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Zusammenfassung

Diese Arbeit betrachtet die Schätzung von Faktormodellen mit unvollständigen Daten, die sich aus dem

Fehlen von einzelnen Beobachtungen sowie der Kombination von gemischt-frequenten Zeitreihen ergeben.

Die gleichzeitige Berücksichtigung von Finanzmarktdaten und makroökonomischen Kennzahlen soll dabei

ein möglichst umfassendes Bild der zu untersuchenden Märkte liefern. Der Gebrauch von Faktormodellen

bietet sich in diesem Zusammenhang an, um das breite Spektrum an Informationen in Form von wenigen,

unbeobachteten Faktoren zu bündeln. Mit Hilfe von approximativen Faktormodellen bilden wir zudem

Abhängigkeiten zwischen verschiedenen Zeitreihen ab. Für zwei unserer Modelle bedeutet dies, dass nicht

nur die Faktoren, sondern auch die idiosynkratischen Fehler querschnittlich korreliert sein können. Die

Schätzverfahren, die wir hier vorschlagen, basieren auf zwei Expectation-Maximization Algorithmen,

die im Wechsel benutzt werden bis ein gegebenes Abbruchkriterium erfüllt ist. Aufgrund der Tatsache,

dass sich die Faktoren nicht beobachten lassen, müssen deren Erwartungswerte und Kovarianzmatrizen

geschätzt werden. Neben den klassischen Kalman Filter und Smoother, verwenden wir hierzu eine ana-

lytische Lösung beziehungsweise leiten modifizierte Varianten des Kalman Filters und Smoothers her, die

den zugrundeliegenden Modellspezifika explizit Rechnung tragen. In einem nachfolgenden Schritt dienen

die geschätzten Faktoren als exogene Variablen bei der Modellierung von Indexrenditen. Auf Basis der

Faktorverteilungen können wir sowohl Punkt- als auch Intervallschätzer für die Vorhersage zukünftiger

Renditen herleiten. Zusätzlich zur Vorhersage erwarteter Renditen decken wir deren treibende Kräfte auf.

Wir beantworten somit die Frage, welche Informationen uns zu diesem Ergebnis führten. Im Rahmen der

Intervallschätzung stellen wir dynamische Handelsstrategien vor, die die vorhergesagten Renditeintervalle

in konkrete Anlageempfehlungen übertragen. Abschließend zeigen wir, welchen Beitrag unser Ansatz im

Bereich der Portfoliooptimierung leisten kann.





Abstract

This thesis considers the estimation of Factor Models with incomplete data arising from the absence of

single observations and the combination of mixed-frequency time series. Thereby, the joint use of financial

data and macroeconomic indicators is supposed to provide a picture, as comprehensive as possible, of the

markets to be analyzed. In this context, we apply Factor Models to bundle a broad range of information

by a few unobservable factors. Furthermore, with the help of Approximate Factor Models we map depen-

dencies between different time series. This means for two of our models that not only the factors, but also

the idiosyncratic errors may be cross-sectionally correlated. The estimation methods, which we propose

here, involve two Expectation-Maximization Algorithms that are alternately applied until a given termi-

nation criterion is met. Due to the hiddenness of the factors, their means and covariance matrices have

to be estimated. Besides the standard Kalman Filter and Smoother, we deploy a closed-form solution for

this purpose or derive modifications of the Kalman Filter and Smoother that explicitly take the assumed

model characteristics into account. In a next step, the estimated factors serve as exogenous variables for

modeling index returns. Based on the factor distributions we determine point and interval estimates for

forecasting returns of future periods of time. In addition to return predictions, we reveal their drivers.

Hence, we answer the question of which information guides us to this conclusion. Within the scope of

interval estimation we suggest dynamic trading strategies converting the forecasted return intervals into

specific asset allocation recommendations. Eventually, we demonstrate which contributions our approach

may provide in the area of portfolio optimization.
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Chapter 1

Introduction

We start with the reasons behind this thesis. Thereby, we state some general questions serving as attractive

research opportunities from our point of view. Thereafter, we list the main objectives and contributions

of this work. In the second section, we describe the structure of the thesis in more detail.

1.1 Motivation and Objectives

At any point in time, knowledge of the current financial and economic conditions is important for investors,

asset managers, central bankers, politicians and many more. Whenever decisions are taken, a picture of the

present situation, as comprehensive as possible, is particularly precious. On the one hand, the interactions

between capital markets are not always the same. On the other hand, the market participants’ perception

of risk and hence, their risk appetite are changing. In this context, they focus more on financial or economic

information. For consistency reasons, a realistic market model includes finanical and economic data, since

the timely detection of the transition from one source to another appears impossible. This is why models,

which are restricted to financial or economic time series, do not map the whole environment and so, cover

only a small part of the bigger picture.

Among other things, information of macroeconomic, valuation, technical and flow nature moves financial

markets. Unfortunately, changing dependencies between such signals may cause contrary indications of the

current and future market conditions. To be precise, in the literature they distinguish between nowcasting

and forecasting. For instance, Bańbura et al. (2011) regard nowcasting as the “problem of predicting the

present, the very near future and the very recent past”. Especially in case of macroeconomic variables,

which are quarterly reported with long delays, monitoring the present market conditions is challenging.

As stated in Bańbura and Rünstler (2011, ECB working paper, p. 23, Table A.1), there are also monthly

indicators with a publication lag of more than two months. Many countries publish their Gross Domestic

Product (GDP) figures once per quarter such that nowcasting of GDP became quite popular in research.

In this sense, Liu and Hall (2001), Giannone et al. (2008), Lahiri and Monokroussos (2013) and Aastveit

et al. (2014) focus on nowcasting of United States (US) GDP, while Schumacher and Breitung (2008) and

Marcellino and Schumacher (2010) consider German GDP. For Norwegian GDP, see Aastveit and Trovik

(2012) and Luciani and Ricci (2014). Although forecasting covers the prediction of future periods of time

and was thoroughly discussed in past papers, the transition from short-term forecasting to nowcasting is

rather smooth. Therefore, further contributions to the now- and forecasting of GDP are stated in Giannone
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et al. (2008, 2009), Barhoumi et al. (2010), Angelini et al. (2010, 2011) and Bańbura and Rünstler (2011).

Instead of proceeding with a detailed, but lengthy literature overview or a short, disordered and most likely

non-exhaustive stringing together of papers, we do not state further references in the field of forecasting

now. By contrast, we refer to the preliminaries in Chapter 2, where we review all articles that are most

relevant for this thesis.

Modern information technologies admit the collection, storage and processing of huge amounts of data.

On the one hand, the abundance of data supports the construction of new models and the extension of

existing ones. On the other hand, Boivin and Ng (2006) showed that more data does not always improve

forecasting results. In their setting, Factor Analysis restricted to 40 out of 147 time series outperformed

Factor Analysis based on the overall 147 time series. Hence, the identification and extraction of relevant

information from big data remains an important issue. Sometimes, published data is revised afterwards,

e.g., preliminary GDP values, such that data revisions are another burden. Even though the magnitude

of their impact on forecasting results depends on the respective application, Croushore (2006) confirmed

that data revisions can affect forecasts. Finally, big data may cover a variety of diverse frequencies ranging

from time series updated every second to quarterly ones. In addition, holidays, publication conventions,

trading suspensions, etc. also cause the absence of single observations. Consequently, an overall data set

might be incomplete representing another topic to be addressed.

From a practical perspective, state-of-the-art market models should tacle from the previous tasks as many

as possible within a reasonable period of time. Hence, a model’s implementation also matters. Irrespective

of whether the current or future market conditions are considered, an appropriate model detects how all

inputs contribute to the outcome. In this way, it reveals possible sources of risk and indicates how reliable

the findings are. Thereby, uncertainties or instabilities caused by the models themselves, e.g., from model

selection and parameter estimation, should be taken into account. As soon as the drivers of an expected

market environment are known, subsequent investigations can be triggered. For instance, if a model shows

that a loose monetary policy of the central bank is responsible for a stock rally, an investor would be

more concerned about a change in the monetary policy than poor GDP growth rates. With this in mind,

he could timely prepare a hedging strategy that fits to his risk attitude.

This thesis aims at constructing now- and forecasting frameworks for financial markets. Thereby, we

estimate Factor Models with incomplete panel data, address potential identification and model selection

issues, discuss uncertainties caused by factor and parameter estimation, trace outputs back to our input

data and propose dynamic trading strategies, i.e., asset allocations based on our findings. Eventually, we

develop a similar approach for analyzing the impact of monetary policy actions on financial markets and

the real economy.

With a view to the existing literature main contributions of our work are as follows: First, we apply Factor

Models (FMs) for mixed-frequency panel data to support portfolio optimization. That is, we are among

the first to transfer FMs, which are well-known in statistics and econometrics for modeling macroeconomic

data, to the field of asset and risk management. Besides theoretical considerations, we provide algorithms

and illustrative examples based on real-world data. This makes our approach attractive for practitioners.

Second, we determine the conditional means and covariance matrices of the latent factors in Approximate

Dynamic Factor Models (ADFMs) in closed form. In the literature, both are usually estimated by a run of

the standard Kalman Filter (KF) and Kalman Smoother (KS). In a Monte Carlo (MC) simulation study,

our two-step method for estimating ADFMs with incomplete panel data based on the conditional means

and covariance matrices in closed form performed better than the same two-step approach using means
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and covariance matrices of the standard KF and KS. Hence, the usage of Kalman Filtering techniques in

such cases becomes optional.

Third, Doz et al. (2012) showed that the factors in ADFMs with cross-sectionally and serially correlated

idiosyncratic shocks can be consistently estimated in the maximum likelihood framework. In the sequel,

Bańbura and Modugno (2014) derived an estimation method for Exact Dynamic Factor Models (EDFMs)

with incomplete panel data. Referring to Doz et al. (2012), they argued that cross-sectional dependence

of the idiosyncratic shocks can be neglected to justify the validity of their estimation method for ADFMs.

Since Doz et al. (2012) provided asymptotic results, we present an alternative two-step estimation method

for ADFMs with incomplete panel data, which admits cross-sectionally correlated shocks. In a MC study,

this method dominates the approach of Bańbura and Modugno (2014) for incomplete panel data of small

sample size with cross-sectionally correlated errors. So, we show that cross-sectional dependencies matter

in such scenarios.

Fourth, we design a two-step procedure for the selection of the factor dimension and autoregressive order.

In doing so, we keep general factor dynamics of order p ≥ 1 and do not consider the simple case of p = 1.

This is why our two-step estimation method for ADFMs simultaneously performs parameter estimation

and model selection.

Fifth, we propose single-market trading strategies, which convert prediction intervals into concrete actions.

Moreover, we break point forecasts of returns for future periods of time down into the single contributions

of the panel data. This approach supports plausibility assessments of the obtained results and reveals the

main drivers and so, the main sources of risk, of the expected market behavior.

Sixth, we derive a modification of the standard KF, which takes into account that factors in case of Factor-

Augmented Vector Autoregression Models (FAVARs) are partially observed. For the sake of completeness,

we verify that the standard KS remains valid. With the new KF, we estimated the FAVARs of Bernanke

et al. (2005) for incomplete panel data. In contrast to Bork (2009) and Marcellino and Sivec (2016), we

do not treat FAVARs as specific ADFMs. This is why our estimation method admits, but does not require

that the observable factor components are also part of the panel data.

Seventh, to prevent our estimation method for FAVARs from parameter ambiguity we first include the

rotations in Bai et al. (2015) in our model preparations. As an alternative to common loadings constraints,

we determine restrictions for the coefficients of the factor dynamics to remove left degrees of freedom. In

this manner, we gain flexibility with regard to parameter constraints.

1.2 Thesis Structure

Within this thesis we alternately apply two Expectation-Maximization Algorithms (EMs) for estimating

FMs. Besides factor dynamics, some model formulations admit cross-sectionally correlated idiosyncratic

shocks and partially observed factors, which call for modifications of the original estimation procedure.

In Chapter 2, we mathematically define the considered FMs and provide a non-exhaustive list of common

estimation techniques. That means, we describe the basics behind Principal Component Analysis (PCA),

Probabilistic Principal Component Analysis (PPCA), Maximum-Likelihood Estimation (MLE), EMs and

the standard KF and KS. Next, we revive the reconstruction formula of Stock and Watson (1999a, 2002b),

which in Chapters 3-5 supports parameter estimation with incomplete panel data. Finally, we briefly

state alternative approaches for the treatment of data incompleteness. In all sections, we review relevant
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publications in the respective areas.

In Chapter 3, we estimate Exact Static Factor Models (ESFMs) in the framework of Tipping and Bishop

(1999) and allow for incomplete panel data using the reconstruction formula of Stock and Watson (1999a,

2002b). Then, the dynamics of a multivariate return process is supposed to obey a Vector Autoregression

Model (VAR) with the estimated factors as exogenous variables, when we determine prediction intervals,

empirical means and covariance matrices for returns of subsequent periods of time with the help of

MC simulations. Finally, these forecasted return moments as well as their historical counterparts enter

classical mean-variance and marginal-risk-parity portfolio optimizations, respectively, to demonstrate how

our approach may support asset and risk management decisions.

In Chapter 4, Approximate Dynamic Factor Models (ADFMs) admitting homoscedastic, cross-sectionally

correlated errors are considered. For incomplete panel data, two EMs are alternately applied for parameter

estimation, where the inner EM is a modification of the EM in Bańbura and Modugno (2014), since it

explicitly deals with cross-sectionally correlated idiosyncratic shocks. By contrast, Bańbura and Modugno

(2014) follow the argumentation in Doz et al. (2012) and so, actually prove their findings for EDFMs.

Another distinguishing feature to the ansatz in Bańbura and Modugno (2014) is the fact that we estimate

the latent factor moments in closed-form instead of using the standard Kalman Filter and Smoother. The

outer EM derives complete data panel from the observations and latest parameter estimates. Thereby, it

reuses the reconstruction formula of Stock and Watson (1999a, 2002b). For the dynamics of a univariate

return process we assume an Autoregressive Extended Model (ARX), when we break the predicted returns

down into the contributions of the input data. For this purpose, we need closed-form expressions for the

conditional factor means and covariance matrices instead of the KF and KS solutions. All in all, we aim

at market monitoring.

In Chapter 5, we alter our fully-parametric two-step approach in the form of two EMs for estimating the

FAVAR in Bernanke et al. (2005) with ragged panel data. As in Bai et al. (2015), we first investigate the

implications of the partially observable factors for the uniqueness of the model parameters. Furthermore,

we simplify the original FAVAR formulation. In contrast to Bork (2009) and Marcellino and Sivec (2016),

who rearranged the data and deployed specific loadings restrictions such that they were able to apply

standard techniques of ADFMs for parameter estimation, we derive new Kalman Filter and Smoother

equations, which take the observability of factor components into account. For identification reasons, we

allow for parameter constraints. In doing so, the loadings matrix as well as the coefficent matrices of the

factor dynamics can be linearly constrained.

In Chapter 6, we conclude the main findings of this thesis and provide directions for the future research.

For reasons of comprehensiveness, we repeat important definitions and results in Appendix A. If applica-

ble, we also provide alternative proofs in Appendix A to preserve the clarity of Chapters 3-5. Appendix

B lists sources and descriptions of the data our empirical studies are based on and so, supports the repli-

cation of our results. In the remainder of this thesis, we have overviews of used acronyms, nomenclature,

figures and tables. Moreover, we summarize publications and working papers, which arose during my

doctorate, and general references.



Chapter 2

Preliminaries

Factor Models (FMs) were thoroughly investigated in the literature and are the backbone of this thesis.

Therefore, this chapter discusses diverse FM specifications, but it also addresses their classification and

estimation. With regard to the latter point, we restrict ourselves to the most common estimation methods.

Besides the non-parametric Principal Component Analysis, we explain parametric estimation procedures

in a maximum likelihood framework. The given overview is not exhaustive, since we omit, e.g., Bayesian

approaches. Furthermore, we introduce some notation, which is fundatmental for FMs, in the first part.

The focus of the second section is on the sophisticated treatment of data incompleteness. Besides missing

observations, the inclusion of mixed-frequency information causes gaps in panel data. For instance, when

monthly and quarterly times series are taken into account and the underlying time horizon is monthly,

each quarterly time series offers one third of the amount of monthly observations. In this context, there

are different modeling approaches for incomplete data available. Finally, we briefly mention alternative

solutions for the treatment of mixed-frequency and missing data.

2.1 Factor Models

2.1.1 Classification of Factor Models

Before we repeat the mathematical definitions of FMs, let us start with some notation. An overview of all

abbreviations and expressions is given in Appendices “Acronyms” and “Nomenclature”, respectively. Let

0K ∈ RK denote the K-dimensional zero vector. Furthermore, let OK ∈ RK×K and IK ∈ RK×K stand

for the square zero matrix and identity matrix, respectively, of dimension K. Finally, N (µ,Σ) refers to

the multivariate normal distribution with mean µ ∈ RK and covariance matrix Σ ∈ RK×K . In this thesis,

lower case letters serve as running indices, whereas capital letters express dimensions. For instance, the

index t with 1 ≤ t ≤ T picks a single element of a time series of length T . Because of this, the previous

vector and matrix dimensions were written with capital letters.

In econometrics, a distinction is made between cross-sectional data and longitudinal data. Thereby, cross-

sectional data describes, e.g., a population at a single point in time, while longitudinal data maps the

evolution of individuals over time. If both dimensions are linked, e.g., a population is considered over time,

econometricians call such a sample panel data. Hence, panel data constitutes cross-sectional, longitudinal
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data (Ruppert, 2011, p. 361). In Definition 2.1.1, we formally define what the previous description means.

However, to emphasize that there are not any missing observations we speak about complete panel data.

For clarity reasons, we highlight vectors in bold, e.g., Xt ∈ RN .

Definition 2.1.1 (Complete Panel Data)

For any 1 ≤ t ≤ T , the vector Xt = (Xt1, . . . , XtN )
′ ∈ RN collects the panel data at time t, while the

vector Xi ∈ RT contains the univariate time series of each input signal 1 ≤ i ≤ N . The total data sample

is covered by the matrix X = [X1, . . .XN ] = [X1, . . . ,XT ]
′ ∈ RT×N .

To prevent us from lengthy expressions in subsequent sections, we introduce additional notation. Let the

operator ⊗ denote the Kronecker product as in Definition A.1.9, let 1T ∈ RT be a vector of ones only

and let X ′ ∈ RN×T be the transpose of the matrix X ∈ RT×N . Furthermore, we use the hat symbol to

refer to parameter estimators. For instance, the vector µ̂ ∈ RN and the matrix Σ̂ ∈ RN×N stand for the

estimators of the mean µ ∈ RN and the covariance matrix Σ ∈ RN×N .

Definition 2.1.2 (Empirical Moments of Complete Panel Data)

Let the vector µX ∈ RN and matrix ΣX ∈ RN×N be the time-invariant mean and covariance matrix of

the complete panel data X ∈ RT×N from Definition 2.1.1. Then, we deploy the empirical mean µ̂X ∈ RN

and covariance matrix Σ̂X ∈ RN×N , which are given below, as estimators of µX and ΣX :

µ̂X =
1

T

T∑
t=1

Xt =
1

T
(X ′1T ) , (2.1)

Σ̂X =
1

T

T∑
t=1

(
Xt − µ̂X

) (
Xt − µ̂X

)′
=

1

T

(
X −

(
1T ⊗ µ̂′X

))′ (
X −

(
1T ⊗ µ̂′X

))
. (2.2)

A time series {Xt} is a sequence of observations Xt ∈ RN over time and can be interpreted as realization

of a stochastic process (Ruppert, 2011, p. 201). In the sequel, we will use the terms times series, stochastic

process and process for {Xt} synonymously. Unless stated otherwise, we assume such a process {Xt} as

complete, that is, there are no missing elements. In econometrics, a usual assumption for a process {Xt}
is stationarity. For instance, Ruppert (2011, p. 202) calls a process “strictly stationary if all aspects of its

behavior are unchanged by shifts in time”. If its mean, variance and covariance are independent of time,

he denotes it as weakly stationary. Here, we make some stationarity assumptions, too. For this purpose,

Definition A.2.1 recalls that a process {Xt} is said to be covariance-stationary, if its first and second order

moments are time invariant (Hamilton, 1994, p. 258). In successive derivations, the alternative conditions

for covariance-stationarity of Vector Autoregression Models in Lemma A.2.3 may prove very useful. With

the above notation and concepts in mind, we are ready to introduce Static Factor Models (SFMs).

Definition 2.1.3 (Static Factor Model)

Let the covariance-stationary vector Xt ∈ RN , which collects all observations at time t, be driven by a

common, covariance-stationary factor F t ∈ RK , 1 ≤ K ≤ N, and an idiosyncratic error εt ∈ RN . The

latent factors and idiosyncratic errors are supposed to be identically and independently distributed (iid)

Gaussian and independent of each other, i.e., F t ⊥ εs ∀ t, s. Then, for data Xt, latent variables F t and

shocks εt a Static Factor Model obeys:

Xt = WF t + µ + εt, εt ∼ N (0N , Σε) iid, F t ∼ N (0K , IK) iid, (2.3)
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with vector µ ∈ RN and matrices W ∈ RN×K and Σε ∈ RN×N as constants. If Σε is a diagonal matrix,

the shocks are cross-sectionally uncorrelated and the model in (2.3) is called an Exact Static Factor Model

(ESFM). Otherwise, we refer to it as an Approximate Static Factor Model (ASFM).

Note, the relation in (2.3) provides for the covariance matrix of Xt given the parameters Θ = {W,µ,Σε}:
VarΘ [Xt] = WW ′ + Σε . If the matrix Σε has uniformly bounded eigenvalues, Chamberlain and Roth-

schild (1983) called the vector Xt in (2.3) to have an approximate K-factor structure. In Definition 2.1.3,

the hidden factors are supposed to be iid multivariate Gaussian. Since there is no time-dependent factor

dynamics, the above FMs rank among the static ones. If the unobservable factor dynamics satisfies a Vec-

tor Autoregression Model of order p ≥ 1, we receive the Dynamic Factor Models (DFMs) in Definition

2.1.4.

Definition 2.1.4 (Dynamic Factor Model)

The covariance-stationary vector process {Xt} gathers all observations over time. Thereby, let the vector

Xt ∈ RN be affected by a common factor F t ∈ RK , 1 ≤ K ≤ N, and an idiosyncratic shock εt ∈ RN .

The stochastic process {F t} is supposed to be zero-mean, covariance-stationary and autoregressive, i.e.,

it obeys a VAR(p) of order p ≥ 1. Thus, for data Xt, latent factors F t and shocks εt a Dynamic Factor

Model is given by:

Xt = WF t + µ + εt, εt ∼ N (0N ,Σε) iid, (2.4)

F t =

p∑
i=1

AiF t−i + δt, δt ∼ N
(
0K ,Σδ

)
iid, (2.5)

with constant vector µ ∈ RN and matrices W ∈ RN×K , Σε ∈ RN×N , Ai ∈ RK×K , 1 ≤ i ≤ p, and Σδ ∈
RK×K . The errors in (2.4)-(2.5) are supposed to be independent, i.e., εt ⊥ δs ∀ t, s. Let the matrix Σε be

diagonal, then, the model in (2.4)-(2.5) is called an Exact Dynamic Factor Model (EDFM). Otherwise,

it belongs to the Approximate Dynamic Factor Models (ADFMs).

The ESFM in Definition 2.1.3 coincides with the FM in Tipping and Bishop (1999), if the matrix Σε is

a constant times the identity matrix, i.e., all of its diagonal elements are the same, and so, describes an

isotropic error model. The derivation of the estimation procedure in Bańbura and Modugno (2014) relies

on an EDFM as in Definition 2.1.4 and hence, their idiosyncratic errors εt in (2.4) are cross-sectionally

uncorrelated at first glance. However, this restriction is not essential due to the work of Doz et al. (2012)

such that their results remain valid for ADFMs with weakly cross-sectionally correlated errors. Since

their errors εt can be serially correlated, their model is more general in another direction. At this point,

we ignore serial correlation of the errors εt such that we can later on estimate the moments of the latent

factors in closed form instead of using the Kalman Filter or Smoother. For generating forecasts this does

not matter, but tracing forecasts back to the original input data is far easier with closed-form solutions

for the factor moments.

After a comparison between Definitions 2.1.3 and 2.1.4, we can conclude: On the one hand, a distinction

is made between SFMs and DFMs. In the first case, all factors are supposed to be iid, while the latter

assume a VAR of order p ≥ 1 for the factor dynamics. On the other hand, FMs are classified as exact and

approximate, respectively. The idiosyncratic errors of exact FMs are not admitted to be cross-sectionally

correlated such that their covariance matrix is diagonal. By contrast, approximate FMs permit cross-

sectional correlation of the idiosyncratic errors and thus, assume a full covariance matrix. However, the

division into exact and approximate FMs is not as strict as the distinction between SFMs and DFMs due
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to the results of Doz et al. (2012). They “treat[ed] the exact factor model as a misspecified approximating”,

when they derived the consistency of the estimated factors.

For the diverse FM specifications, there is abundant literature available. In this context, problems ranging

from model selection to parameter estimation were discussed in detail. Neither theoretical questions nor

empirical challenges remained untouched. This is why we give a brief overview of some well-known papers

in this field, but cannot guarantee for the comprehensiveness of our summary. If there is any work missing,

we apologize for this and ask the respective authors for their indulgence.

Although Dempster et al. (1977) did not particularly focus on FMs, they significantly influenced research

in this field. They suggested an EM for parameter estimation, when the underlying data set is incomplete.

To be precise, they replaced the log-likelihood function by its expectation conditioned on the observations

and latest parameter estimates. In this way, they integrated out all missing elements from the objective

function. Then, they searched for the (global) optimum of this conditional expectation to update previous

parameter estimates. In the sequel, Rubin and Thayer (1982) used the EM of Dempster et al. (1977) for

estimating SFMs, while Shumway and Stoffer (1982) applied it to DFMs. In both articles, the unobserved

factors took the role of the missing elements in Dempster et al. (1977). The work in all three papers laid

a first cornerstone in research, since their results were reused, applied and extended in, e.g., Tipping

and Bishop (1999), Reis and Watson (2007), Bork (2009), Giannone et al. (2009), Jungbacker et al.

(2009), Bork et al. (2010), Bańbura et al. (2011, 2013, 2014), Doz et al. (2011, 2012), Modugno (2011),

Stock and Watson (2011), Bańbura and Modugno (2014) and Luciani (2014). In this context, Bork

(2009) recommended a hybrid solution, which starts with an EM, but changes to the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) method after a while. As justification for this transition, they argued that EMs

quickly find the neighborhood of a maximum, but quasi-Newton approaches, e.g., the BFGS method,

then outperform EMs in precisely locating the parameters of the maximum. Besides this, Bork (2009)

and Bork et al. (2010) allowed for linear constraints of the loadings matrix to tacle potential identification

issues. Jungbacker et al. (2009) devoted themselves the computational efficiency of parameter estimation

in the presence of missing observations, whereas Bańbura and Modugno (2014) paid attention to arbitrary

patterns of data incompleteness.

A second milestone in the area of Factor Analysis (FA) was set by Stock and Watson (1999a,b, 2002a,b).

Among other things, they proved for Approximate Factor Models with time-dependent loadings that the

factors can be consistently estimated. In addition, they benefited from the properties of the conditional

normal distribution, when they derived an own EM for parameter estimation. Thereby, the EM generated

estimates for missing elements and so, provided balanced panel data. Based on this full data, an ordinary

PCA eventually estimated the factors and unknown parameters. Bernanke and Boivin (2003) applied the

approach in Stock and Watson (1999b, 2002b) to Federal Reserve data and confirmed that large data sets

can improve forecasts of economic times series. Further applications and extension of the seminal work of

Stock and Watson (1999a,b, 2002a,b) are Artis et al. (2005), Boivin and Ng (2005), Angelini et al. (2006),

Breitung and Eickmeier (2006), Bai and Ng (2008b), Giannone et al. (2008), Hogrefe (2008), Schumacher

and Breitung (2008), Bork (2009), Stock and Watson (2009, 2011), Barhoumi et al. (2010), Doz et al.

(2011), Aastveit and Trovik (2012), Bańbura and Modugno (2014), Barigozzi et al. (2014) and Luciani

(2014). For further information about DFMs see, e.g., Stock and Watson (2011) and Luciani (2014).

A third crux of the matter was marked by Bai and Ng (2002). For Approximate FMs and large data sets,

they developed a couple of information and panel criteria for the selection of the factor dimension. But

they noted that their panel criteria may behave differently in case of finite samples, although they are

asymptotically equivalent. To highlight the importance of the criteria in Bai and Ng (2002) we refer to
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the subsequent papers, which tested, relied on or extended at least one of them: Breitung and Eickmeier

(2006), Amengual and Watson (2007), Reis and Watson (2007), Bai and Ng (2008b, 2013), Bork (2009),

Stock and Watson (2009, 2011), Angelini et al. (2010, 2011) and Barigozzi et al. (2014). Since the size of

their data set was small, Barhoumi et al. (2010) did not use the criteria of Bai and Ng (2002) on purpose.

Forni et al. (2000) introduced Generalized Dynamic Factor Models (GDFMs), which admit infinite factor

dynamics and hence, opened another research direction. Applications, the theoretical background, com-

parisons and extensions of GDFMs were discussed in Forni and Lippi (2001), Forni et al. (2004, 2005,

2009), Bai and Ng (2008b), Altissimo et al. (2010) and Luciani (2011). GDFMs do not represent a main

concept of this thesis, this is why we are brief regarding this topic.

A disadvantage of Vector Autoregression Models is the fact that only a limited number of time series can

be included. Factor Analysis supports the treatment of big data sets. Especially, the inherent dimension

reduction condenses large panel data in the form of a few factor time series. To benefit from the advantages

of both Bernanke et al. (2005) developed the Factor-Augmented Vector Autoregression Models (FAVARs).

Stock and Watson (2005) also link VARs and FMs, but their focus is on the implications, if dynamic factor

models are put into VAR form. In both papers, FMs have additional terms, i.e., exogenous variables or

lagged panel data. Besides the two estimation methods in Bernanke et al. (2005), Bork (2009) presented

a third (fully parametric) procedure for estimating the FAVARs in Bernanke et al. (2005). In Chapter 5,

we take a closer look at FAVARs. Thereby, we modify the estimation procedure in Bork (2009) such that

it explicitly allows for the partially observed factors.

2.1.2 Principal Component Analysis

Although there are many differences between PCA and FA, both concepts are sometimes treated equally.

For this purpose, we capture the definition of PCA (Jolliffe, 2002, pp. 1-6, Section 1.1) in the successive

lemma, before we discuss its advantages and disadvantages compared to FA. Both techniques can provide

the same results, however, this remains valid only under specific conditions, which we also address. Finally,

we state a non-exhaustive list of papers estimating FMs using PCA. In the sequel, let R+ be the positive

real line and ‖u‖2 =
√
u′u denotes the Euclidean norm or 2-norm of the vector u ∈ RN .

Lemma 2.1.5 (Principal Components)

Assume Xt ∈ RN as random vector, where λ1 > . . . > λN ∈ R+ are the descendingly ordered eigenvalues

of its covariance matrix ΣX ∈ RN×N with orthonormal eigenvectors u1, . . . ,uN ∈ RN . This means, for

1 ≤ l < k ≤ N the eigenvectors satisfy: u′kul = 0 (orthogonal) and ‖uk‖22 = u′kuk = 1 (normal). Then,

the k-th principal component u′kXt maximizes the variance in the elements of Xt, that is, u′kΣXuk,

and is uncorrelated to all previous principal components u′lXt with 1 ≤ l ≤ k−1. Furthermore, it follows

for the variance of the k-th principal component: Var [u′kXt] = λk.

Proof:

The method of Lagrange multipliers with Lagrange multiplier λ and normalization constraint ‖u1‖22 = 1

provides for the first principal component the following maximization problem:

u′1ΣXu1 − λ (u′1u1 − 1) .

Now, the partial derivatives with respect to the vector u1 and searching for the zeros of the arising system

of linear equations yield: (
ΣX − λIN

)
u1 = 0N ,
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which is solved by all eigenvalues and their associated eigenvectors. Because of u′1ΣXu1 = λu′1u1 = λ,

which we shall maximize, λ has to be the largest eigenvalue. Next, the fact that the principal components

u′2Xt and u′1Xt are uncorrelated arises from the assumed orthogonality of the vectors u1 and u2 in the

following manner: Cov [u′2Xt,u
′
1Xt] = u′2ΣXu1 = λu′2u1 = 0. Using Lagrange multipliers λ and φ with

the orthonormality of the vectors u1 and u2 the method of Lagrange multipliers results in the subsequent

maximization problem for the second principal component:

u′2ΣXu2 − λ (u′2u2 − 1)− φ u′2u1.

The partial derivatives with respect to u2 cause the following equation system:

2ΣXu2 − 2λu2 − φu1 = 0N .

By multiplying u′1 from the left to both sides of the above equation we receive φ = 0 and end up with:

ΣXu2 − λu2 = 0N .

By similar reasoning as before, we conclude that λ is the second largest eigenvalue of ΣX and u2 is its

normalized eigenvector. An interative application of this procedure eventually proves the statement for

all principal components u′kXt with 3 ≤ k ≤ N . 2

Note, Lemma 2.1.5 assumes all eigenvalues of the covariance matrix ΣX as distinct and positive. For n

equal eigenvalues with 2 ≤ n ≤ N , the n-dimensional space spanned by their eigenvectors is unique, but

the eigenvectors themselves are exchangeable and thus, are not clearly identifiable (Jolliffe, 2002, p. 27,

Section 2.4). The normlization u′kuk = 1 in Lemma 2.1.5 ensures to reach the maximum for finite uk, but

it is only one, perhaps the most common one, of serveral alternatives (Jolliffe, 2002, p. 5, Section 1.1). In

empirical studies, the covariance matrix ΣX is usually replaced by the empirical covariance matrix Σ̂X
in (2.2).

For distinguishing features between PCA and FA, we follow Jolliffe (2002, pp. 150-161, Sections 7.1-7.3).

First, FA assumes an underlying model as in Definitions 2.1.3 and 2.1.4, whereas PCA is a non-parametric

approach and does not assume such a model. Second, for the same panel data the number of factors and

principal components might be different. Guess there is a time series that is uncorrelated to the remaining

ones of the panel data. Then, in PCA this time series likely becomes a principal component, but no factor

in FA. In case of PCA, it specifies an own eigenvector ui ∈ RN of the covariance matrix ΣX . In the end, it

depends on the total number of principal components K and the variation covered by u′iΣXui, whether

the principal component uiXt is chosen or not. If a time series behaves indenpendently to the remaining

ones, FA assigns this individual nature to an idiosyncratic shock instead of a factor, since the factors

cover communalities of the panel data. This fact highlights the third characteristic. In PCA, the focus

lies on the diagonal elements of the covariance matrix ΣX , while in case of FA the off-diagonal entries

matter more. Fourth, especially in empirical studies, the true number of factors or principal components

is unknown and therefore, has to be estimated. If the number of principal components increases from K1

to K2, K2−K1 new principal components are added to the original K1 ones. By contrast, if the number

of factors increases from K1 to K2, K2 new factors are determined, which not necessarily comprise the

former K1 ones. Fifth, principal components arise from an exact linear function of the panel data, that

is, u′kXt, while factors are a linear combination of the panel data and errors. Due to these differences

Jolliffe (2002, p. 150, Chapter 7) assessed the use of PCA as part of FA as “bending the rules that govern

factor analysis”.
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Despite the differences between PCA and Factor Analysis, PCA often provides initial parameter estimates

for FA. Similar to Jolliffe (2002, p. 157, Eq. 7.2.3) we have:

Remark 2.1.6 (PCA for Parameter Initialization in Factor Analysis)

Assume the SFM in Definition 2.1.3 and let λ1 > . . . > λN be the descendingly sorted eigenvalues of the

covariance matrix ΣX with orthonormal eigenvectors u1, . . . ,uN ∈ RN . Then, it holds for the parameters

of a Static Factor Model initialized using PCA:

Xt =
[
u1 · · ·uK |uK+1 · · ·uN

]


u′1Xt

...

u′KXt

u′K+1Xt

...

u′NXt



=
[
u1 · · ·uK

]
u′1Xt

...

u′KXt

+
[
uK+1 · · ·uN

]
u′K+1Xt

...

u′NXt


= WF t + εt,

which coincides with the ASFM in Definition 2.1.3. In general, we cannot assume that the idiosyncratic

shocks are cross-sectionally uncorrelated such that the conditions of an ESFM might be violated.

Under certain conditions PCA and FA can be reconsiled. For the ESFMs in Definition 2.1.3 with isotropic

shocks, i.e., we have Σε = σ2
εIN , Tipping and Bishop (1999) showed how to determine principal compo-

nents using MLE. To highlight the underlying probabilistic framework they introduced the term Prob-

abilistic Principal Component Analysis (PPCA). In Section 3.1.1, we will reapply their estimation pro-

cedure. This is why we repeat their MLE parameter estimates in Theorem 3.1.3. A similar idea pursued

Schneeweiss and Mathes (1995) by analyzing how small deviations between factors and principal com-

ponents can be. For further reading on the reconsilement of PCA and FA see, e.g., Jolliffe (2002, pp.

158-161, Chapter 7.3).

PCA and FA share an important feature, namely, both techniques admit a reduction in dimension, when

panel data is condensed by a few principal components or factors. Since PCA is a well-known concept in

the literature, especially for now- and forecasting applications, we review some work in this area. Stock

and Watson (2002a,b) forecasted univariate time series based on factors, which obey an Approximate

FM and are estimated using principal components. In addition, they suggested the combination of PCA

and an EM for parameter estimation with incomplete panel data, which is revived in Schumacher and

Breitung (2008) and Marcellino and Schumacher (2010). The two-step estimation method for the FAVARs

in Bernanke et al. (2005) first extracts factors from panel data using PCA and then, applies an Ordinary

Least Squares Regression (OLS) for estimating the coefficient matrices of the factor dynamics. Bai and

Ng (2002, 2006, 2008a,b) derived panel and information criteria for model selection, proved consistency

and asymptotic intervals of predicted variables, provided a general overview and considered non-linear

or targeted predictions, when factors are estimated using PCA. As in Bernanke et al. (2005), De Mol

et al. (2006) compared Bayesian and PCA based estimation methods. Doz et al. (2011) proposed a

two-step estimation method for ADFMs, which first combines PCA and OLS. In the second step, the

factors are reestimated by the KS. This approach was applied or modified in Giannone et al. (2004,
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2008), Hogrefe (2008) and Angelini et al. (2010). Bai and Ng (2013) studied conditions such that PCA

provides asymptotically unique factor estimates, that is, they aimed to remove the uniqueness except for

rotation. Finally, Stock and Watson (2011) summarized recent developments regarding FMs. Thereby,

they collected contributions and results of PCA in this field.

2.1.3 Expectation-Maximization Algorithm

Let L (Θ|X) be the log-likelihood function of a model with parameter set Θ for a complete data sample X

as in Definition 2.1.1. Then, the idea behind Maximum-Likelihood Estimation (MLE) is to find parameter

estimates Θ̂ such that the sample X occurs most likely. That is, the maximum likelihood estimates Θ̂

satisfy the subsequent optimization problem:

Θ̂ = arg max
Θ

L (Θ|X) . (2.6)

But what happens, if the sample X is incomplete, for instance, due to missing observations? As a solution,

Dempster et al. (1977) introduced Expectation-Maximization Algorithms (EMs), which integrate out all

missing data from the log-likelihood function, before MLE is applied.

Definition 2.1.7 (Expectation-Maximization Algorithm)

Let L (Θ|X) be the log-likelihood function for a model with parameters Θ given a complete data sample X,

but let the set Xobs collect all actually observed data. Furthermore, for loop (l) ≥ 0 the set Θ̂(l) contains

the current maximum likelihood estimates. Then, an Expectation-Maximization Algorithm moves forward

to the next loop (l + 1) in the form of two steps:

1. Expectation Step: Update the expected log-likelihood function based on the observed data and latest

parameters, i.e.:

EΘ̂(l)
[L (Θ|X)|Xobs] .

2. Maximization Step: Update parameter estimates, that is:

Θ̂(l+1) = arg max
Θ

EΘ̂(l)
[L (Θ|X) |Xobs] .

The above definition makes clear how the name Expectation-Maximization Algorithm came up and why

EMs rank among the iterative schemes. In addition, it shows need for a termination criterion to stop the

overall routine. As soon as the change in the expectation of the log-likelihood function or in the estimated

parameters falls below a prespecified threshold, EMs usually stop. At least, these were the most popular

conditions in recent articles such as Schumacher and Breitung (2008), Doz et al. (2012) and Bańbura and

Modugno (2014).

After the fundamentals, we look back on the impact of EMs on the following research. Rubin and Thayer

(1982) were among the first to transfer the EM of Dempster et al. (1977) to Factor Analysis. Thereby, the

latent factors took the role of missing data. In the meanwhile, Shumway and Stoffer (1982) estimated the

hidden process of a state-space representation using an EM together with the Kalman Filter. Watson and

Engle (1983) also combined an EM with the KF and KS for parameter estimation, when the underlying

model comprised unobservable components. After a comparison with a scoring based estimation method,
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they concluded that EMs have an advantage at the beginning, since they rapidly find the region of the

maximum. However, for the precise location of the maximum scoring can be a better choice.

Wu (1983) discussed conditions such that EMs yield converging sequences of the model parameters and

likelihood function. He also highlighted that obtained parameter estimates may mark a local maximum

of the likelihood function, but in special situations it is a saddle point only. Tipping and Bishop (1999)

actually aimed at reconsiling FA and PCA. In doing so, they derived closed-form solutions and an EM

for parameter estimation. Stock and Watson (1999a, 2002b) suggested an EM for estimating FMs based

on incomplete panel data, which is applied in Schumacher and Breitung (2008), Boivin et al. (2010) and

Marcellino and Schumacher (2010).

In the sequel, mixtures of EMs and Kalman Filtering techniques gained in importance in the literature.

E.g., the one in Reis and Watson (2007) supported the decomposition of changes in prices of consumption

goods. Hogrefe (2008) preferred a two-step approach, where PCA and an EM initialized a mixed-frequency

DFM, before KF and KS reestimated the hidden factors. Among other things, Bork (2009) promoted a

hybrid estimation method, which was introduced in Jungbacker and Koopman (2008). To improve the

convergence of the overall scheme, Jungbacker and Koopman (2008) started with an EM to quickly find

the neighborhood of a maximum, but then switched to the BFGS method, i.e., a quasi-Newton ansatz,

converging more rapidly to the precise location of the optimum. Next, Bork et al. (2010) extended the EM

to include linear parameter restrictions, while Jungbacker et al. (2009, 2011) accelerated the estimation

of high-dimensional DFMs with incomplete data by reformulating its state-space representation.

Doz et al. (2011) proposed a two-step estimation method, which first applies PCA and OLS to initialize

the factors and model parameters of ADFMs. In the second step, the factors were reestimated using the

KS. In Doz et al. (2012), this two-step approach was modified, roughly spoken, it was iteratively applied

such that an EM was received. This EM was compared with a Bayesian framework for modeling large

European data in Bańbura et al. (2014). Thereby, Bańbura et al. (2014) concluded that both techniques

provide reasonable, in particular, similar results. Eventually, Bańbura and Modugno (2014) extended the

ansatz of Doz et al. (2012) to allow for incomplete data. Their estimation procedure entered, for instance,

the analyses of Modugno (2011), Bańbura et al. (2011) and Kuzin et al. (2013).

2.1.4 Kalman Filter and Smoother

Let us recall the definition of DFMs. As shown in Definition 2.1.4, our DFMs consist of four stochastic

processes, i.e., the observed panel data {Xt}, the hidden factors {F t}, the idiosyncratic errors {εt} and

the shocks {δt}. The VAR(p), p ≥ 1, in (2.5) models the factor dynamics and hence, describes for each

point in time t the current state of the factors F t. Because of this, (2.5) is called state equation (Hamilton,

1994, p. 372). In opposition to (2.5), which only comprises the latent processes {F t} and {δt}, Equation

(2.4) incorporates an observable process, i.e., the panel data {Xt}. On the one hand, the panel data is

observed and so, only the process {Xt} provides information about the DFM in Definition 2.1.4. On the

other hand, only (2.4) maps the relation between observed and hidden processes. Therefore, Equation

(2.4) is called observation equation. If a time series {Xt} is completely defined by the observation equation

in (2.4) and the state equation in (2.5), it has a state-space representation (Brockwell and Davis, 2002,

p. 261, Definition 8.1.1). Unfortunately, a model can have several state-space representations, which may

influence the computational efficiency of estimation methods such as the Kalman Filter (KF) or Kalman

Smoother (KS). For instance, see Crone and Clayton-Matthews (2005), Jungbacker and Koopman (2008)

and Jungbacker et al. (2009, 2011). This is why the choice of the state-space representation really matters.
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The main idea originates from the work in Kalman (1960) such that both methods were named after him.

In general, the Kalman Filter and Smoother gradually update linear projections of a model, which is cast

into one of its state-space representations. Here, we restrict ourselves to the state-space representation of

DFMs in (2.4)-(2.5), when we explain the two estimation methods and add references for the respective

proofs. For detailed explanations, extensions and modifications, we propose classical textbooks as Hamil-

ton (1994, pp. 372-408, Chapter 13) or Brockwell and Davis (2002, pp. 271-277, Section 8.4). As shown in

Lemma A.2.2, we can rewrite any K-dimensional VAR(p), p ≥ 1, as pK-dimensional VAR(1). Moreover,

we define the matrix W̃ ∈ RN×pK as follows: W̃ =
[
W,ON×(p−1)K

]
. Then, the state-space representation

of DFMs in (2.4)-(2.5) is equal to:

Xt = W̃F̃ t + µ + εt, (2.7)

F̃ t = ÃF̃ t−1 + δ̃t, (2.8)

where F̃ t ∈ RpK , δ̃t ∈ RpK and Ã ∈ RpK×pK are given in Lemma A.2.2. Hence, without loss of generality,

we consider KF and KS equations for DFMs with factor dynamics of order one. For clarity reasons, let Θ =

{W̃,µ,Σε , Ã,Σ˜δ
} collect all model parameters. Neither the KF nor the KS estimate Θ, which requires

additional techniques such as MLE, EMs or quasi-Newton methods. For instance, in a maximum likelihood

framework the alternating application of the KF, KS and estimating Θ ensures that the estimated factors

and model parameters optimize the (expected) log-likelihood function. With this in mind, the KF satisfies:

Lemma 2.1.8 (Kalman Filter for Dynamic Factor Models)

Assume the state-space representation in (2.7)-(2.8) of the DFM in Definition 2.1.4 with known model

parameters Θ. Furthermore, for complete panel data X ∈ RT×N as in Definition 2.1.1, the set Ωt contains

all observations up to time 0 ≤ t ≤ T as follows:

Ω0 = ∅,

Ωt = {X1, ...,Xt} ∀ t > 0.

For clarity reasons, we introduce:

F̂ t|t−1 = EΘ

[
F̃ t|Ωt−1

]
∈ RpK ,

P̂Ft|t−1 = VarΘ

[
F̃ t|Ωt−1

]
∈ RpK×pK .

Then, for 1 ≤ t ≤ T the Kalman Filter consists of two steps:

Prediction Step: F̂ t|t−1 = ÃF̂ t−1|t−1,

P̂Ft|t−1 = ÃP̂Ft−1|t−1Ã
′ + Σ˜δ

,

Update Step: F̂ t|t = F̂ t|t−1 + ΓKFt

(
Xt − µ − W̃F̂ t|t−1

)
,

P̂Ft|t = P̂Ft|t−1 − ΓKFt

(
W̃P̂Ft|t−1W̃

′ + Σε

) (
ΓKFt

)′
,

with Kalman Filter Gain ΓKFt ∈ RpK×N defined by:

ΓKFt = P̂Ft|t−1W̃
′
(
W̃P̂Ft|t−1W̃

′ + Σε

)−1

.

Proof:

The above solutions are derived in Hamilton (1994, pp. 377-381, Section 13.2). For the readers conve-

nience, all results are summarized in Hamilton (1994, p. 394, Eq. 13.6.5-13.6.8). 2
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The prediction and update steps in Lemma 2.1.8 are also stated without proof in Ghahramani and Hinton

(1996), Särkkä et al. (2004) and Bork (2009, Appendix C.1). As shown in Lemma 2.1.8, the Kalman Filter

progressively generates linear projections of the expectation and covariance matrix of the hidden factors.

At any point in time 1 ≤ t ≤ T , information gained up to time t − 1 enters the prediction step, while

all observations up to time t affect the update step. For all points in time, the Kalman Filter Gain

ΓKFt controls the reliability of the latest predictions. In case of bad predictions, i.e., for large deviations

Xt−µ−W F̂ t|t−1, major adaptations are required, whereas for good ones the opposite holds. Before the

interaction of predictions and updates starts, the moments F̂ 0|0 and P̂F0|0 are required. For this purpose,

the unconditional mean and covariance matrix in Lemmata A.2.6 and A.2.7 may serve for initialization.

Eventually, Lemma 2.1.8 highlights two drawbacks of the KF, which numerical inaccuracies in empirical

studies can produce. On the one hand, the ranks of the matrices W and Σε are at most K and N . Hence,

for high-dimensional FMs of sufficiently large lag length p, this might cause that the matrix inverse part

of the KF Gain does not always exist. On the other hand, in the presence of numerical noise the updates

of the covariance matrix P̂Ft|t do not necessarily ensure its semi-positive definiteness. To tacle the latter

problem the Joseph form for updating the covariance matrices as in Haykin (2002, p. 8, Eq. 1.24) can be

used.

Next, we consider the KS, which again assumes known model parameters Θ and is given by.

Lemma 2.1.9 (Kalman Smoother for Dynamic Factor Models)

Assume the setting and notation in Lemma 2.1.8. Then, we have ΩT = X, i.e., ΩT covers the whole data

sample, and for all points in time 1 ≤ t ≤ T , the Kalman Smoother applies the following updates:

F̂ t|T = F̂ t|t + ΓKSt

(
F̂ t+1|T − F̂ t+1|t

)
,

P̂Ft|T = P̂Ft|t − ΓKSt

(
P̂Ft+1|t − P̂

F
t+1|T

) (
ΓKSt

)′
,

where the KF in Lemma 2.1.8 provided the means F̂ t|t and covariance matrices P̂Ft|t. The matrix ΓKSt ∈
RpK×pK denotes the Kalman Smoother Gain, which is defined by:

ΓKSt = P̂Ft|tÃ
′
(
P̂Ft+1|t

)−1

.

Proof:

See Hamilton (1994, pp. 394-397, Section 13.6). 2

The above expressions are stated without any proof in Ghahramani and Hinton (1996) and Särkkä et al.

(2004). As shown in Lemma 2.1.9, the KS always requires a run of the KF in advance. Otherwise, there

are no estimates for the means F̂ t+1|t and covariance matrices P̂Ft+1|t. In contrast to the KF, the KS

updates the means F̂ t|T and covariance matrices P̂Ft|T based on the full information ΩT . Thereby, the KS

starts at the sample end, i.e, t = T , and goes back in time until the beginning at t = 1 is reached. Hence,

the KS moves backward, while the KF moves forward in time. Like the KF Gain, the KS Gain includes

a matrix inverse, which possibly causes problems due to numerical errors.

Besides the expectation and covariance matrix of the factors, some papers smooth the autocovariances

between factors of different points in time. For instance, De Jong and Mackinnon (1988) and De Jong

(1989) contributed to this topic. In the sequel, we deploy the following lag-one autocovariance smoother.
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Lemma 2.1.10 (Lag-One Autocovariance Smoother for Dynamic Factor Models)

In the setting of Lemmata 2.1.8 and 2.1.9, for any point in time 1 ≤ t ≤ T−1, the lag-one autocovariance

smoother provides for the covariance matrix between the factors at times t+ 1 and t:

P̂F(t+1,t)|T = CovΘ

[
F̃ t+1, F̃ t|ΩT

]
= P̂Ft+1|T

(
ΓKSt

)′ ∈ RpK×pK ,

with KS Gain ΓKSt ∈ RpK×pK as in Lemma 2.1.9.

Proof:

See De Jong and Mackinnon (1988). 2

The lag-one autocovariance smoother also calls for the KS gain, this is why it is often determined together

with the KS instead of being separately estimated later on. In Chapter 4, we also link the KS and lag-

one autocovariance smoother within a single routine, when we compare our closed-form solutions for the

factor means and covariance matrices with their counterparts provided by Kalman Filtering techniques.

We similarly proceed in Chapter 5, when we develop a KF and KS, which take the partial observability

of factors in case of FAVARs into account, and compare them with the standard KF and KS.

Finally, we give a brief, non-exhaustive overview of articles considering KFs and KSs in the area of FA.

Shumway and Stoffer (1982) and Watson and Engle (1983) estimated models with latent components

using Kalman Filtering techniques and the EM in Dempster et al. (1977). Doz et al. (2011) pursued a

two-step ansatz for estimating ADFMs. Thereby, they applied PCA and OLS, before the KS reestimated

the hidden factors. This estimation procedure was used, modified and extended, among other things, in

Giannone et al. (2008, 2009), Angelini et al. (2010, 2011), Bańbura and Rünstler (2011), Bańbura et al.

(2014) and Doz et al. (2012). The EM in Bork (2009) and Bork et al. (2010) admits linear parameter

constraints. With this in mind, Bańbura and Modugno (2014) extended the method in Doz et al. (2012)

such that they were able to estimate ADFMs with incomplete panel data. For applications of this approach

see Modugno (2011), Bańbura et al. (2011) and Kuzin et al. (2013). Mariano and Murasawa (2003)

constructed a composite leading indicator based on monthly and quarterly data. Thereby, a quasi-Newton

method and the Kalman Filter estimated the model parameters and hidden factors. Within the scope

of suitable state-space representations, Nunes (2005), Proietti and Moauro (2006), Aruoba et al. (2009),

Aruoba and Diebold (2010), Mariano and Murasawa (2010) as well as Kuzin et al. (2011) also derived

composite indicators based on mixed-frequency information.

2.2 Incomplete Data and Temporal Aggregation

Technological advances supported the collection, storage and processing of vast amounts of data. In the

scope of this progress, models accommodating big data received more attention, but data abundance also

raised some questions. For instance, how to treat missing elements? Shall we fill gaps during the prepro-

cessing, e.g., using interpolation or are there alternatives for estimating missing values? In particular, how

to preserve cross-sectional dependencies in doing so? Furthermore, does more data necessarily improve the

(forecasting) performance of a model? Do monthly time series such as production and wholesale indica-

tors enhance the forecasting of quarterly indices like GDP? Finally, do models based on mixed-frequency

information perform better than those restricted to a single time horizon? The above questions and many

more were extensively discussed in the past. Therefore, we briefly summarize some well-known articles in

this area, before we define what incomplete data means for us and how it is treated within this thesis.
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Challenges arising from incomplete data have a long history in the literature and must be clearly separated

from the factor hiddenness in Section 2.1.1. After the seminal work of Dempster et al. (1977), Harvey and

Pierse (1984) estimated Autoregressive Integrated Moving Average Models (ARIMAs) in the presence of

missing observations or temporal aggregation. Thereby, the expression missing observations denotes the

absence of single values due to, e.g., public holidays, operational interruptions and trading suspensions.

For clarity reasons, they call each time series with missing observations a stock variable. By contrast, they

talk about temporal aggregation, when an observation results from the aggregation of some more frequent,

but hidden analogs. For instance, quarterly GDP growth rates (annualized, in logarithmic terms) can be

interpreted as published averages of monthly growth rates, which are not available. In terms of temporal

aggegration, there is a distinction between flow variables and change in flow variables. We call a time

series a flow variable, if each of its observations serves as average or sum of some more frequent, hidden

analogs. If the observed values represent the differences between two successive elements of a flow variable,

we denote such a time series a change in flow variable.

The classification as stock, flow and change in flow variables or the concept of missing data and temporal

aggregation are common in research. For more insight on this topic we refer to, e.g., Abeysinghe (1998),

Stock and Watson (1999a, 2002b), Liu and Hall (2001), Mariano and Murasawa (2003, 2010), Evans

(2005), Nunes (2005), Angelini et al. (2006, 2010, 2011), Proietti (2006), Proietti and Moauro (2006),

Hogrefe (2008), Hyung and Granger (2008), Schumacher and Breitung (2008), Wohlrabe (2008), Aruoba

et al. (2009), Aruoba and Diebold (2010), Marcellino and Schumacher (2010), Kuzin et al. (2011, 2013),

Bańbura et al. (2011, 2013), Bańbura and Rünstler (2011), Modugno (2011), Marcellino et al. (2013),

Bańbura and Modugno (2014), Luciani (2014) as well as Schorfheide and Song (2015).

In this thesis, we consider FMs based on incomplete panel data. Thereby, we aim to cover two scenarios:

(i) public holidays, trading suspensions, etc. cause the absence of single values, (ii) mixed-frequency data,

e.g., monthly and quarterly information, results in systematically missing observations. As a solution, we

apply the above concepts of stock, flow and change in flow variables to obtain balanced data without any

gaps. That means, we introduce for each irregular times series an artificial counterpart of higher frequency

and define an appropriate relation between both. Unlike publication delays, we have permanent gaps in

(i) and (ii), since they cannot be filled by any future observations. Besides publication conventions, signal

types and the chosen time horizon, calendar irregularities such as the numbers of (trading) days, public

holidays and weeks per month affect the pattern of missing data and thus, shall be addressed.

Definition 2.2.1 (Observed and Artificial Time Series)

For a sample of length T , let the counter 1 ≤ t ≤ T map each point in time, when new data arrives. Hence,

it covers the most frequent time horizon. For N time series the vector Xi
obs ∈ RT (i) with T (i) ≤ T collects

all observations of signal i with 1 ≤ i ≤ N . Let Xi ∈ RT be its artificial, high-frequency counterpart,

then, we assume a linear relation between Xi
obs and Xi as follows:

Xi
obs = QiX

i, (2.9)

with constant matrix Qi ∈ RT (i)×T of full row rank, i.e., T (i).

With a view to Definitions 2.2.1, any complete time series satisfies T (i) = T implying that the matrix Qi is

given by the T -dimensional identity matrix. For any time series, which is incomplete or less often updated,

the full rank condition removes unnecessary zero rows from the matrix Qi. Furthermore, the full rank

condition ensures that the inverse matrix (QiQ
′
i)
−1

exists and thus, the matrix Q′i (QiQ
′
i)
−1 ∈ RT×T (i)

is well-defined. The matrix Q′i (QiQ
′
i)
−1

is also known as the unique Moore-Penrose Inverse of Qi, which
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obeys: QiQ
′
i (QiQ

′
i)
−1

= IT (i) (Rao and Toutenburg, 1999, pp. 372-373, Definition A.64). This is essential

for the reconstruction formulas in Lemma 3.1.7, Equation (4.25) and Lemma 5.1.19.

Next, we formalize the previous distinction between stock and flow variables.

Definition 2.2.2 (Stock and Flow Variables)

Assume the notation in Definition 2.2.1 and let the integers (nj)1≤j≤T (i) count the high-frequency periods

between two successive observations of signal i, 1 ≤ i ≤ N, such that oj =
∑j
k=1 nk captures the point in

time, when the j-th observation Xi
obs,j is made. Then, we have for 1 ≤ i ≤ N and 1 ≤ j ≤ T (i):

� For stock variables, each observation coincides with its high-frequency analog: Xi
obs,j = Xi

oj .

� For the sum formulation of flow variables, it holds: Xi
obs,j =

∑nj−1
k=0 Xi

oj−k.

� For the average represenation of flow variables, we obtain: Xi
obs,j = 1

nj

∑nj−1
k=0 Xi

oj−k.

For illustrative purposes, in case of stock variables the linear relation in (2.9) may look like the following:

Xi
obs =



1 0 0 · · · 0 · · · 0

. . .
...

...

0 1 0 · · · 0 · · · 0

0 · · · 0 · · · 0 1
...

...
. . .

0 · · · 0 · · · 0 1


︸ ︷︷ ︸

Qi

Xi.

Similarly, examples for sum and average formulations of flow variables are given by:

Xi
obs =


1 · · · 1 0 0 · · · 0

0 · · · 0
. . . 0 · · · 0

0 · · · 0 0 1 · · · 1


︸ ︷︷ ︸

Qi

Xi (sum),

Xi
obs =


1
n1

· · · 1
n1

0 0 · · · 0

0 · · · 0
. . . 0 · · · 0

0 · · · 0 0 1
nT (i)

· · · 1
nT (i)


︸ ︷︷ ︸

Qi

Xi (average).

In total, the above examples confirm for complete time series the claim that the choice between stock and

flow variables does not matter, since we always get an identity matrix. In addition, all examples show the

flexibility of the presented modeling approach. Whenever we would like to switch from one series type to

another, we just have to accordingly adjust the shape of the matrix Qi. To allow for irregularly missing

observations, we just remove the respective rows of an identity matrix. In case of calendar irregularities,

e.g., the number of (trading) days per months is varying over time, we can map each possible day-week or

day-month structure through the matrix Qi. Note, calendar irregularities are a priori known and hence,

are deterministic.

Eventually, we mathematically derive the relation between observed and artificial data for change in flow

variables. As for flow variables, there is a sum and average variant, respectively.



2.2. INCOMPLETE DATA AND TEMPORAL AGGREGATION 19

Lemma 2.2.3 (Change in Flow Variables)

Assume the notation in Definition 2.2.2. Then, the average version of a change in flow variable satisfies:

∆Xi
obs,j =

nj−1∑
k=0

k + 1

nj
∆Xi

oj−k +

nj−1−1∑
k=0

nj−1 − 1− k
nj−1

∆Xi
oj−1−k.

For the special case that all low-frequency periods comprise the same number of high-frequency intervals,

i.e., nj = n ∀ 1 ≤ j ≤ T (i), a similar solution for the sum formulation of a change in flow variable exists

and is given by:

∆Xi
obs,j =

n−1∑
k=0

(k + 1) ∆Xi
nj−k +

n−1∑
k=0

(n− 1− k) ∆Xi
n(j−1)−k. (2.10)

Note, the equality nj = n ∀ 1 ≤ j ≤ T (i) provides: oj =
∑j
k=1 nk = nj. That means, the point in time,

when the j-th observation is made, is given by the product of j and n.

Proof:

We obtain for the average formulation of change in flow variables from the respective flow specification

in Definition 2.2.2, by inserting a telescoping sum and replacing oj through oj−1 + nj , the following:

∆Xi
obs,j = Xi

obs,j −X
i
obs,j−1

=
1

nj

nj−1∑
l=0

Xi
nj+oj−1−l −

1

nj−1

nj−1−1∑
l=0

Xi
oj−1−l

=
nj−1

∑nj−1
l=0 Xi

nj+oj−1−l − nj
∑nj−1−1
l=0 Xi

oj−1−l

nj nj−1

=
nj−1

∑nj−2
l=0 (l + 1) ∆Xi

nj+oj−1−l + nj nj−1Xoj−1+1 − nj
∑nj−1−1
l=0 Xi

oj−1−l

nj nj−1

=
nj−1

∑nj−1
l=0 (l + 1) ∆Xi

nj+oj−1−l + nj
∑nj−1−1
l=0 (nj−1 − 1− l) ∆Xi

oj−1−l

nj nj−1

=

nj−1∑
l=0

(
l + 1

nj

)
∆Xi

nj+oj−1−l +

nj−1−1∑
l=0

(
nj−1 − 1− l

nj−1

)
∆Xi

oj−1−l.

If nj = n ∀ 1 ≤ j ≤ T (i) holds, we receive by multiplication with n the sum version in (2.10). Finally, we

verify why this equality is essential. For this purpose, we assume nj = nj−1 + 1, i.e., one period exceeds

its prior by a single (high-frequency) interval. Then, the above procedure results in:

∆Xi
obs,j =

nj−1∑
k=0

(k + 1)∆Xi
oj−k +

nj−1−2∑
k=0

(nj − 1− k)∆Xi
oj−1−k +Xi

oj−2+1.

The last term is the artificial signal itself and so, the observed change is not equal to a pure combination

of high-frequency increments. By similar reasoning, the same holds for any nj 6= nj−1. The special case

in (2.10) for quarterly and monthly data is stated in Bańbura et al. (2013, ECB working paper, p. 10). 2

For illustrative purposes, we also give examples of the matrix Qi in Definition 2.2.1 for sum and average

variants of change in flow variables. Thereby, let the vectors ∆Xi
obs = [∆Xi

obs,1, . . . ,∆X
i
obs,T (i)]

′ ∈ RT (i)

and ∆Xi =
[
Xi

1, . . . ,X
i
T

]′ ∈ RT contain the observed and artificial increments. Then, we have:

∆Xi
obs =

(
1 ··· n−1 n n−1 ··· 1 0 0 ··· 0 0 0 ··· 0
0 ··· 0 0 1 ··· n−1 n ∗ ··· ∗ 0 0 ··· 0

0 ··· 0 0 0 ··· 0 0 ∗ . . . ∗ 0 0 ··· 0
0 ··· 0 0 0 ··· 0 0 ∗ ··· ∗ n n−1 ··· 1

)
︸ ︷︷ ︸

Qi

∆Xi (sum),
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∆Xi
obs =


1
n1
··· n1−1

n1
1

n2−1
n2

··· 1
n2

0 0 ··· 0 0 ··· 0 0 ··· 0

0 ··· 0 0 1
n2

··· n2−1
n2

1
n3−1
n3

··· 1
n3

0 ··· 0 0 ··· 0

0 ··· 0 0 0 ··· 0 0 1
n3

··· n3−1
n3

∗ ··· ∗ 0 ··· 0

0 ··· 0 0 0 ··· 0 0 0 ··· 0 ∗ . . . ∗ 0 ··· 0

0 ··· 0 0 0 ··· 0 0 0 ··· 0 ∗ ··· ∗
nT (i)−1

nT (i)
··· 1

nT (i)


︸ ︷︷ ︸

Qi

∆Xi (average).

For completely observed change in flow variables, the matrix Qi again becomes the T -dimensional identity

matrix. Hence, we have a consistent shape for all variable types, when the observed time series is complete.

Since the choice of a variable type only affects the matrix Qi, we can keep all remaining parts of an overall

model unchanged. This is a nice feature, in particular, when real-world data is used. On the one hand,

we can easily switch between different variable types, which possibly happens several times during the

preprocessing phase. On the other hand, it reduces the risk that a change in the data type is not properly

taken into account, e.g., in a model’s state-space representation. For instance, any change in the variable

type calls for a new state-space model in Bańbura and Modugno (2014).

Besides FMs and VARs, there is another well-known concept for the treatment of mixed-frequency time

series called Mixed-Data Sampling (MIDAS). Although we do not apply it within this thesis, the MIDAS

approach sometimes serves as benchmark of mixed-frequency FMs and VARs. For reasons of completeness,

we therefore spend a few words on its history and how it works. In Ghysels et al. (2004, 2005, 2006, 2007)

MIDAS was introduced, nicely explained, extended and applied to return volatilities. In a nutshell, MIDAS

denotes a regression framework, which deploys more timely information to describe a variable of interest

that is less often available. For instance, monthly data models quarterly GDP growth rates. Extensions of

MIDAS, applications and comparisons with alternative estimation methods are stated in Hogrefe (2008),

Clements and Galvão (2008), Ghysels and Wright (2009), Andreou et al. (2010, 2011, 2013), Armesto

et al. (2010), Marcellino and Schumacher (2010), Francis et al. (2011), Kuzin et al. (2011, 2013), Chiu

et al. (2012), Bai et al. (2013), Galvão (2013), Lahiri and Monokroussos (2013) and Ghysels (2015).



Chapter 3

Mixed-Frequency Information

Supporting Asset Allocation

Decisions

We use ESFMs for incomplete panel data to determine optimal portfolios in a mean-variance or marginal-

risk-parity framework. For this purpose, we condense the information in large, ragged panel data by a few

hidden factors. Thereby, we estimate for all points in time the factor means and covariance matrices. In a

next step, a Vector Autoregression Model with Exogenous Variables (VARX) describes the dynamics of a

multivariate return process, where the factors serve as exogenous variables. In this way, we derive empirical

means, covariance matrices and prediction intervals for returns of future periods of time. Irrespective of

whether we calculate means, covariance matrices or prediction intervals, we use samples randomly drawn

from the factors’ distribution instead of their estimates to allow for uncertainties arising from factor

estimation. Similarly, we take estimation risks inherent in the VARX parameters into account. Eventually,

the predicted means and covariance matrices enter our portfolio optimizations. For comparison reasons,

we run a backtest with US data. In doing so, we construct a portfolio, which is denoted in United States

Dollar (USD) and consists of Gold and three stock indices, i.e., Nasdaq Composite (NASDAQ), Standard

& Poor’s 500 (S&P500) and Dow Jones Industrial Average (DJIA). Besides financial risk and performance

figures, our analysis provides statistical point and interval measures to examine from diverse perspectives

that the combination of financial and macroeconomic data, which often causes incomplete panel data,

can improve forecasts and hence, really pays off.

3.1 Mathematical Background

At first, we apply the method of Tipping and Bishop (1999) for estimating the parameters of the ESFM in

Definition 2.1.3 with complete panel data. At this stage, we address the selection of the factor dimension.

Thereafter, the reconstruction formula in Lemma 3.1.7 enables us to expand the estimation method to

incomplete panel data. Next, we specify a VARX for the dynamics of a multivariate return process, where

the factors take the role of exogenous variables. At the end of this section, we repeat the mean-variance

and marginal-risk-parity, respectively, optimization problems to be solved.
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3.1.1 Estimation of ESFMs with Complete Panel Data

In this section, we only consider complete panel data. Before we explain parameter and factor estimation,

we discuss the assumptions of the ESFM in Definition 2.1.3. Thereby, we investigate how restrictive those

are and whether there remain some identification issues.

Remark 3.1.1 (Covariance Matrix of Factors)

The ESFM in Definition 2.1.3 assumes iid standard normal factors, that is, F t ∼ N (0K , IK) iid for all

1 ≤ t ≤ T . Let the positive-definite matrix ΣF ∈ RK×K be the general version of the covariance matrix

of the covariance-stationary factor process {F t}. Although the equality ΣF = IK seems restrictive at first

glance, it is very useful and supports the factors’ uniqueness. Unfortunately, it does not solve all issues,

since the factors are unique except for rotation.

To verify the statement in Remark 3.1.1, let D−1 ∈ RK×K be the inverse matrix of a non-singular matrix

D ∈ RK×K . Then, the factor F̆ t = DF t ∈ RK and loadings matrix W̆ = WD−1 ∈ RN×K also meet the

observation equation in (2.3):

Xt = WF t + µ + εt = W̆ F̆ t + µ + εt, (3.1)

and do not affect the dependencies between factors and idiosyncratic shocks:

CovΘ

[
F̆ t, εs

]
= D CovΘ [F t, εs] = OK×N . (3.2)

But the equality requires:

VarΘ

[
F̆ t

]
= D VarΘ [F t]D

′ = IK ,

and so, removes some degrees of freedom. For any orthonormal matrix R ∈ RK×K with R′R = RR′ = IK ,

the rotated factor F̄ t = R′F t ∈ RK and loadings matrix W̄ = WR ∈ RN×K obey (3.1) and (3.2), while

the equality ΣF = IK is still preserved. This is why the factors are unique except for rotation.

The essential assumption in Remark 3.1.1 is the positive definiteness of the covariance matrix ΣF . If the

rank of ΣF is smaller than K, less factors describe the panel data X just as well such that the dimension

of the factor space can be reduced. In this thesis, we aim at having as few factors as possible to model the

panel data X for a desired level of covered variation. This is why this condition is not really restrictive

from our perspective. Moreover, in our empirical applications we usually have K � N and so, achieve a

noticeable dimension reduction, when migrating from the panel data to the factor space.

For the ESFMs in Definition 2.1.3, the covariance matrix of the idiosyncratic errors is a diagonal matrix

admitting distinct elements. However, to be in accordance with Tipping and Bishop (1999), we consider

an isotropic error model instead. This is, we have: εt ∼ N
(
0N , σ

2
εIN

)
iid for any 1 ≤ t ≤ T . Thus, the

errors at a fixed point in time do neither interact with each other nor with the errors at another point in

time, but their variance is the same for each time series.

The assumptions in Definition 2.1.3, the equality ΣF = IK and the isotropic error model call the matrix

W to fulfill the following tasks: First, it maps the cross-sectional dependencies of Xt. Second, for any

point in time the matrix W balances the data variance, which is not covered by the idiosyncratic errors,

and the factor variance.

In the sequel, we present the PPCA approach of Tipping and Bishop (1999) for estimating the parameters

Θ =
{
W,σ2

ε
}

and factors of the ESFM in Definition 2.1.3 with isotropic error model. Regarding the mean
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µ we use the empirical mean µ̂X in Definition 2.1.2 for parameter estimation, as we subtract the empirical

means from the sample X during the data preprocessing. Therefore, we do not add µ to the set Θ. By

contrast, Tipping and Bishop (1999) treated mean µ as part of the parameters Θ in their MLE, but also

received µ̂X as estimator for µ. Tipping and Bishop (1999) actually aimed at reconsiling PCA and FA,

but they also derived estimates for Θ, which are useful for our purposes. The idea behind the derivation

of their estimation method is as follows: Before they can determine maximum likelihood estimates of Θ,

they need the log-likelihood function L (Θ|X) for a given data sample X ∈ RT×N . Because of iid factors

F t and idiosyncratic errors εt, the panel data Xt is iid, too. Hence, the overall log-likelihood function

L (Θ|X) can be decomposed as sum of the log-likelihood functions L (Θ|Xt) . In doing so, fΘ (Xt) stands

for the probability density function of the random variableXt and parameters Θ. Let |·| denote the matrix

determinant as in Definition A.1.6 and let tr (·) refer to the matrix trace in Definition A.1.1. Furthermore,

let ln (x) be the natural logarithm of any x ∈ R+ and let exp (y) be the value of the exponential function

for any y ∈ R. Then, it holds:

Lemma 3.1.2 (Log-Likelihood Function of ESFMs with Isotropic Error Model)

Let L (Θ|X) be the log-likelihood function of the ESFM in Definition 2.1.3 with an isotropic error model

and parameters Θ for complete panel data X ∈ RT×N as in Definition 2.1.1. Then, L (Θ|X) is given by:

L (Θ|X) = −T
2

[
N ln (2π) + ln (|C|) + tr

(
C−1Σ̂X

)]
, (3.3)

with matrices C = WW ′ + σ2
εIN ∈ RN×N and Σ̂X ∈ RN×N as in Definition 2.1.2.

Proof:

The factors F t and shocks εt are iid Gaussian. Thus, the vector Xt is also iid Gaussian with expectation

EΘ [Xt] and covariance matrix VarΘ [Xt] as follows:

EΘ [Xt] = µ and VarΘ [Xt] = WW ′ + Σε .

The isotropic error model results in VarΘ [Xt] = C as defined in Lemma 3.1.2. With this in mind, we

can conclude for the log-likelihood function:

L (Θ|X) = ln (fΘ (X1, . . . ,XT )) = ln

(
T∏
t=1

fΘ (Xt)

)

=

T∑
t=1

ln

[
(2π)

−N/2 |C|−1/2
exp

(
−1

2
(Xt − µ)

′
C−1 (Xt − µ)

)]

= −T
2

[N ln (2π) + ln (|C|)]− 1

2

T∑
t=1

tr
(
(Xt − µ)

′
C−1 (Xt − µ)

)
.

Finally, cyclical permutation inside the brackets of the matrix trace, see (vi) from Lemma A.1.2, and

the definition of Σ̂X yield the statement. 2

Based on the log-likelihood function in Lemma 3.1.2, MLE in case of the parameters Θ is straightforward.

In this context, let Z1/2 denote the matrix square root of a matrix Z ∈ RK×K , i.e., Z1/2Z1/2 = Z.

Theorem 3.1.3 (MLE for Parameter Estimation in ESFMs)

For the ESFM in Definition 2.1.3 with an isotropic error model, let λ1 ≥ . . . ≥ λN ≥ 0 be the descendingly
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sorted eigenvalues of the covariance matrix Σ̂X in Definition 2.1.2, whose orthonormal eigenvectors are

given by u1, . . . ,uN ∈ RN . Then, MLE provides the subsequent parameter estimates:

Ŵ = UK
(
ΛK − σ̂2

ε IK
)1/2

R, (3.4)

σ̂2
ε =

1

N −K

N∑
i=K+1

λi, (3.5)

where the diagonal matrix ΛK ∈ RK×K consists of λ1, . . . , λK and the columns of the orthonormal matrix

UK ∈ RN×K contain the vectors u1, . . . ,uK . The matrix R ∈ RK×K stands for any rotation matrix.

Proof:

See Tipping and Bishop (1999). 2

The matrix σ̂2
ε IK is diagonal, thus, the matrix

(
ΛK − σ̂2

εIK
)

is also diagonal. Due to (3.5), σ̂2
ε averages

the variation lost through dimension reduction. Since all eigenvalues are sorted in descending order, we

have: λi ≥ σ̂2
ε , 1 ≤ i ≤ K. Hence, all diagonal elements of

(
ΛK − σ̂2

εIK
)

are non-negative and the matrix

square root is well-defined. For reasons of uniqueness, we usually set for the rotation matrix R = IK .

So far, the choice of the factor dimension K was ignored, however, in empirical studies the true factor

dimension is unknown and therefore, has to be estimated. If PCA is used for factor estimation, Abdi

and Williams (2010) provide diverse criteria for choosing K. Besides PCA, Bai and Ng (2002) minimize

the average variance of the model residuals to obtain loadings and factors. In this manner, they receive

further information and panel criteria. Here, we pursue a simpler method, that is, we take the smallest K

such that K factors still capture a prespecified percentage ζ of the overall variation. Formally, we have:

Definition 3.1.4 (Selection of Factor Dimension in SFMs)

Let ζ ∈ (0, 1) be the percentage of data variation we intend to cover. Then, the optimal K = K (ζ) meets:

K (ζ) = min
k


 k∑
i=1

λi(∑N
j=1 λj

)
 ≥ ζ and 1 ≤ k ≤ N

 , (3.6)

with λ1 ≥ . . . ≥ λN ≥ 0 being the descendingly sorted eigenvalues of Σ̂X in Definition 2.1.2.

In Theorem 3.1.3, we obtained estimates of the parameters Θ for fixed factor dimension K. In addition,

Definition 3.1.4 offered a criterion for the choice of K. All in all, both results yield the following algorithm

for model estimation and selection:

Algorithm 3.1.1: Estimate ESFMs with isotropic errors based on complete panel data

Determine the eigenvalues and eigenvectors of Σ̂X in (2.2);

For a chosen ζ > 0 derive the optimal number of factors K according to (3.6);

Set R = IK and determine Ŵ and σ̂2
ε as in (3.4) and (3.5);

Algorithm 3.1.1 estimates the parameters Θ, but does not provide any further information on the factors

F t. In Definition 2.1.3, the factors F t were supposed to be iid standard normal, however, this marginal

distribution ignores any information inherent in the panel data X. The factors F t and idiosyncratic errors

εt are iid Gaussian such that the panel data Xt is iid Gaussian, too. Furthermore, this implies that only

Xt offers information on F t, which is shown in Lemma 3.1.5.
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Lemma 3.1.5 (Conditional Distribution of Factors in ESFMs)

For the ESFM in Definition 2.1.3 with an isotropic error model, the distribution of the hidden factors F t

given the panel data Xt, i.e., F t|Xt, is multivariate Gaussian and defined as follows:

F t|Xt ∼ N
(
M−1W ′ (Xt − µ) , σ2

εM
−1
)

= N
(
µF t|Xt

,ΣF t|Xt

)
, (3.7)

with symmetric, non-singular matrix M = W ′W + σ2
εIK ∈ RK×K .

Proof:

As in Tipping and Bishop (1999), we obtain by virtue of the Bayes’ theorem:

fΘ (F t|Xt) =
fΘ (F t,Xt)

fΘ (Xt)
=
fΘ (Xt|F t) fΘ (F t)

fΘ (Xt)
∝ fΘ (Xt|F t) fΘ (F t)

∝ exp
(
−1

2
(Xt −WF t − µ)

′
σ−2
ε IN (Xt −WF t − µ)

)
exp

(
−1

2
F ′tF t

)
= exp

(
− 1

2σ2
ε

[
(Xt −WF t − µ)

′
(Xt −WF t − µ) + σ2

εF
′
tF t
])

= exp

(
− 1

2σ2
ε

[
F ′t
(
W ′W + σ2

εIK
)
F t + (Xt − µ)

′
(Xt − µ)

])
· exp

(
1

2σ2
ε

[
F ′tW

′ (Xt − µ) + (Xt − µ)
′
WF t

])
∝ exp

(
− 1

2σ2
ε

[
F ′tMF t − F

′
tMM−1W ′ (Xt − µ)− (Xt − µ)

′
WM−1MF t

])
∝ exp

(
−1

2

(
F t −M−1W ′ (Xt − µ)

)′ (
σ−2
ε M

) (
F t −M−1W ′ (Xt − µ)

))
,

which is proportional to the probability density function of the multivariate Gaussian distribution with

mean µF t|Xt
= M−1W ′ (Xt − µ) ∈ RK and covariance matrix ΣF t|Xt

= σ2
εM

−1 ∈ RK×K . The

symmetry of the matrix M follows from its definition. For K < N , we have: σ2
ε > 0 such that the matrix

M is non-singular. For K = N , the trivial solution W = IN and σ2
ε = 0 also ensures the non-singularity

of the matrix M . 2

Hence, at any point in time the factor F t given the observation Xt is Gaussian. If we replace the matrix

M by W ′W , i.e., we neglect the term σ2
εIK , the mean of F t in (3.7) coincides with the OLS estimator.

For K < N and any positive-definite covariance matrix Σε , it follows: σ2
ε > 0 and thus, M causes a bias

compared to OLS. If dimension reduction does not take place, i.e., K = N , there is no bias for the trivial

solution: W = IK and σ2
ε = 0.

For us, the conditional distribution F t|Xt in Lemma 3.1.5 is an intermediate result on our way to estimate

ESFMs with incomplete data in Section 3.1.2. In case of missing observations and mixed-frequency data,

we pursue an interative scheme that, among other things, derives artificial, complete panel data from the

latest parameter and factor estimates. To be precise, this is achieved in the following manner:

Lemma 3.1.6 (Optimal Reconstruction of Panel Data)

Let Θ̂ = {Ŵ , σ̂2
ε} denote the parameter estimates from Theorem 3.1.3 and let M̂ ∈ RK×K be the estimated

matrix M from Lemma 3.1.5, i.e., M̂ = Ŵ ′Ŵ + σ̂2
εIK . If the vector µ̂F t|Xt

= M̂−1Ŵ ′(Xt−µ̂X ) ∈ RK

stands for the estimated mean F t|Xt in Lemma 3.1.5, the vector Xrec
t = Ŵ µ̂F t|Xt

+ µ̂X ∈ RN is not

an orthogonal projection of Xt. By contrast, the below expression for Xrec
t minimizes the reconstruction
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error of the panel data Xt based on Θ̂ and µ̂F t|Xt
:

Xrec
t = Ŵ

(
Ŵ ′Ŵ

)−1

M̂ µ̂F t|Xt
+ µ̂X = Ŵ

(
Ŵ ′Ŵ

)−1

Ŵ ′
(
Xt − µ̂X

)
+ µ̂X . (3.8)

Here, the upper index “rec” highlights that we have “reconstructed” panel data.

Proof:

See Tipping and Bishop (1999). 2

In Lemma 3.1.6, the vector (Ŵ ′Ŵ )−1Ŵ ′(Xt−µ̂X ) represents the fitted value of an OLS applied to (2.3)

for known matrix Ŵ . Therefore, (3.8) reconstructs panel data as an OLS. However, we benefit from the

ansatz of Tipping and Bishop (1999), since the matrix M̂ captures uncertainties caused by lost variation.

For instance, when we estimate prediction intervals for returns of future periods of time in Section 3.1.3,

we use random factor samples drawn from the distribution in (3.7) instead of the means µ̂F t|Xt
to allow

for estimation risks. Within a Bayesian framework De Mol et al. (2008) apply a similar approach for the

estimation of latent factors, although they do not incorporate the bias caused by M̂ instead of Ŵ ′Ŵ .

3.1.2 Model Estimation Based on Incomplete Panel Data

Before, we considered complete panel data. Now, we permit data incompleteness arising from the inclusion

of mixed-frequency and missing information. For this purpose, the linear relation in Definition 2.2.1 offers

a comfortable way for modeling returns, yields, spreads, growth rates, etc. This comes from the fact that

many data transformations can be addressed by (2.9). In this context, we first modify the reconstruction

formula of Stock and Watson (1999a, 2002b) for ESFMs with an isotropic error model.

Lemma 3.1.7 (Reconstruction of Panel Data From Observations)

Assume the ESFM in Definition 2.1.3 with isotropic error model, where X ∈ RT×N , F = [F 1, . . . ,F T ]
′ ∈

RT×K and ε = [ε1, . . . , εT ]
′ ∈ RT×N collect complete panel data, hidden factors and idiosyncratic shocks.

