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Abstract
Major histocompatibility complex (MHC) class I molecules (proteins) bind peptides of eight

to ten amino acids to present them at the cell surface to cytotoxic T cells. The class I binding

groove binds the peptide via hydrogen bonds with the peptide termini and via diverse inter-

actions with the anchor residue side chains of the peptide. To elucidate which of these inter-

actions is most important for the thermodynamic and kinetic stability of the peptide-bound

state, we have combined molecular dynamics simulations and experimental approaches in

an investigation of the conformational dynamics and binding parameters of a murine class I

molecule (H-2Kb) with optimal and truncated natural peptide epitopes. We show that the F

pocket region dominates the conformational and thermodynamic properties of the binding

groove, and that therefore the binding of the C terminus of the peptide to the F pocket region

plays a crucial role in bringing about the peptide-bound state of MHC class I.

Introduction
Major histocompatibility complex (MHC) class I molecules are transmembrane receptor pro-
teins that transport intracellular peptides to the cell surface such that cytotoxic T cells can rec-
ognize epitopes of viral or tumor origin. The luminal part of an MHC class I heavy chain
associates with the light chain beta-2 microglobulin (β2m) and then binds peptides in the endo-
plasmic reticulum (ER, Fig 1A). The stable ternary complex of heavy chain, β2m, and peptide
then travels to the cell surface [1].

The peptide binding groove, formed by the α1/α2 superdomain, consists of an eight-
stranded beta sheet platform topped by two alpha helices (Fig 1B) [2,3]. The groove is closed at
both ends and usually accommodates a peptide of eight to ten amino acids only [4–6] that
extends distinct side chains (called anchor residues) into defined pockets at the bottom of the
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groove. The peptide amino (N) and carboxy (C) termini form networks of hydrogen bonds in
the regions around the A and F pockets at the ends of the groove (Fig 1C) in all class I/peptide
complexes whose structure has been determined [7–9]. For stable binding to class I, optimal
anchor residues are not strictly required [10–13].

In the cell, optimally loaded class I molecules are formed by selecting high-affinity peptides
(i.e., peptides with a low dissociation rate) from the large pool of cellular peptides. This is cen-
tral to the function of a class I molecule, since the complex must persist at the cell surface for
hours to allow interactions with T cells [14]. The chaperone protein tapasin supports the selec-
tion of peptides in the ER that fulfill the specific length and sequence requirements for binding.
There is no crystal structure of a tapasin-class I complex, but there is experimental and theoret-
ical evidence that tapasin binds close to the F pocket [15–18].

To understand and eventually predict peptide selection in the cell, we will need to properly
understand the binding energy contributions of each individual peptide-class I interaction,
especially of the peptide termini. Empty class I molecules are suggested by several studies to be
very flexible and energetically unstable [19–22]. Several lines of evidence suggest that in opti-
mally loaded class I molecules, the restraint of the movements of the class I molecule by the
peptide is a central feature of the peptide-bound state. To understand the energy contribution
of the peptide interactions in stabilizing class I, Marlene Bouvier and DonWiley first used cir-
cular dichroism to measure the midpoint of the thermal denaturation curve (Tm, 'melting tem-
perature') of HLA-A�02:01 folded in vitro in the presence of different truncated and modified
peptides. Removal of the N-terminal amino group reduced the Tm by 21 K, whereas removal of
the C-terminal carboxylate reduced it by 23 K. Based on this observation, they suggested that
the interactions at C or N terminus peptide make the highest energetic contribution to the sta-
bility of the complex [20].

With the help of molecular dynamics (MD) simulations, we and others then showed that in
murine and human class I molecules, the sections of the α1 and α2 helices around the F pocket
that bind the peptide C terminus are conformationally flexible on a nanosecond time scale
when no peptide is bound, whereas the A pocket region, which accommodates the N terminus
of the peptide, is much more rigid and does not differ much in flexibility between the peptide-
bound and peptide-empty states [23–26].

