduce the complexity of the controller design process. Aeronautical applications of
this approach can be found in [118, 95] for fighter aircraft models or [68, 100, 49] for
missile models.
Only recently a notable approach named Modified Linear Extended State Observer
(MLESO) Control [46] emerged. Its inherent Extended State Observer (ESO) estimates
both system states and disturbances. Similar to L1 Adaptive Control with piecewise
constant update laws, the application of MLESO Control also results in a linear
control law, which is beneficial in terms of aircraft FCS certification. An application
of this approach is shown in [25] and compared to a L1 adaptive controller with
piecewise constant update laws. Simulation results show good comparability w.r.t.
both performance considering uncertainties and robust stability properties.

1.2. Contributions

The focus of this thesis is to investigate adaptive control strategies with regard to
implementation in aircraft FCS. It is not the goal to present a specific controller design
suiting one specific aircraft. The dynamics model of a F-16 aircraft is rather utilized
exemplarily, in order to demonstrate the principle and potential of the proposed
controller designs.
These adaptive control strategies should increase the aircraft performance in case of
uncertainties, which could have their origin in failures such as e.g. structural damage.
As a result this thesis is focused on the application of L1 Adaptive Control with
piecewise constant update laws [59], which is a good candidate in terms of certification
for an industrial FCS, because it results in a linear control law. This feature is used for
robust stability investigations according to certification specifications [111, pp. 25-27].
In order to increase relevance of the simulation assessments w.r.t. industrial applica-
tions further, actuator dynamics, filter dynamics and delays are taken into account
throughout the complete controller design process. This also motivates the modeling
and application of reality effects like sensor disturbances or discrete-time controller
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implementations for the simulations. More specifically, the following points summarize
the scientific contribution offered by this thesis:

• L1 Adaptive Augmentation of DPI Controller [52, 53]
L1 Adaptive Control [59] is used to augment a DPI baseline controller in order
to increase performance in case of uncertainties. Here, the structure of the DPI
controller has to be considered also for the design of the adaptive controller
w.r.t. differentiations, integrations as well as rate and deflection saturations.
The resulting combination of DPI baseline controller and L1 Adaptive Control
offers improved performance properties while being resistant against integrator
wind-up caused by actuator saturation.

• Comparison of different augmentation architectures [52]
The aforementioned adaptive augmentation of the DPI baseline controller is
designed using two different augmentation strategies. The first one augments
plant and baseline controller, which means that the complete baseline controller
architecture has to be accounted for during the design of adaptive controller.
This approach is often used in literature. For the second approach the open-loop
plant is augmented by the adaptive controller first, which is then "augmented" by
the baseline controller. It is the goal of this approach that the baseline controller
controls a plant, which ideally always behaves like its design model, even in case
of uncertainties. It can be shown that the presented augmentation strategies lead
to almost identical results w.r.t. both performance and robust stability.

• Compensation of robust stability degradation w.r.t. actuator cut (bottleneck)
for L1 Adaptive Augmentations [52]
Although adaptive augmentations increase performance features of a closed-loop,
they often degrade robust stability properties. This can also be observed for the
L1 Adaptive Augmentations designed in this thesis. L1 Adaptive Control offers a
tuning knob to balance this trade-off in terms of the low-pass filter introduced
to the control law [59]. Nevertheless, degradation of robust stability properties
is still drastic, if good performance in case of uncertainties were to be achieved
(c.f. e.g. [71]). Thus, a modification of the state predictor is proposed, which
uses actuator deflection measurement and is able to fully restore robust stability
properties w.r.t. the actuator cut to the level of the baseline controller. This is
especially beneficial, since verification of robust stability considering this cut,
which is also called bottleneck, is the most relevant factor in terms of certification
[111, p. 25].

• Augmentation of DPI Controller using ∆q̇ Compensation Law
For the sake of comparison, an alternate augmentation is implemented for the
DPI Controller, which estimates a deviation in terms of pitch acceleration ∆q̇
between real and design plant and calculates a suitable control command in order
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to compensate for this deviation [23, 98]. Introduced as Reference model-based
adaptive controller for long range civil aircraft by Delannoy et al. [23], this
approach is called ∆q̇ Compensation Law in the course of this thesis.

• Modification of L1 Adaptive Control approach to allow for adaptive stan-
dalone controller in connection with precise pole placement [51]
In the course of this thesis L1 Adaptive Control is also investigated for the design
of a standalone controller. The standalone controller also needs to handle dynam-
ics shaping in terms of pole placement in this case, in order to ensure excellent
handling qualities, besides compensating for uncertainties. It has shown that
according to the textbook architecture of L1 Adaptive Control [59] predictable and
precise pole placement is not possible without an underlying baseline controller.
Thus, a modification is proposed, which introduces feedback of estimated states
to both matched and unmatched input of the state predictor. The combination
of additional feedback and Eigenstructure Assignment allows for precise pole
placement using only the adaptive standalone controller. This way, also actuator
dynamics, filter dynamics and delays can be directly incorporated into the design
process.

• Development of enhancements for an aircraft dynamics model comprising re-
ality effects [53]
One goal of this thesis is to evaluate the impact of reality effects on the perfor-
mance of adaptive controllers. Thus, relevant reality effects have to be identified
and modeled as addition to the aircraft dynamics model, in order to allow for
simulation assessments. The considered reality effects include an actuator model
with backlash and sensor models containing variable delay (jitter), measure-
ment noise, sampling as well as anti-aliasing filters and quantization effects.
Moreover, the influence of turbulence and gust are taken into account. The
comprehensive description of these effects could also serve as a foundation for
future investigations of control laws outside of the scope of the thesis at hand.

• Evaluation of impact caused by reality effects on adaptive controllers [53]
The controllers designed in the course of this thesis are investigated in terms of
their behavior in presence of reality effects. For this, discrete-time implementa-
tions of the control laws are used to incorporate the effect of limited controller
sample time. Moreover, an enhanced aircraft model is used, in order to simulate
relevant reality effects. The assessments are used to draw comparisons between
the different control laws.

Some of the contents presented in this work are already covered in peer-reviewed
publications, which were created by the author during the working process of this
thesis. A list of these publications is given in the following:
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• F. Hellmundt, J. Dodenhöft, and F. Holzapfel. “L1 Adaptive Control with Eigen-
structure Assignment for Pole Placement considering Actuator Dynamics and
Delays”. In: AIAA Scitech. American Institute of Aeronautics and Astronautics,
Jan. 2016 [51]

• F. Hellmundt, A. Wildschek, R. Maier, R. Osterhuber, and F. Holzapfel. “Com-
parison of L1 Adaptive Augmentation Strategies for a Differential PI Baseline
Controller on a Longitudinal F16 Aircraft Model”. In: Advances in Aerospace
Guidance, Navigation and Control. Ed. by J. Bordeneuve-Guibé, A. Drouin, and
C. Roos. Springer International Publishing, 2015, pp. 99–118 [52]

• F. Hellmundt, R. Maier, M. Leitao, C. Heise, and F. Holzapfel. “Performance
Assessment of L1 Adaptive Augmentation Strategies for an Enhanced Longitu-
dinal F16 Aircraft Model”. In: Proceedings of the 3rd CEAS EuroGNC, Specialist
Conference on Guidance, Navigation & Control. Toulouse, France, Apr. 2015 [53]

The approach shown in [51] is also described in the semester thesis [25], which was
supervised by the author.

1.3. Outline

The longitudinal F-16 aircraft model used to assess the controllers designed in the
course of this thesis is presented in Chapter 2. It comprises the steps of introducing its
rigid-body dynamics and aerodynamics modeling. This formulation of the dynamics is
used to deduce linearized models. Furthermore, reality effects in terms of atmosphere,
actuator and sensor models are introduced.
Chapter 3 has its focus on providing theoretical background on control theory, which is
necessary to understand the descriptions of the controller designs. It gives an overview
on the algorithm of Eigenstructure Assignment, which is used to design controller
gains for linear output-feedback in the context of this thesis. Next, the theory of
L1 Adaptive Control with piecewise constant update laws is introduced. Here, the
adaptation process is described in detail. The last part deals with discrete-time systems
and transformations.
Baseline Controller and adaptive controller designs are presented in Chapter 4. At
first, an adaptive augmentation is composed utilizing L1 Adaptive Control with
piecewise constant update laws and using two different architectures. After that,
the ∆q̇ Compensation Law is applied to design an adaptive augmentation. At last,
a combination of L1 Adaptive Control and Eigenstructure Assignment is proposed,
which offers exact pole placement and robustness against uncertainties at the same
time.
Chapter 5 comprises extensive simulation assessments of the deduced controller
designs in combination with the nonlinear F-16 aircraft model. The controllers are
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analyzed both w.r.t. performance and robust stability. Here, performance is evaluated
by means of step responses and one exemplary maneuver considering both nominal
and off-nominal conditions of the aircraft. The performance assessments are carried
out using both an aircraft model, which is simplified in terms of reality effects, and the
same model, where the whole bandwidth of modeled reality effects is applied. Robust
stability properties in terms of gain and phase margin are determined using linear
methods. In order to further show validity of this method, results are also compared
to time delay margin measurements, which are gained through nonlinear simulation
of the closed-loop for one controller configuration.
At last, comparisons of the designs are compiled in Chapter 6 highlighting advantages
and disadvantages of the individual approaches. Moreover, their sensitivity w.r.t. the
individual simulated reality effects is investigated by means of parameter variations.
Conclusions of this thesis are presented in Chapter 7, where particularly the possibility
of industrial applications of the proposed controller designs are weighed. Finally,
Chapter 8 offers an outlook providing starting points for further research in the field
of practical adaptive flight control.
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2. Aircraft Model

Figure 2.1. – General Dynamics F-16 Fighting Falcon [135]

In order to assess the controllers, which are designed during the course of this thesis, a
simulation model of nonlinear, rigid dynamics of a F-16 aircraft is used. Aerodynamic
data and inertia properties are taken from [121], though the model was originally
introduced in [91]. Using both references, the model was implemented by the TUM
Institute of Flight System Dynamics (TUM-FSD) using MATLAB/Simulink. This thesis
concentrates on assessing adaptive control laws in connection with longitudinal aircraft
dynamics, thus the aircraft model is simplified in such a manner. Nevertheless, the
control methods presented in the course of this thesis are not limited to the application
on longitudinal aircraft dynamics, they could also be applied to lateral and directional
aircraft dynamics, respectively, or any other use case apart from aerospace applications.
For the simulation assessments, two different configurations of the aircraft model are
used. The structure of the basic configuration is shown in Fig. 2.2. It contains models
of the actuators and a delay besides the rigid-body dynamics of the aircraft, which
are described in Section 2.1, and the control law. By means of the delay, which is
induced upstream of the actuator, one crucial effect stemming from sensors, filters
and computation is modeled. This is also described in detail in Section 2.6. Further-
more, Section 2.1 contains a description of the aerodynamics model and introduces
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Delay Actuator
F16

Aircraft

Control Law

Figure 2.2. – Basic simulation model

linearizations of rigid-body dynamics and the accompanying trim solutions for steady,
horizontal flight.
In addition to the configuration of the basic model, for the enhanced simulation model
nonlinear backlash is added to the actuator model containing rate and deflection
saturations shown in Section 2.5. Furthermore, a sophisticated sensor model com-
prising sampling, anti-aliasing, quantization, measurement noise, bias, scale-factor
errors, variable delay (jitter) and additional lag for ADS measurements is developed
in Section 2.6. Atmospheric disturbances are also be applied in terms of turbulence
and gust, which are described in Section 2.3 and Section 2.4, respectively. At last,
Section 2.7 introduces a very simple model of a structural mode, which serves as
unknown, additional dynamics for the controller assessments. It has to be highlighted
that this thesis does not aim on modeling all thinkable reality effects influencing an
aircraft as precisely as possible. It is rather the goal to model reality effects, which are
relevant for assessments of flight control laws, in a depth, that is necessary for such
assessments.
Fig. 2.3 illustrates the structure of the enhanced configuration. Due to the introduced
reality effects, additional signal processing up- and downstream of the control law is
required. The description of these filters, which are denoted by Upsampling, Filters
and Notch Filter in Fig. 2.3, is covered in Section 4.1.2. This chapter contributes a

Actuator
Structural 

Mode

Turbulence

SensorsFilters

F16
Aircraft

Control Law

Notch Filter

Upsampling

Delay

Figure 2.3. – Enhanced simulation model
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summary of reality effect models, which are relevant for flight controller assessments,
and could also serve as a foundation for further investigations in terms of novel flight
control methods.

2.1. Rigid-Body Dynamics

This section contains the mathematical formulation to model the rigid-body dynamics
of an aircraft. The equations are shown both for the common case, where the un-
derlying basic structure is derived from [50], and for the condition, where only the
longitudinal motion is considered. Detailed derivations containing all intermediate
steps and describing all simplifications can be found in [16, 32, 121, 57] among others.

2.1.1. Forces and Moments

Firstly, the external forces and moments are described, which are considered as inputs
to the aircraft dynamics. These are split up in contributions of aerodynamics (A),
gravity (G) and propulsion (P). For the three body-fixed axes (B), the forces acting at
the CG, which is marked by the index G, are summarized as(

XG
T

)
B

=
(

XG
A

)
B

+
(

XG
G

)
B

+
(

XG
P

)
B
(δT , h, Ma) (2.1a)(

YG
T

)
B

=
(

YG
A

)
B

+
(

YG
G

)
B

(2.1b)(
ZG

T

)
B

=
(

ZG
A

)
B

+
(

ZG
G

)
B

, (2.1c)

and the moments about the body-fixed axes as

LG
T = LG

A (2.2a)

MG
T = MG

A (2.2b)

NG
T = NG

A . (2.2c)

The thrust force
(
XG

P
)

B is stored as a lookup-table and is a function of thrust-lever
position δT, altitude h and Mach number Ma and is illustrated in Figs. A.14 to A.17. It is
assumed that the engine only produces a force in body-fixed x-direction. Furthermore,
gyroscopic moments stemming from rotating engine parts are not considered here.
The influence of gravity in the body-fixed frame

(
XG

G
)

B,
(
YG

G
)

B and
(
ZG

G
)

B are obtained
from the gravity force given in the NED-frame 0
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(
XG

G
)

B(
YG

G
)

B(
ZG

G
)

B

 = MB0 ·

 0
0

m · g

G

0︸ ︷︷ ︸
=:FG

0

(2.3)

by means of the transformation matrix [32, p. 117]

MB0 =

 cos Ψ cos Θ sin Ψ cos Θ − sin Θ
cos Ψ sin Θ sin Φ− sin Ψ cos Φ sin Ψ sin Θ sin Φ + cos Ψ cos Φ cos Θ sin Φ
cos Ψ sin Θ cos Φ + sin Ψ sin Φ sin Ψ sin Θ cos Φ− cos Ψ sin Φ cos Θ cos Φ


(2.4)

and with the mass m = 9298.6kg considered to be constant. The Euler angles Φ, Θ and
Ψ are described in Section 2.1.2.
The aerodynamic forces and moments are calculated from dimensionless coefficients
C?, dynamic pressure q̄, wing reference area S = 27.87m2, mean aerodynamic chord
c̄ = 3.45m and full span of the wing b = 9.144m by means of the following equations:(

XG
A

)
B

= q̄S · CX (2.5a)(
YG

A

)
B

= q̄S · CY (2.5b)(
ZG

A

)
B

= q̄S · CZ (2.5c)

LG
A = q̄Sb · Cl (2.5d)

MG
A = q̄Sc̄ · Cm (2.5e)

NG
A = q̄Sb · Cn (2.5f)

where [122, p. 67]

q̄ =
1
2

ρV2
A (2.6)

with air density ρ and aerodynamic velocity VA.
As the lateral motion is neglected for the aircraft model, only

(
XG

A
)

B,
(
ZG

A
)

B and MG
A

are considered with the corresponding coefficients [91, pp. 37-38]

CX = CX,0 (αA, η) + CX,LEF (αA) + q · c̄
2VA

·
[
CX,q (αA) + CX,q,LEF (αA)

]
(2.7a)

CZ = CZ,0 (αA, η) + CZ,LEF (αA) + q · c̄
2VA

·
[
CZ,q (αA) + CZ,q,LEF (αA)

]
(2.7b)
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Cm = Cm,0 (αA, η) + Cm,LEF (αA) + q · c̄
2VA

·
[
Cm,q (αA) + Cm,q,LEF (αA)

]
+ CZ · xCGre f ,CG + Cm,∆ (αA, η) , (2.7c)

where xCGre f ,CG is the difference between the CG location, which is the reference for the
tabulated aerodynamic moment coefficients, and the actual aircraft CG. The reference
CG for the aircraft model lies at 0.35c̄ [91, p. 40]. For the assessments made in this
thesis a forward lying CG of 0.3c̄ is chosen for the nominal aircraft configuration, in
order to be able to investigate the effect of large, aft CG-shifts during flight, which even
destabilize the aircraft. This means also that the nominal aircraft behavior is stable in
the longitudinal motion for the considered envelope (c.f. Appendix A.3). Thus, for
the nominal aircraft xCGre f ,CG = 0.1725m is set and CG-shifts can be induced by rapid
change of xCGre f ,CG.

C?,0 describe the zero forces and momentum containing the influence of the elevator
η, C?,q are damping coefficients, C?,LEF contain the influence of the Leading Edge
Flap (LEF) and Cm,∆ contributes with an additional correctional term as a function of
angle of attack αA and elevator deflection η, especially for high angle of attack. The
aerodynamic coefficients used in Eq. (2.7) are stored in lookup-tables, whose values
are illustrated in Figs. A.1 to A.13 in the appendix.
The aerodynamic data is valid for low speed up to Ma ≈ 0.6, since no dependence
on Mach number is considered for the aerodynamic coefficients. This correspondes
e.g. to V ≈ 204m

s at mean sea level MSL or V ≈ 180m
s at h = 10000m. [91] states the

valid range for angle of attack as −20◦ ≤ α ≤ 90◦, whereas [121] claims that only
−10◦ ≤ α ≤ 45◦ should be used. That is because on the one hand it can be avoided
to dynamically model the post-stall region, on the other hand the aircraft can barely
reach angle of attack α ≥ 25◦ due to limitations of the control surfaces.

2.1.2. Equations of Motion

The current state of a rigid-body system model of an aircraft is described according
to the state variables contained in Table 2.1. This section summarizes the differential
equations in order to obtain the current system state in dependence of the external
forces ∑

(
FG
)

B
and moments ∑

(
MG

)
stemming from aerodynamics, propulsion and

gravity, which act on the aircraft with respect to the CG. In terms of the reference
frames, which are required for the formulation of the dynamics, the nomenclature
commonly used at TUM-FSD also applies to this work. This nomenclature is derived
from the norm LN 9300 [24] and further descriptions can be found in [57, pp. 10-24],
[45, pp. 269-273], [68, pp. 177-179] and [128, pp. 167-170].
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Symbol Description

Translation

(
uG

K
)E

B or VK
velocity in xB direction or
absolute velocity(

vG
K
)E

B or βK
velocity in yB direction or
sideslip angle(

wG
K
)E

B or αK
velocity in zB direction or
angle of attack

Rotation
pK roll rate
qK pitch rate
rK yaw rate

Attitude
Φ roll angle
Θ pitch angle
Ψ yaw angle

Position
x position in xE direction
y position in yE direction
h altitude

Table 2.1. – Rigid-body states of an aircraft

Translation Applying Newton’s second law yields the propagation equations for the
translational motion [32, p. 149] [57, p. 71]

(
V̇ G

K

)0B

B
=

∑
(

FG
)

B
m

−
(

ωOB
K

)
B
×
(

V G
K

)0

B
, (2.8)

where the earth is considered as non-rotating (
(
ωIE) = 0) and flat (

(
ωE0) = 0), mass

( d
dt m ≈ 0) and mass distribution ( d

dt IG ≈ 0) are quasi-stationary and the aircraft is
considered to be a rigid-body. This means that a vector from CG with the corresponding
index G to any arbitrary point of the aircraft P can be assumed to be constant ( d

dt (r)
GP =

0). Eq. (2.8) serves as a differential equation describing the dynamics of
(

V G
K

)0

B
, which

is the kinematic velocity of the aircraft given in the body-fixed frame relative to the
NED frame. Solving the cross product the single components can be written as [32, p.
149] [57, p. 70] (

u̇G
K

)0B

B
=

1
m
·
(

XG
T

)
B
−
(

qK ·
(

wG
K

)0

B
− rK ·

(
vG

K

)0

B

)
(2.9a)

(
v̇G

K

)0B

B
=

1
m
·
(

YG
T

)
B
−
(

rK ·
(

uG
K

)0

B
− pK ·

(
wG

K

)0

B

)
(2.9b)

(
ẇG

K

)0B

B
=

1
m
·
(

ZG
T

)
B
−
(

pK ·
(

vG
K

)0

B
− qK ·

(
uG

K

)0

B

)
. (2.9c)
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Here the forces determined according to Eq. (2.1) serve as an input. The dynamics
of the translational motion can be transformed to an alternative description using
absolute velocity VK, angle of attack αK and sideslip angle βK according to [32, pp.
149-150] [57, p. 73]

V̇K =

(
XG

T
)

K̄
m

(2.10a)

α̇K =

(
ZG

T
)

K̄
mVK cos βK

+ qK − tan βK · (pK cos αK + rK sin αK) (2.10b)

β̇K =

(
YG

T
)

K̄
mVK

+ pK sin αK − rK cos αK , (2.10c)

by means of a notation in the kinematic frame (K̄) and the definitions [32, p. 114] [57,
p. 70]

VK :=

√((
uG

K
)0

B

)2
+
((

vG
K
)0

B

)2
+
((

wG
K
)0

B

)2
(2.11a)

αK := arctan

(
wG

K
)0

B(
uG

K
)0

B

(2.11b)

βK := arctan

(
vG

K
)0

B√((
uG

K
)0

B

)2
+
((

wG
K
)0

B

)2
. (2.11c)

Note that the description according to Eq. (2.10) also requires a transformation of the
forces from body-fixed (B) to kinematic frame (K̄) using the transformation matrix [32,
p. 117] [57, p. 72]

MK̄B =

 cos αK · cos βK sin βK sin αK · cos βK
− cos αK · sin βK sin βK − sin αK · sin βK
− sin αK 0 cos αK

 . (2.12)

Furthermore, the inertial accelerations acting at CG can be derived using Newton’s
second law once more in the inertial frame [32, p. 135]:

ax
ay
az

G

B


I I

=
1
m


(
XG

T
)

B(
YG

T
)

B(
ZG

T
)

B

 . (2.13)

For the next step the lateral and directional dynamics are neglected, thus the following
assumptions hold:
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•
(
v̇G

K
)0B

B , which also corresponds to β̇K = 0

• vK = 0, which also corresponds to βK = 0

• ṗK = 0 and ṙK = 0

• pK = 0 and rK = 0

• Φ̇ = 0 and Ψ̇ = 0

• Φ = 0 and Ψ = 0

By means of these assumptions Eq. (2.10) can then be reduced to

V̇K =

(
XG

T
)

K̄
m

(2.14a)

α̇K =

(
ZG

T
)

K̄
mVK cos βK

+ qK . (2.14b)

Likewise, the accelerations according to Eq. (2.13) reduce to((
ax
az

)G

B

)I I

=
1
m

((
XG

T
)

B(
ZG

T
)

B

)
. (2.15)

Rotation The rotational dynamics can be obtained from the law of conservation of
angular momentum with respect to CG denoted with the index G and result in [32, p.
144] [57, p. 68]

∑
(

MG
)

= IG ·
(

ω̇OB
K

)B
+
(

ωOB
K

)
B
× IG ·

(
ωOB

K

)
B

, (2.16)

where the rigid-body condition, quasi-stationary mass ( d
dt m ≈ 0) and quasi-stationary

mass distribution d
dt IG ≈ 0 are assumed. Furthermore, the kinematic angular rates of

body-fixed frame (B) relative to NED frame (0) are expressed as [57, p. 69]

(
ωOB

K

)
B

=

pK
qK
rK

 (2.17)

given in the body-fixed frame (B) and the inertia tensor is defined according to

IG =

 Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

 . (2.18)
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with Ixx = 12875 kg m2, Iyy = 75674 kg m2, Izz = 85552 kg m2, Ixz = Izx = 1331 kg m2 and
Ixy = Iyx = Iyz = Izy = 0 kg m2 for the considered F-16 aircraft model.
Solving Eq. (2.16) with respect to the derivatives of the angular rates leads to [57, p.
116]

ṗK =
1

Ixx Izz − I2
xz
·
[

Izz · LG
T + Ixz · NG

T

]
+

1
Ixx Izz − I2

xz

·
[

Ixz ·
(

Ixx − Iyy + Izz
)
· pK · qK −

(
I2
zz − Izz · Iyy + I2

xz

)
· qK · rK

]
(2.19a)

q̇K =
1

Iyy
·MG

T +
1

Iyy
·
[

Ixz ·
(

r2
K − p2

K

)
− (Ixx − Izz) · pK · rK

]
(2.19b)

ṙK =
1

Ixx Izz − I2
xz
·
[

Ixz · LG
T + Ixx · NG

T

]
+

1
Ixx Izz − I2

xz

·
[(

I2
xz − Ixx · Iyy + I2

xx

)
· pK · qK − Ixz ·

(
Ixx − Iyy + Izz

)
· qK · rK

]
. (2.19c)

For the rotational dynamics the moments according to Eq. (2.2) serve as inputs. Again,
considering only the longitudinal motion with the assumptions given above, the
dynamics reduce to

q̇K =
1

Iyy
·MG

T . (2.20)

Attitude The angular rates effect a change of the aircraft attitude, which is described
by the Euler angles Φ, Θ and Ψ. In general, the attitude is the rotation of the body-fixed
frame relative to the NED frame. The relation is derived as [32, p. 126] [57, p. 75]pK

qK
rK

 =

1 0 − sin Θ
0 cos Φ sin Φ cos Θ
0 −sinΦ cos Φ cos Θ

 ·
Φ̇

Θ̇
Ψ̇

 , (2.21)

which can also be inverted, leading to the differential equation for the attitude angles
[32, p. 126] [57, p. 76]Φ̇

Θ̇
Ψ̇

 =

1 sin Φ tan Θ cos Φ tan Θ
0 cos Φ − sin Φ
0 sinΦ

cos Θ
cos Φ
cos Θ

 ·
p

q
r

 . (2.22)

Neglecting the lateral and directional dynamics this equation is simplified to

Θ̇ = qK . (2.23)
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It should be noted that Eq. (2.22) contains a singularity at Θ = ±90◦. This singularity
can be avoided by means of an alternative approach using quaternions q0, q1, q2 and
q3 to describe the aircraft attitude. Further details can be found in [143, pp. 121-126]
[49, pp. 9-10]. Eq. (2.23) shows that the singularity vanishes, if lateral and directional
dynamics are neglected. Thus, for the longitudinal aircraft model used within this
thesis it is not necessary to consider quaternions.
Considering the longitudinal motion only, one can directly determine the flight path
angle γ from pitch angle Θ and angle of attack α using the correlation [16, p. 220]

γK = Θ− αK . (2.24)

The dynamics of flight path angle γ can be deduced by derivation of Eq. (2.24)

γ̇K = Θ̇− α̇K = −
(
ZG

T
)

K̄
mV

(2.25)

and usage of Eq. (2.14b) and Eq. (2.23).

Position At last, the position is obtained by integration of the kinematic velocities
transformed to the NED frame, which can be described as [57, p. 80]

(
ẋG

K
)0

0(
ẏG

K
)0

0(
żG

K
)0

0

 = M0B ·


(
uG

K
)0

B(
vG

K
)0

B(
wG

K
)0

B

 (2.26)

with

M0B = MB0
T =

=

cos Ψ cos Θ cos Ψ sin Θ sin Φ− sin Ψ cos Φ cos Ψ sin Θ cos Φ + sin Ψ sin Φ
sin Ψ cos Θ sin Ψ sin Θ sin Φ + cos Ψ cos Φ sin Ψ sin Θ cos Φ− cos Ψ sin Φ
− sin Θ cos Θ sin Φ cos Θ cos Φ


(2.27)

As the altitude is given in negative z-direction it can be written as

h = −
(

zG
K

)
0

. (2.28)

Considering only the longitudinal motion Eq. (2.26) is reduced to((
ẋG

K
)0

0(
żG

K
)0

0

)
= M0B

lon ·
((

uG
K
)0

B(
wG

K
)0

B

)
(2.29)

with
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M0B
lon =

(
cos Θ sin Θ
− sin Θ cos Θ

)
. (2.30)

2.1.3. Trim solution for steady, horizontal flight

In order to initialize the aircraft model properly, it is important to find suitable trim
solutions of the dynamics. A trim solution is characterized by the fact that it sets up a
stationary equilibrium. In this thesis, mostly the steady, horizontal flight condition is
used to find such an equilibrium point. Other examples with respect to the longitudinal
motion are steady climb or pull-up and push-down interception maneuvers [57].
The longitudinal aircraft dynamics introduced in the last section are summarized as a
system of explicit, nonlinear and coupled differential equations [75, p. 109] [57, p. 292]

ẋ (t) = f (x (t) , u (t)) (2.31a)

y (t) = h (x (t) , u (t)) , (2.31b)

where the system states x (t) are

x (t) =
(
VK γK αK qK x h

)T . (2.32)

The system inputs are given as u (t) =
(
η δT

)T and the system outputs y (t) = x (t).
For the steady, horizontal flight it is now demanded that the flight path angle vanishes
γK = 0. Furthermore, moments acting on the aircraft should be in balance, which
is reflected by qK = 0. Velocity VK and altitude h are set according to the envelope
point, at which the trim solution should be computed. The horizontal position x is not
relevant in this case, as the aircraft dynamics are mostly decoupled from the horizontal
position. By means of the trimming algorithm, the model inputs elevator deflection
η0 and the thrust lever position δT,0 are determined in accordance to the given flight
condition. In this step, also the remaining state angle of attack α0 is suitable identified.
As the considered flight condition is steady, it is also required for all state derivatives
apart from ẋ to be zero.

1 2 3 4 5 6 7 8
102.88 110.32 117.75 125.19 132.63 140.07 147.50 154.94

9 10 11 12 13 14 15
162.38 169.81 177.25 184.69 192.13 199.56 207.00

Table 2.2. – Envelope points w.r.t. velocity V in
[m

s

]
The built-in trim algorithm of MATLAB [80] is used to compute a numerical solution
to the given optimization problem for Eq. (2.31) and the conditions stated above.
Trimming is performed for an altitude of h = 5000m and 15 equally distributed
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Figure 2.4. – Trim solutions w.r.t. elevator deflection η0 and angle of attack α0 for the
given velocity range in Table 2.2 and h = 5000m
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Figure 2.5. – Trim solutions w.r.t. thrust lever position δT,0 for the given velocity range in
Table 2.2 and h = 5000m
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velocities 102.88m
s ≤ V ≤ 207m

s given in Table 2.2. This also defines the envelope
used for assessments in this thesis. The resulting trim elevator deflections η0 together
with the angles of attack α0 are shown in Fig. 2.4 and the corresponding thrust lever
positions are depicted in Fig. 2.5.

2.1.4. Linearization

Symbol Dimension
A (n× n)
B (n×m)
C (r× n)
D (r×m)
x (n× 1)
u (m× 1)
y (r× 1)

Table 2.3. – Dimensions of matrices and vectors of the state space model [50]

Although the nonlinear dynamics description is important for simulation purposes, for
controller design often a linear representation in form of a time invariant state space
model is needed. This is also the case for the controller design methods used in this
thesis. In general, a state space model can be formulated according to [76, p. 16]

ẋ (t) = Ax (t) + Bu (t) (2.33a)

y (t) = Cx (t) + Du (t) (2.33b)

x (0) = x0. (2.33c)

Here, A is the system matrix, B the input matrix, C the output matrix and D the
feed-through matrix. Furthermore, x are the system states, u the system inputs and y
the system outputs. The initial state at t0 is defined through x0. Table 2.3 summarizes
the dimensions of the mentioned matrices and vectors.
How to gain such a state space model in Eq. (2.33) from the nonlinear differential
equations describing the dynamics given in Eq. (2.31), is deduced in [75, 121, 57, 50]
and is also shown in the following. At first, Eq. (2.31a) is reformulated as a Taylor
series [107, S. 185] of first order. This leads to [75, p. 110] [57, p. 302]

ẋ = f (x0, u0) +
∂ f (x, u)

∂x

∣∣∣∣x=x0u=u0

· (x− x0) +
∂ f (x, u)

∂u

∣∣∣∣x=x0u=u0

· (u− u0) +O
(

x2
)

+O
(

u2
)

,

(2.34)
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where O
(
x2) and O

(
u2) are higher order terms. x0 and u0 define the reference state,

at which the linearization is performed. This reference state is taken from the trimming
solution shown in Section 2.1.3. Likewise, according to Eq. (2.31a) ẋ0 = f (x0, u0) holds.
For the next step small deviations from the reference state [75, p. 110]

x = x0 + δx (2.35a)

u = u0 + δu (2.35b)

ẋ = ẋ0 + δẋ (2.35c)

are formulated. Plugging Eq. (2.35) in Eq. (2.34) yields [75, p. 111] [57, p. 302]

δẋ =
∂ f (x, u)

∂x

∣∣∣∣x=x0u=u0

· δx +
∂ f (x, u)

∂u

∣∣∣∣x=x0u=u0

· δu, (2.36)

also neglecting the higher order terms O
(
x2) and O

(
u2). The formulation according

to Eq. (2.33a) can be directly achieved by means of [75, p. 111] [57, p. 302]

A :=
∂ f (x, u)

∂x

∣∣∣∣x=x0u=u0

(2.37a)

B :=
∂ f (x, u)

∂u

∣∣∣∣x=x0u=u0

(2.37b)

and crossing out the additional “δ”. Although, one has to keep in mind that neverthe-
less x and u mean deviations from the considered trim state described through x0 and
u0 and that the linear formulation only holds in the proximity of the trim state.
The same method is also applied to Eq. (2.31b), which results in [57, p. 301]

y = h (x0, u0) +
∂h (x, u)

∂x

∣∣∣∣x=x0u=u0

· (x− x0) +
∂h (x, u)

∂u

∣∣∣∣x=x0u=u0

· (u− u0) +O
(

x2
)

+O
(

u2
)

,

(2.38)
where y0 = h (x0, u0). If again Eq. (2.35) is utilized with the additional definition [75, p.
110]

y = y0 + δy, (2.39)

Eq. (2.38) can be reformulated to [75, p. 111] [57, p. 301]

δy =
∂h (x, u)

∂x

∣∣∣∣x=x0u=u0

· δx +
∂h (x, u)

∂u

∣∣∣∣x=x0u=u0

· δu, (2.40)
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where higher order terms have been neglected. Using the definitions [75, p. 111] [57, p.
301]

C :=
∂h (x, u)

∂x

∣∣∣∣x=x0u=u0

(2.41a)

D :=
∂h (x, u)

∂u

∣∣∣∣x=x0u=u0

(2.41b)

directly yields Eq. (2.33b). It has to be noted additionally that the method cannot be
applied analytically to the aircraft model presented in this thesis. This is because the
dimensionless coefficients C? according to Eq. (2.7) shown in Section 2.1.1 describing
the aircraft’s aerodynamic forces and moments are given as lookup tables and not as
analytical functions.

A numerical linearization of the nonlinear dynamics formulated in Eq. (2.31) with
the states and outputs defined in Eq. (2.32) results in a state space model with the
following structure [55, p. 184]:


V̇
γ̇
α̇
q̇
ẋ
ḣ


︸ ︷︷ ︸

=:ẋ

=



XV −g · cos γ0 Xα Xq 0 Xh
−ZV

g
V0
· sin γ0 −Zα −Zq 0 −Zh

ZV − g
V0
· sin γ0 Zα Zq + 1 0 Zh

MV 0 Mα Mq 0 Mh
cos γ0 −V0 sin γ0 0 0 0 0
sin γ0 V0 cos γ0 0 0 0 0


︸ ︷︷ ︸

=:A


V
γ
α
q
x
h


︸ ︷︷ ︸

=:x

+


Xη XδT
−Zη −ZδT
Zη ZδT
Mη MδT
0 0
0 0


︸ ︷︷ ︸

=:B

(
η
δT

)
︸ ︷︷ ︸

=:u

(2.42a)
y = I6×6 ·

(
V γ α q x h

)T (2.42b)

Here, the subscript K are neglected for the states. The position x has no influence on
the other states. Furthermore, the stability derivatives Xh, Zh and Mh can be considered
very small in good approximation. Thus, the states V, γ, α and q are decoupled from x
and h. Consequently the state space model can be reduced according to [55, p. 184]


V̇
γ̇
α̇
q̇


︸ ︷︷ ︸

=:ẋ

=


XV −g · cos γ0 Xα Xq
−ZV

g
V0
· sin γ0 −Zα −Zq

ZV − g
V0
· sin γ0 Zα Zq + 1

MV 0 Mα Mq


︸ ︷︷ ︸

=:A


V
γ
α
q


︸ ︷︷ ︸

=:x

+


Xη XδT
−Zη −ZδT
Zη ZδT
Mη MδT


︸ ︷︷ ︸

=:B

(
η
δT

)
︸ ︷︷ ︸

=:u

(2.43a)
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y = I4×4 ·


V
γ
α
q

 . (2.43b)

Eqs. (A.1a) to (A.15a) to be found in Appendix A.3 comprise results of linearizations
of the longitudinal F-16 dynamics at an altitude of h = 5000m and different velocities
according to Table 2.2 using the trim results of Fig. 2.4 and Fig. 2.5.
Appendix A.3 also comprises the resulting eigenvalues of the system matrix A in
Eq. (2.43) for the considered envelope i.e. natural frequency and relative damping
of short-period and phugoid motion, respectively. As it was already mentioned in
Section 2.1.1, the longitudinal dynamics are stable for the chosen CG position of 0.30c̄.
Thus, the natural frequency of the short-period ω0,sp ranges from 2.33 rad

s to 4.88 rad
s ,

where the relative damping ζsp barely changes and results in values between 0.36 and
0.39. Furthermore, a periodic phugoid mode can be observed, whose natural frequency
ω0,ph lies between 0.06 rad

s and 0.13 rad
s and the relative damping ζph is 0.13 for low and

0.43 for high velocities.

2.2. Atmospheric Model

The atmospheric model defines, how physical properties like temperature T, baro-
metric pressure p and air density ρ are related to the altitude h of the aircraft. The
implementation for the aircraft model used in thesis was performed according to the
standard atmosphere given in the standard ISO 2533 [61]. In the following section, the
formulas describing the standard atmosphere model are briefly presented and a more
detailed summary can be found in [57, pp. 91-92].
The atmosphere is vertically subdivided into three areas, which are the Troposphere
(MSL ≤ HG ≤ 11km), lower Stratosphere (11km < HG ≤ 20km) and upper Stratosphere
(20km < HG ≤ 32km). The geopotential height [57, p. 91]

HG =
rE · h
rE + h

(2.44)

with the earth’s radius rE = 6356.766km considers a decrease of gravity with increasing
altitude. This effect is neglected1 for the implemented model, thus it is assumed
that HG ≈ h. Furthermore, it is concentrated on a description of the Troposphere, as
h = 11km are not exceeded for the assessments made in this work. The properties of
the Troposphere in dependence of altitude h are obtained from [57, p. 92]

p = ps ·
(

1− nTr − 1
nTr

· g
R · Ts

· h
) nTr

nTr−1

(2.45a)

1For example, the geopotential height corresponding to h = 5000m would be HG ≈ 4996m
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T = Ts ·
(

1− nTr − 1
nTr

· g
R · Ts

· h
)

(2.45b)

ρ = ρs ·
(

1− nTr − 1
nTr

· g
R · Ts

· h
) 1

nTr−1

(2.45c)

with

ps = 1.01325 · 105 N
m2 Ts = 288.15K ρs = 1.225

kg
m3 nTr = 1.235 (2.46)

and with the gas constant R = 287.05 J
kg·K as well as the gravitational acceleration at

MSL g = 9.80665 m
s2 .

From the atmospheric properties the dynamic pressure q̄ according to Eq. (2.6) is
obtained, which is needed for the calculation of the absolute aerodynamic forces and
moments in Section 2.1.1. Also, the mach number [122, p. 68] [56, p. 2.11]

Ma =
VA√

κ · R · T
(2.47)

is calculated additionally considering the isentropic exponent κ = 1.4.

2.3. Turbulence Model

In general, atmospheric disturbances influence the aerodynamic forces and moments
acting on the aircraft. The aircraft model is affected by horizontal

(
uG

W
)0

0 and vertical(
wG

W
)0

0 velocity components w.r.t. the NED frame, as well as by the wind-generated
pitch rate qW , as only logitudinal dynamics are considered in this thesis. The resulting
velocities and pitch rate of the aircraft relative to the surrounding air can be defined as
[16, p. 219] ((

uG
A
)0

B(
wG

A
)0

B

)
=

((
uG

K
)0

B(
wG

K
)0

B

)
−MB0

lon

((
uG

W
)0

0(
wG

W
)0

0

)
(2.48a)

qA = qK − qW , (2.48b)

where the variables noted with the sub-index K are the kinematic states, which come
after integration of the rigid-body equations of motion as described in Section 2.1.2.
As the wind velocities are given in the NED frame the transformation matrix

MB0
lon =

(
cos Θ − sin Θ
sin Θ cos Θ

)
(2.49)
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is used.
The wind velocities and pitch rate are obtained from a turbulence model. It is stated in
[16] that in most applications one of two possible approximations is used, which utilize
the Dryden or the van Kármán spectrum. The van Kármán spectrum is rather used
for assessments in the frequency domain e.g. load calculations, whereas the Dryden
spectrum is prefered for flight mechanical assessments within the time domain due to
its simplicity. As the focus of this thesis lies on the latter, the Dryden spectrum is used
for further investigations. It should be additionally noted that [82] recommends usage
of the van Kármán spectrum in case comparable structural analysis is performed, in
order to achieve comparability of the assessments.
For the simulation model of this thesis, the continuous Dryden turbulence implemen-
tation is used, which is included in the MATLAB Aerospace Blockset toolbox [78]. It
follows the specifications given in the adequate MIL-spec [81]. The underlying princi-
ple of this model is that turbulence is assumed to be a random process with a normal
(Gaussian) distribution. This showed to be sufficient for flying quality assessments.
But it has to be kept in mind that actual turbulence is widely understood as being
non-Gaussian, which has to be considered e.g. for research regarding meterological
phenomena [85].
The Dryden spectra are defined according to [81, p. 47]

ΦuW (ω) = σu
2 · 2Lu

πVK
· 1

1 +
(

Lu
VK
·ω
)2 (2.50a)

ΦwW (ω) = σw
2 · Lw

πVK
·

1 + 3
(

Lw
VK
·ω
)2

[
1 +
(

Lw
VK
·ω
)2
]2 (2.50b)

ΦqW (ω) =

(
ω

VK

)2

1 +
(

4b
πVK
·ω
)2 ·ΦwW (ω) (2.50c)

as a function of frequency ω, velocity VK and wingspan b = 9.144m. [81] specifies the
spectra as functions of the spatial frequency Ω. Assuming that turbulence is frozen
during the aircraft transition, it can be considered a stationary process. Thus, the
spectra can be expressed by means of the circular frequency ω = Ω · VK using the
aircraft velocity VK rather than the spatial frequency Ω [35]. The scale lengths Lu
and Lw, as well as the RMS intensities σu and σw are defined in Table 2.4 for different
altitude h ranges. For altitudes below 1000 f t an additional parameter u20 is needed,
which represents the wind speed at 20 f t above the ground. Suitable values for u20 can
be found in Table 2.5 for probabilities of exceedance. The probability of exceedance, as
it also appears in Fig. 2.6, defines the turbulence intensity. Here, 10−2 correspondes to
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Figure 2.6. – Turbulence exceedance probability (data extracted from [80, 78])

Condition RMS Intensities
[

f t
s

]
Scale Lengths in [ f t]

(σu, σw) (Lu, Lw)

h > 1000 f t σu = σw Lu = Lw = 1750
choose according to Fig. 2.6

h ≤ 1000 f t
σw = 0.1 · u20 Lu = h

(0.177+0.000823·h)1.2

σu = σw
(0.177+0.000823·h)0.4 Lw = h

choose u20 according to Table 2.5

Table 2.4. – Turbulence model parameters [81, p. 48] [137, p. 120]
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Probability of exceedance u20 [kts]
10−1 16

10−2 (light) 23
10−3 (moderate) 30

10−4 38
10−5 (severe) 45

Table 2.5. – Wind speed at 20 f t above the ground u20 (data extracted from [81, p. 52])

light, 10−3 to moderate and 10−5 to severe turbulence [81]. Note additionally that the
formulation for the spectrum of the angular velocity disturbance qW is only valid, if
structural modes are not significant [81, p. 58].
In order to achieve the required spectra in Eq. (2.50) for the turbulence signals, normally
distributed white noise N (0, 1) is led through suitable forming filter functions resulting
in [137, p. 118]

(
uG

W

)0

0
= σu ·

√
2Lu

VK
· 1

1 + Lu
VK
· s
· N (0, 1) (2.51a)

(
wG

W

)0

0
= σw ·

√
Lw

VK
·

1 +
√

3 Lw
VK

s(
1 + Lw

VK
· s
)2 · N (0, 1) (2.51b)

qW =
1

VK
s

1 + 4b
πVK
· s
·
(

wG
W

)0

0
. (2.51c)

2.4. Gust Model

In addition to the turbulence model described in Section 2.3, a wind gust model is
implemented. In this case, the aircraft is affected by wind components according
to a specific shape, which is time-dependent. The so-called 1-cosine shape is well
established for aircraft analyses and is also used for the assessments made within this
thesis2. Its resulting wind velocity is formulated as [81, p. 48]

(
wG

W

)0

0
=


0 if xgust < 0
vgust

2 ·
(

1− cos π·xgust
dgust

)
if 0 < xgust < dgust

vgust if x > dgust

, (2.52)

2More specifically, an implementation included in the MATLAB Aerospace Blockset toolbox is used
[79]
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where xgust denotes the horizontal position of the aircraft in body-fixed x-direction
within the gust. It is calculated by means of integrating the kinematic velocity VK over
time starting at t0,gust. The gust length can be defined in dgust and the resulting wind
velocity is described by vgust. Fig. 2.7 gives an example on the shape of the resulting

wind velocity. In the same way, the 1-cosine gust can also be formulated for
(
uG

W
)0

0
analogously to Eq. (2.52).
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Figure 2.7. – Resulting wind velocity
(
wG

W
)0

0 for 1-cosine gust starting 10m in front of the
aircraft with dgust = 30m and vm = 15 m

s

2.5. Actuator Model

The original aircraft uses mainly two aerodynamic control surfaces for the longitudinal
motion, namely the elevator and the LEF. Their position with respect to the airframe
can be seen in Fig. 2.8. The deflection of the LEF δLEF is determined as a function of
α and Ma. As the Ma-dependence is very low for the considered valid envelope and
neglecting the actuator dynamics, the control of the LEF was merged into the aerody-
namic coefficients [121]. Thus, the elevator deflection η is left as only aerodynamic
control input with respect to the longitudinal motion.
The elevator is modeled as a 2nd order transfer function with a natural frequency
ω0,act = 40 rad

s and relative damping ζact = 0.71. The system can generally be written as(
ẋ1,act
ẋ2,act

)
=
(

0 1
−ω0,act

2 −2ζactω0,act

)(
x1,act
x2,act

)
+
(

0
ω0,act

2

)
ηcmd (2.53a)
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LEF

Figure 2.8. – Control surfaces of F-16 aircraft used to control the longitudinal motion [134]

η =
(
1 0

) (x1,act
x2,act

)
(2.53b)

in state space representation. Furthermore, the structure is also shown in Fig. 2.9. ηcmd
is the signal commanded by the controller and η the signal, that actually affects the
plant. The absolute deflection of the elevator η is limited to |η|≤ 25◦ with a rate limit
of |η̇|≤ 60

◦
s .

The engine dynamics are modeled in the same way, as the commanded thrust lever
position 0 ≤ δT,cmd ≤ 1 is retarded using an analogous model as given in Eq. (2.53).
The natural frequency is set to ω0,thr = 1 rad

s with a relative damping of ζthr = 0.95.
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Figure 2.9. – Structure of the actuator model

In order to consider reality effects, some additions are made to the basic actuator model
shown in Eq. (2.53). At first, a continuous delay is inserted upstream of the integrator,
through which both the effect of computational time delay and delays resulting from
filtering can be taken into account. For the assessments using the simple aircraft model,
the delay is set to TD,c = 0.055s considering one accumulated delay resulting from
various sources. If the enhanced model is used, for which the more sophisticated
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Figure 2.10. – Example for actuator backlash

sensor models described in Section 2.6 and the filters are active, the delay is set to
TD,c = 0.015s. This represents delay resulting from computation only.
One can also activate the option that the actuators receive commands with a limited
sample rate. This is achieved through additional sample rate conversion. For this
work, the sample rates of the receivers corresponding to the command signals ηcmd and
δT,cmd are set to 50Hz. In order to avoid aliasing effects, low-pass filtering is applied
upstream of the sample rate conversion, as it is also described in the next section.
It is additionally possible to consider backlash3 for the actuator. Backlash within
the actuator means that the actuator position has a certain amount of play e.g. due
to wear of mechanical components like bearings. This has mainly two effects. On
the one hand the actuator movement has to pass a certain dead-band first, before
the control surface actually changes its position. On the other hand, movement of
the control surface within this dead-band can be induced by the surrounding air e.g.
through turbulence. For the model at hand only the first effect is modeled by means of
an optional dead-band implementation within the actuator model shown in Fig. 2.9.
The dead-band for the elevator is set to ηdead−band = 0.13◦. According to [74] this is
the maximum value tolerable for trailing edge actuators for the TORNADO aircraft.
Fig. 2.10 gives a simple example for the effect of backlash, where ηin is the signal
before and ηout is the signal after the backlash block shown in Fig. 2.9. The actuator
command is initialized in zero position and is first driven to the maximum ηmax and

3The effect of backlash is also often to be found in literature described by the term freeplay
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then to the minimum position ηmin. But instead of resulting in an actuator deflection
instantaneously, at first the dead-band ηdead−band has to be passed between 1© and 2©,
before the actuator moves to 3©. Vice versa when changing the direction of actuator
movement, which results in a change of sign in η̇, the dead-band ηdead−band has to be
passed again between 3© and 4©, before 5© is reached. Thus, the effect of backlash can
be compared to a combination of time-delay and loss of positional accuracy.

2.6. Sensor Model

A more sophisticated sensor model is applied for the measurement of angle of attack α,
load factor nz, pitch rate q, pitch acceleration q̇, elevator deflection η and the dynamic
pressure q̄, which is configured according to Table 2.6 for the standard assessment test
case. Various sources of errors during the measurement and the associated processing
are taken into account.
The basic structure is depicted in Fig. 2.11. At first, the analog plant output signal ys is
perturbed by use of the relation

ymeas,A = b + m · ys + v, (2.54)

where b introduces a bias, m a scale factor and v measurement noise [69]. For the
following experiments, only constant b and m are used representing average values.
The generation of noise v is implemented as a Gaussian (normally) distributed random
number around a mean value of 0. The amount can be configured by means of the
Standard Deviation (SD) σnoise, which also directly gives the noise variance [107, p.
464]

Var (v) = σnoise
2 (2.55)

with respect to the sensor noise v.
Furthermore, before being processed by Eq. (2.54), the clean system output ys can be
delayed by TD,sensor. This creates the possibility to consider e.g. computational delay
or additional delay induced by a failure. Additionally, the amount of the delay can be
configured to vary with the inverse sample rate of the sensor Ts,sensor = 1

fs,sensor
with a

definable probability. This way, the effect of random jitter can be applied on the signal,

✁✁

Delay ✂✂�✁✄☎✁✆✝ ✄

�

☎

✁✞✄✟✁�✠ Anti-Aliasing
Filter

Quantizationzoh
✁✞✄✟✁�✂

Jitter
(✆ ✝ ✂✁�✡✄☎✁✆✝)

Figure 2.11. – Structure of the sensor model
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A ircraft Model

as it could appear due to errors within the signal transfer between sensor and FCS
e.g. due to wrong time stamp assignment. For the simulation assessments within this
thesis, jitter is configured to appear as a decrease of the delay by one time step Ts,sensor
with a probability of 5% each simulation step. Likewise, the delay can be increased
with the same probability, but in this case the amount can be njitter · Ts,sensor, where
njitter ∈ [1 . . . 3] is a random integer.
For measurements performed by the ADS, which are angle of attack α and dynamic
pressure q̄ in this case, additional lag is introduced. This is done by application of a
second order low-pass filter [75, pp. 295-306]

GADS,lag (s) =
ω0,ADS

2

s2 + 2ζADSω0,ADS · s + ω0,ADS
2 , (2.56)

where ω0,ADS = 4.8Hz and ζADS =
√

2
2 [9], on the signal ys, before it enters the sensor

model shown in Fig. 2.11. Note that the value for ω0,ADS might be conservative for
a fighter aircraft, because [9] deals with the controller design for a business jet class
aircraft.
In the next step, the analog, continuous signal ymeas,A is converted to a digital, discrete
signal ymeas,D having the sample rate fs,sensor. For this purpose, a Analogue-to-Digital
converter (ADC) model is implemented. In order to take account of the Sampling
Theorem by Nyquist and Shannon [106, p. 28], the signal is low-pass filtered by means
of a 2nd order butterworth filter [106, p. 717-719]

Gaa (s) =
ω0,aa

2

s2 +
√

2ω0,aa · s + ω0,aa2
(2.57)

at first, before the actual conversion takes place. The filter bandwidth is set to
ω0,aa = 1

3 fs,sensor · 2π, where the conversion from Hz to rad
s is considered by means of the

factor 2π. Consequently, signal content above the Nyquist frequency ω0 > 0.5 fs,sensor
gets sufficiently attenuated in order to avoid aliasing, in this case the attenuation is
around −7.5dB at the Nyquist frequency.
ymeas,A is then discretized by means of an ideal sampler. It consists of a Zero-Order-
Hold (zoh) element, which operates with the sample rate fs,sensor [127]. ymeas,D is set to
the value of ymeas,A at every discrete time-step of the measurement processing, while it
is held constant for the remaining time Ts,sensor. This is considered as a quantization of
the signal with respect to the time axis.
Furthermore, ADC causes a quantization with respect to the actual value of the
signal, too [33]. This is due to a finite digital resolution applied during sampling
of the analogue signal, which is usually physically defined by a certain voltage V ∈
[Vmin; Vmax]. The digital resolution is defined in terms of the bit length nBit in Bit,
therefore 2nBit possible digital output codes exist. The following steps show the
modelling of the described sensor effect based on an approach integrated in [80],
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where the block utilized for the implementation of the digital quantizing effect is called
“Idealized ADC quantizer”.
At first, the signal obtained from the zoh-processing y is converted to a suitable voltage
V considering both bounds on the signal ymax, ymin and voltage Vmax, Vmin:

V = Vmax
y− ymin

ymax − ymin
+ Vmin (2.58)

Now, the range between Vmin and Vmax is subdivided into 2nBit − 1 intervals of equal
size [80]

LSB =
Vmax −Vmin

2nBit
, (2.59)

where the Least Significant Bit (LSB) is the smallest change in signal to be detected by
the ADC in dependence of the chosen signal length nBit. A change in signal is detected,
if the signal crosses the center of one of this intervals. This algorithm is expressed by
means of the formula [80]

Vbit = floor
{

1
LSB

· [sat (V)−Vmin] + 0.5
}

(2.60)

using the limiting function

sat (u) =


u if umin < u < umax

umax if u ≥ umax

umin if u ≤ umin

(2.61)

with the lower limit umin = Vmin and the upper limit umax = Vmax − 3
2 · LSB. Here, the

round function floor (x) is used, which rounds x down to the next integer value. While
Eq. (2.60) translates Vmin to 0, Vmax on the other hand cannot be exactly mapped to an
integer within the defined range, because the upper bound of the integer value Vbit is
2nBit − 1. This is the reason, why the upper limit of umax = Vmax − 3

2 · LSB has to be
applied for the saturation function included in Eq. (2.60), where the threshold 0.5 is
additionally taken into account.
Using the integer Vbit, which is calculated according to Eq. (2.60), the quantized
measurement ymeas,D can be obtained from

ymeas,D =
ymax − ymin

2nBit
·Vbit + ymin. (2.62)

Fig. 2.12 contains the simulation plot of an exemplary signal uoriginal, in order to
illustrate the effect of quantization. Two quantizations yquant,2bit and yquant,12bit are
shown, which differ in terms of the applied bit length nBit. In particular, the nBit = 2Bit
case reveals that the quantized signal never reaches ymax. This is due to the fact that
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Figure 2.12. – Example for signal quantizations with Vmin = 0, Vmax = 4, ymin = 0 and
ymax = 3 considering the bit lengths nBit = 2Bit and nBit = 12Bit,

there exists no corresponding integer Vbit for the maximum voltage Vmax, as it was
discussed above. Furthermore, the maximum value of Vbit is 2nBit − 1. The maximum
achievable measurement value can then be calculated according to Eq. (2.62) and
results in

ymeas,D,max =
ymax − ymin

2nBit
· (2nBit − 1) + ymin

= ymax−
ymax − ymin

2nBit︸ ︷︷ ︸
=:∆ymax

. (2.63)

Thus, the error |∆ymax| decreases with increasing bit length, which can also be seen in
Fig. 2.12. For the nBit = 2Bit case, ∆ymax results in −0.75, whereas for nBit = 12Bit a
difference of ∆ymax = −7.32 · 10−4 can be achieved. It should be noted that nBit = 12Bit
is used for the sensor measurements delivered by the enhanced aircraft model.
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2.7. Structural Mode

With the intention to induce another physically motivated, dynamical disturbance to
the aircraft model, the simplified effect of the first structural wing bending mode is
taken into account. An approach as presented in [139] is used for the implementation.
The mode is modeled as an additional low-damped 2nd order low-pass filter applied
to the system output signal. Thus, the plant output signal with additional dynamics ys
is expressed as

ys = [1− Gs (s)] · y (2.64)

with the unprocessed plant output y and the transfer function Gs (s) being defined as

Gs (s) =
s2 + 2ζsω0,s · s

s2 + 2ζsω0,s · s + ω0,s2 . (2.65)

The implementation can also be seen in Fig. 2.14. For the structural mode a natural
frequency ω0,s = 6.05Hz ≡ 38.01 rad

s is chosen4 and the relative damping is set to
ζs = 0.05. This leads to an amplification of the area around ω0,s and phase-loss, which
can be clearly seen in the corresponding bode plot [14] [75, pp. 246-248] Fig. 2.13. The
dynamical disturbance is applied to the system outputs angle of attack α, load factor
nz, pitch rate q and pitch acceleration q̇.

101 102

▼
❛
❣
♥
✐t
✉
❞
❡
❬❞
❇
❪

-20

-10

0

10

20

30

❋r�q✁�✂❝② ✄r☎✆✴s✝

101 102

P
❤
❛
✞❡
❬✟
❪

-180

-90

0

Figure 2.13. – Bode plot of transfer function 1− Gs (s)

4For the sake of comparison: the short-period frequency of the closed-loop system is ω0,sp ≤ 2Hz
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It must be noted that it is not claimed that this approach represents a proper modeling
of aircraft aeroelastics. On the one hand, an aircraft inherits an infinite number of
structural modes, of which usually more than one are to be considered w.r.t. the
controller design. On the other hand, the calculation of additional forces and moments,
depending on the aircraft states, would be required to implement an aeroelastic model.
This leads to coupling of rigid and flexible aircraft modes [32]. It is not straight forward
to gain those relations from a structural model of the aircraft and to integrate them
into the aircraft model, see e.g. [113, 126, 5, 44]. An exemplary approximation of the
lateral dynamics of an aircraft coupled with four structural modes can be found in [30,
pp. 182-188].

� �

�� �

�� �

�

Figure 2.14. – Implementation of simple structural mode model according to Eq. (2.64)
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This chapter presents the theoretical foundation underlying the control laws, which
are designed in Chapter 4. This includes first a description of the Eigenstructure
Assignment algorithm. Eigenstructure Assignment is a systemic gain design approach
for linear, MIMO output feedback controllers with the goal to precisely adjust the
eigendynamics of the system to be controlled. The second part of this chapter shows the
elements of a L1 adaptive controller. Here, the idea of piecewise constant update laws
for uncertainty estimation, as well as the connection between controller sample time
and adaptation performance is explained visually. The last section briefly introduces
discrete-time systems by means of the z-transformation and presents two methods,
how to transform continuous-time systems into a discrete-time representation.

3.1. Eigenstructure Assignment

From the 1970ies until the mid-1980ies, Eigenstructure Assignment was developed as
an enhancement of Pole Placement for MIMO systems [16, p. 545]. It can be read in
[16] that it has its roots in investigations made by Moore in [84]. Specifically in aircraft
applications, it is often used for the design of the lateral controller due to its capabil-
ity to systematically and automatically calculate gains suiting the requirements on
eigenvalues and to ensure decoupling of eigenmotions for MIMO systems. Successful
applications can be found in [37, 54, 47, 110, 70] amongst others.
In this section, the theory of Eigenstructure Assignment is explained in terms of sketch-
ing the general idea and summarizing all necessary steps for a practical application
following the comprehensions made in [54, 47, 50]. A more detailed description of the
theory can be found e.g. in [34, pp. 49-87] [122, pp. 387-397].
Generally, the design model can be written as a linear state space model without
feedthrough1 [76, p. 16]

ẋ (t) = Ax (t) + Bu (t) (3.1a)

y (t) = Cx (t) . (3.1b)

1For a linear state-space model a feedthrough exists, if the input has a direct impact on the output of
the system without having to pass an integrator. The output equation with feedthrough would read
y (t) = Cx (t) + Du (t). [76, p. 16]
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Figure 3.1. – Structural overview of the closed-loop considered for the Eigenstructure
Assignment

The system matrix A is of dimension (n× n), the dimension of the full rank input
matrix B is set as (n×m) and the output matrix C has the dimension (r× n). That
means the system has n states, m linear independent inputs and r measurable outputs.
The control law is conducted as [54]

u = −Ky + uc (t) (3.2)

with an output feedback and a feedforward path uc (t). Plugging the control law
Eq. (3.2) into the model Eq. (3.1) results in the closed-loop [54]

ẋ (t) = (A− BKC)︸ ︷︷ ︸
A∗

x (t) + Buc (t) , (3.3)

where A∗ is the closed-loop system matrix. This is also illustrated in Fig. 3.1. The
task is now to determine the feedback matrix K in such a way that A∗ has desired
eigenvalues λ∗ and eigenvectors v∗. Considering one pair consisting of eigenvalue and
corresponding eigenvector, it can be stated according to their definition that [107, p.
95]

λ∗i v∗i = A∗v∗i . (3.4)

Using the definition of A∗ from Eq. (3.3) results in the intermediate step

(λ∗i In×n − A + BKC) v∗i = 0, (3.5)

which can be further rearranged to [54]

(
λ∗i In×n − A B

) (v∗i
z∗i

)
= 0 (3.6)
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with

z∗i = KCv∗i . (3.7)

The matrix
(
λ∗i In×n − A B

)
is of dimension (n× (n + m)) and has a maximum of n

linear independent column vectors. If λ∗i is not an eigenvalue of A and A has full rank,
then exactly n linear independent column vectors exist and thus, the span of the matrix
is n-dimensional. This means that m vectors exist, which define the m-dimensional
kernel of the matrix. The kernel of a matrix is a space that contains all vectors, whose
linear combinations are projected onto the null-vector by this matrix. Exactly such

a solution is required for Eq. (3.6), therefore
(

v∗

z∗

)
has to lie in the null space of the

matrix
(
λ∗i In×n − A B

)
, in order to produce a non-zero, i.e. nontrivial, solution of

Eq. (3.6).
The basis vectors n̄i of the null space belonging to the matrix

(
λ∗i In×n − A B

)
can be

summarized in

N̄ =
(
n̄1 · · · n̄m

)
, (3.8)

which is of dimension ((n + m)×m) and can be further subdivided into [54]

N̄ =
(

N
N̂

)
=
(

n1 · · · nm
n̂1 · · · n̂m

)
, (3.9)

where ni has the dimension (n× 1) and n̂i the dimension (m× 1), respectively. As it

was stated above, any achievable solution
(

v∗i
z∗i

)
can be generally described as linear

combination of these basis vectors of the null space [54]:(
v∗i
z∗i

)
= N̄ · li =

(
N
N̂

)
li (3.10)

Here, li is a parameter vector, which has to be determined in such a way, that

v∗i = N · li (3.11)

equals to the desired eigenvector.
In general s ≤ n values of the eigenvector are relevant to be set by the controller
designer. For that reason, one prioritizes the choice of vector elements. This is done by
means of a sorting matrix Pi, which shifts s entries of the eigenvector to be specified
vs

i to the top and the remaining ones vu
i to the bottom of the vector [54]:(

vs
i

vu
i

)
= Pi · v∗i =

(
Ps

i
Pu

i

)
v∗i (3.12)

For the next step Eq. (3.11) is plugged into the equation for vs
i contained in Eq. (3.12):
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vs
i = Ps

i · N · li (3.13)

The goal is to determine li such, that in the end vs
i contains the desired, specifiable

eigenvector values. Since the eigenvector v∗i has n components of which s are chosen
via inclusion in vs

i , the matrix Ps
i has to be of dimension (s× n). From Eq. (3.9) it is

clear that N has the dimension (n×m). Thus, the product [54]

Ns = Ps
i · N (3.14)

has a dimension of (s×m). That means Ns is only invertible in case the number of
specified eigenvector values s equals the number of linearly independent system inputs
m. Therefore, Eq. (3.13) can only be solved directly with respect to the parameter vector
li, if s = m holds [54]:

li = (Ps
i · N)−1︸ ︷︷ ︸
(Ns)−1

·vs
i . (3.15)

In case s > m is required for the controller design, one has to calculate the pseudoin-
verse (Ns)+ of Ns in order to obtain suitable li. This can be derived by multiplying
the hermitian adjoint (Ns)H (m× s) to the left side of Eq. (3.13). In combination with
Eq. (3.14), the result reads

(Ns)H vs
i = (Ns)H Nsli. (3.16)

Now Eq. (3.16) can be solved with respect to

li =
(
(Ns)H Ns

)−1
(Ns)H︸ ︷︷ ︸

(Ns)+

·vs
i , (3.17)

where

(Ns)+ =
(
(Ns)H Ns

)−1
(Ns)H (3.18)

is the definition of the pseudoinverse of Ns [107, p. 98]. The drawback of a choice
s > m is loss of preciseness due to application of the pseudoinverse [3]. In consequence
it is not possible to specify every single entry of this vector e.g. for aircraft applications
exactly, where usually n > m holds. In order to balance this problem, one can add
a diagonal matrix Qs

i (s× s) to Eq. (3.16) to be able to weight certain values of the
specified part of the eigenvector [54]:

(Ns)H Qs
i vs

i = (Ns)H Qs
i Nsli (3.19)

The solution for the parameter vector is then given by [54]
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li =
(
(Ns)H Qs

i Ns
)−1

(Ns)H Qs
i · vs

i . (3.20)

In a nutshell, during the controller design process the following steps have to be
performed for every single eigenvalue λ∗i and eigenvector v∗i with i = 1...r to be
assigned. The number of assignable eigenvalues and eigenvectors is determined by
the number r of available plant outputs.
At first, li is determined according to Eq. (3.15), Eq. (3.17) or Eq. (3.20) depending on
the choice of s. Furthermore, the null space has also to be determined individually
for every λ∗i according to Eq. (3.8) and Eq. (3.9). Then v∗i and z∗i can be calculated by
means of Eq. (3.10).
Using the solutions v∗i and z∗i with i = 1...r finally K can be determined. For this,
Eq. (3.7) is evaluated for every v∗i and z∗i , which yields

z∗1 = KCv∗1
z∗2 = KCv∗2

...
z∗r = KCv∗r .

(3.21)

These equations can be summarized to one single matrix equation [54](
z∗1 . . . z∗r

)
= K · C ·

(
v∗1 . . . v∗r

)
, (3.22)

where C has the dimension (r× n) and
(
v∗1 . . . v∗r

)
is (n× r), since r eigenvectors

have been assigned. In consequence, the product of these two matrices is also invertible,
thus the gain matrix K can be directly calculated as [54]

K =
(
z∗1 . . . z∗r

) [
C ·
(
v∗1 . . . v∗r

)]−1 . (3.23)

3.2. L1 Adaptive Control with piecewise constant
update laws

This section describes L1 Adaptive Control [59] with piecewise constant update laws.
In order to highlight the necessary steps in terms of an implementation of the presented
control methodology, the accompaying mathematical proofs with respect to theoretical
error bounds are omitted in this thesis. Nevertheless, the interested reader may be
referred to [59] in this matter.
Furthermore, this section concentrates on L1 Adaptive Control with piecewise constant
update laws, as no integration-based update laws are used for the assessments within
this thesis. Utilizing piecewise constant update laws the design results in a linear
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control law [12]. An architectural overview is given in Fig. 3.2 and all main elements
will be summarized subsequently.

Plant The plant dynamics to be controlled by the L1 adaptive controller can be
modeled as [59, p. 159]

ẋ (t) = Amx (t) + Bm [Λ · u (t) + fm (t, x (t) , yz (t))] + Bum fum (t, x (t) , yz (t)) (3.24a)

ẋz (t) = fz (t, xz (t) , x (t)) (3.24b)

yz (t) = gz (t, xz (t)) (3.24c)

y (t) = Cmx (t) , (3.24d)

where Am (n× n), Bm (n×m) with m ≤ n and Cm (r× n) are known matrices
describing the system dynamics by means of the system state x (t). Am is Hurwitz
and Cm only generates the r outputs to be tracked by the controller from the states x.
Additionally, no direct feedthrough exists from input to output. The system according
to Eq. (3.24a) is both controllable and observable and its transmission zeros feature
a negative real part i.e. the system is minimum phase2. The internal, unmodeled
dynamics, which are Bounded-Input-Bounded-Output (BIBO) stable, are described by
their state ẋz (t) and output yz (t) vectors, as well as the nonlinear functions fz and gz.
A deviation of the known dynamics is taken into account through the unknown
matched fm (t, x (t) , yz (t)) and unmatched uncertainties fum (t, x (t) , yz (t)), respec-
tively. fum (t, x (t) , yz (t)) enters the system through the unmatched input matrix Bum,
which is constructed such that Bm

TBum = 0 holds and B =
(

Bm Bum
)

has maximal

2[6] features a solution to control non-minimum phase systems without neglecting compensation of
unmatched uncertainties
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Figure 3.2. – Structural overview of a L1 adaptive controller with piecewise constant
update laws
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rank of n. The control signal u (t) is fed into the system with an unknown control
efficiency Λ, of which at least the sign has to be known.

State Predictor The desired dynamics to be reached by the closed-loop consisting of
plant and L1 adaptive controller are reflected in the matrices Am and Bm. The State
Predictor [59, p. 163]

˙̂x (t) = Am x̂ (t) + Bm [Λ0 · u (t) + σ̂m (t)] + Bumσ̂um (t) (3.25a)

ŷ (t) = Cm x̂ (t) (3.25b)

parametrizes this desired behavior and via σ̂m (t) and σ̂um (t) the difference between
desired and estimated, real dynamics. It has exactly the same structure as the formula-
tion of the plant, but contains a constant, initial guess of the control effectiveness Λ0
and estimations of both the matched σ̂m (t) and the unmatched uncertainties σ̂um (t).
The update laws for these estimated values are derived from the dynamics of the
estimation error

x̃ (t) = x̂ (t)− x (t) . (3.26)

Note that Λ0 is not adapted in the applications shown in this thesis, thus an initial
guess is used, which is usually Im×m. The L1 Adaptive Control framework in general
contains the possibility to adapt Λ0, but for this an integral update law has to be
applied [59, pp. 37-60]. In order to keep the linear character of the control law, this is
avoided here.

