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Abstract— Knowing accurately the dynamic parameters of
a manipulated object is required for common coordination
strategies in physical human-robot interaction. Bias in object
dynamics results in inaccurately calculated robot wrenches,
which may disturb the human during interaction and bias
the recognition of the human motion intention. This paper
presents an identification strategy of object dynamics for
physical human-robot interaction, which allows the tracking of
desired human motion and inducing the motions necessary for
parameter identification. The estimation of object dynamics is
performed online and the estimator minimizes the least square
error between the measured and estimated wrenches acting

on the object. Identification-relevant motions are derived by
analyzing the persistence of excitation condition, necessary for
estimation convergence. Such motions are projected in the null
space of the partial grasp matrix, relating the human and the
robot redundant motion directions, to avoid disturbance of the
human desired motion. The approach is evaluated in a physical
human-robot object manipulation scenario.

I. INTRODUCTION

The close interaction of humans and robots in a shared en-

vironment and performing tasks collaboratively, poses many

challenges. There is a plethora of useful applications, found

in industrial, domestic- and service-related areas, including

manufacturing, construction, logistics, rehabilitation, search

and rescue. Some tasks, such as carrying heavy objects,

or handling objects in a constrained environment or in

narrow passageways, can be difficult for a robot or human

to accomplish alone. Therefore, continuous interaction and

cooperation through a physical coupling between humans

and robots is indispensable. As the human and the robot are

directly coupled, the behavior of the robot directly influences

that of the human and vice versa.

The interaction of the robot during cooperation with the

human is achieved through a suitable coordination strat-

egy, traditionally achieved through the impedance/admittance

control in combination with the object dynamics model (so

that the desired motion of the object is realized [1]–[4]).

Wrenches to be applied to the object, needed to cause a

desired motion, are usually calculated through the inverse

dynamics model [2]–[5]. Any bias in the object dynamic

parameters, i.e. mass, center of mass, and moments of inertia,

results in incorrectly calculated robot wrenches, which may

disturb the human during interaction or when performing a

desired motion [6], and may affect the trust and interaction

behavior of the human partner. Furthermore, biased wrenches
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affect effort sharing strategies applied in physical human-

robot interaction (pHRI) for reducing human effort [2], [3],

dexterous handling of objects [2], as well as any coordination

strategy necessary for maintaining desired wrenches on the

object. Undesired interaction wrenches bias human intention

recognition schemes based on interaction wrenches [3]. Since

in many real-life pHRI applications the object dynamic

parameters are unknown, an online identification strategy for

estimating object dynamics is required.

The estimation of dynamic parameters of a manipulated

object, in a purely robotic context, has received some

attention in the past. Related works include single-point

robot contact approaches, performed both in an offline [7],

[8], and recursive fashion [9], as well as in a cooperative

multi-robot setup, moving in a plane [10]. The estimation

is usually performed by taking measurements of the end-

effector’s motion and applied wrenches as an input. However,

applying any of the aforementioned methods directly in

the pHRI context is not straightforward, since the human

partner is dynamically coupled to the robot. There are a

few unique challenges arising in parameter estimation in

pHRI: (i) the human is usually unaware of the required

motion for identification, (ii) the robot solely executing the

identification-relevant motion may cause undesired human

wrenches and may disturb the human partner, (iii) the desired

estimation strategy needs to account for the human presence

by simultaneously allowing the human partner to perform

a desired motion while inducing an identification-relevant

motion, necessary for parameter convergence. Our previous

work [6] considers the estimation of relative kinematics

in pHRI by generating a robot motion for identification

around the pose of the human wrist, resulting in minimal

human interaction forces. However, only a particular case of

static human motion is considered and, in addition, object

dynamics need to be incorporated. To the best knowledge

of the authors, identifying object dynamics in the context of

pHRI, with the human partner, has not yet been investigated.

The main contribution of this paper is an identification

approach for pHRI, which achieves the estimation of the

unknown object dynamics, while avoiding undesired human

interaction wrenches, thus enabling the human partner to

perform a desired motion. We model the pHRI task and

derive an object dynamics estimator from the underlying

physics. The online estimation strategy minimizes the least-

square error between the measured and estimated wrenches

acting on the object. We derive necessary motions for the

estimator convergence and the resulting robot motion such



that the identification-relevant motion is induced by min-

imally disturbing the human desired motion. The derived

strategy enables simultaneous tracking of a human desired

motion, while inducing an identification-relevant motion for

parameter estimation. The approach is validated in a pHRI

object manipulation setting.

