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The computation of direct CP asymmetries in charmless B decays at next-to-next-to-leading order (NNLO) 
in QCD is of interest to ascertain the short-distance contribution. Here we compute the two-loop penguin 
contractions of the current–current operators Q 1,2 and provide a first estimate of NNLO CP asymmetries 
in penguin-dominated b → s transitions.
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1. Introduction

Non-leptonic exclusive decays of B mesons play a crucial role 
in studying the CKM mechanism of quark flavour mixing and in 
quantifying the phenomenon of CP violation. Direct CP violation is 
related to the rate difference of B̄ → f decay and its CP-conjugate 
and arises if the decay amplitude is composed of at least two 
partial amplitudes with different re-scattering (“strong”) phases, 
which are multiplied by different CKM matrix elements. Very of-
ten useful information on the CKM parameters including the CP-
violating phase can be obtained from combining different decay 
modes, whose partial amplitudes are related by the approximate 
flavour symmetries of the strong interaction [1], which are then 
determined from data.

The direct computation of the partial amplitudes is a com-
plicated strong interaction problem, which can, however, be ad-
dressed in the heavy-quark limit. The QCD factorization approach 
[2–4] employs soft-collinear factorization in this limit to express 
the hadronic matrix elements in terms of form factors and convo-
lutions of perturbative objects (hard-scattering kernels) with non-
perturbative light-cone distribution amplitudes (LCDAs). At leading 
order in �/mb ,
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SCOAP3.
〈M1M2|Q i |B̄〉 = im2
B

{
f BM1+ (0)

1∫
0

du T I
i (u) f M2φM2(u)

+ (M1 ↔ M2)

+
∞∫

0

dω

1∫
0

dudv T II
i (ω, v, u) f̂ BφB(ω)

× f M1φM1(v) f M2φM2(u)

}
, (1)

where Q i is a generic operator from the effective weak Hamilto-
nian. At this order the re-scattering phases are generated at the 
scale mb only, and reside in the loop corrections to the hard-
scattering kernels. Beyond the leading order factorization does not 
hold, and re-scattering occurs at all scales. The leading contribu-
tions to the strong phases are therefore of order αs(mb) or/and 
�/mb . It is of paramount importance for the predictivity of the ap-
proach for the direct CP asymmetries to know whether the short-
distance or long-distance contribution dominates in practice, since 
apart from being parametrically small, both could be numerically 
of similar size.

The short-distance contribution to the direct CP asymmetries is 
fully known only to the first non-vanishing order (that is, O(αs)) 
through the one-loop computations of the vertex kernels T I

i per-
formed long ago [2,4,5]. A reliable result presumably requires 
the next-to-next-to-leading order O(α2

s ) hard-scattering kernels, at 
least their imaginary parts. For the spectator-scattering kernels T II
i

 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

http://dx.doi.org/10.1016/j.physletb.2015.09.037
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:xqli@itp.ac.cn
http://dx.doi.org/10.1016/j.physletb.2015.09.037
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2015.09.037&domain=pdf


G. Bell et al. / Physics Letters B 750 (2015) 348–355 349
this task is already completed, both for the tree [6–8] and penguin 
[9,10] amplitudes, but for the so-called form factor term(s) in the 
first two lines of (1) an important piece is still missing, which is 
the focus of this Letter.

We recall that due to CKM unitarity, the amplitude for a B̄ de-
cay governed by the b → D (D = d, s) transition can always be 
written in the form

A(B̄ → f ) = λ
(D)
u [T + . . .] + λ

(D)
c [Pc + . . .], (2)

where λ(D)
p = V ∗

pD V pb . It is generic that the first CKM structure 
is dominated by the colour-allowed or colour-suppressed topolog-
ical tree amplitude, both denoted by T here, corresponding to the 
flavour quantum numbers of a b → uūD transition, while the sec-
ond is dominated by the topological QCD penguin amplitude of the 
b → ∑

q=u,d,s qq̄D transition. The first is typically larger than the 
second for D = d and vice-versa for the D = s case, which there-
fore refers to the penguin-dominated decays such as B̄ → π K and 
related. In the notation of [5,9], Pc corresponds to the quantity 
αc

4(M1M2).1

The vertex kernels T I
i have been computed at the two-loop 

O(α2
s ) order only for the topological tree amplitudes T [11–13]. 