With respect to Definition 2.2.1, for 1 ≤ i ≤ N let the vector Xi
obs ∈ RT (i), 1 ≤ T (i) ≤ T, summarize the

actually observed values of Xi ∈ RT , which is the i-th column of X. Then, the vector Xi given F , Xi
obs

and the parameters Θ = {W,σ2
ε} is multivariate Gaussian with mean and covariance matrix as follows:

EΘ

[
Xi|F,Xi

obs

]
=
(
FW ′

i + µi1T
)

+Q′i (QiQ
′
i)
−1 [

Xi
obs −Qi

(
FW ′

i + µi1T
)]
,

VarΘ

[
Xi|F,Xi

obs

]
= σ2

εi

[
IT −Q′i (QiQ

′
i)
−1
Qi

]
,

where W i, µi and εi denote the i-th row of W , the i-th element of µ and the i-th column of ε, respectively.

Proof:

Rearranging (2.3) in matrix form and focussing on the i-th time series provide for (2.3) and (2.9):

Xi = FW ′
i + µi1T + εi,

Xi
obs = QiFW

′
i +Qiµi1T +Qiε

i.

Because of εt ∼ N (0N ,Σε) iid, for all 1 ≤ i ≤ N we get εi ∼ N (0T , σ
2
εiIT ) resulting in:(

Xi

Xi
obs

)∣∣∣∣∣
F,Θ

∼ N

((
FW ′

i + µi1T

QiFW
′
i +Qiµi1T

)
, σ2
εi

(
IT Q′i
Qi QiQ

′
i

))
.
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Finally, the conditional mean and covariance matrix of the multivariate Gaussian distribution (Greene,

2003, pp. 871-872, Theorem B.7) yield the statement. 2

The matrix Q′i (QiQ
′
i)
−1 ∈ RT×T (i) in Lemma 3.1.7 represents the unique Moore-Penrose Inverse of the

matrix Qi (Rao and Toutenburg, 1999, pp. 372-373, Definition A.64) and satisfies: QiQ
′
i (QiQ

′
i)
−1

= IT (i).

Regarding the EM, which we will later on develop, the uniqueness eliminates undesired degrees of freedom,

while the condition QiQ
′
i (QiQ

′
i)
−1

= IT (i) ensures that the linear relation in Definition 2.2.1 holds, when

the EM terminates. Note, Lemma 3.1.7 requires the idiosyncratic shocks to be iid such that the presented

isotropic error model is just a special case of a more general result.

In a next step, we combine Lemmata 3.1.6 and 3.1.7 to obtain a comprehensive solution for deriving com-

plete panel data from observations, estimated factors and parameter estimates. The matrix representation

for the reconstruction of the panel data X ∈ RT×N in (3.8) is given by:

Xrec =


(Xrec

1 )
′

...

(Xrec
T )
′

 =
[
Xrec,1, . . . ,Xrec,N

]

=
(
X −

(
1T ⊗ µ̂′X

))
Ŵ
(
Ŵ ′Ŵ

)−1

Ŵ ′ +
(
1T ⊗ µ̂′X

)
, (3.9)

and so, supports the following update formula.

Corollary 3.1.8 (Update Complete Panel Data)

Assume the setting in Lemma 3.1.7, where Θ̂ comprises the parameter estimates in Theorem 3.1.3, and

let the matrix Xrec ∈ RT×N be the reconstructed panel data in (3.9). Then, for 1 ≤ i ≤ N the conditional

expectation of vector Xi ∈ RT in Lemma 3.1.7 can be estimated for observations Xi
obs ∈ RT (i), T (i) ≤ T,

factor means µ̂F |X = [µ̂F 1|X1
, . . . , µ̂F T |XT

]′ ∈ RT×K and parameter estimates Θ̂ as follows:

EΘ̂

[
Xi|Xi

obs, µ̂F |X

]
= Xrec,i +Q′i (QiQ

′
i)
−1 [

Xi
obs −QiX

rec,i
]
. (3.10)

Proof:

Replace
(
FW ′

i + µi1T
)

by Xrec,i in Lemma 3.1.7. 2

At this point, we briefly explain what we have so far. Theorem 3.1.3 provides parameter estimates for the

ESFMs in Definition 2.1.3 with an isotropic error model. For model selection the criterion in Definition

3.1.4 is used. In a next step, Corollary 3.1.8 updates the artificial, complete panel data, before the overall

procedure starts again. Hence, two questions arise: On the one hand, how to initialize artificial, complete

panel data? On the other hand, when does the total approach stop? Regarding the initialization of panel

data, gaps can be filled with random numbers, interpolations, zeros, etc. At the beginning, the linear

relation in Definition 2.2.1 does not necessarily have to hold, since this will be automatically reached by

the updates in Corollary 3.1.8. With respect to the second question, we define a termination criterion.

Similar to Doz et al. (2012) and Bańbura and Modugno (2014), the termination of the updates in Corollary

3.1.8 relies on the change in the log-likelihood function L (Θ|X). To be more accurate, let L(Θ̂(l)|X(l))

be the log-likelihood function gained from the estimated model parameters Θ̂(l) and data sample X(l) of
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loop (l) of the total routine. Then, our updates stop as soon as it holds:

abs
(
L
(

Θ̂(l)|X(l)

)
− L

(
Θ̂(l−1)|X(l−1)

))
1
2

(
abs

(
L
(

Θ̂(l)|X(l)

))
+ abs

(
L
(

Θ̂(l−1)|X(l−1)

))) < ξ, (3.11)

with abs (·) denoting the absolute value of a real number. We stop in (3.11), when the absolute value of

the relative change in the log-likelihood function is smaller than a prespecified limit ξ > 0. By contrast,

Doz et al. (2012) and Bańbura and Modugno (2014) omit the absolute value in the numerator of (3.11),

that is, they consider the relative improvement in L (Θ|X). On the one hand, this reflects the theoretical

convergence properties of the EM in Wu (1983), since each EM delivers a non-decreasing sequence of

log-likelihood functions. On the other hand, numerical inaccuracies in case of real-world data may cause

a few tiny declines, before the nearest local optimum is reached. Then, the approach of Doz et al. (2012)

and Bańbura and Modugno (2014) might stop too early.

As in Section 3.1.1, we summarize all steps as algorithm. For the initialization of X(0) diverse approaches

provide a first set of complete panel data. In general, an EM detects a local optimum of the log-likelihood

function. Therefore, the application of various initialization methods, which offers different starting values,

improves the chance of reaching a global maximum. In opposition to the choice of Xi
(0), the shape of the

matrices Qi, 1 ≤ i ≤ N, matters, since Algorithm 3.1.2 does not adjust it later on.

Until Algorithm 3.1.2 stops, the estimated factor dimension K may change several times. To prevent its

termination behavior from changes in K, the criterion ξ controls changes in L(Θ|X) instead of changes in

Θ. For instance, the convergence criterion in Schumacher and Breitung (2008) does the latter. Moreover, ξ

checks for relative changes instead of absolute ones to ensure that neither the dimension of the parameter

space nor the sample size have any impact on the termination of the overall routine.

The construction of complete panel data from the latest parameter estimates and observations in (3.10)

guarantees that the equality in (2.9) holds at convergence. In each loop, the second term on the right-hand

side of (3.10) punishes any deviations from the observed signals. For all complete time series we have

Qi = IT and thus, the simplified version of (3.10) is given by: Xi = Xi
obs. That is, these times series are

kept in total without any adjustments. For any time series with T (i) < T , we benefit from the unique

Moore-Penrose Inverse Q′i (QiQ
′
i)
−1

satisfying: QiQ
′
i (QiQ

′
i)
−1

= IT (i).

The advantages of the presented framework are as follows: First, the underlying FM reduces the dimension

from the panel data space N to the factor span K. In our empirical studies, we have K � N causing a

significant dimension reduction. Second, the distribution of the factors in Lemma 3.1.5 takes uncertainties

arising from lost variation into account. This will be important, when we construct empirical prediction

intervals for returns of future periods. Third, Algorithm 3.1.2 admits the inclusion of mixed frequencies

and the estimation of high-frequency analogs for low-frequency time series (nowcasting).
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Algorithm 3.1.2: Estimate ESFMs with isotropic errors based on incomplete panel data

### Initialization

Define level of variation ζ > 0 to be covered;

Choose termination criterion ξ > 0;

Set loop index (l) = 0;

for i = 1 to N do

Initialize Xi
(l) (if necessary, fill gaps);

Specify matrix Qi;

end

Estimate ESFM with X(l) using Algorithm 3.1.1 for variation level ζ and store parameters Θ̂(l);

Determine log-likelihood L(Θ̂(l)|X(l)) in (3.3);

for i = 1 to N do

Derive updated panel data Xi
(l+1) from (3.10) and model parameters Θ̂(l);

end

Estimate ESFM with X(l+1) using Algorithm 3.1.1 for var. level ζ and store parameters Θ̂(l+1);

Determine log-likelihood L(Θ̂(l+1)|X(l+1)) in (3.3);

### Alternating reconstruction and reestimation

while
abs(L(Θ̂(l+1)|X(l+1))−L(Θ̂(l)|X(l)))

1
2 (abs(L(Θ̂(l+1)|X(l+1)))+abs(L(Θ̂(l)|X(l))))

> ξ do

Set loop index (l) = (l + 1);

for i = 1 to N do

Derive updated panel data Xi
(l+1) from (3.10) and model parameters Θ̂(l);

end

Estimate ESFM with X(l+1) using Algorithm 3.1.1 for var. level ζ and store parameters Θ̂(l+1);

Determine log-likelihood L(Θ̂(l+1)|X(l+1)) in (3.3);

end

3.1.3 Portfolio Optimization

After extracting information from large, possibly incomplete panel data by a few factors, we process the

output of Algorithms 3.1.1 and 3.1.2. Thereby, we describe the dynamics of a multivariate return process

as VARX, where the hidden factors take the role of exogenous variables. Unlike the FAVAR of Bernanke

et al. (2005), which we consider in Chapter 5, the factors in a VARX affect the returns, whereas the reverse

relation does not matter. For reasons of simplicity, the factors and returns are simultaneously updated

to avoid new mixed-frequency iusses. Moreover, the sample lengths of the panel data and returns are the

same. Hence, the sample lengths of the factors and returns coincide, too. Although we can easily drop

the last assumption by dealing with the intersection period of both, it improves the clarity of subsequent

calculations. With this in mind, we define the return VARX as follows.

Definition 3.1.9 (Vector Autoregression Model with Exogenous Variables)

For any point in time t ≥ 1, the vector rt ∈ RH comprises returns gained over the period (t− 1 , t]. If

the integers q̃, p̃ ≥ 1 refer to the autoregressive orders of the returns and factors, respectively, the return
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VARX(q̃, p̃) with the factors of the ESFM in Defintion 2.1.3 as exogenous variables is given by:

rt = γ +

q̃∑
i=1

Airt−i +

p̃∑
i=1

BiF t−i + δt, (3.12)

where the vector γ ∈ RH and matrices Ai ∈ RH×H , 1 ≤ i ≤ q̃, and Bi ∈ RH×K , 1 ≤ i ≤ p̃ are constants.

The errors δt are iid Gaussian with zero mean and covariance matrix Σδ ∈ RH×H , i.e., δt ∼ N (0H ,Σδ ).

In the sequel, we set m̃ = max {q̃, p̃} and define the coefficient matrix Θ ∈ RH×(1+q̃H+p̃K) by:

Θ = [γ , A1, . . . , Aq̃, B1, . . . , Bp̃] . (3.13)

Definition 3.1.9 specifies the return VARX, however, for parameter estimation using least-squares regres-

sion a sample based formulation is more appropriate. For this purpose, Definition 3.1.10 introduces such

a representation, before we state in Lemma 3.1.11 the asymptotic distribution of the VARX coefficients.

Definition 3.1.10 (Matrix Representation of VARX)

Assume the VARX(q̃, p̃) from Definition 3.1.9 for return and factor samples of length T . In addition, we

have for known lag lengths p̃, q̃ ≥ 1: m̃ = max {q̃, p̃} and keep the coefficient matrix Θ ∈ RH×(1+q̃H+p̃K)

as in (3.13). Then, the model in (3.12) can be rewritten as:

[rm̃+1, . . . , rT ]︸ ︷︷ ︸
R

= Θ



1 · · · 1

rm̃ · · · rT−1

...
...

rm̃+1−q̃ · · · rT−q̃

F m̃ · · · F T−1

...
...

F m̃+1−p̃ · · · F T−p̃


︸ ︷︷ ︸

G

+ [δm̃+1, . . . , δT ]︸ ︷︷ ︸
D

. (3.14)

Let the operator vec (·) be the matrix vectorization in Definition A.1.12, that is, the successively stacked

columns of a given matrix. With this in mind, we receive the following approximative distribution of the

coefficient matrix Θ:

Lemma 3.1.11 (Least-Squares Estimation of VARX Parameters)

In the setting of Definition 3.1.10, let the matrix Θ̂ ∈ RH×(1+q̃H+p̃K) be the least-squares estimator of the

coefficient matrix Θ. Under certain regularity assumptions the vector vec(Θ̂) is asymptotically Gaussian,

that is, it holds:

vec(Θ̂) ∼ N
(
vec

(
RG′ (GG′)−1

)
, (GG′)−1 ⊗ Σ̂δ

)
, (3.15)

where Σ̂δ represents the empirical covariance matrix of the iid errors in (3.12).

Proof:

See Lütkepohl (2005, p. 74, Proposition 3.1). 2

As mentioned in Remark 3.1.1, the factors are unique except for rotation. Therefore, we address this issue

right now, before we later on discuss new topics such as model selection.
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Remark 3.1.12 (Impact of Factor Ambiguity on Returns)

We discussed in Remark 3.1.1 that the hidden factors of the ESFM in Definition 2.1.3 are unique except

for rotation. However, this does not affect the returns rt of the VARX(q̃, p̃) in Definition 3.1.9.

Proof:

For an arbitrary rotation matrix R ∈ RK×K the vector F̄ t = R′F t ∈ RK stands for the rotated factor in

Remark 3.1.1. Then, Equation (3.12) coincides with:

rt = γ +

q̃∑
i=1

Airt−i +

p̃∑
i=1

BiRR
′︸︷︷︸

IK

F t−i + δt = γ +

q̃∑
i=1

Airt−i +

p̃∑
i=1

B̄iF̄ t−i + δt,

with matrices B̄i = BiR ∈ RH×K , 1 ≤ i ≤ p̃. Hence, whenever rotated factors enter (3.12), the corre-

sponding coefficient matrices are reversely transformed such that there is no impact on the returns rt. 2

Least-squares estimation in Lemma 3.1.11 requires known autoregressive orders p̃, q̃ ≥ 1. Hence, we have

to estimate them, too. For this purpose, we apply the standard Akaike Information Criterion (AIC). That

is, we estimate the return VARX(q̃, p̃) in Definition 3.1.9 for diverse orders p̃, q̃ ≥ 1 and choose the pair

(q∗, p∗) that minimizes the AIC in Lemma 3.1.13.

Lemma 3.1.13 (Model Selection for Return VARX)

Assume the VARX in Definition 3.1.9 based on a data sample of length T . Then, the optimal autoregressive

orders (q∗, p∗) in the sense of the Akaike Information Criterion satisfy:

(q∗, p∗) = arg min
(q̃,p̃)

{
−2L̃

(
Θ̂ (q̃, p̃) |F, r

)
+ 2

(
H + q̃H2 + p̃KH

)
+H (H + 1)

}
, (3.16)

where the matrix Θ̂ (q̃, p̃) ∈ RH×(1+q̃H+p̃K) collects the estimated parameters of the VARX(q̃, p̃) in (3.12)

and L̃
(

Θ̂ (q̃, p̃) |F, r
)

is its log-likelihood function for factors F ∈ RT×K and returns r ∈ RT×H given the

first m̃ = max {p̃, q̃} return observations, i.e.:

L̃
(

Θ̂ (q̃, p̃) |F, r
)

= −1

2

[
(H (T − m̃) + TK) ln (2π) + (T − m̃)

(
H + ln

(∣∣∣Σ̂δ ∣∣∣))+

T∑
t=1

F ′tF t

]
.

Proof:

In general, we have for AIC (Akaike, 1987):

(q∗, p∗) = arg min
(q̃,p̃)

{
−2L̃

(
Θ̂ (q̃, p̃) |F, r

)
+ 2 (number of estimated parameters)

}
.

The coefficient matrix Θ has H (1 + q̃H + p̃K) parameters, while the covariance matrix of the shocks Σδ
comprises H (H + 1) /2 parameters (the symmetry of Σδ matters here), which results in the number of

parameters in the second summand of (3.16). For the log-likelihood function, it holds:

L̃
(

Θ̂ (q̃, p̃) |F, r
)

= ln
(
fΘ̂(q̃,p̃) (rT , . . . , rm̃+1,F T , . . . ,F 1|rm̃, . . . , r1)

)
=

T∑
t=m̃+1

ln
(
fΘ̂(q̃,p̃) (rt|rt−1, . . . , rt−q̃,F t−1, . . . ,F t−p̃)

)
+

T∑
t=1

ln
(
fΘ̂(q̃,p̃) (F t)

)
.
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Because of rt|rt−1, . . . , rt−q̃,F t−1, . . . ,F t−p̃ ∼ N

γ +

q̃∑
i=1

Airt−i +

p̃∑
i=1

BiF t−i︸ ︷︷ ︸
µrt

,Σδ

, we obtain the

following, after replacing the model parameters Θ by their estimates Θ̂:

L̃
(

Θ̂ (q̃, p̃) |F, r
)

=

T∑
t=m̃+1

ln

[
(2π)

−H/2
∣∣∣Σ̂δ ∣∣∣−1/2

exp

(
−1

2

(
rt − µ̂rt

)′
Σ̂−1

δ

(
rt − µ̂rt

))]
+

T∑
t=1

ln
[
fΘ̂ (F t)

]
= −T − m̃

2

(
H ln (2π) + ln

(∣∣∣Σ̂δ ∣∣∣))− 1

2

T∑
t=m̃+1

(
rt − µ̂rt

)′
Σ̂−1

δ

(
rt − µ̂rt

)
+

T∑
t=1

ln
[
fΘ̂ (F t)

]
= −1

2
(H (T − m̃) + TK) ln (2π)− T − m̃

2

[
ln
(∣∣∣Σ̂δ ∣∣∣)+ tr

(
Σ̂−1

δ
Σ̂δ

)]
− 1

2

T∑
t=1

F ′tF t.

Thus, tr
(

Σ̂−1

δ
Σ̂δ

)
= H proves the claim. 2

Next, we introduce an algorithm that deals with the uncertainties in the estimation of the hidden factors

and VARX(q̃, p̃) parameters, when it predicts returns of future periods of time. The current formulation

of Algorithm 3.1.3 forecasts returns of the next period of time. However, after some minor adjustments

it also generates return samples for any s-step ahead forecast with integer s ≥ 1. Similar to Algorithm

4.2.1, Algorithm 3.1.3 can be modified such that the drivers of the predicted returns (e.g. autoregressive

return behavior, factor impact and error add-ons) are detected. This is important, if we are interested in

a decomposition of our forecasts. One of the main features of Algorithm 3.1.3 is that it captures a high

level of uncertainty. It samples from the distribution of the factors instead of relying on their estimates.

Regarding model selection, it restricts itself to the estimates of the VARX(q̃, p̃) parameters. However, as

soon as the autoregressive orders (q̃, p̃) are fixed, a sample is randomly drawn from the distribution of

the VARX(q̃, p̃) coefficients to generate the return forecast.

Finally, we process the output of Algorithm 3.1.3. For instance, we construct empirical prediction intervals

for returns of the next period of time. In addition, we calculate empirical means and covariance matrices of

the predicted return samples to determine mean-variance and marginal-risk-parity, respectively, optimal

portfolios. For this purpose, we first define empirical prediction intervals as follows:

Definition 3.1.14 (Empirical Prediction Intervals)

For 1 ≤ i ≤ H and a sample
[
r1
T+1, . . . , r

V
T+1

]
∈ RH×V of predicted returns, let r

(1)
T+1,i ≤ . . . ≤ r

(V )
T+1,i be

the order statistics of the univariate time series of its i-th element. Then, the ν-prediction interval with

ν ∈ [0, 1] is given by: [
r

(bV (1−ν)/2c)
T+1,i , r

(dV (1+ν)/2e)
T+1,i

]
, (3.17)

where b·c and d·e represent the floor and ceiling functions, respectively.

In case of mean-variance portfolio optimization, there are two options: First, we specify a target return,

e.g., 10%, and minimize the variance of the total portfolio. That is, we choose from all portfolios offering

the target return, e.g. 10%, the one with the lowest variance. Second, we fix an upper threshold for the

volatility of the overall portfolio, e.g., 15%, and maximize the expected return. Hence, we take from all
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Algorithm 3.1.3: Sample of predicted VARX(q̃, p̃) returns in (3.12) for next period of time

### Initialization

Define number V > 0 of returns to be predicted;

Set upper limits of autoregressive orders q̄ ≥ 1 and p̄ ≥ 0;

Estimate factor distribution (3.7) using Algorithm 3.1.2;

### Generation of Return Sample

for c = 1 to V do

Draw sample F c1, . . . ,F
c
T from estimated factor distribution (3.7);

Initialize coefficient vector θ̂ = vec(Θ̂) = ∅ ;

Reset overall AIC value AICov =∞ (or any sufficiently large number);

# Model Selection for Return VARX

for q̃ = 1 to q̄ do

for p̃ = 0 to p̄ do

Estimate mean of temporary coefficient vector θ̃ in (3.15) based on returns r1, . . . , rT ,

sampled factors F c1, . . . ,F
c
T and autoregressive orders q̃ and p̃;

Determine temporary AIC value AICtmp for θ̃ using q̃, p̃ and (3.16);

if AICtmp < AICov then

Renew overall AIC value by AICov = AICtmp;

Update overall coefficient vector by θ̂ = θ̃;

end

end

end

Estimate empirical error covariance matrix Σ̂δ using θ̂ and (3.12);

Determine covariance matrix of θ̂ in (3.15);

Draw sample θ̂
c

from estimated coefficient distribution (3.15);

Draw error sample δcT from N (0H , Σ̂δ );

Forecast return rcT+1 from (3.12) based on θ̂
c
, rT+1−q̃, . . . , rT ,F

c
T+1−p̃, . . . ,F

c
T and δcT ;

end

portfolios, whose standard deviation does not exceed our upper limit, e.g., 15 %, the one with the highest

expected return. Here, we pursue the second approach and define it as follows:

Definition 3.1.15 (Mean-Variance Portfolio Optimization)

Assume a portfolio consisting of H > 0 assets with expected return EΘ [rT+1] ∈ RH and covariance matrix

VarΘ [rT+1] ∈ RH×H . The vector w ∈ RH contains all asset weights, while σ2
p ∈ R+ is an upper limit

of the admissible variance of the overall portfolio. If short selling (0 > wi) and leverage (w′1H > 1) are

excluded, a mean-variance optimal portfolio satisfies:

max
w

w′EΘ [rT+1]

s.t. w′VarΘ [rT+1]w ≤ σ2
p,

w′1H = 1, 0 ≤ w ≤ 1. (3.18)

The relation 0 ≤ w ≤ 1 holds for each single component of w.
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Mean-variance optimization requires estimates of the expected returns EΘ [rT+1], which strongly affect

the obtained portfolio. Small changes in the expected returns possibly provide different asset allocations,

therefore, their estimation is crucial. E.g., risk-parity portfolio optimization waives return expectations.

The idea behind risk-parity portfolios is that each asset contributes the same portion of risk to the overall

risk. Thereby, risk often refers to the volatility of the single assets and the total portfolio. Let the vector

w ∈ RH and matrix VarΘ [rT+1] ∈ RH×H denote the weights and expected covariance matrix of all assets

a portfolio consists of. Then, the marginal risk vector is given by (Roncalli, 2013, p. 79, Section 2.1.2.1):

∂ σp
∂ w

=
∂
√
w′VarΘ [rT+1]w

∂w
=

VarΘ [rT+1]w√
w′VarΘ [rT+1]w

∈ RH .

If (VarΘ [rT+1]w)i with 1 ≤ i ≤ H stands for the i-th element of the vector VarΘ [rT+1]w, we obtain for

the risk contribution of asset i:

wi (VarΘ [rT+1]w)i√
w′VarΘ [rT+1]w

. (3.19)

In case of a risk-parity portfolio, all assets contribute to the total risk equally. This implies the subsequent

non-linear optimization problem:

min
w

H∑
i,j=1

(
wi (VarΘ [rT+1]w)i√
w′VarΘ [rT+1]w

−
wj (VarΘ [rT+1]w)j√
w′VarΘ [rT+1]w

)2

. (3.20)

Because of the nonlinear objective function in (3.20), we pursue a slightly different approach in the sequel.

Instead of the standard deviation, we consider the portfolio variance as risk measure. Thus, the marginal

risk vector is given by 2VarΘ [rT+1]w. In addition, we aim at constructing a portfolio, whose assets have

an equal marginal risk. In total, this results in the following unconstrained optimization problem:

min
w

H∑
i,j=1

(
(VarΘ [rT+1]w)i − (VarΘ [rT+1]w)j

)2

.

By minimizing ((VarΘ [rT+1]w)1 − (VarΘ [rT+1]w)2)
2

and ((VarΘ [rT+1]w)2 − (VarΘ [rT+1]w)3)
2
, we

implicitly minimize ((VarΘ [rT+1]w)1 − (VarΘ [rT+1]w)3)
2
. Furthermore, for any i = j the difference is

zero by definition. Therefore, we approach the objective function in (3.21) by:

H∑
i=2

(
(VarΘ [rT+1]w)i−1 − (VarΘ [rT+1]w)i

)2
. (3.21)

All in all, this forms the basis of our constrained marginal-risk-parity optimal portfolio.

Definition 3.1.16 (Marginal-Risk-Parity Portfolio Optimization)

For a portfolio of H > 0 entities with expected covariance matrix VarΘ [rT+1] ∈ RH×H , the vector w ∈ RH

contains all asset weights. If short selling (0 > wi) and leverage (w′1H > 1) are forbidden, the allocation

of a marginal-risk-parity optimal portfolio obeys:

min
w

(∆VarΘ [rT+1]w)
′
∆VarΘ [rT+1]w

s.t. w′1H = 1, 0 ≤ w ≤ 1, (3.22)

with difference matrix ∆ ∈ R(H−1)×H defined as:

∆ =


1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 1 −1

 .
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Hence, the objective function in Definition 3.1.16 is quadratic in wi. For our empirical study in Section

3.2, the empirical mean r̂T+1 ∈ RH and covariance matrix Σ̂rT+1
∈ RH×H of the predicted return sample

of Algorithm 3.1.3 serve as estimates for EΘ [rT+1] and VarΘ

[
ΣrT+1

]
. For comparison purposes, we rerun

the same portfolio optimizations based on historical return averages and covariance matrices.

At the end, we summarize some advantages of Algorithm 3.1.3: First, it admits the inclusion of incomplete

panel data to model the dynamics of a multivariate return process. Second, we incorporate uncertainties

caused by the estimated factors and VARX(q̃, p̃) parameters, since factor and parameter samples instead

of their estimates enter our forecasts. Third, Algorithm 3.1.3 yields samples of predicted returns. On the

one hand, those permit the construction of empirical prediction intervals for the monitoring of financial

markets. On the other hand, they offer means and covariance matrices of expected returns and so, provide

all inputs for mean-variance or risk-parity portfolio optimization. In this manner, its output itself or after

some minor transformations perfectly fits in existing frameworks.

3.2 Empirical Application

Due to the size and importance of the United States, we apply the approach of Section 3.1 to US data.

Thereby, the multivariate return process {rt} in Definition 3.1.9 comprises weekly log-returns of price

indices such as Gold, Nasdaq Composite (NASDAQ), Standard & Poor’s 500 (S&P500) and Dow Jones

Industrial Average (DJIA) over the period from February 1, 1985 until November 11, 2016. As observed

panel data Xi
obs in Corollary 3.1.8 serve 23 time series, which do not include the returns rt. On the one

hand, those cover financial information, e.g., spreads between US Treasury Rates, spreads between London

Interbank Offered Rates (LIBORs), corporate bond spreads as well as changes in Bank of America (BofA)

Merrill Lynch Spreads and Chicago Board Options Exchange (CBOE) Volatility Indices. On the other

hand, they include macroeconomic information, e.g., growth rates of US GDP and industrial production,

unemployment and savings rates or personal consumption expenditures.

An overview of the returns rt and observed panel data Xi
obs is given in Section B.1, which describes in

detail the total data. That is, we explain the preprocessing of the input data, the assumed variable types

(stock, flow or change in flow), some time series characteristics (available period of time and frequency)

and the data sources. To get a first impression, Figure 3.1 displays for each price index how an investment

of 100 USD has evolved over the period from February 1, 1985 until November 11, 2016. Note, all price

paths indicate the performances of simple Buy&Hold (B&H) strategies. With a view to Figure 3.1, we

conclude: First, all stock indices outperformed the Gold strategy. Second, the similar behavior of the

stock indices suggests that those are strongly correlated. Third, the correlation between Gold and stocks

changed over time. For instance, from end of 2008 until 2009 stocks and Gold gained in value, whereas

there were opposite trends in the years 2012-2016. Fourth, the NASDAQ shows the largest amplitude

and so, appears to be the most volatile investment.

In the sequel, we successively shift a fixed rolling window of 208 returns until the end of the sample period

is reached. In this manner, we ensure that our results remain comparable, when time goes by. Hence,

the period from February 1, 1985 until January 27, 1989 serves as insample period to predict the returns

for February 3, 1989. To be precise, the returns for February 3, 1989 denote the returns gained over the

period from January 27, 1989 until February 3, 1989. In doing so, we run Algorithm 3.1.3 with ζ = 0.995,

ξ = 10−4, q̄ = p̄ = 2, V = 200, 000, ν = 0.95 and σp = 10% p.a. As soon as we move forward, i.e., we

forecast the returns for February 10, 1989, we run Algorithm 3.1.3 again. Although we keep the settings



36 CHAPTER 3. MIXED-FREQ. INFORM. SUPPORTING ASSET ALLOCATION DECISIONS

Figure 3.1: Evolution of an initial investment of 100 USD in Gold, NASDAQ, S&P500 or DJIA over the

period from February 1, 1985 until November 11, 2016 (Buy&Hold Strategies).

for ζ, ξ, q̃, p̃, C, ν and σp, our model selection procedure can provide new parameter dimensions.

A second fact that affects the parameter dimension is the dimension of the panel data. In total, we have

23 variables, however, some time series were first published after, e.g., January 27, 1989. That is, the

respective panel data column of the insample period is missing and so, does not provide any information.

To prevent us from empty columns, we check the panel data of each rolling window such that it comprises

only time series with at least four observations. All in all, our out-of-sample period ranges from January

27, 1989 until November 11, 2016. For this purpose, Figure 3.2 shows the price paths of the single-index

strategies and a 1/N Strategy, i.e., a Constant Mix Strategy, with weekly rebalancing. The idea behind

Figure 3.2 is to highlight that all single-market strategies or the 1/N Strategy delivered less than 1400

USD for an initial investment of 100 USD on January 27, 1989. If we compare Figures 3.1 and 3.2, it

follows that more than 400 USD of the final wealth of 1881.15 USD on November 11, 2016 in Figure 3.1

came from the NASDAQ performance over the insample period and its compound interest effects.

After the description of data and technical settings, we discuss our results. At the beginning, we claimed

that the inclusion of mixed-frequency information may support asset allocation decisions. This is why we

first focus on Figure 3.3, which illustrates the price paths of the 1/N Strategy and four mean-variance

optimal portfolios for an initial investment of 100 USD on January 27, 1989. As mentioned before, we

assume weekly rebalancing for the 1/N Strategy. The same holds for the mean-variance portfolios. That is,

we use the information inherent in each rolling window to derive a mean-variance optimal asset allocation

for the subsequent week. For simplicity reasons, all portfolios ignore transaction costs.

To support additional analyses, we distinguish the following four scenarios for estimating the expected

returns and covariance matrices in case of mean-variance optimization: First, we add all available financial

and macroeconomic time series to the panel data of the current rolling window, run Algorithm 3.1.3 and

then, use the empirical means and covariance matrices of the predicted returns as estimates. Second, we

pursue the same approach as in the first case, but restrict our panel data to financial time series. In this
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Figure 3.2: Evolution of an initial investment of 100 USD in Gold, NASDAQ, S&P500, DJIA (Buy&Hold

Strategies) or an 1/N Strategy with weekly rebalancing (constant mix) over the out-of-sample period from

January 27, 1989 until November 11, 2016.

way, we address the question whether macroeconomic variables shall be included. All financial time series

are daily reported. However, when we update our scheme on Fridays after the close of trading and lack

some observations, e.g., due to a public holiday, we keep this gap. Together with time series starting after

February 1, 1985, this still causes incomplete panel data. Third, we assume a VAR(p), 1 ≤ p ≤ 2, for

the returns rt, modify Algorithm 3.1.3 accordingly and then, take the empirical means and covariance

matrices of the forecasted VAR returns as estimates. Similar to the previous cases, we reestimate the lag

order p for each new rolling window. Here, we have complete data, as there are no missing returns. The idea

behind this scenario is to test, whether exogenous variables offer improvements. Fourth, for each rolling

window the empirical means and covariance matrices of the historic returns serve as estimates. Hence, we

skip all models to discuss whether the forecasting of return expectations and covariance matrices really

pays off.

As shown in Figure 3.3, for mean-variance optimization the inclusion of exogenous variables, in particular,

of finanicial and macroeconomic information offers an excess return. The 1/N Strategy has a final wealth

of 855.80 USD, which is dominated by all mean-variance portfolios. In this context, the historic version

provides 983.46 USD, the return VAR yields 1078.59 USD, the ESFM with incomplete financial panel

data repays 1128.45 USD, while the ESFM with incomplete financial and macroeconomic panel data

delivers 1223.37 USD.

In Figure 3.4, the same scenarios draw a different picture for marginal-risk-parity optimization, i.e., the

1/N Strategy with a final repayment of 855.80 USD outperforms all marginal-risk-parity portfolios. In

addition, the historic approach exceeds with 514.11 USD the final value of the return VAR, which is given

by 506.68 USD. The ESFM based versions still perform best, but the inclusion of macroeconomic variables

could do more harm than good, since the ESFM with mixed-frequency financial and macroeconomic panel

data finally provides 537.06 USD, whereas the restriction to incomplete financial data offers 537.79 USD.
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Figure 3.3: Evolution of an initial investment of 100 USD in mean-variance optimal portfolios or an 1/N

Strategy (constant mix) over the out-of-sample period from January 27, 1989 until November 11, 2016.

All approaches involve weekly rebalancing of their asset allocations.

Figure 3.4: Evolution of an initial investment of 100 USD in marginal-risk-parity optimal portfolios or

an 1/N Strategy (constant mix) over the out-of-sample period from January 27, 1989 until November 11,

2016. All approaches involve weekly rebalancing of their asset allocations.
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Next, we dig deeper for the reasons behind the financial differences between mean-variance and marginal-

risk-parity optimization. If we consider the asset allocations for mean-variance optimal portfolios in Figure

3.5, we conclude: First, all approches invest more or less the same ratio of the total wealth in Gold. Hence,

the decomposition in Gold and stocks is the same for all. Second, each rolling window consists of 208

returns. Thus, migrating from one rolling window to the next replaces only the oldest of the 208 values,

which enter the calculation of the empirical means and covariance matrices. In total, this explains why the

asset allocations for historic means and covariance matrices (plot on the right bottom of Figure 3.5) are

less volatile than the others. Third, the excess return of the mean-variance portfolios based on forecasted

returns comes from changes in the stock exposure, which arise either from the return expectations or

their covariance matrices. Note, there are no further inputs for mean-variance optimization.

In Figure 3.6, the portfolio weights of the marginal-risk-parity optimal portfolios are displayed. Irrespec-

tive of the considered scenario, we obtain almost the same asset allocation. On the one hand, this makes

clear why the differences between these portfolios in Figure 3.4 were more or less negligible. On the other

hand, it reveals that forecasted covariance matrices do not better describe the return dependencies than

their historic counterparts. In case of mean-variance optimization, this implies that the means resulting

from forecasted returns are the main driver of the excess performance.

To gain further insight into the financial properties of the presented portfolios, we have a look at Table

3.1, which lists some common performance and risk measures. As benchmarks for the mean-variance and

marginal-risk-parity portfolios we added the single-market strategies and the 1/N Strategy. As before, all

portfolios admit weekly rebalancing with zero transaction costs. At first glance, Table 3.1 confirms that

NASDAQ offers the highest total log-return of 257.71% and the highest weekly volatility of 3.05%. The

combination of both yields a Sharpe Ratio of 5.82%, which is the second smallest of all strategies. By

contrast, the mean-variance optimal portfolio arising from the ESFM with macroeconomic and financial

data has a total log-return of 250.42% and a standard deviation of 1.70%. Hence, it has a similar return,

while its standard deviation is almost half in size. This is why its Sharpe Ratio of 10.18% is almost twice of

the NASDAQ Sharpe Ratio of 5.82%. If we compare the four versions of mean-variance optimization, the

inclusion of macroeconomic panel data improves the total log-return and so, the Sharpe Ratio. However,

the restriction to financial data is still better than a pure return VAR. In our example, all forecasting-based

mean-variance optimizations outperform the method with historic returns. Unfortunately, this conclusion

does not hold for marginal-risk-parity optimization with Sharpe Ratios in the range of [7.45, 7.69]. Thus,

the Sharpe Ratio of the historic approach of 7.52% is not always exceeded.

In the absence of a risk-free rate, the Omega Measure represents the ratio of the expected upside, i.e., the

expectation of the postive part of the returns, and the expected downside, i.e., the expectation of their

negative part. As shown in Table 3.1, the mean-variance portfolio based on financial and macroeconomic

panel data offers an Omega Measure of 132.17, which is the overall highest. For mean-variance optimiza-

tion, we get the same ranking for the Omega Measure as for the Sharpe Ratio. Again, there is no clear

picture regarding marginal-risk-parity optimization.

By construction, marginal-risk-parity portfolios have the same marginal risk and so, behave rather con-

servatively. This assertion is supported by the fact that these portfolios have the lowest 95% VaR, 95%

CVaR and Maximum Drowdown in Table 3.1. Unfortunately, there is no clear pattern in case of marginal-

risk-parity optimization. For mean-variance optimization, we get 95% VaR, 95% CVaR and Maximum

Drowdown figures, which are slightly worse than for the marginal-risk-parity portfolios, but a little bit

better than for the 1/N Strategy. Because of diversification, it is natural that the 95% VaR, 95% CVaR

and Maximum Drowdown of the single-market strategies exceed the ones of the portfolios by far. All in
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all, the attractive upside with a tolerable downside let the mean-variance optimal portfolio derived from

the ESFM with incomplete financial and macroeconomic panel data appear the best choice.

In Table 3.2, we take a closer look at the Sharpe Ratios in Table 3.1. That is, we use the test statistic

from Jobson and Korkie (1981) to analyze whether the stated values are significantly different. Let α̃ be

the desired significance level. Then, we reject the null hypothesis for significance level α̃, i.e., the Sharpe

Ratios of two portfolios are equal, when it holds:

abs

√To
(
u1

√
u4 − u2

3 − u3

√
u2 − u2

1

)
σ̂Sharpe

 > Φ−1 (1− α̃/2) , (3.23)

with To > 0 as the length of the out-of-sample period, i.e., To = 1450, and Φ−1 (·) as the inverse of the

cumulative distribution function of the standard normal distribution. Let rt,1 and rt,2 with 1 ≤ t ≤ To

be the univariate returns of the two portfolios, whose Sharpe Ratios are compared. Then, the variables

u1, u2, u3 and u4 are given by:

u1 =
1

To

To∑
t=1

rt,1, u2 =
1

To

To∑
t=1

(rt,1)
2
, u3 =

1

To

To∑
t=1

rt,2, u4 =
1

To

To∑
t=1

(rt,2)
2
.

Let Σ̂u ∈ R4×4 be the empirical covariance matrix of the vector
[
rt,1, r

2
t,1, rt,2, r

2
t,2

]′ ∈ R4. Furthermore,

the vector dSharpe ∈ R4 is defined as:

dSharpe =

[√
u4 − u2

3 +
u3u1√
u2 − u2

1

,− u3

2
√
u2 − u2

1

,−
√
u2 − u2

1 −
u3u1√
u4 − u2

3

,
u1

2
√
u4 − u2

3

]′
,

such that the standard deviation σ̂Sharpe is given by:

σ̂Sharpe =
√(
d′Sharpe

)
Σ̂u dSharpe.

Using the test statistic in (3.23), Table 3.2 confirms that the Sharpe Ratios of the mean-variance portfolios

and single-market strategies Gold, NASDAQ and S&P500 are significantly different for levels of 5% or

10%. Moreover, there are significant differences between the Sharpe Ratios of mean-variance and marginal-

risk-parity portfolios. Unfortunately, there are no significant differences among the mean-variance port-

folios or between the mean-variance portfolios and the 1/N Strategy.

For the significance of the Omega values in Table 3.1, we apply the test statistic in Schmid and Schmidt

(2008). As before, let α̃ be the desired significance level. Then, we reject the null hypothesis for significance

level α̃, i.e., the Omega Measures of two portfolios are equal, as soon as we receive:

abs

(√
To

(v1/v2 − v3/v4)

σ̂Omega

)
> Φ−1 (1− α̃/2) , (3.24)

where To is the length of the out-of-sample period. Let rt,1 and rt,2, 1 ≤ t ≤ To, be the portfolio returns

to be compared. Then, for a risk-free rate of zero, the terms v1, v2, v3 and v4 are defined as follows:

v1 =
1

To

To∑
t=1

max (rt,1, 0) , v2 =
1

To

To∑
t=1

max (−rt,1, 0) ,

v3 =
1

To

To∑
t=1

max (rt,2, 0) , v4 =
1

To

To∑
t=1

max (−rt,2, 0) .

For the vector [max (rt,1, 0) ,max (−rt,1, 0) ,max (rt,2, 0) ,max (−rt,2, 0)]
′ ∈ R4, 1 ≤ t ≤ To, let Σ̂v ∈ R4×4

be its empirical covariance matrix and assume dOmega =
[
1/v2,−v1/(v

2
2), 1/v4, v3/(v

2
4)
]′ ∈ R4. Then, the
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standard deviation σ̂Omega is given by:

σ̂Omega =
√(
d′Omega

)
Σ̂v dOmega.

Based on the test statistic in (3.24), Table 3.3 shows that only Gold and the mean-variance portfolios are

significantly different for levels of 5% or 10%.

Next, we consider some statistical properties of our ansatz. As illustrated in Figure 3.7, prediction intervals

derived from an ESFM with incomplete financial panel data are wider than those of the return VAR.

Similarly, the inclusion of macroeconomic information widens the prediction intervals once again. Besides

the size of the prediction intervals, the underlying data also affects the factor dimension and lag lengths

(see Figure 3.8). However, since the additional macroeconomic variables enlarge the panel data dimension,

it is reasonable that more factors are required to map 99.5% of its variation. Except for a few outliers and

the period after the financial crisis in 2008, the orders of return and factor lags are one. This indicates

that the preprocessed panel data is little autoregressive. For the return histograms in Figure 3.9, there is

neither a clear pattern for mean-variance portfolios nor for marginal-risk-parity portfolios.

Finally, we focus on Table 3.4, which lists some statistical figures. In case of the Root-Mean-Square Error

(RMSE), which is specified in Definition A.3.2, the empirical means of the forecasted returns serve as point

estimates. Despite the good financial characteristics, the inclusion of financial and macroeconomic data

deteriorates the RMSE, which is surprising. Although exogenous information in the form of factors widens

the prediction intervals, the Ratio of Interval Outlierss (RIOs) in Definition A.3.3 does not automatically

decrease. The Mean Interval Score (MIS) in Definition A.3.4 takes the size of the prediction intervals and

number of outliers into account, but still does not show any improvements for the inclusion of exogenous

variables. So far, we considered each index separately. Therefore, let r̂t ∈ RH be the forecasted return of

the afterwards realized return rt ∈ RH for an out-of-sample period of length To. Then, we introduce the

multivariate RMSE as follows:

mRMSE =

√√√√ 1

HTo

To∑
t=1

(r̂t − rt)′ (r̂t − rt). (3.25)

Similar to the RMSE, financial and macroeconomic information worsens the mRMSE in Table 3.4 and so,

we are still missing an explanation why the proposed framework works from a statistical perspective. For

this purpose, we define a new measure called Ranking Error (RE). For forecasted returns r̂t ∈ RH and

afterwards realized returns rt ∈ RH , let the vectors ôt ∈ RH and ot ∈ RH contain the indices of the order

statistics of r̂t and rt. For instance, for r̂t = [−0.01, 0.02,−0.05, 0.03] and rt = [−0.02, 0.03,−0.03, 0] we

have: ôt = [3, 1, 2, 4] and ot = [3, 1, 4, 2], since the smallest element of r̂t is the third, the second smallest

one is the first, etc. Based on this, the RE is given by:

RE =

√√√√ 1

HTo

To∑
t=1

(ôt − ot)′ (ôt − ot). (3.26)

As the RE in Table 3.4 slightly improves, when financial and macroeconomic data is added, the outper-

formance of our mean-variance portfolios in Table 3.1 possibly comes from the ranking of the forecasted

returns. That is, our approach more often predicts the correct return order. As mean-variance optimiza-

tion maximizes the expected return subject to a variance constraint, for similar covariance matrices, the

correct return order causes overweighted outperforming assets and so, yields an excess return. Note, if a

vector comprises the same element twice, the indices of its order statistics are ambiguous. However, when

working with real data, this occurs quite unlikely, if no rounding takes place.
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Figure 3.8: Factor dimension and autoregressive orders for an ESFM with incomplete panel data covering

financial and macroeconomic time series (top), for an ESFM with incomplete financial panel data (middle)

and for a pure return VAR(p) of dynamic order 1 ≤ p ≤ 2.
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3.3 Conclusion and Future Research

In this chapter, we developed a comprehensive framework, which constructs prediction intervals for returns

of future periods of time and supports portfolio optimization. Thereby, the alternating application of

MLE and an EM estimates an ESFM with incomplete panel data. That is, in each loop the EM derives

complete panel data from the observations and latest parameter estimates, before MLE reestimates the

parameters. To ensure that parameter estimates and complete panel data fit together, this method runs

until the change in the expected log-likelihood function is negligible. Besides the parameters, this ansatz

estimates missing observations and provides timely indications for low-frequency variables (nowcasting).

The underlying factor structure allows us to describe large-dimensional panel data by a few hidden

factors with known distribution and thus, admits a reduction in dimension. Next, a VARX with the

factors as exogenous variables maps the dynamics of a multivariate return process. At this stage, we

use randomly drawn factor and coefficient samples instead of their estimates to generate samples of

forecasted returns. In this way, we take into account parameter risks and uncertainties arising from Factor

Analysis. Finally, such samples of predicted returns serve as starting point of our financial application.

That means, they facilitate the construction of empirical prediction intervals. Furthermore, their empirical

means and covariance matrices enter our mean-variance and marginal-risk-parity, respectively, portfolio

optimizations.

Our empirical study considers an investment universe consisting of Gold and three US stock indices, i.e.,

Nasdaq Composite, Standard & Poor’s 500 and Dow Jones Industrial Average. Besides financial figures,

our panel data includes macroeconomic indicators. In total, a mixture of monthly, quarterly, discontinued

and later starting time series entails incompleteness of the panel data. Among other things, the ability to

work with ragged data is a main advantage of our approach. In particular, for applications in the area of

asset and risk management this is an important feature. Based on our empirical example, we recommend

our method for mean-variance portfolio optimization with incomplete financial and macroeconomic panel

data, since it provided the best Sharpe Ratio and Omega Measure of all benchmark strategies.

This chapter contributes to the existing literature by showing how Factor Models for unbalanced panel

data can support the monitoring of financial markets and portfolio decisions. The single building blocks

of our framework were thoroughly discussed by the statistical community, but were primarily applied to

non-financial data. Hence, the manner in which we combine them here and the chosen field of application,

i.e., market monitoring and portfolio optimization, are the main novelties of this chapter.

Possible directions of the future research are as follows: First, the empirical analysis could be extended to

other financial markets. For instance, non-US stock indices, Foreign Exchange rates, fixed income markets

or commodity prices could be interesting. Second, instead of an ESFM an ADFM could be used, which we

do in Chapter 4. For autoregressive factors, the preprocessing of the panel data is not obliged to remove

their autoregressive nature. Third, the VARX can be replaced by the FAVAR of Bernanke et al. (2005) to

investigate the impact of the factors on the returns as well as the reverse relation. Fourth, during crises

the behavior of stocks is considerably different to normal times. For instance, they are strongly correlated

and skewed. Similar to Hauptmann et al. (2014), regime switching in case of the return process possibly

improves the performance of the overall framework.
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Chapter 4

Estimation of Approximate Dynamic

Factor Models

In this chapter, we estimate Approximate Dynamic Factor Models (ADFMs) with homoscedastic, cross-

sectionally correlated shocks using incomplete panel data. Besides missing observations, data incomplete-

ness systematically arises from the inclusion of mixed-frequency information. The factor dynamics obeys a

Vector Autoregression Model of order p ≥ 0. Unlike similar approaches such as in Bańbura and Modugno

(2014), we alternately deploy two Expectation-Maximization Algorithms (EMs) for parameter estimation

instead of a mix of an EM, the Kalman Filter and Smoother. In doing so, we trace estimated factor means

back to the input data such that we know the contribution of each input signal to the expected result.

On the one hand, this shows us which are the main drivers and so, the main sources of risk. On the other

hand, it opens the door for further investigations and hence, indicates how reliable the received output is.

For model selection, i.e., for determing the unknown factor dimension and autoregressive order, we derive

a two-step model selection criterion, which we test within a comprehensive Monte Carlo simulation study.

Finally, we apply the ADFM to real-economy data supporting investment decisions and risk management.

In this context, an Autoregressive Model with estimated factors as exogenous variables maps the behavior

of weekly S&P500 log-returns. As in Chapter 3, we construct prediction intervals for returns of future

periods of time. In addition, we detect the drivers of our point forecasts and suggest a dynamic trading

strategy to benefit from the gained information.

4.1 Mathematical Background

In Chapter 3, the factors were supposed to be identically and independently distributed and we assumed

an isotropic error model for the idiosyncratic shocks. By contrast, we now allow for cross-sectionally and

serially correlated factors. Furthermore, we admit cross-sectional correlation of the idiosyncratic errors.

For this purpose, we work with the ADFM in Definition 2.1.4. As before, we first consider complete panel

data and later on relax this restriction to treat unbalanced panel data, too.
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4.1.1 Estimation of ADFMs with Complete Panel Data

Here, we assume for all points in time t the vector Xt ∈ RN as in Definition 2.1.1, that is, there are no

missing entries. Let us recall the measurement and transition equations of the ADFM in Definition 2.1.4.

If the joint vector (F ′t,X
′
t)
′ ∈ RK+N is observable, standard MLE can provide estimates for the ADFM

parameters Θ. However, the hiddenness of the factors F t ∈ RK calls for another approach. Namely, to

treat the log-likelihood function L (Θ|X,F ) with latent factors F t, we have to estimate them. For this

purpose, we replace the log-likelihood function by its expectation conditioned on the observed panel data

X ∈ RT×N . In this way, we intend to switch from the factors to their means and covariance matrices

conditioned on the panel data, i.e., we deal with the moments of the random vectors F t|Xt. Due to

normality assumptions for the factors F t and shocks εt ∈ RN and δt ∈ RK , the vectors F t|Xt are still

Gaussian and the switch from the factors to their conditional means and covariance matrices is possible.

Furthermore, their moments arise from the Gaussian distribution of the vectors Xt|F t and the marginal

distributions of the covariance-stationary vectors F t by virtue of the Bayes’ theorem. This is why the

below Lemmata exactly pursue this roadmap. All in all, we adjust our estimation problem such that the

EM in Definition 2.1.7 simultaneously estimates the hidden factors and unknown model parameters.

Lemma 4.1.1 (Conditional Distributions of ADFMs)

For the ADFMs in Definition 2.1.4, the conditional distributions Xt|F t and F t|F t−1, . . . ,F t−p are mul-

tivariate Gaussian as follows:

Xt|F t ∼ N (WF t + µ,Σε) , (4.1)

F t|F t−1, . . . ,F t−p ∼ N

(
p∑
i=1

AiF t−i,Σδ

)
. (4.2)

Proof:

Because of the underlying normality assumptions, the random vectors Xt|F t and F t|F t−1, . . . ,F t−p are

multivariate Gaussian. Hence, we can restrict ourselves to determing their means and covariance matrices.

Besides (2.4), the independence of F t and εt provides:

EΘ [Xt|F t] = EΘ [WF t + µ + εt|F t] = WF t + µ + EΘ [εt|F t] = WF t + µ,

VarΘ [Xt|F t] = VarΘ [WF t + µ + εt|F t] = VarΘ [εt|F t] = Σε .

Similarly, (2.5) and the independence of F t−1, . . . ,F t−p and δt yield:

EΘ [F t|F t−1, . . . ,F t−p] = EΘ

[
p∑
i=1

AiF t−i + δt

∣∣∣∣∣F t−1, . . . ,F t−p

]

=

p∑
i=1

AiF t−i + EΘ [δt|F t−1, . . . ,F t−p] =

p∑
i=1

AiF t−i,

VarΘ [F t|F t−1, . . . ,F t−p] = VarΘ

[
p∑
i=1

AiF t−i + δt

∣∣∣∣∣F t−1, . . . ,F t−p

]
= VarΘ [δt|F t−1, . . . ,F t−p] = Σδ .

2

Before we focus on the marginal distributions of the covariance-stationary vectors Xt and F t, we derive

the covariance matrix of the factors F t. Thereby, the covariance-stationarity of the process {F t} justifies
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the following infinite moving average, abbreviated by MA(∞), representation of F t (Hamilton, 1994, p.

260, Eq. 10.1.15):

F t =

∞∑
k=0

Akδt−k, (4.3)

with matrices Ak ∈ RK×K , k ≥ 0, as in (4.6). Note, the matrix sequence {Ak} is absolutely summable,

that is, it holds for any 1 ≤ i, j ≤ K (Hamilton, 1994, p. 262-263):

∞∑
k=0

∣∣∣Ak(i,j)∣∣∣ <∞, (4.4)

where Ak(i,j) stands for the element in the i-th row and j-th column of matrix Ak. With this in mind, we

obtain the following covariance matrix of F t:

Lemma 4.1.2 (Covariance Matrix of Factors F t)

The covariance matrix of the covariance-stationary VAR(p) process {F t} in (2.5) satisfies:

ΣF =

∞∑
k=0

((
Ak
)

Σδ
(
Ak
)′)

, (4.5)

where for all k ≥ 1 we define:

Ak =
[
A1, . . . , Ap

]
Ak−1

...

Ak−p

 with A0 = IK and Ak−p = OK , ∀ (k − p) < 0. (4.6)

Proof:

For all points in time t, we have: δt ∼ N
(
0K ,Σδ

)
iid such that the dynamics of F t in (2.5) coincides

with the VAR(p) in Hamilton (1994, p. 258, Eq. 10.1.4-10.1.6). For the obtained MA(∞) representation,

see Hamilton (1994, p. 260, Eq. 10.1.15) with matrices Ak as in Hamilton (1994, p. 260, Eq. 10.1.19).

Finally, point (a) in Hamilton (1994, p. 263, Proposition 10.2) for s = 0 proves the claim. 2

Next, we have for the marginal distributions of the covariance-stationary vectors Xt and F t.

Lemma 4.1.3 (Marginal Distributions of ADFMs)

Assume the ADFMs in Definition 2.1.4. Then, the covariance-stationary processes {F t} and {Xt} are

multivariate Gaussian. For any time t, their marginal distributions are given by:

F t ∼ N
(
0K ,ΣF

)
, (4.7)

Xt ∼ N
(
µ,WΣFW

′ + Σε

)
, (4.8)

with the covariance matrix ΣF ∈ RK×K defined in Lemma 4.1.2.

Proof:

In this Gaussian setting, the independence of the factors F t and shocks εt ensures the normality of the

marginal distributions. This is why we just determine the respective expectations and covariance matrices.
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The claim VarΘ [F t] = ΣF is proven in Lemma 4.1.2. Similarly, the absolute summability of the MA(∞)

representation and the properties of the white noise process {δt} provide:

EΘ [F t] = EΘ

[ ∞∑
k=0

Akδt−k

]
=

∞∑
k=0

AkEΘ [δt−k] = 0K .

Using the factor distribution in (4.7) and the error distribution in (2.4), we get:

EΘ [Xt] = EΘ [WF t + µ + εt] = WEΘ [F t] + µ + EΘ [εt] = µ,

VarΘ [Xt] = VarΘ [WF t + µ + εt] = W VarΘ [F t]W
′ + VarΘ [εt] = WΣFW

′ + Σε .

In case of VarΘ [Xt], the independence of F t and εt is essential. 2

Finally, the Bayes’ theorem yields the distribution of the factors F t given the data Xt, that is, F t|Xt.

Theorem 4.1.4 (Conditional Factor Distribution)

Assume the ADFMs in Definition 2.1.4 with loadings matrix W ∈ RN×K of full column rank K. Then,

the conditional factor distribution F t|Xt is given by:

F t|Xt ∼ N
(
M−1W ′Σ−1

ε (Xt − µ) ,M−1
)

= N
(
µF t|Xt

,ΣF t|Xt

)
, (4.9)

where the matrix M = W ′Σ−1
ε W + Σ−1

F
∈ RK×K is symmetric and invertible for positive definite covari-

ance matrices Σε ∈ RN×N and ΣF ∈ RK×K .

Proof:

By virtue of the Bayes’ theorem, Lemmata 4.1.1 and 4.1.3, we have:

fΘ (F t|Xt) =
fΘ (Xt|F t) fΘ (F t)

fΘ (Xt)
∝ fΘ (Xt|F t) fΘ (F t)

= (2π)
−N/2 |Σε |−1/2 exp

(
−1

2
(Xt −WF t − µ)

′
Σ−1
ε (Xt −WF t − µ)

)
· (2π)

−K/2 |ΣF |
−1/2 exp

(
−1

2
F ′tΣ

−1

F
F t

)
∝ exp

(
−1

2

[
(Xt − µ)

′
Σ−1
ε (Xt − µ)− (Xt − µ)

′
Σ−1
ε WF t

])
· exp

(
−1

2

[
−F ′tW ′Σ−1

ε (Xt − µ) + F ′tW
′Σ−1
ε WF t + F ′tΣ

−1

F
F t

])
= exp

(
−1

2

[
F ′t

(
W ′Σ−1

ε W + Σ−1

F

)
F t − (Xt − µ)

′
Σ−1
ε WF t

])
· exp

(
−1

2

[
−F ′tW ′Σ−1

ε (Xt − µ) + (Xt − µ)
′
Σ−1
ε (Xt − µ)

])
.

Next, we set: M = W ′Σ−1
ε W+Σ−1

F
∈ RK×K such that it is symmetric by definition. In general, covariance

matrices are at least positive semi-definite, but the definition of M requires positive-definite matrices Σε

and ΣF to ensure that their inverse matrices exist. The loadings matrix W is supposed to have rank K,

otherwise, the collinearity of its columns supports the reduction of the factor dimension by 1. Thus, the

transformation W ′Σ−1
ε W preserves rank K. With this in mind, we proceed as follows:

fΘ (F t|Xt) ∝ exp
(
−1

2

[
F ′tMF t − (Xt − µ)

′
Σ−1
ε WM−1MF t

])
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· exp
(
−1

2

[
−F ′tMM−1W ′Σ−1

ε (Xt − µ) + (Xt − µ)
′
Σ−1
ε (Xt − µ)

])
· exp

(
−1

2

[
(Xt − µ)

′
Σ−1
ε WM−1MM−1W ′Σ−1

ε (Xt − µ)
])

· exp
(

+
1

2

[
(Xt − µ)

′
Σ−1
ε WM−1MM−1W ′Σ−1

ε (Xt − µ)
])

∝ exp
(
−1

2

[
F ′tMF t − (Xt − µ)

′
Σ−1
ε WM−1MF t

])
· exp

(
−1

2

[
−F ′tMM−1W ′Σ−1

ε (Xt − µ)
])

· exp
(
−1

2

[
(Xt − µ)

′
Σ−1
ε WM−1MM−1W ′Σ−1

ε (Xt − µ)
])

= exp

(
−1

2

[
F t −M−1W ′Σ−1

ε (Xt − µ)
]′
M
[
F t −M−1W ′Σ−1

ε (Xt − µ)
])

,

which is proportional to the probability density function of the claimed normal distribution. 2

The restriction to positive-definite matrices Σε and ΣF in Theorem 4.1.4 should not hit hard empirical

studies, as empirical covariance matrices are usually positive definite. At least, we did not face this issue in

our analyses. For an alternative proof of Theorem 4.1.4, see Appendix A.2. The shocks {εt} in Definition

2.1.4 are iid such that the factors conditioned on the panel data, i.e., {F t|Xt}, are uncorrelated. If we

admit serial error correlation, the independence of the conditioned factors {F t|Xt} is lost.

Next, we estimate the ADFMs in Definition 2.1.4. To this, we derive the log-likelihood function L (Θ|X,F )

with model parameters Θ = {W,Σε , A1, . . . , Ap,Σδ} for complete samples X = [X1, . . . ,XT ]
′ ∈ RT×N

and F = [F 1, . . . ,F T ]
′ ∈ RT×K of sufficient size T > p given the first p factors. Note, the expectation µ is

not part of Θ, since we subtract from the vectors Xt their empirical means during the data preprocessing

such that µ = 0N holds. In a next step, we integrate out the hidden factors F from L (Θ|X,F ), when we

determine the expectation of the log-likelihood function conditioned on the panel data X and parameters

Θ. Finally, we treat the conditional factor means and covariance matrices as constants and apply MLE

for parameter estimation with known factor dimension K ≥ 1 and VAR order p ≥ 1. This procedure,

which is similar to the EM in Definition 2.1.7, is also used in Bańbura and Modugno (2014). However,

there are two exceptions. On the one hand, Bańbura and Modugno (2014) actually derived an estimation

method for ESFMs and then, followed the argumentation in Doz et al. (2012) to extend it to ADFMs. On

the other hand, we deploy closed-form solutions for the conditional factor expectations and covariance

matrices as in Theorem 4.1.4, while Bańbura and Modugno (2014) relied on the standard KF and KS.

Lemma 4.1.5 (Conditional Log-Likelihood Function of ADFMs)

For the ADFMs in Definition 2.1.4, let X ∈ RT×N be complete panel data as in Definition 2.1.1 with

T > p. Then, we have for the log-likelihood function L (Θ|X,F ) of the panel data X and factors F given

the model parameters Θ =
{
W,Σε , A1, . . . , Ap,Σδ

}
and first p > 1 factors [F 1, . . . ,F p]:

L (Θ|X,F ) = −T
2

[N ln (2π) + ln (|Σε |)]−
T − p

2

[
K ln (2π) + ln

(
|Σδ |

)]
− 1

2

T∑
t=1

(Xt −WF t − µ)
′
Σ−1
ε (Xt −WF t − µ)

− 1

2

T∑
t=p+1

(
F t −

p∑
i=1

AiF t−i

)′
Σ−1

δ

(
F t −

p∑
i=1

AiF t−i

)
.
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Proof:

An iterative application of the Bayes’ theorem provides for the joint likelihood given the first p factors:

fΘ (XT , . . . ,X1,F T , . . . ,F p+1|F p, . . . ,F 1)

=
fΘ (XT , . . . ,X1,F T , . . . ,F 1)

fΘ (F p, . . . ,F 1)

=
fΘ (XT |XT−1, . . . ,X1,F T , . . . ,F 1) fΘ (XT−1, . . . ,X1,F T , . . . ,F 1)

fΘ (F p, . . . ,F 1)

=
fΘ (XT |F T ) fΘ (F T |XT−1, . . . ,X1,F T−1, . . . ,F 1) fΘ (XT−1, . . . ,X1,F T−1, . . . ,F 1)

fΘ (F p, . . . ,F 1)

= fΘ (XT |F T ) fΘ (F T |F T−1, . . . ,F T−p)
fΘ (XT−1, . . . ,X1,F T−1, . . . ,F 1)

fΘ (F p, . . . ,F 1)

= fΘ (XT |F T ) fΘ (F T |F T−1, . . . ,F T−p) fΘ (XT−1, . . . ,X1,F T−1, . . . ,F p+1|F p, . . . ,F 1)

= . . . =

(
T∏
t=1

fΘ (Xt|F t)

)(
T∏

t=p+1

fΘ (F t|F t−1, . . . ,F t−p)

)
. (4.10)

Thus, we obtain for the corresponding log-likelihood function L (Θ|X,F ):

L (Θ|X,F ) = ln (fΘ (XT , . . . ,X1,F T , . . . ,F p+1|F p, . . . ,F 1))

=

T∑
t=1

ln (fΘ (Xt|F t)) +

T∑
t=p+1

ln (fΘ (F t|F t−1, . . . ,F t−p)) . (4.11)

Using the conditional distributions in Lemma 4.1.1, we continue with:

L (Θ|X,F ) =

T∑
t=1

ln

(
(2π)

−N/2 |Σε |−1/2 exp

[
− (Xt −WF t − µ)

′
Σ−1
ε (Xt −WF t − µ)

2

])

+

T∑
t=p+1

ln

(2π)
−K/2 |Σδ |

−1/2 exp

− (F t −
∑p
i=1AiF t−i)

′
Σ−1

δ
(F t −

∑p
i=1AiF t−i)

2

 .

Finally, the properties of the logarithm and rearranging terms confirm the claim. 2

The log-likelihood function L (Θ|X,F ) in Lemma 4.1.5 depends on the hidden factors {F t}1≤t≤T and so,

we cannot compute it directly. However, the EM of Dempster et al. (1977) in Definition 2.1.7 enables the

estimation of Θ in a maximum likelihood framework, where Lemma 4.1.6 prepares the expectation step.

Lemma 4.1.6 (Conditional Expectation of Conditional Log-Likelihood)

For the ADFMs in Definition 2.1.4, let L (Θ|X,F ) be the conditional log-likelihood function in Lemma

4.1.5. Then, we have for the expectation of L (Θ|X,F ) given the panel data X and parameters Θ:

EΘ [L (Θ|X,F ) |X] = −T
2

[N ln (2π) + ln (|Σε |)]−
T − p

2

[
K ln (2π) + ln

(
|Σδ |

)]
− 1

2

T∑
t=1

(Xt − µ)
′
Σ−1
ε (Xt − µ) +

T∑
t=1

(Xt − µ)
′
Σ−1
ε W µF t|Xt

− 1

2

T∑
t=1

tr
(
W ′Σ−1

ε W
(

ΣF t|Xt
+ µF t|Xt

µ′F t|Xt

))
+

T∑
t=p+1

p∑
i=1

tr
(

Σ−1

δ
AiµF t−i|Xt−i

µ′F t|Xt

)
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−
T∑

t=p+1

p∑
i,j=1
i<j

tr
(
A′iΣ

−1

δ
Aj µF t−j |Xt−j

µ′F t−i|Xt−i

)

− 1

2

T∑
t=p+1

p∑
i=1

tr
(
A′iΣ

−1

δ
Ai

(
ΣF t−i|Xt−i

+ µF t−i|Xt−i
µ′F t−i|Xt−i

))

− 1

2

T∑
t=p+1

tr
(

Σ−1

δ

(
ΣF t|Xt

+ µF t|Xt
µ′F t|Xt

))
, (4.12)

with means and covariance matrices of the conditional factor distributions as in Theorem 4.1.4.

Proof:

The definition of L (Θ|X,F ) in Lemma 4.1.5 and the independence {F t|Xt}1≤t≤T yield:

EΘ [L (Θ|X,F ) |X] = −T
2

[N ln (2π) + ln (|Σε |)]−
T − p

2

[
K ln (2π) + ln

(
|Σδ |

)]
− 1

2

T∑
t=1

EΘ

[
(Xt −WF t − µ)

′
Σ−1
ε (Xt −WF t − µ) |X

]
− 1

2

T∑
t=p+1

EΘ

[(
F t −

p∑
i=1

AiF t−i

)′
Σ−1

δ

(
F t −

p∑
i=1

AiF t−i

)∣∣∣∣∣X
]

= −T
2

[N ln (2π) + ln (|Σε |)]−
T − p

2

[
K ln (2π) + ln

(
|Σδ |

)]
− 1

2

T∑
t=1

(Xt − µ)
′
Σ−1
ε (Xt − µ) +

T∑
t=1

(Xt − µ)
′
Σ−1
ε W EΘ [F t|Xt]

− 1

2

T∑
t=1

EΘ

[
F ′tW

′Σ−1
ε WF t|Xt

]
+

T∑
t=p+1

p∑
i=1

EΘ

[
F ′tΣ

−1

δ
AiF t−i|Xt,Xt−i

]

− 1

2

T∑
t=p+1

p∑
i,j=1

EΘ

[
F ′t−iA

′
iΣ
−1

δ
AjF t−j |Xt−i,Xt−j

]

− 1

2

T∑
t=p+1

EΘ

[
F ′tΣ

−1

δ
F t|Xt

]
.

Using the trace properties in Lemma A.1.2 and Remark A.1.3, we get:

EΘ [L (Θ|X,F ) |X] = −T
2

[N ln (2π) + ln (|Σε |)]−
T − p

2

[
K ln (2π) + ln

(
|Σδ |

)]
− 1

2

T∑
t=1

(Xt − µ)
′
Σ−1
ε (Xt − µ) +

T∑
t=1

(Xt − µ)
′
Σ−1
ε W EΘ [F t|Xt]

− 1

2

T∑
t=1

tr
(
W ′Σ−1

ε WEΘ

[
F tF

′
t|Xt

])
+

T∑
t=p+1

p∑
i=1

tr
(

Σ−1

δ
AiEΘ

[
F t−iF

′
t|Xt,Xt−i

])

− 1

2

T∑
t=p+1

p∑
i,j=1

tr
(
A′iΣ

−1

δ
AjEΘ

[
F t−jF

′
t−i|Xt−i,Xt−j

])

− 1

2

T∑
t=p+1

tr
(

Σ−1

δ
EΘ

[
F tF

′
t|Xt

])
. (4.13)
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Finally, we benefit from the independence of {F t|Xt}1≤t≤T , as it holds:

EΘ

[
F tF

′
t|Xt

]
= ΣF t|Xt

+ µF t|Xt
µ′F t|Xt

,

EΘ

[
F tF

′
s|Xt,Xs

]
= µF t|Xt

µ′F s|Xs
, for all t 6= s,

where the conditional factor means and covariance matrices are defined in Theorem 4.1.4. 2

Usually, EMs for DFMs estimate the factor moments EΘ [F t|Xt] and EΘ

[
F tF

′
s|Xt,Xs

]
, 1 ≤ s, t ≤ T,

in (4.13) by the KF or KS (Bork, 2009; Bork et al., 2010; Bańbura and Rünstler, 2011; Doz et al., 2011,

2012; Bańbura and Modugno, 2014). By contrast, we use the closed-form solutions in Theorem 4.1.4 such

that Kalman Filtering is not needed. In principle, this is a minor advantage, since KF and KS are well-

known concepts (see Section 2.1.4). Unfortunately, decomposing factor moments into the contributions

of the input data is more complicated in case of the KF and KS than our closed-form ansatz. For further

information about this, see the comparison between both procedures in Section 4.4. For simplicity reasons,

we therefore proceed with the closed-form solutions for the factor moments.

In the maximization step of the EMs in Definition 2.1.7, we maximize the expected log-likelihood function

with respect to Θ. Here, we do the same, when we search for the optimum of EΘ̂[L (Θ|X,F ) |X] in Lemma

4.1.6. However, the maximization is now done in a simplified way, as we ignore the dependence of µF t|Xt

and ΣF t|Xt
, 1 ≤ t ≤ T, on the parameters Θ and treat them as constants. Then, we obtain the partial

derivatives of EΘ̂[L (Θ|X,F ) |X] regarding W , Σε , Σδ and Ai, 1 ≤ i ≤ p, explicitly (see Lemma 4.1.7).

To justify this simplification, be aware that µF t|Xt
and ΣF t|Xt

arise from the factors and hence, are

interpreted as data or known parameters. The described maximization procedure follows the methods in

Tipping and Bishop (1999) and Bańbura and Modugno (2014).

Lemma 4.1.7 (Maximum of the Expected Log-likelihood in ADFMs)

Let EΘ̂(l)
[L (Θ|X,F ) |X] be the expected log-likelihood function in Lemma 4.1.6, where the factor means

µF t|Xt
and covariance matrices ΣF t|Xt

are derived from the panel data X and latest parameter esti-

mates Θ̂(l). Then, the maximum of EΘ̂(l)
[L (Θ|X,F ) |X] is reached for the parameters Θ̂ given by:

Ŵ =

(
T∑
t=1

(Xt − µ)µ′F t|Xt

)(
T∑
t=1

(
ΣF t|Xt

+ µF t|Xt
µ′F t|Xt

))−1

,

Σ̂ε =
1

T

(
T∑
t=1

(Xt − µ) (Xt − µ)
′ − Ŵ

(
T∑
t=1

µF t|Xt
(Xt − µ)

′

))
,

[
Â1 · · · Âp

]
=

(
T∑

t=p+1

[
µF t|Xt

µ′
F t−1|Xt−1

··· µF t|Xt
µ′
F t−p|Xt−p

])
Σ̃−1
p,T ,

Σ̂δ = − 1

T − p

[
Â1 · · · Âp

] T∑
t=p+1


µF t−1|Xt−1

µ′
F t|Xt

...
µF t−p|Xt−p

µ′
F t|Xt




+
1

T − p

T∑
t=p+1

(
ΣF t|Xt

+ µF t|Xt
µ′F t|Xt

)
,
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with invertible matrix Σ̃p,T ∈ RpK×pK defined by:

Σ̃p,T =

T∑
t=p+1


ΣF t−1|Xt−1

OK · · · OK

OK ΣF t−2|Xt−2

...
...

. . . OK

OK · · · OK ΣF t−p|Xt−p



+

T∑
t=p+1


µF t−1|Xt−1

µ′F t−1|Xt−1
· · · µF t−1|Xt−1

µ′F t−p|Xt−p

...
. . .

...

µF t−p|Xt−p
µ′F t−1|Xt−1

· · · µF t−p|Xt−p
µ′F t−p|Xt−p


and the moments of the conditional factors as in Theorem 4.1.4.

Proof:

Here, we sequentially determine the partial derivatives of EΘ̂(l)
[L (Θ|X,F ) |X] with respect to Θ. At first,

the trace properties in Lemma A.1.2, Remark A.1.3 and Lemma A.1.5 provide for W :

∂EΘ̂(l)
[L (Θ|X,F ) |X]

∂W
=

T∑
t=1

∂

∂W
tr
(

(Xt − µ)
′
Σ−1
ε W µF t|Xt

)
− 1

2

T∑
t=1

∂

∂W
tr
(
W ′Σ−1

ε W
(

ΣF t|Xt
+ µF t|Xt

µ′F t|Xt

))
=

T∑
t=1

∂

∂W
tr
(
µF t|Xt

(Xt − µ)
′
Σ−1
ε W

)
−

T∑
t=1

Σ−1
ε W

(
ΣF t|Xt

+ µF t|Xt
µ′F t|Xt

)
=

T∑
t=1

(
µF t|Xt

(Xt − µ)
′
Σ−1
ε

)′
−

T∑
t=1

Σ−1
ε W

(
ΣF t|Xt

+ µF t|Xt
µ′F t|Xt

)
.

Thus, we have to solve the arising system of linear equations with respect to W , that is, we obtain:

Σ−1
ε W

T∑
t=1

(
ΣF t|Xt

+ µF t|Xt
µ′F t|Xt

)
= Σ−1

ε

T∑
t=1

(Xt − µ)µ′F t|Xt
.

This results in the estimated parameter Ŵ defined as:

Ŵ =

(
T∑
t=1

(Xt − µ)µ′F t|Xt

)(
T∑
t=1

(
ΣF t|Xt

+ µF t|Xt
µ′F t|Xt

))−1

.

Similarly, we obtain for Σε using the trace properties in Lemma A.1.2 and Remark A.1.3 together with

its derivatives in Lemma A.1.5:

∂EΘ̂(l)
[L (Θ|X,F ) |X]

∂Σε
= −T

2

∂

∂Σε
ln (|Σε |)−

1

2

T∑
t=1

∂

∂Σε
tr
(
(Xt − µ) (Xt − µ)

′
Σ−1
ε
)

− 1

2

T∑
t=1

∂

∂Σε
tr
(
W
(

ΣF t|Xt
+ µF t|Xt

µ′F t|Xt

)
W ′Σ−1

ε

)
+

1

2

T∑
t=1

∂

∂Σε
tr
(
W µF t|Xt

(Xt − µ)
′
Σ−1
ε

)
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+
1

2

T∑
t=1

∂

∂Σε
tr
(

(Xt − µ) µ′F t|Xt
W ′Σ−1

ε

)
= −T

2
Σ−1
ε +

1

2

T∑
t=1

(
Σ−1
ε (Xt − µ) (Xt − µ)

′
Σ−1
ε
)′

+
1

2

T∑
t=1

(
Σ−1
ε W

(
ΣF t|Xt

+ µF t|Xt
µ′F t|Xt

)
W ′Σ−1

ε

)′
− 1

2

T∑
t=1

(
Σ−1
ε W µF t|Xt

(Xt − µ)
′
Σ−1
ε

)′
− 1

2

T∑
t=1

(
Σ−1
ε (Xt − µ) µ′F t|Xt

W ′Σ−1
ε

)′
.

Hence, we have the following system of linear equations:

T Σε =

T∑
t=1

(Xt − µ) (Xt − µ)
′
+W

(
T∑
t=1

(
ΣF t|Xt

+ µF t|Xt
µ′F t|Xt

))
W ′

−

(
T∑
t=1

(Xt − µ) µ′F t|Xt

)
W ′ −W

(
T∑
t=1

µF t|Xt
(Xt − µ)

′

)
.

Note, the partial derivatives of the expected log-likelihood function EΘ̂(l)
[L (Θ|X,F ) |X] with respect to

W and Σε have to be zero at the same time. Therefore, we substitute the matrix W by its estimate Ŵ .

Moreover, to admit further simplifications, we insert the solution for Ŵ in the second summand on the

right-hand side of the above equation. In total, this yields:

T Σε =

T∑
t=1

(Xt − µ) (Xt − µ)
′
+

(
T∑
t=1

(Xt − µ)µ′F t|Xt

)
Ŵ ′

−

(
T∑
t=1

(Xt − µ) µ′F t|Xt

)
Ŵ ′ − Ŵ

(
T∑
t=1

µF t|Xt
(Xt − µ)

′

)

=

T∑
t=1

(Xt − µ) (Xt − µ)
′ − Ŵ

(
T∑
t=1

µF t|Xt
(Xt − µ)

′

)
.

Hence, the matrix Σε is estimated by Σ̂ε defined as follows:

Σ̂ε =
1

T

(
T∑
t=1

(Xt − µ) (Xt − µ)
′ − Ŵ

(
T∑
t=1

µF t|Xt
(Xt − µ)

′

))
.

For any fixed 1 ≤ k ≤ p the trace properties in Lemma A.1.2 and Remark A.1.3 as well as its derivatives

in Lemma A.1.5 yield for the matrices Ak:

∂EΘ̂(l)
[L (Θ|X,F ) |X]

∂Ak
=

T∑
t=p+1

∂

∂Ak
tr
(
µF t−k|Xt−k

µ′F t|Xt
Σ−1

δ
Ak

)

− 1

2

T∑
t=p+1

p∑
i=1
i6=k

∂

∂Ak
tr
(
A′iΣ

−1

δ
AkµF t−k|Xt−k

µ′F t−i|Xt−i

)

− 1

2

T∑
t=p+1

p∑
j=1
j 6=k

∂

∂Ak
tr
(
A′kΣ−1

δ
Aj µF t−j |Xt−j

µ′F t−k|Xt−k

)
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− 1

2

T∑
t=p+1

∂

∂Ak
tr
(
A′kΣ−1

δ
Ak

(
ΣF t−k|Xt−k

+ µF t−k|Xt−k
µ′F t−k|Xt−k

))

=

T∑
t=p+1

(
µF t−k|Xt−k

µ′F t|Xt
Σ−1

δ

)′
− 1

2

T∑
t=p+1

p∑
i=1
i6=k

(
µF t−k|Xt−k

µ′F t−i|Xt−i
A′iΣ

−1

δ

)′

− 1

2

T∑
t=p+1

p∑
j=1
j 6=k

(
Σ−1

δ
Aj µF t−j |Xt−j

µ′F t−k|Xt−k

)

−
T∑

t=p+1

(
Σ−1

δ
Ak

(
ΣF t−k|Xt−k

+ µF t−k|Xt−k
µ′F t−k|Xt−k

))

= Σ−1

δ

T∑
t=p+1

µF t|Xt
µ′F t−k|Xt−k

− Σ−1

δ

T∑
t=p+1

p∑
i=1
i6=k

(
AiµF t−i|Xt−i

µ′F t−k|Xt−k

)

− Σ−1

δ
Ak

T∑
t=p+1

(
ΣF t−k|Xt−k

+ µF t−k|Xt−k
µ′F t−k|Xt−k

)
.

Σδ has full rank, therefore, for all k we get the following system of linear equations with variables Ak:

T∑
t=p+1

µF t|Xt
µ′F t−k|Xt−k

=

T∑
t=p+1

p∑
i=1
i6=k

(
AiµF t−i|Xt−i

µ′F t−k|Xt−k

)

+Ak

T∑
t=p+1

(
ΣF t−k|Xt−k

+ µF t−k|Xt−k
µ′F t−k|Xt−k

)
.

Note, the previous equation system holds for all matrices Ak, 1 ≤ k ≤ p, at the same time. For clarity

reasons, we define the matrix Σ̃p,T ∈ R(pK)×(pK) as:

Σ̃p,T =

T∑
t=p+1


ΣF t−1|Xt−1

OK · · · OK

OK ΣF t−2|Xt−2

...
...

. . . OK

OK · · · OK ΣF t−p|Xt−p



+

T∑
t=p+1


µF t−1|Xt−1

µ′F t−1|Xt−1
· · · µF t−1|Xt−1

µ′F t−p|Xt−p

...
. . .

...

µF t−p|Xt−p
µ′F t−1|Xt−1

· · · µF t−p|Xt−p
µ′F t−p|Xt−p

 ,
such that we can summarize the k systems of linear equations in the following manner:

[
A1 · · · Ap

]
Σ̃p,T =

T∑
t=p+1

[
µF t|Xt

µ′
F t−1|Xt−1

··· µF t|Xt
µ′
F t−p|Xt−p

]
,

which is solved by
[
Â1 · · · Âp

]
given by:

[
Â1 · · · Âp

]
=

(
T∑

t=p+1

[
µF t|Xt

µ′
F t−1|Xt−1

··· µF t|Xt
µ′
F t−p|Xt−p

])
Σ̃−1
p,T .
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Note, the covariance matrices ΣF t|Xt
in Theorem 4.1.4 are positive definite implying that the covariance

matrix Σ̃p,T is positive definite, too.

Finally, we conclude for the covariance matrix Σδ using the trace properties in Lemma A.1.2 and Remark

A.1.3 together with its partial derivatives in Lemma A.1.5:

∂EΘ̂(l)
[L (Θ|X,F ) |X]

∂Σδ
= −T − p

2

∂

∂Σδ
ln
(
|Σδ |

)
+

1

2

T∑
t=p+1

p∑
i=1

∂

∂Σδ
tr
(
AiµF t−i|Xt−i

µ′F t|Xt
Σ−1

δ

)

+
1

2

T∑
t=p+1

p∑
i=1

∂

∂Σδ
tr
(
µF t|Xt

µ′F t−i|Xt−i
A′iΣ

−1

δ

)

−
T∑

t=p+1

p∑
i,j=1
i<j

∂

∂Σδ
tr
(
Aj µF t−j |Xt−j

µ′F t−i|Xt−i
A′iΣ

−1

δ

)

− 1

2

T∑
t=p+1

p∑
i=1

∂

∂Σδ
tr
(
Ai

(
ΣF t−i|Xt−i

+ µF t−i|Xt−i
µ′F t−i|Xt−i

)
A′iΣ

−1

δ

)

− 1

2

T∑
t=p+1

∂

∂Σδ
tr
((

ΣF t|Xt
+ µF t|Xt

µ′F t|Xt

)
Σ−1

δ

)

= −T − p
2

Σ−1

δ
− 1

2

T∑
t=p+1

p∑
i=1

(
Σ−1

δ
AiµF t−i|Xt−i

µ′F t|Xt
Σ−1

δ

)′
− 1

2

T∑
t=p+1

p∑
i=1

(
Σ−1

δ
µF t|Xt

µ′F t−i|Xt−i
A′iΣ

−1

δ

)′
+

T∑
t=p+1

p∑
i,j=1
i<j

(
Σ−1

δ
Aj µF t−j |Xt−j

µ′F t−i|Xt−i
A′iΣ

−1

δ

)′

+
1

2

T∑
t=p+1

p∑
i=1

(
Σ−1

δ
Ai

(
ΣF t−i|Xt−i

+ µF t−i|Xt−i
µ′F t−i|Xt−i

)
A′iΣ

−1

δ

)′
+

1

2

T∑
t=p+1

(
Σ−1

δ

(
ΣF t|Xt

+ µF t|Xt
µ′F t|Xt

)
Σ−1

δ

)′
= −T − p

2
Σ−1

δ
− 1

2
Σ−1

δ

T∑
t=p+1

p∑
i=1

(
µF t|Xt

µ′F t−i|Xt−i
A′i

)
Σ−1

δ

− 1

2
Σ−1

δ

T∑
t=p+1

p∑
i=1

(
AiµF t−i|Xt−i

µ′F t|Xt

)
Σ−1

δ

+ Σ−1

δ

T∑
t=p+1

p∑
i,j=1
i<j

(
AiµF t−i|Xt−i

µ′F t−j |Xt−j
A′j

)
Σ−1

δ

+
1

2
Σ−1

δ

T∑
t=p+1

p∑
i=1

(
Ai

(
ΣF t−i|Xt−i

+ µF t−i|Xt−i
µ′F t−i|Xt−i

)
A′i

)
Σ−1

δ

+
1

2
Σ−1

δ

T∑
t=p+1

(
ΣF t|Xt

+ µF t|Xt
µ′F t|Xt

)
Σ−1

δ
.
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Hence, the estimated matrix Σ̂δ has to satisfy the following linear equation system:

(T − p) Σδ = −
T∑

t=p+1

p∑
i=1

(
µF t|Xt

µ′F t−i|Xt−i
A′i

)
−

T∑
t=p+1

p∑
i=1

(
AiµF t−i|Xt−i

µ′F t|Xt

)

+

T∑
t=p+1

p∑
i,j=1
i6=j

(
AiµF t−i|Xt−i

µ′F t−j |Xt−j
A′j

)

+

T∑
t=p+1

p∑
i=1

(
Ai

(
ΣF t−i|Xt−i

+ µF t−i|Xt−i
µ′F t−i|Xt−i

)
A′i

)

+

T∑
t=p+1

(
ΣF t|Xt

+ µF t|Xt
µ′F t|Xt

)

= −

(
T∑

t=p+1

[
µF t|Xt

µ′
F t−1|Xt−1

··· µF t|Xt
µ′
F t−p|Xt−p

])
A′1
...

