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1 Abstract

Despite extensive research, the pathogenesis of various autoimmune diseases still remains
partly unresolved. For example, the cause of multiple sclerosis (MS), one of the most common
neurodegenerative autoimmune diseases, is still unknown and treatment approaches are limited.
In most cases, interferon-β is an e�ective medication for MS Hartung et al. (2013); Sitzer
and Steinmetz (2011). However, within time a large percentage of the patients treated with
interferon-β produce binding antibodies (BABs) or neutralizing antibodies (NABs) which either
bind or neutralize interferon-β and lead to therapy failure Creeke and Farrell (2013).
The aim of this thesis is to predict therapy response for interferon-β therapy by analyzing

patients’ genotypes. The data of MS patients treated with interferon-β as well as data on
antibody development subsequent to medication and the genotype information were provided
by the Neurological Department of Klinikum Rechts der Isar, Munich. We analyzed the data with
a machine learning approach and discovered candidate genes that may be involved in antibody
production in response to interferon-β treatment and might lead to a better understanding
of the underlying molecular mechanism. So far the HLA-DRB1 gene and the SNP rs9272105,
localized in close proximity to the HLA-DQA1 gene on chromosome 6, have been associated
with antibody production against interferon-β Barbosa et al. (2006); Buck et al. (2011); Buck
and Hemmer (2014); Ho�mann et al. (2008); Link et al. (2014); Soelberg Sorensen (2008); Weber
et al. (2012). The SNPs rs4961252, localized on chromosome 8, and rs5743810, within the TLR6
gene on chromosome 4, also showed genome-wide signi�cance, yet the latter was only the
case in males whereas not in females Weber et al. (2012); Buck and Hemmer (2014); Enevold
et al. (2010).

In this project, prediction models were created using machine learning techniques through
the use of Support Vector Machines (SVMs). I wanted to go beyond single SNP e�ects and
include SNP x SNP interactions in order to create a model based on candidate SNPs to predict a
patient’s response to medication for treatment of MS. Compared to other machine learning
techniques, SVMs have the advantage of also accounting for SNP x SNP interactions.
In order to keep the number of SNP variants manageable for the SVM calculations, I parti-

tioned the data in gene-wise subsets. For each gene-wise dataset, prediction models containing
the SNPs that were ranked by their ability to predict antibody production were generated.
These calculations resulted in a list of signi�cant genes including the predictive features (SNPs).
From these results I was able to identify the SNPs that achieved the best performance.

The results included HLA genes as well as the HCG23 and BTNL2 genes in close proximity
on chromosome 6 to reveal signi�cance. The SNP rs34784936, localized within the HLA region,
achieved the best single SNP performance. Genome-wide, we found 78 genes with signi�cant
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14 1. Abstract

results based on 315 SNPs. Of those, only the most relevant 166 SNPs need to be included in the
�nal prediction model, since at that point the performance of the pruning calculation reaches
its maximum. It is important to note that only a small set of selected genotype information of
an individual patient is needed to predict therapy response. The identi�ed genes associated
with antibody production against interferon-β require further investigation.
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2 Zusammenfassung

Trotz intensiver Forschung ist die Pathogenese verschiedener neurologischer Krankheiten
bislang noch teils ungeklärt. So ist beispielsweise die Ätiologie der Multiplen Sklerose, einer der
häu�gsten neurodegenerativen Autoimmunkrankheiten, noch nicht vollständig bekannt und
Therapieansätze sind nur eingeschränkt verfügbar. In den meisten Fällen stellt Interferon-β
eine e�ektive Therapieoption dar Hartung et al. (2013); Sitzer and Steinmetz (2011). Dennoch
entwickeln eine bedeutsame Anzahl der Patienten bindende Antikörper (BABs) oder neutra-
lisierende Antikörper (NABs), die das Medikament binden bzw. neutralisieren und damit zu
Therapieversagen führen Creeke and Farrell (2013).

Ziel dieser Arbeit war die Entwicklung eines auf Genotypen basierenden Vorhersagemodells,
anhand dessen die Wahrscheinlichkeit der Antikörperbildung auf Interferon-β Medikation
schon vor Therapiebeginn abgeschätzt werden kann. Darüber hinaus könnte man mögliche
KandidatenGene identi�zieren, anhand derer dann auf ein besseres Verständnis dermolekularen
Mechanismen geho�t werden kann, die dieser Krankheit und der Produktion von Antikörpern
zugrunde liegen. Nach aktuellen Forschungsergebnissen liefern das Gen HLA-DRB1, sowie der
SNP rs9272105, welcher in der Nähe des Genes HLA-DQA1 auf Chromosom 6 lokalisiert ist,
erste Hinweise auf eine Assoziation von Antikörperproduktion als Reaktion auf eine Interferon-
β Therapie Barbosa et al. (2006); Buck et al. (2011); Buck and Hemmer (2014); Ho�mann et al.
(2008); Link et al. (2014); Soelberg Sorensen (2008); Weber et al. (2012). Auch die SNPs rs4961252
auf Chromosom 8 und rs5743810, welcher innerhalb des Gens TLR6 auf Chromosom 4 liegt,
zeigten genomweite Signi�kanz in Zusammenhang mit der Produktion von Antikörpern gegen
Interferon-β letzterer jedoch nur bei männlichen Patienten Weber et al. (2012); Buck and
Hemmer (2014); Enevold et al. (2010).
Mit der Fragestellung, ob anhand von genetischen Prädikatoren eine Vorhersage getro�en

werden kann, wurden uns sowohl die Genotypen als auch die Daten zum Antikörpertiter gegen
Interferon-β von der neurologischen Abteilung des Klinikums Rechts der Isar, München zur
Verfügung gestellt.

Diese Dissertation beinhaltet Entwicklung eines Vorhersagemodels zur Antikörperprodukti-
on gegen Interferon-β unter Berücksichtigung von SNP x SNP Interaktionen. Support Vector
Machines ist eine Methode des maschinellen Lernens, die im Gegensatz zu anderen Methoden
in der Lage ist, solche Interaktionen zu berücksichtigen. Dadurch geht dieses Modell über
bisherige Forschungsansätze hinaus, die sich auf die Analyse von Einzel-SNP-Assoziationen
oder maximal paarweisen Epistasise�ekten stützen.
Um die mögliche Anzahl der miteinbezogenen SNPs für eine SVM Berechnung nicht zu

überschreiten, wurden die Genotypen genweise nach Gengrenzen aufgeteilt. Für jedes Gen

15

http://www.ncbi.nlm.nih.gov/gene/3123
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=9272105
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=4961252


16 2. Zusammenfassung

wurde ein Vorhersagemodel erstellt, das die zugeordneten SNPs entsprechend ihres Ein�usses
bezüglich einer Vorhersage zur Produktion von Antikörpern einstuft. Als Resultat ergab sich
eine Liste signi�kanter Gene mit den jeweils vorhersagerelevanten SNPs. Dadurch war es
möglich, die vorhersagekräftigsten SNPs zu bestimmen.

Sowohl einige HLA Gene, aber auch die unmittelbar benachbarten Gene HCG23 und BTNL2
auf Chromosom 6 konnten als signi�kant ermittelt werden. In den genomweiten Resultaten
fanden sich 78 signi�kante Gene mit 315 relevanten SNPs. Das endgültige Modell nutzt davon
die 166 besten SNPs, welche die beste Vorhersage lieferten, da zu diesem Zeitpunkt bereits das
Maximum der Vorhersage erreicht werden kann.
Wesentlich ist, dass für die zukünftige Anwendung dieses Modells nur ein ausgewählter

Anteil der Genotypen eines Patienten zur Vorhersage benötigt wird. Dafür könnte man spezielle
Tests entwickeln, die nur die im Modell verwendeten SNPs benötigen und somit relativ einfach
und kostengünstig durchzuführen wären. Die identi�zierten Gene sollten hinsichtlich ihrer
Bedeutung weiter untersucht werden.

Dissertation Theresa Schmiedlechner
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3 Background

The speci�c cause of multiple sclerosis (MS) is still unknown, but it can partly be treated with
interferon-β. The most commonly prescribed Betaferon is an immunomodulatory medication to
prevent the occurence of acute relapses and nerve cell degeneration. Although this medication
has a positive impact as far as reducing exacerbations and disease progress, a high percentage
of patients produce antibodies against it. In this case, interferon-β is no longer recommended
and other therapy arrangements must be considered Hartung et al. (2013); Weber et al. (2012).
In order to avoid ine�ective interferon-β treatment, constant examination and evaluation of the
medication’s activity needs to be performed. This way unproductive therapy can be detected
and treatment can be adjusted for each patient individually. To improve this situation, a method
to predict therapy failure beforehand is desired.
Unfortunately, patients can not yet be identi�ed on the basis of clinical data whether they

are at risk of developing binding or neutralizing antibodies or if they will respond well to
therapy. Being able to predict therapy response through the analysis of selected biomarkers of
an individual’s genome indicates a promising improvement in future medicine.
A recent study points out that the discovery of predictive biomarkers is of great interest

in ongoing multiple sclerosis research Buck and Hemmer (2014). So far the genetic markers
primarily localized in HLA regions on chromosome 6 have been associated with antibody
production against interferon-β. In particular these are the HLA-DRB1 gene and the SNP
rs9272105 localized in close proximity to the HLA-DQA1 gene Barbosa et al. (2006); Buck et al.
(2011); Buck and Hemmer (2014); Ho�mann et al. (2008); Link et al. (2014); Soelberg Sorensen
(2008); Weber et al. (2012). Furthermore, the SNP rs4961252 localized on chromosome 8 showed
genome-wide signi�canceWeber et al. (2012); Buck andHemmer (2014). Also the SNP rs5743810,
within the TLR6 gene on chromosome 4 revealed a correlation to the production of antibodies
against interferon-β in males, whereas not in females Enevold et al. (2010). The discoveries of
these possible genetic risk factors in�uencing the antibody production against interferon-β
motivated us to start our project—the aim of creating a model based on the genotype data
to predict therapy response for patients on interferon-β medication. Recently, more and
more studies focus on DNA-analysis, the investigation of the function of genes, and their
coded proteins, or on single SNP examinations, which can lead to changes of the phenotype
when mutated. With the prospect of knowing speci�c allele-disease associations, individual
genetic predisposition may be recognized even before disease outbreak. In consequence studies,
analyzing the genome with regard to possible association to a disease (e. g., GWAS) increasingly
gain in interest not only for research but also to the general public. Various companies (e. g.,
23andMe) o�er a genome-wide marker analysis to �nd out more about individual carrier
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status, health risk (genetic predisposition) and drug response. This leads to an increasing
number of DNA examinations and consequently to a larger data pool of genotype information.
The German company, STADA Diagnostik analyses their patients’ genotypes to improve the
predictive power in treatment response. The program performs laboratory tests of the genome
for individual and optimal therapy stategy and consequentely supports the attending physician
on his decision which substance is the most suitable for an individual patient.
Although there are some known genetic associations of antibody production in response

to interferon-β therapy, the single SNP e�ects are too weak to yield reasonable prediction
power. Therefore, in our project we searched for a method considering interactions. This way,
a prediction power beyond the single SNP e�ects can be achieved. Furthermore, we aimed for
a method that is able to detect indicative SNPs associated with antibody production against
interferon-β, which raise prediction power and may indicate possible new biomarkers. In this
thesis we used Support Vector Machines to create a prediction model.

Support Vector Machines (SVM) is a machine learning technique which has been employed
successfully in classi�cation as well as in regression analysis Bennett and Campbell (2000);
Cantor-Rivera et al. (2014); Toshimoto et al. (2014). Genotype information of multiple sclerosis
patients treated with interferon-β, as well as the phenotype corresponding to the antibody titer
against medication, provided us all the data needed.

The ability to predict how well interferon-βmedication will be tolerated by a patient a�ected
with multiple sclerosis would mean a major leap forward in treatment procedures. Knowing
a patient’s risk to develop antibodies beforehand would be a better way to avoid ine�ective
medication. Furthermore, by adjusting and optimizing medication early, a reduction of treat-
ment time and costs can be achieved. The goal of this project is to develop a prediction model
for which only a small amount of genotype information of an individual patient is needed and
which ultimately can be obtained readily in the future.
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4 Multiple Sclerosis

4.1 Introduction
Multiple sclerosis is a chronic autoimmune in�ammatory disease of the central nervous system
with a mean global prevalence of 33 per 100 000 Multiple Sclerosis International Federation
(2013). The autoimmune reaction is of unknown cause and leads to axonal impairment and
demyelination of nerve cells in the brain and spinal cord. This causes a steady decrease of brain
function. Women are a�ected twice as often as men, mostly with disease onset between 20
and 40 years of age. Although the etiology of MS is not yet understood, various risk factors
such as viral infections (e. g., Epstein-Barr virus), nicotine, vitamin D de�ciency, or genetic
predisposition are discussed. The prevalence of multiple sclerosis is in fact higher in Europe,
northern America and Australia than around the equator and regions with warm and tropical
climates, as shown on a global map in �gure 4.1.

EPIDEMIOLOGY OF MS

ATLAS OF MS 2013

(SLGHPLRORJ\�LV�WKH�VWXG\�RI�WKH�FDXVHV��SDWWHUQV�DQG�HƪHFWV�RI�KHDOWK�DQG�GLVHDVH�
FRQGLWLRQV�LQ�GHƬQHG�SRSXODWLRQV.

The number of people with MS 
has increased
The estimated number of people with MS 
has increased from 2.1 million in 2008 to 
2.3 million in 2013. 

The global median prevalence used to 
FDOFXODWH�WKLV�ƬJXUH�KDV�LQFUHDVHG�IURP�
30 (in 2008) to 33 per 100,000 (in 2013). 
It is not clear if this increase is due to 
better diagnosis and reporting, or to 
other causes.

