
Long Baseline GPS+BDS RTK Positioning
with Partial Ambiguity Resolution

Andreas Brack
Institute for Communications and Navigation

Technische Universität München (TUM), Munich, Germany

BIOGRAPHY

Andreas Brack received the B.Sc. and M.Sc. degrees in electrical engineering from Technische Universität München (TUM),
Munich, Germany, in 2010 and 2012, respectively. He is currently a Ph.D. candidate at the Institute for Communications and
Navigation, TUM. His research focuses on ambiguity resolution techniques for future high-precision GNSS applications.

ABSTRACT

Reliable real-time kinematic positioning requires the occurrence of incorrect integer ambiguity estimates to be limited to a
maximum tolerable rate. For long baselines this usually implies long convergence times due to the presence of atmospheric delay
parameters. Several simulation studies have shown that partial ambiguity resolution (PAR) techniques are beneficial in terms
of faster solutions, since it is more likely that a subset of all ambiguities can be reliably resolved rather than the fullset, but
they also result in a positioning precision that is inferiorto the one after successful full ambiguity resolution. We analyze the
impact of PAR on the positioning capabilities of dual-frequency single and combined GPS and BDS on a long baseline. It will
be demonstrated in numerical simulations that the time to reach centimeter level positioning results can be expected tobe clearly
reduced when using PAR techniques, in particular for the combined system. This will be verified with one day of real global
navigation satellite system data from an88.5 km baseline in the area of Perth, Australia.

INTRODUCTION

The benefit of using partial ambiguity resolution (PAR) techniques for single long baseline real-time kinematic (RTK) positioning
is analyzed and verified with real global navigation satellite system (GNSS) data. With long baseline it is referred to the case that
the spatial correlation between the atmospheric delays experienced by the signals observed at the two receivers is too weak to be
properly utilized. The residual between receiver differential tropospheric zenith wet delay and the double difference ionospheric
slant delays are thus included as unknowns in the parameter vector and estimated along with the user coordinates and the carrier-
phase integer ambiguities. This is the so-calledatmosphere floatmodel. The RTK capabilities are limited by the need for correct
estimates of the carrier-phase integer ambiguities, sinceincorrect ambiguity estimates can lead to large errors in the estimated user
position. Ideally, the ambiguity resolution scheme is designed such that a user-defined maximum tolerable rate of an incorrect
integer estimate is not exceeded [1, 2].

This failure rate constraint generally leads to long convergence times for the atmosphere float model, i.e., many epochsof
measurement data have to be collected before the carrier-phase ambiguities can be reliably resolved and the ambiguity fixed
coordinate precision is reached. In such cases it is beneficial to consider PAR techniques, which resolve only a subset of
ambiguities. They allow for faster solutions, since it is more likely that a subset of all ambiguities can be reliably resolved
rather than the full set. However, one has to keep in mind thatthe resulting positioning precision is generally lower than the
one after successful full ambiguity resolution (FAR), since the integer property of the ambiguities is not fully exploited. It was
demonstrated via numerical studies that PAR techniques canclearly shorten the time to reach centimeter level accuracyfor long
baselines [3, 4, 5].

Improved ambiguity resolution performance can be achievedby combining multiple GNSS, as it was shown for GPS and
Galileo [6], GPS and BDS [7, 8, 9], and four system GPS, Galileo, BDS, and QZSS [10]. Instantaneous and reliable ambiguity
resolution for long baselines, however, is not possible [6]and fast solutions still remain difficult [11, 12], even in such a combined
GNSS case. The real data results for instantaneous GPS+BDS RTK positioning in [13] show that PAR is particularly useful for
a combined system. The capabilities of PAR for GPS+BDS positioning on a long baseline are investigated in this contribution.

There are two fundamentally different strategies to approach the problem of reliable FAR or PAR, i.e., to determine the subset
of ambiguities to be resolved and the corresponding integersolution.Model-drivenapproaches only make use of the underlying



system model, whereas the more elaborate but also more flexible data-drivenapproaches also utilize the measurement data itself.
The performance of each a model-driven and a data-driven algorithm for FAR and PAR is analyzed for dual-frequency single
and combined GPS and BDS positioning on an88.5 km baseline in the area of Perth, Australia. It will be shown that the PAR
schemes can be expected to clearly reduce the average time required to reach centimeter level positioning results compared to the
conventional FAR schemes, especially for the combined system. This will be verified using one day of real GNSS data collected
at the two IGS MGEX stations PERT and NNOR.

