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Abstract

Genome-wide association studies (GWAS) have identified more than 100 genetic variants
contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI,
WHR,gismi), @ measure of body shape. Body size and shape change as people grow older
and these changes differ substantially between men and women. To systematically screen
for age- and/or sex-specific effects of genetic variants on BMI and WHRggmi, we performed
meta-analyses of 114 studies (up to 320,485 individuals of European descent) with
genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric
Traits (GIANT) Consortium. Each study tested the association of up to ~2.8M SNPs with
BMI and WHRg;gmi in four strata (men <50y, men >50y, women <50y, women >50y) and
summary statistics were combined in stratum-specific meta-analyses. We then screened
for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or
age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we
identified 15 loci (11 previously established for main effects, four novel) that showed signifi-
cant (FDR<5%) age-specific effects, of which 11 had larger effects in younger (<50y) than
in older adults (>50y). No sex-dependent effects were identified for BMI. For WHRgjgmi, we
identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific
effects, of which 28 showed larger effects in women than in men, five showed larger effects
in men than in women, and 11 showed opposite effects between sexes. No age-dependent
effects were identified for WHRqsmi- This is the first genome-wide interaction meta-analy-
sis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we
confirm the sex-specificity of genetic effects on WHRgjgmi- These results may provide
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further insights into the biology that underlies weight change with age or the sexually dimor-
phism of body shape.

Author Summary

Adult body size and body shape differ substantially between men and women and change
over time. More than 100 genetic variants that influence body mass index (measure of
body size) or waist-to-hip ratio (measure of body shape) have been identified. While

there is evidence that some genetic loci affect body shape differently in men than in
women, little is known about whether genetic effects differ in older compared to younger
adults, and whether such changes differ between men and women. Therefore, we con-
ducted a systematic genome-wide search, including 114 studies (>>320,000 individuals), to
specifically identify genetic loci with age- and or sex-dependent effects on body size and
shape. We identified 15 loci of which the effect on BMI was different in older compared to
younger adults, whereas we found no evidence for loci with different effects in men com-
pared to women. The opposite was seen for body shape as we identified 44 loci of which
the effect on waist-to-hip ratio differed between men and women, but no difference
between younger and older adults were observed. Our observations may provide new
insights into the biology that underlies weight change with age or the sexual dimorphism
of body shape.

Introduction

Body size and shape are independent risk factors for morbidity and mortality [1-6]. They
change as people grow older and these changes differ substantially between men and women
[7-12]. Subtle sexual dimorphisms are already apparent during early childhood, but differences
become more apparent during puberty due, at least in part, to the increasing influence of sex
steroid hormones [12-14]. After puberty, sex-differences are largely maintained over the adult
life-course. As women age a decline in sex steroid hormones, which coincides with menopause,
affects their body shape and composition, resulting in a more android fat distribution [8, 12,
15]. When younger, women tend towards an hourglass body shape with gynoid fat distribution,
storing proportionally more fat at thighs and hip than around the waist [12, 16, 17]. At a later
age, often after menopause, women’s fat storage shifts more upwards around the waist [12, 16,
17]. In men, changes in body fat distribution are subtler than in women, showing a slow but
steady increase in waist circumference with age [12]. Thus, after the menopause, the sex-differ-
ences in body shape between men and women decrease [12].

This intricate interplay between age and sex on body size and shape is driven by underlying
biological processes, involving environmental and genetic factors [7-12, 15]. Elucidating sex-
and age-specific genetic effects on body size and shape may provide insights into the biological
processes that are involved in the regulation of body weight and fat distribution.

More than 100 genetic loci have been identified for body mass index (BMI), a measure for
body size, and for waist-to-hip ratio adjusted for BMI (WHR4;sm1), @ measure of body shape,
most of which were identified through our own work in the Genetic Investigation of ANthro-
pometric Traits (GIANT) Consortium [18, 19]. In a recent sex-stratified genome-wide associa-
tion meta-analysis (up to 133,723 individuals in discovery stage), we searched for variants with
sex-specific effects on BMI and WHR,gjgnr and identified several loci for which the association
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with WHR,gjgwm differed between men and women, whereas no such loci were observed for
BMI [10]. However, so far, no GWAS efforts have aimed to identify genetic loci that contribute
to differences in body size and shape observed in younger versus older adults, particularly
across the menopausal period in women.

We conducted a genome-wide search for loci that exhibit age- and/or sex-specific differ-
ences in BMI and WHRggm1. For this, we utilized study-specific genome-wide association sta-
tistics separately by sex and by two age groups in each of the studies participating in the
GIANT consortium. The two age groups focus on those below and above 50 years of age, as
this cut-off coincides with the average age at which women transition through menopause and
experience changes in body fat distribution [20-25]. We hypothesize that genetic loci may con-
tribute to the observed differences in body size/shape before age 50y and after age 50y, and that
these differences may be sex-specific.