8

'DWD�VRXUFHV�IRU�WKH������ƬJXUH�DUH�
more robust than in 2008. Ninety two 
countries (accounting for 79% of the 
world population) provided prevalence 
data in 2013. Forty seven of these 
countries (51%) provided a reference 
to at least one published peer-reviewed 
paper reporting the results of a local or 
national epidemiological study, while 
another 18 (20%) referred to a register 
(local or national) or study that was not 
published in a peer-reviewed journal. 

PREVALENCE BY COUNTRY (2013)

People per 
100,000 with MS

>100

60.01-100

20.01-60

5.01-20
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Data not provided

Figure 4.1: Prevalence of multiple sclerosis. Figure retrieved from the Atlas of MS 2013 by theMulti-
ple Sclerosis International Federation, 2013 available for download at www.msif.org/wp-
content/uploads/2014/09/Atlas-of-MS.pdf, Multiple Sclerosis International Federation
(2013).
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Genetic heredity is also a noticable factor in risk for multiple sclerosis. In recent years, various
genetic markers have been identi�ed in association with the disease — speci�cally genes that
are known to be responsible for the expression of immunomodulatory agents in�uencing
the immune response. In particular, allele variants of the HLA-DRB1 gene on chromosome 6
are correlated to predisposition of MS Baranzini (2011); The International Multiple Sclerosis
Genetics Consortium and the Wellcome Trust Case Control Consortium 2 (2011); Sitzer and
Steinmetz (2011). Additionally, genes located in other regions of the genome could be detected
recently Baranzini (2011); The International Multiple Sclerosis Genetics Consortium and the
Wellcome Trust Case Control Consortium 2 (2011). Fig. 4.2 on the facing page shows an
overview of genomewide potentially associated regions beyond the major histocompatibility
complex region.

Genetic biomarkers have not only been associated with disease outbreak and progress, but
have also shown correlation to therapy response. See section 4.2.4 for details, more examples
will be described.

4.1.1 Symptoms

The �rst person to describe characteristics and pathology of multiple sclerosis in detail was the
French neurologist Jean-Martin Charcot, who in 1868 de�ned this clinical picture as sclérose en
plaques disseminées Ha�er (2004). He de�ned staccato speech, nystagmus, and intention tremor,
also known as the ‘Charcot’s triad’, to be the three characteristic symptoms for MS Sitzer and
Steinmetz (2011).
Today, a broader spectrum of symptoms is considered. In early manifestation, the most

common symptoms reported in MS are:

• sensory disturbance such as numbness or tingling in �ngers,
• unilateral optic neuritis resulting in blurred or double vision, and
• lack of coordination.

During the course of the disease, the following can be a�ected:

• the motor system, resulting in weakness or paresis
• the sensory system, resulting in numbness or tingeling, paraesthesia, or pain
• the sense of vision, resulting in reduced visual acuity
• the brainstem, resulting in cranial nerve disorders (e. g., trigeminal neuralgia, facial nerve
paresis, nystagmus)

• the cerebellum, resulting in lack of coordination, intentional tremor and ataxia
• the vegetative system, resulting in bowel or bladder disturbance
• and in advanced stages of disease, even the cognitive function of the brain can be a�ected,
resulting in attention de�cit and reduced memory performance.

In short, any symptom can emerge depending on where the in�ammatory focus is localized
in the brain.
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Figure 4.2: “Circos plot showing primary association analysis of 161,311 autosomal variants in
the discovery phase (14,498 cases and 24,091 healthy controls). The outermost track
shows the numbered autosomal chromosomes. The second track indicates the gene
closest to the most associated SNP meeting all replication criteria. Previously identified
associations are indicated in gray. The third track indicates the physical position of the
184 fine-mapping intervals (green). The innermost track indicates� log(P ) (two-sided)
for each SNP scaled from 0–12, which truncates the signal in several regions” caption
citation and image retrieved from the published study Analysis of immune-related
loci identifies 48 new susceptibility variants for multiple sclerosis by the International
Multiple Sclerosis Genetics Consortium (IMSGC) in Nature Genetics (2013) available at
www.nature.com/ng/journal/v45/n11/pdf/ng.2770.pdf, International Multiple Sclerosis
Genetics Consortium (IMSGC) et al. (2013).

http://www.nature.com/ng/journal/v45/n11/pdf/ng.2770.pdf
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4.1.2 Forms

80–90% of MS patients are a�ected primarily by the relapsing remitting form of multiple
sclerosis (RRMS) Hartung et al. (2013); Sitzer and Steinmetz (2011). This form is characterized
by fulminate attacks, also called exacerbations of autoreactive activated CD4+ T-cells on the
myelin of nerve cells. The symptoms must persist longer than 24 hours and be separated by a
minimum of 30 days from the last incident to be considered an exacerbation. Furthermore, these
cells produce cytokines and recruit even more immunocompetent cells such as macrophages,
B-cells, and natural killer T-cells, which leads to an augmentation of the in�ammatory process
and eventually results in neuronal loss and gliosis.

Figure 4.3:MS types and course of disease. Image retrieved
from “Fingolimod - Novel Therapy for Multiple
Sclerosis” by the Association of British Pharmaceutical
Industry (ABPI) available at www.drugdevelopment-
technology.com/projects/fingolimod/fingolimod1.html,
Association of British Pharmaceutical Industry, ABPI
(ny).

The occurence of attacks causes
a sudden worsening of persisting
symptoms or results in the onset
of a new symptom. Yet, the RRMS
is characterized by the partial re-
gression of symptoms within 6–8
weeks. In some cases the symptoms
can even fully dissolve in case of re-
gression. Without treatment, a large
percentage of RRMS evolve into sec-
ondary progressive multiple sclero-
sis (SPMS) within ten years. This
form ofMS is characterized by a con-
tinuous (but not necessarily rapid)
degradation and function loss with
less frequent exacerbations. 10–15 %
of all MS cases are diagnosed with
primary progressive multiple scle-
rosis (PPMS) Hartung et al. (2013);
Sitzer and Steinmetz (2011). Patients
with PPMS experience disease pro-
gression from the very beginning.
Their conditions then worsen with-

out years of remission. They are more likely to experience problems with walking and steady
progression of symptoms whereas in relapsing attacks, sudden worsening is more frequent.
The progressive relapsing form (PRMS) is the least common form of MS. It is a combination
of RRMS and PPMS, appearing in initial progression and may be accompanied by occasional
relapses. Some patients are also a�ected by a very mild and benign form of the disease, which
is characterized by rare incidents of mild severity. The �gure 4.3 shows an overview of the
di�erent forms of MS.
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4.1.3 Diagnosis

The initial demyelinating incident or in�ammatory episode in the central nervous system
is referred to as a clinically isolated syndrome (CIS), and may go on to develop into multiple
sclerosis.

Figure 4.4: Dawson’s fingers. Image retrieved from
the picture archive of the magnetic resonance imaging
of the Max-Planck-Institute of Psychiatry, Munich.

To diagnose MS there has to be neuro-
radiological evidence of at least two sep-
arate lesions in the white matter of the
brain, as well as their occurence at di�er-
ent points in time. Some examples of typ-
ical MRI lesions of multiple sclerosis are
shown in Fig. 4.5 on the next page, appear-
ing periventricular, subcortical, infratento-
rial including the spinal cord, and around
the corpus callosum, also known as ‘Daw-
son’s �ngers’, see Fig. 4.4.

Apart from MR imaging, the analysis of
the cerebrospinal �uid (CSF) can indicate a
possible evolving multiple sclerosis — rep-
resented as oligoclonal bands, intrathecal
immunoglobulin G (Ig-G) synthesis and a
mild pleocytosis in the CSF.

Due to the demyelination in the nervous
system, the nerve cells show a reduced
nerve conduction velocity. This means
they can not transmit the action potential and deliver information as fast as healthy cells.
The nerve cell capacity can be measured by visual or acoustic evoked potentials (VEP/AEP). A
high latency and decreased amplitude of the recorded potentials — a typical symptome within
this disease — indicate a pathologic demyelinating process.

4.1.4 Progression and prognosis

Multiple sclerosis can appear and proceed in various di�erent clinical presentations within each
individual patient. So far, there are no reliable criteria or parameters to predict an individual’s
course of disease. Nevertheless, risk factors may re�ect the severity of a�ection. Factors such
as

• young age at diagnosis,
• female sex,
• the RRMS form with a small number of exacerbations and full recovery, as well as
• predominantly only sensory symptoms in early manifestation

are known to be bene�cial for a mild progression.
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Figure 4.5:MR images of the brain and spinal cord showing typical MS lesions. On the top row
demyelinating lesions are presented in T1-, gadolinium enhanced T1- as well as T2-
weighted sequences in transversal plane. Bo�om row: lesions especially around the
corpus callosum (le�) and in the spinal cord (right) are shown in a Fluid A�enuated
Inversion Recovery (FLAIR) and T2-weighted MR image. Images retrieved from the
picture archive of the magnetic resonance imaging of the Max-Planck-Institute of
Psychiatry, Munich.

In comparison, the following indicate unfavorable fast progression:

• a high age at diagnosis,
• male sex,
• the PPMS form or a high number of exacerbations with polytope and cerebellar symptoms,
or

• pyramidal tract impairment.

To classify a patient’s condition based on clinical examination, the Expanded Disability
Status Scale (EDSS-Score) has been established. The EDSS-Score includes evaluation of the
current function of the brain (including the brainstem, cerebellum, and vision), motor and
sensory function, as well as bowel and bladder regulation. The EDSS ranges from 0, indicating
a completely normal neurological examination, to 10, death due to multiple sclerosis. Up to an
EDSS score of 3 a patient is unrestrictedly able to walk. Depending on the manageable walking
distance and further restrictions the score rises as shown in detail in Table 4.1 on the next page.
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EDSS clinical performance
0 normal neurological examination
1 no disability, minimal abnormalities
2 minor disability
3 moderate disability, no restriction of walking
4 severe disability, able to walk 500 meters unassistedly
5 severe disability, able to walk 200 meters unassistedly
6 walking aid necessary to walk a distance of 100 meters
7 incapable of walking a distance of more than 5 meters, restricted to wheelchair
8 restricted to bed, able to use arms
9 restricted to bed, able to communicate and eat
10 death due to disease
Table 4.1: Expanded Disability Status Scale, adapted from Grehl and Reinhardt (2013), p. 468.

4.2 Treatment guidelines for multiple sclerosis

Although multiple sclerosis can not yet be cured, there are medications to treat acute attacks,
to improve the patients general state of health, and options for long-term medication. These
options will be presented in the following section.

4.2.1 Therapy for acute relapses

In the event of an acute attack, corticosteroids is an e�cient standard form of therapy. High doses
of methylprednisolone (500–1000mg) are applied intravenously for 3 to 5 days. In addition,
plasmapheresis may be considered.

4.2.2 Long-term therapy

Long-term therapy is recommended in early stages of disease to prevent the occurrence of
acute relapses as well as to protect functional nerve cells from degenerating. The most common
medication is interferon-β, which will be discussed in the next section (4.2.3). Betaferon, a
subcutaneously (s. c.) applied interferon-β1b is considered a gold standard medication for MS
treatment Hartung et al. (2013). In case of intolerance or counter indications to interferon-β,
Glatirameracetat (Copaxone®) is a good alternative. Glatirameracetat is a combination of various
amino acids, which imitate myelin to recover the nerve sheath. During the past few years new
e�ective medications have been approved for severe or therapy-resistant cases of MS, which
need to be prescribed carefully with regard to each individual medical situation. Natalizumab
is a recombinant monoclonal antibody to detain circulating leukocytes from passing the blood
brain barrier. Thus, some cases of progressive multifocal leukoencephalopathy have been
reported after monthly infusions of Natalizumab. Mitoxantron is an immunosuppressive and
cytostatic drug. Yet, due to its high cardiotoxicity blood levels and cardial function need to be
reviewed before application. Dimethylfumarat, Teri�unomid, Alemtuzumab, or Fingolimod may
provide other promising therapy alternatives.
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4.2.3 Interferon-b therapy

Interferon-β is one of the most prescribed medications for MS patients and is a promising
attempt to delay disease progress and reduce exacerbations. It was approved in the USA in
1993 for MS therapy and is also counted as the �rst registered medication for RRMS Hartung
et al. (2013). Although its impact on the immune system is not yet fully known, it is assumed
interferon-β has

• antiviral,
• antiproliferative (suppression of pro-in�ammatory cytokines and increased production
of anti-in�ammatory agents), and

• immunomodulatory (inhibition of T-cell proliferation and increased apoptosis as well as
down-regulation of MHC-II expression)

e�ects, which achieve remarkable therapy success. In case of RRMS, interferon-β can reduce the
number of exacerbations by over 30 % after two years of therapy. There is a 32 % reduction when
treated with Avonex, 33 % with Rebif and even up to 34 % less exacerbations when treated with
Betaferon compared to placebo prescription Hartung et al. (2013). Furthermore, interferon-β
lowers the occurence of T

2

active lesions in an MRI, and prevents the appearance of new lesions.
This may be explained by the neuroprotective and regenerative impact of interferon-β on
neurons.
All together, interferon-β can not only slow down disease progress from CIS to clinically

manifest MS, but also delay the development from RRMS to SPMS.
After many years of clinical trials on this medication’s e�ect, it can be prescribed in case of

RRMS and SPMS, as well as in early stages of disease, CIS, or for patients at high risk to develop
MS. Interferon-β is a protein of 165 amino acids and can be categorized in two subtypes:

Interferon-β1a is obtained from mammalian cells
Interferon-β1b is obtained from E. coli bacteria or synthetically produced

Table 4.2: Subtypes of Interferon-b Hartung et al. (2013).