Fig 1. Crystal structure of the luminal domain of H-2Kb. (A) Cartoon representation of class I heavy chain (gray) and the light chain β2m (pink). (B) Top
view of the H-2Kb binding groove bound to an octamer antigenic peptide, SIINFEKL, represented as sticks of the peptide backbone (green carbon, red
oxygen, and blue nitrogen). The hydrogen bonds between the peptide C and N termini and the binding groove are shown as red dashes. (C) The molecular
surface of the F pocket (red) and the A pocket (yellow) of the H-2Kb binding groove (gray).

doi:10.1371/journal.pone.0135421.g001
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Experimental results support the role of the peptide C terminus in the conformational stabi-
lization of class I [12]. A crystal structure of an empty class I molecule has not yet been
obtained, but the B values of class I/peptide crystal structures show higher flexibility for the F
pocket region than for the A pocket region [27–30]. The position of the F pocket region resi-
dues, especially the N terminus of the α2 helix, differs between crystal structures of the same
class I allotype, suggesting a certain amount of adaptability of the F pocket region [23]. The
crystal structure of H-2Db with the pentapeptide NYPAL, which occupies the F but not the A
pocket, is almost identical to that of Db with full-length peptide [31]. With thermal denatur-
ation experiments, we have shown that dipeptides that resemble the C termini of high-affinity
peptides, and that presumably bind into the F pocket, help class I molecules to fold and protect
them from denaturation [32].

In apparent contrast to these data, others have demonstrated that a 310-helical fragment
close to the A pocket changes conformation upon peptide binding to H-2Ld, and they have
proposed that this is the main conformational change in class I upon peptide binding [33].
Likewise, in our previous work, connecting the α1 and α2 helices by a disulfide bond close to
the F pocket (which greatly restrains the mobility of this region in MD simulations) still allows
normal chaperone interaction, peptide binding, and antigen presentation [34], suggesting that
stabilization of the F pocket region by the peptide may not be essential for peptide binding to
class I.

To precisely understand the contribution of individual functional groups of the peptide,
especially the termini, to peptide binding, we have now combined MD simulations with bio-
chemical and cellular approaches and studied the thermodynamic and conformational details
of the binding of truncated and modified peptides. We find that the binding of the peptide C
terminus to the F pocket is central to the conformational and thermal stability of the H-2Kb/
peptide complex. F pocket occupancy slows peptide dissociation and retains class I on the cell
surface. Our work expands the molecular understanding of the details of the class I-peptide
binding process, which will advance the ability to design vaccines for given peptides, and the
development of small molecules that influence class I antigen presentation.

Materials and Methods

Molecular dynamics (MD) simulations
The crystal structures of H-2Kb in complex with the high-affinity peptides SIINFEKL and
FAPGNYPAL (PDB ID code 1VAC [11] and 1KPV, respectively) served as the starting struc-
ture for the MD simulations, which were performed as in [35]. The detailed protocols are
found in the supporting information.

Thermal denaturation by tryptophan fluorescence (TDTF)
measurements
TDTF measurements and Tm determination were performed exactly as described previously
[36]. The detailed protocols are found in the supporting information.

Half-maximal inhibitory concentration (IC50) measurements
Steady state measurements were performed with peptide-free folding reactions of Kb/β2m. Fol-
lowing ultracentrifugation, different concentrations of full-length, truncated, or modified pep-
tides were added for 5 min, and the competitive binding of 100 nM of the high affinity peptide
SIINFEKTAMRAL, labeled with carboxytetramethylrhodamine (TAMRA) on the lysine side
chain, was measured by anisotropy in the Cary fluorimeter with automated polarizers.
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Brefeldin A (BFA) decay assay
RMA-S cells [37] were kept overnight at 25°C and at t = 0 treated with 10 μg/ml BFA (Appli-
chem or Alfa Aesar) and with 10 μM peptide and transferred to 37°C for a maximum of 4
hours. At different time points, cells were washed twice with 1x PBS/0.01% NaN3, and cell sur-
face Kb was measured with the MAb Y3 by flow cytometry.