Results

Stratified GWAS identifies age- and sex-specific loci for BMI and
WHRaijMI

Our total sample comprised up to 320,485 adults (>18y) of European ancestry from 114 stud-
ies with genome-wide array data imputed to the HapMap reference or genotyped Illumina
Metabochip array data including up to 2.8 million autosomal variants. Details on study-specific
analyses, genotyping methods and phenotypic descriptives are given in S1-S3 Tables. To sys-
tematically search for genetic loci that influence body size or shape in an age- and sex-specific
manner, we first conducted study-specific GWA analyses for BMI and WHR4;gm; by four
strata (men <50y, men >50y, women <50y, women >50y), and subsequently performed strat-
ified meta-analyses (comprising up to 50,095 men <50y, 93,201 men >50y, 70,692 women
<50y, and 106,497 women >50y) and derived pooled stratum-specific association results
(Prnen<500 Prmens500 Pwomen<s0s Pwomen=s0) for each trait. This strategy allowed us to test for
three types of interactions: (1) SNPs that demonstrate age-specific effects (SNP x AGE, Pgeaif),
(2) SNPs that show sex-specific effects (SNP x SEX, Ps..q), and (3) SNPs that show age-spe-
cific effects that differ between men and women (SNP x AGE x SEX, Py gecexdif). We first per-
formed genome-wide screens using an a priori filter; i.e. we examined interaction effects on
SNPs that showed evidence of an overall main-effect association (Poyeran < 107°). This screen
is known to have better power to identify loci with age- or sex-specific effects that are direction-
ally concordant [10, 26]. In a second screen, we examined interaction effects for all SNPs, irre-
spective of their main-effect association, which allows identification of loci with opposite effect
direction in older vs younger adults or in men vs women.

As such, 15 loci with age-specific effects for BMI and 44 loci with sex-specific effects for
WHR,gjsm1 reached significance after accounting for multiple testing (controlling false-discov-
ery rate, FDR <5%) (Figs 1 and S1). No loci were identified with evidence for three way SNP x
AGE x SEX interaction.

In addition to the stratum-specific meta-analyses, we performed (a) a main effect meta-anal-
ysis that combined the four pooled effect estimates (one from each stratum), providing results
for the overall association (Poyerq), assuming effects in age- and sex-groups are the same, and
(b) a joint (main + interaction) meta-analysis approach (Pj,;,,) allowing for simultaneous test-
ing of overall association, SNP-by-age and SNP-by-sex interactions [27]. These two screens
revealed 83 novel loci of which the association with BMI or WHR4;wm reached genome-wide
significance (P<5x10™®) (S2 Fig). This extended discovery is enabled through power augmen-
tation achieved by simultaneously testing main and interaction effects, and/or by accounting
for potentially different effects of age and sex on the respective phenotype in the four strata.
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Fig 1. Interaction QQ plots. Quantile-Quantile plots showing P-Values for age-difference (Pagedir green), sex-difference (Pgexair, blue) and age- and sex-
difference (Pagesexdifr, Purple). For BMI the P-Values are depicted for all SNPs genome-wide (A) as well as for a limited subset of SNPs that survived pre-
filtering on the overall association with BMI, Poyeray < 1x1 07 (B). For WHR,gemi the P-Values are depicted for all SNPs genome-wide (C) as well as for a
limited subset of SNPs that survived pre-filtering on the overall association with WHR.gjgmi, Poverar < 1X1 0% (D).

doi:10.1371/journal.pgen.1005378.g001

BMI-novel loci with differential effects in younger and older individuals

Among the 15 loci with significantly different effects (at 5% FDR) on BMI in the younger ver-
sus the older individuals, four were novel (near COBLLI, DDC, SLC22A3 and CBLN4) and 11
were previously established as BMI loci in large-scale main effect GWA meta-analyses (near
NEGRI1, TNNI3K, SEC16B, TMEM18, ADCY3, AC016194.1, TCF7L2, STK33, FTO, MC4R,
APOCI1) (S3 Fig and Tables 1 and S4) [19, 28]. Eleven of the 15 age-dependent BMI loci (73%,
Pyinomiar = 0.06 for divergence from 50%) showed stronger effects in the younger than in the
older group, while the four remaining loci had effects that were more pronounced in the older
than in the younger group (Figs 2 and S4). We did not identify BMI-associated loci that
showed effects in opposite direction between the younger versus the older group, nor did we
find any sex-specific BMI effects. A sensitivity analysis excluding studies with self-report BMI
found similar results (S5 Fig).
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Table 1. Fifteen BMI loci showing significant age-differences in adults <50y compared to adults >50y. The table shows the age-group specific (sex-
combined) results, ordered by largest to smallest effect in adults <50y. All loci were detected by the screen on age-difference that included the a-priori filter
oNn Poyeran < 107°. The age- and sex-specific results (four strata) and more detailed information on the loci are given in S4 Table.

