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ABSTRACT

Reliable real-time kinematic positioning requires the weence of incorrect integer ambiguity estimates to betéito a
maximum tolerable rate. For long baselines this usuallyliespong convergence times due to the presence of atmdsjuleday
parameters. Several simulation studies have shown thaalpambiguity resolution (PAR) techniques are benefiaialdrms

of faster solutions, since it is more likely that a subsetlbfmbiguities can be reliably resolved rather than the $ell, but
they also result in a positioning precision that is infetimthe one after successful full ambiguity resolution. Walgre the
impact of PAR on the positioning capabilities of dual-fregay single and combined GPS and BDS on a long baseline. |1t wil
be demonstrated in numerical simulations that the timedohlreentimeter level positioning results can be expectbd tearly
reduced when using PAR techniques, in particular for thelined system. This will be verified with one day of real global
navigation satellite system data from&h5 km baseline in the area of Perth, Australia.

INTRODUCTION

The benefit of using partial ambiguity resolution (PAR) teiclues for single long baseline real-time kinematic (RTESitioning
is analyzed and verified with real global navigation sateBystem (GNSS) data. With long baseline it is referredectse that
the spatial correlation between the atmospheric delaysresqzed by the signals observed at the two receivers is ¢éad o be
properly utilized. The residual between receiver difféi@nropospheric zenith wet delay and the double diffeegionospheric
slant delays are thus included as unknowns in the paramsttonand estimated along with the user coordinates andithieic
phase integer ambiguities. This is the so-caledosphere floahodel. The RTK capabilities are limited by the need for ccirre
estimates of the carrier-phase integer ambiguities, smogrect ambiguity estimates can lead to large errorsarettimated user
position. Ideally, the ambiguity resolution scheme is gestl such that a user-defined maximum tolerable rate of amrewt
integer estimate is not exceeded [1, 2].

This failure rate constraint generally leads to long cogeace times for the atmosphere float model, i.e., many epafchs
measurement data have to be collected before the carrgesepmbiguities can be reliably resolved and the ambiguiggd fi
coordinate precision is reached. In such cases it is bealef@iconsider PAR techniques, which resolve only a subset of
ambiguities. They allow for faster solutions, since it ismmdikely that a subset of all ambiguities can be reliablyotesd
rather than the full set. However, one has to keep in mindttimresulting positioning precision is generally lowerrttibe
one after successful full ambiguity resolution (FAR), €inthe integer property of the ambiguities is not fully extgdi It was
demonstrated via numerical studies that PAR techniquesleanly shorten the time to reach centimeter level accui@cipng
baselines [3, 4, 5].

Improved ambiguity resolution performance can be achidyedombining multiple GNSS, as it was shown for GPS and
Galileo [6], GPS and BDS [7, 8, 9], and four system GPS, GaligRDS, and QZSS [10]. Instantaneous and reliable ambiguity
resolution for long baselines, however, is not possibl@fg] fast solutions still remain difficult[11, 12], even irchia combined
GNSS case. The real data results for instantaneous GPS+BR®éSitioning in [13] show that PAR is particularly usefairf
a combined system. The capabilities of PAR for GPS+BDS jowsitg on a long baseline are investigated in this contidiyut

There are two fundamentally different strategies to apghidlae problem of reliable FAR or PAR, i.e., to determine thieset
of ambiguities to be resolved and the corresponding integletion. Model-drivenapproaches only make use of the underlying



system model, whereas the more elaborate but also morelfekita-drivenapproaches also utilize the measurement data itself.
The performance of each a model-driven and a data-drivesridign for FAR and PAR is analyzed for dual-frequency single
and combined GPS and BDS positioning on8&rb km baseline in the area of Perth, Australia. It will be showrt tha PAR
schemes can be expected to clearly reduce the average timieageto reach centimeter level positioning results comg#o the
conventional FAR schemes, especially for the combinecdaysThis will be verified using one day of real GNSS data ctdiec

at the two IGS MGEX stations PERT and NNOR.