Results and Discussion

The peptide C terminus restrains the conformational dynamics of H-2Kb

We first investigated the effect of the terminal residues of the peptide on the conformational
stability of the murine MHC class I allotype H-2Kb (Kb) in MD simulations. As starting struc-
tures, we used published crystal structures of Kb bound to the high-affinity peptides SIINFEKL
(Kb/SIINFEKL; sequence in single-letter amino acid code) and FAPGNYPAL (Kb/FAPGNY-
PAL) to construct models of Kb without peptide (empty: eKb

SIINFEKL and eK
b
FAPGNYPAL). We

performed MD simulations with these four structures and measured the root mean square
deviation (RMSD) for all residues that form the binding groove (res. 1–180). The binding
grooves of both Kb/SIINFEKL and Kb/FAPGNYPAL showed narrow RMSD probability distri-
bution peaks (Fig 2). Without peptide, in contrast, RMSD values were higher on average and

Fig 2. Root mean square deviation (RMSD) of the binding groove of H-2Kb (residues 1–180, gray), bound to the indicated peptides. The values were
calculated from frames of two independent MD simulations. (A) RMSD time course for trajectories of the complexes derived from the Kb/SIINFEKL crystal
structure. (B) RMSD probability distribution of all trajectories for each molecule. (C) RMSD time course for the trajectories of the complexes derived from the
Kb/FAPGNYPAL crystal structure. (D) RMSD probability distribution calculated over the trajectories for each molecule.

doi:10.1371/journal.pone.0135421.g002
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more widely distributed, suggesting greater conformational fluctuation. Thus, as reported
before [6,12,24,35,38,39], the total lack of peptide conformationally destabilized the binding
groove.

To distinguish whether this destabilization was caused by the loss of binding of the peptide
N terminus, the peptide C terminus, or both, we next performed and analyzed MD simulations
of Kb bound to peptides that were truncated by a single residue at either end. When the C-ter-
minal residue of the peptide (in the following abbreviated as Pω) was truncated (Kb/SIINFEK
and Kb/FAPGNYPA), the RMSD values of the binding groove increased towards those of the
empty binding groove. In surprising contrast, truncation of the peptide N terminus (Kb/IIN-
FEKL and Kb/APGNYPAL) did not significantly affect the RMSD (Fig 2B and 2D). This sug-
gests that binding of Pω is necessary to restrict the conformational motion of Kb.

To differentiate between the stabilizing contributions of the carboxylate group and the Pω
side chain, we simulated Kb complexes with peptides whose Pω was modified to alanine. The
binding grooves of Kb/SIINFEKA and Kb/FAPGNYPAA complexes showed RMSD average
values only slightly higher than those with the full-length peptide (with slightly broader peaks;
Fig 2B and 2D; green). Impressively, however, when Pω of SIINFEKL was modified to glycine
(SIINFEKG), entirely removing the side chain, we saw a significant increase in the RMSD, sug-
gesting that even the small methyl group in the side chain of a C-terminal alanine helps stabi-
lize the binding groove (S1A and S1B Fig).

When we removed the Pω carboxylate group of the peptide (replacing the leucine with iso-
pentylamine to give the Kb/SIINFEKL-Cdel complex), we saw similarly strong destabilization
(S1A and S1B Fig). Thus, both the Pω side chain and the carboxylate are important to restrain
the flexibility of the binding groove.

The peptide C terminus restrains the mobility of the F pocket region
To see which residues of the class I binding groove are conformationally stabilized by peptide
binding, we next measured the root mean square fluctuation (RMSF) of each residue of the
binding groove and colored the structure accordingly with a blue to red color spectrum (heat
map; Fig 3 and S1C Fig). The binding grooves of the empty molecules were highly flexible,
especially in the F pocket region, and the class I residues that bind the Pω showed the highest
flexibility when the binding pocket was empty. Binding of the full-length peptides restrained
the flexibility of these residues, but peptides that lacked Pω had no such restraining effect. For
SIINFEKA, SIINFEKG and SIINFEKL-Cdel, the restraint was intermediate. In contrast, the Kb

residues surrounding the A pocket always remained at similar levels of flexibility, whether
without peptide, with full-length peptides, or with N- or C-terminally truncated peptides. Since
the RMSF correlates with the configuration entropy ΔSconfig (i.e., the entropy related to the
position of the atoms rather than their velocity or momentum; [25, 26]), we conclude that in
the peptide-empty state, the F pocket residues possess a high ΔSconfig that is restrained upon
peptide binding, whereas the remainder of the binding groove has a similar ΔSconfig in both
empty and peptide-bound structures.