The remainder of this paper is structured as follows: Sec-

tion II models the human-robot object manipulation task and

formulates the problem. The estimation of object dynamics

is discussed in Section III. The induction of identification-

relevant motions is detailed in Section IV. The approach is

evaluated in Section V.

Notation: Bold characters denote vectors (lower case) or

matrices (upper case). An identity matrix of size n × n

is In, 0n is a n × n matrix with all zero elements. The

transpose of a matrix A is AT . The Moore-Penrose pseu-

doinverse of a non-square matrix A is A+. The n × n

skew-symmetric matrix of a vector a is denoted as [a]×.

All values are expressed in the world frame unless explicitly

noted differently. The notation SE(3) denotes the special

Euclidean group, SO(3) the special orthogonal group, se(3)
the Lie Algebra, and S3 the unit quaternions.

II. MODELING COOPERATIVE MANIPULATION TASKS

We consider a task where a human and a robot cooper-

atively manipulate a rigid object in SE(3) with unknown

object dynamics as depicted in Fig. 1. More precisely, a

tracking problem for the task, where the objective is to

manipulate an object from an initial to a desired pose, is

being addressed. As an example, the human trajectory is

planned and then displayed to the human partner as in [2], [3]

or the human trajectory is learned as in [11] (and appropri-

ately transformed to the object frame considering the relative

kinematics between the frames). Given a desired object

trajectory, a robot motion is to be derived, which tracks such

trajectory, imposed by a human partner, and induces motions

on the object such that the unknown object dynamics is

identified. It is assumed that the dimensionality of the inputs

is greater than the dimensionality of the task, i.e. the task is

controllable and at least some inputs are redundant, which

commonly arises in joint object manipulation [2].

{w} {h}

{r} {o}rpo

mo,Jo

Fig. 1: Cooperative human-robot object manipulation task:

Object dynamics is parametrized with the mass mo, the

center of mass rpo, and the inertia matrix Jo.

Coordinate frames of the human, robot, and object are

denoted with {h}, {r}, and {o}, respectively. The ob-

ject frame coincides with the object’s center of mass.

All coordinate frames are fixed. The pose is represented

by xi = [pT
i , q

T
i ]

T ∈ SE(3) ∀i ∈ h, r, o containing the

human, robot, and object translation pi ∈ R
3 expressed in

the world/inertial frame {w}, and orientation qi ∈ S3 repre-

sented by a unit quaternion, i.e. qi = [ηi, ǫ
T
i ]

T , with ηi ∈ R

as the real part and ǫi = [ǫi1, ǫi2, ǫi3]
T ∈ R

3 as the imaginary

part of the quaternion. A rotation matrix R(qi) ∈ SO(3)
is given by R(qi) = (η2i − ǫTi ǫi)I3 + 2ǫiǫ

T
i + 2ηi[ǫi]×.

Let ẋi = [vT
i ,ω

T
i ]

T ∈ se(3) be a twist vector containing

the translational velocity vi ∈ R
3, and the angular veloc-

ity ωi ∈ R
3, and let ẍi = [v̇T

i , ω̇
T
i ]

T contain translational

and angular accelerations.

The dynamics of the object is given by

Moẍo +Co(xo, ẋo) = uo , (1)

with uo as the total object wrenches (defined subse-

quently), Mo ∈ R
6×6 as the object inertia and mass matrix,

and Co ∈ R
6 containing the gravitational and Coriolis effects

of the motion

Mo =

[

moI3 03

03 Jo

]

and Co =

[

−mog

ωo × Joωo

]

, (2)

where mo ∈ R is the mass of the object, Jo ∈ R
3×3 is the

symmetric inertia matrix, and g ∈ R
3 is the gravity vector.

For convenience, let us define the parameter vector θ ∈ R
10

containing all dynamic parameters of the object

θ = [mo,mo
rpT

o ,
rJ ′

o]
T , (3)

where rpo ∈ R
3 is the vector of the object’s center of

mass, as depicted in Fig. 1, and rJ ′
o is the vector containing

six components of the inertia matrix expressed in {r},

i.e. rJ ′
o = [rJoxx

, rJoxy
, rJoxz

, rJoyy ,
rJoyz ,

rJozz ].
The object dynamics (1) expresses the total object

wrenches uo = [fT
o , tTo ]

T , with fo ∈ R
3 as the force

and to ∈ R
3 as the torque acting on the object. Wrenches

uo are a result of individual human and robot wrenches

accounting for relative kinematics, expressed as

uo = G

[

ur

uh

]

, (4)

where ui = [fT
i , tTi ]

T ∈ R
6 ∀i = r, h are the wrenches of

each partner applied at the grasping point, and G ∈ R
6×12

is the grasp matrix [1] containing the kinematic constraints

of both human and robot frames, with respect to the object

frame, given by

G = [oGr
oGh] =

[

I3 03 I3 03

[opr]× I3 [oph]× I3

]

, (5)

with oGi ∈ R
6×6 ∀i = r, h being the partial grasp matrix,

and opi ∈ R
3 the vector from the object frame {o} to each

grasping point.