RELIABLE RTK POSITIONING
The system of linearized GNSS observation equations fay baseline positioning can be written in the form
y=Aa+ Bb+n, (1)

wherey € R? contains the double difference code and carrier-phasenddigns of all previous epochg, € Z™ the time
constant carrier-phase integer ambiguities, &nd R” the incremental baseline coordinates, the residual tpipe zenith
delay, and the double difference ionospheric slant delaygdch measurement epoch. The noise vegter R? is assumed
to follow a zero mean Gaussian distribution and to properbget the correlations induced by double differencing. Dyita
models linking the atmospheric parameters from differgoichs may be included in (1).

The estimation ob can be decomposed into three steps. The first one is the @ausstributed so-called float soluti@n
andb from a linear least-squares estimation

b~ (e &) @

The second step is the integer ambiguity resolution, wredbeised on the covariance mat€, and the realization oé.
The integer mapping takes place either in the originrdimensional ambiguity space or after the transformation

2=Za and Q. =2Q,Z", ()

whereZ < Z™*" is an integer unimodular matrix withlet(Z)| = 1. Such a transformation may or may not affect the results
for FAR algorithms, but it fundamentally changes the probtf PAR, irrespective of the integer mapping that is usedwilis
be shown later, decorrelation transformations [14] proves very useful for PAR. After the parameterization of thébayuities
via Z has been chosen, some (PAR) or all (FAR) of the ambiguitieg beafixed to integers. Let the set of indexes that
correspond to the ambiguities that are resolved and kepbaisviilues be given b¥ andZ, respectively (witiZ C {1,...,n},
TUZI={1,...,n},andZ NZ = ). If the selection of the subsg@tis based only o, we call this a purely model-driven
scheme, whereas if bot), and the realization of are used, we refer to this as a data-driven approach. AllguitiEs with an
index inZ are fixed to integers

2=8(2), S():R"w— 7z (4)

Note that the fixed solutio# is of dimension|Z| instead ofn. For reliable coordinate estimates, the mapp#ig has to be
chosen such that the probability of an incorrect ambiguitytion P (2 # zz) does not exceed the predefined vaRie with
z = Za. The properties of admissible integer mappiggs are formulated in the context of integer aperture estimgtl®]
for FAR and generalized integer aperture estimation [16PR&R. Four realizations of(-) are presented later in this section.
In the third and final step, the estimates of the real valuedrpetersf) are refined by conditioning them to the fixed ambigu-
ities
b=0b-Q;;,Qz; (27— %), (5)

with Q;. = Q3,27 andQ;, = Z7Q,Z7. The partially ambiguity fixed precision of the estimatesdér a given specific
index setZ = J (note thatZ is a discrete random variable for data-driven fixing sch@neesdescribed by the conditional
covariance matrix

Qiz, = Qs — Q3:,Q5,Q; 4 (6)
Given that the ambiguity failure rate is sufficiently smétile user can make use of (6) to compute the precision thatrhexqeect
from the coordinate estimates once the index set has beemdeéd by the employed algorithm.



Reliable M odel-driven Ambiguity Resolution

For model-driven algorithms one specific index ehas to be selected based @, such that the probability of a wrong
ambiguity estimate does not excekd if this specific subset of ambiguities is resolved irrespe®f the realization ot.

For FAR, the index sef can only assume the two valués= {1,...,n} orZ = (), i.e., either the full set of ambiguities is
resolved or none of them is. Integer least-squares (ILSpiisnal in the sense of maximizing the probability of corredeger
estimates foZ = {1,...,n} and is thus most likely to meet the failure rate constraits.fdilure rate cannot be computed in
closed form, but an upper bound is given by the integer biagtping (I1B) failure rate [17]

Ps=1-]] (2@ <2i ) - 1) , (7)
i=1 ZilI

with @(-) the cumulative distribution function of the standard Géarss;, , the conditional standard deviation of the trans-
formed ambiguity fronQ,, andl = {i + 1,...,n}. The IB failure rate is a sharp upper bound if a prior decatieh is applied
[18, 19]. In the following section, IB FAR refers to an evatioa of % iz, followed by ILS if P 15 < F;.