SNP

rs9936385
rs2867125
rs12955983
rs6737082
rs2821248
rs1514174
rs591120
rs11908421
rs4947644
rs10840060
rs1459180
rs17747324
rs3127574
rs3769885
rs4420638

Novel Locus?

yes
yes

yes
yes

Nearest Gene

FTO
TMEM18
MC4R
ADCY3
NEGR1
TNNI3K
SEC16B
CBLN4
DDC
STK33
Intergeneic
TCF7L2
SLC22A3
COBLL1
APOC1

Age < 50y Age > 50y

Chr Pos Alleles’EA/OA  EAF B P N B P N P ageaitt
16 52376670 C/T 39% 0.093 4.5E-95 115,354 0.073 1.0E-97 197,478 1.6E-04
2 612827 Cc/T 83% 0.086 6.1E-49 112,934  0.051 2.3E-30 195,579 4.0E-07
18 56023969 G/A 28%  0.068 1.7E-41 114,448 0.038 2.0E-283 196,590 6.7E-07
2 24991544 C/A 47%  0.046 6.3E-20 92,191 0.022 5.4E-09 162,112  4.7E-05

72348148 AG 83% 0.042 84E-12 106,067 0.017 1.9E-04 188,322 6.2E-04
1 74765651 CcIT 43% 0.039 3.0E-15 92,120 0.012 1.7E-03 161,764 2.8E-06
1 176169376 C/G 20% 0.033 49E-14 115337 0.014 28E-05 197,481 3.1E-04
20 53813074 T/C 81% 0.033 8.7E-08 92,575 0.007 1.2E-01 162,284 4.3E-04
7 50586370 T/C 51% 0.030 7.7E-10 91,980 0.009 1.7E-02 158,555 2.5E-04
11 8456621 C/A 50%  0.029 3.8E-11 110,697 0.011 2.0E-03 187,808 4.0E-04
8 77144822 G/T 58% 0.027 3.1E-09 112,913 0.009 1.6E-02 190,729 6.0E-04
10 114742493 T/C 77%  0.004 4.8E-01 111,572  0.031 2.6E-13 193,773 4.7E-05
6 160711360 C/G 51% 0.001 7.9E-01 113,057 0.019 2.3E-08 195,472 6.8E-04
2 165300636 A/G 48%  -0.001 9.1E-01 107,703 0.020 3.9E-09 192,513 1.1E-04
19 50114786 A/G 82% -0.007 3.6E-01 83,196 0.040 8.9E-12 152,014 2.1E-07

Chr: Chromosome; Pos: position; EAF: Effect Allele Frequency; EA: Effect allele; OA: Other allele
@ ‘Yes' if the locus is mentioned as BMI locus for the first time

® Effect allele is according to the BMI increasing allele according to the associated sex.

doi:10.1371/journal.pgen.1005378.t001

WHR.qsmi—additional genetic loci contribute to differences between
men and women

Unlike for BMI, no WHR,gjgmi-associated loci with significant difference between the age-
groups were observed. Yet, 44 loci showed significantly different effects on WHR4;sm1 between
women and men of which 17 loci were novel (near TTN, IRS1, CDH10, IQGAP2, SIM1, ISPD,
KLF14,S8GCZ, PTPRD, RXRA, GANAB, SLC2A3, LEMD3, GNPNATI, RPS6KA5, CECR2,
HMGXB4) and 27 loci had been previously established in main-effect GWA meta-analyses for
WHR,gjgm1 (56 Fig and Tables 2 and S5). Of the 27 previously established WHR,4;sM: loci,
sex-differences had already been reported for 17 loci [10, 29] [18]. Our genome-wide screen
established sex-specific effects for an additional 10 of the previously established loci with a
main-effect on WHR,gjpm1 (near GORAB, LY86, ITPR2, PIGU, EYA2, KCNJ2, MEIS, EYAI,
CCDC92, NSD1). Of the 44 sex-specific loci, 11 loci showed opposite effect directions in
women versus men and 33 showed a significant effect in one and a smaller or no effect in the
other sex. Consistent with previous observations, almost all of these 33 loci (28 out of the 33,
Phinomial = 3.3x107°) showed more pronounced effects in women than in men (Figs 3 and S7).
Again, a sensitivity analysis excluding studies with self-report waist and hip circumference
found similar results (S8 Fig).

No evidence for loci with simultaneous age- and sex-specific effects

We searched for loci with sex-specific effects on WHR4;pm1 that differ between the two age-
groups and for loci with age-specific effect on BMI that differ between men and women by test-
ing a three-way interaction (SNP x AGE x SEX, Pgeexaif). We first tested for this three-way
interaction in the 59 SNPs identified with an age-difference (15 loci for BMI) or a sex-differ-
ence (44 loci for WHR,gjgm1), as described above. However, none of these 59 loci showed a
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Fig 2. Age-dependent BMI loci. Effect estimates (beta +95CI) per standard deviation in BMI and risk allele for loci showing age-differences in men & women
<50y compared to men & women >50y. Loci are ordered by greater magnitude of effect in men & women <50y compared to men & women >50y. (95%Cl:
95% confidence interval; BMI: body mass index; SD: standard deviation, *Newly identified loci).

doi:10.1371/journal.pgen.1005378.9002

significant three-way interaction (P,geexaifr > 0.00084 = 0.05/59, Bonferroni corrected) (54 and
S5 Tables). When screening for the three-way interaction genome-wide, no such loci were
identified (at 5% FDR) (Fig 1).