Binding free energy analysis shows a cooperative effect of the
carboxylate group and the side chain
To more precisely quantify the role of the peptide N and C termini in the conformational sta-
bility of the Kb/peptide complex, we calculated the free energy of peptide binding (ΔG) to the
binding groove for both sets of MD simulations by combining the molecular mechanics force
fields and the continuum solvation model [40–42] in the molecular mechanics Poisson-Boltz-
mann surface area (MM-PBSA) method (S1 Table). MM-PBSA performs well in measuring
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the relative values of receptor-ligand binding free energies [43–47]. It does not include the
entropy term, which is very computationally demanding, but in earlier work, inclusion of the
entropy term did not necessarily improve the prediction accuracy [46,48].

To rank the peptides based on their binding free energy, we then calculated the change in
the binding free energy (ΔΔGMM-PBSA, S1 Table) that occurs upon modifying or truncating the
peptide. The Pω truncations showed a much higher ΔΔGMM-PBSA than the N-terminal trunca-
tions, suggesting a major contribution of the Pω to the peptide binding energy. Looking in
more details, the change in ΔΔGMM-PBSA was greater when the Pω carboxylate was removed
than for the complexes with alanine- and glycine-modified C termini. This suggests an impor-
tant contribution of the hydrogen bonds of the Pω carboxylate to the binding energy.

To test our ranking by experiment, we next used the TDTF (thermal denaturation measured
by tryptophan fluorescence) assay to determine the Tm of the Kb/peptide complexes. In this
assay, thermal unfolding of the class I molecule is measured by the decrease in fluorescence
intensity that occurs when the tryptophan indoles are exposed to the aqueous environment
[49,50]. The TDTF analysis was performed on the luminal domain of Kb, which was produced
in E.coli and folded from inclusion bodies as a complex with human β2m and with or without
peptide [36]. The empty Kb molecule showed the lowest Tm (33°C), and binding of the full-
length peptides increased the Tm dramatically (55.7°C for Kb/SIINFEKL and 51.3°C for Kb/
FAPGNYPAL; Fig 4A and 4B and S1E Fig; and S2 Table). The complexes with alanine- and
glycine-modified Pω, and those where the Pω carboxylate was removed, still showed some
thermodynamic stabilization of Kb. Such stabilization also occurred with N-terminal residue
truncations, but with the Pω truncations Kb/SIINFEK and Kb/FAPGNYPA, no stabilization of

Fig 3. Color-coded view of the configurational flexibility of Kb binding groove and peptide calculated as root mean square fluctuations (RMSF) for
each individual residue of the protein from two independent MD simulations of complexes with peptide derived from the (A) Kb/SIINFEKL or (B) Kb/
FAPGNYPAL structures and depicted as a color (blue to red) on a cartoon representation of Kb. The empty molecule and the Kb/C-terminally truncated
peptide complex show high flexibility of the alpha helices lining the F pocket.

doi:10.1371/journal.pone.0135421.g003
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the empty form at all was seen, as we reported before [36]. From the Tm values, we derived the
ΔΔGTDTF values using the two-state model of denaturation [50,51]. They correlate very well
with the ΔΔMM-PBSA (correlation coefficients 0.97 and 0.95, Fig 4C and 4D).

Taken together, both theory and experimental data demonstrate in correlation a cooperative
effect of the carboxylate group and the side chain at the C terminus of the peptide, which thus
contributes much more to the binding energy and conformational stability of the Kb/peptide
complex than the N-terminal amino acid.

Both C-terminal side chain and carboxylate are required for high binding
affinity of the peptide
Next, we assessed the tendency of each modified peptide to become exchanged for a high-affin-
ity peptide. We followed the hypothesis that greater flexibility of the binding groove in the MD
simulations indicates a less perfect fit and thus correlates with lower binding affinity of the
bound peptide. This was previously postulated for both class I and class II molecules
[25,33,52,53].