A′p



−
[
A1 · · · Ap

] T∑
t=p+1


µF t−1|Xt−1

µ′
F t|Xt

...
µF t−p|Xt−p

µ′
F t|Xt




+
[
A1 · · · Ap

]
Σ̃p,T


A′1
...

A′p

+

T∑
t=p+1

(
ΣF t|Xt

+ µF t|Xt
µ′F t|Xt

)
.

The partial derivatives of EΘ̂(l)
[L (Θ|X,F ) |X] with respect to the matrices Σδ and Ak, 1 ≤ k ≤ p, have

to be zero at the same time. This is why we replace the matrices Ak by their estimates Âk and receive

for the estimated matrix Σ̂δ the following solution:

Σ̂δ = − 1

T − p

(
T∑

t=p+1

[
µF t|Xt

µ′
F t−1|Xt−1

··· µF t|Xt
µ′
F t−p|Xt−p

])
Â′1
...

Â′p



− 1

T − p

[
Â1 · · · Âp

] T∑
t=p+1


µF t−1|Xt−1

µ′
F t|Xt

...
µF t−p|Xt−p

µ′
F t|Xt




+
1

T − p

[
Â1 · · · Âp

]
Σ̃p,T


Â′1
...

Â′p


+

1

T − p

T∑
t=p+1

(
ΣF t|Xt

+ µF t|Xt
µ′F t|Xt

)
,

Finally, we insert the solution for [Â1 · · · Âp] in the first matrix of the third row such that the expressions

in the first and third row of the above representation cancel each other out and we get the stated version

of the covariance matrix Σ̂δ .

So far, the estimates Θ̂ mark a saddle point of the expected log-likelihood function EΘ̂(l)
[L (Θ|X,F ) |X],

but the Gaussian framework causes that we have a maximum instead of a minimum or saddle point. 2
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If the conditional distributions in Theorem 4.1.4 and the cross-sectional error correlation enter the updates

in Bańbura and Modugno (2014), we receive the formulas in Lemma 4.1.7 and thus, show the consistency

of both results. Next, we define a general expression for the autocovariance matrix of the underlying panel

data to shorten the updates in Lemma 4.1.7 and to support their implementation.

Definition 4.1.8 (Empirical Autocovariance Matrix of Panel Data)

For the ADFMs in Definition 2.1.4, let X ∈ RT×N be the complete panel data sample in Definition 2.1.1.

Moreover, for any integers 1 ≤ b1 < u1 ≤ T and 1 ≤ b2 < u2 ≤ T with u1− b1 = u2− b2, let the matrices

[Xb1 , . . . ,Xu1 ]
′

and [Xb2 , . . . ,Xu2 ]
′

be subsamples of X. Then, their empirical autocovariance matrix is

defined as follows:{
u1

b1
Su2

b2

}
=

1

u1 − b1
[Xb1 − µ, . . . ,Xu1

− µ] [Xb2 − µ, . . . ,Xu2
− µ]

′
.

In empirical studies, we estimate the mean µ in Definition 4.1.8 by the empirical mean µ̂X in Definition

2.1.2. The updates in Lemma 4.1.7 do not rely on the factors F t, but they are functions of the parameters

in Theorem 4.1.4. If we insert them, we can simplify the expressions in Lemma 4.1.7 as follows.

Theorem 4.1.9 (EM for Complete ADFMs)

For the ADFMs in Definition 2.1.4, let (l) be the current loop of the EM resulting in factor means µF t|Xt

and covariance matrices ΣF t|Xt
based on the estimated parameters Θ(l). For clarity reasons, we write

Θ(l) instead of Θ̂(l). Then, we obtain the parameters of the next loop (l + 1) in the following way:

W(l+1) =
{
T
1S

T
1

}
Σ−1
ε(l)W(l)

(
IK +D(l)

{
T
1S

T
1

}
Σ−1
ε(l)W(l)

)−1

,

Σε(l+1) =
(
IN −W(l+1)D(l)

) {
T
1S

T
1

}
,[

A1(l+1)
, . . . , Ap(l+1)

]
=
(
1
′
p ⊗D(l)

)
S̃′
(
Ip ⊗D′(l)

)
·
((
Ip ⊗M−1

(l)

)
+
(
Ip ⊗D(l)

)
Ŝ′
(
Ip ⊗D′(l)

))−1

,

Σδ(l+1)
= M−1

(l) +D(l)

{
T
p+1S

T
p+1

}
D′(l)

−
[
A1(l+1)

, . . . , Ap(l+1)

] (
Ip ⊗D(l)

)
S̃
(
1p ⊗D′(l)

)
,

where the matrices S̃ ∈ RpN×pN , Ŝ ∈ RpN×pN and D(l) ∈ RK×N are given by:

S̃ =


{T−1
p ST

p+1}
ON

...
ON

{T−p
1 ST

p+1}

 ,

Ŝ =


{T−1
p ST−1

p } ··· {T−1
p ST−p

1 }
...

...
...

{T−p
1 ST−1

p } ... {T−p
1 ST−p

1 }

 ,

D(l) = M−1
(l) W

′
(l)Σ

−1
ε(l).

Proof:

Lemma 4.1.7 provides for the updated matrix W(l+1):

W(l+1) =

(
T∑
t=1

(Xt − µ)µ′F t|Xt

)(
T∑
t=1

(
ΣF t|Xt

+ µF t|Xt
µ′F t|Xt

))−1
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=

(
T∑
t=1

(Xt − µ) (Xt − µ)
′
Σ−1
ε(l)W(l)M

−1
(l)

)

·

(
T∑
t=1

(
M−1

(l) +M−1
(l) W

′
(l)Σ

−1
ε(l) (Xt − µ) (Xt − µ)

′
Σ−1
ε(l)W(l)M

−1
(l)

))−1

= T
{
T
1S

T
1

}
Σ−1
ε(l)W(l)M

−1
(l)

(
T M−1

(l) +M−1
(l) W

′
(l)Σ

−1
ε(l)T

{
T
1S

T
1

}
Σ−1
ε(l)W(l)M

−1
(l)

)−1

=
{
T
1S

T
1

}
Σ−1
ε(l)W(l)

(
IK +M−1

(l) W
′
(l)Σ

−1
ε(l)

{
T
1S

T
1

}
Σ−1
ε(l)W(l)

)−1

.

Replacing the term M−1
(l) W

′
(l)Σ

−1
ε(l) by the matrix D(l) proves the claim.

Similarly, we obtain for the matrix Σε(l+1), when starting with Lemma 4.1.7:

Σε(l+1) =
1

T

(
T∑
t=1

(Xt − µ) (Xt − µ)
′ −W(l+1)

(
T∑
t=1

µF t|Xt
(Xt − µ)

′

))

=
{
T
1S

T
1

}
− 1

T
W(l+1)

T∑
t=1

(
M−1

(l) W
′
(l)Σ

−1
ε(l) (Xt − µ) (Xt − µ)

′
)

=
(
IN −W(l+1)M

−1
(l) W

′
(l)Σ

−1
ε(l)

){
T
1S

T
1

}
.

Again, the term M−1
(l) W

′
(l)Σ

−1
ε(l) is substituted by the matrix D(l), which results in the final expression.

Before we consider the matrices Ai(l+1)
, 1 ≤ i ≤ p, we simplify the matrix Σ̃p,T :

1

T − p
Σ̃p,T =

1

T − p

T∑
t=p+1


ΣF t−1|Xt−1

OK · · · OK

OK ΣF t−2|Xt−2

...
...

. . . OK

OK · · · OK ΣF t−p|Xt−p



+
1

T − p

T∑
t=p+1


µF t−1|Xt−1

µ′F t−1|Xt−1
· · · µF t−1|Xt−1

µ′F t−p|Xt−p

...
. . .

...

µF t−p|Xt−p
µ′F t−1|Xt−1

· · · µF t−p|Xt−p
µ′F t−p|Xt−p


=
(
Ip ⊗M−1

(l)

)
+

M
−1
(l)
W ′(l)Σ

−1

ε(l)
{T−1
p ST−1

p }Σ−1

ε(l)
W(l)M

−1
(l)
··· M−1

(l)
W ′(l)Σ

−1

ε(l)
{T−1
p ST−p

1 }Σ−1

ε(l)
W(l)M

−1
(l)

...
. . .

...
M−1

(l)
W ′(l)Σ

−1

ε(l)
{T−p

1 ST−1
p }Σ−1

ε(l)
W(l)M

−1
(l)
··· M−1

(l)
W ′(l)Σ

−1

ε(l)
{T−p

1 ST−p
1 }Σ−1

ε(l)
W(l)M

−1
(l)


=
(
Ip ⊗M−1

(l)

)
+
(
Ip ⊗

(
M−1

(l) W
′
(l)Σ

−1
ε(l)

))
Ŝ
(
Ip ⊗

(
Σ−1
ε(l)W(l)M

−1
(l)

))
=
(
Ip ⊗M−1

(l)

)
+
(
Ip ⊗D(l)

)
Ŝ
(
Ip ⊗D′(l)

)
.

Next, we have for matrices Ai(l+1)
with 1 ≤ i ≤ p:

[
A1(l+1)

· · · Ap(l+1)

]
=

(
T∑

t=p+1

[
µF t|Xt

µ′
F t−1|Xt−1

··· µF t|Xt
µ′
F t−p|Xt−p

])
Σ̃−1
p,T

= (T − p)
[
D(l)

{
T
p+1S

T−1
p

}
D′(l) · · ·D(l)

{
T
p+1S

T−p
1

}
D′(l)

]
Σ̃−1
p,T

=
(
1
′
p ⊗D(l)

)
S̃′
(
Ip ⊗D′(l)

)( 1

T − p
Σ̃p,T

)−1

=
(
1
′
p ⊗D(l)

)
S̃′
(
Ip ⊗D′(l)

)
·
((
Ip ⊗M−1

(l)

)
+
(
Ip ⊗D(l)

)
Ŝ
(
Ip ⊗D′(l)

))−1

.
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Finally, Lemma 4.1.7 provides for matrix Σδ(l+1)
:

Σδ(l+1)
= − 1

T − p

[
A1(l+1)

· · · Ap(l+1)

] T∑
t=p+1


µF t−1|Xt−1

µ′
F t|Xt

...
µF t−p|Xt−p

µ′
F t|Xt




+
1

T − p

T∑
t=p+1

(
ΣF t|Xt

+ µF t|Xt
µ′F t|Xt

)
= −

[
A1(l+1)

· · ·Ap(l+1)

] ((
1
′
p ⊗D(l)

)
S̃′
(
Ip ⊗D′(l)

))′
+M−1 +D(l)

{
T
p+1S

T
p+1

}
D′(l).

If we apply the matrix transpose to the inside of the brackets in the first row, the final version of matrix

Σδ(l+1)
appears. 2

As for iid factors, we must specify, when the updates in Theorem 4.1.9 stop. In (3.11), the absolute value

of the relative change in the log-likelihood function was our termination criterion. Now, the hidden factors

stay in the log-likelihood function in Lemma 4.1.5. This is why we modify (3.11) as follows:

abs
(
EΘ̂(l+1)

[
L
(

Θ̂(l+1)|X,F
)
|X
]
− EΘ̂(l)

[
L
(

Θ̂(l)|X,F
)
|X
])

EΘ̂(l)

[
L
(

Θ̂(l)|X,F
)
|X
] < η, (4.14)

with η > 0 as prespecified threshold. Doz et al. (2012) and Bańbura and Modugno (2014) only proceed, if

the expected log-likelihood function improves and so, set η = 10−4. We are less strict and use η = 10−2,

since we consider the absolute value of the change instead of the change itself.

Although we do not show it here, the EM in Theorem 4.1.9 can be adjusted such that the linear restrictions

in Bork (2009) and Bork et al. (2010) are included. For this purpose, we have to replace the update formula

of W(l+1) as in Bańbura and Modugno (2014) and reapply our subsequent steps.

The ADFM formulation in Definition 2.1.4, in particular, its estimation requires knowledge of the factor

dimension and lag order. In empirical studies, both are a priori unknown and hence, must be determined.

As a solution, we propose a two-step selection method. Bai and Ng (2002) investigated in detail how to

choose the factor dimension for SFMs. As they considered diverse information and panel criteria, they

offered a range of tools, which are common in empirical analyses, even though they may behave differently

regarding small samples (Breitung and Eickmeier, 2006; Reis and Watson, 2007; Bai and Ng, 2008b; Bork,

2009; Stock and Watson, 2011). Thereafter, Amengual and Watson (2007) extended the approach of Bai

and Ng (2002) to DFMs. Here, we adjust a panel criterion of Bai and Ng (2002) as follows:

Lemma 4.1.10 (Selection of Factor Dimension in SFMs)

For SFMs in Definition 2.1.3, the matrix X ∈ RT×N collects the complete panel data in Definition 2.1.1.

Let assumptions A-D in Bai and Ng (2002, p. 196) be satisfied. As the true factor dimension is unknown,

let 1 ≤ K̄ ≤ N be an upper limit to be tested. Then, we select the following K∗:

K∗ = arg min
1≤K≤K̄

{
V (K) +Kσ̂2

(
N + T

NT

)
ln [min (N,T )]

}
. (4.15)

For multiplier m ≥ 0 and for all 1 ≤ K ≤ K̄, we have:

V (K) =
1

NT

T∑
t=1

(
Xt − ŴµF t|Xt

− µ̂X
)′ (

Xt − ŴµF t|Xt
− µ̂X

)
. (4.16)
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σ̂2 = m (VPPCA (1)− VPPCA (N − 1)) , (4.17)

with VPPCA (K) as the empirical variance of all residuals for a K-dimensional ESFM in Theorem 3.1.3,

that means:

VPPCA (K) =
1

NT

T∑
t=1

(
Xt − Ŵ µF t|Xt

− µ̂X
)′ (

Xt − Ŵ µF t|Xt
− µ̂X

)
.

Then, K∗ consistently estimates the true factor dimension K.

Proof:

Bai and Ng (2002, p. 199, Theorem 2) showed that panel criteria defined by PC(K) = V (K)+Kg (N,T )

consistently estimate the true factor dimension, if assumptions A-D are satisfied, PCA is used for factor

estimation and the penalty function obeys for N,T →∞:

g (N,T )→ 0 and min (N,T ) g (N,T )→∞.

Here, we have for the penalty function: g (N,T ) = σ̂2
(
N+T
NT

)
ln [min (N,T )]. Thus, the criterion for K∗

in (4.15) coincides with the second panel criterion in Bai and Ng (2002, p. 201) except for σ̂2. Neither

our version of σ̂2 nor the original proposal in Bai and Ng (2002), i.e., σ̂2 = V
(
K̄
)
, affects the asymptotic

behavior of the function g (N,T ) such that K∗ in (4.15) consistently estimates the true dimension. 2

Before we select the lag order p, we explain the ideas behind the above adjustments. For factor dimension

K, the term V (K) in (4.16) denotes the empirical variance of all residuals in Definition 2.1.3. Regarding

empirical studies, Bai and Ng (2002) suggested σ̂2 = V
(
K̄
)

as proper scaling of the penalty in (4.15) with

V
(
K̄
)

as minimum of (4.16) for fixed K̄ with respect to Ŵ , {µF t|Xt
}1≤t≤T and µ̂X . So, their penalty

depends on the variance that remains, although the upper limit of the factor dimension was reached. If

we use K̄ = N , the setting Ŵ = IN ,µF t|Xt
= Xt− µ̂X for all 1 ≤ t ≤ T provides a trivial solution for

SFMs in Definition 2.1.3. Furthermore, it yields σ̂2 = 0 and thus, overrides the penalty. For any K̄ < N

the choice of K̄ affects σ̂2 and hence, the penalty in (4.15). To avoid any undesirable degree of freedom

arising from the choice of K̄ we therefore propose the version in (4.17).

Irrespective of whether PCA or PPCA is deployed, the error variance decreases, when the factor dimension

increases. Thus, VPPCA(1)− VPPCA(N − 1) ≥ 0 holds. The nonnegativity of m causes that σ̂2 in (4.17)

and the penalty in (4.15) are nonnegative. This guarantees that large K are punished. Unlike σ̂2 = V
(
K̄
)
,

the strictness of σ̂2 depends on m instead of K̄. Hence, the strictness of the penalty and the upper limit

of the factor dimension are clearly separated from each other. The panel criteria of Bai and Ng (2002)

are asymptotically equivalent as N,T → ∞, but may differently behave for finite samples (Bai and Ng,

2002; Reis and Watson, 2007). For a better understanding of how m influences the penalty function, we

exemplarily consider various multipliers m ∈ [1/66, 1] in Section 4.4.

Finally, we answer why (VPPCA (1)− VPPCA (N − 1)) instead of VPPCA (1) is used. For m = 1/ (N − 2)

the term σ̂2 in (4.17) coincides with the negative slope of the straight line through the points (1, VPPCA(1))

and (N − 1, VPPCA(N − 1)). That is, we linearize the decay in VPPCA(K) over the interval [1, N − 1]

and then, take its absolute value for penalty adjustment. In other words, for m = 1/ (N − 2) the term σ̂2

in (4.17) describes the absolute value of the decay in VPPCA(K) per unit in dimension. In the empirical

study of Section 4.5, we also use m = 1/31 = 1/(N−2), since this provides a decent dimension reduction,

but it is not such restrictive that changes in the economy are ignored. Regarding the DFMs in Definition



70 CHAPTER 4. ESTIMATION OF APPROXIMATE DYNAMIC FACTOR MODELS

2.1.4, we neglect the factor dynamics and restrict ourselves to the measurement equation in (2.4). In this

way, DFMs are treated as SFMs.

Next, we focus on the choice of the autoregressive order. As before, the true parameter p ≥ 0 is unknown.

In contrast to the factor dimension, we must address the VAR structure to define an optimal lag order

p∗(K) ≥ 0 from a fixed set of candidates 0 ≤ p (K) ≤ p̄ (K). Since the factors are unobserved, we adapt

the usual AIC, when we replace the log-likelihood function by its expectation EΘ̂(l)
[LF

(
Θ̂(l)|F

)
|X].

Lemma 4.1.11 (Choice of Autoregressive Order)

For the ADFMs in Definition 2.1.4 with X ∈ RT×N as in Definition 2.1.1, let 1 ≤ K ≤ N be any fixed

(estimated) factor dimension. Moreover, let 0 ≤ p̄ (K) < T be an upper limit of the lag order to be tested.

Then, based on the adjusted AIC we choose the following autoregressive order p∗ (K):

p∗ (K) = arg min
0≤p≤p̄(K)

{
tr

(
Σ−1

˜F
(Ip ⊗D)

(
X̃p −

(
1p ⊗ µ̂X

))(
X̃p −

(
1p ⊗ µ̂X

))′
(Ip ⊗D′)

)
+tr

(
Σ−1

˜F

(
Ip ⊗M−1

))
+ 2pK2 +K (K + 1) + TK ln (2π)

+ (T − p) ln
(∣∣∣Σδ ∣∣∣)+ ln

(∣∣∣Σ ˜F

∣∣∣)+ (T − p)K
}
.

The vector X̃p = [X ′p, . . . ,X
′
1]′ ∈ RpN comprises the first p rows of X. The matrices M , D and Σ ˜F

result from Theorems 4.1.4 and 4.1.9 and Lemma A.2.6, after the EM in Theorem 4.1.9 stopped. Note,

for clarity reasons, we skipped the loop index (l) in the above formulation. The estimated mean µ̂X is

given in Definition 2.1.2. For the static case p = 0, the argument of arg min {·} is equal to:

K (K + 1) + TK ln (2π) + T ln
(∣∣∣Σδ ∣∣∣)+ TK.

Proof:

If the factors F t ∈ RK are observable, Akaike (1987, p. 323) yields for the AIC of the VAR in (2.5):

p∗ = arg min
0≤p≤p̄

{
2

(
pK2 +

K (K + 1)

2
− LF

(
Θ̂(l)|F

))}
, (4.18)

where LF
(

Θ̂(l)|F
)

is the maximized log-likelihood function of the estimated factor VAR(p) given by:

LF
(

Θ̂(l)|F
)

= ln
(
fΘ̂(l)

(F T , . . . ,F 1)
)

= ln
(
fΘ̂(l)

(F T |F T−1, . . . ,F 1) fΘ̂(l)
(F T−1, . . . ,F 1)

)
= ln

(
fΘ̂(l)

(F T |F T−1, . . . ,F T−p) fΘ̂(l)
(F T−1, . . . ,F 1)

)
= ln

((
T∏

t=p+1

fΘ̂(l)
(F t|F t−1, . . . ,F t−p)

)
fΘ̂(l)

(F p, . . . ,F 1)

)

=

T∑
t=p+1

ln
(
fΘ̂(l)

(F t|F t−1, . . . ,F t−p)
)

+ ln
(
fΘ̂(l)

(F p, . . . ,F 1)
)

=

T∑
t=p+1

ln
(
fΘ̂(l)

(F t|F t−1, . . . ,F t−p)
)

+ ln
(
fΘ̂(l)

(
F̃ p

))
,

with fΘ̂(l)
(F t|F t−1, . . . ,F t−p) defined in (4.2). For F̃ p = [F ′p, . . . ,F

′
1]′ ∈ RpK , we convert the VAR(p) in

a VAR(1) as in Lemma A.2.2 such that we obtain fΘ̂(l)

(
F̃ p

)
as in Lemma A.2.6. For both distributions,

we substitute the model parameters by Θ̂(l). In the subsequent derivation, we omit the loop index (l) and

the hat symbol of W,Σε , Ai, 1 ≤ i ≤ p, and Σδ for better readability and proceed as follows:



4.1. MATHEMATICAL BACKGROUND 71

LF
(

Θ̂(l)|F
)

=

T∑
t=p+1

ln

(2π)
−K/2 |Σδ |

−1/2exp

− (F t −
∑p
i=1 (AiF t−i))

′
Σ−1

δ
(F t −

∑p
i=1 (AiF t−i))

2


+ ln

(2π)
−pK/2

∣∣∣Σ ˜F

∣∣∣−1/2

exp

−F̃ ′pΣ−1
˜F
F̃ p

2


= −1

2

(
TK ln (2π) + (T − p) ln

(∣∣∣Σδ ∣∣∣)+ ln
(∣∣∣Σ ˜F

∣∣∣)+ F̃
′
pΣ
−1
˜F
F̃ p

)
− 1

2
tr

(
Σ−1

δ

T∑
t=p+1

(
F t −

p∑
i=1

(AiF t−i)

)(
F t −

p∑
i=1

(AiF t−i)

)′)
. (4.19)

Unfortunately, the factors are hidden. To estimate them, we take the expectation of (4.18) given the panel

data X and latest parameter estimates Θ̂(l). Thus, we integrate them out of the log-likelihood function

and it follows for our modified AIC:

p∗ = arg min
0≤p≤p̄

{
2

(
pK2 +

K (K + 1)

2
− EΘ̂(l)

[
LF
(

Θ̂(l)|F
)
|X
])}

. (4.20)

In case of (4.19), the expectation and the matrix trace properties in Lemma A.1.2 yield:

EΘ̂(l)

[
LF
(

Θ̂(l)|F
)
|X
]

= −1

2

(
TK ln (2π) + (T − p) ln

(∣∣∣Σδ ∣∣∣)+ ln
(∣∣∣Σ ˜F

∣∣∣)+ EΘ̂(l)

[
F̃
′
pΣ
−1
˜F
F̃ p|X

])
− 1

2
tr

(
Σ−1

δ

T∑
t=p+1

EΘ̂(l)

[(
F t −

p∑
i=1

(AiF t−i)

)(
F t −

p∑
i=1

(AiF t−i)

)′∣∣∣∣∣X
])

= −1

2

(
TK ln (2π) + (T − p) ln

(∣∣∣Σδ ∣∣∣)+ ln
(∣∣∣Σ ˜F

∣∣∣)+ tr
(

Σ−1
˜F
EΘ̂(l)

[
F̃ pF̃

′
p|X

]))
− 1

2
tr

(
Σ−1

δ

T∑
t=p+1

EΘ̂(l)

[(
F t −

p∑
i=1

(AiF t−i)

)(
F t −

p∑
i=1

(AiF t−i)

)′
|X

])
.

First, note that the solution of Σ̂δ in Lemma 4.1.7 is equal to the following representation:

Σ̂δ =
1

T − p

T∑
t=p+1

EΘ̂(l)

[(
F t −

p∑
i=1

(AiF t−i)

)(
F t −

p∑
i=1

(AiF t−i)

)′
|X

]
.

In addition, the independence of the factors conditioned on X (see Theorem 4.1.4) provides:

EΘ̂(l)

[
F̃ pF̃

′
p|X

]
= VarΘ̂(l)

[
F̃ p|X

]
+ EΘ̂(l)

[
F̃ p|X

]
EΘ̂(l)

[
F̃
′
p|X

]

=


ΣF p|Xp

OK
. . .

OK ΣF 1|X1

+


µF p|Xp

...

µF 1|X1

[µF p|Xp
· · · µF 1|X1

]

=
(
Ip ⊗M−1

)
+


D (Xp − µ)

...

D (X1 − µ)

[(Xp − µ)
′
D′ · · · (X1 − µ)

′
D′
]

=
(
Ip ⊗M−1

)
+ (Ip ⊗D)

(
X̃p − (1p ⊗ µ)

)(
X̃p − (1p ⊗ µ)

)′
(Ip ⊗D′) ,
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with matrices M = M(l) and D = D(l) as in Theorems 4.1.4 and 4.1.9. The loop index (l) is skipped once

again. By inserting both results and substituting µ by µ̂X , we obtain:

EΘ̂(l)

[
LF
(

Θ̂(l)|F
)
|X
]

= −1

2

(
TK ln (2π) + (T − p) ln

(∣∣∣Σδ ∣∣∣)+ ln
(∣∣∣Σ ˜F

∣∣∣)+ (T − p)K
)

− 1

2
tr

(
Σ−1

˜F

((
Ip ⊗M−1

)
+ (Ip ⊗D)

(
X̃p −

(
1p ⊗ µ̂X

))(
X̃p −

(
1p ⊗ µ̂X

))′
(Ip ⊗D′)

))
.

Finally, we insert the above expression for EΘ̂(l)

[
LF
(

Θ̂(l)|F
)
|X
]

in (4.20) and the claimed solution for

p > 0 follows. In the static case, i.e., p = 0, we have F t ∼ N
(
0K ,Σδ

)
iid and get:

EΘ̂(l)

[
LF
(

Θ̂(l)|F
)
|X
]

=

T∑
t=1

EΘ̂(l)

[
ln
(
fΘ̂(l)

(F t)
)
|X
]

=

T∑
t=1

EΘ̂(l)

[
ln

(
(2π)

−K/2 |Σδ |
−1/2exp

(
−1

2
F ′tΣ

−1

δ
F t

))
|X
]

= −T
2

(
K ln (2π) + ln

(∣∣∣Σδ ∣∣∣))− 1

2
tr

(
Σ−1

δ

T∑
t=1

EΘ̂(l)

[
F tF

′
t|X
])

= −T
2

(
K ln (2π) + ln

(∣∣∣Σδ ∣∣∣)+K
)
. (4.21)

In the static case K(K + 1)/2 parameters are estimated such that it holds for the argument of (4.20):

K (K + 1) + TK ln (2π) + T ln
(∣∣∣Σδ ∣∣∣)+ TK,

which proves the assertion for p = 0. 2

The matrix M in Theorem 4.1.4 requires the matrix ΣF . If the MA(∞) representation of ΣF in Lemma

4.1.2 is used, we truncate the infinite series as soon as the contribution of the matrix, which was recently

added, falls below the relative threshold ηF . Similarly, the criterion η ˜F
cuts the MA(∞) series of Σ ˜F

in

(A.4). Alternatively, the explicit solution in Lemma A.2.7 can be deployed.

As in Chapter 3, we summarize all steps in an algorithm and comment its properties. Thereby, Theorem

4.1.9, Lemmata 4.1.10 and 4.1.11 merge in Algorithm 4.1.1 estimating DFMs with complete panel data.

Although we separate the choice of the factor dimension from the lag length, which simplifies the overall

optimization, we might get stuck in a local maximum as any other EM. Let R ∈ RK×K be an invertible

matrix. Then, the sets {WR−1,Σε , RA1R
−1, . . . , RApR

−1, RΣδR
′} and {W,Σε , A1, . . . , Ap,Σδ} define

the same DFM in Definition 2.1.4. Thus, the output of Algorithm 4.1.1 is unique except for any invertible,

linear transformation (Bańbura and Modugno, 2014, working paper). To prevent the runtime of Algorithm

4.1.1 from this parameter ambiguity the criterion in (4.14) controls, when the updates stop. As a solution

of the left identification problem, the linear loadings contraints in Bork (2009) and Bork et al. (2010) may

serve. However, Dempster et al. (1977) showed that EMs tend toward a particular parameter set and so,

we are not ongoingly jumping between possbile results. This argument is repeated in the working paper

version of Bańbura and Modugno (2014). For our purposes, i.e., the construction of prediction intervals

for returns of future periods of time, the ambiguity of the factors up to a linear transformation R is

not essential and will be addressed in Remark 4.2.3. For parameter initialization, Doz et al. (2012) and

Bańbura et al. (2014) pursue a two-step approach: At first, they apply PCA for estimating the factors,

loadings matrix and error covariance matrix Σε . Thereafter, an OLS provides the VAR(p) parameters.

By contrast, we use the PPCA of Tipping and Bishop (1999), which is a special case of the DFMs in

Definition 2.1.4, such that our initial values for Ai, i = 1, . . . , p are zero matrices.
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Algorithm 4.1.1: Estimate ADFMs based on complete panel data

Set relative termination criteria η > 0, ηF > 0 and η ˜F
> 0;

Define upper limit of factor dimension K̄ and lag length p̄;

for K = 1 to K̄ do

for p = 0 to p̄ do

Initialize model parameters using PPCA in (3.4)-(3.5);

Run EM in Theorem 4.1.9, store (K, p) and estimated parameters Θ̂;

end

Determine p∗ (K) using Lemma 4.1.11, store (K, p∗ (K)) and estimated parameters Θ̂;

end

Determine K∗ based on Lemma 4.1.10 and pairs (K, p∗ (K));

4.1.2 Model Estimation Based on Incomplete Panel Data

In this section, we extend the DFMs in Definition 2.1.4 to admit missing observations and mixed-frequency

panel data. In doing so, we combine Definitions 2.1.4 and 2.2.1 in the following manner.

Definition 4.1.12 (Extended Dynamic Factor Model)

For 1 ≤ i ≤ N with 1 ≤ T (i) ≤ T , let the vectors Xi
obs ∈ RT (i) and Xi ∈ RT and the matrix Qi ∈ RT (i)×T

be given as in Definition 2.2.1. Furthermore, the index 1 ≤ t ≤ T maps each point in time, when new

data arrives. Then, we have for the extension of the DFMs in Definition 2.1.4:

Xi
obs = QiX

i, ∀ 1 ≤ i ≤ N, (4.22)

Xt = WF t + µ + εt, εt ∼ N (0N ,Σε) iid, ∀ 1 ≤ t ≤ T, (4.23)

F t =

p∑
j=1

AjF t−j + δt, δt ∼ N
(
0K ,Σδ

)
iid, ∀ 1 ≤ t ≤ T, (4.24)

with constant parameters µ ∈ RN ,W ∈ RN×K ,Σε ∈ RN×N , Aj ∈ RK×K , 1 ≤ j ≤ p, and Σδ ∈ RK×K .

The errors in (4.23)-(4.24) are supposed to be independent, that is, εt ⊥ δs ∀ t, s. As before, we assume

the processes {Xt} and {F t} to be covariance-stationary. In addition, the factor process {F t} is supposed

to be zero-mean and autoregressive. If the matrix Σε is diagonal, (4.22)-(4.24) describes an EDFM with

incomplete panel data. Otherwise, it belongs to the ADFMs with incomplete panel data.

Assume complete, artificial panel data X ∈ RT×N as in Definition 2.2.1. Then, Equation (4.22) considers

the columns of X separately such that data incompleteness can be taken into account, while (4.23)-(4.24)

focus on the rows of X. That is, they reveal how all artificial signals Xt evolve over time. Thereby, cross-

sectional correlations among the signals are covered. Similar to Lemma 3.1.7, for any signal 1 ≤ i ≤ N

and loop (l) ≥ 0 we receive the following updates for the artificial panel data:

Xi
(l+1) = EΘ(l)

[
Xi|F(l),X

i
obs

]
=
(
F(l)W

′
i(l) + µi(l)1T

)
+Q′i (QiQ

′
i)
−1
[
Xi

obs −Qi
(
F(l)W

′
i(l) + µi(l)1T

)]
. (4.25)

With this in mind, we adapt Algorithm 4.1.1 as shown in Algorithm 4.1.2. At first, complete panel data

is initialized, if necessary, gaps are filled as explained earlier. Here, the univariate time series Xi
(0) are
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not needed to satisfy (4.22), since (4.25) ensures this until Algorithm 4.1.2 converges. As before, relative

termination criteria diminish potential impact of the dimensions of the parameter space and data sample

on the runtime of the algorithm. Furthermore, relative changes in EΘ̂(l)

[
L
(

Θ̂(l)|X,F
)
|X
]

control, when

Algorithm 4.1.2 stops such that neither changes in (K∗, p∗) nor the ambiguity of the parameters affect

its convergence. After the initialization phase, Algorithm 4.1.2 alternately updates the complete panel

data and reestimates the model parameters Θ̂(l) until a (local) maximum of the expected log-likelihood

function EΘ̂(l)

[
L
(

Θ̂(l)|X,F
)
|X
]

is reached. Besides the advantages of Algorithm 3.1.2, Algorithm 4.1.2

allows for autoregressive orders p > 0 and hence, is not restricted to SFMs.

Algorithm 4.1.2: Estimate ADFMs based on incomplete panel data

### Initialization

Choose termination criterion ξ > 0;

Set loop index (l) = 0;

for i = 1 to N do

Initialize Xi
(l) (if necessary, fill gaps);

Specify matrix Qi;

end

Estimate ADFM with X(l) using Algorithm 4.1.1 and store parameters Θ̂(l);

Determine expected log-likelihood EΘ̂(l)

[
L
(

Θ̂(l)|X(l), F
)
|X(l)

]
in (4.12);

for i = 1 to N do

Derive updated panel data Xi
(l+1) from (4.25) and model parameters Θ̂(l);

end

Estimate ADFM with X(l+1) using Algorithm 4.1.1 and store parameters Θ̂(l+1);

Determine expected log-likelihood EΘ̂(l+1)

[
L
(

Θ̂(l+1)|X(l+1), F
)
|X(l+1)

]
in (4.12);

### Alternating reconstruction and reestimation

while
abs

(
EΘ̂(l+1)

[L(Θ̂(l+1)|X(l+1),F)|X(l+1)]−EΘ̂(l)
[L(Θ̂(l)|X(l),F)|X(l)]

)
abs

(
EΘ̂(l)

[L(Θ̂(l)|X(l),F)|X(l)]
) > ξ do

Set loop index (l) = (l + 1);

for i = 1 to N do

Derive updated panel data Xi
(l+1) from (4.25) and model parameters Θ̂(l);

end

Estimate ADFM with X(l+1) using Algorithm 4.1.1 and store parameters Θ̂(l+1);

Determine expected log-likelihood EΘ̂(l+1)

[
L
(

Θ̂(l+1)|X(l+1), F
)
|X(l+1)

]
in (4.12);

end

4.2 Modeling Index Returns

The preceding sections showed how to extract information from large panel data through a few factors with

known distributions. In Section 3.1.3, the estimated factor distributions supported portfolio optimizations

in a mean-variance and marginal-risk-parity framework, respectively. Now, we restrict ourselves to a single
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financial market and explain how these may improve asset allocation decisions and risk management. In

doing so, we focus on the timely monitoring of financial market indices.

Like Bai and Ng (2006) and Luciani and Ricci (2014), we consider interval estimation. Here, we empirically

construct prediction intervals, since the asymptotic ones in Bai and Ng (2006) rely on complete panel data.

From our point of view, uncertainties arising from the estimation of the factors and model parameters

shall affect the interval width. Therefore, we derive prediction intervals instead of confidence intervals as

in Luciani and Ricci (2014). Additionally, we disclose the drivers of forecasted point estimates to open

the door for further plausibility assessments. As any problems resulting from incomplete data were solved

before, we assume that the updating frequencies of the factors and returns coincide. With this in mind,

we introduce a univariate return process {rt} as follows:

Definition 4.2.1 (Returns of Financial Market Index)

Let {F t} be the K-dimensional factor process in Definitions 2.1.3 and 2.1.4, respectively, and let p ≥ 0

be its autoregressive order. The return process {rt} is supposed to be covariance-stationary and to satisfy

a univariate ARX with the latent factors as exogenous variables. Let 0 ≤ q̃ and 0 ≤ p̃ ≤ max (1, p) be the

lags of the returns and factors, respectively. Then, all assumptions result in the subsequent linear model:

rt = α+

q̃∑
i=1

(βirt−i) +

p̃∑
i=1

(γ′iF t−i) + εt, εt ∼ N
(
0, σ2

ε

)
iid,

where α, βi, 1 ≤ i ≤ q̃, σ2
ε ∈ R with σ2

ε ≥ 0 and γi ∈ RK , 1 ≤ i ≤ p̃, are constants. In addition, we assume

that the factors and errors are independent, i.e., F t ⊥ εs for all s, t and that neither the return process

{rt} nor any of its transformations enters the panel data of the factors.

For p̃ = 0, the returns in Definition 4.2.1 obey an Autoregressive Model (AR) of order q̃. In case of DFMs,

the VAR(p) in (2.5) requires the contraint 0 ≤ p̃ ≤ p, otherwise, the ARX parameters in Definition 4.2.1

are not identifiable. For SFMs, p = 0 holds, but this may not mean that static factors cannot have any

impact on the returns. So, we adapt the original restriction towards 0 ≤ p̃ ≤ max (1, p). Although p̃ > 1

would be possible for static factors, we restrict ourselves to p̃ = 1 for simplicity reasons. The exclusion of

the returns as well as any transformation of {rt} from the panel data X is another important assumption

ensuring the uniqueness of the ARX parameters. For instance, consider the case, when {rt} is a column

of X such that it coincides with the first factor and p̃ = q̃ holds.

Similar to (3.13), the vector θ =
[
α, β1, . . . , βq̃,γ

′
1, . . . ,γ

′
p̃

]′ ∈ R1+q̃+p̃K collects the parameters of the

ARX(q̃, p̃) in Definition 4.2.1. If r = [r1, . . . , rT ]′ ∈ RT and F = [F 1, . . . ,F T ]′ ∈ RT×K are return and

factor samples of the same length and time horizon, for m̃ = max {q̃, p̃} the model in Definition 4.2.1 can

be rewritten in matrix form as follows:
rm̃+1

...

rT


︸ ︷︷ ︸
rm̃+1

T

=


1 rm̃ · · · rm̃−q̃+1 F ′m̃ · · · F ′m̃−p̃+1

...
...

...
...

...

1 rT−1 · · · rT−q̃ F ′T−1 · · · F ′T−p̃


︸ ︷︷ ︸

G

θ +


εm̃+1

...

εT


︸ ︷︷ ︸
εm̃+1

T

, (4.26)

with rm̃+1
T ∈ RT−m̃, G ∈ R(T−m̃)×(1+q̃+p̃K) and εm̃+1

T ∈ RT−m̃.

Lemma 4.2.2 (Estimation of ARX for Returns)

Assume the matrix form (4.26) of the return ARX in Definition 4.2.1. Then, the OLS estimate θ̂ of θ is
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given by θ̂ = (G′G)
−1
G′rm̃+1

T , which is asymptotically normal with mean θ and covariance matrix Σθ.

The parameters of the asymptotic distribution N (θ,Σθ) are consistently estimated by:

θ̂ = (G′G)
−1
G′rm̃+1

T (4.27)

and Σ̂θ = σ̂2
ε (G′G)

−1
, (4.28)

where σ̂2
ε =

1

T − m̃

(
rm̃+1
T −G (G′G)

−1
G′rm̃+1

T

)′ (
rm̃+1
T −G (G′G)

−1
G′rm̃+1

T

)
. (4.29)

Proof:

Hamilton (1994, pp. 215-216, Case 4) shows this statement for autoregressions of order q̃. Using similar

steps and the properties of the factor process {F t}, the proof for the ARX in Definition 4.2.1 follows. 2

Besides uncertainties arising from the estimation of the factors, uncertainties caused by the estimation of

the ARX parameters θ shall drive the width of the prediction intervals. For this purpose, the asymptotic

distribution in Lemma 4.2.2 is essential, since our algorithm for the construction of the prediction intervals

randomly draws unknown parameter vectors θ̂
c

from it.

Remark 4.2.3 (Impact of Factor Ambiguity on Return ARX)

As mentioned in the scope of Algorithm 4.1.1, factors are unique except for an invertible, linear trans-

formation. For a non-singular matrix R ∈ RK×K , the return dynamics are equivalently represented by:

rt = α+

q̃∑
i=1

(βirt−i) +

p̃∑
i=1

((
γ′iR

−1
)

(RF t−i)
)

+ εt, εt ∼ N
(
0, σ2

ε

)
iid,

which clearly shows that for all 1 ≤ i ≤ p̃ the respective vector γi is accordingly adjusted such that R does

not affect the returns {rt}.

In preparation for Remark 4.2.9, which traces point forecasts of future returns back to the original panel

data and estimation risks, we show in Remark 4.2.4 how to substitute the factors F t in the return ARX

by their means and some multivariate Gaussian random variables. To ensure that our prediction intervals

capture uncertainties caused by the estimation of the hidden factors, we use random samples drawn from

the conditional factor distribution in (4.9) instead of the factor estimates.

Remark 4.2.4 (Decomposition of Factor Impact)

Irrespective of whether SFMs in Definition 2.1.3 or DFMs in Definition 2.1.4 are considered, we receive

Gaussian factors for given panel data, i.e., F t|Xt ∼ N (µF t|Xt
,ΣF t|Xt

). Let the matrix Σ
1/2

F t|Xt
be

the square root matrix of ΣF t|Xt
and assume Zt ∼ N (0K , IK) iid with Zt⊥εs, for all t, s. Then, the

return ARX in Definition 4.2.1 can be rewritten as follows:

rt = α+

q̃∑
i=1

(βirt−i) +

p̃∑
i=1

(
γ′i

(
µF t−i|Xt−i

+ Σ
1/2

F t−i|Xt−i
Zt−i

))
+ εt.

When we empirically construct prediction intervals for rT+1, we use MC simulations. Let V denote the

number of simulated rT+1. After the conditional distributions in Theorem 4.1.4 have been determined

from the parameter estimates of Algorithm 4.1.2, for each trajectory 1 ≤ c ≤ V a randomly drawn sample

F c1, . . .F
c
T enters the OLS in Lemma 4.2.2 implying that the distribution of the estimates θ̂ depends on

path c. To highlight this, we write θ̂
c
, if applicable. In total, this procedure covers both estimation risks

despite their nonlinear relation.
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If we combine Definitions 2.1.3 or 2.1.4 with the ARX in Definition 4.2.1, the total model has the VAR(1)

representation in Lemma 4.2.5 for the process {B̃t}. As shown in Lemma A.2.9, the covariance-stationary

process {B̃t} has a MA(∞) respresentation, which we use in Lemmata A.2.10 and A.2.11 to calculate its

mean and covariance matrix. Based on those, we derive in Lemma A.2.12 the mean µr and variance σ2
r of

the returns rt in Definition 4.2.1. For clarity reasons, we moved the technical Lemmata A.2.9-A.2.12 to the

appendix, since we are at this stage interested in mean µr and variance σ2
r as inputs of the log-likelihood

function in Lemma 4.2.6. Therefore, we have:

Lemma 4.2.5 (VAR(1) Representation of ARX)

Let {F t} be the factor process of the SFM in Definition 2.1.3 with p = 0 or the DFM in Definition 2.1.4

with p ≥ 1. For lag orders 0 ≤ q̃ and 0 ≤ p̃ ≤ max (1, p) and any point in time t, we define:

B̃
′
t =

(
rt, . . . , rt+1−max(1,q̃), F̃

′
t

)
∈ Rd, (4.30)

with d = max (1, q̃) + max (1, p)K. For p ≥ 1, the vector F̃ t ∈ RpK is given by Lemma A.2.2. For p = 0,

we have: F̃ t = F t ∈ RK . Then, the ARX in Definition 4.2.1 has the following VAR(1) representation:

B̃t =


α

0
...

0


︸︷︷︸
a

+



β1 · · · βq̃−1 βmax(1,q̃) γ′1 · · · γ′p̃ 0′K · · · 0′K

1 0 0 0′K · · · 0′K 0′K · · · 0′K
. . .

...
...

...
...

...

0 1 0 0′K · · · 0′K 0′K · · · 0′K

0K · · · · · · 0K A1 · · · · · · · · · Ap−1 Amax(1,p)

...
... IK OK · · · · · · OK OK

...
... OK

. . .
. . .

...
...

...
...

...
. . .

. . .
. . .

...
...

...
...

...
. . .

. . . OK
...

0K · · · · · · 0K OK · · · · · · OK IK OK


︸ ︷︷ ︸

H

B̃t−1 +



εt

0
...

0

δt

0
...

0


︸ ︷︷ ︸
et

,

with vector a ∈ Rd and matrix H ∈ Rd×d as constants. For the errors et ∈ Rd, it holds: et ∼ N
(
µe ,Σe

)
iid for all points in time t with mean and covariance matrix given by:

µe = 0d and Σe =



σ2
ε 0 · · · 0 0′K 0′K · · · 0′K

0 0
...

...
...

...
...

. . .
...

...
...

...

0 · · · · · · 0 0′K 0′K · · · 0′K

0K · · · · · · 0K Σδ OK · · · OK
...

... OK OK
...

...
...

...
. . .

...

0K · · · · · · 0K OK OK · · · OK



.

If p̃ = p holds, there are no zeros in the first row of H. For p = 0, we can simplify the matrix H and
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obtain the following formulation:

H =



β1 · · · βq̃−1 βmax(1,q̃) γ′1

1 0 0 0′K
. . .

...
...

0 1 0 0′K

0K · · · · · · 0K OK


.

For q̃ = 0, we have β1 = 0.

Proof:

Follows directly from Definitions 2.1.3, 2.1.4 and 4.2.1 and Lemma A.2.2. 2

As shown in Lemmata A.2.9-A.2.11, the process {B̃t} is covariance-stationary, has a MA(∞) represen-

tation, satisfies the absolute summability condition and is normally distributed. Next, we select the lag

orders q̃ and p̃. A simple approach applies AIC based on the estimated factor means. We aim to include

the estimated factor variance using the distortion in the form of F c1, . . .F
c
T̃

to allow for the factors’ hid-

denness. Therefore, we replace the log-likelihood function in the usual AIC by the log-likelihood function

of r conditioned on the factor sample F c as follows.

Lemma 4.2.6 (Conditional Log-Likelihood Function of ARX)

Let r = [r1, . . . , rT ] ∈ RT and (F c)
′

= [F c1, . . . ,F
c
T ] ∈ RK×T be return and factor samples, respectively.

For m̃ = max(q̃, p̃), the returns are supposed to obey the ARX in Definition 4.2.1 based on F c, i.e.:

rt = α+

q̃∑
i=1

(βirt−i) +

p̃∑
i=1

(
γ′iF

c
t−i
)

+ εt, εt ∼ N
(
0, σ2

ε

)
iid. (4.31)

Then, we have for the log-likelihood function of (4.31) given r and F c, i.e., L (θ|r, F c):

L (θ|r, F c) = −T ln (2π)

2
− 1

2

T∑
t=(m̃+1)

(
ln
(
σ2
rt|Full

)
+

(
rt − µrt|Full

)2
σ2
rt|Full

)

− 1

2

m̃∑
t=2

(
ln
(
σ2
rt|Part

)
+

(
rt − µrt|Part

)2
σ2
rt|Part

)
− 1

2

(
ln
(
σ2
r

)
+

(rt − µr)2

σ2
r

)
,

where µr, µrt|Part, µrt|Full, σ
2
r , σ

2
rt|Part and σ2

rt|Full are defined in Lemmata A.2.12-A.2.14.

Proof:

By virtue of the Bayes’ theorem we get for the likelihood function of r conditioned on F c in (4.31):

fθ (r|F c) = fθ (rT , . . . , r1|F c) =
fθ (rT , . . . , r1, F

c)

fθ (F c)
=
fθ (rT |rT−1, . . . , r1, F

c) fθ (rT−1, . . . , r1, F
c)

fθ (F c)

= fθ (rT |rT−1, . . . , rT−q̃, F
c) fθ (rT−1, . . . , r1|F c)

=

 T∏
t=(m̃+1)

fθ (rt|rt−1, . . . , rt−q̃, F
c)

( m̃∏
t=2

fθ
(
rt|rt−1, . . . , rmax(1,t−q̃), F

c
))

fθ (r1|F c) .

Hence, we obtain for the corresponding log-likelihood function L (θ|r, F c):

L (θ|r, F c) =

T∑
t=(m̃+1)

ln
(
fθ (rt|rt−1, . . . , rt−q̃, F

c)
)

+

m̃∑
t=2

ln
(
fθ
(
rt|rt−1, . . . , rmax(1,t−q̃), F

c
))
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+ ln
(
fθ (r1|F c)

)
.

Next, we insert the distributions in Lemmata A.2.12-A.2.14. In this manner, receive:

L (θ|r, F c) =

T∑
t=(m̃+1)

ln

((
2πσ2

rt|Full

)−1/2

exp

(
−
(
rt − µrt|Full

)2
2σ2

rt|Full

))

+

m̃∑
t=2

ln

((
2πσ2

rt|Part

)−1/2

exp

(
−
(
rt − µrt|Part

)2
2σ2

rt|Part

))

+ ln

((
2πσ2

r

)−1/2
exp

(
− (rt − µr)2

2σ2
r

))
.

Finally, summarizing equal expressions leads to the stated formulation. 2

The likelihood fθ (r|F c) in the above proof consists of three constituents. The first group (m̃+1 ≤ t ≤ T )

comprises the mean and variance of rt, when all required lags are observed and thus, the Full lag history

is available. Since samples are of finite size, the second group (2 ≤ t ≤ m̃) covers the mean and variance,

when only a few of the necessary lags are given. Thereby, we talk about Partial lag information. For the

last term fθ (r1|F c) we do not have any lagged returns or factors such that we have to restrict ourselves

to its stationary behavior. Because of its definition, m̃ is the minimal number of lags, which the full lag

history calls for. Hence, it determines the upper limit of the second group.

In Lemma 4.2.6, the samples F c and r = [r1, . . . , rT ] have same length. In particular, there is no lead

time with information in the form of F ct , t ≤ 0. As this assumption is made for convenience, it can

easily be relaxed. Assume there is a run-up period with additional factors F ct , 1 − p̃ ≤ t ≤ 0. Then, the

classification of fθ (r|F c) in three groups remains valid, but the upper and lower limits of the middle

group may change. For each former member of the middle group we have to check, whether it still belongs

to it because of the additional factors. Similarly, we have to verify, whether there is partial information for

the last multiplier fθ (r1|F c) such that it is treated like the middle group. As soon as the new classification

is known, the respective return moments in Lemmata A.2.12-A.2.14 can be applied. By similar reasoning,

we can include additional returns rt, 1− q̃ ≤ t ≤ 0.

Based on the usual AIC in Akaike (1987, p. 323), we now proceed with the following modification:

Remark 4.2.7 (Selection of ARX Lag Orders)

For the setting in Lemma 4.2.6, let 0 ≤ K and 0 ≤ p be the dimension and lag order, respectively, of the

factor sample F c. Furthermore, the vector r ∈ RT collects the returns and let q̄ ≥ 0 be the upper limit of

the autoregressive order, which we test for the returns. Then, our modified selection criterion chooses the

pair (q̃∗, p̃∗) as follows:

(q̃∗, p̃∗) = arg min
0≤q̃≤q̄,0≤p̃≤p

{
2
(

2 + q̃ + p̃K − L
(
θ̂ (q̃, p̃) |r, F c

))}
, (4.32)

where L
(
θ̂ (q̃, p̃) |r, F c

)
denotes the log-likelihood function in Lemma 4.2.6 with the estimated parameters

θ̂ in Lemma 4.2.2 for autoregressive orders (q̃, p̃).

Proof:

The ARX in (4.31) involves 2 + q̃ + p̃K parameters and L
(
θ̂ (q̃, p̃) |r, F c

)
is the log-likelihood function,

which we want to use instead of the usual one. Therefore, the general definition of AIC in Akaike (1987,
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p. 323) results in the stated version. 2

Remark 4.2.8 (Simplified Conditional Log-Likelihood Function L(θ̂ (q̃, p̃) |r, F c))
The definition of σ̂2

ε in (4.29), the equality σ2
rt|Full = σ2

ε and the definition of µrt|Full for all m̃+1 ≤ t ≤ T
in Lemma A.2.13 enable us to shorten the expression for L (θ|r, F c) in Lemma 4.2.6 as follows:

L (θ|r, F c) = −1

2

[
T ln (2π) + (T − m̃)

(
1 + ln

(
σ2
ε

))
+ ln

(
σ2
r

)
+

(rt − µr)2

σ2
r

]

− 1

2

m̃∑
t=2

(
ln
(
σ2
rt|Part

)
+

(
rt − µrt|Part

)2
σ2
rt|Part

)
.

Similar to ηF and η ˜F
, the termination criterion η ˜B

> 0 truncates the mean and covariance matrix series

of B̃t in Lemma A.2.10. For reasons of clarity, the panel data X = [X1, . . . ,XT ]
′

in Definition 2.1.1 and

return sample r = [r1, . . . , rT ] have the same length. However, this assumption is not crucial, since the

intersection of both samples is otherwise taken. Again, we summarize all steps in an algorithm. As before,

Algorithm 4.2.1 adds as much uncertainty as possible to the constructed prediction intervals.

Remark 4.2.9 (Drivers of the 1-Step Ahead Returns)

The mean and covariance matrix of the OLS estimate θ̂ in (4.27)-(4.29) are functions of the factors such

that the asymptotic distribution of θ̂
c

in Algorithm 4.2.1 depends on F c. If we neglect the impact of F c

on the mean and covariance matrix of θ̂
c

for a second, e.g., in case of a sufficiently long sample and little

varying factors, we may decompose the forecasted returns as follows:

rcT+1 = ᾱc +

q̃∑
i=1

(
β̄ci rT+1−i

)
︸ ︷︷ ︸

AR Nature

+

p̃∑
i=1

(w′i (XT+1−i − µ))︸ ︷︷ ︸
Factor Impact

+

p̃∑
i=1

(
(γ̄ci )

′
ZcT+1−i

)
︸ ︷︷ ︸

Factor Risk

+ σ̂cε Z
c︸ ︷︷ ︸

AR Risk

, (4.33)

with w′i = (γ̄ci )
′
M−1W ′Σ−1

ε ∈ RN and ZcT+1−i = F cT+1−i − µF T+1−i|XT+1−i
∈ RK for all 1 ≤ i ≤ p̃. If

neither the returns r nor any transformation of r are part of the panel data X, the distinction between

the four pillars in (4.33) is more precise. For the SFMs in Definition 2.1.3, the classification in (4.33) is

the same, but the means and covariance matrices of F t|Xt must be replaced by the ones in Lemma 3.1.5.

In Remark 4.2.9, the pillar AR Nature covers the autoregressive return behavior, whereas Factor impact

maps the information extracted from the panel data X. So, both affect the direction of rcT+1. By contrast,

the latter treat estimation uncertainties. In this context, Factor Risk reveals the distortion caused by F c

and hence, indicates the variation inherent in the estimated factors. This is of particular importance for

data sets of small size or with many gaps. Finally, AR Risk incorporates deviations from the expected

trend, since it adds the standard deviation of the ARX residuals.

The four pillars in (4.33) support the detection of model inadequacies and the construction of extensions,

since each driver can be treated separately or as part of a group. For instance, a comparison of the pillars

AR Nature and Factor Impact shows, whether a market has an own behavior like a trend and seasonalities

or is triggered by exogenous events. Next, we trace the total contribution of Factor Impact to its single

constituents such that the influence of a single signal may be analyzed. For this purpose, we additionally

store the single constituents of Factor Risk in the outer for loop of Algorithm 4.2.1, sort all time series in

line with the ascendingly ordered returns and then, derive prediction intervals for both, i.e., the returns
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Algorithm 4.2.1: Empirical prediction intervals of ARX(q̃, p̃) returns for next period of time

### Initialization

Define number V > 0 of returns to be predicted;

Choose prediction level ν > 0 and termination criterion η ˜B
> 0;

Set upper limits of autoregressive orders q̄ ≥ 0 and p̄ ≥ 1;

Determine factor distribution (4.9) for 1 ≤ t ≤ T using Algorithm 4.1.2;

### Generation of Return Sample

for c = 1 to V do

Draw factor sample (F c)
′

= [F c1, . . . ,F
c
T ] from (4.9);

Initialize coefficient vector θ̂ov = ∅ ;

Reset overall AIC value AICov =∞ (or any sufficiently large number);

# Model Selection for Return ARX

for q = 0 to q̄ do

for p = 1 to p̄ do

Estimate mean of θ̂ in (4.27) with r = [r1, . . . , rT ], F c, q and p;

Determine temporary AIC value AICtmp for θ̂ using q, p and (4.32);

if AICtmp < AICov then

Renew overall AIC value by AICov = AICtmp;

Update overall coefficient vector by θ̂ov = θ̂;

end

end

end

Determine asymptotic distribution of θ̂ov in (4.27)-(4.29) for chosen orders (q̃, p̃);

Draw sample θc from asymptotic distribution of θ̂ov in (4.27)-(4.29);

Draw random variable Zc from N (0, 1);

Set rcT+1 = ᾱc +
∑q̃
i=1

(
β̄ci rT+1−i

)
+
∑p̃
i=1

(
(γ̄ci )

′
F cT+1−i

)
+ σ̂cε Z

c;

end

Sort returns in ascending order r
(1)
T+1 ≤ . . . ≤ r

(V )
T+1;

Prediction interval is given by
[
r

(b(1−ν)V/2c)
T+1 , r

(d(1+ν)V/2e)
T+1

]
;

and their single drivers. This procedure prevents us from discrepancies caused by data aggregation and

thus, ensures the matching between the expectations of rcT+1 and its drivers.

All in all, the presented approach for modeling the 1-step ahead returns of a financial index offers several

advantages for asset and risk management applications: First, it admits the inclusion of mixed-frequency

information and hence, supports the treatment of incomplete data. Especially, when, e.g., macroeconomic

data, flows, technical findings and valuation results are included, data and calendar irregularities cannot be

neglected. Second, for each low-frequency signal a high-frequency counterpart is constructed (nowcasting)

such that, e.g., structural changes in the real economy may be identified at an early stage. Third, the

ARX in Definition 4.2.1 links the empirical behavior of an asset class with exogenous information to

provide interval and point estimations. Besides the direction of the future returns, the derived prediction

intervals measure estimation uncertainties. In addition to risk-return characteristics, investors take a
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great interest in the drivers of a market movement, as those indicate its sustainability. For instance, if

increased inflows caused by an extremely loose monetary policy triggered a stock market ralley and an

asset manager is aware of this, he would be more afraid of an unexpected change in monetary policy than

poor macroeconomic figures. As soon as the drivers have been identified, alternative hedging strategies

can be developed. In our example, derivatives based on fixed income products might serve for hedging

purposes instead of derivatives with stocks as underlying, if the first are, e.g., more liquid or cheaper.

So far, we considered prediction intervals for the next period of time. Within a small excursion, we focus

on the general case, that is, prediction intervals covering s-step ahead returns with s ≥ 1.

Definition 4.2.10 (Shifted Returns of Financial Market Index)

Assume the setting in Definition 4.2.1, but let s ≥ 1 denote a shift in time. Then, we have:

rt = α+

q̃∑
i=1

(βirt−s+1−i) +

p̃∑
i=1

(γ′iF t−s+1−i) + εt, εt ∼ N
(
0, σ2

ε

)
iid,

where α, βi, 1 ≤ i ≤ q̃, σ2
ε ∈ R with σ2

ε ≥ 0 and γj ∈ RK , 1 ≤ j ≤ p̃, are constants. As before, we assume

that factors and errors are independent, i.e., F t ⊥ εu for all u, t and that neither the return process {rt}
nor any of its transformations enters the panel data of the factors.

Let the vector θ =
[
α, β1, . . . , βq̃,γ

′
1, . . . ,γ

′
p̃

]′ ∈ R1+q̃+p̃K collect the ARX(q̃, p̃) parameters in Definition

4.2.10, while the vector r = [r1, . . . , rT ]′ ∈ RT and matrix F = [F 1, . . . ,F T ]′ ∈ RT×K are return and

factor samples, respectively, of same length and time horizon. Then, for m̃ = max {q̃, p̃}+ s− 1 the ARX

in Definition 4.2.10 can be rewritten in matrix form as follows:


rm̃+1

...

rT


︸ ︷︷ ︸
rm̃+1

T

=


1 rm̃+1−s · · · rm̃+2−s−q̃ F ′m̃+1−s · · · F ′m̃+2−s−p̃
...

...
...

...
...

1 rT−s · · · rT+1−s−q̃ F ′T−s · · · F ′T+1−s−p̃


︸ ︷︷ ︸

Gs

θ +


εm̃+1

...

εT


︸ ︷︷ ︸
εm̃+1

T

, (4.34)

with rm̃+1
T ∈ RT−m̃, Gs ∈ R(T−m̃)×(1+q̃+p̃K) and εm̃+1

T ∈ RT−m̃.

If we replace the matrix G in Lemma 4.2.2 by the matrix Gs in (4.34), the asymptotic distribution of the

OLS estimate θ̂ for the general case follows. Furthermore, the findings in Remarks 4.2.3 and 4.2.4 remain

valid for s ≥ 1. In case of its VAR(1) representation the following changes are required.

Lemma 4.2.11 (VAR(1) Representation of Shifted ARX)

Let {F t} be the factor process of the SFM in Definition 2.1.3 with p = 0 or the DFM in Definition 2.1.4

with p ≥ 1. For lag lengths 0 ≤ q̃ and 0 ≤ p̃ ≤ max (1, p), shift s ≥ 1 and any point in time t, we define:

S̃t =
(
rt, . . . , rt+2−s−max(1,q̃),F

′
t, . . . ,F

′
t+2−s−max(1,p)

)′
∈ Rd,

with vector dimension d = max (1, q̃)+max (1, p)K+(s− 1) (K + 1). Then, the ARX in Definition 4.2.10
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has the following VAR(1) representation:

S̃t =


α

0
...

0


︸︷︷︸
a

+



0 ··· 0 β1 ··· βq̃−1 βmax(1,q̃) 0′K ··· 0′K γ′1 ··· γ′p̃ 0′K ··· 0′K
1 0 0 ··· ··· 0 0′K ··· ··· ··· ··· ··· ··· ··· 0′K

. . .
...

...
...

...

0 1 0 ··· ··· 0
...

...

0 ··· 0 1 0 0
...

...
...

...
. . .

...
...

...

0 ··· 0 0 1 0 0′K ··· ··· ··· ··· ··· ··· ··· 0′K
0K ··· ··· ··· ··· ··· 0K A1 ··· ··· ··· Amax(1,p) OK ··· ··· OK

...
... IK OK ··· ··· OK

...
...

...
... OK

. . .
. . .

...
...

...

...
...

...
. . .

. . .
. . .

...
...

...
...

...
...

. . .
. . . OK

...
...

...
... OK ··· ··· OK IK OK ··· ··· OK

...
...

...
... OK IK OK OK

...
...

...
...

...
. . .

...

0K ··· ··· ··· ··· ··· 0K OK ··· ··· OK OK OK IK OK


︸ ︷︷ ︸

Hs

S̃t−1 +



εt

0
...

0

δt

0
...

0


︸ ︷︷ ︸
et

,

with constant vector a ∈ Rd and matrix Hs ∈ Rd×d. For the shocks et ∈ Rd, it holds: et ∼ N
(
µe ,Σe

)
iid for all points in time t, whose mean and covariance matrix are defined by:

µe = 0d and Σe =



σ2
ε 0 · · · 0 0′K 0′K · · · 0′K

0 0
...

...
...

...
...

. . .
...

...
...

...

0 · · · · · · 0 0′K 0′K · · · 0′K

0K · · · · · · 0K Σδ OK · · · OK
...

... OK OK
...

...
...

...
. . .

...

0K · · · · · · 0K OK OK · · · OK



.

In case of p̃ = p, there are no zeros at the end of the first row in matrix Hs. For s = 1, there are no zeros

in the first row in front of β1 and γ1. In addition, some of the last rows are removed. If p = 0 holds, we

obtain A1 = OK . Similarly, q̃ = 0 results in β1 = 0.

Proof:

Follows directly from Definitions 2.1.3, 2.1.4 and 4.2.10. 2

Besides the VAR(1) representation, the log-likelihood function of the shifted ARX given the sample F c

calls for adjustments. Thereby, return means and variances must be recalculated. For clarity reasons, we

moved rather technical Lemmata to the appendix. That means, in Lemma A.2.15 we obtain the MA(∞)

representation of S̃t to determine in Lemmata A.2.16 or A.2.17 the mean and covariance matrix of S̃t.

Eventually, we receive for shift s ≥ 1 in Lemma A.2.18 the mean µr,s and covariance matrix Σr,s of the

vectors rt,s = [rt, . . . , rt−s+1]
′ ∈ Rs, which enter the following log-likelihood function.

Lemma 4.2.12 (Conditional Log-Likelihood of Shifted ARX)

For a time shift s ≥ 1, let r = [r1, . . . , rT ] ∈ RT and (F c)
′

= [F c1, . . . ,F
c
T ] ∈ RK×T be return and factor

samples, respectively. Moreover, we set: m̃ = max(q̃, p̃)+s−1 and assume that the returns obey the ARX

in Definition 4.2.10 based on F c, i.e.:

rt = α+

q̃∑
i=1

(βirt−s+1−i) +

p̃∑
i=1

(
γ′iF

c
t−s+1−i

)
+ εt, εt ∼ N

(
0, σ2

ε

)
iid. (4.35)
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Then, we have for its log-likelihood function given r, F c and shift s, i.e., L (θ|r, F c, s):

L (θ|r, F c, s) = −T ln (2π)

2
− 1

2
ln (|Σr,s|)−

1

2

T∑
t=(m̃+1)

(
ln
(
σ2
rt,s|Full

)
+

(
rt − µrt,s|Full

)2
σ2
rt,s|Full

)

− 1

2

m̃∑
t=(s+1)

(
ln
(
σ2
rt,s|Part

)
+

(
rt − µrt,s|Part

)2
σ2
rt,s|Part

)
− 1

2

(
rs,s − µr,s

)′
Σ−1
r,s

(
rs,s − µr,s

)
,

with rs,s,µr,s, µrt,s|Part, µrt,s|Full,Σr,s, σ
2
rt,s|Part and σ2

rt,s|Full as in Lemmata A.2.18-A.2.20.

Proof:

By virtue of the Bayes’ theorem we receive for the likelihood function of r conditioned on F c in (4.35):

fθ (r|F c) = fθ (rT , . . . , r1|F c) =
fθ (rT , . . . , r1, F

c)

fθ (F c)
=
fθ (rT |rT−1, . . . , r1, F

c) fθ (rT−1, . . . , r1, F
c)

fθ (F c)

= fθ (rT |rT−s, . . . , rT−s+1−q̃, F
c) fθ (rT−1, . . . , r1|F c)

=

 T∏
t=(m̃+1)

fθ (rt|rt−s, . . . , rt−s+1−q̃, F
c)

 m̃∏
t=(s+1)

fθ
(
rt|rt−s, . . . , rmax(1,t−s+1−q̃), F

c
)fθ (rs,s) .

Hence, we obtain for its log-likelihood function L (θ|r, F c, s):

L (θ|r, F c, s) =

T∑
t=(m̃+1)

ln
(
fθ (rt|rt−s, . . . , rt−s+1−q̃, F

c)
)

+ ln
(
fθ (rs,s)

)
+

m̃∑
t=(s+1)

ln
(
fθ
(
rt|rt−s, . . . , rmax(1,t−s+1−q̃), F

c
))
.

Next, the distributions in Lemmata A.2.18-A.2.20 provide:

L (θ|r, F c, s) =

T∑
t=(m̃+1)

ln

((
2πσ2

rt,s|Full

)−1/2

exp

(
−
(
rt − µrt,s|Full

)2
2σ2

rt,s|Full

))

+

m̃∑
t=(s+1)

ln

((
2πσ2

rt,s|Part

)−1/2

exp

(
−
(
rt,s − µrt,s|Part

)2
2σ2

rt,s|Part

))

+ ln

(
(2π)

−s/2 |Σr,s|−1/2 exp

(
−1

2

(
rs,s − µr,s

)′
Σ−1
r,s

(
rs,s − µr,s

)))
.

Finally, summarizing equal expressions leads to the stated formulation. 2

For any s ≥ 1, the shifted ARX in Definition 4.2.10 has the same number of parameters as the special case

with s = 1 in Definition 4.2.1. Therefore, Remark 4.2.7 can be kept for selecting the autoregressive orders,

if L
(
θ̂ (q̃, p̃) |r, F c

)
is replaced by L

(
θ̂ (q̃, p̃) |r, F c, s

)
. Due to σ2

rt,s|Full = σ2
ε for all m̃ + 1 ≤ t ≤ T in

Lemma A.2.19 and the definition of the OLS estimate θ̂ in Lemma 4.2.2, we can simplify the log-likelihood

L
(
θ̂ (q̃, p̃) |r, F c, s

)
as in Remark 4.2.8. Finally, the structure of Algorithm 4.2.1 is kept, since only minor

changes are required. Furthermore, the classification in Remark 4.2.9 remains valid. In this case, the return

equation has to take the shift s into account, but the meaning of the pillars stays the same.

4.3 Interval-Based Trading Strategies for Single Markets

The location and width of the prediction intervals from Section 4.2 cover the trend and uncertainty of the

forcasted returns. Therefore, we now propose some simple and risk-adjusted dynamic trading strategies,
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which incoporate those. Unlike the portfolio perspective in Section 3.1.3, the current investment strategies

are restricted to a single financial market and a bank account.

Definition 4.3.1 (Basic Single-Market Trading Strategy)

Let l̂t, ût ∈ R with l̂t ≤ ût be the lower and upper limits of the ν-prediction interval provided by Algorithm

4.2.1 for the period (t− 1, t]. Moreover, let πt ∈ [0, 1] be the percentage of the total wealth invested in the

financial market over the period (t− 1, t]. The remaining proportion 1−πt is deposited on a bank account

for a risk-free rate r̃t. Then, we have for the market exposure of the basic trading strategy:

πt =


1 if l̂t ≥ 0 and ût ≥ 0,

ût

ût−l̂t
if l̂t < 0 and ût > 0,

0 if l̂t ≤ 0 and ût ≤ 0.

(4.36)

Whenever the prediction interval is centered around zero, except for a possible lateral movement, no clear

trend is detected. Irrespective of the interval width, the basic strategy in (4.36) recommends the neutral

allocation of a 50% market exposure and a 50% bank account deposit for this case. If a prediction interval

is shifted to the positive (negative) half-plane, the market exposure increases up to 100% (decreases down

to 0%). Depending on the interval width, the same shift size may result in different proportions πt. That is,

for large intervals indicating a high degree of uncertainty, a shift to the positive (negative) half-plane causes

a smaller increase (decrease) in πt compared to tight intervals with low uncertainties. Besides temporal

uncertainties, the prediction level ν affects the interval size and thus, the market exposure πt. Thereby,

we have: The higher the prediction level ν is the lower and rarer deviations from the neutral allocations

are. All in all, the market exposure is on average 50% with temporary over- and underweightings. Since

the basic strategy in Defintion 4.3.1 is not always appropriate for applications in practice, we provide an

extension that allows for the risk-return profile of an investor.

Definition 4.3.2 (Risk-Adjusted Single-Market Trading Strategy)

Assume πt in (4.36) and let πL, πU ∈ R with πL ≤ πU denote the lower and upper limits, respectively, of

the overall market exposure, which may never be exceeded. In addition, let αA ≥ 0 cover the risk appetite

of the investor. Then, the market exposure π̂t of the risk-adjusted trading strategy is defined by:

π̂t = max
[
min

[
αAπt, π

U − πL
]
, 0
]

+ πL. (4.37)

The max-min-construction in (4.37) defines a piecewise linear function bounded below by πL and bounded

above by πU . Within the limits the product αAπt drives the market exposure π̂t. For αA > 1 changes in

πt are scaled-up. Consequently, the fluctuation margin of αAπt exceeds the one of πt. Furthermore, the

bounds are reached more likely and changes in π̂t are of bigger size. Because of this, we call an investor

with αA > 1 risk affine. By contrast, 0 ≤ αA ≤ 1 reduces the fluctuation margin of αAπt and thus, of π̂t.

Therefore, 0 ≤ αA ≤ 1 covers a risk-averse attitude. As an example, we set πL = −1, πU = 1 and αA = 2,

which implies: π̂t ∈ [−1, 1] such that short sales are possible.

4.4 Simulation Study

Now, we analyze the performance of the two-step estimation method for ADFMs in Sections 4.1.1 and 4.1.2

within a comprehensive MC simulation study. Among other things, we address the following questions: (i)



86 CHAPTER 4. ESTIMATION OF APPROXIMATE DYNAMIC FACTOR MODELS

does the size of the data sample, i.e., its length and number of time series, affect the estimation quality?

(ii) to what extent does data incompleteness deteriorate our estimation results? (iii) does the choice

between stock, flow and change in flow variables for the underlying panel data matter? (iv) does our

model selection procedure detect the true factor dimension and lag order, even for K > 1 and p > 1? (v)

how does our two-step approach perform compared to the estimation method of Bańbura and Modugno

(2014)? (vi) are factor means and covariance matrices more accurate, if we use our closed-form solutions

in Theorem 4.1.4 instead of the standard KF and KS?

Before we answer the previous questions, we explain how our random samples are generated. For a, b ∈ R
with a < b, let U (a, b) stand for the uniform distribution on the interval [a, b] and let diag (z) ∈ RK×K be

a diagonal matrix with elements z = [z1, . . . , zK ] ∈ RK . For fixed data and factor dimensions (T,N,K, p),

let Vi ∈ RK×K , 1 ≤ i ≤ p, Vδ ∈ RK×K and Vε ∈ RN×N represent arbitrary orthonormal matrices. Then,

we receive the parameters of the ADFMs in Definition 2.1.4 in the following manner:

Ai = Vi diag

(
zi,1
p
, . . . ,

zi,K
p

)
(V ′i ) , zi,j ∼ U (0.25, 0.75) iid, 1 ≤ i ≤ p, 1 ≤ j ≤ K,

Σδ = Vδ diag
(
zδ ,1, . . . , zδ ,K

)(
V ′δ

)
, zδ ,j ∼ U (0.25, 0.50) iid, 1 ≤ j ≤ K,

W = (wn,j)n,j , wn,j ∼ N (0, 1) iid, 1 ≤ n ≤ N, 1 ≤ j ≤ K,

µ = (µn)n,1 , µn ∼ N (0, 1) iid, 1 ≤ n ≤ N,

Σε = Vε diag (zε,1, . . . , zε,N )
(
V ′ε
)
, zε,n ∼ U (0.05, 0.25) iid, 1 ≤ n ≤ N. (4.38)

In total, the parameters in (4.38) specify ADFMs with cross-sectionally, but not serially correlated shocks.

To prevent us from the implicit construction of SFMs with eigenvalues of Ai close to zero, the eigenvalues

of Ai, 1 ≤ i ≤ p, lie within the range [0.25/p, 0.75/p]. Here, the division by p balances the total sum of all

eigenvalues with respect to the autoregressive order p. For simplicity reasons, we consider matrices Ai with

positive eigenvalues. However, this assumption, the restriction to eigenvalues in the range [0.25/p, 0.75/p]

and the division by p can be skipped. If all matrices Ai, 1 ≤ i ≤ p, meet the covariance-stationarity

conditions in Lemma A.2.3, we simulate factor samples F ∈ RT×K and panel data X ∈ RT×N through

the transition equation (2.5) and observation equation (2.4). Otherwise, all matrices Ai are drawn again

until covariance-stationarity is reached. Similarly, we choose only matrices W of full column rank K.

So far, we have complete panel data. Let ρm ∈ [0, 1] be the ratio of gaps arising from missing observations

and low-frequency time series, respectively. To achieve incomplete data we remove dρmT e elements from

each time series. For stock variables, we randomly delete dρmT e values to end up with irregularly scattered

gaps. At this stage, flow and change in flow variables serve as low-frequency information, which is supposed

to have an ordered pattern of gaps. Therefore, an observation is made at time t = d1 + s/(1− ρm)e with

0 ≤ s ≤ b(T − 1) (1− ρm)c and s ∈ N0. In line with Definition 2.2.2, an observed flow variable represents

the sum or average of the corresponding high-frequency analogs. As in Lemma 2.2.3, an observed change

in flow variable is a linear combination of high-frequency changes. In Tables 4.1-4.13, the same ρm holds

for all univariate time series in X, i.e., for each of its columns, such that gaps of flow or change in flow

variables occur at the same time. If the panel data contains a single point in time without any observation,

neither our closed-form solution nor the standard KF and KS provide factor estimates. To avoid such

scenarios, i.e., empty rows of the observed panel data Xobs, each panel data in the second (third) column

of Tables 4.1-4.6 comprises dN/2e times series modeled as stock variable and bN/2c time series serving

as flow (change in flow) variable. To ensure that each row of Xobs contains at least a single observation,

we check each panel data sample, before we proceed. If there is an empty row of matrix Xobs, we reapply

our routine for preparing missing data to the complete panel data X.
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As mentioned in the scope of Algorithm 4.1.1, the estimated factors are unique except for an invertible,

linear transformation. Since we aim at assessing the quality of diverse estimation methods for the hidden

factors F , we have to take this ambiguity into account. In doing so, we follow Stock and Watson (2002a),

Boivin and Ng (2006), Schumacher and Breitung (2008), Doz et al. (2012) and Bańbura and Modugno

(2014). That is, we use the trace R2 in Definition A.3.1 as appropriate performance measure.

Eventually, we provide some general settings. First, we choose for the termination criteria: η = ξ = 10−2

and ηF = 10−6. That is, we have the same η, ξ and ηF as in the empirical study of Section 4.5. Second,

we use constant interpolation in case of incomplete panel data, when we initialize the set X(0).

In Tables 4.1-4.3, we consider for known factor dimension K and lag order p, whether the standard KF

and KS in Lemmata 2.1.8-2.1.9 with lag-one autocovariance smoother in Lemma 2.1.10 should be used for

estimating the factor means EΘ [F t|X] and covariance matrices CovΘ [F t,F s|X] , 1 ≤ t, s ≤ T, instead

of the closed-form solutions in Theorem 4.1.4. To be more precise, Table 4.2 shows trace R2 means, each

based on 500 MC simulations, when we estimate the parameters Θ as in Theorem 4.1.9. For the same MC

paths, Table 4.1 provides trace R2 means, when we combine the standard KF and KS with the following

parameter updates:

Ŵ(l+1) =

(
T∑
t=1

(Xt − µ)EΘ̂(l)

[
F ′t|X

])( T∑
t=1

EΘ̂(l)

[
F tF

′
t|X
])−1

,

Σ̂ε(l+1) =
1

T

(
T∑
t=1

(Xt − µ) (Xt − µ)
′ − Ŵ(l+1)

(
T∑
t=1

EΘ̂(l)
[F t|X] (Xt − µ)

′

))
,

[
Â1(l+1)

· · · Âp(l+1)

]
=

(
T∑

t=p+1

EΘ̂(l)

[
F tF̃

′
t−1|X

])( T∑
t=p+1

EΘ̂(l)

[
F̃ t−1F̃

′
t−1|X

])−1

,

Σ̂δ(l+1) =
1

T − p

T∑
t=p+1

(
EΘ̂(l)

[
F tF

′
t|X
]
−
[
Â1(l+1)

· · · Âp(l+1)

]
EΘ̂(l)

[
F̃ t−1F

′
t|X
])
,

with stacked factors F̃ t = [F ′t, . . . ,F
′
t−p+1]′ ∈ RpK as in Lemma A.2.2. By comparing Tables 4.1 and 4.2

we conclude: First, both estimation methods offer high values for the trace R2 regardless the underlying

data type. Hence, the choice between stock, flow and change in flow variables does not considerably affect

the trace R2. Second, the higher the percentage of missing data the worse the trace R2. Third, for larger

samples, i.e., more or longer time series, the trace R2 increases, which sounds reasonable. Fourth, for more

complex structures in the form of larger K and p the trace R2, ceteris paribus, deteriorates. Fifth, our

estimation method based on closed-form factor moments appears more robust than the Kalman approach.

For instance, in Table 4.1 for K = 3, p = 1, N = 75, T = 100 and 40% of missing data the trace R2 is

NaN, which is an abbreviation for Not a Number. That is, there was at least one MC path the Kalman

approach could not estimate. By contrast, the respective trace R2 in Table 4.2 is 0.95 and so, all 500

MC paths were estimated without any problems. The means in Tables 4.1 and 4.2 are pretty close, this

is why Table 4.3 divides the means in Table 4.2 by their counterparts in Table 4.1. Hence, ratios larger

than one indicate that our estimation method outperforms the Kalman approach, while ratios less than

one do the opposite. Since all ratios on Table 4.3 are at least one, our method performs better.