Detecting loci with age- or/and sex-interaction requires extremely large
sample sizes

We analytically computed the statistical power of our screens to identify SNP x AGE, SNP x
SEX or SNP x AGE x SEX interaction effects, assuming a total sample size of 300,000 individu-
als distributed across four equally sized strata and considering a range of effect size configura-
tions informed by previous observations (§9, S10 and S11 Figs). For example, for a medium
genetic effect on BMI (R* = 0.037% as observed previously for a locus near MAP2K5 [28]), our
screens had (i) sufficient power to identify genetic loci with two-way SNP x AGE or SNP x SEX
interactions (i.e. loci with effect in one stratum and not in the other, so-called pure two-way
interaction, power = 86%, or loci with effect in both strata, but with opposite effect direction,
power = 99%), (ii) sufficient power to detect extreme three-way interaction SNP x AGE x SEX,
typically involving a biologically-unlikely scenario with opposite effect directions across both
AGE and SEX (power = 99%), but (iii) insufficient power to identify loci with biologically more
plausible three-way interactions (in the range of R> of 0.01-0.05%), i.e., loci that have an effect
in only one stratum and not in the other three strata, 1-stratum interaction, power = 2%, or
those with a similar effect in three strata and not in the fourth, 3-strata interaction,

power = 21% (Fig 4). Identification of loci with medium 1-stratum (R = 0.037% in one stra-
tum and R? = 0 in the other three strata) or 3-strata (R* = 0.037% in three strata and R = 0 in
one stratum) interaction effects with a power of 80%, would require a total sample size of
750,000 or 600,000 individuals, respectively.

Reducing the multiple testing burden by applying a filter on the overall meta-analysis to
first identify SNPs with main effects (Poyeran < 10°) improved the statistical power to identify
loci with specific interaction scenarios: (i) loci with pure two-way interaction effects (e.g. 30%
power increase to detect SNP x AGE with R* = 0.037% and R = 0 in the two strata), or (ii) loci
with 3-strata interaction effects (e.g. 21% power increase for loci with R* = 0.037% in three
strata and R? = 0 in one stratum) (Figs 4 and S9).

With our sample size of 300,000 subjects and equally sized strata we had 80% power to
detect (i) 1-stratum interaction with R* = 0.09% in one stratum (R? = 0 in the other three
strata), (ii) 3-strata interaction with R*> = 0.07% in three strata (R*> = 0 in one stratum), or (iii)
pure two-way interaction with R* = 0.03% in one stratum (R* = 0% in the other stratum).

In summary, this analysis suggests that our study is sufficiently powered to detect even sub-
tle two-way interaction effects, and would certainly include effect-sizes that would be consid-
ered biologically or clinically important. While even more subtle interactions may be
occurring, it appears likely that in this effort, we have detected the most important age- and
sex- interactions for body size and shape.

Association of identified loci with other traits

To examine whether the age- and sex-specific effects of the identified BMI and WHR,gjpmy loci
translate into similar age- and sex-effects on obesity-related cardiometabolic traits, we gathered
results from the ICBP, CHARGE and Global-BPGen consortia (age-specific and sex-specific
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Fig 3. Sex-dependent WHR,q;sm loci. Effect estimates (beta + 95CI) per standard deviation in WHR,gigmi
and risk allele for loci showing sex-differences in women compared to men. Loci are ordered by greater
magnitude of effect in women compared to men. (95%Cl: 95% confidence interval; SD: standard deviation.
*Newly identified loci. T Newly identified sex-differences)

doi:10.1371/journal.pgen.1005378.g003

effects in blood pressure) [30], Global Lipids Genetics Consortium (GLGC) (sex-specific effects
in lipids) [31], DIAGRAM (sex-specific effects for type 2 diabetes) [32]and MAGIC (sex-spe-
cific effects of glycemic traits, personal communication) [33](S6-S10 Tables). Only CHARGE,
Global-BPGen and ICBP had previously performed GWAS searching for age-specific effects
on blood pressure [34]. None of the 15 age-specific BMI-associated loci influenced blood pres-
sure in an age-specific manner (Psypxace > 0.0033 = 0.05/15) (S6 Table). Eight of the 44 sexu-
ally dimorphic WHR,gjgm1 loci show directionally consistent female-specific effects in other
traits (510 Table), but none attained significant sex-difference (Psexqir > 0.0011 = 0.05/44).