For PAR, the index sef can assume any of tf# possibilities that result from either including each of thambiguities in
7 or not. The optimal estimator for a given subgdeading to the highest possible probability of correctreates is discussed
in [20] and given by

1
%2 = argmax Z exp <5|2v|2Qz> . (8)

T
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An upper bound of its failure rate is given by the IB failuréer@orresponding to the partial covariance ma@y, . In the

following section, IB PAR refers to (8) combined with the yesimple subset selection stratefy= {nis, ..., n}, with
nig = argmax . St Pripaw < B, 9)
n’e{l,...,n}

where the partial IB failure raté% 1 .,/ is given by

= 1
Psn =1-]] <2q> <20A ) - 1) . (10)
i=n' Zi|l1

This idea of using a truncated version of IB for reliable PABsvintroduced in [21] and used in, e.g., [3, 22, 23].

Reliable Data-driven Ambiguity Resolution

For data-driven algorithms the selection of the indexZselepends on botl@; and the realization o itself, i.e.,Z is now
a random variable assuming discrete values. The estimatotohbe designed such that the overall probability of anriecd
integer solution does not exceé&d

For FAR this means that only if the float solutiéralls into a certain subset &', which is referred to as the aperture region
[15], alln ambiguities are resolved, otherwise none of them is. Intip@ahe aperture region is often implicitly defined via an a
ceptance test of the ILS solutiari = argmin, ;. |2 — ”Hi?z against the second best soluti®r- argmin, ¢z, ,« |2 — ”Hi?;
A popular test of that form is the difference test (DT) [24]
I{{l,...,n} it 2-z213, 12— 2"3, > u 1)

0 else

By properly adjusting the critical valye a fixed failure rate’; can be guaranteed.

The theory of integer aperture estimation can be extend®AR by introducing at mos?™ generalized aperture regions,
where each one is linked to one specific realization of theXmsetZ [16]. A possible strategy for defining these regions
is to not only test the best integer solutish against the second best solution, but against the bestamlypothesis’ =
zZ - ’UHQQz for each scalar ambiguity. The modified version of the DTdiek as

argminveznw#z:
I={i=1,...,n| |22, - 12 - 2"§, > n}. (12)

Again, a fixed failure rate can be guaranteed by properly singathe critical valug:. The integer solution for this strategy is
given byz = z%. Itis essential for this scheme to be applied in a decoedlaimbiguity space. Otherwise, many or even all of
the counter-hypotheses are likely to be identical and PAR would become FAR.



EXPERIMENTAL RESULTS

The performance of the four above introduced ambiguity legimm algorithms is analyzed for dual-frequency long tiase
single and combined GPS and BDS positioning with simulatiamd for combined GPS+BDS also with real GNSS data. The
real data was collected at the two IGS MGEX stations PERTh{fBlé NetR9) and NNOR (Septentrio PolaRx4) in the area
of Perth, Australia, during September 7, 2015. The statfiorms a baseline with a length &8.5km. The number of visible
satellites with an elevation angle greater thaxi is shown in Figure 1. The GPS and BDS signals that are usedsted |

in Table 1 together with the assumed zenith referenced atdrakviations of the measurement noise, to which the étevat
dependent exponential weighting function from [25] is @bl The code standard deviations were estimated from opefda
double difference code measurements recorded on a shetirtealsy receivers of similar type with known coordinates §13].
Since GPS and BDS do not share common frequencies, a sepizdteatellite is used for both systems. The measuremeats a
a-priori corrected for the hydrostatic tropospheric dslaging the blind MOPS tropospheric model [26] and the Niglpping
function [27].
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Figure1: Number of visible GPS and BDS satellites during Septemb2075.

Table 1: Wavelengths and zenith referenced code and carrier-ptasdgesd deviations of GPS and BDS observables.