Interferon-β can by applicated subcutaneously (s. c.) or intramuscularly (i. m.), depending on
dose and medication as listed in Table 4.3.

Interferon Subtype Application Dose
Betaferon Interferon-β1b s. c. 250 �g every other day
Avonex Interferon-β1a i. m. 30 �g weekly
Rebif 22 Interferon-β1a s. c. 22 �g 3⇥ per week
Rebif 44 Interferon-β1a s. c. 44 �g 3⇥ per week

Table 4.3: Interferon-b medication for multiple sclerosis treatment Hartung et al. (2013).

In case of newly emerging attacks during interferon-β therapy, the dose can be increased.
Although it is a commonly prescribed medication and generally well tolerated, we should not
forget the frequently occuring side e�ects, such as:
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• in�uenza-like symptoms like fever, fatigue, and shivering,
• skin irritations or in�ltrations and necrosis at injection site,
• headaches,
• alterations of the blood count as, e. g., anaemia, leukopenia and thrombocytopenia as
well as lymphopenia,

• alterations of the liver function caused by drug elimination process in liver and kidney,
• myalgia, or
• mood swings.

4.2.4 Antibodies against interferon-b

Treatment with interferon-β can induce the production of binding or neutralizing antibodies.
These antibodies bind the applied interferon-β and may inhibit its inpact on human cells
consequently leading to therapy failure. Binding antibodies may be produced very early after
the beginning of interferon-β therapy. Although their occurence does not necessarily lead
to treatment failure, they may indicate a larger chance of producing neutralizing antibodies
later in time Creeke and Farrell (2013). A study reveals that in up to 45% of multiple sclerosis
patients treated with interferon-β a production of neurtralizing antibodies can be observed
Creeke and Farrell (2013). This occurs mostly after a time period of 6 to 18 months of therapy,
which is even more often observed with s. c. than i.m. application Hartung et al. (2013). To
avoid ine�ective medication, it is necessary to frequently evaluate interferon activity. To
detect interferon-β activity in vivo the myxovirus resistance protein (MxA) gene expression
is the most commonly measured parameter. During interferon-β medication, an increased
transcription of MxA mRNA can be observed. In case of antibody production, neutralizing
antibodies bind interferon-β and attenuate its e�ect. This leads to lower concentrations of MxA
which can, therefore, be considered a reliable variable to clinically measure therapy e�ciency.
Better yet, to avoid ine�ective medication, is it is best to try to recognize beforehand if the
therapy with interferon-β has a chance of being successful. In other words, genetic or clinical
biomarkers, which are used to predict treatment response, are needed. So far, genetic markers
primarily localized in HLA regions on chromosome 6 have been associated with antibody
production against interferon-β. In particular these are the HLA-DRB1 gene and the SNP
rs9272105 localized in close proximity to the HLA-DQA1 gene Barbosa et al. (2006); Buck et al.
(2011); Buck and Hemmer (2014); Ho�mann et al. (2008); Link et al. (2014); Soelberg Sorensen
(2008); Weber et al. (2012). Furthermore, the SNP rs4961252 localized on chromosome 8 showed
genome-wide signi�canceWeber et al. (2012); Buck andHemmer (2014). Also the SNP rs5743810,
within the TLR6 gene on chromosome 4 revealed a correlation to the production of antibodies
against interferon-β in males, whereas not in females Enevold et al. (2010). In case antibodies
are detected in a patient’s blood serum, current treatment guidelines recommend to consider
therapy rearrangements Hartung et al. (2013); Weber et al. (2012).

http://www.ncbi.nlm.nih.gov/gene/3123
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=9272105
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=4961252
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5 Exploring Support Vector Machines
(SVM)

5.1 Background
Support Vector Machines (SVM) were �rst introduced by Corinna Cortes & Vladimir Vapnik in
1995 as a machine learning approach for two-group classi�cation and yet represent a popular
technique of kernel methods used for classi�cation and regression analysis Cortes and Vapnik
(1995). Kernel methods like SVM and kernel principal component analysis are machine learning
techniques and used to recognize patterns such as rankings, correlation, principal components,
classi�cation or regression in high-dimensional data Schölkopf et al. (1997). SVMs in particular
have shown to be successful in various applications Bennett and Campbell (2000); Cantor-Rivera
et al. (2014); Toshimoto et al. (2014).
SVM can easily be applied where information of high-throughput technologies needs to

be �ltered to extract the relevant subset of parameters to answer speci�c medical questions.
Applications can be envisioned for a classi�cation into e. g., disease subtypes, responder/non-
responder cases, or even more speci�cally, for prediction of treatment outcome.

The concept behind and the application of SVMs will be discussed in the following sections
using classi�cation and regression analysis, the kernel methods and implementation of SVM
will be described.

5.2 Classification
In classi�cation problems, one aims to �nd an optimal separation between two or more classes
based on some measured parameters. This type of problem is found whenever the outcome is
described by a categorial variable, which can indicate for example a disease, given medication
or a patients country of origin.

SVM can perform automated classi�cation of unknown cases based on their speci�c combi-
nation of the measured parameters.

5.2.1 Separable classes

A simple example is presented in Fig. 5.1 on the next page, where two classes, represented by the
di�erent symbols, are classi�ed into two groups. In the two dimensional case shown here, SVM
determines the optimal separation simply by a straight line. In three dimensions, we would
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require a separating plane to classify data. In general, the separating feature in n dimensions
is a separating subspace of dimension n � 1, which in higher-dimensional space is referred
to as hyperplane. The optimal hyperplane is de�ned as having the largest possible distance
between the closest data points of opposite classes. Those points which are located right on the
boundaries are called support vectors. The simple illustration in Fig. 5.1 will help visualize this
concept. Examplary displayed are data points from two classes in the upper left (indicated by
the � symbols) and lower right (⇧), respectively, depicting a simple two-dimensional linearly
separable classi�cation problem.

Figure 5.1: SVM classification of two classes (� and ⇧ symbols). The red line indicated the best
possible separation. The margin is represented by the orange coloured area, the orange
coloured circles indicate the support vectors. The dashed grey line demonstrates a
non-ideal separation.

While there are actually many possible separating lines, the red line indicates the one with
the largest possible distance between the nearest points of the di�erent classes. The so-called
margin is indicated by the orange colored area. As long as data points do not lie in the orange
area, they do not contribute to the separation. The �lled orange circles are called the support
vectors as they — and only they — de�ne this optimal separation line. The more complex
data is arranged , the more support vectors are needed to de�ne the separating hyperplane.
We included another optional dividing hyperplane, the dashed grey line, to demonstrate a
non-ideal separation, as the corresponding margin, indicated by the dotted grey lines, is clearly
more narrow than the orange one, which is not what one is aiming for.

5.2.2 Non-separable classes

With real data, the classes may not be linearly separable at all. Under such circumstances, no
matter how the hyperplane is placed, one or more data points will lie on the wrong side of the
separating hyperplane, and, therefore, be classi�ed incorrectly.
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Support vector classification of non−separable data

Figure 5.2: SVM classification showing a blue colored data point on the wrong side of the hyper-
plane.

Penalties In order to still �nd an ideal separation, a penalty is introduced for each misclas-
si�cation, usually depending on the distance of the data point to the hyperplane. The blue
colored outlier from the ⇧ class in the lower right and its distance to the red separation line are
illustrated in Fig. 5.2. The hyperplane for which the minimum total penalty ensues is considered
optimal. As this margin no longer provides a clear separation, it is called a soft margin. In this
case all the data points on the boundaries as well as those on the wrong side, which means
either classi�ed correctly or incorrectly, are support vectors.

Data transformation In some cases, not even the soft margin allows an acceptable solution
and an alternative way to handle non-separable classes may be to use a di�erent representation
of the data. A transformation to a di�erent coordinate system may help separate the classes
more easily. An example is shown in Fig. 5.3 on the following page, where the original Cartesian
coordinate system is de�ned by the measured variables, here denoted x and y. The separation,
indicated by the dotted circle, does not allow a linear separation at all. However, if the data are
represented in polar coordinates the situation depicted in the right plot results which is clearly
separable.

SVMs can perform such kind of transformations e�ortlessly through appropriate use of
kernels, see section 5.4 on page 35.

5.3 Regression
When working with continuous data, we use SVMs to create a regression model. Compared
to the classi�cation approach, the aim is now to �t all the data points within the margin.
This will set the regression line close to as many values as possible. Illustrated in Fig. 5.4 on



34 5. Exploring Support Vector Machines (SVM)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

x

y ●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

0.0 0.5 1.0 1.5

−3

−2

−1

0

1

2

3

r

ϕ

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

Transformation from non−separable to separable data representation

Figure 5.3: Transformation to a more appropriate coordinate system may result in a separable
representation of the data. In the example shown, the circular distribution on the le�
is transformed to a linear one (right) by going from Cartesian to polar coordinates.

the following page are the regression line in red, half way between the support vectors as
orange colored circles, and the orange shaded area enclosing as many data points as possible.
Nevertheless, when working with real data, it is not always possible to place the regression
line ideally adjusted for all values. In consequence, some values have to be penalized as in
the non-separable classi�cation case, illustrated by the white circles outside the orange area.
Again, this way outlier e�ects can be minimized.
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Illustration of a support vector regression

Figure 5.4: SVM regression. The red line illustrates the regression line, the orange coloured area
represents the margin and the orange coloured circles indicate the support vectors.
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5.4 Kernel trick

When working with real data, it may not always be possible to �nd a proper separation
of the data using hyperplanes even in low dimensional feature spaces. Additionally, as the
dimensionality or complexity of the data increases, it becomes progressively di�cult to �nd a
suitable separation. The so-called kernel trick resolves this problem by transforming the raw
data into higher dimensional space in such a way that the transformed data becomes separable
and the SVM approach can be applied. Through utilization of the kernel trick, the data points
and the resulting separating hyperplane are only represented through dot products and the
transformations can be calculated by the kernel functions, listed in Table 5.1 on page 38. This
means the following:

Within the raw data each feature represents one dimension in the input space. For example,
a dataset of 50 SNPs localized on one gene de�nes a 50-dimensional feature space. Every
individual is represented by a 50-element vector indicating the corresponding SNP’s genotypes.

The kernel trick virtually transforms the data into high dimensional space in such a way that
data becomes separable. The data and the separating hyperplane are now only represented
through dot products.

The larger a dataset gets, the more di�cult it is to comprehend and follow the computations.
Compared to the transformation to the polar coordinate system, the kernel trick can easily
calculate from only the coordinates in the original feature space. The kernel trick only virtually
transforms data in high dimensional space. Therefore, the important aspect of this procedure is
that the calculations are performed in the low-dimensional input space. This is possible since
the virtually-created separating hyperplane and support vectors in high dimensional space
can be transformed back into the original space. This is shown for example in Fig. 5.5 on the
following page retrieved from the DTREG - predictive modeling software website, which shows
the complex separation in the original input space obtained from a separation performed in
virtually contructed high dimensional space. This means, by making use of the kernel trick,
there is no need to actually calculate the transformation to obtain the dot products in the
new coordinates. All calculations can be performed in the original input space, which makes
calculations practical and computationally feasible. This is a great advantage compared to the
transformation to polar coordinates, introduced in section 5.2.2 on page 32, where this form of
computation was not possible and transformed data were used for further calculations.

5.5 SVM prediction models

As previously explained, SVM creates classi�cation or regression models in dependence of a
particular feature or characteristic of the data, e. g., disease, given medication, age at diagnosis,
and many others. In this study the phenotype indicates the antibody titer against interferon-β
medication, as further introduced in chapter 6. This means for this particular study that a
prediction of the antibody titer can be calculated with the given genotype data of an individual
treated with interferon-β. The details of these calculations are explained in the following:
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Figure 5.5: Non-linear separation of data in the original input space by the kernel trick. Figure
retrievd from the DTREG - predictive modeling so�ware website illustrating Support Vec-
tor Machines (SVMs), available at www.dtreg.com/solution/view/20, DTREG - predictive
modeling so�ware (2014).

First, data is separated into a trainingset and testset. Then SVM creates a prediction model on
the basis of the training set data. To assess SVM model e�ciency and to evaluate the accuracy
and performance of SVM, the generated model can be reviewed on the testdata. The constructed
model is therefore applied to examine and analyze a subset or testset of the data. For each
individual of the testdata a predicted antibody titer is generated. With the correlation coe�cient
between the measured and predicted values, model performance can be calculated.

Correlation coe�icient The correlation coe�ctient, denoted by the r-value, is de�ned as the
extent of the similarity of two variables. The r-value ranges from�1, indicating negative, over 0
showing no, to 1, indicating absolut correlation. A di�erence between the P������ correlation,
which describes linear coherence, and the S������� correlation, which demonstrates the
monotonic coherence of rank transformed data can be seen. Their outcome can di�er from
each other, but data containing no correlation will result in r-values close to zero.
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The square of the correlation coe�cient, r2, describes the total variance of the data. This
means that by calculating r2 we �nd how much of the variance of the dependent variable can
be explained by the in�uence of the independent variable. For example, an r

2 of 0.80 indicates
that 80 % of the variance of the observation can be explained by the in�uencing variable. For
our study we are interested in the correlation between measured and predicted antibody titer
to interferon-β. A high correlation of the measured and predicted antibody titers indicates a
high validity of the prediction model. For more detail on the implementation of SVM, see the
next section 5.6.

Although SVMs yield advantages to other machine learning approaches such as, e. g., the
ability to directly �nd interactions, computing reproducible results and many others, they
are not perfect. Known shortcomings of SVM are that calculations with a lot of data tend to
over�t. This means they create overly good models when working on too many parameters.
Regardless that in this case SVM can forcast prediction values almonst perfectly with this
data, it cannot necessarily be implemented reliably for another dataset. In such cases, some
preprocessing (excluding uninteresting, or highly correlated parameters and splitting data into
suitable partitions) is required to avoid this problem as will be explained in detail in the next
chapter 7.2.2.1 on page 69.