Error Dynamics A differential equation for the estimation error can be deduced by
differentiation of x̃ (t) in Eq. (3.26). Inserting plant Eq. (3.24a) and state predictor
dynamics Eq. (3.25a) leads to [12, p. 285]

˙̃x (t) = ˙̂x (t)− ẋ (t) =
= Am x̃ + Bm [σ̂m − ( fm − (Λ0 −Λ) · u)] + Bum (σ̂um − fum) .

(3.27)

The uncertainties stemming from a deviation of the real control effectiveness Λ and its
initial guess Λ0 are lumped into

σm := ( fm − (Λ0 −Λ) · u) (3.28)

together with fm. Likewise, it holds that

σum := fum (3.29)
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for the sake of consistent notation. The estimation errors, which quantify the difference
between estimated and real uncertainties, can be defined as

σ̃m = σ̂m − σm (3.30a)

σ̃um = σ̂um − σum. (3.30b)

The definitions from Eqs. (3.28), (3.29), (3.30a) and (3.30b) can be used to simplify
Eq. (3.27), which results in

˙̃x (t) = Am x̃ + Bm (σ̂m − σm) + Bum (σ̂um − σum) =
= Am x̃ + Bmσ̃m + Bumσ̃um

= Am x̃ +
(

Bm Bum
) ( σ̃m

σ̃um

)
.

(3.31)

Solving the ODE Eq. (3.31) for an arbitrary starting time t0 leads to

x̃ (t0 + t) = eAmt · x̃ (t0) +
∫ t0+t

t0

eAm(t0+t−ξ)B
(

σ̃m (ξ)
σ̃um (ξ)

)
dξ (3.32)

with B :=
(

Bm Bum
)
. If the solution is considered for one discrete time step with

sampling time Ts and the integral is transformed with ε = ξ− iTs, the equation becomes
[12, p. 285]

x̃ (iTs + Ts) = eAmTs · x̃ (iTs) +
∫ Ts

0
eAm(Ts−ε)B

(
σ̂m (iTs + ε)
σ̂um (iTs + ε)

)
dε

−
∫ Ts

0
eAm(Ts−ε)B

(
σm (iTs + ε)
σum (iTs + ε)

)
dε,

(3.33)

where Eq. (3.30a) and Eq. (3.30b) are plugged in and i ∈N0. The idea of the piecewise
constant update law is to define the estimations σ̂m and σ̂um as constant between
two discrete time steps and to use them, in order to fully cancel the propagation of
the previous error eAmTs · x̃ (iTs) at every discrete time step. Thus, the uncertainty
estimations must satisfy [12, p. 286]

eAmTs · x̃ (iTs) +
∫ Ts

0
eAm(Ts−ε)B

(
σ̂m (iTs)
σ̂um (iTs)

)
dε

!= 0. (3.34)

Nevertheless, Eq. (3.33) indicates that uncertainties accumulate further between two
discrete time steps despite this cancellation. The residual error is discussed in the
remainder of this section and can be found in Eq. (3.40).
Because of the constant matrix Am and the piecewise constant definition of σ̂m and
σ̂um the integral in Eq. (3.34) has the solution [12, p. 286]
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∫ Ts

0
eAm(Ts−ε)B

(
σ̂m (iTs)
σ̂um (iTs)

)
dε =

[
−Am

−1eAm(Ts−ε)B
(

σ̂m (iTs)
σ̂um (iTs)

)]Ts

0
. (3.35)

Thus, Eq. (3.34) can be formulated according to

eAmTs · x̃ (iTs)− Am
−1B

(
σ̂m (iTs)
σ̂um (iTs)

)
+ Am

−1eAmTs B
(

σ̂m (iTs)
σ̂um (iTs)

)
!= 0, (3.36)

which can be further rearranged resulting in [12, p. 286]

eAmTs · x̃ (iTs) + Am
−1
(

eAmTs − In×n

)
B
(

σ̂m (iTs)
σ̂um (iTs)

)
!= 0. (3.37)

Parameter Update Law In order to finally obtain the parameter update Law, Eq. (3.37)
has to be solved w.r.t. σ̂m and σ̂um. This leads to [59, pp. 162-163](

σ̂m (t)
σ̂um (t)

)
= KL1 (Ts) x̃ (iTs) ∀t ∈ [iTs, (i + 1) Ts] , (3.38)

where

KL1 (Ts) = −B−1
(

eAmTs − In×n

)−1
AmeAmTs (3.39)

only depends on the sampling time Ts besides the known desired system dynamics.
As Ts is constant, the parameter update law results in a linear feedback of the sampled
estimation error x̃ (t) via the gain KL1.
Applying the parameter update law Eq. (3.38), the estimation error x̃ (iTs + Ts) accord-
ing to Eq. (3.33) yields [12, p. 286]

x̃ (iTs + Ts) = −
∫ Ts

0
eAm(Ts−ε)B

(
σm (iTs + ε)
σum (iTs + ε)

)
dε. (3.40)

Thus, the remaining estimation error only consists of uncertainties accumulated be-
tween two discrete computational steps. The basic idea underlying the piecewise
constant update law and its effect on the evolution of the estimation error is also
qualitatively illustrated in Fig. 3.3. The red dashed-dotted lines mark the effect of the
update law. It generates parameter estimations that would drive the estimation error
to zero within two sample points. But during this time span new uncertainties appear,
which leads to an increase of the estimation error marked by the green dashed lines.
These two effects sum up to the total estimation error shown in blue. It should be
noticed that the functional progressions are chosen to be linear only for the sake of
simplified depiction.
Having this mechanism in mind it becomes clear, why a decrease in sampling time
Ts leads to a decrease of the maximum estimation error. This is shown in Fig. 3.4,
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Figure 3.3. – Qualitative illustration of the estimation error x̃ (t) development due to
applications of piecewise constant parameter update law
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Figure 3.4. – Qualitative illustration of the estimation error x̃ (t) development for two
different sample times Ts,1 and Ts,2
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where Ts,2 = 0.5 · Ts,1. The shorter the update intervals are, i.e. the smaller Ts is, the
less estimation error can accumulate during two time steps. On the other hand, the
determined estimation error also has to be compensated in a shorter time interval,
which reveals an increase of the adaptation gain KL1 (Ts). This can also be shown by
means of

lim
Ts→0

KL1 (Ts) = lim
Ts→0
−B−1

(
eAmTs − In×n

)−1
AmeAmTs = ∞n×n (3.41)

taken from Eq. (3.39) with [107, p. 87]

lim
Ts→0

eAmTs = lim
Ts→0

∞

∑
i=0

1
i!
(AmTs)

i = In×n. (3.42)

Control Law Finally, the control law is constructed as [42]

u (s) = −Λ−1
0

[
Cm (s) σ̂m (s) + Cum (s) Hm

−1 (s) Hum (s) σ̂um (s) + h · ycmd (s)
]

, (3.43)

where Cm (s) and Cum (s) are low-pass filters defined as

Cm (s) = diag (C1 (s) , · · · , Cm (s)) (3.44a)

Cum (s) = diag (Cm+1 (s) , · · · , C2m (s)) . (3.44b)

The purpose of the filters is to prevent high frequency content resulting from the
adaptation process within σ̂m and σ̂um from entering the plant dynamics. PT1 transfer
functions according to

Ci (s) =
ωC,i

s + ωC,i
∀i ∈ [1; n] (3.45)

are the most straightforward choices for the low-pass filters Ci (s), which have a
unity DC-gain and a bandwidth of ωC,i. Moreover, Cum (s) can be used to render the
transfer function Cum (s) Hm

−1 (s) Hum (s) proper, which could be necessary due to the
inversion of Hm (s). In this matter and also to shape the resulting frequency response
of the closed loop even further, filters of higher order are possible, too (see e.g. [2, 38,
104, 140]).

Hm (s) = Cm (sIn×n − Am)
−1 Bm (3.46a)

Hum (s) = Cm (sIn×n − Am)
−1 Bum (3.46b)

are the transfer functions from the plant inputs and unmatched uncertainties to the
outputs, respectively [59, p. 160].
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The first term of the control law in Eq. (3.43) −Λ−1
0 Cm (s) σ̂m (s) is composed such

that it cancels the effect of matched uncertainties within the bandwidth set by means
of Cm (s). The second term −Λ−1

0 Cum (s) Hm
−1 (s) Hum (s) σ̂um (s) serves the same

purpose for the unmatched uncertainties. But these cannot be directly canceled as the
plant inherits no "physical" unmatched input. Thus, a matched control input um (s) is
estimated, which cancels the effect of unmatched uncertainties on the plant output. For
this purpose, it is utilized that the transfer functions Hm (s) and Hum (s) map um (s)
and σ̂um (s) to the same outputs to be tracked, respectively. Assuming that Λ = Λ0 the
estimation um (s) can be gained from

Hm (s)Λ0um (s) = Hum (s) σ̂um (s) , (3.47)

which can be directly transformed to

um (s) = Λ−1
0 Hm

−1 (s) Hum (s) σ̂um (s) . (3.48)

If the introduced cancellation of unmatched uncertainties should be included in the
control law Eq. (3.43), it is important to consider that the number of outputs to be
tracked matches the number of linearly independent inputs i.e. r = m. Otherwise, the
inversion Hm

−1 (s) in Eq. (3.48) cannot be applied. Moreover, all transmission zeros
of Hm (s) have to lie in the open left half plane in order to generate a stable inversion
Hm
−1 (s) [59, p. 160]. Analogous to the matched portion of the control law, low-pass

filtering via Cum is applied to um (s) before it is fed to the plant input.
Finally, the feedforward portion of the control law with the gain h calculated according
to [59, pp. 164]

h = −
(

Cm Am
−1Bm

)−1
(3.49)

is added to the control law, in order to achieve stationary tracking of ycmd for the plant
outputs y. Note that Eq. (3.49) can only be used, if the number of outputs to be tracked
r equals the number of system inputs m, which is also the case for a SISO system.

3.3. Discrete-time systems and transformation

Hardware controllers require discrete-time implementations of the control law and one
goal of this thesis is to consider the most important reality effects w.r.t. control law
design. This is why the implementations of the controllers, which are designed and
evaluated in the remainder of this thesis, are also chosen to be discrete-time.
Except for the piecewise constant update law of the L1 adaptive controller shown in
Section 3.2, all transfer functions are designed as continuous-time functions. Thus,
these functions need to be transformed to discrete-time. Considerations of discrete-
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time systems G (z) in the frequency domain are based on the z-transformation [76, p.
486], which is defined according to

z := esTs . (3.50)

Hence, z−1 can be interpreted as a delay of one discrete time step Ts [75, p. 255].
For implementation purposes this transformation needs to be further approximated,
because for a transformation of a continuous-time system G (s) the inverse of Eq. (3.50)
is needed, which results in

s =
ln z
Ts

. (3.51)

Using this transformation does not lead to a rational expression G (z) and is thus not
implementable. To solve this issue, the definition of the exponential function as a
power series [107, p. 513]

e (x) :=
∞

∑
n=0

xn

n!
(3.52)

is used to gain its first order approximation, which reads

e (x) ≈
1

∑
n=0

xn

n!
= 1 + x. (3.53)

Applying Eq. (3.53) to the z-transformation shown in Eq. (3.50) results in Euler’s
Method [4, p. 294]

z ≈ 1 + sTs, (3.54)

which can be applied by plugging its inverse

s ≈ z− 1
Ts

. (3.55)

into the transfer function, which should be transformed. A disadvantage of this
approach is the possibility that a stable continuous-time system transforms to a
discrete-time system, which is unstable. Another disadvantage is distortion of the
frequency scale, whose manifestation depends on the choice of the sample time Ts (the
smaller, the better). This directly corresponds to an uncertainty w.r.t. the system poles
after transformation and is a major problem e.g. for notch filters. One solution to this
problem is the bilinear transformation, also known as Tustin’s approximation, which
solves the first problem [4, pp. 294-299] and gives some remedy for the second. It can
be deduced by using Eq. (3.50) again and splitting the term esTs according to
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z = esTs = es Ts
2 −(−s Ts

2 ) =
es Ts

2

e−s Ts
2

, (3.56)

which by means of the approximation Eq. (3.53) results in the transformation

z ≈
1 + s Ts

2

1− s Ts
2

. (3.57)

Its inverse can be used to transform continuous-time transfer functions [4, pp. 295]:

s ≈ 2
Ts
· z− 1

z + 1
(3.58)

[4, pp. 294-299] also mentions an enhancement to the bilinear transformation, which
is called frequency prewarping. By means of frequency prewarping it is possible to
reduce the effect of frequency scale distortion even further in an area around a certain,
definable frequency. This is not discussed further here, as the bilinear transformation
without prewarping has shown to be sufficient for the implementations made for this
thesis, because the considered dynamics are slow enough compared to the chosen
sample time Ts.
At last, it has to be noted that continuous-time systems without feedthrough can inherit
a feedthrough after application of bilinear transformation. That is especially important
for implementations, because feedthrough can lead to algebraic loops.
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Using the techniques shown in Chapter 3 this chapter focuses on the design of adaptive
control laws. Because particular emphasis is placed on adaptive augmentations, at
first a conventional, linear baseline controller architecture is introduced in Section 4.1.
This baseline controller is designed using the DPI approach [97, 94, 16], which is
explained in detail. The controller shapes the short-period dynamics by means of angle
of attack α and q feedback and offers steady-state tracking of αcmd. An appropriate
filter chain is described in Section 4.1.2, which should cope with turbulent, noisy and
discrete-time measurements and thus consists of an upsampling algorithm and filter
transfer functions upstream (before) and a notch filter downstream (after) the controller.
The consideration of these filter dynamics, as well as actuator dynamics and delay for
the controller design leads to an output-feedback problem w.r.t. feedback gain choice.
This issue can be handled by means of Eigenstructure Assignment, which is used to
design the resulting MISO controller feedback gains in Section 4.1.1.
In the next step, an adaptive augmentation for the baseline controller is developed
in Section 4.2. L1 Adaptive Control is used to augment the DPI baseline controller.
Here, two different augmentation strategies are considered, where the first one is very
common in literature (see e.g. [43, 71]). Here, the adaptive controller augments the
closed-loop connection of plant and baseline controller. Not as widely used is the
second option, at which the adaptive controller augments the open-loop plant first.
The resulting inter-connection is then "augmented" by the baseline controller. Both
the combination of L1 Adaptive Control and DPI, as well as a extensive comparison
between the two augmentation strategies, cannot be found in literature to the best
knowledge of the author, yet.
As it is very common for adaptive augmentations, also the L1 adaptive augmentations
in their basic configuration decrease robust stability properties of the baseline controller
w.r.t the actuator cut. In general, this is a major counterargument to the application
of adaptive augmentations. In order to solve this issue, this thesis contributes a
modification of the state predictor within the L1 adaptive controller, which uses
actuator position measurement. The modification is described in Section 4.2.2 and
Section 4.2.3, respectively. This way, the robust stability properties w.r.t. the actuator
cut are fully restored. The restoring effect can be particularly observed in Fig. 5.30 and
Fig. 5.31 introduced in Section 5.2.2.1.
The authors of [23, 98] proposed an alternate approach to design a Reference model-
based adaptive controller for long range civil aircraft, which is referred to as ∆q̇
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Compensation Law in the course of this thesis. For this control law, a deviation ∆q̇
between a linear estimation ˙̂q and the pitch acceleration q̇ acting on the aircraft is
calculated, which is then used to generate a compensating actuator deflection. For
the sake of comparison to the L1 Adaptive Control approach, this thesis contributes a
combination of the described ∆q̇ Compensation Law and the DPI baseline controller,
which is shown in Section 4.3.
At last, Section 4.4 contributes with a novel combination of L1 Adaptive Control and
Eigenstructure Assignment. This approach also implies a modification of the state
predictor in terms of feedback of estimated states to both matched and unmatched
inputs. In a nutshell, this combination allows for an adaptive standalone controller,
which is able to precisely place desired poles for nominal plant conditions, even
considering actuator dynamics, filter dynamics and delay. Moreover, this approach
can be further modified in terms of utilizing actuator position measurement, which, as
shown above, has a beneficial effect on the robust stability properties w.r.t. the actuator
cut. This modification is also presented in the course of this chapter.
As it was already stated, this thesis has not the goal to present a specific controller
design for a specific aircraft. It is rather the focus to develop and evaluate methods
for the design of practice-oriented adaptive controllers, which are then exemplarily
applied to a longitudinal F-16 aircraft model.

4.1. Baseline Controller

It is the task of the baseline controller to ensure Level 1 handling qualities in terms
of aircraft short-period frequency and damping [81, pp. 13-16] for the nominal case,
where no failure occurs. The pole locations of the short-period are shaped by means of
angle of attack α and q feedback. Furthermore, it ensures steady-state tracking of the
angle of attack command αcmd.
αcmd is determined from the stick input δs,lon ∈ [−1, 1], where −1 translates to αmin =
−10◦ and +1 to αmax = 7◦, respectively. The limits αmin and αmax are chosen such
that they can be achieved without reaching the actuator deflection limit in nominal
conditions for the considered aircraft presented in Chapter 2. Additionally, stick
input δs,lon is processed by rate limitation with a maximum slope of ±51

s . At neutral
stick position α0 is commanded. Here, α0 is fixed to the trim angle of attack value
corresponding to the initial envelope point of the simulation. This shows to be
sufficient for the assessments made within this thesis, because it is focused on the
short-time dynamics of the aircraft. A pilot would of course require automatic trimming
functionality for the actual envelope point in a real FCS, which is not considered here.
In case the enhanced simulation model is used, αcmd is additionally quantized using
the same algorithm applied to the measured angle of attack α as shown in Section 2.6.
This way, αcmd has the same resolution as α and artificial steady-state errors can be
avoided [33].
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For this work, the DPI approach was chosen for the design of the baseline controller
[97, 94] [16, pp. 837-847]. It is very similar to the well-known PI controller, but
distinguishes slightly from that, because of the introduction of differentiation operators
at every input (i.e. sensor signals and command inputs) and an integrator at the output.
Thus, it is possible to limit both absolute value and rate of the control signal at the
integrator according to the properties of the actuator, without having to deal with
integrator windup. Another advantage of this control structure is the possibility to use
fast states, such as angle of attack α, as scheduling parameters for the gains within the
controller without generating hidden feedback (cf. also [109]). The integrator also has
a smoothing effect on the control signal when using noisy measurements as scheduling
parameters. Furthermore, the smoothing behavior is beneficial, when gains have to be
rapidly changed due to fast aircraft configuration changes. Finally, proportional state
feedback does not generate a steady-state signal, because the constant portion of the
feedback signal is removed by means of the differentiations.
The structure of the controller is depicted in Fig. 4.1. For shaping of the closed-loop
dynamics w.r.t. the short-period, feedback of the states α and q is used. The signals are
differentiated before they are fed in the gains kα and kq, respectively. Differentiations
are modeled by means of the transfer function

Gd,dt (s) =
s

cs + 1
. (4.1)

In order to be proper and thus implementable, Gd,dt features a fast pole at λd,dt = −1
c

besides the zero causing the differentiation. λd,dt is chosen such that it is sufficiently
below the Nyquist frequency 0.5 · 1

Ts
[106, p. 28], where Ts is the controller sample

time. Therefore, for the implementation

λd,dt = −1
3
· 1

Ts
· 2π (4.2)

is used, which leads to

c = 3 · Ts

2π
(4.3)

considering also conversion from Hz to rad
s by means of the factor 2π. Gd,dt (s) is as

well used to differentiate the feedforward path αcmd via hDPI .
Although λd,dt is chosen very fast, it induces additional, unwanted dynamics. Thus,
the transfer function of the integrator at the controller output

G∫ (s) =
cs + 1

s
(4.4)

is constructed such that these additional dynamics are canceled again by means of an
additional zero.
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In consequence, G∫ (s) and Gd,dt (s) cancel out each other perfectly, if rate saturation is
not reached.
The last path to be analyzed is the integral feedback of the control error

∆α = αcmd − α, (4.5)

which ensures zero steady-state error. In order to achieve pure integral feedback via
gain kI and transfer function G∫ (s) according to Eq. (4.4), one has again to consider
the additional zero of G∫ (s). Thus, it is canceled by means of an additional pole set by
the transfer function

GI (s) =
1

cs + 1
, (4.6)

which is placed in the integral error feedback path. In conclusion, though all controller
input signals are differentiated to gain the advantages mentioned above, the transfer
functions cancel out each other except for an integration in the error feedback path,
when a strictly linear analysis of the structure is performed. Thus, the structure equals
an ordinary PI controller in this case.
For the baseline controller implementation, the transfer functions are transformed to
discrete-time using bilinear transformation introduced in Section 3.3. The control law
is processed at a sample time of Ts = 0.01s, which equals a sample rate of 100Hz.

4.1.1. Gain Design

The circumstance that the DPI controller structure equals the one of a PI controller,
if saturations are neglected, is utilized for the gain design process. One could use
the whole spectrum of linear control theory, in order to design the gains kα, kq, kI
and hDPI according to desired handling qualities. Within this work, Eigenstructure
Assignment is chosen for this task, as it is described in Section 3.1. In case of a SIMO
system presented here, Eigenstructure Assignment allows systematic pole placement
using output feedback [50], whereas most other pole placement approaches require
state feedback. This is an advantage, because transfer functions of actuator model,
delays and filters can be directly incorporated in the design process for the sake of
a more accurate representation of the actual plant dynamics within the controller
design model. This cannot be done using state feedback approaches, because all the
mentioned elements contribute additional states to the design model, which are not
available as measurements of the actual plant. Thus, the outputs of the controller
design model are angle of attack α, pitch rate q besides the integral

∫
−α (τ) dt, in

order to be able to shape the poles corresponding to the short-period dynamics and
the integral error feedback eI =

∫
[αcmd (τ)− α (τ)] dt.

Fig. 4.2 gives an overview on the structure of the controller design model, which defines
the state space matrices A, B and C to be used in Eq. (3.1) for the Eigenstructure
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Figure 4.2. – Model structure for gain design

Assignment algorithm according to Section 3.1. The linear, longitudinal aircraft
dynamics shown in Eq. (2.43) are used here, which are deduced in Section 2.1.3.
Furthermore, the actuator model of Section 2.5 in Eq. (2.53) represented by the transfer
function

ĜA (s) =
ω0,act

2

s2 + 2ζactω0,act · s + ω0,act2 (4.7)

is incorporated in the structure, along with delay of TD,c represented by a Padé
approximation [39, pp. 572-574] of second order

ĜD,c (s) =
1− 1

2 TD,cs + 1
12 TD,c

2s2

1 + 1
2 TD,cs + 1

12 TD,c2s2
. (4.8)

It was mentioned before in Chapter 2 that two configurations of the simulation model
are used in this thesis, which are the simple and the enhanced version. Thus, also
two different controller designs have to be considered. The first difference lies in the
amount of delay TD,c (c.f. Section 2.5), which is 0.055s for the simple and 0.015s for
the enhanced aircraft model. In case of the simple aircraft model, TD,c represents all
delays contained in the control loop. For the enhanced aircraft model, TD,c contains
only computational delay (c.f. Section 2.5), because additional delay is generated
though measurement sampling and filtering. This is why the filter transfer functions
GF,u (s) and GF,y (s) are also taken into account for the controller design, in case they
are activated. The filter transfer functions are introduced and described in Section 4.1.2.
Note, that although the filter transfer function GF,y (s) is applied to the plant output
signals, it can be shifted to the plant input channel considering linear short-period
dynamics for the design model [12, p. 94].
The requirement set up to the Eigenstructure Assignment algorithm in both cases is that
it shapes the short-period such that a CAP of 0.7 and relative damping ζsp,des = 0.95
are achieved. This corresponds to Level 1 handling qualities [81, pp. 13-16]. The CAP
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Figure 4.3. – Natural frequency of the short-period ω0,SP in dependence of V
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Figure 4.4. – Relative damping of the short-period ζSP in dependence of V

61



Control Law Design

is defined as the ratio between the initial angular acceleration q̇0 and the resulting
steady state load factor nz,s

Velocity V
[m

s
] Open-loop Closed-loop

ω0,sp

[
rad

s

]
ω0,sp,des

[
rad

s

]
102.88 2.33 2.58
110.32 2.53 2.77
117.75 2.71 2.91
125.19 2.89 3.10
132.63 3.08 3.28
140.07 3.26 3.47
147.50 3.44 3.65
154.94 3.63 3.84
162.38 3.81 4.02
169.81 3.99 4.21
177.25 4.17 4.39
184.69 4.36 4.58
192.13 4.54 4.76
199.56 4.71 4.94
207.00 4.88 5.13

Table 4.1. – Natural frequency of the short-period ω0,SP for the open-loop aircraft and the
desired natural frequency ω0,SP,des to be established by the controller
considering different envelope points

CAP :=
q̇0

nz,s
= −ω0,sp

2 g
Zα

(4.9)

and can be seen as a measure for longitudinal control sensitivity [16, p. 463]. The
corresponding, desired short-period frequency ω0,sp,des can be calculated using

ω0,sp,des =

√
−CAP · Zα

g
. (4.10)

in dependence of the stability derivative Zα. This dependence results in individual
values of ω0,sp,des for the single envelope points. Considering velocities V according
to Table 2.2 and altitude h = 5000m the resulting ω0,sp,des for CAP = 0.7 can be found
in Fig. 4.3 and Table 4.1, where also ω0,sp of the open loop aircraft is shown for the
sake of comparison. Likewise, the open loop relative damping ζsp is plotted in Fig. 4.4
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besides the desired damping ζsp,des. The desired short-period can also be characterized
by means of its complex conjugated pole pair according to [75, p. 298]

λSP,1 = −ζsp,desω0,sp,des + i ·ω0,sp,des

√
1− ζsp,des (4.11a)

λSP,2 = −ζsp,desω0,sp,des − i ·ω0,sp,des

√
1− ζsp,des. (4.11b)

Besides the short-period, the pole λI = −1 corresponding to the integral error feedback
eI should also be placed.
The following steps of the Eigenstructure Assignment algorithm are performed three
times i ∈ {1, 2, 3}, from which two are for placement of both complex conjugated
short-period poles and the last for the error feedback pole. At first, the basis vectors
of the null space N̄ belonging to the matrix

(
λ∗i In×n − A B

)
are computed, where

the specifications mentioned in the last paragraph are used to define λ∗i . Section 3.1
offers three different possibilities to define the auxiliary parameter vector li. Here, the
first option is chosen, where the number of definable eigenvector elements equals the
number of linear independent system inputs. As only elevator η is available to the
controller, one eigenvector value can be specified. A reasonable choice in this case is to
demand 1 for the eigenvector value corresponding to the state q for both short-period
poles and also 1 for the value belonging to the state eI for the integral error feedback
pole. This information is used to suitably construct the matrix Ps

i . Next, li can be
calculated according to Eq. (3.15). By means of this result and the matrix N̄, the vectors
v∗i and z∗i can be computed using Eq. (3.10). After performing these steps for the three
poles, the gains kDPI =

(
kα kq kI

)
can be obtained from Eq. (3.23).

Finally, the feed-forward gain hDPI is calculated such that it cancels the pole of the
error integration with respect to the transfer function from αcmd to α [54]. It can be
calculated according to

hDPI =
kI

λI
. (4.12)

The gain design algorithm shown in this section is applied to the linear aircraft models
given in Eqs. (A.1a) to (A.15a), which represent the longitudinal aircraft dynamics at
an altitude of h = 5000m and velocities in Table 2.2 ranging from Vmin = 102.88m

s to
Vmax = 207m

s . Using these models, a gain-scheduling can be established, where the
gains used within the controller computations are interpolated utilizing the calculated
gains as fixed points. In order to be able to additionally consider slight changes in
altitude h, besides changes in velocity V, dynamic pressure q̄ is chosen as scheduling
variable. This is convenient, since q̄ contains both information about velocity and
altitude, the latter indirectly through air density ρ (c.f. Eq. (2.6)). Note that Ma is also
used fairly often for gain scheduling purposes in practical FCS applications. This is
not necessary here, because the aerodynamic data used within the aircraft model does
not incorporate any dependence on Ma (c.f. Section 2.1.1). In general, the controller
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Figure 4.5. – Baseline controller gains in dependence of q̄ for simple aircraft model and
TD = 0.055s
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Figure 4.6. – Baseline controller gains in dependence of q̄ for enhanced aircraft model
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designs shown in this section are not limited to the application of only one scheduling
variable.
The resulting gains are illustrated in Fig. 4.5 in dependence of dynamic pressure q̄
for the simple aircraft model and in Fig. 4.6 considering the enhanced model. One
can notice a rapid change with respect to the gain progression around q̄ ≈ 13000 N

m2

for both design cases. This rapid change stems from the nonlinear aerodynamic
data set included in the aircraft model. The rapid change appears between the 12th
and the 13th design point, which correspond to the velocities V0,12 = 184.69m

s and
V0,13 = 192.13 m

s according to Table 2.2 introduced in Section 2.1.3. In the same section,
the corresponding elevator deflections η0, that trim the aircraft, can be found in Fig. 2.4.
The figure reveals that the trim elevator deflection η0 crosses −10◦ between the 12th
and 13th design point i.e. η0,12 = −10.39◦ and η0,13 = −9.99◦. −10◦ is one of the
breakpoints η ∈ {−25◦;−10◦; 0◦; 10◦; 25◦}, at which discrete data points are available
for the aerodynamic coefficients CX,0, CZ,0 and Cm,0. This can also be seen in Fig. A.1,
Fig. A.5 and Fig. A.9 in Appendix A. Moving left and right from breakpoint −10◦

with respect to the η-axis results in different slopes of the resulting aerodynamic
coefficients. The change in slope has an impact the corresponding linearized models,
which can be found in Eq. (A.12a) and Eq. (A.13a). A relatively big change of their
input matrices B with respect to the column belonging to η can be observed, especially
when the change with respect to other linear models is considered. As these models
are used for the controller design, the changes with respect to the control effectiveness
are the reason for the rapid change observed at the gain progression in Fig. 4.5 and
Fig. 4.6. It has to be noted also that only one of these rapid changes appears for the
entire envelope, because η0 ∈ [−20.93;−9.54] (c.f. Fig. 2.4) crosses the breakpoints
η ∈ {−25◦;−10◦; 0◦; 10◦; 25◦} with regard to η only once. Furthermore, one could
assume that a more detailed aerodynamic data grid i.e. a grid containing more
breakpoints in η would also lead to a smoother progression.
Since Eigenstructure Assignment without modifications inherits no robustness assess-
ment, it has to be validated afterwards, that the robust stability margins are ensured
by the controller design. This is shown in Section 5.2.1.1.

4.1.2. Filter Design

The illustration of the enhanced closed-loop simulation model Fig. 2.3 in Chapter 2
contains three blocks apart from the Control Law which are not yet described. These
are Filters, Notch Filter and Upsampling, which are rather related to the FCS than to the
aircraft model. Thus, they are further examined in this section.
In aircraft applications, one the major sources for phase lags, and thus delays within
the closed-loop system, are filters. Besides of considering the impact of these lags on
the controller performance, the filters serve three purposes in the context of this thesis.
First, to reject high frequency content from the measurements in order to attenuate the
influence of turbulence and sensor noise on the controller. Second, to avoid excitation
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of the simple structural mode, which is described in Section 2.7. Finally, the third part
of the filtering chain is measurement upsampling.
Rejection of high frequency content is achieved by means of a lowpass filter chain
applied to the sensor measurements angle of attack α and pitch rate q, before they
enter the controller. The chain consists of a 2nd order and a 1st order low-pass filter
connected in series according to

GF,y,lp (s) =
ω0,F,y,lp,1

2

s2 + 2ζF,y,lp,1ω0,F,y,lp,1 · s + ω0,F,y,lp,1
2 ·

ω0,F,y,lp,2

s + ω0,F,y,lp,2
, (4.13)

where the filter parameters are chosen as ω0,F,y,lp,1 = 14 rad
s , ζF,y,lp,1 =

√
2

2 and ω0,F,y,lp,2 =
14.2 rad

s after some manual tuning.
The second objective, which is avoidance of structural mode excitation, is achieved
through application of notch filters both on the measurements angle of attack α, pitch
rate q and elevator deflection η and on the command ηcmd generated by the controller.
The notch filters are defined through

G f ,notch (s) =
s2 + 2ζ f ,notch,1ω0, f ,notch · s + ω0, f ,notch

2

s2 + 2ζ f ,notch,2ω0, f ,notch · s + ω0, f ,notch
2 . (4.14)

It is considered that both the natural frequency and the relative damping of the
structural mode are not exactly known. Therefore, the parameters of the notch filters
are set up as ω0, f ,notch = 6Hz, ζ f ,notch,1 = 0.07 and ζ f ,notch,2 = 0.2 to account for
uncertainty in the knowledge of the exact properties.
The filter transfer function applied to the measurements angle of attack α, pitch rate q
and elevator deflection η can be summarized as

GF,y (s) = GF,y,lp (s) · G f ,notch (s) (4.15)

and the filter applied to the controller command ηcmd is

GF,u (s) = G f ,notch (s) . (4.16)

Bode diagrams [75, pp. 246-248] of both filter transfer functions can be found in Fig. 4.7,
where especially the significant phase lag caused by GF,y (s) can be observed. The
relative loss in phase Φ can be translated to a time delay TD by means of the gain
crossover frequency ωgc and

TD =
Φ

ωgc
(4.17)

according to [8, p. 32]. For the control problem at hand the gain crossover frequency
to be used for the formula is the short-period frequency set up by the controller
(c.f. Section 4.1.1). Utilizing Eq. (4.17) leads to a range of equivalent time delays
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TD, f ,y = 0.179s . . . 0.18s for GF,y (s) and TD, f ,u = 0.0069s . . . 0.007s for GF,u depending on
the short-period frequencies over the whole envelope. Thus, in good approximation the
time delays can be considered independent from the envelope point as TD, f ,y = 0.18s
and TD, f ,u = 0.007s. The filter transfer functions GF,y (s) and GF,u (s) are implemented
by means of their discrete-time representations GF,y (z) and GF,u (z), which are gained
utilizing bilinear transformation introduced in Section 3.3.
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Figure 4.7. – Bode plot of filters applied to the measurements G f ,y (s) and to the controller
command GF,u (s)

The last part of the filtering chain is the measurement upsampling, which was already
mentioned above. It turned out that an L1 adaptive controller is very sensitive with
respect to measurement signals, which have a lower sample rate fs,sensor = 1

Ts,sensor
than

the sample rate of control law computation fs = 1
Ts

, i.e. the control law computation
is faster than the sensor can deliver a new measurement point. This circumstance
can lead to high frequency oscillation for the parameter estimation (c.f. Eq. (3.38) in
Section 3.2) resulting in a destabilizing controller. Thus, two options are available
to solve the problem. The first one is to choose the control law computation rate
according to the slowest sensor measurement. An alternative solution, which is also
used within this thesis, is to artificially increase the measurement sample rate to the
value of the controller sample rate, in case of fs,sensor < fs or Ts,sensor > Ts. This is
achieved by means of a Finite Impulse Response (FIR) filter [106, pp. 563-582], which
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Figure 4.8. – Structure of upsampling FIR filter
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linearily interpolates “missing” values between two discrete time steps. In this way, a
signal results, which has the same sample rate as the control law computation.

The algorithm for upsampling presented here can only be applied, if the controller
sample time Ts can be scaled by means of an integer k with respect to Ts,sensor, i.e.
Ts,sensor = k · Ts and k ∈ N. It can be described by means of a discrete filter transfer
function

GFIR (z) =
k−1

∑
j=0

1
k
· z−j, (4.18)

where z−j denotes a time delay of j · Ts and with

k =
Ts,sensor

Ts
. (4.19)

The filter structure is also depicted in Fig. 4.8. The filter is applied to the measurement
using the same sample time Ts as the controller is operated with. In this way, (k− 1)
interpolation points are generated, before the filter output equals its input again i.e.
the filter output is the actual measurement signal acquired (k− 1) discrete sample
time steps ago. Thus, the filter gives a linear interpolation on the upside, but generates
additional delay of

TD,FIR = (k− 1) · Ts (4.20)

on the downside. This is, because the filter has to be causal in order to be implementable
and thus can only work in a retrospective way. In order to illustrate this mechanism,
an example is shown in Fig. 4.9, where the measurement sample time is chosen to be
Ts,sensor = 0.02s and the controller sample time is set to Ts = 0.005s. The original signal
uoriginal is first sampled by means of a zoh with the sample time Ts,sensor, which results
in uFIR. yFIR denotes the output of the upsampling filter GFIR (z), which processes
the measurement uFIR. It can be calculated by means of Eq. (4.19) and Eq. (4.20) that
for the presented example, the scaling factor is k = 4 and the time delay results in
TD,FIR = 0.015s. This can also be observed in Fig. 4.9.

Finally, one has to care also for the opposite case, where the measurement sample rate
is faster than the control law computation, i.e. fs,sensor > fs or Ts,sensor < Ts. In this
case aliasing could occur as it was already described in Section 2.6, which should be
avoided. In order to tackle this issue, no additional filter is introduced, but the anti
aliasing filter included in the sensor model Eq. (2.57) is used to attenuate critical signal
content. Thus, the filter bandwidth is set to ω0,aa = 1

3 fs instead of ω0,aa = 1
3 fs,sensor if

fs,sensor > fs holds for the specific measurement.
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Figure 4.10. – Interconnection for DPI Augmentation

4.2. L1 Adaptive Augmentation

In order to increase the robust performance of the controller in case of uncertainty,
this thesis proposes to augment the DPI baseline controller using L1 Adaptive Control
with piecewise constant update laws [59], which was introduced in Section 3.2. Simul-
taneously to the performance increase in case of uncertainty, the augmentation should
neither degenerate the performance for the nominal case, nor should it significantly
decrease robust stability of the closed-loop. As an additional requirement it should be
ensured, that the control law

ηcmd = ubl + uad, (4.21)

where ubl is the control signal portion generated by the baseline controller and uad
the one produced by the L1 adaptive controller, respectively, does not exceed given
saturation and rate limits for the actuator (c.f. Section 2.5). Thus, a convenient solution
is to feed in uad at summation I© of the baseline controller depicted in Fig. 4.1. This
summation point is upstream of the limiting structure of the DPI controller. It has to be
kept in mind that, due to the baseline controller structure, uad has to be differentiated
e.g. by means of the transfer function Eq. (4.1), before being inserted.
Two different approaches to augment the interconnection of aircraft and baseline
controller and to generate the adaptive control signal uad are presented in this section.
The first would be the most obvious choice and can be found quite often in literature
(see e.g. [43, 71]). The basic structure is illustrated in Fig. 4.10. In that case, the L1
adaptive controller with its elements State Predictor, Adaptation Law and L1 Control
Law with Low-Pass tries to maintain the dynamics of the closed-loop aircraft with the
baseline controller. For this reason the reference model to be used for the setup of the
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Figure 4.11. – Interconnection for L1 Plant Augmentation

controller is the nominal closed-loop aircraft. This also requires consideration of the
baseline controller within the adaptive controller structure, i.e. in the State Predictor.
Thus, it is called DPI Augmentation or Closed-Loop Augmentation here and is further
described in Section 4.2.2.

An alternative augmentation method was developed at the TUM-FSD and is depicted
in Fig. 4.11. For this approach, the baseline controller is wrapped around a unit
consisting of aircraft and L1 adaptive controller. In contrast to the DPI Augmentation it
is now task of the adaptive augmentation to ensure that the baseline controller always
“sees” its design model. Hence, the state predictor of the L1 adaptive controller can
be reduced to the open-loop aircraft model in this case. This approach is called Plant
Augmentation in the context of this thesis and is explained in Section 4.2.3.

This thesis offers an extensive comparison of both augmentation approaches con-
sidering the mathematical foundation on the one hand in this section, which also
comprises results of [52] gained by the author. Comparisons w.r.t. robust stability and
performance aspects on the other hand are presented in Section 5.2.2 and throughout
Chapter 6.

4.2.1. Reference Dynamics

Although the approaches differ from each other from a structural point of view, the
desired aircraft dynamics to be achieved by the combination of adaptive augmentation
and baseline controller in terms of the transfer function αcmd → α remains the same.
In comparison to the baseline controller design model, a short-period approximation
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Figure 4.12. – Relative errors eω,0,sp and eζ,sp for short-period natural frequency ω0,sp and
relative damping ζsp, if states velocity V and flight path angle γ are
neglected in the linear state space model (short-period approximation)

of the linear, longitudinal dynamics in Eq. (2.43) is considered for this reference model.
It comes from neglecting states velocity V and γ and results in

(
α̇
q̇

)
︸︷︷︸

=:ẋ

=
(

Zα Zq + 1
Mα Mq

)
︸ ︷︷ ︸

=:A

(
α
q

)
︸︷︷︸

=:x

+
(

Zη

Mη

)
︸ ︷︷ ︸

=:B

η︸︷︷︸
=:u

(4.22a)

y = I2×2 ·
(

α
q

)
. (4.22b)

This is a valid representation of the fast-time longitudinal dynamics, if the coupling of
the phugoid in the short-period motion can be approximately neglected. Exactly that
can be observed in Eqs. (A.1a) to (A.15a), where the lower-left values of the A matrix
are near 0. Fig. 4.12 gives further evidence on the validity of the approximation. It
shows the relative errors eω,0,sp and eζ ,sp of short-period natural frequency ω0,sp and
relative damping ζsp, respectively, between short-period approximation and reduced,
longitudinal aircraft model considering the states velocity V and flight path angle γ.
The errors are well below 0.1% for most velocities, only the damping reaches higher
values up to 0.35% for very low velocity.
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The short-period approximation is used to design a reference model, as it is shown in
Fig. 4.13. Here, the aircraft dynamics are interconnected with a representation of the
baseline controller. In order to reflect the combination of baseline controller and aircraft
model as precise as possible, it is important to also consider the specific structure of
the DPI controller. For that matter, derivations, the integrator and saturation functions
according to Eq. (2.61) are included. The saturation functions represent both rate
(upstream of the integration) and deflection (downstream of the integration) limits of
the actuator. The closed-loop can also be formulated according to

ẋre f (t) = Amxre f (t) + bm · GF,u (t) ∗ GF,y (t) ∗ ĜD,c (t) ∗ ĜA (t)

∗ sat
{∫ t

t0

sat
[
−kDPI

T · d
dτ

xre f (τ) + hDPI ·
d

dτ
αcmd (τ)

]
dτ

}

+

0
0
1

 αcmd (t) , (4.23)

where

xre f (t) =

 αre f
qre f
eI,re f

 . (4.24)

Here, the convolution operator “∗” [107, p. 302] is utilized, in order to connect the
different transfer functions in the time-domain. The nominal open-loop aircraft is
described by the short-period approximation discussed above, which is enhanced by
the integration eI,re f =

∫ [
αcmd (τ)− αre f (τ)

]
dt. Hence, the system and input matrices

are defined as

Am =

Zα Zq + 1 0
Mα Mq 0
−1 0 0

 (4.25a)

bm =

Zη

Mη

0

 . (4.25b)

The dynamics are shaped by means of the feedback gains kDPI
T, as they are determined

in Section 4.1.1, while the feed-forward contribution of αcmd is scaled with the gain
hDPI . In this thesis, the philosophy is to use as much physical knowledge as possible
while describing reference dynamics. This knowledge is also used for the construction
of suitable state predictor architectures of the adaptive controllers in the same way.
Thus, actuator dynamics, delay and filter transfer functions are considered by means
of ĜA (t) shown in Eq. (4.7), ĜD,c (t) introduced in Eq. (4.8) and GF,u (t) as well as
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GF,y (t), which are described in Section 4.1.2. GF,y (t) is shifted to the input channel
exploiting the linear character of the short-period dynamics (c.f. also Section 4.1.1).
The filters GF,u (t) and GF,y (t) are only applied for the controller design, when the
enhanced aircraft model is used for the simulations and neglected for the basic aircraft
model case. This is done in accordance with the baseline controller gain design shown
in Section 4.1.1. Note additionally that the saturation functions are the reason, why the
reference dynamics cannot be summarized into one single Am matrix and the feedback
kDPI

T has to be considered separately in Eq. (4.23). Thus, Am could also contain
eigenvalues with positive real part value i.e. the poles of Am indicate an unstable
open-loop system, which is stabilized by means of the baseline controller. This case is
not considered for the work at hand.
The aircraft dynamic behavior in terms of short-period frequency ω0,sp and damping
ζsp is not homogeneous across the envelope, which can be seen in Eqs. (A.1c) to (A.15c).
The same statement can be made for the targeted ω0,sp,des, which should be achieved by
the controller as shown in Fig. 4.3. Thus, it would make no sense to demand that the
adaptive controller adjusts the dynamics according to a reference model determined
on one single envelope point. Instead, Am and bm, as well as the gains of the modeled
controller hDPI and kDPI , are scheduled with the dynamic pressure q̄, which is the
same scheduling as applied to the baseline controller shown in Section 4.1. This way,
the reference dynamics always represent the nominal aircraft dynamics in combination
with the baseline controller in dependence of the current envelope point.

4.2.2. DPI Augmentation

This section further describes the application of the classical closed-loop augmentation
approach on the DPI baseline controller using L1 Adaptive Control with piecewise
constant update laws. The basic structure of the approach shown in Section 3.2 is
adapted in order to suit the specific control problem. First, the plant dynamics to be
controlled are formulated. The next step shows an appropriate state predictor design
matching the assumed structure of the plant. On this basis, the resulting estimation
error dynamics can be derived, which result in the piecewise constant parameter
update law and the accompanying control law.

Plant The plant dynamics to be controlled by the L1 adaptive controller applied as
DPI Augmentation (Closed-Loop Augmentation) consist of aircraft short-period dynamics,
baseline controller, actuator and filter dynamics, as well as delay. Thus, the structure
heavily builds up on the reference dynamics given in Eq. (4.23). This equation is
extended by the formulation of uncertainties according to Eq. (3.24a), which results in
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ẋ (t) = Amx (t) + bm ·Λ (t) ∗ GF,u (t) ∗ GF,y (t) ∗ GD,c (t) ∗ GA (t)

∗ sat
{∫ t

t0

sat
[
−kDPI

T · d
dτ

x (τ) + hDPI ·
d

dτ
αcmd (τ) +

d
dτ

uad,1 (τ)

]
dτ

}
+ bm fm (t, x (t) , yz (t)) + Bum fum (t, x (t) , yz (t))

+

0
0
1

 [uad,2 (t) + αcmd (t)] , (4.26)

where Am and bm are defined in Eq. (4.25a) and Eq. (4.25b), respectively. The adaptive
control law is subdivided into two portions representing the matched uncertainty
compensation uad,1 (t) and uad,2 (t), which compensates for unmatched uncertainties.
The uncertainties fm and fum both depend on time t, the system states x (t) and
unknown internal dynamics represented by their output yz (t) (c.f. also Section 3.2).

Bum =

bum,11 bum,12
bum,21 bum,22
bum,31 bum,32

 (4.27)

is a matrix chosen such that bm
TBum = 0 is satisfied.

The already mentioned subdivison of the adaptive control signal has the purpose
that uad,2 (t) can be directly inserted into the integrator of the DPI Controller. This
way, additional integral error feedback can be avoided [12, pp. 189-190]. A detailed
explanation can be found following the introduction of the control law in the remainder
of this section. Thus, the insertion point for uad,2 (t) in Fig. 4.1 is summation point II©.
Note that in contrast to the statement made in Section 4.2, uad,2 (t) does not need to be
differentiated in this case.

State Predictor Analogous to the plant dynamics described in Eq. (4.26), the state
predictor is constructed according to

˙̂x (t) = Am x̂ (t) + bm ·Λ0 · GF,u (t) ∗ GF,y (t) ∗ ĜD,c (t) ∗ ĜA (t)

∗ sat
{∫ t

t0

sat
[
−kDPI

T · d
dτ

x̂ (τ) + hDPI ·
d

dτ
αcmd (τ) +

d
dτ

uad,1 (τ)

]
dτ

}

+ bmσ̂m (t) + Bumσ̂um (t) +

0
0
1

 [uad,2 (t) + αcmd (t)]

+ bm · ∆u (t) + Ke x̃ (t) (4.28)
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with estimations of the matched σ̂m and unmatched σ̂um uncertainties. The state
predictor structure is also compiled in Fig. 4.14. Λ0 is an initial guess of the control
effectiveness and is set to Λ0 = 1. The state predictor contains a replication of the
baseline controller structure. This way, it is ensured that the adaptive control signal
does not “fight” the baseline controller signal, in case of nominal plant conditions [43].
Additional feedback of the estimation error

x̃ (t) = x̂ (t)− x (t) (4.29)

can be used to further tune the performance with respect to the error dynamics by
adjusting the gain matrix Ke [138, 59]. In [26, pp. 45-46] it is shown how this term
can be used to adjust the error dynamics using pole placement. In this thesis, Ke is
not used to extensively modify the error dynamics, but serves the purpose to enable
the inversion of the error dynamics system matrix, which is required to build up the
parameter update law. Without this modification, the matrix Am in Eq. (4.25a) defines
the error dynamics, which cannot be inverted as it does not have full rank. This is due
to the consideration of the integrator state.
In contrast to the L1 Adaptive Control with piecewise constant update laws according
to the textbook approach presented in Section 3.2, another modifications is proposed
in this thesis [52]. This modification accounts for additional unmodeled dynamics at
the plant input channel and is performed by means of the term

∆u (t) = ηmeas (t)−Λ0 · GF,u (t) ∗ GF,y (t) ∗ ĜD,c (t) ∗ ĜA (t)

∗ sat
{∫ t

t0

sat
[

u̇bl (τ) +
d

dτ
uad,1 (τ)

]
dτ

}
(4.30)

with

u̇bl (τ) = −kDPI
T · d

dτ
x (τ) + hDPI ·

d
dτ

αcmd (τ) (4.31)

at the state predictor input, which is also shown in Fig. 4.15. This term is constructed
utilizing the idea of Pseudo-Control Hedging [62]. ∆u (t) is the difference between the
measured actuator deflection ηmeas (t) and the control signal, which is expected to enter
the aircraft dynamics on a system level. Thus, the last term consists of the complete
control law command including the baseline controller command. This command is
led through models of all additional dynamics, which are also considered within the
state predictor. As shown in Fig. 5.30 and Fig. 5.31 in Section 5.2.2.1, this term has a
significant role in preserving the robust stability properties w.r.t. the actuator cut of
the closed-loop system.
Analogous to the reference dynamics shown in Section 4.2.1, the state predictor uses
scheduled versions of Am, bm, kDPI and hDPI . It has to be noted that state predictor
scheduling for the L1 adaptive controller was also utilized during the NASA AirSTAR
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Figure 4.15. – DPI Augmentation - Hedging

flight tests [58, pp. 254-255]. In contrast to this application, here scheduling is also
applied to the matrices and transfer functions used within the parameter update law
and the control law shown below as well as for the matrix Bum.

Error Dynamics The error dynamics can be derived from derivation of Eq. (4.29)
and usage of the plant Eq. (4.26) and state predictor definition Eq. (4.28), which leads
to

˙̃x (t) = ˙̂x (t)− ẋ (t)
= (Am + Ke) x̃ (t)

+ bm ·Λ0 · GF,u (t) ∗ GF,y (t) ∗ ĜD,c (t) ∗ ĜA (t) ∗ û (t)

− bm ·Λ (t) ∗ GF,u (t) ∗ GF,y (t) ∗
(
ĜD,c (t)− G̃D,c (t)

)
∗
(
ĜA (t)− G̃A (t)

)
∗ u (t)

+ bm [σ̂m (t)− fm (t, x (t) , yz (t))] + Bum [σ̂um (t)− fum (t, x (t) , yz (t))]
+ bm · ∆u (t) (4.32)

in a first step. Here, the definitions

u (t) = sat
{∫ t

t0

sat
[
−kDPI

T · d
dτ

x (τ) + hDPI ·
d

dτ
αcmd (τ) +

d
dτ

uad,1 (τ)

]
dτ

}
(4.33a)

û (t) = sat
{∫ t

t0

sat
[
−kDPI

T · d
dτ

x̂ (τ) + hDPI ·
d

dτ
αcmd (τ) +

d
dτ

uad,1 (τ)

]
dτ

}
(4.33b)

G̃D,c (t) = ĜD,c (t)− GD,c (t) (4.33c)

G̃A (t) = ĜA (t)− GA (t) (4.33d)

are used. An intermediate step shows that(
ĜD,c (t)− G̃D,c (t)

)
∗
(
ĜA (t)− G̃A (t)

)
= ĜD,c (t) ∗ ĜA (t) + ∆A,D,c (t) (4.34)

with
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∆A,D,c (t) = −ĜD,c (t) ∗ G̃A (t)− G̃D,c (t) ∗ ĜA (t) + G̃D,c (t) ∗ G̃A (t)

= −ĜD,c (t) ∗ ĜA (t) + ĜD,c (t) ∗ GA (t)− ĜD,c (t) ∗ ĜA (t)

+ GD,c (t) ∗ ĜA (t) +
[
ĜD,c (t)− GD,c (t)

]
∗
[
ĜA (t)− GA (t)

]
= −2 · ĜD,c (t) ∗ ĜA (t) + ĜD,c (t) ∗ GA (t) + GD,c (t) ∗ ĜA (t)

+ ĜD,c (t) ∗ ĜA (t)− ĜD,c (t) ∗ GA (t)− GD,c (t) ∗ ĜA (t)
+ GD,c (t) ∗ GA (t)

= GD,c (t) ∗ GA (t)− ĜD,c (t) ∗ ĜA (t) . (4.35)

Using this relation, Eq. (4.32) can be further rearranged to

˙̃x (t) = (Am + Ke) x̃ (t)
+ bm{σ̂m (t)− fm (t, x (t) , yz (t))−Λ (t) ∗ GF,u (t) ∗ GF,y (t) ∗ ∆A,D,c (t) ∗ u (t)

+ GF,u (t) ∗ GF,y (t) ∗ ĜD,c (t) ∗ ĜA (t) ∗ [Λ0 · û (t)−Λ (t) ∗ u (t)]}
+ Bum [σ̂um (t)− fum (t, x (t) , yz (t))] + bm · ∆u (t) . (4.36)

Note that the commutative law is also valid for the convolution operator [107, p. 302].
Based on this equation, two different cases have to be considered, where hedging is
whether applied or not. In the first case, hedging is used, thus plugging Eq. (4.30) in
Eq. (4.36) under consideration of the definition Eq. (4.33a) yields

˙̃x (t) = (Am + Ke) x̃ (t)
+ bm{σ̂m (t)− fm (t, x (t) , yz (t))−Λ (t) ∗ GF,u (t) ∗ GF,y (t) ∗ ∆A,D,c (t) ∗ u (t)

+ ηmeas (t)−Λ (t) ∗ GF,u (t) ∗ GF,y (t) ∗ ĜD,c (t) ∗ ĜA (t) ∗ u (t)

+ GF,u (t) ∗ GF,y (t) ∗ ĜD,c (t) ∗ ĜA (t) ∗ [Λ0 · (û (t)− u (t))]}
+ Bum [σ̂um (t)− fum (t, x (t) , yz (t))] (4.37)

after some rearrangement. Now defining the lumped matched and unmatched uncer-
tainties as

σm (t) = fm (t, x (t) , yz (t)) + Λ (t) ∗ GF,u (t) ∗ GF,y (t) ∗ ∆A,D,c (t) ∗ u (t)

+ Λ (t) ∗ GF,u (t) ∗ GF,y (t) ∗ ĜD,c (t) ∗ ĜA (t) ∗ u (t)− ηmeas (t)

− GF,u (t) ∗ GF,y (t) ∗ ĜD,c (t) ∗ ĜA (t) ∗ [Λ0 · (û (t)− u (t))] (4.38a)

σum (t) = fum (t, x (t) , yz (t)) (4.38b)
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and using the definition

Am,K = Am + Ke, (4.39)

Eq. (4.37) results in

˙̃x (t) = Am,K x̃ (t) + bm [σ̂m (t)− σm (t)] + Bum [σ̂um (t)− σum (t)] , (4.40)

which has the same shape as Eq. (3.27), from which the parameter update law is
deduced in Section 3.2. Considering Eq. (4.40) in combination with Eq. (4.39) another
advantage of the introduced additional error feedback via Ke becomes obvious. In case
the open-loop system has unstable dynamics, i.e. Am has eigenvalues with positive
real part, Ke can be used to stabilize the error dynamics Eq. (4.40). This way, it can be
made sure that all eigenvalues of Am,K lie in the left half-plane.
In case hedging is not used, ∆u (t) = 0 is plugged into Eq. (4.36). This also results in
Eq. (4.40), but the lumped matched uncertainty

σm (t) = fm (t, x (t) , yz (t)) + Λ (t) ∗ GF,u (t) ∗ GF,y (t) ∗ ∆A,D,c (t) ∗ u (t)

− GF,u (t) ∗ GF,y (t) ∗ ĜD,c (t) ∗ ĜA (t) ∗ [Λ0 · û (t)−Λ (t) ∗ u (t)] (4.41)

is slightly different to the one shown in Eq. (4.38a). Table 4.2 highlights these differences
and it can be seen that the additional information of the actuator deflection due to
hedging also reflects in the structure of the lumped matched uncertainty.

Parameter Update Law Using Eq. (4.40) the piecewise constant update law for the
matched and unmatched uncertainty estimations can be deduced analogously to
Eq. (3.38) in Section 3.2 and results in(

σ̂m (t)
σ̂um (t)

)
= KL1 (Ts) x̃ (iTs) ∀t ∈ [iTs, (i + 1) Ts] (4.42)

where

KL1 (Ts) = −
(
bm Bum

)−1
[

Am,K
−1
(

eAm,KTs − In×n

)]−1
eAm,KTs . (4.43)

This parameter update law is valid independent of the choice, if hedging is applied or
not. It was mentioned before that the additional error feedback matrix Ke is used to
gain an invertible system matrix Am,K for the error dynamics. This is exactly needed
for the computation of Eq. (4.43). In the context of this thesis
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Ĝ

D
,c
( t) ∗

Ĝ
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Ke =

0 0 0
0 0 0
0 0 −0.1

 (4.44)

is used for this purpose.

Control Law The control law from Eq. (3.43) in Section 3.2 is subdivided in portions
for matched and unmatched uncertainties, respectively. They are defined as

uad,1 (s) = −Cm (s) σ̂m (s) (4.45a)

uad,2 (s) = −Cum (s) Hm
−1 (s) Hum (s)

(
σ̂um,1 (s)
σ̂um,2 (s)

)
︸ ︷︷ ︸

σ̂um(s)

, (4.45b)

where the transfer functions

Hm (s) = cm (sIn×n − Am?)
−1

0
0
1

 (4.46)

Hum (s) = cm (sIn×n − Am?)
−1 Bum (4.47)

with cm =
(
1 0 0

)
are used. The system matrix used for the transfer functions is

conducted as

Am? = Am − bmkT
? , (4.48)

where the gains kT
? are designed such that Am? inherits the desired dynamics with

respect to short-period and integrator pole, as they are described in Section 4.2.1. Note
that, in this context, the idealizing assumption is used that the plant dynamics can
be characterized by short-period and error integration, solely. Another reason to use
Am? instead of Am here is the already mentioned possibility of an unstable open-loop
system. This is, because the baseline controller, which is stabilizing in this case, is not
represented in Am and is considered separately in the state predictor structure due to
the nonlinear limitations.
It is also considered in Eq. (4.46) that uad,2 is fed into the integrator of the baseline
controller as mentioned above. For that reason, the input vector

(
0 0 1

)T is used
instead of bm, as it is shown in [12, pp. 189-190]. Hm

−1 (s) Hum (s) consists of two
transfer functions, one related to uncertainties in α (i.e. σ̂um,1 (s)) and the other related
to uncertainties in eI (i.e. σ̂um,2 (s)) assuming bm ≈

(
0 Mη 0

)T and Zη ≈ 0. If
bm was used for the generation of Hm (s) in this case, the second transfer function
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would be a pure integration. This is not desired, since σ̂um,2 (s) is proportional to the
estimation error x̃ (t) and thus, this configuration would result in additional integral
error feedback. With the choice of Hm (s) shown in Eq. (4.46) the first transfer function
results equally, but contains an additional zero in the origin. The second transfer
function is then a constant gain. Thus, feeding uad,2 in the integrator of the baseline
controller leads to the same transfer behavior as shown above, but in contrast to that,
no additional integration is generated.
At last, the Low-Pass Filters of the control law are chosen to be first order filter transfer
functions [75, pp. 291-295]

Cm (s) =
ω0,C,m

s + ω0,C,m
(4.49a)

Cum (s) =
ω0,C,um

s + ω0,C,um
, (4.49b)

where the bandwidths are set to ω0,C,m = 15 rad
s and ω0,C,um = 7 rad

s . This values stem
from a tuning process considering maneuver simulations using the enhanced aircraft
model in a sever turbulence case without parametric uncertainties (e.g. Fig. 6.20).
The goal was to narrow the bandwidths to a point, where the performance using the
adaptive augmentation in this use-case is comparable to the performance achieved by
the baseline controller. The reason why the adaptive controller is much more sensitive
to sensor signals, which are affected by turbulence, is that the parameter update law
Eq. (4.42) leads to high gain feedback of these sensor signals in combination with
Eq. (4.45). Thus, appropriate low-pass filtering of the resulting control commands
using Cm (s) and Cum (s), in addition to the filter chain introduced in Section 4.1.2,
gives remedy here. This filter configuration is used for assessments with both the
simple and the enhanced aircraft model.
The adaptive augmentation is processed with the same sampling time of Ts = 0.01s
as the baseline controller. All transfer functions contained in the adaptive control law
are transformed to discrete-time by means of bilinear transformation introduced in
Section 3.3. The only exception is the implementation of the short-period dynamics
within the state predictor, where Euler’s method is applied. This is done in order
to avoid an algebraic loop. The application of bilinear transformation, which would
increase accuracy here, results in a state space model with direct feedthrough, whereas
its continuous-time representation does not have a feedthrough portion.

4.2.3. Plant Augmentation

Next, the architecture of the Plant Augmentation approach is described. In contrast
to DPI Augmentation shown in the last section, the idea of Plant Augmentation is to
augment the open-loop aircraft using an adaptive controller first. Afterwards, the
baseline controller is applied to the resulting closed loop. This modified perspective on
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the augmentation architecture leads to slight differences with respect to the elements of
the adaptive controller, especially the state predictor. These differences are highlighted
in this section.

Plant It was already mentioned that the adaptive controller is applied to the open-
loop aircraft, which also reflects in the structure of the plant to be considered for the
controller design:

ẋ (t) = Amx (t) + bm ·Λ (t) ∗ GF,u (t) ∗ GF,y (t) ∗ GD,c (t) ∗ GA (t)

∗ sat
{∫ t

t0

sat
[

u̇bl (τ) +
d

dτ
uad (τ)

]
dτ

}
+ bm fm (t, x (t) , yz (t)) + bum fum (t, x (t) , yz (t)) (4.50)

The system matrix reduces to the 2× 2 short-period approximation

Am =
(

Zα Zq + 1
Mα Mq

)
, (4.51)

where the integrator state is neglected and with the input vector

bm =
(

Zη

Mη

)
(4.52)

chosen accordingly. Nevertheless, the limitation structure of the DPI baseline should
be used for the adaptive control command also for this type of augmentation. This
means that the adaptive control command uad (t) is inserted at summation point I©
of the baseline controller in Fig. 4.1. This is reflected in the plant representation in
Eq. (4.50). On the other side, one has to consider also the contribution of the baseline
controller u̇bl (t) according to Eq. (4.31) to the total commanded actuator deflection
rate. But in contrast to the DPI Augmentation approach, the exact structure of the signal
generation, and thus the baseline controller, does not need to be known in this case,
except for the limitation structure in this particular application. This is an advantage,
because the baseline controller can then be widely considered as a black box from the
point of view of the adaptive control designer.
Furthermore, bum is chosen such that bm

Tbum = 0 holds. Transfer functions of actuator,
filters and delay are included analogously to the approach shown in the last section.

State Predictor The state predictor is again constructed according to the plant
dynamics. It can be stated as
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L1 Adaptive Augmentation

˙̂x (t) = Am x̂ (t) + bm ·Λ0 · GF,u (t) ∗ GF,y (t) ∗ ĜD,c (t) ∗ ĜA (t)

∗ sat
{∫ t

t0

sat
[

u̇bl (τ) +
d

dτ
uad (τ)

]
dτ

}
+ bmσ̂m (t) + bumσ̂um (t) + bm · ∆u (t) + Ke x̃ (t) (4.53)

with bm
Tbum = 0. Compared to the state predictor used for the DPI Augmentation, it

neglects the integrator state and the structure of the baseline controller, except for the
command signal limitation structure. The control signal contributed by the baseline
controller is denoted with u̇bl (τ). In order to be able to predict the plant dynamics
correctly, the state predictor needs the same control command as an input, as it is sent
to the actual plant. Thus, the baseline controller contribution u̇bl (τ) is summed up
with the adaptive controller command d

dτ uad (τ).
As for the DPI Augmentation, the gain matrix Ke can be used to control the error
dynamics. This is not used for the assessments made in this thesis, thus Ke = 0 is set.
Analogous to Eq. (4.30), the hedging modification proposed by this thesis

∆u (t) = ηmeas (t)−Λ0 · GF,u (t) ∗ GF,y (t) ∗ ĜD,c (t) ∗ ĜA (t)

∗ sat
{∫ t

t0

sat
[

u̇bl +
d

dτ
uad (τ)

]
dτ

}
(4.54)

can be used to increase the robust stability properties of the resulting closed loop, as it
was already described in Section 4.2.2. In case hedging is used, i.e. when Eq. (4.54) is
plugged into Eq. (4.53), the state predictor dynamics reduce to

˙̂x (t) = Am x̂ (t) + bmηmeas + bmσ̂m (t) + bumσ̂um (t) + Ke x̃ (t) . (4.55)

Both state predictor configurations with respect to hedging are also depicted in Fig. 4.16.
Comparing this to the state predictor structure of the DPI Augmentation shown in
Eq. (4.28), one can clearly see a decrease in complexity, which is achieved by means of
Plant Augmentation, in particular, if hedging is used.

Error Dynamics Also fully analogously to the last section, the error dynamics can
be derived from derivation of

x̃ (t) = x̂ (t)− x (t) (4.56)

and usage of the plant Eq. (4.50) and state predictor definition Eq. (4.53), which leads
to
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˙̃x (t) = ˙̂x (t)− ẋ (t)
= (Am + Ke) x̃ (t)

+ bm ·Λ0 · GF,u (t) ∗ GF,y (t) ∗ ĜD,c (t) ∗ ĜA (t) ∗ u (t)

− bm ·Λ (t) ∗ GF,u (t) ∗ GF,y (t) ∗
(
ĜD,c (t)− G̃D,c (t)

)
∗
(
ĜA (t)− G̃A (t)

)
∗ u (t)

+ bm [σ̂m (t)− fm (t, x (t) , yz (t))] + bum [σ̂um (t)− fum (t, x (t) , yz (t))]
+ bm · ∆u (t) . (4.57)

Here, the definitions

u (t) = sat
{∫ t

t0

sat
[

u̇bl (τ) +
d

dτ
uad (τ)

]
dτ

}
, (4.58)

G̃D,c (t) in Eq. (4.33c) and G̃A (t) in Eq. (4.33d) are used.
Applying the definition of ∆A,D,c (t) introduced in Eq. (4.35) one can rearrange Eq. (4.57)
to

˙̃x (t) = (Am + Ke) x̃ (t)
+ bm{σ̂m (t)− fm (t, x (t) , yz (t))−Λ (t) ∗ GF,u (t) ∗ GF,y (t) ∗ ∆A,D,c (t) ∗ u (t)

−Λ (t) ∗ GF,u (t) ∗ GF,y (t) ∗ ĜD,c (t) ∗ ĜA (t) ∗ ·u (t)

+ Λ0 · GF,u (t) ∗ GF,y (t) ∗ ĜD,c (t) ∗ ĜA (t) ∗ u (t)}
+ bum [σ̂um (t)− fum (t, x (t) , yz (t))] + bm · ∆u (t) (4.59)

Finally, the error dynamics can be reformulated as

˙̃x (t) = Am,K x̃ (t) + bm [σ̂m (t)− σm (t)] + bum [σ̂um (t)− σum (t)] , (4.60)

with the definition of Am,K in Eq. (4.39). As it was already mentioned in Section 4.2.2,
the additional error feedback via Ke can be used to prevent unstable error dynamics,
in case the open-loop system is unstable.
The lumped matched uncertainty results in

σm (t) = fm (t, x (t) , yz (t)) + Λ (t) ∗ GF,u (t) ∗ GF,y (t) ∗ ∆A,D,c (t) ∗ u (t)

+ Λ (t) ∗ GF,u (t) ∗ GF,y (t) ∗ ĜD,c (t) ∗ ĜA (t) ∗ u (t)− ηmeas, (4.61)

if hedging is used i.e. Eq. (4.54) is plugged into Eq. (4.59). In case hedging is not
activated, i.e. ∆u (t) = 0, the lumped matched uncertainty reads
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σm (t) = fm (t, x (t) , yz (t)) + Λ (t) ∗ GF,u (t) ∗ GF,y (t) ∗ ∆A,D,c (t) ∗ u (t)

− [δ (t) ·Λ0 −Λ (t)] ∗ GF,u (t) ∗ GF,y (t) ∗ ĜD,c (t) ∗ ĜA (t) ∗ u (t) , (4.62)

where δ (t) denotes the Dirac impulse. The Dirac impulse is defined according to [107,
p. 293]

δ (t) =

{
∞ if t = 0
0 if t 6= 0

. (4.63)

Independent from the choice of hedging activation, the definition of the lumped
unmatched uncertainty reads

σum (t) = fum (t, x (t) , yz (t)) . (4.64)

The components of the lumped matched uncertainties are summarized in Table 4.3
for both hedging cases. A comparison with Table 4.2 corresponding to the DPI
Augmentation shows that the components are mostly matching. The only exception
is that the DPI Augmentation features an additional component, which considers an
uncertainty based on the difference between modeled and real baseline controller
command. Thus, it can be summarized that by means of the Plant Augmentation
approach one source for uncertainty can be removed.

Parameter Update Law The resulting error dynamics in Eq. (4.60) can be used
to generate the parameter update law for the estimated uncertainties following the
approach shown in Section 3.2. Thus, the update law reads(

σ̂m (t)
σ̂um (t)

)
= KL1 (Ts) x̃ (iTs) ∀t ∈ [iTs, (i + 1) Ts] (4.65)

where

KL1 (Ts) = −
(
bm bum

)−1
[

Am,K
−1
(

eAm,KTs − In×n

)]−1
eAm,KTs (4.66)

with Am,K = Am + Ke. As shown for the DPI Augmentation, the formulation of the
parameter update law is independent from the circumstance, if hedging is applied or
not.

Control Law At last the control law can be described through

uad (s) = −Cm (s) σ̂m (s)− Cum (s) Hm
−1 (s) Hum (s) σ̂um (s) (4.67)
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where

Hm (s) = cm (sIn×n − Am?)
−1 bm,? (4.68a)

Hum (s) = cm (sIn×n − Am?)
−1 bum,? (4.68b)

with Am? introduced in Eq. (4.48), which is defined in Section 4.2.2. The input vectors
are chosen according to bm,? =

(
Zη Mη 0

)T and

bum,? =

bum,11
bum,21
bum,31

 , (4.69)

which is the first column of Bum shown in Eq. (4.27). At last, the output vector is
set to cm =

(
1 0 0

)
. It was chosen to use the simplified closed-loop dynamics

represented by Am? here instead of the open-loop system matrix Am, because this way
the unmatched uncertainty compensation works even in case of an unstable open-loop
system, i.e. Am has eigenvalues with negative real part. Using Am would then lead to
an unstable transfer function −Cum (s) Hm

−1 (s) Hum (s), which is highly undesirable.
The low-pass filters are defined according to Eq. (4.49a) and Eq. (4.49b) and are set up
with the same bandwidth as used for the DPI Augmentation. The controller also uses a
sampling time of Ts = 0.01s and the same methods of discrete-time transformation are
applied as they were described in Section 4.2.2.