To quantify the variation of the binding groove width on a local scale, we divided the bind-
ing groove into three regions (region I, which contains the A pocket, region II, in the center of
the binding groove, and region III, which contains the F pocket; Fig 5A) and measured their
width variation (WV) in the simulations. In all three regions, the WV was greatest when the
binding groove was empty, similar to published data [54,55] (Fig 5B and 5C). With the full-
length peptide bound, the WV decreased by ca. 0.2 Å2 in regions I and II compared to the

Fig 4. Thermal denaturation measured by tryptophan fluorescence (TDTF) shows the Tm of Kb/β2m empty or in complex with peptide. (A) Kb/β2m
complexes folded empty or with SIINFEKL-derived peptide as indicated. (B) Analogous experiment, Kb/β2m complexes with FAPGNYPAL-derived peptides.
(C) and (D) correlations between ΔΔG values calculated from TDTF Tm (in A, B) and ΔΔG values fromMM/PBSA (S1 Table).

doi:10.1371/journal.pone.0135421.g004
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empty molecule, but by a drastic 0.7 to 0.9 Å2 in region III. Thus, in agreement with the results
shown in Fig 3, the bound peptide had the greatest stabilizing effect on the F pocket region.

The WV of region III for all complexes with truncated and mutated peptides was in the
same range as for the full-length peptide complexes (Fig 5B and 5C, and S1E Fig), with the
only exception of the Pω truncated peptides SIINFEK and FAPGNYP, which showed large
WV, just like the empty Kb molecules. This shows that only the loss of the entire C-terminal
amino acid causes a significant conformational fluctuation of the entire F pocket region.

To test by laboratory experiment whether this conformational fluctuation indeed causes a
lower complex stability of the Pω truncated peptides, we quantified the affinity of peptides to
Kb. Kb was folded empty [36] and then incubated with different concentrations of each peptide
variant for five minutes. Then, the index peptide SIINFEKTAMRAL (fluorescently labeled on the
lysine side chain) was added as a competitor, and the endpoint of its binding was measured by
fluorescence anisotropy [56]. From theory curves fitted to the data, we calculated the half-max-
imal concentration of inhibition of SIINFEKTAMRAL binding (IC50) for each modified peptide
(Fig 6, S1F Fig). We found that the IC50 values of nearly all peptide were similar, but those of
the Pω truncated peptides SIINFEK and FAPGNYPA were one to two orders of magnitude
higher. The experimental data confirm the conclusions from our MD simulations: the loss of
the both the Pω carboxylate and the Pω side chain of the peptide destabilize the binding groove
and thus facilitate dissociation of the bound peptide and subsequent binding of a new peptide.

Engagement of the C terminus of the peptide retains class I molecules at
the cell surface
Once at the cell surface, class I molecules are subject to a quality control–of unknown molecu-
lar mechanism–that results in rapid endocytic destruction of those complexes with low-affinity
or no peptides [34]. To determine whether the role of the Pω in maintaining a stable class I/
peptide complex also applies on the surface of live cells, we tested the stability of our Kb/peptide
complexes in a brefeldin A (BFA) decay experiment. Transporter associated with antigen

Fig 5. Variation of the binding groove width in MD simulations. (A) Region I (black, A pocket region, residues 50–59 and 165–176), Region II (gray, C
pocket region, residues 60–72 and 152–164), and Region III (red, F pocket region, residues 73–84 and 139–150). (B) and (C)Width variance of each region
measured as the distance of the centers of masses of the α carbons of respective opposing helical segments for complex derived from the SIINFEKL (B) and
FAPGNYPAL (C) crystal structures. Error bars represent standard deviation.

doi:10.1371/journal.pone.0135421.g005
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processing (TAP)-deficient RMA-S cells, which cannot load high-affinity peptides onto Kb,
were kept overnight at 25°C to accumulate peptide-receptive class I molecules at the cell surface
[37,57,58]. We then incubated these cells with each peptide and measured the surface residence
time of the Kb/peptide complexes by withdrawing aliquots of cells at different times, fixing, and
staining with the antibody Y3 followed by flow cytometry (Fig 7, S1I Fig). As expected, more
than 80% of the Kb/SIINFEKL and Kb/FAPGNYPAL complexes remained on the cell surface
after four hours, whereas without peptide addition, about 50% of peptide-receptive Kb mole-
cules were endocytosed after only 50 min of incubation. In comparison of the variant peptides,
SIINFEK and FAPGNYPA showed the lowest efficiency in stabilizing Kb on the cell surface,
whereas the Pω side chain and carboxylate deletions stabilized Kb to an intermediate extent.
Thus, under the conditions of cell surface quality control, binding of the Pω is critically impor-
tant for retaining class I at the surface.