5.6 Implementation of SVMs
The standard software base for SVM implementations is libsvm 2.6, developed by Chih-Chung
Chang and Chih-Jen Lin Chang and Lin (2011).
Interfaces to many programming languages are available. We use the software R R Core

Team (2014), for which various packages with SVM implementations are available, general
ones such as, e. g., e1071Meyer (2012); Meyer et al. (2015), kernlab Karatzoglou et al. (2004,
2016), or more speci�c ones like penalizedSVM Becker et al. (2009, 2012) for feature selection
in classi�cation problems.

After initial test runs had shown the packages almost identical in their outcome, we decided
on using the R-package e1071 for our calculations.

The syntax of the svm call is as follows:

svm.model <- svm(formula, data, cost, gamma,

type, cross, kernel, ...)

The parameters to the svm() command are selected and the calculation results are assigned
to variable svm.model.

formula indicates the dependent and independent features for which the model should be
created, meaning in this study the antibody titer against interferon-β should be predicted.

data matrix containing phenotype (dependent feature) and genotype (independent) informa-
tion.

http://cran.r-project.org/web/packages/e1071/index.html
http://cran.r-project.org/web/packages/kernlab/index.html
http://cran.r-project.org/web/packages/penalizedSVM/index.html
http://cran.r-project.org/web/packages/e1071/index.html
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cost is a penalizing SVM parameter for wrong classi�cation as explained in section 5.2.2.
It has to be regarded when data points appear on the incorrectly classi�ed side of the
hyperplane. This means that in case of inseparable data penalties must be considered in
the classi�cation model, depending on the distance of the misclassi�ed data point to the
hyperplane.

gamma � is a kernel parameter speci�c for the Gaussian kernel, which determines the reach of
a features in�uence. See Table 5.1 and as further explained in section 7.2.2.3 on page 72.

type indicates the form of classi�cation or regression, e. g., C-classi�cation, ⌫-classi�cation,
or "-regression, . . . , where svm can automatically choose between classi�cation and
regression depending on the type of the dependent variable.

cross determines the sampling method to be used. If cross = n is speci�ed, an n-fold
cross validation will be performed. This means when using the example of cross =

n, the dataset will be divided into n partitions. The training set data is used to create the
prediction model. The model is subsequently used to examine and analyze the remaining
data, referred to as testset data, to assess model e�ciency. The maximum value allowed
for cross isN , the number of individuals in the data, resulting in dividing the data into
N parts, evaluatingN models with one individual removed. This case is also called leave-
one-out cross validation (LOOCV), where, as the name indicates, all except one individual
is used as training data. Without speci�cation of cross, all data will be included for
the model creation. According to our test results, using various n range from 3 to 5 over
100 or even n, we did not observe di�erences, so we employed n = 3 for performance
reasons.

kernel is by default set to radial basis kernel, also called Gaussian kernel, used when having
normally distributed data as it is the case with our data. Other kernel types readily
available for svmwithin the R-package e1071 are listed in Table 5.1 with their respective
parameters Meyer et al. (2015).

Kernel formula
linear u

0
v

polynomial (�u

0
v + coef0)degree

radial basis e

(��|u�v|2)

sigmoid tanh(�u

0
v + coef0)

Table 5.1: List of commonly used kernel functions, the respective kernel parameters are set in green.
Adapted from the arguments documentation for svm within the reference manual of
the R-package e1071 Meyer et al. (2015).

The function svm() returns a list of components, which summarize model features, method
and results. This includes a summary of parameter values, such as cost and gamma and
also type, cross or kernel chosen for the SVM model. Among others, SV, the number of
support vectors, is returned. This gives an indication of how complex the separation of the data
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points needed to be. A high number of support vectors indicates di�cult separation, whereas a
low number is usually found for easily separable data.

In the following step, the prediction on the test set is performed,

predicted.values <- predict(svm.model)

which yields the predicted values of antibody titer for each individual. To estimate the perfor-
mance of the predictive model, some measure of concordance is needed.

We use the correlation coe�cient between the measured and predicted values, which can be
calculated, to evaluate model performance.

r <- cor(predicted.values, measured.values)

Higher values of r indicate better prediction.
To visualize prediction outcome, we plot the measured values against the resulting predicted

antibody titer values for each data points

plot(predicted.values, measured.values)

as shown in �gure 5.6. This is an example of the HLA-DRB1 gene, with gene boundaries
extended by ±10 kb. On the top of the �gure you can see that the data contains 103 features
(101 SNPs as well as the covariates sex and age) of 354 individuals. In this calculation, 326
support vectors were needed to compile the optimal regression line. An r � value of 0.428
could be reached.
Since a more detailed discussion of the mathematical formulation of SVMs lies beyond the

scope of this thesis, the interested reader may �nd more extensive explanation in the standard
literature see, e. g., Introduction to Statistical Learning with R James et al. (2014) or Elements of
Statistical Learning Hastie et al. (2009).

http://www.ncbi.nlm.nih.gov/gene/3123
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Figure 5.6: Prediction plot of the HLA-DRB1 gene. The dataset contains 101 SNPs (and the
covariates sex and age) of 354 individuals. The regression line and support vectors are
shown. An r-value of 0.428 could be reached.
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6 Data Preparation

Within this project we worked with two di�erent datasets containing genotype and pheno-
type features of multiple sclerosis patients treated with interferon-β. For initial calculations,
including the creation of the SVM model as well as within the working process of constant
reevaluation, we used a dataset consisting of 392 individulas. For better unterstanding, this
dataset will be referred to TUM 1 dataset throughout my thesis and will be presented in detail
in section 6.1. While working on my project a larger dataset was created by the Department of
Neurology at the Rechts der Isar Hospital, a�liated to the Technical University of Munich. It
displays a larger dataset of 1000 individuals, partly overlapping with the TUM 1 dataset and
will be introduced as the TUM 2 dataset in section 6.2 of this thesis. To achieve an even larger
sample size, we merged the two datasets to a combined study, TUM 3 dataset, which was used
for �nal calculations, evaluation and interpretation of results and will be presented in section
6.3.

6.1 TUM 1 Dataset

6.1.1 Raw Data

For model preparations, genotype data of 392 multiple sclerosis patients was used. As explained
in the published article, Single-nucleotide polymorphism in HLA- and non-HLA genes associated
with the development of antibodies to interferon-β therapy in multiple sclerosis patients byWeber
et al. in the Pharmacogenomics Journal (2012), where the same data was used, the genotyping
was performed as explained in the following citation: “Genome-wide genotypingwas performed
by HumanCNV 370-Duo_v1-0 BeadChip (Illumina, San Diego, CA, USA) arrays, which covered
about 317.000 single-nucleotide polymorphism (SNP) loci from the entire human genome.
Genotyping was performed according to the standard protocols of the manufacturer for the
In�nium II process” Weber et al. (2012).
The dataset is composed of 229 female and 125 male MS patients, aged between 16 and

75 years at the time of sampling. Besides their genomic sequence, for 354 patients a list of
phentotype characteristics were recorded by the Neurological Department at the Rechts der Isar
Hospital in Munich, Germany, which include features and covariates such as sex, age, disease
progress, EDSS, medication, antibody titer against interferon-β, and many others. In detail, for
each individual information on their medication status such as start, duration, and e�ciency
was recorded. The majority of the patients (169) were treated with Betaferon, another 134
patients were treated with Rebif 44, an interferon-β1a. Rebif 22, also an interferon-β1a in lower
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dosis, was prescribed to 35 patients. 16 patients received Avonex, the only intramuscularly
(i. m.) applied interferon-β1a, as listed in Table 6.2.

The possibility of therapy failure due to antibody production against interferon-β is why
it is extremely important to continually assess each patient’s antibody status. Any antibody
production against interferon-β can be detected through enzyme-linked immunosorbent assay
(ELISA). This method allows the examiner to obtain the antibody titer against interferon-β
of each patient, however not distinguish between binding antibodies (BABs) and neutralizing
antibodies (NABs). For this reason, the MxA concentration is also measured, which indicates the
antibody reaction to interferon-β and therefore reveals the mediacation’s residual function. In
this study, an antibody reactivity of at least 25 % (100 % indicating the highest positive control,
0 % no antibodies) was considered antibody-positive. Patients with high measured antibody
reactivity were either classi�ed to NABs cases when an MxA induction of less than 50% was
observed or BABs when MxA concentrations exceeded 50%. Patients developing binding
antibodies may still show some interferon-β activity, although reduced. No antibody reactivity
or titer values below 25% where counted as antibody-negative status, independent of the MxA
induction, as shown in the overview in Table 6.1.

Antibody status Antibody titer MxA Induction
Antibody positiv � 25 %

x Neutralizing antibodies < 50 %
x Binding antibodies � 50 %

Antibody negativ < 25 %
Table 6.1: Antibody titer classification.

This classi�cation splits the sample into 172 antibody positive and 182 antibody negative
cases, the positive cases further subdivided into 45 binding and 127 neutralizing antibody cases.
A detailed listing of antibody status with respect to medication is compiled in Table 6.2.

Medication Patients AB negative BABs NABs
Betaferon 169 87 51.5 % 26 15.4 % 56 33.1 %

Avonex 16 6 37.5 % 3 18.8 % 7 43.8 %

Rebif 22 35 19 54.3 % 3 8.6 % 13 37.1 %

Rebif 44 134 70 52.2 % 13 9.7 % 51 38.1 %

Total 354 182 45 127
Table 6.2: Antibody status by interferon-b medication.

Of all patients, only those individuals with a measured antibody titer in the extreme of the
distribution were selected for genome sequencing and included in the study. This explains the
two marginal density peaks seen in the distribution on the left side of Fig. 6.1 on the next page.
To regain approximately normally distributed data, as required for some statistical methodes,
the antibody titer values were replaced by their rank position using the inverse rank-based
transformation, which is a favoured normalization technique when working with non-normally
distributed data. Its result, the normalized antibody titer, is shown on the right side of Fig. 6.1.
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The subsequent procedures are performed with both the original and the normalized data.

Measured

Antibody titer

D
en

si
ty

−50 0 50 100 150

Normalized

Antibody titer

−3 −2 −1 0 1 2 3 4

Density of the antibody titer against Interferon

Figure 6.1: Density plot of the antibody titers of the 354 individuals included in the study. The
le� figure shows the distribution of measured antibody titers. The right figure shows
the normalized values a�er inverse rank-based transformation to regain approximately
normally distributed data.

Within this study we did not di�erentiate the measured antibody titers due to its e�ect on
interferon-β. For following calculations we utilized the antibody titers detected with ELISA,
which again means no conclusion on therapy outcome can be made.

6.1.2 �ality Control

In order to obtain reliable results from genotypic data, an initial quality control analysis of
the dataset needs to be performed. This ensures that the data is free from obvious errors or
inconsistencies, which may severely a�ect study outcome. It is a crucial procedure comprising
data inspection, �ltering, and examination.
Depending on the data format, various steps have to be completed. We received data im-

puted with SHAPE IT, which is used for pre-phasing, together with IMPUTE2, a genotype
imputation program Howie et al. (2009, 2011); Delaneau et al. (2012, 2013). Imputation is a
method to complete missing genotype data by implementing and predicting absent data using
the known genotype structure of the sample and information from reference data sets, e. g.,
HAPMAP or 1000genomes, with more complete genotype maps The International HapMap
Consortium (2003); The 1000 Genomes Project Consortium (2012, 2015). HAPMAP includes
about 4 million SNPs exemplary for a speci�c population, 1000genomes even some 40 million
SNPs. This means that in our case with genotype data, missing allele information- such as
single nucleotide polymorphism (SNP) - can be predicted based on the knowledge of genotype
relations of the reference population data. The raw genotype data was prephased using SHAPE

https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html
http://mathgen.stats.ox.ac.uk/impute/impute_v2.html
http://hapmap.ncbi.nlm.nih.gov/
http://www.1000genomes.org/
http://hapmap.ncbi.nlm.nih.gov/downloads/
https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html
https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html
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IT and subsequentely imputed using Impute version 2.

A single nucleotide polymorphism (SNP) is a variation of one single base pair in the DNA
sequence, e. g.,

Allele 1 · · · C A T G T · · ·
Allele 2 · · · C A G G T · · ·

In this case, there are two alleles: T andG. They describe the variability of genotype data at a
speci�c gene locus in a population. In some cases, this base exchange can lead to conformational
changes in the transcribed protein which can manifest in a clinical phenotype, such as speci�c
characteristics or even disease development. It is likely that highly correlated SNPs within
so-called linkage disequilibrium (LD) blocks will be found.
The knowledge of these correlations makes a prediction possible. LD blocks re�ect the

non-random correlation of alleles. This means that alleles or genetic markers occur more or
less often than expected by chance in a speci�c combination, a haplotype. In other words, LD
is the deviation from random. LD relates the major (pA and pB) or minor (pa and pb) allele
frequencies of the individual genotypes to their combined occurrence.

When the genotypes of two SNPs are (statistically) independent, the expected probability of
an allele combination in a haplotype is given by the product of the individual allele probabilities,
i.e.,

pAB = pA · pB. (6.1)

Genetically, this can be interpreted as a recombination or mutation and referred as linkage
equilibrium.