Inconsistent robot motion, i.e. robot motion that does

not match the human motion, causes undesired interaction

wrenches, which disturb the human during interaction. The



human dynamics model suggests that the human applies a

wrench uh when there is a difference between the desired

and the actual human motion. As an example, the difference

between the desired and the actual human pose can be related

to the human wrenches by the model [12]

Kh(x
d
h − xh) = uh , (6)

where xd
h and xh denote the desired and actual motion of

the human, and Kh ∈ R
6×6 contains the translational and

rotational stiffness of the human wrist. According to (6),

it can be inferred that zero human wrench, i.e. uh = 0,

indicates a zero difference between the desired and actual

human pose, i.e. xd
h = xh.

The objective of this work is to estimate the unknown ob-

ject dynamics such that the parameter estimate θ̂ converges

to the true value of the parameter, θ, i.e.

θ̂ → θ . (7)

Identification of the object dynamic parameters in the

sense of (7) is achieved only if the object motions are

sufficiently exciting [13]. Performing such motion might

cause undesired human interaction wrenches (6) and might

disturb the human when performing a desired motion.

The objective is to perform identification-relevant motions,

such that the difference to the human desired motion is

minimal. According to (6), this is equivalently expressed as

min
xr

||uh||
2 . (8)

We will derive an online object dynamics estimator, such

that the parameter estimation objective (7) is achieved.

Subsequently, we propose a suitable identification strategy

considering objective (8).

III. ESTIMATION OF UNKNOWN OBJECT DYNAMICS

In this section we aim at formulating an estimator of

the object dynamics. After introducing necessary kinematics

expressions, we derive an object dynamics estimator and

provide a detailed convergence discussion, which is required

for deriving an identification-relevant motion.

A. Manipulation task kinematics

Since the object is rigid and all grasps are assumed to be

fixed, the object constrains the translational and rotational

motion of the human and the robot. Namely, the relative

kinematics is constant and it is expressed as

opi = const. and oqi = const. ∀i = r, h (9)

with opi ∈ R
3 as the relative displacement, and oqi as the

relative orientation of {h} or {r} with respect to {o}.

Remark: In this work, the relative kinematics between

the robot and the human is assumed known and the frames

are fixed. Through our previous work [6], it is possible to

incorporate online estimation of relative kinematics (quanti-

ties in (9)) into the presented approach as well, to account

for grasp changes (and/or re-grasping) and slippages of the

human hand during interaction.

The position of the human or the robot, with respect to

the object expressed in the world frame {w}, is

pi = po +R(wqo)
opi ∀i = r, h (10)

Differentiating (10), we obtain expressions of the kinematics

at the velocity level

vi = vo + ωo ×
opi (11)

ωi = ωo , (12)

and by further differentiation of eqs. (11) and (12) at the

acceleration level

v̇i = v̇o + ω̇o ×
opi + ωo × (ωo ×

opi) (13)

ω̇i = ω̇o . (14)

In general, velocities between any desired frames, can

be represented in the compact form as ẋi =
iGT

j ẋj , e.g.

between the robot and the human, as follows

ẋr =

[

I3 −[hpr]×
03 I3

]

ẋh = rGT
h ẋh . (15)

B. Estimation model for the object dynamics

We proceed to derive an estimation model of object dy-

namics in SE(3), based on the underlying physics between

the interacting partners. Let us express (4) with respect to {r}
by accounting for the relative kinematics obtaining

ruo =

[

rfo
rto

]

=
[

I6
rGh

]

[

ur

uh

]

, (16)

with rGh as in (15). Following the derivations in the

Appendix, this yields the estimation model

ruo =
[

I6
rGh

]+
φ θ , (17)

with φ ∈ R
6×10 as the regressor matrix

φ =

[

v̇r −
rg [ω̇o]× + [ωo]×[ωo]× 03×6

03×1 [rg − v̇r]× [.ω̇o] + [ωo]×[.ωo]

]

,

(18)

and θ as the vector of unknown dynamic parameters as

in (3), and matrices [.ω̇o] and [.ωo] both ∈ R
3×6, as de-

fined in the Appendix (31). The gravity vector is defined

as g = [0, 0,−9.81]T (m/s2), with a single negative compo-

nent along the z-axis, and rg = R(rqw)g, accounting for

rotation with respect to {w}. It is straightforward to see

from (17) that the model is linear in the unknown object

dynamics parameters.