RELIABLE RTK POSITIONING

The system of linearized GNSS observation equations for long baseline positioning can be written in the form

y = Aa+Bb+ η, (1)

wherey ∈ R
q contains the double difference code and carrier-phase observations of all previous epochs,a ∈ Z

n the time
constant carrier-phase integer ambiguities, andb ∈ R

p the incremental baseline coordinates, the residual tropospheric zenith
delay, and the double difference ionospheric slant delays for each measurement epoch. The noise vectorη ∈ R

q is assumed
to follow a zero mean Gaussian distribution and to properly model the correlations induced by double differencing. Dynamic
models linking the atmospheric parameters from different epochs may be included in (1).

The estimation ofb can be decomposed into three steps. The first one is the Gaussian distributed so-called float solution̂a
andb̂ from a linear least-squares estimation
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The second step is the integer ambiguity resolution, which is based on the covariance matrixQâ and the realization of̂a.
The integer mapping takes place either in the originaln-dimensional ambiguity space or after the transformation

ẑ = Zâ and Qẑ = ZQâZ
T, (3)

whereZ ∈ Z
n×n is an integer unimodular matrix with| det(Z)| = 1. Such a transformation may or may not affect the results

for FAR algorithms, but it fundamentally changes the problem of PAR, irrespective of the integer mapping that is used. Aswill
be shown later, decorrelation transformations [14] prove to be very useful for PAR. After the parameterization of the ambiguities
via Z has been chosen, some (PAR) or all (FAR) of the ambiguities may be fixed to integers. Let the set of indexes that
correspond to the ambiguities that are resolved and kept as float values be given byI andĪ, respectively (withI ⊆ {1, . . . , n},
I ∪ Ī = {1, . . . , n}, andI ∩ Ī = ∅). If the selection of the subsetI is based only onQẑ , we call this a purely model-driven
scheme, whereas if bothQẑ and the realization of̂z are used, we refer to this as a data-driven approach. All ambiguities with an
index inI are fixed to integers

ž = S (ẑ) , S(·) : Rn 7→ Z
|I|. (4)

Note that the fixed solutioňz is of dimension|I| instead ofn. For reliable coordinate estimates, the mappingS(·) has to be
chosen such that the probability of an incorrect ambiguity solutionP (ž 6= zI) does not exceed the predefined valuePf , with
z = Za. The properties of admissible integer mappingsS(·) are formulated in the context of integer aperture estimation [15]
for FAR and generalized integer aperture estimation [16] for PAR. Four realizations ofS(·) are presented later in this section.

In the third and final step, the estimates of the real valued parameterŝb are refined by conditioning them to the fixed ambigu-
ities

b̌ = b̂−Q
b̂ẑI

Q−1

ẑI
(ẑI − ž) , (5)

with Q
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ZT

I andQẑI
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T

I . The partially ambiguity fixed precision of the estimates ofb for a given specific
index setI = J (note thatI is a discrete random variable for data-driven fixing schemes) is described by the conditional
covariance matrix

Q
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= Q
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−Q
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Q

ẑJ b̂
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Given that the ambiguity failure rate is sufficiently small,the user can make use of (6) to compute the precision that he can expect
from the coordinate estimates once the index set has been determined by the employed algorithm.



Reliable Model-driven Ambiguity Resolution

For model-driven algorithms one specific index setI has to be selected based onQẑ, such that the probability of a wrong
ambiguity estimate does not exceedPf , if this specific subset of ambiguities is resolved irrespective of the realization of̂z.

For FAR, the index setI can only assume the two valuesI = {1, . . . , n} or I = ∅, i.e., either the full set of ambiguities is
resolved or none of them is. Integer least-squares (ILS) is optimal in the sense of maximizing the probability of correctinteger
estimates forI = {1, . . . , n} and is thus most likely to meet the failure rate constraint. Its failure rate cannot be computed in
closed form, but an upper bound is given by the integer bootstrapping (IB) failure rate [17]

Pf,IB = 1−
n
∏

i=1
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)
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with Φ(·) the cumulative distribution function of the standard Gaussian, σẑi|I the conditional standard deviation of the trans-
formed ambiguity fromQẑ , andI = {i+ 1, . . . , n}. The IB failure rate is a sharp upper bound if a prior decorrelation is applied
[18, 19]. In the following section, IB FAR refers to an evaluation ofPf,IB, followed by ILS ifPf,IB ≤ Pf .