In addition, we performed a systematic search in the National Human Genome Research
Institute (NHGRI) GWAS Catalog (www.genome.gov/gwastudies) to examine previously
reported GWAS-associations for potential age- or sex-specificity for the loci we identified for
BMI and WHR,gjpm1» respectively [35]. While no associations have been reported that corrob-
orate the sex- or age-specificity of our findings, largely because few sex-stratified and no age-
stratified genome-wide studies have been performed to date (this study is among the first
ones), many main-effect associations with a wide range of traits and disease have been reported
for our age- or sex-specific BMI or WHR,gjgm loci (S11 and S12 Tables). For example, the
four loci that showed a larger effect in the older group are known for their association with
type 2 diabetes (T2D, near TCF7L2 and COBLLI) or with coronary artery disease (CAD, near
SLC22A3 and APOCI). The fact that disease status may correlate both with age and obesity
traits may confound our age- or sex-specific findings. To reduce this possibility we repeated
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Fig 4. Power heatplots. Power for the combination of screens and gain through a priori filtering for varying configurations of effect sizes across the 4 strata.
The figures illustrate (A) the power to detect age-difference, sex-difference or age-sex-difference in at least one of our scans (0n Pygegifr, Psexaitr @and
Pagesexaifr With and without a priori filtering); and (B) a power comparison, comparing approaches with and without a priori filtering on Poyeran < 1x1 0%. We
here assume four equally sized strata and a total sample size of N = 300,000 (comparable to the sample size in our BMI analyses). We set br50, = 0.033
(corresponding to a known and mean BMI effect in MAP2K5 region with R2=0.037%), bp=s0y = 0, and vary be-so, and by<so on the axes. This strategy
allows us to cover the most interesting and plausible interaction effects: Two-way interactions, such as (i) pure age-difference (b<so, = 0.033, b50, = 0) and
(i) pure sex-difference (bg = 0.033, by = 0); and three-way interactions, such as (iii) extreme three-way interaction with opposite direction across AGE and
SEX, (IV) 1-strata interaction (bF§50y =0.033, bF>50y = bM§50y = b|\/|>5oy = 0), and (V) 3-strata interaction (bF§50y = bF>50y = bM§50y =0.033, bm>50y = O)

doi:10.1371/journal.pgen.1005378.9004
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the meta-analyses restricted to population-based samples (excluding all case-control studies)
and observed similar effect sizes compared to the original meta-analysis (S13 and S14 Tables).

Age-specific effects of BMI loci extend across the life course

We then examined whether the age-specific effects of the 15 BMI loci extend to younger ages
and across the life course by performing look-ups in (i) a GWAS for birth weight [36] and for
childhood obesity [37] from the Early Growth Genetics (EGG) Consortium, (ii) a GWAS for
BMI of individuals aged 16-25 years [38], and (iii) a GWAS for weight change during adult-
hood (personal communication).

We found no evidence of association with birth weight (N = 26,836) for any of our 15 age-
dependent BMI-associated loci (S15 Table) [36]. In contrast, we observed nominal significant
associations with risk of childhood obesity (N = 13,648) for 10 of the 11 variants with stronger
effect on BMI in the younger adults (Tables 3 and S16). The four loci that only showed associa-
tion with BMI in the older adults were not associated with childhood obesity risk (S16 Table)
[37].

Furthermore, nine of the 11 variants with stronger effect on BMI in the younger adults (18-
50y) showed directionally consistent association with increased BMI in the youngest 16-25y
age-group (N = 29,880, Tables 3 and S17). A more detailed experimental examination of effect
sizes across the three age-groups did not reveal significant trends (S12 Fig, S17 Table, and S1
Text).

Finally, we speculated that a higher genetic BMI effect in the younger adults would translate
into weight loss and a higher genetic BMI effect in the older adults would translate into weight
gain with increasing age (Methods). Five of the 15 loci with age-specific effects on BMI showed
a nominal significant association accompanied by the hypothesized direction on weight change
(N = 39,041, Tables 3 and S18).

In summary, the age-dependency of the 15 loci is supported by directionally consistent
enrichment of nominal significant associations (P < 0.05) with childhood obesity, with BMI in
the 16-25y age-group and with weight changes across adulthood (Pg;omiq ranging from 2.4 x
10~ to 1.0 x 107'°, Table 3).

Table 3. Enrichment analyses using look-up data for the 15 age-group specific BMI loci. The look-up data is taken from the EGG consortium for birth
weight and for childhood obesity, and from personal communication for weight change trajectories. More details including SNP specific effect sizes or odds
ratios and association P-Values on the look-up trait can be found in S15 Table (for birth weight), S16 Table (for childhood obesity) and S18 Table (for weight
change).

Look-up data Sample #SNPs #SNPs concordant with the <50y vs Puinomial®  LOCi with expected association pattern

set size tested >50y association pattern

Birth weight 26,836 11 oP >0.99 -

Childhood 13,648 11 10° 1.0x FTO, TMEM18, MC4R, ADCY3, NEGR1, TNNI3K,
obesity 1071° SEC16B, CBLN4, DDC, STK33

16-25y age- 29,880 11 9P 2.0x FTO, TMEM18, MC4R, ADCY3, NEGR1, TNNI3K,
group 10718 SEC16B, CBLN4, Intergeneic

Weight 39,041 15 5¢ 2.4x10° FTO, STK33, TCF7L2, SLC22A3, APOC1

change

& One-sided binomial P-values that test for enrichment of nominal significant and directionally consistent association in the look-up data.

® For the BMI increasing alleles of the 11 SNPs with stronger effect on BMI in <50y, we expect to see a nominal significant association with increased
birth weight, increased risk for childhood obesity and increased BMI in the 16—-25y age-group.