The free binding energy profile of the peptide C terminus in the F pocket
depends on its side chain
Finally, we investigated in more detail the impact of altering the Pω side chain on the free
energy profile of the peptide C terminus in the F pocket. We used umbrella sampling (US) sim-
ulations to compare the energy barriers along the dissociation pathway of the Pω (Fig 8A and
8B and S3 Fig). We simulated the Kb/peptide complexes at different distance windows between
the alpha carbon of the Pω and the bottom of the F pocket. Starting from the experimental
crystal structure, the dissociation of the Pω from the F pocket was enforced, and weighted his-
togram analysis was employed to calculate the free energy profile along the reaction coordinate.

Fig 6. Half-maximal concentration of peptide (IC50) required to inhibit the binding of the high affinity
peptide SIINFEKTAMRAL. K

b/β2m complexes derived from the SIINFEKL (A) or the FAPGNYPAL (B)
structures were folded empty and then incubated for 5 minutes with different concentrations of full-length,
truncated, or modified peptides. The Pω truncated peptide shows the highest IC50 value. Numerical IC50

values: SIINFEKL, 0.19 μM; IINFEKL, 0.43 μM; SIINFEK, 7.7 μM; SIINFEKA, 0.12 μM; FAPGNYPAL,
0.16 μM; APGNYPAL, 0.15 μM; FAPGNYPA, 18.0 μM; FAPGNYPAA, 0.22 μM. Binding curves (left) are of
one representative experiment, and the IC50 values (right) are the average of three experiments.

doi:10.1371/journal.pone.0135421.g006
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The Pω leucine of the peptides SIINFEKL and IINFEKL had a free energy barrier that was ca.
11 kcal/mol higher than the Pω alanine or glycine (SIINFEKA, SIINFEKG) at a distance of 17
Å from the bottom of the F pocket, whereas the truncation of the Pω carboxylate (SIIN-
FEKL-Cdel) showed ca. 5 kcal/mol at the same distance (Fig 8A, S1G Fig). In a similar manner,
the Pω leucine in both FAPGNYPAL and APGNYPAL had a free energy barrier of ca. 8 kcal/
mol higher than the Pω alanine (FAPGNYPAA) at a distance 16 Å from the bottom of the F
pocket (Fig 8B). These data suggest that the F pocket of Kb requires both a long bulky side
chain [59,60] and the Pω carboxylate for tight binding of the C terminus of the peptide.

Discussion and Conclusions
Many attempts have been made to describe the molecular details of peptide binding to class I
[7,9,12,55,61]. The interactions that occur between the peptide termini and the residues in the
A and F pocket make the major energy contribution to binding [9,12,61,62]. Binding of the
peptide N terminus into the A pocket is mainly via a network of hydrogen bonds with a group
of conserved tyrosine residues [11]. At the other end of the binding groove, the C terminus of
the peptide binds to residues in the F pocket region, also via hydrogen bonds [12]. The orienta-
tion of the peptide allows the Pω side chain to be buried deeply within the F pocket (Fig 1B).

Most previous studies of peptide binding to class I only compare optimally loaded class I
molecules with empty ones [24,25,53,63]. However, suboptimally loaded class I molecules have

Fig 7. The Kb/C-terminally truncated peptide complex shows the lowest stability on the cell surface in
a BFA decay experiment. RMA-S cells were incubated overnight at 25°C, then 10 μM peptide (as indicated)
was added to the medium, and cells were transferred to 37°C. H-2Kb surface levels were determined at each
time point with MAb Y3 and flow cytometry. Averages ± SEM (n = 3) are normalized to initial mean
fluorescence intensity (MFI).