However, direct CP asymmetries can only be non-zero due to the 
interference of the two terms in (2), hence the penguin amplitude 
Pc is also needed. Only the one-loop O(α2

s ) contribution from the 
chromomagnetic dipole operator Q 8g to Pc has been considered 
in the past [14], while the dominant, genuine two-loop contribu-
tions remain to be computed. This calculation is technically very 
involved since it requires the computation of massive two-loop 
penguin diagrams – a genuine two-loop, two-scale problem. One 
step towards this goal was recently achieved in [15], where ana-
lytic results of all occurring master integrals were derived.

At this point it is important to note that the topological tree 
and penguin amplitudes are not in one-to-one correspondence 
with the tree (or current–current) operators Q p

1,2 and QCD penguin 
operators Q 3−6 of the weak effective Hamiltonian. By contracting 
the pp̄ fields of the operators Q p

1,2 (see (5) below), they contribute 
to the QCD penguin amplitude starting from the one-loop order. 
Since these “penguin contractions” of the current–current opera-
tors come with the large short-distance coefficients C1,2, we may 
argue that they constitute the largest contribution to the penguin 
amplitude at any given loop order.2 At next-to-leading order we find 
for the penguin contractions (including the chromomagnetic dipole 
operator Q 8g )

au
4(π K̄ )|NLO = (−0.0087 − 0.0172i)|Q 1,2

+ (0.0042 + 0.0041i)|Q 3−6
+ 0.0083|Q 8g

,

ac
4(π K̄ )|NLO = (−0.0131 − 0.0102i)|Q 1,2

+ (0.0042 + 0.0041i)|Q 3−6
+ 0.0083|Q 8g

, (3)

where we separated the contributions from the current–current 
and the other operators. While there is a cancellation for the 
real part, the imaginary part from Q p

1,2 is clearly dominant. If we 
add the vertex contractions at leading (LO) and next-to-leading 
order (NLO) and consider the entire form factor contribution 

1 αu
4 (M1 M2) refers to a generically sub-leading penguin contribution to the term 

multiplied by the CKM factor λ
(D)
u . We also note that αp

4 (M1 M2) consists of a 
leading-power term ap

4 and a power-suppressed term ap
6 [5]. The calculation re-

ported here concerns the leading-power contribution ap
4 .

2 Since the contribution from Q p
1,2 alone is not renormalization-group invariant, 

this statement cannot be true in arbitrary schemes nor at arbitrary renormalization 
scales. What we mean is that the statement holds in the conventional MS scheme 
and with a reasonable choice O(mb) of scale.
to ap
4 (M1M2) at NLO, the second term changes to (−0.0266 +

0.0032i)|Q 3−6
in both expressions, and the imaginary part from 

Q p
1,2 is still by far dominant. Thus, at NLO, the short-distance di-

rect CP asymmetries are mainly determined by the one-loop pen-
guin contractions of the current–current operators. It is reasonable 
to assume that the insertion of Q u,c

1,2 at two loops also captures the 
bulk of the yet unknown NNLO form factor contribution T I

i to the 
penguin amplitudes au,c

4 . In this Letter we report the result of this 
computation together with a few phenomenological implications. 
We shall provide more technical details together with the remain-
ing contributions from the QCD penguin operators Q 3−6, which 
require additional work on infrared subtractions not present for 
Q p

1,2, in a future publication.

2. Outline of the calculation

The effective weak Hamiltonian for b → D transitions (D = d, s) 
is given by

Heff = 4G F√
2

∑
p=u,c

V ∗
pD V pb

(
C1 Q p

1 + C2 Q p
2 + . . .

)
+ h.c.. (4)

Here and in the following we give explicitly only the definitions 
pertinent to the current–current operators relevant to our calcula-
tion. We adopt the Chetyrkin–Misiak–Münz (CMM) operator basis 
[16], where the current–current operators are defined as

Q p
1 = (p̄Lγ

μT AbL) (D̄ LγμT A pL),

Q p
2 = (p̄Lγ

μbL) (D̄ LγμpL), (5)

in terms of left-chiral quark fields qL = 1
2 (1 − γ5)q. In dimen-

sional regularization the operator basis has to be supplemented by 
evanescent (vanishing in D = 4 dimensions) operators, for which 
we adopt the convention of [17].