In Tables 4.4-4.6, we compare again for known factor dimension K and lag order p, whether the standard

KF and KS in Lemmata 2.1.8-2.1.9 with lag-one autocovariance smoother in Lemma 2.1.10 should be used

for estimating the factor moments EΘ [F t|X] and EΘ

[
F tF

′
s|X

]
, 1 ≤ t, s ≤ T, instead of the closed-form

solutions in Theorem 4.1.4. In both cases, we estimate the model parameters Θ as in Lemma 4.1.7. The

only difference between the two estimation methods comes from the estimation of the factor moments.
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Table 4.1: Means of trace R2 for random ADFMs using standard KF and KS

stocka stock/flow (average)b stock/change in flow (average)c

ratio of missing data ratio of missing data ratio of missing data

N T 0% 10% 25% 40% 0% 10% 25% 40% 0% 10% 25% 40%

K = 1, p = 1

25 100 0.94 0.93 0.93 0.91 0.94 0.93 0.92 0.86 0.94 0.93 0.92 0.87

25 250 0.97 0.96 0.96 0.95 0.97 0.96 0.96 0.93 0.97 0.96 0.96 0.92

25 500 0.98 0.98 0.97 0.96 0.98 0.97 0.97 0.94 0.98 0.97 0.97 0.95

50 100 0.95 0.94 0.94 0.91 0.94 0.94 0.92 0.84 0.95 0.94 0.93 0.86

50 250 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.95 0.97 0.97 0.97 0.94

50 500 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.96 0.98 0.98 0.98 0.96

75 100 0.95 0.95 0.92 0.83 0.95 0.94 0.89 0.89 0.95 0.94 0.88 NaN

75 250 0.98 0.98 0.98 0.97 0.98 0.97 0.97 0.95 0.98 0.97 0.97 0.95

75 500 0.99 0.99 0.98 0.98 0.99 0.98 0.98 0.96 0.99 0.98 0.98 0.97

K = 3, p = 1

25 100 0.92 0.92 0.91 0.88 0.92 0.92 0.90 0.84 0.92 0.92 0.89 0.85

25 250 0.96 0.96 0.95 0.93 0.96 0.96 0.94 0.91 0.96 0.95 0.94 0.90

25 500 0.98 0.97 0.97 0.95 0.98 0.97 0.96 0.93 0.98 0.97 0.96 0.93

50 100 0.94 0.94 0.92 0.90 0.94 0.93 0.91 0.85 0.94 0.93 0.91 0.86

50 250 0.97 0.97 0.97 0.96 0.97 0.97 0.96 0.93 0.97 0.96 0.96 0.93

50 500 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.95 0.98 0.97 0.98 0.96

75 100 0.94 0.93 0.92 0.89 0.94 0.92 0.90 NaN 0.94 0.93 0.90 NaN

75 250 0.97 0.97 0.97 0.96 0.97 0.97 0.97 0.94 0.97 0.97 0.97 0.94

75 500 0.99 0.99 0.98 0.98 0.99 0.98 0.98 0.96 0.99 0.98 0.98 0.97

K = 3, p = 2

25 100 0.88 0.87 0.85 0.80 0.88 0.87 0.84 0.76 0.88 0.87 0.83 0.75

25 250 0.95 0.94 0.93 0.90 0.95 0.94 0.91 0.83 0.95 0.93 0.90 0.82

25 500 0.97 0.96 0.96 0.94 0.97 0.96 0.94 0.87 0.97 0.95 0.94 0.88

50 100 0.90 0.90 0.88 0.85 0.90 0.89 0.86 0.77 0.90 0.89 0.85 0.77

50 250 0.96 0.96 0.95 0.94 0.96 0.95 0.94 0.87 0.96 0.95 0.94 0.86

50 500 0.98 0.98 0.97 0.96 0.98 0.97 0.97 0.91 0.98 0.97 0.96 0.92

75 100 0.91 0.90 0.88 0.84 0.90 0.89 0.85 NaN 0.91 0.89 0.85 0.75

75 250 0.96 0.96 0.96 0.95 0.96 0.96 0.95 0.89 0.96 0.96 0.95 0.88

75 500 0.98 0.98 0.98 0.97 0.98 0.98 0.97 0.93 0.98 0.97 0.97 0.94

K = 5, p = 1

25 100 0.92 0.91 0.89 0.85 0.92 0.91 0.88 0.83 0.92 0.91 0.88 0.83

25 250 0.96 0.96 0.94 0.92 0.96 0.95 0.93 0.89 0.96 0.95 0.93 0.88

25 500 0.97 0.97 0.96 0.94 0.97 0.97 0.95 0.91 0.97 0.96 0.95 0.92

50 100 0.93 0.93 0.91 0.89 0.93 0.92 0.90 0.85 0.93 0.92 0.90 0.85

50 250 0.97 0.97 0.96 0.95 0.97 0.97 0.95 0.92 0.97 0.96 0.95 0.92

50 500 0.98 0.98 0.98 0.97 0.98 0.98 0.97 0.94 0.98 0.97 0.97 0.95

75 100 0.93 0.93 0.92 0.89 0.93 0.92 0.90 0.85 0.93 0.92 0.90 0.85

75 250 0.97 0.97 0.97 0.96 0.97 0.97 0.96 0.93 0.97 0.97 0.96 0.93

75 500 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.95 0.98 0.98 0.98 0.96

K = 5, p = 2

25 100 0.88 0.87 0.84 0.79 0.88 0.87 0.82 0.75 0.88 0.86 0.82 0.75

25 250 0.95 0.94 0.92 0.88 0.95 0.93 0.90 0.81 0.95 0.92 0.89 0.81

25 500 0.97 0.96 0.95 0.92 0.97 0.96 0.93 0.85 0.97 0.95 0.93 0.85

50 100 0.89 0.89 0.87 0.84 0.89 0.88 0.85 0.78 0.89 0.88 0.84 0.77

50 250 0.95 0.95 0.94 0.92 0.95 0.95 0.92 0.85 0.95 0.94 0.92 0.84

50 500 0.97 0.97 0.97 0.96 0.97 0.97 0.96 0.89 0.97 0.96 0.95 0.90

75 100 0.90 0.89 0.87 0.85 0.89 0.88 0.85 0.78 0.90 0.88 0.85 0.78

75 250 0.96 0.96 0.95 0.94 0.96 0.95 0.94 0.88 0.96 0.95 0.93 0.86

75 500 0.98 0.98 0.98 0.97 0.98 0.98 0.97 0.91 0.98 0.97 0.97 0.92

The displayed means are derived from 500 MC simulations for known dimensions K and p.

a For incomplete time series a stock variable is assumed.
b For incomplete data, dN/2e and bN/2c time series are stock and flow (average formulation) variables, respectively.
c For incomplete data, dN/2e and bN/2c time series serve as stock or change in flow (average formulaton) variables.
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Table 4.2: Means of trace R2 for random ADFMs using closed-form factor moments

stocka stock/flow (average)b stock/change in flow (average)c

ratio of missing data ratio of missing data ratio of missing data

N T 0% 10% 25% 40% 0% 10% 25% 40% 0% 10% 25% 40%

K = 1, p = 1

25 100 0.96 0.95 0.95 0.95 0.96 0.95 0.95 0.92 0.96 0.95 0.94 0.92

25 250 0.97 0.97 0.97 0.96 0.97 0.97 0.96 0.95 0.97 0.96 0.97 0.94

25 500 0.98 0.98 0.97 0.97 0.98 0.98 0.97 0.95 0.98 0.97 0.97 0.95

50 100 0.96 0.96 0.96 0.95 0.96 0.96 0.95 0.94 0.96 0.95 0.96 0.94

50 250 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.96 0.98 0.97 0.98 0.95

50 500 0.99 0.99 0.98 0.98 0.99 0.98 0.98 0.97 0.99 0.98 0.98 0.97

75 100 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.94 0.97 0.96 0.96 0.94

75 250 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.96

75 500 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.99 0.98 0.99 0.98

K = 3, p = 1

25 100 0.95 0.95 0.95 0.94 0.95 0.95 0.94 0.92 0.95 0.94 0.94 0.91

25 250 0.97 0.97 0.97 0.96 0.97 0.97 0.96 0.94 0.97 0.96 0.96 0.93

25 500 0.98 0.98 0.97 0.96 0.98 0.97 0.97 0.94 0.98 0.97 0.97 0.95

50 100 0.96 0.96 0.96 0.95 0.96 0.95 0.95 0.94 0.96 0.95 0.95 0.93

50 250 0.98 0.98 0.98 0.97 0.98 0.98 0.97 0.96 0.98 0.97 0.98 0.95

50 500 0.99 0.99 0.98 0.98 0.99 0.98 0.98 0.96 0.99 0.98 0.98 0.97

75 100 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.95 0.96 0.96 0.96 0.94

75 250 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.96

75 500 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.99 0.98 0.99 0.98

K = 3, p = 2

25 100 0.95 0.95 0.94 0.93 0.95 0.94 0.94 0.90 0.95 0.94 0.94 0.90

25 250 0.97 0.97 0.96 0.95 0.97 0.96 0.96 0.93 0.97 0.96 0.96 0.92

25 500 0.98 0.97 0.97 0.96 0.98 0.97 0.96 0.93 0.98 0.96 0.96 0.94

50 100 0.96 0.95 0.95 0.95 0.96 0.95 0.95 0.93 0.96 0.95 0.95 0.93

50 250 0.98 0.98 0.97 0.97 0.98 0.97 0.97 0.95 0.98 0.97 0.97 0.95

50 500 0.99 0.98 0.98 0.98 0.99 0.98 0.98 0.96 0.99 0.98 0.98 0.96

75 100 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.94 0.96 0.95 0.96 0.94

75 250 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.96 0.98 0.97 0.98 0.96

75 500 0.99 0.99 0.99 0.98 0.99 0.99 0.98 0.96 0.99 0.98 0.98 0.97

K = 5, p = 1

25 100 0.95 0.95 0.94 0.93 0.95 0.94 0.94 0.90 0.95 0.94 0.93 0.90

25 250 0.97 0.97 0.96 0.95 0.97 0.96 0.96 0.93 0.97 0.96 0.95 0.92

25 500 0.98 0.98 0.97 0.96 0.98 0.97 0.96 0.93 0.98 0.97 0.96 0.93

50 100 0.96 0.96 0.96 0.95 0.96 0.95 0.95 0.93 0.96 0.95 0.95 0.93

50 250 0.98 0.98 0.98 0.97 0.98 0.98 0.97 0.96 0.98 0.97 0.97 0.95

50 500 0.99 0.99 0.98 0.98 0.99 0.98 0.98 0.96 0.99 0.98 0.98 0.97

75 100 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.94 0.96 0.96 0.96 0.94

75 250 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.98 0.97 0.98 0.96

75 500 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.99 0.98 0.99 0.97

K = 5, p = 2

25 100 0.95 0.94 0.94 0.93 0.95 0.94 0.93 0.89 0.95 0.93 0.93 0.88

25 250 0.97 0.97 0.96 0.95 0.97 0.96 0.95 0.92 0.97 0.95 0.95 0.91

25 500 0.98 0.97 0.97 0.95 0.98 0.97 0.96 0.92 0.98 0.96 0.96 0.92

50 100 0.96 0.96 0.95 0.95 0.96 0.95 0.95 0.93 0.96 0.95 0.95 0.93

50 250 0.98 0.98 0.97 0.97 0.98 0.97 0.97 0.95 0.98 0.97 0.97 0.95

50 500 0.99 0.98 0.98 0.98 0.99 0.98 0.98 0.95 0.99 0.98 0.98 0.96

75 100 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.94 0.96 0.95 0.96 0.94

75 250 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.96 0.98 0.97 0.98 0.96

75 500 0.99 0.99 0.99 0.98 0.99 0.98 0.98 0.96 0.99 0.98 0.98 0.97

The displayed means are derived from 500 MC simulations for known dimensions K and p.

a For incomplete time series a stock variable is assumed.
b For incomplete data, dN/2e and bN/2c time series are stock and flow (average formulation) variables, respectively.
c For incomplete data, dN/2e and bN/2c time series serve as stock or change in flow (average formulaton) variables.
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Table 4.3: Ratios of trace R2 means for random ADFMs using both approaches

stocka stock/flow (average)b stock/change in flow (average)c

ratio of missing data ratio of missing data ratio of missing data

N T 0% 10% 25% 40% 0% 10% 25% 40% 0% 10% 25% 40%

K = 1, p = 1

25 100 1.02 1.02 1.02 1.04 1.02 1.02 1.03 1.08 1.02 1.02 1.03 1.06

25 250 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.01 1.01 1.01 1.02

25 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.01

50 100 1.02 1.02 1.02 1.05 1.02 1.02 1.03 1.13 1.02 1.02 1.03 1.09

50 250 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.01 1.01 1.01 1.02

50 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.01

75 100 1.01 1.02 1.04 1.15 1.01 1.02 1.08 1.07 1.01 1.02 1.09 NaN

75 250 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.01 1.01 1.01 1.01

75 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00

K = 3, p = 1

25 100 1.03 1.04 1.04 1.07 1.03 1.03 1.05 1.09 1.03 1.03 1.05 1.08

25 250 1.01 1.01 1.02 1.03 1.01 1.01 1.02 1.04 1.01 1.01 1.02 1.03

25 500 1.00 1.00 1.01 1.01 1.00 1.00 1.01 1.02 1.00 1.00 1.01 1.01

50 100 1.03 1.03 1.04 1.06 1.03 1.03 1.05 1.10 1.03 1.03 1.05 1.09

50 250 1.01 1.01 1.01 1.02 1.01 1.01 1.01 1.04 1.01 1.01 1.01 1.03

50 500 1.00 1.00 1.00 1.01 1.00 1.00 1.01 1.02 1.00 1.00 1.01 1.01

75 100 1.02 1.03 1.05 1.08 1.02 1.03 1.06 NaN 1.02 1.03 1.07 NaN

75 250 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.03 1.01 1.01 1.01 1.03

75 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.01

K = 3, p = 2

25 100 1.08 1.08 1.11 1.16 1.08 1.08 1.12 1.19 1.08 1.08 1.13 1.20

25 250 1.02 1.03 1.03 1.06 1.02 1.03 1.05 1.12 1.02 1.03 1.06 1.12

25 500 1.01 1.01 1.02 1.02 1.01 1.01 1.02 1.07 1.01 1.01 1.02 1.07

50 100 1.06 1.07 1.08 1.13 1.06 1.07 1.11 1.21 1.06 1.07 1.12 1.21

50 250 1.02 1.02 1.02 1.04 1.02 1.02 1.04 1.10 1.02 1.02 1.04 1.11

50 500 1.01 1.01 1.01 1.02 1.01 1.01 1.02 1.05 1.01 1.01 1.02 1.05

75 100 1.06 1.07 1.09 1.14 1.06 1.07 1.12 NaN 1.06 1.07 1.13 1.24

75 250 1.02 1.02 1.02 1.03 1.02 1.02 1.03 1.09 1.02 1.02 1.03 1.09

75 500 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.04 1.01 1.01 1.01 1.03

K = 5, p = 1

25 100 1.04 1.04 1.06 1.09 1.04 1.04 1.06 1.09 1.04 1.04 1.06 1.08

25 250 1.01 1.01 1.02 1.04 1.01 1.01 1.02 1.04 1.01 1.01 1.02 1.04

25 500 1.00 1.01 1.01 1.02 1.00 1.00 1.01 1.02 1.00 1.00 1.01 1.02

50 100 1.03 1.03 1.04 1.07 1.03 1.03 1.06 1.10 1.03 1.03 1.06 1.09

50 250 1.01 1.01 1.01 1.02 1.01 1.01 1.02 1.04 1.01 1.01 1.02 1.04

50 500 1.00 1.00 1.01 1.01 1.00 1.00 1.01 1.02 1.00 1.00 1.01 1.02

75 100 1.03 1.03 1.05 1.07 1.03 1.04 1.06 1.11 1.03 1.04 1.06 1.10

75 250 1.01 1.01 1.01 1.02 1.01 1.01 1.02 1.04 1.01 1.01 1.02 1.03

75 500 1.00 1.00 1.00 1.01 1.00 1.00 1.01 1.02 1.00 1.00 1.01 1.01

K = 5, p = 2

25 100 1.08 1.08 1.12 1.18 1.08 1.08 1.13 1.18 1.08 1.08 1.14 1.18

25 250 1.02 1.03 1.04 1.07 1.02 1.03 1.06 1.13 1.02 1.03 1.07 1.12

25 500 1.01 1.01 1.02 1.03 1.01 1.01 1.03 1.08 1.01 1.01 1.03 1.09

50 100 1.08 1.08 1.09 1.13 1.08 1.08 1.12 1.19 1.08 1.08 1.13 1.20

50 250 1.03 1.03 1.03 1.05 1.03 1.02 1.05 1.12 1.03 1.03 1.06 1.12

50 500 1.01 1.01 1.01 1.02 1.01 1.01 1.02 1.07 1.01 1.01 1.03 1.07

75 100 1.07 1.08 1.10 1.13 1.07 1.08 1.12 1.20 1.07 1.08 1.13 1.21

75 250 1.02 1.02 1.03 1.04 1.02 1.02 1.04 1.10 1.02 1.02 1.05 1.11

75 500 1.01 1.01 1.01 1.02 1.01 1.01 1.02 1.05 1.01 1.01 1.02 1.05

The displayed ratios are derived from 500 MC simulations for known dimensions K and p. In doing so,

each figure represents the mean of the trace R2 in Table 4.2 divided by its counterpart in Table 4.1.

a For incomplete time series a stock variable is assumed.
b For incomplete data, dN/2e and bN/2c time series are stock and flow (average formulation) variables, respectively.
c For incomplete data, dN/2e and bN/2c time series serve as stock or change in flow (average formulaton) variables.
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In opposition to Tables 4.1-4.3, the two approaches in Tables 4.4-4.6 take the independence of the factors

F t given the observed data Xt into account, i.e., it holds:

EΘ

[
F tF

′
t|Xt

]
= ΣF t|Xt

+ µF t|Xt
µ′F t|Xt

, (4.39)

EΘ

[
F tF

′
s|Xt,Xs

]
= µF t|Xt

µ′F s|Xs
, for all t 6= s. (4.40)

With a view to the trace R2 means in Tables 4.4-4.6, we can confirm the previous findings. Furthermore,

this shows that the simplification in the form of (4.39)-(4.40) does not harm.

Tables 4.1-4.6 do not indicate any distinctive differences in the trace R2 means caused by data type.

For the sake of simplicity, we therefore proceed with stock variables only. That is, in the sequel we

treat all incomplete time series as stock variables. This restriction is convenient for Tables 4.7 and 4.8,

which compare the single-step estimation method in Bańbura and Modugno (2014) with our two-step

approach. At first glance, one step less speaks in favor of the single-step ansatz. However, one step less

comes with a price, i.e., its state-space representation. Whenever there is a switch from one data type

to another, the state-space representation of the overall model in Bańbura and Modugno (2014) calls for

adjustments resulting in further effort. In addition the inclusion of mixed-frequency information should

rely on a regular scheme, e.g., as for months and quarters. Otherwise, e.g., as for weeks and months, the

state-space representation in Bańbura and Modugno (2014) becomes tremendous or requires a recursive

implementation of the temporal aggregation in (2.9) as in Bańbura and Rünstler (2011). By contrast, our

two-step approach permits any data type and calendar structure through the linear relation in (2.9) and

leaves the overall model untouched. This is easy and reduces the risk of mistakes. As already mentioned,

Bańbura and Modugno (2014) first derived their estimation method for EDFMs. Thereafter, they followed

the argumentation in Doz et al. (2012) to admit weakly cross-sectionally correlated shocks εt. Since Doz

et al. (2012) provided asymptotic results, we would like to assess how the method of Bańbura and

Modugno (2014) performs for finite samples with cross-sectionally correlated shocks.

With a view to Tables 4.7 and 4.8, which summarize the results of our MC study, we conclude: First, the

general facts remain valid. That is, the higher the ratio of missing data, the worse are the trace R2 means.

Similarly, for more complex dynamics, i.e., largerK and p, the traceR2 means, ceteris paribus, deteriorate.

By contrast, for larger panel data the trace R2 means improve. Second, for simple factor dynamics, i.e.,

small K and p, or sufficiently large panel data, cross-sectional correlation of the idiosyncratic shocks does

not matter, if the ratio of missing data is low. This is in line with the argumentation in Doz et al. (2012)

and Bańbura and Modugno (2014). However, for small panel data, e.g., N = 25 and T = 100, with 40%

missing observations and factor dimensions K ≥ 5 cross-sectional error correlation matters. This is why

our two-step estimation method outperforms the one-step approach of Bańbura and Modugno (2014) in

such scenarios.

Next, we focus on our two-step model selection procedure. Thereby, we address the impact of the multiplier

m in Lemma 4.1.10 on the estimated factor dimension. For Tables 4.9-4.13, we set η ˜F
= 10−6 in Algorithm

4.1.1. Since Tables 4.9 and 4.10 treat ADFMs with K ≤ 5 and p ≤ 2, the upper limits in Lemmata 4.1.10

and 4.1.11 are K̄ = 7 and p̄ = p̄ (K) = 4. In Tables 4.11-4.13, we have trace R2 means, estimated factor

dimensions and lag orders of ADFMs with 16 ≤ K ≤ 18 and p ≤ 2. Therefore, we specify K̄ = 22 and

p̄ = p̄ (K) = 4 in these cases. For efficiency reasons, the criterion in Lemma 4.1.10 tests factor dimensions

in the range [12, 22] instead of the overall range [1, 22].

A comparison of Tables 4.9 and 4.10 shows: First, except for K = 1 and p = 1, the multipliers m = 1 and

m = 1
2 detect the true factor dimension and hence, support that the true lag order is identified. In doing

so, larger panel data increases the estimation quality. That is, trace R2 means increase, while estimated
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Table 4.4: Means of trace R2 for random ADFMs using the standard KF and KS for the conditional factor

moments in Lemma 4.1.7

stocka stock/flow (average)b stock/change in flow (average)c

ratio of missing data ratio of missing data ratio of missing data
N T 0% 10% 25% 40% 0% 10% 25% 40% 0% 10% 25% 40%

K = 1, p = 1

25 100 0.94 0.93 0.93 0.90 0.94 0.93 0.92 0.85 0.94 0.93 0.91 0.87

25 250 0.97 0.97 0.96 0.95 0.97 0.96 0.96 0.93 0.97 0.96 0.96 0.92

25 500 0.98 0.98 0.97 0.96 0.98 0.97 0.97 0.94 0.98 0.97 0.97 0.95

50 100 0.95 0.95 0.94 0.91 0.95 0.94 0.93 0.83 0.95 0.94 0.93 0.85

50 250 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.95 0.98 0.96 0.97 0.94

50 500 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.96 0.99 0.98 0.98 0.96

75 100 0.95 0.95 0.92 0.84 0.95 0.94 0.89 0.89 0.95 0.94 0.89 0.86

75 250 0.98 0.98 0.98 0.97 0.98 0.97 0.97 0.95 0.98 0.97 0.97 0.95

75 500 0.99 0.99 0.98 0.98 0.99 0.98 0.98 0.96 0.99 0.98 0.98 0.97

K = 3, p = 1

25 100 0.92 0.92 0.90 0.87 0.92 0.92 0.90 0.84 0.92 0.92 0.90 0.85

25 250 0.96 0.96 0.95 0.93 0.96 0.96 0.94 0.91 0.96 0.95 0.94 0.90

25 500 0.98 0.97 0.97 0.96 0.98 0.97 0.96 0.92 0.98 0.97 0.96 0.93

50 100 0.94 0.93 0.93 0.90 0.93 0.93 0.91 0.85 0.94 0.93 0.91 0.86

50 250 0.97 0.97 0.97 0.96 0.97 0.97 0.96 0.93 0.97 0.96 0.96 0.93

50 500 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.95 0.98 0.98 0.98 0.96

75 100 0.94 0.93 0.91 0.89 0.94 0.93 0.90 NaN 0.94 0.92 0.90 0.83

75 250 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.94 0.97 0.97 0.97 0.94

75 500 0.99 0.98 0.98 0.98 0.99 0.98 0.98 0.96 0.99 0.98 0.98 0.97

K = 3, p = 2

25 100 0.88 0.88 0.85 0.80 0.88 0.87 0.83 0.75 0.88 0.87 0.83 0.75

25 250 0.95 0.94 0.93 0.90 0.95 0.94 0.91 0.83 0.95 0.93 0.91 0.82

25 500 0.97 0.96 0.96 0.94 0.97 0.96 0.94 0.87 0.97 0.95 0.94 0.88

50 100 0.90 0.90 0.88 0.85 0.90 0.89 0.85 0.77 0.90 0.89 0.85 0.76

50 250 0.96 0.96 0.95 0.94 0.96 0.95 0.94 0.87 0.96 0.95 0.94 0.86

50 500 0.98 0.98 0.97 0.96 0.98 0.97 0.96 0.91 0.98 0.97 0.96 0.92

75 100 0.90 0.90 0.87 0.84 0.91 0.89 0.85 0.74 0.90 0.89 0.84 0.76

75 250 0.96 0.96 0.96 0.95 0.96 0.96 0.95 0.89 0.96 0.96 0.95 0.88

75 500 0.98 0.98 0.98 0.97 0.98 0.98 0.97 0.93 0.98 0.97 0.97 0.94

K = 5, p = 1

25 100 0.92 0.91 0.89 0.85 0.92 0.91 0.89 0.83 0.92 0.91 0.89 0.83

25 250 0.96 0.96 0.94 0.92 0.96 0.95 0.93 0.89 0.96 0.95 0.94 0.89

25 500 0.97 0.97 0.96 0.94 0.97 0.97 0.95 0.91 0.97 0.96 0.95 0.92

50 100 0.93 0.93 0.92 0.89 0.93 0.92 0.90 0.85 0.93 0.92 0.90 0.86

50 250 0.97 0.97 0.96 0.95 0.97 0.97 0.96 0.92 0.97 0.96 0.95 0.92

50 500 0.98 0.98 0.98 0.97 0.98 0.98 0.97 0.94 0.98 0.97 0.97 0.95

75 100 0.93 0.93 0.91 0.89 0.93 0.92 0.90 0.85 0.93 0.92 0.90 0.85

75 250 0.97 0.97 0.97 0.96 0.97 0.97 0.96 0.93 0.97 0.97 0.96 0.93

75 500 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.95 0.98 0.98 0.98 0.96

K = 5, p = 2

25 100 0.87 0.87 0.83 0.78 0.87 0.86 0.81 0.74 0.88 0.86 0.81 0.74

25 250 0.95 0.94 0.92 0.88 0.95 0.93 0.90 0.81 0.95 0.92 0.88 0.80

25 500 0.97 0.96 0.95 0.92 0.97 0.96 0.93 0.85 0.97 0.95 0.92 0.85

50 100 0.89 0.89 0.87 0.83 0.89 0.88 0.85 0.77 0.89 0.88 0.84 0.77

50 250 0.95 0.95 0.94 0.92 0.95 0.95 0.92 0.85 0.95 0.94 0.92 0.84

50 500 0.97 0.97 0.97 0.96 0.97 0.97 0.96 0.89 0.97 0.96 0.95 0.90

75 100 0.90 0.89 0.87 0.85 0.90 0.88 0.85 0.78 0.90 0.88 0.84 0.77

75 250 0.96 0.96 0.95 0.94 0.96 0.96 0.94 0.87 0.96 0.95 0.93 0.86

75 500 0.98 0.98 0.98 0.97 0.98 0.98 0.97 0.91 0.98 0.97 0.97 0.92

The displayed means are derived from 500 MC simulations for known dimensions K and p.

a For incomplete time series a stock variable is assumed.
b For incomplete data, dN/2e and bN/2c time series are stock and flow (average formulation) variables, respectively.
c For incomplete data, dN/2e and bN/2c time series serve as stock or change in flow (average formulaton) variables.
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Table 4.5: Means of trace R2 for random ADFMs using closed-form factor moments for the conditional

factor moments in Lemma 4.1.7

stocka stock/flow (average)b stock/change in flow (average)c

ratio of missing data ratio of missing data ratio of missing data
N T 0% 10% 25% 40% 0% 10% 25% 40% 0% 10% 25% 40%

K = 1, p = 1

25 100 0.96 0.95 0.95 0.94 0.96 0.94 0.95 0.92 0.96 0.95 0.94 0.92

25 250 0.97 0.97 0.97 0.96 0.97 0.97 0.97 0.95 0.97 0.96 0.96 0.94

25 500 0.98 0.98 0.97 0.97 0.98 0.98 0.97 0.95 0.98 0.97 0.97 0.96

50 100 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.94 0.97 0.95 0.96 0.93

50 250 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.96 0.98 0.97 0.98 0.96

50 500 0.99 0.99 0.99 0.98 0.99 0.98 0.98 0.97 0.99 0.98 0.98 0.97

75 100 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.96 0.94

75 250 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.96

75 500 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.99 0.98 0.99 0.98

K = 3, p = 1

25 100 0.95 0.95 0.95 0.94 0.95 0.94 0.94 0.92 0.95 0.94 0.94 0.91

25 250 0.97 0.97 0.97 0.96 0.97 0.97 0.96 0.94 0.97 0.96 0.96 0.93

25 500 0.98 0.98 0.97 0.97 0.98 0.97 0.97 0.94 0.98 0.97 0.97 0.95

50 100 0.96 0.96 0.96 0.95 0.96 0.95 0.96 0.94 0.96 0.95 0.96 0.93

50 250 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.96 0.98 0.97 0.98 0.95

50 500 0.99 0.99 0.98 0.98 0.99 0.98 0.98 0.96 0.99 0.98 0.98 0.97

75 100 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.95 0.96 0.94

75 250 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.96

75 500 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.99 0.98 0.99 0.98

K = 3, p = 2

25 100 0.95 0.95 0.94 0.93 0.95 0.94 0.94 0.91 0.95 0.94 0.94 0.90

25 250 0.97 0.97 0.96 0.95 0.97 0.96 0.96 0.93 0.97 0.96 0.96 0.92

25 500 0.98 0.98 0.97 0.96 0.98 0.97 0.96 0.93 0.98 0.96 0.96 0.94

50 100 0.96 0.96 0.96 0.95 0.96 0.95 0.95 0.93 0.96 0.95 0.95 0.93

50 250 0.98 0.98 0.98 0.97 0.98 0.97 0.97 0.96 0.98 0.97 0.97 0.95

50 500 0.99 0.98 0.98 0.98 0.99 0.98 0.98 0.96 0.99 0.98 0.98 0.96

75 100 0.96 0.96 0.96 0.96 0.96 0.95 0.95 0.94 0.96 0.95 0.95 0.94

75 250 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.98 0.97 0.98 0.96

75 500 0.99 0.99 0.99 0.98 0.99 0.99 0.98 0.96 0.99 0.98 0.98 0.97

K = 5, p = 1

25 100 0.95 0.95 0.94 0.93 0.95 0.94 0.94 0.90 0.95 0.94 0.94 0.90

25 250 0.97 0.97 0.96 0.95 0.97 0.96 0.96 0.93 0.97 0.96 0.96 0.92

25 500 0.98 0.98 0.97 0.96 0.98 0.97 0.96 0.93 0.98 0.97 0.96 0.93

50 100 0.96 0.96 0.96 0.95 0.96 0.95 0.95 0.94 0.96 0.95 0.95 0.93

50 250 0.98 0.98 0.98 0.97 0.98 0.98 0.97 0.96 0.98 0.97 0.97 0.95

50 500 0.99 0.99 0.98 0.98 0.99 0.98 0.98 0.96 0.99 0.98 0.98 0.97

75 100 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.94 0.96 0.95 0.96 0.94

75 250 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.98 0.97 0.98 0.96

75 500 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.99 0.98 0.99 0.97

K = 5, p = 2

25 100 0.95 0.95 0.94 0.93 0.95 0.94 0.93 0.89 0.95 0.93 0.93 0.88

25 250 0.97 0.97 0.96 0.95 0.97 0.96 0.95 0.92 0.97 0.95 0.95 0.91

25 500 0.98 0.97 0.97 0.95 0.98 0.97 0.96 0.92 0.98 0.96 0.96 0.93

50 100 0.96 0.96 0.96 0.95 0.96 0.95 0.95 0.93 0.96 0.95 0.95 0.93

50 250 0.98 0.98 0.97 0.97 0.98 0.97 0.97 0.95 0.98 0.97 0.97 0.95

50 500 0.99 0.98 0.98 0.98 0.99 0.98 0.98 0.95 0.99 0.97 0.98 0.96

75 100 0.96 0.96 0.96 0.96 0.96 0.95 0.95 0.94 0.96 0.95 0.95 0.94

75 250 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.96 0.98 0.97 0.98 0.96

75 500 0.99 0.99 0.99 0.98 0.99 0.98 0.98 0.96 0.99 0.98 0.98 0.97

The displayed means are derived from 500 MC simulations for known dimensions K and p.

a For incomplete time series a stock variable is assumed.
b For incomplete data, dN/2e and bN/2c time series are stock and flow (average formulation) variables, respectively.
c For incomplete data, dN/2e and bN/2c time series serve as stock or change in flow (average formulaton) variables.



94 CHAPTER 4. ESTIMATION OF APPROXIMATE DYNAMIC FACTOR MODELS

Table 4.6: Ratios of trace R2 means for random ADFMs using both approaches for the conditional factor

moments in Lemma 4.1.7

stocka stock/flow (average)b stock/change in flow (average)c

ratio of missing data ratio of missing data ratio of missing data
N T 0% 10% 25% 40% 0% 10% 25% 40% 0% 10% 25% 40%

K = 1, p = 1

25 100 1.02 1.02 1.02 1.05 1.02 1.02 1.03 1.08 1.02 1.02 1.03 1.06

25 250 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.01 1.01 1.01 1.02

25 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.01

50 100 1.02 1.02 1.02 1.05 1.02 1.02 1.03 1.13 1.02 1.02 1.03 1.10

50 250 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.01 1.01 1.01 1.02

50 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.01

75 100 1.01 1.02 1.05 1.15 1.01 1.02 1.08 1.06 1.01 1.02 1.08 1.10

75 250 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.01 1.01 1.01 1.01

75 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00

K = 3, p = 1

25 100 1.03 1.04 1.05 1.07 1.03 1.03 1.05 1.09 1.03 1.03 1.05 1.08

25 250 1.01 1.01 1.02 1.03 1.01 1.01 1.02 1.04 1.01 1.01 1.02 1.03

25 500 1.00 1.00 1.01 1.01 1.00 1.00 1.01 1.02 1.00 1.00 1.01 1.02

50 100 1.02 1.03 1.04 1.06 1.03 1.03 1.05 1.10 1.02 1.03 1.05 1.09

50 250 1.01 1.01 1.01 1.02 1.01 1.01 1.01 1.04 1.01 1.01 1.01 1.03

50 500 1.00 1.00 1.00 1.01 1.00 1.00 1.01 1.02 1.00 1.00 1.01 1.01

75 100 1.02 1.03 1.05 1.08 1.03 1.03 1.06 NaN 1.02 1.03 1.07 1.13

75 250 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.03 1.01 1.01 1.01 1.03

75 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.01

K = 3, p = 2

25 100 1.08 1.08 1.11 1.17 1.08 1.08 1.13 1.21 1.08 1.08 1.14 1.21

25 250 1.02 1.03 1.03 1.06 1.03 1.03 1.05 1.12 1.02 1.03 1.06 1.12

25 500 1.01 1.01 1.01 1.02 1.01 1.01 1.02 1.07 1.01 1.01 1.03 1.07

50 100 1.06 1.06 1.09 1.13 1.06 1.07 1.11 1.21 1.06 1.07 1.12 1.22

50 250 1.02 1.02 1.02 1.04 1.02 1.02 1.04 1.10 1.02 1.02 1.04 1.11

50 500 1.01 1.01 1.01 1.02 1.01 1.01 1.02 1.05 1.01 1.01 1.02 1.05

75 100 1.06 1.07 1.10 1.14 1.06 1.07 1.13 1.27 1.06 1.08 1.13 1.24

75 250 1.02 1.02 1.02 1.03 1.02 1.02 1.03 1.09 1.02 1.02 1.03 1.09

75 500 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.04 1.01 1.01 1.01 1.03

K = 5, p = 1

25 100 1.04 1.04 1.06 1.10 1.04 1.04 1.06 1.09 1.04 1.04 1.06 1.08

25 250 1.01 1.01 1.02 1.04 1.01 1.01 1.02 1.05 1.01 1.01 1.02 1.04

25 500 1.00 1.01 1.01 1.02 1.00 1.00 1.01 1.02 1.00 1.00 1.01 1.02

50 100 1.03 1.03 1.04 1.07 1.03 1.03 1.06 1.10 1.03 1.03 1.06 1.09

50 250 1.01 1.01 1.01 1.02 1.01 1.01 1.02 1.05 1.01 1.01 1.02 1.04

50 500 1.00 1.00 1.01 1.01 1.00 1.00 1.01 1.02 1.00 1.00 1.01 1.02

75 100 1.03 1.03 1.05 1.07 1.03 1.04 1.06 1.11 1.03 1.04 1.06 1.10

75 250 1.01 1.01 1.01 1.02 1.01 1.01 1.02 1.04 1.01 1.01 1.02 1.03

75 500 1.00 1.00 1.00 1.01 1.00 1.00 1.01 1.02 1.00 1.00 1.01 1.01

K = 5, p = 2

25 100 1.08 1.09 1.12 1.19 1.09 1.09 1.14 1.20 1.08 1.09 1.15 1.20

25 250 1.02 1.03 1.04 1.08 1.02 1.03 1.06 1.13 1.02 1.03 1.07 1.13

25 500 1.01 1.01 1.01 1.03 1.01 1.01 1.03 1.09 1.01 1.01 1.03 1.09

50 100 1.08 1.08 1.10 1.14 1.08 1.08 1.12 1.20 1.08 1.08 1.13 1.21

50 250 1.03 1.03 1.03 1.05 1.03 1.03 1.05 1.12 1.03 1.03 1.06 1.12

50 500 1.01 1.01 1.01 1.02 1.01 1.01 1.02 1.07 1.01 1.01 1.03 1.07

75 100 1.07 1.08 1.10 1.13 1.07 1.08 1.13 1.21 1.07 1.08 1.13 1.21

75 250 1.02 1.02 1.03 1.04 1.02 1.02 1.04 1.10 1.02 1.02 1.05 1.11

75 500 1.01 1.01 1.01 1.02 1.01 1.01 1.02 1.05 1.01 1.01 1.02 1.05

The displayed ratios are derived from 500 MC simulations for known dimensions K and p. In doing so,

each figure represents the mean of the trace R2 in Table 4.5 divided by its counterpart in Table 4.4.

a For incomplete time series a stock variable is assumed.
b For incomplete data, dN/2e and bN/2c time series are stock and flow (average formulation) variables, respectively.
c For incomplete data, dN/2e and bN/2c time series serve as stock or change in flow (average formulaton) variables.
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factor dimensions and lag orders converge to the true ones. By contrast, more gaps deteriorate the results.

Second, for K = 1 and p = 1 the multiplier m = 1
2 struggles with finding the true factor dimension. This

is because of the definition of σ̂2 in (4.17). As the true factor dimension is one, the empirical variance

of all residuals, i.e., VPPCA (K) in Lemma 4.1.10, is already quite small for K = 1 and of course, for

K = N − 1. In total, the difference VPPCA (1) − VPPCA (K) is also very small, which m = 1
2 further

diminishes. In a nutshell, ADFMs with K = 1 and p = 1 are possibly too clean for small m.

For a better understanding of the meaning of m, we have a look at Tables 4.11-4.13 and conclude: First,

for ADFMs with 16 ≤ K ≤ 18, the multiplier m = 1
2 is too strict, since it provides 12 for the estimated

factor dimension, which is the lower limit of our tests, for all cases in Table 4.11. Fortunately, the criterion

in Lemma 4.1.11 for estimating the autoregressive order tends to the true one, even though the estimated

factor dimension is too small. Second, for N = 35 the slope argumentation in the sequel of Lemma 4.1.10

yields m = 1
33 , which properly estimates the true factor dimension for all scenarios in Table 4.12. As a

consequence, the trace R2 means in Table 4.12 clearly dominate their analogs in Table 4.11. Third, we

consider m = 1
2·33 = 1

66 in Table 4.13 for some additional sensitivity analyses. If 40% of the panel data

is missing, m = 1
66 overshoots the true factor dimension, which is reflected in slightly smaller trace R2

means than in Table 4.12. For lower ratios of missing observations, our two-step estimation method with

m = 1
66 also works well, i.e., it delivers high trace R2 means and the estimated factor dimensions and lag

orders tend towards the true values. With Tables 4.11-4.13 in mind, we recommend for empirical studies

to have m rather too small than too big.
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Table 4.7: Comparison of trace R2 means for random ADFMs using the approach of Bańbura and Modugno

(2014) and our two-step estimation method in Section 4.1

BMa CFMb CFM/BM

ratio of missing data ratio of missing data ratio of missing data

N T 0% 10% 25% 40% 0% 10% 25% 40% 0% 10% 25% 40%

K = 1, p = 1

25 100 0.95 0.94 0.94 0.93 0.96 0.95 0.95 0.94 1.01 1.01 1.01 1.01

25 250 0.97 0.97 0.96 0.96 0.97 0.97 0.97 0.96 1.00 1.00 1.00 1.00

25 500 0.98 0.98 0.97 0.97 0.98 0.98 0.98 0.97 1.00 1.00 1.00 1.00

50 100 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.96 1.01 1.01 1.01 1.01

50 250 0.98 0.98 0.97 0.97 0.98 0.98 0.98 0.98 1.00 1.00 1.00 1.00

50 500 0.99 0.99 0.98 0.98 0.99 0.99 0.98 0.98 1.00 1.00 1.00 1.00

75 100 0.96 0.95 0.95 0.95 0.97 0.96 0.96 0.96 1.01 1.01 1.01 1.01

75 250 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 1.00 1.00 1.00 1.00

75 500 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00

K = 3, p = 1

25 100 0.94 0.94 0.93 0.93 0.95 0.95 0.94 0.94 1.01 1.01 1.01 1.01

25 250 0.97 0.97 0.96 0.96 0.97 0.97 0.97 0.96 1.00 1.00 1.00 1.00

25 500 0.98 0.98 0.97 0.96 0.98 0.98 0.97 0.97 1.00 1.00 1.00 1.00

50 100 0.95 0.95 0.95 0.94 0.96 0.96 0.96 0.95 1.01 1.01 1.01 1.01

50 250 0.98 0.98 0.97 0.97 0.98 0.98 0.98 0.97 1.00 1.00 1.00 1.00

50 500 0.98 0.98 0.98 0.98 0.99 0.99 0.98 0.98 1.00 1.00 1.00 1.00

75 100 0.96 0.95 0.95 0.95 0.97 0.96 0.96 0.96 1.01 1.01 1.01 1.01

75 250 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 1.00 1.00 1.00 1.00

75 500 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00

K = 3, p = 2

25 100 0.93 0.93 0.92 0.91 0.95 0.95 0.94 0.93 1.02 1.02 1.02 1.02

25 250 0.96 0.96 0.96 0.95 0.97 0.97 0.96 0.95 1.01 1.01 1.01 1.01

25 500 0.97 0.97 0.97 0.96 0.98 0.97 0.97 0.96 1.00 1.00 1.00 1.00

50 100 0.94 0.94 0.93 0.93 0.96 0.96 0.95 0.95 1.02 1.02 1.02 1.02

50 250 0.97 0.97 0.97 0.96 0.98 0.98 0.98 0.97 1.01 1.01 1.01 1.01

50 500 0.98 0.98 0.98 0.98 0.99 0.98 0.98 0.98 1.00 1.00 1.00 1.00

75 100 0.94 0.94 0.94 0.94 0.96 0.96 0.96 0.96 1.02 1.02 1.02 1.02

75 250 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98 1.01 1.01 1.01 1.01

75 500 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.98 1.00 1.00 1.00 1.00

K = 5, p = 1

25 100 0.94 0.94 0.93 0.92 0.95 0.95 0.94 0.93 1.01 1.01 1.01 1.01

25 250 0.97 0.97 0.96 0.95 0.97 0.97 0.96 0.95 1.00 1.00 1.00 1.00

25 500 0.98 0.97 0.97 0.96 0.98 0.98 0.97 0.96 1.00 1.00 1.00 1.00

50 100 0.95 0.95 0.95 0.94 0.96 0.96 0.96 0.95 1.01 1.01 1.01 1.01

50 250 0.98 0.98 0.97 0.97 0.98 0.98 0.98 0.97 1.00 1.00 1.00 1.00

50 500 0.98 0.98 0.98 0.98 0.99 0.99 0.98 0.98 1.00 1.00 1.00 1.00

75 100 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.96 1.01 1.01 1.01 1.01

75 250 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.98 1.00 1.00 1.00 1.00

75 500 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00

K = 5, p = 2

25 100 0.93 0.93 0.92 0.90 0.95 0.95 0.94 0.93 1.02 1.02 1.02 1.03

25 250 0.96 0.96 0.95 0.94 0.97 0.97 0.96 0.95 1.01 1.01 1.01 1.01

25 500 0.97 0.97 0.96 0.95 0.98 0.97 0.97 0.95 1.00 1.00 1.00 1.00

50 100 0.94 0.94 0.93 0.93 0.96 0.96 0.95 0.95 1.02 1.02 1.02 1.03

50 250 0.97 0.97 0.97 0.96 0.98 0.98 0.98 0.97 1.01 1.01 1.01 1.01

50 500 0.98 0.98 0.98 0.97 0.99 0.98 0.98 0.98 1.00 1.00 1.00 1.00

75 100 0.94 0.94 0.94 0.94 0.96 0.96 0.96 0.96 1.02 1.02 1.02 1.02

75 250 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98 1.01 1.01 1.01 1.01

75 500 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.98 1.00 1.00 1.00 1.00

The means in columns BM and CFM are derived from 500 MC simulations for known dimensions K

and p. The ratios in column CFM/BM denote the means in column CFM divided by their

counterparts in column BM. In case of incomplete data, all time series are supposed to be stock

variables.

a Abbreviation for the estimation method in Bańbura and Modugno (2014).
b Abbreviation for closed-form factor moments, that is, the estimation method proposed in Section 4.1.



4.4. SIMULATION STUDY 97

Table 4.8: Comparison of trace R2 means for random ADFMs of higher dimension with many lags using

the approach of Bańbura and Modugno (2014) and our two-step estimation method in Section 4.1

BMa CFMb CFM/BM

ratio of missing data ratio of missing data ratio of missing data

N T 0% 10% 25% 40% 0% 10% 25% 40% 0% 10% 25% 40%

K = 5, p = 3

25 100 0.91 0.91 0.90 0.88 0.95 0.94 0.94 0.92 1.03 1.04 1.04 1.05

25 250 0.96 0.95 0.94 0.93 0.97 0.96 0.96 0.94 1.01 1.01 1.01 1.01

25 500 0.97 0.97 0.96 0.95 0.98 0.97 0.96 0.95 1.01 1.01 1.01 1.01

50 100 0.92 0.93 0.92 0.92 0.95 0.96 0.95 0.95 1.03 1.03 1.03 1.04

50 250 0.97 0.96 0.96 0.96 0.98 0.98 0.97 0.97 1.01 1.01 1.01 1.01

50 500 0.98 0.98 0.98 0.97 0.99 0.98 0.98 0.98 1.01 1.01 1.01 1.01

75 100 0.93 0.93 0.92 0.92 0.96 0.96 0.96 0.96 1.03 1.03 1.03 1.03

75 250 0.97 0.97 0.97 0.96 0.98 0.98 0.98 0.98 1.01 1.01 1.01 1.01

75 500 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.98 1.01 1.01 1.01 1.01

K = 5, p = 4

25 100 0.90 0.90 0.88 0.85 0.94 0.94 0.93 0.92 1.05 1.05 1.06 1.08

25 250 0.95 0.95 0.94 0.92 0.97 0.96 0.96 0.94 1.02 1.02 1.02 1.02

25 500 0.97 0.96 0.96 0.94 0.97 0.97 0.96 0.95 1.01 1.01 1.01 1.01

50 100 0.91 0.91 0.91 0.90 0.96 0.95 0.95 0.95 1.05 1.05 1.05 1.05

50 250 0.96 0.96 0.96 0.95 0.98 0.98 0.97 0.97 1.02 1.02 1.02 1.02

50 500 0.98 0.98 0.97 0.97 0.98 0.98 0.98 0.98 1.01 1.01 1.01 1.01

75 100 0.92 0.92 0.91 0.91 0.96 0.96 0.96 0.95 1.05 1.05 1.05 1.05

75 250 0.96 0.96 0.96 0.96 0.98 0.98 0.98 0.97 1.02 1.02 1.02 1.02

75 500 0.98 0.98 0.98 0.97 0.99 0.99 0.99 0.98 1.01 1.01 1.01 1.01

K = 6, p = 2

25 100 0.93 0.92 0.91 0.89 0.95 0.94 0.94 0.92 1.02 1.02 1.03 1.04

25 250 0.96 0.96 0.95 0.93 0.97 0.96 0.96 0.94 1.01 1.01 1.01 1.01

25 500 0.97 0.97 0.96 0.95 0.97 0.97 0.96 0.95 1.00 1.00 1.00 1.00

50 100 0.94 0.93 0.93 0.93 0.96 0.96 0.95 0.95 1.02 1.02 1.02 1.03

50 250 0.97 0.97 0.97 0.96 0.98 0.98 0.98 0.97 1.01 1.01 1.01 1.01

50 500 0.98 0.98 0.98 0.97 0.99 0.98 0.98 0.98 1.00 1.00 1.00 1.00

75 100 0.94 0.94 0.94 0.93 0.96 0.96 0.96 0.95 1.02 1.02 1.02 1.02

75 250 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98 1.01 1.01 1.01 1.01

75 500 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.98 1.00 1.00 1.00 1.00

K = 6, p = 3

25 100 0.91 0.91 0.89 0.86 0.94 0.94 0.93 0.92 1.04 1.04 1.05 1.07

25 250 0.95 0.95 0.94 0.92 0.97 0.96 0.95 0.94 1.01 1.01 1.01 1.02

25 500 0.97 0.96 0.96 0.94 0.97 0.97 0.96 0.95 1.01 1.01 1.01 1.01

50 100 0.92 0.93 0.92 0.91 0.96 0.96 0.95 0.95 1.03 1.03 1.04 1.04

50 250 0.97 0.96 0.96 0.96 0.98 0.98 0.97 0.97 1.01 1.01 1.01 1.01

50 500 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.98 1.01 1.01 1.01 1.01

75 100 0.93 0.93 0.93 0.92 0.96 0.96 0.96 0.96 1.03 1.03 1.03 1.04

75 250 0.97 0.97 0.97 0.96 0.98 0.98 0.98 0.98 1.01 1.01 1.01 1.01

75 500 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.98 1.01 1.01 1.01 1.01

K = 7, p = 3

25 100 0.91 0.91 0.88 0.83 0.95 0.94 0.93 0.91 1.04 1.04 1.05 1.09

25 250 0.95 0.95 0.94 0.91 0.97 0.96 0.95 0.93 1.01 1.01 1.02 1.02

25 500 0.97 0.96 0.95 0.94 0.97 0.97 0.96 0.94 1.01 1.01 1.01 1.01

50 100 0.92 0.92 0.92 0.91 0.96 0.95 0.95 0.95 1.03 1.03 1.04 1.04

50 250 0.96 0.96 0.96 0.96 0.98 0.98 0.97 0.97 1.01 1.01 1.01 1.01

50 500 0.98 0.98 0.97 0.97 0.98 0.98 0.98 0.98 1.01 1.01 1.01 1.01

75 100 0.93 0.93 0.93 0.92 0.96 0.96 0.96 0.95 1.03 1.03 1.03 1.04

75 250 0.97 0.97 0.97 0.96 0.98 0.98 0.98 0.98 1.01 1.01 1.01 1.01

75 500 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.98 1.01 1.01 1.01 1.01

The means in columns BM and CFM are derived from 500 MC simulations for known dimensions K

and p. The ratios in column CFM/BM denote the means in column CFM divided by their

counterparts in column BM. In case of incomplete data, all time series are supposed to be stock

variables.

a Abbreviation for the estimation method in Bańbura and Modugno (2014).
b Abbreviation for closed-form factor moments, that is, the estimation method proposed in Section 4.1.
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Table 4.9: Means of trace R2 for random ADFMs of low dimensions using our two-step estimation method

with m = 1

trace R2 estimated K estimated p

ratio of missing data ratio of missing data ratio of missing data

N T 0% 10% 25% 40% 0% 10% 25% 40% 0% 10% 25% 40%

K = 1, p = 1

25 100 0.96 0.95 0.95 0.94 1.00 1.00 1.08 1.46 1.37 1.34 1.35 1.18

25 250 0.97 0.97 0.97 0.96 1.00 1.00 1.13 1.42 1.37 1.42 1.31 1.25

25 500 0.98 0.98 0.97 0.97 1.00 1.00 1.15 1.44 1.45 1.45 1.31 1.31

50 100 0.96 0.96 0.96 0.96 1.00 1.00 1.07 1.28 1.42 1.38 1.34 1.36

50 250 0.98 0.98 0.98 0.98 1.00 1.00 1.12 1.34 1.42 1.40 1.30 1.37

50 500 0.99 0.99 0.98 0.98 1.00 1.00 1.16 1.45 1.39 1.34 1.35 1.34

75 100 0.96 0.96 0.96 0.96 1.00 1.00 1.01 1.19 1.35 1.40 1.40 1.32

75 250 0.98 0.98 0.98 0.98 1.00 1.00 1.11 1.26 1.39 1.35 1.32 1.32

75 500 0.99 0.99 0.99 0.99 1.00 1.00 1.13 1.42 1.43 1.47 1.38 1.38

K = 3, p = 1

25 100 0.95 0.95 0.93 0.89 2.99 2.98 2.91 2.77 1.04 1.08 1.07 1.09

25 250 0.97 0.97 0.96 0.94 3.00 3.00 2.97 2.92 1.05 1.04 1.04 1.06

25 500 0.98 0.98 0.97 0.96 3.00 3.00 2.99 2.96 1.05 1.04 1.02 1.06

50 100 0.96 0.96 0.96 0.95 3.00 3.00 3.00 2.97 1.05 1.07 1.05 1.08

50 250 0.98 0.98 0.98 0.97 3.00 3.00 3.00 3.00 1.04 1.04 1.04 1.06

50 500 0.99 0.99 0.98 0.98 3.00 3.00 3.00 3.00 1.03 1.05 1.04 1.04

75 100 0.96 0.96 0.96 0.96 3.00 3.00 3.00 3.00 1.05 1.06 1.09 1.05

75 250 0.98 0.98 0.98 0.98 3.00 3.00 3.00 3.00 1.05 1.04 1.04 1.04

75 500 0.99 0.99 0.99 0.99 3.00 3.00 3.00 3.00 1.04 1.05 1.05 1.05

K = 3, p = 2

25 100 0.95 0.94 0.92 0.87 2.99 2.98 2.89 2.72 1.65 1.74 1.69 1.76

25 250 0.97 0.97 0.96 0.93 3.00 3.00 2.98 2.90 2.03 2.02 2.04 2.02

25 500 0.98 0.97 0.97 0.94 3.00 3.00 2.99 2.93 2.04 2.04 2.05 2.04

50 100 0.96 0.96 0.96 0.94 3.00 3.00 3.00 2.95 1.72 1.78 1.72 1.70

50 250 0.98 0.98 0.98 0.97 3.00 3.00 3.00 3.00 2.03 2.03 2.04 2.03

50 500 0.99 0.98 0.98 0.98 3.00 3.00 3.00 3.00 2.03 2.03 2.06 2.06

75 100 0.96 0.96 0.96 0.96 3.00 3.00 3.00 3.00 1.68 1.71 1.76 1.78

75 250 0.98 0.98 0.98 0.98 3.00 3.00 3.00 3.00 2.05 2.04 2.02 2.03

75 500 0.99 0.99 0.99 0.98 3.00 3.00 3.00 3.00 2.05 2.05 2.05 2.06

K = 5, p = 1

25 100 0.78 0.74 0.68 0.60 3.74 3.50 3.16 2.74 1.01 1.03 1.05 1.04

25 250 0.83 0.80 0.74 0.65 4.08 3.91 3.57 3.10 1.01 1.02 1.03 1.05

25 500 0.85 0.83 0.77 0.68 4.17 4.08 3.75 3.32 1.00 1.01 1.02 1.06

50 100 0.92 0.89 0.83 0.74 4.62 4.39 3.95 3.44 1.01 1.01 1.02 1.04

50 250 0.97 0.96 0.93 0.86 4.96 4.89 4.65 4.18 1.00 1.00 1.01 1.02

50 500 0.98 0.98 0.96 0.91 4.99 4.97 4.85 4.52 1.00 1.00 1.01 1.01

75 100 0.96 0.94 0.89 0.82 4.93 4.75 4.36 3.87 1.01 1.01 1.01 1.02

75 250 0.98 0.98 0.98 0.94 5.00 5.00 4.96 4.74 1.00 1.01 1.00 1.01

75 500 0.99 0.99 0.99 0.98 5.00 5.00 5.00 4.96 1.01 1.00 1.01 1.00

K = 5, p = 2

25 100 0.77 0.72 0.64 0.56 3.78 3.45 3.05 2.64 1.60 1.62 1.72 1.80

25 250 0.83 0.79 0.71 0.61 4.13 3.90 3.49 3.05 1.99 1.99 2.01 1.99

25 500 0.85 0.81 0.74 0.64 4.23 4.06 3.67 3.21 2.00 2.01 2.01 2.01

50 100 0.92 0.88 0.79 0.70 4.70 4.36 3.82 3.29 1.47 1.56 1.66 1.79

50 250 0.98 0.97 0.93 0.83 4.99 4.93 4.68 4.10 1.98 1.99 1.99 2.00

50 500 0.98 0.98 0.96 0.89 4.99 4.98 4.83 4.45 2.01 2.00 2.00 2.00

75 100 0.95 0.94 0.87 0.79 4.94 4.83 4.28 3.73 1.44 1.48 1.59 1.71

75 250 0.98 0.98 0.98 0.94 5.00 5.00 4.97 4.72 1.99 1.99 2.00 1.99

75 500 0.99 0.99 0.99 0.98 5.00 5.00 5.00 4.97 2.01 2.00 2.00 2.00

The means in column trace R2 are derived from 500 MC simulations for unknown dimensions K and p.

Therefore, columns two and three show the corresponding means of the estimted factor dimension K

and lag length p. In case of incomplete data, all time series are supposed to be stock variables.
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Table 4.10: Means of trace R2 for random ADFMs of low dimensions using our two-step estimation

method with m = 1
2

trace R2 estimated K estimated p

ratio of missing data ratio of missing data ratio of missing data

N T 0% 10% 25% 40% 0% 10% 25% 40% 0% 10% 25% 40%

K = 1, p = 1

25 100 0.96 0.95 0.95 0.94 2.70 2.90 3.52 4.06 0.81 0.77 0.66 0.59

25 250 0.97 0.97 0.97 0.96 2.13 2.58 3.64 4.33 1.09 1.03 0.89 0.86

25 500 0.98 0.98 0.98 0.97 1.76 2.23 3.48 4.47 1.19 1.12 0.99 0.96

50 100 0.96 0.96 0.96 0.96 1.61 2.11 3.58 4.41 1.13 0.95 0.68 0.63

50 250 0.98 0.98 0.98 0.97 1.20 1.63 3.78 5.28 1.27 1.21 0.90 0.75

50 500 0.99 0.99 0.98 0.98 1.04 1.24 3.35 5.41 1.41 1.33 1.01 0.91

75 100 0.96 0.96 0.96 0.96 1.10 1.62 3.58 4.79 1.34 1.09 0.74 0.53

75 250 0.98 0.98 0.98 0.98 1.02 1.26 3.66 5.73 1.44 1.32 0.94 0.73

75 500 0.99 0.99 0.99 0.99 1.00 1.06 3.27 6.12 1.43 1.41 1.00 0.91

K = 3, p = 1

25 100 0.95 0.95 0.94 0.94 3.00 3.00 3.00 3.01 1.04 1.04 1.06 1.06

25 250 0.97 0.97 0.97 0.96 3.00 3.00 3.00 3.01 1.03 1.02 1.06 1.04

25 500 0.98 0.98 0.97 0.97 3.00 3.00 3.00 3.01 1.04 1.05 1.03 1.03

50 100 0.96 0.96 0.96 0.95 3.00 3.00 3.00 3.01 1.06 1.07 1.06 1.07

50 250 0.98 0.98 0.98 0.97 3.00 3.00 3.00 3.03 1.03 1.06 1.05 1.06

50 500 0.99 0.99 0.98 0.98 3.00 3.00 3.00 3.01 1.06 1.05 1.04 1.03

75 100 0.96 0.96 0.96 0.96 3.00 3.00 3.00 3.00 1.05 1.06 1.05 1.10

75 250 0.98 0.98 0.98 0.98 3.00 3.00 3.00 3.01 1.04 1.06 1.04 1.05

75 500 0.99 0.99 0.99 0.99 3.00 3.00 3.00 3.01 1.05 1.03 1.03 1.04

K = 3, p = 2

25 100 0.95 0.95 0.94 0.93 3.00 3.00 3.00 3.01 1.67 1.67 1.63 1.65

25 250 0.97 0.97 0.96 0.95 3.00 3.00 3.00 3.00 2.04 2.01 2.03 2.01

25 500 0.98 0.98 0.97 0.96 3.00 3.00 3.00 3.02 2.05 2.03 2.03 2.04

50 100 0.96 0.95 0.96 0.95 3.00 3.00 3.00 3.01 1.72 1.75 1.77 1.76

50 250 0.98 0.98 0.98 0.97 3.00 3.00 3.00 3.02 2.03 2.05 2.03 2.05

50 500 0.99 0.98 0.98 0.98 3.00 3.00 3.00 3.02 2.03 2.04 2.06 2.04

75 100 0.96 0.96 0.96 0.96 3.00 3.00 3.00 3.00 1.70 1.72 1.76 1.73

75 250 0.98 0.98 0.98 0.98 3.00 3.00 3.00 3.01 2.04 2.03 2.04 2.04

75 500 0.99 0.99 0.99 0.98 3.00 3.00 3.00 3.02 2.03 2.04 2.04 2.05

K = 5, p = 1

25 100 0.94 0.92 0.90 0.87 4.87 4.75 4.65 4.50 1.01 1.01 1.01 1.01

25 250 0.97 0.96 0.95 0.92 4.95 4.95 4.90 4.79 1.00 1.00 1.00 1.01

25 500 0.97 0.97 0.96 0.94 4.96 4.97 4.92 4.85 1.00 1.00 1.00 1.01

50 100 0.96 0.96 0.95 0.95 5.00 5.00 4.98 4.91 1.00 1.01 1.01 1.01

50 250 0.98 0.98 0.98 0.97 5.00 5.00 5.00 5.00 1.01 1.01 1.00 1.00

50 500 0.99 0.99 0.98 0.98 5.00 5.00 5.00 5.00 1.00 1.00 1.01 1.00

75 100 0.96 0.96 0.96 0.96 5.00 5.00 5.00 4.99 1.00 1.00 1.01 1.01

75 250 0.98 0.98 0.98 0.98 5.00 5.00 5.00 5.00 1.00 1.00 1.00 1.01

75 500 0.99 0.99 0.99 0.99 5.00 5.00 5.00 5.00 1.00 1.00 1.00 1.00

K = 5, p = 2

25 100 0.94 0.92 0.89 0.85 4.88 4.78 4.60 4.47 1.35 1.42 1.43 1.47

25 250 0.96 0.96 0.94 0.91 4.96 4.95 4.88 4.78 1.98 1.99 1.99 1.97

25 500 0.97 0.97 0.95 0.93 4.98 4.96 4.92 4.85 2.00 2.00 2.00 2.00

50 100 0.96 0.96 0.95 0.94 5.00 5.00 4.98 4.92 1.45 1.46 1.43 1.47

50 250 0.98 0.98 0.98 0.97 5.00 5.00 5.00 5.00 1.99 1.99 1.99 2.00

50 500 0.99 0.98 0.98 0.98 5.00 5.00 5.00 5.00 2.00 2.01 2.00 2.00

75 100 0.96 0.96 0.96 0.96 5.00 5.00 5.00 4.99 1.46 1.42 1.42 1.41

75 250 0.98 0.98 0.98 0.98 5.00 5.00 5.00 5.00 1.99 1.99 2.00 1.98

75 500 0.99 0.99 0.99 0.98 5.00 5.00 5.00 5.00 2.00 2.00 2.00 2.01

The means in column trace R2 are derived from 500 MC simulations for unknown dimensions K and p.

Therefore, columns two and three show the corresponding means of the estimted factor dimension K

and lag length p. In case of incomplete data, all time series are supposed to be stock variables.
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Table 4.11: Means of trace R2 for random ADFMs of large dimensions using our two-step estimation

method with m = 1
2

trace R2 estimated K estimated p

ratio of missing data ratio of missing data ratio of missing data

N T 0% 10% 25% 40% 0% 10% 25% 40% 0% 10% 25% 40%

K = 16, p = 1

30 300 0.78 0.78 0.75 0.71 12.00 12.00 12.00 12.00 1.00 1.00 1.00 1.00

30 350 0.78 0.77 0.75 0.71 12.00 12.00 12.00 12.00 1.00 1.00 1.00 1.00

30 400 0.78 0.77 0.75 0.71 12.00 12.00 12.00 12.00 1.00 1.00 1.00 1.00

35 300 0.79 0.78 0.76 0.73 12.00 12.00 12.00 12.00 1.00 1.00 1.00 1.00

35 350 0.79 0.78 0.76 0.73 12.00 12.00 12.00 12.00 1.00 1.00 1.00 1.00

35 400 0.78 0.78 0.76 0.73 12.00 12.00 12.00 12.00 1.00 1.00 1.00 1.00

40 300 0.79 0.79 0.77 0.75 12.00 12.00 12.00 12.00 1.00 1.00 1.00 1.00

40 350 0.79 0.78 0.77 0.75 12.00 12.00 12.00 12.00 1.00 1.00 1.00 1.00

40 400 0.79 0.78 0.77 0.74 12.00 12.00 12.00 12.00 1.00 1.00 1.00 1.00

K = 16, p = 2

30 300 0.77 0.76 0.74 0.69 12.00 12.00 12.00 12.00 1.82 1.84 1.83 1.79

30 350 0.77 0.76 0.74 0.69 12.00 12.00 12.00 12.00 1.97 1.97 1.96 1.95

30 400 0.77 0.76 0.74 0.69 12.00 12.00 12.00 12.00 1.99 1.99 1.99 1.99

35 300 0.78 0.77 0.75 0.72 12.00 12.00 12.00 12.00 1.87 1.87 1.87 1.82

35 350 0.78 0.77 0.75 0.71 12.00 12.00 12.00 12.00 1.97 1.97 1.95 1.96

35 400 0.77 0.77 0.75 0.71 12.00 12.00 12.00 12.00 1.99 1.99 2.00 1.99

40 300 0.78 0.78 0.76 0.73 12.00 12.00 12.00 12.00 1.92 1.86 1.88 1.89

40 350 0.78 0.77 0.76 0.73 12.00 12.00 12.00 12.00 1.97 1.98 1.98 1.98

40 400 0.78 0.77 0.76 0.73 12.00 12.00 12.00 12.00 1.99 1.99 2.00 2.00

K = 17, p = 1

30 300 0.75 0.74 0.72 0.67 12.00 12.00 12.00 12.00 1.00 1.00 1.00 1.00

30 350 0.75 0.74 0.71 0.67 12.00 12.00 12.00 12.00 1.00 1.00 1.00 1.00

30 400 0.74 0.73 0.71 0.67 12.00 12.00 12.00 12.00 1.00 1.00 1.00 1.00

35 300 0.75 0.75 0.73 0.69 12.00 12.00 12.00 12.00 1.00 1.00 1.00 1.00

35 350 0.75 0.74 0.73 0.69 12.00 12.00 12.00 12.00 1.00 1.00 1.00 1.00

35 400 0.75 0.74 0.72 0.69 12.00 12.00 12.00 12.00 1.00 1.00 1.00 1.00

40 300 0.76 0.75 0.74 0.71 12.00 12.00 12.00 12.00 1.00 1.00 1.00 1.00

40 350 0.76 0.75 0.73 0.70 12.00 12.00 12.00 12.00 1.00 1.00 1.00 1.00

40 400 0.75 0.75 0.73 0.70 12.00 12.00 12.00 12.00 1.00 1.00 1.00 1.00

K = 17, p = 2

30 300 0.74 0.73 0.70 0.66 12.00 12.00 12.00 12.00 1.80 1.78 1.81 1.77

30 350 0.73 0.72 0.70 0.65 12.00 12.00 12.00 12.00 1.95 1.96 1.94 1.92

30 400 0.73 0.72 0.70 0.65 12.00 12.00 12.00 12.00 1.98 1.98 1.99 1.98

35 300 0.74 0.73 0.71 0.68 12.00 12.00 12.00 12.00 1.88 1.83 1.84 1.83

35 350 0.74 0.73 0.71 0.67 12.00 12.00 12.00 12.00 1.97 1.95 1.97 1.95

35 400 0.74 0.73 0.71 0.67 12.00 12.00 12.00 12.00 2.00 2.00 2.00 1.99

40 300 0.75 0.74 0.72 0.69 12.00 12.00 12.00 12.00 1.89 1.87 1.88 1.89

40 350 0.74 0.74 0.72 0.69 12.00 12.00 12.00 12.00 1.97 1.98 1.98 1.98

40 400 0.74 0.73 0.72 0.69 12.00 12.00 12.00 12.00 2.00 2.00 1.99 1.99

K = 18, p = 2

30 300 0.70 0.69 0.67 0.62 12.00 12.00 12.00 12.00 1.76 1.78 1.78 1.73

30 350 0.70 0.69 0.66 0.62 12.00 12.00 12.00 12.00 1.93 1.94 1.94 1.93

30 400 0.70 0.69 0.66 0.62 12.00 12.00 12.00 12.00 1.98 1.98 2.00 1.98

35 300 0.71 0.70 0.68 0.64 12.00 12.00 12.00 12.00 1.80 1.81 1.84 1.81

35 350 0.70 0.70 0.68 0.64 12.00 12.00 12.00 12.00 1.97 1.97 1.95 1.95

35 400 0.70 0.69 0.67 0.64 12.00 12.00 12.00 12.00 1.98 1.99 1.98 1.98

40 300 0.71 0.71 0.69 0.66 12.00 12.00 12.00 12.00 1.87 1.87 1.87 1.86

40 350 0.71 0.70 0.68 0.65 12.00 12.00 12.00 12.00 1.97 1.96 1.97 1.96

40 400 0.71 0.70 0.68 0.65 12.00 12.00 12.00 12.00 1.99 1.99 2.00 1.99

The means in column trace R2 are derived from 500 MC simulations for unknown dimensions K and p.

Therefore, columns two and three show the corresponding means of the estimted factor dimension K

and lag length p. In case of incomplete data, all time series are supposed to be stock variables.
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Table 4.12: Means of trace R2 for random ADFMs of large dimensions using our two-step estimation

method with m = 1
33

trace R2 estimated K estimated p

ratio of missing data ratio of missing data ratio of missing data

N T 0% 10% 25% 40% 0% 10% 25% 40% 0% 10% 25% 40%

K = 16, p = 1

30 300 0.97 0.96 0.94 0.84 15.98 15.96 15.99 17.79 1.00 1.00 1.00 1.00

30 350 0.97 0.96 0.94 0.85 15.96 15.99 15.99 17.38 1.00 1.00 1.00 1.00

30 400 0.97 0.96 0.94 0.85 15.98 15.98 15.99 17.06 1.00 1.00 1.00 1.00

35 300 0.97 0.97 0.96 0.90 16.00 16.00 16.01 17.04 1.00 1.00 1.00 1.00

35 350 0.98 0.97 0.96 0.90 16.00 16.00 16.00 17.03 1.00 1.00 1.00 1.00

35 400 0.98 0.97 0.96 0.90 16.00 16.00 16.01 16.95 1.00 1.00 1.00 1.00

40 300 0.98 0.97 0.97 0.92 16.00 16.00 16.01 17.27 1.00 1.00 1.00 1.00

40 350 0.98 0.98 0.97 0.92 16.00 16.00 16.01 17.08 1.00 1.00 1.00 1.00

40 400 0.98 0.98 0.97 0.93 16.00 16.00 16.01 16.91 1.00 1.00 1.00 1.00

K = 16, p = 2

30 300 0.96 0.96 0.93 0.81 15.98 15.98 16.03 19.36 1.53 1.56 1.50 1.06

30 350 0.97 0.96 0.93 0.82 15.98 15.99 16.03 18.89 1.84 1.83 1.74 1.17

30 400 0.97 0.96 0.93 0.83 15.99 15.99 16.00 18.32 1.94 1.96 1.92 1.41

35 300 0.97 0.97 0.95 0.88 16.00 16.00 16.02 17.55 1.66 1.60 1.57 1.31

35 350 0.97 0.97 0.95 0.89 16.00 16.00 16.02 17.40 1.84 1.85 1.83 1.49

35 400 0.97 0.97 0.95 0.88 16.00 16.00 16.01 17.48 1.95 1.97 1.96 1.59

40 300 0.97 0.97 0.96 0.92 16.00 16.00 16.01 17.34 1.66 1.66 1.65 1.41

40 350 0.98 0.97 0.96 0.91 16.00 16.00 16.02 17.49 1.89 1.89 1.88 1.53

40 400 0.98 0.97 0.96 0.91 16.00 16.00 16.03 17.43 1.97 1.97 1.95 1.65

K = 17, p = 1

30 300 0.96 0.95 0.93 0.82 16.92 16.88 16.92 18.74 1.00 1.00 1.00 1.00

30 350 0.97 0.96 0.93 0.83 16.91 16.88 16.90 18.33 1.00 1.00 1.00 1.00

30 400 0.97 0.96 0.93 0.83 16.94 16.91 16.92 18.19 1.00 1.00 1.00 1.00

35 300 0.97 0.97 0.95 0.89 16.99 16.99 16.99 17.80 1.00 1.00 1.00 1.00

35 350 0.97 0.97 0.95 0.89 17.00 17.00 17.00 17.72 1.00 1.00 1.00 1.00

35 400 0.98 0.97 0.95 0.89 16.99 16.99 17.00 17.68 1.00 1.00 1.00 1.00

40 300 0.98 0.97 0.96 0.91 17.00 17.00 17.00 18.00 1.00 1.00 1.00 1.00

40 350 0.98 0.97 0.96 0.92 17.00 17.00 17.00 17.78 1.00 1.00 1.00 1.00

40 400 0.98 0.98 0.97 0.92 17.00 17.00 17.00 17.62 1.00 1.00 1.00 1.00

K = 17, p = 2

30 300 0.96 0.95 0.91 0.79 16.92 16.92 16.95 19.85 1.40 1.41 1.31 1.03

30 350 0.96 0.95 0.92 0.80 16.95 16.93 16.95 19.58 1.76 1.75 1.65 1.13

30 400 0.96 0.95 0.92 0.80 16.95 16.95 16.94 19.19 1.91 1.89 1.87 1.32

35 300 0.97 0.96 0.95 0.87 16.99 17.00 17.00 18.37 1.45 1.46 1.46 1.21

35 350 0.97 0.97 0.95 0.88 16.99 17.00 17.00 18.07 1.79 1.79 1.74 1.46

35 400 0.97 0.97 0.95 0.88 17.00 17.00 17.01 17.99 1.95 1.93 1.91 1.64

40 300 0.97 0.97 0.96 0.91 17.00 17.00 17.01 17.95 1.53 1.55 1.51 1.37

40 350 0.98 0.97 0.96 0.91 17.00 17.00 17.01 18.16 1.81 1.81 1.81 1.51

40 400 0.98 0.97 0.96 0.91 17.00 17.00 17.00 18.08 1.94 1.95 1.94 1.65

K = 18, p = 2

30 300 0.96 0.94 0.90 0.77 17.82 17.81 17.82 20.46 1.28 1.32 1.26 1.01

30 350 0.96 0.95 0.90 0.77 17.78 17.83 17.82 20.19 1.65 1.61 1.52 1.07

30 400 0.96 0.95 0.91 0.78 17.84 17.81 17.83 19.89 1.88 1.85 1.80 1.20

35 300 0.97 0.96 0.94 0.86 17.99 17.98 17.99 19.43 1.39 1.35 1.35 1.11

35 350 0.97 0.96 0.94 0.86 17.99 17.99 17.99 19.00 1.69 1.70 1.65 1.40

35 400 0.97 0.97 0.94 0.86 17.99 17.99 17.98 18.81 1.89 1.90 1.88 1.56

40 300 0.97 0.97 0.95 0.90 18.00 18.00 18.01 18.61 1.44 1.37 1.40 1.24

40 350 0.98 0.97 0.96 0.91 18.00 18.00 18.01 18.65 1.75 1.79 1.72 1.53

40 400 0.98 0.97 0.96 0.91 18.00 18.00 18.00 18.64 1.91 1.91 1.93 1.71

The means in column trace R2 are derived from 500 MC simulations for unknown dimensions K and p.

Therefore, columns two and three show the corresponding means of the estimted factor dimension K

and lag length p. In case of incomplete data, all time series are supposed to be stock variables.
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Table 4.13: Means of trace R2 for random ADFMs of large dimensions using our two-step estimation

method with m = 1
66

trace R2 estimated K estimated p

ratio of missing data ratio of missing data ratio of missing data

N T 0% 10% 25% 40% 0% 10% 25% 40% 0% 10% 25% 40%

K = 16, p = 1

30 300 0.97 0.96 0.93 0.81 16.00 16.00 16.80 21.87 1.00 1.00 1.00 1.00

30 350 0.97 0.96 0.93 0.82 16.00 16.00 16.73 21.82 1.00 1.00 1.00 1.00

30 400 0.97 0.96 0.93 0.83 16.00 16.00 16.59 21.77 1.00 1.00 1.00 1.00

35 300 0.97 0.97 0.95 0.88 16.00 16.00 16.40 21.89 1.00 1.00 1.00 1.00

35 350 0.97 0.97 0.95 0.89 16.00 16.00 16.35 21.81 1.00 1.00 1.00 1.00

35 400 0.98 0.97 0.96 0.89 16.00 16.00 16.18 21.62 1.00 1.00 1.00 1.00

40 300 0.98 0.97 0.96 0.93 16.00 16.01 16.18 21.03 1.00 1.00 1.00 1.00

40 350 0.98 0.98 0.97 0.93 16.00 16.00 16.18 20.11 1.00 1.00 1.00 1.00

40 400 0.98 0.98 0.97 0.94 16.00 16.01 16.14 19.48 1.00 1.00 1.00 1.00

K = 16, p = 2

30 300 0.97 0.96 0.91 0.79 16.00 16.01 17.62 21.97 1.56 1.58 1.23 1.00

30 350 0.97 0.96 0.91 0.80 16.00 16.00 17.49 21.95 1.79 1.84 1.42 1.00

30 400 0.97 0.96 0.92 0.80 16.00 16.00 17.33 21.93 1.92 1.95 1.61 1.01

35 300 0.97 0.97 0.94 0.86 16.00 16.01 17.10 21.99 1.60 1.64 1.35 0.97

35 350 0.97 0.97 0.95 0.87 16.00 16.01 16.77 21.98 1.88 1.89 1.64 1.00

35 400 0.97 0.97 0.95 0.88 16.00 16.00 16.45 21.96 1.97 1.94 1.86 1.03

40 300 0.97 0.97 0.96 0.91 16.00 16.02 16.50 21.84 1.68 1.67 1.51 0.92

40 350 0.98 0.97 0.96 0.92 16.00 16.01 16.32 21.63 1.89 1.89 1.83 1.03

40 400 0.98 0.97 0.96 0.92 16.00 16.01 16.23 21.30 1.96 1.96 1.93 1.19

K = 17, p = 1

30 300 0.97 0.96 0.92 0.80 17.00 17.00 17.66 21.90 1.00 1.00 1.00 1.00

30 350 0.97 0.96 0.92 0.80 17.00 17.00 17.56 21.87 1.00 1.00 1.00 1.00

30 400 0.97 0.96 0.92 0.81 17.00 17.00 17.48 21.84 1.00 1.00 1.00 1.00

35 300 0.97 0.97 0.95 0.87 17.00 17.00 17.39 21.95 1.00 1.00 1.00 1.00

35 350 0.97 0.97 0.95 0.87 17.00 17.00 17.31 21.92 1.00 1.00 1.00 1.00

35 400 0.98 0.97 0.95 0.88 17.00 17.00 17.20 21.81 1.00 1.00 1.00 1.00

40 300 0.98 0.97 0.96 0.92 17.00 17.00 17.20 21.39 1.00 1.00 1.00 1.00

40 350 0.98 0.97 0.96 0.92 17.00 17.00 17.15 21.03 1.00 1.00 1.00 1.00

40 400 0.98 0.98 0.96 0.93 17.00 17.00 17.11 20.18 1.00 1.00 1.00 1.00

K = 17, p = 2

30 300 0.96 0.95 0.90 0.78 17.00 17.00 18.32 21.97 1.41 1.39 1.18 1.00

30 350 0.96 0.96 0.91 0.78 17.00 17.00 18.15 21.97 1.76 1.71 1.35 1.00

30 400 0.97 0.96 0.91 0.79 17.00 17.00 17.95 21.97 1.92 1.88 1.59 1.02

35 300 0.97 0.96 0.94 0.85 17.00 17.00 17.98 22.00 1.49 1.48 1.29 0.99

35 350 0.97 0.97 0.94 0.86 17.00 17.01 17.70 21.98 1.79 1.78 1.53 1.01

35 400 0.97 0.97 0.95 0.86 17.00 17.00 17.38 21.99 1.92 1.93 1.85 1.06

40 300 0.97 0.97 0.96 0.91 17.00 17.01 17.47 21.95 1.54 1.54 1.44 0.95

40 350 0.98 0.97 0.96 0.91 17.00 17.00 17.28 21.77 1.82 1.81 1.71 1.06

40 400 0.98 0.97 0.96 0.92 17.00 17.01 17.21 21.66 1.96 1.96 1.91 1.16

K = 18, p = 2

30 300 0.96 0.95 0.90 0.76 17.99 18.00 18.79 21.99 1.28 1.29 1.13 1.00

30 350 0.96 0.95 0.90 0.76 18.00 18.00 18.80 21.98 1.61 1.57 1.33 1.00

30 400 0.96 0.95 0.90 0.77 18.00 18.00 18.71 21.97 1.85 1.82 1.56 1.02

35 300 0.97 0.96 0.93 0.84 18.00 18.00 18.74 22.00 1.32 1.40 1.22 1.00

35 350 0.97 0.96 0.93 0.85 18.00 18.00 18.52 22.00 1.71 1.69 1.48 1.02

35 400 0.97 0.97 0.94 0.85 18.00 18.00 18.42 21.99 1.91 1.88 1.71 1.10

40 300 0.97 0.97 0.95 0.90 18.00 18.01 18.36 21.98 1.45 1.44 1.33 0.98

40 350 0.98 0.97 0.95 0.90 18.00 18.01 18.31 21.95 1.74 1.71 1.62 1.07

40 400 0.98 0.97 0.96 0.91 18.00 18.00 18.15 21.85 1.90 1.92 1.86 1.21

The means in column trace R2 are derived from 500 MC simulations for unknown dimensions K and p.

Therefore, columns two and three show the corresponding means of the estimted factor dimension K

and lag length p. In case of incomplete data, all time series are supposed to be stock variables.
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4.5 Empirical Application

This section applies the developed framework to real-world data. Because of its importance, liquidity and

size, we focus on the US stock market represented by the S&P500. Diverse publication conventions and

delays require us to declare, when we run our updates. From a business perspective the period between the

end of trading on Friday and its restart on Monday is reasonable. On the one hand, there is plenty of time

after the day-to-day business is done. On the other hand, there is enough time left to prepare changes in

existing asset allocations triggered by the gained information, e.g., the weekly prediction intervals, until

the stock exchange reopens. In this example, we have a weekly horizon such that the obtained prediction

intervals cover the expected S&P500 log-return until the next Friday.

At the beginning, we describe our panel data. For the convenience of the reader, we summarize the panel

data including its sources in Appendix B.2. Here, we mention some characteristics of the raw information,

explain the preprocessing of the inputs and state the data types (stock, flow or change in flow variable)

of the transformed time series. Some inputs are related with each other, therefore, we group them, before

we analyze the drivers of the predicted log-returns. This improves the clarity of our results, in particular,

when we illustrate them.

US Treasuries rank among the most important assets for investors. They offer a steady income (coupons,

accrued interest and profits, if bought below par) and are deemed as comparably less risky. The Treasuries’

market size and liquidity support their trading. Their risk-return profile affects investors in their asset

allocation decisions and hence, in their willingness to buy or sell stocks, which finally moves the S&P500.

This is why our panel data comprises constant maturity rates of US Treasuries for maturities of three

months up to ten years. For stationarity reasons, we use changes, i.e., first differences, in the weekly rates.

Those are regarded as stock variables, as there are no data gaps.

Corporate Bonds and London Interbank Offered Rates (LIBOR) provide further investment opportunities

and thus, also influence portfolio decisions. To take US Corporate Bonds into account we add proper yields

and spreads published by Moody’s and Merrill Lynch to our panel data. In terms of LIBOR, we use rates

for maturies of one month until twelve months. As before, we determine differences between weekly rates

to bypass potential stationarity violations and treat them as stock variables.

Foreign Exchange (FX) Rates and Gold are investment possibilities, which enable investors to leave the

USD. For clarity reasons, we therefore form the joint driver FX&Gold. As their quotes are always positive,

we take their weekly log-returns to ensure stationarity. Again, there are no missing observations and so,

those serve as stock variables.

So far, our panel data is complete and only covers financial information. The intention behind and area of

application affect how real-economy data is interpreted. This is why our subsequent classification serves

as an example. The first macroeconomic pillar collects all drivers of the Demand for goods and services.

The lower the Unemployment Rate, the more people spend and invest money. Similarly, the higher the

Personal Income, the more money for spending and investing is available. The higher the Personal Savings

Rate, the less money is spent for consumption, but the demand for stocks may increase. As measure of

real consumption, we add the Personal Consumption Expenditures. In addition, the Governmental Total

Expenditures affect the demand side. In case of Unemployment and Personal Savings Rate, the difference

between two subsequent months serves as average formulation of a change in flow variable. For Personal

Income, Personal Consumption Expenditures and Governmental Total Expenditures the annualized log-

returns take the role of average versions of flow variables.
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GDP, Industrial Production Index, Real Exports of Goods & Services and Real Imports of Goods & Ser-

vices build the second macroeconomic pillar measuring Supply. For stationarity reasons, their annualized

log-returns are regarded as flow variables (average formulation).

GDP aggregates the worth of all goods and services an economy produces within a certain period of time,

e.g., one year. For the US this value is expressed in USD. If an increase in GDP occurs, the figure itself

does not provide any information whether the output was boosted, prices raised or a mixture of both was

causal. To partially overcome this problem the third pillar, which comprises the Consumer Price Index for

All Urban Consumers and the Producer Price Index for All Commodities, reveals how Inflation evolves.