Remark: The human presence during interaction is ac-

counted for in the model (17) through: (i) the induced

human wrench uh contained in ruo, (ii) the angular motion

constrained by the object, i.e. ωo = ωh and ω̇o = ω̇h (c.f.

eqs. (12) and (14)), and (iii) the relative kinematics between

the human and the robot in (15).

Note that any number of human and robotic partners can

be incorporated into the model (17), by appropriately in-

cluding agents’ end-effectors’ wrenches acting on the object

in (16), and accounting for the relative kinematics.



C. Online object dynamics estimator

Having introduced the estimation model (17), we formu-

late an online estimator of the unknown object dynamic

parameters θ. Measurements are acquired at each k∆t,

with k as the discrete time index and ∆t as the sampling

time interval. Input to the estimator are measurements (the

superscript k denotes the discrete time instant): of the

wrenches acting on the object ruk
h, the robot translational

acceleration v̇k
r , the object angular velocity and accelera-

tion, ωk
o and ω̇k

o . A discussion how those measurements are

obtained, is found in Section V.

Let θ̂k denote an estimate of object dynamic parameters

at each k. Given the aforementioned measurements and θ̂,

estimated wrenches acting on the object, rûo, are computed

through the model (17). An optimization problem, solving

for unknown dynamics, can be formulated in terms of least

squares. Let us define the cost function as

min
θ

1

2

K
∑

k=1

wk||eku||
2 , (19)

where eku ∈ R
12 are the wrenches residuals from eq. (17)

eku = rûk
o −

ruk
o , (20)

being weighted by wk ≤ 1 ∀k = 1, 2, . . . ,K, with K as the

measurement horizon.

The recursive least square estimator [13] is used for

estimating the unknown θ. The update of the object dynamics

estimator minimizing (19) is given by

θ̂k = θ̂k−1 +Kkeku , (21)

with the error eku as in (20), considering only measurements

at k, the gain Kk ∈ R
10×6 and matrix P k ∈ R

10×10 as

Kk = P k−1 (φk)T (δI6 + φkP k−1(φk)T )−1

P k =
1

δ
(I6 −Kkφk)P k−1 ,

with the initial estimates θ̂0 and P 0, and the weight δ as

the forgetting factor defined between 0 < δ ≤ 1. Note

that P 0 is either set to P 0 = ((φ0)Tφ0)−1, where (φ0)Tφ0

is non-singular, or in the case of high initial uncertainty,

the elements of P 0 are set to high values; δ typically uses

values 0.95 < δ < 1: the closer the value is to 1, the

less data is being forgotten resulting in increased estimation

stability and reduced estimation adjustments [14], increasing

the estimator’s rate of convergence.

Remark: Any other recursive estimator can be used for

estimating θ̂, such as the total least square as in [9] or

gradient descent [13]. Furthermore, it is also possible to

directly account for sensor noise in the model (17).

D. Estimator convergence

The estimator (21) converges to the true dynamic parame-

ters if the input motions satisfy the persistence of excitation

(PE) condition [13]. When satisfied, the system inputs are

sufficiently “rich” for identifying the unknown parameters of

object dynamics. Formally, the estimate of object dynamics θ̂

converges to θ if

∫ t+T

t

φTφ dτ ≥ αI10 , (22)

is satisfied for some constants T > 0, α > 0 ∀t, with φ

being the regressor matrix as in (18). Relation (22) implies

that the PE condition is satisfied if the integral of φTφ over

the time interval [t, t+ T ] is positive definite. Accordingly,

the observability of θ depends on the object’s angular mo-

tions ωo and ω̇o, and the robot’s translational acceleration v̇r,

contained in φ in (18). We observe:

(i) If all measurements ωo, ω̇o, v̇r are zero ∀t, which

occurs when the human and the robot hold the ob-

ject statically, the matrix product φTφ is positive

semidefinite and condition (22) is not satisfied. Still, the

parameter mo and the components rpo,x, rpo,y of rpo

in (3) are already observable from the relation v̇r −
rg

in (17). Unobservable parameters are rpo,z and Jo.

(ii) If there exists t1, t2 ∈ [t, t + T ], such that

v̇r(t1) 6= v̇r(t2) and v̇r(t) 6= g, ωo(t) = 0
for t = t1, t2, the product φTφ is positive semidefinite

and condition (22) is not satisfied; parameters mo

and rpo are observable (the component rpo,z of rpo

becomes observable), whereas Jo is unobservable.