L1 L2 B1 B2
Afem] 19.03 24.42 19.20 24.83
o, [cm] 37 28 35 28
0, [mm] 2 2 2 2

The float solutions are computed using a recursive leastregumplementation, in which the ambiguities are assuimes t
constant. The relative tropospheric wet zenith delay is efextlas a random walk with a process nois€ ofm //hour, and
the coordinates and ionospheric delays are assumed ceatypletinked in time. No correlations are assumed between th
measurements from consecutive epochs. Rising satellitdacduded immediately in the computation of the float solut The
ambiguity resolution algorithms are applied anew in eaaithpi.e., the ambiguities are not held fixed once an integjetien
has been found.

The computation of the IB failure rate for IB FAR is carried after applying the LAMBDA decorrelation [28], and the two
PAR schemes are applied in the LAMBDA decorrelated ambyggaice. The model dependent critical values for the davasdr
DT based schemes are approximated with the conservatieiidnal description from [29]. The maximum failure rate &

Py = 0.1%. In order to visualize the computed formal precision asrglvyeQBlij in (6), we define the scalar formal precision

measure o o o
a:max{ E, N, U}, (13)
lem” 1ecm” 3cm
whereog, on, andoy are the standard deviations of the coordinate estimatdeitotal east, north, and up frame that follow
fromQy, . .
|27

Predicted Timesto Reach Centimeter Level Positioning Results

We define the convergence time as the number of epochs rdquitte IB FAR to reach a formal precision ef = 2, i.e., a
standard deviation df cm in the horizontal plane, ax = 10, i.e., decimeter level precision in the horizontal planke Bverage



Table 2: Average convergence times of IB FAR in terms of the requineiiper of epochs; one epoch correspondite

a=2 ao=10
GPSL1L2 58.7 52.3
BDS B1 B2 45.1 44.3
GPSL1L2+BDSB1B2| 26.2 21.0

convergence times are given in Table 2, where the estimitistarted every0 min throughout the day. The smaller values for
«a = 10 imply that this precision may already be reached with thet Bodution. Improved convergence times are obtained with
the combined system.

Since the model-driven IB FAR is always the weakest scheinis, riow investigated via simulations by how much the
convergence times can be expected to be reduced on averagabyone of the more advanced ambiguity resolution schemes
Figure 2 shows the average availability of precise andylgieoordinate estimates as a function of the fraction o€tdmergence
time of IB FAR, where precise means= 2 in the first row andv = 10 in the second row. For the combined system we can see
that by using IB PAR the time required to reagh= 2 can be reduced by half 50% of the cases. Similar results are obtained
when using the data-driven DT FAR instead of IB FAR. The dhigen DT PAR scheme can even reduce the time to reach
a = 2 by half with an average probability of more tha®% and by75% with an average probability of 50%. That is, we can
expect that the PAR schemes lead to clearly faster solutiompared to their FAR counterparts.
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Figure 2: Average reduction of time required to reaeh= 2 (first row) anda = 10 (second row); fixed failure rat& = 0.1%;
green: IB PAR, blue: DT FAR, orange: DT PAR.

Real Data Analysis

The positioning capabilities of the four ambiguity res@uatschemes are now verified with real GNSS data for dualdieaqy
combined GPS+BDS. The east, north, and up positioningea®ell as the ratio of fixed ambiguities..q/n are shown for

45 min of data in Figure 3 for the two FAR schemes and in Figure 4 ferRAR counterparts. The positioning errors are the
difference between the estimated position and precisearafe coordinates. With IB FAR, 71 epochs of data are reduwirgil
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Figure 3: East (blue), north (orange), and up (green) positioningremvith FAR for dual-frequency combined GPS+BDS RTK
on PERT/NNOR with a fixed failure rate & = 0.1%. The ratio of fixed ambiguities is shown in black.
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Figure4: East (blue), north (orange), and up (green) positioningremvith PAR for dual-frequency combined GPS+BDS RTK
on PERT/NNOR with a fixed failure rate ¢ = 0.1%. The ratio of fixed ambiguities is shown in black.

the IB failure rate drops to less thdh = 0.1%, i.e., until the full set of integer ambiguities is resolad the fixed solution
can be accepted. With the data-driven DT FAR, the ambigudi#n already be reliably resolved after 52 epochs. With IRPA
the first ambiguities are resolved after 11 epochs, and aftespochs the estimates of the horizontal position compsrer
already at centimeter level, although the full set of ambigsiis again only resolved after 71 epochs. An even fasigtisn is
obtained with DT PAR, for which the horizontal positioninga is at centimeter level after only 9 epochs. It is noteat the
large numbers of epochs required by the FAR schemes are t® axtend also caused by rising satellites after epoch 204nd 3
The PAR schemes are almost not affected by this. Althoughatie of fixed ambiguities is slightly smaller immediatelfgea

the new satellite has been included, the positioning pictis not visibly reduced.