In this context, the annualized log-returns of both enter our investigations and serve as average versions

of flow variables.

Next, we summarize some general facts. The overall sample ranges from January 15, 1999 until February

5, 2016 and is weekly updated. We specify a rolling window of 364 weeks, i.e., seven years, such that the

period from January 15, 1999 until December 30, 2005 constitutes our insample period. Based on this we

construct the first prediction interval for the S&P500 log-return from December 30, 2005 until January 6,

2006. Then, we shift the rolling window by one week and repeat all steps (including model selection and

parameter estimation) to derive the second prediction interval. In the sequel, we proceed in this way until

the sample end is reached. As the length of the rolling window is kept, the estimated contributions remain

comparable, when time goes by. Furthermore, our prediction intervals react on structural changes, e.g.,

crises, more quickly compared to an increasing insample period. As upper limits of the factor dimension,

factor lags and return lags we choose K̄ = 22, p̄ = 4 and q̄ = 5, respectively. For the termination criteria,

we have: ξ = 10−2, η = 10−2, ηF = 10−6, η ˜F
= 10−6 and η ˜B

= 10−3. Note, the latter criteria control,

when the infinite series of the covariance matrices Σ ˜F
in (A.4) or Σ ˜B

in (A.8) are truncated. Hence, we

work with their MA(∞) versions instead of the vectorized solutions in (A.6) or (A.10). To avoid any bias

caused by simulation each prediction interval relies on C = 500 trajectories.

Based on the above settings, Algorithm 4.2.1 provides the prediction intervals in Figure 4.1, which cover

S&P500 log-returns for the subsequent week. To be precise, the light gray area reveals the 50%-prediction

intervals, while the black areas specify the 90%-prediction intervals. Here, each new, slightly darker area

increases the prediction level by 10%. In addition, the red line shows the afterwards realized S&P500

log-returns and so, displays, when the afterwards realized returns exceed the prediction intervals. At first

glance, the prediction intervals cover the S&P500 log-returns quite well, as there is a moderate number of

interval outliers. However, during the financial crisis in 2008/2009 we have a cluster of interval outliers,

which calls for further analyses. Perhaps, the additional inclusion of regime-switching concepts remedies

this circumstance. Now, we just describe our first findings. Later on, we discuss our results from a financial

point of view, before we do the same from a statistical perspective. That is, we behave as in Section 3.2.

As supplement to Figure 4.1, Figure 4.2 breaks the means of the predicted S&P500 log-returns down into

the contributions of our panel data groups. In contrast to Figure 4.1, where Factor and AR Risks widened

the prediction intervals, both do not matter in Figure 4.2. This makes sense, as we average the predicted

returns, whose Factor and AR Risks are assumed to have zero mean. Dark and light blue areas detect

how financial data affected our return predictions. In particular, during the financial crisis in 2008/2009

as well as in the years 2010-2012, when the US Federal Reserve intervened on captial markets in the form

of its quantitative easing programs, financial aspects mainly drove our return predictions. Since the year

2012, the decomposition is more scattered and changes quite often. That is, macroeconomic and financial

events matter. Figure 4.3 also supports the hypothesis that exogenous information increasingly affected

the S&P500 log-returns in recent years. Although the factor dimension stayed within the range [15, 16]
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Figure 4.1: Prediction intervals for S&P500 log-returns of the subsequent week (gray and black areas) and

afterwards realized S&P500 log-returns (red line). The light gray area reveals the 50%-prediction intervals,

whereas the black areas define the 90%-prediction intervals. Here, the prediction level gradually increases

by 10% for each new, slightly darker area.

Figure 4.2: Decomposition of the S&P500 log-returns predicted for the next week.

Figure 4.3: Dimensions and lag orders of factors or returns of the predicted S&P500 log-returns.



106 CHAPTER 4. ESTIMATION OF APPROXIMATE DYNAMIC FACTOR MODELS

and we had for the autoregressive return order q̃ = 4, from mid-2013 until mid-2015 the factor lags p and

p̃ increased. Hence, our estimation method indicated a more complex ADFM and ARX modeling.

After these first impressions, we now turn our attention to some financial characteristics of the presented

approach. So far, the prediction intervals in Figure 4.1 seem to properly map the behavior of the S&P500

log-returns. Therefore, we investigate whether the trading strategies in (4.36) and (4.37) benefit from this.

Here, we abbreviate the trading strategy from (4.36) based on the 50%-prediction intervals by Prediction

Level (PL) 50, while PL 60 is its analog using the 60%-prediction intervals, etc. For simplicity, our cash

account does not offer any interest rate, i.e., r̃t ≡ 0 for all times t ≥ 0 and transaction costs are neglected.

In total, Figure 4.4 illustrates how an initial investment of 100 USD on December 30, 2005 in the trading

strategies PL 50, PL 60, PL 70, PL 80 and PL 90 with weekly reblancing would have evolved. Hence, it

shows a classical backtest. Thereby, one of our intentions is to disclose the impact of the chosen prediction

interval on the performance of the trading strategy in (4.36).

Next, we investigate how Leverage & Short Sales (L&S) change the risk-return profile of the basic trading

strategy. That is, how deviates the risk-return profile of the trading strategy in (4.37) from the one in (4.36)

and to what extend depends it on the parameters αA, πU and πL. In Figure 4.4, L&S 2/1/0 stands for the

trading strategy in (4.37) with weekly rebalancing based on PL 50 with parameters αA = 2, πU = 1 and

πL = 0. The trading strategy L&S 2/1/-1 is also based on PL 50, but has the parameters αA = 2, πU = 1

and πL = −1. Again, we have for the cash account: r̃t ≡ 0 and there are zero transaction costs.

In Figure 4.4, the strategy S&P500 reveals how a pure investment in the S&P500 would have performed.

Moreover, Figure 4.4 illustrates the price evolution of two Buy&Hold (B&H) and two Constant Proportion

Portfolio Insurance (CPPI)1 strategies with weekly rebalancing. Hence, the Buy&Hold strategies may be

interpreted as Constant Mix strategies. Here, the notation B&H 50 denotes a Buy&Hold strategy, whose

rebalanced S&P500 exposure is the averaged S&P500 exposure of PL 50, which is 51%. Similarly, B&H

90 invests the averaged S&P500 exposure of PL 90, i.e., 50%, in the S&P500. In Figure 4.4, CPPI 2/60

stands for a CPPI strategy with multiplier 2 and floor 60%.

In addition to Figure 4.4, Table 4.14 lists the values of some common performance and risk measures

for all trading strategies. Using both we conclude: First, the higher the prediction level, the lower the

Log-Return (Total, %) of its PL strategy. E.g., compare PL 50 and PL 90. By definition, a high prediction

level widens the intervals such that shifts in their location have less impact on the stock exposure πt in

(4.36). As shown in Figure 4.5, all PL strategies are centered around a level of 50%, but PL 50 adjusts

its stock exposure more often and to a bigger extent than PL 90. Second, all PL strategies have periods

of time with a lasting stock exposure ≥ 50% or ≤ 50%. Over our out-of-sample period, PL 50 invested

on average 51% of its wealth in the S&P 500, but it outperformed B&H 50, which is weekly rebalanced

to 51%, by far. Hence, changing our asset allocation by πt in (4.36) really paid off.

Except for the L&S strategies, PL 50 has the highest Log-Return (Total, %) and therefore, appears very

attractive. However, the upside usually comes with a price. This is why we next focus on the volatilities of

our trading strategies. In this regard, CPPI 2/80 offers with 0.93% the lowest weekly standard deviation.

1 The floor of a CPPI strategy denotes the minimum repayment at maturity. For any point in time before maturity,

the cushion represents the difference between the current portfolio value and the discounted floor. Here, discounting does

not matter, since r̃t ≡ 0 ∀t ≥ 0 holds. The multiplier of a CPPI strategy constitutes to what extent the positive cushion

is leveraged. As long as the cuhsion is positive, the cushion times the multiplier, which is called exposure, is invested in

the risky assets. Because of r̃t ≡ 0 ∀t ≥ 0, there is no penalty, if the exposure exceeds the current portfolio value. To avoid

borrowing money, the portfolio value at a given rebalancing date caps the risky exposure in this section. As soon as the

cushion is zero or becomes negative, the total wealth is deposited on the bank account with r̃t ≡ 0 for the remaining time

to maturity. Further information about CPPI strategies is stated in, e.g., Black and Perold (1992).
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Figure 4.4: Evolution of an initial investment of 100 USD in diverse single-market strategies (S&P500,

B&H, CPPI, PL and L&S) over the out-of-sample period from December 30, 2005 until February 5, 2016.

All strategies are weekly rebalanced and have zero transaction costs.

With its allocation in Figure 4.5 in mind, this makes sense, as CPPI 2/80 was much less exposed to the

S&P500 than all others. Note, Figure 4.5 also shows how CPPI 3/60 was hit by the finanical crisis in

2007/2008, when its S&P500 exposure dramatically dropped from 100% on October 3, 2008 to 21% on

March 13, 2009. In case of the PL strategies, we get for the volatility an opposite picture compared to the

Log-Return (Total, %). That is, the higher the prediction level, the lower the weekly standard deviation

is. This sounds reasonable, as PL 90 makes smaller bets than PL 50. For the L&S strategies, Table 4.14

confirms that leveraging works as usual. Both, i.e., return and volatility, increased at the same time.

The Sharpe Ratio links the return and volatility of a trading strategy. Except for L&S 1.5/1/-0.5, the PL

strategies offer the largest Sharpe Ratios. Thereby, PL 80 has a weekly Sharpe Ratio of 7.39%, which is

biggest. As supplement, Table 4.15 reveals that the Sharpe Ratios of PL 80 and PL 90 are significantly

different to those of S&P500, CPPI 2/80 and CPPI 3/60. Unfortunately, the differences within or between

the PL and L&S strategies are not significant.

The Omega Measure compares the upside and downside of a strategy. Based on Table 4.14, L&S 1.5/1/-0.5

and L&S 2/1/-1 have the largest Omega Measures given by 134.92% and 132.39%. The Omega Measures

of the PL strategies lie in the range of [121.34%, 124.94%], which are larger than those of the benchmark

strategies in the range of [103.86%, 111.16%]. As shown in Table 4.16, the differences between all Omega

Measures are not significant.

Similar to the volatility, CPPI 2/80 has the smallest 95% Value at Risk and 95% Conditional Value at

Risk. This comes again from its reduced S&P500 exposure in Figure 4.5. The PL strategies have more

or less the same weekly 95% VaR, since all lie in the range [−1.99%,−1.90%]. However, their 95% CVaR

ranges from -3.19% to -2.78% and so, reflects that PL 50 makes bigger bets than PL 90. In case of the

L&S strategies, there is no clear picture how leveraging and short selling affects the 95% VaR and CVaR.

Finally, we consider the Maximum Drawdown based on the complete out-of-sample period from December

30, 2005 until February 5, 2016. Note, Figures 4.4-4.5 and Table 4.14 confirm that CPPI 3/60 behaved

like the S&P500, until it was knocked out by the financial crises in 2007/2008. This is why its Maximum

Drawdown of -48.43% is close to the -56.24% of the S&P500. By contrast, the Maximum Drawdowns of
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Figure 4.5: Percentage of total wealth invested in the S&P500 for diverse single-market trading strategies

(CPPI, PL and L&S) over the out-of-sample period from December 30, 2005 until February 5, 2016.

the PL strategies lie in the range of [-19.91%, -17.37%], which is less than half. They are even smaller than

the Maximum Drawdown of CPPI 2/80, which is -23.18%. For the L&S strategies, we have on the one

hand that short sales admit us to gain from a drop on the stock market. On the other hand, leveraging

boosts profits and losses. In total, this yields a scattered picture for their Maximum Drawdowns.

With the financial figures in mind, we recommend PL 50 for several reasons: First, it provides a decent

return, which is steadily gained over the total period. Second, it has an acceptable volatiliy and a moderate

downside. For reasons of completeness, Figure 4.6 illustrates the normalized histograms of the log-returns

for all trading strategies. Note, all PL strategies, L&S 1.5/1/-0.5 and L&S 2/1/-1 are positively skewed,

which indicates a capped downside.
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Before we discuss some statistical properties of the predicted log-returns, we repeat the previous analysis

for the case of complete panel data. Instead of all 33 time series in Appendix B.2, we restrict ourselves to

the groups US Treasuries, Corporate Bonds, LIBOR and FX&Gold. So, we have 22 time series without

any missing observations. Our idea behind this ansatz is to check whether the inclusion of mixed-frequency

information pays off. To this, we keep our rolling window of 364 weeks and gradually shift it over time,

until we reach the end of the overall sample period from January 15, 1999 until February 5, 2016. Because

of the total 22 time series, we replace the upper limit of the factor dimension by K̄ = 21. All other settings

remain untouched. Then, Algorithm 4.2.1 generates the prediction intervals in Figure 4.7. At this stage,

there are no obvious differences between the prediction intervals in Figures 4.1 and 4.7.

Figure 4.7: Prediction intervals for S&P500 log-returns of next week (gray and black areas) and afterwards

realized S&P500 log-returns (red line) based on complete panel data. The light gray area reveals the 50%-

prediction intervals, whereas the black areas define the 90%-prediction intervals. Here, the prediction level

gradually increases by 10% for each new, slightly darker area.

In a next step, we break the means of the predicted log-returns in Figure 4.7 down into the contributions

of the respective groups as shown in Figure 4.8. Here, we have a different pattern than in Figure 4.2. For

instance, Figure 4.2 identified Supply as main driver at the turn of the year 2009/2010, whereas Figure

4.8 suggests a scattered pattern of US Treasuries and Corporate Bonds. However, in the years 2010-2012

US Treasuries gained in importance in Figure 4.8, which also indicates the interventions of the US Federal

Reserve through its quantitative easing programs.

For the estimated dimensions and autoregressive orders of factors and returns, respectively, Figures 4.3

and 4.9 also draw different pictures. Of course, the estimated factor dimension in Figure 4.9 is smaller due

to less panel data. However, in Figure 4.9 the factor dimension increases at the end, whereas it keeps its

level in Figure 4.3. In Figure 4.9, the autoregressive order p of the ADFM mainly stayed between one and

two up to 2013, while it holds p = 4 for most of the time in the years 2009-2015 in Figure 4.9. In Figure

4.9, the return lag order q̃ is much smaller than in Figure 4.9. That is, in the absence of macroeconomic

data much of the autoregressive return behavior is mapped by the exogenous factors. Similarly, there are

differences between the factor lag orders in Figures 4.3 and 4.9.

As before, we analyze the impact of the prediction intervals on the trading strategies in (4.36) and (4.37).

For this purpose, Figure 4.10 displays the PL and L&S strategies of Figure 4.4 based on panel data with

33 variables once again and their analogs arising from the 22 complete time series. Note, the expression

PL 50 (no) in Figure 4.10 is an abbreviation for PL 50 using panel data having no gaps. The same holds

for L&S 2/1/0, etc. Besides the prices in Figure 4.10, Figure 4.11 illustrates the S&P500 exposures of the
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Figure 4.8: Decomposition of S&P500 log-returns predicted for next week, when the panel data is restricted

to complete time series.

Figure 4.9: Dimensions and lag orders of factors and returns, respectively, of predicted S&P500 log-returns,

when the panel data is restricted to complete time series.

new PL and L&S strategies and Table 4.17 lists their performance and risk measures. Then, we conclude:

First, PL 50 (no) has a total log-return of 30.22%, which exceeds all other PL (no) strategies, but is much

less than the 50.93% of PL 50. Similarly, the L&S (no) strategies have a much lower log-return than their

L&S counterparts. Second, PL 50 (no) changes its S&P500 exposure more often and to a larger extent

than PL 90 (no), which is in line with the PL strategies. Third, the standard deviations of the PL (no)

strategies exceed their PL analogs such that their Sharpe Ratios are about half of the PL Sharpe Ratios.

As shown in Table 4.18, the Sharpe Ratios of PL and PL (no) strategies are significantly different.

Fourth, PL (no) strategies are dominated by their PL versions regarding the Omega Measure, even though

such differences are not significant as shown in Table 4.19. Fifth, the 95% VaR and CVaR of the PL (no)

strategies are slightly worse than of the PL alternatives, but their Maximum Drawdowns almost doubled

in the absence of macroeconomic signals. As stated in Figure 4.12, the returns of all PL (no) strategies,
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Figure 4.10: Evolution of an initial investment of 100 USD in PL and L&S strategies based on complete

and incomplete panel data over the out-of-sample period from December 30, 2005 until February 5, 2016.

All strategies are weekly rebalanced and have zero transaction costs.

Figure 4.11: Ratio of total wealth invested in the S&P500 for PL and L&S strategies based on complete

panel data over the out-of-sample period from December 30, 2005 until February 5, 2016.
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except for PL 50 (no), are negatively skewed. This indicates that large profits were removed or big losses

were added. All in all, we therefore suggest the inclusion of macroeconomic variables, although this results

in mixed-frequency panel data.

Next, we focus on some statistical properties. In doing so, we start with the RMSE in Definition A.3.2 for

point forecasts of the S&P500 log-returns. That is, we replace the sampled factors and ARX coefficients

by their estimates to predict the log-return of next week. Then, the ARX based on mixed-frequency panel

data has a RMSE of 0.0272, whereas the ARX restricted to 22 variables provides a RMSE of 0.0292. For

comparison reasons, the constant forecast r̂t ≡ 0 yields a RMSE of 0.0259, the RMSEs of ARs with orders

from 1-12 lie in the range of [0.0260, 0.0266] and the RMSEs of Random Walks with and without drift

are 0.0380 and 0.0379, respectively. So, our model is rather mediocre in terms of RMSE. Since the RMSE

controls the size, but not the direction of the deviations, Figure 4.13 illustrates the deviations r̂t−rt of our

ARX based on all panel data and the AR(3), which was best regarding RMSE. As Figure 4.13 shows, the

orange histogram has 4 data points with r̂t − rt ≤ −0.10. That is, our ARX predictions for 10/17/2008,

10/31/2008, 11/28/2008 and 03/13/2009 were too conservative, which deteriorated its RMSE. To verify

this we determine the RMSE once again, but exclude these four dates. Then, the mixed-frequency ARX

has a RMSE of 0.0251, which beats all other models.

Figure 4.13: Differences between point forecasts and realizations of weekly S&P500 log-returns. The blue

histogram shows such differences, when the return predictions arise from an AR(3). The orange histogram

uses forecasts of our ARX based on mixed-frequency panel data.

Finally, we investigate the quality of our interval forecasts. For this purpose, Table 4.20 collects the Ratio

of Interval Outliers from Definition A.3.3 and the Mean Interval Score from Definition A.3.4 for prediction

intervals based on the incomplete panel data covering all 33 variables or the 22 complete time series. In

this context, the inclusion of mixed-frequency information can provide some statistical improvements. As

shown in Table 4.20, except for the 50%-prediction intervals, we have more outliers, when the ARX relies

on 22 complete time series than all 33 variables. Thus, the included macroeconomic indicators make our

model more cautious. Except for the 90%-prediction intervals based on complete panel data, all Ratios of
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Interval Outliers are below the aimed threshold. In contrast to RIO, which counts the number of interval

outliers, the Mean Interval Score takes into account by how much the prediction intervals are exceeded.

In this regard, the ARX using incomplete panel data dominates the ARX restricted to the 22 time series.

All in all, this confirms once again that the inclusion of macroeconomic information makes sense.

Table 4.20: Comparison of RIO and MIS for weekly S&P500 log-returns based on the out-of-sample period

from December 30, 2005 until February 5, 2016

Measure Panel Data Prediction Level

50% 60% 70% 80% 90%

RIO incomplete 0.4402 0.3397 0.2524 0.1594 0.0930

RIO complete 0.4269 0.3548 0.2638 0.1765 0.1139

MIS incomplete 0.0635 0.0713 0.0816 0.0963 0.1240

MIS complete 0.0663 0.0749 0.0854 0.1010 0.1303

Bold figures highlight the best value of each category. That is, for the ν-prediction interval in rows 1-2

the RIO closest to (1− ν) and in rows 3-4 the lowest MIS are marked in bold.

4.6 Conclusion and Future Research

In this chapter, we considered the estimation of ADFMs with homoscedastic, cross-sectionally correlated

errors using incomplete panel data. The proposed approach alternately applies two EMs until convergence

is reached, that is, the relative change in the expected log-likelihood function falls below a prespecified

threshold. Besides parameter estimation, our framework automatically selects the dimension of the hidden

factors as well as the autoregressive orders of the factor and return dynamics. This is an important feature

for empirical studies. When we empirically construct prediction intervals for returns of subsequent periods

of time, randomly drawn factor samples instead of estimated factor means ensure that uncertainties in the

estimated factors are taken into account. To be precise, such factor samples serve as exogenous variables in

an Autoregressive Extended Model, which shall describe the dynamics of the considered returns. Similar

to the factors, we draw samples from the asymptotic distribution of the estimated ARX coefficients and

do not stick to their estimates. Consequently, our prediction intervals also cover uncertainties inherent in

the estimated ARX parameters. Note, our OLS of the ARX parameters relies on sampled factors such that

both risks are jointly treated despite their nonlinear relation. At the end, our empirical example applies

the presented procedure to US data. Thereby, we determine prediction intervals for weekly log-returns of

the S&P500 price index, detect the contributions of the panel data to our point forecasts and define two

dynamic trading strategies based on the obtained prediction intervals.

With a view to the existing literature, this chapter makes several contributions: First, recent publications

on ADFMs mainly focused on serially correlated errors, but excluded cross-sectional ones. Doz et al. (2012)

showed that EDFMs may be regarded as misspecified ADFMs and allow for consistent factor estimation.

Therefore, cross-sectionality of shocks is usually ignored. For instance, in case of mixed-frequency panel

data the derivation of the conditional log-likelihood function in Bańbura and Modugno (2014) essentially

requires a diagonal structure of the error covariance matrix, i.e., it actually relies on uncorrelated shocks.

However, Doz et al. (2012) provide asymptotic results, which not necessarily remain valid for small, ragged

samples as in our MC simulation study. Since we explicitly allow for cross-sectionally correlated errors,
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our approach outperforms the benchmark estimation of ADFMs in Bańbura and Modugno (2014).

Second, our MLE does not link an EM and the Kalman Filter or Smoother. We instead obtain the means

and covariance matrices of the latent factors in closed form. Our MC simulation study shows that MLE

based on closed-form factor moments dominates MLE with the Kalman Filter and Smoother. In addition,

we propose the alternating usage of two EMs for incomplete data. The first EM makes sure that the

relation between low-frequency observations and their artificial analogs of higher frequency holds (Stock

and Watson, 1999a, 2002b). Furthermore, it reconstructs complete panel data from the latest parameter

estimates and observations. The second EM performs the actual MLE based on the augmented data.

Third, we treat the stochastic factor dynamics in its general form. On the one hand, we do not convert

the original VAR(p) into a VAR(1) during the estimation of ADFMs. Therefore, our approach does not

need additional loadings constraints as discussed in Bork (2009). On the other hand, we also address the

selection of the factor dimension and autoregressive order.

Fourth, the processing of the estimated factors is novel. Instead of point estimates, we construct empirical

prediction intervals for a return time series. Besides exogenous information and autoregressive return

characteristics, the prediction intervals incorporate uncertainties arising from the estimation of the factors

and model parameters. The underlying time horizon is weekly, which is rather rare than common in the

literature.

Fifth, we trace our point forecasts of the returns back to the original panel data and their high-frequency

counterparts, respectively. This is an important feature for practitioners, as it offers them the possibility

to compare our model based output with their expectations. Furthermore, if the drivers of the expected

market behavior are detected at an early stage, professionals can take suitable measures to reduce the

inherent risks.

Finally, we propose two dynamic trading strategies. Thereby, the first determines how much of the total

wealth should be invested in the financial index depending on the width and location of the prediction

intervals. In a next step, the second strategy shows how the risk-return characteristics of the first can be

adapted to the needs of an investor. E.g., how an upper limit for the investment in the financial index can

be implemented. The idea behind both trading strategies is to show how one can profit from the gained

information about the future index behavior.

Unfortunately, our approach does not cover serially correlated errors. As the case of cross-sectionally and

serially correlated shocks would exceed the scope of this work, a possible direction for future reseach is to

combine both in the form of homoscedastic, serially and cross-sectionally correlated idiosyncratic errors.

In a next step, an extension to heteroscedasticity or the incorporation of regime-switching concepts would

be worthwhile. Finally, several ADFMs could be coupled by copulas to capture inter-market dependencies.



Chapter 5

FAVARs for Incomplete Panel Data

We extend the Factor-Augmented Vector Autoregression Model in Bernanke et al. (2005) to ragged panel

data. Within the scope of a fully parametric two-step approach, the alternating use of two Expectation-

Maximization Algorithms simultaneously estimates model parameters and missing observations. Further-

more, it addresses the selection of the factor dimension and lag order. In opposition to non-parametric

two-step estimation methods linking PCA and linear regressions, we apply MLE. Thereby, we adapt the

standard Kalman Filter and Smoother to explicitly take into account that factors are partially observed.

To eliminate any identification issues of the model parameters we linearly constrain the loadings matrix or

VAR(p) coefficients of the factor dynamics. Furthermore, in the scope of an intense MC simulation study,

we compare our estimation method with several alternatives existing in the literature. In our empirical

application, the presented framework analyzes US data for measuring the effects of the monetary policy

on the real economy and financial markets. Here, the consequences for the quarterly GDP growth rates

are of particular importance.

5.1 Mathematical Background

We start with the definition of FAVARs. At this stage, we show why certain assumptions with respect to

the covariance matrices of the idiosyncratic shocks are less restrictive than it may appear at first glance.

Then, we derive an EM for parameter estimation with complete data as in Bork (2009). Finally, we add

the EM of Stock and Watson (1999a, 2002b) to the estimation procedure such that incomplete time series

can be treated and estimates for missing values are obtained.

5.1.1 Rotations and Identification Restrictions

The idea behind FAVARs is to gain from the advantages of FMs and VARs. Although VARs are well-

known in the literature and offer many methods for measuring the impact of certain variables on the whole

system, they are still restricted to a few time series and so, can only incorporate a limited number of

variables. By contrast, FA enables a significant reduction in dimension, when the panel data is described

by a few latent factors. Similar to DFMs, FAVARs have a transition equation and a measurement equation.

However, the factors part of FAVARs are partially observed. In this section, we stick to FAVARs with

complete time series, that is, neither the panel data nor the observed factor variables have any data gaps.
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Definition 5.1.1 (Factor-Augmented Vector Autoregression Model)

For any point in time t, the vectors Xt ∈ RN and Y t ∈ RM consist of panel data and other variables. Here,

Xt and Y t are not necessarily disjoint, i.e., they can share some variables. Furthermore, all univariate

times series part of the processes {Xt} and {Y t} are supposed to be complete, of the same frequency and

standardized with zero mean and standard deviation of one. If the vector F t ∈ RK denotes the unobserved

factors at time t, the measurement and transition equations of a FAVAR are defined as follows:

Xt =
[
Λf Λy

] [F t
Y t

]
+ et, et ∼ N (0N ,Σe) iid, (5.1)[

F t

Y t

]
= Φ(L)

[
F t−1

Y t−1

]
+ vt =

[
Φff (L) Φfy(L)

Φyf (L) Φyy(L)

][
F t−1

Y t−1

]
+ vt, vt ∼ N (0K+M ,Σv) iid, (5.2)

with constant loadings matrices Λf ∈ RN×K and Λy ∈ RN×M . The operator Φ(L) in (5.2) represents

a conformable lag polynomial of order p ≥ 1 given by Φ(L) = Φ1 + Φ2L
1 + ... + ΦpL

p−1 and constant

coefficient matrices Φj ∈ R(K+M)×(K+M) for 1 ≤ j ≤ p. Moreover, we assume the idiosyncratic shocks

et ∈ RN and vt ∈ RK+M to be iid Gaussian and independent of each other. That is, et ⊥ vs ∀ t, s.

The above FAVAR definition complies with the FAVAR definition in Bernanke et al. (2005). They combine

PCA and OLS regressions for parameter estimation. To this, they assume the shocks vt to be zero mean

with covariance matrix Σv, but do not pinpoint a concrete distribution. For the errors et, they assume zero

mean, but admit two correlation cases: the errors et are either uncorrelated or weakly cross-sectionally

correlated. In the sequel, we will discuss restrictions to avoid parameter ambiguity and so, identification

issues. Therefore, we do not further comment the shock distributions in Definition 5.1.1 at this point in

time. In particular, we do not assume the covariance matrix Σe as diagonal and follow the argumentation

in Doz et al. (2012) to justify that weakly cross-sectionally correlated errors can be ignored as in Bańbura

and Modugno (2014). Note, Bernanke et al. (2005) also presented a Bayesian estimation method, which

exceeds the scope of this section.

In the sequel, we assume the VAR(p) process in (5.2) to be covariance-stationary as in Definition A.2.1.

Equation (5.2) is a standard VAR(p) in the observed variables Y t, if all matrix elements of Φ(L) covering

the impact of F t−1 on Y t are zero (Bernanke et al., 2005). Otherwise, Bernanke et al. (2005) call (5.2) the

transition equation a FAVAR. Moreover, they note: On the one hand, the FAVAR in (5.2) nests a VAR(p)

supporting comparisons with general VAR(p) results and assessments of the marginal contribution of the

factors F t. Second, if the true system is a FAVAR, neglecting the hidden factors F t and sticking to the

simple VAR in Y t will cause biased estimation results such that the interpretation of Impulse Response

Functions (IRFs) and Forecast Error Variance Decompositions (FEVDs) may be faulty.

For M = 0, i.e., in the absence of observed factor elements, FAVARs coincide with ADFMs by definition.

However, forM > 0, Bork (2009) and Marcellino and Sivec (2016) showed that special loadings constraints

and properly sorted panel data, where the observed variables Y t are a subset of Xt, result in the common

state-space representation of ADFMs. Since the variables Y t part of Xt on the left-hand side in (5.1) are

identically mapped to the vector Y t on the right-hand side in (5.1), some identification problems of the

model parameters are implicitly solved. But this mapping also provides that the respective entries of the

idiosyncratic shocks et should be zero and thus, the covariance matrix Σe does not have full rank. From

a theoretical perspective the reduced rank of the covariance matrix Σe causes that its inverse matrix Σ−1
e

part of the log-likelihood function is not well-defined. In addition, the reduced rank of Σe and the fact

that the variables Y t are observed such that the covariance matrix of Y t conditioned on the information

up to time t is a zero matrix have to be addressed, when the standard KF and KS in Section 2.1.4 are
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applied. In such cases, the inverse matrices in the Kalman gains of Lemmata 2.1.8 and 2.1.9, perhaps, do

not always exist. If this reduced rank issue is neglected on purpose, as the standard KF and KS still work,

one implicitly ignores the observability of Y t on the right-hand side in (5.2). Regardless the performed

adjustments, rather specific ADFMs than real FAVARs are estimated.

Because of (5.1), the vector
[
F ′t,Y

′
t

]′
drives the dynamics ofXt. This explains why Bernanke et al. (2005)

regard all Xt as “noisy measures of the underlying unobserved factors F t”. For monetary policy analysis,

the variables Y t often cover policy instruments, e.g., the US Effective Federal Funds Rate (FEDFUNDS)

or Monetary Base. By contrast, in conventional VARs, the vector Y t contains all data and thus, lacks

the ability to include additional information in the form of the factors F t. In case of FAVARs, the size of

the panel data can be large such that we often receive: K + M � N . For reasons of clarity, we proceed

with the assumption N < T in the sequel.

Lemma 5.1.2 (Ambiguity of FAVAR Parameters)

Let R ∈ R(K+M)×(K+M) be a non-singular matrix defined as follows:

R =

(
R1 R2

OM×K IM

)
,

with OM×K ∈ RM×K as zero matrix. The matrices R1 ∈ RK×K and R2 ∈ RK×M are arbitrary as long

as the non-singularity of the matrix R is kept. Then, the transformed vector
[
F̆
′
t,Y

′
t

]′
= R

[
F ′t,Y

′
t

]′ ∈
RK+M can be equivalently rewritten in the form of (5.1)-(5.2).

Proof:

In case of (5.1), we receive with the non-singular matrix R:

Xt =
[
Λf Λy

] [F t
Y t

]
+ et =

[
Λf Λy

]
R−1R

[
F t

Y t

]
+ et. (5.3)

As mentioned in Bai et al. (2015), the matrix R has to map the observed vector Y t to itself, i.e., we get:

Y t =
[
R3 R4

] [F t
Y t

]
⇔
[
R3 (R4 − IM )

] [F t
Y t

]
= 0M .

Since this must hold for all point in times t, we obtain: R3 = OM×K and R4 = IM . For the inverse of the

resulting matrix R we have:

R−1 =

(
R−1

1 −R−1
1 R2

OM×K IM

)
, (5.4)

such that K (K +M) degrees of freedom are still left. 2

Lemma 5.1.2 confirms that the model in (5.1)-(5.2) is econometrically unidentified. For instance, R1 = IK

and R2 = OK×M or R1 = IK and R2 = 1K1
′
M are possible choices. Moreover, Lemma 5.1.2 emphasizes a

feature of FAVARs, that is, the observability of the vector Y t constrains the matrix R to map Y t on itself.

Next, we follow the ideas in Bai et al. (2015) once again to further simplify our FAVAR representation.

Lemma 5.1.3 (FAVAR Formulation with Partially Uncorrelated VAR Shocks)

For the non-singular matrix R ∈ R(K+M)×(K+M) in Lemma 5.1.2, the vector v̆t = Rvt ∈ RK+M denotes
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the transformed errors of the VAR(p) in (5.2) and is iid Gaussian as follows:

v̆t ∼ N

(
0K+M ,

[
Σffv̆ Σfyv̆
Σyfv̆ Σyyv̆

])
. (5.5)

By defining the matrix H ∈ R(K+M)×(K+M) as

H =

(Σffv̆|y

)− 1
2 −

(
Σffv̆|y

)− 1
2

Σfyv̆ (Σyyv̆ )
−1

OM×K IM

 with Σffv̆|y = Σffv̆ − Σfyv̆ (Σyyv̆ )
−1

Σyfv̆ ,

the FAVAR in (5.1)-(5.2) with matrices Σffv̆|y ∈ RK×K and Σyyv̆ ∈ RM×M of full rank can be rewritten as:

Xt = Λ̄

[
F̄ t

Y t

]
+ et =

[
Λ̄f Λ̄y

] [F̄ t
Y t

]
+ et, et ∼ N (0N ,Σe) iid, (5.6)[

F̄ t

Y t

]
=

p∑
i=1

Φ̄i

[
F̄ t−i

Y t−i

]
+ v̄t, v̄t ∼ N

(
0K+M ,

[
IK OK×M

OM×K Σyyv

])
iid, (5.7)

with transformed loadings matrix Λ̄ = [Λf Λy]R−1H−1, joint vector
[
F̄
′
t,Y

′
t

]′
= HR

[
F ′t,Y

′
t

]′
, coefficient

matrices Φ̄i = HRΦiR
−1H−1 for all 1 ≤ i ≤ p and idiosyncratic shocks v̄t = HRvt.

Proof:

For the invertible matrix R in Lemma 5.1.2, the transformed FAVAR is given by:

Xt =
[
ΛfR−1

1 −ΛfR−1
1 R2 + Λy

] [F̆ t
Y t

]
+ et, et ∼ N (0N ,Σe) , (5.8)

[
F̆ t

Y t

]
=

p∑
i=1

RΦiR
−1︸ ︷︷ ︸

Φ̆i

[
F̆ t−i

Y t−i

]
+ Rvt︸︷︷︸

v̆t

=

p∑
i=1

Φ̆i

[
F̆ t−i

Y t−i

]
+ v̆t, v̆t ∼ N

0K+M ,

[
Σffv̆ Σfyv̆
Σyfv̆ Σyyv̆

]
︸ ︷︷ ︸

Σv̆

 . (5.9)

The matrices Σffv̆|y and Σyyv̆ are supposed to have full rank such that their inverse matrices exist and thus,

the matrix H is well-defined. The inverse matrix of H is given by:

H−1 =

(Σffv̆|y

) 1
2

Σfyv̆ (Σyyv̆ )
−1

OM×K IM

 ,
which is well-defined, too. Note, the matrix H is non-singular and has the shape Lemma 5.1.2 calls for.

Hence, it also belongs to the mentioned class of transformation matrices. In particular, we can prove that

the product of the matrices H and R remains in this transformation class:

HR =

(Σffv̆|y

)− 1
2

R1

(
Σffv̆|y

)− 1
2
(
R2 − Σfyv̆ (Σyyv̆ )

−1
)

OM×K IM

 . (5.10)

With this in mind, we insert the matrix H in (5.8)-(5.9) and obtain:

Xt =
[
ΛfR−1

1 −ΛfR−1
1 R2 + Λy

]
H−1H

[
F̆ t

Y t

]
+ et, et ∼ N (0N ,Σe) iid, (5.11)

H

[
F̆ t

Y t

]
=

p∑
i=1

HΦ̆iH
−1︸ ︷︷ ︸

Φ̄i

H

[
F̆ t−i

Y t−i

]
+Hv̆t︸︷︷︸

v̄t

, v̄t ∼ N

0K+M , HΣv̆H
′︸ ︷︷ ︸

Σv̄

 iid. (5.12)
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Next, the covariance matrix Σv̄ can be simplified in the following manner:

VarΘ [Hv̆t] = HΣv̆H
′ = H

Σffv̆

(
Σffv̆|y

)− 1
2 − Σfyv̆ (Σyyv̆ )

−1
Σyfv̆

(
Σffv̆|y

)− 1
2

Σfyv̆

Σyfv̆

(
Σffv̆|y

)− 1
2 − Σyfv̆

(
Σffv̆|y

)− 1
2

Σyyv̆


= H

(Σffv̆|y

) 1
2

Σfyv̆

OM×K Σyyv̆

 =

[
IK OK×M

OM×K Σyyv̆

]
.

Finally, a comparison of the submatrices of RΣvR
′ and Σv̆ yields Σyyv̆ = Σyyv . 2

As shown in Lemma 5.1.2, the FAVAR parameters in Definition 5.1.1 are unique except for a non-singular

transformation with K (K +M) degrees of freedom. To eliminate this parameter ambiguity the one-step

estimation method of Bernanke et al. (2005) restricted the first K rows of the loadings matrix as follows:

Λ̄f =

[
IK

Λ̄f(N−K)×K

]
and Λ̄y =

[
OK×M

Λ̄y(N−K)×M

]
, (5.13)

with submatrices Λ̄f(N−K)×K and Λ̄y(N−K)×M as the unconstrained last N −K rows of Λ̄f and Λ̄y. The

same method is used in Marcellino and Sivec (2016). Although Bork (2009) took over this idea, he gained

flexibility such that he admitted the structure in (5.13) to be scattered across any K rows of the loadings

matrix. That is, not necessarily the first K rows matter.

In this chapter, linear parameter constraints also guarantee parameter identifiability. For this purpose, we

linearly constrain the loadings matrix in (5.6) or the VAR(p) coefficients in (5.7). The transformed model

in (5.6)-(5.7) shows that the total mapping HR does not affect the observed variables Y t, but it simplifies

the covariance matrix of the errors v̄t in the transition equation. Furthermore, the special shape of matrix

H decreases the number of degrees of freedom to K (K − 1) /2. To verify this let R̃ ∈ R(K+M)×(K+M)

be a non-singular matrix defined as follows:

R̃ =

(
R̃1 R̃2

OM×K IM

)
. (5.14)

To preserve the structure of the covariance matrix Σv̄ any additional transformation has to satisfy:

R̃Σv̄

(
R̃
)′

=

[
IK OK×M

OM×K Σyyv

]

⇔

R̃1

(
R̃1

)′
+ R̃2Σyyv

(
R̃2

)′
R̃2Σyyv

Σyyv

(
R̃2

)′
Σyyv

 =

[
IK OK×M

OM×K Σyyv

]
,

which implies R̃2 = OK×M and R̃1(R̃1)′ = IK . Thus, the K (K + 1) /2 restrictions for the orthonormality

of the columns of R̃1 reduce the K2 degrees of freedom of an arbitrary matrix R̃1 ∈ RK×K and we finally

have K (K − 1) /2 degrees of freedom left. Thus, the matrix R̃1 must be a rotation matrix.

Therefore, we do not impose restrictions on matrix Λ̄y in (5.6), when we talk about loadings constraints.

However, for matrix Λ̄f in (5.6), we propose the following formulation:

Λ̄f =



∗ 0 · · · 0
...

. . .
. . .

...

∗ · · · ∗ 0

∗ · · · ∗ ∗
Λ̄f(N−K)×K


, (5.15)
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where the matrix Λ̄f(N−K)×K ∈ R(N−K)×K comprises the unconstrained last N −K rows of Λ̄f and the

upper K ×K-dimensional submatrix of Λ̄f represents a lower triangular matrix. Before we proceed, we

explain in more detail how to obtain the shape of Λ̄f in (5.15) using the rotation matrix R̃ in (5.14).

Referring to Golub and Van Loan (1996, p. 215, Section 5.1.8), Givens Rotations enable us to zero entries

of a vector and rank among the rotation matrices. In the sequel, let Λ̄fK×K ∈ RK×K be the unrestricted

upper block matrix of Λ̄f in (5.6) and let Gi,j ∈ RK×K be the Givens Rotation to zero the element in

the i-th row and j-th column of Λ̄fK×K for 1 ≤ i, j ≤ K. Then, we have:
∗ 0 · · · 0
...

. . .
. . .

...

∗ · · · ∗ 0

∗ · · · ∗ ∗

 = Λ̄fK×K

K−1∏
i=1

 K∏
j=i+1

Gi,j


︸ ︷︷ ︸

G̃

,

with G̃(G̃)′ = (G̃)′G̃ = IK . In this manner, we eliminate all remaining degrees of freedom. Furthermore,

for matrix R̃ defined by:

R̃ =

[
G̃ OK×M

OM×K IM

]
the FAVAR in (5.6)-(5.7) keeps the special structure of the covariance matrix Σv̄.

At the end, we put the FAVAR in (5.6)-(5.7) with loadings restrictions in (5.15) in relation to the results

from Bai et al. (2015). If Σe is a diagonal matrix, “Assumptions A-D” and the identification restrictions

“IRb” in Bai et al. (2015) are satisfied such that their asymptotic distributions of the factor loadings, the

coefficient matrices and the IRFs remain valid. Unfortunately, their lengthy expressions of the distribution

parameters appear cumbersome and unattraktive, when it comes to their implementation.

5.1.2 Estimation of FAVARs with Complete Panel Data

As in Bork (2009), we derive an EM for the estimation of FAVARs. For clarity reasons, we introduce the

joint vector Ct =
[
F̄
′
t,Y

′
t

]′
∈ RK+M and rewrite the model in (5.6)-(5.7) as follows:

Xt = Λ̄Ct + et, et ∼ N (0N ,Σe) iid, (5.16)

Ct =

p∑
i=1

Φ̄iCt−i + v̄t, v̄t ∼ N (0K+M ,Σv̄) iid. (5.17)

With this in mind, we receive the subsequent conditional distributions of Xt and Ct.

Lemma 5.1.4 (Conditional Vector Distributions of FAVARs)

For the FAVAR in (5.16)-(5.17), the vectors Xt|Ct and Ct|Ct−1, . . . ,Ct−p are Gaussian as follows:

Xt|Ct ∼ N
(
Λ̄Ct,Σe

)
, (5.18)

Ct|Ct−1, ...,Ct−p ∼ N

(
p∑
i=1

Φ̄iCt−i,Σv̄

)
. (5.19)

Proof:

Follows directly from (5.16)-(5.17). 2

Next, we focus on the log-likelihood function of the FAVAR in (5.16)-(5.17).
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Lemma 5.1.5 (Conditional Log-Likelihood Function of FAVARs)

Assume the FAVAR in (5.16)-(5.17) with parameters Θ = {Λ̄,Σε , Φ̄1, . . . , Φ̄p,Σ
yy
v̄ } for lag order p > 0.

Moreover, the matrices X = [X1, . . . ,XT ]
′ ∈ RT×N and Y = [Y 1, . . . ,Y T ]

′ ∈ RT×M are the completely

observed panel data and variables. For a sufficiently large sample size T > p, let L (Θ|X,C) be the log-

likelihood function for the observations X and partially hidden factors Cp+1, ...,CT conditioned on the

factors C1, ...,Cp. Then, it holds:

L (Θ|X,C) =− TN

2
ln (2π)− T

2
ln (|Σe|)−

1

2

T∑
t=1

(
Xt − Λ̄Ct

)′
Σ−1
e

(
Xt − Λ̄Ct

)
− (K +M)(T − p)

2
ln (2π)− T − p

2
ln (|Σv̄|)

− 1

2

T∑
t=p+1

(
Ct −

p∑
i=1

Φ̄iCt−i

)′
Σ−1
v̄

(
Ct −

p∑
i=1

Φ̄iCt−i

)
, (5.20)

with joint vector Ct =
[
F̄
′
t,Y

′
t

]′
∈ RK+M .

Proof:

Similar to Lemma 4.1.5, the Bayes’ theorem yields for fΘ (XT , ...,X1,CT , ...,Cp+1|Cp, ...,C1), i.e., the

joint density of the observations X and factors Cp+1, ...,CT conditioned on the factors C1, ...,Cp:

fΘ (XT , ...,X1,CT , ...,Cp+1|Cp, ...,C1) =

(
T∏
t=1

fΘ (Xt|Ct)

)(
T∏

t=p+1

fΘ (Ct|Ct−1, ...,Ct−p)

)
.

Next, we substitute fΘ (Xt|Ct) and fΘ (Ct|Ct−1, ...,Ct−p) by the conditional distributions in (5.18) and

(5.19), take the logarithm of the joint distribution and rearrange the terms:

L (Θ|X,C) =

T∑
t=1

ln

(
(2π)

−N
2 |Σe|−

1
2 exp

(
−1

2

(
Xt − Λ̄Ct

)′
Σ−1
e

(
Xt − Λ̄Ct

)))

+

T∑
t=p+1

ln

(
(2π)

−K+M
2 |Σv̄|−

1
2 exp

(
−1

2

(
Ct −

p∑
i=1

Φ̄iCt−i

)′
Σ−1
v̄

(
Ct −

p∑
i=1

Φ̄iCt−i

)))

= −TN
2

ln (2π)− T

2
ln (|Σe|)−

1

2

T∑
t=1

(
Xt − Λ̄Ct

)′
Σ−1
e

(
Xt − Λ̄Ct

)
− (K +M)(T − p)

2
ln (2π)− T − p

2
ln (|Σv̄|)

− 1

2

T∑
t=p+1

(
Ct −

p∑
i=1

Φ̄iCt−i

)′
Σ−1
v̄

(
Ct −

p∑
i=1

Φ̄iCt−i

)
,

which proves the claim. 2

Because of p ≥ 1, Equation (5.20) represents a generalization of the log-likelihood functions in Shumway

and Stoffer (1982), Bork (2009), Bańbura and Modugno (2014) and Jungbacker and Koopman (2015).

The log-likelihood function L (Θ|X,C) in (5.20) depends on the latent factors F̄ t part of the vector Ct.

Therefore, we cannot compute it directly. However, to estimate the model in (5.16)-(5.17) in the maximum

likelihood framework we use the EM of Dempster et al. (1977). Thereby, the expectation step integrates

the hidden factors F̄ t out by computing the conditional expectation of L (Θ|X,C) with respect to the

observed data X and Y .
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Lemma 5.1.6 (Conditional Expectation of FAVAR Log-Likelihood)

With the notation in Lemma 5.1.5, the expectation of the log-likelihood function L (Θ|X,C) conditioned

on the completely observed panel data X and variables Y is given by:

EΘ [L (Θ|X,C) |X,Y ] =− TN

2
ln (2π)− (K +M)(T − p)

2
ln (2π)− T

2
ln (|Σe|)−

T − p
2

ln (|Σyyv |)

− 1

2

T∑
t=1

X ′tΣ
−1
e Xt +

1

2

T∑
t=1

X ′tΣ
−1
e Λ̄EΘ [Ct|X,Y ]

+
1

2

T∑
t=1

EΘ [Ct|X,Y ]
′
Λ̄′Σ−1

e Xt −
1

2

T∑
t=1

tr
(
Λ̄′Σ−1

e Λ̄EΘ

[
CtC

′
t|X,Y

])
− 1

2

T∑
t=p+1

tr

([
IK OK×M

OM×K (Σyyv )
−1

]
EΘ

[
CtC

′
t|X,Y

])

− 1

2

T∑
t=p+1

p∑
i,j=1

tr

(
Φ̄′i

[
IK OK×M

OM×K (Σyyv )
−1

]
Φ̄jEΘ

[
Ct−jC

′
t−i|X,Y

])

+
1

2

T∑
t=p+1

p∑
i=1

tr

([
IK OK×M

OM×K (Σyyv )
−1

]
Φ̄iEΘ

[
Ct−iC

′
t|X,Y

])

+
1

2

T∑
t=p+1

p∑
i=1

tr

(
Φ̄′i

[
IK OK×M

OM×K (Σyyv )
−1

]
EΘ

[
CtC

′
t−i|X,Y

])
, (5.21)

with

EΘ [Ct|X,Y ] =

[
EΘ

[
F̄ t|X,Y

]
Y t

]
, 1 ≤ t ≤ T,

EΘ

[
Ct−jC

′
t−i|X,Y

]
=

[
EΘ

[
F̄ t−jF̄

′
t−i|X,Y

]
EΘ

[
F̄ t−j |X,Y

]
Y ′t−i

Y t−jEΘ

[
F̄ t−i|X,Y

]′
Y t−jY

′
t−i

]
,

1 ≤ i, j ≤ p,
p+ 1 ≤ t ≤ T.

(5.22)

Proof:

Follows from the log-likelihood function L (Θ|X,C) in (5.20), the definition of the covariance matrix Σv̄

in (5.7), the matrix trace properties in Lemma A.1.2 and the linearity of the conditional expectation. 2

In Lemma 5.1.6, the unobserved factors F̄ t are replaced by their conditional moments, which the Kalman

Smoother in Section 5.1.4 yields for the latest parameter estimates Θ̂(l). Then, the second step of the EM

maximizes EΘ̂(l)
[L (Θ|X,C) |X,Y ] with respect to Θ subject to parameter constraints. In this context, we

follow Bernanke et al. (2005), Bork (2009) as well as Bańbura and Modugno (2014) and consider loadings

constraints. Additionally, we show later on how to incorporate linear restrictions for the VAR coefficients

Φi. Although the moments of Ct in (5.22) are functions of Θ̂(l) and so, of Θ, our optimization routine

ignores this fact and treats them as constants during each EM loop. That means, they are frozen at the

latest level. As Bańbura and Modugno (2014), we pursue the approach of Bork (2009) and Bork et al.

(2010), when we reformulate the loadings constraints in (5.15) as HΛvec
(
Λ̄
)

= κΛ with vector κΛ ∈ RP

and matrix HΛ ∈ RP×N(K+M) such that P ≤ N (K +M) and rank (HΛ) = P .

Lemma 5.1.7 (EM for Complete FAVARs with Loadings Restrictions)

Let the panel data X ∈ RT×N and variables Y ∈ RT×M be complete. Assume the FAVAR in (5.16)-(5.17)

with linear loadings constraints: HΛvec
(
Λ̄
)

= κΛ for vector κΛ ∈ RP and matrix HΛ ∈ RP×N(K+M) of

full row rank P ≤ N (K +M). Furthermore, let matrix �̄ =
[
Φ̄1, ..., Φ̄p

]
∈ R(K+M)×p(K+M) collect all
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coefficients of the factor dynamics and let (l) be the current EM loop. For clarity reasons, we write Θ(l)

instead of Θ̂(l). Then, the parameters of the next loop (l + 1) are updated in the following way:

vec
(
Λ̄
)

(l+1)
=
(
B−1 ⊗ Σe(l)

)
H ′Λ

(
HΛ

(
B−1 ⊗ Σe(l)

)
H ′Λ
)−1 (

κΛ −HΛ vec
(
AB−1

))
+ vec

(
AB−1

)
, (5.23)

Σe(l+1) = C − AΛ̄′(l+1) − Λ̄(l+1)A′ + Λ̄(l+1)BΛ̄′(l+1), (5.24)

�̄(l+1) = DE−1, (5.25)

Σyyv(l+1) =
[
OM×K IM

] (
F −D�̄′(l+1) − �̄(l+1)D′ + �̄(l+1)E�̄′(l+1)

)[OK×M
IM

]
, (5.26)

where the matrices A ∈ RN×(K+M), B ∈ R(K+M)×(K+M), C ∈ RN×N , D ∈ R(K+M)×p(K+M), E ∈
Rp(K+M)×p(K+M) and F ∈ R(K+M)×(K+M) require the conditional moments in (5.22) and are given by:

A =
1

T

T∑
t=1

XtEΘ̂(l)
[Ct|X,Y ]

′
, D =

1

T − p

T∑
t=p+1

EΘ̂(l)

[
CtC̄

′
t−1|X,Y

]
,

B =
1

T

T∑
t=1

EΘ̂(l)

[
CtC

′
t|X,Y

]
, E =

1

T − p

T∑
t=p+1

EΘ̂(l)

[
C̄t−1C̄

′
t−1|X,Y

]
,

C =
1

T

T∑
t=1

XtX
′
t, F =

1

T − p

T∑
t=p+1

EΘ̂(l)

[
CtC

′
t|X,Y

]
.

(5.27)

For the state vector C̄t ∈ Rp(K+M) we have C̄t =
[
C ′t, ...,C

′
t−p+1

]′
.

Proof:

We aim at maximizing EΘ̂(l)
[L (Θ|X,C) |X,Y ] with respect to Θ subject to HΛvec

(
Λ̄
)

= κΛ. Therefore,

we apply the method of Lagrange multipliers to the optimization problem:

EΘ̂(l)
[L (Θ|X,C) |X,Y ] + λ′

(
HΛvec

(
Λ̄
)
− κΛ

)
, (5.28)

with λ as Lagrange multiplier. Similar to Bork (2009) and Bańbura and Modugno (2014), the conditional

moments in (5.22) are constants, when we derive the partial derivatives of (5.28) and solve the resulting

system of matrix equations.

At first, we show that the optimization of the parameters Λ̄ and Σe can be separated from the one of

the matrices Φ̄i, 1 ≤ i ≤ p, and Σyyv , since both problems do not affect each other. In the last case, the

optimization of Φ̄i, 1 ≤ i ≤ p, does not depend on Σyyv . Therefore, we start with the solutions for Φ̄i,

1 ≤ i ≤ p. Thereafter, we insert these into the solution of Σyyv . The loadings restrictions cause that the

partial derivatives of Λ̄ depend on Σe in a non-linear manner, however, for simplicity reasons, we proceed

as with Φ̄i, 1 ≤ i ≤ p, and Σyyv .

For the partial derivatives of (5.28) with respect to Λ̄, the derivatives of the matrix trace functions and

the logarithm of the matrix determinant in Lemmata A.1.5 and A.1.8 provide:

∂
(
EΘ̂(l)

[L (Θ|X,C) |X,Y ] + λ′
(
HΛvec

(
Λ̄
)
− κΛ

))
∂Λ̄

=
∂

∂Λ̄

1

2

T∑
t=1

tr
(
EΘ̂(l)

[Ct|X,Y ]X ′tΣ
−1
e Λ̄

)
+

∂

∂Λ̄
λ′HΛvec

(
Λ̄
)

+
∂

∂Λ̄

1

2

T∑
t=1

tr
(

Σ−1
e XtEΘ̂(l)

[Ct|X,Y ]
′
Λ̄′
)
− ∂

∂Λ̄

1

2

T∑
t=1

tr
(

Λ̄′Σ−1
e Λ̄EΘ̂(l)

[
CtC

′
t|X,Y

])
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=
1

2

T∑
t=1

Σ−1
e XtEΘ̂(l)

[Ct|X,Y ]
′
+

1

2

T∑
t=1

Σ−1
e XtEΘ̂(l)

[Ct|X,Y ]
′

− 1

2

T∑
t=1

Σ−1
e Λ̄EΘ̂(l)

[
CtC

′
t|X,Y

]
· 2 +


(
λ′HΛ

)
1
· · ·

(
λ′HΛ

)
N(K+M−1)+1

...
...(

λ′HΛ

)
N
· · ·

(
λ′HΛ

)
N(K+M)


= Σ−1

e

T∑
t=1

XtEΘ̂(l)
[Ct|X,Y ]

′ − Σ−1
e Λ̄

T∑
t=1

EΘ̂(l)

[
CtC

′
t|X,Y

]

+


(
λ′HΛ

)
1
· · ·

(
λ′HΛ

)
N(K+M−1)+1

...
...(

λ′HΛ

)
N
· · ·

(
λ′HΛ

)
N(K+M)

 .
By setting these partial derivatives equal to the zero matrix ON×(K+M) and solving it for Λ̄, we get:

Σ−1
e

T∑
t=1

XtEΘ̂(l)
[Ct|X,Y ]

′
+


(
λ′HΛ

)
1
· · ·

(
λ′HΛ

)
N(K+M−1)+1

...
...(

λ′HΛ

)
N
· · ·

(
λ′HΛ

)
N(K+M)

 = Σ−1
e Λ̄

T∑
t=1

EΘ̂(l)

[
CtC

′
t|X,Y

]
.

For clarity reasons, we replace the sums by matrices A and B in (5.27), apply the vec (·) operator to both

sides and profit from its properties in Lemma A.1.13 as follows:

vec (TA) + vec

Σe


(
λ′HΛ

)
1
· · ·

(
λ′HΛ

)
N(K+M−1)+1

...
...(

λ′HΛ

)
N
· · ·

(
λ′HΛ

)
N(K+M)


 = vec

(
Λ̄TB

)
⇔ T vec (A) + (IK+M ⊗ Σe)H

′
Λλ = T vec

(
Λ̄B
)

⇔ T vec (A) + (IK+M ⊗ Σe)H
′
Λλ = T (B ⊗ IN ) vec

(
Λ̄
)

⇔ (B ⊗ IN )
−1
vec (A) +

1

T
(B ⊗ IN )

−1
(IK+M ⊗ Σe)H

′
Λλ = vec

(
Λ̄
)
. (5.29)

Now, we substitute the constraint HΛvec
(
Λ̄
)

= κΛ in (5.29) and benefit from the multiplication property

of the Kronecker product in Lemma A.1.10:

(5.29)⇔ HΛ (B ⊗ IN )
−1
vec (A) +

1

T
HΛ (B ⊗ IN )

−1
(IK+M ⊗ Σe)H

′
Λλ = κΛ

⇔ HΛ (B ⊗ IN )
−1
vec (A) +

1

T
HΛ

(
B−1 ⊗ Σe

)
H ′Λλ = κΛ

⇔ HΛ

(
B−1 ⊗ Σe

)
H ′Λλ = T

(
κΛ −HΛ (B ⊗ IN )

−1
vec (A)

)
.

Solving this expression for the Lagrangian multiplier λ leads to:

λ = T
(
HΛ

(
B−1 ⊗ Σe

)
H ′Λ
)−1 (

κΛ −HΛ

(
B−1 ⊗ IN

)
vec (A)

)
. (5.30)

Next, we insert the derived multiplier (5.30) in (5.29) and obtain:

vec
(
Λ̄
)

= (B ⊗ IN )
−1
vec (A) +

1

T

(
B−1 ⊗ Σe

)
H ′ΛT

(
HΛ

(
B−1 ⊗ Σe

)
H ′Λ
)−1

·
(
κΛ −HΛ

(
B−1 ⊗ IN

)
vec (A)

)
= vec

(
AB−1

)
+
(
B−1 ⊗ Σe

)
H ′Λ

(
HΛ

(
B−1 ⊗ Σe

)
H ′Λ
)−1 (

κΛ −HΛ vec
(
AB−1

))
,
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where the last line applies Lemma A.1.13. Let (l) be the current loop of the EM. Then, the estimator of

the restricted loadings matrix for the next loop (l + 1) is given by (5.23).

The estimator for Σe is obtained by differentiating EΘ̂(l)
[L (Θ|X,C) |X,Y ] with respect to Σe. Again see

Lemmata A.1.5 and A.1.8 for the derivatives of the matrix traces and logarithm of the matrix determinant:

∂EΘ̂(l)
[L (Θ|X,C) |X,Y ]

∂Σe

= −T
2

∂

∂Σe
ln (|Σe|)−

1

2

∂

∂Σe
tr

(
T∑
t=1

XtX
′
tΣ
−1
e

)
+

1

2

∂

∂Σe
tr

(
Λ̄

T∑
t=1

EΘ̂(l)
[Ct|X,Y ]X ′tΣ

−1
e

)

+
1

2

∂

∂Σe
tr

(
T∑
t=1

XtEΘ̂(l)
[Ct|X,Y ]
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Λ̄′Σ−1

e

)
− 1

2

∂

∂Σe
tr

(
Λ̄

T∑
t=1

EΘ̂(l)

[
CtC

′
t|X,Y

]
Λ̄′Σ−1

e

)

= −T
2

Σ−1
e +

1

2

(
Σ−1
e

T∑
t=1

XtX
′
tΣ
−1
e

)′
− 1

2

(
Σ−1
e Λ̄

T∑
t=1

EΘ̂(l)
[Ct|X,Y ]X ′tΣ

−1
e

)′

− 1

2

(
Σ−1
e

T∑
t=1

XtEΘ̂(l)
[Ct|X,Y ]

′
Λ̄′Σ−1

e

)′
+

1

2

(
Σ−1
e Λ̄

T∑
t=1

EΘ̂(l)

[
CtC

′
t|X,Y

]
Λ̄′Σ−1

e

)′
= −T

2
Σ−1
e +

T

2
Σ−1
e CΣ−1

e −
T

2
Σ−1
e AΛ̄′Σ−1

e −
T

2
Σ−1
e Λ̄A′Σ−1

e +
T

2
Σ−1
e Λ̄BΛ̄′Σ−1

e ,

where the last step substitutes the sums by matrices A, B and C in (5.27). For the zeros of the associated

equation system we receive:

Σe = C − AΛ̄′ − Λ̄A′ + Λ̄BΛ̄′.

This provides for loop (l + 1) the estimator of the covariance matrix Σe in (5.24), which coincides with

Shumway and Stoffer (1982, p. 257, Eq. 14). Actually, an equation system covering vec
(
Λ̄
)

and Σe has to

be solved. The loadings constraints cause a non-linear equation system with unknown solution, therefore,

we use a simplification: We first update Λ̄, before we proceed with Σe. This is why Λ̄(l+1) in (5.23) involves

Σe(l) instead of Σe(l+1).

For the estimators of Σyyv and Φ̄i, 1 ≤ i ≤ p, we use the same trick as in Bańbura and Modugno (2014).

That is, we replace the sum in the transition equation by the coefficient matrix �̄ =
[
Φ̄1, ..., Φ̄p

]
and the

vector C̄t =
[
C ′t, ...,C

′
t−p+1

]′
, before we rewrite the log-likelihood function in (5.20). Then, we receive:

EΘ̂(l)
[L (Θ|X,C) |X,Y ] =− 1

2
(TN + (T − p) (K +M)) ln (2π)− T

2
ln (|Σe|)−

T − p
2

ln (|Σyyv |)

− 1

2

T∑
t=1

EΘ̂(l)

[(
Xt − Λ̄Ct

)′
Σ−1
e

(
Xt − Λ̄Ct

)
|X,Y

]
− 1

2

T∑
t=p+1

EΘ̂(l)

[(
Ct − �̄C̄t−1

)′
Σ−1
v̄

(
Ct − �̄C̄t−1

)
|X,Y

]
.

The estimators for Φ̄i, 1 ≤ i ≤ p, are obtained by differentiating this conditional expectation with respect

to �̄. Using Lemmata A.1.5 and A.1.8, we obtain:

∂EΘ̂(l)
[L (Θ|X,C) |X,Y ]

∂�̄

= −1

2

∂

∂�̄

T∑
t=p+1

EΘ̂(l)

[(
Ct − �̄C̄t−1

)′
Σ−1
v̄

(
Ct − �̄C̄t−1

)
|X,Y

]

= −1

2

∂

∂�̄

T∑
t=p+1

(
EΘ̂(l)

[
C̄
′
t−1�̄

′Σ−1
v̄ �̄C̄t−1 −C ′tΣ−1

v̄ �̄C̄t−1 − C̄
′
t−1�̄

′Σ−1
v̄ Ct|X,Y

])
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= −1

2

∂

∂�̄
tr

(
�̄
′Σ−1
v̄ �̄

T∑
t=p+1

EΘ̂(l)

[
C̄t−1C̄

′
t−1|X,Y

])

+
1

2

∂

∂�̄
tr

(
T∑

t=p+1

EΘ̂(l)

[
C̄t−1C

′
t|X,Y

]
Σ−1
v̄ �̄

)

+
1

2

∂

∂�̄
tr

(
T∑

t=p+1

EΘ̂(l)

[
CtC̄

′
t−1|X,Y

]
�̄
′Σ−1
v̄

)

= −1

2
Σ−1
v̄ �̄

T∑
t=p+1

EΘ̂(l)

[
C̄t−1C̄

′
t−1|X,Y

]
· 2 +

1

2
Σ−1
v̄

T∑
t=p+1

EΘ̂(l)

[
CtC̄

′
t−1|X,Y

]

+
1

2
Σ−1
v̄

T∑
t=p+1

EΘ̂(l)

[
CtC̄

′
t−1|X,Y

]

= Σ−1
v̄

(
−�̄

T∑
t=p+1

EΘ̂(l)

[
C̄t−1C̄

′
t−1|X,Y

]
+

T∑
t=p+1

EΘ̂(l)

[
CtC̄

′
t−1|X,Y

])
= Σ−1

v̄ (T − p)
(
−�̄E +D

)
,

where the last step replaced the sums by matrices D and E in (5.27). By setting these partial derivatives

equal to the zero matrix and solving it for the parameter �̄, it follows:

�̄ = DE−1. (5.31)

which confirms (5.25) for loop (l + 1) and is in line with Shumway and Stoffer (1982, p. 257, Eq. 12).

Finally, the estimator of Σyyv is left. Before we determine the partial derivatives of EΘ̂(l)
[L (Θ|X,C) |X,Y ]

with respect to Σyyv , we rewrite the inverse of the covariance matrix Σv̄ as follows:

Σ−1
v̄ =

[
IK OK×M

OM×K (Σyyv )
−1

]
=

[
IK OK×M

OM×K OM×M

]
+

[
OK×K OK×M

OM×K (Σyyv )
−1

]

=

[
IK OK×M

OM×K OM×M

]
+

[
OK×M

IM

]
(Σyyv )

−1
[
OM×K IM

]
. (5.32)

Based on �̄ in (5.31) as well as Lemmata A.1.5 and A.1.8, we get:

∂EΘ̂(l)
[L (Θ|X,C) |X,Y ]

∂Σyyv

= −T − p
2

∂

∂Σyyv
ln (|Σyyv |)−

1

2

∂

∂Σyyv

T∑
t=p+1

EΘ̂(l)

[(
Ct − �̄C̄t−1

)′
Σ−1
v̄

(
Ct − �̄C̄t−1

)
|X,Y

]

= −T − p
2

(Σyyv )
−1 − 1

2

∂

∂Σyyv
tr

(
T∑

t=p+1

EΘ̂(l)

[(
Ct − �̄C̄t−1

) (
Ct − �̄C̄t−1

)′ |X,Y ]Σ−1
v̄

)

= −T − p
2

(Σyyv )
−1 − 1

2

∂

∂Σyyv
tr

(
(T − p)

(
F −D�̄′ − �̄D′ + �̄E�̄′

)
·

([
IK OK×M

OM×K OM×M

]
+

[
OK×M

IM

]
(Σyyv )

−1
[
OM×K IM

]))

= −T − p
2

(Σyyv )
−1 − T − p

2

∂

∂Σyyv
tr

((
F −D�̄′ − �̄D′ + �̄E�̄′

) [OK×M
IM

]
(Σyyv )

−1
[
OM×K IM

])

= −T − p
2

(Σyyv )
−1 − T − p

2

∂

∂Σyyv
tr

([
OM×K IM

] (
F −D�̄′ − �̄D′ + �̄E�̄′

) [OK×M
IM
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(Σyyv )
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)
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= −T − p
2

(Σyyv )
−1

+
T − p

2

(
(Σyyv )

−1
[
OM×K IM

] (
F −D�̄′ − �̄D′ + �̄E�̄′

) [OK×M
IM

]
(Σyyv )

−1

)′
,

where the third line substitutes the sum of the conditional expectations by matrices D, E and F in (5.27).

Searching for the zeros of the corresponding equation system provides for the parameter Σyyv :

Σyyv =
[
OM×K IM

] (
F −D�̄′ − �̄D′ + �̄E�̄′

) [OK×M
IM

]
,

which justifies the solution in (5.26) for loop (l+ 1) and �̄(l+1) as the estimator of the coefficient matrix

in (5.25). Note, the term
(
F −D�̄′ − �̄D′ + �̄E�̄′

)
in the above equation is in accordance with Shumway

and Stoffer (1982, p. 257, Eq. 13). 2

In Lemma 5.1.7, the matrix HΛ is required to have full row rank P with P ≤ N (K +M). This condition

guarantees that the inverse matrix
(
HΛ

(
B−1 ⊗ Σe(l)

)
H ′Λ
)−1 ∈ RP×P is well-defined. Furthermore, this

assumption especially prohibits to choose a larger matrix HΛ ∈ RN(K+M)×N(K+M) with zero rows for all

unrestricted parameters of the loadings matrix.

By similar reasoning, we receive an EM for complete data admitting restrictions of the coefficient matrices

in (5.17). As before, let the matrix H� ∈ RQ×p(K+M)2

have full row rank Q ≤ p (K +M)
2

implying that

the inverse matrix
(
H�

(
E−1 ⊗ Σv̄(l)

)
H ′
�

)−1 ∈ RQ×Q in Lemma 5.1.8 is well-defined. Then, it holds:

Lemma 5.1.8 (EM for Complete FAVARs with Restricted VAR Coefficients)

For complete panel data X ∈ RT×N and variables Y ∈ RT×M , assume the FAVAR in (5.16)-(5.17) with

linearly constrained coefficients �̄ =
[
Φ̄1, ..., Φ̄p

]
∈ R(K+M)×p(K+M), i.e.: H�vec

(
�̄
)

= κ� for vector

κ� ∈ RQ and matrix H� ∈ RQ×p(K+M)2

of full row rank Q ≤ p (K +M)
2
. If (l) stands for the current

EM loop, the parameters of the next loop (l + 1) are updated in the following way:

Λ̄(l+1) = AB−1, (5.33)

Σe(l+1) = C − AΛ̄′(l+1) − Λ̄(l+1)A′ + Λ̄(l+1)BΛ̄′(l+1), (5.34)

vec
(
�̄(l+1)

)
=
(
E−1 ⊗ Σv̄(l)

)
H ′
�

(
H�

(
E−1 ⊗ Σv̄(l)

)
H ′
�

)−1 (
κ�̄ −H� vec

(
DE−1

))
+ vec

(
DE−1

)
, (5.35)

Σyyv(l+1) =
[
OM×K IM

] (
F −D�̄′(l+1) − �̄(l+1)D′ + �̄(l+1)E�̄′(l+1)

)[OK×M
IM

]
, (5.36)

where the matrices A ∈ RN×(K+M), B ∈ R(K+M)×(K+M), C ∈ RN×N , D ∈ R(K+M)×p(K+M), E ∈
Rp(K+M)×p(K+M) and F ∈ R(K+M)×(K+M) are defined in (5.27). For the state vector C̄t ∈ Rp(K+M),

we have C̄t =
[
C ′t, ...,C

′
t−p+1

]′
.

Proof:

We apply the method of Lagrange multipliers to the subsequent optimization problem:

EΘ̂(l)
[L (Θ|X,C) |X,Y ] + λ′

(
H�vec

(
�̄
)
− κ�

)
, (5.37)

with λ as Lagrange multiplier. Then, Lemmata A.1.5 and A.1.8 provide for the partial derivative of (5.37)

with respect to Λ̄:

∂EΘ̂(l)
[L (Θ|X,C) |X,Y ]

∂Λ̄
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=
∂

∂Λ̄
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tr
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(
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[Ct|X,Y ]
′
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Σ−1
e XtEΘ̂(l)

[Ct|X,Y ]
′ − 2
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t=1

Σ−1
e Λ̄EΘ̂(l)

[
CtC

′
t|X,Y

])

= Σ−1
e
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XtEΘ̂(l)
[Ct|X,Y ]

′ − Σ−1
e Λ̄

T∑
t=1

EΘ̂(l)

[
CtC

′
t|X,Y

]
.

Finally, the definitions of matrices A and B and searching for the zeros of the previous equation system

yields the solution of Λ̄ for loop (l+ 1) in (5.33). The partial derivatives of the target functions in (5.28)

and (5.37), respectively, with respect to the matrix Σe coincide, as the additional terms with the Lagrange

multipliers do not depend on Σe. Hence, the solutions of Σe(l+1) in (5.24) and (5.34) are the same. The

same argument remains valid for the solutions of Σyyv(l+1) in (5.26) and (5.36).

For the partial derivatives of (5.37) with respect to matrix �̄, Lemmata A.1.5 and A.1.8 result in:

∂
(
EΘ̂(l)

[L (Θ|X,C) |X,Y ] + λ′
(
H�vec

(
�̄
)
− κ�

))
∂�̄
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2

∂

∂�̄
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)′
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∂

∂�̄
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(
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(
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− κ�
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2

∂

∂�̄

T∑
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(
EΘ̂(l)

[
C̄
′
t−1�̄

′Σ−1
v̄ �̄C̄t−1 −C ′tΣ−1

v̄ �̄C̄t−1 − C̄
′
t−1�̄

′Σ−1
v̄ Ct|X,Y
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+

∂

∂�̄
λ′H�vec

(
�̄
)
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2

∂

∂�̄
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′Σ−1
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C̄t−1C̄
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+

1

2

∂

∂�̄
tr
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C̄t−1C

′
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Σ−1
v̄ �̄

)

+
1

2

∂

∂�̄
tr
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T∑

t=p+1

EΘ̂(l)
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CtC̄

′
t−1|X,Y

]
�̄
′Σ−1
v̄

)
+

∂

∂�̄
λ′H�vec

(
�̄
)

= −1

2
Σ−1
v̄ �̄

T∑
t=p+1

EΘ̂(l)

[
C̄t−1C̄

′
t−1|X,Y

]
· 2 +

1

2
Σ−1
v̄

T∑
t=p+1

EΘ̂(l)

[
CtC̄

′
t−1|X,Y

]

+
1

2
Σ−1
v̄

T∑
t=p+1

EΘ̂(l)

[
CtC̄

′
t−1|X,Y
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+


(
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)
1

· · ·
(
λ′H�
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(p(K+M)−1)(K+M)+1

...
...(

λ′H�

)
K+M

· · ·
(
λ′H�

)
p(K+M)2


= Σ−1

v̄

(
−�̄

T∑
t=p+1

EΘ̂(l)

[
C̄t−1C̄

′
t−1|X,Y

]
+

T∑
t=p+1

EΘ̂(l)

[
CtC̄

′
t−1|X,Y

])

+


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· · ·
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...
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)
K+M

· · ·
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)
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 .
After the sums in the previous step have been replaced by matrices D and E in (5.27), we obtain for the

zeros of the arising equation system:

�̄ (T − p) E = (T − p)D + Σv̄


(
λ′H�

)
1

· · ·
(
λ′H�

)
(p(K+M)−1)(K+M)+1

...
...(

λ′H�

)
K+M

· · ·
(
λ′H�

)
p(K+M)2


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Next, we apply the vec (·) operator to both sides and benefit from Lemma A.1.13 as follows:

(T − p) vec
(
�̄E
)

= (T − p) vec (D) + vec

Σv̄


(
λ′H�

)
1

· · ·
(
λ′H�

)
(p(K+M)−1)(K+M)+1

...
...(

λ′H�

)
K+M

· · ·
(
λ′H�

)
p(K+M)2




⇔ (T − p) (E ⊗ IK+M ) vec
(
�̄
)

= (T − p) vec (D) +
(
Ip(K+M) ⊗ Σv̄

)
H ′
�
λ

⇔ vec
(
�̄
)

= (E ⊗ IK+M )
−1

vec (D) +
1

T − p
(E ⊗ IK+M )

−1 (
Ip(K+M) ⊗ Σv̄

)
H ′
�
λ

⇔ vec
(
�̄
)

=
(
E−1 ⊗ IK+M

)
vec (D) +

1

T − p
(
E−1 ⊗ Σv̄

)
H ′
�
λ, (5.38)

where the last transformation relies on the properties of the Kronecker product in Lemma A.1.10. With

the restrictions of the coefficient matrices in mind, we have:

H� vec
(
�̄
)

= κ� = H�

(
E−1 ⊗ IK+M

)
vec (D) +

1

T − p
H�

(
E−1 ⊗ Σv̄

)
H ′
�
λ.

Hence, we obtain for the Lagrange multiplier λ:

λ = (T − p)
(
H�

(
E−1 ⊗ Σv̄

)
H ′
�

)−1 (
κ� −H�

(
E−1 ⊗ IK+M

)
vec (D)

)
. (5.39)

Then, we insert (5.39) in (5.38) and get:

vec
(
�̄
)

=
(
E−1 ⊗ IK+M

)
vec (D) +

(
E−1 ⊗ Σv̄

)
H ′
�

(
H�

(
E−1 ⊗ Σv̄

)
H ′
�

)−1

·
(
κ� −H�

(
E−1 ⊗ IK+M

)
vec (D)

)
.

Eventually, we apply Lemma A.1.13 to the above solution and receive for loop (l+ 1) the representation

in (5.35). 2

A comparison of Lemmata 5.1.7 and 5.1.8 shows that the inlcusion of linear parameter constraints follows

the same procedure irrespective of whether the loadings matrix or the coefficient matrices are considered.

Without a lot of effort we can also derive an EM for complete FAVARs with restricted loadings and VAR

coefficient matrices. However, the restricted solutions for Λ̄ in (5.23) and �̄ in (5.35) are more complicated

than the unrestricted analogs in (5.33) and (5.25). This is why we propose to take either loadings or VAR

coefficient restrictions into account, but not both at the same time. Moreover, if the loadings matrix and

VAR coefficients are constrained together, one has to make sure that those do not exclude each other. In

the sequel, we focus on the loadings constraints in (5.15) to compare our results and the ones in Bernanke

et al. (2005) and Bork (2009), respectively, in Section 5.2.

The loadings constraints in (5.13) require a careful arrangement of Xt, as the first entry of F̄ t only affects

the first element of Xt. Similarly, the next K − 1 components do. Therefore, Bernanke et al. (2005) and

Bork (2009) performed a pre-analysis and chose the first K entries of Xt from the slow-moving variables,

which were supposed not to simultaneously respond to a monetary policy shock. For instance, indicators

for spending, wages and prices belong to them. In our empirical study, we follow Bork (2009) to sort the

panel data. That is, we first run a usual PCA, before we determine for each times series in Xt and for

each estimated factor the absolute value of their correlation coefficient. Finally, we select the K variables

with the highest absolute value, sort them in descending order and take them as the first K entries of Xt.

If a fast-moving variable is the most correlated with a factor, we calculate for this and for each remaining

slow-moving variable the absolute value of their correlation coefficient and choose the best slow-moving

one instead.
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For computational efficiency and to facilitate the implementation of our approach, we insert the parameter

estimates from (5.23)-(5.26) in the conditional expectation of the log-likelihood function in Lemma 5.1.6

and summarize as many terms as possible. In total, we get the subsequent formulation.

Lemma 5.1.9 (Simple Formulation of Expected FAVAR Log-Likelihood)

For the MLE parameters in (5.23)-(5.26) a simplified version of the conditional expectation of the FAVAR

log-likelihood function in (5.21) is given by:

EΘ̂(l)

[
L
(

Θ̂(l)|X,C
)
|X,Y

]
= −1

2
(TN + (T − p) (K +M)) ln (2π)− 1

2

(
T ln

(∣∣Σe(l)

∣∣)+ (T − p)
(
M + ln

(∣∣∣Σyyv(l)

∣∣∣)))
− TN

2
− 1

2
(T − p) tr

((
F −D�̄′ − �̄D′ + �̄E�̄′

) [ IK OK×M

OM×K OM×M

])
, (5.40)

with matrices D ∈ R(K+M)×p(K+M), E ∈ Rp(K+M)×p(K+M) and F ∈ R(K+M)×(K+M) as in (5.27).

Proof:

The MLE parameters in (5.23)-(5.26) and matrices A−F in (5.27) provide:

EΘ̂(l)

[
L
(

Θ̂(l)|X,C
)
|X,Y

]
=− 1

2
(TN + (T − p) (K +M)) ln (2π)− T

2
ln
(∣∣Σe(l)

∣∣)− T − p
2

ln
(∣∣∣Σyyv(l)

∣∣∣)
− 1

2
tr

(
Σ−1
e(l)

T∑
t=1

EΘ̂(l)

[(
Xt − Λ̄(l)Ct

) (
Xt − Λ̄(l)Ct

)′ |X,Y ])

− 1

2
tr

(
Σ−1
v̄(l)

T∑
t=p+1

EΘ̂(l)

[(
Ct − �̄(l)C̄t−1

) (
Ct − �̄(l)C̄t−1

)′ |X,Y ])

=− 1

2
(TN + (T − p) (K +M)) ln (2π)− T

2
ln
(∣∣Σe(l)

∣∣)− T − p
2

ln
(∣∣∣Σyyv(l)

∣∣∣)
− 1

2
tr
(

Σ−1
e(l) T

(
C − AΛ̄′ − Λ̄A′ + Λ̄BΛ̄′

))
− 1

2
tr
(

Σ−1
v̄(l) (T − p)

(
F −D�̄′ − �̄D′ + �̄E�̄′

))
.

Because of (5.24), the matrix
(
C − AΛ̄′ − Λ̄A′ + Λ̄BΛ̄′

)
serves as estimator of Σe(l). Therefore, we have:

Σ−1
e(l)

(
C − AΛ̄′ − Λ̄A′ + Λ̄BΛ̄′

)
= IN . Using the matrix trace properties in Lemma A.1.2 and the decom-

position of the inverse matrix Σ−1
v̄ in (5.32) we proceed as follows:

EΘ̂(l)

[
L
(

Θ̂(l)|X,C
)
|X,Y

]
= −1

2
(TN + (T − p) (K +M)) ln (2π)− T

2
ln
(∣∣Σe(l)

∣∣)− T − p
2

ln
(∣∣∣Σyyv(l)

∣∣∣)
− TN

2
− 1

2
tr

([
IK OK×M

OM×K OM×M

]
(T − p)

(
F −D�̄′ − �̄D′ + �̄E�̄′

))

− 1

2
tr

([
OK×M

IM

](
Σyyv(l)

)−1 [
OM×K IM

]
(T − p)

(
F −D�̄′ − �̄D′ + �̄E�̄′

))
.

Due to (5.36) and the matrix trace poperties in Lemma A.1.2, we obtain − 1
2 (T − p)M for the last term

of the above representation and so, prove the statement. 2
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For sufficiently long samples and certain regularity assumptions the sum of the conditional expectations

converges to the covariance matrix Σv̄ with increasing T , that is:

T∑
t=p+1

EΘ̂(l)

[(
Ct − �̄C̄t−1

) (
Ct − �̄C̄t−1

)′ |X,Y ] =

T∑
t=p+1

EΘ̂(l)
[v̄tv̄

′
t|X,Y ]

large T−−−−→ (T − p) Σv̄.

In this case, the conditional expectation can be further simplified and is asymptotically equivalent to:

EΘ̂(l)

[
L
(

Θ̂(l)|X,C
)
|X,Y

]
≈ −1

2
(TN + (T − p) (K +M)) ln (2π)− 1

2
(T − p) tr

([
IK OK×M

OM×K OM×M

])

− 1

2

(
T
(
N + ln

(∣∣Σe(l)

∣∣))+ (T − p)
(
M + ln

(∣∣∣Σyyv(l)

∣∣∣)))
= −1

2
(TN + (T − p) (K +M)) ln (2π)

− 1

2

(
T
(
N + ln

(∣∣Σe(l)

∣∣))+ (T − p)
(
K +M + ln

(∣∣∣Σyyv(l)

∣∣∣))) .
As for the updates in Theorem 4.1.9, we must fix, when the EM in Lemma 5.1.7 stops. For this purpose,

η > 0 is a prespecified error tolerance and EΘ̂(l+1)

[
L
(

Θ̂(l+1)|X,C
)
|X,Y

]
is the expected log-likelihood

function from (5.40) based on the MLE parameters in (5.23)-(5.26) of loop (l+1). Then, the EM terminates

as soon as it holds:

abs
(
EΘ̂(l+1)

[
L
(

Θ̂(l+1)|X,C
)
|X,Y

]
− EΘ̂(l)

[
L
(

Θ̂(l)|X,C
)
|X,Y

])
1
2

(
abs

(
EΘ̂(l+1)

[
L
(

Θ̂(l+1)|X,C
)
|X,Y

])
+ abs

(
EΘ̂(l)

[
L
(

Θ̂(l)|X,C
)
|X,Y

])) < η. (5.41)

That is to say, the EM stops as soon as the absolute value of the relative change in EΘ [L (Θ|X,C) |X,Y ]

between two successive iterations falls below the tolerance η. Hence, the termination criterion in (5.41) is

similar to the one in (4.14) and the same embedding in the literature applies. Note that it would also be

possible to work with a termination criterion checking, whether the absolute value of the relative change

in the parameters Θ between two consecutive loops is smaller than η. For the initialization of the EM in

Lemma 5.1.7, we reuse the two-step principal component approach of Bernanke et al. (2005), which is in

accordance with Bork (2009) and Boivin et al. (2010).