For PAR, the index setI can assume any of the2n possibilities that result from either including each of then ambiguities in
I or not. The optimal estimator for a given subsetI leading to the highest possible probability of correct estimates is discussed
in [20] and given by

ž = argmax
u∈Z|I|

∑

v∈Zn|vI=u
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)
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An upper bound of its failure rate is given by the IB failure rate corresponding to the partial covariance matrixQẑI
. In the

following section, IB PAR refers to (8) combined with the very simple subset selection strategyI = {nIB, . . . , n}, with

nIB = argmax
n′∈{1,...,n}

Pf,IB,n′ s.t. Pf,IB,n′ ≤ Pf , (9)

where the partial IB failure ratePf,IB,n′ is given by

Pf,IB,n′ = 1−
n
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)
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This idea of using a truncated version of IB for reliable PAR was introduced in [21] and used in, e.g., [3, 22, 23].

Reliable Data-driven Ambiguity Resolution

For data-driven algorithms the selection of the index setI depends on bothQẑ and the realization of̂z itself, i.e.,I is now
a random variable assuming discrete values. The estimator has to be designed such that the overall probability of an incorrect
integer solution does not exceedPf .

For FAR this means that only if the float solutionẑ falls into a certain subset ofRn, which is referred to as the aperture region
[15], alln ambiguities are resolved, otherwise none of them is. In practice, the aperture region is often implicitly defined via an ac-
ceptance test of the ILS solutionz∗ = argminv∈Zn ‖ẑ − v‖2Q

ẑ

against the second best solutionz̄ = argminv∈Zn\z∗ ‖ẑ − v‖2Q
ẑ

.
A popular test of that form is the difference test (DT) [24]

I =

{

{1, . . . , n} if ‖ẑ − z̄‖2Q
ẑ

− ‖ẑ − z∗‖2Q
ẑ

≥ µ

∅ else.
(11)

By properly adjusting the critical valueµ, a fixed failure ratePf can be guaranteed.
The theory of integer aperture estimation can be extended toPAR by introducing at most2n generalized aperture regions,

where each one is linked to one specific realization of the index setI [16]. A possible strategy for defining these regions
is to not only test the best integer solutionz∗ against the second best solution, but against the best counter-hypothesis̄zi =
argminv∈Zn|vi 6=z∗

i

‖ẑ − v‖2Q
ẑ

for each scalar ambiguity. The modified version of the DT follows as

I = {i = 1, . . . , n | ‖ẑ − z̄i‖2Q
ẑ

− ‖ẑ − z∗‖2Q
ẑ

≥ µ}. (12)

Again, a fixed failure rate can be guaranteed by properly choosing the critical valueµ. The integer solution for this strategy is
given byž = z∗

I . It is essential for this scheme to be applied in a decorrelated ambiguity space. Otherwise, many or even all of
the counter-hypothesesz̄i are likely to be identical and PAR would become FAR.



EXPERIMENTAL RESULTS

The performance of the four above introduced ambiguity resolution algorithms is analyzed for dual-frequency long baseline
single and combined GPS and BDS positioning with simulations and for combined GPS+BDS also with real GNSS data. The
real data was collected at the two IGS MGEX stations PERT (Trimble NetR9) and NNOR (Septentrio PolaRx4) in the area
of Perth, Australia, during September 7, 2015. The stationsform a baseline with a length of88.5 km. The number of visible
satellites with an elevation angle greater than10◦ is shown in Figure 1. The GPS and BDS signals that are used are listed
in Table 1 together with the assumed zenith referenced standard deviations of the measurement noise, to which the elevation
dependent exponential weighting function from [25] is applied. The code standard deviations were estimated from one day of
double difference code measurements recorded on a short baseline by receivers of similar type with known coordinates, see [13].
Since GPS and BDS do not share common frequencies, a separatepivot satellite is used for both systems. The measurements are
a-priori corrected for the hydrostatic tropospheric delays using the blind MOPS tropospheric model [26] and the Niell mapping
function [27].
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Figure 1: Number of visible GPS and BDS satellites during September 7,2015.

Table 1: Wavelengths and zenith referenced code and carrier-phase standard deviations of GPS and BDS observables.

L1 L2 B1 B2

λ [cm] 19.03 24.42 19.20 24.83

σρ [cm] 37 28 35 28

σϕ [mm] 2 2 2 2

The float solutions are computed using a recursive least-squares implementation, in which the ambiguities are assumed time
constant. The relative tropospheric wet zenith delay is modeled as a random walk with a process noise of2mm/

√
hour, and

the coordinates and ionospheric delays are assumed completely unlinked in time. No correlations are assumed between the
measurements from consecutive epochs. Rising satellites are included immediately in the computation of the float solution. The
ambiguity resolution algorithms are applied anew in each epoch, i.e., the ambiguities are not held fixed once an integer solution
has been found.