In contrast, linkage disequilibrium (LD) describes the situation where we �nd Eq. 6.1 violated,
i.e.,

pAB 6= pA · pB. (6.2)

The degree of violation is given by the disequilibrium coe�cient DAB which can be calculated
as the di�erence of observed and expected probability:

DAB = pAB � pA · pB (6.3)

Due to the known association of alleles, either within the sample or from more extended
populations, missing genotypes can be predicted. Furthermore, only one SNP in an LD block
needs to be kept in a study as the remaining genotypes in the block are not providing indepen-
dent information and can be left out, as realized within preFilter() in 7.1.2.2 to reduce
sample size.
Genotype data is represented by the minor allele frequency (MAF), which is the occurrence

of the least common (=minor) allele in a population. Rare allele variants, e. g., SNPs with a
small MAF, may lead to estimation problems as some genotypes may only be found in a few
individuals in the given sample or not be represented at all. This means that, e. g., a MAF
of 0.1 corresponds to paa = MAF

2

= 0.1

2

= 0.01, in other words, 1 % of the population is
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expected to be homozygote minor — in a sample of similar size to our study, with 354 patients,
we would expect to �nd 3 to 4 such individuals. For example the MAF threshold of 0.05 used
in our procedure corresponds to paa = MAF

2

= 0.0025, e. g., 0.25 % of the population is
expected to be homozygote with the minor allele—in a sample of 400 individuals we would
expect to �nd 1 such individuals. If the MAF were MAF 0.01, one would need a sample of
approx. 10 000 individuals to �nd one. Since this requires a distinctly large sample size to �nd
1 individual, such variants need to be removed. They may lead to numerical complications,
such as unreliable or misleading study results. By setting the limit 0.05 < MAF rare genotype
variations are excluded from the study and erroneous results can be avoided.

The quality measures info score and certainty are generated by the imputation program to
indicate con�dence in the data. The info score is attributed to reference genotype information
associated with the MAF and ranges between �1 and 1. The higher a SNP’s info score, the
more reliable the imputation has been performed. An info score value of �1 means that the
imputation has been unde�ned, e. g., has not been calculated. The certainty indicates the
average reliability of the best-guess genotypes. Setting the thresholds for info score at 0.8 and
certainty at 0.9 data, from which no reliable imputation is achieved, can be removed.

To summarize, the selection of SNPs was based on this set of conditions:

MAF > 0.05

info score > 0.8

certainty > 0.9

which are parameters that indicate a high con�dence of the imputed data and give additional
con�dence for correct data.
Moreover, all duplicated SNPs were excluded and GTOOL was used for including patient

information to the genotype data. GTOOL is a program which can be applied to easily modify
and adjust genotype data Freeman and Marchini (2012). With genotype information of 392
individuals and 5 747 441 SNPs, we obtain dosage values corresponding to the expected minor
and major allele counts for each SNP.

The dosage is calculated as the weighted sum of genotype probabilities:

dosage =

X

gt2genotypes
wgt · pgt (6.4)

where probabilities (p) and weights (w) are shown below (a represents the minor, A the major
allele).

genotype aa aA AA
genotype probability paa paA pAA

weight 2 1 0
dosage

P
gt = 2 · paa + 1·aA + 0 · pAA

The weights count the number of minor alleles (a) in the genotypes. Therefore, the dosage
value represents the probability to observe the minor allele for this SNP, pa. It adds the three
genotype probabilities into one single value which simpli�es subsequent calculations.

http://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool.html
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For numbers of SNPs per chromosome after quality control see Table 6.3.

Chromosome 1 437 975 Chromosome 12 278 867
Chromosome 2 485 994 Chromosome 13 218 714
Chromosome 3 417 623 Chromosome 14 188 927
Chromosome 4 423 782 Chromosome 15 159 207
Chromosome 5 380 542 Chromosome 16 166 307
Chromosome 6 380 378 Chromosome 17 140 720
Chromosome 7 335 081 Chromosome 18 165 517
Chromosome 8 327 611 Chromosome 19 115 774
Chromosome 9 249 867 Chromosome 20 126 428
Chromosome 10 297 883 Chromosome 21 83 734
Chromosome 11 294 398 Chromosome 22 72 112

Total: 5 747 441
Table 6.3: Number of SNPs per chromosome a�er quality control of the TUM 1 dataset.

This output eventually features correctly examined data to begin with calculations.

6.1.3 Genome-wide association study

A genome-wide association study (GWAS) is performed to analyze genetic variations of the
genome to identify allele expressions which appear commonly together with a speci�c pheno-
type, e. g., a disease.

The GWAS can be calculated using PLINK – a program, that provides comprehensive analysis
selections for genomic studies Purcell (2006); Purcell et al. (2007). Selected markers, e. g., SNPs,
are chosen to be examined, most of them localized in non-protein-coding regions, such as
introns or between genes. A possible association to a speci�c phenotype is evaluated, as shown
in Fig. 6.2 on the next page. On the left side of the �gure, there is no signi�cant di�erence in
the phenotype between the di�erent genotype groups. The slope of the �tting line is rather �at.
On the right side of the �gure, a homozygote major allele (AA) shows a signi�cantly di�erent
manifestation of the phenotype than the homozygote minor allele (aa). Since the heterozygote
phenotype (aA) lies directly in the middle of the two homozygotes, this SNP’s e�ect would
be well described by a dosage model indicated by the steeper �tting line. For GWAS these
associations for all known SNPs on the genome were computed, yielding a p-value, which
indicates the signi�cance of each �nding.
The p-value represents the probability of �nding a more extreme test-statistic than the

observed one. It ranges between 1 indicating no and 0 indicating high signi�cance. This means
that the lower the p-value the less likely it is to �nd such data under the null-hypothesis and
the more likely it is that the alternate hypothesis can be accepted. In standard clinical trials, the
threshold is commonly set to 0.05 (5 % probability) for single tests, for genome-wide analysis
to 5 · 10�8 to account and correct for multiple testing Barsh et al. (2012). In case of deceeding
the threshold, the result can be assessed as signi�cant and the null-hypothesis rejected. For
example, when having normally distributed data (with mean= 0 and standard deviation� = 1,
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Figure 6.2: The figure on the le� shows no, whereas the figure on the right shows a significant
association between genotype and phenotype.

for which the 95% con�dence interval lies between �1.96 and +1.96, as shown in Fig. 6.3 on
the following page) the probability of having a signi�cant result above the 95% con�dence
interval, within an one-sided test, is indicated by the red area in Fig. 6.3 on the next page
which equals 2.5 % of the total area under the bell curve. If we consider all values outside of
the con�dence interval including also the area to the left of �1.96 (again 2.5 % area under the
curve, AUC), corresponding to a two-sided test, we �nd 5% in the marked region of the tails.

Using this data, the GWASwas performed on the measured antibody titer against interferon-β
as well as on the normalized antibody titer. Both calculations were interesting because the
antibody titer values are distributed di�erently as shown in Fig. 6.1 on page 45. The covariates
sex and age at sampling (AAS) as well as components C1 to C5 from the multi-dimensional
scaling (MDS) analysis of the identity-by-state matrix, which outline genotype similarity of a
population, were included. Figure 6.4 shows an example of a scatter plot of theMDS components
C1—C5.
The GWAS on the normalized phenotype data yielded some low p-values, nevertheless, no

SNP reached the genome-wide signi�cance limit. Our results showed 390 SNPs with p-values
between 10

�5 and 10

�6, the highest association found for SNP rs8051893 on chromosome 16
with a p-value of 3.515 · 10�7. This SNP is localized in intron 1 of the WFDC1 gene, which
is considered a tumor suppressor gene. All information of a genes localization and function
are retrieved from the Database of Single Nucleotide Polymorphisms, dbSNP within this thesis
Bethesda (2005); Sherry et al. (2001).

The resulting top SNP rs697296 of the secondly performed GWAS, our phenotype being the

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=8051893
http://www.ncbi.nlm.nih.gov/gene/58189
http://www.ncbi.nlm.nih.gov/SNP/
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=697296
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Figure 6.3: Interpretation of the p-value. The confidence intervall indicates the area between the
two vertical lines marked at�1,96 and 1,96. The red area displayes the area under (the)
curve (AUC) of 2.5 %, showing the significant domain.

SNP allele 1 allele 2 frequency allele 1 info score β SE p-value
rs8051893 C T 0.5925 0.8885 0.373 0.07 3.515 · 10�7

Table 6.4: Top SNP from GWAS with normalized antibody titer of the TUM 1 dataset.

measured antibody titer (‘AB’) and also including covariates sex, age at sampling (‘AAS’) and
C1 to C5, showed a p-value of 4.141 x10�7.

SNP allele 1 allele 2 frequency allele 1 info score β SE p-value
rs697296 C T 0.4169 0.9230 15.6294 3.02 4.141 · 10�7

Table 6.5: Top SNP from GWAS with measured antibody titer (‘AB’) of the TUM 1 dataset.

Although not directly localized on a gene, dbSNP reports its position close to the PRICKLE
gene on chromosome 3. Its p-value is not signi�cant, but including this particular SNP to the
386 already persisting SNPs in the PRICKLE gene, the SVM prediction model could yield higher
correlation between measured and predicted antibody titer than without SNP rs697296. The
r-value increased from 0.471 to 0.473 caused by the a�ect of only one additional SNP. For
further details see chapter 5.
A Manhattan Plot provides an overview of the genome-wide p-values obtained from the

GWAS. The genomic position of each SNP over all chromosomes is displayed along the x-axis
and the negative logarithm of the p-value is on the y-axis. Each point represents the calculated
p-value at the localization of one SNP. In Fig. 6.5 on the next page the top SNP on chromosome
3 with the lowest p-value is clearly recognizable.
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Figure 6.4: Sca�er plot of the MDS analysis showing the components C1—C5.

Another way of interpreting the distribution of p-values in our study is by using theQuantile-
Quantile Plot (QQ-Plot). The distribution of two variables are displayed to be compared. If
all dots are disposed along the diagonal, their distribution would be equal. In this case the
testing values are arranged according to the negative logarithm of the p-values of our data, a
comparison of expected and observed p-values, as shown in Fig. 6.6 on page 53. Slight deviations
can be accepted but the approximately comparable outcome of observed and expected p-values
is an important requirement for continuing the study.
Carefully preparing our data and the lack of �nding any signi�cant SNPs correlating with

our phenotype led us to search for advanced techniques to improve prediction beyond the
single SNP results and also include possible interactions. One technique that allows this kind
of analysis is machine learning with support vector machines. We continued our project with
the intention of creating a model with SVM calculating SNP-interactions, see chapter 5.
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Figure 6.5: Manha�an plot of the TUM 1 dataset with the obtained p-values from the GWAS, the
green line indicates suggestive, the red line genome-wide significance.

Dissertation Theresa Schmiedlechner
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Figure 6.6: QQ plot of the TUM 1 dataset.
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6.2 TUM 2 Dataset

The TUM 2 dataset is a larger sample of multiple sclerosis patients treated with interferon-β.
We received the dataset from the Department of Neurology at the Rechts der Isar Hospital
for this project. It contains genotype information of 1000 individuals — 272 males and 728
females, of which 762 have known medication and antibody status. The majority of 550 patients
are antibody negative, whereas 113 patients develop neutralizing and 98 binding antibodies,
as listed in Table 6.6. Note that in this study, a total of 41 percent of patients treated with
Betaferon developed binding or neutralizing antibodies, nearly twice as many compared to
other medications.

The normalized antibody titer is referred to a relative antibody titer in relation to a reference
serum. The calculation was performed as follows:

AB � AB

ref

AB

ref

· 100 [%] (6.5)

Medication Patients AB negative BABs NABs unchar
Betaferon 264 155 58.7 % 59 22.3 % 49 18.6 % 1 0.4 %

Avonex 188 170 90.4 % 8 4.3 % 10 5.3 %

Rebif 22 79 58 73.4 % 10 12.7 % 11 13.9 %

Rebif 44 211 153 72.5 % 18 8.5 % 40 19.0 %

unknown 20 14 70.0 % 3 15.0 % 3 15.0 %

Total 762 550 98 113 1
Table 6.6: Antibody status by interferon-b medication of the TUM 2 dataset. For 20 patients

the medication status was unknown: 14 cases showing no and 3 each developing
binding or neutralizing antibodies. One patient treated with Betaferon is listed with
uncharacterized positive antibody status. We did not exclude those cases from the study
since we do not specify in subgroups of treatment.

Table 6.7 on the facing page shows the SNP count per chromosome after quality control, a
total of 5 974 434 SNPs. The QC was performed using the same conditions as for the dataset
TUM 1 dataset, for details see section 6.1.2 on page 45.

With this larger dataset, we again performed a GWAS analysis with the same conditions
and covariates as described in section 6.1.3 on page 48 (with antibody titer as phenotype, and
covariates being C1–C5 of MDS as well as sex and age of the samples). Evaluating the GWAS
results we found two SNPs rs57658648 and rs57962245 as shown in Table 6.8 on the next page —
both localized in close proximity of the HLA-DRB6 gene on chromosome 6 — with remarkable
p-values of 8.508 · 10�8 and 8.531 · 10�8, respectively, just barely missing the genome-wide
signi�cance level. Since these SNPs were not present in the TUM 1 dataset, the HLA-DRB6
gene did not attract attention so far. Bearing in mind that many genes within the HLA region
on chromosome 6 have in�uence on antibody production, this result of two almost signi�cant
SNPs may show importance for predicting treatment e�ciency.
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http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=57962245
http://www.ncbi.nlm.nih.gov/gene/3128
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Chromosome 1 456 970 Chromosome 12 289 949
Chromosome 2 502 568 Chromosome 13 227 261
Chromosome 3 431 315 Chromosome 14 199 051
Chromosome 4 439 574 Chromosome 15 168 726
Chromosome 5 391 882 Chromosome 16 159 936
Chromosome 6 392 974 Chromosome 17 151 306
Chromosome 7 350 966 Chromosome 18 172 031
Chromosome 8 335 010 Chromosome 19 132 067
Chromosome 9 259 153 Chromosome 20 133 235
Chromosome 10 311 076 Chromosome 21 85 997
Chromosome 11 305 855 Chromosome 22 77 532

Total: 5 974 434
Table 6.7: Number of SNPs per chromosome a�er quality control of the TUM 2 dataset.