The formulation and estimation of the FAVAR in (5.16)-(5.17) with loadings constraints in (5.15) require

knowledge of the factor dimension K and lag order p. In empirical analyses, both are unknown and so,

must be determined. Here, we adapt the usual AIC in the sense that we replace the log-likelihood function

in (5.20) by the expected log-likelihood function in (5.40).

Lemma 5.1.10 (Selection of FAVARs with Loadings Restrictions)

For the FAVAR in (5.16)-(5.17) with loadings constraints in (5.15), let 1 ≤ p̄ and 1 ≤ K̄ be upper limits of

the lag length and factor dimension, respectively, to be analyzed. Furthermore, let Θ̂ denote the estimated

model parameters. Then, we choose the pair (p∗,K∗), which obeys:

(p∗,K∗) = arg min
1≤p≤p̄

1≤K≤K̄

{
−2EΘ̂

[
L
(

Θ̂|X,C
)
|X,Y

]
+ 2N(K +M) +N(N + 1)

+2p(K +M)2 +M(M + 1)−K(K − 1)
}
,

where the expected log-likelihood function EΘ̂

[
L
(

Θ̂|X,C
)
|X,Y

]
is defined in (5.40).
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Proof:

The usual AIC satisfies (Akaike, 1987):

(q∗,K∗) = arg min
(q,K)

{
−2L̃ (q,K) + 2 ( number of estimated parameters )

}
,

with L̃ (q,K) as the maximized log-likelihood function based on the estimated FAVAR parameters. Here,

we replace L̃ (q,K) by EΘ̂

[
L
(

Θ̂|X,C
)
|X,Y

]
to remove the factors F t from the log-likelihood function.

The constraints in (5.15) decrease the N (K +M) degrees of freedom of the unrestricted loadings matrix

by K(K − 1)/2. In addition, the covariance matrix Σe has N (N + 1) /2 parameters and the coefficent

matrix �̄ comprises p (K +M)
2

parameters. Finally, the covariance matrix Σv̄ provides M (M + 1) /2

degrees of freedom in the form of the matrix Σyyv . 2

As an alternative to the AIC in Lemma 5.1.10, the information criteria in Bai and Ng (2002, 2008b) or

Hallin and Lǐska (2007) could be deployed for model selection. However, for clarity reasons, we proceed

with the presented AIC approach. As in previous sections, we summarize all steps in Algorithm 5.1.1.

Algorithm 5.1.1: Estimate FAVARs with loadings constraints in (5.15) based on complete data

Set relative termination criterion η > 0;

Define upper limits of factor dimension K̄ ≥ 1 and lag order p̄ ≥ 1;

Initialize overall parameter set Θ̂ov = ∅;
Initialize overall AIC by AICov =∞ (or any sufficiently large number);

for K = 1 to K̄ do

for p = 1 to p̄ do

Initialize model parameters using PCA and OLS regression;

Run EM in Lemma 5.1.7 with η, store (K, p) and estimated parameters Θ̂;

Determine temporary AIC, i.e., AICtmp, using Lemma 5.1.10;

if AICtmp < AICov then

Renew overall AIC value by AICov = AICtmp;

Update overall parameter set by Θ̂ov = Θ̂;

end

end

end

5.1.3 Kalman Filter for FAVARs

The need for loadings constraints in Bork (2009) and Marcellino and Sivec (2016) differs from ours. Here,

they are more or less arbitrary, since we are looking for K(K − 1)/2 identification restrictions. Instead

of fixing the loadings structure, we can use these degrees of freedom in Lemma 5.1.8 to change the shape

of the coefficient matrix �̄. By contrast, Bork (2009) and Marcellino and Sivec (2016) must keep some of

their loadings restrictions to estimate FAVARs. They actually considered ADFMs, however, the special

loadings matrix, properly sorted panel data and the fact that the observable variables Y t were a subset of

the panel data Xt caused their ADFMs to align itself to the FAVAR in Bernanke et al. (2005). Thereby,

both papers applied the standard Kalman Filter and Smoother for estimating the moments of the latent

factors. From our point of view, the standard KF does not take into account that the variables Y t are
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observed. Therefore, we derive KF and KS equations for the FAVAR in (5.16)-(5.17) that explicitly treat

the observability of Y t. For this purpose, we convert the original VAR(p) into a VAR(1).

Lemma 5.1.11 (VAR(1) Formulation of FAVARs)

The FAVAR in (5.16)-(5.17) with autoregressive order p > 0 can be rewritten as:

Xt =
[
Λ̄f Λ̄y

] [F̄ t
Y t

]
+ et =

[
Λ̄f ON×(p−1)K Λ̄y ON×(p−1)M

] [F̄t
Yt

]
+ et, (5.42)[

F̄t
Yt

]
= A

[
F̄t−1

Yt−1

]
+ vt =

[
Af

Ay

][
F̄t−1

Yt−1

]
+

[
v
f
t

v
y
t

]
, (5.43)

with the vectors F̄t ∈ RpK and Yt ∈ RpM defined as F̄t =
[
F̄
′
t, ..., F̄

′
t−p+1

]′
and Yt =

[
Y ′t, ...,Y

′
t−p+1

]′
,

respectively. Hence, both represent the p stacked latent factors and observed variables, respectively, up to

time t. Furthermore, we have for matrix A ∈ Rp(K+M)×p(K+M) and vector vt ∈ Rp(K+M):

A=

[
Af

Ay

]
=



Φ̄ff1 Φ̄ff2 · · · Φ̄ffp Φ̄fy1 Φ̄fy2 · · · Φ̄fyp

IK OK×K · · · OK×K OK×M OK×M · · · OK×M
...

. . .
. . .

...
...

...
...

OK×K · · · IK OK×K OK×M OK×M · · · OK×M

Φ̄yf1 Φ̄yf2 · · · Φ̄yfp Φ̄yy1 Φ̄yy2 · · · Φ̄yyp

OM×K OM×K · · · OM×K IM OM×M · · · OM×M
...

...
...

...
. . .

. . .
...

OM×K OM×K · · · OM×K OM×M · · · IM OM×M


, vt=

[
v
f
t

v
y
t

]
=



v̄ft

0K
...

0K

v̄yt

0M
...

0M


.

The covariance matrix Σv ∈ Rp(K+M)×p(K+M) of the error term vt has the following shape:

Σv =

[
Σff
v

Σfy
v

Σyf
v

Σyy
v

]
=


IK OK×(p−1)K

O(p−1)K×K O(p−1)K×(p−1)K

OpK×pM

OpM×pK
Σyyv OM×(p−1)M

O(p−1)M×M O(p−1)M×(p−1)M

 . (5.44)

Proof:

Rearrange the FAVAR in (5.16)-(5.17). 2

As usual for the Kalman Filter, we assume the model parameters Θ = {Λ̄,Σe, Φ̄1, . . . , Φ̄p,Σ
yy
v } as known

and collect all observed data up to time t ≥ 0 as follows:

Ω0 = ∅,

Ωt = {X1, ...,Xt,Y 1, ...,Y t}, ∀ t > 0.

For clarity reasons, we omit the index Θ in case of expectations and covariance matrices in this section

and deploy the following abbreviations:

ˆ̄Ft|t−1 = E
[
F̄t|Ωt−1

]
∈ RpK ,

P̂ F̄
t|t−1 = Var

[
F̄t|Ωt−1

]
∈ RpK×pK ,

P̂ F̄,F̄
(t,t−1)|t = Cov

[
F̄t, F̄t−1|Ωt

]
∈ RpK×pK .
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Analogously, we abbreviate the expectations and covariance matrices of Xt and Y t conditioned on Ωt−1.

Consequently, ΩT equals the overall sample {X,Y }.

The Kalman Filter sequentially updates linear projections of a system. The factor F̄t is unobservable and

so, the filter estimates it using the measurement variable Xt and the observed transition variable Y t. Its

moment estimators up to time t−1 are the conditional expectation ˆ̄Ft|t−1 and the conditional covariance

matrix P̂ F̄
t|t−1. As soon as new information in the form of Xt and Y t arrives, the moments ˆ̄Ft|t and P̂ F̄

t|t
serve as updated estimators. By this means, the Kalman Filter estimates the distribution of F̄t given the

data Ωt. The model in (5.42)-(5.43) is still Gaussian such that it holds:

F̄t
∣∣Ωt ∼ N (ˆ̄Ft|t, P̂ F̄

t|t

)
.

Before we obtain the moments ˆ̄Ft|t and P̂ F̄
t|t, we determine the distributions of F̄t, Y t and Xt given Ωt−1.

In doing so, we receive for the distribution of the hidden factors F̄t given Ωt−1:

Lemma 5.1.12 (Distribution of Hidden Factors)

For the FAVAR in Lemma 5.1.11, the unobserved factors F̄t given the information Ωt−1 are Gaussian:

F̄t
∣∣Ωt−1 ∼ N

(
ˆ̄Ft|t−1, P̂

F̄
t|t−1

)
, (5.45)

with mean and covariance matrix given by:

ˆ̄Ft|t−1 = Af
[
ˆ̄Ft−1|t−1

Yt−1

]
,

P̂ F̄
t|t−1 = Af

[
P̂ F̄
t−1|t−1 OpK×pM

OpM×pK OpM×pM

] (
Af
)′

+ Σff
v
.

Proof:

At first, we plug (5.43) into the conditional expectation. Thereby, we gain from the observability of Yt−1,

since it holds: Ŷt−1|t−1 = Yt−1. Furthermore, the independence of the error term vt provides:

ˆ̄Ft|t−1 = E
[
F̄t|Ωt−1

]
= E

[
Af
[
F̄t−1

Yt−1

]
+ v

f
t |Ωt−1

]
= Af

[
ˆ̄Ft−1|t−1

Yt−1

]
.

The covariance matrix of F̄t given Ωt−1 relies on (5.43), the properties of the covariance matrix, the fact

that Yt−1 is known given Ωt−1 and that the factor F̄t is uncorrelated with the error term vt. Moreover,

the error term vt is independent of Ωt−1 and thus, we have:

P̂ F̄
t|t−1 = Var

[
Af
[
F̄t−1

Yt−1

]
+ vt|Ωt−1

]
= AfVar

[[
F̄t−1

Yt−1

]
|Ωt−1

] (
Af
)′

+

[
IK OK×(p−1)K

O(p−1)K×M O(p−1)K×(p−1)K

]

= Af
[
P̂ F̄
t−1|t−1 P̂ F̄,Y

t−1|t−1

P̂Y,F̄
t−1|t−1 P̂Y

t−1|t−1

] (
Af
)′

+ Σff
v

= Af
[
P̂ F̄
t−1|t−1 OpK×pM

OpM×pK OpM×pM

] (
Af
)′

+ Σff
v
,

where P̂ F̄,Y
t−1|t−1 = OpK×pM and P̂Y

t−1|t−1 = OpM×pM arise from the observability of Yt−1. 2

In addition, we obtain for the distributions of Y t and Xt given Ωt−1 the following expressions.
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Lemma 5.1.13 (Distribution of Future Observations)

Assume the FAVAR in Lemma 5.1.11. Then, the panel data Xt and variables Y t given Ωt−1 are Gaussian:

Y t|Ωt−1 ∼ N
(
Ŷ t|t−1, P̂

Y
t|t−1

)
, (5.46)

Xt|Ωt−1 ∼ N
(
X̂t|t−1, P̂

X
t|t−1

)
. (5.47)

For the distribution parameters, we have:

Ŷ t|t−1 =
[
Φ̄yf1 · · · Φ̄yfp Φ̄yy1 · · · Φ̄yyp

] [ˆ̄Ft−1|t−1

Yt−1

]
,

X̂t|t−1 =
[
Λ̄f ON×(p−1)K Λ̄y

] [ ˆ̄Ft|t−1

Ŷ t|t−1

]
,

P̂Yt|t−1 =
[
Φ̄yf1 · · · Φ̄yfp Φ̄yy1 · · · Φ̄yyp

] [ P̂ F̄
t−1|t−1 OpK×pM

OpM×pK OpM×pM

]

·
[
Φ̄yf1 · · · Φ̄yfp Φ̄yy1 · · · Φ̄yyp

]′
+ Σyyv ,

P̂Xt|t−1 =
[
Λ̄f ON×(p−1)K Λ̄y

] [P̂ F̄
t|t−1 P̂ F̄,Y

t|t−1

P̂Y ,F̄t|t−1 P̂Yt|t−1

]
(
Λ̄f
)′

O(p−1)K×N(
Λ̄y
)′

+ Σe.

Proof:

Now, by similar reasoning as in Lemma 5.1.12, we prove the stated expectations and covariance matrices.

Besides the former arguments, the independence of the error term et and the relation in (5.42) are required

to obtain the following:

Ŷ t|t−1 = E [Y t|Ωt−1] = E

[[
Φ̄yf1 · · · Φ̄yfp Φ̄yy1 · · · Φ̄yyp

] [F̄t−1

Yt−1

]
+ v̄yt |Ωt−1

]

=
[
Φ̄yf1 · · · Φ̄yfp Φ̄yy1 · · · Φ̄yyp

] [ˆ̄Ft−1|t−1

Yt−1

]
,

X̂t|t−1 = E [Xt|Ωt−1] = E

[[
Λ̄f Λ̄y

] [F̄ t
Y t

]
+ et|Ωt−1

]
=
[
Λ̄f Λ̄y

] [ ˆ̄F t|t−1

Ŷ t|t−1

]

=
[
Λ̄f Λ̄y

] [[IK OK×(p−1)K

]
ˆ̄Ft|t−1

Ŷ t|t−1

]
=
[
Λ̄f ON×(p−1)K Λ̄y

] [ ˆ̄Ft|t−1

Ŷ t|t−1

]
.

The conditional covariance matrices of Y t and Xt are derived from (5.42), (5.43) and the independence

of the error terms. Thereby, we have:

P̂Yt|t−1 = Var [Y t|Ωt−1] = Var

[[
Φ̄yf1 · · · Φ̄yfp Φ̄yy1 · · · Φ̄yyp

] [F̄t−1

Yt−1

]
+ v̄yt |Ωt−1

]

=
[
Φ̄yf1 · · · Φ̄yfp Φ̄yy1 · · · Φ̄yyp

] [P̂ F̄
t−1|t−1 P̂ F̄,Y

t−1|t−1

P̂Y,F̄
t−1|t−1 P̂Y

t−1|t−1

]

·
[
Φ̄yf1 · · · Φ̄yfp Φ̄yy1 · · · Φ̄yyp

]′
+ Σyyv

=
[
Φ̄yf1 · · · Φ̄yfp Φ̄yy1 · · · Φ̄yyp

] [ P̂ F̄
t−1|t−1 OpK×pM

OpM×pK OpM×pM

]

·
[
Φ̄yf1 · · · Φ̄yfp Φ̄yy1 · · · Φ̄yyp

]′
+ Σyyv ,
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P̂Xt|t−1 = Var [Xt|Ωt−1] = Var

[[
Λ̄f ON×(p−1)K Λ̄y

] [ F̄t
Y t

]
+ et|Ωt−1

]

=
[
Λ̄f ON×(p−1)K Λ̄y

] [P̂ F̄
t|t−1 P̂ F̄,Y

t|t−1

P̂Y ,F̄t|t−1 P̂Yt|t−1

]
(
Λ̄f
)′

O(p−1)K×N(
Λ̄y
)′

+ Σe.

which proves the claim. 2

So far, Lemmata 5.1.12 and 5.1.13 provide the distributions of F̄t, Y t and Xt given Ωt−1. However, for

the distribution of the vector
[
F̄′t,Y

′
t,X

′
t

]′
∈ RK+M+N given Ωt−1, their covariance matrices are missing.

For this purpose, we determine them next.

Lemma 5.1.14 (Covariance Matrices of FAVAR components)

For the FAVAR in Lemma 5.1.11, we get the following covariance matrices:

P̂ F̄,Y
t|t−1 = Af

[
P̂ F̄
t−1|t−1 OpK×pM

OpM×pK OpM×pM

] [
Φ̄yf1 · · · Φ̄yfp Φ̄yy1 · · · Φ̄yyp

]′
,

P̂ F̄,X
t|t−1 =

[
P̂ F̄
t|t−1 P̂ F̄,Y

t|t−1

]
(
Λ̄f
)′

O(p−1)K×N(
Λ̄y
)′

 ,

P̂Y ,Xt|t−1 =
[
Φ̄yf1 · · · Φ̄yfp Φ̄yy1 · · · Φ̄yyp

] [ P̂ F̄
t−1|t−1 OpK×pM

OpM×pK OpM×pM

]
A′


(
Λ̄f
)′

O(p−1)K×N(
Λ̄y
)′

O(p−1)M×N

 .

Proof:

Based on (5.42)-(5.43), the observability of Xt−1 and Y t−1 at time t− 1 as well as the independence of

the error terms provide:

P̂ F̄,Y
t|t−1 = Cov

[
Af
[
F̄t−1

Yt−1

]
+ v

f
t ,
[
Φ̄yf1 · · · Φ̄yfp Φ̄yy1 · · · Φ̄yyp

] [F̄t−1

Yt−1

]
+ v̄yt |Ωt−1

]

= Af
[
P̂ F̄
t−1|t−1 P̂ F̄,Y

t−1|t−1

P̂Y,F̄
t−1|t−1 P̂Y

t−1|t−1

] [
Φ̄yf1 · · · Φ̄yfp Φ̄yy1 · · · Φ̄yyp

]′
= Af

[
P̂ F̄
t−1|t−1 OpK×pM

OpM×pK OpM×pM

] [
Φ̄yf1 · · · Φ̄yfp Φ̄yy1 · · · Φ̄yyp

]′
,

P̂ F̄,X
t|t−1 = Cov

[
F̄t,
[
Λ̄f ON×(p−1)K Λ̄y

] [ F̄t
Y t

]
+ et|Ωt−1

]
=
[
P̂ F̄
t|t−1 P̂ F̄,Y

t|t−1

]
(
Λ̄f
)′

O(p−1)K×N(
Λ̄y
)′

 ,
P̂Y ,Xt|t−1 = Cov

[[
Φ̄yf1 · · · Φ̄yfp Φ̄yy1 · · · Φ̄yyp

] [F̄t−1

Yt−1

]
+ v̄yt ,

[
Λ̄f ON×(p−1)K Λ̄y ON×(p−1)M

] [F̄t
Yt

]
+ et|Ωt−1

]
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=
[
Φ̄yf1 · · · Φ̄yfp Φ̄yy1 · · · Φ̄yyp

]
Cov

[[
F̄t−1

Yt−1

]
,

[
F̄t
Yt

]
|Ωt−1

]
(
Λ̄f
)′

O(p−1)K×N(
Λ̄y
)′

O(p−1)M×N



=
[
Φ̄yf1 · · · Φ̄yfp Φ̄yy1 · · · Φ̄yyp

]
Cov

[[
F̄t−1

Yt−1

]
,A

[
F̄t−1

Yt−1

]
+ vt|Ωt−1

]
(
Λ̄f
)′

O(p−1)K×N(
Λ̄y
)′

O(p−1)M×N



=
[
Φ̄yf1 · · · Φ̄yfp Φ̄yy1 · · · Φ̄yyp

] [P̂ F̄
t−1|t−1 P̂ F̄,Y

t−1|t−1

P̂Y,F̄
t−1|t−1 P̂Y

t−1|t−1

]
A′


(
Λ̄f
)′

O(p−1)K×N(
Λ̄y
)′

O(p−1)M×N



=
[
Φ̄yf1 · · · Φ̄yfp Φ̄yy1 · · · Φ̄yyp

] [ P̂ F̄
t−1|t−1 OpK×pM

OpM×pK OpM×pM

]
A′


(
Λ̄f
)′

O(p−1)K×N(
Λ̄y
)′

O(p−1)M×N

 .
which completes the proof. 2

Eventually, Lemmata 5.1.12-5.1.14 yield for the joint distribution of F̄t,Y t and Xt given Ωt−1 : F̄t
Y t

Xt


∣∣∣∣∣∣∣Ωt−1 ∼ N




ˆ̄Ft|t−1

Ŷ t|t−1

X̂t|t−1

 ,


P̂ F̄
t|t−1 P̂ F̄,Y

t|t−1 P̂ F̄,X
t|t−1

P̂Y ,F̄t|t−1 P̂Yt|t−1 P̂Y ,Xt|t−1

P̂X,F̄t|t−1 P̂X,Yt|t−1 P̂Xt|t−1


 . (5.48)

Furthermore, we can accomplish our original objective, i.e., the distribution of F̄t given Ωt. In this context,

we benefit in Theorem 5.1.15 from the fact: Ωt = Ωt−1 ∪ {Xt,Y t} and derive the following:

Theorem 5.1.15 (Updated Distribution of Hidden Factors)

For the FAVAR in Lemma 5.1.11, the hidden factors F̄t given the information Ωt are Gaussian:

F̄t
∣∣Y t,Xt,Ωt−1 = F̄t

∣∣Ωt ∼ N (ˆ̄Ft|t, P̂ F̄
t|t

)
, (5.49)

with mean and covariance matrix defined as follows:

ˆ̄Ft|t = ˆ̄Ft|t−1 + ΓKFt

(
Y t − Ŷ t|t−1

Xt − X̂t|t−1

)
,

P̂ F̄
t|t = P̂ F̄

t|t−1 − ΓKFt

[
P̂Yt|t−1 P̂Y ,Xt|t−1

P̂X,Yt|t−1 P̂Xt|t−1

] (
ΓKFt

)′
,

where we have for the Kalman Filter gain ΓKFt :

ΓKFt =
[
P̂ F̄,Y
t|t−1 P̂ F̄,X

t|t−1

] [P̂Yt|t−1 P̂Y ,Xt|t−1

P̂X,Yt|t−1 P̂Xt|t−1

]−1

.

Proof:

Due to its definition, it holds Ωt = Ωt−1∪{Xt,Y t}. Finally, the properties of the conditional multivariate
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normal distribution (Greene, 2003, pp. 871-872, Theorem B.7) yield the stated parameters. 2

As mentioned in Section 5.1.2, we initialize the model parameters in the EM using the two-step principal

component approach of Bernanke et al. (2005). In addition, the Kalman Filter requires an initial guess of

the covariance matrix P̂ F̄
p|p. The VAR(1) in (5.43) is supposed to be covariance-stationary. Therefore, we

take the upper left submatrix of its overall covariance matrix ΣF̄,Y for this purpose. For ΣF̄,Y, we have:

ΣF̄,Y = AΣF̄,YA′ + Σv ⇔ vec
(
ΣF̄,Y

)
= (A⊗ A) vec

(
ΣF̄,Y

)
+ vec (Σv)

⇔
[
I(p(K+M))2 − (A⊗ A)

]
vec

(
ΣF̄,Y

)
= vec (Σv)

⇔ vec
(
ΣF̄,Y

)
=
[
I(p(K+M))2 − (A⊗ A)

]−1

vec (Σv) . (5.50)

The Jordan decomposition of the matrix A ⊗ A (Hamilton, 1994, p. 731, Eq. A.4.25) provides that the

matrix
[
I(p(K+M))2 − (A⊗ A)

]
has full rank such that its inverse is well-defined. As in previous sections,

Algorithm 5.1.2 summarizes all findings in a compact form.
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Algorithm 5.1.2: Kalman Filter for FAVARs with complete panel data

### Initialization

Λ̄,Σe, Φ̄i,Σv̄ ,Xt,Y t for t = 1, ..., T and i = 1, ..., p are known;

ˆ̄Fp|p =

[(
F̄

PCA
p

)′
, . . . ,

(
F̄

PCA
1

)′]′
;

P̂ F̄
p|p =

[
IpK OpK×pM

]
ΣF̄,Y

[
IpK

OpM×pK

]
;

Ŷp|p = Yp;

X̂p|p = Xp;

### Forward recursion

for t = p+ 1 to T do

# Prediction step

ˆ̄Ft|t−1 = Af

ˆ̄Ft−1|t−1

Yt−1

;

P̂ F̄
t|t−1

= Af

 P̂ F̄
t−1|t−1

OpK×pM

OpM×pK OpM×pM

(Af
)′

+ Σff
v

;

Ŷ t|t−1 =
[
Φ̄yf

1 · · · Φ̄yf
p Φ̄yy

1 · · · Φ̄yy
p

]ˆ̄Ft−1|t−1

Yt−1

;

P̂Y
t|t−1

=
[
Φ̄yf

1 · · · Φ̄yf
p Φ̄yy

1 · · · Φ̄yy
p

] P̂ F̄
t−1|t−1

OpK×pM

OpM×pK OpM×pM

[Φ̄yf
1 · · · Φ̄yf

p Φ̄yy
1 · · · Φ̄yy

p

]′
+ Σyy

v ;

P̂ F̄,Y
t|t−1

= Af

 P̂ F̄
t−1|t−1

OpK×pM

OpM×pK OpM×pM

[Φ̄yf
1 · · · Φ̄yf

p Φ̄yy
1 · · · Φ̄yy

p

]′
;

X̂t|t−1 =
[
Λ̄f ON×(p−1)K Λ̄y

] ˆ̄Ft|t−1

Ŷ t|t−1

;

P̂X
t|t−1

=
[
Λ̄f ON×(p−1)K Λ̄y

]P̂ F̄
t|t−1

P̂ F̄,Y
t|t−1

P̂Y ,F̄
t|t−1

P̂Y
t|t−1




(
Λ̄f
)′

O(p−1)K×N(
Λ̄y
)′

+ Σe;

P̂ F̄,X
t|t−1

=
[
P̂ F̄
t|t−1

P̂ F̄,Y
t|t−1

]
(
Λ̄f
)′

O(p−1)K×N(
Λ̄y
)′

;

P̂Y ,X
t|t−1

=
[
Φ̄yf

1 · · · Φ̄yf
p Φ̄yy

1 · · · Φ̄yy
p

] P̂ F̄
t−1|t−1

OpK×pM

OpM×pK OpM×pM

A′



(
Λ̄f
)′

O(p−1)K×N(
Λ̄y
)′

O(p−1)M×N


;

# Correction step

ΓKF
t =

[
P̂ F̄,Y
t|t−1

P̂ F̄,X
t|t−1

]P̂Y
t|t−1

P̂Y ,X
t|t−1

P̂X,Y
t|t−1

P̂X
t|t−1

−1

;

ˆ̄Ft|t = ˆ̄Ft|t−1 + ΓKF
t

Y t − Ŷ t|t−1

Xt − X̂t|t−1

;

P̂ F̄
t|t = P̂ F̄

t|t−1
− ΓKF

t

P̂Y
t|t−1

P̂Y ,X
t|t−1

P̂X,Y
t|t−1

P̂X
t|t−1

(ΓKF
t

)′
;

end
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5.1.4 Kalman Smoother for FAVARs

In (5.42)-(5.43) we separate the hidden factors from the observable variables and hence, do not work with

the most common VAR(1) state-space representation, which simply stacks the original VAR(p) vectors

irrespective of their observability. Therefore, we check whether the standard Kalman Smoother equations

remain valid for our FAVAR formulation in (5.42)-(5.43). For clarity reasons, we drop again the index Θ

for expectations as well as variance and covariance matrices in this section.

Theorem 5.1.16 (Smoothed Distribution of Hidden Factors)

Assume the FAVAR in (5.42)-(5.43) with complete sample data ΩT = {X,Y } for T ≥ p. Then, for all

points in time p ≤ t ≤ T the hidden factors F̄t given the overall information ΩT are Gaussian:

F̄t
∣∣ΩT ∼ N (ˆ̄Ft|T , P̂ F̄

t|T

)
,

with distribution parameters defined as follows:

ˆ̄Ft|T = ˆ̄Ft|t + ΓKSt

(
ˆ̄Ft+1|T − ˆ̄Ft+1|t

)
, (5.51)

P̂ F̄
t|T = P̂ F̄

t|t − ΓKSt

(
P̂ F̄
t+1|t − P̂

F̄
t+1|T

) (
ΓKSt

)′
. (5.52)

In this context, the Kalman Smoother gain ΓKSt is given by:

ΓKSt = P̂ F̄,F̄
(t,t+1)|t

(
P̂ F̄
t+1|t

)−1

. (5.53)

Proof:

By virtue of the tower rule for conditional expectations (Durrett, 2010, p. 228, Theorem 5.1.6), we have:

ˆ̄Ft|T = E
[
F̄t|ΩT

]
= E

[
E
[
F̄t|F̄t+1,ΩT

]
|ΩT

]
. (5.54)

If we define ΩTt+1 = g
(
{es,vs}Ts=t+1

)
for some function g, the information set ΩT coincides with the sets

F̄t+1, Ωt and ΩTt+1. Consequently, we obtain for the inner expectation of (5.54):

E
[
F̄t|F̄t+1,ΩT

]
= E

[
F̄t|F̄t+1,Ωt,Ω

T
t+1

]
= E

[
F̄t|F̄t+1,Ωt, g

(
{es,vs}Ts=t+1

)]
= E

[
F̄t|F̄t+1,Ωt

]
, (5.55)

where the last step requires the independence of the factors F̄t and {es,vs}Ts=t+1.

Similarly, the law of the total conditional variance provides for the the covariance matrix P̂ F̄
t|T :

P̂ F̄
t|T = Var

[
F̄t|ΩT

]
= E

[
Var

[
F̄t|F̄t+1,ΩT

]
|ΩT

]
+ Var

[
E
[
F̄t|F̄t+1,ΩT

]
|ΩT

]
. (5.56)

The conditional covariance matrix in the inside of the first term and the inner conditional expectation of

the second term can be simplified by the same method as in (5.55). Therefore, we can write (5.56) as:

P̂ F̄
t|T = E

[
Var

[
F̄t|F̄t+1,Ωt

]
|ΩT

]
+ Var

[
E
[
F̄t|F̄t+1,Ωt

]
|ΩT

]
. (5.57)

The calculation of (5.54) and (5.56) calls for the conditional expectation in (5.55) and the conditional

covariance matrix part of (5.57). We derive both from the distribution of the vector (F̄′t, F̄
′
t+1)′ conditioned

on Ωt, which is given by:(
F̄t

F̄t+1

)∣∣∣∣∣Ωt ∼ N
((

ˆ̄Ft|t
ˆ̄Ft+1|t

)
,

(
P̂ F̄
t|t P̂ F̄,F̄

(t,t+1)|t

P̂ F̄,F̄
(t+1,t)|t P̂ F̄

t+1|t

))
, (5.58)
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where the vectors ˆ̄Ft|t and ˆ̄Ft+1|t and the matrices P̂ F̄
t|t and P̂ F̄

t+1|t are known from the KF in Algorithm

5.1.2. Regarding the unknown covariance matrix P̂ F̄,F̄
(t,t+1)|t the relation in (5.43), the independence of the

factors F̄t and errors vt as well as the observability of Yt yield:

P̂ F̄,F̄
(t,t+1)|t = Cov

[
F̄t, F̄t+1|Ωt

]
= Cov

[
F̄t,Af

[
F̄t
Yt

]
+ vt|Ωt

]
=
[
P̂ F̄
t|t P̂ F̄,Y

t|t

] (
Af
)′

=
[
P̂ F̄
t|t OpK×pM

] (
Af
)′
.

Now, the properties of the conditional Gaussian distribution (Greene, 2003, pp. 871-872, Theorem B.7)

result in the below expectation and variance of F̄t conditioned on F̄t+1 and Ωt:

E
[
F̄t|F̄t+1,Ωt

]
= ˆ̄Ft|t + ΓKSt

(
F̄t+1 − ˆ̄Ft+1|t

)
, (5.59)

Var
[
F̄t|F̄t+1,Ωt

]
= P̂ F̄

t|t − ΓKSt P̂ F̄
t+1|t

(
ΓKSt

)′
, (5.60)

where the Kalman Smoother gain ΓKSt is defined in (5.53).

Inserting (5.55) and (5.59) into (5.54) as well as (5.59) and (5.60) into (5.57) leads to:

ˆ̄Ft|T = E
[
ˆ̄Ft|t + ΓKSt

(
F̄t+1 − ˆ̄Ft+1|t

)
|ΩT

]
,

P̂ F̄
t|T = E

[
P̂ F̄
t|t − ΓKSt P̂ F̄

t+1|t
(
ΓKSt

)′ |ΩT ]+ Var
[
F̄t|t + ΓKSt

(
F̄t+1 − ˆ̄Ft+1|t

)
|ΩT

]
.

Note, the vectors ˆ̄Ft|t and ˆ̄Ft+1|t and the matrix ΓKSt are deterministic such that the above solutions can

be further simplified and we end up with the expressions in (5.51)-(5.52). 2

Until now, we smooth for each point in time the expectation and covariance matrix of the hidden factors.

However, the transition from one point in time to another is still missing. For this purpose, we use the

subsequent lag-one autocovariance smoother.

Lemma 5.1.17 (Lag-One Autocovariance Smoother)

Assume the FAVAR in (5.42)-(5.43) based on complete sample data ΩT = {X,Y } with T ≥ p+ 1. Then,

for all points in time p+ 1 ≤ t ≤ T , a lag-one autocovariance smoother is given by:

P̂ F̄,F̄
(t,t−1)|T = Cov

[
F̄t, F̄t−1|ΩT

]
= P̂ F̄

t|T
(
ΓKSt−1

)′
. (5.61)

Proof:

At first, we apply the algebraic formula for the conditional covariance matrix:

P̂ F̄,F̄
(t,t−1)|T = Cov

[
F̄t, F̄t−1|ΩT

]
= E

[
F̄tF̄
′
t−1|ΩT

]
− ˆ̄Ft|T ˆ̄F

′
t−1|T . (5.62)

The values ˆ̄Ft|T are provided in Theorem 5.1.16. Therefore, we focus on the first term. As in the proof of
ˆ̄Ft|T and P̂ F̄

t|T , we apply the tower rule and (5.55) to justify the following steps:

E
[
F̄tF̄
′
t−1|ΩT

]
= E

[
E
[
F̄tF̄
′
t−1|F̄t,ΩT

]
|ΩT

]
= E

[
F̄tE

[
F̄′t−1|F̄t,ΩT

]
|ΩT

]
= E

[
F̄tE

[
F̄′t−1|F̄t,Ωt−1

]
|ΩT

]
.

Next, (5.59) and the fact that ˆ̄Ft−1|t−1, ΓKSt−1 and ˆ̄Ft|t−1 are constants yield:

E
[
F̄tF̄
′
t−1|ΩT

]
= E

[
F̄t
(

ˆ̄F
′
t−1|t−1 +

(
F̄t − ˆ̄Ft|t−1

)′ (
ΓKSt−1

)′) |ΩT]
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= ˆ̄Ft|T ˆ̄F
′
t−1|t−1 + E

[
F̄t
(
F̄t − ˆ̄Ft|t−1

)′
|ΩT

] (
ΓKSt−1

)′
= ˆ̄Ft|T ˆ̄F

′
t−1|t−1 +

(
E
[
F̄tF̄
′
t|ΩT

]
− ˆ̄Ft|T ˆ̄F

′
t|t−1

) (
ΓKSt−1

)′
= ˆ̄Ft|T ˆ̄F

′
t−1|t−1 +

(
P̂ F̄
t|T + ˆ̄Ft|T ˆ̄F

′
t|T − ˆ̄Ft|T ˆ̄F

′
t|t−1

) (
ΓKSt−1

)′
. (5.63)

If we combine (5.62) and (5.63), we have for the lag-one autocovariance smoother:

P̂ F̄,F̄
(t,t−1)|T = ˆ̄Ft|T ˆ̄F

′
t−1|t−1 +

(
P̂ F̄
t|T + ˆ̄Ft|T ˆ̄F

′
t|T − ˆ̄Ft|T ˆ̄F

′
t|t−1

) (
ΓKSt−1

)′ − ˆ̄Ft|T ˆ̄F
′
t−1|T .

Eventually, the smoothed expectation in (5.51) for time t− 1 provides:

P̂ F̄,F̄
(t,t−1)|T = ˆ̄Ft|T ˆ̄F

′
t−1|t−1 +

(
P̂ F̄
t|T + ˆ̄Ft|T ˆ̄F

′
t|T − ˆ̄Ft|T ˆ̄F

′
t|t−1

) (
ΓKSt−1

)′
− ˆ̄Ft|T

(
ˆ̄Ft−1|t−1 + ΓKSt−1

(
ˆ̄Ft|T − ˆ̄Ft|t−1

))′
=
(
P̂ F̄
t|T + ˆ̄Ft|T ˆ̄F

′
t|T − ˆ̄Ft|T ˆ̄F

′
t|t−1 − ˆ̄Ft|T ˆ̄F

′
t|T + ˆ̄Ft|T ˆ̄F

′
t|t−1

)′ (
ΓKSt−1

)′
= P̂ F̄

t|T
(
ΓKSt−1

)′
, (5.64)

which finishes the proof. 2

For reasons of implementation efficiency, Algorithm 5.1.3 summarizes the Kalman Smoother and Lag-One

Autocovariance Smoother as single routine.

Algorithm 5.1.3: Kalman and lag-one autocovariance smoother for FAVARs with complete data

### Initialization

ˆ̄Ft+1|t and P̂ F̄
t+1|t are provided by the Kalman Filter for p ≤ t ≤ T − 1;

ˆ̄Ft|t and P̂ F̄
t|t are provided by the Kalman Filter for p ≤ t ≤ T ;

### Backward recursion

for t = T − 1 to p do

P̂ F̄,F̄
(t,t+1)|t =

[
P̂ F̄
t|t OpK×pM

] (
Af
)′

;

ΓKS
t = P̂ F̄,F̄

(t,t+1)|t

(
P̂ F̄
t+1|t

)−1
;

ˆ̄Ft|T = ˆ̄Ft|t + ΓKS
t

(
ˆ̄Ft+1|T − ˆ̄Ft+1|t

)
;

P̂ F̄
t|T = P̂ F̄

t|t − ΓKS
t

(
P̂ F̄
t+1|t − P̂

F̄
t+1|T

) (
ΓKS
t

)′
;

P̂ F̄,F̄
(t+1,t)|T = P̂ F̄

t+1|T
(
ΓKS
t

)′
;

end

5.1.5 Estimation of FAVARs with Incomplete Panel Data

The FAVARs in Sections 5.1.1-5.1.4 rely on complete data, that is, panel data and observed variables Y t

are of the same frequency and do not comprise any gaps. To allow for incomplete panel data we pursue the

ansatz in Definition 2.2.1. Each univariate time series in the panel data is supposed to be standardized,

therefore, some minor adjustments are necessary. Unfortunately, the proposed method does not permit

data incompleteness for the observed variables Y t and hence, leaves this for the future research.

Definition 5.1.18 (FAVARs with Incomplete Panel Data)

Similar to Definition 2.2.1, for 1 ≤ i ≤ N the vectors Xi
obs ∈ RT (i) and X̄

i ∈ RT with T (i) ≤ T collect the
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observations and complete analogs of signal i with matrix Qi ∈ RT (i)×T modeling their linear relation. The

panel data in (5.16) is supposed to consist of standardized time series, thus, we set: Xi = (X̄
i−µX̄i

1T )σ−1
X̄i

for each time series i with mean µX̄i
and variance σ2

X̄i
. If the index 1 ≤ t ≤ T covers the points in time,

when new data arrives, the FAVAR with incomplete data is defined as follows:

Xi
obs = QiX̄

i
, ∀ 1 ≤ i ≤ N, (5.65)

Xi = (X̄
i − µX̄i

1T )σ−1

X̃i
, ∀ 1 ≤ i ≤ N, (5.66)

Xt = Λ̄Ct + et, et ∼ N (0N ,Σe) iid, (5.67)

Ct =

p∑
i=j

Φ̄jCt−j + v̄t, v̄t ∼ N (0K+M ,Σv̄) iid, (5.68)

with joint vector Ct =
[
F̄
′
t,Y

′
t

]′
∈ RK+M and constant matrices Λ̄ ∈ RN×(K+M),Σe ∈ RN×N , Φ̄j ∈

R(K+M)×(K+M), 1 ≤ j ≤ p, and Σv̄ ∈ R(K+M)×(K+M).

Note, the FAVARs in Definition 5.1.18 support the treatment of stock, flow and change in flow variables

in Section 2.2. Neither the choice of the matrices Qi nor the existence of constraints for the loadings and

VAR coefficients matter at this stage. Therefore, we continue with the general form in (5.65)-(5.68). As

in Lemma 3.1.7, we modify the reconstruction formula of Stock and Watson (1999a, 2002b) for FAVARs.

Lemma 5.1.19 (Conditional Distribution of Complete Panel Data)

For the FAVAR in Definition 5.1.18 with incomplete panel data, the matrices F̄ =
[
F̄ 1, ..., F̄ T

]′ ∈ RT×K ,

Y = [Y 1, ...,Y T ]
′ ∈ RT×M and E = [e1, ..., eT ]

′ ∈ RT×N collect all factors, standardized observations

and errors, respectively. Then, for 1 ≤ i ≤ N the vector X̄
i

given the matrices F̄ and Y as well as the

observations Xi
obs is Gaussian with the following parameters:

EΘ

[
X̄
i|F̄ , Y,Xi

obs

]
= µX̄i

1T + σX̄i
F̄
(
Λ̄
f
i

)′
+ σX̄i

Y
(
Λ̄
y
i

)′
+Q′i (QiQ

′
i)
−1
[
Xi
obs −Qi

(
µX̄i

1T + σX̄i
F̄
(
Λ̄
f
i

)′
+ σX̄i

Y
(
Λ̄
y
i

)′)]
, (5.69)

VarΘ

[
X̄
i|F̄ , Y,Xi

obs

]
= σ2

X̄i
σ2
ei

(
IT −Q′i (QiQ

′
i)
−1
Qi

)
. (5.70)

Proof:

First we rearrange (5.67), that is, we consider this equation for a univariate time series 1 ≤ i ≤ N :

Xi = F̄
(
Λ̄
f
i

)′
+ Y

(
Λ̄
y
i

)′
+Ei

⇔
X̄
i − µX̄i

1T

σX̄i

= F̄
(
Λ̄
f
i

)′
+ Y

(
Λ̄
y
i

)′
+Ei

⇔ X̄
i

= µX̄i
1T + σX̄i

F̄
(
Λ̄
f
i

)′
+ σX̄i

Y
(
Λ̄
y
i

)′
+ σX̄i

Ei,

⇔ Xi
obs = QiµX̄i

1T +QiσX̄i
F̄
(
Λ̄
f
i

)′
+QiσX̄i

Y
(
Λ̄
y
i

)′
+QiσX̄i

Ei,

where Λ̄
f
i , Λ̄

y
i and Ei denote the i-th row of Λ̄f and Λ̄y and the i-th column of E, respectively. Because

of et ∼ N (0N ,Σe) iid, for all 1 ≤ i ≤ N we get Ei ∼
(
0T , σ

2
eiIT

)
resulting in:

(
X̄
i

Xi
obs

)∣∣∣∣∣ F̄ , Y ∼ N
 µX̄i

1T + σX̄i
F̄
(
Λ̄
f
i

)′
+ σX̄i

Y
(
Λ̄
y
i

)′
QiµX̄i

1T +QiσX̄i
F̄
(
Λ̄
f
i

)′
+QiσX̄i

Y
(
Λ̄
y
i

)′
 , σ2

X̄i
σ2
ei

(
IT Q′i
Qi QiQ

′
i

) .
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Eventually, the properties of the conditional multivariate normal distribution (Greene, 2003, pp. 871-872,

Theorem B.7) prove the claim. 2

With Lemma 5.1.19 in mind, we extend Algorithm 5.1.1 to incomplete panel data. To be precise, in each

loop (l) ≥ 0, we update for all 1 ≤ i ≤ N the univariate complete time series X̄
i
(l+1) as follows:

X̄
i
(l+1) = EΘ(l)

[
X̄
i|F̄(l), Y,X

i
obs

]
= µX̄i(l)1T + σX̄i(l)F̄(l)

(
Λ̄
f
i(l)

)′
+ σX̄i(l)Y

(
Λ̄
y
i(l)

)′
+Q′i (QiQ

′
i)
−1
[
Xi
obs −Qi

(
µX̄i(l)1T + σX̄i(l)F̄(l)

(
Λ̄
f
i(l)

)′
+ σX̄i(l)Y

(
Λ̄
y
i(l)

)′)]
. (5.71)

In our empirical application, we replace the univariate means µX̄i(l) and variances σ2
X̄i(l)

by their empirical

estimates. Similar to Algorithms 3.1.2 and 4.1.2, the updates (5.71) stop as soon as the absolute value of

the relative change in the expected log-likelihood function EΘ̂(l)

[
L
(

Θ̂(l)|X,C
)
|X,Y

]
from Lemma 5.1.9

between two consecutive iterations falls below the prespecified error threshold ξ.

As usual, we collect all findings in the form of an algorithm. In total, Algorithm 5.1.4 admits the estimation

of FAVARs with incomplete panel data. After the general initialization, it jointly estimates the unknown

model parameters, latent factor moments and missing data for fixed factor dimensionK and autoregressive

order p. In opposition to Algorithms 3.1.2 and 4.1.2, which clearly separate the construction of complete

data from model selection and parameter estimation, Algorithm 5.1.4 estimates for fixed factor dimension

and lag length the overall model based on incomplete panel data. Hence, there are no changes in (K, p)

that may affect the termination of the EMs. This procedure performed well in our analyses, in particular, it

provided more stable results. However, as in previous chapters, the termination criteria η and ξ still control

the absolute value of relative changes in the expected log-likelihood instead of the model parameters. This

also weakens the impact of the sample size on the termination of the algorithm. In case of the initialization

the same argumentation as for Algorithms 3.1.2 and 4.1.2 holds.



5.1. MATHEMATICAL BACKGROUND 153

Algorithm 5.1.4: Estimation of FAVARs with constraints in (5.15) for incomplete panel data

Set relative termination criteria η > 0 and ξ > 0;

Define upper limits of factor dimension K̄ ≥ 1 and lag order p̄ ≥ 1;

Initialize overall parameter set Θ̂ov = ∅;
Initialize overall AIC by AICov =∞ (or any sufficiently large number);

for K = 1 to K̄ do

for p = 1 to p̄ do

### Initialization

for i = 1 to N do

Initialize X̄
i
(0) (if necessary, fill gaps);

Define Qi;

end

Determine standardized panel data X(0);

Set loop (l) = 0;

Initialize model parameters using PCA and OLS;

Run EM in Lemma 5.1.7 with X(l), η, store (K, p) and estimated parameters Θ̂(l);

Determine EΘ̂(l)

[
L
(

Θ̂(l)|X(l), C
)
|X(l), Y

]
in Lemma 5.1.9;

for i = 1 to N do

Use (5.71) such that X̄
i
(l+1) is obtained;

end

Determine standardized panel data X(l+1);

Run EM in Lemma 5.1.7 with X(l+1), η, store (K, p) and estimated parameters Θ̂(l+1);

Determine EΘ̂(l+1)

[
L
(

Θ̂(l+1)|X(l+1), C
)
|X(l+1), Y

]
in Lemma 5.1.9;

### Alternating EMs

while
abs

(
EΘ̂(l+1)

[L(Θ̂(l+1)|X(l+1),C)|X(l+1),Y ]−EΘ̂(l)
[L(Θ̂(l)|X(l),C)|X(l),Y ]

)
1
2

(
abs

(
EΘ̂(l+1)

[L(Θ̂(l+1)|X(l+1),C)|X(l+1),Y ]
)

+abs

(
EΘ̂(l)

[L(Θ̂(l)|X(l),C)|X(l),Y ]
)) > ξ do

Set loop index (l) = (l + 1);

for i = 1 to N do

Use (5.71) such that X̄
i
(l+1) is obtained;

end

Determine standardized panel data X(l+1);

Run EM in Lemma 5.1.7 with X(l+1), η, store (K, p) and estimated parameters Θ̂(l+1);

Determine EΘ̂(l+1)

[
L
(

Θ̂(l+1)|X(l+1), C
)
|X(l+1), Y

]
in Lemma 5.1.9;

end

Determine temporary AIC, i.e., AICtmp, using Lemma 5.1.10;

if AICtmp < AICov then

Renew overall AIC value by AICov = AICtmp;

Update overall parameter set by Θ̂ov = Θ̂(l+1);

end

end

end
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5.1.6 Shock Analysis

FAVARs rank among VARs, therefore, we may apply standard tools for analyzing VARs such as Impulse

Response Functions (IRFs) and Forecast Error Variance Decomposition (FEVD). For instance, we mea-

sure the effects of the US monetary policy on financial markets and the real economy in Section 5.3 with

them. An advantage of FAVARs is that we can derive both for all observed data and hidden factors. This

allows us to examine the reactions of the economy to structural shocks on a much broader set of variables

compared to usual small-scale VARs. Algorithm 5.1.4 enables the estimation of FAVARs with incomplete

panel data, this is why we also have IRFs and FEVDs for low-frequency indicators as GDP.

In the sequel, we follow Hamilton (1994) and Lütkepohl (2005) to obtain IRFs and FEVD for the FAVAR

in (5.16)-(5.17). Thereby, we do not discuss loadings or VAR constraints, since IRFs and FEVD call for

known model parameters and so, are calculated, after a FAVAR has been estimated. By similar reasoning

we can argue that Algorithm 5.1.4 offers for each time series with missing elements or of lower frequency

a complete analog. So, it is sufficient to derive IRFs and FEVD for FAVARs based on complete data.

Every covariance-stationary VAR has a MA(∞) representation of its errors, which is also known as Wold

representation. Thus, the covariance-stationarity of the transition equation in (5.17) and Hamilton (1994,

p. 260, Eq. 10.1.15) provide:[
F̄ t

Y t

]
=

p∑
i=1

Φ̄i

[
F̄ t−i

Y t−i

]
+ v̄t ⇒

[
F̄ t

Y t

]
=

∞∑
k=0

�̄
kv̄t−k, (5.72)

where for all k ≥ 0 we define:

�̄
k =

[
Φ̄1 · · · Φ̄p

]
�̄
k−1

...

�̄
k−p

 with �̄
0 = IK+M and �̄

k−p = O(K+M)×(K+M),∀k − p < 0.

For the IRFs, we would like to have the (i, j)-th element of �̄s denoted by
(
�̄
s
)
ij

as the impulse response:

∂

[
F̄ t+s

Y t+s

]
i

∂ (v̄t)j
=

∂

[
F̄ t

Y t

]
i

∂ (v̄t−s)j
=
(
�̄
s
)
ij
,

with 1 ≤ i, j ≤ K +M . But, this requires the covariance matrix Σv̄ of the error terms v̄t to be diagonal

such that the elements of v̄t are uncorrelated. Otherwise, the shocks cannot be uniquely identified. Here,

we use a recursive identification scheme to achieve uncorrelated errors. Thereby, we assume that the first

factor is only affected by its own innovation. Besides its own innovation, the second factor is affected by

the first innovation. If we proceed similarly, all previous innovations drive the monetary policy variables

in Section 5.3, since the observable vector Y t is ordered last. In the below lemma we state the IRF for

our rotated FAVAR in (5.16)-(5.17).

Lemma 5.1.20 (Impulse Response Functions for FAVARs)

Let P ∈ RM×M be a lower triangular matrix such that the Cholesky decomposition of the submatrix Σyyv

part of the covariance matrix Σv̄ in (5.17) is given by Σyyv = PP ′. Then, the new innovations ξt ∈ RK+M

defined by:

ξt =

[
IK OK×M

OM×K P

]−1

v̄t, (5.73)
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are orthogonal and for all 1 ≤ i, j ≤ K +M and 1 ≤ n ≤ N the impulse responses to their shocks obey:

∂

[
F̄ t+s

Y t+s

]
i

∂ (ξt)j
=

∂

[
F̄ t

Y t

]
i

∂
(
ξt−s

)
j

=

(
�̄
s

[
IK OK×M

OM×K P

])
ij

, (5.74)

∂ (Xt+s)n
∂ (ξt)j

=
∂ (Xt)n
∂
(
ξt−s

)
j

=

([
Λ̄f Λ̄y

]
�̄
s

[
IK OK×M

OM×K P

])
nj

. (5.75)

Proof:

The upper left submatrix of the covariance matrix Σv̄ in (5.17) is the identity matrix, whereas its upper

right and lower left submatrices are zero matrices. Hence, this special structure simplifies our problem

such that only the submatrix Σyyv has to be adjusted to achieve the desired recursive scheme. Let P be

the lower triangular matrix arising from the Cholesky decomposition of Σyyv . Then, the new shocks ξt are

orthogonal, since we have for their covariance matrix:

Σξ =

[
IK OK×M

OM×K P

]−1

Σv̄

[ IK OK×M

OM×K P

]−1
′ =

[
IK OK×M

OM×K P−1

]
Σv̄

[
IK OK×M

OM×K (P ′)
−1

]

=

[
IK OK×M

OM×K P−1Σyyv

][
IK OK×M

OM×K (P ′)
−1

]
=

[
IK OK×M

OM×K P−1Σyyv (P ′)
−1

]
= I(K+M).

Next, we rewrite the MA(∞) representation in (5.72) as follows:[
F̄ t

Y t

]
=

∞∑
k=0

�̄
k

[
IK OK×M

OM×K P

][
IK OK×M

OM×K P

]−1

v̄t−k =

∞∑
k=0

�̄
k

[
IK OK×M

OM×K P

]
ξt−k, (5.76)

which results in the solution in (5.74). For the IRFs of the panel data Xt, the MA(∞) representation in

(5.76) and the observation equation in (5.16) lead us to:

Xt =
[
Λ̄f Λ̄y

](F̄ t
Y t

)
+ et =

[
Λ̄f Λ̄y

]( ∞∑
k=0

�̄
k

[
IK OK×M

OM×K P

]
ξt−k

)
+ et. (5.77)

Eventually, the partial derivatives of Xt in (5.77) with respect to the shocks ξt−s yield (5.75). 2

Due to Lemma 5.1.20, the IRFs of
[
F̄
′
t,Y

′
t

]
and Xt with respect to ξt−s are received by plotting (5.74)

or (5.75). Before we continue with the FEVD, we are interested in the shock weight z ∈ RK+M , ceteris

paribus, causing a change in the vector Y T of size ∆Y . For instance, which shock increases the Effective

Federal Funds Rate in Section 5.3 by 25 basis points (bps) at point in time s = 0, but leaves everything

else as it is. For this purpose, the vector z has to satisfy:[
F̄ T

D−1
Y (Y T + ∆Y − µY )

]
= �̄

0

[
IK OK×M

OM×K P

]
z,

where the vector ∆Y ∈ RM contains the planned changes in Y T . The vector µY ∈ RM collects the means

of the observed variables, while the diagonal matrix DY = diag (σY1 , . . . , σYM
) ∈ RM×M summarizes their

standard deviations. Hence, the standardized shock z is given by:

z =

[
F̄ T

P−1D−1
Y (Y T + ∆Y − µY )

]
. (5.78)
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Finally, we derive the FEVD of the FAVAR in (5.16)-(5.17) assigning the contributions of the innovations

to the forecasting error of a variable for a given time horizon. As for IRFs, FAVARs admit the FEVD for

all variables. In the below lemma we state the FEVD for our rotated FAVAR in (5.16)-(5.17).

Lemma 5.1.21 (Forecast Error Variance Decomposition for FAVARs)

For any 1 ≤ i ≤ N, 1 ≤ j ≤ K +M and s > 0, the proportion of the j-th innovation regarding the s-step

ahead forecast error variance of the i-th element of variable Xt is given by:

ωsij =

∑s−1
k=0

([Λ̄f Λ̄y
]
i
�̄
k

[
IK OK×M

OM×K P

])
j

2

∑K+M
j=1

∑s−1
k=0

([Λ̄f Λ̄y
]
i
�̄k

[
IK OK×M

OM×K P

])
j

2

+ (Σe)ii

. (5.79)

Proof:

Following Lütkepohl (2005, pp. 63-66) and Bork (2009), we receive the FEVD of the measurement equation

from the MA(∞) representation in (5.77). For the optimal s-step ahead forecast X̂t+s we have:

X̂t+s =
[
Λ̄f Λ̄y

] ∞∑
k=s

�̄
k

[
IK OK×M

OM×K P

]
ξt−k+s.

Therefore, the error of the optimal s-step ahead forecast errs is:

errs = Xt+s − X̂t+s =
[
Λ̄f Λ̄y

] s−1∑
k=0

�̄
k

[
IK OK×M

OM×K P

]
ξt−k+s + et+s.

Hence, this means for its i-th component:

(errs)i =
[
Λ̄f Λ̄y

]
i

s−1∑
k=0

�̄
k

[
IK OK×M

OM×K P

]
ξt−k+s + (et+s)i

=

s−1∑
k=0

([
Λ̄f Λ̄y

]
i
�̄
k

[
IK OK×M

OM×K P

]
ξt−k+s

)
+ (et+s)i

=

s−1∑
k=0

K+M∑
j=1

([Λ̄f Λ̄y
]
i
�̄
k

[
IK OK×M

OM×K P

])
j

(
ξt−k+s

)
j

+ (et+s)i

=

K+M∑
j=1

s−1∑
k=0

([Λ̄f Λ̄y
]
i
�̄
k

[
IK OK×M

OM×K P

])
j

(
ξt−k+s

)
j

+ (et+s)i ,

where
[
Λ̄f Λ̄y

]
i

denotes the i-th row of the loadings matrix and (·)j is the j-th element of the respective

vector. The last equation clearly confirms that the forecast error of the i-th entry of Xt is driven by all

shocks
(
ξt−k+s

)
j

with 0 ≤ k ≤ s− 1 and 1 ≤ j ≤ K +M . Perhaps, some innovations
(
ξt−k+s

)
j

have no

impact, if the corresponding elements of the loadings matrix are zeros.

The errors
(
ξt−k+s

)
j

are uncorrelated and multivariate standard normally distributed. So, the algebraic

formula for variances provides for the Mean-Squared Error of (errs)i denoted by MSE((X̂t+s)i):

MSE
((
X̂t+s

)
i

)
= EΘ

[
(errs)

2
i

]
= VarΘ [(errs)i] + EΘ [(errs)i]

2︸ ︷︷ ︸
=0

= VarΘ [(errs)i]
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=

K+M∑
j=1

s−1∑
k=0

([Λ̄f Λ̄y
]
i
�̄
k

[
IK OK×M

OM×K P

])
j

2

+ (Σe)ii .

Thus, the contribution of the j-th innovation to the forecast error variance of (Xt+s)i is given by:

s−1∑
k=0

([Λ̄f Λ̄y
]
i
�̄
k

[
IK OK×M

OM×K P

])
j

2

.

In relative terms the above contribution is equal to the ratio in (5.79). 2

Note, the FEVD is often tabulated or plotted as function of the forecast horizon s for fixed dimensions

i, j. For an example, see Figures 5.5-5.8.

5.2 Simulation Study

In the scope of a MC simulation study, we now compare the estimation accuracy of our two-step estimation

method using the modified KF and KS from Section 5.1 and three alternative approaches. Besides a non-

parametric ansatz based on PCA and OLS, we test two parametric estimation methods treating FAVARs

as special ADFMs more precisely described in the sequel. For all procedures, an outer EM reconstructs

complete panel data from the observations and latest parameter estimates. In this manner, we concentrate

on the estimation quality of the modified KF, but also address the issue of incomplete panel data.

As in Section 4.4, we first describe how we generate our sample data. For a, b ∈ R with a < b, let U (a, b)

denote the uniform distribution on the interval [a, b], while diag (z) ∈ RN×N is a diagonal matrix with

elements z = [z1, . . . , zN ] ∈ RN . Furthermore, let Vi ∈ R(K+M)×(K+M), 1 ≤ i ≤ p, Vv ∈ R(K+M)×(K+M)

and Ve ∈ RN×N represent arbitrary orthonormal matrices for fixed dimensions (T,N,K,M, p). Then, we

obtain the parameters of the FAVARs in Definition 5.1.1 as follows:

Φi = Vi diag
(zi,1
i
, . . . ,

zi,K+M

i

)
(V ′i ) , zi,j ∼ U (0.25, 0.75) iid, 1 ≤ i ≤ p, 1 ≤ j ≤ K +M,

Σv = Vv diag (zv,1, . . . , zv,K+M ) (V ′v) , zv,j ∼ U (0.75, 1.25) iid, 1 ≤ j ≤ K +M,

Λ = (λn,j)n,j , λn,j ∼ U (0, 1) iid, 1 ≤ n ≤ N, 1 ≤ j ≤ K +M,

Σe = Ve diag (ze,1, . . . , ze,N ) (V ′e) , ze,n ∼ U (0.5, 1.5) iid, 1 ≤ n ≤ N. (5.80)

Hence, the parameters in (5.80) specify the general FAVAR formulation in Definition 5.1.1 instead of its

rotated simplification in (5.16)-(5.17). To ensure covariance-stationarity of the factor process {
[
F ′t,Y

′
t

]′},
we check, if all matrices Φi, 1 ≤ i ≤ p, satisfy the conditions in Lemma A.2.3, before we proceed. If not, the

matrices Φi, 1 ≤ i ≤ p, are drawn again. To prevent us from the case that we implicitly construct matrices

Φi, whose eigenvalues are close to zero, their eigenvalues are taken from the range of [0.25/i, 0.75/i]. Here,

the division by i reduces the impact of lagged factors. As before, the restriction to matrices Φi with positive

eigenvalues and the division by i are made for simplicity and so, can be removed. In contrast to Section

4.4, the eigenvalues of matrix Σv lie in the range of [0.75, 1.25] instead of [0.25, 0.50], which yields more

noise. With the help of (5.2), we construct the factor sample [F, Y ] ∈ RT×(K+M). The univariate time

series in Y are assumed to have zero mean and variance of one. This is why we standardize all univariate

time series in [F, Y ] and adjust the matrices Φi, 1 ≤ i ≤ p, and Σv accordingly. Next, we simulate the

panel data X ∈ RT×N based on (5.1). Thereby, we restrict ourselves to matrices W and Σe of full column
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rank. Further, we standardize all univariate time series in X, since those are again supposed to have zero

mean and variance of one, and adapt the matrices W and Σe correspondingly.

At this stage, we have complete panel data X. For incomplete panel data, we pursue the same approach as

in Section 4.4. That is, let ρm ∈ [0, 1] be the ratio of gaps. Then, we randomly delete dρmT e elements from

each times series serving as stock variable to get a scattered pattern. By contrast, we aggregate the entries

of each times series, which represents a flow or change in flow variable, as given in Definition 2.2.2 or

Lemma 2.2.3. This results in observations at times t = d1 + s/(1− ρm)e with 0 ≤ s ≤ b(T − 1) (1− ρm)c
and s ∈ N0 such that we receive a regular pattern for flow and change in flow variables. None of the four

methods estimates hidden factors for points in time without any observation. Therefore, we always check,

whether the obtained matrix of incomplete panel data comprises an empty row, before we proceed. If so,

we reapply our routine for preparing incomplete data to the full panel data X. Furthermore, we combine

dN/2e stock and bN/2c flow (change in flow) variables in the second (third) column of Tables 5.1-5.7 to

avoid such cases, where the incomplete panel data matrix has an empty row.

Tables 5.1-5.7 compare four methods for estimating the hidden factors F . In doing so, the trace R2 from

Definition A.3.1 evaluates the quality of the estimated factors. Here, we focus on the hidden factors, since

the variables Y are observed in full and therefore, do not call for estimation. Note, all trace R2 means in

Tables 5.1-5.4 and thus, all ratios of trace R2 means in Tables 5.5-5.7 arise from the same MC simulations.

To be precise, the same combination of incomplete panel data and observed variables Y enters all four

estimation methods to ensure that our results are comparable.

In addition, all four estimation methods have the same outer EM, which applies the updates in (5.71) to

construct complete panel data from the observations and latest parameter estimates. In this context, for

all estimation methods the updates in (5.71) stop, as soon as the absolute value of the relative change in

the expected log-likelihood function in (5.41) is below 10−2. To guarantee that all approaches have the

same starting conditions, we initialize X̄(0), i.e., the first guess of the complete panel data, for all in the

same way. That is, for each univariate time series in the panel data, we fill its gaps by the empirical mean

of its observations.

Finally, in Tables 5.1-5.7, the dimension of the hidden factors, i.e., K, and the lag order of the joint factor

dynamics, i.e., p, are supposed to be known. So, we exclude any impact of model selection on the quality

of the estimated factors. Next, we describe the alternative estimation methods in more detail, before we

discuss the trace R2 means in Tables 5.1-5.7.

In Table 5.1, we estimate the simulated FAVARs with the non-parametric method of Boivin and Giannoni

(2008) and Boivin et al. (2010). That is, let X̄(l) be the complete panel data of the outer EM constructed

in loop (l−1) from the observations and latest parameter estimates. Then, we run the following algorithm.

Algorithm 5.2.1: Estimate FAVARs with PCA and OLS based on complete panel data

Determine F̂ = [F 1, . . . ,F T ]
′

as first K principal components of X̄(l);

An OLS of X̄(l) on F̂ and Y provides Λ̂f and Λ̂y;

Remove impact of Y on X̄(l) by X̃(l) = X̄(l) − Y (Λ̂y)′;

Reestimte F̂ = [F 1, . . . ,F T ]
′

as first K principal components of X̃(l);

An OLS of X̄(l) on F̂ and Y provides new Λ̂f and Λ̂y;

Compute Σ̂e = (E′)E/T with E = X̄(l) − F (Λ̂f )′ − Y (Λ̂y)′;

An OLS on [F̂ , Y ] results in Φ̂i, 1 ≤ i ≤ p, and Σ̂v;
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Note, Algorithm 5.2.1 applies PCA and OLS several times to enforce Y as observed factors. Here, we do

not have the non-parametric estimation method of Bernanke et al. (2005) as benchmark approach, since

there is no distinction between slow- and fast-moving variables for simulated data. Hence, the missing

economic meaning of simulated data matters in this context.

In Tables 5.2 and 5.3, the inner EM coincides with the EM in Bork (2009). In doing so, let ~X(l) denote

the complete panel data of the outer EM constructed in loop (l− 1). In addition, let X1:K
t and XK+1:N

t

be the first K and last N −K entries of vector Xt. Next, we add the observed variables Y t to the panel

data and modify the FAVAR from Definition 5.1.1 as follows: X1:K
t

Y t

XK+1:N
t


︸ ︷︷ ︸

~Xt

=

 IK OK×M

OM×K IM

Λ̄f(N−K)×K Λ̄y(N−K)×M


︸ ︷︷ ︸

~Λ

[
F t

Y t

]
︸ ︷︷ ︸
Ct

+ ~εt,~εt ∼ N
(
0N+M ,Σ~ε

)
iid, (5.81)

Ct =

p∑
i=1

ΦiCt−i + vt, vt ∼ N (0K+M ,Σv) iid, (5.82)

with submatrices Λ̄f(N−K)×K and Λ̄y(N−K)×M as the unconstrained last N−K rows of ~Λ. The restrictions

in the first K rows of the loadings matrices in (5.81) and (5.13) coincide to ensure unique parameters for

all non-parametric estimation methods in Tables 5.2-5.3. The enlarged panel data ~Xt calls for additional

M (K +M) loadings restrictions forcing the variables Y t part of ~Xt to become a factor in Ct. For this

purpose, [OM×K , IM ] in rows K + 1 to K +M of ~Λ is a natural choice. In this way, Bork (2009) ignored

that Y t part of Ct is observed, treated the overall vector Ct as hidden and estimated the FAVAR in

(5.81)-(5.82) as ADFM.

Here, we pursue the same approach. That is, the inner EM of the estimation methods in Tables 5.2-5.3

considers the FAVAR in (5.81)-(5.82) as ADFM with the corresponding loadings constraints. Whenever we

estimate the moments of the hidden factors Ct using the standard KF, KS and Lag-One Autocovariance

Smoother in Lemmata 2.1.8-2.1.10, we rewrite the ADFM in (5.81)-(5.82) with VAR(p) factor dynamics

as ADFM with VAR(1) factor dynamics. Otherwise, we keep the general VAR(p) factor dynamics. As for

all parametric estimation methods, the inner EMs terminate as soon as the absolute value of the relative

change in the expected log-likelihood function is below 10−2. Moreover, all inner EMs deploy PCA and

OLS for parameter initialization. For the initialization of the KF, the covariance-stationary covariance

matrix of the factors serves as starting point P̂Cp|p or P̂Fp|p in Lemma 2.1.8. Thereby, we truncate their

MA(∞) representations as soon as the absolute value of the relative contribution of a new term is below

10−6. Note that the estimation methods in Tables 5.2-5.3 do not assume the specially designed covariance

matrix Σv̄ of the rotated FAVAR from (5.16)-(5.17).

The inner EMs of the estimation methods in Tables 5.2-5.3 are the same. So, we obtain the same smoothed

factor means Ĉt|T , 1 ≤ t ≤ T, for both cases. As mentioned before, the reconstruction formula in (5.71)

defines the outer EMs. However, in this regard, there is a difference between Tables 5.2 and 5.3. In Table

5.2, the updates completely rely on the estimated means Ĉt|T , 1 ≤ t ≤ T, and thus, neglect the observed

variables Y . That means, for variable 1 ≤ i ≤ N +M and loop l ≥ 0 we have:

~X
i

(l+1) = µ ~Xi(l)
1T + σ ~Xi(l)

Ĉ(l)

(
~Λi(l)

)′
+Q′i (QiQ

′
i)
−1
[
Xi
obs −Qi

(
µ ~Xi(l)

1T + σ ~Xi(l)
Ĉ(l)

(
~Λi(l)

)′)]
,

where Ĉ(l) =
[
Ĉ1|T , . . . , ĈT |T

]′
∈ RT×(K+M) are the estimated factor means, which a run of the standard

KF and KS in loop (l) provided. By contrast, the panel data updates in Table 5.3 use the reconstruction
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formula in (5.71), with F̄(l) as the first K columns of Ĉ(l) and Y as the actual observations. This implies

that the last M columns of Ĉ(l) are discarded.

Eventually, Table 5.4 displays the trace R2 means for the two-step estimation method from Section 5.1. To

be precise, we estimate the rotated FAVAR in (5.16)-(5.17) with loadings constraints in (5.15). Although

our MC simulations provide general FAVARs, we consider these special FAVARs to demonstrate that our

model transformations do not exceed the class of possible linear factor transformations.

As already mentioned, the trace R2 means in Tables 5.1-5.4 and so, the ratios of trace R2 means in Tables

5.5-5.7 come from the same MC simulations. Moreover, all tables cover the same tuples (T,N,K,M, p). In

this regard, we examine T ∈ {600, 700, 800} , N ∈ {80, 100, 120} and ρm ∈ {0, 0.05, 0.10, 0.15}, which are

close to the data dimensions of the empirical study in Section 5.3. That is, N = 108, T = 682, ρm = 0.07

and M = 3. For simplicity, we treat factor dimensions K ∈ {1, 3} and M ∈ {1, 3} for lag orders p ∈ {1, 2}.

A comparison of Tables 5.1-5.4 shows: First, irrespective of the estimation method, there are no obvious

differences between the trace R2 means of the three data types. Second, a higher percentage of data gaps,

ceteris paribus, deteriorates the trace R2 means. As the current settings for T,N and ρm are more close

together than those in Section 4.4, the described patterns might be less clear than in Section 4.4. Third,

longer samples, i.e., larger T , improve the trace R2 means. The same holds for panel data covering more

variables, i.e., larger N . Fourth, higher lag orders improve the trace R2 means, which is rather surprising.

So far, all findings are in place for all four estimation methods.

However, there are some differences between them. First, the estimation methods in Tables 5.1-5.3 do not

explicitly take into account that the variables Y t are observed. Thus, they offer some kind of work-around

solution. For instance, the non-parametric approach repeatedly applies PCA and OLS for separating the

impacts of Y t and F t on Xt from each other. In this context, the dimensions of the vectors Y t and F t

matter. With a view to Tables 5.1-5.3, the pairs (K = 1,M = 1) and (K = 3,M = 3) have smaller trace

R2 means than the combination (K = 3,M = 1). By contrast, the estimation method with our modified

KF in Table 5.4 offers for (K = 1,M = 1, p = 1) larger trace R2 means than for (K = 3,M = 1, p = 1).

Second, the trace R2 means in Table 5.4 are generally better than their counterparts in Tables 5.1-5.3. To

verify this Tables 5.5-5.7 display the corresponding ratios of trace R2 means. Thereby, ratios larger than

one confirm that the estimation method based on our modified KF outperforms the respective alternative.

Note that all ratios in Tables 5.5-5.7 are larger than one, but for the previously mentioned combinations

(K = 1,M = 1) and (K = 3,M = 3) they exceed one by far. This clearly highlights, why it makes sense

to take into account that the variables Y t represent observed factors.