(iii) If there exists t1, t2 ∈ [t, t + T ], such

that ωo(t1) 6= ωo(t2) and v̇r(t) = 0 for t = t1, t2,

the matrix product φTφ is positive definite and

condition (22) is satisfied, all parameters θ are

observable.

This implies that non-collinear angular motions within an

identification horizon T achieve the complete observability

of parameters θ. Therefore, in the following we focus on

angular motions as the identification-relevant motions.

Remark: An angular motion around a single axis of

rotation identifies a subspace of the parameters, e.g.

when wo,y(t) = wo,z(t) = 0 and wo,x(t) satisfies (22), in

addition to mo and rpo, the components of the inertia vector

related to x-axis are observable. The components Joxx
, Joxy

and Joxz
of Jo are identifiable through the matrix prod-

uct [.ω̇o] + [ωo]×[.ωo] contained in (18).

Inducing identification-relevant motions solely might dis-

turb the human (6), contradicting objective (8), which re-

quires consideration of an appropriate strategy as discussed

in the following section.

IV. IDENTIFICATION WITH THE HUMAN-IN-THE-LOOP

We derive an appropriate robot motion which induces

identification-relevant motions. By analyzing input redun-

dancies and defining redundant and non-redundant directions

between the cooperants, a suitable identification strategy

avoiding undesired human interaction wrenches is derived.

A. Input dimensionalities and redundancies

During interaction between the human and the robot,

both partners do not necessarily apply wrenches along all



directions. Let us define object wrenches in (4) as

uo = Ḡū =
[

oḠr
oḠh

]

[

ūr

ūh

]

, (23)

where ūi ∈ R
ni are the applied wrenches of a partner,

and oḠi ∈ R
m×ni is the partial grasp matrix relating each

agent’s applied wrenches to object wrenches. The applied

wrench of an agent is given by

ūi = Siui , (24)

with Si ∈ R
ni×m the selection matrix with ele-

ments sij = {0, 1} depending on whether a partner can apply

a particular force or torque along the direction or not.

The input dimensionality of each partner

is ni = dim(ūi) = rank(Ḡi), and n = nr + nh is the total

input dimensionality of all agents. The dimensionality of the

task is m = dim(uo) = rank(G). In the case of no input

redundancy, the intersection of the images of the partial

grasp matrices is an empty set, i.e. im(oḠr)∩im(oḠh) = ∅.

We address the problem of redundant inputs, as this is

commonly encountered in joint manipulation [2]. In this case

we can differentiate between the partial input redundancy,

when the intersection of the images of the partial grasp

matrices, i.e. im(oḠr) ∩ im(oḠh), is a non-empty set, and

full input redundancy, when the images of the partial grasp

matrices im(oḠr) and im(oḠh) are equal.

B. Identification avoiding undesired human wrenches

Robot motions need to account for the human desired

motion and induce motions satisfying (22). The expression

relating wrenches of the robot and the human in (16) can

equivalently be expressed with the partial grasp matrix, hḠr.

The robot applied wrenches ur consist of the external and in-

ternal wrench components, where the external is the motion-

inducing component and the internal component results in

no motion and it lies in the null space of hḠr [1]

null(hḠr) = {ūr|
hḠrūr = 0} . (25)

Let ẋd
r denote the robot motion necessary for tracking a

human desired motion and inducing an identification-relevant

motion, if the object motion is not satisfying the PE condi-

tion (22). For achieving the objective (8) an optimization

problem is formulated such that the cost function

min
xd
r

1

2

k
∑

i=1

||ui
h||

2 , (26)

is minimized over xd
r . Instead of directly applying an opti-

mization technique for solving xd
r and minimizing (26), we

address the problem at the velocity level ((15)). In addition,

we present a strategy for the case nh < nr, i.e. when the

robot has greater input dimensionality than the human.

Let us then redefine (15) relating the human and the robot

velocities as

ẋR
h = hḠT

r ẋr , (27)

where ẋR
h ∈ R

nh is the human motion along the redundant

directions. As an example, in the case when the human per-

forms translational motion around all three axes, ẋR
h = vT

h ,

and hḠT
r = [I3 − [rph]×].

The robot motion ẋd
r is derived by solving (27) for ẋr.

Let any vector ẋid denote identification-relevant motions

and ¯̇xid ∈ R
nr−nh as the identification motions in the

directions not spanned by ẋR
h . In relation to ẋid, ¯̇xid is given

by ¯̇xid = Sidẋid, where Sid ∈ R
(nr−nh)×nr is the selection

matrix with elements sij = {0, 1} depending on whether the

human motion spans the particular direction or not.

From eq. (25) it can be inferred that minimal disturbance

of (6) is achieved if the identification-relevant motions lie in

the null space of hḠr. This means that the non-redundant

directions can be chosen for inducing an identification-

relevant motion such that objective (8) is achieved.