4.3. ∆q̇ Compensation Law

Apart from L1 Adaptive Control, one alternate adaptive augmentation approach is
also presented in this thesis for the sake of comparison. This approach is introduced
in [23, 98] and is rather well thought out than following complex theory. Furthermore,
it is tailored for compensation of uncertainties appearing in the aircraft short-period
dynamics. This thesis contributes a combination of this adaptive method with a DPI
baseline controller.
The general idea of [23, 98] is to online calculate an estimated pitch acceleration
˙̂q (t) using knowledge about the kinematic aircraft behavior and measurements first.
˙̂q (t) is then compared to the actual measured or calculated pitch acceleration q̇ (t)
resulting in a deviation ∆q̇ (t), which corresponds to an unwanted pitch moment. In
order to compensate for this unwanted pitch moment, the resulting ∆q̇ (t) can be
used to directly determine a suitable control surface deflection ucmd,∆q̇ (t), while again
kinematic knowledge about the aircraft is utilized.
The authors of [23] named this approach Reference model-based adaptive controller.
In the context of this thesis, the control law is referred to as ∆q̇ Compensation Law,
in order to avoid possible misunderstandings during control law comparisons in
Chapter 6.
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Figure 4.17. – Closed-loop for ∆q̇ Compensator Augmentation

The underlying reference dynamics stem directly from the linear open-loop aircraft
dynamics defined in(

α̇ (t)
q̇ (t)

)
=
(

Zα Zq + 1
Mα Mq

)(
α (t)
q (t)

)
+
(

Zη

Mη

)
η (t) . (4.70)

The ∆q̇ Compensation Law does not account for any shift of the aircraft eigendynamics
resulting from application of a baseline controller in terms of this reference model.
Thus, the ∆q̇ Compensation Law can also be considered to be a Plant Augmentation in
combination with a baseline controller. The basic structure of this augmentation for
the DPI baseline controller is illustrated in Fig. 4.17, where the control law ucmd,∆q̇ (t)
is inserted at summation I© of the baseline controller shown in Fig. 4.1. In order to
satisfy the baseline controller structure, ucmd,∆q̇ (t) has to be differentiated upstream of
the insertion point, as it is also done in Section 4.2 for the L1 Adaptive Control Law.
For this purpose, the differentiating filter according to Eq. (4.1) is used.
Eq. (4.70) can be directly used to deduce a linear estimation for the pitch rate accel-
eration considering the second equation contained in the matrix equation Eq. (4.70)
[23]

˙̂q (t) = Mα · ∆α (t) + Mq · qmeas (t) + Mη · ∆η (t) . (4.71)

As it was stated before, measurements are used to calculate ˙̂q (t) rather than estimated
states stemming from a reference model. This is one major difference to any model
reference control approach, which includes also L1 Adaptive Control. [23] describes
that angle of attack α is not measured, but gained from suitable filtering of pitch rate
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q (t). This filter can be gained from solving the first equation of Eq. (4.70) with respect
to α (t) in the Laplace space:

∆α (s) =
Zq + 1
s− Zα

· q (s) +
Zη

s− Zα
· ∆η (s) (4.72)

Furthermore, [23] uses the simplifications that Zq ≈ 0 and Zη ≈ 0 i.e. control surface
deflection results in a pitch moment and induces approximately no direct lift. This
results in [23]

∆α (s) ≈ 1
s− Zα

· q (s) . (4.73)

An alternative solution to calculate ∆α (s) uses measurement of angle of attack α (t).
In this case, it holds that

∆α (t) = αmeas (t)− α0 (t) , (4.74)

which is used for the assessments made in this thesis. In order to solve Eq. (4.71), at
last the deviation of the control surface deflection from its trim value ∆η (t) is required.
[23] proposes to use a high-passed version of the measured control deflection according
to

∆η (s) =
Tη

Tηs + 1
· ηmeas (s) , (4.75)

whereas also usage of tabulated η0 (t) values is possible resulting in

∆η (t) = ηmeas (t)− η0 (t) . (4.76)

Eq. (4.76) is used for the controller implementation of this thesis.
Using ˙̂q (t) from Eq. (4.71) the unwanted deviation between the real aircraft pitch
acceleration and the estimated one can be directly calculated according to

∆q̇ (t) = ˙̂q (t)− q̇ (t) , (4.77)

where q̇ (t) can be either used directly, if it is available as a measurement, or be
determined through differentiation of the pitch rate qmeas (t) as it is described in [23].
Last but not least, using the linear relationship between pitch rate acceleration and
control surface deflection from Eq. (4.70) a compensating control deflection ucmd,∆q̇ (t)
can be simply calculated according to [23]

ucmd,∆q̇ (t) =
∆q̇ (t)

Mη
=

Mα

Mη
· ∆α (t) +

Mq

Mη
· qmeas (t) + ∆η (t)− q̇ (t)

Mη
. (4.78)

In order to increase performance during severe turbulence (c.f. Fig. 5.74 and Fig. 5.75
in Section 5.2.3.2) and to gain better comparability to the L1 Augmentation approaches,
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it was decided to add a low-pass filter to the control law. Thus, the control law finally
reads

ucmd,∆q̇ (s) = Cm (s)
(

Mα

Mη
· ∆α (s) +

Mq

Mη
· qmeas (s) + ∆η (s)− q̇ (s)

Mη

)
(4.79)

with Cm (s) defined according to Eq. (4.49a), the filter bandwidth is set to ω0,C,m = 15 rad
s ,

as it is also defined for the L1 Adaptive Augmentations in Section 4.2.

Additionally, Fig. 4.17 indicates that the sensor signals η (t), α (t), q (t) and q̇ (t) are
led through time delays TD,η, TD,α, TD,q and TD,q̇, respectively. [23] emphasizes the
importance of equally phased signals to be fed into the controller, in order to achieve
satisfying robust stability. This means all signals should approximately represent the
same point in time with respect to the physical state of the aircraft. This does not
necessarily have to be case in a real world application. For example, [23] mentions
heavily filtered pitch rate q measurement for their application, which requires elevator
deflection η measurement to be delayed artificially. Generally, first it is determined,
which signal inherits the largest time delay TD,max. For the other signals, the single
time delay blocks can then be used to delay the signal, in order to also achieve TD,max
for the individual signal.

For the application of this thesis, the same filter chain is applied to all sensor signals
using the enhanced aircraft model, as it was described in Section 4.1.2. But, nevertheless,
differences in signal phasing appear due to different sample rates of the individual
signals. Different sample rates require upsampling in case the sensor rate is lower
than the controller computation rate. The upsampling algorithm causes additional
delay, which is also explained in Section 4.1.2. For the sensor configuration shown in
Table 2.6 in Section 2.6, this is the case for the measurement of the elevator deflection
η, where upsampling causes a delay of TD,FIR,η = 0.01s according to Eq. (4.20) for
the enhanced aircraft model. Here, a controller sample time of Ts = 0.01s is used.
Thus, one could choose TD,α = TD,q = 0.01s to synchronize angle of attack α and
pitch rate q measurements to the one of elevator deflection η. Nevertheless, the
additional time delays are deactivated for the assessments made in this thesis, i.e.
TD,α = TD,q = TD,η = TD,q̇ = 0s, because artificially delaying angle of attack α and pitch
rate q measurement turns out to affect robustness stability rather adverse (c.f. Fig. 5.65,
Fig. 5.66 and Fig. 5.67 in Section 5.2.3.1).

The transfer functions contained in the controller implementation are transformed to
discrete-time utilizing bilinear transformation, which was introduced in Section 3.3.
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4.4. L1 Adaptive Control with Eigenstructure
Assignment

In the sections above, several ways were demonstrated, how the DPI baseline controller
can be augmented by an adaptive controller. In this case, the baseline controller is
responsible for shaping the short-period in terms of desired handling qualities and the
adaptive augmentation has the task of maintaining them, even in case of uncertainty.
This changes in case a standalone adaptive controller is considered. Without a baseline
controller, the adaptive controller should be able to place the poles defining the
dynamics to be controlled with sufficient preciseness by itself. It was found that by
means of a standalone L1 adaptive controller implemented according to [59], the poles
could be shifted to the proximity of the desired pole locations, but the deviation of
desired and resulting pole location was not predictable. In this case, the system matrix
Am of the state predictor (c.f. Eq. (3.25a)) directly incorporates the desired dynamics
instead of the open-loop plant dynamics.
In order to increase the precision of achieving desired dynamics, a novel combination
of L1 Adaptive Control and Eigenstructure Assignment was developed and introduced
in [51] by the author. This combination leads to modifications on the state predictor
architecture and allows exact pole placement, while offering all advantages of L1
Adaptive Control with piecewise constant update laws on the other hand.
The approach is further described in this section. First, the reference dynamics to
be achieved by the controller are introduced. They differ from the ones shown
in Section 4.2.1, because of the missing baseline controller. Next, the idea of the
controller architecture is explained. This architecture is also formulated mathematically
following the structuring also used for the description of the adaptive augmentations.
In particular, the error dynamics of the resulting closed-loop give further insight into
the operation of the controller. At last, additional implementation guidelines are
provided.

4.4.1. Reference Dynamics

First of all, the reference model is described, which defines the reference dynamics,
that the adaptive controller should establish in connection with the plant. As it can
be seen in Fig. 4.18, this reference model is similar to the one introduced for the
augmentation approaches in Section 4.2.1, which can be found in Fig. 4.13. Differences
are due to neglecting the integrator state, the derivations, as well as the integration all
corresponding to the DPI baseline controller.
The reference model can then be formulated as
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ẋre f (t) = Amxre f (t) + bm · GF,u (t) ∗ GF,y (t) ∗ ĜD,c (t) ∗ ĜA (t)

∗
(
−kP

Txre f (t) + hP · αcmd (t)
)

(4.80)

with

xre f =
(

αre f
qre f

)
(4.81)

and the matrices defining the short-period dynamics

Am =
(

Zα Zq + 1
Mα Mq

)
bm =

(
Zη

Mη

)
, (4.82)

which are also shown in Eq. (4.22). The formulation of the reference dynamics also
includes dynamics of the filter chain GF,u (t) and GF,y (t) as well as transfer functions
representing actuator dynamics ĜA (t) and delay ĜD,c (t). It has to be noted that
rate and deflection limitations according to actuator specifications are included in
the implementation of ĜA (t). The filters GF,u (t) and GF,y (t) are only considered for
the controller design, when the enhanced aircraft model is used for the simulations.
Likewise, they are neglected for the basic aircraft model case.
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Figure 4.19. – Gain design model for reference model of the standalone L1 adaptive
controller

Making use of the Eigenstructure Assignment algorithm shown in Section 3.1, the gains
kP

T and hP can be designed analogously to the method shown in Section 4.1.1 utilizing
the design model illustrated in Fig. 4.19. The same requirements were set for natural
frequency and damping of the short-period, as they were also chosen for the baseline
controller and the adaptive augmentations. Thus, the desired properties are ω0,sp,des
according to CAP = 0.7, whose values can be found in Fig. 4.3, and ζsp,des = 0.95.
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4.4.2. Controller Architecture

The controller architecture is described in this section by means of first introducing the
plant dynamics to be controlled, followed by the modified state predictor structure.
The error dynamics between measured and estimated states are analyzed and result in
the parameter update law. At last, the control law is presented.

Plant The dynamics of the physical plant are formulated according to

ẋ (t) = Amx (t) + bm ·Λ (t) ∗ GF,u (t) ∗ GF,y (t) ∗ GD,c (t) ∗ GA (t) ∗ uad (t)
+ bm fm (t, x (t) , yz (t)) + bum fum (t, x (t) , yz (t)) , (4.83)

which is very similar to the description shown for the Plant Augmentation approach
in Eq. (4.50), apart from the missing baseline control command and the saturation
functions. As it was already stated, the adaptive control command uad (t) is the
only controller command in this case. Actuator dynamics, delay and filter transfer
functions are considered by means of GA (t) shown in Eq. (4.7), GD,c (t) introduced
in Eq. (4.8) and GF,u (t) as well as GF,y (t), which are described in Section 4.1.2. Here,
actuator deflection and rate saturations are incorporated in GA (t) according to Fig. 2.9.
Matched and unmatched uncertainties are described by fm and fum, respectively.

State Predictor The structure of the state predictor shown in Fig. 4.20 is chosen in
accordance to the plant structure and can be expressed as

˙̂x? (t) = Am x̂? (t)− bmk̄m
T x̂? (t)− bumk̄um

T x̂? (t)

+ bm ·Λ0 · GF,u (t) ∗ GF,y (t) ∗ ĜD,c (t) ∗ ĜA (t) ∗ uad (t)
+ bmσ̂m? (t) + bumσ̂um? (t) + bm · ∆u (t) + Ke x̃? (t) (4.84)

where the transfer functions ĜD,c (t) and ĜA (t) are estimations of the delay and
actuator dynamics. The notation (·)? is used to distinguish between the modified
and the textbook state predictor. This especially matters for the assessments made in
Section 4.4.3.
Again, rate and absolute saturation are considered for the implementation of ĜA (t)
within the controller. σ̂m? (t) and σ̂um? (t) denote estimations of the matched and
unmatched uncertainties, respectively. Compared to the standard architecture shown
in Section 3.2, two modifications are proposed.
The first one is that x̂? (t) is fed back via gains k̄m

T and k̄um
T to both matched and

unmatched input channel of the state predictor. It is important to note that the feedback
to the matched input is inserted downstream of the actuator model. By means of a
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smart choice of the feedback gains k̄m
T and k̄um

T, one is able to exactly1 shape the
dynamics of the resulting closed-loop. A suitable method to achieve this is shown in
Section 4.4.3.
The second modification is the introduction of an additional hedging term ∆u (t) to
the dynamic model, as it is also used for the adaptive augmentations explained in
Section 4.2. As it is shown in Section 5.2.4.1, particularly in Fig. 5.78 and Fig. 5.79, this
modification contributed by this thesis turns out to have a beneficial effect on robust
stability properties w.r.t. the actuator cut.
The hedging term ∆u (t) reads

∆u (t) = ηmeas (t)−Λ0 · GF,u (t) ∗ GF,y (t) ∗ ĜD,c (t) ∗ ĜA (t) ∗ uad (t) (4.85)

and uses the measured actuator deflection ηmeas to compare the control signal, which
is expected to enter the aircraft dynamics on a system level. Plugging the hedg-
ing term Eq. (4.85) into the state predictor Eq. (4.84) shows that the state predictor
implementation can be simplified according to

˙̂x? (t) = Am x̂? (t)− BK̄x̂? (t) + bm [ηmeas (t) + σ̂m? (t)] + bumσ̂um? (t) + Ke x̃? (t) , (4.86)

with

B :=
(
bm bum

)
(4.87a)

K̄ :=
(

k̄m
T

k̄um
T

)
, (4.87b)

which does not require modeling of the actuator, delay and filters, because it uses
the measured actuator deflection ηmeas (t). Both options with respect to hedging are
depicted in Fig. 4.20.
At last, feedback of the estimation error via Ke can be applied within the state predictor,
as it was also already introduced for the adaptive augmentations in Section 4.2. As for
the Plant Augmentation, the gain matrix Ke is set to Ke = 0 for the assessments made in
this thesis.

Error Dynamics The prediction error is defined according to

x̃? (t) = x̂? (t)− x (t) (4.88)

for plant and state predictor introduced in Eq. (4.83) and Eq. (4.84), respectively. A
differential equation for its temporal development is given by

1In case of nominal conditions i.e. no uncertainties, failures, additional dynamics etc. The same
condition holds also for any classical control design.
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˙̃x? (t) = ˙̂x? (t)− ẋ? (t)
= (Am + Ke) x̃? (t)− BK̄x̂? (t)

+ bm ·Λ0 · GF,u (t) ∗ GF,y (t) ∗ ĜD,c (t) ∗ ĜA (t) ∗ uad (t)

− bm ·Λ (t) ∗ GF,u (t) ∗ GF,y (t) ∗
(
ĜD,c (t)− G̃D,c (t)

)
∗
(
ĜA (t)− G̃A (t)

)
∗ uad (t)

+ bm [σ̂m? (t)− fm (t, x (t) , yz (t))] + bum [σ̂um? (t)− fum (t, x (t) , yz (t))]
+ bm · ∆u (t) , (4.89)

where G̃D,c (t) and G̃A (t) are defined according to Eq. (4.33c) and Eq. (4.33d), respec-
tively. Applying the definition of ∆A,D,c (t) introduced in Eq. (4.35) one can rearrange
Eq. (4.89) to

˙̃x? (t) = (Am + Ke) x̃? (t)− BK̄x̂? (t)
+ bm{σ̂m? (t)− fm (t, x (t) , yz (t))−Λ (t) ∗ GF,u (t) ∗ GF,y (t) ∗ ∆A,D,c (t) ∗ uad (t)

−Λ (t) ∗ GF,u (t) ∗ GF,y (t) ∗ ĜD,c (t) ∗ ĜA (t) ∗ uad (t)

+ Λ0 · GF,u (t) ∗ GF,y (t) ∗ ĜD,c (t) ∗ ĜA (t) ∗ uad (t)}
+ bum [σ̂um? (t)− fum (t, x (t) , yz (t))] + bm · ∆u (t) . (4.90)

Now the error dynamics can be reformulated as

˙̃x? (t) = Am,K x̃? (t)− BK̄x̂? (t) + bm [σ̂m? (t)− σm (t)] + bum [σ̂um? (t)− σum (t)] , (4.91)

with the definition of Am,K in Eq. (4.39) and the lumped matched uncertainty

σm (t) = fm (t, x (t) , yz (t)) + Λ (t) ∗ GF,u (t) ∗ GF,y (t) ∗ ∆A,D,c (t) ∗ uad (t)

+ Λ (t) ∗ GF,u (t) ∗ GF,y (t) ∗ ĜD,c (t) ∗ ĜA (t) ∗ uad (t)− ηmeas (t) , (4.92)

where hedging is used, i.e. Eq. (4.85) is plugged into Eq. (4.90). In case hedging
∆u (t) = 0 is deactivated, the lumped matched uncertainty is defined according to

σm (t) = fm (t, x (t) , yz (t)) + Λ (t) ∗ GF,u (t) ∗ GF,y (t) ∗ ∆A,D,c (t) ∗ uad (t)

− [δ (t) ·Λ0 −Λ (t)] ∗ GF,u (t) ∗ GF,y (t) ∗ ĜD,c (t) ∗ ĜA (t) ∗ uad (t) . (4.93)

For both cases, the definition of the lumped unmatched uncertainty
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σum (t) = fum (t, x (t) , yz (t)) (4.94)

holds. Note that, apart from the additional term due to the state feedback within the
state predictor and the missing baseline control command, this result is identical to the
one for the Plant Augmentation approach shown in Eqs. (4.60) to (4.64) in Section 4.2.3.
This is why the comparison of the lumped matched uncertainties with and without
hedging shown in Table 4.3 is also valid for the standalone L1 adaptive controller
presented in this section.

Eq. (4.91) is reordered in the next step. Furthermore, −BK̄x (t) + BK̄x (t) = 0 is added
on the right-hand side of the equation. This results in

˙̃x? (t) = Am,K x̃? (t)− BK̄x̂? (t)− BK̄x (t) + BK̄x (t) + bm [σ̂m? (t)− σm (t)]
+ bum [σ̂um? (t)− σum (t)]

=

Am,K − BK̄︸ ︷︷ ︸
=:Acl

 x̃? (t)− BK̄x (t) + bmσ̃m (t) + bumσ̃um (t) . (4.95)

Eq. (4.95) is an ordinary, first order differential equation. The solution between two
discrete timesteps with step size Ts reads

x̃? (iTs + Ts) = eAcl Ts · x̃? (iTs) +
∫ Ts

0
eAcl(Ts−ε)B

(
σ̂m? (iTs + ε)
σ̂um? (iTs + ε)

)
dε

−
∫ Ts

0
eAcl(Ts−ε)BK̄x (iTs + ε) dε

−
∫ Ts

0
eAcl(Ts−ε)B

(
σm (iTs + ε)
σum (iTs + ε)

)
dε. (4.96)

This intermediate result is compared to the unmodified error dynamics shown in
Eq. (3.33). It shows that the introduction of the feedback gain matrix K̄ yields an
additional term

∆x̃? (iTs + Ts) = −
∫ Ts

0
eAcl(Ts−ε)BK̄x (iTs + ε) dε, (4.97)

which also excites the error dynamics. Furthermore, the error dynamics are shifted
from Am to Acl = Am,K − BK̄. Thus, one has to verify that Acl has negative eigenvalues,
in order to achieve stable error dynamics. At this point it should be stressed that the
poles of Acl do not correspond to the desired closed-loop poles.
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Parameter Update Law Following the approach shown in Eq. (3.34) in Section 3.2,
the estimated uncertainties σ̂m? (iTs) and σ̂um? (iTs) are considered to be piecewise
constant between two discrete processing time steps. They are chosen such that they
cancel the prediction error accumulation. This results in(

σ̂m? (t)
σ̂um? (t)

)
= KL1? (Ts) x̃? (iTs) ∀t ∈ [iTs, (i + 1) Ts[ , (4.98)

where

KL1? (Ts) =
(

KL1,m?
T (Ts)

KL1,um?
T (Ts)

)
= −B−1

(
eAcl Ts − In×n

)−1
AcleAcl Ts . (4.99)

The resulting update law is fully equivalent to the one derived in Eq. (3.38), but it has
to be noticed that the additional gain K̄ influences the way, how x̃? (t) is composed. It
was shown above that the introduction of K̄ causes an additional term ∆x̃? (iTs + Ts)
within the error dynamics. Section 4.4.3 shows, how this additional term including the
gain K̄ can be used to achieve exact pole placement.

Control Law The control law is compiled analogous to the one introduced for the
Plant Augmentation in Eq. (4.67) with the difference that it also includes a feedforward
portion with the purpose of ensuring αcmd tracking. Thus, the control law is compiled
as

uad (s) = −Cm (s) σ̂m? (s)− Cum (s) Hm
−1 (s) Hum (s) σ̂um? (s) + hL1 · αcmd (s) , (4.100)

where

Hm (s) = cm (sIn×n − Am)
−1 bm (4.101a)

Hum (s) = cm (sIn×n − Am)
−1 bum (4.101b)

with the open-loop system matrix Am, the input matrices bm, bum and the output
vector chosen as cm =

(
1 0

)
.

The calculation of the feedforward gain hL1 indirectly requires information about the
content of K̄. This is why its derivation is shown in the next section.
The low-pass filters are defined according to Eq. (4.49a) and Eq. (4.49b) and set up
with the same bandwidth as used for both the Closed-Loop Augmentation and the Plant
Augmentation. The resulting closed-loop structure using the architecture shown in this
section is illustrated in Fig. 4.21.
For the implementation of the control law, which is processed at a sample time of
Ts = 0.01s, discrete-time representations of the necessary transfer functions are used.
The techniques introduced in Section 3.3 are applied analogously to the adaptive
augmentations presented in Section 4.2.2 with one exception. In case hedging is not
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L1 Adaptive Control with E igenstructure Assignment

activated for the L1 adaptive controller with Eigenstructure Assignment, the necessary
actuator model within the state predictor is transformed using Euler’s Transformation,
in order to be able to apply rate and absolute saturations.

4.4.3. Feedback Gain Design

In order to gain better understanding of the effect of the introduced feedback gains
k̄m

T and k̄um
T on the closed loop dynamics, the resulting error between plant and

estimated dynamics is investigated further. Thus, a correlation between the introduced
feedback within the state predictor −K̄x̂ (t) and its effect on the closed-loop behavior
should be derived. Using this knowledge, a method can be shown, which utilizes k̄m

T

and k̄um
T to achieve precise pole placement.

It was stated before that the estimated uncertainties in Eq. (4.98) are chosen such that
the first two summands in Eq. (4.96) cancel each other. Thus, the remaining error at
the end of each discrete time step is

x̃? (iTs + Ts) = −
∫ Ts

0
eAcl(Ts−ε)B

(
σm (iTs + ε)
σum (iTs + ε)

)
dε︸ ︷︷ ︸

=x̃(iTs+Ts)

−
∫ Ts

0
eAcl(Ts−ε)BK̄x (iTs + ε) dε,

(4.102)
which can also be expressed for the point in time iTs as

x̃? (iTs) = x̃ (iTs)−
∫ Ts

0
eAcl(Ts−ε)BK̄x ((i− 1) Ts + ε) dε, (4.103)

where x̃ (iTs) is the remaining prediction error in a conventional state predictor archi-
tecture presented in Eq. (3.25a) in Section 3.2. After setting Eq. (4.103) back into the
update law Eq. (4.98), one can conclude that the proposed state predictor modification,
which introduces the feedback of −K̄x̂ (t), leads to a ∆-term within the estimated
uncertainties according to

(
σ̂m? (t)
σ̂um? (t)

)
= KL1? (Ts) x̃? (iTs)

= KL1? (Ts) x̃ (iTs)−KL1? (Ts)
∫ Ts

0
eAcl(Ts−ε)BK̄x ((i− 1) Ts + ε) dε︸ ︷︷ ︸

=:∆(t)

=
(

σ̂m (t)
σ̂um (t)

)
+ ∆ (t) ∀t ∈ [iTs, (i + 1) Ts[ (4.104)

compared to the standard uncertainty estimation in Eq. (3.38).
In the following paragraphs, the additional contribution
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∆ (t) = −KL1? (Ts)
∫ Ts

0
eAcl(Ts−ε)BK̄x ((i− 1) Ts + ε) dε (4.105)

to the parameter update law is investigated further. The sampling of the controller is
assumed to be much faster than the dynamics to be controlled, which is the case for
most real word control applications. Consequently, one can consider the states x (iTs)
to be piecewise constant also. Thus, Eq. (4.105) can be rearranged to

∆ (t) = −KL1? (Ts)
∫ Ts

0
eAcl(Ts−ε) dε · BK̄x ((i− 1) Ts) . (4.106)

In the next step the integral is solved

∆ (t) = −KL1? (Ts) Acl
−1
(

eAcl Ts − In×n

)
BK̄x ((i− 1) Ts) (4.107)

and the definition of KL1? from Eq. (4.99) is reinserted

∆ (t) = B−1
(

eAcl Ts − In×n

)−1
Acl · eAcl Ts · Acl

−1
(

eAcl Ts − In×n

)
BK̄x ((i− 1) Ts) .

(4.108)
The ∆-term can then be transformed to the Laplace space, which results in

∆ (t) = Φ (K̄) · x ((i− 1) Ts) d t ∆ (s) = Φ (K̄) · e−sTs x (s) (4.109)
∀t ∈ [iTs, (i + 1) Ts[

with

Φ (K̄) = B−1
(

eAcl Ts − In×n

)−1
Acl · eAcl Ts · Acl

−1
(

eAcl Ts − In×n

)
B · K̄ =

= B−1
(

e(Am,K−BK̄)Ts − In×n

)−1
(Am,K − BK̄)

· e(Am,K−BK̄)Ts · (Am,K − BK̄)
−1
(

e(Am,K−BK̄)Ts − In×n

)
B · K̄, (4.110)

where Acl = Am,K − BK̄ is reinserted. Interestingly, Eq. (4.110) can be simplified
drastically, if very small sampling times Ts are considered. In this case, Φ (K̄) can be
expressed by means of

lim
Ts→0

Φ (K̄) = K̄. (4.111)

Despite this simplification, in this work Eq. (4.110) is used for the feedback gain design,
because it achieves increased preciseness in terms of pole placement.
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Finally, the effect of the ∆-term stemming from the feedbacks within the state predictor
via K̄ =

(
k̄m

T k̄um
T)T becomes clear, when the two portions of the parameter update

law Eq. (4.104) are plugged into the control law according to Eq. (4.100)

uad (s) = −Cm (s) σ̂m? (s)− Cum (s) Hm
−1 (s) Hum (s) σ̂um? (s) + hL1 · ycmd (s)

= −Cm (s) σ̂m (s)− Cum (s) Hm
−1 (s) Hum (s) σ̂um (s) + hL1 · ycmd (s)

−
(

Cm (s)
Cum (s) Hm

−1 (s) Hum (s)

)T

∆ (s) . (4.112)

Moreover, Eq. (4.109) is plugged into the control law

uad (s) = −Cm (s) σ̂m? (s)− Cum (s) Hm
−1 (s) Hum (s) σ̂um? (s) + hL1 · ycmd (s)

= −Cm (s) σ̂m (s)− Cum (s) Hm
−1 (s) Hum (s) σ̂um (s) + hL1 · ycmd (s)

−
(

Cm (s)
Cum (s) Hm

−1 (s) Hum (s)

)T

·Φ (K̄) · e−sTs x (s) , (4.113)

in order to show that the ∆-term appears as a feedback of the measured states x (t),
which are delayed by one time step (e−sTs) within the control law. The gain for the
feedback is determined by the choice of Φ, which is a degree of freedom, because K̄
has not been defined, yet.
The matrix Φ can be designed such that the feedback generates no unmatched portion2

and that the matched portion is utilized for pole placement. A suitable method for pole
placement in this case is again Eigenstructure Assignment according to the approach
used for baseline controller gain design in Section 4.1.1. The algorithm is applied to a
design model according to Fig. 4.22 to determine a gain-set k̄L1

T, which satisfies the
design conditions set for the short-period dynamics defined in Section 4.4.1. Note that,
in contrast to Section 4.1.1, a short-period approximation of the longitudinal aircraft
dynamics is used here instead of the linear model shown in Eq. (2.42). In order to
model the exact path of the feedback, besides actuator and delay, also the low-pass
filter Cm (s) for the matched uncertainties and the time step delay Ts are accounted for
in the design model. In particular, the influence of Cm (s) and the time step delay Ts
on the feedback can be seen in the control law Eq. (4.113). For the implementation of
the gain design model, the additional time delay Ts is added to the time delay TD,c and
is thus considered in the Padé approximation ĜD,c (s).
These two design conditions for Φ can be formulated as

Φ (K̄)
!=
(

k̄L1
T

01×2

)
, (4.114)

2i.e. a signal led through Cum (s) Hm
−1 (s) Hum (s)

107



Control Law Design

�
�
�
�

�
�
�

�
�
�
����

�
�	�



�
�

�
�
	�
�

� 	
�
�



� �
�
�
�

�
��

�
�

�
�
�
��
�
�
�


�
��
�

�
�
�
�
�

� �
�
��
�

� �
�
�

�
�
��
�

�
�
��
���
��
�
�



�
�
	�

�



Figure
4.22.–

D
esign

m
odelfor

state
predictor

feedback
gain

com
putation

108
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which can be solved w.r.t. K̄ using a numerical solver. This yields a solution for the
feedback gains for the state predictor k̄m

T and k̄um
T to finally achieve

uad (s) = −Cm (s) σ̂m (s)− Cum (s) Hm
−1 (s) Hum (s) σ̂um (s) + hL1 · ycmd (s)

− Cm (s) · e−sTs k̄L1
T · x (s) . (4.115)

Note that the state feedback of x (t) is not explicitly implemented at the control law,
but induced by the feedback via K̄ within the state predictor. It is not necessary to
modify the structure of both adaptation law and control law, which can also be seen in
Fig. 4.21.
In the last step, the feedforward gain hL1 is calculated suitable to the targeted eigen-
dynamics of the plant. These targeted dynamics are already introduced in Fig. 4.22,
where the designed gain-set k̄L1

T is now set in. The resulting system Am and input Bm
matrices are used to calculate hL1 according to Eq. (3.49). Here, the output matrix Cm
is formulated such that the system only outputs the state α.
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5. Controller Assessments

The goal of this chapter is to assess the control laws designed in Chapter 4 by means
of simulation results. More specifically, baseline controller, adaptive DPI and Plant
Augmentations, the ∆q̇ Compensation Law and the standalone L1 adaptive controller
with Eigenstructure Assignment are considered.

With this regard, Section 5.1 introduces the methodology of the assessments in general.
This includes the description of linear methods to determine robust stability properties
of the closed-loop. Furthermore, the example maneuver used for performance assess-
ments is characterized and the accompanying performance metrics are formulated. At
last, the linearizations are described, which are used to assess the closed-loop poles
resulting from the combination of controller and aircraft.

In the next step, the assessments are performed for the individual controller configu-
rations in Section 5.2. The results of the baseline controller configuration serve as a
reference for the adaptive controller assessments with regards to both robust stability
and performance. This also allows for first comparisons, although a detailed compari-
son considering all controller configurations is in the focus of Chapter 6. Nevertheless,
the approximate equivalence of the adaptive DPI and Plant Augmentation approaches
w.r.t. simulation results is also worked out in this chapter.

In particular, the effect of the state predictor modifications proposed in Chapter 4
for the L1 adaptive controllers is shown. More specifically, this includes the hedging
modification, where actuator measurement is used on the one hand. The beneficial
effect on the robust stability properties w.r.t. the actuator cut can be clearly observed
by means of the examples shown in this chapter (c.f. Section 5.2.2.1 and Section 5.2.4.1).
Moreover, it is shown that this modification has neglectable influence on the controller
performance. On the other hand, it is demonstrated in Section 5.2.4 that L1 Adaptive
Control with Eigenstructure Assignment is able to precisely set up desired dynamics
and to offer robust performance at the same time.

The assessments also include results gained using the enhanced aircraft model. In
this chapter an exemplary configuration of the reality effects induced by the enhanced
model is used. Detailed analyses of the single effects on the controller performance
and variations of the model parameters are in the scope of Chapter 6.
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5.1. Methodology of assessments

In this section a general description of the methodologies can be found, which are
used to analyze the controller designs. The determination and specification of robust
stability properties is shown in terms of linear methods in Section 5.1.1. Section 5.1.2
introduces the example maneuver to be simulated and performance metrics to be
evaluated in order to be able to rank the controllers’ performances.

5.1.1. Robust stability

As it was already stated before, assessments determining robust stability properties
of the closed-loop are one important foundation of aircraft FCS certification [111, pp.
25-27]. For this reason they are also analyzed for the controller designs conducted in
this thesis.
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Figure 5.1. – Model utilized to determine transfer functions for robust stability
assessments for the basic aircraft model

For the linear assessments specific open-loop transfer functions have to be determined
first. Thus, the closed-loop consisting of aircraft, controller and additional dynamics
is cut either upstream the actuator or for the single sensor measurements. This is
shown in Fig. 5.1 for the basic and in Fig. 5.2 for the enhanced aircraft model. The
first cut I© is called actuator cut, also known as bottleneck cut, the second one II©
describes the sensor cuts. In this thesis, the investigations include the actuator cut for
elevator command ηcmd and the sensor cuts for angle of attack α as well as pitch rate q.
Additionally, the cut for pitch acceleration q̇ is considered for the ∆q̇ Compensation
Law, in case q̇ measurement is available. It can be read in [111, pp. 25-27] that the
bottleneck cut is the most relevant in terms of FCS certification and that the sensor
cuts play a secondary role.
The transfer functions required for robust stability assessments can be obtained by
means of linearization of the closed-loops shown in Fig. 5.1 and Fig. 5.2, which are
cut up at one position at a time. The transfer functions then represent the linear
dynamics of the cut up closed-loop at one certain envelope point. It is important that
the considered closed-loops are in a trimmed state before linearization, i.e. in this case
the initial controller command is the trimming elevator deflection ηcmd = η0.
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Figure 5.2. – Model utilized to determine transfer functions for robust stability
assessments for the enhanced aircraft model

Note also that the linear robust stability assessments are performed separately using
both the basic and the enhanced aircraft model configuration for all controllers. It
is indicated in Fig. 5.2 that certain elements are left out for linearization. These are
turbulence and gust models, sensor models and the simple structural mode model.
Atmospheric disturbance are not considered during linear robust stability assessments.
Furthermore, most effects contributed by the sensor model cannot be mapped to a
linear model. At last, the structural mode is considered as unknown dynamics and is
thus not considered for these assessments.
Now that the transfer functions of the cut up closed-loops are obtained, they can be
analyzed in the frequency domain. Let L (s) be one of these transfer functions. Note
that the following statements hold independent from the position of the loop cut and
the aircraft model configuration used for the assessment.

�
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Figure 5.3. – Original closed-loop obtained by putting L (s) in a positive feedback loop

The frequency response L (jω) of the transfer function with ω ∈ [−∞; ∞[ [75, p. 240]
can be plotted in the complex plane. The resulting diagram is called Nyquist plot [93,
102]. In addition to the frequency response, the closed-loop poles of the system to be
analyzed are also represented in the Nyquist plot. Their position can be obtained by
application of the following considerations. First, the original loop is closed again,
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which in general can be achieved by putting L (s) in a positive feedback loop. This is
also shown in Fig. 5.3. After that, the closed-loop transfer function can be calculated
and results in

y =
L (s)

1− L (s)
u. (5.1)

It is now obvious that the closed-loop poles λi satisfy the relation

1− L (λi) = 0. (5.2)

Thus, the closed-loop poles are mapped onto the point L (λi) = +1 + 0 · j in the
corresponding Nyquist plot. An example showing such a plot can be found in Fig. 5.4a.
Here, the dotted line indicates the part of the frequency response corresponding to
ω ∈ [−∞; 0[.

Real Axis
-1 -0.5 0 0.5 1 1.5 2 2.5 3

Im
a
g
in
a
ry

A
x
is

-30

-20

-10

0

10

20

30

(a) Critical point defined at +1 + 0 · j
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(b) Critical point defined at −1 + 0 · j

Figure 5.4. – Example for a nyquist plot

At this point, the Nyquist criterion can be utilized in order to determine, whether the
closed-loop is stable or unstable. The criterion states that, if the curve L (jω) is plotted
for ω ∈ [−∞; ∞[ and if the critical point +1 + 0 · j "lies completely outside this curve[,]
the system is stable; if not[,] it is unstable" [93, p. 136]. A more thorough treatise
on this criterion can e.g. be found in [75, pp. 433-434]. Application of the Nyquist
criterion on the example plot shown in Fig. 5.4a indicates that the closed loop is stable.
While the considerations of Nyquist et. al. in [93] define the critical point at +1 + 0 · j,
it can be often found in literature that the critical point lies at −1 + 0 · j (c.f. e.g. [75, pp.
433-434], [16, p. 302]). Though, a few exceptions (e.g. [23]) can be found, which use
the definition +1 + 0 · j. The reason for this is that often negative feedback is assumed
for the closed-loop shown in Fig. 5.3. This changes Eq. (5.1) to
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y =
L (s)

1 + L (s)
u, (5.3)

which directly leads to

1 + L (λi) = 0 (5.4)

for the closed-loop poles λi. Thus, the critical point lies at −1 + 0 · j in this case.
In order to suit the nomenclature commonly used in literature, the assessments in this
thesis also use the definition of the critical point located at −1 + 0 · j. As the feedback
is still positive, if the cut up loop is closed again (c.f. Fig. 5.3), the frequency response
of L̃ (jω) = −L (jω) is plotted for ω ∈ [−∞; ∞[. Thus, L̃ (jω) corresponds to a point
reflection of L (jω) with respect to the origin. This can be also seen in Fig. 5.4b. The
statement of Fig. 5.4a and Fig. 5.4b remains the same despite of the point reflection. It
is interesting to note that Bode also used the definition of the critical point at −1 + 0 · j
for his specific application in [15], which he achieved by rotating the Nyquist plot
"through 180◦ from its normal position so that the critical point occurs at −1, 0 rather
than +1, 0." [15, p. 431].
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Figure 5.5. – Example for a nichols plot with nichols diamonds for robust stability
assessment

Although robust stability margins in terms of gain and phase margin can generally
also be obtained from Nyquist plots [75, pp. 445-448], Nichols plots [92, pp. 179-186]
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of L̃ (jω) offer a more intuitive illustration in that matter. For that reason Nichols plots
are used for the robust stability assessments of the different controller configurations
in the remainder of this chapter.
In order to generate a Nichols plot, the frequency response L̃ (jω) with ω ∈ [0; ∞[
is plotted into a diagram showing magnitude versus phase. This corresponds to a
mapping of the frequency response L̃ (jω) of the Nyquist plot to polar coordinates in
combination with logarithmic scaling of magnitude. Therefore, Nichols plots are also
closely related to Bode plots [14] [75, pp. 246-248].
The nichols plot obtained from the frequency response shown in Fig. 5.4b can be found
in Fig. 5.5. Note also, that the critical point −1 + 0 · j is mapped to [−180◦ 0dB]1.
The phugoid frequency ω0,ph is marked by means of a black circle on the frequency
response curve and a black diamond indicates the estimated frequency of first wing-
bending mode ωwb,1. Phase margin Φm and gain margin Gain Margin (GM) can be
directly obtained from the plot as shown in Fig. 5.5.

GM [dB] Φm [◦] Appearance
ω ≥ ω0,ph [−6; 6] [−35; 35] black, solid

Nominal conditions
ω < ω0,ph [−4.5; 3.5] [−27.5; 27.5] black, dashed-dotted

Nominal conditions
ω ≥ ω0,ph

[−3; 3] [−22.5; 22.5] grey, solidaerodynamic uncertainty
assessment
ω < ω0,ph

[−2.25; 2.25] [−15; 15] grey, dashed-dottedaerodynamic uncertainty
assessment

Table 5.1. – Definition of the edges defining the nichols diamonds in dependence of
considered frequency ω and type of assessment

Furthermore, Nichols plots offer a illustrative way to define exclusion regions around
the critical point, which indicate weak robust stability of the closed-loop [8, p. 35].
These exclusion regions are defined by means of so called Nichols diamonds, which
can also be found in Fig. 5.5. For a certain controller configuration it applies that
the frequency response L̃ (jω) should not cross the exclusion area as an acceptance
criterion. Different nichols diamonds are considered in dependence of considered
frequency ω and type of assessment. These are summarized in Table 5.1. For the
assessments made in this thesis mainly the robustness margins according to [86] are
used. Missing values are suitable interpolated using the definitions in [111, p. 26].
Thus, it can be seen in Fig. 5.5 that the exemplary controller configuration offers
sufficient robust stability margins. For the robustness assessments in the remainder of

1The critical point +1 + 0 · j would be mapped to [0◦ 0dB]
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this chapter it is required that the margins defined by means of the nichols diamond are
not violated considering the bottleneck cut. Note also that for informational purposes
the nichols diamond is also included in analyzes considering sensor cuts, although it
is not required by [111, pp. 25-27] that certain margins have to be fulfilled here.
Moreover, it is demanded in [111, p. 27] that flexible modes of the aircraft offer a
minimum gain margin of 8dB and a minimum phase margin of 60◦. It was already
mentioned above that the structural mode model according to Section 2.7 is not
considered for the robust stability assessments in this thesis. Although, in order to
provide a preliminary assessment with regard to robust stability of flexible modes,
for every controller configuration the bottleneck cut is also investigated utilizing the
enhanced aircraft model, where the structural mode is activated. These assessments
are carried out for one exemplary envelope point.
Besides gain margin GM and phase margin Φm, also Time Delay Margin (TDM) is
determined for the controller assessments made in this thesis. Being closely related
to the phase margin Φm, TDM directly indicates, how much delay is tolerable at
the considered cut position before the closed-loop is rendered unstable. As already
stated, TDM is calculated from phase margin Φm in combination with gain crossover
frequency ωgc, which is also marked in Fig. 5.5. This results in [8, p. 32]

TDM =
Φm

ωgc
. (5.5)

5.1.2. Performance

Robust stability assessments represent one important pillar of the investigations on
the controller designs made in this thesis. The other pillar is analysis of the controller
performance by means of linear and nonlinear simulations.
At first, step responses of the controllers are assessed using both the basic (linear
and nonlinear) and the enhanced aircraft model (nonlinear). Fig. 5.6 shows a step in
command angle of attack αcmd at t = 1s. Furthermore, the desired responses αre f for
both the standalone L1 adaptive controller and the remaining controllers are depicted.
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Figure 5.6. – Step maneuver used for performance assessments containing angle of attack
command αcmd, reference angle of attack αre f to be tracked by the controllers
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Figure 5.7. – Example maneuver used for performance assessments containing angle of
attack command αcmd, reference angle of attack αre f to be tracked by the
controllers and resulting angle of attack α, elevator command ηcmd and
elevator command rate η̇cmd

The reason for using two different reference signals becomes obvious when considering
a more complex maneuver. This is shown in Fig. 5.7. In addition to angle of attack
α, also the controller command ηcmd and the accompanying first derivation η̇cmd, i.e.
commanded elevator rate, are presented. The limits of the actuator are also marked
thereby. It can be seen that, especially in case αcmd = −10◦, the reference signals αre f
differ from each other. The reason for this is the rate limiting, which is part of the DPI
baseline controller included in the reference model. Rate limiting within the control
law is not present for the standalone L1 adaptive controller and its reference model.
This assumption would appear to be confirmed by Fig. 5.8, in which the inherent rate
limiting is deactivated for the DPI baseline controller and both αre f are practically
matching.

In order to assure comparability throughout this thesis and also in order to not
exceed the limits of this work, one exemplary maneuver is considered for all controller
configurations. This maneuver is performed using nonlinear simulations in this chapter
at first considering the basic and the enhanced aircraft model set up with light and
severe turbulence under nominal conditions. Thereby, the sensor models are adjusted
according to Table 2.6. After that, performance considering a CG-shift of 5% for
the basic and 2% for the enhanced aircraft model is investigated. Furthermore, this
maneuver is also used for the assessments shown in Chapter 6.
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Figure 5.8. – Example maneuver used for performance assessments containing angle of
attack command αcmd, reference angle of attack αre f (DPI rate limit
deactivated) to be tracked by the controllers and resulting angle of attack α,
elevator command ηcmd and elevator command rate η̇cmd

With the objective of quantifying the controller performances, certain metrics are
calculated additionally. This further enhances comparability of the results. In order to
assess tracking with regard to the reference model, angle of attack α is compared to
αre f utilizing the L2 and L∞ norms according to [120]

ML2 =
∥∥α (t)− αre f (t)

∥∥
L2

=

√∫ t f

t0

(
α (t)− αre f

)2 dt (5.6a)

ML∞ =
∥∥α (t)− αre f (t)

∥∥
L∞

= max
t∈[t0,t f ]

∣∣α (t)− αre f (t)
∣∣ . (5.6b)

ML∞ thereby measures the maximum value of the control error, whereas ML2 is a
measure for its energy. The L2 norm is also utilized to assess the demanded actuator
activity by means of

ML2,act = ‖η̇cmd‖L2
=

√∫ t f

t0

η̇cmd
2 dt, (5.7)

where η̇cmd is the commanded elevator deflection rate. It holds for all metrics during
comparisons that the performance is better, if the metric value is smaller. The metrics
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are mainly used in Section 6.2, where comparisons between the proposed control laws
presented in Chapter 4 are drawn.

5.1.3. Closed-loop poles

Besides performance and robust stability investigations, it has to be verified initially
that the desired dynamic behavior of the aircraft is set up by the controller. This can
be assessed by means of closed-loop linearizations and the corresponding poles of the
closed-loop transfer functions of commanded angle of attack αcmd to measurement α.
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Figure 5.9. – Model utilized to determine transfer function of αcmd → α for the basic
aircraft model
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Figure 5.10. – Model utilized to determine transfer function of αcmd → α for the enhanced
aircraft model

In this regard, numerical linearizations are performed using the closed-loops Fig. 5.9
for the basic and Fig. 5.10 for the enhanced aircraft. It has to be noted that turbulence,
structural mode and sensor models are left out for this evaluation as it was already
shown in Section 5.1.1 for the robustness assessments.
During the process of linearization, the discrete-time transfer functions of controller
and filters are implicitly converted to their continuous-time representations using
the bilinear transformation, which was introduced in Section 3.3. That is, because
the investigation with regard to system poles are chosen to be performed in the
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frequency domain. In order to be able to analyze the transfer function without
considering the uncertainty stemming from the discrete-time implementation and the
necessary conversions to continuous-time, also continuous-time implementations of
the controllers were generated.
Thus, four different linearizations are calculated for every controller utilizing basic
and enhanced aircraft model with accompanying filters on the one hand, discrete-time
and continuous-time implementations of controller and filters on the other hand. The
resulting poles are presented for one exemplary envelope point, which is V0 = 154.94 m

s
and h0 = 5000m, in order to not exceed the frame of this work. Furthermore, the system
poles are summarized in tables rather than complex plane diagrams due to the number
of system poles and the broad range of their frequencies.

5.2. Analyses of control laws

After the methodology of assessments was introduced in the last section, the remainder
of this chapter focuses on the analyses of the control laws designed in Chapter 4 with
regard to performance, robust stability and closed-loop system poles. The simulation
results for the DPI baseline controller are summarized in Section 5.2.1.
Section 5.2.2 features the L1 Adaptive Augmentations, which includes both the DPI
(Closed-Loop) and the Plant Augmentation architectures. Robust stability assessments
here prove the beneficial effect of the hedging technique, which was proposed in
Section 4.2, on gain and phase margin with regard to the bottleneck cut.
Next to that, simulation results of the ∆q̇ Compensation Law are summarized and dis-
cussed in Section 5.2.3. At last, Section 5.2.4 shows investigations using the standalone
L1 adaptive controller with Eigenstructure Assignment, at which the closed-loop poles
gained at an exemplary envelope point show its ability to precisely place system poles.

5.2.1. Baseline controller

In order to serve as a reference for the evaluations of the adaptive control laws, the
DPI baseline controller is analyzed first.
The dynamic behavior of the aircraft is initially analyzed by means of linearizations of
the closed-loop containing both aircraft and baseline controller. For the basic aircraft
configuration the results are shown in Table A.1 for the discrete-time and in Table A.2
for the continuous-time controller implementation.
As it was stated before, the linearizations are performed exemplarily for the envelope
point defined by V0 = 154.94m

s and h0 = 5000m. The corresponding desired natural
frequency for the short-period at this envelope point can be determined as ω0,sp,des =
3.84 rad

s using Table 4.1. The relative damping is uniformly chosen as ζsp,des = 0.95.
Exactly these values can be found in both Table A.1 and Table A.2 for the complex
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conjugate pole pair 5 and 6. This confirms that the gain design methodology introduced
in Section 4.1.1 works properly for the control problem at hand.
Likewise, the system poles are determined for the enhanced aircraft configuration.
The results can be found in Table A.3 for the discrete-time and in Table A.4 for the
continuous-time controller implementation. Exact matching of the desired location
of the short-period can be determined considering again the complex conjugate pole
pair 5 and 6 for the continuous-time implementation, whereas slight deviations can
be detected considering the discrete-time controller. The resulting short-period here
lies at ω0,sp = 3.09 rad

s with a relative damping of ζsp = 0.84. In this case, the differences
stem from inaccuracies caused by the conversion of the discrete-time filter transfer
functions back to continuous-time.

5.2.1.1. Linear robust stability
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Figure 5.11. – Nichols plot for robust stability assessment of baseline controller at
envelope points according to Table 2.2 generated for ηcmd (bottleneck) loop
cut (basic aircraft model)

As it was shown in Section 5.1.1, the robust stability properties of the DPI baseline
control law can be analyzed by means of nichols plots of open-loop transfer functions
determined at different cuts of the closed-loop. These are the bottleneck cut at the
commanded elevator deflection ηcmd upstream the actuator I© and the sensor cuts for
angle of attack α and pitch rate q II© both pictured in Fig. 5.1 and Fig. 5.2 for basic
and enhanced aircraft model, respectively. In terms of flight control certification, the
most important robustness assessment is the one performed for the bottleneck cut [111,
pp. 25-27]. Although, investigations w.r.t. sensor cuts are also provided as additional
information in this thesis.
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Table 5.2. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of baseline controller at envelope
points according to Table 2.2 generated for ηcmd (bottleneck) loop cut (basic
aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 16.28 98.00 3.31 0.517 3.31

−∞ -209.53 1.83 -1.383 3.31

110.32 16.12 102.75 0.72 0.527 3.42
−∞ -207.41 2.12 -1.312 3.42

117.75 16.07 98.34 0.68 0.544 3.49
−∞ -206.57 2.39 -1.256 3.49

125.19 15.97 95.37 0.66 0.571 3.54
−∞ -209.07 2.69 -1.206 3.54

132.63 15.90 92.78 0.65 0.628 3.50
−∞ -215.31 3.06 -1.167 3.50

140.07 15.86 90.47 0.64 2.464 0.64
−∞ -269.53 0.64 -7.341 0.64

147.50 15.84 88.44 0.63 2.445 0.63
−∞ -271.56 0.63 -7.508 0.63

154.94 15.85 86.63 0.62 2.424 0.62
−∞ -273.37 0.62 -7.650 0.62

162.38 15.87 84.99 0.62 2.406 0.62
−∞ -275.01 0.62 -7.786 0.62

169.81 15.91 83.49 0.61 2.389 0.61
−∞ -276.51 0.61 -7.913 0.61

177.25 15.97 82.11 0.60 2.373 0.60
−∞ -277.89 0.60 -8.031 0.60

184.69 16.05 80.85 0.60 2.358 0.60
−∞ -279.15 0.60 -8.142 0.60

192.13 16.15 79.77 0.59 2.350 0.59
−∞ -280.23 0.59 -8.255 0.59

199.56 16.25 78.81 0.59 2.335 0.59
−∞ -281.19 0.59 -8.333 0.59

207.00 16.36 77.91 0.59 2.322 0.59
−∞ -282.09 0.59 -8.409 0.59
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Fig. 5.11 contains nichols plots generated for different envelope points according to
Table 2.2 for the combination of DPI controller and basic aircraft model. The frequency
responses clearly indicate sufficient stability margins, i.e. none of curves is crossing the
nichols diamond, where the black dashed-dotted diamond corresponds to frequencies
ω < ω0,ph and the outermost black solid diamond is valid for ω ≥ ω0,ph (c.f. Table 5.1).
This is also confirmed by Table 5.2, which contains gain margins GM, besides phase
margins Φm and time-delay margins TDM with their corresponding crossover frequen-
cies ωgc,Φ and ωgc,TDM for the different envelope points. It can be seen that the gain
margin remains approximately constant at ≈ 16db and the phase margin Φm results
between 77.91◦ and 98◦. According to Table 5.1 a phase margin of 35◦ and a gain
margin of 6dB are required here.
With regard to the determined TDM a rapid increase can be detected between the
envelope points corresponding to V0,5 = 132.63m

s and V0,6 = 140.07m
s , where TDM

changes from 0.628s to 2.464s. The reason for this is the loop contained in the frequency
response, which can clearly be seen in Fig. 5.11 for the envelope points V0,1 = 102.88 m

s to
V0,11 = 177.25 m

s . For low velocities up to V0,5 = 132.63 m
s this loop is crossed by the 0dB-

line. This results in three different phase values, which have to be considered for the
determination of TDM according to Eq. (5.5) in dependence of the three corresponding
gain crossover frequencies ωgc,TDM. The smallest result is then the critical TDM value.
It should be noted that this minimum TDM value does not necessarily correspond
to the crossing point of the 0dB-line, where the phase margin is determined, i.e. the
crossing point having the shortest distance to the critical point. This can be seen for
example at V0,5 = 132.63m

s in Table 5.2, where ωgc,TDM 6= ωgc,Φ. For V0,6 = 140.07m
s

the 0dB-line crossing around ωgc ≈ 3.5 rad
s , at which the minimum TDM is detected

for lower velocities, does not exist, because the 0dB-line does not cross the loop here.
Thus, only one gain crossover point exists, at which the frequency is ωgc = 0.64 rad

s .
As the gain crossover frequency ωgc appears as divisor in Eq. (5.5), smaller values of
ωgc lead to higher TDM values. This explains the rapid increase of TDM between the
envelope points corresponding to V0,5 = 132.63m

s and V0,6 = 140.07m
s .

Moreover, Table 5.2 also includes the opposite margins. Especially for unstable aircraft
configurations (c.f. [86]) it is important to consider the opposite gain margin, because
the frequency response also crosses the −180◦-line on the upper side of the nichols
diamond in this case. Thus, an additional gain margin exists, which has a negative
dB-value, i.e. its magnitude lies between 0 and 1. For informational purposes, such
additional margins are also determined for phase and time delay of the open-loop
frequency response, which indicate, how much delay can be removed from the closed-
loop, until the system response becomes unstable. It should be noted that these are
rather theoretical values, in particular, if they are higher than the actual, total delay
contained in the closed-loop.
The corresponding assessment for the enhanced aircraft model configuration can be
found in Fig. 5.12 for the nichols plot and in Table 5.3 for the robust stability properties,
respectively. Still, the required robust stability margins are fulfilled, although gain and
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Figure 5.12. – Nichols plot for robust stability assessment of baseline controller at
envelope points according to Table 2.2 generated for ηcmd (bottleneck) loop
cut (enhanced aircraft model)

phase margins are decreased in comparison to the basic aircraft configuration. This is
mainly due to the introduced filters for the enhanced configuration, which cause phase
loss. Furthermore, Fig. 5.13 shows the same assessment for the exemplary envelope
point of V0 = 154.94 m

s and h0 = 5000m, where the structural mode model according to
Section 2.7 is activated. It can be clearly seen that for the frequency range upwards
of the first wing bending mode, which is modeled at ω0,s = 6.05Hz ≡ 38.01 rad

s and
is marked by the small diamond, a margin of ≈ 65dB can be detected. Thus, the
closed-loop offers sufficient robust stability margins with regard to the flexible mode,
where 8dB margin are demanded.
Besides bottleneck cut, also the sensor cuts are investigated for the DPI baseline
controller. For both aircraft model configurations sufficient stability margins can be
observed for the sensor cuts, where the resulting nichols plots can be found in Fig. 5.14
and Fig. 5.15 for the α-cut and in Fig. 5.16 and Fig. 5.17 for the q-cut, respectively. The
corresponding tabulated values can be found in Table A.25, Table A.59 for the α-cut
and in Table A.26, Table A.60 for the q-cut. The tables can be found in Appendix A.5.2
and Appendix A.6.
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Table 5.3. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of baseline controller at envelope
points according to Table 2.2 generated for ηcmd (bottleneck) loop cut
(enhanced aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 17.15 77.99 0.45 3.031 0.45

−∞ -282.01 0.45 -10.960 0.45

110.32 18.06 75.01 0.43 3.014 0.43
−∞ -284.99 0.43 -11.450 0.43

117.75 15.88 72.63 0.42 3.003 0.42
−∞ -287.37 0.42 -11.881 0.42

125.19 13.15 70.85 0.42 2.971 0.42
−∞ -289.15 0.42 -12.124 0.42

132.63 11.55 69.35 0.41 2.937 0.41
−∞ -290.65 0.41 -12.308 0.41

140.07 10.46 68.07 0.41 2.900 0.41
−∞ -291.93 0.41 -12.435 0.41

147.50 9.68 67.00 0.41 2.863 0.41
−∞ -293.00 0.41 -12.520 0.41

154.94 9.13 66.12 0.41 2.827 0.41
−∞ -293.88 0.41 -12.565 0.41

162.38 8.69 65.41 0.41 2.792 0.41
−∞ -294.59 0.41 -12.575 0.41

169.81 8.36 64.82 0.41 2.758 0.41
−∞ -295.18 0.41 -12.561 0.41

177.25 8.12 64.39 0.41 2.724 0.41
−∞ -295.61 0.41 -12.505 0.41

184.69 7.94 63.94 0.41 2.697 0.41
−∞ -296.06 0.41 -12.488 0.41

192.13 7.82 63.99 0.41 2.704 0.41
−∞ -296.01 0.41 -12.508 0.41

199.56 7.74 63.75 0.42 2.628 0.42
−∞ -296.25 0.42 -12.212 0.42

207.00 7.69 63.66 0.43 2.588 0.43
−∞ -296.34 0.43 -12.049 0.43
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Figure 5.13. – Nichols plot for robust stability assessment of baseline controller at
V = 154.94 m

s generated for ηcmd (bottleneck) loop cut (enhanced aircraft
model, activated structural mode)
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Figure 5.14. – Nichols plot for robust stability assessment of baseline controller at
envelope points according to Table 2.2 generated for α loop cut (basic
aircraft model)
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Figure 5.15. – Nichols plot for robust stability assessment of baseline controller at
envelope points according to Table 2.2 generated for α loop cut (enhanced
aircraft model)
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Figure 5.16. – Nichols plot for robust stability assessment of baseline controller at
envelope points according to Table 2.2 generated for q loop cut (basic
aircraft model)
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Figure 5.17. – Nichols plot for robust stability assessment of baseline controller at
envelope points according to Table 2.2 generated for q loop cut (enhanced
aircraft model)

5.2.1.2. Performance

In the next step, the performance of the DPI baseline controller is investigated by
means of step responses and the simulation of an exemplary maneuver.
The first step response is shown in Fig. 5.18 for all envelope points according to
Table 2.2, where the controller is simulated in combination with the basic aircraft
model. In this case, the flight dynamics within the basic aircraft model are described
by the linear short-period approximation, which can be found in Eq. (4.23). Although,
delay and actuator dynamics are still included. The response shows good performance
and precise tracking of the commanded angle of attack αcmd. One can also observe that
the control effectiveness changes rapidly between the envelope points corresponding
to V0,12 = 184.69m

s and V0,13 = 192.13m
s , which results in a difference of demanded

elevator deflection ηcmd of more than 1◦. The reason for this was already discussed in
Section 4.1.1.
In addition to that, Fig. 5.19 shows a long-term response of the closed-loop, where the
short-period approximation is replaced by the linear “4x4” aircraft model, which can
be found in Eq. (2.42). Again, delay and actuator dynamics are included as well. It
can be seen that the phugoid slightly disturbs the control task, nevertheless tracking of
the commanded angle of attack αcmd is still achieved considering large time scale. The
same system response for short time scale is shown in Fig. A.73, which is included in
Appendix A.7.2.
Fig. 5.20 shows the step response, where the nonlinear, basic aircraft model is applied.
Good tracking performance is achieved for the envelope points up to V0,12 = 184.69 m

s ,
whereas the nonlinear character of the aircraft model can clearly be observed between
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Figure 5.18. – αcmd step responses of basic, linear aircraft model containing only the
short-period approximation and baseline controller at envelope points
according to Table 2.2
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Figure 5.19. – αcmd step responses of basic, linear aircraft model and baseline controller at
envelope points according to Table 2.2 for large timescale
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Figure 5.20. – αcmd step responses of basic, nonlinear aircraft model and baseline
controller at envelope points according to Table 2.2
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Figure 5.21. – αcmd step responses of basic, nonlinear aircraft model and baseline
controller at envelope points according to Table 2.2 for large timescale
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the envelope points V0,13 = 192.13m
s and V0,15 = 207m

s . Here, the amplification of the
feedforward gain |hDPI | is smaller than required, which stems from the rapid change
of control effectiveness in the linear aircraft models starting at V0,13 = 192.13 m

s , which
was already shown in the step response Fig. 5.18. This leads to undershoot. The
resulting control error is then compensated by the integral portion of the control law.
Thus, this issue can also be considered as potential for improvement to be addressed
by the adaptive control methods investigated in the remainder of this chapter.
The corresponding step response to Fig. 5.20 for large time scale can be found in
Fig. 5.21, where the effect of the phugoid can be observed. Furthermore, the nonlinear
step responses of the DPI baseline controller in combination with the enhanced aircraft
model configuration can be found in Fig. A.74 and Fig. A.75 in Appendix A.7.2.
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Figure 5.22. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by basic, nonlinear aircraft model with
baseline controller starting at V0 = 154.94 m

s and h0 = 5000m

After investigations based on step responses, an exemplary maneuver is assessed in
the next step. Starting with the nonlinear, basic aircraft model, Fig. 5.22 contains the
resulting angle of attack α, demanded elevator deflection ηcmd and rate η̇cmd, as it
was already described in Section 5.1.2. The accompanying diagram Fig. 5.23 contains
the corresponding velocity V and altitude h resulting from the maneuver, where a
broad range of design envelope points according to Table 2.2 is covered. One can
see in Fig. 5.22 that angle of attack α approximately matches the one of the reference
model αre f , when αmax = 7◦ is commanded. For the αmin = −10◦ sections, a slight
deviation can be observed. This difference stems from the nonlinear character of the
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Figure 5.23. – Velocity V and altitude h for example maneuver performed by basic,
nonlinear aircraft model with baseline controller starting at V0 = 154.94 m

s
and h0 = 5000m
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Figure 5.24. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by basic, linear aircraft model with
baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
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aircraft model, which can be verified by means of the same maneuver performed by
the controller in combination with a linear model of the aircraft dynamics according to
Eq. (2.42). In this case perfect matching of α and αre f is achieved, which is shown in
Fig. 5.24.
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Figure 5.25. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with baseline controller starting at V0 = 154.94 m

s and h0 = 5000m

The same maneuver is simulated utilizing the enhanced aircraft model, where light
turbulence (probability of exceedance 10−2) is applied and the sensor models are
configured according to Table 2.6. In addition to turbulence and the more realistic
sensor models, also actuator backlash and the simple model of a structural mode
are added to the plant dynamics. Moreover, the filter chain, which is discussed in
Section 4.1.2, is now included in the controller. The result can be found in Fig. 5.25
for angle of attack α, demanded elevator deflection ηcmd and rate η̇cmd. Fig. 5.26
additionally shows velocity V and altitude h. Again, good matching with the reference
model can be detected for the sections, where αmax = 7◦ is commanded. In contrast
to that, the nonlinearity appearing for αmin = −10◦ generates large overshoot within
the system response. In comparison to the assessments using the basic aircraft model
shown in Fig. 5.22 this performance degradation can be explained with the increased
delay within the closed-loop induced by the filter chain (c.f. Section 4.1.2).
Furthermore, Fig. 5.27 shows a simulation result, where severe turbulence (probability
of exceedance 10−5) is applied. Despite the already discussed overshoot for the
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Figure 5.26. – Velocity V and altitude h for example maneuver performed by enhanced,
nonlinear aircraft model with baseline controller starting at V0 = 154.94 m

s
and h0 = 5000m
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Figure 5.27. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering severe turbulence
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αmin = −10◦ sections, the DPI baseline controller achieves good performance also
considering heavy turbulence.
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Figure 5.28. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by basic, nonlinear aircraft model with
baseline controller starting at V0 = 154.94 m

s and h0 = 5000m considering
CG-shift of 5% at t = 10s

At last, the controller performance is assessed considering rapid CG-shifts appearing
at t = 10s during the maneuver. The simulation results are compiled in Fig. 5.28 for the
basic aircraft model and in Fig. 5.29 for the enhanced aircraft model, where CG-shifts
of 5% (xCGre f ,CG = 0m) and 2% (xCGre f ,CG = 0.1035m) are applied, respectively. Note
that the nominal CG position is 0.3c̄ (xCGre f ,CG = 0.1725m), which was also discussed in
Section 2.1.1. It can be stated for both cases that the aircraft response exhibits large
overshoots and would not have satisfactory handling qualities anymore. Although, one
can observe that the oscillations are still stable for the considered CG-shifts. Thus, the
exemplary failure case of a rapid CG-shift leaves room for improvement with regard
to the controller performance. This issue is also addressed in the following sections,
where the adaptive control laws are investigated.

136



Analyses of control laws

Time t [s]
0 5 10 15 20 25 30

A
n
gl
e
of

A
tt
ac
k
α
[◦
]

-20

-10

0

10

αcmd

αref

α Baseline

Time t [s]
0 5 10 15 20 25 30

C
om

m
an

d
η
cm

d
[◦
]

-40

-20

0

20

40 ηcmd Baseline

Time t [s]
0 5 10 15 20 25 30R

at
e
C
om

m
an

d
η̇
cm

d
[◦
/s
]

-200

0

200
η̇cmd Baseline

Figure 5.29. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering CG-shift of 2% at t = 10s

5.2.2. L1 Adaptive Closed-Loop and Plant Augmentations

This section provides simulation assessments of the L1 Adaptive Augmentations
introduced in Section 4.2, which include both DPI Augmentation (Closed-Loop Aug-
mentation) and Plant Augmentation. It is one goal to present the performance benefit
gained though an augmentation of the DPI baseline controller, but also to highlight
the similarities of the results, which are obtained for both augmentation architectures.
Firstly, the closed-loop poles are analyzed considering an application of the DPI
Augmentation approach. The hedging term introduced in Section 4.2.2 is applied
here. Again, the linearizations are calculated for the envelope point corresponding to
V0 = 154.94m

s and h0 = 5000m. The expected natural frequency at this envelope point
is ω0,sp,des = 3.84 rad

s , where the relative damping should be ζsp,des = 0.95. Table A.5
and Table A.8 summarize the system poles resulting from a combination of basic
aircraft model and closed-loop augmented DPI controller, where the former uses the
discrete-time and the latter the continuous-time implementation of the controller. For
the continuous-time case, the short-period can be detected almost exactly at the desired
pole location, whereas for the linearization of the discrete-time implementation the
short-period poles are shifted onto the real axis, and thus generate two aperiodic
eigenmotions with λSP,1 = −3.49 and λSP,2 = −6.86. This deviation can be explained
through the fact that Euler’s method (c.f. Section 3.3) is applied to transform the
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short-period approximation within the state predictor to discrete-time. The application
of bilinear transformation would increase accuracy here, but leads to an algebraic
loop within the control law, because the resulting state space model contains a direct
feedthrough, which is not apparent in its continuous-time representation. This fact
was also already mentioned in Section 4.2.2. Note that one other possibility would be
to insert a delay of one discrete time step to resolve the algebraic loop. However, that
would mean that an additional 10ms time delay would have to be added within the
controller, which decreases accuracy with regard to closed-loop poles even further.

Moreover, it should be noted that Table A.5 contains a positive pole at 1.2 · 10−12, which
is assumed to be a numerical disturbance of an integrator pole lying in the origin of
the complex plane. In order to show that this pole is not relevant in terms of robust
stability, i.e. the magnitude of this pole is not growing, when inducing disturbances at
the bottleneck cut position, Table A.6 and Table A.7 contain the closed-loop poles for
the cases, where destabilizing, artificial gain and delay, which corresponds to phase
loss, are induced at ηcmd, respectively. It can be stated for both cases that the fast
poles (11/12 and 7/8) are moving across the imaginary axis leading to unstable system
dynamics. However, the real part of the pole 1.2 · 10−12 even decreases in both cases.

For the enhanced aircraft model configuration the resulting poles are summarized
in Table A.9 for the discrete-time and in Table A.10 for the continuous-time imple-
mentation of the L1 Augmented DPI controller. For the continuous-time case, the
short-period has a natural frequency of ω0,sp = 3.79 rad

s with a relative damping of
ζsp = 0.946, the discrete-time implementation results in ω0,sp = 3.86 rad

s with a relative
damping of ζsp = 0.796.

In the next step the closed-loop poles are analyzed for the Plant Augmentation ap-
proach. Also in this case, hedging as introduced in Section 4.2.3 is activated. Table A.11
and Table A.12 comprise the results gained utilizing the basic aircraft model for the
discrete-time and the continuous-time controller implementation, respectively. Again,
it can be observed for the discrete-time case that the short-period becomes aperiodic
with λSP,1 = −3.82 and λSP,2 = −6.9. The continuous-time implementation results
in ω0,sp = 3.91 rad

s with a relative damping of ζsp = 0.949, which points out good
matching in comparison to the desired values. It should also be highlighted that the
total number of system poles is lower for the Plant Augmentation approach compared
to the DPI Augmentation architecture. The reason for this is first, that it is not required
to rebuild the baseline controller within the state predictor for the Plant Augmentation
approach and second, that the state predictor can be further reduced by means of
applied hedging, which is also shown in Section 4.2.3.

At last, the closed-loop poles resulting from a combination of enhanced aircraft model,
L1 Plant Augmentation and DPI baseline controller can be found in Table A.13 for
the discrete-time and in Table A.14 for the continuous-time implementation of the
controller. It can be seen that the short-period has the properties ω0,sp = 3.85 rad

s and
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ζsp = 0.794 for the discrete-time implementation, the continuous-time implementation
results in ω0,sp = 3.91 rad

s and ζsp = 0.949.