At the two-loop level about 70 diagrams contribute to the QCD 
penguin amplitude, but only a subset of two dozens (shown in 
Fig. 1) are non-vanishing for the insertion of the current–current 
operators Q p

1,2. The quark in the fermion loop can either be mass-
less (for p = u) or massive (for p = c). In the massless case the 
problem involves one non-trivial scale, the momentum fraction 
ū = 1 − u of the anti-quark in meson M2, and the structure is 
similar to the NNLO calculation of the tree amplitudes [11–13]. 
In the massive case, however, we are dealing with a genuine two-
loop, two-scale problem since the hard-scattering kernels depend 
in addition on the mass ratio sc = m2

c /m2
b . As we have already elab-

orated extensively on the kinematics in [15], we shall not repeat 
those formulae here.

The calculation is performed in dimensional regularization with 
D = 4 − 2ε , where ultraviolet (UV) and infrared (soft and collinear) 
divergences manifest themselves as poles in ε . The CMM basis en-
sures that the NDR scheme with a fully anti-commuting γ5 can 
be adopted. The amplitude of the diagrams is then computed us-
ing standard multi-loop techniques. After a Passarino–Veltman [18]
decomposition of the tensor integrals, the scalar integrals are re-
duced to a small set of master integrals by means of integration-
by-parts techniques [19,20] and the Laporta algorithm [21,22]. To 
this end, we use the program AIR [23] as well as an in-house rou-
tine.

For the massless up-type operator insertions, the diagrams can 
be expressed in terms of the master integrals that appeared in 
our former calculations [11–13]. For the massive charm-type in-
sertions, on the other hand, we find 29 new master integrals. The 
computation of the master integrals constitutes the main technical 
challenge of the calculation. Analytic results for all master inte-
grals have recently been derived in [15], based on a differential 
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Fig. 1. Two-loop penguin diagrams that contribute to the insertion of the operators Q u,c
1,2 (black square). The gray filled circle denotes the one-loop gluon self-energy.
equation approach in a canonical basis [24]. The canonical basis, 
together with suitably chosen kinematic variables, also catalyses 
the convolution of the hard-scattering kernels with the LCDA.

After the computation of the bare QCD two-loop amplitude, 
the hard-scattering kernels are extracted from a matching calcu-
lation onto soft-collinear effective theory (SCET). The main con-
ceptual challenge in this context is the consistent treatment of 
evanescent and Fierz-equivalent operators in SCET, for which we 
follow the method employed in [13]. The SCET operators have the 
flavour structure 

∑
q(χ̄Dχq)(ξ̄qhv) where χ and ξ denote collinear 

light-quark fields moving in opposite directions. The two-loop dia-
grams relevant to the penguin amplitude ap

4 are all of the “wrong-
insertion” type (see [13]) and hence lead to operators where the 
fermion indices are contracted in the form 

∑
q(ξ̄qχq)(χ̄Dhv). In 

Fig. 1 the (ξ̄qχq) fermion lines correspond to the solid line on the 
right side of the diagram. In the following we omit the sum over q
and the flavour labels on the fields. In the CMM basis the fermion 
line that corresponds to (ξ̄χ) carries no γ5 matrix. This suggests 
that we use the following basis for the SCET operators:

O 1 = χ̄
/n−
2

(1 − γ5)χ ξ̄ /n+(1 − γ5)hv ,

Õ n = ξ̄ γ α⊥γ
μ1
⊥ γ

μ2
⊥ . . . γ

μ2n−2
⊥ χ

× χ̄ (1 + γ5)γ⊥αγ⊥μ2n−2γ⊥μ2n−3 . . . γ⊥μ1 hv , (6)

where we need n up to 2 (strings with three γ matrices in each 
bilinear). The operator O 1 is the only physical SCET operator. It is 
the same as in [13], whereas the Õ n differ by the absence of the 
1 − γ5 factor to the left of χ . The operators Õ n are evanescent for 
n > 1. Õ 1 is Fierz-equivalent to O 1/2 in four dimensions, so we 
add Õ 1 − O 1/2 as another evanescent operator. We also recall that 
the SCET operators are non-local on the light-cone [13].