Motions ¯̇xid are projected in the null space of hḠr by

ẋd
r = (hḠT

r )
+ẋR

h +
(

I6 − (hḠT
r )

+hḠT
r

)

z , (28)

where
(

I6 − (hḠT
r )

+hḠT
r

)

projects the vector z ∈ R
nr

in the null space of hḠr [15]. The identification motion
¯̇xid is included in ẋd

r such that Nẋd
r = ¯̇xid is satisfied,

where N ∈ R
(nr−nh)×nr contains non-redundant rows of

the partial grasp matrix. Replacing ẋd
r to Nẋd

r = ¯̇xid yields

N(hḠT
r )

+ẋR
h +N

(

Inr
− (hḠT

r )
+hḠT

r

)

z = ¯̇xid , (29)

and by solving for z, the following is obtained

z =
(

N
(

Inr
− (hḠT

r )
+hḠT

r

))+
(¯̇xid −N(hḠT

r )
+ẋR

h ) .

After further simplifications, the final expression of ẋd
r is

ẋd
r =(hḠT

r )
+ẋR

h (30)

+ (N(Inr
− (hḠT

r )
+hḠT

r ))
+(¯̇xid −N(hḠT

r )
+ẋR

h ) ,

where (hḠT
r )

+ẋR
h is responsible for tracking a desired

human motion along the redundant directions, and the rest of

the expression induces an identification motion, ¯̇xid, in the

null space of hḠr.

We discuss the presented strategy through the following

illustrative cases:

(i) When a human partner performs only a transla-

tional motion, ẋR
h does not excite the estimator (21).

The identification motions ¯̇xid induced through (30)

are projected in the null space of hḠr. In this

case, ẋR
h and hḠr are as given in the example

in (27), and N = [03 I3]. The identification motion

is ¯̇xid = ωT
id , with ωid as the desired angular mo-

tion. Eq. (30) yields zero human interaction force

and th = −[rph]×fr since the angular motions of the

partners are mutually constrained by the object rigidity.

(ii) When a human performs only angular motions along

all directions in SE(3), no further actions taken

by the robot towards identification are necessary

since ẋR
h = ωT

h already excites the estimator (21)

around all directions. In this case, hḠr = [03 I3],
N = [I3 [rph]×], and ¯̇xid = 03×1.



Discussed previously are two extreme cases when the human

motions do not contribute towards identification (i), and

when the human motions already excite the object dynamics

estimator (ii). Any combination of these cases is possible

and generically provided by (30).

V. EVALUATION

We evaluate the proposed approach in a human-robot

cooperative object manipulation setting. We describe the

experimental setup, analyze the estimation aspects of (21)

and evaluate the effect of the induced identification-relevant

motions while taking into account the human desired motion.

A. Experimental setup

The human-robot cooperative object manipulation setting,

depicted in Fig. 2, consists of a human partner grasping a

handle; a 7 DoF robotic manipulator with an impedance-

based controller, enabling the robot compliant behavior, and

a low-level joint-space position controller with inverse kine-

matics, enabling the robot reference trajectory tracking in the

task-space; and a manipulated rigid object. The manipulated

object is a rectangular wooden plate, with the length, width,

and height of 0.56× 0.345× 0.075 (m). The robot and the

human rigidly grasp the object, which is assured using the

coupling mechanisms at both sides, and additional metal

pieces for mounting the coupling mechanisms to the object.

The true values of the object dynamics are: mo = 3.16 kg

for the mass, rpo = [0.324, 0, 0.004]T (m) for the center of

mass, and rJ ′
o = [0.0235, 0, 0.005, 0.458, 0, 0.48]T (kg m2)

for the inertia. The center of mass and inertia are only an

approximate: the mass distribution is non-homogeneous due

to the additional pieces used for coupling. The relative kine-

matics is rph = [0.775, 0, 0]T (m) and rqh = [0, 0, 0, 1]T ;

the estimation of relative kinematics, however, can also be

incorporated through [6]. The interaction wrenches of both

the human and the robot are measured by the 6 DoF JR3

force/torque sensors. The human motion is tracked by the

marker-based tracking system Qualisys. The sampling rate

of the estimation, control, and wrench acquisition is 1 kHz

whereas for the motion tracking it is 0.1 kHz. All measured

data is filtered with the Kalman filter to account for the

sensor noise.