5.2.2.1. Linear robust stability

It was stated before that the hedging terms introduced in Section 4.2.2 and Section 4.2.3
have a significant impact on the resulting robustness properties of the closed-loop,
where one of the L1 Adaptive Augmentations is applied. Thus, this section concentrates
on assessments with regard to the effect of the proposed hedging term, but also
provides comparisons between the DPI and Plant Augmentation architectures.
In order to highlight these comparisons, the robust stability assessments are firstly
performed considering the exemplary envelope point belonging to V0 = 154.94m

s and
h0 = 5000m. In Fig. 5.30 nichols plots of DPI and Plant Augmentation in combination
with baseline controller and basic aircraft model can be found for the bottleneck cut,
whereby in each case the plots are generated with and without hedging activated. In
addition to that, the nichols plot of the baseline controller at the same envelope point
is shown for the purpose of comparison. At first, it can be seen that the curves of
DPI and Plant Augmentation are approximately matching for the case with hedging.
Although, without hedging slight deviations can be detected for lower frequencies.
Furthermore, it can be observed that both augmentation approaches strongly benefit
from hedging, because the resulting curves with hedging have a larger distance to
the nichols diamond and the critical point compared to the cases without hedging.
More precisely, the frequency responses of the adaptive augmentations approximately
match the frequency response of the baseline controller for the case, where hedging
is activated. This also reflects in the robust stability properties shown in Table 5.4.
Both gain and phase margin of the adaptive augmentations decrease drastically in
comparison to the baseline controller, where hedging is not applied. With hedging the
phase margins are determined in the same range compared to the baseline controller,
whereas the gain margins can even be increased. It should also be noted that the TDM
significantly decreases without hedging, which is due to a considerable increase of
gain crossover frequency ωgc,TDM from 0.62 rad

s to 8.16 rad
s .

A similar comparison can be drawn for the case, where the enhanced aircraft model
configuration is utilized. The accompanying nichols plot can be found in Fig. 5.31
and it can be seen that also in this case the frequency responses of the adaptive
augmentations approximately match the one of the baseline controller, when hedging
is used. Although, the robust stability properties in Table 5.5 indicate that the difference
generated by the application of hedging is not as large as for the basic aircraft model
configuration. In this case, the phase margin without hedging is even higher compared
to the baseline controller. As for the basic aircraft model case, TDM drops without
hedging, since the gain crossover frequency ωgc,TDM increases.
The same assessment is carried out again in Fig. 5.32 with the difference that the
structural mode according to Section 2.7 is activated in this case. It can be seen that
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Figure 5.30. – Nichols plot for robust stability comparison of DPI and Plant Augmentation
with and without hedging at V = 154.94 m

s generated for ηcmd (bottleneck)
loop cut (basic aircraft model)

Table 5.4. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability comparison of DPI and Plant Augmentation with
and without hedging at V = 154.94 m

s generated for ηcmd (bottleneck) loop cut
(basic aircraft model)

Controller GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
Baseline 15.85 86.63 0.62 2.424 0.62

−∞ -273.37 0.62 -7.650 0.62

DPI Augmentation 19.27 87.23 0.62 2.451 0.62
−∞ -272.77 0.62 -7.664 0.62

DPI Augmentation 7.62 48.03 8.16 0.103 8.16
(no hedg.) −∞ -311.97 8.16 -0.667 8.16

Plant Augmentation 19.23 86.95 0.62 2.439 0.62
−∞ -273.05 0.62 -7.659 0.62

Plant Augmentation 7.53 46.95 8.24 0.099 8.24
(no hedg.) −∞ -313.05 8.24 -0.663 8.24
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Figure 5.31. – Nichols plot for robust stability comparison of DPI and Plant Augmentation
with and without hedging at V = 154.94 m

s generated for ηcmd (bottleneck)
loop cut (enhanced aircraft model)

Table 5.5. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability comparison of DPI and Plant Augmentation with
and without hedging at V = 154.94 m

s generated for ηcmd (bottleneck) loop cut
(enhanced aircraft model)

Controller GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
Baseline 9.13 66.12 0.41 2.827 0.41

−∞ -293.88 0.41 -12.565 0.41

DPI Augmentation 9.21 67.00 0.40 2.896 0.40
−∞ -293.00 0.40 -12.663 0.40

DPI Augmentation 7.91 78.66 2.04 0.672 2.04
(no hedg.) −∞ -281.34 2.04 -2.403 2.04

Plant Augmentation 9.20 66.94 0.40 2.893 0.40
−∞ -293.06 0.40 -12.666 0.40

Plant Augmentation 7.91 77.97 2.05 0.664 2.05
(no hedg.) −∞ -282.03 2.05 -2.401 2.05
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Figure 5.32. – Nichols plot for robust stability comparison of DPI and Plant Augmentation
with and without hedging at V = 154.94 m

s generated for ηcmd (bottleneck)
loop cut (enhanced aircraft model, activated structural mode)

the margins for frequencies upwards the first wing bending mode, which is marked by
the small diamond, are ≈ 38dB without and ≈ 36dB with hedging, respectively. That
means, the margins are reduced in comparison to the baseline controller configuration,
where ≈ 65dB can be measured. In any case, the required margin of 8dB for flexible
modes according to [111, p. 27] is fulfilled.
In order to consider the entire envelope according to Table 2.2, Table 5.6 contains a
summary of nichols plots and associated tables containing robust stability properties
for all combinations of adaptive augmentations, hedging activation cases and aircraft
models. Considering the DPI Augmentation approach, it can be seen in Fig. A.18 and
Fig. A.19 included in Appendix A.5.3 for the basic aircraft model that the robustness
margins are fulfilled for the entire envelope regardless of the hedging activation case.
The same observation can be made for the enhanced aircraft model configuration, as
it is shown in Fig. A.43 and Fig. A.44, which can be found in Appendix A.6.3. These
statements can be fully analogously applied to the Plant Augmentation, the robustness
assessments can also be extracted from Table 5.6.
In addition to the important bottleneck cut, this section also investigates robust stability
with regard to the sensor cuts. Starting with angle of attack α, the resulting frequency
responses for the adaptive augmentation and the baseline controller can be found in
Fig. 5.33 for the basic aircraft model. Tabulated results with regard to margins can
be found in Table A.23, which is included in Appendix A.5.1. One can observe that
the curves for both augmentations are closer to the critical point, whereby the one
belonging to the DPI Augmentation is slightly closer. On the other hand hedging
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Table 5.6. – Summary of robust stability assessments of L1 Adaptive Augmentations with
regard to the ηcmd bottleneck cut for the entire envelope according to Table 2.2

Basic aircraft model Enhanced aircraft model
DPI Augmentation

Hedging Fig. A.18 Fig. A.43
Table A.27 Table A.61

No Hedging Fig. A.19 Fig. A.44
Table A.28 Table A.62

Plant Augmentation

Hedging Fig. A.24 Fig. A.49
Table A.33 Table A.67

No Hedging Fig. A.25 Fig. A.50
Table A.34 Table A.68

does not have any effect on the frequency response here, the curves are matching
for both hedging cases. A similar statement can be made for the enhanced aircraft
configuration, where the results are shown in Fig. 5.34 and Table A.57. As for the
bottleneck cut, the results covering the entire envelope are summarized in Table 5.7.
Note that the nichols diamond is only included for informational purposes here and
does not state any requirements with regard to stability margins.
At last the pitch rate q sensor cut is investigated. For both aircraft models the results
can be found in Fig. 5.35 and Fig. 5.36, where the tabulated values are to be found in
Table A.24 and Table A.58. As it was already shown for the α sensor cut, the frequency
responses of the adaptive augmentation are closer to the critical point compared to the
baseline controller. Furthermore, both frequency responses form a loop around the
critical point, which is not the case for the baseline controller configuration. In case of
a loop around the critical point it can be stated that the closed-loop would destabilize,
if the concerned sensor fails completely. Thus, the pitch rate sensor would have to be
fail-safe for an L1 augmented DPI controller here. Although, in case of an open-loop
unstable aircraft configuration, fail-safety of sensor measurements would also be a
requirement without any adaptive augmentation. The statements formulated for the
robust stability assessments at the pitch rate q cut hold for the entire envelope, the
results can be found in Table 5.8.
One can conclude that the L1 Adaptive Augmentations can fulfill the required robust
stability margins with regard to the bottleneck cut. Moreover, the robustness properties
are, thanks to the proposed hedging term, on the same level as for the baseline
controller. This holds for both adaptive augmentation approaches. On the downside,
the adaptive augmentations are more demanding with regard to sensor precision,
which is directly connected to the gain margin, and fail-safety. Furthermore, the
controllers are much more sensitive to unexpected delays within the sensor channels.
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Figure 5.33. – Nichols plot for robust stability comparison of DPI and Plant Augmentation
with and without hedging at V = 154.94 m

s generated for α loop cut (basic
aircraft model)
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Figure 5.34. – Nichols plot for robust stability comparison of DPI and Plant Augmentation
with and without hedging at V = 154.94 m

s generated for α loop cut
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Figure 5.35. – Nichols plot for robust stability comparison of DPI and Plant Augmentation
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Table 5.7. – Summary of robust stability assessments of L1 Adaptive Augmentations with
regard to the angle of attack α sensor cut for the entire envelope according to
Table 2.2

Basic aircraft model Enhanced aircraft model
DPI Augmentation

Hedging Fig. A.20 Fig. A.45
Table A.29 Table A.63

No Hedging Fig. A.21 Fig. A.46
Table A.30 Table A.64

Plant Augmentation

Hedging Fig. A.26 Fig. A.51
Table A.35 Table A.69

No Hedging Fig. A.27 Fig. A.52
Table A.36 Table A.70

Table 5.8. – Summary of robust stability assessments of L1 Adaptive Augmentations with
regard to the pitch rate q sensor cut for the entire envelope according to
Table 2.2

Basic aircraft model Enhanced aircraft model
DPI Augmentation

Hedging Fig. A.22 Fig. A.47
Table A.31 Table A.65

No Hedging Fig. A.23 Fig. A.48
Table A.32 Table A.66

Plant Augmentation

Hedging Fig. A.28 Fig. A.53
Table A.37 Table A.71

No Hedging Fig. A.29 Fig. A.54
Table A.38 Table A.72
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5.2.2.2. Simulation based robust stability assessment

The section above presented an assessment of the proposed L1 Adaptive Augmenta-
tions, where linearized open-loop transfer functions were utilized to investigate the
robust stability properties of the resulting closed-loops. Thus, the analyzes were carried
out in the frequency-domain. Robust stability is also the main topic of this section,
however, the assessments are based on simulations of the closed-loops (time-domain)
containing the nonlinear aircraft model besides baseline controller and adaptive aug-
mentation. This method can also be used to assess nonlinear control laws [136]. To the
best knowledge of the author, there is yet no generic way found to calculate robust
stability properties of nonlinear, complex systems like TDM or gain margin in a general
way, as it can be done for linear representations of the systems (c.f. Section 5.1.1).

In order to determine TDM in the time-domain, artificial time delay is inserted into
the closed-loop. For example, if robust stability with regard to the bottleneck should
be investigated, the delay is placed upstream the actuator (ηcmd). The closed-loop
is initialized in a trimmed state and a slight deviation (1%) from the elevator trim
deflection η0 is commanded by means of ηcmd during simulation. In the next step, the
artificial time delay is increased systematically, until the system response with regard
to angle of attack α exhibits undamped oscillations. The determined time delay is then
equal to the TDM. This idea is also described in [140]. A drawback of this method
is, that it leads to a significant simulation effort, whereas for the frequency-domain
assessment only one linearization has to be calculated.

The gain margin can be determined fully analogously by inserting an artificial gain
instead of a time delay at the desired position within the closed-loop. The trim state
of the closed-loop is then also perturbed and the gain margin can be determined by
systematic increase of the artificial gain, until undamped oscillations in the angle of
attack response are detected.

The described simulation based assessment is exemplarily applied to the bottleneck
(upstream the actuator) for the closed-loop containing basic aircraft model, DPI baseline
controller and DPI Augmentation. Here, the envelope point defined by V0 = 132.63m

s
and h0 = 5000m is considered. Furthermore, both cases with and without the hedging
term within the DPI Augmentation are shown. The results can be found in Table 5.9.
For the sake of comparison, the results of the corresponding frequency-domain ana-
lyzes are included as well. It can be seen that the determined gain margins of both
assessments approximately match for the different controller configurations, although
the values are slightly more conservative. The same observation can be made with
regard to the TDM. In addition to that, also the gain crossover frequency ωgc,TDM
can be determined in the time-domain, because it directly corresponds to the natural
frequency of the undamped oscillation, which appears in the angle of attack α system
response during the TDM determination. Also for ωgc,TDM good matching can be
observed to the results gained from the frequency-domain assessments. By means of a
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Figure 5.37. – Nichols plot for robust stability assessment of DPI Augmentation with and
without hedging at V = 132.63 m

s in comparison to baseline controller
generated for ηcmd (bottleneck) loop cut (basic aircraft model)

Table 5.9. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM determined through linear and nonlinear methods for robust stability
comparison of DPI Augmentation with and without hedging and baseline
controller at V = 132.63 m

s generated for ηcmd (bottleneck) loop cut (basic
aircraft model)

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
Frequency-domain

Baseline 15.90 92.78 0.65 0.628 3.50
−∞ -215.31 3.06 -1.167 3.50

DPI Augmentation 19.45 93.60 0.65 0.672 3.37
−∞ -220.09 3.14 -1.191 3.37

DPI Augmentation 7.67 47.14 7.94 0.104 7.94
(no hedg.) −∞ -312.86 7.94 -0.688 7.94

Time-domain

Baseline 15.02 122.1 3.49 0.61 3.49
- - - - -

DPI Augmentation 19.62 125.56 3.37 0.65 3.37
- - - - -

DPI Augmentation 6.98 40.08 7.77 0.09 7.77
(no hedg.) - - - - -
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rearrangement of Eq. (5.5) shown in Section 5.1.1, it is possible to calculate a phase
margin using the results from the time-domain simulations:

Φm = TDM ·ωgc (5.8)

The resulting phase margins Φm can also be found in Table 5.9. For the DPI Aug-
mentation without hedging, the phase margin can be determined as Φm = 40.08◦ by
means of Eq. (5.8). Compared to Φm = 47.14◦ from the frequency-domain assessments,
this result corresponds to an estimation error of ≈ 15% and is more conservative.
However, for baseline controller and DPI Augmentation with hedging, this estimation
indicates a much larger phase margin than expected considering the frequency-domain
results. The reason for this that three different gain crossover frequencies ωgc exist
for these cases, which can be seen in Fig. 5.37. This is due to a loop within the
frequency response, which is also discussed in Section 5.2.2.1. Thus, ωgc,TDM and
ωgc,Φ do not match for baseline controller and DPI Augmentation with hedging in the
frequency-domain, as it can be seen in Table 5.9. On the other hand, only the phase
margin corresponding to the minimum TDM value can be found utilizing time-domain
methods. For example, for the baseline controller, the corresponding TDM to the phase
margin Φm = 92.78◦ results in TDM = 2.49s according to Eq. (5.5) and considering
ωgc,Φ = 0.65 rad

s , which is much higher than the minimum TDM = 0.628s. In a nutshell,
it can be stated that it is not guaranteed to detect the minimum phase margin using the
discussed time-domain assessment, although it is possible to estimate the minimum
TDM.

In the time-domain assessments shown above, either the artificial gain or the artificial
delay were varied, in order to determine the robust stability properties of the closed-
loop. However, it is also possible to vary both values at the same time. This way,
the critical combinations of gain and time delay can be determined. With regard
to the implementation, the artificial gain is firstly set to a fixed value and the TDM
is determined by means of the method described above. Figuratively speaking this
corresponds to a shift of the frequency response upwards in the nichols plot Fig. 5.37
by means of the artificial gain first, then the artificial time delay is steadily increased
shifting the frequency response to the left, until it crosses the critical point. The
resulting TDMs can be plotted as a function of gain, which generates a curve defining
the boundary between stability and instability for the considered closed-loop in the
space spanned by time delay and gain.

Such diagrams can be found in Fig. 5.38 and Fig. 5.39 for baseline controller and DPI
Augmentation, where both hedging cases are considered. Here, the aircraft is also
trimmed according to the envelope point defined by V0 = 132.63m

s and h0 = 5000m.
Again, it can be seen that the resulting curves for baseline controller and DPI controller
with hedging are approximately matching, which confirms the results of the nichols
plots shown in Fig. 5.37. With regard to the corner points, the determined TDMs match

149



Controller Assessments

Gain [db]
0 2 4 6 8 10 12 14 16 18 20

T
im

e 
D

el
ay

 [s
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Unstable

Exclusion area

Baseline
DPI Augmentation
BL Minimum Robustness Margin
L1 Minimum Robustness Margin

Figure 5.38. – Plot of TDM over gain for nonlinear robust stability comparison of DPI
Augmentation with hedging and baseline controller at V = 132.63 m
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generated for ηcmd (bottleneck) loop cut (basic aircraft model)
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Figure 5.39. – Plot of TDM over gain for nonlinear robust stability comparison of DPI
Augmentation without hedging and baseline controller at V = 132.63 m
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the ones shown in Table 5.9, however the resulting gain margin is more conservative in
the diagrams.
Another advantage of the proposed visualization is that combined, minimum robust-
ness margins can be directly taken into account. These minimum robustness margins
mark an exclusion area, which should not be crossed by the resulting curves. In that
matter this exclusion area is then very similar to a nichols diamond. Thus, the bottom
right quarter of the outermost nichols diamond, which is marked in red in Fig. 5.37, is
projected into the diagram utilizing Eq. (5.5) for this purpose. For this calculation the
gain crossover frequency ωgc is used, which is detected during the determination of
the TDM for a specific value of the artificial gain. Thus, for every controller results a
specific contour of the exclusion area border. In particular, this can be observed for
the DPI Augmentation without hedging, where the gain crossover frequencies ωgc
are higher compared to the baseline controller, which can also be seen in Table 5.9.
Thus, significantly smaller TDMs result for the border of the exclusion area. It can
also be observed that DPI Augmentation without hedging violates the robustness
requirements in Fig. 5.39, which underlines the conservative calculations underlying
the proposed diagrams.

5.2.2.3. Performance

After analyzing the L1 Adaptive Augmentations with regard to robust stability, they
are assessed in terms of performance in this section. As it was done for the baseline
controller, step responses are investigated firstly, which are followed by evaluations of
an exemplary maneuver case.
Fig. 5.40 shows step responses for all envelope points according to Table 2.2 considering
the closed-loop containing basic aircraft model, DPI baseline controller and adaptive
DPI Augmentation. Here, the flight dynamics within the basic aircraft model are
replaced by the linear short-period approximation, which can be found in Eq. (4.23).
The system response shows good tracking of the commanded angle of attack αcmd and
no degradation in comparison to the baseline controller step response, as it is depicted
in Fig. 5.18.
Furthermore, the step response to be found in Fig. 5.41 features the linear “4x4” aircraft
model instead of the short-period approximation, as it is shown in Eq. (2.42). The
phugoid motion can clearly be observed in the system response, although it slowly
decays considering a large time scale. The diagram considering a shorter time scale
can be found in Fig. A.76, which is included in Appendix A.7.3.
The linear aircraft dynamics model is replaced by the nonlinear dynamics model for the
step responses shown in Fig. 5.42 for short time scale and in Fig. 5.43 for long time scale,
respectively. One can clearly see in Fig. 5.42 that the adaptive augmentation manages
to “repair” the system responses for the high velocity envelope points V0,13 = 192.13 m

s
up to V0,15 = 207m

s , which were an issue during the performance assessment of the
baseline controller (c.f. Fig. 5.20). The same observation can be made for the enhanced
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Figure 5.40. – αcmd step responses of basic, linear aircraft model containing only the
short-period approximation and DPI Augmentation at envelope points
according to Table 2.2
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Figure 5.41. – αcmd step responses of basic, linear aircraft model and DPI Augmentation at
envelope points according to Table 2.2 for large timescale
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Figure 5.42. – αcmd step responses of basic, nonlinear aircraft model and DPI
Augmentation at envelope points according to Table 2.2
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Figure 5.43. – αcmd step responses of basic, nonlinear aircraft model and DPI
Augmentation at envelope points according to Table 2.2 for large timescale
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aircraft configuration, whose step response in combination with baseline controller
and DPI Augmentation can be found in Fig. A.77 and Fig. A.78.
Moreover, the corresponding step responses for the Plant Augmentation can be found
in Fig. A.80, Fig. A.81, Fig. A.82, Fig. A.83, Fig. A.84, Fig. A.85 and Fig. A.86, which are
included in Appendix A.7.4. As they are very similar to the results gained for the DPI
Augmentation, basically the same statements as shown above can also be made here.
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Figure 5.44. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by basic, nonlinear aircraft model in
combination with DPI and Plant Augmentation starting at V0 = 154.94 m

s and
h0 = 5000m

The performance benefits contributed by the adaptive augmentations of the DPI
baseline controller can also be identified considering the exemplary maneuver Fig. 5.44.
One can notice that the resulting angle of attack α responses almost perfectly match
the reference model αcmd. This is also the case for the αmin = −10◦ sections, where
the baseline controller exhibits deviations in the transient (c.f. Fig. 5.22). Thus, the
adaptive part of the controller takes action in this sections. This is also reflected in the
values of the estimation parameters σ̂ of the L1 adaptive controller, which are depicted
in Fig. 5.45. The uncertainties within the aircraft dynamics during the αmin = −10◦

sections can mostly be compensated by means of the matched parameter estimations
σ̂m, which reach values up to 0.2. Here, the matched estimation parameters show
a slight difference comparing the two different augmentation approaches, whereas
the unmatched estimation parameters are matching for both cases. Note also that
σ̂um,2 belonging to the DPI Augmentation remains near zero, because this parameter is
mainly driven by uncertainties within the dynamics of the integral state of the baseline
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Figure 5.45. – Estimated parameters σ̂ for example maneuver performed by basic,
nonlinear aircraft model in combination with DPI and Plant Augmentation
starting at V0 = 154.94 m

s and h0 = 5000m

controller. One can discern this relationship from the parameter update law Eq. (4.42)
of the DPI Augmentation, where KL1 (Ts) is exemplarily solved for the envelope point
belonging to V0 = 154.94m

s and h0 = 5000m considering Ts = 0.01s:

 σ̂m (t)
σ̂um,1 (t)
σ̂um,2 (t)

 =

−0.9387 19.4031 0
99.3931 −0.7579 0
−0.4988 −0.0001 −99.95

 α̃ (iTs)
q̃ (iTs)
ẽI (iTs)

 ∀t ∈ [iTs, (i + 1) Ts] (5.9)

Here, the estimation errors are denoted as α̃, q̃ and ẽI belonging to angle of attack, pitch
rate and integrator state, respectively. However, there exists no uncertainty between
the real baseline controller and its model within the state predictor by design, i.e.
ẽI (iTs) = 0, which leads to very small σ̂um,2.
Utilizing the enhanced aircraft model, the performance of the adaptive augmentations
is investigated considering more realistic conditions. The system responses for both
augmentations can be found in Fig. 5.46 for the exemplary maneuver. In comparison
to the baseline controller response in Fig. 5.25 it can be observed that the overshoots
appearing in the αmin = −10◦ sections can be compensated by means of the L1 Adaptive
Augmentations. In essence, the system responses exhibit good matching with the
reference model αcmd response, despite application of the reality effects. However,
it can also be seen that the disturbance stemming from light turbulence (probability
of exceedance 10−2) is amplified to a higher degree by the control law compared to
the baseline controller response in Fig. 5.25. In particular, this is obvious considering
the commanded elevator rate η̇cmd. The effect of turbulence is also clearly visible in
the values of the estimation parameters in Fig. 5.47. This can be explained by again
considering the parameter update law of the DPI Augmentation shown in Eq. (5.9).
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Figure 5.46. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model in
combination with DPI and Plant Augmentation starting at V0 = 154.94 m

s and
h0 = 5000m
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Figure 5.47. – Estimated parameters σ̂ for example maneuver performed by enhanced,
nonlinear aircraft model in combination with DPI and Plant Augmentation
starting at V0 = 154.94 m

s and h0 = 5000m
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Figure 5.48. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model in
combination with DPI and Plant Augmentation starting at V0 = 154.94 m

s and
h0 = 5000m considering severe turbulence
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Figure 5.49. – Estimated parameters σ̂ for example maneuver performed by enhanced,
nonlinear aircraft model in combination with DPI and Plant Augmentation
starting at V0 = 154.94 m

s and h0 = 5000m considering severe turbulence
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The measurements, which are afflicted by turbulence, enter the parameter update law
via the estimation errors α̃ and q̃. These estimation errors are then amplified by a high
gain resulting in the parameter estimations σ̂m (t), σ̂um,1 (t) and σ̂um,2 (t). In the end,
the parameter estimations are directly used to calculate the desired elevator deflection
ηcmd by means of Eq. (4.45), which is then also affected by amplified content stemming
from turbulence. The same observation can be made for the Plant Augmentation. For
the sake of completeness, its parameter update law Eq. (4.65) considering the envelope
point V0 = 154.94m

s and h0 = 5000m can be found in(
σ̂m (t)
σ̂um (t)

)
=
(
−0.9387 19.4031
99.3931 −0.7579

)(
α̃ (iTs)
q̃ (iTs)

)
∀t ∈ [iTs, (i + 1) Ts] , (5.10)

where Ts = 0.01s.
The amplification becomes even more obvious, when severe turbulence (probability of
exceedance 10−5) is considered. Fig. 5.48 and Fig. 5.49 show the results for this case.
The effect of turbulence on the adaptive controllers is further examined in the course
of the controller comparisons in Section 6.2.1 and also in more detail in Section 6.2.17
and Section 6.2.18.
In the next step, rapid CG-shifts are induced at t = 10s during the maneuver. Consid-
ering the basic aircraft model with a CG-shift of 5% firstly, the results are depicted
in Fig. 5.50. Again, the system responses match for both augmentation architectures.
One can observe that the aircraft is quickly brought back into trim position after the
induction of the CG-shift and that the controller is still able to track the reference
model response αcmd with light overshoots, despite the extensive change of the aircraft
dynamics. Fig. 5.53 shows the parameter estimations for this case. The amount of the
matched estimations σm indicates as expected that the CG-shift mostly causes matched
uncertainties, because a CG-shift mainly affects the moments acting on the aircraft.
The beneficial effect of the adaptive augmentations is also demonstrated in Fig. 5.52
and Fig. 5.53, where the enhanced aircraft model is utilized considering a 2% CG-shift.
At last, the effect of the proposed hedging term on the controller performance is
investigated. It can be seen in Fig. 5.54 and Fig. 5.55 that the system responses
considering the basic aircraft model are matching for the cases with and without
hedging for both augmentation architectures. The same statement can also be made
utilizing the enhanced aircraft model. The accompanying results can be found in
Fig. A.79 and Fig. A.87., included in Appendix A.7.3 and Appendix A.7.4, respectively.
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Figure 5.50. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by basic, nonlinear aircraft model in
combination with DPI and Plant Augmentation starting at V0 = 154.94 m

s and
h0 = 5000m considering CG-shift of 5% at t = 10s
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Figure 5.51. – Estimated parameters σ̂ for example maneuver performed by basic,
nonlinear aircraft model in combination with DPI and Plant Augmentation
starting at V0 = 154.94 m

s and h0 = 5000m considering CG-shift of 5% at
t = 10s
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Figure 5.52. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model in
combination with DPI and Plant Augmentation starting at V0 = 154.94 m

s and
h0 = 5000m considering CG-shift of 2% at t = 10s
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Figure 5.53. – Estimated parameters σ̂ for example maneuver performed by enhanced,
nonlinear aircraft model in combination with DPI and Plant Augmentation
starting at V0 = 154.94 m

s and h0 = 5000m considering CG-shift of 2% at
t = 10s
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Figure 5.54. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by basic, nonlinear aircraft model with
DPI Augmentation with and without hedging applied at V0 = 154.94 m

s and
h0 = 5000m
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Figure 5.55. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by basic, nonlinear aircraft model with
Plant Augmentation with and without hedging applied at V0 = 154.94 m

s and
h0 = 5000m
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5.2.3. ∆q̇ Compensation Law

After the presentation of the L1 Adaptive Augmentations, this section concentrates
on the ∆q̇ Compensation Law, which was introduced by Delannoy et. al. in [23] and
was adapted to suit as an augmentation for the DPI baseline controller explained in
Section 4.3.
First of all, the poles of the closed-loops consisting of aircraft model, baseline controller
and ∆q̇ Compensation Law are discussed. Furthermore, an assessment on robust
stability is given in the following section. At last, the performance of the control law is
investigated by means of simulations.
As it was also shown for the other control laws, the closed-loop poles are examined
considering an exemplary envelope point, which is defined by V0 = 154.94m

s and
h0 = 5000m. The corresponding desired natural frequency for the short-period at
this envelope point is specified according to Table 4.1. The short-period should
have a natural frequency of ω0,sp,des = 3.84 rad

s , while the relative damping should be
ζsp,des = 0.95.
The resulting system poles considering the closed-loop including basic aircraft model,
DPI baseline controller and ∆q̇ Compensation Law can be found in Table A.15 for
the discrete-time and in Table A.16 for the continuous-time implementation of the
controller, respectively. It can be seen that both implementations result in the same
closed-loop poles. With regard to the relative damping ζsp = 0.936 the requirements are
approximately met considering poles 5 and 6. For the natural frequency ω0,sp = 3.63 rad

s
a slight deviation of ≈ 0.2 rad

s occurs.
The enhanced aircraft model configuration is taken into account for the system poles
shown in Table A.17 for the discrete-time and in Table A.18 for the continuous-time
implementation of the controller. In this case, slight deviations from the desired
values can be detected considering the short-period poles, which are denoted by 5
and 6. For the continuous-time implementation, the short-period is characterized
by ω0,sp = 3.13 rad

s and ζsp = 0.935 and for the discrete-time implementation natural
frequency and relative damping result in ω0,sp = 3.14 rad

s and ζsp = 0.882.
With respect to the controller configuration it is assumed first that angle of attack α
measurement is available, second that the current trim elevator deflection η0 is known
and third that the pitch acceleration q̇ has to be estimated using the pitch rate q (c.f.
Section 4.3). Although, the robust stability assessments are also performed considering
the case, where q̇ can be measured for the sake of comparison.

5.2.3.1. Linear robust stability

In this section, the ∆q̇ Compensation Law is investigated with regard to robust stability.
The methods presented in Section 5.1.1 are utilized here. Again, the assessments
are carried out firstly considering the exemplary envelope point V0 = 154.94m

s and
h0 = 5000m.
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Figure 5.56. – Nichols plot for robust stability comparison of ∆q̇ Compensation Law with
and without q̇ measurement at V = 154.94 m

s generated for ηcmd (bottleneck)
loop cut (basic aircraft model)

Table 5.10. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability comparison of ∆q̇ Compensation Law with and
without q̇ measurement at V = 154.94 m

s generated for ηcmd (bottleneck) loop
cut (basic aircraft model)

Controller GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
Baseline 15.85 86.63 0.62 2.424 0.62

−∞ -273.37 0.62 -7.650 0.62

∆q̇ Compensator 15.85 86.63 0.62 2.424 0.62
−∞ -273.37 0.62 -7.650 0.62

∆q̇ Compensator 13.01 86.64 0.62 2.425 0.62
(no q̇-meas.) −∞ -273.36 0.62 -7.650 0.62
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Figure 5.57. – Nichols plot for robust stability comparison of ∆q̇ Compensation Law with
and without q̇ measurement at V = 154.94 m

s generated for ηcmd (bottleneck)
loop cut (enhanced aircraft model)

Table 5.11. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability comparison of ∆q̇ Compensation Law with and
without q̇ measurement at V = 154.94 m

s generated for ηcmd (bottleneck) loop
cut (enhanced aircraft model)

Controller GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
Baseline 9.13 66.12 0.41 2.827 0.41

−∞ -293.88 0.41 -12.565 0.41

∆q̇ Compensator 9.16 66.13 0.41 2.833 0.41
−∞ -293.87 0.41 -12.588 0.41

∆q̇ Compensator 9.20 66.14 0.41 2.833 0.41
(no q̇-meas.) −∞ -293.86 0.41 -12.589 0.41
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Figure 5.58. – Nichols plot for robust stability comparison of ∆q̇ Compensation Law with
and without q̇ measurement at V = 154.94 m

s generated for ηcmd (bottleneck)
loop cut (enhanced aircraft model, activated structural mode)

Considering the nichols plot generated for the bottleneck cut of the closed-loop con-
sisting of basic aircraft model, DPI baseline controller and ∆q̇ Compensation Law in
Fig. 5.56, one can see that the augmentation with q̇ measurement does not degrade
robust stability, which is offered by the baseline controller. In this case the frequency
responses of DPI baseline controller and ∆q̇ Compensation Law are exactly matching
in the considered frequency range. This is also confirmed by Table 5.10, which shows
that gain margin, phase margin and TDM are identical. In case q̇ cannot be measured,
the phase margin barely changes, whereas the gain margin drops by ≈ 2.8dB.
For the enhanced aircraft configuration it can be observed in Fig. 5.57 that the frequency
responses only differ for higher frequencies. Thus, the robustness properties shown in
Table 5.11 match almost exactly regardless whether q̇ measurement is available or not.
Moreover, considering the nichols plot Fig. 5.58, where the structural mode according
to Section 2.7 is activated, one can observe that the margins for frequencies upwards
the first wing bending mode, which is marked by the small diamond, result in ≈ 38dB
without and in ≈ 36dB with q̇ measurement. As it was already shown for the L1
Adaptive Augmentations in Section 5.2.2.1, the margins decrease in a similar way
compared to the baseline controller. Although, the required margin of 8dB is still
fulfilled.
Robustness assessments with regard to the bottleneck cut for the entire envelope
according to Table 4.1 are collected in Table 5.12, for which a distinction is made
between the applied aircraft model and availability of q̇ measurement. The robustness
requirements are fulfilled for all cases and envelope points. Furthermore, application
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Table 5.12. – Summary of robust stability assessments of ∆q̇ Compensation Law with
regard to the ηcmd bottleneck cut for the entire envelope according to
Table 2.2

Basic aircraft model Enhanced aircraft model

No q̇ measurement Fig. A.30 Fig. A.56
Table A.43 Table A.77

q̇ measurement Fig. A.31 Fig. A.55
Table A.42 Table A.76

of the ∆q̇ Compensation Law does barely change both frequency responses and robust
stability properties for all envelope points, in case q̇ can be measured.
Robust stability with regard to the sensor cuts is assessed next. The nichols plots
generated for the angle of attack α sensor cut considering the basic aircraft model are
shown in Fig. 5.59. Firstly, one can see that the distance of the frequency response to
the critical point is very comparable to the one of the baseline controller. This is also
reflected in phase and gain margin, which can be taken from Table A.39 included in
Appendix A.5.5. Secondly, the frequency responses barely differ between the cases,
where q̇ measurement is available or not. Thirdly, in contrast to the baseline controller
frequency response, the curve belonging to the ∆q̇ Compensation Law also crosses
the −180◦-line above the 0dB-line. This results in an additional, negative gain margin,
which is also included in Table A.39. The same statements also hold for the enhanced
aircraft configuration, where the robust stability assessments can be found in Fig. 5.60
and Table A.73 . Results covering the entire envelope are compiled in Table 5.13, where
it is distinguished between aircraft configuration and availability of q̇ measurement.
In the next step, the pitch rate q sensor cut is examined. The resulting nichols plots
are depicted in Fig. 5.61 and Fig. 5.62 for basic and enhanced aircraft configuration,
respectively. One can observe a clear difference between the frequency responses
corresponding to the q̇ measurement availability cases. In case q̇ measurement is
available, the distance to the critical point is slightly reduced. This is confirmed by
the robust stability properties presented in Table A.40 and Table A.74. While pitch

Table 5.13. – Summary of robust stability assessments of ∆q̇ Compensation Law with
regard to the angle of attack α sensor cut for the entire envelope according to
Table 2.2

Basic aircraft model Enhanced aircraft model

No q̇ measurement Fig. A.32 Fig. A.58
Table A.44 Table A.79

q̇ measurement Fig. A.33 Fig. A.57
Table A.45 Table A.78
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Figure 5.59. – Nichols plot for robust stability comparison of ∆q̇ Compensation Law with
and without q̇ measurement at V = 154.94 m

s generated for α loop cut (basic
aircraft model)
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Figure 5.60. – Nichols plot for robust stability comparison of ∆q̇ Compensation Law with
and without q̇ measurement at V = 154.94 m

s generated for α loop cut
(enhanced aircraft model)
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Figure 5.61. – Nichols plot for robust stability comparison of ∆q̇ Compensation Law with
and without q̇ measurement at V = 154.94 m

s generated for q loop cut (basic
aircraft model)
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Figure 5.62. – Nichols plot for robust stability comparison of ∆q̇ Compensation Law with
and without q̇ measurement at V = 154.94 m

s generated for q loop cut
(enhanced aircraft model)
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Table 5.14. – Summary of robust stability assessments of ∆q̇ Compensation Law with
regard to the pitch rate q sensor cut for the entire envelope according to
Table 2.2

Basic aircraft model Enhanced aircraft model

No q̇ measurement Fig. A.34 Fig. A.60
Table A.46 Table A.81

q̇ measurement Fig. A.35 Fig. A.59
Table A.47 Table A.80

acceleration q̇ is not available as measurement, the frequency response generates a
circle around the critical points resulting in reduced robust stability properties. Thus,
the closed-loop would destabilize, if the pitch rate measurement fails. This was also
discussed for the L1 Adaptive Augmentations in Section 5.2.2.1. Similar observations
can be made for other envelope points, where the results are collected in Table 5.14.
In contrast to the other control laws considered in this thesis, a third sensor cut has to
be examined with regard to the robust stability assessment, which is the one belonging
to the pitch acceleration q̇ sensor. Both nichols plots shown in Fig. 5.63 and Fig. 5.64
for the two aircraft configurations exhibit a loop around the critical point generated
by the frequency response. Thus, fail-safety would have to be provided for the pitch
acceleration q̇ measurement in this case. The accompanying tabulated gain margin,
phase margin and TDM can be found in Table A.41 and Table A.75. The robust stability
assessment comprising the entire envelope can be found in Fig. A.36 and Fig. A.61,
where the tabulated robust stability properties are summarized in Table A.48 and
Table A.82.
At last, the effect of the additional time delays on the robust stability of the closed-loop
is investigated, which are incorporated in the ∆q̇ Compensation Law and can be
utilized to synchronize the phase of the measurement signals. These time delays are
also discussed in Section 4.3. In this case, time delay having the amount of TD,α =
TD,q = 0.01s is applied to angle of attack α and pitch rate q measurements. Here, only
the case is considered, where pitch rate acceleration q̇ measurement is not available.
The resulting nichols plots for bottleneck cut and sensor cuts can be found in Fig. 5.65,
Fig. 5.66 and Fig. 5.67. One can observe that the time delays rather harm for this
specific use case considering the frequency responses, although the difference is not
very large. Thus, the additional time delays are not used for further assessments made
in this thesis.
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Figure 5.63. – Nichols plot for robust stability assessment of ∆q̇ Compensation Law with q̇
measurement at V = 154.94 m

s generated for q̇ loop cut (basic aircraft model)
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Figure 5.64. – Nichols plot for robust stability assessment of ∆q̇ Compensation Law with q̇
measurement at V = 154.94 m

s generated for q̇ loop cut (enhanced aircraft
model)
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Figure 5.65. – Nichols plot for robust stability comparison of ∆q̇ Compensation Law with
and without additional delays TD,α, TD,q at V = 154.94 m

s generated for ηcmd
(bottleneck) loop cut (enhanced aircraft model)
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Figure 5.66. – Nichols plot for robust stability comparison of ∆q̇ Compensation Law with
and without additional delays TD,α, TD,q at V = 154.94 m

s generated for α
loop cut (enhanced aircraft model)
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Figure 5.67. – Nichols plot for robust stability comparison of ∆q̇ Compensation Law with
and without additional delays TD,α, TD,q at V = 154.94 m

s generated for q
loop cut (enhanced aircraft model)

5.2.3.2. Performance

In the following section, a closer look is taken on the performance of the ∆q̇ Compensa-
tion Law. As shown for the other control laws, both step responses and an exemplary
maneuver are considered for these assessments.
Step responses of the combination of basic aircraft model, where the nonlinear longitu-
dinal dynamics are replaced by the linear short-period approximation according to
Eq. (4.23), baseline controller and ∆q̇ Compensation Law are shown in Fig. 5.68 for the
envelope points summarized in Table 2.2. In comparison to the baseline controller step
response to be found in Fig. 5.18 no degradation can be detected stemming from the
∆q̇ Compensation Law and the commanded angle of attack is αcmd perfectly tracked.
The assessment is repeated utilizing the linear “4x4” aircraft model shown in Eq. (2.42),
which results in Fig. 5.69. The decaying influence of the phugoid can be observed,
nevertheless αcmd is tracked considering large time scale. The same step response for
short time scale is depicted in Fig. A.88, which can be found in Appendix A.7.5.
Considering the nonlinear, basic aircraft model it can be seen in the corresponding step
responses shown in Fig. 5.70 that the desired system response can be restored for the
high velocity cases. These exhibited insufficient performance for the baseline controller
step response shown in Fig. 5.20. The same step responses are depicted in Fig. 5.71 for
a large time scale. The same observation can be made for the enhanced aircraft model
configuration, where the step responses are shown in Fig. A.89 and Fig. A.90.
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Figure 5.68. – αcmd step responses of basic, linear aircraft model containing only the
short-period approximation and ∆q̇ Compensation Law at envelope points
according to Table 2.2
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Figure 5.69. – αcmd step responses of basic, linear aircraft model and ∆q̇ Compensation
Law at envelope points according to Table 2.2 for large timescale
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Figure 5.70. – αcmd step responses of basic, nonlinear aircraft model and ∆q̇ Compensation
Law at envelope points according to Table 2.2
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Figure 5.71. – αcmd step responses of basic, nonlinear aircraft model and ∆q̇ Compensation
Law at envelope points according to Table 2.2 for large timescale
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Figure 5.72. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by basic, nonlinear aircraft model with ∆q̇
Compensation Law starting at V0 = 154.94 m
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Figure 5.73. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with ∆q̇ Compensation Law starting at V0 = 154.94 m

s and h0 = 5000m
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Figure 5.74. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with ∆q̇ Compensation Law starting at V0 = 154.94 m

s and h0 = 5000m
considering severe turbulence
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Figure 5.75. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with ∆q̇ Compensation Law starting at V0 = 154.94 m

s and h0 = 5000m
considering severe turbulence without additional low-pass filter applied to
ηcmd
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In the next step, the simulation of the exemplary maneuver for the basic aircraft
configuration is investigated. The results can be found in Fig. 5.72. It can be seen
that the system response with regard to angle of attack α accurately matches the
reference model response αcmd. This is also true for the αmin = −10◦ sections, where a
nonlinearity was detected, which led to overshoot using only the baseline controller
(c.f. Fig. 5.22). A similar picture emerges, when assessing the same maneuver with the
enhanced aircraft configuration, which is shown in Fig. 5.73. The matching with the
reference model dynamics is still good, although compared to the baseline controller
configuration, higher amplification of the light turbulence (probability of exceedance
10−2) can be detected. This was also observed for the L1 Adaptive Augmentations (c.f.
Fig. 5.46). In this case, the amplification can be explained through the derivation of the
pitch rate q measurement, which is directly afflicted by turbulence. This derivation
amplifies the turbulence content. However the derivation is necessary, in order to
estimate the pitch acceleration q̇ (c.f. Section 4.3). Note also that even in case, q̇ could
directly be measured, the measurement would also contain the “physically derived”
turbulence content and would thus require heavy filtering.
The described phenomenon of turbulence amplification appears in an even higher
degree for severe turbulence (probability of exceedance 10−5), which is shown in
Fig. 5.74. Also in this case the system response is very comparable to the one gained
with the L1 Adaptive Augmentations (c.f. Fig. 5.48). The necessity of the additional
low-pass filter, which is proposed in Section 4.3, becomes clear when considering the
system response without this filter in Fig. 5.75. In this case, the commanded maneuver
cannot be realized anymore.
Furthermore, the effects of rapid CG-shifts are also investigated for the ∆q̇ Compensa-
tion Law. Fig. 5.76 shows the result considering the basic aircraft configuration and a
CG-shift of 5%. The response is again very similar to the one achieved by means of the
L1 Adaptive Augmentations shown in Fig. 5.50. Still, the controller accomplishes to
follow the reference model dynamics depicted by αre f . The same observation can be
made for the enhanced aircraft configuration in Fig. 5.77, where a CG-shift of 2% is
applied.
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Figure 5.76. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by basic, nonlinear aircraft model with ∆q̇
Compensation Law starting at V0 = 154.94 m

s and h0 = 5000m considering
CG-shift of 5% at t = 10s
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Figure 5.77. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with ∆q̇ Compensation Law starting at V0 = 154.94 m

s and h0 = 5000m
considering CG-shift of 2% at t = 10s
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5.2.4. L1 adaptive controller with Eigenstructure Assignment

The last controller to be evaluated in this chapter in terms of closed-loop dynamics,
robust stability and performance is the L1 adaptive controller with Eigenstructure
Assignment, whose architecture is presented in Section 4.4.
At first, the resulting poles of the closed-loop consisting of basic aircraft and L1
adaptive controller are examined. Note that no baseline controller is involved in this
setup. The linearization is performed considering the envelope point V0 = 154.94 m

s and
h0 = 5000m. At this envelope point, the properties of the short period dynamics should
result in ω0,sp,des = 3.84 rad

s and ζsp,des = 0.95. It can be seen in Table A.20 that this
values are almost perfectly matched for the continuous-time controller implementation,
where the pair of complex conjugate poles 4 and 5 indicate that the short-period
has a frequency of ω0,sp = 3.81 rad

s with a relative damping of ζsp = 0.949. Thus, it
can be confirmed that precise pole placement is possible by means of the proposed
modification of the state predictor, which was introduced in Section 4.4.2.
Considering the discrete-time implementation in Table A.19, the poles belonging to the
short-period can be detected in pole 4 and in the pole pair 5/6, which forms from a
merge of two poles stemming from the pole pairs 4/5 and 6/7 in the continuous-time
representation. This deviation from the desired values can again be explained through
the fact that Euler’s transformation has to be used for the short-period approximation
within the state predictor of the L1 adaptive controller (c.f. Section 5.2.2).
Similar observations can be made for the closed-loop poles considering the combination
of enhanced aircraft model and L1 adaptive controller. Again, the poles of the short-
period are placed as desired and result in ω0,sp = 3.79 rad

s and ζsp = 0.95, as it can be
seen in Table A.22. For the discrete-time implementation a deviation occurs, which
was also detected for the basic aircraft model. The results can be found in Table A.22.

5.2.4.1. Linear robust stability

Robust stability of the proposed L1 adaptive controller with Eigenstructure Assignment
is investigated in the following section. For this purpose, the assessments are carried
out in detail considering the exemplary envelope point V0 = 154.94 m

s and h0 = 5000m,
whereby results covering the entire envelope are also provided.
Nichols plots for the bottleneck cut considering the combination of basic aircraft
model and L1 adaptive controller and generated at the exemplary envelope point
are depicted in Fig. 5.78. For the sake of comparison, the frequency response of the
baseline controller is provided as well. The robustness margins are fulfilled for both
cases, where hedging according to Section 4.4.2 is activated and where no hedging
is used. The beneficial effect of hedging, which was also discussed for the adaptive
augmentations in Section 5.2.2.1, can also be observed for the standalone L1 adaptive
controller. In case hedging is used, the frequency response does not cross the 0dB-line,
which means that the phase margin is infinite. This is also confirmed by Table 5.15.
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Figure 5.78. – Nichols plot for robust stability comparison of L1 adaptive controller with
Eigenstructure Assignment with and without hedging at V = 154.94 m

s
generated for ηcmd (bottleneck) loop cut (basic aircraft model)

Table 5.15. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability comparison of L1 adaptive controller with
Eigenstructure Assignment with and without hedging at V = 154.94 m

s
generated for ηcmd (bottleneck) loop cut (basic aircraft model)

Controller GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
Baseline 15.85 86.63 0.62 2.424 0.62

−∞ -273.37 0.62 -7.650 0.62

L1 Standalone 23.05 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

L1 Standalone 9.27 60.19 7.37 0.142 7.37
(no hedg.) −∞ -299.81 7.37 -0.710 7.37
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Figure 5.79. – Nichols plot for robust stability comparison of L1 adaptive controller with
Eigenstructure Assignment with and without hedging at V = 154.94 m

s
generated for ηcmd (bottleneck) loop cut (enhanced aircraft model)

Table 5.16. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability comparison of L1 adaptive controller with
Eigenstructure Assignment with and without hedging at V = 154.94 m

s
generated for ηcmd (bottleneck) loop cut (enhanced aircraft model)

Controller GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
Baseline 9.13 66.12 0.41 2.827 0.41

−∞ -293.88 0.41 -12.565 0.41

L1 Standalone 5.98 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

L1 Standalone 7.97 96.64 3.80 0.444 3.80
(no hedg.) −∞ -261.65 3.73 -1.211 3.80

Table 5.17. – Summary of robust stability assessments of L1 adaptive controller with
Eigenstructure Assignment with regard to the ηcmd bottleneck cut for the
entire envelope according to Table 2.2

Basic aircraft model Enhanced aircraft model

Hedging Fig. A.37 Fig. A.62
Table A.51 Table A.85

No Hedging Fig. A.38 Fig. A.63
Table A.52 Table A.86

181



Controller Assessments

Open-Loop Phase [◦]
-900 -810 -720 -630 -540 -450 -360 -270 -180 -90

O
p
en
-L
o
op

G
ai
n
[d
B
]

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

Baseline

Standalone

Standalone (no hedg.)

Figure 5.80. – Nichols plot for robust stability comparison of L1 adaptive controller with
Eigenstructure Assignment with and without hedging at V = 154.94 m

s
generated for ηcmd (bottleneck) loop cut (enhanced aircraft model, activated
structural mode)

Although the plot indicates that the curve of the frequency response is exactly starting
at a phase of −180◦, the starting point is in fact slightly below −180◦. Thus, a gain
margin of 23.05dB with respect to the critical point at −540◦ results instead of ≈ 7.2dB.
A similar statement can be made for the closed-loop of the enhanced aircraft configu-
ration. The corresponding nichols plots are shown in Fig. 5.79. Furthermore, it can be
seen that the frequency response is crossing the outermost diamond. However, this hap-
pens for small frequencies ω < ω0,ph. For these frequencies the black, dashed-dotted
diamond constitutes the required robustness margin according to Table 5.1. Thus,
the requirements with regard to robust stability are still fulfilled. The accompanying
robust stability properties can be found in Table 5.16.
In addition to the setup shown above, the structural mode according to Section 2.7
is activated for the nichols plot shown in Fig. 5.80. It can be seen that the margins
for frequencies upwards the first wing bending mode, which is marked by the small
diamond, result in ≈ 37dB without and ≈ 35dB with hedging. As for the adaptive
augmentations, also for the standalone L1 adaptive controller a decrease in this margin
can be detected with regard to the baseline controller. Although, the required margin
of 8dB is still fulfilled.
References to nichols plots covering the entire envelope as well as to tables sum-
marizing the corresponding gain margins, phase margins and TDM are collected in
Table 5.17. Sufficient stability margins can be detected for the entire envelope for both
configurations with and without hedging.
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Figure 5.81. – Nichols plot for robust stability comparison of L1 adaptive controller with
Eigenstructure Assignment with and without hedging at V = 154.94 m

s
generated for α loop cut (basic aircraft model)
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Figure 5.82. – Nichols plot for robust stability comparison of L1 adaptive controller with
Eigenstructure Assignment with and without hedging at V = 154.94 m

s
generated for α loop cut (enhanced aircraft model)
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Table 5.18. – Summary of robust stability assessments of L1 adaptive controller with
Eigenstructure Assignment with regard to the angle of attack α sensor cut for
the entire envelope according to Table 2.2

Basic aircraft model Enhanced aircraft model

Hedging Fig. A.39 Fig. A.64
Table A.53 Table A.87

No Hedging Fig. A.40 Fig. A.65
Table A.54 Table A.88

Robust stability with regard to the angle of attack α sensor cut is examined in the next
step. In Fig. 5.81 the assessments for the basic aircraft configuration are shown. It can
be seen that the distance of the frequency response corresponding to the standalone
L1 adaptive controller to the critical point is comparable to the one belonging to the
baseline controller. This is also reflected in gain and phase margins, which can be
found in Table A.49 included in Appendix A.5.6. Furthermore, the frequency response
barely changes between the two hedging cases. For the enhanced aircraft configuration
the robust stability margins even increase compared to the baseline controller, which
can be seen in Fig. 5.82 and Table A.83. A summary of assessments with regard to the
entire envelope according to Table 2.2 can be found in Table 5.18.
Moreover, the pitch rate q sensor cut is investigated in Fig. 5.83 and Table A.50 for the
basic aircraft configuration. One can observe that the phase margin is ∞ in contrast
to the DPI baseline controller frequency response, although the gain margin is lower
for the standalone L1 adaptive controller in this case. For the enhanced aircraft
configuration shown in Fig. 5.84 and Table A.84 both controllers have a phase margin
of ∞ and again it can be observed that the standalone L1 adaptive controller has less
gain margin than the DPI baseline controller. The results for the entire envelope can be
found in Table 5.19.
In a nutshell, it can be stated that the L1 adaptive controller with Eigenstructure
Assignment offers good properties with regard to robust stability. For the important
bottleneck cut an infinite phase margin can be detected for both basic and enhanced

Table 5.19. – Summary of robust stability assessments of L1 adaptive controller with
Eigenstructure Assignment with regard to the angle of attack q sensor cut for
the entire envelope according to Table 2.2

Basic aircraft model Enhanced aircraft model

Hedging Fig. A.41 Fig. A.66
Table A.55 Table A.89

No Hedging Fig. A.42 Fig. A.67
Table A.56 Table A.90
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Figure 5.83. – Nichols plot for robust stability comparison of L1 adaptive controller with
Eigenstructure Assignment with and without hedging at V = 154.94 m

s
generated for q loop cut (basic aircraft model)
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Figure 5.84. – Nichols plot for robust stability comparison of L1 adaptive controller with
Eigenstructure Assignment with and without hedging at V = 154.94 m

s
generated for q loop cut (enhanced aircraft model)
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aircraft model configuration. The proposed hedging technique has a beneficial effect
here as well. Furthermore, the closed-loop does not destabilize in case of a failing sen-
sor, which could be observed for the adaptive augmentations assessed in Section 5.2.2.1
and the ∆q̇ Compensation Law investigated in Section 5.2.3.1.

5.2.4.2. Performance

This section investigates the L1 adaptive controller with Eigenstructure Assignment
in terms of performance. For this purpose, both step responses and an exemplary
maneuver are assessed, as it was done already for the other control laws in this chapter.
Fig. 5.85 presents step responses for the entire envelope according to Table 2.2. For
this, the combination of basic aircraft model, where the nonlinear flight dynamics
are replaced by the linear short-period approximation shown in Eq. (4.23), and the
standalone L1 adaptive controller is considered. The step responses exhibit good
tracking of the commanded angle of attack αcmd and a proper transient.
In the next step, the linear “4x4” aircraft model according to Eq. (2.42) is utilized
instead of the short-period approximation. Although good tracking of αcmd can still
be observed considering short time scale in Fig. 5.86, a larger time in Fig. 5.87 reveals
that a residual steady-state error between commanded αcmd and measured angle
of attack α remains. For the lowest velocity case this steady-state error results in
αcmd − α =≈ −0.3◦. The reason for this is that the control law does not contain an
integral portion, as it is for example provided by the baseline controller for the adaptive
augmentations shown in Section 4.2 and Section 4.3. Thus, due to the missing integral
portion within the control law, a residual steady-state error remains.
A similar statement can be made, when the nonlinear, basic aircraft model is considered.
The step responses are shown in Fig. 5.88 for short and in Fig. 5.89 for large time scale,
respectively. Despite the already discussed steady-state error, it can also be observed
that the standalone L1 adaptive controller is able to compensate the undersized
feedforward gain hL1 for the high velocity envelope cases, as it was already shown
for the adaptive augmentations (c.f. Fig. 5.42 and Fig. 5.70). The corresponding
step responses considering the enhanced aircraft model configuration can be found
in Fig. A.91 and Fig. A.92, which are both included in Appendix A.7.6. Here, the
steady-state error results in maximum of −0.2◦ for the lowest velocity case.
After the presentation of the step response investigations, the performance of the
L1 adaptive controller with Eigenstructure Assignment considering the exemplary
maneuver is considered in the next step. The corresponding plot for the combination
of basic aircraft model and L1 adaptive controller can be found in Fig. 5.90. One can
observe in the system response with regard to angle of attack α that the standalone
adaptive controller is precisely able to shape the plant dynamics in accordance to
the reference model, which is represented by αre f . In particular, this applies to the
αmin = −10◦ sections, which exhibit a nonlinearity within the aircraft dynamics, as it
was already discussed in Section 5.2.1.2. This confirms, once again, the ability of the
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Figure 5.85. – αcmd step responses of basic, linear aircraft model containing only the
short-period approximation and L1 adaptive controller with Eigenstructure
Assignment at envelope points according to Table 2.2
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Figure 5.86. – αcmd step responses of basic, linear aircraft model and L1 adaptive controller
with Eigenstructure Assignment at envelope points according to Table 2.2
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Figure 5.87. – αcmd step responses of basic, linear aircraft model and L1 adaptive controller
with Eigenstructure Assignment at envelope points according to Table 2.2
for large timescale
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Figure 5.88. – αcmd step responses of basic, nonlinear aircraft model and L1 adaptive
controller with Eigenstructure Assignment at envelope points according to
Table 2.2
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Figure 5.89. – αcmd step responses of basic, nonlinear aircraft model and L1 adaptive
controller with Eigenstructure Assignment at envelope points according to
Table 2.2 for large timescale

standalone adaptive controller to exactly place closed-loop system poles by means of
the proposed modification of the state predictor. The steady-state error is ≈ −0.05◦

for the αmax = 7◦ sections and ≈ −0.25◦ for the αmin = −10◦ sections. Moreover, it
can be seen considering the commanded elevator deflection ηcmd that the control law
provides a clean, almost oscillation free control signal. Compared to the adaptive
augmentations one can observe in Fig. 5.91 that the controller workload in terms of
adaptation is higher (c.f. Fig. 5.45). This is not surprising, because in this case the
shaping of the plant dynamics in directly incorporated into the adaptation process,
which is discussed in Section 4.4.3.
Results considering the same maneuver, but utilizing the enhanced aircraft model
configuration, are compiled in Fig. 5.92. As it was already observed for the adaptive
augmentations in Fig. 5.46 and the ∆q̇ Compensation Law in Fig. 5.73, the applied
light turbulence (probability of exceedance 10−2) is stronger amplified compared to
the baseline controller results shown in Fig. 5.25. This can especially been observed
considering the commanded elevator rate η̇cmd in Fig. 5.92 and the parameters σ̂ in
Fig. 5.93. The reason for this can be found in the high-gain adaptation law, as it was
already described in Section 5.2.2.3. Nevertheless, the standalone adaptive controller is
still able to precisely apply the desired dynamic behavior on the plant, which leads
to good matching of the system response with regard to angle of attack α and the
reference model output αre f .
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Figure 5.90. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by basic, nonlinear aircraft model with L1
adaptive controller with Eigenstructure Assignment starting at V0 = 154.94 m
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Figure 5.91. – Estimated parameters σ̂ for example maneuver performed by basic,
nonlinear aircraft model with L1 adaptive controller with Eigenstructure
Assignment starting at V0 = 154.94 m

s and h0 = 5000m
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Figure 5.92. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with L1 adaptive controller with Eigenstructure Assignment starting at
V0 = 154.94 m

s and h0 = 5000m
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Figure 5.93. – Estimated parameters σ̂ for example maneuver performed by enhanced,
nonlinear aircraft model with L1 adaptive controller with Eigenstructure
Assignment starting at V0 = 154.94 m

s and h0 = 5000m
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Figure 5.94. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with L1 adaptive controller with Eigenstructure Assignment starting at
V0 = 154.94 m

s and h0 = 5000m considering severe turbulence
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Figure 5.95. – Estimated parameters σ̂ for example maneuver performed by enhanced,
nonlinear aircraft model with L1 adaptive controller with Eigenstructure
Assignment starting at V0 = 154.94 m

s and h0 = 5000m considering severe
turbulence
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This can even be observed, when considering sever turbulence (probability of ex-
ceedance 10−5). The controller is still able to implement the commanded angle of
attack αcmd, despite the control signal hits the limits of the actuator considering both
rate η̇cmd and absolute command ηcmd. Although, the system response and the adaptive
parameters in Fig. 5.95 indicate that the filtering applied to the sensor signals still
leaves room for improvement considering severe turbulence.
The next assessment considers a rapid CG-shift of 5%, which is induced at t = 10s
during the maneuver. The system response of basic aircraft model and standalone
adaptive controller can be found in Fig. 5.96. One can see that the controller is able
to handle this off-nominal situation and follows the reference model response αre f ,
although overshoots arise in the system response. The accompanying parameter
estimations σ̂ can be found in Fig. 5.97. A similar statement can be made, when a
CG-shift of 2% is considered for the enhanced aircraft configuration. This is shown in
Fig. 5.98 and Fig. 5.99. Despite the applied reality effects, the controller is still able to
compensate for the off-nominal CG-shift.
At last, the impact of hedging on the controller performance is investigated. Fig. 5.100
shows the exemplary maneuver considering the basic aircraft model configuration,
where both hedging cases are presented. It can be seen that the two system responses
barely differ. In contrast to that, a deviation can be detected considering the enhanced
aircraft model configuration in Fig. 5.101. This deviation stems from the fact that
the actuator model within the state predictor, which is only active, if hedging is not
used, is transformed to discrete-time utilizing Euler’s method in order to be able to
incorporate rate and absolute saturations of the actuator. This was already addressed
in Section 4.4.2. Using Euler’s method instead of bilinear transformation generates a
larger deviation with regard to dynamics of the originating continuous-time system.
Thus, also in terms of performance it shows to be beneficial to apply the hedging term.
In summary, it can be shown that the combination of L1 Adaptive Control and
Eigenstructure Assignment is able to precisely shape the plant dynamics, while offering
all advantages of an adaptive control law at the same time. This can especially been
seen considering the maneuver cases, where a rapid CG-shift is applied. Although,
the missing integral portion of the proposed control law leads to a slight residual
steady-state error with regard to angle of attack α. This could be subject to future
research and a possible solution is highlighted in Chapter 8.
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Figure 5.96. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by basic, nonlinear aircraft model with L1
adaptive controller with Eigenstructure Assignment starting at V0 = 154.94 m

s
and h0 = 5000m considering CG-shift of 5% at t = 10s
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Figure 5.97. – Estimated parameters σ̂ for example maneuver performed by basic,
nonlinear aircraft model with L1 adaptive controller with Eigenstructure
Assignment starting at V0 = 154.94 m

s and h0 = 5000m considering CG-shift
of 5% at t = 10s
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Figure 5.98. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with L1 adaptive controller with Eigenstructure Assignment starting at
V0 = 154.94 m

s and h0 = 5000m considering CG-shift of 2% at t = 10s
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Figure 5.99. – Estimated parameters σ̂ for example maneuver performed by enhanced,
nonlinear aircraft model with L1 adaptive controller with Eigenstructure
Assignment starting at V0 = 154.94 m

s and h0 = 5000m considering CG-shift
of 2% at t = 10s
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Figure 5.100. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by basic, nonlinear aircraft model with
L1 adaptive controller with Eigenstructure Assignment with and without
hedging applied at V0 = 154.94 m
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Figure 5.101. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with L1 adaptive controller with Eigenstructure Assignment with and
without hedging applied at V0 = 154.94 m

s and h0 = 5000m
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6. Comparison of control laws

This chapter continues to investigate the control laws, which were designed in Chap-
ter 4. This contains the DPI baseline controller, its adaptive augmentations (DPI and
Plant Augmentation), ∆q̇ Compensation Law and the standalone L1 adaptive controller.
Although preliminary comparisons were already drawn in the last chapter, this part
of the thesis profoundly compares performance and robust stability properties of the
proposed controller architectures. In particular, the effect of the individual reality
effects on the controller performance is investigated, whereat also parameter variations
are considered. This includes variations applied to aerodynamic coefficients, CG-shifts,
sensor delays, sensor noise, the structural mode model, the actuator model, gust and
turbulence. A short summary on the results is provided at the end of this chapter.

6.1. Linear robust stability

Firstly, the control laws are compared with regard to their robust stability properties.
For this purpose, the results considering nominal conditions, which were gained in the
course of Chapter 5, are again summarized, in order to allow for useful comparisons.
After that, robust stability is investigated considering variations on aerodynamic
coefficients of the aircraft model.

6.1.1. Nominal conditions

This section provides comparisons of the robust stability assessments made in Chap-
ter 5. These assessments consider nominal conditions, i.e. no variations or uncertainties
with respect to the aircraft model are applied. Furthermore, both the actuator (bottle-
neck) cut and sensor cuts are examined (c.f. Section 5.1.1). The comparisons are carried
out for both basic and enhanced aircraft configuration considering the envelope point
corresponding to V0 = 154.94m

s and h0 = 5000m.
Nichols plots for the different control laws with regard to the bottleneck cut are shown
in Fig. 6.1 for the basic aircraft configuration. Hedging is activated here for the L1
Adaptive Control based approaches, whereas pitch rate acceleration q̇ measurement is
not available for the ∆q̇ Compensation Law. It can be seen that the three augmentation
approaches match quite good for low frequencies with respect to their frequency
response. As it was stated before, the L1 Adaptive Augmentations exhibit larger gain
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Figure 6.1. – Nichols plot for robust stability comparison of baseline controller, L1
Adaptive Augmentations, ∆q̇ Compensation Law and L1 adaptive controller
with Eigenstructure Assignment at V = 154.94 m

s generated for ηcmd
(bottleneck) loop cut (basic aircraft model)

Table 6.1. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability comparison of baseline controller, L1 Adaptive
Augmentations, ∆q̇ Compensation Law and L1 adaptive controller with
Eigenstructure Assignment at V = 154.94 m

s generated for ηcmd (bottleneck)
loop cut (basic aircraft model)

Controller GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
Baseline 15.85 86.63 0.62 2.424 0.62

−∞ -273.37 0.62 -7.650 0.62

DPI Augmentation 19.27 87.23 0.62 2.451 0.62
−∞ -272.77 0.62 -7.664 0.62

Plant Augmentation 19.23 86.95 0.62 2.439 0.62
−∞ -273.05 0.62 -7.659 0.62

L1 Standalone 23.05 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

∆q̇ Compensator 13.01 86.64 0.62 2.425 0.62
−∞ -273.36 0.62 -7.650 0.62

198
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Figure 6.2. – Nichols plot for robust stability comparison of baseline controller, L1
Adaptive Augmentations, ∆q̇ Compensation Law and L1 adaptive controller
with Eigenstructure Assignment at V = 154.94 m

s generated for ηcmd
(bottleneck) loop cut (enhanced aircraft model)

Table 6.2. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability comparison of baseline controller, L1 Adaptive
Augmentations, ∆q̇ Compensation Law and L1 adaptive controller with
Eigenstructure Assignment at V = 154.94 m

s generated for ηcmd (bottleneck)
loop cut (enhanced aircraft model)

Controller GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
Baseline 9.13 66.12 0.41 2.827 0.41

−∞ -293.88 0.41 -12.565 0.41

DPI Augmentation 9.21 67.00 0.40 2.896 0.40
−∞ -293.00 0.40 -12.663 0.40

Plant Augmentation 9.20 66.94 0.40 2.893 0.40
−∞ -293.06 0.40 -12.666 0.40

L1 Standalone 5.98 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

∆q̇ Compensator 9.20 66.14 0.41 2.833 0.41
−∞ -293.86 0.41 -12.589 0.41
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Figure 6.3. – Nichols plot for robust stability comparison of baseline controller, L1
Adaptive Augmentations, ∆q̇ Compensation Law and L1 adaptive controller
with Eigenstructure Assignment at V = 154.94 m

s generated for ηcmd
(bottleneck) loop cut (enhanced aircraft model, activated structural mode)

margin compared to the baseline controller, which is slightly reduced considering the
∆q̇ Compensation Law. This observation is confirmed by Table 6.1, where the gain
margins, phase margins and TDMs are summarized. It should be emphasized again
that the standalone L1 adaptive controller inherits infinite phase margin with regard to
the bottleneck cut. These statements also hold for the enhanced aircraft configuration.
The accompanying nichols plots can be found in Table 6.2, where the robust stability
properties are summarized in Fig. 6.3. In addition to that, the same assessment is
also shown in Fig. 6.3, where the simple structural mode model is active. As it was
shown in Chapter 5, all control laws fulfill the robust stability margins with regard to
frequencies above the first wing bending mode, which is marked by the small diamond.
The minimum gain margin in this case is 8dB.

In the following, also nichols plots are compared, which are generated considering
the sensor cuts. Utilizing the basic aircraft model configuration, results with regard to
the angle of attack α cut are shown in Fig. 6.4. Compared to the baseline controller,
reduced robustness margins can be observed for the L1 Adaptive Augumentations.
This is not the case considering the ∆q̇ Compensation Law and the standalone L1
adaptive controller. The corresponding margin calculations can be found in Table 6.3.
Considering the enhanced aircraft configuration it can be observed additionally that
the standalone L1 adaptive controller exhibits the largest distance from the critical
point. This is also confirmed by Table 6.4.
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Figure 6.4. – Nichols plot for robust stability comparison of baseline controller, L1
Adaptive Augmentations, ∆q̇ Compensation Law and L1 adaptive controller
with Eigenstructure Assignment at V = 154.94 m

s generated for α loop cut
(basic aircraft model)

Table 6.3. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability comparison of baseline controller, L1 Adaptive
Augmentations, ∆q̇ Compensation Law and L1 adaptive controller with
Eigenstructure Assignment at V = 154.94 m

s generated for α loop cut (basic
aircraft model)

Controller GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
Baseline 12.69 70.24 0.55 2.239 0.55

−∞ -289.76 0.55 -9.235 0.55

DPI Augmentation 5.25 57.43 0.92 1.091 0.92
-13.29 -302.57 0.92 -5.749 0.92

Plant Augmentation 6.99 59.52 1.16 0.898 1.16
-14.58 -300.48 1.16 -4.533 1.16

L1 Standalone 12.47 78.84 5.27 0.261 5.27
−∞ -281.16 5.27 -0.932 5.27

∆q̇ Compensator 13.38 64.56 1.62 0.696 1.62
-18.41 -295.44 1.62 -3.183 1.62
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Figure 6.5. – Nichols plot for robust stability comparison of baseline controller, L1
Adaptive Augmentations, ∆q̇ Compensation Law and L1 adaptive controller
with Eigenstructure Assignment at V = 154.94 m

s generated for α loop cut
(enhanced aircraft model)

Table 6.4. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability comparison of baseline controller, L1 Adaptive
Augmentations, ∆q̇ Compensation Law and L1 adaptive controller with
Eigenstructure Assignment at V = 154.94 m

s generated for α loop cut (enhanced
aircraft model)

Controller GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
Baseline 7.72 63.12 0.40 2.777 0.40

−∞ -296.88 0.40 -13.063 0.40

DPI Augmentation 5.21 52.22 0.93 0.981 0.93
-14.47 -307.78 0.93 -5.781 0.93

Plant Augmentation 5.34 51.43 0.96 0.935 0.96
-13.54 -308.57 0.96 -5.609 0.96

L1 Standalone 9.85 85.76 1.99 0.754 1.99
-25.51 -274.24 1.99 -2.411 1.99

∆q̇ Compensator 8.87 50.79 1.41 0.628 1.41
-20.15 -309.21 1.41 -3.823 1.41
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Figure 6.6. – Nichols plot for robust stability comparison of baseline controller, L1
Adaptive Augmentations, ∆q̇ Compensation Law and L1 adaptive controller
with Eigenstructure Assignment at V = 154.94 m

s generated for q loop cut
(basic aircraft model)

Table 6.5. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability comparison of baseline controller, L1 Adaptive
Augmentations, ∆q̇ Compensation Law and L1 adaptive controller with
Eigenstructure Assignment at V = 154.94 m

s generated for q loop cut (basic
aircraft model)

Controller GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
Baseline 15.54 101.74 4.39 0.404 4.39

−∞ -137.46 1.92 -1.026 4.39

DPI Augmentation 6.13 29.35 8.20 0.062 8.20
-5.62 -65.95 0.93 -0.704 8.20

Plant Augmentation 6.62 34.07 8.41 0.071 8.41
-7.30 -71.97 1.14 -0.676 8.41

L1 Standalone 12.56 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

∆q̇ Compensator 6.63 38.43 9.56 0.070 9.56
-11.17 -82.27 1.63 -0.587 9.56
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Figure 6.7. – Nichols plot for robust stability comparison of baseline controller, L1
Adaptive Augmentations, ∆q̇ Compensation Law and L1 adaptive controller
with Eigenstructure Assignment at V = 154.94 m

s generated for q loop cut
(enhanced aircraft model)

Table 6.6. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability comparison of baseline controller, L1 Adaptive
Augmentations, ∆q̇ Compensation Law and L1 adaptive controller with
Eigenstructure Assignment at V = 154.94 m

s generated for q loop cut (enhanced
aircraft model)

Controller GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
Baseline 21.76 ∞ 0.00 ∞ 0.00

−∞ −∞ 0.00 −∞ 0.00

DPI Augmentation 6.44 33.97 4.69 0.126 4.69
-8.77 -79.55 0.88 -1.213 4.69

Plant Augmentation 6.53 34.77 4.70 0.129 4.70
-9.09 -79.69 0.90 -1.208 4.70

L1 Standalone 12.77 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

∆q̇ Compensator 7.26 44.99 5.36 0.146 5.36
-19.28 -95.20 1.60 -1.025 5.36
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The next sensor cut, which the pitch rate q cut, is examined in Fig. 6.6 and Table 6.5
considering the basic aircraft model. As it was discussed before in Chapter 5, the
frequency responses of the L1 Adaptive Augmentations as well as the ∆q̇ Compensation
Law generate a loop around the critical point. This shows that a loss of the pitch rate
q measurement would lead to an unstable closed-loop in this cases. Fig. 6.7 reveals
that the loops are also generated in case of the enhanced aircraft configuration. The
accompanying robust stability margins can be found in Table 6.6. It has to be noted
again that according to [111, pp. 25-27] compliance with the required robust stability
margins has to be proven only with regard to the bottleneck cut.