After operator matching the hard-scattering kernels follow from 
the bare QCD amplitudes plus subtraction terms from UV coun-
terterms of the operators Q i and the SCET operators. The master 
formulae at LO, NLO, and NNLO read, respectively,

T̃ (0)
i = Ã(0)

i1 , (7)

T̃ (1)
i = Ã(1)nf

i1 + Z (1)
i j Ã(0)

j1 + . . . , (8)

T̃ (2)
i = Ã(2)nf

i1 + Z (1)
i j Ã(1)

j1 + Z (2)
i j Ã(0)

j1 + Z (1)
α Ã(1)nf

i1

+ (−i) δm(1) Ã′(1)nf + Z (1)
ext

[
Ã(1)nf + Z (1) Ã(0)]
i1 i1 i j j1
− T̃ (1)
i

[
C (1)

FF + Ỹ (1)
11

] + . . . . (9)

The symbols have the same meaning as in Eq. (29) of [13]. The el-
lipses denote further terms that do not contribute to the kernels 
i = 1, 2 of the current–current operators. The matrices Z (1)

i j and 
Z (2)

i j contain the UV counterterms from operator mixing. Compared 
to the calculation of the tree amplitudes, they have to be extended 
by the mixing with the penguin operators including the correspon-
dent evanescent operators [17]. This implies, in particular, that the 
one-loop amplitudes Ã(1)

j1 must be computed including the O(ε)

terms for all operators Q j , which mix with the current–current 
operators. Finally, one has to convolute the hard-scattering kernels 
with the LCDA, for which we adopt the conventional Gegenbauer 
expansion.

3. The topological QCD penguin amplitude

In this section we give the numerical results of the penguin 
amplitudes au

4 and ac
4 and discuss the size and scale dependence 

of the new contribution. At LO, the penguin amplitude coefficients 
are given in the CMM basis by (Nc = 3, C F = 4/3)

ap
4,LO = 1

Nc
[C3 + C F C4 + 16(C5 + C F C6)] . (10)

They are identical for p = u, c and independent of the LCDA. At 
NLO we have (L = lnμ2/m2

b , sp = m2
p/m2

b , ū = 1 − u)

ap
4,NLO| C1,2 = αs

4π

C F

Nc

(
C2 − C1

2Nc

)

×
1∫

0

du

[
−2

3
L + 2

3
− G(sp − iε, ū)

]
φM2(u), (11)

where we show only the terms from the current–current operators 
to illustrate the structure of the result. Here

G(s, u) = 2(12s + 5u − 3u ln s)

9u
− 2ξ(2s + u)

3u
ln

ξ + 1

ξ − 1
(12)

is the one-loop penguin function with ξ = √
1 − 4s/u. In practice, 

one then inserts the Gegenbauer expansion of φM2 (u) truncated 
at the second order to perform the integral. The result is finally 
expressed in terms of Wilson coefficients, quark masses and the 
Gegenbauer moments aM2 .
1,2
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Fig. 2. The LO, NLO and NNLO values of au
4(π K̄ ) and ac

4(π K̄ ) in the complex plane. 
The NNLO point includes a theoretical error estimate.

At NNLO the explicit expressions are involved, and we postpone 
the details to a future publication. Our final numerical predictions 
for the leading QCD penguin amplitudes au,c

4 (π K̄ ) are given as (for 
input parameters, see Section 4):

au
4(π K̄ )/10−2 = −2.87 − [0.09 + 0.09i]V1

+ [0.49 − 1.32i]P1 − [0.32 + 0.71i]P2

+
[ rsp

0.434

]{
[0.13]LO + [0.14 + 0.12i]HV

− [0.01 − 0.05i]HP + [0.07]tw3

}
= (−2.46+0.49

−0.24) + (−1.94+0.32
−0.20)i , (13)

ac
4(π K̄ )/10−2 = −2.87 − [0.09 + 0.09i]V1

+ [0.05 − 0.62i]P1 − [0.77 + 0.50i]P2

+
[ rsp

0.434

]{
[0.13]LO + [0.14 + 0.12i]HV

+ [0.01 + 0.03i]HP + [0.07]tw3

}
= (−3.34+0.43

−0.27) + (−1.05+0.45
−0.36)i . (14)

In both equations the third and fourth lines represent the spectator-
scattering term, which for rsp = 0.434 makes only a small contri-
bution to ap

4 . In the respective first and second lines, the number 
without brackets is the LO contribution, which has no imaginary 
part, the following two numbers are the vertex and penguin NLO 
terms, and the new two-loop NNLO contribution from the current–
current operators Q p

1,2 is the number labelled P2. We observe that 
the new correction is rather large. It amounts approximately to 
40% (15%) of the imaginary (real) part of au