¢ For the BMI increasing alleles of the 11 SNPs with stronger effect on BMI in <50y, we expect to see a nominal significant association with negative
effect on weight change (weight loss), and for the BMI increasing alleles of the four SNPs with stronger effect on BMI in >50y, we expect to see a nominal
significant association with positive effect on weight change (weight gain) (see Methods for details).

doi:10.1371/journal.pgen.1005378.t003

PLOS Genetics | DOI:10.1371/journal.pgen.1005378 October 1,2015 19/42



@’PLOS | GENETICS

Age-and Sex-Specific Genetic Effects on Body Size and Shape

eQTL analysis

eQTLs in humans. We performed sex-specific cis eQTL analyses in lymphoblastoid cell
lines of the combined Groningen and EGCUT studies (1,450 men and 910 women) [39, 40] for
the 44 SNPs showing sex-specific effects for WHRgjgm1 to determine whether there is evidence
to support sex-specific regulatory effects of the index variants on adjacent gene expression.
Two SNP-gene associations displayed significant differences in genetic effects on expression
between men and women (FDR(Pse.qi) < 5% with and without initial filtering on overall
expression effects):rs6088552—-ACSS2 and rs6088735-MYH?7B (S19 Table). While both SNPs
were associated with WHR,gjgp in men-only (and no effect in women), the first SNP showed
no effect on gene expression in men but was associated with gene expression in women, and
the second SNP rs6088735 was associated with gene expression in both sexes, but higher in
men and lower in women. The two loci were located at only 519kb from each other (rs6088552
near PIGU, rs6088735 near EDEM2, at chr20:33-34Mb, r* = 0.07), each showing independent
sex-specific associations with WHR4jgm;1 and each also showing independent sex-specific asso-
ciation with the expression of two different genes (ACSS2 and MYH7B, respectively) (S13 Fig).
ACSS2 (acyl-CoA synthetase short-chain family member 2) is a cytosolic enzyme, transcribed
by SREB-proteins, that catalyzes the production of acetyl-CoA for use in both lipid synthesis
and energy generation acids [41]. MYH7B (myosin, heavy chain 7B, cardiac muscle, beta)
encodes a heavy chain subunit for slow-twitch myosin, largely expressed in heart and skeletal
muscle tissue, and is involved in ATP-hydrolysis.

Age-stratified analysis were not performed for EGCUT as the study participants were rela-
tively young (mean age: 37y), with too few individuals in the >50y age-group. Instead, we
examined association between the 15 age-specific loci and gene expression using data from
3,489 unrelated individuals (N = 2,531 for <50y, N = 958 for >50y) from the NESDA and
NTR cohorts [42, 43]. No SNP showed a significant age-specific effect on gene expression
(FDR(Pgedify) > 5% for all SNP-gene expression combinations).

eQTLs in mice. We compared expression of genes harboured by the identified loci in
inguinal and gonadal fat in age-matched male, female or ovariectomized female (OVX) C57/
BL6 mice maintained on a high-fat (HF) diet [44].

For genes located in the 15 age-specific BMI-associated loci, we compared expression in
OVX female mice with the expression in the other male and female mice, but no differences in
gene expression were observed.

For genes located in the 44 sex-specific WHR,gjmr-associated loci, we compared expression
in female mice (OVX and non-OVX) with the expression in male mice. The expression of two
genes reached significance (P < 6.4x10"* = 0.05/(39 x 2)), corrected for testing 39 genes with
homologous regions, and two tissues). The expression of IQGAP2, which regulates cell adhe-
sion and motility, (rs2069664) was higher (P = 2.3x10”’) in gonadal fat tissue of male compared
to female mice, whereas the expression of TP53INP2, a co-factor for the thyroid hormone
receptor, (rs6088552) was higher (P = 2.3x10°°) in inguinal fat tissue of male compared to
female mice. TP53INP2 is located in the same chromosomal region for which we found evi-
dence for sex-specific associations with the expression of ACSS2 and MYH7B in humans. Inter-
estingly, Tp53inp2 has also been named the DOR (Diabetes and Obesity Related) gene, as its
expression is substantially reduced in skeletal muscle of obese diabetic fa/fa Zucker rats [45].
Muscle-specific overexpression of Tp53inp2 in mice leads to reduced muscle mass, whereas a
deletion leads to muscle hypertrophy [46]. TP53INP2 expression was markedly reduced in
muscle from individuals with type 2 diabetes and in rodent diabetes models [46].
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Pathway analyses

We applied pathway analyses to gain insight into mechanisms that might be involved in the
age- and sex-specific difference in body size and body shape. We assumed that loci even with
moderate evidence for age- or sex-difference for BMI and WHR4jpm1, respectively, are
enriched for genes that contribute to the age-specific BMI association or sex-specific
WHR,gjpmr association (Methods). We used the DEPICT software to perform gene set enrich-
ment and gene expression analyses [47] (520 and S21 Tables and S1 Text), and QIAGEN’s
Ingenuity Pathway Analysis (IPA, QTAGEN Redwood City, www.qiagen.com/ingenuity) tool
for pathway analysis and functional annotation (S22-S26 Tables and S1 Text). Both the
DEPICT and the IPA analyses identify the possible influence of sex-specific WHR,4;smr loci in
androgen biosynthesis, a hormone known to decrease the storage of lipids in adipose tissue
[48]. Additionally, PPARo/RXRa activation, the most significant canonical pathway for loci
with a greater effect on WHR,gjpnv1 in women, may be inhibited in the presence of estrogen,
thus decreasing the breakdown of lipids through competitive receptor binding [49]. To fully
understand the possible age- and sex- specific regulatory effects these identified genes may
have in the identified pathways, gene sets, and biological functions, further analyses are
needed.