6.1.2. Uncertainty w.r.t. aerodynamic coefficients

1.2

1.1

∆CX,0 [−]

1

0.9

0.80.8

0.9

∆CZ,0 [−]

1

1.1

0.8

0.9

1

1.1

1.2

1.2

∆
C

m
,0
[−

]

(a) Variation of ∆CX,0, ∆CZ,0, ∆CM,0

1.2

1.1

∆CX,q [−]

1

0.9

0.80.8

0.9

∆CZ,q [−]

1

1.1

0.8

0.9

1

1.1

1.2

1.2

∆
C

m
,q
[−

]

(b) Variation of ∆CX,q, ∆CZ,q, ∆CM,q

Figure 6.8. – Variation of multiplicative uncertainties applied to aerodynamic coefficients
CX,0, CX,q, CZ,0, CZ,q, Cm,0 and Cm,q

In the next step, the robust stability assessment is carried out under consideration
of uncertainties with regard to the aerodynamic coefficients of the aircraft model.
According to [111, p. 27] this investigation is required in terms of aircraft certification.
It should be shown that the closed-loop still inherits specified minimum stability
margins, although 20% variation on critical aerodynamic coefficients is induced [111, p.
27]. The reduced stability margins applied here can be found in Table 5.1, which is
introduced in Section 5.1.1. More specifically, in this section the grey diamonds should
be interpreted as minimum robustness margins, while nichols plots are considered.
For the robust stability assessment, the bottleneck cut and the exemplary envelope
point corresponding to V0 = 154.94 m

s and h0 = 5000m are considered. Furthermore, the
results are generated utilizing the enhanced aircraft configuration. In order to suit to
the requirements shown above, the assessments feature multiplicative uncertainties
simultaneously applied to the force coefficients CX,0, CZ,0, CX,q and CZ,q, as well as to
the moment coefficients Cm,0 and Cm,q (c.f. Section 2.1.1). The corresponding factors
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are denoted with an additional “∆”. Thus, in case of the zero moment coefficient, the
value applied to the aircraft dynamics would result in

Cm,0,perturb = Cm,0 · ∆Cm,0. (6.1)

In total 5064 variations of the factors ∆CX,0, ∆CZ,0, ∆CX,q, ∆CZ,q, ∆Cm,0 and ∆Cm,q are
randomly generated considering a value range of [0.8; 1.2] [111, p. 27] and taking the
edges of the resulting hypercube into account. The resulting factors are depicted in
Fig. 6.8.
Fig. 6.9 shows the resulting frequency responses for the baseline controller considering
the bottleneck cut, where the introduced variations of the aerodynamic coefficients
are applied to the enhanced aircraft model. Thereby, the frequency of the nominal
configuration is plotted by means of the black, dashed-dotted line. As it was stated
before, for these assessments the grey diamonds mark the required robustness margins.
It can be seen that the DPI baseline controller fulfills the robust stability requirements
with regard to aerodynamic uncertainty. The scattering of the results can be observed
in Table 6.7, where minimum and maximum values of gain margin, phase margin
and TDM can be found. In addition, the corresponding mean values and standard
deviations are calculated.
In comparison to the baseline controller, one can see in Fig. 6.10 that the scattering
is higher with regard to the gain margin, when the DPI Augmentation is utilized.
Nevertheless, the requirements with regard to both margins are met. Furthermore,
the distance of the most critical frequency response to the critical point is larger than
the most critical frequency response of the baseline controller. This also reflects in
Table 6.8, where it can be seen that the minimum gain and phase margins increase
by means of the DPI Augmentation. In order to further increase comparability, also
the percentage of the values with respect to the corresponding values belonging to
the baseline controller results are given in the table. Basically the same statement can
also be made for the Plant Augmentation, whose results are shown in Fig. 6.11 and
Table 6.9
The resulting frequency responses belonging to the ∆q̇ Compensation Law are pre-
sented in Fig. 6.12. It can be observed from this diagram and from Table 6.10 that the
scattering with regard to the maximum gain margin increases. On the other hand, the
minimum gain margin is slightly smaller than for the L1 Adaptive Augmentations.
Nevertheless, the ∆q̇ Compensation Law still offers an advantage compared to the
baseline controller here. This holds also for the phase margin. In order to summarize,
the required robustness margins are fulfilled also for this control law.
The last control law considered in this section is the L1 adaptive controller with
Eigenstructure Assignment. The frequency responses and the resulting margins are
shown in Fig. 6.13 and Table 6.11, respectively. In this case it can be stated that the
scattering with regard to the nominal frequency response is reduced in comparison
to the adaptive augmentations. Although, three uncertainty cases exist, where the
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Figure 6.9. – Nichols plot for robust stability assessment of baseline controller at
V = 154.94 m

s generated for ηcmd (bottleneck) loop cut considering uncertainty
w.r.t aerodynamic coefficients (enhanced aircraft model)

Table 6.7. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of baseline controller at V = 154.94 m

s
generated for ηcmd (bottleneck) loop cut considering uncertainty w.r.t
aerodynamic coefficients (enhanced aircraft model)

GM [dB] Φm [◦] TDM [s]
max 13.42 74.273 5.22
min 3.90 45.412 1.10
∅ 9.06 65.202 2.88
σ 1.861 5.5126 0.791
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Figure 6.10. – Nichols plot for robust stability assessment of DPI Augmentation at
V = 154.94 m

s generated for ηcmd (bottleneck) loop cut considering
uncertainty w.r.t aerodynamic coefficients (enhanced aircraft model)

Table 6.8. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of DPI Augmentation and comparison
to baseline controller at V = 154.94 m

s generated for ηcmd (bottleneck) loop cut
considering uncertainty w.r.t aerodynamic coefficients (enhanced aircraft
model)

GM [dB] Φm [◦] TDM [s] GMrel [%] Φm,rel [%] TDMrel [%]

max 20.44 80.383 3.43 152.3% 108.2% 65.7%
min 5.65 55.219 2.14 144.8% 121.6% 195.2%
∅ 9.71 67.043 2.88 107.1% 102.8% 100.1%
σ 2.593 5.1221 0.299 139.3% 92.9% 37.7%
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Figure 6.11. – Nichols plot for robust stability assessment of Plant Augmentation at
V = 154.94 m

s generated for ηcmd (bottleneck) loop cut considering
uncertainty w.r.t aerodynamic coefficients (enhanced aircraft model)

Table 6.9. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of Plant Augmentation and
comparison to baseline controller at V = 154.94 m

s generated for ηcmd
(bottleneck) loop cut considering uncertainty w.r.t aerodynamic coefficients
(enhanced aircraft model)

GM [dB] Φm [◦] TDM [s] GMrel [%] Φm,rel [%] TDMrel [%]

max 20.72 80.763 3.41 154.4% 108.7% 65.4%
min 5.59 54.851 2.15 143.3% 120.8% 195.5%
∅ 9.72 66.988 2.88 107.3% 102.7% 100.0%
σ 2.644 5.2183 0.295 142.1% 94.7% 37.2%
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Figure 6.12. – Nichols plot for robust stability assessment of ∆q̇ Compensation Law at
V = 154.94 m

s generated for ηcmd (bottleneck) loop cut considering
uncertainty w.r.t aerodynamic coefficients (enhanced aircraft model)

Table 6.10. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of ∆q̇ Compensation Law and
comparison to baseline controller at V = 154.94 m

s generated for ηcmd
(bottleneck) loop cut considering uncertainty w.r.t aerodynamic coefficients
(enhanced aircraft model)

GM [dB] Φm [◦] TDM [s] GMrel [%] Φm,rel [%] TDMrel [%]

max 53.08 85.126 3.09 395.6% 114.6% 59.1%
min 5.06 51.711 2.24 129.7% 113.9% 204.0%
∅ 15.18 66.345 2.80 167.5% 101.8% 97.4%
σ 10.566 6.2098 0.183 567.8% 112.6% 23.1%
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Figure 6.13. – Nichols plot for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment at V = 154.94 m

s generated for ηcmd (bottleneck)
loop cut considering uncertainty w.r.t aerodynamic coefficients (enhanced
aircraft model)

Table 6.11. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment and comparison to baseline controller at
V = 154.94 m

s generated for ηcmd (bottleneck) loop cut considering uncertainty
w.r.t aerodynamic coefficients (enhanced aircraft model)

GM [dB] Φm [◦] TDM [s] GMrel [%] Φm,rel [%] TDMrel [%]

max 26.45 ∞ ∞ 197.1% - -
min 2.87 206.128 0.93 73.6% 453.9% 85.1%
∅ 8.86 - - 97.7% - -
σ 6.758 - - 363.2% - -
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Table 6.12. – Critical variations for robust stability assessment of L1 adaptive controller
with Eigenstructure Assignment and comparison to baseline controller at
V = 154.94 m

s generated for ηcmd (bottleneck) loop cut considering uncertainty
w.r.t aerodynamic coefficients (enhanced aircraft model)

∆CX,0 ∆CX,q ∆CZ,0 ∆CZ,q ∆Cm,0 ∆Cm,q

1 0.8 1.2 1.2 1.2 0.8 1.2
2 0.8 0.8 1.2 1.2 0.8 1.2
3 0.8 1.2 1.2 0.8 1.2 1.2

robust stability margins are harmed. This can be observed in a zoomed version of
the nichols plot in Fig. 6.14. In this case the innermost diamond, which belongs to
frequencies ω < ω0,ph, is slightly crossed by three of the 5065 frequency responses.
The concerning variations are summarized in Table 6.12. It can be observed that all
variations represent corner cases here. Thus, in case of a real aircraft FCS certification
attempt, this controller would need further tuning to avoid this. Note also that this
would also require the consideration of a fine grid of different envelope points, whereas
only one exemplary envelope point is examined here.

Figure 6.14. – Nichols plot for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment at V = 154.94 m

s generated for ηcmd (bottleneck)
loop cut considering uncertainty w.r.t aerodynamic coefficients (enhanced
aircraft model, zoom for critical uncertainty cases)
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6.2. Performance

After comparisons with regard to robust stability were drawn in the last section,
the remainder of this chapter concentrates on performance assessments. Firstly, the
performances of the controllers presented in Chapter 4 are compared by means of
the assessments made in Chapter 5, which include step responses and the exemplary
maneuver. Nominal conditions are applied here, i.e. no uncertainty is induced except
for turbulence considering the enhanced aircraft model.
In the next step, the effect of individual uncertainties on the controller performance
is thoroughly investigated. For this purpose, uncertainties are firstly applied on
aerodynamic coefficients, as it was already shown in Section 6.1.2. Here, uncertainties
are also induced individually on force and moment coefficients. After that, CG-
shifts are applied to the aircraft model. For the sake of comparison, results gained
in Chapter 5 are summarized and can also be compared by means of performance
metrics. Furthermore, variations on the point in time, where the CG-shift is induced,
are examined. The next assessments feature variations on sensor delay and noise.
These are also individually investigated for the particular sensor measurements, which
include angle of attack α, pitch rate q and elevator deflection η. Moreover, variations
with regard to the dynamics of the simple structural mode model and the actuator
dynamics are considered. The last assessments focus on atmospheric disturbance,
where the effect of gust and turbulence on the controller performance is examined.

6.2.1. Nominal conditions

In this section, results gained in Chapter 5, in particular Section 5.2.1.2, Section 5.2.2.3,
Section 5.2.3.2 and Section 5.2.4.2, are revisited in order to increase comparability of
the control laws designed in the course of this thesis. Thus, step responses considering
one envelope point and performance assessments using the exemplary maneuver are
investigated. In addition to simulation plots, also the corresponding performance
metrics ML2 , ML∞ and ML2,act , which were introduced in Eq. (5.6a), Eq. (5.6b) and
Eq. (5.7), are provided. It holds for all metrics that a smaller value indicates better
performance. The definition of the metrics can be found in Section 5.1.2.
At first, the step responses of the different control laws combined with the basic aircraft
model are investigated considering the envelope point corresponding to V0 = 154.94 m

s
and h0 = 5000m. Although, the step responses only marginally differ considering a
short time scale in Fig. 6.15 and Table 6.13, differences can be observed considering a
large time scale in Fig. 6.16 and Table 6.14. The residual steady-state error, which was
already discussed in Section 5.2.4.2, can be observed for the standalone L1 adaptive
controller. Furthermore, the phugoid has a larger impact on the response consid-
ering the L1 Adaptive Augmentations compared to DPI baseline controller and ∆q̇
Compensation Law. Moreover, it can be seen in Table 6.14 that the metrics belonging
to DPI baseline controller and ∆q̇ Compensation Law barely differ. Resulting step
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Figure 6.15. – Comparison of αcmd step responses of basic, nonlinear aircraft model in
combination with baseline controller, L1 Adaptive Augmentations, ∆q̇
Compensation Law and L1 adaptive controller with Eigenstructure
Assignment at V0 = 154.94 m

s

Table 6.13. – Comparison of performance metrics ML2 , ML∞ and ML2,act generated from
step responses of basic, nonlinear aircraft model in combination with
baseline controller, L1 Adaptive Augmentations, ∆q̇ Compensation Law and
L1 adaptive controller with Eigenstructure Assignment at V0 = 154.94 m

s
Controller ML2 [−] ML∞ [−] ML2,act [−]

Baseline 0.032 0.0005 0.788
DPI Augmentation 0.064 0.0012 0.777

Plant Augmentation 0.049 0.0009 0.774
L1 Standalone 0.050 0.0014 0.628

∆q̇ Compensator 0.031 0.0006 0.808
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Figure 6.16. – Comparison of αcmd step responses of basic, nonlinear aircraft model in
combination with baseline controller, L1 Adaptive Augmentations, ∆q̇
Compensation Law and L1 adaptive controller with Eigenstructure
Assignment at V0 = 154.94 m

s for large timescale

Table 6.14. – Comparison of performance metrics ML2 , ML∞ and ML2,act generated from
step responses of basic, nonlinear aircraft model in combination with
baseline controller, L1 Adaptive Augmentations, ∆q̇ Compensation Law and
L1 adaptive controller with Eigenstructure Assignment at V0 = 154.94 m

s for
large timescale

Controller ML2 [−] ML∞ [−] ML2,act [−]
Baseline 0.143 0.0008 0.789

DPI Augmentation 0.387 0.0023 0.778
Plant Augmentation 0.269 0.0015 0.775

L1 Standalone 2.234 0.0097 0.629
∆q̇ Compensator 0.143 0.0008 0.808
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responses and performance metrics, where the linear aircraft dynamics are utilized,
can additionally be found in Fig. A.68, Table A.91, Fig. A.69, Table A.92, Fig. A.70, and
Table A.93, which are included in Appendix A.7.1.
Utilizing the enhanced aircraft model, where the reality effects turbulence (probability
of exceedance 10−2), sensor noise, jitter and quantization are activated, results in
very similar step responses, as it can be seen in Fig. 6.17. Although, the commanded
actuator activity is significantly higher for all adaptive controllers compared to the
baseline controller. This is also confirmed by the metrics, in particular by means of
ML2,act , in Table 6.15. The reason for this is the high gain update law with respect
to the L1 Adaptive Control approach on the on hand and on the other hand the
derivation of the pitch rate q, as it is needed for the ∆q̇ Compensation Law. This was
also already discussed in Chapter 5. Corresponding step responses considering the
enhanced aircraft model, where turbulence and actuator backlash as well as noise,
jitter, scale factor, bias and quantization within the sensor are deactivated, can be found
in Fig. A.71, Table A.94, Fig. A.72 and Table A.95.
The exemplary maneuver is considered in the next step. Fig. 6.18 shows the system
responses of the different controllers combined with the basic aircraft model. It can
be seen that the adaptive controllers manage to compensate the nonlinearity, which
appears for the αmin = −10◦ sections. Thus, also the metrics in Table 6.16 indicate an
increase in performance by means of the adaptive control laws in comparison to the
baseline controller configuration.
The results of the same maneuver are depicted in Fig. 6.19, where the enhanced aircraft
model is used. It can be seen that the adaptive controllers are still able to increase
the performance. Although, as it was already shown for the step responses, the
amplification of noisy measurements increases according to ML2,act in Table 6.17. Thus,
the commanded actuator activity increases, which is especially due to turbulence. This
can also be observed in Fig. 6.20, where severe instead of light turbulence is applied. In
this case, the metrics ML2 and ML∞ in Table 6.18 indicate similar performance in terms
of the error between measured angle of attack α and reference model αre f , although
the commanded actuator activity increases drastically for the adaptive controllers (c.f.
ML2).
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Figure 6.17. – Comparison of αcmd step responses of enhanced, nonlinear aircraft model in
combination with baseline controller, L1 Adaptive Augmentations, ∆q̇
Compensation Law and L1 adaptive controller with Eigenstructure
Assignment at V0 = 154.94 m

s with light turbulence, sensor noise, jitter and
quantization effects

Table 6.15. – Comparison of performance metrics ML2 , ML∞ and ML2,act generated from
step responses of enhanced, nonlinear aircraft model in combination with
baseline controller, L1 Adaptive Augmentations, ∆q̇ Compensation Law and
L1 adaptive controller with Eigenstructure Assignment at V0 = 154.94 m

s with
light turbulence, sensor noise, jitter and quantization effects

Controller ML2 [−] ML∞ [−] ML2,act [−]
Baseline 0.438 0.0129 0.758

DPI Augmentation 0.460 0.0130 7.110
Plant Augmentation 0.461 0.0130 7.081

L1 Standalone 0.488 0.0136 7.937
∆q̇ Compensator 0.479 0.0135 7.586

217



Comparison of control laws

Time t [s]
0 5 10 15 20 25 30

A
n
gl
e
of

A
tt
ac
k
α
[◦
]

-10

0

10 αcmd

αref

αref Standalone

α Baseline

α DPI Augmentation

α Plant Augmentation

α L1 Standalone

α ∆q̇ Compensator

Time t [s]
0 5 10 15 20 25 30

C
om

m
an

d
η
cm

d
[◦
]

-40

-20

0

20

40 ηcmd Baseline
ηcmd DPI Augmentation
ηcmd Plant Augmentation
ηcmd L1 Standalone
ηcmd ∆q̇ Compensator

Time t [s]
0 5 10 15 20 25 30R

at
e
C
om

m
an

d
η̇
cm

d
[◦
/s
]

-200

0

200
η̇cmd Baseline
η̇cmd DPI Augmentation
η̇cmd Plant Augmentation
η̇cmd L1 Standalone
η̇cmd ∆q̇ Compensator

Figure 6.18. – Comparison of angle of attack α, elevator command ηcmd and elevator
command rate η̇cmd for example maneuver performed by basic, nonlinear
aircraft model in combination with baseline controller, L1 Adaptive
Augmentations, ∆q̇ Compensation Law and L1 adaptive controller with
Eigenstructure Assignment starting at V0 = 154.94 m

s and h0 = 5000m

Table 6.16. – Comparison of performance metrics ML2 , ML∞ and ML2,act generated from
example maneuver performed by basic, nonlinear aircraft model in
combination with baseline controller, L1 Adaptive Augmentations, ∆q̇
Compensation Law and L1 adaptive controller with Eigenstructure
Assignment starting at V0 = 154.94 m

s and h0 = 5000m
Controller ML2 [−] ML∞ [−] ML2,act [−]

Baseline 3.04 0.052 21.26
DPI Augmentation 0.81 0.018 20.74

Plant Augmentation 0.75 0.017 20.71
L1 Standalone 0.95 0.023 16.77

∆q̇ Compensator 0.62 0.016 21.30
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Figure 6.19. – Comparison of angle of attack α, elevator command ηcmd and elevator
command rate η̇cmd for example maneuver performed by enhanced,
nonlinear aircraft model in combination with baseline controller, L1
Adaptive Augmentations, ∆q̇ Compensation Law and L1 adaptive controller
with Eigenstructure Assignment starting at V0 = 154.94 m

s and h0 = 5000m

Table 6.17. – Comparison of performance metrics ML2 , ML∞ and ML2,act generated from
example maneuver performed by enhanced, nonlinear aircraft model in
combination with baseline controller, L1 Adaptive Augmentations, ∆q̇
Compensation Law and L1 adaptive controller with Eigenstructure
Assignment starting at V0 = 154.94 m

s and h0 = 5000m
Controller ML2 [−] ML∞ [−] ML2,act [−]

Baseline 7.79 0.142 14.45
DPI Augmentation 2.29 0.047 19.48

Plant Augmentation 2.31 0.047 19.33
L1 Standalone 2.61 0.071 22.18

∆q̇ Compensator 2.40 0.050 19.03
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Figure 6.20. – Comparison of angle of attack α, elevator command ηcmd and elevator
command rate η̇cmd for example maneuver performed by enhanced,
nonlinear aircraft model in combination with baseline controller, L1
Adaptive Augmentations, ∆q̇ Compensation Law and L1 adaptive controller
with Eigenstructure Assignment starting at V0 = 154.94 m

s and h0 = 5000m
considering severe turbulence

Table 6.18. – Comparison of performance metrics ML2 , ML∞ and ML2,act generated from
example maneuver performed by enhanced, nonlinear aircraft model in
combination with baseline controller, L1 Adaptive Augmentations, ∆q̇
Compensation Law and L1 adaptive controller with Eigenstructure
Assignment starting at V0 = 154.94 m

s and h0 = 5000m considering severe
turbulence

Controller ML2 [−] ML∞ [−] ML2,act [−]
Baseline 8.85 0.164 15.85

DPI Augmentation 8.78 0.184 67.19
Plant Augmentation 8.77 0.184 66.89

L1 Standalone 5.39 0.102 74.04
∆q̇ Compensator 9.15 0.196 73.78
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6.2.2. Uncertainty w.r.t. aerodynamic coefficients (only pitch
moment)
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Figure 6.21. – Variation of multiplicative uncertainties applied to aerodynamic coefficients
CM,0 and CM,q

The next three sections investigate the effect of uncertainties concerning the aero-
dynamic coefficients on the controller performances. Firstly, uncertainties are only
induced to the moment coefficients in this section. After that, the same assessment is
made considering uncertainties applied to the forces. At last, the effect of combined
uncertainties is examined.
As it was already presented for the robust stability assessments in Section 6.1.2, multi-
plicative uncertainties are applied to the aerodynamics coefficients, in this case only to
the moment coefficients Cm,0 and Cm,q (c.f. Section 2.1.1). The corresponding factors
∆Cm,0 and ∆Cm,q are randomly varied in a range of [0.8; 1.2]. Including the corner
cases, in total 2000 variation combinations are generated, which are shown in Fig. 6.21.
The performance is again investigated by means of the exemplary maneuver, which
was introduced in Section 5.1.2. For this purpose, the enhanced aircraft configuration
is utilized. Note also that for all simulations the same seed is used, in order to generate
the random numbers needed for the dryden turbulence model. In this case, light
turbulence is applied.
The system responses as well as the performance metrics are presented for every con-
troller configuration. In terms of the performance metrics, the minimum and maximum
values are summarized together with their mean values and the standard deviations.
For the adaptive controllers, also relative percentages of the metrics are given which
are calculated with respect to the baseline controller configuration. The results can be
found in Fig. 6.22 and Table 6.19 for the baseline controller, in Fig. 6.23 and Table 6.20
for the DPI Augmentation, in Fig. 6.24 and Table 6.21 for the Plant Augmentation, in
Fig. 6.25 and Table 6.22 for the ∆q̇ Compensation Law and in Fig. 6.26 and Table 6.23
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for the standalone L1 adaptive controller with Eigenstructure Assignment. It can
be observed that the adaptive augmentations increase the performance considering
uncertainty with regard to the pitch moment coefficients. In particular, this can be seen
for the αmin = −10◦ sections, where, additional to the uncertainty, also a nonlinearity
within the aircraft dynamics is present. The L1 Adaptive Augmentations manage to
decrease the standard deviation of the ML2 metric, which is a good measure for the
scattering of the responses, by approximately 90% in comparison to the configuration,
where only the baseline controller is used. This can be seen in Table 6.20 and Table 6.21.
In Table 6.22 one can also see that the performance of the ∆q̇ Compensation Law is
very similar to the one of the L1 Adaptive Augmentations. Also the standalone L1
adaptive controller is able to cope with this type of uncertainty, which is confirmed by
Table 6.23. Although, its performance is slighty worse in comparison to the adaptive
augmentations. Note that the increase in commanded actuator activity (c.f. ML2,act)
stems from the amplification of turbulence in case of the adaptive controllers.
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Figure 6.22. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of aerodynamic forces

Table 6.19. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of aerodynamic forces

ML2 [−] ML∞ [−] ML2,act [−]
max 11.30 0.190 14.51
min 3.72 0.067 14.26
∅ 7.64 0.137 14.42
σ 2.036 0.0321 0.057
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Figure 6.23. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with DPI Augmentation starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of aerodynamic moment

Table 6.20. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with DPI Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of aerodynamic moment

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 3.04 0.064 22.37 26.9% 33.6% 154.2%
min 2.15 0.035 18.21 57.9% 52.2% 127.7%
∅ 2.40 0.046 19.70 31.4% 33.8% 136.6%
σ 0.223 0.0075 1.181 11.0% 23.4% 2069.3%
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Figure 6.24. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with Plant Augmentation starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of aerodynamic moment

Table 6.21. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with Plant Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of aerodynamic moment

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 3.03 0.064 21.93 26.8% 33.8% 151.2%
min 2.16 0.035 18.15 58.1% 52.6% 127.3%
∅ 2.41 0.047 19.51 31.5% 34.1% 135.3%
σ 0.216 0.0077 1.079 10.6% 23.9% 1889.5%
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Figure 6.25. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with ∆q̇ Compensation Law starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of aerodynamic moment

Table 6.22. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with ∆q̇ Compensation Law and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of aerodynamic moment

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 2.98 0.065 20.19 26.3% 34.5% 139.1%
min 2.30 0.037 18.28 62.0% 55.6% 128.2%
∅ 2.51 0.050 19.08 32.9% 36.8% 132.3%
σ 0.183 0.0087 0.577 9.0% 27.2% 1010.3%
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Figure 6.26. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with L1 adaptive controller with Eigenstructure Assignment starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of aerodynamic moment

Table 6.23. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with L1 adaptive controller with
Eigenstructure Assignment and comparison to baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of aerodynamic moment

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 3.66 0.098 23.40 32.4% 51.8% 161.2%
min 1.88 0.044 21.56 50.7% 66.4% 151.2%
∅ 2.63 0.071 22.26 34.5% 51.8% 154.3%
σ 0.515 0.0141 0.477 25.3% 43.9% 835.5%
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6.2.3. Uncertainty w.r.t. aerodynamic coefficients (only forces)

∆CX,0 [−]
0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

∆
C

Z
,0
[−

]

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

(a) Variation of ∆CX,0 and ∆CZ,0

∆CX,q [−]
0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

∆
C

Z
,q
[−

]

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

(b) Variation of ∆CX,q and ∆CZ,q

Figure 6.27. – Variation of multiplicative uncertainties applied to aerodynamic coefficients
CX,0, CX,q, CZ,0 and CZ,q

In the next step, the performance is investigated considering uncertainties with regard
to aerodynamic forces. Thus, variations in the range of [0.8; 1.2] are randomly generated
for the factors ∆CX,0, ∆CZ,0, ∆CX,q and ∆CZ,q. The results are depicted in Fig. 6.27. As
for the pitch moment uncertainty assessments, also in this case 2000 variations are
created, which include the corner cases. The results of the simulations are summarized
in Fig. 6.28 and Table 6.24 for the baseline controller, in Fig. 6.29 and Table 6.25 for
the DPI Augmentation, in Fig. 6.30 and Table 6.26 for the Plant Augmentation, in
Fig. 6.31 and Table 6.27 for the ∆q̇ Compensation Law and in Fig. 6.32 and Table 6.28
for the standalone L1 adaptive controller with Eigenstructure Assignment. In this
respect again, the adaptive augmentations increase the performance in comparison
to the baseline controller. In particular, the standard deviation of ML2 considering
the L1 Adaptive Augmentations can be decreased by approximately 80%, in case of
the ∆q̇ Compensation Law even by 84%. Although, some uncertainty combinations
lead to oscillations within the system response in the second αmin = −10◦ section.
This issue is not apparent for the first αmin = −10◦ section, because the velocity of the
aircraft (below 140m

s ) is lower here compared to the second section (around 170m
s ).

Thus, this assessment indicates that the adaptive augmentations face problems at this
envelope point, while compensating the combination of aerodynamic nonlinearity
and uncertainty within the aerodynamic forces. This issue can also be observed for
the standalone L1 adaptive controller, where the commanded actuator activity is
drastically increased for some uncertainty cases during the second αmin = −10◦ section.
Nevertheless, also the standalone adaptive controller offers a performance increase
with regard to the considered uncertainty case.
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Figure 6.28. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of aerodynamic forces

Table 6.24. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of aerodynamic forces

ML2 [−] ML∞ [−] ML2,act [−]
max 13.98 0.201 15.29
min 3.49 0.065 13.97
∅ 7.93 0.137 14.47
σ 2.912 0.0403 0.318
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Figure 6.29. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with DPI Augmentation starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of aerodynamic forces

Table 6.25. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with DPI Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of aerodynamic forces

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 4.44 0.101 20.55 31.8% 50.5% 134.4%
min 2.15 0.034 16.96 61.6% 51.6% 121.4%
∅ 2.67 0.052 19.24 33.7% 37.9% 132.9%
σ 0.571 0.0173 0.828 19.6% 43.0% 260.3%
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Figure 6.30. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with Plant Augmentation starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of aerodynamic forces

Table 6.26. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with Plant Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of aerodynamic forces

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 4.36 0.101 20.42 31.2% 50.5% 133.6%
min 2.15 0.034 16.85 61.7% 51.9% 120.6%
∅ 2.67 0.052 19.09 33.7% 38.2% 131.9%
σ 0.567 0.0173 0.814 19.5% 42.9% 255.9%
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Figure 6.31. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with ∆q̇ Compensation Law starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of aerodynamic forces

Table 6.27. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with ∆q̇ Compensation Law and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of aerodynamic forces

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 4.04 0.091 20.41 28.9% 45.1% 133.5%
min 2.24 0.036 16.58 64.2% 56.1% 118.7%
∅ 2.67 0.054 18.91 33.7% 39.3% 130.7%
σ 0.454 0.0142 0.786 15.6% 35.2% 247.1%
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Figure 6.32. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with L1 adaptive controller with Eigenstructure Assignment starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of aerodynamic forces

Table 6.28. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with L1 adaptive controller with
Eigenstructure Assignment and comparison to baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of aerodynamic forces

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 4.51 0.127 27.55 32.3% 63.1% 180.2%
min 1.91 0.038 21.31 54.6% 57.8% 152.5%
∅ 2.80 0.075 22.75 35.3% 54.7% 157.3%
σ 0.782 0.0255 1.238 26.9% 63.2% 389.4%
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6.2.4. Uncertainty w.r.t. aerodynamic coefficients (forces and
pitch-moment)

After the individual assessments of uncertainties with regard to aerodynamic forces
and moments, this section investigates combined uncertainty cases. For this purpose,
the same variations on the aerodynamic coefficients according to Fig. 6.8 are utilized,
as they were presented for the robust stability assessment in Section 6.1.2. Thus, a
total amount of 5065 simulations is performed for every controller in combination with
the enhanced aircraft model including the nominal configuration with regard to the
aerodynamic coefficients.
The simulation results can be found in Fig. 6.33 and Table 6.29 for the baseline controller,
in Fig. 6.34 and Table 6.30 for the DPI Augmentation, in Fig. 6.35 and Table 6.31 for the
Plant Augmentation, in Fig. 6.36 and Table 6.32 for the ∆q̇ Compensation Law and in
Fig. 6.37 and Table 6.33 for the standalone L1 adaptive controller with Eigenstructure
Assignment. Also for combined uncertainties with regard to both aerodynamic forces
and moments, the adaptive augmentations achieve an increase with regard to the
performance metrics in comparison to the baseline controller. This holds also in
case of the standalone L1 adaptive controller. On the other hand it can also be
seen for the adaptive augmentations that the amplitudes of the oscillations in the
second αmin = −10◦ section are larger compared to the force-only uncertainty cases in
Section 6.2.3. This can also be seen considering the commanded actuator activity of
the standalone adaptive controller.

234



Performance

Figure 6.33. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of aerodynamic forces and moment

Table 6.29. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of aerodynamic forces
and moment

ML2 [−] ML∞ [−] ML2,act [−]
max 21.39 0.297 16.06
min 2.58 0.036 13.79
∅ 8.01 0.136 14.47
σ 3.585 0.0507 0.364
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Figure 6.34. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with DPI Augmentation starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of aerodynamic forces and moment

Table 6.30. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with DPI Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of aerodynamic forces and moment

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 6.71 0.169 25.15 31.4% 56.9% 156.6%
min 2.11 0.033 16.40 81.8% 92.1% 118.9%
∅ 2.79 0.054 19.57 34.8% 39.8% 135.2%
σ 0.647 0.0199 1.589 18.0% 39.3% 437.0%
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Figure 6.35. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with Plant Augmentation starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of aerodynamic forces and moment

Table 6.31. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with Plant Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of aerodynamic forces and moment

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 6.50 0.169 24.76 30.4% 57.0% 154.2%
min 2.12 0.033 16.36 82.4% 93.1% 118.7%
∅ 2.79 0.055 19.40 34.8% 40.1% 134.0%
σ 0.641 0.0201 1.508 17.9% 39.6% 414.8%
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Figure 6.36. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with ∆q̇ Compensation Law starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of aerodynamic forces and moment

Table 6.32. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with ∆q̇ Compensation Law and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of aerodynamic forces and moment

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 5.49 0.133 23.36 25.7% 44.7% 145.5%
min 2.15 0.037 16.27 83.2% 101.7% 118.0%
∅ 2.76 0.056 19.08 34.4% 41.1% 131.8%
σ 0.534 0.0160 1.120 14.9% 31.7% 308.0%
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Figure 6.37. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with L1 adaptive controller with Eigenstructure Assignment starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of aerodynamic forces
and moment

Table 6.33. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with L1 adaptive controller with
Eigenstructure Assignment and comparison to baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of aerodynamic forces
and moment

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 5.90 0.169 30.75 27.6% 56.9% 191.5%
min 1.87 0.033 20.90 72.7% 91.6% 151.6%
∅ 2.86 0.075 22.88 35.8% 55.0% 158.1%
σ 0.875 0.0293 1.394 24.4% 57.8% 383.3%
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6.2.5. Uncertainty w.r.t. CG location

tCG−shif t [s]
5 10 15 20 25

Figure 6.38. – Variation of point in time tCG−shi f t, at which sudden CG-shift of 3% is
applied

In this section, the performance of the proposed controller designs is investigated
by means of rapid CG-shifts. For this purpose, also results gained in Chapter 5 are
compiled here, in order to increase comparability between the control laws. This in-
cludes assessments of CG-shifts, which appear at tCG−shi f t = 10s during the exemplary
maneuver. Furthermore, a 3% CG-shift case is examined utilizing the enhanced aircraft
model, where the incidence of the CG-shift with respect to time is varied. In this
case, 500 random variations of tCG−shi f t are generated in a range of [2s; 28s], which are
shown in Fig. 6.38.
In the first experiment, the 5% CG-shift case is revisited considering the basic aircraft
model and tCG−shi f t = 10s. The results for all controllers are depicted in Fig. 6.39,
where the accompanying performance metrics can be found in Table 6.34. By means
of the plots and the metrics, the statements made in Chapter 5 are confirmed that
the adaptive controllers are capable of compensating this rapid CG-shift, whereas the
performance of the baseline controller would lead to unacceptable handling qualities.
Note also that in case of the missing influence of turbulence and sensor noise, this
performance increase is achieved without an increase in commanded actuator activity
(c.f. ML2,act). The performance increase can even be observed in case of a 7% CG-shift
for the adaptive augmentations, which include both L1 Adaptive Augmentations as
well as the ∆q̇ Compensation Law. Although, the standalone L1 adaptive controller
is not able to stabilize this configuration anymore. A reason for this could be the
limitation of the controller command and its rate, which is directly incorporated into
the design of the DPI baseline controller and is also considered for the design of the
augmentations (c.f. Section 4.2 and Section 4.3). It can also be observed that the
controller command reaches the limit with respect of the actuator deflection around
t ≈ 15s, t ≈ 25s and t ≈ 27s. Despite these saturations, the adaptive augmentations
are still able to stabilize the aircraft, which is also due to the DPI approach.
The beneficial effect of the adaptive controllers can also be observed, when the en-
hanced aircraft model is considered. In this case, CG-shifts of 2% and 3% are applied.
The results can be found in Fig. 6.41 and Table 6.36 for the 2% CG-shift and in Fig. 6.42
and Table 6.37 for the 3% CG-shift case. Despite the introduction of several reality
effects, the adaptive controllers still significantly increase the performance of the air-
craft in comparison to the baseline controller configuration. Similar to the assessment
with respect to aerodynamic uncertainty in Section 6.2.4 oscillations can be detected
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in the second αmin = −10◦ section for the 3% CG-shift case. This indicates that the
potentialities of the adaptive controllers are nearly exploited also for this uncertainty
case.
In the next step, variations of tCG−shi f t according to Fig. 6.38 are considered. The
simulation results are summarized in Fig. 6.43 and Table 6.38 for the baseline controller,
in Fig. 6.44 and Table 6.39 for the DPI Augmentation, in Fig. 6.45 and Table 6.40 for the
Plant Augmentation, in Fig. 6.46 and Table 6.41 for the ∆q̇ Compensation Law and in
Fig. 6.47 and Table 6.42 for the standalone L1 adaptive controller with Eigenstructure
Assignment. It can still be observed that the adaptive controllers are able to stabilize
the aircraft independent from the point in time tCG−shi f t, where the CG-shift appears,
in contrast to the baseline controller configuration. Thus, the adaptive augmentations
achieve a performance increase of approximately 81% with regard to the mean values
of the ML2 metric. For the standalone adaptive controller this value even increases to
nearly 85%.
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Figure 6.39. – Comparison of angle of attack α, elevator command ηcmd and elevator
command rate η̇cmd for example maneuver performed by basic, nonlinear
aircraft model in combination with baseline controller, L1 Adaptive
Augmentations, ∆q̇ Compensation Law and L1 adaptive controller with
Eigenstructure Assignment starting at V0 = 154.94 m

s and h0 = 5000m
considering CG-shift of 5% at t = 10s

Table 6.34. – Comparison of performance metrics ML2 , ML∞ and ML2,act generated from
example maneuver performed by basic, nonlinear aircraft model in
combination with baseline controller, L1 Adaptive Augmentations, ∆q̇
Compensation Law and L1 adaptive controller with Eigenstructure
Assignment starting at V0 = 154.94 m

s and h0 = 5000m considering CG-shift of
5% at t = 10s

Controller ML2 [−] ML∞ [−] ML2,act [−]
Baseline 21.00 0.357 23.59

DPI Augmentation 2.03 0.044 22.96
Plant Augmentation 2.04 0.042 22.91

L1 Standalone 3.95 0.084 20.66
∆q̇ Compensator 1.75 0.033 23.11
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Figure 6.40. – Comparison of angle of attack α, elevator command ηcmd and elevator
command rate η̇cmd for example maneuver performed by basic, nonlinear
aircraft model in combination with baseline controller, L1 Adaptive
Augmentations, ∆q̇ Compensation Law and L1 adaptive controller with
Eigenstructure Assignment starting at V0 = 154.94 m

s and h0 = 5000m
considering CG-shift of 7% at t = 10s

Table 6.35. – Comparison of performance metrics ML2 , ML∞ and ML2,act generated from
example maneuver performed by basic, nonlinear aircraft model in
combination with baseline controller, L1 Adaptive Augmentations, ∆q̇
Compensation Law and L1 adaptive controller with Eigenstructure
Assignment starting at V0 = 154.94 m

s and h0 = 5000m considering CG-shift of
7% at t = 10s

Controller ML2 [−] ML∞ [−] ML2,act [−]
Baseline 86.47 1.559 58.24

DPI Augmentation 3.96 0.072 26.16
Plant Augmentation 3.85 0.071 26.05

L1 Standalone 251.74 3.348 152485.73
∆q̇ Compensator 3.20 0.054 26.00

243



Comparison of control laws

Time t [s]
0 5 10 15 20 25 30

A
n
gl
e
of

A
tt
ac
k
α
[◦
]

-10

0

10 αcmd

αref

αref Standalone

α Baseline

α DPI Augmentation

α Plant Augmentation

α L1 Standalone

α ∆q̇ Compensator

Time t [s]
0 5 10 15 20 25 30

C
om

m
an

d
η
cm

d
[◦
]

-40

-20

0

20

40 ηcmd Baseline
ηcmd DPI Augmentation
ηcmd Plant Augmentation
ηcmd L1 Standalone
ηcmd ∆q̇ Compensator

Time t [s]
0 5 10 15 20 25 30R

at
e
C
om

m
an

d
η̇
cm

d
[◦
/s
]

-200

0

200
η̇cmd Baseline
η̇cmd DPI Augmentation
η̇cmd Plant Augmentation
η̇cmd L1 Standalone
η̇cmd ∆q̇ Compensator

Figure 6.41. – Comparison of angle of attack α, elevator command ηcmd and elevator
command rate η̇cmd for example maneuver performed by enhanced,
nonlinear aircraft model in combination with baseline controller, L1
Adaptive Augmentations, ∆q̇ Compensation Law and L1 adaptive controller
with Eigenstructure Assignment starting at V0 = 154.94 m

s and h0 = 5000m
considering CG-shift of 2% at t = 10s

Table 6.36. – Comparison of performance metrics ML2 , ML∞ and ML2,act generated from
example maneuver performed by enhanced, nonlinear aircraft model in
combination with baseline controller, L1 Adaptive Augmentations, ∆q̇
Compensation Law and L1 adaptive controller with Eigenstructure
Assignment starting at V0 = 154.94 m

s and h0 = 5000m considering CG-shift of
2% at t = 10s

Controller ML2 [−] ML∞ [−] ML2,act [−]
Baseline 18.41 0.295 15.89

DPI Augmentation 4.72 0.106 18.00
Plant Augmentation 4.80 0.108 17.94

L1 Standalone 5.52 0.150 23.35
∆q̇ Compensator 4.90 0.110 18.54
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Figure 6.42. – Comparison of angle of attack α, elevator command ηcmd and elevator
command rate η̇cmd for example maneuver performed by enhanced,
nonlinear aircraft model in combination with baseline controller, L1
Adaptive Augmentations, ∆q̇ Compensation Law and L1 adaptive controller
with Eigenstructure Assignment starting at V0 = 154.94 m

s and h0 = 5000m
considering CG-shift of 3% at t = 10s

Table 6.37. – Comparison of performance metrics ML2 , ML∞ and ML2,act generated from
example maneuver performed by enhanced, nonlinear aircraft model in
combination with baseline controller, L1 Adaptive Augmentations, ∆q̇
Compensation Law and L1 adaptive controller with Eigenstructure
Assignment starting at V0 = 154.94 m

s and h0 = 5000m considering CG-shift of
3% at t = 10s

Controller ML2 [−] ML∞ [−] ML2,act [−]
Baseline 56.04 1.042 14.57

DPI Augmentation 8.71 0.224 21.13
Plant Augmentation 9.00 0.227 21.16

L1 Standalone 7.94 0.204 25.57
∆q̇ Compensator 9.39 0.200 22.10

245



Comparison of control laws

Figure 6.43. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of tCG−shi f t

Table 6.38. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of tCG−shi f t

ML2 [−] ML∞ [−] ML2,act [−]
max 86.71 1.693 16.69
min 7.79 0.142 13.81
∅ 45.16 0.890 15.17
σ 20.256 0.4041 0.611
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Figure 6.44. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with DPI Augmentation starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of tCG−shi f t

Table 6.39. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with DPI Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of tCG−shi f t

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 11.41 0.387 28.81 13.2% 22.9% 172.6%
min 2.29 0.047 19.35 29.4% 32.8% 140.1%
∅ 8.19 0.205 21.23 18.1% 23.0% 139.9%
σ 1.406 0.0420 1.309 6.9% 10.4% 214.3%
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Figure 6.45. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with Plant Augmentation starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of tCG−shi f t

Table 6.40. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with Plant Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of tCG−shi f t

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 11.38 0.393 28.02 13.1% 23.2% 167.9%
min 2.31 0.047 19.22 29.6% 33.3% 139.2%
∅ 8.40 0.208 21.22 18.6% 23.3% 139.9%
σ 1.471 0.0427 1.235 7.3% 10.6% 202.1%
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Figure 6.46. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with ∆q̇ Compensation Law starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of tCG−shi f t

Table 6.41. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with ∆q̇ Compensation Law and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of tCG−shi f t

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 10.81 0.266 26.24 12.5% 15.7% 157.2%
min 2.40 0.050 19.03 30.8% 35.5% 137.9%
∅ 8.59 0.191 21.90 19.0% 21.4% 144.4%
σ 1.530 0.0308 1.012 7.6% 7.6% 165.7%
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Figure 6.47. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with L1 adaptive controller with Eigenstructure Assignment starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of tCG−shi f t

Table 6.42. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with L1 adaptive controller with
Eigenstructure Assignment and comparison to baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of tCG−shi f t

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 8.25 0.228 26.71 9.5% 13.5% 160.0%
min 2.61 0.071 22.07 33.5% 50.2% 159.9%
∅ 6.97 0.193 24.91 15.4% 21.7% 164.2%
σ 1.108 0.0290 1.061 5.5% 7.2% 173.5%
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6.2.6. Uncertainty w.r.t. sensor delay
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Figure 6.48. – Variation of additional time delays TD,α, TD,q and TD,η applied to sensor
measurements of angle of attack α, pitch rate q and elevator deflection η

The following four sections focus on assessments of the controller performances with
regard to additional delay, which is applied to the sensor measurements. For this
purpose, this section investigates combined uncertainty cases, where additional delays
are inserted in all relevant sensor signals, which are angle of attack α, pitch rate q
and elevator deflection η. In the following sections Section 6.2.7, Section 6.2.8 and
Section 6.2.9, delay is separately applied to the individual sensor measurements.
Therefore, the additional sensor delays TD,α, TD,q and TD,η are randomly varied within
the limits [0s; 0.1s] for pitch rate and elevator deflector as well as [0s; 0.2s] for angle
of attack measurement, where the corner cases are also considered. The resulting
parameter space is depicted in Fig. 6.48. It includes a total amount of 2000 variations.
These variations are applied to the sensor models of the enhanced aircraft model and
the model is simulated in combination with the controllers, which were designed
in the course of this thesis. The results can be found in Fig. 6.49 and Table 6.43
for the baseline controller, in Fig. 6.50 and Table 6.44 for the DPI Augmentation,
in Fig. 6.51 and Table 6.45 for the Plant Augmentation, in Fig. 6.52 and Table 6.46
for the ∆q̇ Compensation Law and in Fig. 6.53 and Table 6.47 for the standalone
L1 adaptive controller with Eigenstructure Assignment. It can be observed from
the scattering shown in the plots and from the standard deviation of ML2 that the
adaptive controllers are much more sensitive to sensor delay compared to the baseline
controller configuration. This also confirms the results gained during the robust
stability assessment in Section 6.1.1, where Table 6.4 and Table 6.6 reveal that the
time delay margins reduce for the adaptive controllers considering the sensor cuts,
especially with regard to angle of attack α. Considering the simulation results, the
most sensitive configurations are the L1 Adaptive Augmentations, whereas the ∆q̇
Compensation Law exhibits a considerably lower sensitivity with regard to additional
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time delays. On the other hand, a decrease with regard to the mean values of ML2
and ML∞ indicates that all adaptive controllers are still able to increase the average
performance considering this uncertainty case.
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Figure 6.49. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delays TD,α, TD,q and TD,η

Table 6.43. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of additional time delays
TD,α, TD,q and TD,η

ML2 [−] ML∞ [−] ML2,act [−]
max 9.20 0.153 15.13
min 7.77 0.142 14.34
∅ 8.51 0.148 14.75
σ 0.414 0.0032 0.211
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Figure 6.50. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with DPI Augmentation starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delays TD,α, TD,q and TD,η

Table 6.44. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with DPI Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delays TD,α, TD,q and TD,η

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 11.77 0.200 58.47 127.9% 131.2% 386.4%
min 2.09 0.047 16.86 26.9% 32.9% 117.5%
∅ 4.25 0.087 28.80 49.9% 58.7% 195.3%
σ 1.982 0.0333 9.602 479.0% 1027.3% 4548.4%
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Figure 6.51. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with Plant Augmentation starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delays TD,α, TD,q and TD,η

Table 6.45. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with Plant Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delays TD,α, TD,q and TD,η

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 13.33 0.213 57.24 145.0% 139.3% 378.3%
min 2.08 0.047 16.93 26.8% 33.4% 118.0%
∅ 4.16 0.085 28.01 48.9% 57.2% 190.0%
σ 1.955 0.0316 9.078 472.5% 976.5% 4300.3%
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Figure 6.52. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with ∆q̇ Compensation Law starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delays TD,α, TD,q and TD,η

Table 6.46. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with ∆q̇ Compensation Law and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delays TD,α, TD,q and TD,η

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 5.29 0.123 31.77 57.5% 80.7% 210.0%
min 1.97 0.043 18.77 25.3% 30.0% 130.8%
∅ 3.25 0.073 20.20 38.2% 49.4% 137.0%
σ 0.696 0.0117 1.572 168.3% 361.3% 744.6%
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Figure 6.53. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with L1 adaptive controller with Eigenstructure Assignment starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of additional time
delays TD,α, TD,q and TD,η

Table 6.47. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with L1 adaptive controller with
Eigenstructure Assignment and comparison to baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of additional time delays
TD,α, TD,q and TD,η

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 7.81 0.187 29.41 84.9% 122.1% 194.4%
min 1.83 0.041 19.15 23.6% 28.9% 133.5%
∅ 3.63 0.100 22.64 42.6% 67.7% 153.6%
σ 1.132 0.0311 1.956 273.5% 958.3% 926.7%
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6.2.7. Uncertainty w.r.t. sensor delay in α measurement

TD,α [s]
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Figure 6.54. – Variation of additional time delay TD,α applied to sensor measurements of
angle of attack α

In the next step, additional time delay is only added to the angle of attack α measure-
ment. This time, 200 evenly distributed parameter variations within the limits [0s; 0.2s]
are generated for the delay TD,α, which is also shown in Fig. 6.54.
The simulation results considering delay in the angle of attack α measurement are
compiled in Fig. 6.55 and Table 6.48 for the baseline controller, in Fig. 6.56 and Table 6.49
for the DPI Augmentation, in Fig. 6.57 and Table 6.50 for the Plant Augmentation, in
Fig. 6.58 and Table 6.51 for the ∆q̇ Compensation Law and in Fig. 6.59 and Table 6.52
for the standalone L1 adaptive controller with Eigenstructure Assignment. Although
the scattering with regard to the angle of attack response is slightly reduced for the
L1 adaptive controllers, which includes augmentations and standalone controller, the
results are very similar to the ones gained in the last section. One can conclude from
this that in this case, the L1 adaptive controllers exhibit their largest sensitivity with
respect to time delays in the angle of attack α measurement, which is also confirmed
by the following sections. The same comparison shows for the ∆q̇ Compensation Law
that delay with regard to another sensor measurement is the main driver of scattering
within the simulation results in Fig. 6.52 shown in the last section.
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Figure 6.55. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delay TD,α

Table 6.48. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of additional time delay
TD,α

ML2 [−] ML∞ [−] ML2,act [−]
max 9.20 0.153 15.13
min 7.79 0.142 14.45
∅ 8.52 0.148 14.78
σ 0.424 0.0031 0.204

259



Comparison of control laws

Figure 6.56. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with DPI Augmentation starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delay TD,α

Table 6.49. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with DPI Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delay TD,α

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 9.28 0.178 48.95 101.0% 116.9% 323.5%
min 2.29 0.047 19.48 29.4% 32.8% 134.8%
∅ 4.54 0.085 31.42 53.3% 57.7% 212.5%
σ 1.906 0.0339 7.205 448.9% 1094.4% 3525.6%
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Figure 6.57. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with Plant Augmentation starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delay TD,α

Table 6.50. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with Plant Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delay TD,α

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 8.12 0.160 42.49 88.3% 104.7% 280.8%
min 2.31 0.047 19.33 29.6% 33.3% 133.7%
∅ 4.41 0.083 30.36 51.8% 55.7% 205.4%
σ 1.770 0.0306 6.776 417.0% 988.9% 3315.6%
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Figure 6.58. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with ∆q̇ Compensation Law starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delay TD,α

Table 6.51. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with ∆q̇ Compensation Law and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delay TD,α

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 5.29 0.098 20.37 57.5% 64.5% 134.6%
min 2.40 0.050 19.03 30.8% 35.5% 131.7%
∅ 3.61 0.071 19.71 42.4% 47.8% 133.3%
σ 0.842 0.0114 0.430 198.4% 367.8% 210.3%
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Figure 6.59. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with L1 adaptive controller with Eigenstructure Assignment starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of additional time delay
TD,α

Table 6.52. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with L1 adaptive controller with
Eigenstructure Assignment and comparison to baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of additional time delay
TD,α

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 7.48 0.187 27.39 81.4% 122.3% 181.0%
min 2.61 0.071 19.99 33.5% 50.2% 138.3%
∅ 4.58 0.128 22.71 53.8% 86.4% 153.6%
σ 1.405 0.0336 2.210 331.1% 1086.3% 1081.5%
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6.2.8. Uncertainty w.r.t. sensor delay in q measurement

TD,q [s]
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Figure 6.60. – Variation of additional time delay TD,q applied to sensor measurements of
pitch rate q

After the investigation of time delay with regard to the angle of attack α measurement,
this section focuses on performance assessments with respect to delays added to the
pitch rate q measurement. Again, 200 evenly distributed variations are generated for
TD,q, but this time the limits [0s; 0.1s] are chosen, which are shown in Fig. 6.60.
The simulation results considering delay in the pitch rate q measurement are summa-
rized in Fig. 6.61 and Table 6.53 for the baseline controller, in Fig. 6.62 and Table 6.54
for the DPI Augmentation, in Fig. 6.63 and Table 6.55 for the Plant Augmentation, in
Fig. 6.64 and Table 6.56 for the ∆q̇ Compensation Law and in Fig. 6.65 and Table 6.57
for the standalone L1 adaptive controller with Eigenstructure Assignment. At first, it
can be seen that delay of the pitch rate measurement barely affects the performance of
the baseline controller. This can be seen by means of the system responses in Fig. 6.61
and the standard deviations in Table 6.53. On the other hand, notable oscillations can
be observed for the adaptive augmentations. In particular, it can be identified that
the ∆q̇ Compensation Law is most sensitive with regard to delays in the pitch rate q
measurement channel considering the combined delay assessment in Fig. 6.53. It is also
worth noting that the additional delay barely has an effect on the performance of the
standalone L1 adaptive controller. This can be explained by means of the fact that this
controller inherits infinite phase margin and time delay margin with regard to the pitch
rate q sensor cut (c.f. Table A.89 in Appendix A.6.6). Note that this statement also holds
for the baseline controller with the exception of the envelope point corresponding to
the lowest velocity (c.f. Table A.60 in Appendix A.6.2).
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Figure 6.61. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delay TD,q

Table 6.53. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of additional time delay
TD,q

ML2 [−] ML∞ [−] ML2,act [−]
max 7.79 0.143 14.45
min 7.77 0.142 14.34
∅ 7.78 0.142 14.40
σ 0.004 0.0003 0.033
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Figure 6.62. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with DPI Augmentation starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delay TD,q

Table 6.54. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with DPI Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delay TD,q

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 5.20 0.120 23.84 66.8% 84.2% 164.9%
min 2.18 0.046 16.98 28.1% 32.7% 118.4%
∅ 2.91 0.074 18.38 37.5% 51.8% 127.6%
σ 0.867 0.0225 1.729 21225.8% 7982.9% 5202.9%
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Figure 6.63. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with Plant Augmentation starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delay TD,q

Table 6.55. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with Plant Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delay TD,q

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 5.11 0.117 23.78 65.7% 82.1% 164.5%
min 2.20 0.046 17.04 28.3% 32.6% 118.8%
∅ 2.91 0.073 18.38 37.4% 51.3% 127.7%
σ 0.851 0.0216 1.690 20830.6% 7648.6% 5087.1%
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Figure 6.64. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with ∆q̇ Compensation Law starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delay TD,q

Table 6.56. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with ∆q̇ Compensation Law and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delay TD,q

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 5.10 0.119 26.20 65.5% 83.3% 181.3%
min 2.31 0.048 18.86 29.7% 34.1% 131.5%
∅ 2.85 0.067 20.04 36.6% 46.8% 139.2%
σ 0.712 0.0156 1.719 17428.0% 5517.7% 5174.0%
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Figure 6.65. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with L1 adaptive controller with Eigenstructure Assignment starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of additional time delay
TD,q

Table 6.57. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with L1 adaptive controller with
Eigenstructure Assignment and comparison to baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of additional time delay
TD,q

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 2.61 0.071 27.24 33.5% 50.1% 188.5%
min 2.52 0.068 22.18 32.4% 48.2% 154.7%
∅ 2.56 0.069 25.15 32.9% 48.7% 174.7%
σ 0.032 0.0010 1.537 775.9% 347.1% 4625.9%
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6.2.9. Uncertainty w.r.t. sensor delay in η measurement

TD,η [s]
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Figure 6.66. – Variation of additional time delay TD,η applied to sensor measurements of
elevator deflection η

The last performance assessment with regard to sensor delay is carried out for the
elevator deflection η measurement. For this purpose, the additional time delay TD,η is
varied between [0s; 0.1s] resulting in the even distribution of 200 parameter variations
according to Fig. 6.66.
The accompanying simulation results are to be found in Fig. 6.67 and Table 6.58 for the
baseline controller, in Fig. 6.68 and Table 6.59 for the DPI Augmentation, in Fig. 6.69
and Table 6.60 for the Plant Augmentation, in Fig. 6.70 and Table 6.61 for the ∆q̇ Com-
pensation Law and in Fig. 6.71 and Table 6.62 for the standalone L1 adaptive controller
with Eigenstructure Assignment. As it was expected, the variation of time delay with
respect to the elevator deflection has no effect on the performance of the baseline
controller, because it does not utilize actuator measurement. Furthermore, it can be
observed that this variation has a stronger effect on the L1 Adaptive Augmentations in
comparison to the ∆q̇ Compensation Law. Although, the results state good robustness
against time delays in the elevator deflection measurement, which can also be observed
for the standalone L1 adaptive controller.
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Figure 6.67. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delay TD,η

Table 6.58. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of additional time delay
TD,η

ML2 [−] ML∞ [−] ML2,act [−]
max 7.79 0.142 14.45
min 7.79 0.142 14.45
∅ 7.79 0.142 14.45
σ 0.000 0.0000 0.000
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Figure 6.68. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with DPI Augmentation starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delay TD,η

Table 6.59. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with DPI Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delay TD,η

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 3.34 0.060 34.46 42.9% 42.3% 238.4%
min 2.01 0.046 19.48 25.8% 32.2% 134.8%
∅ 2.25 0.050 24.10 28.9% 34.8% 166.8%
σ 0.307 0.0038 4.203 - - -
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Figure 6.69. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with Plant Augmentation starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delay TD,η

Table 6.60. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with Plant Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delay TD,η

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 3.18 0.059 33.82 40.8% 41.2% 234.0%
min 2.01 0.046 19.33 25.8% 32.2% 133.7%
∅ 2.23 0.049 23.74 28.6% 34.5% 164.3%
σ 0.259 0.0035 4.018 - - -
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Figure 6.70. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with ∆q̇ Compensation Law starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delay TD,η

Table 6.61. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with ∆q̇ Compensation Law and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additional time delay TD,η

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 2.40 0.050 27.70 30.8% 35.5% 191.7%
min 1.88 0.042 19.03 24.2% 29.2% 131.7%
∅ 2.12 0.045 21.76 27.3% 31.6% 150.6%
σ 0.172 0.0032 2.522 - - -
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Figure 6.71. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with L1 adaptive controller with Eigenstructure Assignment starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of additional time delay
TD,η

Table 6.62. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with L1 adaptive controller with
Eigenstructure Assignment and comparison to baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of additional time delay
TD,η

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 2.61 0.071 25.01 33.5% 50.2% 173.0%
min 1.83 0.041 22.18 23.5% 28.8% 153.5%
∅ 2.15 0.055 23.02 27.6% 38.5% 159.3%
σ 0.235 0.0092 0.820 - - -
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6.2.10. Uncertainty w.r.t. sensor noise
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Figure 6.72. – Variation of random noise seeds and standard deviations applied in sensor
measurements of angle of attack α, pitch rate q and elevator deflection η

The next sensor effect implemented in the sensor model according Section 2.6 to
be considered for the performance assessments is measurement noise. Firstly, the
impact of measurement noise simultaneously stemming from all relevant sensors on
the controller performance is investigated, which are angle of attack α, pitch rate
q and elevator deflection η. After that, the experiments are repeated considering
measurement noise only for one sensor channel at a time.
In order to vary the amount of measurement noise, two sensor model parameters
are considered per measurement in terms of the variation. These are the standard
deviation of the Gaussian noise σnoise and the seed used for the generation of the
random numbers. Therefore, the standard deviations are randomly varied within the
limits [0.2◦; 0.6◦] for σnoise,α,

[
0.08

◦
s ; 0.24

◦
s

]
for σnoise,q and [0.1◦; 0.3◦] for σnoise,η. Here,

the corner cases are included. The seeds are also randomly chosen considering the
limits [0; 5042063] for all sensor measurements. The resulting 2000 variations are also
collected in Fig. 6.72.
For the purpose of investigating the isolated effect of measurement noise, turbulence as
well as actuator backlash are deactivated for the following assessments. Furthermore,
bias and scale factor errors are deactivated within the sensor models. At last, the
commanded angle of attack αcmd remains at α0, which keeps the aircraft in a trimmed
state.