4(π K̄ ), and 50% (25%) 
in the case of ac

4(π K̄ ). Graphical representations of ap
4 (π K̄ ) are 

shown in Fig. 2 at LO, NLO and NNLO, where the NNLO point in-
cludes the theoretical error estimate.3 The larger uncertainty of 
the imaginary part of ac

4(π K̄ ) is a consequence of the sensitivity 

3 The LO and NLO numbers here as in the subsequent figure are not the same 
as (13), (14) truncated to LO and NLO, because they employ Wilson coefficients Ci

at LO and NLO, respectively. Moreover, consistent with previous LO and NLO calcu-
lations, they are computed in the operator basis as defined in [25]. On the other 
hand, in (13), (14) NNLO Wilson coefficients in the CMM basis are used throughout.
to the charm-quark (pole) mass, for which we adopt the conserva-
tive range mc = 1.3 ± 0.2 GeV.

The values (13), (14) depend on the renormalization scale due 
to the truncation of the perturbative expansion and on hadronic 
parameters. The dependence on the renormalization scale μ may 
be considered as a measure of the accuracy of the approximation 
at a given order in perturbation theory. This is shown in Fig. 3
for the form factor term contribution to ap

4 (π K̄ ) up to NNLO. We 
observe a considerable stabilization of the scale dependence for 
the real part, but less for the imaginary part. This is explained by 
the fact that the imaginary part vanishes at LO. Hence only the 
first correction is now available and is, moreover, large.

4. Phenomenology – direct CP asymmetries

We now consider the new contribution to ap
4 in the context 

of the full QCD penguin amplitude and provide first results for 
some direct CP asymmetries. We defer the discussion of branching 
fractions to the more complete treatment including the two-loop 
matrix elements of the penguin operators Q 3−6.

We recall that in the QCD factorization approach the full QCD 
penguin amplitude consists of the parameters ap

4 , ap
6 , and the pen-

guin annihilation amplitude β p
3 in the combination [5]

α̂
p
4 (M1M2) = ap

4 (M1M2) ± rM2
χ ap

6 (M1M2) + β
p
3 (M1M2), (15)

where the plus (minus) sign applies to the decays where M1 is a 
pseudoscalar (vector) meson. The first term, ap

4 (M1M2), is the only 
leading-power contribution. Its real part is of order −0.03. The an-
nihilation term is 1/mb suppressed and cannot be calculated in the 
factorization framework. Estimates based on the model defined in 
[4] suggest that its modulus is also of order 0.03. While the mag-
nitude of these two terms is largely independent of the spin of 
the final state mesons, the contribution from the power-suppressed 
scalar penguin amplitude rM2

χ ap
6 (M1M2) is very small when M2 is 

a vector meson, but larger than the leading-power amplitude for 
pseudoscalar M2. It interferes constructively for the PP final state, 
and destructively for VP. It follows from this brief discussion that 
the impact of a correction to ap

4 is always diluted in the full pen-
guin amplitude. When M2 = V , the computation of ap

4 ascertains 
the short-distance contribution to the amplitude, and hence the 
direct CP asymmetry, but there is an uncertain annihilation con-
tribution of similar size. When M2 = P , there is another NNLO 
short-distance contribution from ap

6 , which is difficult though not 
impossible to calculate, since it is power-suppressed. These fea-
tures will be clearly seen in the analysis below.

In the following we adopt the same values for the Standard 
Model, meson and form factor parameters as in Table 1 of [13]
with the exception of |V ub/V cb| = 0.085 ± 0.015, τBd = 1.52 ps, 
ms(2 GeV) = (90 ± 10) MeV, and f Bd = (190 ± 10) MeV. The decay 
constants, Gegenbauer moments and form factors involving kaons 
coincide with [9], those involving K ∗ mesons with [5], except for 
ABK∗

0 (0) = 0.39 ± 0.06. We note that the B-meson LCDA parame-
ter λB is not important here, since the leading spectator-scattering 
contribution to the QCD penguin amplitude is colour-suppressed.