Heritability and explained variance analyses

To assess whether the age-group differences observed for BMI and the sex-differences observed
for WHR,gjpmr extend to the contribution of all 2.5M variants (narrow-sense heritability), we
calculated heritability using the GCTA method [50] in several large studies (N = up to 29,232
individuals) for all, for women and men, for the younger and older adult groups. The variance
explained by the 2.5M variants was 21% for BMI and 10% for WHRgjgm1, With no significant
difference between age groups for BMI (P4 = 0.19) or between men and women for
WHRgigm1 (Psexaifr = 0.48) (S27 Table).

To further investigate differences between subgroups, we calculated the variance explained
in the discovery data set for subsets of SNPs based on varying thresholds of overall association
on BMI or WHR,gjgmy (S14 Fig). When we included only SNPs that reached genome-wide sig-
nificance for BMI (Pg,e,qn < 5x10°%), the variance explained in the younger adults (3.4%) was
significantly larger than in the older (2.45%) adults. As we increased the significance threshold
and included more SNPs with less significant overall association, the difference between the
two age groups reduced and became non-significant once SNPs with a Po,e,q > 3x10°> were
included. We observed similar significant differences in explained variance for WHR,gjpm1
between men and women, with the most pronounced difference for genome-wide significant
SNPs (Poyeran < 5x107, women 1.60%; men: 0.70%) that reduced and became non-significant
for SNPs with a Po,eran > 1x107. Consistent with the observed interactions, we found no dif-
ference in explained variance between men and women for BMI or between the younger and
the older group for WHR,gjpmr at any Po,erqn cut-off (514 Fig).

Family-based heritability estimates, from the Family Heart Study (N = 1,810, 454 families),
showed similar (but non-significant) trends for younger versus older adults for BMI (60% vs
45%, Pageqify = 0.24), for women and men for WHRgjgmr (43% Vs 38%, Pyeyqifr = 0.68) (S27
Table).

Collectively, these observations are consistent with the results of our genome-wide search,
showing that genetic variants contribute more to BMI variation in younger than in older adults
and more to WHR4;gm; Variation in women than in men. These differences are most pro-
nounced when we test genome-wide significant SNPs only, while differences are minimized as
more SNPs with weaker associations are included.
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Joint testing of main- and interaction effects yield novel loci for BMI and
WHRaijMI

Our stratified analysis approach also offered an opportunity for discovery of novel variants
influencing BMI and WHR,4;sMm1 by (i) using a joint 4df test of the main SNP effect in the pres-
ence of interaction [27] and (ii) by overall meta-analysis of the 4 strata. Both approaches
increase statistical power to detect a main effect if there is evidence of heterogeneity across the
strata. Of the 164 loci that reached genome-wide significance for BMI (P < 5x10°®), 73 are
novel (S28 Table and S1, S2 and S15 Figs). Of the 73 loci, 45 were only identified in the overall
test and 26 were identified in both tests. The remaining two loci were only identified in the
joint test and either displayed evidence for difference between men and women (near CXXC5,
Piesaifr= 2.7x107) or between age-groups (near DDC, Pogediff = 6.2x107%) suggesting that its
identification may have been aided by allowing for interaction. We identified 53 loci with sig-
nificant associations with WHR4jgpm1, of which 10 were novel (29 Table and S1, S2 and S16
Figs). It can be speculated that the yield of novel SNP associations for BMI was greater than
that of WHR,gjgm1> because age-dependent effects have not been sought systematically before,
whereas sex-specific screens have been performed previously [10].

Discussion

Our genome-wide search for age- and sex-specific loci in up to 320,485 adults of European
ancestry identified 15 loci that were associated with BMI in an age-dependent manner, with
predominantly larger effects in the younger than in the older adults. Notably, despite sufficient
statistical power, we did not identify BMI-associated loci with sex-dependent effects. The larg-
est association study on BMI [19] identified two SNPs with different impact on BMI in men
and women: rs543874 (SECI16B) and rs6091540 (ZFP64). While these SNPs show more modest
trends towards sex-different effect (Pyeyqifr = 2.4x10* and 1.3x107%, respectively) in our study,
they were not picked up by our analysis due to the different pre-filtering strategy. In contrast to
BMI and consistent with previous observations for WHR,gjgm1, We identified 44 WHR,gjm1
associated loci with sex-specific effects of which the majority have a larger effect in women
compared with men. No age-specific WHR,4jgw loci were discovered.