The computation of the IB failure rate for IB FAR is carried out after applying the LAMBDA decorrelation [28], and the two
PAR schemes are applied in the LAMBDA decorrelated ambiguity space. The model dependent critical values for the data-driven
DT based schemes are approximated with the conservative functional description from [29]. The maximum failure rate is set to
Pf = 0.1%. In order to visualize the computed formal precision as given byQ

b̂|ẑJ
in (6), we define the scalar formal precision

measure
α = max

{ σE

1 cm
,

σN

1 cm
,

σU

3 cm

}

, (13)

whereσE, σN, andσU are the standard deviations of the coordinate estimates in the local east, north, and up frame that follow
fromQ

b̂|ẑJ
.

Predicted Times to Reach Centimeter Level Positioning Results

We define the convergence time as the number of epochs required with IB FAR to reach a formal precision ofα = 2, i.e., a
standard deviation of2 cm in the horizontal plane, orα = 10, i.e., decimeter level precision in the horizontal plane. The average



Table 2: Average convergence times of IB FAR in terms of the required number of epochs; one epoch corresponds to30 s.

α = 2 α = 10

GPS L1 L2 58.7 52.3

BDS B1 B2 45.1 44.3

GPS L1 L2 + BDS B1 B2 26.2 21.0

convergence times are given in Table 2, where the estimationis started every10min throughout the day. The smaller values for
α = 10 imply that this precision may already be reached with the float solution. Improved convergence times are obtained with
the combined system.

Since the model-driven IB FAR is always the weakest scheme, it is now investigated via simulations by how much the
convergence times can be expected to be reduced on average byusing one of the more advanced ambiguity resolution schemes.
Figure 2 shows the average availability of precise and reliable coordinate estimates as a function of the fraction of theconvergence
time of IB FAR, where precise meansα = 2 in the first row andα = 10 in the second row. For the combined system we can see
that by using IB PAR the time required to reachα = 2 can be reduced by half in50% of the cases. Similar results are obtained
when using the data-driven DT FAR instead of IB FAR. The data-driven DT PAR scheme can even reduce the time to reach
α = 2 by half with an average probability of more than95% and by75% with an average probability of∼ 50%. That is, we can
expect that the PAR schemes lead to clearly faster solutionscompared to their FAR counterparts.

0 0.25 0.5 0.75 1
0

0.5

1

A
ve
ra
g
e
av
a
il
a
b
il
it
y

0 0.25 0.5 0.75 1
Time / conv. time IB FAR

0 0.25 0.5 0.75 1

GPS L1 L2 + BDS B1 B2

α
≤

1
0

BDS B1 B2

0

0.5

1
GPS L1 L2

α
≤

2

Figure 2: Average reduction of time required to reachα = 2 (first row) andα = 10 (second row); fixed failure ratePf = 0.1%;
green: IB PAR, blue: DT FAR, orange: DT PAR.

Real Data Analysis

The positioning capabilities of the four ambiguity resolution schemes are now verified with real GNSS data for dual-frequency
combined GPS+BDS. The east, north, and up positioning errors as well as the ratio of fixed ambiguitiesnfixed/n are shown for
45min of data in Figure 3 for the two FAR schemes and in Figure 4 for the PAR counterparts. The positioning errors are the
difference between the estimated position and precise reference coordinates. With IB FAR, 71 epochs of data are required until
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Figure 3: East (blue), north (orange), and up (green) positioning errors with FAR for dual-frequency combined GPS+BDS RTK
on PERT/NNOR with a fixed failure rate ofPf = 0.1%. The ratio of fixed ambiguities is shown in black.
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Figure 4: East (blue), north (orange), and up (green) positioning errors with PAR for dual-frequency combined GPS+BDS RTK
on PERT/NNOR with a fixed failure rate ofPf = 0.1%. The ratio of fixed ambiguities is shown in black.

the IB failure rate drops to less thanPf = 0.1%, i.e., until the full set of integer ambiguities is resolvedand the fixed solution
can be accepted. With the data-driven DT FAR, the ambiguities can already be reliably resolved after 52 epochs. With IB PAR,
the first ambiguities are resolved after 11 epochs, and after14 epochs the estimates of the horizontal position components are
already at centimeter level, although the full set of ambiguities is again only resolved after 71 epochs. An even faster solution is
obtained with DT PAR, for which the horizontal positioning error is at centimeter level after only 9 epochs. It is noted that the
large numbers of epochs required by the FAR schemes are to some extend also caused by rising satellites after epoch 20 and 34.
The PAR schemes are almost not affected by this. Although theratio of fixed ambiguities is slightly smaller immediately after
the new satellite has been included, the positioning precision is not visibly reduced.