SNP allele 1 allele 2 frequency allele 1 info score β SE p-value
rs57658648 G C 0.9436 1.0208 -19.169 3.5 8.508 · 10�8

rs57962245 G A 0.9436 1.0208 -19.166 3.5 8.531 · 10�8

Table 6.8: Top two SNPs from GWAS with normalized antibody titer of the TUM 2 dataset.

Moreover, in the GWAS of the TUM 2 dataset we found ten SNPs with p-values smaller than
10

�6 as listed in Table 6.9.

SNP chromosome position p-value
rs114125694 2 199 553 600 9.494 · 10�7

rs34349601 2 199 553 892 8.819 · 10�7

rs7578102 2 199 554 281 8.436 · 10�7

rs17826222 2 199 557 725 3.963 · 10�7

rs13410413 2 199 557 971 3.973 · 10�7

rs17826270 2 199 558 179 4.026 · 10�7

rs17826492 2 199 561 760 6.816 · 10�7

rs57658648 6 32 520 731 8.508 · 10�8

rs57962245 6 32 520 863 8.531 · 10�8

rs111875628 6 32 583 813 6.536 · 10�7

rs113414682 6 32 594 441 4.317 · 10�7

rs2537580 7 17 793 601 3.199 · 10�7

Table 6.9: Listing of SNPs with p-values less than 10

�6 from the GWAS analysis on the TUM 2
dataset.

In comparison, the GWAS performed on the TUM 1 dataset of 354 individuals and 5 747 441
SNPs resulted 390 SNPs with p-values < 10

�5 the top SNP rs8051893 localized on the WFDC1
gene on chromosome 16 with a p-value of 3.515 · 10�7 being the only resulting SNP with a
p-value < 10

�6. These distinctly smaller p-values within the TUM 2 dataset can be explained
by the larger sample count.

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=57658648
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=57962245
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=114125694
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=34349601
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=7578102
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=17826222
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=13410413
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=17826270
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=17826492
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=57658648
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=57962245
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=111875628
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=113414682
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=2537580
http://www.ncbi.nlm.nih.gov/gene/58189
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6.3 The combined sample (TUM 3 Dataset)

To evaluate the SVM model we decided to combine the TUM 1 and TUM 2 dataset to achieve
an even higher sample size for our �nal calculations. This combination of the samples was
performed by including genotype samples of all (392 individuals) from the originally used TUM
1 dataset and only the non-overlapping part (804 individuals) of the TUM 2 dataset. Since the
TUM 2 dataset consisted of not only new data, as some indviduals overlapped in both studies,
we had to make sure to only include new and non-related individuals from the TUM 2 dataset
to the merged dataset. This means that from the inital 1000 individuals from the TUM 2 dataset,
a total amount of 194 patients were excluded because of duplication within the TUM 1 dataset.
Moreover, 2 relatives were eliminated from the combined dataset as well, due to the strong
resemblance of their genotype features. After these exclusions, 804 patients from the TUM
2 dataset remained in the combined study. Equally, not all of the included samples provided
phenotype information. This resulted in 354 patients from the TUM 1 dataset as well as 728
patients of the TUM 2 dataset having phenotype information available.
Consequentely, when adding up the results, 1196 individuals with genotype data and 1082

patients with phenotype information could be added to the combined dataset. Nevertheless, in
process of the data merge some individuals again had to be dropped when no completeness
of the covarites was given. 304 patients had to be removed due to unspeci�ed sex, as also
implemented within the GWAS-analysis. In conclusion, after merging the data, the dataset
comprises 892 multiple sclerosis patients treated with interferon-β.
Again using this data, a QC was performed using the same conditions as for the TUM 1

dataset as well as for the TUM 2 dataset, for details see 6.1.2.
This resulted in a total number of SNPs slightly surpassing the 6 million count, which could

be included in further calculations as listed per chromosome in table Table 6.10. Though the
SNP rs4961252 on chromosome 8 does barely not pass quality control conditions, we decided
to include this particular SNP for further calculations due to possible correlation with antibody
production against interferon-β found in previous studies Weber et al. (2012).

Chromosome 1 463 598 Chromosome 12 294 316
Chromosome 2 510 168 Chromosome 13 230 904
Chromosome 3 437 159 Chromosome 14 202 238
Chromosome 4 446 311 Chromosome 15 171 205
Chromosome 5 397 827 Chromosome 16 179 402
Chromosome 6 399 560 Chromosome 17 153 601
Chromosome 7 356 193 Chromosome 18 174 545
Chromosome 8 340 477 Chromosome 19 133 588
Chromosome 9 263 006 Chromosome 20 135 260
Chromosome 10 315 773 Chromosome 21 87 349
Chromosome 11 309 774 Chromosome 22 78 523

Total: 6 080 777
Table 6.10: Number of SNPs per chromosome a�er quality control of the combined dataset.
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Using the GWAS-analysis strategy again with the phenotype indicating the antibody titer and
covariates being C1–C5 of MDS as well as sex and age of the samples, we additionally included
the study as a covariate to re�ect a SNPs origin from the TUM 1 dataset versus the TUM 2
dataset. The studywas initilized including 1196 individuals, whereas the analysis was performed
with 891 patients, including all those presenting a non-missing phenotype. This means 304
individuals could not be included due to unspeci�ed sex and one individual was excluded
because of a missing alternate phenotype. As a result, a total of 6 SNPs on chromosome 6
yielded p-values < 10

�7 as listed in Table 6.11, in fact all localized in the proximity of the
HLA-DRB1 gene on chromosome 6. This may indicate a correlation of antibody production
against interferon-β and genes within the HLA-region.

SNP allele 1 allele 2 frequency allele 1 info score beta SE p-value
rs34958241 A G 0.8492 0.7531 -13.69 2.43 2.428 · 10�8

rs34784936 G T 0.8461 0.7448 -13.65 2.43 2.457 · 10�8

rs34855541 A G 0.8502 0.7656 -13.42 2.42 3.975 · 10�8

rs35380574 C T 0.8452 0.7793 -12.81 2.37 8.382 · 10�8

rs35395738 T C 0.8523 0.8098 -12.88 2.38 7.857 · 10�8

rs35472547 G T 0.8536 0.8175 -13.02 2.37 5.383 · 10�8

Table 6.11: Top SNPs from GWAS with normalized antibody titer of the combined dataset.

Moreover, 13 other SNPs localized on chromosomes 4, 6, 7, 13, and 15 yielded remarkable
p-values of < 10

�6 and 92 SNPs yielded p-values of < 10

�5 listed in table Fig. 6.7 on the next
page especially on chromosomes 6 and 13.
The resulting p-value of the promising SNP rs4961252 on chromosome 8, which has been

associated with multiple sclerosis only yielded a value of 4.095 · 10�5 in our study as shown in
Table 6.12 Weber et al. (2012).

SNP alleles frequency allele 1 info score β SE p-value
rs4961252 A G 0.6133 0.9252 -6.68 1.62 4.095 · 10�5

Table 6.12: GWAS result for the SNP rs4961252 within the combined dataset.

The Manhattan Plot, shown in Fig. 6.10 on page 61 nicely demonstrates the peak of low
p-values on chromosome 6. The QQ plot, shown in Fig. 6.11 on page 62 shows an acceptable
similarity of observed and expected p-value distributions. As a �nal step before employing the
combined dataset for our SVM calculations we decided to compute the residual values of the
antibody titer to be used as the phenotype. Residuals represent the variability of the data. In
other words, they determine the deviation of the actual measured value from the estimated
model.

http://www.ncbi.nlm.nih.gov/gene/3123
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=34958241
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=34784936
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=34855541
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=35380574
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=35395738
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=35472547
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=4961252
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=4961252
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SNP          A1 A2   FRQ           INFO          BETA             SE              P-VALUE 

Chromosome 1  

rs12119103  G   A  0.8936  0.9338  -11.6556  2.5488  5.498e-06 

Chromosome 2  

rs75821867  A   G  0.3770  1.9078  -26.1192  5.8328  8.524e-06  
rs2565686    C   T  0.1981  1.3747  10.8874  2.4399  9.165e-06 
rs28378381  A   G  0.5793  0.9745  -6.9411  1.5563  9.261e-06 

Chromosome 3  

Chromosome 4 

rs7682820   G    C  0.4456  0.8954  -7.7023  1.6077  1.949e-06 
rs9994029   G    A  0.4452  0.9040  -7.6098  1.6004  2.318e-06 
rs10017348 C     T  0.4440  0.9073  -7.6746  1.5975  1.827e-06 
rs9996749   G    T   0.4390  0.9074  -7.4367  1.6003    3.88e-06 
rs4359979   C    G  0.4701  0.8873  -8.2148  1.6054  3.812e-07 
rs4689374   G    T  0.4691  0.8904  -8.1259  1.6030  4.873e-07 
rs4689375   T     C  0.4698  0.8891  -8.1497  1.6040  4.586e-07 
rs7686248   T     A  0.4655  0.8860  -7.8897  1.6087  1.115e-06 
rs13124547 G    A  0.4705  0.8963  -8.1965  1.5970  3.523e-07 
rs13131705 C    A   0.4705  0.8976  -8.1892  1.5959  3.539e-07 
rs12233714 G    A  0.4724  0.9048  -8.1762  1.5892  3.302e-07 
rs76940812 G    T  0.3772  1.9144  -27.7519  5.6979  1.319e-06 
rs72669292 A    G   0.3772  1.9146  -27.7591  5.6980  1.311e-06 

Chromosome 5  

rs28405264  T   C  0.6480  0.9174  7.8132  1.6585  2.863e-06 

Chromosome 6  

rs2395175    A   G  0.1139  0.9826  12.3395  2.4064  3.604e-07 
rs34958241  A   G  0.8492  0.7531  -13.6908  2.4319  2.428e-08 
rs34784936  G   T   0.8461  0.7448  -13.6487   2.4254  2.457e-08 
rs34855541  A   G  0.8502  0.7656  -13.4154  2.4212  3.975e-08 
rs35380574  C   T  0.8452  0.7793  -12.8089  2.3702  8.382e-08 
rs35395738  T    C  0.8523  0.8098  -12.8804  2.3781  7.857e-08 
rs35472547  G   T  0.8536  0.8175   -13.0151  2.3725  5.383e-08 
rs34291045  A   T  0.8673  0.8561  -11.6732  2.4200    1.66e-06 
rs34924558  C   T  0.8777  0.8505  -11.2109  2.5123    9.15e-06 
rs34415150  A   G  0.8775  0.8514  -11.3442   2.5086  6.957e-06 
rs34212923  T    C  0.8775  0.8517  -11.3511  2.5084    6.86e-06 
rs34928543  G   C  0.8761  0.8515  -11.5540  2.4940  4.152e-06 
rs34752364  G   A  0.8776  0.8659  -11.2656  2.4875  6.743e-06 
rs36083025  A   T  0.8774  0.8645  -11.2586  2.4872  6.817e-06 
rs2760976    C   T  0.9046  0.8224  -13.4065  2.8854  3.894e-06 
rs35074855  C   G  0.9002  0.8310  -14.0098  2.7936  6.416e-07 
rs35525122  C   A  0.8720  0.8544  -11.4184  2.4576  3.897e-06 
rs17804379  C   A  0.9019  0.8139  -12.7638  2.8591  9.076e-06 
rs35653258  C   A  0.8938  0.8372  -12.8842  2.7082    2.29e-06  

Figure 6.7: Top GWAS results of merged datasets with p-values < 10 · 10�6, 1.
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SNP          A1 A2   FRQ           INFO          BETA             SE              P-VALUE 

rs2647059    G   C  0.8953  0.8718  -12.6316  2.6628  2.446e-06 
rs34039593  T   G  0.8677  0.8734  -10.6642  2.3965  9.691e-06 
rs2647062     A   C  0.8733  0.8853  -12.3252  2.4140    4.04e-07 
rs558721       C   T  0.8685  0.8744  -11.3094  2.3993  2.826e-06 
rs679242       G   T  0.8583  0.8370  -11.1247  2.3770  3.316e-06 
rs2647066     C   T  0.8652  0.8593  -11.1075  2.3947  4.044e-06 
rs601945       A   G  0.8739  0.8515  -11.4717  2.4776  4.202e-06 
rs617578       G   A  0.8934  0.8574  -12.3978  2.6665  3.836e-06 
rs7761182     G   T  0.8704  0.8558  -11.6180  2.4377  2.197e-06 
rs112485576 C   A  0.8719  0.8340  -11.3427  2.4888  5.907e-06 
rs113881693 T   A  0.8714  0.8178  -11.6881  2.5082    3.65e-06 
rs116753595 A   C  0.8722  0.8144  -11.7688  2.5203  3.487e-06 
rs111344329 C   G  0.8669  0.8305  -11.6981  2.4478  2.063e-06 
rs112397540 G   C  0.8653  0.8159  -11.6880  2.4573  2.302e-06 
rs192602999 A   G  0.8642  0.8164  -11.5845  2.4483   2.593e-06 
rs112969691 A    T  0.8636  0.8189  -11.5705  2.4402  2.473e-06 