276



Performance

The results of the simulations for the different controllers can be found in Fig. 6.73
and Table 6.63 for the baseline controller, in Fig. 6.74 and Table 6.64 for the DPI
Augmentation, in Fig. 6.75 and Table 6.65 for the Plant Augmentation, in Fig. 6.76
and Table 6.66 for the ∆q̇ Compensation Law and in Fig. 6.77 and Table 6.67 for the
standalone L1 Adaptive Controller with Eigenstructure Assignment. As it was already
observed in the course of Chapter 5 and in Section 6.2.1 in terms of turbulence, also
measurement noise is amplified to a higher degree through the adaptive controllers
in comparison to the baseline controller. In particular, comparing ML2,act with regard
to L1 Adaptive Augmentations and DPI baseline controller results in a factor of ≈ 12,
by which the commanded actuator activity is increased. This increase can also be
identified in the maximum values of the commanded elevator deflection η̇cmd. For the
standalone L1 adaptive controller the same statement can be made, where the factor
in activity increase is even around 25. The reason for this is the high gain parameter
update law, which is part of the L1 adaptive controller, as it was already discussed
in Section 5.2.2.3 and Section 5.2.4.2. It is also worth mentioning that application of
the ∆q̇ Compensation Law results in an increase of commanded actuator activity by
only factor 2. This is due to the fact that no high gain feedback of the measurements is
included within the ∆q̇ Compensation Law.
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Figure 6.73. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for zero maneuver performed by enhanced, nonlinear aircraft model with
baseline controller starting at V0 = 154.94 m

s and h0 = 5000m considering
variation of noise seeds and noise standard deviations of angle-of-attack α,
pitch rate q and elevator deflection η sensors

Table 6.63. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from zero maneuver performed by
enhanced, nonlinear aircraft model with baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of noise seeds and noise
standard deviations of angle-of-attack α, pitch rate q and elevator deflection
η sensors

ML2 [−] ML∞ [−] ML2,act [−]
max 0.037 0.0010 0.178
min 0.004 0.0001 0.035
∅ 0.016 0.0004 0.101
σ 0.0060 0.00014 0.0288
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Figure 6.74. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for zero maneuver performed by enhanced, nonlinear aircraft model with
DPI Augmentation starting at V0 = 154.94 m

s and h0 = 5000m considering
variation of noise seeds and noise standard deviations of angle-of-attack α,
pitch rate q and elevator deflection η sensors

Table 6.64. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from zero maneuver performed by
enhanced, nonlinear aircraft model with DPI Augmentation and comparison
to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m considering
variation of noise seeds and noise standard deviations of angle-of-attack α,
pitch rate q and elevator deflection η sensors

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 0.068 0.0022 1.944 183.6% 225.7% 1090.7%
min 0.012 0.0003 0.419 296.1% 318.7% 1186.2%
∅ 0.035 0.0009 1.206 213.2% 234.9% 1196.1%
σ 0.0106 0.00029 0.3374 175.2% 201.8% 1172.7%
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Figure 6.75. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for zero maneuver performed by enhanced, nonlinear aircraft model with
Plant Augmentation starting at V0 = 154.94 m

s and h0 = 5000m considering
variation of noise seeds and noise standard deviations of angle-of-attack α,
pitch rate q and elevator deflection η sensors

Table 6.65. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from zero maneuver performed by
enhanced, nonlinear aircraft model with Plant Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of noise seeds and noise standard deviations of
angle-of-attack α, pitch rate q and elevator deflection η sensors

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 0.067 0.0021 1.811 180.6% 213.0% 1016.0%
min 0.011 0.0003 0.388 276.8% 322.6% 1099.1%
∅ 0.034 0.0009 1.126 208.9% 229.2% 1117.0%
σ 0.0104 0.00028 0.3147 172.4% 197.2% 1093.6%
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Figure 6.76. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for zero maneuver performed by enhanced, nonlinear aircraft model with
∆q̇ Compensation Law starting at V0 = 154.94 m

s and h0 = 5000m considering
variation of noise seeds and noise standard deviations of angle-of-attack α,
pitch rate q and elevator deflection η sensors

Table 6.66. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from zero maneuver performed by
enhanced, nonlinear aircraft model with ∆q̇ Compensation Law and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of noise seeds and noise standard deviations of
angle-of-attack α, pitch rate q and elevator deflection η sensors

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 0.058 0.0015 0.355 157.9% 147.2% 199.2%
min 0.008 0.0002 0.081 188.6% 191.2% 228.3%
∅ 0.028 0.0007 0.214 170.9% 173.0% 212.2%
σ 0.0091 0.00022 0.0451 151.2% 155.7% 156.7%
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Figure 6.77. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for zero maneuver performed by enhanced, nonlinear aircraft model with L1
adaptive controller with Eigenstructure Assignment starting at V0 = 154.94 m

s
and h0 = 5000m considering variation of noise seeds and noise standard
deviations of angle-of-attack α, pitch rate q and elevator deflection η sensors

Table 6.67. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from zero maneuver performed by
enhanced, nonlinear aircraft model with L1 adaptive controller with
Eigenstructure Assignment and comparison to baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of noise seeds and noise
standard deviations of angle-of-attack α, pitch rate q and elevator deflection
η sensors

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 0.065 0.0023 4.112 174.4% 233.8% 2306.9%
min 0.013 0.0003 1.057 312.3% 361.1% 2994.1%
∅ 0.034 0.0009 2.541 207.6% 239.7% 2520.2%
σ 0.0100 0.00030 0.7134 165.9% 207.1% 2478.9%
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6.2.11. Uncertainty w.r.t. sensor noise in α measurement
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Figure 6.78. – Variation of random noise seed and standard deviation σnoise,α applied in
sensor measurement of angle of attack α

In this section, the effect of measurement noise in the angle of attack α sensor on
the controller performances is investigated. Thus, the standard deviations σnoise,α is
randomly varied within [0.2◦; 0.6◦]. The corresponding seed is a random number
between [0; 5042063]. Fig. 6.78 shows the resulting 2000 variations.
The results of the simulations, where the enhanced aircraft model is configured accord-
ing to Section 6.2.11, are presented in Fig. 6.79 and Table 6.68 for the baseline controller,
in Fig. 6.80 and Table 6.69 for the DPI Augmentation, in Fig. 6.81 and Table 6.70 for the
Plant Augmentation, in Fig. 6.82 and Table 6.71 for the ∆q̇ Compensation Law and in
Fig. 6.83 and Table 6.72 for the standalone L1 adaptive controller with Eigenstructure
Assignment. One can see that the results are very similar to the ones shown in Sec-
tion 6.2.10. Thus, it can be concluded that measurement noise with regard to the angle
of attack α measurement constitutes the major influence on the controller performance
of the control laws.
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Figure 6.79. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for zero maneuver performed by enhanced, nonlinear aircraft model with
baseline controller starting at V0 = 154.94 m

s and h0 = 5000m considering
variation of noise seed and noise standard deviation of angle-of-attack α
sensor

Table 6.68. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from zero maneuver performed by
enhanced, nonlinear aircraft model with baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of noise seed and noise
standard deviation of angle-of-attack α sensor

ML2 [−] ML∞ [−] ML2,act [−]
max 0.037 0.0010 0.178
min 0.004 0.0001 0.041
∅ 0.016 0.0004 0.101
σ 0.0060 0.00014 0.0288
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Figure 6.80. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for zero maneuver performed by enhanced, nonlinear aircraft model with
DPI Augmentation starting at V0 = 154.94 m

s and h0 = 5000m considering
variation of noise seed and noise standard deviation of angle-of-attack α
sensor

Table 6.69. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from zero maneuver performed by
enhanced, nonlinear aircraft model with DPI Augmentation and comparison
to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m considering
variation of noise seed and noise standard deviation of angle-of-attack α
sensor

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 0.068 0.0021 1.916 183.7% 210.8% 1076.3%
min 0.011 0.0003 0.485 269.5% 318.5% 1195.6%
∅ 0.034 0.0009 1.197 205.7% 227.4% 1187.9%
σ 0.0108 0.00030 0.3391 178.7% 205.0% 1176.4%
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Figure 6.81. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for zero maneuver performed by enhanced, nonlinear aircraft model with
Plant Augmentation starting at V0 = 154.94 m

s and h0 = 5000m considering
variation of noise seed and noise standard deviation of angle-of-attack α
sensor

Table 6.70. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from zero maneuver performed by
enhanced, nonlinear aircraft model with Plant Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of noise seed and noise standard deviation of
angle-of-attack α sensor

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 0.067 0.0020 1.788 180.7% 206.0% 1004.0%
min 0.011 0.0003 0.453 265.3% 304.0% 1114.4%
∅ 0.033 0.0009 1.115 201.4% 221.7% 1107.0%
σ 0.0106 0.00029 0.3160 176.0% 200.5% 1096.3%
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Figure 6.82. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for zero maneuver performed by enhanced, nonlinear aircraft model with
∆q̇ Compensation Law starting at V0 = 154.94 m

s and h0 = 5000m considering
variation of noise seed and noise standard deviation of angle-of-attack α
sensor

Table 6.71. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from zero maneuver performed by
enhanced, nonlinear aircraft model with ∆q̇ Compensation Law and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of noise seed and noise standard deviation of
angle-of-attack α sensor

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 0.056 0.0014 0.312 150.3% 145.3% 175.4%
min 0.007 0.0002 0.067 184.3% 192.8% 165.7%
∅ 0.027 0.0006 0.173 162.4% 163.8% 171.7%
σ 0.0093 0.00023 0.0496 153.0% 157.8% 172.2%
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Figure 6.83. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for zero maneuver performed by enhanced, nonlinear aircraft model with
L1 adaptive controller with Eigenstructure Assignment starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of noise seed and noise
standard deviation of angle-of-attack α sensor

Table 6.72. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from zero maneuver performed by
enhanced, nonlinear aircraft model with L1 adaptive controller with
Eigenstructure Assignment and comparison to baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of noise seed and noise
standard deviation of angle-of-attack α sensor

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 0.063 0.0023 4.098 170.0% 234.2% 2301.9%
min 0.011 0.0003 1.076 281.1% 328.6% 2649.9%
∅ 0.033 0.0009 2.532 201.2% 233.8% 2513.0%
σ 0.0101 0.00030 0.7111 166.6% 206.9% 2467.0%
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6.2.12. Uncertainty w.r.t. sensor noise in q measurement
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Figure 6.84. – Variation of random noise seed and standard deviation σnoise,q applied in
sensor measurement of pitch rate q

In the next step, only measurement noise with regard to the pitch rate q measurement
is applied on the enhanced aircraft model. The standard deviation of the measurement
noise σnoise,q is randomly varied considering the limits

[
0.08

◦
s ; 0.24

◦
s

]
. Again, the seed

is a random number between [0; 5042063]. 2000 parameter variations are created and
depicted in Fig. 6.84.
In order to draw comparisons, the results of the simulations are compiled in Fig. 6.85
and Table 6.73 for the baseline controller, in Fig. 6.86 and Table 6.74 for the DPI
Augmentation, in Fig. 6.87 and Table 6.75 for the Plant Augmentation, in Fig. 6.88
and Table 6.76 for the ∆q̇ Compensation Law and in Fig. 6.89 and Table 6.77 for the
standalone L1 adaptive controller with Eigenstructure Assignment. As expected, the
amount of amplification is lower compared to the case shown in Section 6.2.11, where
measurement noise with regard to angle of attack α was investigated. Nevertheless,
also for the case of pitch rate measurement noise it can be observed that the adap-
tive controllers significantly increase commanded actuator activity compared to the
baseline controller configuration. Furthermore, the increases detected for L1 Adaptive
Augmentations and for the ∆q̇ Compensation Law are in the same range, in contrast to
the assessments made in Section 6.2.10 and Section 6.2.11. This is due to the derivation
of the pitch rate q, which is used within the ∆q̇ Compensation Law in order to calculate
the pitch rate acceleration q̇ and which amplifies noise within the pitch rate q channel.
Thus, the amplification generated through the derivation is similar to the one stemming
from the high gain update laws of the L1 Adaptive Augmentations.
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Figure 6.85. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for zero maneuver performed by enhanced, nonlinear aircraft model with
baseline controller starting at V0 = 154.94 m

s and h0 = 5000m considering
variation of noise seed and noise standard deviation of pitch rate q sensor

Table 6.73. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from zero maneuver performed by
enhanced, nonlinear aircraft model with baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of noise seed and noise
standard deviation of pitch rate q sensor

ML2 [−] ML∞ [−] ML2,act [−]
max 0.001 0.0000 0.011
min 0.000 0.0000 0.003
∅ 0.001 0.0000 0.007
σ 0.0002 0.00001 0.0018
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Figure 6.86. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for zero maneuver performed by enhanced, nonlinear aircraft model with
DPI Augmentation starting at V0 = 154.94 m

s and h0 = 5000m considering
variation of noise seed and noise standard deviation of pitch rate q sensor

Table 6.74. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from zero maneuver performed by
enhanced, nonlinear aircraft model with DPI Augmentation and comparison
to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m considering
variation of noise seed and noise standard deviation of pitch rate q sensor

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 0.012 0.0003 0.227 963.6% 879.4% 2059.2%
min 0.002 0.0000 0.050 822.9% 840.3% 1883.0%
∅ 0.006 0.0001 0.131 893.5% 910.4% 1998.1%
σ 0.0021 0.00006 0.0373 1063.1% 1055.8% 2049.7%

291



Comparison of control laws

Figure 6.87. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for zero maneuver performed by enhanced, nonlinear aircraft model with
Plant Augmentation starting at V0 = 154.94 m

s and h0 = 5000m considering
variation of noise seed and noise standard deviation of pitch rate q sensor

Table 6.75. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from zero maneuver performed by
enhanced, nonlinear aircraft model with Plant Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of noise seed and noise standard deviation of pitch rate
q sensor

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 0.012 0.0003 0.214 970.8% 854.5% 1945.7%
min 0.002 0.0000 0.051 862.4% 892.6% 1902.7%
∅ 0.006 0.0001 0.128 875.1% 887.5% 1952.9%
σ 0.0021 0.00005 0.0365 1035.5% 1018.8% 2008.3%
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Figure 6.88. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for zero maneuver performed by enhanced, nonlinear aircraft model with
∆q̇ Compensation Law starting at V0 = 154.94 m

s and h0 = 5000m considering
variation of noise seed and noise standard deviation of pitch rate q sensor

Table 6.76. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from zero maneuver performed by
enhanced, nonlinear aircraft model with ∆q̇ Compensation Law and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of noise seed and noise standard deviation of pitch rate
q sensor

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 0.009 0.0002 0.186 725.6% 665.0% 1693.8%
min 0.001 0.0000 0.044 562.9% 603.1% 1648.8%
∅ 0.004 0.0001 0.111 630.6% 636.1% 1689.0%
σ 0.0013 0.00004 0.0308 668.3% 664.5% 1693.6%
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Figure 6.89. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for zero maneuver performed by enhanced, nonlinear aircraft model with
L1 adaptive controller with Eigenstructure Assignment starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of noise seed and noise
standard deviation of pitch rate q sensor

Table 6.77. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from zero maneuver performed by
enhanced, nonlinear aircraft model with L1 adaptive controller with
Eigenstructure Assignment and comparison to baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of noise seed and noise
standard deviation of pitch rate q sensor

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 0.006 0.0001 0.112 487.5% 335.9% 1014.3%
min 0.001 0.0000 0.023 546.3% 602.7% 876.1%
∅ 0.003 0.0001 0.065 485.6% 424.3% 998.1%
σ 0.0010 0.00002 0.0191 483.4% 375.0% 1053.0%
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6.2.13. Uncertainty w.r.t. sensor noise in η measurement
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Figure 6.90. – Variation of random noise seed and standard deviation σnoise,η applied in
sensor measurement of pitch rate η

The last assessment with regard to measurement noise considers the elevator deflection
η sensor. Here, the standard deviation σnoise,η is randomly varied between [0.1◦; 0.3◦]
and the seed is randomly generated considering the limits [0; 5042063]. The resulting
2000 variations are illustrated in Fig. 6.90.
As the elevator deflection measurement is not utilized for the design of the DPI baseline
controller, its simulation results are not depicted here. The results for the adaptive
controllers are to be found in Fig. 6.91 and Table 6.78 for the DPI Augmentation, in
Fig. 6.92 and Table 6.79 for the Plant Augmentation, in Fig. 6.93 and Table 6.80 for the
∆q̇ Compensation Law and in Fig. 6.94 and Table 6.81 for the standalone L1 adaptive
controller with Eigenstructure Assignment. It can be concluded from the results, that
the amount of noise amplification is very similar comparing the adaptive controllers,
although a slightly higher amplification can be observed considering the standalone
L1 adaptive controller.
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Figure 6.91. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for zero maneuver performed by enhanced, nonlinear aircraft model with
DPI Augmentation starting at V0 = 154.94 m

s and h0 = 5000m considering
variation of noise seed and noise standard deviation of elevator deflection η
sensor

Table 6.78. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from zero maneuver performed by
enhanced, nonlinear aircraft model with DPI Augmentation and comparison
to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m considering
variation of noise seed and noise standard deviation of elevator deflection η
sensor

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 0.015 0.0004 0.115 - - -
min 0.002 0.0000 0.024 - - -
∅ 0.007 0.0002 0.068 - - -
σ 0.0025 0.00006 0.0176 - - -
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Figure 6.92. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for zero maneuver performed by enhanced, nonlinear aircraft model with
Plant Augmentation starting at V0 = 154.94 m

s and h0 = 5000m considering
variation of noise seed and noise standard deviation of elevator deflection η
sensor

Table 6.79. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from zero maneuver performed by
enhanced, nonlinear aircraft model with Plant Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of noise seed and noise standard deviation of elevator
deflection η sensor

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 0.014 0.0004 0.116 - - -
min 0.002 0.0000 0.023 - - -
∅ 0.007 0.0002 0.066 - - -
σ 0.0024 0.00006 0.0167 - - -
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Figure 6.93. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for zero maneuver performed by enhanced, nonlinear aircraft model with
∆q̇ Compensation Law starting at V0 = 154.94 m

s and h0 = 5000m considering
variation of noise seed and noise standard deviation of elevator deflection η
sensor

Table 6.80. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from zero maneuver performed by
enhanced, nonlinear aircraft model with ∆q̇ Compensation Law and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of noise seed and noise standard deviation of elevator
deflection η sensor

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 0.015 0.0005 0.089 - - -
min 0.002 0.0000 0.024 - - -
∅ 0.007 0.0002 0.054 - - -
σ 0.0022 0.00006 0.0122 - - -
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Figure 6.94. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for zero maneuver performed by enhanced, nonlinear aircraft model with
L1 adaptive controller with Eigenstructure Assignment starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of noise seed and noise
standard deviation of elevator deflection η sensor

Table 6.81. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from zero maneuver performed by
enhanced, nonlinear aircraft model with L1 adaptive controller with
Eigenstructure Assignment and comparison to baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of noise seed and noise
standard deviation of elevator deflection η sensor

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 0.017 0.0005 0.156 - - -
min 0.003 0.0001 0.021 - - -
∅ 0.008 0.0002 0.107 - - -
σ 0.0021 0.00005 0.0191 - - -
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6.2.14. Uncertainty w.r.t. structural mode
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Figure 6.95. – Variation of natural frequency ω0,s and relative damping ζs of structural
mode

This section assesses variations of the parameters of the simple structural mode model
according to Section 2.7 and their impact on the performance of the controller designs
introduced in Chapter 4. For this purpose, both natural frequency ω0,s and relative
damping ζs included in Eq. (2.65) and Eq. (2.64) are randomly varied. Here, the limits
[5.5Hz; 6.5Hz] and [0.04; 0.07] apply for ω0,s and ζs, respectively. A total amount of
2000 variations is created and depicted in Fig. 6.95, which include the corner cases.
Considering the described variations of the structural mode, the different controllers
are combined with the enhanced aircraft model, in order to simulate the exemplary
maneuver. The results are summarized in Fig. 6.96 and Table 6.82 for the baseline con-
troller, in Fig. 6.97 and Table 6.83 for the DPI Augmentation, in Fig. 6.98 and Table 6.84
for the Plant Augmentation, in Fig. 6.99 and Table 6.85 for the ∆q̇ Compensation Law
and in Fig. 6.100 and Table 6.86 for the standalone L1 adaptive controller with Eigen-
structure Assignment. Firstly, it can be observed that the variation of the structural
mode model does barely affect the performance of the baseline controller configuration.
This can also be seen by means of the standard deviations of the three performance
metrics ML2 , ML∞ and ML2,act . Although the standard deviations are higher for the
adaptive controllers, the effect of the parameter variation on the controller performance
is still very small. The increase of commanded actuator activity in terms of ML2,act
caused by the adaptive controllers stems again from the amplification of turbulence
content within the measurements.
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Figure 6.96. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of natural frequency ω0,s and relative damping ζs of
structural mode

Table 6.82. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of natural frequency ω0,s
and relative damping ζs of structural mode

ML2 [−] ML∞ [−] ML2,act [−]
max 7.79 0.146 14.47
min 7.78 0.142 14.44
∅ 7.79 0.143 14.45
σ 0.001 0.0009 0.006
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Figure 6.97. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with DPI Augmentation starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of natural frequency ω0,s and relative damping ζs of
structural mode

Table 6.83. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with DPI Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of natural frequency ω0,s and relative damping ζs of
structural mode

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 2.35 0.048 20.82 30.1% 32.6% 143.9%
min 2.27 0.046 18.86 29.1% 32.1% 130.6%
∅ 2.29 0.047 19.52 29.4% 32.6% 135.1%
σ 0.016 0.0004 0.405 1079.8% 40.4% 6486.2%
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Figure 6.98. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with Plant Augmentation starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of natural frequency ω0,s and relative damping ζs of
structural mode

Table 6.84. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with Plant Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of natural frequency ω0,s and relative damping ζs of
structural mode

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 2.35 0.048 20.64 30.2% 33.2% 142.7%
min 2.28 0.046 18.71 29.3% 32.4% 129.5%
∅ 2.31 0.047 19.36 29.6% 33.0% 134.0%
σ 0.014 0.0004 0.399 975.2% 46.4% 6403.1%
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Figure 6.99. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with ∆q̇ Compensation Law starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of natural frequency ω0,s and relative damping ζs of
structural mode

Table 6.85. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with ∆q̇ Compensation Law and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of natural frequency ω0,s and relative damping ζs of
structural mode

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 2.42 0.052 20.49 31.0% 35.9% 141.6%
min 2.36 0.048 18.43 30.4% 33.7% 127.6%
∅ 2.39 0.049 19.11 30.7% 34.6% 132.2%
σ 0.012 0.0011 0.433 781.4% 118.4% 6948.4%
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Figure 6.100. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with L1 adaptive controller with Eigenstructure Assignment starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of natural frequency
ω0,s and relative damping ζs of structural mode

Table 6.86. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with L1 adaptive controller with
Eigenstructure Assignment and comparison to baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of natural frequency ω0,s
and relative damping ζs of structural mode

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 2.62 0.074 23.49 33.7% 50.6% 162.3%
min 2.60 0.071 21.66 33.4% 50.0% 150.0%
∅ 2.61 0.072 22.29 33.5% 50.7% 154.2%
σ 0.005 0.0007 0.425 333.0% 72.0% 6813.1%
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6.2.15. Uncertainty w.r.t. actuator dynamics
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Figure 6.101. – Variation of additive uncertainties w.r.t. elevator natural frequency ∆ω0,act
and relative damping ∆ζact

After the assessment of uncertainties applied to the simple structural mode model,
parameter variations are now investigated with regard to the actuator model, which
was introduced in Section 2.5. The second order dynamics of the actuator are defined
in Eq. (2.53) and exhibit a natural frequency of ω0,act = 40 rad

s and a relative damping of
ζact = 0.71. For this assessment, additive uncertainties ∆ω0,act and ∆ζact are applied to
these model parameters according to

ω0,act,perturb = ω0,act + ∆ω0,act (6.2)

and

ζact,perturb = ζact + ∆ζact. (6.3)

The uncertainties are randomly varied between
[
−30 rad

s ; 0 rad
s

]
in case of ∆ω0,act

and [−0.56; 0] in case of ∆ζact, respectively. This results in minimum values of
ω0,act,perturb,min = 10 rad

s and ζact,perturb,min = 0.15. In total 2000 variations are gener-
ated, which are shown in Fig. 6.101.
The results of the simulations for the different controllers are compiled in Fig. 6.102
and Table 6.87 for the baseline controller, in Fig. 6.103 and Table 6.88 for the DPI
Augmentation, in Fig. 6.104 and Table 6.89 for the Plant Augmentation, in Fig. 6.105
and Table 6.90 for the ∆q̇ Compensation Law and in Fig. 6.106 and Table 6.91 for
the standalone L1 adaptive controller with Eigenstructure Assignment. All of the
controllers still exhibit stable performances, despite the considered degradation of the
actuator model. Although, oscillations can be detected for the adaptive controllers,
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which are not apparent considering the baseline controller. The largest scattering
with regard to the angle of attack α system response appears for the L1 Adaptive
Augmentations, especially during the αmin = −10◦ sections. This is also confirmed by
the standard deviations of ML2 for both DPI and Plant Augmentation. In comparison
to the L1 Adaptive Augmentations, the the standard deviation of ML2 belonging to the
∆q̇ Compensation Law simulations is reduced by approximately 50%. At last it can be
stated that, apart from the baseline controller, the actuator model parameter variation
has the smallest influence on the standalone L1 adaptive controller.
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Figure 6.102. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additive uncertainties w.r.t. elevator natural
frequency ∆ω0,act and relative damping ∆ζact

Table 6.87. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of additive uncertainties
w.r.t. elevator natural frequency ∆ω0,act and relative damping ∆ζact

ML2 [−] ML∞ [−] ML2,act [−]
max 8.12 0.151 14.69
min 7.78 0.141 14.41
∅ 7.84 0.144 14.49
σ 0.059 0.0013 0.056

308



Performance

Figure 6.103. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with DPI Augmentation starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additive uncertainties w.r.t. elevator natural
frequency ∆ω0,act and relative damping ∆ζact

Table 6.88. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with DPI Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additive uncertainties w.r.t. elevator natural
frequency ∆ω0,act and relative damping ∆ζact

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 4.10 0.106 29.24 50.5% 70.1% 199.0%
min 1.75 0.036 19.34 22.5% 25.2% 134.3%
∅ 2.32 0.049 20.56 29.6% 34.3% 141.9%
σ 0.337 0.0096 1.606 575.9% 743.4% 2846.9%
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Figure 6.104. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with Plant Augmentation starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additive uncertainties w.r.t. elevator natural
frequency ∆ω0,act and relative damping ∆ζact

Table 6.89. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with Plant Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additive uncertainties w.r.t. elevator natural
frequency ∆ω0,act and relative damping ∆ζact

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 4.13 0.105 28.78 50.9% 69.5% 195.9%
min 1.74 0.036 19.24 22.4% 25.5% 133.6%
∅ 2.33 0.049 20.31 29.7% 34.2% 140.2%
σ 0.317 0.0090 1.507 541.8% 699.7% 2671.8%
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Figure 6.105. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with ∆q̇ Compensation Law starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additive uncertainties w.r.t. elevator natural
frequency ∆ω0,act and relative damping ∆ζact

Table 6.90. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with ∆q̇ Compensation Law and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of additive uncertainties w.r.t. elevator natural
frequency ∆ω0,act and relative damping ∆ζact

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 3.28 0.078 24.13 40.4% 52.0% 164.2%
min 1.88 0.044 19.03 24.2% 31.3% 132.1%
∅ 2.39 0.051 19.42 30.4% 35.6% 134.1%
σ 0.164 0.0033 0.585 280.0% 255.1% 1037.0%
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Figure 6.106. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with L1 adaptive controller with Eigenstructure Assignment starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of additive
uncertainties w.r.t. elevator natural frequency ∆ω0,act and relative damping
∆ζact

Table 6.91. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with L1 adaptive controller with
Eigenstructure Assignment and comparison to baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of additive uncertainties
w.r.t. elevator natural frequency ∆ω0,act and relative damping ∆ζact

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 2.91 0.086 23.72 35.8% 57.0% 161.4%
min 2.19 0.064 22.05 28.2% 45.1% 153.1%
∅ 2.56 0.071 22.40 32.6% 49.7% 154.6%
σ 0.115 0.0020 0.276 195.6% 157.6% 488.8%
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6.2.16. Uncertainty w.r.t. gust
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Figure 6.107. – Variation of gust length dgust,z and starting time t0,gust

The last assessments of this chapter cover comparisons of the proposed controller
design with regard to their performance considering atmospheric disturbances. In par-
ticular, this chapter takes the effect of longitudinal gust on the controller performances
into account. The gust model, which is utilized here, was introduced in Section 2.4.
For these investigations, the peak amplitude of the gust is set to vgust = 60 f t

s ≈ 18.29 m
s

in accordance to [111, p. 29]. The gust length dgust is varied within the interval
[30 f t; 350 f t], which corresponds to [9.14m; 106.68m], generating 200 evenly distributed
parameter values. Furthermore, 10 also evenly distributed values for the starting
time t0,gust are chosen considering the limits [0s; 25s]. Thus, in total 2000 combined
variations are created, which are also depicted in Fig. 6.107.
The results of the corresponding simulations can be found in Fig. 6.108 and Table 6.92
for the baseline controller, in Fig. 6.109 and Table 6.93 for the DPI Augmentation, in
Fig. 6.110 and Table 6.94 for the Plant Augmentation, in Fig. 6.111 and Table 6.95 for the
∆q̇ Compensation Law and in Fig. 6.112 and Table 6.96 for the standalone L1 adaptive
controller with Eigenstructure Assignment. One can see that all controller designs
manage to generate a stable system response considering the gust variations. As it was
observed before during the investigation of different disturbances, an application of
the L1 adaptive controllers leads to stronger commanded actuator activity compared to
the baseline controller, which is confirmed by means of the metric ML2,act . This stems
again from the high gain parameter update law, which amplifies disturbances and
is an essential part of the L1 Adaptive Control approach. Furthermore, their system
responses exhibit larger scattering, which can also be seen considering the standard
deviation of ML2 . It should be noted that this is not the case for the ∆q̇ Compensation
Law, although commanded actuator activity slightly increases also in this case.
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Figure 6.108. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of gust length dgust,z and starting time t0,gust

Table 6.92. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of gust length dgust,z and
starting time t0,gust

ML2 [−] ML∞ [−] ML2,act [−]
max 8.27 0.335 15.24
min 7.35 0.134 14.08
∅ 7.67 0.159 14.51
σ 0.193 0.0365 0.205
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Figure 6.109. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with DPI Augmentation starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of gust length dgust,z and starting time t0,gust

Table 6.93. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with DPI Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of gust length dgust,z and starting time t0,gust

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 4.54 0.236 31.31 55.0% 70.5% 205.4%
min 2.29 0.047 19.48 31.1% 34.9% 138.4%
∅ 3.09 0.105 22.87 40.2% 66.1% 157.7%
σ 0.356 0.0373 2.082 184.3% 102.2% 1017.2%
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Figure 6.110. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with Plant Augmentation starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of gust length dgust,z and starting time t0,gust

Table 6.94. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with Plant Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of gust length dgust,z and starting time t0,gust

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 4.62 0.235 30.13 55.9% 70.4% 197.7%
min 2.31 0.047 19.33 31.4% 35.4% 137.3%
∅ 3.07 0.105 22.47 40.0% 65.9% 154.9%
σ 0.347 0.0374 1.911 180.0% 102.6% 933.6%
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Figure 6.111. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with ∆q̇ Compensation Law starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of gust length dgust,z and starting time t0,gust

Table 6.95. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with ∆q̇ Compensation Law and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of gust length dgust,z and starting time t0,gust

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 3.51 0.231 21.04 42.4% 69.1% 138.0%
min 2.40 0.050 19.03 32.6% 37.7% 135.2%
∅ 2.85 0.102 19.93 37.2% 64.3% 137.4%
σ 0.191 0.0389 0.427 98.8% 106.6% 208.8%

317



Comparison of control laws

Figure 6.112. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with L1 adaptive controller with Eigenstructure Assignment starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of gust length dgust,z
and starting time t0,gust

Table 6.96. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with L1 adaptive controller with
Eigenstructure Assignment and comparison to baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of gust length dgust,z and
starting time t0,gust

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 4.69 0.248 51.05 56.7% 74.1% 335.0%
min 2.61 0.067 22.18 35.5% 50.0% 157.6%
∅ 3.15 0.105 28.39 41.1% 66.3% 195.7%
σ 0.405 0.0410 5.070 209.9% 112.3% 2477.4%
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6.2.17. Uncertainty w.r.t. turbulence with qw
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Figure 6.113. – Variation of noise seeds for dryden turbulence model

At last, the controller performances are further investigated considering turbulence
according to the dryden turbulence model, which was introduced in Section 2.3. In
particular, the effect of severe turbulence (probability of exceedance 10−5) is examined.
Here, variations on the seeds are introduced, which are utilized to generate the
normally distributed white noise N (0, 1) within the dryden turbulence model. N (0, 1)
is the input to the shaping filters in Eq. (2.51), which are used to calculate the wind
velocities

(
uG

W
)0

0 and
(
wG

W
)0

0 according to the dryden spectra in Eq. (2.50). Note that

the pitch rate resulting from turbulence qW is calculated using
(
wG

W
)0

0. Thus, they are
based on the same normally distributed white noise N (0, 1) input and therefore also
based on the same seed.
In order to vary the seeds corresponding to

(
uG

W
)0

0 (x-axis) and
(
wG

W
)0

0 (z-axis), they
are randomly chosen considering the limits [0; 5042063]. This way, 2000 parameter
variations are generated, which are shown in Fig. 6.113.
Two different assessments are shown in the following. This section features simulations,
where the complete dryden turbulence model according to Section 2.3 is utilized. After
that, the same assessment is shown for the case, where the pitch rate generated by
turbulence is constantly set to qW = 0.
Simulation results considering variations of the seeds, which are used to generate a
representation of severe turbulence (probability of exceedance 10−5), are summarized
in Fig. 6.114 and Table 6.97 for the baseline controller, in Fig. 6.115 and Table 6.98
for the DPI Augmentation, in Fig. 6.116 and Table 6.99 for the Plant Augmentation,
in Fig. 6.117 and Table 6.100 for the ∆q̇ Compensation Law and in Fig. 6.118 and
Table 6.101 for the standalone L1 adaptive controller with Eigenstructure Assignment,
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where the calculation of qW according to Eq. (2.51) is active. First of all, it can be stated
that all controllers remain stable considering variations of severe turbulence. As it
was already observed before, application of the adaptive controllers leads to increased
commanded actuator activity, which can be read from the mean values of ML2,act .
Compared to the L1 Adaptive Augmentations, the activity is slightly higher for the ∆q̇
Compensation Law, whereas the standalone L1 adaptive controller shows the highest
commanded actuator activity. Furthermore, the standard deviation of ML2 indicates
that the adaptive augmentations, which includes both L1 Adaptive Augmentations and
∆q̇ Compensation Law, exhibit larger scattering with regard to the system response
in angle of attack α. It should be noted that the scattering using the standalone L1
adaptive controller is even decreased compared to the baseline controller, where also
the overall performance in terms of the mean value of ML2 surpasses the value of
the baseline controller. This is also confirmed by the metric evaluating the largest
deviation from the reference behavior ML∞ , which decreases in case of application of
the standalone L1 adaptive controller.
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Figure 6.114. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of noise seeds for dryden turbulence model

Table 6.97. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with baseline controller starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of noise seeds for dryden
turbulence model

ML2 [−] ML∞ [−] ML2,act [−]
max 10.14 0.232 17.40
min 7.11 0.130 14.08
∅ 8.70 0.175 15.62
σ 0.426 0.0143 0.388

321



Comparison of control laws

Figure 6.115. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with DPI Augmentation starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of noise seeds for dryden turbulence model

Table 6.98. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with DPI Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of noise seeds for dryden turbulence model

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 18.18 0.342 98.59 179.2% 147.2% 566.6%
min 4.58 0.078 41.45 64.4% 59.6% 294.4%
∅ 8.65 0.161 59.55 99.4% 92.2% 381.3%
σ 1.613 0.0346 7.570 378.9% 241.3% 1949.8%
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Figure 6.116. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with Plant Augmentation starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of noise seeds for dryden turbulence model

Table 6.99. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver performed
by enhanced, nonlinear aircraft model with Plant Augmentation and
comparison to baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of noise seeds for dryden turbulence model

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 18.08 0.335 98.24 178.3% 144.5% 564.6%
min 4.59 0.081 41.65 64.6% 62.2% 295.9%
∅ 8.68 0.162 59.49 99.8% 92.4% 380.9%
σ 1.616 0.0346 7.549 379.7% 241.1% 1944.4%
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Figure 6.117. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with ∆q̇ Compensation Law starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of noise seeds for dryden turbulence model

Table 6.100. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver
performed by enhanced, nonlinear aircraft model with ∆q̇ Compensation
Law and comparison to baseline controller starting at V0 = 154.94 m

s and
h0 = 5000m considering variation of noise seeds for dryden turbulence
model

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 18.29 0.342 120.01 180.3% 147.4% 689.7%
min 5.25 0.088 40.78 73.8% 67.7% 289.7%
∅ 9.00 0.169 62.89 103.4% 96.4% 402.6%
σ 1.717 0.0364 9.543 403.4% 253.8% 2458.0%
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Figure 6.118. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with L1 adaptive controller with Eigenstructure Assignment starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of noise seeds for
dryden turbulence model

Table 6.101. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver
performed by enhanced, nonlinear aircraft model with L1 adaptive
controller with Eigenstructure Assignment and comparison to baseline
controller starting at V0 = 154.94 m

s and h0 = 5000m considering variation of
noise seeds for dryden turbulence model

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 7.49 0.212 92.69 73.9% 91.3% 532.7%
min 4.32 0.072 61.23 60.7% 55.1% 435.0%
∅ 5.50 0.114 75.39 63.3% 65.3% 482.7%
σ 0.406 0.0174 4.888 95.3% 121.6% 1259.1%
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6.2.18. Uncertainty w.r.t. turbulence without qw

In this section, the assessments shown in Section 6.2.17 are repeated neglecting the
pitch rate generated by turbulence qW according to the dryden turbulence model
Eq. (2.51), which is introduced in Section 2.3. Thus, this value is constantly set to
qW = 0 during simulations. For this purpose, also the same variations on the seeds,
which are shown in Fig. 6.113, are utilized.
The corresponding results can be found in Fig. 6.119 and Table 6.102 for the baseline
controller, in Fig. 6.120 and Table 6.103 for the DPI Augmentation, in Fig. 6.121 and
Table 6.104 for the Plant Augmentation, in Fig. 6.122 and Table 6.105 for the ∆q̇ Compen-
sation Law and in Fig. 6.123 and Table 6.106 for the standalone L1 adaptive controller
with Eigenstructure Assignment. Firstly, it can be observed that the performance of the
baseline controller barely changes in comparison to the results shown in Section 6.2.17.
Although, one can clearly see in the same comparison that the commanded actuator
activity significantly decreases for the L1 Adaptive Augmentations, which is indicated
by the metric ML2,act . In consequence, also the scattering with regard to the system
response reduces, which can be seen in the standard deviation of ML2 . Its mean value
and the one of ML∞ even indicate a performance increase. The same statements can
be made for the ∆q̇ Compensation Law, where the metric ML2,act is even at almost the
same level as for the baseline controller. At last, it can be seen that the results for the
standalone L1 adaptive controller are very similar to the ones gained with pitch rate
generated by turbulence qW shown in Section 6.2.17.
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Figure 6.119. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with baseline controller starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of noise seeds for dryden turbulence model without
qw

Table 6.102. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver
performed by enhanced, nonlinear aircraft model with baseline controller
starting at V0 = 154.94 m

s and h0 = 5000m considering variation of noise
seeds for dryden turbulence model without qw

ML2 [−] ML∞ [−] ML2,act [−]
max 9.76 0.231 16.08
min 6.87 0.118 13.86
∅ 8.56 0.170 14.98
σ 0.407 0.0147 0.300
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Figure 6.120. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with DPI Augmentation starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of noise seeds for dryden turbulence model without
qw

Table 6.103. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver
performed by enhanced, nonlinear aircraft model with DPI Augmentation
and comparison to baseline controller starting at V0 = 154.94 m

s and
h0 = 5000m considering variation of noise seeds for dryden turbulence
model without qw

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 10.79 0.233 43.89 110.5% 100.9% 272.9%
min 4.30 0.075 25.95 62.6% 64.1% 187.2%
∅ 5.96 0.116 34.96 69.7% 68.4% 233.4%
σ 0.718 0.0207 2.535 176.3% 140.9% 845.7%
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Figure 6.121. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with Plant Augmentation starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of noise seeds for dryden turbulence model without
qw

Table 6.104. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver
performed by enhanced, nonlinear aircraft model with Plant Augmentation
and comparison to baseline controller starting at V0 = 154.94 m

s and
h0 = 5000m considering variation of noise seeds for dryden turbulence
model without qw

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 10.08 0.217 41.05 103.2% 93.9% 255.2%
min 4.23 0.073 25.55 61.5% 62.1% 184.3%
∅ 5.78 0.113 33.39 67.6% 66.5% 223.0%
σ 0.662 0.0194 2.250 162.7% 132.2% 750.6%
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Figure 6.122. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with ∆q̇ Compensation Law starting at V0 = 154.94 m

s and h0 = 5000m
considering variation of noise seeds for dryden turbulence model without
qw

Table 6.105. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver
performed by enhanced, nonlinear aircraft model with ∆q̇ Compensation
Law and comparison to baseline controller starting at V0 = 154.94 m

s and
h0 = 5000m considering variation of noise seeds for dryden turbulence
model without qw

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 5.38 0.150 17.44 55.1% 65.0% 108.4%
min 3.60 0.063 13.34 52.4% 53.7% 96.2%
∅ 4.41 0.089 15.28 51.5% 52.5% 102.0%
σ 0.269 0.0118 0.596 66.0% 80.0% 198.8%
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Figure 6.123. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with L1 adaptive controller with Eigenstructure Assignment starting at
V0 = 154.94 m

s and h0 = 5000m considering variation of noise seeds for
dryden turbulence model without qw

Table 6.106. – Performance metrics ML2 , ML∞ and ML2,act (maximum, minimum, mean
value and standard deviation) generated from example maneuver
performed by enhanced, nonlinear aircraft model with L1 adaptive
controller with Eigenstructure Assignment and comparison to baseline
controller starting at V0 = 154.94 m

s and h0 = 5000m considering variation of
noise seeds for dryden turbulence model without qw

ML2 [−] ML∞ [−] ML2,act [−] ML2,rel [%] ML∞,rel [%] ML2,act,rel [%]

max 6.53 0.178 73.27 66.9% 76.9% 455.6%
min 4.13 0.070 47.84 60.1% 59.4% 345.0%
∅ 5.20 0.109 58.68 60.8% 64.1% 391.8%
σ 0.346 0.0162 3.888 85.0% 109.9% 1297.3%
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6.3. Summary

In order to conclude this chapter on controller comparisons, the most important
findings and observations are summarized again in the following section.
First of all it can be stated that the robust stability properties with regard to the
bottleneck cut of L1 Adaptive Augmentations and ∆q̇ Compensation Law are very
similar compared to the baseline controller configuration. Furthermore, no significant
differences between the Closed-Loop and Plant Augmentation architectures can be
detected here. One can also see that the standalone L1 adaptive controller inherits
infinite phase margin with regard to the bottleneck cut. The consideration of uncertain-
ties with respect to aerodynamic coefficients in the aircraft model shows that robust
stability can be increased by means of the adaptive augmentations. Although, for the
standalone adaptive controller three critical uncertainty cases are found, which are not
compliant to the required robustness margins, i.e. the nichols diamond is crossed by
the frequency responses.
In terms of performance it can be observed that the adaptive controllers manage to
decrease the error between actual system response and desired reference dynamics
even considering nominal system dynamics, while generating smooth, oscillation-free
control commands. In this case they compensate for nonlinearities included in the
aircraft dynamics. Although, one has to note that for the standalone L1 adaptive
controller a residual steady-state error remains, which is due to the missing integral
portion in the control law. A possible solution to this issue is provided in Chapter 8.
The performance increase can be observed to an even higher degree, when uncertainties
with regard to aerodynamic coefficients and rapid CG-shifts are considered. On the
other hand, it shows that adaptive controllers are more sensitive with regard to
additional delay in the sensor measurements. For the L1 adaptive controllers the most
critical channel is the angle of attack α measurement, whereas for the ∆q̇ Compensation
Law the pitch rate q measurement can be identified. Although, the variation of the
parameters of the simple structural mode model shows low impact on the controller
performances, the adaptive controllers are more sensitive with regard to degradation of
the actuator model in terms of decreased natural frequency and relative damping. It is
also important to mention that the adaptive controllers amplify measurement noise to
a higher degree in comparison to the baseline controller configuration. This statement
holds also, when the effect of turbulence and gust on the controller performances are
investigated. However, the system responses are still stable in these cases. Last but not
least, also in terms of performance, no significant difference between the two proposed
L1 adaptive augmentation architectures can be observed.

332



7. Conclusion

The main focus of this PhD thesis is the investigation of adaptive control strategies with
regard to implementation in aircraft FCS. For this purpose, a DPI baseline controller is
designed at first, which shapes the short-period dynamics of a nonlinear, longitudinal
F-16 aircraft model and ensures tracking of angle of attack command αcmd. This
controller serves as a reference for the comparisons against adaptive controllers.
After that, adaptive augmentations are constructed for the proposed baseline controller,
which utilize L1 Adaptive Control with piecewise constant update laws. Here, the
specific structure of the DPI baseline controller has to be taken into account, besides
actuator dynamics, delays and filter transfer functions. In terms of the augmentation
architecture, two different approaches are proposed in this thesis. The Closed-Loop
Augmentation enhances the combination of aircraft and baseline controller, whereas
the Plant Augmentation is designed considering only the open-loop aircraft. In case of
Plant Augmentation, the baseline controller is applied to a combination of aircraft and
adaptive controller, which has the goal to establish reference dynamics with regard
to the open-loop aircraft. It can be shown by means of simulation results that both
architectures are very similar in terms of both robust stability and performance, despite
the differences considering the controller structures. Thus, the design of an adaptive
augmentation can be significantly simplified by means of the Plant Augmentation
approach, because in this case it is not necessary to consider the baseline controller
within the state predictor.
Furthermore, a hedging enhancement, which utilizes actuator deflection measurement,
is proposed for the state predictors of both augmentation approaches. Through
the application of hedging, it is possible for the baseline controller with adaptive
augmentation to achieve the same robust stability margins with regard to the bottleneck
cut compared to the reference baseline controller configuration. Thus, the L1 adaptive
augmentations do not exhibit any disadvantage compared to conventional control
laws in this matter. This is an advancement in terms of potential certification of
such adaptive augmentations according to [111]. Moreover, it can be shown that the
architecture of the state predictor can be further simplified by means of hedging, in
case Plant Augmentation or the standalone L1 adaptive controller are used. This is
because it is not necessary to model the plant input dynamics within the state predictor,
since actuator measurement is utilized.
In order to present an alternative approach for the adaptive augmentation, another
reference model-based adaptive control law according to Delannoy et. al. [23] is also
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applied to the DPI baseline controller, which is denoted as ∆q̇ Compensation Law in
the context of this thesis. This control law calculates a deviation between the pitch
rate acceleration, which acts on the aircraft, and the corresponding output of a linear
reference model. By means of this deviation a compensating actuator command can
be estimated. It shows that its robust stabilty properties and potential to increase
the aircraft performance is very comparable to the adaptive augmentations using L1
Adaptive Control.

In the next step, a standalone L1 adaptive controller is introduced. This controller uses
a modification of the state predictor, which is contributed by this thesis. By means of
this modification, which is the addition of linear feedback of the estimated states to
both matched and unmatched inputs of the predictor, it is possible to precisely place
the system poles. This is achieved through the additional application of Eigenstructure
Assignment. It can be shown by means of the exemplary longitudinal F-16 aircraft
model, that the short-period poles are precisely set according to the desired values by
means of the proposed technique, despite the additional presence of actuator dynamics,
filter dynamics and delay. Exact shaping of the plant dynamics considering these
additional dynamics is not possible using the textbook L1 Adaptive Control approach
according to [59]. On the other hand, it is also demonstrated that a residual steady-state
error remains, if the standalone adaptive controller is used for tracking of commanded
angle of attack αcmd. The reason for this is the missing integral portion of the control
law, which is not present in a standalone L1 adaptive controller. Chapter 8 points out
a modification of the piecewise constant update law, which could serve as a possible
solution for this issue.

After the controller designs have been presented, they are thoroughly examined in
terms of performance and robust stability. Robust stability of the proposed control
laws can be investigated by means of conventional, linear methods in the frequency-
domain, because the application of L1 adaptive control with piecewise constant update
laws results in a linear control law. This is especially beneficial in terms of controller
certification according to [111]. Furthermore, the ∆q̇ Compensation Law is also linear by
design. Thus, it is possible to calculate the well-known robust stability properties gain
and phase margin considering the adaptive controllers. In addition to the calculation
of margins, the open-loop frequency responses can also be depicted in terms of nichols
plots, which facilitate the illustration of required robustness margins by means of
nichols diamonds. The resulting nichols plots with respect to the bottleneck cut
show that the L1 adaptive augmentations, where the proposed hedging technique is
applied, and the ∆q̇ Compensation Law are very comparable to the baseline controller
configuration considering robust stability. Moreover, it can be shown that the adaptive
augmentations increase robust stability, in case uncertainty with regard to aerodynamic
coefficients is considered. Although, it can also be stated that the sensitivity against
phase or gain disturbances with respect to the sensor measurements increases, when
the adaptive augmentations are applied.
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In addition to the frequency-domain robust stability assessments, also a time-domain
based assessment is introduced and exemplarily applied to the DPI Augmentation. By
means of this method, it is possible to determine a simulation based estimation of gain
margin and time delay margin. Furthermore, this thesis provides a method to estimate
the phase margin using these simulation based results. Another contribution in this
context is the visual representation of the identified results, where also minimum
robustness margins similar to a nichols diamond can be directly taken into account. In
a nutshell, this visualization approach could also serve as a foundation, in order to
assess robust stability properties of nonlinear control laws.
Besides presenting simulation results using a basic version of the aircraft model, the
performance assessments are also carried out with an enhanced variant of the F-16
aircraft model. This is one of the main contributions of this thesis. The enhanced aircraft
model comprises more realistic sensor models, which contain jitter, measurement noise,
discrete-time sampling, quantization, anti-aliasing, scale factor errors and bias. On the
other hand, the 2nd order actuator model, which includes rate and absolute deflection
saturations, is enhanced by means of the backlash effect. Furthermore, atmospheric
disturbances in terms of turbulence and gust are taken into account. A simple model of
a structural mode is introduced, in order to include an additional dynamic disturbance
on the aircraft outputs. In order to increase the relevance of the simulation assessments
in terms of real world applications even further, discrete-time representations of the
control laws are applied to the enhanced aircraft model, considering limited sample
rate.
Despite the introduction of reality effects, the adaptive controllers are still capable
of increasing the system performance considering uncertainties with regard to aero-
dynamic coefficients within the aircraft model, but also considering rapid CG-shifts,
which destabilize the open-loop aircraft. Although, this can only be achieved at the
cost of increased disturbance amplification. In particular, this can be observed for
the assessments on variations of measurement noise and, to an even higher degree,
also of turbulence. The critical measurements are angle of attack α considering the L1
adaptive controllers and pitch rate q considering the ∆q̇ Compensation Law. Thus, in
case of a potential application of the proposed controller designs, the quality of the
sensor measurements and the accompanying filtering has to be increased, in order to
attenuate this effect.
But apart from increased disturbance amplification, it can be concluded that the
proposed adaptive augmentations offer a remarkable improvement in terms of perfor-
mance considering plant uncertainties, when the simulation results are compared to
the baseline controller configuration. At the same time, the robust stability properties
phase and gain margin are not harmed considering the bottleneck cut. In a nutshell,
the application of adaptive control in FCS could be a major contribution to increasing
safety, reducing controller design effort and exploiting the full potential of an aircraft
within its physical limits.
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8. Outlook

It was stated in the conclusion that the quality of the sensor measurements has to be
increased, in order to cope with the drawbacks of the proposed adaptive controller
designs. In particular, high frequency content stemming from measurement noise
and turbulence has to be further reduced. Thus, it would be very promising to apply
more sophisticated sensor filtering algorithms, which exceed the simple low-pass
filtering of the sensor signals, as it is applied in this thesis. One possibility would
be the application of a Kalman Filter [63, 141], in order to attenuate the impact of
high-frequency disturbance. Another interesting approach was presented in [26, pp.
26-30] and [27], where complementary filtering [48] is used to pre-process angle of
attack α measurement for a L1 adaptive controller.
Furthermore, as it was already discussed, the adaptive controller designs presented in
this thesis result in a linear control law. Thus, robustness with regard to the sensor
cuts could also be further investigated by means of µ-analysis [29, 142, 108]. This way,
also the impact of combined uncertainties included in more than one sensor channel
could be assessed, in contrast to the robust stability assessments shown in this thesis.
In terms of the residual steady-state error of the proposed standalone L1 adaptive
controller, a modification of piecewise constant update law within the L1 adaptive
controller could give remedy. This modification is proposed in [73] and introduces
a discrete-time integration of the estimation error, which is added to the parameter
update law. Therefore, this modification could remove the residual steady-state error
due to the added integral portion within the control law.
One goal of this thesis was to highlight the potential of certification of the proposed
adaptive controller designs. In order to increase this potential, it would be beneficial
to show thorough comparisons to control laws, which are already certificated, and
to stress similarities between them. Moreover, adaptive augmentations could also be
applied to baseline controllers, which are designed according to methods of robust
control theory e.g. H∞ or LPV [7, 116, 114]. The additional application of hedging,
as it is proposed in this thesis, could combine the advantages of robust control and
adaptive control.
Exceeding the assessments utilizing the simple structural mode model in this thesis, it
would also be very interesting to investigate the application of the proposed controller
designs to a flexible aircraft model, in order to further analyze the impact of multiple
structural modes and to consider the coupling of rigid-body and flexible states. In
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particular, the impact of structural modes, whose frequencies are near to the range of
the rigid-body dynamics, should be addressed.
In terms of UAV applications, it could also be interesting to consider nonlinear dy-
namics within the state predictor of the proposed L1 adaptive controllers. This way,
it could be possible to increase the potential in terms of agility, instead of forcing the
UAV to behave according to linear reference dynamics. The possibility to consider
nonlinear reference dynamics is investigated in [132, 77].
In this sense, also more sophisticated, nonlinear actuator models could be taken into
account for the assessments. Here, the advantages of hedging could be even more
evident, since it can be avoided to add an actuator model to the state predictor, in
case the Plant Augmentation approach or the standalone L1 adaptive controller are
considered.
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A. Appendix

A.1. Aerodynamic coefficients of the F-16 model

In the following section, the values of the dimensionless aerodynamic coefficients of
the F-16 model CX,0, CX,LEF, CX,q, CX,q,LEF, CZ,0, CZ,LEF, CZ,q, CZ,q,LEF, Cm,0, Cm,LEF,
Cm,q, Cm,q,LEF and Cm,∆ are shown by means of diagrams as functions of angle of attack
α and elevator deflection η.
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Figure A.1. – Aerodynamic coefficient CX,0
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A.2. Propulsion data of the F-16 model

Next to the aerodynamic coefficients, figures showing the values of the thrust force(
XG

P
)

B used for the F-16 model as functions of thrust lever position δT and altitude h
for different mach numbers Ma are now introduced.
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Figure A.14. – Thrust force
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)
B for Ma = 0
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)
B for Ma = 0.6

A.3. Linearized models of the longitudinal F-16
dynamics

This section contains linear models of the longitudinal F-16 dynamics according to
Eq. (2.43) in Section 2.1.4 at an altitude of h = 5000m and different velocities according
to Table 2.2, where the trim results of Fig. 2.4 and Fig. 2.5 shown in Section 2.1.3 are
used. The results are gained using a CG position of 0.30c̄, which corresponds to a shift
of 5% forward in comparison to the reference CG, which lies at 0.35c̄ (c.f. Section 2.1.1).

418



L inearized models of the longitudinal F-16 dynamics

Envelope point V = 102.88m
s and h = 5000m

V̇
γ̇
α̇
q̇

 =


−0.03663 −9.80665 −10.74051 −0.51136
0.00181 0.00000 0.90583 0.05991
−0.00181 0.00000 −0.90583 0.94009
0.00000 0.00000 −4.91317 −0.90604




V
γ
α
q



+


1.79116 6.88363
0.04734 0.00748
−0.04734 −0.00748
−2.49051 0.00000

( η
δT

)
(A.1a)

Phugoid: ω0,ph = 0.13
rad

s
, ζph = 0.13 (A.1b)

Short-period: ω0,sp = 2.33
rad

s
, ζsp = 0.39 (A.1c)

Envelope point V = 110.32m
s and h = 5000m

V̇
γ̇
α̇
q̇

 =


−0.03508 −9.80665 −9.31150 −0.45459
0.00158 0.00000 0.97492 0.06024
−0.00158 0.00000 −0.97492 0.93976
0.00000 0.00000 −5.84084 −0.95756




V
γ
α
q



+


2.16386 6.55736
0.04873 0.00574
−0.04873 −0.00574
−2.76964 0.00000

( η
δT

)
(A.2a)

Phugoid: ω0,ph = 0.12
rad

s
, ζph = 0.13 (A.2b)

Short-period: ω0,sp = 2.53
rad

s
, ζsp = 0.38 (A.2c)
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Envelope point V = 117.75m
s and h = 5000m

V̇
γ̇
α̇
q̇

 =


−0.03445 −9.80665 −9.05369 −0.40355
0.00139 0.00000 1.00951 0.06022
−0.00139 0.00000 −1.00951 0.93978
0.00000 0.00000 −6.71914 −1.01149




V
γ
α
q



+


2.55369 6.22729
0.05049 0.00445
−0.05049 −0.00445
−3.08052 0.00000

( η
δT

)
(A.3a)

Phugoid: ω0,ph = 0.11
rad

s
, ζph = 0.14 (A.3b)

Short-period: ω0,sp = 2.71
rad

s
, ζsp = 0.37 (A.3c)

Envelope point V = 125.19m
s and h = 5000m

V̇
γ̇
α̇
q̇

 =


−0.03435 −9.80665 −7.53404 −0.36047
0.00123 0.00000 1.07413 0.05958
−0.00123 0.00000 −1.07413 0.94042
0.00000 0.00000 −7.67848 −1.06986




V
γ
α
q



+


2.95662 5.89475
0.05298 0.00346
−0.05298 −0.00346
−3.44393 0.00000

( η
δT

)
(A.4a)

Phugoid: ω0,ph = 0.11
rad

s
, ζph = 0.15 (A.4b)

Short-period: ω0,sp = 2.89
rad

s
, ζsp = 0.37 (A.4c)
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L inearized models of the longitudinal F-16 dynamics

Envelope point V = 132.63m
s and h = 5000m

V̇
γ̇
α̇
q̇

 =


−0.03293 −9.80665 −5.91560 −0.32238
0.00110 0.00000 1.13862 0.05904
−0.00110 0.00000 −1.13862 0.94096
0.00000 0.00000 −8.69839 −1.12853




V
γ
α
q



+


3.38309 5.58479
0.05550 0.00272
−0.05550 −0.00272
−3.82949 0.00000

( η
δT

)
(A.5a)

Phugoid: ω0,ph = 0.10
rad

s
, ζph = 0.16 (A.5b)

Short-period: ω0,sp = 3.08
rad

s
, ζsp = 0.37 (A.5c)

Envelope point V = 140.07m
s and h = 5000m

V̇
γ̇
α̇
q̇

 =


−0.03395 −9.80665 −4.19950 −0.28832
0.00099 0.00000 1.20302 0.05857
−0.00099 0.00000 −1.20302 0.94143
0.00000 0.00000 −9.77862 −1.18743




V
γ
α
q



+


3.83323 5.29026
0.05805 0.00215
−0.05805 −0.00215
−4.23722 0.00000

( η
δT

)
(A.6a)

Phugoid: ω0,ph = 0.09
rad

s
, ζph = 0.17 (A.6b)

Short-period: ω0,sp = 3.26
rad

s
, ζsp = 0.37 (A.6c)
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Envelope point V = 147.50m
s and h = 5000m

V̇
γ̇
α̇
q̇

 =


−0.03550 −9.80665 −2.38656 −0.25757
0.00089 0.00000 1.26735 0.05818
−0.00089 0.00000 −1.26735 0.94182
0.00000 0.00000 −10.91898 −1.24655




V
γ
α
q



+


4.30718 4.99491
0.06063 0.00171
−0.06063 −0.00171
−4.66714 0.00000

( η
δT

)
(A.7a)

Phugoid: ω0,ph = 0.09
rad

s
, ζph = 0.19 (A.7b)

Short-period: ω0,sp = 3.44
rad

s
, ζsp = 0.37 (A.7c)

Envelope point V = 154.94m
s and h = 5000m

V̇
γ̇
α̇
q̇

 =


−0.03757 −9.80665 −0.47734 −0.22957
0.00081 0.00000 1.33162 0.05783
−0.00081 0.00000 −1.33162 0.94217
−0.00000 0.00000 −12.11932 −1.30584




V
γ
α
q



+


4.80502 4.69897
0.06323 0.00137
−0.06323 −0.00137
−5.11926 0.00000

( η
δT

)
(A.8a)

Phugoid: ω0,ph = 0.09
rad

s
, ζph = 0.22 (A.8b)

Short-period: ω0,sp = 3.63
rad

s
, ζsp = 0.36 (A.8c)
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L inearized models of the longitudinal F-16 dynamics

Envelope point V = 162.38m
s and h = 5000m

V̇
γ̇
α̇
q̇

 =


−0.04016 −9.80665 1.52773 −0.20386
0.00073 0.00000 1.39584 0.05753
−0.00073 0.00000 −1.39584 0.94247
−0.00000 0.00000 −13.37953 −1.36529




V
γ
α
q



+


5.32682 4.40262
0.06584 0.00109
−0.06584 −0.00109
−5.59358 0.00000

( η
δT

)
(A.9a)

Phugoid: ω0,ph = 0.08
rad

s
, ζph = 0.24 (A.9b)

Short-period: ω0,sp = 3.81
rad

s
, ζsp = 0.36 (A.9c)

Envelope point V = 169.81m
s and h = 5000m

V̇
γ̇
α̇
q̇

 =


−0.04331 −9.80665 3.62835 −0.18009
0.00067 0.00000 1.46003 0.05727
−0.00067 0.00000 −1.46003 0.94273
−0.00000 0.00000 −14.69950 −1.42487




V
γ
α
q



+


5.87265 4.10596
0.06848 0.00087
−0.06848 −0.00087
−6.09012 0.00000

( η
δT

)
(A.10a)

Phugoid: ω0,ph = 0.08
rad

s
, ζph = 0.28 (A.10b)

Short-period: ω0,sp = 3.99
rad

s
, ζsp = 0.36 (A.10c)
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Envelope point V = 177.25m
s and h = 5000m

V̇
γ̇
α̇
q̇

 =


−0.04631 −9.80665 5.82426 −0.15799
0.00062 0.00000 1.52420 0.05704
−0.00062 0.00000 −1.52420 0.94296
−0.00000 0.00000 −16.07916 −1.48458




V
γ
α
q



+


6.44255 3.88237
0.07112 0.00071
−0.07112 −0.00071
−6.60886 0.00000

( η
δT

)
(A.11a)

Phugoid: ω0,ph = 0.07
rad

s
, ζph = 0.31 (A.11b)

Short-period: ω0,sp = 4.17
rad

s
, ζsp = 0.36 (A.11c)

Envelope point V = 184.69m
s and h = 5000m

V̇
γ̇
α̇
q̇

 =


−0.04934 −9.80665 8.11531 −0.13730
0.00057 0.00000 1.58834 0.05684
−0.00057 0.00000 −1.58834 0.94316
−0.00000 0.00000 −17.51844 −1.54439




V
γ
α
q



+


7.03657 3.69157
0.07378 0.00058
−0.07378 −0.00058
−7.14983 0.00000

( η
δT

)
(A.12a)

Phugoid: ω0,ph = 0.07
rad

s
, ζph = 0.34 (A.12b)

Short-period: ω0,sp = 4.36
rad

s
, ζsp = 0.36 (A.12c)
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L inearized models of the longitudinal F-16 dynamics

Envelope point V = 192.13m
s and h = 5000m

V̇
γ̇
α̇
q̇

 =


−0.05279 −9.80665 10.49993 −0.11787
0.00052 0.00000 1.65242 0.05666
−0.00052 0.00000 −1.65242 0.94334
−0.00000 0.00000 −19.01422 −1.60429




V
γ
α
q



+


2.30119 3.50067
0.10513 0.00048
−0.10513 −0.00048
−11.55320 0.00000

( η
δT

)
(A.13a)

Phugoid: ω0,ph = 0.07
rad

s
, ζph = 0.38 (A.13b)

Short-period: ω0,sp = 4.54
rad

s
, ζsp = 0.36 (A.13c)

Envelope point V = 199.56m
s and h = 5000m

V̇
γ̇
α̇
q̇

 =


−0.05050 −9.80665 12.94389 −0.09970
0.00049 0.00000 1.71556 0.05650
−0.00049 0.00000 −1.71556 0.94350
−0.00000 0.00000 −20.49217 −1.66429




V
γ
α
q



+


2.55230 3.34338
0.10950 0.00040
−0.10950 −0.00040
−12.47871 0.00000

( η
δT

)
(A.14a)

Phugoid: ω0,ph = 0.07
rad

s
, ζph = 0.38 (A.14b)

Short-period: ω0,sp = 4.71
rad

s
, ζsp = 0.36 (A.14c)
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Envelope point V = 207.00m
s and h = 5000m

V̇
γ̇
α̇
q̇

 =


−0.05454 −9.80665 15.48058 −0.08246
0.00045 0.00000 1.77872 0.05636
−0.00045 0.00000 −1.77872 0.94364
−0.00000 0.00000 −22.02628 −1.72437




V
γ
α
q



+


2.81328 3.18691
0.11386 0.00033
−0.11386 −0.00033
−13.43937 0.00000

( η
δT

)
(A.15a)

Phugoid: ω0,ph = 0.06
rad

s
, ζph = 0.43 (A.15b)

Short-period: ω0,sp = 4.88
rad

s
, ζsp = 0.36 (A.15c)
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Poles of linearized closed -loop models

A.4. Poles of linearized closed-loop models

A.4.1. Baseline Controller

Table A.1. – Baseline Controller (simple aircraft model, discrete-time integrators): Poles of
linearized closed-loop model for transfer function αcmd → α at envelope point
V = 154.94 m

s and h = 5000m

Poles [−] ω0

[
rad

s

]
ζ [−]

1 -0.001 1.46e-03 1.000
2 -0.016+0.095i 0.10 0.166
3 -0.016-0.095i 0.10 0.166
4 -1.001 1.00 1.000
5 -3.645+1.198i 3.84 0.950
6 -3.645-1.198i 3.84 0.950
7 -25.578 25.58 1.000
8 -46.547 46.55 1.000
9 -44.059+37.108i 57.60 0.765
10 -44.059-37.108i 57.60 0.765
11 -209.440 209.44 1.000
12 -209.440 209.44 1.000
13 -209.440 209.44 1.000
14 -209.440 209.44 1.000
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Table A.2. – Baseline Controller (simple aircraft model, continuous integrators): Poles of
linearized closed-loop model for transfer function αcmd → α at envelope point
V = 154.94 m

s and h = 5000m

Poles [−] ω0

[
rad

s

]
ζ [−]

1 -0.001 1.46e-03 1.000
2 -0.016+0.095i 0.10 0.166
3 -0.016-0.095i 0.10 0.166
4 -1.001 1.00 1.000
5 -3.645+1.198i 3.84 0.950
6 -3.645-1.198i 3.84 0.950
7 -25.578 25.58 1.000
8 -46.547 46.55 1.000
9 -44.059+37.108i 57.60 0.765
10 -44.059-37.108i 57.60 0.765
11 -209.440 209.44 1.000
12 -209.440 209.44 1.000
13 -209.440 209.44 1.000
14 -209.440 209.44 1.000

Table A.3. – Baseline Controller (enhanced aircraft model, discrete-time integrators): Poles
of linearized closed-loop model for transfer function αcmd → α at envelope
point V = 154.94 m

s and h = 5000m

Poles [−] ω0

[
rad

s

]
ζ [−]

1 -0.001 1.46e-03 1.000
2 -0.017+0.095i 0.10 0.172
3 -0.017-0.095i 0.10 0.172
4 -0.938 0.94 1.000
5 -2.584+1.687i 3.09 0.837
6 -2.584-1.687i 3.09 0.837
7 -13.043 13.04 1.000
8 -11.618+6.633i 13.38 0.868
9 -11.618-6.633i 13.38 0.868
10 -9.899+9.899i 14.00 0.707
11 -9.899-9.899i 14.00 0.707
12 -19.820 19.82 1.000
13 -7.685+36.780i 37.57 0.205

Poles [−] ω0

[
rad

s

]
ζ [−]

14 -7.685-36.780i 37.57 0.205
15 -7.540+36.937i 37.70 0.200
16 -7.540-36.937i 37.70 0.200
17 -7.402+37.075i 37.81 0.196
18 -7.402-37.075i 37.81 0.196
19 -28.329+28.012i 39.84 0.711
20 -28.329-28.012i 39.84 0.711
21 -209.440 209.44 1.000
22 -209.440 209.44 1.000
23 -209.440 209.44 1.000
24 -209.440 209.44 1.000
25 -200.000+115.470i 230.94 0.866
26 -200.000-115.470i 230.94 0.866
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Poles of linearized closed -loop models

Table A.4. – Baseline Controller (enhanced aircraft model, continuous integrators): Poles
of linearized closed-loop model for transfer function αcmd → α at envelope
point V = 154.94 m

s and h = 5000m

Poles [−] ω0

[
rad

s

]
ζ [−]

1 -0.001 1.46e-03 1.000
2 -0.017+0.095i 0.10 0.172
3 -0.017-0.095i 0.10 0.172
4 -1.001 1.00 1.000
5 -3.645+1.198i 3.84 0.950
6 -3.645-1.198i 3.84 0.950
7 -4.593 4.59 1.000
8 -9.899+9.899i 14.00 0.707
9 -9.899-9.899i 14.00 0.707
10 -14.153 14.15 1.000
11 -11.885+8.828i 14.81 0.803
12 -11.885-8.828i 14.81 0.803
13 -7.659+36.805i 37.59 0.204

Poles [−] ω0

[
rad

s

]
ζ [−]

14 -7.659-36.805i 37.59 0.204
15 -7.540+36.937i 37.70 0.200
16 -7.540-36.937i 37.70 0.200
17 -7.426+37.056i 37.79 0.196
18 -7.426-37.056i 37.79 0.196
19 -28.364+28.076i 39.91 0.711
20 -28.364-28.076i 39.91 0.711
21 -209.440 209.44 1.000
22 -209.440 209.44 1.000
23 -209.440 209.44 1.000
24 -209.440 209.44 1.000
25 -200.000+115.470i 230.94 0.866
26 -200.000-115.470i 230.94 0.866
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A.4.2. DPI Augmentation

Table A.5. – DPI Augmentation (simple aircraft model, discrete-time integrators): Poles of
linearized closed-loop model for transfer function αcmd → α at envelope point
V = 154.94 m

s and h = 5000m

Poles [−] ω0

[
rad

s

]
ζ [−]

1 -3.53e-14 3.53e-14 1.000
2 -1.96e-13 1.96e-13 1.000
3 1.20e-12 1.20e-12 -1.000
4 -0.001 1.46e-03 1.000
5 -0.013+0.095i 0.10 0.140
6 -0.013-0.095i 0.10 0.140
7 -1.006 1.01 1.000
8 -3.494 3.49 1.000
9 -6.163+1.818i 6.43 0.959

10 -6.163-1.818i 6.43 0.959
11 -6.860 6.86 1.000
12 -7.000 7.00 1.000
13 -20.597+27.456i 34.32 0.600
14 -20.597-27.456i 34.32 0.600
15 -28.400+28.168i 40.00 0.710
16 -28.400-28.168i 40.00 0.710
17 -35.681+28.312i 45.55 0.783
18 -35.681-28.312i 45.55 0.783
19 -50.592+21.328i 54.90 0.921
20 -50.592-21.328i 54.90 0.921

Poles [−] ω0

[
rad

s

]
ζ [−]

21 -54.545+31.492i 62.98 0.866
22 -54.545-31.492i 62.98 0.866
23 -59.878+44.881i 74.83 0.800
24 -59.878-44.881i 74.83 0.800
25 -75.426 75.43 1.000
26 -192.564 192.56 1.000
27 -199.875 199.87 1.000
28 -209.440 209.44 1.000
29 -209.440 209.44 1.000
30 -209.440 209.44 1.000
31 -209.440 209.44 1.000
32 -209.440 209.44 1.000
33 -209.440 209.44 1.000
34 -209.440 209.44 1.000
35 -209.440 209.44 1.000
36 -209.440 209.44 1.000
37 -209.440 209.44 1.000
38 -209.440 209.44 1.000
39 -214.181 214.18 1.000
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Poles of linearized closed -loop models

Table A.6. – DPI Augmentation (simple aircraft model, discrete-time integrators): Poles of
linearized closed-loop model for transfer function αcmd → α at envelope point
V = 154.94 m

s and h = 5000m considering additional gain of 19.32dB upstream
the actuator. The gain disturbance is chosen slightly higher than the
determined gain margin of the closed-loop at this envelope point (19.27dB)
and thus the closed-loop is unstable (c.f. poles 11 and 12)

Poles [−] ω0

[
rad

s

]
ζ [−]

1 4.91e-14 4.91e-14 -1.000
2 -3.25e-13 3.25e-13 1.000
3 4.05e-13 4.05e-13 -1.000
4 -0.001 1.46e-03 1.000
5 -0.014+0.095i 0.10 0.147
6 -0.014-0.095i 0.10 0.147
7 -0.419+1.627i 1.68 0.249
8 -0.419-1.627i 1.68 0.249
9 -6.995 7.00 1.000

10 -7.000 7.00 1.000
11 0.009+21.187i 21.19 -0.000
12 0.009-21.187i 21.19 -0.000
13 -17.128+22.306i 28.12 0.609
14 -17.128-22.306i 28.12 0.609
15 -30.087 30.09 1.000
16 -28.400+28.168i 40.00 0.710
17 -28.400-28.168i 40.00 0.710
18 -39.335+35.139i 52.74 0.746
19 -39.335-35.139i 52.74 0.746
20 -54.545+31.492i 62.98 0.866

Poles [−] ω0

[
rad

s

]
ζ [−]

21 -54.545-31.492i 62.98 0.866
22 -74.387+13.805i 75.66 0.983
23 -74.387-13.805i 75.66 0.983
24 -67.106+65.216i 93.58 0.717
25 -67.106-65.216i 93.58 0.717
26 -165.700 165.70 1.000
27 -200.171 200.17 1.000
28 -209.440 209.44 1.000
29 -209.440 209.44 1.000
30 -209.440 209.44 1.000
31 -209.440 209.44 1.000
32 -209.440 209.44 1.000
33 -209.440 209.44 1.000
34 -209.440 209.44 1.000
35 -209.440 209.44 1.000
36 -209.440 209.44 1.000
37 -209.440 209.44 1.000
38 -209.440 209.44 1.000
39 -239.540 239.54 1.000
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Table A.7. – DPI Augmentation (simple aircraft model, discrete-time integrators): Poles of
linearized closed-loop model for transfer function αcmd → α at envelope point
V = 154.94 m

s and h = 5000m considering additional time delay of 2.475s
upstream the actuator, which corresponds to a phase disturbance of 87.92◦ at
ωgc = 0.62 rad

s . The phase disturbance is chosen slightly higher than the
determined phase margin of the closed-loop at this envelope point (87.23◦)
and thus the closed-loop is unstable (c.f. poles 7 and 8)

Poles [−] ω0

[
rad

s

]
ζ [−]

1 3.40e-13 3.40e-13 -1.000
2 -3.42e-13+2.34e-13i 4.14e-13 0.825
3 -3.42e-13-2.34e-13i 4.14e-13 0.825
4 -0.001 1.46e-03 1.000
5 -0.013+0.095i 0.10 0.139
6 -0.013-0.095i 0.10 0.139
7 0.001+0.620i 0.62 -0.001
8 0.001-0.620i 0.62 -0.001
9 -0.701+2.387i 2.49 0.282

10 -0.701-2.387i 2.49 0.282
11 -6.991 6.99 1.000
12 -7.000 7.00 1.000
13 -8.924+6.170i 10.85 0.823
14 -8.924-6.170i 10.85 0.823
15 -20.350+27.669i 34.35 0.592
16 -20.350-27.669i 34.35 0.592
17 -28.400+28.168i 40.00 0.710
18 -28.400-28.168i 40.00 0.710
19 -36.337+28.239i 46.02 0.790
20 -36.337-28.239i 46.02 0.790
21 -49.961+20.418i 53.97 0.926

Poles [−] ω0

[
rad

s

]
ζ [−]

22 -49.961-20.418i 53.97 0.926
23 -54.545+31.492i 62.98 0.866
24 -54.545-31.492i 62.98 0.866
25 -60.134+45.048i 75.14 0.800
26 -60.134-45.048i 75.14 0.800
27 -75.253 75.25 1.000
28 -192.365 192.36 1.000
29 -199.887 199.89 1.000
30 -209.440 209.44 1.000
31 -209.440 209.44 1.000
32 -209.440 209.44 1.000
33 -209.440 209.44 1.000
34 -209.440 209.44 1.000
35 -209.440 209.44 1.000
36 -209.440 209.44 1.000
37 -209.440 209.44 1.000
38 -209.440+0.000i 209.44 1.000
39 -209.440-0.000i 209.44 1.000
40 -209.440 209.44 1.000
41 -214.342 214.34 1.000
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Poles of linearized closed -loop models

Table A.8. – DPI Augmentation (simple aircraft model, continuous integrators): Poles of
linearized closed-loop model for transfer function αcmd → α at envelope point
V = 154.94 m

s and h = 5000m

Poles [−] ω0

[
rad

s

]
ζ [−]

1 2.41e-14 2.41e-14 -1.000
2 -2.49e-14 2.49e-14 1.000
3 7.70e-13 7.70e-13 -1.000
4 -0.001 1.46e-03 1.000
5 -0.013+0.095i 0.10 0.140
6 -0.013-0.095i 0.10 0.140
7 -1.002 1.00 1.000
8 -3.641+1.216i 3.84 0.948
9 -3.641-1.216i 3.84 0.948

10 -6.999 7.00 1.000
11 -7.000 7.00 1.000
12 -15.000 15.00 1.000
13 -25.695 25.70 1.000
14 -24.453+27.203i 36.58 0.669
15 -24.453-27.203i 36.58 0.669
16 -28.400+28.168i 40.00 0.710
17 -28.400-28.168i 40.00 0.710
18 -46.303 46.30 1.000
19 -44.083+37.111i 57.62 0.765
20 -44.083-37.111i 57.62 0.765

Poles [−] ω0

[
rad

s

]
ζ [−]