Our work is the first large-scale genome-wide association study to interrogate the influence
of both age and sex, simultaneously, on genetic effects for BMI and WHR,gjgmi. While our
meta-analysis had sufficient power to identify SNP-by-age or SNP-by-sex interactions, we only
discovered loci influenced by age for BMI. Studies that followed up on previously established
BMI loci in longitudinal and cross-sectional designs support our findings regarding the age-
dependency of the majority of these loci [38, 51-57]. Indeed, for 11 of the 15 loci identified in
our study, the effect on BMI was 1.5 to 3.5 times smaller in the older adults than in the younger
adults, which may reflect a greater culmination of environmental and lifestyle factors on adi-
posity in older adults that overwhelm the genetic effects. While none of these loci were associ-
ated with birth weight, all—but one—were nominally associated with increased risk of
childhood obesity. Results from a GWAS on BMI in 16-to-25 year-olds [58] provide prelimi-
nary evidence that some loci exert their largest effects relatively early in life, whereas others
become more pronounced in young adulthood. Notwithstanding the predominance of BMI
loci with larger genetic effects in younger individuals we identified four loci with stronger
genetic effects in older adults. Interestingly, these four loci have been previously associated
with either type 2 diabetes [32] or coronary artery disease [59]. Sensitivity analyses precluded
potential ascertainment bias introduced by disease studies in the older group. These loci may
influence BMI through mechanisms that are distinct from other BMI-associated loci; mecha-
nisms that may be more closely related to processes more directly involved in the pathogenesis

PLOS Genetics | DOI:10.1371/journal.pgen.1005378 October 1,2015 22/42



@’PLOS | GENETICS

Age-and Sex-Specific Genetic Effects on Body Size and Shape

obesity-related diseases. Furthermore, the directional consistent genetic effects of our loci on
weight change during adult life from longitudinal studies supports our finding.

Indeed, the stratification into age-groups may introduce a cohort effect that implies a differ-
ent genetic or environmental make-up of cohorts with older vs younger adults. For example,
the obesogenic environment that has fueled the obesity epidemic that westernized societies
have experienced during the past 30 years may have affected older individuals differently than
younger individuals. To examine the contribution of such cohort effects and to obtain more
accurate age-dependent effect estimates, large-scale genetic longitudinal studies would be
required that measure BMI at multiple time points with individuals born across a wide range
of birth years.

While our study provides some first insights into age-dependent genetic effects, in particular
before and after menopause, more data from larger studies with longitudinal data spanning
from childhood through late adulthood are desirable to accurately assess the influence of these
loci on BMI across the life course. Indeed, identifying the time of life when variants affect body
weight the most may help us determine the mechanisms of their influence on body weight and
potential for intervention.

In contrast to the observations for BMI, our genome-wide interaction analyses did not iden-
tify loci with age-dependent effects for WHR,4jsm: but there was strong novel evidence for sex-
influenced effects in 44 loci. For 27 of the 44 loci, the sexual dimorphism is reported for the
first time, with 17 being completely novel associations for WHR,gjpm1- Due to increased sample
size and optimized SNP selection approaches, we more than doubled the number of loci with
established sex-difference for WHRgjgmi [10, 18, 29]. The 44 loci divide into 11 loci with
opposite effects between men and women, 28 loci with a stronger effect in women and five loci
with a stronger effect in men. This is the first report to highlight loci with opposite effects and
the enrichment of women-specific WHR,gigp1 associations is consistent with previous
findings.

We examined whether the sex-dependent effects on WHR4jg\1 were mediated through
sex-specific effects on the expression of genes located within these loci, using data available
from eQTL analyses in humans and mice. Of particular interest is a region at chromosome
20q11.22 in which two independent WHRgjgm; lead SNPs near PIGU and near EDEM2
showed independent sex-specific associations with the expression of ACSS2 and MYH7B,
respectively, in humans. While we found no direct evidence of sex-specific action of ACSS2 or
MYH7B, based on current knowledge, both proteins seem to be involved in peripheral energy
metabolism. In addition, we observed that the expression of Tp53inp2 (Tumor Protein 53
Inducible Nuclear Protein 2), of which the human TP53INP2 ortholog is also located in the
PIGU locus, had significantly higher expression levels in the inguinal fat of male than female
mice. This observation is consistent with a previous study, showing that Tp53inp2 expression
in white adipose tissue is significantly higher in male than in female mice [60]. The authors
speculated that this sex-specificity might be due to differences is fat distribution with females
storing proportionally more fat in subcutaneous/inguinal and males more in intra-abdominal
depots [60]. Taken together, the sex-specific association with WHR,gjgmr of two independent
loci at chr20q11.22 may be mediated through any or all three genes for which we found sex-
specific expression. While all three genes are good candidates, experimental follow up will be
needed to pinpoint the causal gene(s) and to elucidate the function and sex-specificity.

Our broad-sense (family-based analyses) or narrow-sense (GCTA including all 2.5M vari-
ants) heritability estimates showed no difference in explained variance between men or
women, or between younger and older adults for either outcome. However, when considering
subsets of variants displaying overall significant associations (Poyeran < 1x10°°), we observed a
significant difference between age- but not sex- groups for BMI, with a larger explained
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variance among the younger than the older adults, and between sex- but not age groups for
WHR,gjm1> With a larger explained variance in women than in men. These observations fur-
ther corroborate the predominance of age-dependent loci for BMI and sex-dependent loci for
WHR,gjpm identified through a genome-wide screen.

Even though our study is like