doi:10.1371/journal.pone.0135421.g007
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thermodynamic and conformational properties that yield a better understanding of peptide
binding [19,31,32]. In this study, we have performed MD simulations of Kb molecules bound
to natural full-length peptides and to their suboptimal variants that were truncated or altered
at their termini in order to determine the effect of peptide truncations on the dynamics and
binding energy of the class I peptide binding groove. Since no crystal structures of empty or
suboptimally loaded class I molecules are available (except for Db/NYPAL, [31], we started all
simulations with the crystal structures of the high-affinity peptide complexes Kb/SIINFEKL
and Kb/FAPGNYPAL that we modified to obtain the peptide truncations. To minimize the risk
that the trajectories might be guided by the starting structure, we used two different starting
crystal structures (see the materials and methods), and we energy-minimized and equilibrated
all structures before starting the simulations. Our simulations cannot fully ensure that in the
test tube, the short peptides bind in the same register to class I as the full-length peptides, but
the closed ends of the class I binding groove and its topology make it likely.

Our MD simulations show a greater conformational stability for optimally loaded com-
plexes compared to empty class I molecules, which confirms the need for the full-length pep-
tide to restrain the conformational motions of Kb binding groove [23–25]. Interestingly, and in
contrast to published data for the murine allotype H-2Ld [33], the complexes with truncated
peptide N terminus show the same degree of conformational restriction as with full length pep-
tide, whereas truncation of the peptide C terminus results in high flexibility of the F pocket
region, similar to that of the empty groove (Figs 2 and 3). Our results are consistent with previ-
ous MD simulation studies of human and murine allotypes (H-2Db, H-2Kb and HLA-B�27:05)
[23,24,32,39] and suggest that the binding of the Pω to the flexible F pocket region is required
to restrain such flexibility and stabilize the class I binding groove. This major role of the F
pocket region in the stability of the Kb/peptide complex is confirmed by the TDTF results (Fig
4A and 4B). We have shown previously that upon heating of a complex of Kb with a suboptimal
peptide, the peptide dissociates quickly from the binding groove, and the empty class I dena-
tures [36].

Fig 8. Calculated free energy change (potential of mean force, PMF) obtained from umbrella sampling simulations along the distance between the
alpha carbon of the Pω and the bottom of the F pocket. Free energy changes were extracted from simulations of complexes with peptides derived from
Kb/SIINFEKL (B) or Kb/FAPGNYPAL (C) structures. The start point and end point reaction coordinates are shown in the supporting material (S3 Fig).

doi:10.1371/journal.pone.0135421.g008
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If the complex of Kb with C-terminally truncated peptides is less resistant to heat, it might
also show a higher dissociation rate at room temperature. Indeed, the IC50 values in Fig 6
strongly point to a major role of the Pω in maintaining peptide binding to class I, indicating
that as long as the F pocket is occupied by the Pω, it is difficult to exchange the bound peptide.
This is especially important since peptide dissociation co-determines the peptide exchange and
optimization in the cell [64–66]. On the cell surface, truncation of the Pω increases the endocy-
tosis rate of class I (Fig 7). This is probably because of the drastic decrease in the ΔG of the
complex (S1 Table).

Our data suggest a common model where the peptide binding groove of Kb has two
dynamic states, peptide-bound and peptide-empty. The biggest difference between these states
is visible in the F pocket region. In the peptide-bound state, the helices of the F pocket region
are rigid, and their distance is constant. In the peptide-empty state, the helices of the F pocket
region are very flexible, and their distance fluctuates. It has been shown experimentally that the
helices may partially unfold on a longer time scale [67]. We have found that binding of the Pω
triggers the transition between the peptide-empty and the peptide-bound states and thus deter-
mines the peptide-bound conformation of the entire class I molecule.

Our data reveal a synergistic effect of the carboxylate group and the Pω side chain. Com-
pared to the effect of the removal of the Pω, the truncations of either the carboxylate group or
the side chain show an intermediate effect on the conformational and thermal stability of the
complex. Thus, we suggest that this role of the Pω in the F pocket region follows an entropy-
enthalpy compensation pathway, as observed previously for the binding between class I and
the T cell receptor [68–72]. The binding enthalpy increases via a network of hydrogen bonds
with the peptide C terminus, whereas the entropy is restrained by the binding of the Pω side
chain to the bottom of the F pocket.