In Fig. 4 we show the QCD penguin amplitude α̂c
4(M1M2) nor-

malized to the sum of colour-allowed and colour-suppressed tree 
amplitude α1(ππ) + α2(ππ),4 as was shown before in [5,9], but 
now includes the NNLO computation for numerator and denomi-
nator. The NNLO result is represented by the dark point with error 

4 For M1 M2 = π K̄ , π K̄ ∗ . For M1 M2 = ρ K̄ , ρ K̄ ∗ we use the ρρ final state in-
stead. Also, for ρ K̄ ∗ and ρρ , only the longitudinal polarization amplitude is consid-
ered in the following.
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Fig. 3. The dependence of the leading QCD penguin amplitudes ap
4 (π K̄ ) on the hard renormalization scale μ (form factor term only). Dashed, dashed–dotted and solid lines 

represent LO, NLO, and NNLO, respectively.
bars and corresponds to setting �A = 0 in the annihilation model, 
which implies a small value of βc

3. The nearly circular contours 
around this point show the variation of the theoretical prediction 
when the phase of the annihilation model is varied from 0 to 2π
for fixed �A = 1, 2, 3 (inner to outer circles). The radius of the cir-
cle for �A = 1 leads to the estimate |βc

3| ≈ 0.03 mentioned above. 
The LO and NLO results are marked by diamonds without error 
bars. Despite the sizable NNLO correction to ac

4 as shown in Fig. 2, 
the difference between NNLO and NLO is small. This is a conse-
quence of the “dilution” discussed above and a partial cancellation 
in the ratio of amplitudes.

The theoretical prediction can be compared to data, since the 
amplitude ratio can be related to CP-averaged decay rates � and 
direct CP asymmetries. We discuss this for the PP case, from which 
the others can be inferred by obvious replacements. First, to very 
good approximation [5]∣∣∣∣∣ α̂c

4(π K̄ )

α1(ππ) + α2(ππ)

∣∣∣∣∣ =
∣∣∣∣ V ub

V cb

∣∣∣∣ fπ
f K

[
�π− K̄ 0

2�π−π0

]1/2

, (16)

which determines the gray rings around the origin. The darker 
rings are due to the experimental errors in the branching frac-
tions and the lighter ones include also the uncertainty of |V ub/V cb|
(added linearly). To obtain the wedges we define ψ to be the phase 
of the amplitude ratio shown in the figure, and

R = α1(π K̄ ) + α̂u
4 (π K̄ )

α1(ππ) + α2(ππ)
. (17)

We then find

− sin ψ + ImR
ReR

cosψ

= 1

2 sinγ ReR

∣∣∣∣ V cs

V us

∣∣∣∣ fπ
f K

�π+ K −√
2� − 0� − 0

ACP(π
+K −) . (18)
π π π K̄
In previous discussions [5,9] the experimental error on the observ-
ables on the right-hand side and the error on γ combined was 
large, so that it was justified to assume that R is real and to ne-
glect the theoretical uncertainty on ReR, which mainly stems from 
the colour-suppressed tree amplitude α2(ππ). This is no longer 
the case. The outer wedge now includes the theoretical uncertainty 
on R and γ , which is added linearly to the purely experimental 
uncertainties (inner wedge). The middle wedge includes the un-
certainty from γ only. Note that (18) has two solutions as shown 
in the figure, but the wedge that does not match the theoretical 
prediction is excluded by �π+ K −/�π− K̄ 0 < 1.

Since the NNLO correction to the amplitude ratio turned out to 
be small, we can reaffirm the conclusions from [9] in the light of 
significantly improved data. The different magnitude of the PP pen-
guin amplitude vs. PV , VP and VV is clearly reflected in the data as 
predicted. There is reasonable quantitative agreement as indicated 
by the error bars and the small onion-shaped regions correspond-
ing to �A = 1. An annihilation contribution of 0.02 to 0.03 seems 
to be required, except for the longitudinal VV final states. The red 
square in the first three plots of Fig. 4 corresponds to the the-
oretical prediction with �A = 1 and the phase φA = −55◦ (PP), 
φA = −45◦ (PV), φA = −50◦ (VP) (see [4] for the definition of these 
quantities), which is similar to the favoured parameter set S4 of 
[5]. Only the CP asymmetry of the π K final state now appears to 
require a value larger than �A = 1 for a perfect fit. More general 
parametrizations of the power corrections with a non-universal 
value for ρA can in principle be adopted, at the price of losing 
predictive power.