{h}

{r}{o}

Fig. 2: Human-robot object manipulation experimental setup

and frames alignment: x-axis of {o},{r} point towards {h},

x-axis of {h} points towards {r}, z-axes of all frames point

upwards, y-axes of all frames complete the right-hand rule.
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rĴ′

o,xy
r Ĵ′
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rĴ′

o,yy
rĴ′
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Fig. 3: Estimates of object dynamics: estimated values

are plotted with solid lines, and true values with dotted

lines. (top) mass estimate m̂o, (middle) center of mass

estimates rp̂o, (bottom) inertia estimates rĴ ′
o.

B. Estimation results

The robot induces the identification-relevant

motion chosen as ẋid = [03×1, (ωid)
T ]T , where

ωid = Ad

2 −Adstep(F d) (rad/s), with the amplitude

Ad = [0.3, 0.15, 0.1]T and frequency F d = [0.6, 1.5, 1]T ,

such to satisfy (22). At the first run, the human is instructed

not to move, i.e. the human motion is static. The initial

values of the estimator are θ̂0 = I10×1 and P 0 = 100I10.

The weighting factor of the estimator is set to δ = 0.95
for t ∈ [0, 15] (s), and then increased to δ = 0.999
for the rest of the estimation. The results of the online

estimation of object dynamics are depicted in Fig. 3.

The estimate of m̂o converges already within t ≈ 6 ms

to m̂o = 3.00 kg, with the relative error of 0.16 kg.

At t ≈ 10 s, the estimate approaches closer to the true

value with m̂o = 3.06 kg. At tf = 30 s, the estimated

mass is m̂0 = 3.08 kg. The estimate of ˆrpo converges

within t ≈ 5 s to ˆrpo = [0.32, 0, 0]T (m). At tf , the

estimated center of mass is ˆrpo = [0.31, 0.02, 0.04]T (m).

The relative errors at tf are: approx. 1 cm along the

x-axis, 2 cm along the y-axis, and 4 cm along the z-axis.

The four moments of inertia rĴ ′
o,xy,

rĴ ′
o,xz,

rĴ ′
o,yy,

rĴ ′
o,zz

oscillate during the time interval t ∈ [0, 12] (s), after

which they approach the steady state. The estimates

remain within the interval [−0.05, 0.25] for the rest of

the estimation time. Similar behavior is manifested for

the other inertia parameters, which are omitted due to

space restrictions. At tf , the estimated inertia parameters

are rĴ ′
o = [0.17, 0.07,−0.05, 0.13, 0.01, 0.23]T . In general,

estimator’s performance is affected by the the chosen

identification motion induced by the robot as well as the

sensor noise appearing in all measurements. The accuracy

of ˆrpo and rĴ ′
o can be improved by choosing ẋid with



higher amplitudes and frequency (inducing more angular

motion). This is especially relevant for the inertia since the

values are small. However, robot mechanical limitations

prevent us from experimenting with higher robot velocities.

C. Evaluation of the identification motion effect

Evaluation description: We conduct a small user study

to evaluate the effect of the induced identification-relevant

motions during a human motion. We analyze the performance

with 5 human participants, who are instructed to move 0.5 m

along the negative y-direction. The desired human motion is

required for calculating an equivalent robot motion. However,

knowing precisely the human motion poses a challenge on its

own [11]. In this work, the human velocity is estimated using

the Kalman filter from the human position, acquired by the

motion tracking system. This introduces delay in the human

motion estimate, resulting in the delayed robot commanded

velocities. Such velocities have an influence on subjects, in

the form of additional forces acting on the human.

The study consists of evaluating three different conditions,

resulting in different robot commanded trajectories. The

robot trajectories are either calculated by:

(i) using the proposed approach by inducing the

identification-relevant motion ẋid through (30),

(ii) using a naive approach by simply adding the

equivalent robot motion (calculated through (15))

and the identification-relevant motion ẋid,

i.e. ẋr,naive = ẋr + ẋid,

(iii) when no identification-relevant motion is introduced

(ẋid = 06×1), i.e. following the desired human motion

through (15), such to compare the effects of (i) and (ii).

The use of a reference trajectory is motivated by the

fact that not all observed forces are undesired due to

the delay introduced by the Kalman filter. Each con-

dition is repeated 20 times, totaling in 60 trials per

subject; the order of all trials is randomized. The in-

duced identification-relevant motion ẋid is set as in the

previous experiment, with Ad = [0.2, 0.15, 0.1]T and fre-

quency F d = [0.33, 0.71, 0.5]T . The identification motions

slightly differ compared to the first experiment for the safety

reasons, discussed subsequently.