Chromosome 7  

rs2537575    G   A  0.7094  0.9556  -8.2044  1.7121  1.938e-06 
rs2537580    C   T  0.7180  0.9600  -8.7550  1.7210  4.441e-07 
rs2723525    G   A  0.7327   0.9478  -8.3687  1.7610  2.347e-06 
rs2537583    C   T  0.7473  0.9784  -8.4021  1.7642  2.235e-06 
rs2537584    A   T  0.7611  0.9655  -8.3445  1.8098  4.607e-06 
rs2080060    G   C  0.7730  0.9733  -8.3740  1.8366  5.853e-06 
rs1830004    G   A  0.7646  0.9510  -8.4893  1.8323  4.145e-06 
rs2537589    G   A  0.7698  0.9729  -8.1299  1.8284  9.848e-06 
rs2537590    A   G  0.7442  0.9580  -8.2184  1.7782  4.371e-06 
rs17138250  G   T  0.7767  0.9842  -8.6309  1.8344  2.948e-06  

Chromosome 8 

rs72692187  G   A  0.3763  1.9143  -25.3533  5.4064  3.173e-06 

Chromosome 9  

Chromosome 10  

Chromosome 11  

Chromosome 12  

Chromosome 13 

rs147607590 A   G  0.9400  0.9711  -15.8890  3.2317     1.05e-06 
rs77330495   G   A  0.9404  0.9709  -16.0100  3.2419   9.422e-07 
rs192668777 G   C  0.9397  0.9634  -15.8322  3.2379       1.2e-06 
rs75687330   G   C  0.9405  0.9744  -15.7157  3.2403   1.458e-06 
rs79933822    T   C  0.9405  0.9744  -15.7119  3.2403   1.467e-06 
rs41283964   C   T   0.9405  0.9750  -15.6692  3.2402   1.564e-06 
rs41283966   C   A  0.9405  0.9748  -15.6487  3.2415   1.629e-06 
rs41283968   A   C  0.9405  0.9748  -15.6459  3.2416   1.637e-06  

 

Figure 6.8: Top GWAS results of merged datasets with p-values < 10 · 10�6, 2.
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SNP          A1 A2   FRQ           INFO          BETA             SE              P-VALUE 

rs41283970   C   T  0.9405  0.9748  -15.6395  3.2419   1.656e-06 
rs74092453   C   G  0.9405  0.9749  -15.6344  3.2420     1.67e-06 
rs78968771   C   T  0.9408  0.9730   -15.5819  3.2534   1.962e-06 
rs61118704   T   A  0.9407  0.9753  -15.5234  3.2457    2.027e-06 
rs74092457   C    T  0.9409  0.9770  -15.3525  3.2498   2.689e-06 
rs55723643   A   T  0.9410  0.9756  -15.3419  3.2551  2.834e-06 
rs74092460   A   G  0.9411  0.9750  -15.3176  3.2588  3.013e-06 
rs79899610   T    A  0.9411  0.9755  -15.3123  3.2594  3.048e-06 
rs78878064   C   A  0.9412  0.9760  -15.2796  3.2612  3.237e-06 
rs74441951   A   G  0.9410  0.9815  -15.0725  3.2472  3.982e-06 
rs116469627 T    A  0.9408  0.9898  -14.7419  3.2313  5.777e-06 
rs79244104   C   T  0.9408  0.9899  -14.7396  3.2311  5.792e-06 
rs186649667 A   G  0.9409  0.9940  -14.6338  3.2275  6.582e-06 
rs77532219   A   G  0.9409  0.9945   -14.6154  3.2266  6.719e-06 
rs75663319   C   T  0.9409  0.9943  -14.6258  3.2272  6.648e-06 
rs56347846   A   G  0.9409  0.9953  -14.5988  3.2262  6.863e-06 
rs55815844   T   C  0.9409  0.9954  -14.5975  3.2261  6.873e-06 
rs77983781   A   G  0.9409  0.9955  -14.5940  3.2260  6.904e-06 
rs77667178   G   A  0.9409  0.9956  -14.5923  3.2260    6.92e-06 
rs79116569   G   T  0.9409  0.9956  -14.5921  3.2260  6.922e-06 
rs7993163     A   G  0.9409  0.9956  -14.5950  3.2262      6.9e-06 
rs990613       C   T  0.9409  0.9953  -14.6028  3.2275  6.884e-06 
rs990614       A   T  0.9409  0.9949  -14.6105  3.2270  6.787e-06 
rs79249645   G   A  0.9409  0.9947  -14.6145  3.2273  6.762e-06 
rs75118882   T   C  0.9409  0.9947  -14.6151  3.2274  6.757e-06 
rs79983361   G   A  0.9409  0.9946  -14.6167  3.2275  6.747e-06 
rs9542045     A   C  0.0590   0.9951  14.5991  3.2304  7.052e-06 
rs1118693     T   C  0.0589  0.9951  14.5967  3.2320     7.15e-06 
rs74477296   C  G  0.9411  0.9952  -14.5958  3.2321  7.161e-06  

Chromosome 14  

Chromosome 15 

rs113178069 A  G  0.9445  0.7778  -19.6141  3.7498  2.111e-07 
rs213150       C  A  0.0196  0.9205  30.2380  5.8796  3.335e-07 

Chromosome 16  

Chromosome 17 

rs9899744  C   T  0.7877  0.9146  -8.8723  1.9395  5.457e-06  

Chromosome 18 

rs1047363     C  T  0.3760  1.9034  -26.9512  5.7409  3.097e-06  

Chromosome 19  

Chromosome 20  

Chromosome 21 

Chromosome 22 

Figure 6.9: Top GWAS results of merged datasets with p-values < 10 · 10�6, 3.
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Figure 6.10:Manha�an plot of the GWAS results of the combined dataset.
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Figure 6.11: QQ plot of the GWAS results of the combined dataset.
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7 Building prediction models from
genotype data

7.1 Idea and setup

With today’s improving research techniques, more and more genetic markers are being detected
in association with developing various diseases, including the development of multiple sclerosis
and other autoimmune in�ammatory diseases.
Patients treated with interferon-β can produce neutralizing antibodies, which makes the

medication une�ective. Immunologically relevant genes are found especially in the HLA
regions on chromosome 6, where yet, some biomarkers have been associated with antibody
production against interferon-β Barbosa et al. (2006); Buck et al. (2011); Buck and Hemmer
(2014); Ho�mann et al. (2008); Link et al. (2014); Soelberg Sorensen (2008); Weber et al. (2012).
The ability to create prediction models with SVM motivated us to use this approach to develop
a method to forecast therapy response. Genotype information as well as antibody titer of
patients treated with interferon-β provides us the data needed for SVM calculations. Finding a
prediction to therapy response could be a major leap to avoid ine�ective medication.

Before starting the calculations, it was important to explore the best possible preconditions
for support vector machines to create a promising prediction model. These steps include

• �nding the optimal SVM parameters — such as cost and gamma,
• �nding the maximum SNP number support vector machines can calculate with using
simulated data and pre�lter correlated features

• dividing the genome-wide data into adjusted partitions — into single genes

and will be discussed in the following sections, which trace the development of the thesis and,
therefore, present some intermediate results that cannot be generalized.

7.1.1 Finding optimal SVM-kernel parameters

When using SVM, it is recommended to �rst �nd the optimal parameters suitable for speci�c
data to be analyzed. The function auto.tune.svm() in the R-package e1071 implements
a grid search over all used parameters. For a Gaussian kernel these are cost (C) and the
kernel parameter gamma (�), for details see section 5.6. Auto-tunig is able to detect the optimal
parameters for the processed dataset based on the achieved performance.
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We found only negligible di�erences between sampling methods leave-one-out cross valida-
tion (LOOCV) or n-fold cross validation (almost independent of n), so we usually employed
3-fold cross-validation for e�ciency reasons.

Selecting the kernel The svm parameter kernel is, by default, set to radial basis kernel.
The radial basis kernel, RBF, is what we called “Gaussian kernel” so far and generally used
when smooth estimates are desired Smola et al. (1998). Another reason to go with this kernel is
our goal to detect possible interactions between features (SNPs). Nevertheless, we performed
calculations with di�erent kernels listed in Table 5.1 on page 38 to �nd the best preconditions
for our calculations. Overall, the radial basis kernel seemed to be the best option, see 7.2.2.3 on
page 72.

This initial step to �nd a good choice of parameters helped us to later obtain reliable results
in the study.

7.1.2 Estimation of confounding e�ects

There are another two types of e�ects that we needed to be investigated before actually working
with the real data to know what kind of in�uence to expect on the resulting model. On one
hand, SNPs that do not contain any relevant information related to the phenotype will likely
reduce the predictive power of the model, as they unnecessarily increase the number of features.
On the other hand, SVMs are known to poorly handle correlated input variables, such as SNPs
with similar genotypes across the subjects.

7.1.2.1 Influence of non-informative features

To determine the maximum number of SNPs that support vector machines can reliably handle,
we decided to create a genotype matrix with only one single real SNP from the data set
and randomly simulated genotype data. These arti�cial SNPs were sampled from genotype
distribution for a randomly chosenminor allele frequency (MAF) between 0.05 and 0.5, therefore
containing no information which could positively in�uence the model.
We selected the SNP rs4961252 since previous studies on interferon-β therapy indicated

a promising association with the antibody titer Weber et al. (2012). This study noted that
even the best non-HLA single-SNP e�ect could account for about 2.6 % of the total phenotype
variance, considered a rather small or weak e�ect. In other words, this means that 2.6 % of the
anti-interferon-β antibody response can be attributed to this SNP.
For the prediction based on the SVM model with only this particular SNP plus sex and

age at sampling as covariates, we �nd a correlation r

2-value of approximately 0.035 with
the normalized AB titer. This is quite comparable to what is expected after the trial results
mentioned above. We then started adding non-informative SNPs to increase the total number
of SNPs from n = 2, 5, 10, . . . in approximately logarithmic steps to 5 000, see the labels on
the x-axis in Fig. 7.1 on the next page which uses a logarithmic scale. For each SNP count, 7
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simulated genotype matrices were generated. The resulting r2-values, as displayed in Fig. 7.1,
are where the violins indicate the distributions of the r

2-values per SNP count, while the
respective mean r

2 is shown as circle with a smooth estimator line in red. As expected, the
r

2-values steadily decrease with increasing numbers of random SNPs, which suggests that the
random SNPs tend to be confounding factors for support vector machines.
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Figure 7.1: Exploring SVM predictability versus the number of SNPs included when all but one are
non-informative, note the logarithmic scale on the x-axis. The dots indicate the mean
of each 7 iterations with a smooth estimator line in red. The question mark indicates a
possible e�ect of overfi�ing when adding 2000 or more non-informative SNPs to the
calculations.

Adding a small number of SNPs the SVM could still identify our real SNP rs4961252 and
yield an r

2-value comparable to the one found with no extra SNPs. At the limit of 500–1 000
random SNPs we observe r2-values close to 0, which determined our decision to not include
more than a few hundred SNPs per SVM model. Furthermore, by including over 2 000 random
SNPs we can again observe an increase of the r2-values. This may be caused by over�tting,
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which means that too much information is given, so that in any situation a considerable but
meaningless prediction result can be achieved. At n = 5000 we �nd r2 close to 1, which is not
included in the plot. However, the SNP data in this test were simulated as independent, which
means without any correlation structure. In real genotyping data, we have to expect some
degree of LD in between the SNPs, as described in 7.1.2.2, which will lead to a faster decrease
of performance. In other words, for reliable results one should probably aim at SNP numbers
well below those estimated from Fig. 7.1 on the preceding page when building a model from
real data.

7.1.2.2 Correlated features

Figure 7.2: Pairwise correlation of 17 SNPs lo-
calized on the HLA-F gene. The red
colored squares indicate haplotypes,
the color a�enuating with the de-
gree of correlation.

The e�ect of correlated genotypes in the geno-
type matrix can be estimated with a similar ap-
proach. With the function preFilter(), using
the function findCorrelation() available in
the R package caret Kuhn et al. (2016), the correla-
tion threshold can be chosen and thus the correlation
of SNPs evaluated.

Looking at all pairwise correlations (see Fig. 7.2) of
SNP genotypes from, e. g., one gene, it is common to
�nd linkage disequilibrium (LD) blocks which were
introduced in 6.1.2. As a practical consequence, only
one SNPwithin a LD block of highly correlated SNPs,
also called haplotypes, needs to be kept in the study.
Haplotypes denote a certain genotype combination
of several SNP, which guide the formation of LD
blocks.
Since we do not have access to the haplotype in-

formation for our genotyped patients, we take the correlation between the genotypes as a
proxy and assume that highly correlated SNPs (r > 0.9) can be considered equivalent to an LD
block and all but one SNP are excluded from the primary analysis. This way, we can in some
cases drastically decrease the number of SNPs localized on one gene that need to be considered
in the analysis and achieve signi�cant time savings for the calculations. Setting the correlation
cut-o� to r > 0.75 the number of remaining SNPs can be reduced even further, which turns
out to be necessary for larger genes with more than 1 000 SNPs.

7.1.3 Dividing data into adjusted partitions

SVMs can only generate reliable prediction models when a certain number of given variables
is not exceeded, see 7.1.2 on page 64. Since we work on a data set with over 5 700 000 SNPs,
it was necessary to split our data into more suitable partitions for the SVM calculations. One
prediction model should likewise be created with an optimal number of SNPs of not more
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than a few hundred. Therefore, we decided to create one prediction model for each gene. This
means that all SNPs localized on one gene will supply genotype information for one calculation.
Later on, all models can be summarized to yield a genome-wide model for therapy outcome
prediction.

7.2 Building prediction models from genotype data
This section focuses on the implementation of the method on the real genotype dataset. Fig. 7.3
shows an overview of our project concept, setup, and idea, which will be introduced step by
step in the following sections. For building the prediction model the TUM 1 dataset was used.

Figure 7.3: Project concept.