Moving to the observables themselves, we show in Table 1 the 
theoretical predictions for direct CP asymmetries, defined as the 
rate asymmetry between B̄ and B decays, together with the world 
average of experimental data (last column), compiled from HFAG 
[26]. We focus on the penguin-dominated b → s transitions of non-
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Fig. 4. The QCD penguin amplitude α̂c
4(M1 M2) for the PP = π K final state and its PV , VP, and VV relatives. The VV case refers to the longitudinal polarization amplitude 

only. Shown are the theoretical predictions for the ratios α̂c
4(M1 M2)/(α1(ππ) + α2(ππ)) (ρρ instead of ππ in the lower row) and a comparison of extractions of the 

modulus (rings) and phase (wedges) from data. Note there is no data for the CP asymmetry in the rate of the longitudinally polarized ρ+K ∗− final state. See text for further 
explanations. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
strange B mesons to π K final states and their PV and VP relatives. 
We also show the CP asymmetry difference

δ(π K̄ ) = ACP(π
0 K −) − ACP(π

+K −) (19)

and the asymmetry “sum rule”

�(π K̄ ) = ACP(π
+K −) + �π− K̄ 0

�π+ K −
ACP(π

− K̄ 0)

− 2�π0 K −
�π+ K −

ACP(π
0 K −) − 2�π0 K̄ 0

�π+ K −
ACP(π

0 K̄ 0) . (20)

The latter quantity is expected to be small [27], since the lead-
ing CP-violating interference of QCD penguin and tree ampli-
tudes cancels out in the sum. In order to focus on the effect of 
the new NNLO correction on the perturbatively calculable short-
distance part of the CP asymmetry, the columns labelled “NLO” and 
“NNLO” give the respective results, when the long-distance, power-
suppressed terms are set to zero. This means that we set β p to 
3
zero, as well as power-suppressed spectator-scattering terms. How-
ever, we keep the short-distance dominated, but power-suppressed 
scalar penguin contributions. The column labelled “NNLO+LD” 
adds the previously neglected terms back. The main effect is from 
weak annihilation, for which we adopt the S4-like scenario (S ′

4) 
marked by the red square in Fig. 4.

Focusing first on the “NLO” and “NNLO” results, we note that 
for the PP final states the change is minor, since, as discussed 
above, ac

4 represents only part of the short-distance penguin am-
plitude. The situation is different for the π K ∗ final states where 
the ac

6 contribution is small, and for the ρK final states where due 
to the opposite sign of ac

4 and ac
6 a cancellation occurs. In these 

cases, we observe a large modification for the π0 K ∗− , π+K ∗−
and the corresponding ρK final states, for which the CP asymme-
try arises predominantly from the imaginary part of α̂c

4/α1. These 
modifications are a reflection of the sizable corrections seen in 
Fig. 2. The effect is much less pronounced in the remaining modes, 
where the asymmetry is due to interference with α̂u (in case of 
4



354 G. Bell et al. / Physics Letters B 750 (2015) 348–355
Table 1
Direct CP asymmetries in percent for the π K , π K ∗ , and ρK final states. The theoretical errors shown correspond to the uncertainties 
due to the CKM and hadronic parameters, respectively. The errors on the experimental values of δ and � are computed from those 
of the individual observables appearing in (20) ignoring possible correlations.