The positioning results for the whole day are shown in Figure5 for FAR and in Figure 6 for PAR, which can be read as follows.
The position errors are color coded, where gray means that noambiguity is resolved and blue means that alln ambiguities are
resolved. For the PAR schemes, all shades in between are possible. The ratio of resolved ambiguities is shown in the third
row, and the computed formal precisionα in the last row. The feasible precision values are limited bythe float and fully fixed
solutions, which are drawn as blue lines. Since we are mostlyinterested in the time required to reach centimeter precision, the
estimator is completely reinitialized every90min, as can most notably be seen at the formal float precision.

The ratio of fixed ambiguities for the FAR schemes in Figure 5 is either 0 or 1, corresponding to the gray and blue position
errors, respectively. The horizontal error of the fully fixed solution is at centimeter level, whereas the gray float solution can
have much larger errors, especially after reinitialization, as can be seen in the time series of the up error. The behavior after
reinitialization agrees with the computed float precision values in the last row. Although the results of IB FAR and DT FARseem
to be very similar, the fixed solution was accepted in 1729 outof 2880 epochs for IB FAR and in 2011 epochs for DT FAR. This
difference is visible, e.g., in the up error after the last initialization. We further notice that the fixed solution is often lost when a
satellite rises, as can be seen in the last row: The computed formal precision is identical to the float precision after initialization,
before it drops to the fixed precision once the ambiguities are resolved. But then quite often the float precision is observed again
for a couple of epochs at a later time instance. One could of course exclude rising satellites from the ambiguity fixing, which
would be nothing else than a specific implementation of PAR.

The ratio of fixed ambiguities for the PAR strategies as shownin Figure 6 is mostly close to 1, except for a few epochs after
each reinitialization. Accordingly, the computed formal precision values in the last row are mostly very close to the fully fixed
precision. This is verified by the position errors, where thenumber of epochs with large errors is significantly reduced compared
to Figure 5. The best results are obtained for DT PAR, for which the gray dots are almost completely gone and only a few epochs
after each initialization remain with a position error thatexceeds a few centimeters. Note that the blue dots with largepositioning
errors reflect the precision of partially fixed solutions anddo not imply wrong ambiguity estimates. The average ratio offixed
ambiguities is91.3% for IB PAR and94.9% for DT PAR (as compared to60.0% and69.8% for the FAR counterparts). We can
also see that–unlike for FAR–rising satellites hardly affect the positioning performance and are thus not an issue withPAR.

CONCLUSION

The benefit of PAR over conventional FAR was demonstrated fordual-frequency long baseline single and combined GPS L1+L2
and BDS B1+B2 RTK positioning. Each a model-driven algorithm based on the IB failure rate and a data-driven algorithm
based on the DT with a maximum failure rate constraint was formulated for FAR and PAR. It was shown via simulations that
clearly shorter time spans can be expected to be required in order to reach centimeter level coordinate estimates when using PAR,
especially for combined GPS+BDS.

These results were confirmed by analyzing one day of real GNSSdata from an88.5 km baseline. It was shown that it is often
not required to resolve the full set of ambiguities in order to achieve close to optimal positioning precision. Two main advantages
of PAR over FAR were observed: The average number of epochs until the precision of the coordinate estimates first reached
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Figure 5: Long baseline dual-frequencyGPS+BDS RTK results on PERT/NNOR with FAR and a fixed failure rate ofPf = 0.1%.
The color of the horizontal and vertical components of the positioning error indicates the ratio of fixed ambiguities as shown in
the third row, where gray stands for a ratio of 0 and blue for a ratio of 1. In the last row, the computed formal precision values
α are shown in black. They are limited by the float (upper blue line) and fully fixed (lower blue line) precision. The estimator is
reinitialized every90min.
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Figure 6: Long baseline dual-frequency GPS+BDS RTK results on PERT/NNOR with PAR and a fixed failure rate ofPf = 0.1%,
see caption of Figure 5.



centimeter level was clearly reduced, and the problem of when or how to include the carrier-phase ambiguities corresponding to
rising satellites in a multi-epoch positioning solution was automatically taken care of by both presented PAR strategies.
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