The prominent role of the F pocket region in our model is consistent with binding of tapasin
close to the F pocket region of class I to mediate thermodynamic stabilization of class I as well
as peptide exchange and optimization, as suggested previously [15–17,19,21,73,74]. We assume
that tapasin helps to structure the F pocket region of a suboptimally loaded class I molecule
such that it can bind optimal peptide [39].

Our data support the notion that short peptides and similar small compounds can be used
to stabilize class I proteins on the cell surface in a peptide-receptive conformation. This is espe-
cially important for efficient T cell activation and improved vaccination. It also opens a window
for the modelling of small compounds to bind specifically to the F pocket region and thus
enhance or inhibit the binding of the peptide ensemble in a predefined conformation.

In agreement with previous MD studies, which have shown that the dynamics of different
domains in class I and other proteins might be coupled [25,75], the findings in this work enable
further analysis of the impact of the F pocket region on the global dynamics of other class I
domains and the entire protein. Our study also illustrates that MD simulations can be comple-
mented by experimental data to describe the mechanism of ligand-receptor binding and to pro-
vide atomic-level details that help in understanding its molecular basis.

Supporting Information
S1 Fig. (A) RMSD time course for trajectories of the complexes derived from the Kb/SIIN-
FEKL crystal structure. (B) RMSD probability distribution of all trajectories for each mole-
cule eKbSIINFEKL shows four distinct peaks (approx. 2.3, 2.6, 2.8, and 3.2 Å), whereas Kb/
SIINFEKL show narrow peaks at 2.2 Å. Kb/SIINFEKG shows broad peak at 2.8 Å and Kb/
SIINFEKL-Cdel shows two peaks at 2.5 and 3 Å. (C) Color-coded view of the configu-
rational flexibility of Kb binding groove and peptide calculated as root mean square
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fluctuations (RMSF) for each individual residue of the protein fromMD simulations of
peptide complexes Kb/SIINFEKG and Kb/SIINFEKL-Cdel. (D) Variation of the binding
groove width in MD simulations. A: Region I (black, A pocket region, residues 50–59 and
165–176), Region II (gray, C pocket region, residues 60–72 and 152–164), and Region III
(red, F pocket region, residues 73–84 and 139–150). (E) Thermal denaturation measured
by tryptophan fluorescence (TDTF) shows the Tm of Kb/β2m empty or in complex with
peptide. (F) Half-maximal concentration of peptide (IC50) required to inhibit the binding
of the high affinity peptide SIINFEKTAMRAL. (G) Calculated free energy change (potential
of mean force, PMF) obtained from umbrella sampling simulations along the distance
between the Pω alpha carbon and the bottom of the F pocket. Free energy changes were
extracted from simulations of complexes with peptides as indicated. (H) BFA decay experi-
ment performed with RMA-S cells.H-2Kb surface levels were determined at each time point
with MAb Y3 and flow cytometry. Averages ± SEM (n = 3) are normalized to initial mean fluo-
rescence intensity (MFI).
(DOCX)

S2 Fig. Number of clusters as a function of cumulative simulation time. (A) complexes with
SIINFEKL-derived peptides (B) complexes with FAPGNYPAL-derived peptides.
(DOCX)

S3 Fig. Representative snapshots of the start and end of the reaction coordinates used for
the calculations of the free energy change (potential of mean force, PMF) obtained from
umbrella sampling simulations along the distance between the Pω alpha carbone and the
bottom of the F pocket.
(DOCX)

S4 Fig. Thermal denaturation of low-affinity peptide complexes is dependent of the con-
centration of free peptide. TDTF experiments were performed with the H-2Kb-hβ2m-peptide
complex in the presence of different peptide concentration. The Tm values of low-affinity pep-
tide complexes increase with the free peptide concentration, but the relative difference in the
Tm values between the C-terminal and N-terminal truncation remains.
(DOCX)

S1 Protocol. Detailed Protocols.
(DOCX)

S1 Table. Experimental and calculated binding free energy (kcal/mol) using MM-PBSA and
TDTF methods for H-2Kb/peptide complexes. The error is calculated as standard deviations
over the defined clusters.
(DOCX)

S2 Table. Thermal denaturation measured by tryptophan fluorescence (TDTF) shows the
Tm of Kb/β2m empty or in complex with peptide, as indicated. The error is calculated as
standard deviation.
(DOCX)
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