21 -54.545+31.492i 62.98 0.866
22 -54.545-31.492i 62.98 0.866
23 -55.955+38.960i 68.18 0.821
24 -55.955-38.960i 68.18 0.821
25 -77.706 77.71 1.000
26 -100.233+1.433i 100.24 1.000
27 -100.233-1.433i 100.24 1.000
28 -105.935 105.94 1.000
29 -209.440+0.000i 209.44 1.000
30 -209.440-0.000i 209.44 1.000
31 -209.440 209.44 1.000
32 -209.440 209.44 1.000
33 -209.440 209.44 1.000
34 -209.440 209.44 1.000
35 -209.440 209.44 1.000
36 -209.440 209.44 1.000
37 -209.440 209.44 1.000
38 -209.440 209.44 1.000
39 -209.440 209.44 1.000
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Table A.9. – DPI Augmentation (enhanced aircraft model, discrete-time integrators): Poles
of linearized closed-loop model for transfer function αcmd → α at envelope
point V = 154.94 m

s and h = 5000m

Poles [−] ω0

[
rad

s

]
ζ [−]

1 -7.62e-14 7.62e-14 1.000
2 1.79e-13 1.79e-13 -1.000
3 -9.44e-13 9.44e-13 1.000
4 -0.001 1.46e-03 1.000
5 -0.014+0.095i 0.10 0.146
6 -0.014-0.095i 0.10 0.146
7 -0.966 0.97 1.000
8 -3.118 3.12 1.000
9 -3.073+2.340i 3.86 0.796
10 -3.073-2.340i 3.86 0.796
11 -6.988 6.99 1.000
12 -7.000 7.00 1.000
13 -9.899+9.899i 14.00 0.707
14 -9.899-9.899i 14.00 0.707
15 -9.899+9.899i 14.00 0.707
16 -9.899-9.899i 14.00 0.707
17 -9.899+9.899i 14.00 0.707
18 -9.899-9.899i 14.00 0.707
19 -14.036 14.04 1.000
20 -10.025+9.933i 14.11 0.710
21 -10.025-9.933i 14.11 0.710
22 -14.129 14.13 1.000
23 -8.421+11.789i 14.49 0.581
24 -8.421-11.789i 14.49 0.581
25 -19.820 19.82 1.000
26 -19.820 19.82 1.000
27 -32.149 32.15 1.000
28 -7.457+36.337i 37.09 0.201
29 -7.457-36.337i 37.09 0.201
30 -7.582+36.920i 37.69 0.201
31 -7.582-36.920i 37.69 0.201
32 -7.540+36.937i 37.70 0.200
33 -7.540-36.937i 37.70 0.200
34 -7.540+36.937i 37.70 0.200
35 -7.540-36.937i 37.70 0.200
36 -7.540+36.937i 37.70 0.200

Poles [−] ω0

[
rad

s

]
ζ [−]

37 -7.540-36.937i 37.70 0.200
38 -7.540+36.937i 37.70 0.200
39 -7.540-36.937i 37.70 0.200
40 -7.499+36.954i 37.71 0.199
41 -7.499-36.954i 37.71 0.199
42 -7.458+37.480i 38.22 0.195
43 -7.458-37.480i 38.22 0.195
44 -28.404+28.160i 40.00 0.710
45 -28.404-28.160i 40.00 0.710
46 -28.400+28.168i 40.00 0.710
47 -28.400-28.168i 40.00 0.710
48 -27.627+29.832i 40.66 0.679
49 -27.627-29.832i 40.66 0.679
50 -77.394 77.39 1.000
51 -200.196 200.20 1.000
52 -200.305+7.090i 200.43 0.999
53 -200.305-7.090i 200.43 0.999
54 -204.348 204.35 1.000
55 -209.440+0.000i 209.44 1.000
56 -209.440-0.000i 209.44 1.000
57 -209.440+0.000i 209.44 1.000
58 -209.440-0.000i 209.44 1.000
59 -209.440 209.44 1.000
60 -209.440 209.44 1.000
61 -209.440 209.44 1.000
62 -209.440 209.44 1.000
63 -209.440 209.44 1.000
64 -209.440 209.44 1.000
65 -209.440 209.44 1.000
66 -200.000+115.470i 230.94 0.866
67 -200.000-115.470i 230.94 0.866
68 -200.000+115.470i 230.94 0.866
69 -200.000-115.470i 230.94 0.866
70 -200.007+115.461i 230.94 0.866
71 -200.007-115.461i 230.94 0.866
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Poles of linearized closed -loop models

Table A.10. – DPI Augmentation (enhanced aircraft model, continuous integrators): Poles
of linearized closed-loop model for transfer function αcmd → α at envelope
point V = 154.94 m

s and h = 5000m

Poles [−] ω0

[
rad

s

]
ζ [−]

1 3.36e-14 3.36e-14 -1.000
2 -4.50e-14+1.84e-13i 1.90e-13 0.237
3 -4.50e-14-1.84e-13i 1.90e-13 0.237
4 -0.001 1.46e-03 1.000
5 -0.014+0.095i 0.10 0.146
6 -0.014-0.095i 0.10 0.146
7 -1.002 1.00 1.000
8 -3.587+1.226i 3.79 0.946
9 -3.587-1.226i 3.79 0.946

10 -4.724 4.72 1.000
11 -7.000 7.00 1.000
12 -7.002 7.00 1.000
13 -9.740+9.849i 13.85 0.703
14 -9.740-9.849i 13.85 0.703
15 -9.899+9.899i 14.00 0.707
16 -9.899-9.899i 14.00 0.707
17 -9.899+9.899i 14.00 0.707
18 -9.899-9.899i 14.00 0.707
19 -9.899+9.899i 14.00 0.707
20 -9.899-9.899i 14.00 0.707
21 -14.153 14.15 1.000
22 -14.153 14.15 1.000
23 -14.153 14.15 1.000
24 -14.636 14.64 1.000
25 -11.877+8.826i 14.80 0.803
26 -11.877-8.826i 14.80 0.803
27 -14.919 14.92 1.000
28 -7.658+36.805i 37.59 0.204
29 -7.658-36.805i 37.59 0.204
30 -7.552+36.836i 37.60 0.201
31 -7.552-36.836i 37.60 0.201
32 -7.540+36.937i 37.70 0.200
33 -7.540-36.937i 37.70 0.200
34 -7.540+36.937i 37.70 0.200
35 -7.540-36.937i 37.70 0.200

Poles [−] ω0

[
rad

s

]
ζ [−]

36 -7.540+36.937i 37.70 0.200
37 -7.540-36.937i 37.70 0.200
38 -7.540+36.937i 37.70 0.200
39 -7.540-36.937i 37.70 0.200
40 -7.523+37.036i 37.79 0.199
41 -7.523-37.036i 37.79 0.199
42 -7.426+37.056i 37.79 0.196
43 -7.426-37.056i 37.79 0.196
44 -28.364+28.077i 39.91 0.711
45 -28.364-28.077i 39.91 0.711
46 -28.367+28.195i 40.00 0.709
47 -28.367-28.195i 40.00 0.709
48 -28.400+28.168i 40.00 0.710
49 -28.400-28.168i 40.00 0.710
50 -77.589 77.59 1.000
51 -100.043 100.04 1.000
52 -100.653+1.701i 100.67 1.000
53 -100.653-1.701i 100.67 1.000
54 -209.440 209.44 1.000
55 -209.440 209.44 1.000
56 -209.440 209.44 1.000
57 -209.440 209.44 1.000
58 -209.440 209.44 1.000
59 -209.440 209.44 1.000
60 -209.440 209.44 1.000
61 -209.440 209.44 1.000
62 -209.440 209.44 1.000
63 -209.440 209.44 1.000
64 -209.440 209.44 1.000
65 -200.000+115.470i 230.94 0.866
66 -200.000-115.470i 230.94 0.866
67 -200.000+115.470i 230.94 0.866
68 -200.000-115.470i 230.94 0.866
69 -200.000+115.470i 230.94 0.866
70 -200.000-115.470i 230.94 0.866
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A.4.3. Plant Augmentation

Table A.11. – Plant Augmentation (simple aircraft model, discrete-time integrators): Poles
of linearized closed-loop model for transfer function αcmd → α at envelope
point V = 154.94 m

s and h = 5000m

Poles [−] ω0

[
rad

s

]
ζ [−]

1 -0.001 1.46e-03 1.000
2 -0.015+0.095i 0.10 0.151
3 -0.015-0.095i 0.10 0.151
4 -1.004 1.00 1.000
5 -3.815 3.82 1.000
6 -5.948+1.130i 6.05 0.982
7 -5.948-1.130i 6.05 0.982
8 -6.896 6.90 1.000
9 -23.954+25.520i 35.00 0.684

10 -23.954-25.520i 35.00 0.684
11 -58.336+40.672i 71.11 0.820

Poles [−] ω0

[
rad

s

]
ζ [−]

12 -58.336-40.672i 71.11 0.820
13 -79.013 79.01 1.000
14 -196.506 196.51 1.000
15 -209.423 209.42 1.000
16 -209.440 209.44 1.000
17 -209.440 209.44 1.000
18 -209.440 209.44 1.000
19 -209.440 209.44 1.000
20 -209.440 209.44 1.000
21 -209.440 209.44 1.000

Table A.12. – Plant Augmentation (simple aircraft model, continuous integrators): Poles of
linearized closed-loop model for transfer function αcmd → α at envelope
point V = 154.94 m

s and h = 5000m

Poles [−] ω0

[
rad

s

]
ζ [−]

1 -0.001 1.46e-03 1.000
2 -0.016+0.095i 0.10 0.165
3 -0.016-0.095i 0.10 0.165
4 -1.001 1.00 1.000
5 -3.653+1.192i 3.84 0.951
6 -3.653-1.192i 3.84 0.951
7 -6.968 6.97 1.000
8 -15.001 15.00 1.000
9 -25.661 25.66 1.000

10 -46.395 46.40 1.000
11 -44.073+37.109i 57.62 0.765

Poles [−] ω0

[
rad

s

]
ζ [−]

12 -44.073-37.109i 57.62 0.765
13 -77.657 77.66 1.000
14 -100.644+1.697i 100.66 1.000
15 -100.644-1.697i 100.66 1.000
16 -209.440 209.44 1.000
17 -209.440 209.44 1.000
18 -209.440 209.44 1.000
19 -209.440 209.44 1.000
20 -209.440 209.44 1.000
21 -209.440 209.44 1.000
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Poles of linearized closed -loop models

Table A.13. – Plant Augmentation (enhanced aircraft model, discrete-time integrators):
Poles of linearized closed-loop model for transfer function αcmd → α at
envelope point V = 154.94 m

s and h = 5000m

Poles [−] ω0

[
rad

s

]
ζ [−]

1 -0.001 1.46e-03 1.000
2 -0.014+0.095i 0.10 0.146
3 -0.014-0.095i 0.10 0.146
4 -0.966 0.97 1.000
5 -3.108 3.11 1.000
6 -3.057+2.337i 3.85 0.794
7 -3.057-2.337i 3.85 0.794
8 -6.992 6.99 1.000
9 -9.899+9.899i 14.00 0.707
10 -9.899-9.899i 14.00 0.707
11 -9.899+9.899i 14.00 0.707
12 -9.899-9.899i 14.00 0.707
13 -8.527+11.851i 14.60 0.584
14 -8.527-11.851i 14.60 0.584
15 -19.820 19.82 1.000
16 -19.820 19.82 1.000
17 -32.070 32.07 1.000
18 -7.457+36.346i 37.10 0.201
19 -7.457-36.346i 37.10 0.201
20 -7.540+36.937i 37.70 0.200

Poles [−] ω0

[
rad

s

]
ζ [−]

21 -7.540-36.937i 37.70 0.200
22 -7.540+36.937i 37.70 0.200
23 -7.540-36.937i 37.70 0.200
24 -7.462+37.475i 38.21 0.195
25 -7.462-37.475i 38.21 0.195
26 -27.654+29.809i 40.66 0.680
27 -27.654-29.809i 40.66 0.680
28 -77.408 77.41 1.000
29 -200.425+6.993i 200.55 0.999
30 -200.425-6.993i 200.55 0.999
31 -204.100 204.10 1.000
32 -209.440 209.44 1.000
33 -209.440 209.44 1.000
34 -209.440 209.44 1.000
35 -209.440 209.44 1.000
36 -209.440 209.44 1.000
37 -209.440 209.44 1.000
38 -200.008+115.461i 230.94 0.866
39 -200.008-115.461i 230.94 0.866
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Table A.14. – Plant Augmentation (enhanced aircraft model, continuous integrators):
Poles of linearized closed-loop model for transfer function αcmd → α at
envelope point V = 154.94 m

s and h = 5000m

Poles [−] ω0

[
rad

s

]
ζ [−]

1 -0.001 1.46e-03 1.000
2 -0.016+0.095i 0.10 0.171
3 -0.016-0.095i 0.10 0.171
4 -1.000 1.00 1.000
5 -3.710+1.227i 3.91 0.949
6 -3.710-1.227i 3.91 0.949
7 -4.346 4.35 1.000
8 -7.140 7.14 1.000
9 -9.899+9.899i 14.00 0.707
10 -9.899-9.899i 14.00 0.707
11 -9.899+9.899i 14.00 0.707
12 -9.899-9.899i 14.00 0.707
13 -14.153 14.15 1.000
14 -14.153 14.15 1.000
15 -11.875+8.827i 14.80 0.803
16 -11.875-8.827i 14.80 0.803
17 -14.999 15.00 1.000
18 -7.659+36.805i 37.59 0.204
19 -7.659-36.805i 37.59 0.204

Poles [−] ω0

[
rad

s

]
ζ [−]

20 -7.540+36.937i 37.70 0.200
21 -7.540-36.937i 37.70 0.200
22 -7.540+36.937i 37.70 0.200
23 -7.540-36.937i 37.70 0.200
24 -7.426+37.056i 37.79 0.196
25 -7.426-37.056i 37.79 0.196
26 -28.364+28.077i 39.91 0.711
27 -28.364-28.077i 39.91 0.711
28 -77.589 77.59 1.000
29 -100.651+1.697i 100.67 1.000
30 -100.651-1.697i 100.67 1.000
31 -209.440 209.44 1.000
32 -209.440 209.44 1.000
33 -209.440 209.44 1.000
34 -209.440 209.44 1.000
35 -209.440 209.44 1.000
36 -209.440 209.44 1.000
37 -200.000+115.470i 230.94 0.866
38 -200.000-115.470i 230.94 0.866
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Poles of linearized closed -loop models

A.4.4. ∆q̇ Compensation Law

Table A.15. – ∆q̇ Compensation (simple aircraft model, discrete-time integrators): Poles of
linearized closed-loop model for transfer function αcmd → α at envelope
point V = 154.94 m

s and h = 5000m

Poles [−] ω0

[
rad

s

]
ζ [−]

1 -0.001 1.46e-03 1.000
2 -0.016+0.095i 0.10 0.166
3 -0.016-0.095i 0.10 0.166
4 -1.001 1.00 1.000
5 -3.396+1.276i 3.63 0.936
6 -3.396-1.276i 3.63 0.936
7 -12.249+10.797i 16.33 0.750
8 -12.249-10.797i 16.33 0.750
9 -36.708+45.960i 58.82 0.624
10 -36.708-45.960i 58.82 0.624
11 -82.451 82.45 1.000
12 -206.813 206.81 1.000
13 -209.440 209.44 1.000
14 -209.440 209.44 1.000
15 -209.440 209.44 1.000
16 -209.440 209.44 1.000
17 -209.440 209.44 1.000
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Table A.16. – ∆q̇ Compensation (simple aircraft model, continuous integrators): Poles of
linearized closed-loop model for transfer function αcmd → α at envelope
point V = 154.94 m

s and h = 5000m

Poles [−] ω0

[
rad

s

]
ζ [−]

1 -0.001 1.46e-03 1.000
2 -0.016+0.095i 0.10 0.166
3 -0.016-0.095i 0.10 0.166
4 -1.001 1.00 1.000
5 -3.396+1.276i 3.63 0.936
6 -3.396-1.276i 3.63 0.936
7 -12.249+10.797i 16.33 0.750
8 -12.249-10.797i 16.33 0.750
9 -36.708+45.960i 58.82 0.624
10 -36.708-45.960i 58.82 0.624
11 -82.451 82.45 1.000
12 -206.813 206.81 1.000
13 -209.440 209.44 1.000
14 -209.440 209.44 1.000
15 -209.440 209.44 1.000
16 -209.440 209.44 1.000
17 -209.440 209.44 1.000

440



Poles of linearized closed -loop models

Table A.17. – ∆q̇ Compensation (enhanced aircraft model, discrete-time integrators): Poles
of linearized closed-loop model for transfer function αcmd → α at envelope
point V = 154.94 m

s and h = 5000m

Poles [−] ω0

[
rad

s

]
ζ [−]

1 -0.001 1.46e-03 1.000
2 -0.017+0.095i 0.10 0.172
3 -0.017-0.095i 0.10 0.172
4 -0.961 0.96 1.000
5 -2.771+1.479i 3.14 0.882
6 -2.771-1.479i 3.14 0.882
7 -12.060 12.06 1.000
8 -11.721+6.337i 13.32 0.880
9 -11.721-6.337i 13.32 0.880
10 -9.899+9.899i 14.00 0.707
11 -9.899-9.899i 14.00 0.707
12 -9.899+9.899i 14.00 0.707
13 -9.899-9.899i 14.00 0.707
14 -17.468 17.47 1.000
15 -19.820 19.82 1.000
16 -19.820 19.82 1.000
17 -7.681+36.752i 37.55 0.205
18 -7.681-36.752i 37.55 0.205

Poles [−] ω0

[
rad

s

]
ζ [−]

19 -7.540+36.937i 37.70 0.200
20 -7.540-36.937i 37.70 0.200
21 -7.540+36.937i 37.70 0.200
22 -7.540-36.937i 37.70 0.200
23 -7.403+37.098i 37.83 0.196
24 -7.403-37.098i 37.83 0.196
25 -28.289+28.036i 39.83 0.710
26 -28.289-28.036i 39.83 0.710
27 -199.983 199.98 1.000
28 -209.440 209.44 1.000
29 -209.440 209.44 1.000
30 -209.440 209.44 1.000
31 -209.440 209.44 1.000
32 -209.440 209.44 1.000
33 -209.453 209.45 1.000
34 -200.000+115.470i 230.94 0.866
35 -200.000-115.470i 230.94 0.866
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Table A.18. – ∆q̇ Compensation (enhanced aircraft model, continuous integrators): Poles
of linearized closed-loop model for transfer function αcmd → α at envelope
point V = 154.94 m

s and h = 5000m

Poles [−] ω0

[
rad

s

]
ζ [−]

1 -0.001 1.46e-03 1.000
2 -0.017+0.095i 0.10 0.172
3 -0.017-0.095i 0.10 0.172
4 -1.001 1.00 1.000
5 -2.924+1.108i 3.13 0.935
6 -2.924-1.108i 3.13 0.935
7 -6.420+4.814i 8.02 0.800
8 -6.420-4.814i 8.02 0.800
9 -9.899+9.899i 14.00 0.707

10 -9.899-9.899i 14.00 0.707
11 -9.899+9.899i 14.00 0.707
12 -9.899-9.899i 14.00 0.707
13 -14.153 14.15 1.000
14 -14.153 14.15 1.000
15 -16.674+11.331i 20.16 0.827
16 -16.674-11.331i 20.16 0.827
17 -7.958+36.820i 37.67 0.211

Poles [−] ω0

[
rad

s

]
ζ [−]

18 -7.958-36.820i 37.67 0.211
19 -7.540+36.937i 37.70 0.200
20 -7.540-36.937i 37.70 0.200
21 -7.540+36.937i 37.70 0.200
22 -7.540-36.937i 37.70 0.200
23 -7.201+37.038i 37.73 0.191
24 -7.201-37.038i 37.73 0.191
25 -28.595+27.368i 39.58 0.722
26 -28.595-27.368i 39.58 0.722
27 -209.440 209.44 1.000
28 -209.440 209.44 1.000
29 -209.440 209.44 1.000
30 -209.440 209.44 1.000
31 -209.440 209.44 1.000
32 -209.444 209.44 1.000
33 -200.001+115.471i 230.94 0.866
34 -200.001-115.471i 230.94 0.866

A.4.5. L1 adaptive controller with Eigenstructure Assignment
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Poles of linearized closed -loop models

Table A.19. – L1 Standalone (simple aircraft model, discrete-time integrators): Poles of
linearized closed-loop model for transfer function αcmd → α at envelope
point V = 154.94 m

s and h = 5000m

Poles [−] ω0

[
rad

s

]
ζ [−]

1 -0.001 1.46e-03 1.000
2 -0.018+0.087i 0.09 0.205
3 -0.018-0.087i 0.09 0.205
4 -3.415 3.42 1.000
5 -3.880+2.271i 4.50 0.863
6 -3.880-2.271i 4.50 0.863
7 -8.814 8.81 1.000
8 -19.055+30.869i 36.28 0.525
9 -19.055-30.869i 36.28 0.525

10 -74.666 74.67 1.000
11 -64.527+48.318i 80.61 0.800
12 -64.527-48.318i 80.61 0.800
13 -206.732+16.085i 207.36 0.997
14 -206.732-16.085i 207.36 0.997

Table A.20. – L1 Standalone (simple aircraft model, continuous integrators): Poles of
linearized closed-loop model for transfer function αcmd → α at envelope
point V = 154.94 m

s and h = 5000m

Poles [−] ω0

[
rad

s

]
ζ [−]

1 -0.001 1.46e-03 1.000
2 -0.018+0.087i 0.09 0.205
3 -0.018-0.087i 0.09 0.205
4 -3.615+1.204i 3.81 0.949
5 -3.615-1.204i 3.81 0.949
6 -7.055+0.654i 7.08 0.996
7 -7.055-0.654i 7.08 0.996
8 -28.407+30.199i 41.46 0.685
9 -28.407-30.199i 41.46 0.685
10 -56.541+31.745i 64.84 0.872
11 -56.541-31.745i 64.84 0.872
12 -74.761 74.76 1.000
13 -101.960+4.694i 102.07 0.999
14 -101.960-4.694i 102.07 0.999
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Table A.21. – L1 Standalone (enhanced aircraft model, discrete-time integrators): Poles of
linearized closed-loop model for transfer function αcmd → α at envelope
point V = 154.94 m

s and h = 5000m

Poles [−] ω0

[
rad

s

]
ζ [−]

1 -0.001 1.46e-03 1.000
2 -0.018+0.096i 0.10 0.187
3 -0.018-0.096i 0.10 0.187
4 -3.306 3.31 1.000
5 -3.083+2.233i 3.81 0.810
6 -3.083-2.233i 3.81 0.810
7 -8.447 8.45 1.000
8 -9.899+9.899i 14.00 0.707
9 -9.899-9.899i 14.00 0.707
10 -9.899+9.899i 14.00 0.707
11 -9.899-9.899i 14.00 0.707
12 -7.536+12.299i 14.42 0.522
13 -7.536-12.299i 14.42 0.522
14 -19.820 19.82 1.000
15 -19.820 19.82 1.000
16 -32.651 32.65 1.000

Poles [−] ω0

[
rad

s

]
ζ [−]

17 -7.371+36.235i 36.98 0.199
18 -7.371-36.235i 36.98 0.199
19 -7.540+36.937i 37.70 0.200
20 -7.540-36.937i 37.70 0.200
21 -7.540+36.937i 37.70 0.200
22 -7.540-36.937i 37.70 0.200
23 -7.464+37.591i 38.32 0.195
24 -7.464-37.591i 38.32 0.195
25 -27.800+30.487i 41.26 0.674
26 -27.800-30.487i 41.26 0.674
27 -78.165 78.17 1.000
28 -192.691 192.69 1.000
29 -205.842+7.635i 205.98 0.999
30 -205.842-7.635i 205.98 0.999
31 -200.017+115.471i 230.96 0.866
32 -200.017-115.471i 230.96 0.866
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Poles of linearized closed -loop models

Table A.22. – L1 Standalone (enhanced aircraft model, continuous integrators): Poles of
linearized closed-loop model for transfer function αcmd → α at envelope
point V = 154.94 m

s and h = 5000m

Poles [−] ω0

[
rad

s

]
ζ [−]

1 -0.001 1.46e-03 1.000
2 -0.018+0.096i 0.10 0.187
3 -0.018-0.096i 0.10 0.187
4 -3.596+1.184i 3.79 0.950
5 -3.596-1.184i 3.79 0.950
6 -6.566+0.798i 6.61 0.993
7 -6.566-0.798i 6.61 0.993
8 -9.899+9.899i 14.00 0.707
9 -9.899-9.899i 14.00 0.707
10 -9.899+9.899i 14.00 0.707
11 -9.899-9.899i 14.00 0.707
12 -10.795+9.117i 14.13 0.764
13 -10.795-9.117i 14.13 0.764
14 -14.153 14.15 1.000
15 -14.153 14.15 1.000
16 -16.696 16.70 1.000

Poles [−] ω0

[
rad

s

]
ζ [−]

17 -7.570+36.868i 37.64 0.201
18 -7.570-36.868i 37.64 0.201
19 -7.540+36.937i 37.70 0.200
20 -7.540-36.937i 37.70 0.200
21 -7.540+36.937i 37.70 0.200
22 -7.540-36.937i 37.70 0.200
23 -7.509+37.004i 37.76 0.199
24 -7.509-37.004i 37.76 0.199
25 -28.390+28.150i 39.98 0.710
26 -28.390-28.150i 39.98 0.710
27 -77.587 77.59 1.000
28 -100.597+1.206i 100.60 1.000
29 -100.597-1.206i 100.60 1.000
30 -200.000+115.470i 230.94 0.866
31 -200.000-115.470i 230.94 0.866
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A.5. Robust stability of control laws (basic aircraft
model)

A.5.1. Comparison between DPI and Plant Augmentation

Page intentionally left blank
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Robust stability of control laws (basic aircraft model )

Table A.23. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability comparison of DPI and Plant Augmentation
with and without hedging at V = 154.94 m

s generated for α loop cut (basic
aircraft model)

Controller GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
Baseline 12.69 70.24 0.55 2.239 0.55

−∞ -289.76 0.55 -9.235 0.55

DPI Augmentation 5.25 57.43 0.92 1.091 0.92
-13.29 -302.57 0.92 -5.749 0.92

DPI Augmentation 5.25 57.43 0.92 1.091 0.92
(no hedg.) -13.29 -302.57 0.92 -5.749 0.92

Plant Augmentation 6.99 59.52 1.16 0.898 1.16
-14.58 -300.48 1.16 -4.533 1.16

Plant Augmentation 6.99 59.52 1.16 0.898 1.16
(no hedg.) -14.58 -300.48 1.16 -4.533 1.16

Table A.24. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability comparison of DPI and Plant Augmentation
with and without hedging at V = 154.94 m

s generated for q loop cut (basic
aircraft model)

Controller GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
Baseline 15.54 101.74 4.39 0.404 4.39

−∞ -137.46 1.92 -1.026 4.39

DPI Augmentation 6.13 29.35 8.20 0.062 8.20
-5.62 -65.95 0.93 -0.704 8.20

DPI Augmentation 6.13 29.35 8.20 0.062 8.20
(no hedg.) -5.62 -65.95 0.93 -0.704 8.20

Plant Augmentation 6.62 34.07 8.41 0.071 8.41
-7.30 -71.97 1.14 -0.676 8.41

Plant Augmentation 6.62 34.07 8.41 0.071 8.41
(no hedg.) -7.30 -71.97 1.14 -0.676 8.41
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A.5.2. Baseline Controller
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Robust stability of control laws (basic aircraft model )

Table A.25. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of baseline controller at envelope
points according to Table 2.2 generated for α loop cut (basic aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 22.51 73.46 0.59 2.181 0.59

−∞ -286.54 0.59 -8.507 0.59

110.32 19.95 73.01 0.58 2.209 0.58
−∞ -286.99 0.58 -8.681 0.58

117.75 17.86 72.41 0.57 2.230 0.57
−∞ -287.59 0.57 -8.857 0.57

125.19 16.35 72.02 0.56 2.237 0.56
−∞ -287.98 0.56 -8.947 0.56

132.63 15.15 71.58 0.56 2.240 0.56
−∞ -288.42 0.56 -9.025 0.56

140.07 14.18 71.13 0.55 2.241 0.55
−∞ -288.87 0.55 -9.099 0.55

147.50 13.37 70.68 0.55 2.240 0.55
−∞ -289.32 0.55 -9.169 0.55

154.94 12.69 70.24 0.55 2.239 0.55
−∞ -289.76 0.55 -9.235 0.55

162.38 12.10 69.80 0.54 2.236 0.54
−∞ -290.20 0.54 -9.298 0.54

169.81 11.60 69.38 0.54 2.234 0.54
−∞ -290.62 0.54 -9.357 0.54

177.25 11.16 68.97 0.54 2.231 0.54
−∞ -291.03 0.54 -9.414 0.54

184.69 10.78 68.57 0.54 2.228 0.54
−∞ -291.43 0.54 -9.468 0.54

192.13 10.41 68.35 0.53 2.240 0.53
−∞ -291.65 0.53 -9.557 0.53

199.56 10.15 68.05 0.53 2.235 0.53
−∞ -291.95 0.53 -9.587 0.53

207.00 9.91 67.74 0.53 2.229 0.53
−∞ -292.26 0.53 -9.617 0.53
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Table A.26. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of baseline controller at envelope
points according to Table 2.2 generated for q loop cut (basic aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 11.84 90.09 3.86 0.407 3.86

−∞ -113.27 1.34 -1.220 3.86

110.32 12.97 91.03 3.97 0.400 3.97
−∞ -116.45 1.41 -1.181 3.97

117.75 14.30 92.37 4.06 0.397 4.06
−∞ -119.01 1.49 -1.151 4.06

125.19 15.64 93.77 4.15 0.395 4.15
−∞ -122.41 1.57 -1.120 4.15

132.63 15.78 95.37 4.23 0.394 4.23
−∞ -125.92 1.65 -1.093 4.23

140.07 15.68 97.21 4.29 0.395 4.29
−∞ -129.52 1.73 -1.068 4.29

147.50 15.60 99.45 4.36 0.398 4.36
−∞ -133.48 1.83 -1.044 4.36

154.94 15.54 101.74 4.39 0.404 4.39
−∞ -137.46 1.92 -1.026 4.39

162.38 15.50 104.62 4.42 0.413 4.42
−∞ -141.85 2.03 -1.007 4.42

169.81 15.48 107.71 4.44 0.424 4.44
−∞ -146.42 2.15 -0.993 4.44

177.25 15.47 111.37 4.43 0.439 4.43
−∞ -151.66 2.28 -0.979 4.43

184.69 15.48 115.75 4.40 0.459 4.40
−∞ -157.35 2.43 -0.968 4.40

192.13 15.51 121.16 4.33 0.488 4.33
−∞ -164.32 2.60 -0.962 4.33

199.56 15.54 127.48 4.24 0.524 4.24
−∞ -171.88 2.80 -0.956 4.24

207.00 15.58 136.34 4.08 0.583 4.08
−∞ -182.22 3.07 -0.956 4.08
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Robust stability of control laws (basic aircraft model )

A.5.3. DPI Augmentation
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Figure A.18. – Nichols plot for robust stability assessment of DPI Augmentation at
envelope points according to Table 2.2 generated for ηcmd (bottleneck) loop
cut (basic aircraft model)
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Figure A.19. – Nichols plot for robust stability assessment of DPI Augmentation without
hedging at envelope points according to Table 2.2 generated for ηcmd
(bottleneck) loop cut (basic aircraft model)
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Robust stability of control laws (basic aircraft model )

Table A.27. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of DPI Augmentation at envelope
points according to Table 2.2 generated for ηcmd (bottleneck) loop cut (basic
aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 20.19 97.42 3.28 0.518 3.28

−∞ -209.36 1.81 -1.396 3.28

110.32 19.90 102.85 3.39 0.530 3.39
−∞ -207.68 2.11 -1.326 3.39

117.75 19.76 99.43 0.67 0.551 3.45
−∞ -207.25 2.39 -1.271 3.45

125.19 19.58 96.29 0.66 0.585 3.48
−∞ -210.53 2.70 -1.223 3.48

132.63 19.45 93.60 0.65 0.672 3.37
−∞ -220.09 3.14 -1.191 3.37

140.07 19.36 91.21 0.64 2.497 0.64
−∞ -268.79 0.64 -7.359 0.64

147.50 19.30 89.11 0.63 2.473 0.63
−∞ -270.89 0.63 -7.518 0.63

154.94 19.27 87.23 0.62 2.451 0.62
−∞ -272.77 0.62 -7.664 0.62

162.38 19.27 85.52 0.61 2.430 0.61
−∞ -274.48 0.61 -7.798 0.61

169.81 19.30 83.98 0.61 2.411 0.61
−∞ -276.02 0.61 -7.923 0.61

177.25 19.35 82.57 0.60 2.393 0.60
−∞ -277.43 0.60 -8.040 0.60

184.69 19.42 81.27 0.60 2.377 0.60
−∞ -278.73 0.60 -8.151 0.60

192.13 19.46 80.16 0.59 2.359 0.59
−∞ -279.84 0.59 -8.236 0.59

199.56 19.56 79.17 0.59 2.344 0.59
−∞ -280.83 0.59 -8.313 0.59

207.00 19.67 78.24 0.59 2.330 0.59
−∞ -281.76 0.59 -8.389 0.59
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Table A.28. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of DPI Augmentation without
hedging at envelope points according to Table 2.2 generated for ηcmd
(bottleneck) loop cut (basic aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 7.81 46.95 7.59 0.108 7.59

−∞ -313.05 7.59 -0.720 7.59

110.32 7.76 46.86 7.69 0.106 7.69
−∞ -313.14 7.69 -0.711 7.69

117.75 7.73 46.86 7.79 0.105 7.79
−∞ -313.14 7.79 -0.701 7.79

125.19 7.69 46.99 7.86 0.104 7.86
−∞ -313.01 7.86 -0.695 7.86

132.63 7.67 47.14 7.94 0.104 7.94
−∞ -312.86 7.94 -0.688 7.94

140.07 7.64 47.34 8.02 0.103 8.02
−∞ -312.66 8.02 -0.680 8.02

147.50 7.63 47.69 8.08 0.103 8.08
−∞ -312.31 8.08 -0.675 8.08

154.94 7.62 48.03 8.16 0.103 8.16
−∞ -311.97 8.16 -0.667 8.16

162.38 7.61 48.47 8.23 0.103 8.23
−∞ -311.53 8.23 -0.661 8.23

169.81 7.61 49.00 8.28 0.103 8.28
−∞ -311.00 8.28 -0.655 8.28

177.25 7.61 49.58 8.35 0.104 8.35
−∞ -310.42 8.35 -0.649 8.35

184.69 7.62 50.26 8.39 0.105 8.39
−∞ -309.74 8.39 -0.644 8.39

192.13 7.62 50.97 8.45 0.105 8.45
−∞ -309.03 8.45 -0.638 8.45

199.56 7.64 51.74 8.49 0.106 8.49
−∞ -308.26 8.49 -0.634 8.49

207.00 7.65 52.60 8.55 0.107 8.55
−∞ -307.40 8.55 -0.628 8.55
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Figure A.20. – Nichols plot for robust stability assessment of DPI Augmentation at
envelope points according to Table 2.2 generated for α loop cut (basic
aircraft model)
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Figure A.21. – Nichols plot for robust stability assessment of DPI Augmentation without
hedging at envelope points according to Table 2.2 generated for α loop cut
(basic aircraft model)
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Table A.29. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of DPI Augmentation at envelope
points according to Table 2.2 generated for α loop cut (basic aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 5.04 51.65 0.83 1.092 0.83

-3.99 -308.35 0.83 -6.519 0.83

110.32 5.07 52.67 0.84 1.089 0.84
-5.00 -307.33 0.84 -6.354 0.84

117.75 5.07 53.00 0.87 1.069 0.87
-6.18 -307.00 0.87 -6.191 0.87

125.19 5.11 53.98 0.88 1.072 0.88
-7.43 -306.02 0.88 -6.080 0.88

132.63 5.15 54.93 0.89 1.078 0.89
-8.24 -305.07 0.89 -5.986 0.89

140.07 5.19 55.81 0.90 1.083 0.90
-9.74 -304.19 0.90 -5.900 0.90

147.50 5.22 56.64 0.91 1.086 0.91
-11.39 -303.36 0.91 -5.819 0.91

154.94 5.25 57.43 0.92 1.091 0.92
-13.29 -302.57 0.92 -5.749 0.92

162.38 5.28 58.19 0.93 1.097 0.93
-15.50 -301.81 0.93 -5.687 0.93

169.81 5.31 58.92 0.93 1.102 0.93
-18.25 -301.08 0.93 -5.633 0.93

177.25 5.34 59.61 0.94 1.108 0.94
-21.96 -300.39 0.94 -5.583 0.94

184.69 5.38 60.28 0.94 1.114 0.94
−∞ -299.72 0.94 -5.539 0.94

192.13 5.42 61.30 0.94 1.136 0.94
−∞ -298.70 0.94 -5.536 0.94

199.56 5.46 61.91 0.95 1.142 0.95
−∞ -298.09 0.95 -5.499 0.95

207.00 5.49 62.49 0.95 1.148 0.95
−∞ -297.51 0.95 -5.464 0.95
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Table A.30. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of DPI Augmentation without
hedging at envelope points according to Table 2.2 generated for α loop cut
(basic aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 5.04 51.65 0.83 1.092 0.83

-3.99 -308.35 0.83 -6.519 0.83

110.32 5.07 52.67 0.84 1.089 0.84
-5.00 -307.33 0.84 -6.354 0.84

117.75 5.07 53.00 0.87 1.069 0.87
-6.18 -307.00 0.87 -6.191 0.87

125.19 5.11 53.98 0.88 1.072 0.88
-7.43 -306.02 0.88 -6.080 0.88

132.63 5.15 54.93 0.89 1.078 0.89
-8.24 -305.07 0.89 -5.986 0.89

140.07 5.19 55.81 0.90 1.083 0.90
-9.74 -304.19 0.90 -5.900 0.90

147.50 5.22 56.64 0.91 1.086 0.91
-11.39 -303.36 0.91 -5.819 0.91

154.94 5.25 57.43 0.92 1.091 0.92
-13.29 -302.57 0.92 -5.749 0.92

162.38 5.28 58.19 0.93 1.097 0.93
-15.50 -301.81 0.93 -5.687 0.93

169.81 5.31 58.92 0.93 1.102 0.93
-18.25 -301.08 0.93 -5.633 0.93

177.25 5.34 59.61 0.94 1.108 0.94
-21.96 -300.39 0.94 -5.583 0.94

184.69 5.38 60.28 0.94 1.114 0.94
−∞ -299.72 0.94 -5.539 0.94

192.13 5.42 61.30 0.94 1.136 0.94
−∞ -298.70 0.94 -5.536 0.94

199.56 5.46 61.91 0.95 1.142 0.95
−∞ -298.09 0.95 -5.499 0.95

207.00 5.49 62.49 0.95 1.148 0.95
−∞ -297.51 0.95 -5.464 0.95
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Figure A.22. – Nichols plot for robust stability assessment of DPI Augmentation at
envelope points according to Table 2.2 generated for q loop cut (basic
aircraft model)
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Figure A.23. – Nichols plot for robust stability assessment of DPI Augmentation without
hedging at envelope points according to Table 2.2 generated for q loop cut
(basic aircraft model)
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Robust stability of control laws (basic aircraft model )

Table A.31. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of DPI Augmentation at envelope
points according to Table 2.2 generated for q loop cut (basic aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 4.01 29.37 7.70 0.067 7.70

-4.82 -56.04 0.83 -0.750 7.70

110.32 5.01 29.33 7.77 0.066 7.77
-4.92 -57.67 0.85 -0.743 7.77

117.75 6.19 29.26 7.84 0.065 7.84
-5.01 -58.53 0.87 -0.737 7.84

125.19 6.17 29.22 7.91 0.064 7.91
-5.14 -60.11 0.88 -0.730 7.91

132.63 6.16 29.21 7.99 0.064 7.99
-5.25 -61.66 0.90 -0.723 7.99

140.07 6.15 29.22 8.06 0.063 8.06
-5.36 -63.11 0.91 -0.716 8.06

147.50 6.14 29.27 8.13 0.063 8.13
-5.49 -64.54 0.92 -0.710 8.13

154.94 6.13 29.35 8.20 0.062 8.20
-5.62 -65.95 0.93 -0.704 8.20

162.38 6.13 29.45 8.26 0.062 8.26
-5.77 -67.33 0.94 -0.698 8.26

169.81 6.13 29.58 8.33 0.062 8.33
-5.93 -68.68 0.95 -0.693 8.33

177.25 6.13 29.73 8.39 0.062 8.39
-6.11 -70.01 0.95 -0.687 8.39

184.69 6.13 29.91 8.45 0.062 8.45
-6.29 -71.30 0.96 -0.682 8.45

192.13 6.13 30.13 8.50 0.062 8.50
-6.50 -72.98 0.96 -0.677 8.50

199.56 6.14 30.34 8.56 0.062 8.56
-6.70 -74.18 0.97 -0.672 8.56

207.00 6.14 30.58 8.61 0.062 8.61
-6.91 -75.35 0.97 -0.668 8.61
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Table A.32. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of DPI Augmentation without
hedging at envelope points according to Table 2.2 generated for q loop cut
(basic aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 4.01 29.37 7.70 0.067 7.70

-4.82 -56.04 0.83 -0.750 7.70

110.32 5.01 29.33 7.77 0.066 7.77
-4.92 -57.67 0.85 -0.743 7.77

117.75 6.19 29.26 7.84 0.065 7.84
-5.01 -58.53 0.87 -0.737 7.84

125.19 6.17 29.22 7.91 0.064 7.91
-5.14 -60.11 0.88 -0.730 7.91

132.63 6.16 29.21 7.99 0.064 7.99
-5.25 -61.66 0.90 -0.723 7.99

140.07 6.15 29.22 8.06 0.063 8.06
-5.36 -63.11 0.91 -0.716 8.06

147.50 6.14 29.27 8.13 0.063 8.13
-5.49 -64.54 0.92 -0.710 8.13

154.94 6.13 29.35 8.20 0.062 8.20
-5.62 -65.95 0.93 -0.704 8.20

162.38 6.13 29.45 8.26 0.062 8.26
-5.77 -67.33 0.94 -0.698 8.26

169.81 6.13 29.58 8.33 0.062 8.33
-5.93 -68.68 0.95 -0.693 8.33

177.25 6.13 29.73 8.39 0.062 8.39
-6.11 -70.01 0.95 -0.687 8.39

184.69 6.13 29.91 8.45 0.062 8.45
-6.29 -71.30 0.96 -0.682 8.45

192.13 6.13 30.13 8.50 0.062 8.50
-6.50 -72.98 0.96 -0.677 8.50

199.56 6.14 30.34 8.56 0.062 8.56
-6.70 -74.18 0.97 -0.672 8.56

207.00 6.14 30.58 8.61 0.062 8.61
-6.91 -75.35 0.97 -0.668 8.61
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A.5.4. Plant Augmentation
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Figure A.24. – Nichols plot for robust stability assessment of Plant Augmentation at
envelope points according to Table 2.2 generated for ηcmd (bottleneck) loop
cut (basic aircraft model)
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Figure A.25. – Nichols plot for robust stability assessment of Plant Augmentation without
hedging at envelope points according to Table 2.2 generated for ηcmd
(bottleneck) loop cut (basic aircraft model)
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Robust stability of control laws (basic aircraft model )

Table A.33. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of Plant Augmentation at envelope
points according to Table 2.2 generated for ηcmd (bottleneck) loop cut (basic
aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 20.22 98.47 3.26 0.527 3.26

−∞ -209.62 1.82 -1.398 3.26

110.32 19.93 103.33 0.71 0.539 3.37
−∞ -207.84 2.13 -1.327 3.37

117.75 19.79 98.88 0.68 0.561 3.43
−∞ -207.44 2.40 -1.272 3.43

125.19 19.61 95.83 0.66 0.596 3.45
−∞ -210.96 2.72 -1.223 3.45

132.63 19.46 93.20 0.65 2.504 0.65
−∞ -266.80 0.65 -7.167 0.65

140.07 19.35 90.85 0.64 2.482 0.64
−∞ -269.15 0.64 -7.352 0.64

147.50 19.28 88.80 0.63 2.460 0.63
−∞ -271.20 0.63 -7.512 0.63

154.94 19.23 86.95 0.62 2.439 0.62
−∞ -273.05 0.62 -7.659 0.62

162.38 19.21 85.28 0.62 2.419 0.62
−∞ -274.72 0.62 -7.794 0.62

169.81 19.22 83.76 0.61 2.401 0.61
−∞ -276.24 0.61 -7.920 0.61

177.25 19.25 82.36 0.60 2.384 0.60
−∞ -277.64 0.60 -8.038 0.60

184.69 19.29 81.09 0.60 2.369 0.60
−∞ -278.91 0.60 -8.148 0.60

192.13 19.33 80.11 0.59 2.359 0.59
−∞ -279.89 0.59 -8.240 0.59

199.56 19.41 79.13 0.59 2.343 0.59
−∞ -280.87 0.59 -8.318 0.59

207.00 19.51 78.21 0.59 2.330 0.59
−∞ -281.79 0.59 -8.393 0.59
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Table A.34. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of Plant Augmentation without
hedging at envelope points according to Table 2.2 generated for ηcmd
(bottleneck) loop cut (basic aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 7.68 45.97 7.70 0.104 7.70

−∞ -314.03 7.70 -0.712 7.70

110.32 7.64 45.87 7.80 0.103 7.80
−∞ -314.13 7.80 -0.703 7.80

117.75 7.62 45.84 7.90 0.101 7.90
−∞ -314.16 7.90 -0.694 7.90

125.19 7.59 45.93 7.97 0.101 7.97
−∞ -314.07 7.97 -0.688 7.97

132.63 7.57 46.12 8.03 0.100 8.03
−∞ -313.88 8.03 -0.682 8.03

140.07 7.55 46.28 8.12 0.100 8.12
−∞ -313.72 8.12 -0.674 8.12

147.50 7.54 46.60 8.18 0.099 8.18
−∞ -313.40 8.18 -0.669 8.18

154.94 7.53 46.95 8.24 0.099 8.24
−∞ -313.05 8.24 -0.663 8.24

162.38 7.52 47.36 8.31 0.099 8.31
−∞ -312.64 8.31 -0.657 8.31

169.81 7.53 47.90 8.36 0.100 8.36
−∞ -312.10 8.36 -0.652 8.36

177.25 7.53 48.45 8.42 0.100 8.42
−∞ -311.55 8.42 -0.646 8.42

184.69 7.54 49.11 8.47 0.101 8.47
−∞ -310.89 8.47 -0.641 8.47

192.13 7.60 50.06 8.46 0.103 8.46
−∞ -309.94 8.46 -0.640 8.46

199.56 7.62 50.85 8.49 0.105 8.49
−∞ -309.15 8.49 -0.635 8.49

207.00 7.64 51.72 8.54 0.106 8.54
−∞ -308.28 8.54 -0.630 8.54
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Figure A.26. – Nichols plot for robust stability assessment of Plant Augmentation at
envelope points according to Table 2.2 generated for α loop cut (basic
aircraft model)
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Figure A.27. – Nichols plot for robust stability assessment of Plant Augmentation without
hedging at envelope points according to Table 2.2 generated for α loop cut
(basic aircraft model)
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Table A.35. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of Plant Augmentation at envelope
points according to Table 2.2 generated for α loop cut (basic aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 7.21 55.69 1.01 0.967 1.01

-6.31 -304.31 1.01 -5.282 1.01

110.32 7.24 56.60 1.04 0.953 1.04
-7.32 -303.40 1.04 -5.109 1.04

117.75 7.13 56.57 1.06 0.929 1.06
-8.41 -303.43 1.06 -4.983 1.06

125.19 7.10 57.21 1.09 0.919 1.09
-9.54 -302.79 1.09 -4.863 1.09

132.63 7.07 57.83 1.11 0.911 1.11
-10.26 -302.17 1.11 -4.761 1.11

140.07 7.04 58.42 1.13 0.905 1.13
-11.58 -301.58 1.13 -4.674 1.13

147.50 7.01 58.98 1.14 0.901 1.14
-13.01 -301.02 1.14 -4.599 1.14

154.94 6.99 59.52 1.16 0.898 1.16
-14.58 -300.48 1.16 -4.533 1.16

162.38 6.95 60.04 1.17 0.896 1.17
-16.26 -299.96 1.17 -4.475 1.17

169.81 6.91 60.53 1.18 0.894 1.18
-18.13 -299.47 1.18 -4.424 1.18

177.25 6.87 61.01 1.19 0.893 1.19
-20.02 -298.99 1.19 -4.378 1.19

184.69 6.84 61.47 1.20 0.893 1.20
-22.01 -298.53 1.20 -4.337 1.20

192.13 5.79 60.64 1.04 1.013 1.04
-23.21 -299.36 1.04 -5.003 1.04

199.56 5.77 61.11 1.05 1.020 1.05
-23.79 -298.89 1.05 -4.990 1.05

207.00 5.75 61.56 1.05 1.027 1.05
-27.28 -298.44 1.05 -4.981 1.05
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Robust stability of control laws (basic aircraft model )

Table A.36. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of Plant Augmentation without
hedging at envelope points according to Table 2.2 generated for α loop cut
(basic aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 7.21 55.69 1.01 0.967 1.01

-6.31 -304.31 1.01 -5.282 1.01

110.32 7.24 56.60 1.04 0.953 1.04
-7.32 -303.40 1.04 -5.109 1.04

117.75 7.13 56.57 1.06 0.929 1.06
-8.41 -303.43 1.06 -4.983 1.06

125.19 7.10 57.21 1.09 0.919 1.09
-9.54 -302.79 1.09 -4.863 1.09

132.63 7.07 57.83 1.11 0.911 1.11
-10.26 -302.17 1.11 -4.761 1.11

140.07 7.04 58.42 1.13 0.905 1.13
-11.58 -301.58 1.13 -4.674 1.13

147.50 7.01 58.98 1.14 0.901 1.14
-13.01 -301.02 1.14 -4.599 1.14

154.94 6.99 59.52 1.16 0.898 1.16
-14.58 -300.48 1.16 -4.533 1.16

162.38 6.95 60.04 1.17 0.896 1.17
-16.26 -299.96 1.17 -4.475 1.17

169.81 6.91 60.53 1.18 0.894 1.18
-18.13 -299.47 1.18 -4.424 1.18

177.25 6.87 61.01 1.19 0.893 1.19
-20.02 -298.99 1.19 -4.378 1.19

184.69 6.84 61.47 1.20 0.893 1.20
-22.01 -298.53 1.20 -4.337 1.20

192.13 5.79 60.64 1.04 1.013 1.04
-23.21 -299.36 1.04 -5.003 1.04

199.56 5.77 61.11 1.05 1.020 1.05
-23.79 -298.89 1.05 -4.990 1.05

207.00 5.75 61.56 1.05 1.027 1.05
-27.28 -298.44 1.05 -4.981 1.05
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Figure A.28. – Nichols plot for robust stability assessment of Plant Augmentation at
envelope points according to Table 2.2 generated for q loop cut (basic
aircraft model)
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Figure A.29. – Nichols plot for robust stability assessment of Plant Augmentation without
hedging at envelope points according to Table 2.2 generated for q loop cut
(basic aircraft model)
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Robust stability of control laws (basic aircraft model )

Table A.37. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of Plant Augmentation at envelope
points according to Table 2.2 generated for q loop cut (basic aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 6.35 34.86 7.88 0.077 7.88

-6.44 -62.11 0.99 -0.720 7.88

110.32 6.77 34.76 7.98 0.076 7.98
-6.61 -63.97 1.02 -0.711 7.98

117.75 6.74 34.52 8.04 0.075 8.04
-6.63 -64.76 1.04 -0.706 8.04

125.19 6.71 34.35 8.12 0.074 8.12
-6.72 -66.23 1.07 -0.700 8.12

132.63 6.68 34.23 8.20 0.073 8.20
-6.84 -67.70 1.09 -0.693 8.20

140.07 6.66 34.14 8.28 0.072 8.28
-6.97 -69.14 1.11 -0.687 8.28

147.50 6.64 34.08 8.35 0.071 8.35
-7.13 -70.57 1.12 -0.681 8.35

154.94 6.62 34.07 8.41 0.071 8.41
-7.30 -71.97 1.14 -0.676 8.41

162.38 6.61 34.08 8.48 0.070 8.48
-7.50 -73.35 1.15 -0.671 8.48

169.81 6.60 34.24 8.53 0.070 8.53
-7.66 -74.76 1.16 -0.667 8.53

177.25 6.59 34.30 8.59 0.070 8.59
-7.85 -76.06 1.17 -0.662 8.59

184.69 6.58 34.41 8.65 0.069 8.65
-8.05 -77.36 1.18 -0.657 8.65

192.13 6.28 31.24 8.55 0.064 8.55
-6.94 -74.06 1.03 -0.671 8.55

199.56 6.27 31.32 8.60 0.064 8.60
-7.08 -75.05 1.03 -0.667 8.60

207.00 6.26 31.43 8.65 0.063 8.65
-7.22 -76.01 1.03 -0.663 8.65
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Table A.38. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of Plant Augmentation without
hedging at envelope points according to Table 2.2 generated for q loop cut
(basic aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 6.35 34.86 7.88 0.077 7.88

-6.44 -62.11 0.99 -0.720 7.88

110.32 6.77 34.76 7.98 0.076 7.98
-6.61 -63.97 1.02 -0.711 7.98

117.75 6.74 34.52 8.04 0.075 8.04
-6.63 -64.76 1.04 -0.706 8.04

125.19 6.71 34.35 8.12 0.074 8.12
-6.72 -66.23 1.07 -0.700 8.12

132.63 6.68 34.23 8.20 0.073 8.20
-6.84 -67.70 1.09 -0.693 8.20

140.07 6.66 34.14 8.28 0.072 8.28
-6.97 -69.14 1.11 -0.687 8.28

147.50 6.64 34.08 8.35 0.071 8.35
-7.13 -70.57 1.12 -0.681 8.35

154.94 6.62 34.07 8.41 0.071 8.41
-7.30 -71.97 1.14 -0.676 8.41

162.38 6.61 34.08 8.48 0.070 8.48
-7.50 -73.35 1.15 -0.671 8.48

169.81 6.60 34.24 8.53 0.070 8.53
-7.66 -74.76 1.16 -0.667 8.53

177.25 6.59 34.30 8.59 0.070 8.59
-7.85 -76.06 1.17 -0.662 8.59

184.69 6.58 34.41 8.65 0.069 8.65
-8.05 -77.36 1.18 -0.657 8.65

192.13 6.28 31.24 8.55 0.064 8.55
-6.94 -74.06 1.03 -0.671 8.55

199.56 6.27 31.32 8.60 0.064 8.60
-7.08 -75.05 1.03 -0.667 8.60

207.00 6.26 31.43 8.65 0.063 8.65
-7.22 -76.01 1.03 -0.663 8.65
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A.5.5. ∆q̇ Compensation Law

Page intentionally left blank
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Table A.39. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability comparison of ∆q̇ Compensation Law with and
without q̇ measurement at V = 154.94 m

s generated for α loop cut (basic
aircraft model)

Controller GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
Baseline 12.69 70.24 0.55 2.239 0.55

−∞ -289.76 0.55 -9.235 0.55

∆q̇ Compensator 13.20 64.46 1.62 0.693 1.62
-18.41 -295.54 1.62 -3.179 1.62

∆q̇ Compensator 13.38 64.56 1.62 0.696 1.62
(no q̇-meas.) -18.41 -295.44 1.62 -3.183 1.62

Table A.40. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability comparison of ∆q̇ Compensation Law with and
without q̇ measurement at V = 154.94 m

s generated for q loop cut (basic
aircraft model)

Controller GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
Baseline 15.54 101.74 4.39 0.404 4.39

−∞ -137.46 1.92 -1.026 4.39

∆q̇ Compensator 13.25 69.48 5.01 0.242 5.01
−∞ -106.89 1.38 -1.011 5.01

∆q̇ Compensator 6.63 38.43 9.56 0.070 9.56
(no q̇-meas.) -11.17 -82.27 1.63 -0.587 9.56

Table A.41. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of ∆q̇ Compensation Law with q̇
measurement at V = 154.94 m

s generated for q̇ loop cut (basic aircraft model)

Controller GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
∆q̇ Compensator 8.27 53.05 10.67 0.087 10.67

-20.47 -76.30 3.75 -0.356 3.75
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Figure A.30. – Nichols plot for robust stability assessment of ∆q̇ Compensation Law at
envelope points according to Table 2.2 generated for ηcmd (bottleneck) loop
cut (basic aircraft model)
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Figure A.31. – Nichols plot for robust stability assessment of ∆q̇ Compensation Law with
q̇ measurement at envelope points according to Table 2.2 generated for ηcmd
(bottleneck) loop cut (basic aircraft model)
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Table A.42. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of ∆q̇ Compensation Law with q̇
measurement at envelope points according to Table 2.2 generated for ηcmd
(bottleneck) loop cut (basic aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 16.28 98.00 3.31 0.517 3.31

−∞ -209.56 1.83 -1.383 3.31

110.32 16.12 102.74 0.72 0.527 3.42
−∞ -207.41 2.12 -1.312 3.42

117.75 16.07 98.33 0.68 0.544 3.49
−∞ -206.57 2.39 -1.256 3.49

125.19 15.97 95.36 0.66 0.571 3.54
−∞ -209.07 2.69 -1.206 3.54

132.63 15.90 92.78 0.65 0.628 3.50
−∞ -215.31 3.06 -1.167 3.50

140.07 15.86 90.47 0.64 2.464 0.64
−∞ -269.53 0.64 -7.341 0.64

147.50 15.84 88.44 0.63 2.445 0.63
−∞ -271.56 0.63 -7.508 0.63

154.94 15.85 86.63 0.62 2.424 0.62
−∞ -273.37 0.62 -7.650 0.62

162.38 15.87 84.98 0.62 2.406 0.62
−∞ -275.02 0.62 -7.786 0.62

169.81 15.91 83.48 0.61 2.389 0.61
−∞ -276.52 0.61 -7.913 0.61

177.25 15.97 82.11 0.60 2.373 0.60
−∞ -277.89 0.60 -8.031 0.60

184.69 16.05 80.86 0.60 2.359 0.60
−∞ -279.14 0.60 -8.143 0.60

192.13 16.15 79.61 0.59 2.346 0.59
−∞ -280.39 0.59 -8.261 0.59

199.56 16.25 78.81 0.59 2.335 0.59
−∞ -281.19 0.59 -8.333 0.59

207.00 16.36 77.91 0.59 2.322 0.59
−∞ -282.09 0.59 -8.409 0.59
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Table A.43. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of ∆q̇ Compensation Law at
envelope points according to Table 2.2 generated for ηcmd (bottleneck) loop
cut (basic aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 13.32 96.65 3.37 0.501 3.37

−∞ -209.23 1.82 -1.365 3.37

110.32 13.20 101.26 3.49 0.507 3.49
−∞ -206.87 2.11 -1.295 3.49

117.75 13.16 98.35 0.68 0.519 3.57
−∞ -205.67 2.37 -1.240 3.57

125.19 13.09 95.38 0.66 0.539 3.64
−∞ -207.40 2.65 -1.189 3.64

132.63 13.05 92.79 0.65 0.573 3.65
−∞ -211.42 2.97 -1.146 3.65

140.07 13.02 90.48 0.64 2.465 0.64
−∞ -269.52 0.64 -7.341 0.64

147.50 13.00 88.45 0.63 2.445 0.63
−∞ -271.55 0.63 -7.507 0.63

154.94 13.01 86.64 0.62 2.425 0.62
−∞ -273.36 0.62 -7.650 0.62

162.38 13.03 84.99 0.62 2.407 0.62
−∞ -275.01 0.62 -7.786 0.62

169.81 13.07 83.49 0.61 2.389 0.61
−∞ -276.51 0.61 -7.913 0.61

177.25 13.12 82.12 0.60 2.373 0.60
−∞ -277.88 0.60 -8.031 0.60

184.69 13.18 80.86 0.60 2.359 0.60
−∞ -279.14 0.60 -8.143 0.60

192.13 13.25 79.62 0.59 2.346 0.59
−∞ -280.38 0.59 -8.262 0.59

199.56 13.32 78.82 0.59 2.336 0.59
−∞ -281.18 0.59 -8.333 0.59

207.00 13.41 77.91 0.59 2.323 0.59
−∞ -282.09 0.59 -8.409 0.59
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Figure A.32. – Nichols plot for robust stability assessment of ∆q̇ Compensation Law at
envelope points according to Table 2.2 generated for α loop cut (basic
aircraft model)
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Figure A.33. – Nichols plot for robust stability assessment of ∆q̇ Compensation Law with
q̇ measurement at envelope points according to Table 2.2 generated for α
loop cut (basic aircraft model)
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Table A.44. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of ∆q̇ Compensation Law at envelope
points according to Table 2.2 generated for α loop cut (basic aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 16.36 63.69 1.32 0.841 1.32

-10.34 -296.31 1.32 -3.911 1.32

110.32 15.77 63.99 1.37 0.815 1.37
-10.89 -296.01 1.37 -3.770 1.37

117.75 15.27 63.78 1.41 0.788 1.41
-12.07 -296.22 1.41 -3.661 1.41

125.19 14.83 63.99 1.46 0.766 1.46
-13.23 -296.01 1.46 -3.543 1.46

132.63 14.42 64.17 1.50 0.745 1.50
-13.99 -295.83 1.50 -3.436 1.50

140.07 14.05 64.32 1.54 0.727 1.54
-15.35 -295.68 1.54 -3.343 1.54

147.50 13.70 64.45 1.58 0.711 1.58
-16.82 -295.55 1.58 -3.259 1.58

154.94 13.38 64.56 1.62 0.696 1.62
-18.41 -295.44 1.62 -3.183 1.62

162.38 13.09 64.65 1.66 0.682 1.66
-20.09 -295.35 1.66 -3.115 1.66

169.81 12.81 64.66 1.69 0.666 1.69
-21.95 -295.34 1.69 -3.043 1.69

177.25 12.55 64.65 1.73 0.652 1.73
-23.76 -295.35 1.73 -2.978 1.73

184.69 12.30 64.62 1.77 0.638 1.77
-25.27 -295.38 1.77 -2.918 1.77

192.13 12.06 64.82 1.79 0.631 1.79
−∞ -295.18 1.79 -2.874 1.79

199.56 11.85 64.82 1.83 0.620 1.83
-28.29 -295.18 1.83 -2.822 1.83

207.00 11.65 64.79 1.86 0.609 1.86
-30.84 -295.21 1.86 -2.774 1.86

477



Appendix

Table A.45. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of ∆q̇ Compensation Law with q̇
measurement at envelope points according to Table 2.2 generated for α loop
cut (basic aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 16.13 63.61 1.32 0.838 1.32

-10.34 -296.39 1.32 -3.906 1.32

110.32 15.55 63.91 1.37 0.813 1.37
-10.89 -296.09 1.37 -3.765 1.37

117.75 15.06 63.69 1.41 0.786 1.41
-12.07 -296.31 1.41 -3.656 1.41

125.19 14.62 63.90 1.46 0.763 1.46
-13.23 -296.10 1.46 -3.538 1.46

132.63 14.22 64.07 1.51 0.743 1.51
-13.99 -295.93 1.51 -3.432 1.51

140.07 13.86 64.22 1.55 0.725 1.55
-15.35 -295.78 1.55 -3.338 1.55

147.50 13.52 64.35 1.59 0.708 1.59
-16.82 -295.65 1.59 -3.254 1.59

154.94 13.20 64.46 1.62 0.693 1.62
-18.41 -295.54 1.62 -3.179 1.62

162.38 12.91 64.55 1.66 0.680 1.66
-20.09 -295.45 1.66 -3.111 1.66

169.81 12.64 64.55 1.70 0.664 1.70
-21.95 -295.45 1.70 -3.039 1.70

177.25 12.38 64.53 1.73 0.649 1.73
-23.76 -295.47 1.73 -2.974 1.73

184.69 12.14 64.51 1.77 0.636 1.77
-25.27 -295.49 1.77 -2.914 1.77

192.13 11.92 64.71 1.80 0.629 1.80
−∞ -295.29 1.80 -2.870 1.80

199.56 11.71 64.70 1.83 0.617 1.83
-28.29 -295.30 1.83 -2.818 1.83

207.00 11.52 64.67 1.86 0.607 1.86
-30.84 -295.33 1.86 -2.771 1.86
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Figure A.34. – Nichols plot for robust stability assessment of ∆q̇ Compensation Law at
envelope points according to Table 2.2 generated for q loop cut (basic
aircraft model)
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Figure A.35. – Nichols plot for robust stability assessment of ∆q̇ Compensation Law with
q̇ measurement at envelope points according to Table 2.2 generated for q
loop cut (basic aircraft model)
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Table A.46. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of ∆q̇ Compensation Law at envelope
points according to Table 2.2 generated for q loop cut (basic aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 6.88 40.07 8.94 0.078 8.94

-10.25 -72.58 1.29 -0.625 8.94

110.32 6.83 39.62 9.04 0.076 9.04
-10.34 -74.19 1.34 -0.618 9.04

117.75 6.80 39.36 9.13 0.075 9.13
-10.41 -75.06 1.39 -0.613 9.13

125.19 6.76 39.05 9.22 0.074 9.22
-10.52 -76.56 1.44 -0.607 9.22

132.63 6.72 38.81 9.31 0.073 9.31
-10.65 -78.02 1.49 -0.602 9.31

140.07 6.69 38.64 9.39 0.072 9.39
-10.80 -79.44 1.54 -0.597 9.39

147.50 6.66 38.55 9.47 0.071 9.47
-10.98 -80.85 1.58 -0.592 9.47

154.94 6.63 38.43 9.56 0.070 9.56
-11.17 -82.27 1.63 -0.587 9.56

162.38 6.61 38.26 9.66 0.069 9.66
-11.39 -83.70 1.67 -0.582 9.66

169.81 6.59 38.14 9.75 0.068 9.75
-11.64 -85.14 1.72 -0.576 9.75

177.25 6.58 38.07 9.85 0.067 9.85
-11.90 -86.55 1.76 -0.571 9.85

184.69 6.56 38.08 9.93 0.067 9.93
-12.19 -87.91 1.81 -0.566 9.93

192.13 6.55 38.30 9.97 0.067 9.97
-12.53 -89.65 1.84 -0.563 9.97

199.56 6.54 38.47 10.02 0.067 10.02
-12.86 -90.99 1.89 -0.560 10.02

207.00 6.54 38.50 10.11 0.066 10.11
-13.22 -92.36 1.93 -0.555 10.11
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Robust stability of control laws (basic aircraft model )

Table A.47. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of ∆q̇ Compensation Law with q̇
measurement at envelope points according to Table 2.2 generated for q loop
cut (basic aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 10.19 68.01 4.24 0.280 4.24

−∞ -93.16 1.09 -1.202 4.24

110.32 11.04 67.95 4.39 0.270 4.39
−∞ -95.41 1.14 -1.160 4.39

117.75 12.22 68.02 4.51 0.264 4.51
−∞ -96.77 1.18 -1.131 4.51

125.19 13.40 68.14 4.62 0.257 4.62
−∞ -98.79 1.22 -1.102 4.62

132.63 13.68 68.37 4.73 0.252 4.73
−∞ -100.83 1.26 -1.076 4.73

140.07 13.52 68.70 4.82 0.249 4.82
−∞ -102.86 1.30 -1.055 4.82

147.50 13.37 69.08 4.91 0.245 4.91
−∞ -104.88 1.34 -1.034 4.91

154.94 13.25 69.48 5.01 0.242 5.01
−∞ -106.89 1.38 -1.011 5.01

162.38 13.14 70.05 5.08 0.240 5.08
−∞ -108.90 1.42 -0.995 5.08

169.81 13.04 70.60 5.18 0.238 5.18
−∞ -110.98 1.46 -0.974 5.18

177.25 12.96 71.35 5.23 0.238 5.23
−∞ -113.04 1.50 -0.963 5.23

184.69 12.89 72.13 5.30 0.237 5.30
−∞ -115.23 1.54 -0.947 5.30

192.13 12.83 73.02 5.34 0.239 5.34
−∞ -117.66 1.58 -0.938 5.34

199.56 12.78 73.90 5.40 0.239 5.40
−∞ -119.75 1.62 -0.925 5.40

207.00 12.73 74.85 5.44 0.240 5.44
−∞ -121.86 1.66 -0.915 5.44
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Figure A.36. – Nichols plot for robust stability assessment of ∆q̇ Compensation Law with
q̇ measurement at envelope points according to Table 2.2 generated for q̇
loop cut (basic aircraft model)
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Robust stability of control laws (basic aircraft model )

Table A.48. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of ∆q̇ Compensation Law with q̇
measurement at envelope points according to Table 2.2 generated for q̇ loop
cut (basic aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 8.37 53.76 10.03 0.094 10.03

-19.31 -72.22 3.05 -0.413 3.05

110.32 8.35 53.52 10.13 0.092 10.13
-19.33 -72.73 3.16 -0.401 3.16

117.75 8.33 53.42 10.22 0.091 10.22
-19.40 -73.01 3.25 -0.392 3.25

125.19 8.32 53.30 10.31 0.090 10.31
-19.52 -73.63 3.36 -0.383 3.36

132.63 8.30 53.22 10.40 0.089 10.40
-19.69 -74.34 3.46 -0.375 3.46

140.07 8.29 53.19 10.48 0.089 10.48
-19.90 -75.10 3.56 -0.368 3.56

147.50 8.28 53.19 10.56 0.088 10.56
-20.16 -75.70 3.65 -0.361 3.65

154.94 8.27 53.05 10.67 0.087 10.67
-20.47 -76.30 3.75 -0.356 3.75

162.38 8.26 52.96 10.77 0.086 10.77
-20.83 -76.98 3.83 -0.350 3.83

169.81 8.25 52.90 10.87 0.085 10.87
-21.25 -77.72 3.92 -0.346 3.92

177.25 8.24 52.87 10.97 0.084 10.97
-21.74 -78.52 4.01 -0.342 4.01

184.69 8.24 52.88 11.06 0.083 11.06
-22.31 -79.35 4.10 -0.338 4.10

192.13 8.23 52.91 11.14 0.083 11.14
-22.98 -80.31 4.17 -0.336 4.17

199.56 8.22 52.97 11.22 0.082 11.22
-23.70 -81.02 4.25 -0.333 4.25

207.00 8.22 53.06 11.30 0.082 11.30
-24.54 -81.70 4.32 -0.330 4.32
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Robust stability of control laws (basic aircraft model )

Table A.49. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability comparison of L1 adaptive controller with
Eigenstructure Assignment with and without hedging at V = 154.94 m

s
generated for α loop cut (basic aircraft model)

Controller GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
Baseline 12.69 70.24 0.55 2.239 0.55

−∞ -289.76 0.55 -9.235 0.55

L1 Standalone 12.47 78.84 5.27 0.261 5.27
−∞ -281.16 5.27 -0.932 5.27

L1 Standalone 12.77 78.57 5.27 0.260 5.27
(no hedg.) −∞ -281.43 5.27 -0.933 5.27

Table A.50. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability comparison of L1 adaptive controller with
Eigenstructure Assignment with and without hedging at V = 154.94 m

s
generated for q loop cut (basic aircraft model)

Controller GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
Baseline 15.54 101.74 4.39 0.404 4.39

−∞ -137.46 1.92 -1.026 4.39

L1 Standalone 12.56 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

L1 Standalone 13.10 ∞ 0.00 ∞ 0.00
(no hedg.) −∞ −∞ 0.00 −∞ 0.00
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Figure A.37. – Nichols plot for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment at envelope points according to Table 2.2
generated for ηcmd (bottleneck) loop cut (basic aircraft model)
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Figure A.38. – Nichols plot for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment without hedging at envelope points according
to Table 2.2 generated for ηcmd (bottleneck) loop cut (basic aircraft model)
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Robust stability of control laws (basic aircraft model )

Table A.51. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment at envelope points according to Table 2.2
generated for ηcmd (bottleneck) loop cut (basic aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 24.02 ∞ 0.00 ∞ 0.00