Model selection with AIC is quite common in the literature. Therefore, we do not address the selection

of the factor dimension K and autoregressive order p in the scope of this MC simulation study. Since the

variables Y t are observable, their dimension M is known a priori and does not call for being estimated.
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Table 5.1: Means of trace R2 based on hidden factors for random FAVARs using PCA and OLS

stocka stock/flow (average)b stock/change in flow (average)c

ratio of missing data ratio of missing data ratio of missing data

N T 0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15%

K = 1,M = 1, p = 1

80 600 0.49 0.49 0.48 0.49 0.49 0.49 0.48 0.50 0.49 0.49 0.49 0.50

80 700 0.50 0.48 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49

80 800 0.49 0.49 0.50 0.49 0.50 0.49 0.48 0.50 0.49 0.49 0.49 0.48

100 600 0.49 0.50 0.50 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49

100 700 0.49 0.50 0.50 0.49 0.50 0.50 0.50 0.49 0.50 0.49 0.49 0.50

100 800 0.50 0.50 0.49 0.49 0.49 0.50 0.49 0.49 0.49 0.49 0.50 0.50

120 600 0.50 0.49 0.50 0.50 0.50 0.49 0.48 0.50 0.50 0.49 0.50 0.48

120 700 0.49 0.50 0.50 0.49 0.49 0.49 0.49 0.50 0.49 0.49 0.50 0.48

120 800 0.49 0.50 0.49 0.50 0.49 0.49 0.50 0.49 0.49 0.49 0.49 0.49

K = 3,M = 1, p = 1

80 600 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.73 0.74 0.74 0.73 0.73

80 700 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.73 0.74 0.74 0.73 0.72

80 800 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.73 0.74 0.74 0.73 0.73

100 600 0.75 0.76 0.76 0.75 0.76 0.75 0.75 0.75 0.76 0.75 0.75 0.74

100 700 0.76 0.75 0.75 0.75 0.75 0.75 0.75 0.74 0.75 0.75 0.75 0.74

100 800 0.75 0.76 0.75 0.75 0.75 0.75 0.75 0.74 0.75 0.75 0.75 0.74

120 600 0.76 0.77 0.76 0.76 0.77 0.77 0.76 0.76 0.77 0.77 0.76 0.75

120 700 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.75 0.76 0.76 0.76 0.75

120 800 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.75 0.76 0.76 0.75 0.75

K = 3,M = 3, p = 1

80 600 0.55 0.56 0.57 0.56 0.56 0.56 0.56 0.56 0.55 0.56 0.56 0.55

80 700 0.55 0.55 0.56 0.57 0.55 0.55 0.56 0.56 0.55 0.56 0.56 0.55

80 800 0.56 0.56 0.56 0.56 0.55 0.56 0.55 0.56 0.55 0.55 0.55 0.55

100 600 0.57 0.56 0.57 0.56 0.56 0.57 0.56 0.56 0.56 0.57 0.57 0.56

100 700 0.56 0.57 0.56 0.57 0.56 0.56 0.57 0.56 0.57 0.57 0.56 0.56

100 800 0.56 0.56 0.57 0.57 0.56 0.57 0.57 0.56 0.56 0.56 0.56 0.55

120 600 0.57 0.57 0.57 0.58 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.56

120 700 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.56

120 800 0.56 0.57 0.57 0.57 0.57 0.56 0.57 0.57 0.57 0.57 0.57 0.56

K = 3,M = 1, p = 2

80 600 0.79 0.79 0.79 0.78 0.79 0.79 0.78 0.78 0.79 0.79 0.78 0.77

80 700 0.79 0.79 0.79 0.78 0.80 0.79 0.78 0.78 0.79 0.79 0.78 0.77

80 800 0.79 0.79 0.78 0.78 0.79 0.79 0.78 0.78 0.79 0.79 0.78 0.78

100 600 0.80 0.80 0.80 0.79 0.80 0.80 0.80 0.80 0.81 0.81 0.79 0.79

100 700 0.81 0.81 0.80 0.80 0.80 0.81 0.80 0.79 0.80 0.80 0.80 0.79

100 800 0.81 0.80 0.80 0.80 0.81 0.80 0.80 0.80 0.80 0.80 0.79 0.79

120 600 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.80 0.81 0.81 0.80 0.80

120 700 0.81 0.82 0.81 0.81 0.81 0.81 0.81 0.80 0.81 0.81 0.81 0.80

120 800 0.82 0.82 0.81 0.81 0.82 0.81 0.81 0.80 0.81 0.81 0.81 0.80

K = 3,M = 3, p = 2

80 600 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65

80 700 0.65 0.65 0.65 0.64 0.65 0.65 0.66 0.65 0.65 0.65 0.65 0.64

80 800 0.65 0.65 0.65 0.65 0.66 0.66 0.65 0.65 0.65 0.65 0.65 0.65

100 600 0.66 0.66 0.66 0.65 0.66 0.66 0.66 0.66 0.66 0.66 0.65 0.66

100 700 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.65 0.66 0.66 0.66 0.65

100 800 0.67 0.66 0.66 0.67 0.66 0.66 0.66 0.65 0.66 0.66 0.66 0.66

120 600 0.67 0.67 0.67 0.67 0.67 0.67 0.66 0.66 0.67 0.67 0.66 0.66

120 700 0.66 0.66 0.67 0.67 0.66 0.66 0.66 0.66 0.67 0.67 0.66 0.66

120 800 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.66 0.67 0.67 0.67 0.66

The displayed means are derived from 500 MC simulations for known dimensions K and p.

a For incomplete time series a stock variable is assumed.
b For incomplete data, dN/2e and bN/2c time series are stock and flow (average formulation) variables, respectively.
c For incomplete data, dN/2e and bN/2c time series serve as stock or change in flow (average formulaton) variables.
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Table 5.2: Means of trace R2 based on hidden factors for random FAVARs using standard KF and KS,

when complete panel data relies on estimated factors instead of observed variables

stocka stock/flow (average)b stock/change in flow (average)c

ratio of missing data ratio of missing data ratio of missing data
N T 0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15%

K = 1,M = 1, p = 1

80 600 0.46 0.46 0.45 0.46 0.46 0.46 0.45 0.44 0.46 0.47 0.45 0.43

80 700 0.47 0.45 0.46 0.47 0.46 0.46 0.45 0.45 0.47 0.46 0.44 0.43

80 800 0.47 0.46 0.47 0.46 0.47 0.47 0.45 0.45 0.47 0.46 0.43 0.43

100 600 0.46 0.47 0.48 0.46 0.47 0.47 0.44 0.40 0.47 0.47 0.41 0.40

100 700 0.47 0.47 0.47 0.47 0.48 0.47 0.44 0.41 0.48 0.46 0.43 0.42

100 800 0.48 0.48 0.46 0.47 0.46 0.47 0.44 0.41 0.46 0.47 0.43 0.40

120 600 0.48 0.47 0.48 0.47 0.48 0.47 0.42 0.42 0.48 0.46 0.42 0.40

120 700 0.47 0.48 0.48 0.47 0.47 0.47 0.41 0.41 0.47 0.46 0.42 0.42

120 800 0.47 0.48 0.47 0.48 0.47 0.47 0.45 0.40 0.47 0.46 0.42 0.42

K = 3,M = 1, p = 1

80 600 0.68 0.67 0.67 0.66 0.68 0.67 0.65 0.63 0.68 0.67 0.64 0.56

80 700 0.68 0.67 0.66 0.66 0.68 0.67 0.66 0.63 0.68 0.67 0.64 0.56

80 800 0.68 0.67 0.67 0.66 0.68 0.67 0.66 0.63 0.68 0.67 0.64 0.57

100 600 0.70 0.69 0.69 0.67 0.70 0.69 0.67 0.63 0.70 0.69 0.66 0.56

100 700 0.70 0.69 0.69 0.68 0.69 0.69 0.68 0.64 0.69 0.69 0.65 0.57

100 800 0.69 0.69 0.68 0.68 0.70 0.69 0.68 0.63 0.70 0.69 0.66 0.57

120 600 0.71 0.70 0.70 0.69 0.71 0.71 0.69 0.63 0.71 0.70 0.66 0.56

120 700 0.71 0.70 0.70 0.69 0.71 0.70 0.69 0.64 0.71 0.70 0.67 0.57

120 800 0.71 0.70 0.70 0.70 0.71 0.70 0.69 0.65 0.71 0.70 0.66 0.57

K = 3,M = 3, p = 1

80 600 0.38 0.37 0.37 0.35 0.38 0.37 0.35 0.31 0.38 0.37 0.33 0.29

80 700 0.38 0.36 0.35 0.35 0.38 0.37 0.35 0.31 0.38 0.36 0.33 0.30

80 800 0.38 0.38 0.36 0.35 0.38 0.36 0.34 0.31 0.37 0.36 0.32 0.29

100 600 0.41 0.39 0.38 0.37 0.41 0.39 0.36 0.31 0.40 0.38 0.33 0.30

100 700 0.41 0.39 0.38 0.37 0.40 0.39 0.36 0.31 0.41 0.38 0.33 0.29

100 800 0.40 0.39 0.38 0.37 0.40 0.39 0.36 0.31 0.40 0.38 0.33 0.30

120 600 0.42 0.41 0.40 0.39 0.42 0.41 0.36 0.31 0.42 0.40 0.33 0.28

120 700 0.42 0.41 0.40 0.39 0.42 0.41 0.36 0.31 0.42 0.40 0.33 0.28

120 800 0.41 0.41 0.40 0.39 0.42 0.40 0.37 0.31 0.42 0.40 0.34 0.29

K = 3,M = 1, p = 2

80 600 0.75 0.74 0.74 0.73 0.75 0.74 0.73 0.69 0.75 0.74 0.73 0.65

80 700 0.75 0.74 0.74 0.73 0.76 0.74 0.72 0.70 0.75 0.74 0.72 0.66

80 800 0.75 0.74 0.73 0.73 0.75 0.75 0.73 0.69 0.75 0.74 0.72 0.66

100 600 0.77 0.76 0.76 0.74 0.76 0.76 0.74 0.70 0.77 0.76 0.72 0.65

100 700 0.77 0.77 0.76 0.75 0.77 0.76 0.74 0.70 0.77 0.76 0.73 0.66

100 800 0.77 0.76 0.75 0.75 0.77 0.76 0.75 0.71 0.76 0.76 0.73 0.67

120 600 0.78 0.78 0.76 0.76 0.78 0.77 0.74 0.70 0.78 0.77 0.73 0.65

120 700 0.78 0.78 0.77 0.76 0.78 0.77 0.75 0.71 0.78 0.77 0.73 0.65

120 800 0.78 0.78 0.77 0.76 0.78 0.77 0.75 0.71 0.78 0.77 0.74 0.66

K = 3,M = 3, p = 2

80 600 0.54 0.52 0.52 0.51 0.55 0.54 0.50 0.47 0.54 0.52 0.50 0.45

80 700 0.54 0.53 0.52 0.50 0.54 0.53 0.52 0.48 0.54 0.53 0.50 0.45

80 800 0.54 0.52 0.53 0.52 0.55 0.54 0.49 0.48 0.55 0.52 0.50 0.47

100 600 0.56 0.55 0.53 0.52 0.56 0.54 0.51 0.47 0.56 0.54 0.48 0.45

100 700 0.55 0.55 0.54 0.54 0.56 0.54 0.51 0.46 0.56 0.54 0.51 0.44

100 800 0.57 0.55 0.55 0.54 0.55 0.55 0.52 0.46 0.55 0.54 0.50 0.45

120 600 0.57 0.57 0.56 0.55 0.57 0.57 0.50 0.45 0.58 0.55 0.49 0.42

120 700 0.57 0.56 0.56 0.55 0.56 0.55 0.51 0.45 0.57 0.56 0.49 0.43

120 800 0.57 0.57 0.55 0.55 0.57 0.57 0.52 0.46 0.57 0.56 0.49 0.43

The displayed means are derived from 500 MC simulations for known dimensions K and p.

a For incomplete time series a stock variable is assumed.
b For incomplete data, dN/2e and bN/2c time series are stock and flow (average formulation) variables, respectively.
c For incomplete data, dN/2e and bN/2c time series serve as stock or change in flow (average formulaton) variables.
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Table 5.3: Means of trace R2 based on hidden factors for random FAVARs using standard KF and KS,

when complete panel data takes observed variables into account

stocka stock/flow (average)b stock/change in flow (average)c

ratio of missing data ratio of missing data ratio of missing data
N T 0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15%

K = 1,M = 1, p = 1

80 600 0.46 0.46 0.45 0.46 0.46 0.46 0.46 0.47 0.46 0.47 0.46 0.46

80 700 0.47 0.45 0.47 0.47 0.46 0.46 0.46 0.46 0.47 0.46 0.46 0.45

80 800 0.47 0.46 0.47 0.47 0.47 0.47 0.46 0.47 0.47 0.46 0.46 0.45

100 600 0.46 0.48 0.48 0.46 0.47 0.47 0.47 0.46 0.47 0.47 0.47 0.46

100 700 0.47 0.47 0.48 0.47 0.48 0.47 0.47 0.47 0.48 0.47 0.46 0.47

100 800 0.48 0.48 0.47 0.47 0.46 0.47 0.46 0.47 0.46 0.47 0.47 0.47

120 600 0.48 0.47 0.48 0.48 0.48 0.47 0.46 0.47 0.48 0.47 0.48 0.46

120 700 0.47 0.48 0.48 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.46

120 800 0.47 0.48 0.47 0.48 0.47 0.47 0.48 0.47 0.47 0.47 0.47 0.46

K = 3,M = 1, p = 1

80 600 0.68 0.67 0.67 0.66 0.68 0.68 0.66 0.66 0.68 0.67 0.66 0.64

80 700 0.68 0.68 0.67 0.66 0.68 0.68 0.67 0.65 0.68 0.67 0.66 0.64

80 800 0.68 0.67 0.67 0.66 0.68 0.67 0.67 0.66 0.68 0.67 0.66 0.64

100 600 0.70 0.69 0.69 0.68 0.70 0.69 0.68 0.67 0.70 0.69 0.68 0.66

100 700 0.70 0.69 0.69 0.68 0.69 0.69 0.68 0.67 0.69 0.69 0.68 0.66

100 800 0.69 0.69 0.68 0.68 0.70 0.69 0.69 0.67 0.70 0.69 0.68 0.66

120 600 0.71 0.71 0.70 0.69 0.71 0.71 0.70 0.69 0.71 0.71 0.69 0.67

120 700 0.71 0.71 0.70 0.70 0.71 0.70 0.70 0.69 0.71 0.70 0.69 0.68

120 800 0.71 0.71 0.70 0.70 0.71 0.70 0.70 0.68 0.71 0.70 0.69 0.67

K = 3,M = 3, p = 1

80 600 0.38 0.38 0.38 0.37 0.38 0.38 0.38 0.37 0.38 0.39 0.38 0.36

80 700 0.38 0.37 0.37 0.37 0.38 0.38 0.38 0.36 0.38 0.38 0.38 0.36

80 800 0.38 0.39 0.38 0.37 0.38 0.38 0.37 0.37 0.37 0.38 0.37 0.36

100 600 0.41 0.40 0.40 0.39 0.41 0.40 0.39 0.39 0.40 0.40 0.40 0.38

100 700 0.41 0.40 0.39 0.39 0.40 0.40 0.40 0.39 0.41 0.40 0.39 0.38

100 800 0.40 0.40 0.39 0.39 0.40 0.40 0.40 0.39 0.40 0.39 0.39 0.38

120 600 0.42 0.42 0.42 0.41 0.42 0.42 0.41 0.41 0.42 0.42 0.42 0.39

120 700 0.42 0.42 0.42 0.41 0.42 0.42 0.41 0.41 0.42 0.41 0.41 0.39

120 800 0.41 0.41 0.41 0.41 0.42 0.41 0.41 0.41 0.42 0.42 0.42 0.39

K = 3,M = 1, p = 2

80 600 0.75 0.74 0.74 0.73 0.75 0.74 0.74 0.73 0.75 0.74 0.74 0.72

80 700 0.75 0.75 0.74 0.73 0.76 0.75 0.74 0.73 0.75 0.75 0.73 0.72

80 800 0.75 0.74 0.74 0.73 0.75 0.75 0.74 0.72 0.75 0.75 0.73 0.72

100 600 0.77 0.76 0.76 0.74 0.76 0.76 0.76 0.75 0.77 0.77 0.75 0.74

100 700 0.77 0.77 0.76 0.75 0.77 0.77 0.76 0.74 0.77 0.76 0.75 0.74

100 800 0.77 0.76 0.76 0.75 0.77 0.76 0.76 0.75 0.76 0.76 0.75 0.74

120 600 0.78 0.78 0.76 0.77 0.78 0.78 0.77 0.76 0.78 0.78 0.76 0.75

120 700 0.78 0.78 0.77 0.76 0.78 0.78 0.77 0.76 0.78 0.77 0.77 0.75

120 800 0.78 0.78 0.77 0.76 0.78 0.77 0.77 0.76 0.78 0.78 0.77 0.76

K = 3,M = 3, p = 2

80 600 0.54 0.53 0.53 0.53 0.55 0.55 0.53 0.53 0.54 0.53 0.54 0.53

80 700 0.54 0.54 0.53 0.52 0.54 0.53 0.55 0.53 0.54 0.54 0.53 0.52

80 800 0.54 0.53 0.54 0.53 0.55 0.54 0.52 0.54 0.55 0.53 0.54 0.54

100 600 0.56 0.55 0.54 0.53 0.56 0.55 0.55 0.55 0.56 0.55 0.54 0.54

100 700 0.55 0.55 0.55 0.55 0.56 0.55 0.55 0.54 0.56 0.55 0.56 0.54

100 800 0.57 0.56 0.56 0.56 0.55 0.56 0.55 0.53 0.55 0.55 0.55 0.54

120 600 0.57 0.57 0.57 0.57 0.57 0.58 0.56 0.56 0.58 0.57 0.56 0.55

120 700 0.57 0.57 0.57 0.56 0.56 0.56 0.56 0.56 0.57 0.57 0.56 0.55

120 800 0.57 0.57 0.56 0.56 0.57 0.58 0.57 0.56 0.57 0.57 0.56 0.56

The displayed means are derived from 500 MC simulations for known dimensions K and p.

a For incomplete time series a stock variable is assumed.
b For incomplete data, dN/2e and bN/2c time series are stock and flow (average formulation) variables, respectively.
c For incomplete data, dN/2e and bN/2c time series serve as stock or change in flow (average formulaton) variables.
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Table 5.4: Means of trace R2 based on hidden factors for random FAVARs using new KF and KS

stocka stock/flow (average)b stock/change in flow (average)c

ratio of missing data ratio of missing data ratio of missing data

N T 0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15%

K = 1,M = 1, p = 1

80 600 0.92 0.91 0.91 0.91 0.92 0.91 0.90 0.90 0.92 0.91 0.90 0.89

80 700 0.92 0.91 0.91 0.91 0.92 0.91 0.91 0.90 0.92 0.91 0.90 0.89

80 800 0.92 0.91 0.91 0.91 0.92 0.91 0.91 0.90 0.92 0.91 0.90 0.89

100 600 0.93 0.93 0.92 0.92 0.93 0.92 0.92 0.91 0.93 0.92 0.91 0.91

100 700 0.93 0.93 0.92 0.92 0.93 0.93 0.92 0.91 0.93 0.93 0.91 0.91

100 800 0.93 0.93 0.92 0.92 0.93 0.92 0.92 0.91 0.93 0.92 0.91 0.91

120 600 0.94 0.94 0.93 0.93 0.94 0.94 0.93 0.92 0.94 0.94 0.92 0.92

120 700 0.94 0.94 0.93 0.93 0.94 0.93 0.93 0.92 0.94 0.93 0.92 0.92

120 800 0.94 0.94 0.93 0.93 0.94 0.94 0.93 0.92 0.94 0.94 0.92 0.92

K = 3,M = 1, p = 1

80 600 0.83 0.81 0.81 0.79 0.83 0.82 0.81 0.79 0.83 0.82 0.80 0.77

80 700 0.83 0.82 0.80 0.79 0.83 0.82 0.81 0.79 0.83 0.82 0.80 0.77

80 800 0.82 0.82 0.80 0.80 0.83 0.82 0.81 0.80 0.83 0.82 0.80 0.77

100 600 0.84 0.84 0.83 0.82 0.85 0.84 0.82 0.82 0.85 0.84 0.82 0.80

100 700 0.85 0.84 0.83 0.82 0.84 0.84 0.83 0.82 0.84 0.84 0.83 0.79

100 800 0.85 0.84 0.83 0.82 0.85 0.84 0.84 0.82 0.85 0.84 0.83 0.80

120 600 0.86 0.85 0.85 0.84 0.87 0.86 0.84 0.83 0.87 0.86 0.84 0.81

120 700 0.86 0.86 0.85 0.83 0.86 0.85 0.84 0.83 0.86 0.85 0.84 0.81

120 800 0.87 0.86 0.85 0.84 0.87 0.85 0.85 0.83 0.87 0.86 0.84 0.81

K = 3,M = 3, p = 1

80 600 0.76 0.76 0.75 0.73 0.77 0.75 0.73 0.72 0.77 0.76 0.73 0.68

80 700 0.77 0.76 0.74 0.73 0.77 0.76 0.75 0.73 0.76 0.76 0.74 0.68

80 800 0.78 0.75 0.75 0.73 0.77 0.76 0.74 0.73 0.77 0.75 0.73 0.69

100 600 0.79 0.77 0.77 0.75 0.79 0.78 0.76 0.75 0.78 0.78 0.76 0.71

100 700 0.79 0.78 0.76 0.76 0.79 0.78 0.77 0.75 0.80 0.78 0.75 0.72

100 800 0.79 0.78 0.78 0.75 0.79 0.78 0.78 0.74 0.80 0.78 0.76 0.71

120 600 0.81 0.80 0.77 0.78 0.80 0.79 0.78 0.77 0.80 0.79 0.77 0.72

120 700 0.81 0.80 0.78 0.77 0.81 0.80 0.78 0.76 0.81 0.80 0.78 0.73

120 800 0.81 0.80 0.79 0.77 0.81 0.80 0.79 0.77 0.81 0.80 0.78 0.73

K = 3,M = 1, p = 2

80 600 0.85 0.84 0.83 0.82 0.85 0.84 0.83 0.82 0.85 0.84 0.83 0.80

80 700 0.85 0.84 0.83 0.82 0.85 0.84 0.83 0.82 0.85 0.83 0.83 0.81

80 800 0.85 0.84 0.83 0.82 0.85 0.84 0.83 0.82 0.85 0.84 0.83 0.81

100 600 0.86 0.86 0.85 0.84 0.86 0.85 0.85 0.84 0.87 0.86 0.85 0.83

100 700 0.87 0.86 0.85 0.85 0.87 0.86 0.85 0.84 0.86 0.85 0.85 0.83

100 800 0.87 0.86 0.86 0.85 0.87 0.86 0.85 0.85 0.87 0.86 0.85 0.83

120 600 0.88 0.87 0.87 0.86 0.87 0.87 0.87 0.85 0.88 0.87 0.86 0.85

120 700 0.88 0.87 0.87 0.86 0.88 0.88 0.87 0.86 0.88 0.87 0.86 0.84

120 800 0.88 0.88 0.87 0.86 0.88 0.87 0.87 0.86 0.88 0.88 0.86 0.85

K = 3,M = 3, p = 2

80 600 0.79 0.79 0.77 0.76 0.79 0.78 0.77 0.76 0.79 0.78 0.77 0.75

80 700 0.80 0.79 0.78 0.77 0.80 0.79 0.77 0.77 0.80 0.78 0.78 0.76

80 800 0.80 0.79 0.78 0.77 0.80 0.79 0.79 0.77 0.80 0.79 0.77 0.76

100 600 0.81 0.81 0.80 0.78 0.81 0.80 0.79 0.78 0.81 0.80 0.79 0.77

100 700 0.82 0.81 0.80 0.79 0.81 0.81 0.79 0.79 0.82 0.81 0.79 0.78

100 800 0.82 0.81 0.81 0.79 0.82 0.81 0.80 0.79 0.82 0.82 0.80 0.78

120 600 0.83 0.82 0.81 0.81 0.83 0.82 0.81 0.80 0.83 0.82 0.81 0.79

120 700 0.83 0.82 0.82 0.81 0.83 0.82 0.81 0.80 0.83 0.83 0.81 0.79

120 800 0.84 0.83 0.82 0.81 0.84 0.83 0.82 0.81 0.84 0.83 0.82 0.79

The displayed means are derived from 500 MC simulations for known dimensions K and p.

a For incomplete time series a stock variable is assumed.
b For incomplete data, dN/2e and bN/2c time series are stock and flow (average formulation) variables, respectively.
c For incomplete data, dN/2e and bN/2c time series serve as stock or change in flow (average formulaton) variables.
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Table 5.5: Ratios of trace R2 means based on hidden factors for random FAVARs using new KF and KS

versus PCA and OLS

stocka stock/flow (average)b stock/change in flow (average)c

ratio of missing data ratio of missing data ratio of missing data

N T 0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15%

K = 1,M = 1, p = 1

80 600 1.88 1.86 1.88 1.85 1.88 1.86 1.87 1.81 1.88 1.84 1.82 1.80

80 700 1.84 1.91 1.85 1.83 1.87 1.86 1.86 1.83 1.86 1.86 1.83 1.84

80 800 1.86 1.86 1.84 1.84 1.83 1.84 1.87 1.81 1.85 1.85 1.85 1.85

100 600 1.91 1.87 1.85 1.90 1.88 1.89 1.86 1.87 1.88 1.88 1.85 1.86

100 700 1.90 1.87 1.86 1.86 1.87 1.87 1.86 1.85 1.87 1.89 1.87 1.82

100 800 1.86 1.85 1.90 1.86 1.91 1.86 1.89 1.85 1.91 1.87 1.84 1.83

120 600 1.89 1.92 1.87 1.87 1.90 1.91 1.92 1.85 1.90 1.91 1.85 1.90

120 700 1.92 1.88 1.86 1.89 1.92 1.89 1.88 1.85 1.92 1.89 1.86 1.89

120 800 1.91 1.89 1.89 1.87 1.91 1.89 1.85 1.87 1.91 1.89 1.87 1.87

K = 3,M = 1, p = 1

80 600 1.12 1.10 1.10 1.07 1.12 1.10 1.10 1.08 1.12 1.10 1.09 1.06

80 700 1.12 1.11 1.09 1.08 1.12 1.11 1.09 1.08 1.12 1.11 1.09 1.07

80 800 1.12 1.11 1.09 1.08 1.12 1.11 1.10 1.09 1.12 1.11 1.09 1.07

100 600 1.12 1.11 1.10 1.09 1.12 1.11 1.10 1.09 1.12 1.11 1.10 1.07

100 700 1.13 1.11 1.10 1.09 1.12 1.11 1.11 1.10 1.12 1.11 1.11 1.08

100 800 1.13 1.11 1.11 1.10 1.13 1.12 1.11 1.10 1.13 1.12 1.11 1.08

120 600 1.13 1.11 1.11 1.10 1.13 1.12 1.11 1.10 1.13 1.12 1.11 1.08

120 700 1.13 1.12 1.12 1.10 1.13 1.12 1.12 1.10 1.13 1.12 1.11 1.08

120 800 1.14 1.12 1.12 1.11 1.14 1.13 1.11 1.11 1.14 1.13 1.11 1.08

K = 3,M = 3, p = 1

80 600 1.38 1.35 1.31 1.31 1.37 1.34 1.31 1.29 1.39 1.34 1.31 1.23

80 700 1.39 1.37 1.33 1.29 1.39 1.36 1.33 1.31 1.38 1.35 1.31 1.24

80 800 1.39 1.35 1.34 1.31 1.39 1.36 1.34 1.31 1.39 1.36 1.32 1.25

100 600 1.39 1.37 1.35 1.32 1.40 1.37 1.35 1.33 1.39 1.37 1.33 1.26

100 700 1.41 1.37 1.36 1.33 1.41 1.39 1.37 1.33 1.40 1.38 1.34 1.28

100 800 1.41 1.38 1.36 1.33 1.41 1.38 1.37 1.32 1.41 1.38 1.35 1.29

120 600 1.43 1.39 1.36 1.35 1.41 1.39 1.37 1.34 1.41 1.39 1.34 1.29

120 700 1.43 1.40 1.37 1.35 1.42 1.39 1.38 1.35 1.43 1.40 1.37 1.30

120 800 1.44 1.40 1.38 1.35 1.42 1.41 1.39 1.35 1.43 1.41 1.36 1.29

K = 3,M = 1, p = 2

80 600 1.07 1.07 1.05 1.04 1.07 1.07 1.06 1.05 1.07 1.07 1.05 1.04

80 700 1.07 1.07 1.06 1.05 1.07 1.07 1.06 1.05 1.07 1.06 1.06 1.05

80 800 1.07 1.07 1.06 1.06 1.07 1.07 1.06 1.06 1.07 1.06 1.06 1.04

100 600 1.08 1.07 1.06 1.06 1.08 1.07 1.06 1.05 1.07 1.07 1.07 1.05

100 700 1.07 1.07 1.07 1.06 1.08 1.07 1.07 1.06 1.07 1.07 1.06 1.05

100 800 1.07 1.07 1.07 1.06 1.08 1.07 1.07 1.06 1.08 1.07 1.07 1.05

120 600 1.08 1.07 1.08 1.07 1.08 1.07 1.07 1.06 1.08 1.07 1.07 1.06

120 700 1.08 1.07 1.07 1.07 1.08 1.08 1.07 1.07 1.08 1.08 1.07 1.06

120 800 1.08 1.08 1.07 1.07 1.08 1.08 1.08 1.06 1.09 1.08 1.07 1.06

K = 3,M = 3, p = 2

80 600 1.22 1.22 1.19 1.17 1.21 1.20 1.19 1.17 1.22 1.21 1.18 1.15

80 700 1.22 1.21 1.19 1.19 1.22 1.20 1.18 1.19 1.23 1.21 1.19 1.17

80 800 1.22 1.22 1.20 1.18 1.22 1.21 1.22 1.18 1.22 1.22 1.18 1.16

100 600 1.23 1.22 1.22 1.20 1.23 1.22 1.21 1.19 1.23 1.22 1.22 1.17

100 700 1.25 1.23 1.22 1.19 1.23 1.23 1.21 1.20 1.24 1.23 1.20 1.20

100 800 1.23 1.23 1.21 1.18 1.24 1.22 1.22 1.21 1.25 1.24 1.21 1.18

120 600 1.24 1.22 1.22 1.21 1.24 1.22 1.23 1.21 1.24 1.23 1.22 1.20

120 700 1.25 1.24 1.22 1.21 1.26 1.24 1.22 1.22 1.25 1.24 1.22 1.20

120 800 1.25 1.23 1.23 1.22 1.26 1.23 1.22 1.23 1.25 1.24 1.23 1.20

The displayed means are derived from 500 MC simulations for known dimensions K and p. Thereby,

each figure represents the mean of the trace R2 in Table 5.4 divided by its counterpart in Table 5.1.

a For incomplete time series a stock variable is assumed.
b For incomplete data, dN/2e and bN/2c time series are stock and flow (average formulation) variables, respectively.
c For incomplete data, dN/2e and bN/2c time series serve as stock or change in flow (average formulaton) variables.
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Table 5.6: Ratios of trace R2 means based on hidden factors for random FAVARs using new KF and KS

versus standard KF and KS, when complete panel data relies on estimated factors instead of observed

variables

stocka stock/flow (average)b stock/change in flow (average)c

ratio of missing data ratio of missing data ratio of missing data
N T 0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15%

K = 1,M = 1, p = 1

80 600 1.99 1.97 2.01 1.98 1.99 1.97 2.01 2.03 1.99 1.95 2.01 2.06

80 700 1.95 2.03 1.97 1.95 1.98 1.98 2.00 2.00 1.97 1.97 2.04 2.07

80 800 1.97 1.98 1.95 1.96 1.93 1.95 2.00 2.01 1.96 1.97 2.07 2.09

100 600 2.00 1.96 1.94 2.00 1.97 1.99 2.08 2.25 1.97 1.99 2.21 2.27

100 700 1.99 1.96 1.95 1.96 1.96 1.97 2.07 2.22 1.96 2.01 2.15 2.15

100 800 1.95 1.93 2.00 1.96 2.01 1.95 2.09 2.20 2.00 1.98 2.11 2.25

120 600 1.96 2.00 1.95 1.96 1.97 2.00 2.24 2.21 1.97 2.04 2.18 2.28

120 700 1.99 1.95 1.94 1.98 1.99 1.98 2.25 2.25 1.99 2.02 2.21 2.18

120 800 1.99 1.97 1.98 1.95 1.98 1.97 2.08 2.31 1.98 2.02 2.18 2.19

K = 3,M = 1, p = 1

80 600 1.22 1.22 1.22 1.20 1.22 1.21 1.23 1.26 1.22 1.22 1.24 1.39

80 700 1.22 1.22 1.21 1.20 1.22 1.22 1.22 1.26 1.22 1.23 1.24 1.37

80 800 1.22 1.22 1.20 1.20 1.22 1.22 1.23 1.27 1.22 1.23 1.25 1.37

100 600 1.20 1.21 1.20 1.21 1.22 1.21 1.23 1.30 1.22 1.22 1.25 1.43

100 700 1.22 1.22 1.21 1.20 1.22 1.21 1.22 1.28 1.22 1.22 1.26 1.38

100 800 1.22 1.22 1.22 1.21 1.23 1.22 1.23 1.29 1.23 1.22 1.27 1.40

120 600 1.22 1.21 1.21 1.20 1.22 1.22 1.23 1.31 1.22 1.22 1.28 1.44

120 700 1.22 1.22 1.22 1.20 1.22 1.21 1.23 1.29 1.22 1.22 1.27 1.43

120 800 1.23 1.22 1.21 1.21 1.23 1.22 1.23 1.29 1.23 1.23 1.26 1.43

K = 3,M = 3, p = 1

80 600 2.02 2.04 2.04 2.10 1.99 2.03 2.12 2.33 2.02 2.05 2.22 2.33

80 700 2.02 2.10 2.09 2.07 2.02 2.06 2.15 2.38 2.00 2.09 2.21 2.31

80 800 2.03 2.00 2.07 2.10 2.03 2.09 2.17 2.39 2.06 2.07 2.28 2.36

100 600 1.95 1.97 2.01 2.01 1.95 1.98 2.15 2.39 1.93 2.03 2.28 2.37

100 700 1.95 1.98 2.03 2.03 1.97 2.03 2.16 2.44 1.96 2.06 2.26 2.46

100 800 1.96 1.99 2.04 2.05 1.98 1.99 2.17 2.36 1.96 2.06 2.28 2.39

120 600 1.94 1.94 1.92 1.97 1.91 1.94 2.16 2.48 1.90 1.98 2.30 2.59

120 700 1.93 1.96 1.94 1.97 1.90 1.96 2.18 2.48 1.94 2.01 2.35 2.58

120 800 1.95 1.98 1.99 1.99 1.93 1.99 2.16 2.50 1.92 2.00 2.27 2.53

K = 3,M = 1, p = 2

80 600 1.12 1.13 1.12 1.12 1.13 1.14 1.14 1.19 1.12 1.13 1.14 1.23

80 700 1.12 1.13 1.13 1.13 1.12 1.13 1.14 1.18 1.12 1.12 1.16 1.24

80 800 1.13 1.13 1.13 1.13 1.12 1.13 1.14 1.19 1.13 1.13 1.15 1.21

100 600 1.13 1.13 1.12 1.13 1.13 1.13 1.15 1.20 1.12 1.13 1.18 1.27

100 700 1.12 1.12 1.13 1.12 1.13 1.13 1.15 1.19 1.12 1.13 1.16 1.26

100 800 1.12 1.13 1.14 1.14 1.13 1.13 1.14 1.20 1.14 1.14 1.16 1.25

120 600 1.13 1.13 1.14 1.13 1.12 1.13 1.16 1.21 1.13 1.13 1.18 1.30

120 700 1.13 1.12 1.13 1.13 1.13 1.14 1.15 1.21 1.13 1.13 1.19 1.29

120 800 1.12 1.13 1.13 1.13 1.12 1.13 1.16 1.20 1.14 1.14 1.17 1.29

K = 3,M = 3, p = 2

80 600 1.47 1.50 1.48 1.48 1.45 1.45 1.54 1.62 1.46 1.51 1.54 1.66

80 700 1.47 1.50 1.49 1.53 1.47 1.49 1.48 1.62 1.47 1.48 1.56 1.68

80 800 1.47 1.52 1.48 1.49 1.47 1.48 1.59 1.61 1.46 1.52 1.54 1.62

100 600 1.45 1.47 1.50 1.52 1.45 1.48 1.56 1.68 1.46 1.50 1.65 1.72

100 700 1.49 1.49 1.48 1.47 1.44 1.49 1.55 1.71 1.46 1.50 1.57 1.77

100 800 1.44 1.48 1.47 1.45 1.48 1.48 1.55 1.70 1.49 1.51 1.61 1.73

120 600 1.44 1.44 1.46 1.47 1.45 1.44 1.61 1.80 1.44 1.49 1.65 1.86

120 700 1.47 1.47 1.46 1.46 1.48 1.49 1.58 1.77 1.46 1.49 1.66 1.84

120 800 1.46 1.46 1.49 1.47 1.47 1.45 1.57 1.78 1.46 1.49 1.67 1.84

The displayed means are derived from 500 MC simulations for known dimensions K and p. Thereby,

each figure represents the mean of the trace R2 in Table 5.4 divided by its counterpart in Table 5.2.

a For incomplete time series a stock variable is assumed.
b For incomplete data, dN/2e and bN/2c time series are stock and flow (average formulation) variables, respectively.
c For incomplete data, dN/2e and bN/2c time series serve as stock or change in flow (average formulaton) variables.
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Table 5.7: Ratios of trace R2 means based on hidden factors for random FAVARs using new KF and KS

versus standard KF and KS, when complete panel data takes observed variables into account

stocka stock/flow (average)b stock/change in flow (average)c

ratio of missing data ratio of missing data ratio of missing data

N T 0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15%

K = 1,M = 1, p = 1

80 600 1.99 1.96 2.00 1.96 1.99 1.97 1.98 1.92 1.99 1.96 1.94 1.93

80 700 1.95 2.03 1.96 1.93 1.98 1.98 1.98 1.95 1.97 1.97 1.95 1.98

80 800 1.97 1.97 1.94 1.94 1.93 1.95 1.99 1.92 1.96 1.96 1.98 1.98

100 600 2.00 1.95 1.93 1.98 1.97 1.98 1.96 1.98 1.97 1.97 1.95 1.98

100 700 1.99 1.95 1.94 1.95 1.96 1.96 1.95 1.96 1.96 1.99 1.97 1.94

100 800 1.95 1.93 1.99 1.94 2.01 1.95 1.98 1.95 2.00 1.97 1.94 1.94

120 600 1.96 1.99 1.95 1.95 1.97 1.99 2.00 1.95 1.97 1.99 1.93 2.01

120 700 1.99 1.95 1.93 1.97 1.99 1.97 1.96 1.94 1.99 1.97 1.95 2.01

120 800 1.99 1.97 1.97 1.94 1.98 1.97 1.93 1.97 1.98 1.97 1.96 1.98

K = 3,M = 1, p = 1

80 600 1.22 1.21 1.21 1.20 1.22 1.21 1.22 1.21 1.22 1.21 1.20 1.21

80 700 1.22 1.22 1.21 1.20 1.22 1.21 1.21 1.21 1.22 1.22 1.21 1.21

80 800 1.22 1.22 1.20 1.20 1.22 1.22 1.22 1.21 1.22 1.22 1.21 1.22

100 600 1.20 1.21 1.20 1.21 1.22 1.21 1.21 1.21 1.22 1.21 1.20 1.21

100 700 1.22 1.22 1.21 1.20 1.22 1.20 1.21 1.22 1.22 1.21 1.21 1.21

100 800 1.22 1.22 1.22 1.21 1.23 1.22 1.22 1.21 1.23 1.22 1.22 1.21

120 600 1.22 1.21 1.21 1.20 1.22 1.21 1.21 1.21 1.22 1.21 1.22 1.21

120 700 1.22 1.21 1.22 1.19 1.22 1.21 1.21 1.21 1.22 1.21 1.21 1.20

120 800 1.23 1.21 1.22 1.21 1.23 1.22 1.21 1.22 1.23 1.22 1.21 1.20

K = 3,M = 3, p = 1

80 600 2.02 1.99 1.94 1.99 1.99 1.97 1.95 1.95 2.02 1.96 1.94 1.89

80 700 2.02 2.04 2.01 1.96 2.02 1.99 1.97 2.01 2.00 2.00 1.95 1.87

80 800 2.03 1.95 2.00 1.99 2.03 2.02 2.00 1.98 2.06 1.99 2.01 1.94

100 600 1.95 1.92 1.93 1.89 1.95 1.93 1.94 1.92 1.93 1.94 1.90 1.84

100 700 1.95 1.93 1.95 1.94 1.97 1.97 1.94 1.92 1.96 1.96 1.91 1.88

100 800 1.96 1.95 1.96 1.95 1.98 1.94 1.96 1.90 1.96 1.98 1.95 1.89

120 600 1.94 1.90 1.85 1.88 1.91 1.88 1.88 1.85 1.90 1.89 1.85 1.86

120 700 1.93 1.92 1.88 1.89 1.90 1.92 1.91 1.87 1.94 1.93 1.89 1.88

120 800 1.95 1.94 1.92 1.89 1.93 1.93 1.92 1.87 1.92 1.92 1.87 1.89

K = 3,M = 1, p = 2

80 600 1.12 1.13 1.12 1.12 1.13 1.13 1.12 1.13 1.12 1.13 1.12 1.12

80 700 1.12 1.13 1.13 1.13 1.12 1.13 1.13 1.13 1.12 1.11 1.14 1.13

80 800 1.13 1.13 1.13 1.13 1.12 1.12 1.12 1.13 1.13 1.12 1.12 1.12

100 600 1.13 1.13 1.12 1.13 1.13 1.12 1.12 1.12 1.12 1.12 1.14 1.12

100 700 1.12 1.12 1.13 1.12 1.13 1.12 1.13 1.13 1.12 1.12 1.13 1.12

100 800 1.12 1.13 1.13 1.13 1.13 1.13 1.12 1.13 1.14 1.13 1.13 1.12

120 600 1.13 1.12 1.14 1.13 1.12 1.12 1.13 1.12 1.13 1.12 1.13 1.13

120 700 1.13 1.12 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.12 1.12

120 800 1.12 1.13 1.12 1.13 1.12 1.13 1.13 1.13 1.14 1.13 1.12 1.13

K = 3,M = 3, p = 2

80 600 1.47 1.48 1.45 1.44 1.45 1.43 1.45 1.43 1.46 1.47 1.43 1.42

80 700 1.47 1.48 1.46 1.48 1.47 1.47 1.41 1.45 1.47 1.46 1.45 1.45

80 800 1.47 1.51 1.45 1.45 1.47 1.46 1.50 1.43 1.46 1.50 1.42 1.42

100 600 1.45 1.46 1.47 1.47 1.45 1.46 1.45 1.43 1.46 1.46 1.47 1.42

100 700 1.49 1.47 1.46 1.44 1.44 1.47 1.44 1.45 1.46 1.48 1.42 1.44

100 800 1.44 1.46 1.45 1.42 1.48 1.46 1.45 1.47 1.49 1.48 1.45 1.43

120 600 1.44 1.43 1.43 1.43 1.45 1.41 1.45 1.44 1.44 1.44 1.43 1.44

120 700 1.47 1.46 1.44 1.43 1.48 1.47 1.44 1.43 1.46 1.45 1.44 1.43

120 800 1.46 1.45 1.47 1.44 1.47 1.44 1.43 1.44 1.46 1.46 1.45 1.43

The displayed means are derived from 500 MC simulations for known dimensions K and p. Thereby,

each figure represents the mean of the trace R2 in Table 5.4 divided by its counterpart in Table 5.3.

a For incomplete time series a stock variable is assumed.
b For incomplete data, dN/2e and bN/2c time series are stock and flow (average formulation) variables, respectively.
c For incomplete data, dN/2e and bN/2c time series serve as stock or change in flow (average formulaton) variables.
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5.3 Empirical Application

The US economy ranks among the biggest and most important in the world. Moreover, after many years

of declining interest rates, in December 2015 the US Federal Reserve decided to raise its key interest rate,

i.e., the Effective Federal Funds Rate (FEDFUNDS), by 25 bps. In this way, it was the first large central

bank to leave the path of an extremely relaxed monetary policy. Due to this actuality and, of course, for

comparisons with the results in Bernanke et al. (2005), Bork (2009, 2015) and Bork et al. (2010), we deal

with the impact of the US monetary policy on its real economy in the sequel.

At the beginning, we describe the underlying data. In doing so, we state which data serves as panel data

and which specifies the observable factors. Then, we provide some technical details about the termination

criteria, the upper limits of the factor dimension and autoregressive order, etc. Eventually, we discuss the

derived Impulse Response Functions and Forecast Error Variance Decomposition.

Our data essentially is an updated version of the data in Bernanke et al. (2005), except for 24 variables,

which we could not find anymore. This is why we have 96 of the original 120 time series over the period

from January 1959 until October 2015. Besides the 96 monthly time series, we add 15 partially incomplete

time series to our data. Among other things, we are interested in how monetary policy decisions may affect

quarterly indices. For this purpose, the quarterly growth rates of GDP, Governmental Total Expenditures,

Real Exports of Goods and Services as well as Real Imports of Goods and Services are part of these 15

new time series. With Section 2.2 in mind, we regard the four quarterly growth rates as sum versions of

flow variables, while all other time series are treated as stock variables.1

Monetary policy actions, especially unexpected ones, can significantly move Foreign Exchange (FX) rates.

As the European Union trades a lot with the US, our data comprises the USD-EUR exchange rate, which

started in January 1999. Furthermore, USD FX rates against the German Mark, French Franc and Italian

Lire serve as an approximation for the USD-EUR FX rate before January 1999. By this means, our data

set consists of time series, which are discontinued and start late, respectively. Finally, 4 of the 15 new time

series offer information about the balance sheets of the Federal Reserve Banks, which have dramatically

increased since the financial crisis in the years 2007-2008. In total, we have 111 macroeconomic indicators

for diverse areas of the US economy from January 1959 until October 2015. Besides a detailed overview of

variables, Appendix B.3 states the data sources, the performed preprocessing as well as the classification

in slow- and fast-moving ones based on Bernanke et al. (2005).

The “Quantitative Easing” programs QE1-QE3 were the response of the Federal Reserve to the problems

arising from the financial crisis, after stimulating the economy by lowering the Effective Federal Funds

Rate reached its limits in December 2008. For instance, the Federal Reserve massively bought Treasuries

and mortgage-backed securities. To obtain a picture of the monetary policy actions as comprehensive as

possible, the observable factor Y t is given by the Currency in Circulation (CURRCIR), the St. Louis

Adjusted Monetary Base (AMBSL) and the Effective Federal Funds Rate (FEDFUNDS). Our estimation

method for FAVARs requires the time series {Y t} to be complete. Therefore, holdings of Treasuries and

mortgage-backed securities, which were only available for the years 2002-2015, belong to the panel data

instead of the observed variables Y t.

Due to the loadings constraints in (5.15), the ranking of the first K variables matters. So far, the optimal

1 In terms of the 107 monthly time series the distinction between stock, flow and change in flow variables does not matter,

since there are no missing values. Although some time series start at a later point in time, e.g., the USD-EUR exchange rate,

or are discontinued, e.g., the German Mark-USD exchange rate, there are no intermediately missing observations. Hence,

for each monthly time series and each subsample, the matrix Qi in (2.9) consists of ones and zeros only.
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factor dimension K∗ is unknown, therefore, we conduct a pre-analysis as in Bork (2009), which is described

in Section 5.1.2, to properly arrange the panel data. After the complete, slow-moving variables have been

sorted, we do the same with the fast-moving ones, before we add all ragged time series in arbitrary order.

Our technical settings are: T = 682,M = 3, K̄ = 10, p̄ = 5, η = 0.01 and ξ = 0.01. Thus, the termination

criteria are not too strict and the run time of Algorithm 5.1.4 remains reasonable. The AIC-based model

selection in Lemma 5.1.10 yields: (K∗, p∗) = (9, 1). In this way, we have larger factor dimensions K and

M , but a smaller lag order than Bork (2009). Because of this, Table 5.8 compares the first nine variables

of our sorted panel data with their counterparts in Bork (2009). Thereby, we keep the long expressions

of Bork (2009) in the second column, while we apply our abbreviations from Appendix B.3 in the third

column. At first glance, both subsets cover the same areas. That means, Bork (2009) has four time series

of the group “Real Output and Income”, three time series belonging to “(Un)employment and Hours”,

one time series from “Consumption” and one from “Price Indices”. Similarly, our subset consists of one,

four, one and three, respectively, time series of the same groups. The main deviation arises from the fact

that we are more strongly driven by price indices instead of production data. However, we should keep in

mind that some differences possibly arise from that fact that some time has passed between the work of

Bork (2009) and ours. Furthermore, the underlying data does not completely match. Note, the different

loadings constraints in (5.13) and (5.15) are irrelevant, since the pre-analysis is independent of both.

Table 5.8: Comparison of panel data sorted by performed pre-analysis

No. Bork (2009) Our Data (Ticker)

1 Industrial production: manufacturing (1992 = 100, SA) PAYEMS

2 Unemploy. by duration: average (mean) duration in weeks (SA) CPILFESL

3 Purchasing managers’ index (SA) PPIFCG

4 Avg. weekly hrs. of prod. wkrs.: mfg., overtime hrs. (SA) UNRATE

5 CPI-u: commodities (82-84 = 100, SA) USFIRE

6 Employment: ratio; help-wanted ads: no. unemployed clf IPCONGD

7 Capacity util rate: manufac., total (% of capacity, SA) (frb) AWOTMAN

8 Pers cons exp (chained) - tot. dur. (bil 96$, SAAR) PCE

9 Industrial production: total index (1992 = 100, SA) PPICRM

Next, we focus on the impact of shocks on the included variables. The recursive structure in (5.76) implies

that each factor is only driven by its own innovations and the ones of preceding factors. Based on (5.78),

we obtain the subsequent innovation weight:

z = [0.38, 0.30,−5.49, 4.53, 5.50,−6.70, 1.66,−1.04,−2.36,−0.06, 0.39,−9.94],

which causes an increase in FEDFUNDS of 25 bps at time t = 0, but leaves everything else unchanged.

As in Bernanke et al. (2005), Bork et al. (2010) and Bork (2015), we derive confidence intervals for the

IRFs. In doing so, there are diverse methods to construct those. E.g., Bernanke et al. (2005) and Boivin

et al. (2010) used the bias-adjusted bootstrap approach of Kilian (1998). In this sense, Yamamoto (2012)

also showed bootstrap routines with bias correction. Due to its unknown asymptotic properties, Benkwitz

et al. (1999) rised doubts concerning the approach of Kilian (1998) and recommended the use of standard

bootstrap techniques instead. For instance, Bork et al. (2010) applied the standard bootstrap method.

Alternatively, Bai et al. (2015) derived closed-from expressions for the asymptotic distributions of IRFs.

Since the idiosyncratic errors of their measurement equation are uncorrelated, we cannot use the findings
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of Bai et al. (2015) here. For simplicity reasons, we revert to a non-parametric bootstrap method without

any bias correction.

Reestimation of latent factors and data incompleteness offer some flexibilty, this is why we briefly sketch

our bootstrap method: We first estimate the parameters in (5.16)-(5.17) with loadings constraints in (5.15)

and so, receive the residuals. To gain reliable confidence intervals we run 10,000 bootstrap simulations.

For each path, we randomly draw with replacement from the recentered errors of (5.17) and keep the first

p estimates and observations, respectively, of the vector [F̄
′
t,Y

′
t]
′ to generate a new sample [(F̄

∗
t )
′, (Y ∗t )

′]′

using standard non-parametric bootstrap. Next, we reestimate the coefficient matrices of the transition

equation based on [(F̄
∗
t )
′, (Y ∗t )

′]′. Thereby, no model selection takes place, that is, a VAR(1) is estimated.

With the help of (5.74), we then derive the IRFs of [F̄
′
t,Y

′
t]
′
i for 1 ≤ i ≤ K +M . For the IRFs of Xt in

(5.75), we fix the initially estimated loadings matrix. In this manner, we ignore the uncertainty inherent

in the bootstrapped panel data.

Similar to Bernanke et al. (2005), Bork et al. (2010) and Bork (2015), Figures 5.1-5.4 illustrate the impact

of the shock z on the standardized variables. Our confidence intervals cover confidence levels of 68% (light

gray) and 90% (dark gray). The underlying time horizon is 48 months. For the shock z and (5.74)-(5.75),

Figure 5.1-5.4 display for the time series 1 ≤ i ≤ N or the factors 1 ≤ j ≤ K +M :(
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s
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In Figure 5.1, an increase in FEDFUNDS weakens the industrial production (IPFINAL, IPCONGD, IPD-

CONGD, IPNCONGD, IPBUSEQ, IPMAT, IPB53100N, IPB53200N, IPMANSICS, INDPRO, NAPM,

NAPMPI) in the short term, but has no long-term effects. At the same time, capacities (CUMFNS) are less

utilized, personal income (RPI, W875RX1) decreases and unemployment (CE16OV, UNRATE, UEMP-

MEAN, UEMPLT5, UEMP5TO14, UEMP15OV, UEMP15T26) rises. Similarly, the number of employees

across diverse business areas (PAYEMS, USPRIV, USGOOD, CES1021000001, USCONS, MANEMP,

DMANEMP, NDMANEMP, CES0800000001, USTPU, USWTRADE, USFIRE, USPBS, USGOVT) and

the average production time (AWHMAN, AWOTMAN) decline in the short run. As shown in Figures 5.1-

5.2, these declines do not necessarily recovery. Higher unemployment rates together with lower incomes

let the reduced personal expenditures (PCE, PCEDG, PCEND, PCES) appear reasonable.

In Figure 5.2, housing starts (HOUST, HOUSTNE, HOUSTMW, HOUSTS, HOUSTW, PERMITNSA)

are supposed to increase over the next 48 months. Perhaps, this reflects that people are afraid of additional

interest rate hikes and therefore, bring such projects forward. Since the Effective Federal Funds Rate

applies for the whole US, regional aspects in case of housing starts do not matter. In the short term, less

new orders (NAPMNOI) increase manufacturing inventories (NAPMII), which also confirms a reduction in

consumption. In the long run, higher interest rates require companies to offer higher dividends (FSDXP),

but boost their costs, too. E.g., the same amout of debt calls for higher interest rate payments. In total,

the price-earnings ratio (FSPXE) naturally decreases.

Except for EXCAUS and EXITUS, the USD becomes stronger compared to foreign currencies (EXSZUS,

EXJPUS, EXUSUK, EXGEUS, EXFRUS, EXUSEU). Note, EXITUS is the FX rate between Italian Lira,

which the Euro succeeded, and USD. Thus, it is not relevant anymore. Here, it is part of our panel data,

as we have EXGEUS, EXFRUS and EXITUS as proxies for EXUSEU, before the Euro was introduced

on January 1, 1999. A stronger USD possibly comes from an increased demand for USD, when investors

increase their exposure to US fixed income products. As shown in Figure 5.3, the yields of US Treasuries

(TB3MS, TB6MS, GS1, GS5, GS10, TB3SMFFM, TB6SMFFM, T1YFFM, T5YFFM, T10YFFM) and
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Figure 5.1: IRFs (black lines) of standardized time series 1-28 in Appendix B.3 arising from an increase

in FEDFUNDS by 0.25%. Light gray areas show the 68%-confidence intervals, i.e., the 1-sigma interval,

while dark gray areas display the 90%-confidence intervals. In both cases, the intervals are based on 10,000

non-parametric bootstrap simulations of the transition equation, but the estimated loadings matrix is kept

fixed.
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Figure 5.2: IRFs (black lines) of standardized time series 29-56 in Appendix B.3 arising from an increase

in FEDFUNDS by 0.25%. Light gray areas show the 68%-confidence intervals, i.e., the 1-sigma interval,

while dark gray areas display the 90%-confidence intervals. In both cases, the intervals are based on 10,000

non-parametric bootstrap simulations of the transition equation, but the estimated loadings matrix is kept

fixed.
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Figure 5.3: IRFs (black lines) of standardized time series 57-84 in Appendix B.3 arising from an increase

in FEDFUNDS by 0.25%. Light gray areas show the 68%-confidence intervals, i.e., the 1-sigma interval,

while dark gray areas display the 90%-confidence intervals. In both cases, the intervals are based on 10,000

non-parametric bootstrap simulations of the transition equation, but the estimated loadings matrix is kept

fixed.
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Figure 5.4: IRFs (black lines) of standardized time series 85-111 in Appendix B.3 arising from an increase

in FEDFUNDS by 0.25%. Light gray areas show the 68%-confidence intervals, i.e., the 1-sigma interval,

while dark gray areas display the 90%-confidence intervals. In both cases, the intervals are based on 10,000

non-parametric bootstrap simulations of the transition equation, but the estimated loadings matrix is kept

fixed.
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corporate bond spreads (AAA, BAA, AAAFFM, BAAFFM) follow an increase in FEDFUNDS.

In Figure 5.3, the drops in M1SL, TOTRESNS, BUSLOANS and NONREVSL let the available liquidity

shrink, what the US Federal Reserve is exactly aiming at. In addition, prices and inflation (NAPMPRI,

PPIFGS, PPIITM, PPICRM, CPIAUCSL, CPIAPPSL, CPITRNSL, CUSR0000SAC, CUSR0000SAD,

CUSR0000SA0L2, CUSR0000SA0L5) climb in the long term such that the US economy eventually leaves

its crisis mode and comes back to normal. This assumption is supported by the raising composite leading

indicator MEI and GDP in Figure 5.4. Although there are no long-term effects on the export and import of

goods and serices (EXPGSC1, IMPGSC1), both decrease after an increase of FEDFUNDS. The reduced

export might arise from the strong USD, which makes US products more expensive abroad. By contrast,

the strong USD reduces the USD prices of foreign products. Hence, the drop in USD prices is not balanced

by a bigger amount of imported products. Finally, Figure 5.4 suggests changes in the assets and reserves

of the Federal Reserve (WALCL, MBST, TREAST, WRESBAL, AMBSL).

Besides the IRFs in Figures 5.1-5.4, Figures 5.5-5.8 show the FEVD of all panel data variables. That is,

each plot displays the contributions of the shocks, which belong to the variables Y t, as defined in (5.79).

To be more precise, we stack the single ratios of the innovations in CURRCIR, AMBSL and FEDFUNDS

and conclude: First, the total contribution as well as the single contributions of the shocks in CURRCIR,

AMBSL and FEDFUNDS considerably change over time and depend on the chosen panel data variable.

Second, CURRCIR innovations heavily affect the forecast error variance of IPB53100N, IPB53200N, RPI,

W875RX1, HOUST, HOUSTS, HOUSTW, PERMITNSA, EXPGSC1 and MBST, which rank among the

macroeconomic data. In case of AMBSL, we have a scattered picture. On the one hand, its shocks drive the

forecast error variance of production data (IPFINAL, IPBUSEQ, IPMAT, INDPRO, CUMFNS, GDP,

IMPGSC1), income (RPI, W875RX1), employment (PAYEMS, USGOOD, MANEMP, NDMANEMP,

CES0800000001, USTPU, USWTRADE, USFIRE, USPBS), consumption (PCE, PCEND, PCES) and

inflation (NAPMPRI, PPIFGS, PPIFCG, PPIITM, PPICRM, CPIAPPSL, CPITRNSL, CUSR0000SAC,

CES3000000008). On the other hand, they also influence the forecast error variance of financial data (FSP-

COM, EXJPUS, EXUSUK, EXCAUS, EXGEUS, EXFRUS, EXITUS, EXUSEU) and liquidity measures

(M1SL, M2SL, TOTRESNS, BUSLOANS). Similarly, the impact of FEDFUNDS shocks covers all areas,

but in case of US Treasuries (TB3MS, TB6MS, GS1, GS5, GS10, TB3SMFFM, TB6SMFFM, T1YFFM,

T5YFFM, T10YFFM) and corporate bond spreads (AAA, BAA, AAAFFM, BAAFFM) FEDFUNDS in-

novations are most prominent. Note, for these variables the total contribution of the CURRCIR, AMBSL

and FEDFUNDS innovations is largest. Besides the observable factors, the variance of the idiosyncratic

error (Σe)ii usually represents another important driver of the forecast error variance.
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Figure 5.5: Contributions of CURRCIR (black area), AMBSL (dark gray area) and FEDFUNDS (light

gray area) to the forecast error variance of the standardized variables 1-28 in Appendix B.3 over the next

48 months.
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Figure 5.6: Contributions of CURRCIR (black area), AMBSL (dark gray area) and FEDFUNDS (light

gray area) to the forecast error variance of the standardized variables 29-56 in Appendix B.3 over the next

48 months.
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Figure 5.7: Contributions of CURRCIR (black area), AMBSL (dark gray area) and FEDFUNDS (light

gray area) to the forecast error variance of the standardized variables 57-84 in Appendix B.3 over the next

48 months.
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Figure 5.8: Contributions of CURRCIR (black area), AMBSL (dark gray area) and FEDFUNDS (light

gray area) to the forecast error variance of the standardized variables 85-108 in Appendix B.3 over the

next 48 months.
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5.4 Conclusion and Future Research

This chapter estimated the FAVARs of Bernanke et al. (2005). Thereby, the panel data can be incomplete,

but the time series {Y t}, i.e., the observable factor components, must be observed in full. Note, in case of

FAVARs, a joint vector of hidden factors F t and observed variables Y t, whose dynamics obeys a VAR(p),

p ≥ 1, describes the panel data Xt. Hence, a direction of the future research is to extend our estimation

approach such that incomplete time series {Y t} are possible, too.

Regarding our estimation method, a fully parametric two-step routine simultaneously estimates the un-

known model parameters and missing data in a maximum likelihood framework. In a nutshell, two EMs

are alternately applied until the absolute value of relative change in the expected log-likelihood function is

negligible. In this context, the first EM derives complete data from the observations and latest parameter

estimates, while the second EM reestimates the parameters as soon as the balanced data set is updated.

Here, we also discuss the selection of the factor dimension and autoregressive order, which is important,

in particular, for empirical studies.

The main contributions of this chapter to the existing literature are stated in the sequel: First, we extend

the FAVARs of Bernanke et al. (2005) to incomplete panel data. Although Marcellino and Sivec (2016)

did the same, their approach requires the observed variables Y t to be part of the panel data. By contrast,

we are free of this condition. Moreover, our estimation method treats any autoregressive order p ≥ 1 of

the factor dynamics explicitly, as we do not stick to the argument that any VAR(p), p ≥ 1, coincides with

a VAR(1) of higher dimension. On the one hand, this is a nice feature. On the other hand, it admits that

our method can be applied without any adjustments.

Second, we modify the standard Kalman Filter to take the partially observed factors, i.e., the variables

Y t, into account. For this purpose, we choose a state-space representation of FAVARs, which is not most

common, and repeat the steps from the proof of the KF. For the Kalman Smoother, we do the same, but

finally obtain the standard KS equations. Therefore, we do not have to treat FAVARs as special ADFMs,

which goes to Bork (2009). This was why he had to add the time series {Y t} to the panel data {Xt} and

to include certain loadings constraints. By contrast, we can do the same, but are not obliged to do so.

Third, the new estimation method offers more flexibility than classical ones. Besides the loadings matrix,

it permits linear restrictions of the VAR(p) coefficients of the factor dynamics. Note, with the help of the

model transformations in Bai et al. (2015), we reduce the degrees of freedom without a need for linear

parameter constraints. As an alternative solution, we adjust our EM accordingly. That is, it automatically

incorporates the linear constraints and only updates the remaining model parameters.

Fourth, the inclusion of mixed-frequency data enables us to investigate the impact of the monetary policy

on quarterly indicators, e.g., the GDP. This is why our empirical study analyzes how an increase in the

Effective Federal Funds Rates by 0.25% affects the US economy. Based on a data sample, which covers

108 macroeconomic variables as panel data and a three-dimensional Y t over a period from January 1959

until October 2015, we conclude that the GDP gains from an increase in the Effectice Federal Funds Rate

by 0.25% in the long term.

Possible directions of the future research are as follows: Regime-switching concepts became more popular

in the recent literature. Hence, the formulation and estimation of FAVARs with incomplete panel data

in a regime-switching framework is natural from our point of view. Furthermore, our two-step estimation

method requires completely observable factor components. Therefore, one could consider FAVARs with

observable factors of mixed frequencies. Eventually, Copula Autoregressive Models have been successfully
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used for multivariate time series. The combination of those and FAVARs could capture non-linear factor

dependencies and might lead to better shock analyses.
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Chapter 6

Conclusion and Future Research

The central theme of this thesis is twofold. On the one hand, we improve the estimation of Factor Models

with incomplete panel data. In this regard, we link well-known concepts in a two-step estimation method,

which alternately applies two Expectation-Maximization Algorithms until a certain termination criterion

is reached. In contrast to alternative approaches, our parametric estimation method explicitly takes cross-

sectional correlation of idiosyncratic shocks into account. As shown in the scope of a MC simulation study,

this is an import feature for small, incomplete samples with cross-sectionally correlated errors. Moreover,

depending on the characteristics of the underlying FM formulation, e.g., for the partially observed factors

in FAVARs, we accordingly adjust our estimation routine. This triggered additional contributions to the

existing literature as discussed below.

On the other hand, we show practical applications of FMs in the field of asset allocation decisions and risk

management. That is, we set up a framework for the monitoring of financial markets, which delivers point

and interval forecasts of returns for future periods of time, breaks the expected returns down into the

single contributions of the input data, provides nowcasts of low-frequency signals and finally, determines

means and covariance matrices of the predicted returns. Then, these means and covariance matrices enter

classical mean-variance or marginal-risk-parity portfolio optimizations to enhance the performance of the

associated portfolios. In addition to portfolio strategies, we develop single-market trading strategies, which

are deterministic functions of the obtained prediction intervals.

In total, this work contributes to the existing literature as follows: First, we estimate Exact Static Factor

Models with incomplete panel data to improve the performance of mean-variance or marginal-risk-parity

optimal portfolios. That is, we apply models and techniques from statistics to problems in the area of

asset allocation decisions and risk management. Thereby, we work with US data.

Second, we utilize closed-form expressions for the factor means and covariance matrices in Approximate

Dynamic Factor Models. Since these enter our estimation method for ADFMs based on mixed-frequency

panel data with missing observations, we estimate ADFMs of diverse factor dimensions and lag orders for

various sample sizes and ratios of data gaps in an intense MC simulation study in two ways: On the one

hand, we apply our closed-form solutions for the factor means and covariance matrices as part of our two-

step estimation method. On the other hand, a run of the standard Kalman Filter and Smoother, ceteris

paribus, provides the factor means and covariance matrices. Thereby, a comparison of both approaches

confirms the superiority of the closed-form solutions and so, the usage of the standard KF and KS becomes

optional instead of mandatory.
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Third, Bańbura and Modugno (2014) presented an estimation method for ADFMs, which admitted arbi-

trary patterns of ragged panel data and extended the work in Dempster et al. (1977), Rubin and Thayer

(1982) and Shumway and Stoffer (1982). However, they actually derived their estimation procedure for

EDFMs and referred to Doz et al. (2012) to justify its validity for ADFMs. Note, Doz et al. (2012) consis-

tently estimated factors in ADFMs with cross-sectionally and serially correlated shocks as missspecified

EDFMs in a maximum likelihood framework. Thereby, they deemphasized cross-sectional error correla-

tion. In this thesis, we develop a two-step estimation procedure for ADFMs with incomplete panel data

that explicitly takes cross-sectional error correlation into account and show through MC simulations that

for small, ragged panel data with many gaps cross-sectional error correlation may matter. In addition,

we demonstrate that our two-step approach outperforms the one-step estimation method of Bańbura and

Modugno (2014) in such cases. Moreover, our two-step estimation method facilitates the combination of

irregular patterns, e.g., weeks and months, which requires further state-space modifications regarding the

one-step approach of Bańbura and Modugno (2014).

Fourth, we address the problem of selecting the factor dimension and lag order in ADFMs with incomplete

panel data. In this sense, we recommend a two-step model selection routine that automatically determines

both parameters. Hence, our estimation method for ADFMs simultaneously performs model selection and

parameter estimation. This also explains why our derivations rely on general factor dynamics of order

p ≥ 1 instead of the simple case with p = 1. Finally, we examine the proposed model selection criteria in

an intensive MC simulation study.

Fifth, we provide point and interval forecasts for returns of future periods of time. Thereby, we decompose

our point forecasts. That is, we figure out for all panel data variables to what extent and in which direction

they contribute to the predicted returns. Moreover, we generate interval forecasts in the form of prediction

intervals, which incorporate uncertainties arising from factor and parameter estimation. In this context,

we also introduce single-market trading strategies, which are deterministic functions of our prediction

intervals. The idea behind such trading strategies is to convert prediction intervals into concrete market

trades.

Sixth, Bork (2009) and Marcellino and Sivec (2016) treat the FAVARs of Bernanke et al. (2005) as special

ADFMs to apply standard ADFM techniques for their estimation. Therefore, they are obliged to treat

the observable factors as subset of the panel data and to incorporate appropriate loadings constraints. In

doing so, they use the standard Kalman Filter and Smoother, which ignore that factors in FAVARs are

partially observed. By contrast, we adapt the original KF such that it includes the observed factors and

confirm the validity of the usual KS.

Seventh, due to the modified KF and KS, we extend the FAVARs of Bernanke et al. (2005) to incomplete

panel data. Parameters and factors in FMs and FAVARs are unique except for rotation. For identification

purposes, we therefore transform the general FAVAR formulation as in Bai et al. (2015). Then, we deploy

parameter constraints to remove left degrees of freedom. Besides loadings constraints, which are common

for FAVARs, our estimation method admits the inclusion of linear restrictions for the VAR(p) coefficients

of the factor dynamics. Hence, we become more flexible in case of parameter constraints, which prevents

us from parameter ambiguity.

Among other things, possible directions for the future research are as follows: First, our model for weekly

S&P500 log-returns stumbles a little during the financial crisis of the years 2008/2009. That is, there are

more interval outliers than in the run-up and sequel of the crisis. Thus, the inclusion of regime-switching

concepts could improve the forecasting accuracy. Second, we considered ADFMs with cross-sectionally,
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but not serially correlated errors. Therefore, estimation methods for ADFMs with homoscedastic, cross-

sectionally and serially correlated shocks and incomplete panel data represent another research area. If

this works, research could proceed with heteroscedastic errors. Third, our two-step estimation method for

FAVARs admits incomplete panel data, but requires the observable factors to be observed in full without

any gaps. Consequently, an estimation method for FAVARs that also permits data incompleteness for the

panel data as well as the observable factor components might outline another research area.
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Appendix A

Additional Definitions and Proofs

This appendix pursues two targets. On the one hand, it lists well-known mathematical principles, which

are important for this thesis, and states corresponding references for their proofs. This is for the readers’

convenience to reduce the need for external references. Moreover, if there are differences in the literature,

we specify the notation we work with. On the other hand, this appendix shortens our main chapters, since

some lengthy calculations were moved here. If applicable, alternative proofs and additional comments are

also stated here to avoid unnecessary confusion.

A.1 Mathematical Principles

We briefly repeat the main mathematical fundamentals entering our calculations. As these are well-known

in the literature, we state appropriate references instead of proving their validity once again.

Definition A.1.1 (Matrix Trace)

The trace of a square matrix A = (aij)ij ∈ RK×K coincides with the sum of its diagonal elements, i.e.:

tr (A) =

K∑
k=1

akk.

The above definition is in line with Rao and Toutenburg (1999, p. 355, Definition A.12).

Lemma A.1.2 (Properties of Matrix Trace)

Assume matrices A ∈ RK×K , B ∈ RK×K , C ∈ RN×K , D ∈ RK×N and scalar s ∈ R. Then, it holds:

(i) tr (s) = s,

(ii) tr (A±B) = tr (A)± tr (B) ,

(iii) tr (sA) = s tr (A) ,

(iv) tr (A′) = tr (A) , with A′ as the transpose of matrix A,

(v) tr (CD) = tr (DC) ,
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(vi) tr (ADC) = tr (CAD) = tr (DCA) .

Proof:

The relation in (i) results from Definition A.1.1, while (ii)-(v) are given in Rao and Toutenburg (1999,

p. 355, Theorem A.13). For more details see, e.g., the references at the start of Appendix A in Rao and

Toutenburg (1999, p. 353). The claim in (vi) follows from (v), if the matrix arising from the multiplication

of two adjacent matrices is regarded, that is, the initial product of three matrices simplifies to a product

of two matrices (Harville, 1997, p. 51, Eq. 2.9). 2

Remark A.1.3 (Invariance under Cyclical Permutation of Matrix Trace)

The proof of (vi) in Lemma A.1.2 works for matrix products of more than three matrices, too. In total,

this yields that the matrix trace is invariant unter cyclical permutation for any finite number of matrices.

With regard to Definition A.1.1, the matrix trace is a real-valued, differentiable function tr : RK×K → R.

Unfortunately, there are distinct conventions of how to differentiate a scalar function with respect to a

matrix. Here, we take the version of Rao and Toutenburg (1999, p. 384, Definition A.90).

Definition A.1.4 (Differentiation of Scalar Functions)

Let ∂f/∂xij with 1 ≤ i ≤ K, 1 ≤ j ≤ N be the partial derivatives of a real-valued function f : RK×N → R.

Then, the partial differential of function f with respect to X is defined as:

∂f (X)

∂X
=


∂f
∂x11

· · · ∂f
∂x1N

...
...

∂f
∂xK1

· · · ∂f
∂xKN

 .

With Definition A.1.4 in mind, it follows for the matrix trace:

Lemma A.1.5 (Derivatives of Matrix Trace Functions)

For any non-singular matrix Y , let Y −1 be its inverse matrix. Furthermore, let matrix Z ′ be the transpose

of matrix Z. Then, the subsequent equalities remain valid:

(i) ∂
∂X (tr (AX)) = A′, for X ∈ RK×N , A ∈ RN×K ,

(ii) ∂
∂X (tr (X ′AX)) = (A+A′)X, for X ∈ RK×N , A ∈ RK×K ,

(iii) ∂
∂X (tr (XAX)) = X ′A+A′X ′, for X ∈ RK×K , A ∈ RK×K ,

(iv) ∂
∂X (tr (XAX ′)) = X (A+A′) , for X ∈ RK×N , A ∈ RN×N ,

(v) ∂
∂X (tr (X ′AX ′)) = AX ′ +X ′A, for X ∈ RK×K , A ∈ RK×K ,

(vi) ∂
∂X (tr (X ′AXB)) = AXB +A′XB′, for X ∈ RK×N , A ∈ RK×K , B ∈ RN×N ,

(vii) ∂
∂X

(
tr
(
AX−1

))
= −

(
X−1AX−1

)′
, for non-singular X ∈ RK×K and A ∈ RK×K .

(viii) ∂
∂X

(
tr
(
X−1AX−1B

))
= −

(
X−1AX−1BX−1 +X−1BX−1AX−1

)′
,

for non-singular X ∈ RK×K and A,B ∈ RK×K .
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Proof:

For (i)-(vi), see Rao and Toutenburg (1999, p. 386, Theorem A.97). The latter points are stated in Rao

and Toutenburg (1999, p. 386, Theorem A.97). 2

Besides the matrix trace, our calculations include the determinant of a matrix. For its definition see, e.g.,

Harville (1997, p. 192, Theorem 13.5.1) and Rao and Toutenburg (1999, p. 356, Definition A.14).

Definition A.1.6 (Matrix Determinant)

The determinant of a square matrix A = (aij)ij ∈ RK×K is defined as:

|A| =
K∑
i=1

(−1)
i+j

aij |Mij |, for any fixed 1 ≤ j ≤ K,

with |Mij | denoting the first minor of the element aij. Here, the first minor |Mij | of aij is the determinant

of the reduced matrix arising after the i-th row and the j-th column of A have been removed. Let Aij =

(−1)
i+j |Mij | be the sign adjusted minor, then, Aij is called the cofactor of aij. For any scalar s ∈ R, it

holds: |s| = s, which completes this recursive definition of the matrix determinant.

Lemma A.1.7 (Properties of Matrix Determinant)

Let A,B ∈ RK×K and C ∈ RN×N be square matrices. Assume matrix D ∈ RK×N , scalar s ∈ R and let

ON×K ∈ RN×K be a zero matrix. Then, the matrix determinant satisfies the following:

(i) |A′| = |A|,

(ii) |s A| = sK |A|,

(iii) |AB| = |A||B|,

(iv) |A| =
∏K
k=1 akk, if A is a diagonal or triangular matrix,

(v)

∣∣∣∣∣
(

A D

ON×K C

)∣∣∣∣∣ = |A||C| =

∣∣∣∣∣
(
A′ O′N×K
D′ C ′

)∣∣∣∣∣ ,
(vi) |A−1| = 1

|A| , if A is a non-singular matrix.

Proof:

Points (i)-(v) are taken from Rao and Toutenburg (1999, p. 356, Theorem A.16), while the last is given

in Rao and Toutenburg (1999, p. 358, Theorem A.18). 2

Lemma A.1.8 (Derivatives of Matrix Determinant Functions)

For any positive scalar s ∈ R+, let ln (s) denote its natural logarithm and let X ∈ RK×K be a non-singular

square matrix. Then, it follows:

(i) ∂
∂X |X| = |X| (X

′)
−1
,

(ii) ∂
∂X ln (|X|) = (X ′)

−1
.



190 APPENDIX A. ADDITIONAL DEFINITIONS AND PROOFS

Proof:

See Rao and Toutenburg (1999, p. 387, Theorem A.98). 2

To simplify some expressions we use the Kronecker product as in Harville (1997, p. 337, Section 16.1),

which is defined as follows:

Definition A.1.9 (Kronecker Product)

Let A = (aij)ij ∈ RK×N and B = (bij)ij ∈ RJ×L be two matrices. Then, the Kronecker product of A and

B is given by:

A⊗B =


a11B a12B · · · a1NB

a21B a22B · · · a2NB
...

...
...

aK1B aK2B · · · aKNB

 ∈ RKJ×NL.

Lemma A.1.10 (Properties of Kronecker Product)

Assume matrices A ∈ RK×N , B ∈ RJ×L, C ∈ RK×N , D ∈ RU×V , E ∈ RN×U , F ∈ RL×V and scalar

s ∈ R. Furthermore, let G ∈ RK×K and H ∈ RN×N be square matrices. Then, it holds:

(i) s⊗A = A⊗ s = s A,

(ii) (s A)⊗B = A⊗ (s B) = s (A⊗B) ,

(iii) (A+ C)⊗B = (A⊗B) + (C ⊗B) ,

(iv) B ⊗ (A+ C) = (B ⊗A) + (B ⊗ C) ,

(v) (A⊗B)
′

= A′ ⊗B′,

(vi) (A⊗B)⊗D = A⊗ (B ⊗D) ,

(vii) (A⊗B) (E ⊗ F ) = (AE)⊗ (BF ) ,

(viii) (G⊗H)
−1

= G−1 ⊗H−1, if G and H are non-singular matrices,

(ix) tr (G⊗H) = tr (G) tr (H) ,

(x) |G⊗H| = |G|N |H|K .

Proof:

In Harville (1997), see Equation (1.1) on p. 338 for (i). The results in (ii)-(iv) are stated in Equations

(1.10)-(1.12) on p. 339. The transpose in (v) is given by Equation (1.15) on p. 340. For the associativity

law in (vi), see Lemma 16.1.1 on p. 340, whereas (vii) is shown in Lemma 16.1.2 on p. 341. For the

inverse in (viii), see Equation (1.23) on p. 342. The trace in (ix) is provided by Equation (1.25) on p.

342. Finally, for the matrix determinant in (x), see Equation (3.18) on p. 354. 2

Lemma A.1.11 (Eigenvalues of Kronecker product)

For matrices A ∈ RK×K and B ∈ RN×N with possibly nondistinct eigenvalues λ1, . . . , λK and µ1, . . . , µN ,

respectively, the eigenvalues of A⊗B are given by the products λi µj with 1 ≤ i ≤ K and 1 ≤ j ≤ N .
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Proof:

See Section “Eigenvalues of a Kronecker Product” on p. 733 in Hamilton (1994). 2

Sometimes, reshaping matrices supports solving linear equation systems. For this purpose, we introduce

the vectorization operator (Harville, 1997, p. 343, Eq. 2.1) as given below:

Definition A.1.12 (Vectorization of Matrix)

The vectorization of matrix A = (aij)ij ∈ RK×N stacks one column of A after the other such that the

first is on top and the last is at the bottom, that is:

vec (A) = (a11, . . . , aK1, a12, . . . , aK2, . . . , a1N , . . . , aKN )
′ ∈ RKN×1.

Lemma A.1.13 (Properties of Vectorization Operator)

For matrices A ∈ RK×N , B ∈ RN×U and C ∈ RU×V , which admit the matrix product ABC, we obtain:

vec (ABC) = (C ′ ⊗A) vec (B) .

Proof:

See Harville (1997, p. 345, Theorem 16.2.1). 2

A.2 Factor Models

This section contains basic results in the area of FMs that are well-known in the literature. If applicable,

we refer to relevant books and papers for further details. In addition, lenghty calculations and alternative

proofs are part of this section to improve the clarity of the main chapters. In case of covariance-stationarity,

we take the definition in Hamilton (1994, p. 258).

Definition A.2.1 (Covariance-Stationarity of Vector Process)

A vector process {Xt} is said to be covariance-stationary, if its first and second order moments, i.e.,

E [Xt] and E
[
XtX

′
t−j
]
, for any integer j, are independent of time t.

Alternative proof of Theorem 4.1.4:

From Definition 2.1.4 we derive the covariance matrix of the vectors Xt and F t as follows:

CovΘ [Xt,F t] = CovΘ [WF t + µ + εt,F t] = W CovΘ [F t,F t] = WΣF .

This and the marginal distributions in Lemma 4.1.3 provide for the joint vector (F ′t,X
′
t)
′ ∈ RK+N :(

F t

Xt

)
∼ N

((
0K

µ

)
,

(
ΣF ΣFW

′

WΣF WΣFW
′ + Σε

)
.

)

Then, we get for the conditional normal distribution (Greene, 2003, pp. 871-872, Theorem B.7):

F t|Xt ∼ N
(

ΣFW
′
(
WΣFW

′ + Σε

)−1

(Xt − µ) ,ΣF − ΣFW
′
(
WΣFW

′ + Σε

)−1

WΣF

)
.
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If we set M = W ′Σ−1
ε W + Σ−1

F
∈ RK×K , we obtain for the covariance matrix:

M

(
ΣF − ΣFW

′
(
WΣFW

′ + Σε

)−1

WΣF

)
=
(
W ′Σ−1

ε W + Σ−1

F

)(
ΣF − ΣFW

′
(
WΣFW

′ + Σε

)−1

WΣF

)
= W ′Σ−1

ε WΣF + IK −W ′
[
Σ−1
ε WΣFW

′ + IK

] (
WΣFW

′ + Σε

)−1

WΣF

= W ′Σ−1
ε WΣF + IK −W ′

[
Σ−1
ε

(
WΣFW

′ + Σε

)](
WΣFW

′ + Σε

)−1

WΣF

= W ′Σ−1
ε WΣF + IK −W ′Σ−1

ε WΣF = IK ,

which proves the covariance matrix representation in Theorem 4.1.4. By similar reasoning, we receive for

the conditional factor mean:

M−1W ′Σ−1
ε =

(
ΣF − ΣFW

′
(
WΣFW

′ + Σε

)−1

WΣF

)
W ′Σ−1

ε

= ΣFW
′
[
Σ−1
ε −

(
WΣFW

′ + Σε

)−1

WΣFW
′Σ−1
ε

]
= ΣFW

′
[
IN −

(
WΣFW

′ + Σε

)−1

WΣFW
′
]

Σ−1
ε

= ΣFW
′
[
IN −

(
WΣFW

′ + Σε

)−1 (
WΣFW

′ + Σε

)
+
(
WΣFW

′ + Σε

)−1

Σε

]
Σ−1
ε

= ΣFW
′
(
WΣFW

′ + Σε

)−1

,

which eventually proves the assertion for the conditional factor mean. 2

Lemma A.2.2 (Conversion of VAR(p) with p ≥ 1 into VAR(1))

Let the process {F t} with F t ∈ RK be the VAR(p) in (2.5) with p ≥ 1. Then, it can be converted into the

following VAR(1):

F̃ t = ÃF̃ t−1 + δ̃t, (A.1)

where F̃ t ∈ RpK , δ̃t ∈ RpK and Ã ∈ RpK×pK are defined by:

F̃ t =


F t
...

F t−p+1

 , δ̃t =


δt

0K
...

0K

 and Ã =


A1 · · · Ap−1 Ap

IK OK OK
. . .

...

OK IK OK

 .
Furthermore, we have:

δ̃tδ̃
′
s =

Σ˜δ
if t = s

OpK otherwise
and Σ˜δ

=


Σδ OK · · · OK

OK OK
...

. . .

OK OK

 ∈ RpK×pK .

Proof:

See Section “Rewriting a VAR(p) as a VAR(1)” in Hamilton (1994, p. 259). 2
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In Lemma A.2.2, the transformation of the VAR(p), p ≥ 1, into a VAR(1) does not call for the covariance-

stationarity of {F t}. However, for the covariance-stationarity of {F t} and thus, {F̃ t} a certain structure

has to exist. Here, abs (·) denotes the absolute value of a real number.

Lemma A.2.3 (Conditions for Covariance-Stationarity)

Let {F t} and {F̃ t} be the processes in Lemma A.2.2. If one of two following conditions is satisfied, both

processes are said to be covariance-stationary:

(i) If all λ ∈ C with |IKλp −
∑p
i=1Aiλ

p−i| = 0 lie inside the unit circle, i.e., abs (λ) < 1.

(ii) If all z ∈ C with |IK −
∑K
i=1Aiz

i| = 0 lie outside the unit circle, i.e., abs (z) > 1.

Proof:

See Proposition 10.1 in Hamilton (1994, p. 259). 2

Remark A.2.4 (Covariance-Stationarity and Eigenvalues of Ã)

Because of the assumed covariance-stationarity, the eigenvalues of the matrix Ã in Lemma A.2.2 satisfy

|IKλp −
∑p
i=1Aiλ

p−i| = 0 (Hamilton, 1994, p. 259, Proposition 10.1). Hence, condition (i) in Lemma

A.2.3 implies that Ãk → OpK×pK as k →∞ (Hamilton, 1994, p. 260, statement before Eq. 10.1.15).

Lemma A.2.5 (Vector MA(∞) Representation of F̃ t)

Let {F̃ t} be the covariance-stationary VAR(1) process in Lemma A.2.2. Then, the infinite moving average,

abbreviated by MA(∞), representation of F̃ t, that is,

F̃ t =

∞∑
k=0

(
Ãkδ̃t−k

)
(A.2)

converges. Moreover, it meets the absolute summability condition, i.e., it holds:

∞∑
k=0

abs
(
Ãkij
)
<∞, for all 1 ≤ i, j ≤ pK,

where Ãkij is the element in the i-th row and j-th column of the k-th power of Ã.

Proof:

The covariance-stationarity of {F̃ t} provides Ãk → OpK×pK as k →∞ and so, justifies the representation

of F̃ t in (A.2) as convergent series of the errors (Hamilton, 1994, p. 260, Eq. 10.1.15). The process {F̃ t}
obeys Equation [10.1.4] in Hamilton (1994, p. 257) and is covariance-stationary. So, the MA(∞) repre-

sentation of F̃ t meets the absolute summability condition (Hamilton, 1994, p. 263, 2nd paragraph after

Proposition 10.2). For the definition of absolute summability, see Hamilton (1994, p. 263, Eq. 10.2.7). 2

Lemma A.2.6 (Mean and Covariance Matrix of F̃ t)

Let {F̃ t} be the covariance-stationary VAR(1) process in Lemma A.2.2. Then, we obtain for its mean

µ ˜F
and covariance matrix Σ ˜F

:

µ ˜F
= 0pK , (A.3)

Σ ˜F
=

∞∑
k=0

(
ÃkΣ˜δ

(
Ãk
)′)

. (A.4)
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Proof:

Using the MA(∞) representation of F̃ t in (A.2), we have for the mean:

µ ˜F
= EΘ

[
F̃ t

]
= EΘ

[ ∞∑
k=0

(
Ãkδ̃t−k

)]
=

∞∑
k=0

(
ÃkEΘ

[
δ̃t−k

])
= 0pK .

Here, the absolute summability of the matrix sequence (Ãk)k≥0 admits the interchange of the expectation

operator and the series. For the proof of (A.4), see Hamilton (1994, p. 263, Proposition 10.2). 2

The representation in (A.4) guarantees that Σ ˜F
is symmetric and positive semi-definite, which are the

characteristics of a covariance matrix. As mentioned at the beginning, we provide alternative proofs, if

applicable. In particular, whenever there are some nice conclusions. For this purpose, we derive µ ˜F
and

Σ ˜F
once again, however, without using the MA(∞) formulation and the absolute summability property.

Lemma A.2.7 (Mean and Vectorized Covariance Matrix of F̃ t)

Let {F̃ t} be the covariance-stationary VAR(1) process in Lemma A.2.2. Then, it follows for its mean

µ ˜F
and vectorized covariance matrix vec(Σ ˜F

):

µ ˜F
= 0pK , (A.5)

vec
(

Σ ˜F

)
=
[
I(pK)2 −

(
Ã⊗ Ã

)]−1

vec
(

Σ˜δ

)
. (A.6)

Proof:

The expectation of both sides in (A.1) yields:

EΘ

[
F̃ t

]
= ÃEΘ

[
F̃ t−1

]
+ EΘ

[
δ̃t

]
µ ˜F

= Ãµ ˜F
+ 0pK(

IpK − Ã
)
µ ˜F

= 0pK .

The Jordan decomposition of Ã (Hamilton, 1994, p. 731, Eq. A.4.25) results in:(
IpK −MÃJÃM

−1

Ã

)
µ ˜F

= 0pK

MÃ
(
IpK − JÃ

)
M−1

Ã µ ˜F
= 0pK .

The matrix MÃ is non-singular and hence, has full rank. JÃ is an upper triangular matrix, whose diagonal

contains the eigenvalues of Ã. The covariance-stationarity of {F̃ t} implies that all eigenvalues of Ã lie

inside the unit circle (see Lemma A.2.3 and Remark A.2.4). Thus, the matrix IpK − JÃ also has full rank

and the unique solution µ ˜F
= 0pK follows.

For the covariance matrix Σ ˜F
, we obtain with the help of (A.1):

VarΘ

[
F̃ t

]
= EΘ

[
F̃ tF̃

′
t

]
= EΘ

[(
ÃF̃ t−1 + δ̃t

)(
ÃF̃ t−1 + δ̃t

)′]
= ÃEΘ

[
F̃ t−1F̃

′
t−1

]
Ã′ + EΘ

[
δ̃tδ̃
′
t

]
,

where we benefit from the independence of F̃ t−1 and δ̃t. The expectation of δ̃t is zero (see Equation

(2.5) and Lemma A.2.2) such that the last term is replaced by its covariance matrix. If we vectorize both

sides, we get:

vec
(

Σ ˜F

)
= vec

(
ÃΣ ˜F

Ã′
)

+ vec
(

Σ˜δ

)
.
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Then, Lemma A.1.13 provides:

vec
(

Σ ˜F

)
=
(
Ã⊗ Ã

)
vec

(
Σ ˜F

)
+ vec

(
Σ˜δ

)
[
I(pK)2 −

(
Ã⊗ Ã

)]
vec

(
Σ ˜F

)
= vec

(
Σ˜δ

)
.

The Jordan decomposition of Ã⊗ Ã (Hamilton, 1994, p. 731, Eq. A.4.25) yields:[
I(pK)2 −M(Ã⊗Ã)J(Ã⊗Ã)M

−1

(Ã⊗Ã)

]
vec

(
Σ ˜F

)
= vec

(
Σ˜δ

)
M(Ã⊗Ã)

[
I(pK)2 − J(Ã⊗Ã)

]
M−1

(Ã⊗Ã)
vec

(
Σ ˜F

)
= vec

(
Σ˜δ

)
.

The matrix M(Ã⊗Ã) is non-singular. J(Ã⊗Ã) is an upper triangular matrix with all eigenvalues of Ã⊗ Ã on

its diagonal. Lemma A.1.11 provides that the (pK)2 eigenvalues of Ã⊗Ã are given by the (pK)2 products

of the pK eigenvalues of Ã. Due to the covariance-stationarity of {F̃ t}, we have: abs (λi) < 1, 1 ≤ i ≤ pK,
for all eigenvalues λi of Ã. Thus, we get: abs (λiλj) = abs (λi) abs (λj) < 1, 1 ≤ i, j ≤ pK. All in all, the

matrix I(pK)2 − J(Ã⊗Ã) has full rank such that the inverse of [I(pK)2 − (Ã ⊗ Ã)] exists and the solution

in (A.6) is well-defined. 2

Remark A.2.8 (Comparison of F̃ t Moments)

Lemmata A.2.6 and A.2.7 derive the same mean, i.e., µ ˜F
= 0pK . Perhaps not at first glance, they also

provide the same covariance matrix. If we apply the vectorization operator to (A.4), we obtain:

vec
(

Σ ˜F

)
= vec

( ∞∑
k=0

(
ÃkΣ˜δ

(
Ãk
)′))

=

∞∑
k=0

vec

(
ÃkΣ˜δ

(
Ãk
)′)

.

We may move the vectorization operator in the series, as a matrix sequence “is absolutely summable if each

of its elements forms an absolutely summable scalar sequence” (Hamilton, 1994, p. 263, 1st sentence).

Next, we use Lemma A.1.13:

vec
(

Σ ˜F

)
=

∞∑
k=0

((
Ãk ⊗ Ãk

)
vec

(
Σ˜δ

))
=

( ∞∑
k=0

(
Ãk ⊗ Ãk

))
vec

(
Σ˜δ

)
.

The last step requires the absolute summability of each scalar series once again, when we separate vec(Σ˜δ
)

from the series. The iterative use of (vii) in Lemma A.1.10 yields for k ≥ 2:

Ãk ⊗ Ãk =
(
Ãk−1Ã

)
⊗
(
Ãk−1Ã

)
=
(
Ãk−1 ⊗ Ãk−1

)(
Ã⊗ Ã

)
= . . . =

(
Ã⊗ Ã

)k
.

The cases k = 0 and k = 1 do not require any adjustment. In total, we have:

vec
(

Σ ˜F

)
=

( ∞∑
k=0

(
Ã⊗ Ã

)k)
vec

(
Σ˜δ

)
.

Since R(pK)2

is a Banach space, e.g., with respect to the matrix norm, the matrix Ã⊗ Ã ranks among its

linear operators and the covariance-stationarity of {F̃ t} guarantees the necessary boundedness constraint,
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the series may be regarded as Neumann series (Alt, 2012, p. 153, Section 3.7), which satisfies:

∞∑
k=0

(
Ã⊗ Ã

)k
=
[
I(pK)2 −

(
Ã⊗ Ã

)]−1

.

Eventually, we end up with the vectorized version of Σ ˜F
in (A.6).

Lemma A.2.9 (Vector MA(∞) Representation of B̃t)

Let the process {B̃t} obey the VAR(1) representation in Lemma 4.2.5 based on the covariance-stationary

processes {rt} in Definition 4.2.1 and {F t} in Definitions 2.1.3 and 2.1.4, respectively. Then, the process

{B̃t} is covariance-stationary such that its subsequent MA(∞) representation is well-defined:

B̃t =

∞∑
k=0

(
Hk (a + et−k)

)
.

Moreover, it satisfies the absolute summability condition, i.e., it holds:

∞∑
k=0

abs
(
Hkij
)
<∞, for all 1 ≤ i, j ≤ max (1, q̃) + max (1, p)K,

where Hkij is the element in the i-th row and j-th column of the k-th power of H.

Proof:

At first, we subdivide the matrix H in Lemma 4.2.5 into the following four block matrices:

H =

[
B ∗

Omax(1,p)K×max(1,q̃) Ã

]
.

For p ≥ 1, the lower right block matrix of H is Ã in Lemma A.2.2 with eigenvalues inside the unit circle,

since the process {F t} shall be covariance-stationary. Thus, for all λÃ satisfying |Ã−λÃIpK | = 0 we have

abs
(
λÃ
)
< 1. If p = 0 holds, Ã = OK yields λÃ = 0 for all of its eigenvalues. The covariance-stationarity

of the ARX implies that all λB with |B− λBIq̃| = 0 lie inside the unit circle, i.e., abs (λB) < 1. The lower

left block matrix of H is a zero matrix, thus, Lemma A.1.7 provides: |H−λHIpK | = |A−λAIpK ||B−λBIq̃|
such that all eigenvalues of H lie inside the unit circle and the covariance-stationarity of {B̃t} follows.