Evaluation results: In order to evaluate the influence of

the identification motions on the subjects, we analyze the
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interaction forces appearing at the human side. The force

measurements are down-sampled to a sequence with fixed

length for the rest of the analysis, such to compare the results

of different trials. As an example, Fig. 4 depicts the mean

of the human interaction force over all trials for a single

representative subject, along all axes. The initial insights

show a similar profile for the force trajectories obtained

when no identification motion is induced (blue) compared to

the forces exerted on a subject using the proposed approach

(green). This is evident in the force intervals of [2.3, 7.5]
in x, [−4.1, 0.5] in y, and [−0.3, 2.6] (N) in z-axis, for the

proposed, compared to [2.5, 6.1] for x, [−4.3, 0.5] for y,

and [2.5, 6.1] for z-axis, for the reference trajectory across

all axes. In the case of the force trajectories obtained us-

ing a naive approach (red), the difference in forces with

respect to the reference is higher, with values in the in-

tervals [0.3, 13.0], [−10.5, 5.8], [−2.7, 4.3] for all axes, re-

spectively. Particularly, noticeable spikes appear in the force

profiles which are undesirable as they disturb the human.

To isolate the effect of undesired interaction and compare

the proposed and naive approaches, we define the inter-

action error as e(t) = |fi(t)−µref|
σref

, ∀i = 1, 2, where fi are

the human interaction forces of the proposed and naive

interaction, respectively, and µref, σref are the mean and

standard deviation of the reference force fref over all trials for

a single subject. The error is weighted with the confidence

in the desired force, represented by σref. This enables us to

obtain a statistical representation of the undesired interaction

for every subject. The resulting interaction error e is then

averaged over all trials for each subject. The mean and

standard deviation over the averaged interaction errors of all

subjects is depicted in Fig. 5. It is evident that the proposed

approach reduces the interaction error exerted to the human

partner: the mean is [1.3, 1.0, 1.0]T and the maximum error

is [2.4, 1.5, 1.2]T using the proposed approach, compared



to [2.3, 3.8, 1.4]T as the mean and [3.6, 6.0, 2.1]T as the

maximum error using the naive approach. The oscillations

appearing in the error signals, as well as the high standard

deviation using the naive approach, are an indicator of the

undesired interaction behavior, caused by the abrupt motions

(chosen as ẋid), which combined with the physical coupling

of the partners, may lead to unstable behavior. The proposed

approach shows a drastic improvement compared to the naive

approach in terms of interaction error. This is especially

relevant as it keeps the team safer since during the study no

unstable behavior for the proposed approach is encountered.

The results of this work are applicable to a wider range

of applications, where a human and a robot are physically

coupled through an object and unknown dynamic parameters

exist. The approach is validated using wrench measurements

of both interacting partners. Wrench measurements only at

the robotic side are not sufficient for accurate dynamics es-

timation, as those alone do not reflect the external wrenches

acting on the object. Available sensing modalities at the hu-

man side pose a special challenge in pHRI. Human motion is

typically acquired using wearable inertial measurement units

or vision-based techniques. Wearable tactile devices (such as

tactile gloves [16]) will allow accurate measurements of the

human wrenches to be obtained in the foreseeable future. In

addition, human wrench could also be estimated using vision

approaches, such as [17]. However, such approaches provide

only an estimate of the human wrench and any inaccuracies

in wrench estimates would be propagated to the dynamics

estimator.

VI. CONCLUSION

This paper presents an identification strategy for estimat-

ing the unknown dynamic properties of an object in human-

robot manipulation tasks. The derived online estimator iden-

tifies the object dynamics. We analyze the convergence of the

estimator, achieved by satisfying the persistence of excitation

condition. We derive identification-relevant motions, which

are necessary for parameter identification. By projecting the

identification motions into the null space of the partial grasp

matrix, relating the human and robot redundant motions,

we show that disturbance of the human desired motion is

avoided. The proposed approach is experimentally validated

in a human-robot cooperative object manipulation setting.

APPENDIX

Expanding the expression of object dynamics model (1),

replacing uo with (4), and solving for wrenches, we obtain

rfo = mov̇r −mog + ω̇o ×mo
rpo + ωo × (ωo ×mo

rpo)
rto = Joω̇o + ωo × (Joωo)−mo

rpo × g +mo
rpo × v̇r

+mo
rpo × (ω̇o ×

rpo) +mo
rpo × (ωo × (ωo ×

rpo)) .

Transforming the inertia matrix to the grasping point {r}
through the parallel axis theorem [18] yields rto as

rto = rJoω̇o + ωo × (rJoωo)−mo
rpo × g +mo

rpo × v̇r .

For a vector a ∈ R
3, matrix [.a] is

[.a] =





ax ay az 0 0 0
0 ax 0 ay az 0
0 0 ax 0 ay az



 . (31)
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