−∞ −∞ 0.00 −∞ 0.00

110.32 23.87 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

117.75 23.72 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

125.19 23.59 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

132.63 23.46 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

140.07 23.33 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

147.50 23.20 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

154.94 23.05 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

162.38 22.92 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

169.81 22.78 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

177.25 22.64 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

184.69 6.80 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

192.13 6.46 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

199.56 6.24 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

207.00 6.09 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00
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Table A.52. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment without hedging at envelope points according to
Table 2.2 generated for ηcmd (bottleneck) loop cut (basic aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 9.17 56.25 6.91 0.142 6.91

−∞ -303.75 6.91 -0.767 6.91

110.32 9.19 56.58 6.97 0.142 6.97
−∞ -303.42 6.97 -0.760 6.97

117.75 9.20 56.98 7.04 0.141 7.04
−∞ -303.02 7.04 -0.751 7.04

125.19 9.22 57.43 7.11 0.141 7.11
−∞ -302.57 7.11 -0.742 7.11

132.63 9.23 58.02 7.17 0.141 7.17
−∞ -301.98 7.17 -0.735 7.17

140.07 9.25 58.64 7.24 0.141 7.24
−∞ -301.36 7.24 -0.726 7.24

147.50 9.26 59.39 7.30 0.142 7.30
−∞ -300.61 7.30 -0.719 7.30

154.94 9.27 60.19 7.37 0.142 7.37
−∞ -299.81 7.37 -0.710 7.37

162.38 9.28 61.09 7.43 0.143 7.43
−∞ -298.91 7.43 -0.702 7.43

169.81 9.29 62.06 7.50 0.144 7.50
−∞ -297.94 7.50 -0.693 7.50

177.25 9.30 63.12 7.56 0.146 7.56
−∞ -296.88 7.56 -0.686 7.56

184.69 9.31 64.28 7.63 0.147 7.63
−∞ -295.72 7.63 -0.676 7.63

192.13 9.33 65.54 7.69 0.149 7.69
−∞ -294.46 7.69 -0.668 7.69

199.56 9.33 66.77 7.74 0.151 7.74
−∞ -293.23 7.74 -0.661 7.74

207.00 9.33 68.10 7.78 0.153 7.78
−∞ -291.90 7.78 -0.655 7.78
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Robust stability of control laws (basic aircraft model )

Open-Loop Phase [◦]
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Figure A.39. – Nichols plot for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment at envelope points according to Table 2.2
generated for α loop cut (basic aircraft model)
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Figure A.40. – Nichols plot for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment without hedging at envelope points according
to Table 2.2 generated for α loop cut (basic aircraft model)
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Table A.53. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment at envelope points according to Table 2.2
generated for α loop cut (basic aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 12.40 60.29 0.13 0.228 5.40

−∞ -214.51 0.17 -0.936 5.40

110.32 12.41 67.27 0.12 0.230 5.41
−∞ -217.72 0.15 -0.931 5.41

117.75 12.41 72.16 5.41 0.233 5.41
−∞ -226.46 0.14 -0.928 5.41

125.19 12.42 73.17 5.41 0.236 5.41
−∞ -241.14 0.12 -0.926 5.41

132.63 12.43 74.40 5.40 0.240 5.40
−∞ -285.60 5.40 -0.923 5.40

140.07 12.44 75.67 5.37 0.246 5.37
−∞ -284.33 5.37 -0.925 5.37

147.50 12.45 77.15 5.32 0.253 5.32
−∞ -282.85 5.32 -0.927 5.32

154.94 12.47 78.84 5.27 0.261 5.27
−∞ -281.16 5.27 -0.932 5.27

162.38 12.48 80.72 5.19 0.272 5.19
−∞ -279.28 5.19 -0.940 5.19

169.81 12.49 82.85 5.08 0.284 5.08
−∞ -277.15 5.08 -0.951 5.08

177.25 12.50 85.31 4.95 0.301 4.95
−∞ -274.69 4.95 -0.968 4.95

184.69 12.51 88.15 4.77 0.322 4.77
−∞ -271.85 4.77 -0.994 4.77

192.13 12.54 91.49 4.52 0.353 4.52
−∞ -268.51 4.52 -1.037 4.52

199.56 12.55 95.02 4.18 0.397 4.18
−∞ -264.98 4.18 -1.106 4.18

207.00 12.56 97.32 3.76 0.452 3.76
−∞ -262.68 3.76 -1.220 3.76

490



Robust stability of control laws (basic aircraft model )

Table A.54. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment without hedging at envelope points according to
Table 2.2 generated for α loop cut (basic aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 12.70 60.29 0.13 0.227 5.40

−∞ -214.51 0.17 -0.937 5.40

110.32 12.71 67.27 0.12 0.229 5.41
−∞ -217.73 0.15 -0.932 5.41

117.75 12.72 71.84 5.41 0.232 5.41
−∞ -226.47 0.14 -0.929 5.41

125.19 12.73 72.85 5.41 0.235 5.41
−∞ -241.15 0.12 -0.927 5.41

132.63 12.74 74.09 5.40 0.239 5.40
−∞ -285.91 5.40 -0.924 5.40

140.07 12.75 75.36 5.37 0.245 5.37
−∞ -284.64 5.37 -0.926 5.37

147.50 12.76 76.86 5.32 0.252 5.32
−∞ -283.14 5.32 -0.928 5.32

154.94 12.77 78.57 5.27 0.260 5.27
−∞ -281.43 5.27 -0.933 5.27

162.38 12.78 80.46 5.19 0.271 5.19
−∞ -279.54 5.19 -0.941 5.19

169.81 12.80 82.62 5.08 0.284 5.08
−∞ -277.38 5.08 -0.952 5.08

177.25 12.81 85.10 4.95 0.300 4.95
−∞ -274.90 4.95 -0.969 4.95

184.69 12.83 87.97 4.77 0.322 4.77
−∞ -272.03 4.77 -0.995 4.77

192.13 12.85 91.36 4.51 0.353 4.51
−∞ -268.64 4.51 -1.039 4.51

199.56 12.87 94.96 4.17 0.397 4.17
−∞ -265.04 4.17 -1.109 4.17

207.00 12.88 97.25 3.75 0.453 3.75
−∞ -262.75 3.75 -1.224 3.75
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Figure A.41. – Nichols plot for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment at envelope points according to Table 2.2
generated for q loop cut (basic aircraft model)
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Figure A.42. – Nichols plot for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment without hedging at envelope points according
to Table 2.2 generated for q loop cut (basic aircraft model)
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Robust stability of control laws (basic aircraft model )

Table A.55. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment at envelope points according to Table 2.2
generated for q loop cut (basic aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 12.58 212.63 0.17 22.391 0.17

−∞ -62.24 0.13 -8.565 0.13

110.32 12.58 217.22 0.15 25.196 0.15
−∞ -70.13 0.12 -10.086 0.12

117.75 12.58 229.27 0.13 29.648 0.13
−∞ -83.90 0.12 -12.350 0.12

125.19 12.58 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

132.63 12.58 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

140.07 12.58 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

147.50 12.57 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

154.94 12.56 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

162.38 12.55 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

169.81 12.53 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

177.25 12.52 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

184.69 12.50 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

192.13 12.50 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

199.56 12.47 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

207.00 12.45 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00
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Table A.56. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment without hedging at envelope points according to
Table 2.2 generated for q loop cut (basic aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 13.11 212.63 0.17 22.391 0.17

−∞ -62.24 0.13 -8.565 0.13

110.32 13.11 217.22 0.15 25.195 0.15
−∞ -70.12 0.12 -10.086 0.12

117.75 13.12 229.27 0.13 29.647 0.13
−∞ -83.90 0.12 -12.350 0.12

125.19 13.12 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

132.63 13.12 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

140.07 13.12 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

147.50 13.11 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

154.94 13.10 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

162.38 13.08 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

169.81 13.07 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

177.25 13.05 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

184.69 13.03 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

192.13 13.02 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

199.56 13.00 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

207.00 12.98 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00
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A.6. Robust stability of control laws (enhanced aircraft
model)

A.6.1. Comparison between DPI and Plant Augmentation
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Table A.57. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability comparison of DPI and Plant Augmentation
with and without hedging at V = 154.94 m

s generated for α loop cut
(enhanced aircraft model)

Controller GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
Baseline 7.72 63.12 0.40 2.777 0.40

−∞ -296.88 0.40 -13.063 0.40

DPI Augmentation 5.21 52.22 0.93 0.981 0.93
-14.47 -307.78 0.93 -5.781 0.93

DPI Augmentation 5.35 52.33 0.91 1.002 0.91
(no hedg.) -14.45 -307.67 0.91 -5.889 0.91

Plant Augmentation 5.34 51.43 0.96 0.935 0.96
-13.54 -308.57 0.96 -5.609 0.96

Plant Augmentation 5.49 51.55 0.94 0.955 0.94
(no hedg.) -13.52 -308.45 0.94 -5.714 0.94

Table A.58. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability comparison of DPI and Plant Augmentation
with and without hedging at V = 154.94 m

s generated for q loop cut
(enhanced aircraft model)

Controller GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
Baseline 21.76 ∞ 0.00 ∞ 0.00

−∞ −∞ 0.00 −∞ 0.00

DPI Augmentation 6.44 33.97 4.69 0.126 4.69
-8.77 -79.55 0.88 -1.213 4.69

DPI Augmentation 6.29 35.70 4.67 0.133 4.67
(no hedg.) -9.43 -80.56 0.86 -1.212 4.67

Plant Augmentation 6.53 34.77 4.70 0.129 4.70
-9.09 -79.69 0.90 -1.208 4.70

Plant Augmentation 6.38 36.58 4.67 0.137 4.67
(no hedg.) -9.79 -80.83 0.89 -1.207 4.67
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A.6.2. Baseline Controller
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Table A.59. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of baseline controller at envelope
points according to Table 2.2 generated for α loop cut (enhanced aircraft
model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 10.65 66.37 0.41 2.842 0.41

−∞ -293.63 0.41 -12.575 0.41

110.32 9.75 65.63 0.40 2.857 0.40
−∞ -294.37 0.40 -12.814 0.40

117.75 9.12 64.87 0.40 2.858 0.40
−∞ -295.13 0.40 -13.003 0.40

125.19 8.69 64.40 0.39 2.850 0.39
−∞ -295.60 0.39 -13.083 0.39

132.63 8.34 63.98 0.39 2.838 0.39
−∞ -296.02 0.39 -13.128 0.39

140.07 8.08 63.63 0.39 2.821 0.39
−∞ -296.37 0.39 -13.138 0.39

147.50 7.86 63.33 0.39 2.800 0.39
−∞ -296.67 0.39 -13.115 0.39

154.94 7.72 63.12 0.40 2.778 0.40
−∞ -296.88 0.40 -13.063 0.40

162.38 7.59 62.97 0.40 2.753 0.40
−∞ -297.03 0.40 -12.985 0.40

169.81 7.52 62.85 0.40 2.725 0.40
−∞ -297.15 0.40 -12.883 0.40

177.25 7.48 62.89 0.41 2.702 0.41
−∞ -297.11 0.41 -12.764 0.41

184.69 7.47 62.59 0.41 2.656 0.41
-21.29 -297.41 0.41 -12.620 0.41

192.13 7.49 62.48 0.41 2.633 0.41
-11.87 -297.52 0.41 -12.539 0.41

199.56 7.53 63.23 0.42 2.621 0.42
−∞ -296.77 0.42 -12.303 0.42

207.00 7.58 63.45 0.43 2.589 0.43
−∞ -296.55 0.43 -12.102 0.43
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Table A.60. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of baseline controller at envelope
points according to Table 2.2 generated for q loop cut (enhanced aircraft
model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 13.43 142.39 1.93 1.289 1.93

−∞ -184.12 1.61 -1.970 1.93

110.32 15.26 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

117.75 17.31 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

125.19 18.12 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

132.63 18.87 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

140.07 19.72 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

147.50 20.68 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

154.94 21.76 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

162.38 23.01 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

169.81 24.44 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

177.25 26.14 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

184.69 28.20 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

192.13 31.01 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

199.56 34.52 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

207.00 40.20 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00
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A.6.3. DPI Augmentation
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Figure A.43. – Nichols plot for robust stability assessment of DPI Augmentation at
envelope points according to Table 2.2 generated for ηcmd (bottleneck) loop
cut (enhanced aircraft model)
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Figure A.44. – Nichols plot for robust stability assessment of DPI Augmentation without
hedging at envelope points according to Table 2.2 generated for ηcmd
(bottleneck) loop cut (enhanced aircraft model)

501



Appendix

Table A.61. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of DPI Augmentation at envelope
points according to Table 2.2 generated for ηcmd (bottleneck) loop cut
(enhanced aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 24.94 80.15 0.44 3.196 0.44

−∞ -279.85 0.44 -11.159 0.44

110.32 23.84 76.89 0.42 3.160 0.42
−∞ -283.11 0.42 -11.636 0.42

117.75 16.05 74.29 0.41 3.139 0.41
−∞ -285.71 0.41 -12.072 0.41

125.19 13.29 72.27 0.41 3.085 0.41
−∞ -287.73 0.41 -12.281 0.41

132.63 11.64 70.59 0.41 3.034 0.41
−∞ -289.41 0.41 -12.440 0.41

140.07 10.54 69.17 0.40 2.986 0.40
−∞ -290.83 0.40 -12.555 0.40

147.50 9.76 67.98 0.40 2.940 0.40
−∞ -292.02 0.40 -12.628 0.40

154.94 9.21 67.00 0.40 2.896 0.40
−∞ -293.00 0.40 -12.663 0.40

162.38 8.76 66.19 0.40 2.853 0.40
−∞ -293.81 0.40 -12.664 0.40

169.81 8.43 65.55 0.41 2.812 0.41
−∞ -294.45 0.41 -12.635 0.41

177.25 8.19 65.04 0.41 2.774 0.41
−∞ -294.96 0.41 -12.579 0.41

184.69 8.02 64.65 0.41 2.736 0.41
−∞ -295.35 0.41 -12.500 0.41

192.13 7.89 64.45 0.42 2.697 0.42
−∞ -295.55 0.42 -12.365 0.42

199.56 7.81 64.26 0.42 2.656 0.42
−∞ -295.74 0.42 -12.226 0.42

207.00 7.76 64.13 0.43 2.618 0.43
−∞ -295.87 0.43 -12.077 0.43
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Table A.62. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of DPI Augmentation without
hedging at envelope points according to Table 2.2 generated for ηcmd
(bottleneck) loop cut (enhanced aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 7.37 51.92 4.08 0.222 4.08

−∞ -308.08 4.08 -1.317 4.08

110.32 7.43 54.54 4.10 0.232 4.10
−∞ -305.46 4.10 -1.300 4.10

117.75 7.50 57.26 4.11 0.243 4.11
−∞ -302.74 4.11 -1.285 4.11

125.19 7.57 60.70 4.10 0.258 4.10
−∞ -299.30 4.10 -1.273 4.10

132.63 7.65 65.00 4.06 0.279 4.06
−∞ -295.00 4.06 -1.268 4.06

140.07 7.73 70.93 3.96 0.313 3.96
−∞ -289.07 3.96 -1.275 3.96

147.50 7.82 83.72 2.17 0.673 2.17
−∞ -276.28 2.17 -2.220 2.17

154.94 7.91 78.66 2.04 0.672 2.04
−∞ -281.34 2.04 -2.403 2.04

162.38 8.01 75.07 1.98 0.660 1.98
−∞ -284.93 1.98 -2.506 1.98

169.81 8.11 72.26 1.95 0.646 1.95
−∞ -287.74 1.95 -2.571 1.95

177.25 8.22 69.93 1.94 0.630 1.94
−∞ -290.07 1.94 -2.614 1.94

184.69 8.32 68.04 1.93 0.615 1.93
−∞ -291.96 1.93 -2.637 1.93

192.13 8.42 66.39 1.94 0.599 1.94
−∞ -293.61 1.94 -2.648 1.94

199.56 8.53 65.10 1.94 0.584 1.94
−∞ -294.90 1.94 -2.647 1.94

207.00 8.64 63.98 1.96 0.571 1.96
−∞ -296.02 1.96 -2.641 1.96
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Figure A.45. – Nichols plot for robust stability assessment of DPI Augmentation at
envelope points according to Table 2.2 generated for α loop cut (enhanced
aircraft model)
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Figure A.46. – Nichols plot for robust stability assessment of DPI Augmentation without
hedging at envelope points according to Table 2.2 generated for α loop cut
(enhanced aircraft model)
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Table A.63. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of DPI Augmentation at envelope
points according to Table 2.2 generated for α loop cut (enhanced aircraft
model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 5.05 50.54 0.76 1.163 0.76

-3.88 -309.46 0.76 -7.123 0.76

110.32 5.08 50.94 0.79 1.131 0.79
-5.03 -309.06 0.79 -6.866 0.79

117.75 5.09 50.66 0.82 1.084 0.82
-6.38 -309.34 0.82 -6.617 0.82

125.19 5.13 51.05 0.84 1.062 0.84
-7.78 -308.95 0.84 -6.425 0.84

132.63 5.15 51.41 0.86 1.042 0.86
-8.76 -308.59 0.86 -6.253 0.86

140.07 5.19 51.75 0.88 1.023 0.88
-10.45 -308.25 0.88 -6.096 0.88

147.50 5.21 52.03 0.91 1.003 0.91
-12.33 -307.97 0.91 -5.939 0.91

154.94 5.21 52.22 0.93 0.981 0.93
-14.47 -307.78 0.93 -5.781 0.93

162.38 5.22 52.43 0.95 0.961 0.95
-16.99 -307.57 0.95 -5.635 0.95

169.81 5.23 52.65 0.98 0.942 0.98
-20.33 -307.35 0.98 -5.501 0.98

177.25 5.25 52.89 1.00 0.926 1.00
-27.17 -307.11 1.00 -5.376 1.00

184.69 5.27 53.15 1.02 0.911 1.02
−∞ -306.85 1.02 -5.262 1.02

192.13 5.27 53.66 1.03 0.905 1.03
−∞ -306.34 1.03 -5.169 1.03

199.56 5.27 53.93 1.05 0.892 1.05
−∞ -306.07 1.05 -5.064 1.05

207.00 5.27 54.18 1.08 0.879 1.08
−∞ -305.82 1.08 -4.959 1.08
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Table A.64. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of DPI Augmentation without
hedging at envelope points according to Table 2.2 generated for α loop cut
(enhanced aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 5.11 50.49 0.75 1.173 0.75

-3.87 -309.51 0.75 -7.189 0.75

110.32 5.17 50.94 0.78 1.145 0.78
-5.03 -309.06 0.78 -6.948 0.78

117.75 5.18 50.68 0.81 1.098 0.81
-6.38 -309.32 0.81 -6.702 0.81

125.19 5.22 51.07 0.83 1.076 0.83
-7.77 -308.93 0.83 -6.511 0.83

132.63 5.26 51.43 0.85 1.057 0.85
-8.75 -308.57 0.85 -6.341 0.85

140.07 5.31 51.77 0.87 1.039 0.87
-10.44 -308.23 0.87 -6.185 0.87

147.50 5.33 52.10 0.89 1.022 0.89
-12.32 -307.90 0.89 -6.042 0.89

154.94 5.35 52.33 0.91 1.002 0.91
-14.45 -307.67 0.91 -5.889 0.91

162.38 5.38 52.54 0.93 0.981 0.93
-16.97 -307.46 0.93 -5.743 0.93

169.81 5.41 52.77 0.96 0.963 0.96
-20.31 -307.23 0.96 -5.608 0.96

177.25 5.42 53.01 0.98 0.947 0.98
-27.12 -306.99 0.98 -5.483 0.98

184.69 5.45 53.26 1.00 0.932 1.00
−∞ -306.74 1.00 -5.367 1.00

192.13 5.46 53.78 1.01 0.926 1.01
−∞ -306.22 1.01 -5.273 1.01

199.56 5.46 54.10 1.03 0.915 1.03
−∞ -305.90 1.03 -5.177 1.03

207.00 5.47 54.41 1.05 0.905 1.05
−∞ -305.59 1.05 -5.082 1.05
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Figure A.47. – Nichols plot for robust stability assessment of DPI Augmentation at
envelope points according to Table 2.2 generated for q loop cut (enhanced
aircraft model)
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Figure A.48. – Nichols plot for robust stability assessment of DPI Augmentation without
hedging at envelope points according to Table 2.2 generated for q loop cut
(enhanced aircraft model)
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Table A.65. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of DPI Augmentation at envelope
points according to Table 2.2 generated for q loop cut (enhanced aircraft
model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 3.93 28.76 4.34 0.116 4.34

-5.61 -63.53 0.72 -1.333 4.34

110.32 5.09 29.44 4.39 0.117 4.39
-5.95 -66.09 0.74 -1.313 4.39

117.75 6.20 29.98 4.44 0.118 4.44
-6.24 -67.74 0.77 -1.296 4.44

125.19 6.25 30.87 4.49 0.120 4.49
-6.73 -70.17 0.79 -1.281 4.49

132.63 6.30 31.71 4.53 0.122 4.53
-7.18 -72.52 0.81 -1.265 4.53

140.07 6.35 32.40 4.59 0.123 4.59
-7.67 -74.91 0.83 -1.246 4.59

147.50 6.39 33.28 4.63 0.125 4.63
-8.20 -77.22 0.86 -1.231 4.63

154.94 6.44 33.97 4.69 0.126 4.69
-8.77 -79.55 0.88 -1.213 4.69

162.38 6.48 34.86 4.73 0.129 4.73
-9.40 -81.81 0.90 -1.199 4.73

169.81 6.51 35.53 4.79 0.129 4.79
-10.09 -84.06 0.92 -1.181 4.79

177.25 6.55 36.42 4.83 0.131 4.83
-10.84 -86.27 0.94 -1.168 4.83

184.69 6.57 37.29 4.88 0.133 4.88
-11.68 -88.46 0.96 -1.155 4.88

192.13 6.59 37.92 4.93 0.134 4.93
-12.64 -90.90 0.98 -1.140 4.93

199.56 6.61 38.67 4.97 0.136 4.97
-13.66 -92.93 1.00 -1.128 4.97

207.00 6.63 39.34 5.02 0.137 5.02
-14.81 -94.91 1.02 -1.114 5.02
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Table A.66. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of DPI Augmentation without
hedging at envelope points according to Table 2.2 generated for q loop cut
(enhanced aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 3.93 30.39 4.28 0.124 4.28

-5.78 -64.03 0.71 -1.344 4.28

110.32 5.09 31.07 4.34 0.125 4.34
-6.16 -66.65 0.74 -1.322 4.34

117.75 6.08 31.77 4.39 0.126 4.39
-6.57 -68.40 0.76 -1.305 4.39

125.19 6.12 32.51 4.45 0.128 4.45
-7.04 -70.88 0.78 -1.285 4.45

132.63 6.17 33.29 4.50 0.129 4.50
-7.56 -73.38 0.80 -1.266 4.50

140.07 6.21 34.09 4.56 0.130 4.56
-8.13 -75.77 0.82 -1.248 4.56

147.50 6.25 34.86 4.62 0.132 4.62
-8.75 -78.21 0.84 -1.229 4.62

154.94 6.29 35.70 4.67 0.133 4.67
-9.43 -80.56 0.86 -1.212 4.67

162.38 6.33 36.42 4.74 0.134 4.74
-10.18 -82.91 0.88 -1.193 4.74

169.81 6.36 37.32 4.78 0.136 4.78
-11.03 -85.24 0.90 -1.178 4.78

177.25 6.39 38.15 4.83 0.138 4.83
-11.97 -87.54 0.93 -1.163 4.83

184.69 6.42 38.93 4.88 0.139 4.88
-13.04 -89.75 0.95 -1.147 4.88

192.13 6.44 39.65 4.94 0.140 4.94
-14.31 -92.28 0.96 -1.133 4.94

199.56 6.46 40.32 4.99 0.141 4.99
-15.70 -94.35 0.98 -1.118 4.99

207.00 6.48 40.98 5.05 0.142 5.05
-17.35 -96.38 1.00 -1.103 5.05
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A.6.4. Plant Augmentation
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Robust stability of control laws (enhanced aircraft model )
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Figure A.49. – Nichols plot for robust stability assessment of Plant Augmentation at
envelope points according to Table 2.2 generated for ηcmd (bottleneck) loop
cut (enhanced aircraft model)
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Figure A.50. – Nichols plot for robust stability assessment of Plant Augmentation without
hedging at envelope points according to Table 2.2 generated for ηcmd
(bottleneck) loop cut (enhanced aircraft model)
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Table A.67. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of Plant Augmentation at envelope
points according to Table 2.2 generated for ηcmd (bottleneck) loop cut
(enhanced aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 24.89 79.89 0.44 3.180 0.44

−∞ -280.11 0.44 -11.152 0.44

110.32 23.69 76.66 0.43 3.146 0.43
−∞ -283.34 0.43 -11.629 0.43

117.75 16.01 74.12 0.41 3.129 0.41
−∞ -285.88 0.41 -12.068 0.41

125.19 13.27 72.14 0.41 3.077 0.41
−∞ -287.86 0.41 -12.280 0.41

132.63 11.63 70.48 0.41 3.029 0.41
−∞ -289.52 0.41 -12.441 0.41

140.07 10.53 69.08 0.40 2.982 0.40
−∞ -290.92 0.40 -12.557 0.40

147.50 9.76 67.91 0.40 2.936 0.40
−∞ -292.09 0.40 -12.630 0.40

154.94 9.20 66.94 0.40 2.893 0.40
−∞ -293.06 0.40 -12.666 0.40

162.38 8.75 66.14 0.40 2.851 0.40
−∞ -293.86 0.40 -12.667 0.40

169.81 8.43 65.49 0.41 2.810 0.41
−∞ -294.51 0.41 -12.638 0.41

177.25 8.19 64.99 0.41 2.772 0.41
−∞ -295.01 0.41 -12.581 0.41

184.69 8.02 64.60 0.41 2.734 0.41
−∞ -295.40 0.41 -12.503 0.41

192.13 7.90 64.66 0.42 2.709 0.42
−∞ -295.34 0.42 -12.376 0.42

199.56 7.83 64.44 0.42 2.667 0.42
−∞ -295.56 0.42 -12.234 0.42

207.00 7.78 64.30 0.43 2.628 0.43
−∞ -295.70 0.43 -12.084 0.43
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Robust stability of control laws (enhanced aircraft model )

Table A.68. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of Plant Augmentation without
hedging at envelope points according to Table 2.2 generated for ηcmd
(bottleneck) loop cut (enhanced aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 7.38 51.59 4.08 0.221 4.08

-30.62 -308.41 4.08 -1.320 4.08

110.32 7.44 54.23 4.10 0.231 4.10
−∞ -305.77 4.10 -1.303 4.10

117.75 7.50 56.98 4.11 0.242 4.11
−∞ -303.02 4.11 -1.288 4.11

125.19 7.57 60.45 4.10 0.258 4.10
−∞ -299.55 4.10 -1.276 4.10

132.63 7.65 64.78 4.05 0.279 4.05
−∞ -295.22 4.05 -1.271 4.05

140.07 7.73 70.79 3.95 0.313 3.95
−∞ -289.21 3.95 -1.279 3.95

147.50 7.82 82.95 2.18 0.665 2.18
−∞ -277.05 2.18 -2.220 2.18

154.94 7.91 77.97 2.05 0.664 2.05
−∞ -282.03 2.05 -2.401 2.05

162.38 8.01 74.46 1.99 0.653 1.99
−∞ -285.54 1.99 -2.503 1.99

169.81 8.11 71.72 1.96 0.639 1.96
−∞ -288.28 1.96 -2.568 1.96

177.25 8.21 69.47 1.94 0.624 1.94
−∞ -290.53 1.94 -2.610 1.94

184.69 8.31 67.64 1.94 0.609 1.94
−∞ -292.36 1.94 -2.633 1.94

192.13 8.51 66.78 1.92 0.608 1.92
−∞ -293.22 1.92 -2.669 1.92

199.56 8.61 65.58 1.93 0.594 1.93
−∞ -294.42 1.93 -2.668 1.93

207.00 8.72 64.55 1.94 0.582 1.94
−∞ -295.45 1.94 -2.663 1.94
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Figure A.51. – Nichols plot for robust stability assessment of Plant Augmentation at
envelope points according to Table 2.2 generated for α loop cut (enhanced
aircraft model)
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Figure A.52. – Nichols plot for robust stability assessment of Plant Augmentation without
hedging at envelope points according to Table 2.2 generated for α loop cut
(enhanced aircraft model)
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Robust stability of control laws (enhanced aircraft model )

Table A.69. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of Plant Augmentation at envelope
points according to Table 2.2 generated for α loop cut (enhanced aircraft
model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 5.30 50.10 0.80 1.097 0.80

-4.22 -309.90 0.80 -6.788 0.80

110.32 5.34 50.43 0.83 1.064 0.83
-5.35 -309.57 0.83 -6.533 0.83

117.75 5.27 50.11 0.85 1.027 0.85
-6.55 -309.89 0.85 -6.353 0.85

125.19 5.29 50.45 0.87 1.010 0.87
-7.80 -309.55 0.87 -6.198 0.87

132.63 5.31 50.78 0.89 0.994 0.89
-8.67 -309.22 0.89 -6.056 0.89

140.07 5.31 51.00 0.91 0.974 0.91
-10.15 -309.00 0.91 -5.901 0.91

147.50 5.32 51.21 0.94 0.954 0.94
-11.77 -308.79 0.94 -5.751 0.94

154.94 5.34 51.43 0.96 0.935 0.96
-13.54 -308.57 0.96 -5.609 0.96

162.38 5.36 51.65 0.98 0.917 0.98
-15.47 -308.35 0.98 -5.474 0.98

169.81 5.37 51.90 1.01 0.900 1.01
-17.60 -308.10 1.01 -5.346 1.01

177.25 5.39 52.16 1.03 0.885 1.03
-19.85 -307.84 1.03 -5.222 1.03

184.69 5.42 52.39 1.05 0.868 1.05
-22.31 -307.61 1.05 -5.096 1.05

192.13 4.70 53.28 0.91 0.340 9.01
-23.33 -75.23 6.53 -0.201 6.53

199.56 4.74 53.67 0.93 0.329 9.16
-24.45 -74.17 6.60 -0.196 6.60

207.00 4.79 54.07 0.95 0.319 9.30
−∞ -73.39 6.67 -0.192 6.67
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Table A.70. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of Plant Augmentation without
hedging at envelope points according to Table 2.2 generated for α loop cut
(enhanced aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 5.37 50.10 0.79 1.110 0.79

-4.21 -309.90 0.79 -6.863 0.79

110.32 5.43 50.44 0.82 1.077 0.82
-5.34 -309.56 0.82 -6.611 0.82

117.75 5.37 50.14 0.84 1.041 0.84
-6.54 -309.86 0.84 -6.434 0.84

125.19 5.38 50.48 0.86 1.024 0.86
-7.79 -309.52 0.86 -6.282 0.86

132.63 5.40 50.81 0.88 1.009 0.88
-8.66 -309.19 0.88 -6.141 0.88

140.07 5.43 51.12 0.90 0.994 0.90
-10.14 -308.88 0.90 -6.006 0.90

147.50 5.46 51.33 0.92 0.974 0.92
-11.76 -308.67 0.92 -5.856 0.92

154.94 5.49 51.55 0.94 0.955 0.94
-13.52 -308.45 0.94 -5.714 0.94

162.38 5.50 51.78 0.96 0.937 0.96
-15.46 -308.22 0.96 -5.579 0.96

169.81 5.53 52.03 0.99 0.921 0.99
-17.58 -307.97 0.99 -5.450 0.99

177.25 5.57 52.29 1.01 0.905 1.01
-19.83 -307.71 1.01 -5.325 1.01

184.69 5.58 52.57 1.03 0.890 1.03
-22.29 -307.43 1.03 -5.207 1.03

192.13 4.87 53.32 0.89 0.347 9.10
-23.31 -84.83 6.84 -0.216 6.84

199.56 4.92 53.70 0.91 0.332 9.28
-24.43 -82.86 6.89 -0.210 6.89

207.00 4.98 54.09 0.93 0.319 9.44
−∞ -81.36 6.94 -0.205 6.94
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Robust stability of control laws (enhanced aircraft model )
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Figure A.53. – Nichols plot for robust stability assessment of Plant Augmentation at
envelope points according to Table 2.2 generated for q loop cut (enhanced
aircraft model)
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Figure A.54. – Nichols plot for robust stability assessment of Plant Augmentation without
hedging at envelope points according to Table 2.2 generated for q loop cut
(enhanced aircraft model)
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Table A.71. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of Plant Augmentation at envelope
points according to Table 2.2 generated for q loop cut (enhanced aircraft
model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 4.28 29.63 4.35 0.119 4.35

-5.86 -64.14 0.75 -1.325 4.35

110.32 5.43 30.40 4.41 0.120 4.41
-6.24 -66.77 0.78 -1.304 4.41

117.75 6.32 30.99 4.45 0.122 4.45
-6.59 -68.20 0.80 -1.291 4.45

125.19 6.36 31.67 4.50 0.123 4.50
-6.98 -70.50 0.82 -1.275 4.50

132.63 6.40 32.41 4.54 0.124 4.54
-7.43 -72.80 0.84 -1.258 4.54

140.07 6.45 33.14 4.60 0.126 4.60
-7.93 -75.08 0.86 -1.241 4.60

147.50 6.49 33.99 4.64 0.128 4.64
-8.48 -77.41 0.88 -1.226 4.64

154.94 6.53 34.77 4.70 0.129 4.70
-9.09 -79.69 0.90 -1.208 4.70

162.38 6.58 35.69 4.75 0.131 4.75
-9.77 -82.07 0.93 -1.193 4.75

169.81 6.62 36.52 4.80 0.133 4.80
-10.55 -84.36 0.95 -1.176 4.80

177.25 6.66 37.62 4.84 0.136 4.84
-11.44 -86.79 0.98 -1.163 4.84

184.69 6.69 38.39 4.91 0.137 4.91
-12.47 -89.15 1.01 -1.144 4.91

192.13 6.22 33.71 4.81 0.122 4.81
-9.59 -82.62 0.84 -1.183 4.81

199.56 6.24 34.19 4.88 0.122 4.88
-10.21 -84.26 0.85 -1.166 4.88

207.00 6.27 34.98 4.91 0.124 4.91
-10.89 -86.01 0.87 -1.155 4.91
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Robust stability of control laws (enhanced aircraft model )

Table A.72. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of Plant Augmentation without
hedging at envelope points according to Table 2.2 generated for q loop cut
(enhanced aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 4.28 31.34 4.30 0.127 4.30

-6.03 -64.66 0.74 -1.335 4.30

110.32 5.42 32.26 4.35 0.129 4.35
-6.56 -67.40 0.77 -1.314 4.35

117.75 6.19 32.65 4.41 0.129 4.41
-6.86 -68.94 0.79 -1.297 4.41

125.19 6.23 33.43 4.45 0.131 4.45
-7.32 -71.29 0.81 -1.280 4.45

132.63 6.26 34.06 4.52 0.132 4.52
-7.83 -73.67 0.83 -1.260 4.52

140.07 6.30 34.95 4.56 0.134 4.56
-8.41 -76.04 0.85 -1.244 4.56

147.50 6.34 35.63 4.63 0.134 4.63
-9.06 -78.40 0.87 -1.223 4.63

154.94 6.38 36.58 4.67 0.137 4.67
-9.79 -80.83 0.89 -1.207 4.67

162.38 6.42 37.33 4.74 0.137 4.74
-10.62 -83.19 0.91 -1.187 4.74

169.81 6.46 38.40 4.78 0.140 4.78
-11.58 -85.68 0.94 -1.173 4.78

177.25 6.50 39.19 4.85 0.141 4.85
-12.69 -88.07 0.96 -1.153 4.85

184.69 6.53 40.31 4.90 0.144 4.90
-14.03 -90.58 0.99 -1.140 4.90

192.13 6.09 34.97 4.85 0.126 4.85
-10.55 -83.41 0.82 -1.171 4.85

199.56 6.11 35.85 4.88 0.128 4.88
-11.31 -85.21 0.84 -1.160 4.88

207.00 6.13 36.48 4.93 0.129 4.93
-12.16 -86.91 0.86 -1.145 4.93
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A.6.5. ∆q̇ Compensation Law
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Robust stability of control laws (enhanced aircraft model )

Table A.73. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability comparison of ∆q̇ Compensation Law with and
without q̇ measurement at V = 154.94 m

s generated for α loop cut (enhanced
aircraft model)

Controller GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
Baseline 7.72 63.12 0.40 2.777 0.40

−∞ -296.88 0.40 -13.063 0.40

∆q̇ Compensator 8.81 50.68 1.41 0.626 1.41
-20.15 -309.32 1.41 -3.820 1.41

∆q̇ Compensator 8.87 50.79 1.41 0.628 1.41
(no q̇-meas.) -20.15 -309.21 1.41 -3.823 1.41

Table A.74. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability comparison of ∆q̇ Compensation Law with and
without q̇ measurement at V = 154.94 m

s generated for q loop cut (enhanced
aircraft model)

Controller GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
Baseline 21.76 ∞ 0.00 ∞ 0.00

−∞ −∞ 0.00 −∞ 0.00

∆q̇ Compensator 13.35 110.14 2.48 0.776 2.48
−∞ -164.83 1.53 -1.760 2.48

∆q̇ Compensator 7.26 44.99 5.36 0.146 5.36
(no q̇-meas.) -19.28 -95.20 1.60 -1.025 5.36

Table A.75. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of ∆q̇ Compensation Law with q̇
measurement at V = 154.94 m

s generated for q̇ loop cut (enhanced aircraft
model)

Controller GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
∆q̇ Compensator 8.13 52.75 5.97 0.154 5.97

-22.73 -79.61 2.52 -0.551 2.52

521



Appendix

Open-Loop Phase [◦]
-900 -810 -720 -630 -540 -450 -360 -270 -180 -90 0

O
p
en
-L
o
op

G
ai
n
[d
B
]

-80

-60

-40

-20

0

20

V
el
o
ci
ty

V
[

m s

]

102.88

110.32

117.75

125.19

132.63

140.07

147.50

154.94

162.38

169.81

177.25

184.69

192.13

199.56

207.00

Figure A.55. – Nichols plot for robust stability assessment of ∆q̇ Compensation Law at
envelope points according to Table 2.2 generated for ηcmd (bottleneck) loop
cut (enhanced aircraft model)
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Figure A.56. – Nichols plot for robust stability assessment of ∆q̇ Compensation Law with
q̇ measurement at envelope points according to Table 2.2 generated for ηcmd
(bottleneck) loop cut (enhanced aircraft model)
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Robust stability of control laws (enhanced aircraft model )

Table A.76. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of ∆q̇ Compensation Law at
envelope points according to Table 2.2 generated for ηcmd (bottleneck) loop
cut (enhanced aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 17.08 77.83 0.45 3.025 0.45

−∞ -282.17 0.45 -10.966 0.45

110.32 17.94 75.02 0.43 3.020 0.43
−∞ -284.98 0.43 -11.472 0.43

117.75 15.93 72.65 0.42 3.009 0.42
−∞ -287.35 0.42 -11.902 0.42

125.19 13.22 70.87 0.42 2.978 0.42
−∞ -289.13 0.42 -12.147 0.42

132.63 11.62 69.36 0.41 2.943 0.41
−∞ -290.64 0.41 -12.329 0.41

140.07 10.52 68.08 0.41 2.906 0.41
−∞ -291.92 0.41 -12.458 0.41

147.50 9.75 67.02 0.41 2.869 0.41
−∞ -292.98 0.41 -12.543 0.41

154.94 9.20 66.14 0.41 2.833 0.41
−∞ -293.86 0.41 -12.589 0.41

162.38 8.76 65.42 0.41 2.798 0.41
−∞ -294.58 0.41 -12.599 0.41

169.81 8.43 64.85 0.41 2.764 0.41
−∞ -295.15 0.41 -12.578 0.41

177.25 8.20 64.40 0.41 2.730 0.41
−∞ -295.60 0.41 -12.530 0.41

184.69 8.03 64.08 0.41 2.697 0.41
−∞ -295.92 0.41 -12.455 0.41

192.13 7.89 63.55 0.42 2.647 0.42
−∞ -296.45 0.42 -12.350 0.42

199.56 7.83 63.77 0.42 2.633 0.42
−∞ -296.23 0.42 -12.229 0.42

207.00 7.78 63.68 0.43 2.597 0.43
−∞ -296.32 0.43 -12.084 0.43
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Table A.77. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of ∆q̇ Compensation Law with q̇
measurement at envelope points according to Table 2.2 generated for ηcmd
(bottleneck) loop cut (enhanced aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 20.19 77.82 0.45 3.024 0.45

−∞ -282.18 0.45 -10.966 0.45

110.32 21.49 75.02 0.43 3.020 0.43
−∞ -284.98 0.43 -11.472 0.43

117.75 15.79 72.64 0.42 3.009 0.42
−∞ -287.36 0.42 -11.901 0.42

125.19 13.14 70.87 0.42 2.977 0.42
−∞ -289.13 0.42 -12.147 0.42

132.63 11.54 69.36 0.41 2.942 0.41
−∞ -290.64 0.41 -12.329 0.41

140.07 10.47 68.08 0.41 2.905 0.41
−∞ -291.92 0.41 -12.457 0.41

147.50 9.71 67.01 0.41 2.869 0.41
−∞ -292.99 0.41 -12.543 0.41

154.94 9.16 66.13 0.41 2.833 0.41
−∞ -293.87 0.41 -12.588 0.41

162.38 8.72 65.41 0.41 2.798 0.41
−∞ -294.59 0.41 -12.599 0.41

169.81 8.40 64.84 0.41 2.763 0.41
−∞ -295.16 0.41 -12.578 0.41

177.25 8.16 64.40 0.41 2.730 0.41
−∞ -295.60 0.41 -12.530 0.41

184.69 8.00 64.08 0.41 2.697 0.41
−∞ -295.92 0.41 -12.455 0.41

192.13 7.86 63.54 0.42 2.647 0.42
−∞ -296.46 0.42 -12.350 0.42

199.56 7.80 63.76 0.42 2.632 0.42
−∞ -296.24 0.42 -12.229 0.42

207.00 7.75 63.68 0.43 2.597 0.43
−∞ -296.32 0.43 -12.084 0.43
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Robust stability of control laws (enhanced aircraft model )
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Figure A.57. – Nichols plot for robust stability assessment of ∆q̇ Compensation Law at
envelope points according to Table 2.2 generated for α loop cut (enhanced
aircraft model)
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Figure A.58. – Nichols plot for robust stability assessment of ∆q̇ Compensation Law with
q̇ measurement at envelope points according to Table 2.2 generated for α
loop cut (enhanced aircraft model)
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Table A.78. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of ∆q̇ Compensation Law at
envelope points according to Table 2.2 generated for α loop cut (enhanced
aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 10.57 54.21 1.14 0.833 1.14

-10.30 -305.79 1.14 -4.700 1.14

110.32 10.24 53.74 1.18 0.797 1.18
-10.81 -306.26 1.18 -4.541 1.18

117.75 9.95 52.98 1.21 0.762 1.21
-12.28 -307.02 1.21 -4.413 1.21

125.19 9.70 52.50 1.26 0.730 1.26
-13.70 -307.50 1.26 -4.273 1.26

132.63 9.46 52.03 1.30 0.700 1.30
-14.76 -307.97 1.30 -4.145 1.30

140.07 9.25 51.58 1.34 0.674 1.34
-16.43 -308.42 1.34 -4.029 1.34

147.50 9.05 51.17 1.37 0.650 1.37
-18.23 -308.83 1.37 -3.922 1.37

154.94 8.87 50.79 1.41 0.628 1.41
-20.15 -309.21 1.41 -3.823 1.41

162.38 8.70 50.35 1.45 0.605 1.45
-22.18 -309.65 1.45 -3.718 1.45

169.81 8.54 49.91 1.50 0.582 1.50
-24.37 -310.09 1.50 -3.617 1.50

177.25 8.39 49.53 1.54 0.562 1.54
-26.53 -310.47 1.54 -3.523 1.54

184.69 8.26 49.21 1.58 0.544 1.58
-27.94 -310.79 1.58 -3.436 1.58

192.13 8.14 49.01 1.62 0.530 1.62
−∞ -310.99 1.62 -3.361 1.62

199.56 8.02 48.84 1.65 0.516 1.65
-32.06 -311.16 1.65 -3.286 1.65

207.00 7.90 48.56 1.70 0.500 1.70
-35.06 -311.44 1.70 -3.206 1.70
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Robust stability of control laws (enhanced aircraft model )

Table A.79. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of ∆q̇ Compensation Law with q̇
measurement at envelope points according to Table 2.2 generated for α loop
cut (enhanced aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 10.48 54.11 1.14 0.830 1.14

-10.30 -305.89 1.14 -4.695 1.14

110.32 10.16 53.63 1.18 0.794 1.18
-10.81 -306.37 1.18 -4.537 1.18

117.75 9.87 52.88 1.22 0.759 1.22
-12.28 -307.12 1.22 -4.410 1.22

125.19 9.63 52.39 1.26 0.727 1.26
-13.70 -307.61 1.26 -4.269 1.26

132.63 9.40 51.91 1.30 0.698 1.30
-14.76 -308.09 1.30 -4.142 1.30

140.07 9.19 51.47 1.34 0.671 1.34
-16.43 -308.53 1.34 -4.026 1.34

147.50 8.99 51.05 1.38 0.648 1.38
-18.23 -308.95 1.38 -3.919 1.38

154.94 8.81 50.68 1.41 0.626 1.41
-20.15 -309.32 1.41 -3.820 1.41

162.38 8.65 50.23 1.46 0.602 1.46
-22.18 -309.77 1.46 -3.715 1.46

169.81 8.50 49.79 1.50 0.580 1.50
-24.37 -310.21 1.50 -3.615 1.50

177.25 8.36 49.41 1.54 0.560 1.54
-26.53 -310.59 1.54 -3.521 1.54

184.69 8.21 49.09 1.58 0.542 1.58
-27.94 -310.91 1.58 -3.434 1.58

192.13 8.08 48.89 1.62 0.528 1.62
−∞ -311.11 1.62 -3.359 1.62

199.56 7.96 48.73 1.65 0.514 1.65
-32.06 -311.27 1.65 -3.285 1.65

207.00 7.86 48.44 1.70 0.498 1.70
-35.06 -311.56 1.70 -3.205 1.70
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Figure A.59. – Nichols plot for robust stability assessment of ∆q̇ Compensation Law at
envelope points according to Table 2.2 generated for q loop cut (enhanced
aircraft model)
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Figure A.60. – Nichols plot for robust stability assessment of ∆q̇ Compensation Law with
q̇ measurement at envelope points according to Table 2.2 generated for q
loop cut (enhanced aircraft model)
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Robust stability of control laws (enhanced aircraft model )

Table A.80. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of ∆q̇ Compensation Law at
envelope points according to Table 2.2 generated for q loop cut (enhanced
aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 7.03 39.13 4.83 0.142 4.83

-10.48 -77.05 1.12 -1.161 4.83

110.32 7.06 40.03 4.89 0.143 4.89
-11.25 -79.88 1.18 -1.143 4.89

117.75 7.08 40.46 4.98 0.142 4.98
-11.96 -81.85 1.25 -1.120 4.98

125.19 7.11 41.52 5.03 0.144 5.03
-12.93 -84.51 1.31 -1.104 5.03

132.63 7.15 42.15 5.13 0.143 5.13
-14.08 -87.26 1.38 -1.082 5.13

140.07 7.18 43.28 5.18 0.146 5.18
-15.44 -89.93 1.45 -1.066 5.18

147.50 7.22 43.98 5.29 0.145 5.29
-17.13 -92.59 1.52 -1.043 5.29

154.94 7.26 44.99 5.36 0.146 5.36
-19.28 -95.20 1.60 -1.025 5.36

162.38 7.29 46.05 5.44 0.148 5.44
-22.23 -97.80 1.69 -1.008 5.44

169.81 7.33 47.15 5.51 0.149 5.51
-26.82 -100.36 1.78 -0.986 1.78

177.25 7.37 48.30 5.57 0.151 5.57
-37.37 -102.93 1.87 -0.960 1.87

184.69 7.41 49.48 5.64 0.153 5.64
−∞ -105.45 1.97 -0.935 1.97

192.13 7.43 50.67 5.70 0.155 5.70
−∞ -108.27 2.06 -0.917 2.06

199.56 7.46 51.59 5.79 0.156 5.79
−∞ -110.65 2.16 -0.895 2.16

207.00 7.48 52.57 5.87 0.156 5.87
−∞ -112.99 2.26 -0.872 2.26
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Table A.81. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of ∆q̇ Compensation Law with q̇
measurement at envelope points according to Table 2.2 generated for q loop
cut (enhanced aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 10.15 67.96 2.65 0.448 2.65

−∞ -109.45 0.94 -1.924 2.65

110.32 11.21 72.01 2.65 0.474 2.65
−∞ -115.76 1.00 -1.898 2.65

117.75 12.58 75.80 2.66 0.498 2.66
−∞ -121.03 1.06 -1.867 2.66

125.19 12.71 80.45 2.65 0.530 2.65
−∞ -127.65 1.13 -1.842 2.65

132.63 12.86 85.90 2.63 0.569 2.63
−∞ -135.02 1.20 -1.816 2.63

140.07 13.02 92.37 2.60 0.619 2.60
−∞ -143.29 1.29 -1.794 2.60

147.50 13.18 100.28 2.56 0.685 2.56
−∞ -153.00 1.40 -1.774 2.56

154.94 13.35 110.14 2.48 0.776 2.48
−∞ -164.83 1.53 -1.760 2.48

162.38 13.53 124.99 2.34 0.932 2.34
−∞ -181.19 1.73 -1.752 2.34

169.81 13.70 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

177.25 13.87 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

184.69 14.04 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

192.13 14.21 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

199.56 14.34 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

207.00 14.47 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00
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Robust stability of control laws (enhanced aircraft model )

Open-Loop Phase [◦]
-810 -720 -630 -540 -450 -360 -270 -180 -90 0

O
p
en
-L
o
op

G
ai
n
[d
B
]

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

V
el
o
ci
ty

V
[

m s

]

102.88

110.32

117.75

125.19

132.63

140.07

147.50

154.94

162.38

169.81

177.25

184.69

192.13

199.56

207.00

Figure A.61. – Nichols plot for robust stability assessment of ∆q̇ Compensation Law with
q̇ measurement at envelope points according to Table 2.2 generated for q̇
loop cut (enhanced aircraft model)
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Table A.82. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of ∆q̇ Compensation Law with q̇
measurement at envelope points according to Table 2.2 generated for q̇ loop
cut (enhanced aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 8.12 48.99 5.50 0.155 5.50

-14.51 -67.82 2.08 -0.569 2.08

110.32 8.12 49.62 5.55 0.156 5.55
-15.19 -69.41 2.14 -0.565 2.14

117.75 8.12 50.23 5.60 0.157 5.60
-15.84 -70.53 2.20 -0.559 2.20

125.19 8.12 50.75 5.66 0.156 5.66
-16.75 -72.27 2.26 -0.557 2.26

132.63 8.12 51.27 5.73 0.156 5.73
-17.84 -74.24 2.33 -0.556 2.33

140.07 8.13 51.84 5.80 0.156 5.80
-19.13 -75.85 2.39 -0.554 2.39

147.50 8.13 52.22 5.89 0.155 5.89
-20.72 -77.63 2.45 -0.552 2.45

154.94 8.13 52.75 5.97 0.154 5.97
-22.73 -79.61 2.52 -0.551 2.52

162.38 8.13 53.33 6.04 0.154 6.04
-25.42 -81.67 2.59 -0.550 2.59

169.81 8.13 53.93 6.12 0.154 6.12
-29.43 -83.60 2.66 -0.548 2.66

177.25 8.13 54.57 6.19 0.154 6.19
-37.27 -85.45 2.73 -0.546 2.73

184.69 8.13 55.23 6.26 0.154 6.26
−∞ -87.42 2.80 -0.544 2.80

192.13 8.12 55.90 6.33 0.154 6.33
−∞ -89.58 2.88 -0.544 2.88

199.56 8.12 56.60 6.39 0.154 6.39
−∞ -91.57 2.95 -0.541 2.95

207.00 8.12 57.33 6.46 0.155 6.46
−∞ -93.61 3.04 -0.538 3.04
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Robust stability of control laws (enhanced aircraft model )

A.6.6. L1 adaptive controller with Eigenstructure Assignment

Page intentionally left blank
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Table A.83. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability comparison of L1 adaptive controller with
Eigenstructure Assignment with and without hedging at V = 154.94 m

s
generated for α loop cut (enhanced aircraft model)

Controller GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
Baseline 7.72 63.12 0.40 2.777 0.40

−∞ -296.88 0.40 -13.063 0.40

L1 Standalone 9.85 85.76 1.99 0.754 1.99
-25.51 -274.24 1.99 -2.411 1.99

L1 Standalone 9.87 87.08 1.88 0.807 1.88
(no hedg.) -25.76 -272.92 1.88 -2.531 1.88

Table A.84. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability comparison of L1 adaptive controller with
Eigenstructure Assignment with and without hedging at V = 154.94 m

s
generated for q loop cut (enhanced aircraft model)

Controller GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
Baseline 21.76 ∞ 0.00 ∞ 0.00

−∞ −∞ 0.00 −∞ 0.00

L1 Standalone 12.77 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

L1 Standalone 12.33 ∞ 0.00 ∞ 0.00
(no hedg.) −∞ −∞ 0.00 −∞ 0.00

534



Robust stability of control laws (enhanced aircraft model )
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Figure A.62. – Nichols plot for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment at envelope points according to Table 2.2
generated for ηcmd (bottleneck) loop cut (enhanced aircraft model)
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Figure A.63. – Nichols plot for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment without hedging at envelope points according
to Table 2.2 generated for ηcmd (bottleneck) loop cut (enhanced aircraft
model)
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Table A.85. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment at envelope points according to Table 2.2
generated for ηcmd (bottleneck) loop cut (enhanced aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 8.41 ∞ 0.00 ∞ 0.00

−∞ −∞ 0.00 −∞ 0.00

110.32 7.30 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

117.75 6.67 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

125.19 6.34 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

132.63 6.11 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

140.07 6.00 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

147.50 5.97 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

154.94 5.98 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

162.38 6.05 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

169.81 6.15 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

177.25 6.28 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

184.69 6.43 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

192.13 6.48 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

199.56 6.63 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

207.00 6.86 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00
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Robust stability of control laws (enhanced aircraft model )

Table A.86. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment without hedging at envelope points according to
Table 2.2 generated for ηcmd (bottleneck) loop cut (enhanced aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 7.97 62.97 4.03 0.273 4.03

−∞ -297.03 4.03 -1.287 4.03

110.32 7.97 65.38 4.09 0.279 4.09
−∞ -294.62 4.09 -1.257 4.09

117.75 7.97 67.74 4.15 0.285 4.15
−∞ -292.26 4.15 -1.230 4.15

125.19 7.97 70.61 4.18 0.295 4.18
−∞ -289.39 4.18 -1.207 4.18

132.63 7.97 73.94 4.20 0.307 4.20
−∞ -286.06 4.20 -1.188 4.20

140.07 7.97 78.03 4.20 0.324 4.20
−∞ -246.27 2.43 -1.172 4.20

147.50 7.97 83.61 4.14 0.352 4.14
−∞ -248.93 2.97 -1.165 4.14

154.94 7.97 96.64 3.80 0.444 3.80
−∞ -261.65 3.73 -1.211 3.80

162.38 7.96 94.92 1.69 0.981 1.69
−∞ -265.08 1.69 -2.740 1.69

169.81 7.96 92.39 1.69 0.957 1.69
−∞ -267.61 1.69 -2.771 1.69

177.25 7.96 90.25 1.69 0.929 1.69
−∞ -269.75 1.69 -2.778 1.69

184.69 7.96 88.42 1.71 0.901 1.71
−∞ -271.58 1.71 -2.766 1.71

192.13 7.97 86.79 1.74 0.873 1.74
−∞ -273.21 1.74 -2.748 1.74

199.56 7.98 85.42 1.76 0.845 1.76
−∞ -274.58 1.76 -2.716 1.76

207.00 7.98 84.15 1.80 0.818 1.80
−∞ -275.85 1.80 -2.682 1.80
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Figure A.64. – Nichols plot for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment at envelope points according to Table 2.2
generated for α loop cut (enhanced aircraft model)
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Figure A.65. – Nichols plot for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment without hedging at envelope points according
to Table 2.2 generated for α loop cut (enhanced aircraft model)
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Robust stability of control laws (enhanced aircraft model )

Table A.87. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment at envelope points according to Table 2.2
generated for α loop cut (enhanced aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 9.78 70.23 3.36 0.364 3.36

−∞ -289.77 3.36 -1.503 3.36

110.32 9.79 73.69 3.29 0.390 3.29
−∞ -286.31 3.29 -1.517 3.29

117.75 9.80 77.66 3.20 0.424 3.20
−∞ -282.34 3.20 -1.542 3.20

125.19 9.80 83.40 3.00 0.485 3.00
−∞ -276.60 3.00 -1.609 3.00

132.63 9.82 93.48 2.47 0.661 2.47
−∞ -266.52 2.47 -1.884 2.47

140.07 9.83 92.95 2.07 0.784 2.07
−∞ -267.05 2.07 -2.252 2.07

147.50 9.84 89.12 2.01 0.775 2.01
−∞ -270.88 2.01 -2.355 2.01

154.94 9.85 85.76 1.99 0.754 1.99
-25.51 -274.24 1.99 -2.411 1.99

162.38 9.87 82.79 1.99 0.726 1.99
-22.32 -277.21 1.99 -2.432 1.99

169.81 9.89 80.22 2.01 0.698 2.01
-20.91 -279.78 2.01 -2.435 2.01

177.25 9.90 77.98 2.03 0.671 2.03
-20.09 -282.02 2.03 -2.426 2.03

184.69 9.92 76.03 2.06 0.645 2.06
-19.60 -283.97 2.06 -2.411 2.06

192.13 9.95 74.22 2.09 0.621 2.09
-18.75 -285.78 2.09 -2.390 2.09

199.56 9.97 72.80 2.12 0.600 2.12
-18.40 -287.20 2.12 -2.365 2.12

207.00 9.99 71.56 2.15 0.580 2.15
-18.51 -288.44 2.15 -2.339 2.15
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Table A.88. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment without hedging at envelope points according to
Table 2.2 generated for α loop cut (enhanced aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 9.82 73.26 3.27 0.392 3.27

−∞ -286.74 3.27 -1.532 3.27

110.32 9.82 77.08 3.19 0.421 3.19
−∞ -282.92 3.19 -1.547 3.19

117.75 9.83 81.37 3.08 0.461 3.08
−∞ -278.63 3.08 -1.577 3.08

125.19 9.83 88.45 2.84 0.544 2.84
−∞ -271.55 2.84 -1.671 2.84

132.63 9.84 98.36 2.04 0.843 2.04
−∞ -261.64 2.04 -2.242 2.04

140.07 9.85 94.21 1.91 0.860 1.91
−∞ -265.79 1.91 -2.427 1.91

147.50 9.86 90.39 1.88 0.840 1.88
−∞ -269.61 1.88 -2.507 1.88

154.94 9.87 87.08 1.88 0.807 1.88
-25.76 -272.92 1.88 -2.531 1.88

162.38 9.88 84.23 1.89 0.777 1.89
-22.35 -275.77 1.89 -2.543 1.89

169.81 9.89 81.76 1.91 0.747 1.91
-20.90 -278.24 1.91 -2.541 1.91

177.25 9.91 79.62 1.93 0.719 1.93
-20.08 -280.38 1.93 -2.530 1.93

184.69 9.92 77.75 1.97 0.690 1.97
-19.59 -282.25 1.97 -2.506 1.97

192.13 9.95 76.02 2.00 0.663 2.00
-18.74 -283.98 2.00 -2.478 2.00

199.56 9.96 74.66 2.03 0.641 2.03
-18.37 -285.34 2.03 -2.449 2.03

207.00 9.98 73.47 2.07 0.620 2.07
-18.49 -286.53 2.07 -2.418 2.07
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Robust stability of control laws (enhanced aircraft model )
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Figure A.66. – Nichols plot for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment at envelope points according to Table 2.2
generated for q loop cut (enhanced aircraft model)
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Figure A.67. – Nichols plot for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment without hedging at envelope points according
to Table 2.2 generated for q loop cut (enhanced aircraft model)
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Table A.89. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment at envelope points according to Table 2.2
generated for q loop cut (enhanced aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 13.22 ∞ 0.00 ∞ 0.00

−∞ −∞ 0.00 −∞ 0.00

110.32 13.15 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

117.75 13.10 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

125.19 13.03 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

132.63 12.97 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

140.07 12.90 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

147.50 12.84 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

154.94 12.77 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

162.38 12.70 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

169.81 12.64 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

177.25 12.57 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

184.69 12.51 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

192.13 12.45 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

199.56 12.39 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

207.00 12.33 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00
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Robust stability of control laws (enhanced aircraft model )

Table A.90. – Robust stability properties gain margin (GM), phase margin Φm, time delay
margins (TDM) and corresponding gain-crossover frequencies ωgc,Φ and
ωgc,TDM for robust stability assessment of L1 adaptive controller with
Eigenstructure Assignment without hedging at envelope points according to
Table 2.2 generated for q loop cut (enhanced aircraft model)

Velocity V
[m

s
]

GM [dB] Φm [◦] ωgc,Φ

[
rad

s

]
TDM [s] ωgc,TDM

[
rad

s

]
102.88 12.79 ∞ 0.00 ∞ 0.00

−∞ −∞ 0.00 −∞ 0.00

110.32 12.72 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

117.75 12.66 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

125.19 12.60 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

132.63 12.53 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

140.07 12.47 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

147.50 12.40 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

154.94 12.33 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

162.38 12.27 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

169.81 12.20 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

177.25 12.13 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

184.69 12.07 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

192.13 12.01 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

199.56 11.95 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00

207.00 11.90 ∞ 0.00 ∞ 0.00
−∞ −∞ 0.00 −∞ 0.00
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A.7. Performance of control laws

A.7.1. Comparison of control laws

Page intentionally left blank
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Performance of control laws
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Figure A.68. – Comparison of αcmd step responses of basic, linear aircraft model
containing only the short-period approximation in combination with
baseline controller, L1 Adaptive Augmentations, ∆q̇ Compensation Law
and L1 adaptive controller with Eigenstructure Assignment at V0 = 154.94 m

s

Table A.91. – Comparison of performance metrics ML2 , ML∞ and ML2,act generated from
step responses of basic, linear aircraft model containing only the
short-period approximation in combination with baseline controller, L1
Adaptive Augmentations, ∆q̇ Compensation Law and L1 adaptive controller
with Eigenstructure Assignment at V0 = 154.94 m

s
Controller ML2 [−] ML∞ [−] ML2,act [−]

Baseline 0.004 0.0003 0.784
DPI Augmentation 0.004 0.0003 0.773

Plant Augmentation 0.003 0.0002 0.770
L1 Standalone 0.029 0.0014 0.629

∆q̇ Compensator 0.005 0.0003 0.804
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Figure A.69. – Comparison of αcmd step responses of basic, linear aircraft model in
combination with baseline controller, L1 Adaptive Augmentations, ∆q̇
Compensation Law and L1 adaptive controller with Eigenstructure
Assignment at V0 = 154.94 m

s

Table A.92. – Comparison of performance metrics ML2 , ML∞ and ML2,act generated from
step responses of basic, linear aircraft model in combination with baseline
controller, L1 Adaptive Augmentations, ∆q̇ Compensation Law and L1
adaptive controller with Eigenstructure Assignment at V0 = 154.94 m

s
Controller ML2 [−] ML∞ [−] ML2,act [−]

Baseline 0.032 0.0006 0.784
DPI Augmentation 0.066 0.0012 0.774

Plant Augmentation 0.049 0.0009 0.770
L1 Standalone 0.047 0.0014 0.629

∆q̇ Compensator 0.033 0.0006 0.804
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Figure A.70. – Comparison of αcmd step responses of basic, linear aircraft model in
combination with baseline controller, L1 Adaptive Augmentations, ∆q̇
Compensation Law and L1 adaptive controller with Eigenstructure
Assignment at V0 = 154.94 m

s for large timescale

Table A.93. – Comparison of performance metrics ML2 , ML∞ and ML2,act generated from
step responses of basic, linear aircraft model in combination with baseline
controller, L1 Adaptive Augmentations, ∆q̇ Compensation Law and L1
adaptive controller with Eigenstructure Assignment at V0 = 154.94 m

s for
large timescale

Controller ML2 [−] ML∞ [−] ML2,act [−]
Baseline 0.117 0.0007 0.784

DPI Augmentation 0.280 0.0017 0.774
Plant Augmentation 0.190 0.0012 0.771

L1 Standalone 1.473 0.0049 0.629
∆q̇ Compensator 0.117 0.0007 0.804
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Figure A.71. – Comparison of αcmd step responses of enhanced, nonlinear aircraft model
in combination with baseline controller, L1 Adaptive Augmentations, ∆q̇
Compensation Law and L1 adaptive controller with Eigenstructure
Assignment at V0 = 154.94 m

s

Table A.94. – Comparison of performance metrics ML2 , ML∞ and ML2,act generated from
step responses of enhanced, nonlinear aircraft model in combination with
baseline controller, L1 Adaptive Augmentations, ∆q̇ Compensation Law and
L1 adaptive controller with Eigenstructure Assignment at V0 = 154.94 m

s
Controller ML2 [−] ML∞ [−] ML2,act [−]

Baseline 0.048 0.0010 0.516
DPI Augmentation 0.069 0.0011 0.526

Plant Augmentation 0.066 0.0011 0.526
L1 Standalone 0.005 0.0002 0.599

∆q̇ Compensator 0.038 0.0008 0.520
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Figure A.72. – Comparison of αcmd step responses of enhanced, nonlinear aircraft model
in combination with baseline controller, L1 Adaptive Augmentations, ∆q̇
Compensation Law and L1 adaptive controller with Eigenstructure
Assignment at V0 = 154.94 m

s for large timescale

Table A.95. – Comparison of performance metrics ML2 , ML∞ and ML2,act generated from
step responses of enhanced, nonlinear aircraft model in combination with
baseline controller, L1 Adaptive Augmentations, ∆q̇ Compensation Law and
L1 adaptive controller with Eigenstructure Assignment at V0 = 154.94 m

s for
large timescale

Controller ML2 [−] ML∞ [−] ML2,act [−]
Baseline 0.126 0.0010 0.517

DPI Augmentation 0.375 0.0022 0.528
Plant Augmentation 0.353 0.0020 0.527

L1 Standalone 0.277 0.0019 0.599
∆q̇ Compensator 0.122 0.0008 0.521
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A.7.2. Baseline Controller
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Figure A.73. – αcmd step responses of basic, linear aircraft model and baseline controller at
envelope points according to Table 2.2
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Figure A.74. – αcmd step responses of enhanced, nonlinear aircraft model and baseline
controller at envelope points according to Table 2.2
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Figure A.75. – αcmd step responses of enhanced, nonlinear aircraft model and baseline
controller at envelope points according to Table 2.2 for large timescale
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A.7.3. DPI Augmentation
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Figure A.76. – αcmd step responses of basic, linear aircraft model and DPI Augmentation at
envelope points according to Table 2.2
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Figure A.77. – αcmd step responses of enhanced, nonlinear aircraft model and DPI
Augmentation at envelope points according to Table 2.2
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Figure A.78. – αcmd step responses of enhanced, nonlinear aircraft model and DPI
Augmentation at envelope points according to Table 2.2 for large timescale
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Figure A.79. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with DPI Augmentation with and without hedging applied at V0 = 154.94 m

s
and h0 = 5000m

A.7.4. Plant Augmentation
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Figure A.80. – αcmd step responses of basic, linear aircraft model containing only the
short-period approximation and Plant Augmentation at envelope points
according to Table 2.2
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Figure A.81. – αcmd step responses of basic, linear aircraft model and Plant Augmentation
at envelope points according to Table 2.2
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Figure A.82. – αcmd step responses of basic, linear aircraft model and Plant Augmentation
at envelope points according to Table 2.2 for large timescale
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Figure A.83. – αcmd step responses of basic, nonlinear aircraft model and Plant
Augmentation at envelope points according to Table 2.2
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Figure A.84. – αcmd step responses of basic, nonlinear aircraft model and Plant
Augmentation at envelope points according to Table 2.2 for large timescale
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Figure A.85. – αcmd step responses of enhanced, nonlinear aircraft model and Plant
Augmentation at envelope points according to Table 2.2

557



Appendix

Time t [s]
0 20 40 60 80 100 120 140 160 180 200

A
n
gl
e
of

A
tt
ac
k
α
−
α
tr
im

[◦
]

0

0.5

1

V
el
o
ci
ty

V
[

m s

]

102.88
110.32
117.75
125.19
132.63
140.07
147.50
154.94
162.38
169.81
177.25
184.69
192.13
199.56
207.00

Time t [s]
0 20 40 60 80 100 120 140 160 180 200C

om
m
an

d
η
cm

d
−
η
tr
im

[◦
]

-2

-1

0

V
el
o
ci
ty

V
[

m s

]

102.88
110.32
117.75
125.19
132.63
140.07
147.50
154.94
162.38
169.81
177.25
184.69
192.13
199.56
207.00

Time t [s]
0 20 40 60 80 100 120 140 160 180 200R

at
e
C
om

m
an

d
η̇
cm

d
[◦
/s
]

-6

-4

-2

0

V
el
o
ci
ty

V
[

m s

]

102.88
110.32
117.75
125.19
132.63
140.07
147.50
154.94
162.38
169.81
177.25
184.69
192.13
199.56
207.00

Figure A.86. – αcmd step responses of enhanced, nonlinear aircraft model and Plant
Augmentation at envelope points according to Table 2.2 for large timescale
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Figure A.87. – Angle of attack α, elevator command ηcmd and elevator command rate η̇cmd
for example maneuver performed by enhanced, nonlinear aircraft model
with Plant Augmentation with and without hedging applied at
V0 = 154.94 m

s and h0 = 5000m

558



Performance of control laws

A.7.5. ∆q̇ Compensation Law
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Figure A.88. – αcmd step responses of basic, linear aircraft model and ∆q̇ Compensation
Law at envelope points according to Table 2.2
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Figure A.89. – αcmd step responses of enhanced, nonlinear aircraft model and ∆q̇
Compensation Law at envelope points according to Table 2.2
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Figure A.90. – αcmd step responses of enhanced, nonlinear aircraft model and ∆q̇
Compensation Law at envelope points according to Table 2.2 for large
timescale
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Performance of control laws

A.7.6. L1 adaptive controller with Eigenstructure Assignment

Time t [s]
0 1 2 3 4 5 6 7 8 9 10

A
n
gl
e
of

A
tt
ac
k
α
−
α
tr
im

[◦
]

0

0.5

1

V
el
o
ci
ty

V
[

m s

]

102.88
110.32
117.75
125.19
132.63
140.07
147.50
154.94
162.38
169.81
177.25
184.69
192.13
199.56
207.00

Time t [s]
0 1 2 3 4 5 6 7 8 9 10C

om
m
an

d
η
cm

d
−
η
tr
im

[◦
]

-2

-1

0

V
el
o
ci
ty

V
[

m s

]

102.88
110.32
117.75
125.19
132.63
140.07
147.50
154.94
162.38
169.81
177.25
184.69
192.13
199.56
207.00

Time t [s]
0 1 2 3 4 5 6 7 8 9 10R

at
e
C
om

m
an

d
η̇
cm

d
[◦
/s
]

-6

-4

-2

0

V
el
o
ci
ty

V
[

m s

]

102.88
110.32
117.75
125.19
132.63
140.07
147.50
154.94
162.38
169.81
177.25
184.69
192.13
199.56
207.00

Figure A.91. – αcmd step responses of enhanced, nonlinear aircraft model and L1 adaptive
controller with Eigenstructure Assignment at envelope points according to
Table 2.2
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Appendix
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Figure A.92. – αcmd step responses of enhanced, nonlinear aircraft model and L1 adaptive
controller with Eigenstructure Assignment at envelope points according to
Table 2.2 for large timescale
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