Further, it holds: Hk → O(max(1,q̃)+max(1,p)K)×(max(1,q̃)+max(1,p)K) as k →∞, which justifies the MA(∞)

representation as convergent series (Hamilton, 1994, p. 260, Eq. 10.1.15). The dynamics of process {B̃t}
coincides with Equation [10.1.4] in Hamilton (1994), therefore, the MA(∞) formulation of F̃ t meets the

absolute summability condition (Hamilton, 1994, p. 263, 2nd paragraph after Proposition 10.2). 2

Lemma A.2.10 (Mean and Covariance Matrix of B̃t)

Assume {B̃t} as the covariance-stationary process in Lemma A.2.9. Then, the vector B̃t is Gaussian,

i.e., B̃t ∼ N
(
µ ˜B

,Σ ˜B

)
, with mean and covariance matrix given by:

µ ˜B
=

∞∑
k=0

(
Hka

)
, (A.7)

Σ ˜B
=

∞∑
k=0

(
HkΣe

(
Hk
)′)

, (A.8)

with covariance matrix Σe as in Lemma 4.2.5.
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Proof:

The absolute summability of the matrix sequence (Hk)k≥0 admits the interchange of the expectation and

the series. Thus, the distribution of et in Lemma 4.2.5 yields for the mean of B̃t:

µ ˜B
= EΘ

[
B̃t

]
= EΘ

[ ∞∑
k=0

(
Hk (a + et−k)

)]
=

∞∑
k=0

(
Hk (a + EΘ [et−k])

)
=

∞∑
k=0

(
Hka

)
.

The proof of Σ ˜B
is provided in Hamilton (1994, p. 263, Proposition 10.2). 2

Lemma A.2.11 (Mean and Vectorized Covariance Matrix of B̃t)

Assume {B̃t} as the covariance-stationary VAR(1) process in Lemma 4.2.5 of dimension d = max (1, q̃)+

max (1, p)K. Then, we obtain for its mean µ ˜B
and vectorized covariance matrix vec

(
Σ ˜B

)
:

µ ˜B
= (Id −H)

−1
a (A.9)

vec
(

Σ ˜B

)
= (Id −H)

−1
vec (Σe) . (A.10)

Proof:

For µ ˜B
, see Hamilton (1994, p. 258, last unnamed Equation before Eq. 10.1.8). For vec(Σ ˜B

), the same

steps as in Lemma A.2.7 are applied. Similarly, we may transfer the findings in Remark A.2.8 to {B̃t}. 2

Lemma A.2.12 (Mean and Variance of rt Without Any Information)

Let {rt} be the covariance-stationary ARX(q̃, p̃) in Definition 4.2.1. Then, it holds: rt ∼ N
(
µr, σ

2
r

)
with:

µr = [1, 0, . . . , 0]µ ˜B
and σ2

r = [1, 0, . . . , 0] Σ ˜B
[1, 0, . . . , 0]

′
,

with µ ˜B
and Σ ˜B

as in Lemmata A.2.10 and A.2.11, respectively.

Proof:

The definition of B̃t in Lemma 4.2.5 results in:

µr = EΘ [rt] = EΘ

[
[1, 0, . . . , 0] B̃t

]
= [1, 0, . . . , 0]µ ˜B

σ2
r = VarΘ [rt] = VarΘ

[
[1, 0, . . . , 0] B̃t

]
= [1, 0, . . . , 0] Σ ˜B

[1, 0, . . . , 0]
′
,

which proves the assertion. 2

Lemma A.2.13 (Mean and Variance of rt Based on Full History)

Let r = [r1, . . . , rT ] and F c = [F c1, . . . ,F
c
T ] be return and factor samples, respectively. For m̃ = max(q̃, p̃),

the returns are supposed to obey the ARX in Definition 4.2.1 based on F c, i.e.:

rt = α+

q̃∑
i=1

(βirt−i) +

p̃∑
i=1

(
γ′iF

c
t−i
)

+ εt, εt ∼ N
(
0, σ2

ε

)
iid.

Then, for all points in time m̃ + 1 ≤ t ≤ T , we have: rt|rt−1, . . . , rt−q̃, F
c ∼ N

(
µrt|Full, σ

2
rt|Full

)
with

mean and variance given by:

µrt|Full = α+

q̃∑
i=1

(βirt−i) +

p̃∑
i=1

(
γ′iF

c
t−i
)

and σ2
rt|Full = σ2

ε .
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Proof:

The properties of the conditional expectation result in:

µrt|Full = EΘ [rt|rt−1, . . . , rt−q̃, F
c] = EΘ

[
α+

q̃∑
i=1

(βirt−i) +

p̃∑
i=1

(
γ′iF

c
t−i
)

+ εt

∣∣∣∣∣ rt−1, . . . , rt−q̃, F
c

]

= α+

q̃∑
i=1

(βirt−i) +

p̃∑
i=1

(
γ′iF

c
t−i
)
,

σ2
rt|Full = VarΘ [rt|rt−1, . . . , rt−q̃, F

c]

= VarΘ

[
α+

q̃∑
i=1

(βirt−i) +

p̃∑
i=1

(
γ′iF

c
t−i
)

+ εt

∣∣∣∣∣ rt−1, . . . , rt−q̃, F
c

]
= σ2

ε ,

which proves the claim. 2

Lemma A.2.14 (Mean and Variance of rt Based on Partial History)

Let r = [r1, . . . , rT ] and F c = [F c1, . . . ,F
c
T ] be return and factor samples, respectively. For m̃ = max(q̃, p̃),

the returns are supposed to obey the ARX in Definition 4.2.1 based on F c, i.e.:

rt = α+

q̃∑
i=1

(βirt−i) +

p̃∑
i=1

(
γ′iF

c
t−i
)

+ εt, εt ∼ N
(
0, σ2

ε

)
iid.

Then, for all points in time 2 ≤ t ≤ m̃, we have: rt|rt−1, . . . , rmax(1,t−q̃), F
c ∼ N

(
µrt|Part, σ

2
rt|Part

)
with

mean and variance as follows:

µrt|Part = α+

min(q̃,t−1)∑
i=1

(βirt−i) +

min(p̃,t−1)∑
i=1

(
γ′iF

c
t−i
)

+ κ′
(t,q̃,p̃,β,γ)

µ ˜B
,

σ2
rt|Part = κ′

(t,q̃,p̃,β,γ)
Σ ˜B

κ(t,q̃,p̃,β,γ) + σ2
ε ,

with µ ˜B
and Σ ˜B

as in Lemmata A.2.10 or A.2.11 and κ(t,q̃,p̃,β,γ) ∈ Rmax(1,q̃)+max(1,p)K given by:

κ(t,q̃,p̃,β,γ) =
[
1{t≤q̃}βt, . . . ,1{t≤q̃}βq̃, 0 . . . , 0,1{t≤p̃}γ

′
t, . . . ,1{t≤p̃}γ

′
p̃, 0 . . . , 0

]′
.

Proof:

The idea behind is to change to the stationary distribution as soon as there is no information in the form

of return and factor samples available. Thereby, the properties of the conditional expectation provide:

µrt|Part = EΘ

[
rt|rt−1, . . . , rmax(1,t−q̃), F

c
]

= α+

min(q̃,t−1)∑
i=1

(βirt−i) + 1{t≤q̃}

q̃∑
i=t

(βiEΘ [rt−i]) +

min(p̃,t−1)∑
i=1

(
γ′iF

c
t−i
)

+ 1{t≤p̃}

p̃∑
i=t

(γ′iEΘ [F t−i])

= α+

min(q̃,t−1)∑
i=1

(βirt−i) +

min(p̃,t−1)∑
i=1

(
γ′iF

c
t−i
)

+ κ′
(t,q̃,p̃,β,γ)

EΘ

[
B̃0

]
,

σ2
rt|Part = VarΘ

[
rt|rt−1, . . . , rmax(1,t−q̃), F

c
]

= EΘ

(1{t≤q̃} q̃∑
i=t

βi (rt−i − EΘ [rt−i]) + 1{t≤p̃}

p̃∑
i=t

γ′i (F t−i − EΘ [F t−i]) + εt

)2
∣∣∣∣∣∣F c


= κ′

(t,q̃,p̃,β,γ)
VarΘ

[
B̃0

]
κ(t,q̃,p̃,β,γ) + σ2

ε .
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Finally, we have EΘ

[
B̃0

]
= µ ˜B

and VarΘ

[
B̃0

]
= Σ ˜B

, which completes the proof. 2

Lemma A.2.15 (Vector MA(∞) Representation of S̃t)

Let the process {S̃t} obey the VAR(1) in Lemma 4.2.11 with shift s ≥ 1 based on the covariance-stationary

processes {rt} in Definition 4.2.1 and {F t} in Definitions 2.1.3 and 2.1.4, respectively. Then, the process

{S̃t} is covariance-stationary such that its subsequent MA(∞) representation is well-defined:

S̃t =

∞∑
k=0

(
Hks (a + et−k)

)
.

Moreover, it satisfies the absolute summability condition, i.e., it holds:

∞∑
k=0

abs
(
Hks,ij

)
<∞, for all 1 ≤ i, j ≤ max (1, q̃) + max (1, p)K + (s− 1)(K + 1),

where Hks,ij is the element in the i-th row and j-th column of the k-th power of Hs.

Proof:

The statement is shown in exactly the same way as in the proof of Lemma A.2.9. 2

Lemma A.2.16 (Mean and Covariance Matrix of S̃t)

Let {S̃t} be the covariance-stationary process in Lemma A.2.15 with shift in time s ≥ 1. Then, the vector

S̃t is Gaussian, i.e., S̃t ∼ N
(
µ ˜S

,Σ ˜S

)
, with mean and covariance matrix defined as follows:

µ ˜S
=

∞∑
k=0

(
Hksa

)
,

Σ ˜S
=

∞∑
k=0

(
HksΣe

(
Hks
)′)

,

with covariance matrix Σe as in Lemma 4.2.11.

Proof:

The absolute summability of the matrix sequence (Hks)k≥0 admits the interchange of the expectation and

the series. Thus, the distribution of et in Lemma 4.2.11 yields for the mean of S̃t:

µ ˜S
= EΘ

[
S̃t

]
= EΘ

[ ∞∑
k=0

(
Hks (a + et−k)

)]
=

∞∑
k=0

(
Hks (a + EΘ [et−k])

)
=

∞∑
k=0

(
Hksa

)
.

The proof of Σ ˜S
is provided in Hamilton (1994, p. 263, Proposition 10.2). 2

Lemma A.2.17 (Mean and Vectorized Covariance Matrix of S̃t)

Assume {S̃t} as the covariance-stationary VAR(1) process in Lemma 4.2.11 with shift s ≥ 1 of dimension

d = max (1, q̃)+max (1, p)K+(s−1)(K+1). Then, we obtain for its mean µ ˜S
and vectorized covariance

matrix vec(Σ ˜S
):

µ ˜S
= (Id −Hs)−1

a

vec
(

Σ ˜S

)
= (Id −Hs)−1

vec (Σe) .
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Proof:

For µ ˜S
, see Hamilton (1994, p. 258, last unnamed Equation before Eq. 10.1.8). For vec(Σ ˜S

), the same

steps as in the proof of Lemma A.2.7 are applied. Similarly, we may transfer Remark A.2.8 to {S̃t}. 2

Lemma A.2.18 (Mean and Variance of Shifted rt Without Any Information)

Let {rt} be the covariance-stationary ARX(q̃, p̃) with shift in time s ≥ 1 in Definition 4.2.10. Then, the

vector rt,s = [rt, . . . , rt−s+1]
′ ∈ Rs is Gaussian, i.e., rt,s ∼ N

(
µr,s,Σr,s

)
, with parameters as follows:

µr,s = [Is, Os×d−s]µ ˜S
and Σr,s = [Is, Os×d−s] Σ ˜S

[Is, Os×d−s]
′
,

with d = max (1, q̃) + max (1, p)K + (s− 1) (K + 1) and zero matrix Os×d−s ∈ Rs×d−s. The mean µ ˜S
and covariance matrix Σ ˜S

are given in Lemmata A.2.16 and A.2.17, respectively.

Proof:

The definition of S̃t in Lemma 4.2.11 results in:

µr,s = EΘ [rt,s] = EΘ

[
[rt, . . . , rt−s+1]

′]
= EΘ

[
[Is, Os×d−s] S̃t

]
= [Is, Os×d−s]µ ˜S

,

Σr,s = VarΘ [rt,s] = VarΘ

[
[Is, Os×d−s] S̃t

]
= [Is, Os×d−s] Σ ˜S

[Is, Os×d−s]
′
,

which proves the assertion. 2

Lemma A.2.19 (Mean and Variance of Shifted rt Based on Full History)

Let r = [r1, . . . , rT ] and F c = [F c1, . . . ,F
c
T ] be return and factor samples, respectively. For shift s ≥ 1, we

set m̃ = max(q̃, p̃) + s− 1. The returns shall obey the shifted ARX in Definition 4.2.10 based on F c, i.e.:

rt = α+

q̃∑
i=1

(βirt−s+1−i) +

p̃∑
i=1

(
γ′iF

c
t−s+1−i

)
+ εt, εt ∼ N

(
0, σ2

ε

)
iid.

Then, for all points in time m̃+ 1 ≤ t ≤ T , we have: rt|rt−1, . . . , rt−s+1−q̃, F
c ∼ N

(
µrt,s|Full, σ

2
rt,s|Full

)
with the subsequent mean and variance:

µrt,s|Full = α+

q̃∑
i=1

(βirt−s+1−i) +

p̃∑
i=1

(
γ′iF

c
t−s+1−i

)
and σ2

rt,s|Full = σ2
ε .

Proof:

The properties of the conditional expectation result in:

µrt,s|Full = EΘ [rt|rt−1, . . . , rt−s+1−q̃, F
c]

= EΘ

[
α+

q̃∑
i=1

(βirt−s+1−i) +

p̃∑
i=1

(
γ′iF

c
t−s+1−i

)
+ εt

∣∣∣∣∣ rt−1, . . . , rt+1−s−q̃, F
c

]

= α+

q̃∑
i=1

(βirt−s+1−i) +

p̃∑
i=1

(
γ′iF

c
t−s+1−i

)
,

σ2
rt,s|Full = VarΘ [rt|rt−1, . . . , rt−s+1q̃, F

c]

= VarΘ

[
α+

q̃∑
i=1

(βirt−s+1−i) +

p̃∑
i=1

(
γ′iF

c
t−s+1−i

)
+ εt

∣∣∣∣∣ rt−1, . . . , rt−s+1−q̃, F
c

]
= σ2

ε ,

which proves the claim. 2
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Lemma A.2.20 (Mean and Variance of Shifted rt Based on Partial History)

Let r = [r1, . . . , rT ] and F c = [F c1, . . . ,F
c
T ] be return and factor samples, respectively. For shift s ≥ 1,

we set m̃ = max(q̃, p̃) + s− 1. The returns shall obey the ARX in Definition 4.2.10 based on F c, i.e.:

rt = α+

q̃∑
i=1

(βirt−s+1−i) +

p̃∑
i=1

(
γ′iF

c
t−s+1−i

)
+ εt, εt ∼ N

(
0, σ2

ε

)
iid.

Then, for all s + 1 ≤ t ≤ m̃, we have: rt|rt−1, . . . , rmax(1,t−s+1−q̃), F
c ∼ N

(
µrt,s|Part, σ

2
rt,s|Part

)
with

mean and variance as follows:

µrt,s|Part = α+

min(q̃,t−s)∑
i=1

(βirt−s+1−i) +

min(p̃,t−s)∑
i=1

(
γ′iF

c
t−s+1−i

)
+ κ′

(t,q̃,p̃,s,β,γ)
µ ˜S

,

σ2
rt,s|Part = κ′

(t,q̃,p̃,s,β,γ)
Σ ˜S

κ(t,q̃,p̃,s,β,γ) + σ2
ε ,

where mean µ ˜S
and covariance matrix Σ ˜S

are given in Lemmata A.2.16 or A.2.17 and we have for the

vector κ(t,q̃,p̃,s,β,γ) ∈ Rmax(1,q̃)+max(1,p)K+(s−1)(K+1):

κ(t,q̃,p̃,s,β,γ) =
[
1{t−s+1≤q̃} (βt−s+1, . . . , βq̃, 0, . . . 0) ,1{t−s+1≤p̃}

(
γ′t−s+1, . . . ,γ

′
p̃, 0 . . . , 0

)]′
.

Proof:

The idea behind is to change to the stationary distribution as soon as there is no information in the form

of return and factor samples available. Thereby, the properties of the conditional expectation provide:

µrt,s|Part = EΘ

[
rt|rt−1, . . . , rmax(1,t−s+1−q̃), F

c
]

= α+

min(q̃,t−s)∑
i=1

(βirt−s+1−i) + 1{t−s+1≤q̃}

q̃∑
i=t−s+1

(βiEΘ [rt−s+1−i])

+

min(p̃,t−s)∑
i=1

(
γ′iF

c
t−s+1−i

)
+ 1{t−s+1≤p̃}

p̃∑
i=t−s+1

(γ′iEΘ [F t−s+1−i])

= α+

min(q̃,t−s)∑
i=1

(βirt−s+1−i) +

min(p̃,t−s)∑
i=1

(
γ′iF

c
t−s+1−i

)
+ κ′

(t,q̃,p̃,s,β,γ)
EΘ

[
S̃0

]
,

σ2
rt,s|Part = VarΘ

[
rt|rt−1, . . . , rmax(1,t−s+1−q̃), F

c
]

= EΘ

[(
1{t−s+1≤q̃}

q̃∑
i=t−s+1

βi (rt−s+1−i − EΘ [rt−s+1−i])

+1{t−s+1≤p̃}

p̃∑
i=t−s+1

γ′i (F t−s+1−i − EΘ [F t−s+1−i]) + εt

)2
∣∣∣∣∣∣F c


= κ′

(t,q̃,p̃,s,β,γ)
VarΘ

[
S̃0

]
κ(t,q̃,p̃,s,β,γ) + σ2

ε .

Finally, we have EΘ

[
S̃0

]
= µ ˜S

and VarΘ

[
S̃0

]
= Σ ˜S

, which completes the proof. 2

A.3 Statistical Measures for Estimation Accuracy

In this section, we repeat the definitions of some common statistical measures, which we apply for assessing

the quality of our out-of-sample point and interval forecasts in Chapters 3-5. In doing so, we follow Stock
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and Watson (2002a), Boivin and Ng (2006), Schumacher and Breitung (2008), Doz et al. (2012) as well as

Bańbura and Modugno (2014), when we use the below trace R2 for evaluating the goodness of estimated

factors.

Definition A.3.1 (Trace R2)

Let the matrices F ∈ RT×K and F̂ ∈ RT×K̂ collect the original and estimated factors, respectively, of the

SFMs in Definition 2.1.3 or the DFMs in Definition 2.1.4. Then, the trace R2 is given as follows:

trace R2 =

tr

(
F ′F̂

(
F̂ ′F̂

)−1

F̂ ′F

)
tr (F ′F )

.

Note, in empirical applications and some of our MC simulations we have to estimate the factor dimension.

This is why we distinguish between the true and estimated factor dimensions, i.e., K and K̂, in the above

definition. As mentioned in previous sections, even for K = K̂, the estimated factors are unique up to an

invertible, linear transformation. Let the matrix RK̂×K satisfy the following equation: F̂R = F . Then, an

OLS provides as a solution: R = (F̂ ′F̂ )−1F̂ ′F , which justifies the definition of the trace R2. Furthermore,

it shows that the trace R2 “is smaller than 1 and tends to 1 if the empirical canonical correlations between

the true factors and their estimates tend to 1” (Doz et al., 2012, p. 1019).

To evaluate out-of-sample point forecasts for returns of future periods, we deploy the Root-Mean-Square

Error, which can be found in standard textbooks and is defined as follows:

Definition A.3.2 (Root-Mean-Square Error)

Assume an out-of-sample period of length T . For any point in time 1 ≤ t ≤ T , let r̂t ∈ R be the point

estimate of the afterwards realized return rt ∈ R. Then, the Root-Mean-Square Error is given by:

RMSE =

√√√√ 1

T

T∑
t=1

(r̂t − rt)2
.

Finally, we focus on statistical measures for assessing the quality of interval forcasts. Since our prediction

intervals in Chapters 3 and 4 rely on a prespecified level ν ∈ [0, 1], the Ratio of Interval Outliers measures

the percentage of realized returns exceeding such ν-prediction intervals. Mathematically, this means:

Definition A.3.3 (Ratio of Interval Outliers)

Assume an out-of-sample period of length T . For any point in time 1 ≤ t ≤ T , let l̂t, ût ∈ R with l̂t ≤ ût
denote the lower and upper limits, respectively, of the ν-prediction interval with ν ∈ [0, 1] and let rt ∈ R
be the afterwards realized return. Then, the Ratio of Interval Outliers is defined as:

RIO =
1

T

T∑
t=1

[
1{rt<l̂t} + 1{rt>ût}

]
.

Hence, the closer RIO to level ν the more accurately the prediction intervals map the return behavior. For

RIO > ν, the prediction intervals seem too tight such that there are too many outliers. For RIO < ν, the

prediction intervals are too conservative, since the number of interval outliers is below our expectation.

Unfortunately, RIO does not assess the interval width. That means, for the same level ν tighter prediction

intervals offering the same RIO should be preferred. As a solution, we use the Mean Interval Score, which

balances the interval width and the number of interval outliers, as second measure for evaluating interval

forecasts. Here, we define MIS as in Gneiting and Raftery (2007) or Brechmann and Czado (2015).
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Definition A.3.4 (Mean Interval Score)

Assume an out-of-sample period of length T . For any point in time 1 ≤ t ≤ T , let (l̂t, ût) with l̂t, ût ∈ R
denote the ν-prediction interval with ν ∈ [0, 1] and let rt be the afterwards realized return. Then, we have

for the Mean Interval Score:

MIS =
1

T

T∑
t=1

[
ût − l̂t +

2

1− ν

(
l̂t − rt

)
1{rt<l̂t} +

2

1− ν
(rt − ût)1{rt>ût}

]
.
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Appendix B

Data of Empirical Applications

We collect the data of the empirical analyses in Sections 3.2, 4.5 and 5.3. Thereby, we introduce for each

time series an appropriate abbreviation, state its available period of time, repeat its updating frequency,

list the assumed data type, indicate the performed preprocessing and provide a brief description including

its source. In each section, we mention the time span of the overall data sample such that the individual

time spans mark all time series starting at a later point in time or being discontinued. In case of updating

frequencies we consider: daily (d), weekly (w), monthly (m) and quarterly (q). With Definition 2.2.2 and

Lemma 2.2.3 in mind, we obtain for the assumed data types: stock (1), sum formulation of flow variable (2),

average version of flow variable (3), sum formulation of change in flow variable (4) and average version of

change in flow variable (5). Note, for complete time series the data type does not matter, since all yield

an identity matrix for the matrix Qi in Definition 2.2.1. Regarding data transformations we distinguish

between: no transformation (1), first difference (2), second difference (3), logarithm (4) and first difference

of logarithm (5). This classification is in accordance with Bernanke et al. (2005). Most of our data comes

from the research database of the Federal Reserve Bank of St. Louis. For clarity reasons, we therefore

shorten the Uniform Resource Locator (URL) “http://research.stlouisfed.org/fred2/series” by “fred”. As

long as it makes sense and is possible, we add source abbreviations in subsequent sections. Finally, we

comment in which manner publication delays are taken into account. Moreover, we shorten time series

descriptions using the notations: Seasonally Adjusted (SA) and Not Seasonally Adjusted (NSA).

B.1 Mixed-Freq. Inform. Supporting Asset Allocation Decisions

The total data sample in Section 3.2 ranges from February 1, 1985 until November 11, 2016 and is weekly

updated. For the sake of clarity, we separate the components of the return VARX in Definition 3.1.9 from

the mixed-frequency panel data in Lemma 3.1.7. Besides data of the Federal Reserve Bank of St. Louis, we

downloaded data from the URLs “http://de.global-rates.com/” and “http://finance.yahoo.com/”. In this

context, the abbreviations “glrates” and “yahoo” stand for the URL prefixes “http://de.global-rates.com

/zinssatze/libor/amerikanischer-dollar” and “http://finance.yahoo.com/quote”, respectively.

Return Vector

No. Series ID Time span Freq. Type Trans. Series description

1. GOLD 1985/02/01-2016/11/11 d 1 5 Gold fixing price in London Bullion Market at

10.30 am (London time), USD per troy ounce,

NSA, delay of 0 days,

fred/GOLDAMGBD228NLBM

https://fred.stlouisfed.org/series/GOLDAMGBD228NLBM
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2. NASDAQ 1985/02/01-2016/11/11 d 1 5 Nasdaq Composite, price index, NSA, delay of 0

days, yahoo/%5EIXIC/history?period1=3455640

0&period2=1479164400&interval=1d&filter=hist

ory&frequency=1d
3. S&P500 1985/02/01-2016/11/11 d 1 5 Standard & Poor’s 500, price index, NSA, delay

of 0 days, yahoo/%5EGSPC/history?period1=-6

30982800&period2=1479164400&interval=1d&fil

ter=history&frequency=1d
4. DJIA 1985/02/01-2016/11/11 d 1 5 Dow Jones Industrial Average, price index, NSA,

delay of 0 days, yahoo/%5EDJI/history?period1

=475801200&period2=1479164400&interval=1d

&filter=history&frequency=1d

Mixed-Frequency Panel Data

No. Series ID Time span Freq. Type Trans. Series description

5. DGS3-1 1985/02/01-2016/11/11 d 1 1 Spread between 3-Year and 1-Year Treasury

Constant Maturity Rates, NSA, delay of 0

days, fred/DGS3, fred/DGS1

6. DGS10-1 1985/02/01-2016/11/11 d 1 1 Spread between 10-Year and 1-Year

Treasury Constant Maturity Rates, NSA,

delay of 0 days, fred/DGS10, fred/DGS1
7. LIBOR6-3 1986/01/02-2016/11/11 d 1 1 Spread between 6-Month and 3-Month

LIBOR, NSA, delay of 1 day, fred/USD6M

TD156N, fred/USD3MTD156N (history),

glrates/usd-libor-zinssatz-6-monate.aspx,

glrates/usd-libor-zinssatz-3-monate.aspx

(latest values)

8. LIBOR12-3 1986/01/02-2016/11/11 d 1 1 Spread between 12-Month and 3-Month

LIBOR, NSA, delay of 1 day, fred/USD12

MD156N, fred/USD3MTD156N (history),

glrates/usd-libor-zinssatz-12-monate.aspx,

glrates/usd-libor-zinssatz-3-monate.aspx

(latest values)

9. DB-AAA 1986/01/02-2016/10/07 d 1 1 Spread between Moody’s Seasoned Baa and

Aaa Corporate Bond Yield, percent, NSA,

delay of 1 day, fred/DBAA, fred/DAAA

10. BBB-AAA 1996/12/31-2016/11/11 d 1 1 Spread between BofA Merrill Lynch US

Corporate BBB and AAA Option-Adjusted

Spread, percent, NSA, delay of 1 day,

fred/BAMLC0A4CBBB,

fred/BAMLC0A1CAAA

11. H0A0HYM2 1996/12/31-2016/11/11 d 1 2 BofA Merrill Lynch US High Yield

Option-Adjusted Spread, percent, NSA,

delay of 1 day, fred/BAMLH0A0HYM2
12. C0A0CM 1996/12/31-2016/11/11 d 1 2 BofA Merrill Lynch US Corporate Master

Option-Adjusted Spread, percent, NSA,

delay of 1 day, fred/BAMLC0A0CM

13. EMCBPIOAS 1998/12/31-2016/11/11 d 1 2 BofA Merrill Lynch Emerging Markets

Corporate Plus Index Option-Adjusted

Spread, percent, NSA, delay of 1 day,

fred/BAMLEMCBPIOAS
14. VIXCLS 1990/01/02-2016/11/11 d 1 5 CBOE Volatility Index: VIX, NSA, delay of

1 day, fred/VIXCLS

15. VXOCLS 1986/01/02-2016/11/11 d 1 5 CBOE S&P 100 Volatility Index: VXO,

NSA, delay of 1 day, fred/VXOCLS
16. VXDCLS 1997/10/07-2016/11/11 d 1 5 CBOE DJIA Volatility Index, NSA, delay of

1 day, fred/VXDCLS

17. VXNCLS 2001/02/02-2016/11/11 d 1 5 CBOE NASDAQ 100 Volatility Index, NSA,

delay of 1 day, fred/VXNCLS
18. DCOILWTICO 1986/01/02-2016/11/11 d 1 5 Crude Oil Prices: West Texas Intermediate

(WTI) - Cushing, Oklahoma, USD per

Barrel, NSA, delay of 4 days,

fred/DCOILWTICO
19. PPIACO 1985/02/01-2016/11/11 m 2 5 Producer Price Index for All Commodities,

Index 1982=100, NSA, delay of 45 days

after 1st of respective month, fred/PPIACO

20. CPIAUCSL 1985/02/01-2016/11/11 m 2 5 Consumer Price Index for All Urban

Consumers: All Items, Index

1982-1984=100, NSA, delay of 49 days after

1st of respective month, fred/CPIAUCSL

http://finance.yahoo.com/quote/%5EIXIC/history?period1=34556400&period2=1479164400&interval=1d&filter=history&frequency=1d
http://finance.yahoo.com/quote/%5EIXIC/history?period1=34556400&period2=1479164400&interval=1d&filter=history&frequency=1d
http://finance.yahoo.com/quote/%5EIXIC/history?period1=34556400&period2=1479164400&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EGSPC/history?period1=-630982800&period2=1479164400&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EGSPC/history?period1=-630982800&period2=1479164400&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EGSPC/history?period1=-630982800&period2=1479164400&interval=1d&filter=history&frequency=1d
http://finance.yahoo.com/quote/%5EDJI/history?period1=475801200&period2=1479164400&interval=1d&filter=history&frequency=1d
http://finance.yahoo.com/quote/%5EDJI/history?period1=475801200&period2=1479164400&interval=1d&filter=history&frequency=1d
http://finance.yahoo.com/quote/%5EDJI/history?period1=475801200&period2=1479164400&interval=1d&filter=history&frequency=1d
https://fred.stlouisfed.org/series/DGS3
https://fred.stlouisfed.org/series/DGS1
https://fred.stlouisfed.org/series/DGS10
https://fred.stlouisfed.org/series/DGS1
https://fred.stlouisfed.org/series/USD6MTD156N
https://fred.stlouisfed.org/series/USD6MTD156N
https://fred.stlouisfed.org/series/USD3MTD156N
http://de.global-rates.com/zinssatze/libor/amerikanischer-dollar/usd-libor-zinssatz-6-monate.aspx
http://de.global-rates.com/zinssatze/libor/amerikanischer-dollar/usd-libor-zinssatz-3-monate.aspx
https://fred.stlouisfed.org/series/USD12MD156N
https://fred.stlouisfed.org/series/USD12MD156N
https://fred.stlouisfed.org/series/USD3MTD156N
http://de.global-rates.com/zinssatze/libor/amerikanischer-dollar/usd-libor-zinssatz-12-monate.aspx
http://de.global-rates.com/zinssatze/libor/amerikanischer-dollar/usd-libor-zinssatz-3-monate.aspx
https://fred.stlouisfed.org/series/DBAA
https://fred.stlouisfed.org/series/DAAA
https://fred.stlouisfed.org/series/BAMLC0A4CBBB
https://fred.stlouisfed.org/series/BAMLC0A1CAAA
https://fred.stlouisfed.org/series/BAMLH0A0HYM2
https://fred.stlouisfed.org/series/BAMLC0A0CM
https://fred.stlouisfed.org/series/BAMLEMCBPIOAS
https://fred.stlouisfed.org/series/VIXCLS
https://fred.stlouisfed.org/series/VXOCLS
https://fred.stlouisfed.org/series/VXDCLS
https://fred.stlouisfed.org/series/VXNCLS
https://fred.stlouisfed.org/series/DCOILWTICO
https://fred.stlouisfed.org/series/PPIACO
https://fred.stlouisfed.org/series/CPIAUCSL
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Mixed-Frequency Panel Data

No. Series ID Time span Freq. Type Trans. Series description

21. GDP 1985/02/01-2016/11/11 q 2 5 Gross Domestic Product, billions of USD,

SA annual rate, delay of 126 days after 1st

of respective quarter, fred/GDP
22. INDPRO 1985/02/01-2016/11/11 m 2 5 Industrial Production Index, Index

2012=100, SA, delay of 49 days after 1st of

respective month, fred/INDPRO

23. IPB50001N 1985/02/01-2016/11/11 m 2 5 Industrial Production: Total index, Index

2012=100, NSA, delay of 49 days after 1st

of respective month, fred/IPB50001N
24. PAYEMS 1985/02/01-2016/11/11 m 2 5 All Employees: Total Nonfarm Payrolls,

thousands of persons, SA, delay of 40 days

after 1st of respective month, fred/PAYEMS

25. UNRATE 1985/02/01-2016/11/11 m 1 1 Civilian Unemployment Rate, percent, SA,

delay of 40 days after 1st of respective

month, fred/UNRATE
26. PCE 1985/02/01-2016/11/11 m 2 5 Personal Consumption Expenditures,

billions of USD, SA annual rate, delay of 62

days after 1st of respective month, fred/PCE
27. PSAVERT 1985/02/01-2016/11/11 m 1 1 Personal Saving Rate, percent, SA annual

rate, delay of 62 days after 1st of respective

month, fred/PSAVERT

B.2 Estimation of Approximate Dynamic Factor Models

This section lists the panel data of the empirical study in Section 4.5. The overall sample ranges from Jan-

uary 8, 1999 until February 5, 2016 and is weekly updated. As before, most of our panel data comes from

the research database of the Federal Reserve Bank of St. Louis. In addition, we downloaded data from the

URL “http://www.global-rates.com/”. This is why “global” refers to the URL prefix “http://www.global-

rates.com/interest-rates/libor/american-dollar” in the sequel. For clarity reasons, we group the variables

as described in Section 4.5.

US Treasuries

No. Series ID Time span Freq. Type Trans. Series description

1. DGS3MO 1999/01/08-2016/02/05 d 1 2 3-Month Treasury Constant Maturity Rate,

percent, NSA, delay of 1 day, fred/DGS3MO

2. DTB3 1999/01/08-2016/02/05 d 1 2 3-Month Treasury Bill: Secondary Market Rate,

percent, NSA, delay of 1 day, fred/DTB3

3. DGS1 1999/01/08-2016/02/05 d 1 2 1-Year Treasury Constant Maturity Rate,

percent, NSA, delay of 1 day, fred/DGS1

4. DGS2 1999/01/08-2016/02/05 d 1 2 2-Year Treasury Constant Maturity Rate,

percent, NSA, delay of 1 day, fred/DGS2

5. DGS3 1999/01/08-2016/02/05 d 1 2 3-Year Treasury Constant Maturity Rate,

percent, NSA, delay of 1 day, fred/DGS3
6. DGS5 1999/01/08-2016/02/05 d 1 2 5-Year Treasury Constant Maturity Rate,

percent, NSA, delay of 1 day, fred/DGS5
7. DGS7 1999/01/08-2016/02/05 d 1 2 7-Year Treasury Constant Maturity Rate,

percent, NSA, delay of 1 day, fred/DGS7
8. DGS10 1999/01/08-2016/02/05 d 1 2 10-Year Treasury Constant Maturity Rate,

percent, NSA, delay of 1 day, fred/DGS10

US Corporates
No. Series ID Time span Freq. Type Trans. Series description

9. DAAA 1999/01/08-2016/02/05 d 1 2 Moody’s Seasoned Aaa Corporate Bond Yield,

percent, NSA, delay of 1 day, fred/DAAA

10. DBAA 1999/01/08-2016/02/05 d 1 2 Moody’s Seasoned Baa Corporate Bond Yield,

percent, NSA, delay of 1 day, fred/DBAA
11. C0A0CM 1999/01/08-2016/02/05 d 1 2 BofA Merrill Lynch US Corporate Master

Option-Adjusted Spread, percent, NSA, delay

of 1 day, fred/BAMLC0A0CM
12. C0A4CBBB 1999/01/08-2016/02/05 d 1 2 BofA Merrill Lynch US Corporate BBB

Option-Adjusted Spread, percent, NSA, delay

of 1 day, fred/BAMLC0A4CBBB

https://fred.stlouisfed.org/series/GDP
https://fred.stlouisfed.org/series/INDPRO
https://fred.stlouisfed.org/series/IPB50001N
https://fred.stlouisfed.org/series/PAYEMS
https://fred.stlouisfed.org/series/UNRATE
https://fred.stlouisfed.org/series/PCE
https://fred.stlouisfed.org/series/PSAVERT
https://research.stlouisfed.org/fred2/series/DGS3MO
https://research.stlouisfed.org/fred2/series/DTB3
https://research.stlouisfed.org/fred2/series/DGS1
https://research.stlouisfed.org/fred2/series/DGS2
https://research.stlouisfed.org/fred2/series/DGS3
https://research.stlouisfed.org/fred2/series/DGS5
https://research.stlouisfed.org/fred2/series/DGS7
https://research.stlouisfed.org/fred2/series/DGS10
https://research.stlouisfed.org/fred2/series/DAAA
https://research.stlouisfed.org/fred2/series/DBAA
https://research.stlouisfed.org/fred2/series/BAMLC0A0CM
https://research.stlouisfed.org/fred2/series/BAMLC0A4CBBB
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US LIBOR

No. Series ID Time span Freq. Type Trans. Series description

13. LIBOR1 1999/01/08-2016/02/05 d 1 2 1-Month LIBOR, based on USD, percent, NSA,

delay of 1 day, fred/USD1MTD156N (history),

global/usd-libor-interest-rate-1-month.aspx

(latest values)

14. LIBOR2 1999/01/08-2016/02/05 d 1 2 2-Month LIBOR, based on USD, percent, NSA,

delay of 1 day, fred/USD2MTD156N (history),

global/usd-libor-interest-rate-2-months.aspx

(latest values)
15. LIBOR3 1999/01/08-2016/02/05 d 1 2 3-Month LIBOR, based on USD, percent, NSA,

delay of 1 day, fred/USD3MTD156N (history),

global/usd-libor-interest-rate-3-months.aspx

(latest values)
16. LIBOR6 1999/01/08-2016/02/05 d 1 2 6-Month LIBOR, based on USD, percent, NSA,

delay of 1 day, fred/USD6MTD156N (history),

global/usd-libor-interest-rate-6-months.aspx

(latest values)
17. LIBOR12 1999/01/08-2016/02/05 d 1 2 12-Month LIBOR, based on USD, percent, NSA,

delay of 1 day, fred/USD12MD156N (history),

global/usd-libor-interest-rate-12-months.aspx

(latest values)

Foreign Exchange Rates and GOLD
No. Series ID Time span Freq. Type Trans. Series description

18. USAL 1999/01/08-2016/02/05 d 1 5 US / Australia Foreign Exchange Rate, NSA,

delay of 0 days, http://www.rba.gov.au/statistics

/historical-data.html#exchange-rates (history),

http://www.rba.gov.au/statistics/frequency/

exchange-rates.html (latest values)

19. CAUS 1999/01/08-2016/02/05 d 1 5 Canada / US Foreign Exchange Rate, NSA,

delay of 0 days, fred/DEXCAUS (history),

http://www.bankofcanada.ca/rates/exchange/

noon-rates-5-day/ (latest values)

20. USUK 1999/01/08-2016/02/05 d 1 5 US / UK Foreign Exchange Rate, NSA, delay of 1

day, http://www.bankofengland.co.uk/boeapps/

iadb/index.asp?Travel=NIxIRx&levels=1&XNotes

=Y&C=C8P&G0Xtop.x=28&G0Xtop.y=10&X

Notes2=Y&Nodes=X3790X3791X3836&Section

Required=I&HideNums=-1&ExtraInfo=true

#BM
21. USEU 1999/01/08-2016/02/05 d 1 5 US / Euro Foreign Exchange Rate, NSA, delay of

1 day, https://www.ecb.europa.eu/stats/exchang

e/eurofxref/html/index.en.html

22. GOLD 1999/01/08-2016/02/05 d 1 5 Gold fixing price in London Bullion Market at

10.30 am (London time), USD per troy ounce,

NSA, delay of 0 days,

fred/GOLDAMGBD228NLBM

Demand
No. Series ID Time span Freq. Type Trans. Series description

23. UNRATENSA 1999/01/08-2016/02/05 m 5 2 Civilian Unemployment Rate, percent, NSA,

delay of 35 days after 1st of respective

month, fred/UNRATENSA

24. PSAVERT 1999/01/08-2016/02/05 m 5 2 Personal Saving Rate, percent, SA annual

rate, delay of 61 days after 1st of respective

month, fred/PSAVERT
25. PI 1999/01/08-2016/02/05 m 3 5 Personal Income, billions of USD, SA annual

rate, delay of 61 days after 1st of respective

month, fred/PI

26. PCE 1999/01/08-2016/02/05 m 3 5 Personal Consumption Expenditures, billions

of USD, SA annual rate, delay of 61 days

after 1st of respective month, fred/PCE

27. GOVEXP 1999/01/08-2016/02/05 q 3 5 Government total expenditures, billions of

USD, SA annual rate, delay of 140 days after

1st of respective quarter,

fred/W068RCQ027SBEA

https://research.stlouisfed.org/fred2/series/USD1MTD156N
http://www.global-rates.com/interest-rates/libor/american-dollar/usd-libor-interest-rate-1-month.aspx
https://research.stlouisfed.org/fred2/series/USD2MTD156N
http://www.global-rates.com/interest-rates/libor/american-dollar/usd-libor-interest-rate-2-months.aspx
https://research.stlouisfed.org/fred2/series/USD3MTD156N
http://www.global-rates.com/interest-rates/libor/american-dollar/usd-libor-interest-rate-3-months.aspx
https://research.stlouisfed.org/fred2/series/USD6MTD156N
http://www.global-rates.com/interest-rates/libor/american-dollar/usd-libor-interest-rate-6-months.aspx
https://research.stlouisfed.org/fred2/series/USD12MD156N
http://www.global-rates.com/interest-rates/libor/american-dollar/usd-libor-interest-rate-12-months.aspx
http://www.rba.gov.au/statistics/historical-data.html#exchange-rates
http://www.rba.gov.au/statistics/historical-data.html#exchange-rates
http://www.rba.gov.au/statistics/frequency/exchange-rates.html
http://www.rba.gov.au/statistics/frequency/exchange-rates.html
https://fred.stlouisfed.org/series/DEXCAUS
http://www.bankofcanada.ca/rates/exchange/noon-rates-5-day/
http://www.bankofcanada.ca/rates/exchange/noon-rates-5-day/
http://www.bankofengland.co.uk/boeapps/iadb/index.asp?Travel=NIxIRx&levels=1&XNotes=Y&C=C8P&G0Xtop.x=28&G0Xtop.y=10&XNotes2=Y&Nodes=X3790X3791X3836&SectionRequired=I&HideNums=-1&ExtraInfo=true#BM
http://www.bankofengland.co.uk/boeapps/iadb/index.asp?Travel=NIxIRx&levels=1&XNotes=Y&C=C8P&G0Xtop.x=28&G0Xtop.y=10&XNotes2=Y&Nodes=X3790X3791X3836&SectionRequired=I&HideNums=-1&ExtraInfo=true#BM
http://www.bankofengland.co.uk/boeapps/iadb/index.asp?Travel=NIxIRx&levels=1&XNotes=Y&C=C8P&G0Xtop.x=28&G0Xtop.y=10&XNotes2=Y&Nodes=X3790X3791X3836&SectionRequired=I&HideNums=-1&ExtraInfo=true#BM
http://www.bankofengland.co.uk/boeapps/iadb/index.asp?Travel=NIxIRx&levels=1&XNotes=Y&C=C8P&G0Xtop.x=28&G0Xtop.y=10&XNotes2=Y&Nodes=X3790X3791X3836&SectionRequired=I&HideNums=-1&ExtraInfo=true#BM
http://www.bankofengland.co.uk/boeapps/iadb/index.asp?Travel=NIxIRx&levels=1&XNotes=Y&C=C8P&G0Xtop.x=28&G0Xtop.y=10&XNotes2=Y&Nodes=X3790X3791X3836&SectionRequired=I&HideNums=-1&ExtraInfo=true#BM
http://www.bankofengland.co.uk/boeapps/iadb/index.asp?Travel=NIxIRx&levels=1&XNotes=Y&C=C8P&G0Xtop.x=28&G0Xtop.y=10&XNotes2=Y&Nodes=X3790X3791X3836&SectionRequired=I&HideNums=-1&ExtraInfo=true#BM
https://www.ecb.europa.eu/stats/exchange/eurofxref/html/index.en.html
https://www.ecb.europa.eu/stats/exchange/eurofxref/html/index.en.html
https://fred.stlouisfed.org/series/GOLDAMGBD228NLBM
https://fred.stlouisfed.org/series/UNRATENSA
https://fred.stlouisfed.org/series/PSAVERT
https://fred.stlouisfed.org/series/PI
https://fred.stlouisfed.org/series/PCE
https://fred.stlouisfed.org/series/W068RCQ027SBEA
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Supply

No. Series ID Time span Freq. Type Trans. Series description

28. GDP 1999/01/08-2016/02/05 q 3 5 Gross Domestic Product, billions of USD, SA

annual rate, delay of 140 days after 1st of

respective quarter, fred/GDP
29. INDPRO 1999/01/08-2016/02/05 m 3 5 Industrial Production Index, Index 2007=100,

SA, delay of 45 days after 1st of respective

month, fred/INDPRO

30. EXPGSC1 1999/01/08-2016/02/05 q 3 5 Real Exports of Goods & Services, billions of

chained 2009 USD, SA annual rate, delay of 140

days after 1st of respective quarter,

fred/EXPGSC1

31. IMPGSC1 1999/01/08-2016/02/05 q 3 5 Real Imports of Goods & Services, billions of

chained 2009 USD, SA annual rate, delay of 140

days after 1st of respective quarter,

fred/IMPGSC1

Inflation

No. Series ID Time span Freq. Type Trans. Series description

32. CPIAUCNS 1999/01/08-2016/02/05 m 3 5 Consumer Price Index for All Urban

Consumers: All Items, Index 1982-1984=100,

NSA, delay of 45 days after 1st of respective

month, fred/CPIAUCNS

33. PPIACO 1999/01/08-2016/02/05 m 3 5 Producer Price Index for All Commodities,

Index 1982=100, NSA, delay of 43 days after

1st of respective month, fred/PPIACO

B.3 FAVARs for Incomplete Panel Data

This data is for the most part an updated version of the one in Bernanke et al. (2005). A few of their time

series are missing, since we did not find them anymore, while new times series, in particular, incomplete

ones were added. For clarity reasons, we group the data as follows: real output and income; employment

and hours; consumption; housing starts and sales; real inventories, orders, and unfilled orders; stock

prices; foreign exchange rates; interest rates; money and credit quantity aggregates; price indices; average

hourly earnings; miscellaneous; mixed-frequency time series; observed variables Y t. The total data sample

ranges from January 1959 to October 2015 and is monthly updated. In addition to the series number, the

first K variables of the sorted data provide their position number in brackets (Bork, 2009). An asterix *

next to an abbreviation marks the respective variable as slow-moving. The distinction between slow- and

fast-moving variables arises from Bernanke et al. (2005). In doing so, they assume slow-moving variables

“not to respond contemporaneously to unanticipated changes in monetary policy”, however, they allow

fast-moving variables “to respond contemporaneously to policy shocks”. Again, the notation “fred” refers

to the research database of the Federal Reserve Bank of St. Louis.

Real output and income

No. Series ID Time span Freq. Type Trans. Series description

1. IPFINAL* 1959:01-2015:10 m 1 5 Industrial Production: Final Products (Market

Group), Index 2012=100, SA, delay of 0 months,

fred/IPFINAL
2.[6] IPCONGD* 1959:01-2015:10 m 1 5 Industrial Production: Consumer Goods, Index

2012=100, SA, delay of 0 months, fred/IPCONGD

3. IPDCONGD* 1959:01-2015:10 m 1 5 Industrial Production: Durable Consumer Goods,

Index 2012=100, SA, delay of 0 months,

fred/IPDCONGD
4. IPNCONGD* 1959:01-2015:10 m 1 5 Industrial Production: Nondurable Consumer Goods,

Index 2012=100, SA, delay of 0 months,

fred/IPNCONGD

5. IPBUSEQ* 1959:01-2015:10 m 1 5 Industrial Production: Business Equipment, Index

2012=100, SA, delay of 0 months, fred/IPBUSEQ
6. IPMAT* 1959:01-2015:10 m 1 5 Industrial Production: Materials, Index 2012=100,

SA, delay of 0 months, fred/IPMAT

https://fred.stlouisfed.org/series/GDP
https://fred.stlouisfed.org/series/INDPRO
https://fred.stlouisfed.org/series/EXPGSC1
https://fred.stlouisfed.org/series/IMPGSC1
https://fred.stlouisfed.org/series/CPIAUCNS
https://fred.stlouisfed.org/series/PPIACO
https://fred.stlouisfed.org/series/IPFINAL
https://fred.stlouisfed.org/series/IPCONGD
https://fred.stlouisfed.org/series/IPDCONGD
https://fred.stlouisfed.org/series/IPNCONGD
https://fred.stlouisfed.org/series/IPBUSEQ
https://fred.stlouisfed.org/series/IPMAT
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7. IPB53100N* 1959:01-2015:10 m 1 5 Industrial Production: Durable goods materials,

Index 2012=100, NSA, delay of 0 months,

fred/IPB53100N
8. IPB53200N* 1959:01-2015:10 m 1 5 Industrial Production: Nondurable Goods Materials,

Index 2012=100, NSA, delay of 0 months,

fred/IPB53200N

9. IPMANSICS* 1959:01-2015:10 m 1 5 Industrial Production: Manufacturing (SIC), Index

2012=100, SA, delay of 0 months, fred/IPMANSICS
10. INDPRO* 1959:01-2015:10 m 1 5 Industrial Production Index, Index 2012=100, SA,

delay of 0 months, fred/INDPRO
11. CUMFNS* 1959:01-2015:10 m 1 1 Capacity Utilization: Manufacturing (SIC), Percent

of Capacity, SA, delay of 0 months, fred/CUMFNS
12. NAPM* 1959:01-2015:10 m 1 1 ISM Manufacturing: PMI Composite Index, Index,

SA, delay of 0 months, fred/NAPM
13. NAPMPI* 1959:01-2015:10 m 1 1 ISM Manufacturing: Production Index, Index, SA,

delay of 0 months, fred/NAPMPI
14. RPI* 1959:01-2015:10 m 1 5 Real Personal Income, billions of chained 2009 USD,

SA Annual Rate, delay of 0 months, fred/RPI
15. W875RX1* 1959:01-2015:10 m 1 5 Real Personal Income Excluding Current Transfer

Receipts, billions of chained 2009 USD, SA annual

rate, delay of 0 months, fred/W875RX1

Employment and hours
No. Series ID Time span Freq. Type Trans. Series description

16. CE16OV* 1959:01-2015:10 m 1 5 Civilian Employment, thousands of persons, SA,

delay of 0 months, fred/CE16OV

17.[4] UNRATE* 1959:01-2015:10 m 1 1 Civilian Unemployment Rate, percent, SA, delay

of 0 months, fred/UNRATE

18. UEMPMEAN* 1959:01-2015:10 m 1 5 Average (Mean) Duration of Unemployment,

Weeks, SA, delay of 0 months, fred/UEMPMEAN

19. UEMPLT5* 1959:01-2015:10 m 1 5 Number of Civilians Unemployed for Less Than 5

Weeks, thousands of persons, SA, delay of 0

months, fred/UEMPLT5

20. UEMP5TO14* 1959:01-2015:10 m 1 5 Number of Civilians Unemployed for 5 to 14

Weeks, thousands of persons, SA, delay of 0

months, fred/UEMP5TO14

21. UEMP15OV* 1959:01-2015:10 m 1 5 Number of Civilians Unemployed for 15 Weeks

and Over, thousands of persons, SA, delay of 0

months, fred/UEMP15OV

22. UEMP15T26* 1959:01-2015:10 m 1 5 Number of Civilians Unemployed for 15 to 26

Weeks, thousands of persons, SA, delay of 0

months, fred/UEMP15T26

23.[1] PAYEMS* 1959:01-2015:10 m 1 5 All Employees: Total Nonfarm Payrolls,

thousands of persons, SA, delay of 0 months,

fred/PAYEMS

24. USPRIV* 1959:01-2015:10 m 1 5 All Employees: Total Private Industries,

thousands of persons, SA, delay of 0 months,

fred/USPRIV

25. USGOOD* 1959:01-2015:10 m 1 5 All Employees: Goods-Producing Industries,

Thousands of Persons, SA, delay of 0 months,

fred/USGOOD
26. CES1021000001* 1959:01-2015:10 m 1 5 All Employees: Mining and Logging: Mining,

thousands of persons, SA, delay of 0 months,

fred/CES1021000001

27. USCONS* 1959:01-2015:10 m 1 5 All Employees: Construction, thousands of

persons, SA, delay of 0 months, fred/USCONS
28. MANEMP* 1959:01-2015:10 m 1 5 All Employees: Manufacturing, thousands of

persons, SA, delay of 0 months, fred/MANEMP

29. DMANEMP* 1959:01-2015:10 m 1 5 All Employees: Durable Goods, thousands of

persons, SA, delay of 0 months, fred/DMANEMP
30. NDMANEMP* 1959:01-2015:10 m 1 5 All Employees: Nondurable Goods, thousands of

persons, SA, delay of 0 months,

fred/NDMANEMP

31. CES0800000001* 1959:01-2015:10 m 1 5 All Employees: Private Service-Providing,

thousands of persons, SA, delay of 0 months,

fred/CES0800000001
32. USTPU* 1959:01-2015:10 m 1 5 All Employees: Trade, Transportation and

Utilities, thousands of persons, SA, delay of 0

months, fred/USTPU
33. USWTRADE* 1959:01-2015:10 m 1 5 All Employees: Wholesale Trade, thousands of

persons, SA, delay of 0 months,

fred/USWTRADE

https://fred.stlouisfed.org/series/IPB53100N
https://fred.stlouisfed.org/series/IPB53200N
https://fred.stlouisfed.org/series/IPMANSICS
https://fred.stlouisfed.org/series/INDPRO
https://fred.stlouisfed.org/series/CUMFNS
https://fred.stlouisfed.org/series/NAPM
https://fred.stlouisfed.org/series/NAPMPI
https://fred.stlouisfed.org/series/RPI
https://fred.stlouisfed.org/series/W875RX1
https://fred.stlouisfed.org/series/CE16OV
https://fred.stlouisfed.org/series/UNRATE
https://fred.stlouisfed.org/series/UEMPMEAN
https://fred.stlouisfed.org/series/UEMPLT5
https://fred.stlouisfed.org/series/UEMP5TO14
https://fred.stlouisfed.org/series/UEMP15OV
https://fred.stlouisfed.org/series/UEMP15T26
https://fred.stlouisfed.org/series/PAYEMS
https://fred.stlouisfed.org/series/USPRIV
https://fred.stlouisfed.org/series/USGOOD
https://fred.stlouisfed.org/series/CES1021000001
https://fred.stlouisfed.org/series/USCONS
https://fred.stlouisfed.org/series/MANEMP
https://fred.stlouisfed.org/series/DMANEMP
https://fred.stlouisfed.org/series/NDMANEMP
https://fred.stlouisfed.org/series/CES0800000001
https://fred.stlouisfed.org/series/USTPU
https://fred.stlouisfed.org/series/USWTRADE
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Employment and hours

No. Series ID Time span Freq. Type Trans. Series description

34.[5] USFIRE* 1959:01-2015:10 m 1 5 All Employees: Financial Activities, thousands of

persons, SA, delay of 0 months, fred/USFIRE
35. USPBS* 1959:01-2015:10 m 1 5 All Employees: Professional and Business

Services, thousands of persons, SA, delay of 0

months, fred/USPBS
36. USGOVT* 1959:01-2015:10 m 1 5 All Employees: Government, thousands of

persons, SA, delay of 0 months, fred/USGOVT
37. AWHMAN* 1959:01-2015:10 m 1 1 Average Weekly Hours of Production and

Nonsupervisory Employees: Manufacturing,

Hours, SA, delay of 0 months, fred/AWHMAN
38.[7] AWOTMAN* 1959:01-2015:10 m 1 1 Average Weekly Overtime Hours of Production

and Nonsupervisory Employees: Manufacturing,

Hours, SA, delay of 0 months, fred/AWOTMAN
39. NAPMEI* 1959:01-2015:10 m 1 1 ISM Manufacturing: Employment Index, Index,

SA, delay of 0 months, fred/NAPMEI

Consumption

No. Series ID Time span Freq. Type Trans. Series description

40.[8] PCE* 1959:01-2015:10 m 1 5 Personal Consumption Expenditures, billions of USD,

SA annual rate, delay of 0 months, fred/PCE
41. PCEDG* 1959:01-2015:10 m 1 5 Personal Consumption Expenditures: Durable Goods,

billions of USD, SA annual rate, delay of 0 months,

fred/PCEDG

42. PCEND* 1959:01-2015:10 m 1 5 Personal Consumption Expenditures: Nondurable

Goods, billions of USD, SA annual rate, delay of 0

months, fred/PCEND

43. PCES* 1959:01-2015:10 m 1 5 Personal Consumption Expenditures: Services, billions

of USD, SA annual rate, delay of 0 months, fred/PCES

Housing starts and sales
No. Series ID Time span Freq. Type Trans. Series description

44. HOUST 1959:01-2015:10 m 1 4 Housing Starts: Total: New Privately Owned Housing

Units Started, thousands of units, SA annual rate,

delay of 0 months, fred/HOUST

45. HOUSTNE 1959:01-2015:10 m 1 4 Housing Starts in Northeast Census Region,

thousands of units, SA annual rate, delay of 0

months, fred/HOUSTNE

46. HOUSTMW 1959:01-2015:10 m 1 4 Housing Starts in Midwest Census Region, thousands

of units, SA annual Rate, delay of 0 months,

fred/HOUSTMW

47. HOUSTS 1959:01-2015:10 m 1 4 Housing Starts in South Census Region, thousands of

units, SA annual rate, delay of 0 months,

fred/HOUSTS
48. HOUSTW 1959:01-2015:10 m 1 4 Housing Starts in West Census Region, thousands of

units, SA annual rate, delay of 0 months,

fred/HOUSTW

49. PERMITNSA 1959:01-2015:10 m 1 4 New Private Housing Units Authorized by Building

Permits, thousands of units, NSA, delay of 0 months,

fred/PERMITNSA

Real inventories, orders, and unfilled orders
No. Series ID Time span Freq. Type Trans. Series description

50. NAPMII 1959:01-2015:10 m 1 1 ISM Manufacturing: Inventories Index, Index, NSA,

delay of 0 months, fred/NAPMII

51. NAPMNOI 1959:01-2015:10 m 1 1 ISM Manufacturing: New Orders Index, Index, SA,

delay of 0 months, fred/NAPMNOI

52. NAPMSDI 1959:01-2015:10 m 1 1 ISM Manufacturing: Supplier Deliveries Index, Index,

SA, delay of 0 months, fred/NAPMSDI

Stock prices
No. Series ID Time span Freq. Type Trans. Series description

53. FSPCOM 1959:01-2015:10 m 1 5 S&P’s Common Stock Price Index: Composite, delay of 0

months, http://www.econ.yale.edu/∼shiller/data/ie

data.xls
54. FSDXP 1959:01-2015:10 m 1 1 S&P’s Composite Common Stock: Dividend Yield, delay

of 0 months, http://www.econ.yale.edu/∼shiller/data/

ie data.xls
55. FSPXE 1959:01-2015:10 m 1 1 S&P’s Composite Common Stock: Price-Earnings Ratio,

delay of 0 months, http://www.econ.yale.edu/∼shiller/

data/ie data.xls

https://fred.stlouisfed.org/series/USFIRE
https://fred.stlouisfed.org/series/USPBS
https://fred.stlouisfed.org/series/USGOVT
https://fred.stlouisfed.org/series/AWHMAN
https://fred.stlouisfed.org/series/AWOTMAN
https://fred.stlouisfed.org/series/NAPMEI
https://fred.stlouisfed.org/series/PCE
https://fred.stlouisfed.org/series/PCEDG
https://fred.stlouisfed.org/series/PCEND
https://fred.stlouisfed.org/series/PCES
https://fred.stlouisfed.org/series/HOUST
https://fred.stlouisfed.org/series/HOUSTNE
https://fred.stlouisfed.org/series/HOUSTMW
https://fred.stlouisfed.org/series/HOUSTS
https://fred.stlouisfed.org/series/HOUSTW
https://fred.stlouisfed.org/series/PERMITNSA
https://fred.stlouisfed.org/series/NAPMII
https://fred.stlouisfed.org/series/NAPMNOI
https://fred.stlouisfed.org/series/NAPMSDI
http://www.econ.yale.edu/~shiller/data/ie_data.xls
http://www.econ.yale.edu/~shiller/data/ie_data.xls
http://www.econ.yale.edu/~shiller/data/ie_data.xls
http://www.econ.yale.edu/~shiller/data/ie_data.xls
http://www.econ.yale.edu/~shiller/data/ie_data.xls
http://www.econ.yale.edu/~shiller/data/ie_data.xls
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Foreign exchange rates

No. Series ID Time span Freq. Type Trans. Series description

56. EXSZUS 1959:01-2015:10 m 1 5 Switzerland / US Foreign Exchange Rate, Swiss Francs

to One USD, NSA, delay of 0 months, fred/EXSZUS
57. EXJPUS 1959:01-2015:10 m 1 5 Japan / US Foreign Exchange Rate, Japanese Yen to

One USD, NSA, delay of 0 months, fred/EXJPUS
58. EXUSUK 1959:01-2015:10 m 1 5 US / UK Foreign Exchange Rate, USDs to One British

Pound, NSA, delay of 0 months, fred/EXUSUK
59. EXCAUS 1959:01-2015:10 m 1 5 Canada / US Foreign Exchange Rate, Canadian Dollars

to One USD, NSA, delay of 0 months, fred/EXCAUS

Interest rates

No. Series ID Time span Freq. Type Trans. Series description

60. TB3MS 1959:01-2015:10 m 1 1 3-Month Treasury Bill: Secondary Market Rate,

percent, NSA, delay of 0 months, fred/TB3MS
61. TB6MS 1959:01-2015:10 m 1 1 6-Month Treasury Bill: Secondary Market Rate,

percent, NSA, delay of 0 months, fred/TB6MS
62. GS1 1959:01-2015:10 m 1 1 1-Year Treasury Constant Maturity Rate, percent,

NSA, delay of 0 months, fred/GS1
63. GS5 1959:01-2015:10 m 1 1 5-Year Treasury Constant Maturity Rate, percent,

NSA, delay of 0 months, fred/GS5
64. GS10 1959:01-2015:10 m 1 1 10-Year Treasury Constant Maturity Rate, percent,

NSA, delay of 0 months, fred/GS10
65. AAA 1959:01-2015:10 m 1 1 Moody’s Seasoned Aaa Corporate Bond Yield,

percent, NSA, delay of 0 months, fred/AAA

66. BAA 1959:01-2015:10 m 1 1 Moody’s Seasoned Baa Corporate Bond Yield, percent,

NSA, delay of 0 months, fred/BAA

67. TB3SMFFM 1959:01-2015:10 m 1 1 3-Month Treasury Bill Minus Federal Funds Rate,

percent, NSA, delay of 0 months, fred/TB3SMFFM

68. TB6SMFFM 1959:01-2015:10 m 1 1 6-Month Treasury Bill Minus Federal Funds Rate,

percent, NSA, delay of 0 months, fred/TB6SMFFM

69. T1YFFM 1959:01-2015:10 m 1 1 1-Year Treasury Constant Maturity Minus Federal

Funds Rate, percent, NSA, delay of 0 months,

fred/T1YFFM

70. T5YFFM 1959:01-2015:10 m 1 1 5-Year Treasury Constant Maturity Minus Federal

Funds Rate, percent, NSA, delay of 0 months,

fred/T5YFFM

71. T10YFFM 1959:01-2015:10 m 1 1 10-Year Treasury Constant Maturity Minus Federal

Funds Rate, percent, NSA, delay of 0 months,

fred/T10YFFM

72. AAAFFM 1959:01-2015:10 m 1 1 Moody’s Seasoned Aaa Corporate Bond Minus Federal

Funds Rate, percent, NSA, delay of 0 months,

fred/AAAFFM

73. BAAFFM 1959:01-2015:10 m 1 1 Moody’s Seasoned Baa Corporate Bond Minus Federal

Funds Rate, percent, NSA, delay of 0 months,

fred/BAAFFM

Money and credit quantity aggregates

No. Series ID Time span Freq. Type Trans. Series description

74. M1SL 1959:01-2015:10 m 1 5 M1 Money Stock, billions of USD, SA, delay of 0

months, fred/M1SL

75. M2SL 1959:01-2015:10 m 1 5 M2 Money Stock, billions of USD, SA, delay of 0

months, fred/M2SL
76. TOTRESNS 1959:01-2015:10 m 1 5 Total Reserves of Depository Institutions, billions of

USD, NSA, delay of 0 months, fred/TOTRESNS
77. BUSLOANS 1959:01-2015:10 m 1 5 Commercial and Industrial Loans, All Commercial

Banks, billions of USD, SA, delay of 0 months,

fred/BUSLOANS

78. NONREVSL 1959:01-2015:10 m 1 5 Total Nonrevolving Credit Owned and Securitized,

Outstanding, billions of USD, SA, delay of 0 months,

fred/NONREVSL

Price indices

No. Series ID Time span Freq. Type Trans. Series description

79. NAPMPRI 1959:01-2015:10 m 1 1 ISM Manufacturing: Prices Index, Index, NSA,

delay of 0 months, fred/NAPMPRI

80. PPIFGS* 1959:01-2015:10 m 1 5 Producer Price Index by Commodity for

Finished Goods, Index 1982=100, SA, delay of

0 months, fred/PPIFGS
81.[3] PPIFCG* 1959:01-2015:10 m 1 5 Producer Price Index by Commodity for

Finished Consumer Goods, Index 1982=100,

SA, delay of 0 months, fred/PPIFCG

https://fred.stlouisfed.org/series/EXSZUS
https://fred.stlouisfed.org/series/EXJPUS
https://fred.stlouisfed.org/series/EXUSUK
https://fred.stlouisfed.org/series/EXCAUS
https://fred.stlouisfed.org/series/TB3MS
https://fred.stlouisfed.org/series/TB6MS
https://fred.stlouisfed.org/series/GS1
https://fred.stlouisfed.org/series/GS5
https://fred.stlouisfed.org/series/GS10
https://fred.stlouisfed.org/series/AAA
https://fred.stlouisfed.org/series/BAA
https://fred.stlouisfed.org/series/TB3SMFFM
https://fred.stlouisfed.org/series/TB6SMFFM
https://fred.stlouisfed.org/series/T1YFFM
https://fred.stlouisfed.org/series/T5YFFM
https://fred.stlouisfed.org/series/T10YFFM
https://fred.stlouisfed.org/series/AAAFFM
https://fred.stlouisfed.org/series/BAAFFM
https://fred.stlouisfed.org/series/M1SL
https://fred.stlouisfed.org/series/M2SL
https://fred.stlouisfed.org/series/TOTRESNS
https://fred.stlouisfed.org/series/BUSLOANS
https://fred.stlouisfed.org/series/NONREVSL
https://fred.stlouisfed.org/series/NAPMPRI
https://fred.stlouisfed.org/series/PPIFGS
https://fred.stlouisfed.org/series/PPIFCG
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Price indices

No. Series ID Time span Freq. Type Trans. Series description

82. PPIITM* 1959:01-2015:10 m 1 5 Producer Price Index by Commodity

Intermediate Materials: Supplies and

Components, Index 1982=100, SA, delay of 0

months, fred/PPIITM

83.[9] PPICRM* 1959:01-2015:10 m 1 5 Producer Price Index by Commodity for Crude

Materials for Further Processing, Index

1982=100, SA, delay of 0 months,

fred/PPICRM
84. CPIAUCSL* 1959:01-2015:10 m 1 5 Consumer Price Index for All Urban

Consumers: All Items, Index 1982-1984=100,

SA, delay of 0 months, fred/CPIAUCSL
85. CPIAPPSL* 1959:01-2015:10 m 1 5 Consumer Price Index for All Urban

Consumers: Apparel, Index 1982-1984=100, SA,

delay of 0 months, fred/CPIAPPSL
86. CPITRNSL* 1959:01-2015:10 m 1 5 Consumer Price Index for All Urban

Consumers: Transportation, Index

1982-1984=100, SA, delay of 0 months,

fred/CPITRNSL
87. CPIMEDSL* 1959:01-2015:10 m 1 5 Consumer Price Index for All Urban

Consumers: Medical Care, Index

1982-1984=100, SA, delay of 0 months,

fred/CPIMEDSL

88. CUSR0000SAC* 1959:01-2015:10 m 1 5 Consumer Price Index for All Urban

Consumers: Commodities, Index

1982-1984=100, SA, delay of 0 months,

fred/CUSR0000SAC

89. CUSR0000SAD* 1959:01-2015:10 m 1 5 Consumer Price Index for All Urban

Consumers: Durables, Index 1982-1984=100,

SA, delay of 0 months, fred/CUSR0000SAD

90. CUSR0000SAS* 1959:01-2015:10 m 1 5 Consumer Price Index for All Urban

Consumers: Services, Index 1982-1984=100, SA,

delay of 0 months, fred/CUSR0000SAS

91.[2] CPILFESL* 1959:01-2015:10 m 1 5 Consumer Price Index for All Urban

Consumers: All Items Less Food and Energy,

Index 1982-1984=100, SA, delay of 0 months,

fred/CPILFESL

92. CUSR0000SA0L2* 1959:01-2015:10 m 1 5 Consumer Price Index for All Urban

Consumers: All items less shelter, Index

1982-1984=100, SA, delay of 0 months,

fred/CUSR0000SA0L2

93. CUSR0000SA0L5* 1959:01-2015:10 m 1 5 Consumer Price Index for All Urban

Consumers: All items less medical care, Index

1982-1984=100, SA, delay of 0 months,

fred/CUSR0000SA0L5

Average hourly earnings
No. Series ID Time span Freq. Type Trans. Series description

94. CES2000000008* 1959:01-2015:10 m 1 5 Average Hourly Earnings of Production and

Nonsupervisory Employees: Construction, USD

per Hour, SA, delay of 0 months,

fred/CES2000000008
95. CES3000000008* 1959:01-2015:10 m 1 5 Average Hourly Earnings of Production and

Nonsupervisory Employees: Manufacturing, USD

per Hour, SA, delay of 0 months,

fred/CES3000000008

Miscellaneous

No. Series ID Time span Freq. Type Trans. Series description

96. MEI 1959:01-2015:10 m 1 1 Composite Leading Indicators, Amplitude Adjusted,

delay of 0 months, http://stats.oecd.org/Index.aspx?

DataSetCode=MEI CLI

Mixed-frequency time series

No. Series ID Time span Freq. Type Trans. Series description

97. EXGEUS 1971:01-2001:12 m 1 5 Germany / US Foreign Exchange Rate,

German Deutsche Marks to One USD, NSA,

delay of 0 months, fred/EXGEUS

98. EXFRUS 1971:01-2001:12 m 1 5 France / US Foreign Exchange Rate, French

Francs to One USD, NSA, delay of 0 months,

fred/EXFRUS

https://fred.stlouisfed.org/series/PPIITM
https://fred.stlouisfed.org/series/PPICRM
https://fred.stlouisfed.org/series/CPIAUCSL
https://fred.stlouisfed.org/series/CPIAPPSL
https://fred.stlouisfed.org/series/CPITRNSL
https://fred.stlouisfed.org/series/CPIMEDSL
https://fred.stlouisfed.org/series/CUSR0000SAC
https://fred.stlouisfed.org/series/CUSR0000SAD
https://fred.stlouisfed.org/series/CUSR0000SAS
https://fred.stlouisfed.org/series/CPILFESL
https://fred.stlouisfed.org/series/CUSR0000SA0L2
https://fred.stlouisfed.org/series/CUSR0000SA0L5
https://fred.stlouisfed.org/series/CES2000000008
https://fred.stlouisfed.org/series/CES3000000008
http://stats.oecd.org/Index.aspx?DataSetCode=MEI_CLI
http://stats.oecd.org/Index.aspx?DataSetCode=MEI_CLI
https://fred.stlouisfed.org/series/EXGEUS
https://fred.stlouisfed.org/series/EXFRUS
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Mixed-frequency time series

No. Series ID Time span Freq. Type Trans. Series description

99. EXITUS 1971:01-2001:12 m 1 5 Italy / US Foreign Exchange Rate, Italian Lire

to One USD, NSA, delay of 0 months,

fred/EXITUS
100. EXUSEU 1999:01-2015:10 m 1 5 US / Euro Foreign Exchange Rate, USDs to

One Euro, NSA, delay of 0 months,

fred/EXUSEU

101. GDP 1959:01-2015:10 q 2 5 Gross Domestic Product, billions of USD, SA

annual rate, delay of 0 months, fred/GDP
102. W068RCQ027SBEA 1960:01-2015:10 q 2 5 Government Total Expenditures, billions of

USD, SA annual rate, delay of 0 months,

fred/W068RCQ027SBEA
103. IMPGSC1 1959:01-2015:10 q 2 5 Real Imports of Goods and Services, billions of

Chained 2009 USD, SA annual rate, delay of 0

months, fred/IMPGSC1

104. EXPGSC1 1959:01-2015:10 q 2 5 Real Exports of Goods and Services, billions of

Chained 2009 USD, SA annual rate, delay of 0

months, fred/EXPGSC1
105. WALCL 2002:12-2015:10 m 1 5 All Federal Reserve Banks - Total Assets,

Eliminations from Consolidation, millions of

USD, NSA, delay of 0 months, fred/WALCL

106. MBST 2002:12-2015:10 m 1 5 Mortgage-backed securities held by the Federal

Reserve: All Maturities, millions of USD, NSA,

delay of 0 months, fred/MBST

107. TREAST 2002:12-2015:10 m 1 5 US Treasury securities held by the Federal

Reserve: All Maturities, millions of USD, NSA,

delay of 0 months, fred/TREAST

108. WRESBAL 1984:01-2015:10 m 1 5 Reserve Balances with Federal Reserve Banks,

billions of USD, NSA, delay of 0 months,

fred/WRESBAL

Observed variables Y t

No. Series ID Time span Freq. Type Trans. Series description

109. CURRCIR 1959:01-2015:10 m 1 5 Currency in Circulation, billions of USD, NSA, delay

of 0 months, fred/CURRCIR

110. AMBSL 1959:01-2015:10 m 1 5 St. Louis Adjusted Monetary Base, billions of USD,

SA, delay of 0 months, fred/AMBSL

111. FEDFUNDS 1959:01-2015:10 m 1 1 Effective Federal Funds Rate, percent, NSA, delay of 0

months, fred/FEDFUNDS

https://fred.stlouisfed.org/series/EXITUS
https://fred.stlouisfed.org/series/EXUSEU
https://fred.stlouisfed.org/series/GDP
https://fred.stlouisfed.org/series/W068RCQ027SBEA
https://fred.stlouisfed.org/series/IMPGSC1
https://fred.stlouisfed.org/series/EXPGSC1
https://fred.stlouisfed.org/series/WALCL
https://fred.stlouisfed.org/series/MBST
https://fred.stlouisfed.org/series/TREAST
https://fred.stlouisfed.org/series/WRESBAL
https://fred.stlouisfed.org/series/CURRCIR
https://fred.stlouisfed.org/series/AMBSL
https://fred.stlouisfed.org/series/FEDFUNDS


Acronyms

ADFM Approximate Dynamic Factor Model

AIC Akaike Information Criterion

AR Autoregressive Model

ARIMA Autoregressive Integrated Moving Average Model

ARX Autoregressive Extended Model

ASFM Approximate Static Factor Model

BFGS Broyden-Fletcher-Goldfarb-Shanno

BofA Bank of America

bp basis point

B&H Buy&Hold

CBOE Chicago Board Options Exchange

CPPI Constant Proportion Portfolio Insurance

DFM Dynamic Factor Model

DJIA Dow Jones Industrial Average

EDFM Exact Dynamic Factor Model

EM Expectation-Maximization Algorithm

ESFM Exact Static Factor Model

FA Factor Analysis

FAVAR Factor-Augmented Vector Autoregression Model

FEVD Forecast Error Variance Decomposition

FEDFUNDS Effective Federal Funds Rate

FM Factor Model

FX Foreign Exchange

GDFM Generalized Dynamic Factor Model

GDP Gross Domestic Product

iid identically and independently distributed

IRF Impulse Response Function

LIBOR London Interbank Offered Rate

L&S Leverage & Short Sales

KF Kalman Filter

KS Kalman Smoother

MC Monte Carlo

MIDAS Mixed-Data Sampling

MIS Mean Interval Score

MLE Maximum-Likelihood Estimation
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NASDAQ Nasdaq Composite

NSA Not Seasonally Adjusted

OLS Ordinary Least Squares Regression

PCA Principal Component Analysis

PL Prediction Level

PPCA Probabilistic Principal Component Analysis

RE Ranking Error

RIO Ratio of Interval Outliers

RMSE Root-Mean-Square Error

SA Seasonally Adjusted

SFM Static Factor Model

S&P500 Standard & Poor’s 500

UK United Kingdom

URL Uniform Resource Locator

US United States

USD United States Dollar

VAR Vector Autoregression Model

VARX Vector Autoregression Model with Exogenous Variables



Nomenclature

abs (·) Absolute value

arg max Argument of maximum

d·e Ceiling function

P̂Ft|t−1 ∈ RK×K Covariance matrix of factor F t conditioned on Ωt−1

Σ̂ ∈ RK×K Estimator of matrix Σ ∈ RK×K

µ̂ ∈ RN Estimator of mean µ ∈ RN

|| · ||2 Euclidean norm / 2-norm

EΘ [·] Expectation based on model parameters Θ

F̂ t|t−1 ∈ RK Expectation of factor F t conditioned on Ωt−1

exp (·) Exponential function

b·c Floor function

⊥ Independence symbol

Ωt Information up to point in time t ≥ 0

ΓKFt Kalman Filter Gain at time t ≥ 0

ΓKSt Kalman Smoother Gain at time t ≥ 0

⊗ Kronecker product

F t ∈ RK K-dimensional vector of hidden factors

1K ∈ RK K-dimensional vector of ones

0K ∈ RK K-dimensional zero vector

diag (z) ∈ RK×K K ×K-dimensional diagonal matrix with elements z ∈ RK

IK ∈ RK×K K ×K-dimensional identity matrix

Σ−1 ∈ RK×K K ×K-dimensional matrix inverse of non-singular matrix Σ ∈ RK×K

Σ1/2 ∈ RK×K K ×K-dimensional matrix square root of matrix Σ ∈ RK×K

Σ′ ∈ RK×K K ×K-dimensional transpose of matrix Σ ∈ RK×K

OK ∈ RK×K K ×K-dimensional zero matrix

L (Θ|X) Log-likelihood function for parameters Θ and sample data X

| · | Matrix determinant

tr (·) Matrix trace

N (µ,Σ) Multivariate normal distribution with parameters µ and Σ

ln (·) Natural logarithm

Xt ∈ RN N -dimensional vector of panel data

fΘ (·) Probability density function based on model parameters Θ

Φ−1 (·) Quantile function of standard normal distribution

Θ Set of model parameters

R+ Set of positive real numbers
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{Xt} Time series of vectors Xt

U (a, b) Univariate uniform distribution on the interval [a, b]

VarΘ [·] Variance / covariance matrix based on model parameters Θ

vec (·) Vectorization operator
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M. Hallin and R. Lǐska. Determining the number of factors in the general dynamic factor model. Journal

of the American Statistical Association, 102(478):603 – 617, 2007.

J. Hamilton. Time series analysis. Princeton University Press, 1994.

A. Harvey and R. Pierse. Estimating missing observations in economic time series. Journal of the

American Statistical Association, 79(385):125 – 131, 1984.

D. Harville. Matrix algebra from a statistician’s perspective. Springer New York, 1997.

J. Hauptmann, A. Hoppenkamps, A. Min, F. Ramsauer, and R. Zagst. Forecasting market turbulence

using regime-switching models. Financial Markets and Portfolio Management, 28(2):139 – 164, 2014.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.55.5997&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.55.5997&rep=rep1&type=pdf
http://ssrn.com/abstract=2069998
http://escholarship.org/uc/item/9mf223rs


232 BIBLIOGRAPHY

S. Haykin. Kalman filters. In S. Haykin, editor, Kalman Filtering and Neural Networks, pages 1 – 21.

2002.

J. Hogrefe. Forecasting data revisions of GDP: A mixed frequency approach. AStA Advances in Statistical

Analysis, 92(3):271 – 296, 2008.

N. Hyung and C. Granger. Linking series generated at different frequencies. Journal of Forecasting, 27

(2):95 – 108, 2008.

J. Jobson and B. Korkie. Performance hypothesis testing with the Sharpe and Treynor measures. The

Journal of Finance, 36(4):889 – 908, 1981.

I.T. Jolliffe. Principal component analysis. Springer, 2002.

B. Jungbacker and S. Koopman. Likelihood-based analysis for dynamic factor models. Tinbergen Institute.

Discussion Paper No. 08-007/4, 2008.

B. Jungbacker and S. Koopman. Likelihood-based dynamic factor analysis for measurement and fore-

casting. The Econometrics Journal, 18(2):C1 – C21, 2015.

B. Jungbacker, S. Koopman, and M. van der Wel. Dynamic factor analysis in the presence of missing

data. Tinbergen Institute. Discussion Paper No. 09-010/4, 2009.

B. Jungbacker, S. Koopman, and M. van der Wel. Maximum likelihood estimation for dynamic factor

models with missing data. Journal of Economic Dynamics and Control, 35(8):1358 – 1368, 2011.

R. Kalman. A new approach to linear filtering and prediction problems. Journal of Basic Engineering,

82(1):35 – 45, 1960.

L. Kilian. Small-sample confidence intervals for impulse response functions. Review of Economics and

Statistics, 80(2):218–230, 1998.

V. Kuzin, M. Marcellino, and C. Schumacher. MIDAS vs. mixed-frequency VAR: Nowcasting GDP in

the Euro area. International Journal of Forecasting, 27(2):529 – 542, 2011.

V. Kuzin, M. Marcellino, and C. Schumacher. Pooling versus model selection for nowcasting GDP with

many predictors: Empirical evidence for six industrialized countries. Journal of Applied Econometrics,

28(3):392 – 411, 2013.

K. Lahiri and G. Monokroussos. Nowcasting US GDP: The role of ISM business surveys. International

Journal of Forecasting, 29(4):644 – 658, 2013.

H. Liu and S. Hall. Creating high-frequency national accounts with state-space modelling: A Monte Carlo

experiment. Journal of Forecasting, 20(6):441 – 449, 2001.

M. Luciani. Forecasting with approximate dynamic factor models: The role of non-pervasive shocks.

http://ssrn.com/abstract=1925807, 2011.

M. Luciani. Large-dimensional dynamic factor models in real-time: A survey. http://ssrn.com/abstract

=2511872, 2014.

M. Luciani and L. Ricci. Nowcasting Norway. International Journal of Central Banking, 10(4):215 – 248,

2014.

http://ssrn.com/abstract=1925807
http://ssrn.com/abstract=2511872
http://ssrn.com/abstract=2511872


BIBLIOGRAPHY 233

H. Lütkepohl. New introduction to multiple time series analysis. Springer Science & Business Media,

2005.

M. Marcellino and C. Schumacher. Factor MIDAS for nowcasting and forecasting with ragged-edge data:

A model comparison for German GDP*. Oxford Bulletin of Economics and Statistics, 72(4):518 – 550,

2010.

M. Marcellino and V. Sivec. Monetary, fiscal and oil shocks: Evidence based on mixed frequency structural

FAVARs. Journal of Econometrics, 193(2):335 – 348, 2016.

M. Marcellino, M. Porqueddu, and F. Venditti. Short-term GDP forecasting with a mixed frequency

dynamic factor model with stochastic volatility. Bank of Italy Temi di Discussione. Working Paper

No. 896. http://ssrn.com/abstract=2221327, 2013.

R. Mariano and Y. Murasawa. A new coincident index of business cycles based on monthly and quarterly

series. Journal of Applied Econometrics, 18(4):427 – 443, 2003.

R. Mariano and Y. Murasawa. A coincident index, common factors, and monthly real GDP*. Oxford

Bulletin of Economics and Statistics, 72(1):27 – 46, 2010.

M. Modugno. Nowcasting inflation using high frequency data. ECB Working Paper No. 1324. http://

ssrn.com/abstract=1797802, 2011.

L. Nunes. Nowcasting quarterly GDP growth in a monthly coincident indicator model. Journal of

Forecasting, 24(8):575 – 592, 2005.

T. Proietti. Temporal disaggregation by state space methods: Dynamic regression methods revisited.

Econometrics Journal, 9(3):357–372, 2006.

T. Proietti and F. Moauro. Dynamic factor analysis with non-linear temporal aggregation constraints.

Journal of the Royal Statistical Society: Series C (Applied Statistics), 55(2):281 – 300, 2006.

C. Rao and H. Toutenburg. Linear models: Least squares and alternatives. Springer, 1999.

R. Reis and M. Watson. Relative goods’ prices, pure inflation, and the Phillips correlation. National

Bureau of Economic Research. Working Paper No. 13615, 2007.

T. Roncalli. Introduction to risk parity and budgeting. Taylor & Francis, 2013.

D. Rubin and D. Thayer. EM algorithms for ML factor analysis. Psychometrika, 47(1):69 – 76, 1982.

D. Ruppert. Statistics and data analysis for financial engineering. Springer, 2011.
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