The positioning results for the whole day are shown in Figuier FAR and in Figure 6 for PAR, which can be read as follows.
The position errors are color coded, where gray means thamimguity is resolved and blue means thatraimbiguities are
resolved. For the PAR schemes, all shades in between ariblgoshe ratio of resolved ambiguities is shown in the third
row, and the computed formal precisiarin the last row. The feasible precision values are limitedhzyfloat and fully fixed
solutions, which are drawn as blue lines. Since we are maogtyested in the time required to reach centimeter pratjshe
estimator is completely reinitialized eve99 min, as can most notably be seen at the formal float precision.

The ratio of fixed ambiguities for the FAR schemes in Figurs Bither 0 or 1, corresponding to the gray and blue position
errors, respectively. The horizontal error of the fully fixeolution is at centimeter level, whereas the gray floattewiwcan
have much larger errors, especially after reinitializatias can be seen in the time series of the up error. The beleiteo
reinitialization agrees with the computed float precisiatues in the last row. Although the results of IB FAR and DT Fedem
to be very similar, the fixed solution was accepted in 172962880 epochs for IB FAR and in 2011 epochs for DT FAR. This
difference is visible, e.g., in the up error after the lagiatization. We further notice that the fixed solution igef lost when a
satellite rises, as can be seen in the last row: The compotethf precision is identical to the float precision aftetialization,
before it drops to the fixed precision once the ambiguitiesesolved. But then quite often the float precision is ole®again
for a couple of epochs at a later time instance. One could ofseoexclude rising satellites from the ambiguity fixing,ieth
would be nothing else than a specific implementation of PAR.

The ratio of fixed ambiguities for the PAR strategies as shiowFigure 6 is mostly close to 1, except for a few epochs after
each reinitialization. Accordingly, the computed forma¢gision values in the last row are mostly very close to thiy fixed
precision. This is verified by the position errors, wherentbhmber of epochs with large errors is significantly reduasdgared
to Figure 5. The best results are obtained for DT PAR, for Wiiie gray dots are almost completely gone and only a few epoch
after each initialization remain with a position error teateeds a few centimeters. Note that the blue dots with [zogigioning
errors reflect the precision of partially fixed solutions awdnot imply wrong ambiguity estimates. The average ratitixaefd
ambiguities i91.3 % for IB PAR and94.9 % for DT PAR (as compared 0.0 % and69.8 % for the FAR counterparts). We can
also see that—unlike for FAR—rising satellites hardly etffee positioning performance and are thus not an issueRMNER.

CONCLUSION

The benefit of PAR over conventional FAR was demonstrateddaf-frequency long baseline single and combined GPS L1+L2
and BDS B1+B2 RTK positioning. Each a model-driven algaritbased on the IB failure rate and a data-driven algorithm
based on the DT with a maximum failure rate constraint wasfdated for FAR and PAR. It was shown via simulations that
clearly shorter time spans can be expected to be requiragd@n to reach centimeter level coordinate estimates whieg BAR,
especially for combined GPS+BDS.

These results were confirmed by analyzing one day of real GN&Sfrom ar88.5 km baseline. It was shown that it is often
not required to resolve the full set of ambiguities in oraeathieve close to optimal positioning precision. Two malnemtages
of PAR over FAR were observed: The average number of epodilshm precision of the coordinate estimates first reached
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centimeter level was clearly reduced, and the problem ofwandiow to include the carrier-phase ambiguities corredpayito
rising satellites in a multi-epoch positioning solutionsrsutomatically taken care of by both presented PAR stredegi
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