f NLO NNLO NNLO+LD Exp

π− K̄ 0 0.71 +0.13 +0.21
−0.14 −0.19 0.77 +0.14 +0.23

−0.15 −0.22 0.10 +0.02 +1.24
−0.02 −0.27 −1.7 ± 1.6

π0 K − 9.42 +1.77 +1.87
−1.76 −1.88 10.18 +1.91 +2.03

−1.90 −2.62 −1.17 +0.22 +20.00
−0.22 −6.62 4.0 ± 2.1

π+ K − 7.25 +1.36 +2.13
−1.36 −2.58 8.08 +1.52 +2.52

−1.51 −2.65 −3.23 +0.61 +19.17
−0.61 −3.36 −8.2 ± 0.6

π0 K̄ 0 −4.27 +0.83 +1.48
−0.77 −2.23 −4.33 +0.84 +3.29

−0.78 −2.32 −1.41 +0.27 +5.54
−0.25 −6.10 1 ± 10

δ(π K̄ ) 2.17 +0.40 +1.39
−0.40 −0.74 2.10 +0.39 +1.40

−0.39 −2.86 2.07 +0.39 +2.76
−0.39 −4.55 12.2 ± 2.2

�(π K̄ ) −1.15 +0.21 +0.55
−0.22 −0.84 −0.88 +0.16 +1.31

−0.17 −0.91 −0.48 +0.09 +1.09
−0.09 −1.15 −14 ± 11

π− K̄ ∗0 1.36 +0.25 +0.60
−0.26 −0.47 1.49 +0.27 +0.69

−0.29 −0.56 0.27 +0.05 +3.18
−0.05 −0.67 −3.8 ± 4.2

π0 K ∗− 13.85 +2.40 +5.84
−2.70 −5.86 18.16 +3.11 +7.79

−3.52 −10.57 −15.81 +3.01 +69.35
−2.83 −15.39 −6 ± 24

π+ K ∗− 11.18 +2.00 +9.75
−2.15 −10.62 19.70 +3.37 +10.54

−3.80 −11.42 −23.07 +4.35 +86.20
−4.05 −20.64 −23 ± 6

π0 K̄ ∗0 −17.23 +3.33 +7.59
−3.00 −12.57 −15.11 +2.93 +12.34

−2.65 −10.64 2.16 +0.39 +17.53
−0.42 −36.80 −15 ± 13

δ(π K̄ ∗) 2.68 +0.72 +5.44
−0.67 −4.30 −1.54 +0.45 +4.60

−0.58 −9.19 7.26 +1.21 +12.78
−1.34 −20.65 17 ± 25

�(π K̄ ∗) −7.18 +1.38 +3.38
−1.28 −5.35 −3.45 +0.67 +9.48

−0.59 −4.95 −1.02 +0.19 +4.32
−0.18 −7.86 −5 ± 45

ρ− K̄ 0 0.38 +0.07 +0.16
−0.07 −0.27 0.22 +0.04 +0.19

−0.04 −0.17 0.30 +0.06 +2.28
−0.06 −2.39 −12 ± 17

ρ0 K − −19.31 +3.42 +13.95
−3.61 −8.96 −4.17 +0.75 +19.26

−0.80 −19.52 43.73 +7.07 +44.00
−7.62 −137.77 37 ± 11

ρ+ K − −5.13 +0.95 +6.38
−0.97 −4.02 1.50 +0.29 +8.69

−0.27 −10.36 25.93 +4.43 +25.40
−4.90 −75.63 20 ± 11

ρ0 K̄ 0 8.63 +1.59 +2.31
−1.65 −1.69 8.99 +1.66 +3.60

−1.71 −7.44 − 0.42 +0.08 +19.49
−0.08 −8.78 6 ± 20

δ(ρ K̄ ) −14.17 +2.80 +7.98
−2.96 −5.39 −5.67 +0.96 +10.86

−1.01 −9.79 17.80 +3.15 +19.51
−3.01 −62.44 17 ± 16

�(ρ K̄ ) −8.75 +1.62 +4.78
−1.66 −6.48 −10.84 +1.98 +11.67

−2.09 −9.09 − 2.43 +0.46 +4.60
−0.42 −19.43 −37 ± 37
π− K̄ ∗0, ρ− K̄ 0) or α2 (in case of π0 K̄ ∗0, ρ0 K̄ 0), and the effect of 
the NNLO correction cancels to a certain extent in the ratio of in-
terfering amplitudes. Despite these large modifications of some of 
the PV and VP modes’ asymmetries, the long-distance annihilation 
contribution is always more important numerically, and usually 
required to obtain a satisfactory description of the data. The mod-
elling of the long-distance contribution also determines the final 
theoretical uncertainty, which can become very large. Given that 
the short-distance contribution is now known to NNLO and given 
the large amount of experimental data, it becomes imperative to 
better determine the annihilation amplitude, presumably through 
fits to data.

5. Conclusion

The computation of direct CP asymmetries in charmless B de-
cays at next-to-next-to-leading order in QCD has been a long-
standing issue. The long- and short-distance contributions can in 
principle be of the same order and a NNLO calculation is required 
to ascertain the perturbative part. In this paper we computed the 
two-loop contributions of the current–current operators Q p

1,2 to 
the QCD penguin amplitude, which are expected to constitute the 
dominant contribution, at least to the imaginary part, which is 
required for observing CP violation. We find a sizable correction 
to the short-distance part of the direct CP asymmetry, the effect 
of which is, however, tempered by power-suppressed short- and 
long-distance terms. Our preliminary conclusion is that the NNLO 
correction does not help resolving the π K CP asymmetry puzzle, 
nor does it render the poorly known annihilation terms redundant. 
The final analysis should, however, include the penguin operator 
matrix elements, as well as the one from the chromomagnetic op-
erator considered in [14]. The corresponding calculations are in 
progress.
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