7.2.1 Finding gene ranges

Due to the high number of over �ve million SNPs in the study, it was necessary to divide the
data into more suitable partitions for SVM calculations. As demonstrated earlier in our study,
SVM predictability gets unreliable because of over�tting when including 2 000 or more variables
as shown in Fig. 5.1 on page 32. This led to the idea to partition the data into gene ranges and
creating one SVM model with all SNPs localized within one gene or gene range.
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A gene range was de�ned at the start base position of a gene, including all overlapping genes
along the DNA strand, concluding with the end base position of the last overlapping gene. In
other words, all SNPs localized on genes having overlapping positions on the DNA strand will
be added to a combined SVM prediction model.
The genomic reference data from the UCSC annotation database provides information of in

total 44 419 genes with their respective start and end base pair position on the reference genome
Kent et al. (2002). We used the annotation database for the 2009 assembly of the human genome
(hg19). A newer version was released in March 2014. The annotations were generated by the
University of California at Santa Cruz (UCSC) and collaborators worldwide, for details see
www.genome.ucsc.edu. This allowed us to select all known SNPs within a gene’s boundaries.
We again obtained the relevant references from dbSNP Bethesda (2005); Sherry et al. (2001).

While this resource is available online, for performance reasons it is advantageous to have
that information readily available. We stored the data in a local relational database, in SQLite for
testing whereas PostgreSQL for the full dataset. These databases and their respective interface
packages to R RSQlite Müller et al. (2017) and RPostgreSQL Conway et al. (2016) gave us
permanent and fast access to genome and SNP information and let us select relevant genes
by SNP ID, base position, expected allele frequency as well as info score and certainty of each
SNP, see section 6.1.2 on page 45.
This approach of partitioning the data, resulting in 21 772 gene ranges, would reduce the

calculations of prediction models more than half than needed for each of the 44 419 genes.
However, we not only found gene ranges of only one or a few genes per gene range, we also
found some gene ranges with a high number of overlapping genes, up to 77 genes per gene
range, were composed. This would also drastically increases the number of SNPs per calculation.
Large gene ranges would contain clearly more than 1 000 SNPs, which is not aspired for SVM
as identi�ed in section 7.1.2.1. This fact seemed contrary to the aim of reducing the number of
features in SVM calculations to avoid over�tting. So we decided to continue the study preferably
creating one prediction model per gene.
Through this approach of partitioning the dataset into gene-wise subsets, we were able to

reduce the number of SNPs per calculation, which made �rst calculations with SVM possible.
Knowing speci�cally that the HLA regions are associated with antibody production, we

initially focused on chromosome 6, where the HLA genes are localized. For each gene on
chromosome 6, we performed SVM calculations (using a three-fold cross validation, parameter
cost being set to 1, gamma to 0.001, see section 5.6 on page 37). The predictive power of the
model is expressed by the correlation r

2 between measured and predicted AB titer. Genes with
high r

2 are potential candidates for carrying SNPs that could serve as predictive biomarker.
Fig. 7.4 on the next page summarizes performances for the 2 101 genes on chromosome 6. The
dots in the plot indicate the prediction r

2 of all genes on chromosome 6 along with corre-
sponding number of SNPs in those genes exceeding r

2 of 0.1. The peaks of the shaded area
in the background represent hotspots of interesting genes. The peak, around 40Mb, nicely
corresponds to the fact that antibody production seems partially controlled by HLA genes.
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Figure 7.4: SVM performance of gene-wise calculations for chromosome 6. Calculations were
performed using three-fold cross validation, parameter cost being set to 1, gamma
to 0.001. The red dots indicate the prediction r

2 of the genes on chromosome 6 along
with corresponding number of SNPs in those genes exceeding r

2 of 0.1, showing the
names on the top. The peaks of the shaded area in the background represent hotspots
of interesting genes. The peak around 40Mb indicates the HLA region.

It is likely to �nd indicative SNPs also outside the proper gene boundaries, since they may
be localized in promoter regions or otherwise have impact on the activation and regulation of
a gene. Therefore, we decided to redo the SVM calculations with expanded gene boundaries of
±200 kb.

7.2.2 Gene processing

PreFiltering is the �rst step to reduce the number of SNPs by eliminating highly correlated
features, as introduced in section 7.1.2.2. Thereafter, SVM feature selection can detect relevant
biomarkers by pruning. After these calcluation, we decided once more to optimize the SVM
parameters cost and gamma as well as the chosen kernel, which will be presented in the
following section.

7.2.2.1 Prefiltering

As introduced earlier in section 7.1.2.2, pre�ltering is an e�ective method to reduce the number
of features by excluding highly correlated SNPs from the study.

The largest gene on by number of SNPs on chromosome 6 is PARK2, for which a total of 4 235
SNPs is represented in this study. A mutation in PARK2 is associated with the development
of Parkinson’s Disease. When creating a prediction model with all SNPs, SVM (calculation of
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a three-fold cross validation with cost set to 1 and gamma to 0.001) can yield a prediction
power of 0.978. After pre�ltering the SNPs on correlation of at least 0.9, which resulted in
574 SNPs, SVM can achieve a predictive value of 0.818. By pre�ltering with a threshold of
0.75 correlation we were able to reduce the number of SNPs down to 257 and the r-value
consequentely decreased to 0.631. This shows, as listed in table 7.1, that the r2-value increases
as the number of features adds, which indicates a good example of over�tting the model. Too
many features can raise the prediction power.

preFilter SNP count r-value
— 4 235 0.987
0.9 574 0.818
0.75 257 0.631

Table 7.1: Prediction power in dependance of SNP count of the PARK2 gene.

Looking at two of the MHC II immune reaction associated genes in the HLA region, we �nd
an increasing r-value as we pre�lter the SNPs.

Within the SVM calculations (a three-fold cross validation with cost set to 1 and gamma to
0.001) of the HLA-B gene, a r-value of 0.241 can be achieved when adding all 82 SNPs to the
dataset. After pre�ltering with a threshold of 0.9 and 42 SNPs remaining an enhancement of
prediction power up to 0.268 can be observed.

With a total of 45 SNPs localized on the HLA-C gene, the SVM calculation yields a prediction
power of 0.177. After 0.75 pre�ltering and having only 4 SNPs remaining, the r-value increases
to 0.193. This may be an example of a gene, which contains relevant predictive information
and yields higher prediction power when confounding features are eliminated.

HLA-B HLA-C
preFilter SNP count r-value SNP count r-value

— 82 0.241 45 0.177
0.9 42 0.268 8 0.193
0.75 23 0.210 4 0.193

Table 7.2: Prediction power in dependance of SNP count of the HLA-B and HLA-C genes.

7.2.2.2 Feature selection: Pruning and growing approaches

SVM feature selection detects relevant biomarkers, such as SNPs or genes, which are selected for
calculations and isolated from noisy data. There are two di�erent straight-forward approaches
to feature selection.

Pruning The process of starting with the whole feature set and eliminating one feature
at a time is referred to as backward elimination. Pruning is performed within the usual SVM
approach. The �rst SVM calculation includes the entire dataset and is used to create a prediction
model. The features then are evaluated. The iterative feature selection process selects SNPs by
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their importance with respect to the prediction outcome. The feature with the least contributing
in�uence will be dropped. Another prediction model is created using the remaining (all minus
one SNPs) and again the least contributing feature is dropped. After eliminating one feature at
a time, this procedure is repeated until all features have been dropped. The last feature to be
dropped indicates the feature with the most in�uence on the prediction outcome. This method
of feature selection is also called pruning.

Algorithm 1 (Pruning)
1. Start with all N features
2. Build and evaluate a prediction model N times with always one feature removed,
record performance

3. exclude feature that was removed in the resulting model with best performance,
this feature contributed least to a prediction with high performance in this round

4. repeat from 2. until only one feature is left

Growing The other approach works in the opposite way. The process begins with zero
features, with each step one feature will be added to the model. This means the �rst SNP to be
included for the study is the feature with the most contributing e�ect and prediction outcome
is only based on its single SNP e�ect. Predictions models are then created by continuously
adding one of the remaining SNPs. The SNP pair achieving the best performance is kept in the
study. If the added SNPs contributed in�uence this would subsequently increase prediction
power of the SVM model. The procedure will be repeated until all features are included. This
method is also referred as growing.

Algorithm 2 (Growing)
1. Start with zero of N features
2. Build and evaluate a prediction model N times with always one feature,
record performance

3. Keep the feature that created the model with best performance,
this feature contributed most to a prediction with high performance in this round

4. Repeat from 2. until all features are included

As an example for pruning we initially reviewed the HLA-DRB1 gene. Since the gene does
not contain any SNPs after QC-�ltering, we expanded the gene region by 10 kb, to �nd 101 SNPs
within our newly set limits. The plot Fig. 7.5 on the following page traces the SNP elimination
process versus achieved performance for the HLA-DRB1 gene. The local maximum at the right,
indicating the optimal prediction, is achieved based on information of only 10 SNPs from this
gene.

Using this test model, this gene — and many others independently — already yield improved
prediction over single SNP approaches. These early results gave us a promising perspective
that combining the genotypic information across genes and, eventually, the whole genome,
should yield additional predictive power.
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Figure 7.5: Pruning plot of the HLA-DRB1 gene. The SVM calculation was performed 101 times,
for each step (x-axis) the performance (y-axis) is displayed. The maximum performance
on the right side of the plot indicates the best performance including 10 SNPs, defined
by the blue vertical line.

Practical considerations Apart from the encouraging and reliable performance of pruning,
one should not forget one downside of these techniques: they have considerable computational
requirements. Since a large number of SVMmodels are created within each iteration to compare
and detect the most informative SNPs, a lot of calculation time and processors are needed.

7.2.2.3 Re-evaluating SVM parameters

As introduced in section 5.6, gamma (�) is a kernel parameter in SVM calculations, see Table 5.1
on page 38. It determines how �exible a SVM model can respond to the data points in the �tting
process.

Fig. 7.6 on the facing page reveals how far the data can spread depending on gamma. When
gamma is set low, a variables in�uence reaches further. This means the smaller the gamma, the
�atter the prediction curve. On the other hand, when gamma is set high, it will keep a feature’s
in�uence constrained, which allows the prediction to closely follow any feature in the data.
Similarly, increasing cost (C), will force the prediction to more closely follow the data points.
It is reasonable to believe that the extremes in either parameter are bad choices for building
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meaningful models. If gamma is set too low, the prediction is forced to be �at and is unable to
show �uctuations in the data. However, high gamma values lead to predictions that will perform
perfectly on the given (training) data but are unlikely to perform equally well on new data.
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Figure 7.6: The SVM parameter gamma defines the reach
of data. A high gamma keeps response con-
strained, small gamma allows further reach of
model response.

If there is no penalty associated with
misclassi�cation, which equals a small
cost, a �at prediction results while a large
cost leads to wild overshooting and in-
accurately representing the training data.
When aiming for a prediction model that
on one hand provides a reasonable �t to
the training data but can on the other hand
be seen trustworthy when predicting the
outcome for new data, a parameter combi-
nation of e. g., C ⇡ 1, � ⇡ 1 seems appro-
priate.

We were concerned that we might have
set the gamma to high, which could suppress single SNP e�ects. Some calculations showed
that setting cost and gamma constant made it di�cult to achieve high r-values.
Initially, gamma was determined by a cross-validation grid search for a medium size gene

and held constant, irrespective of the model size. In retrospect, the chosen value � = 0.001

turned out to keep the modeling process from adapting to the data and was able to achieve
only poor performances, especially for small numbers of SNPs.

This made us re-evaluate the parameter and review calculations when gamma is calculated
as a function of n, indicating the number of SNPs in the model:

� 7! �(n) =

1

n

(7.1)

As presumed, these calculations are able to yield higher prediction power. The genes
presented in section 7.2.2.1 achieved exemplary higher prediction power. Calculations with the
PARK2 gene yield a higher r-value of 0.928, pre�ltered at 0.9 with 574 SNPs, compared to an
r-value of 0.818 when gamma was set to 0.001.

gamma preFilter SNP count r-value
0.001 — 4 235 0.987
0.001 0.9 574 0.818
0.001 0.75 257 0.631
1/n 0.9 574 0.928

Table 7.3: Prediction power of the PARK2 gene with newly set gamma. The table shows an increase
of the r-value when gamma is set to 1/n.

Even more impressive is the notable increase of prediction power within the HLA-B gene.
Compared to a constant gamma, calculations can now reach a more than two-fold increase of
prediction power, as illustrated in Table 7.4 on the next page.
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Fig. 7.7 shows the pruning plots for the HLA-B gene. The light blue curve indicates the
pruning performance when gamma is set to 0.001. With a variable gamma, as de�ned in Eq. 7.1
on the previous page, the performance increases impressively as displayed on the y-axis of the
pruning plot. This shows that a high gamma keeps the response localized and might be too
susceptible to random �uctuations in the data. On the other hand, when gamma is too low, the
response can no longer follow the data. Both e�ects lower the performance.

Figure 7.7: Pruning plot for the HLA-B gene in dependance of modified gamma. For each pruning
step (x-axis) the performance (y-axis) is displayed. A clear gain in performance can be
achieved when gamma is set to 1/n.

HLA-B HLA-C
gamma preFilter SNP count r-value SNP count r-value
0.001 — 82 0.241 45 0.177
0.001 0.9 42 0.268 8 0.193
0.001 0.75 23 0.210 4 0.193
1/n 0.9 42 0.66 8 0.425

Table 7.4: Prediction power in dependance of gamma of the HLA-B and HLA-C genes.

Also the HLA-C gene calculations show a distinct improvement of the r-value from 0.193 to
0.425 within SVM calculations, see Table 7.4.

Secondly, we decided to also re-evaluate the kernel for further calculations. Figure 7.8
shows the performance of the pruning calculation of the HLA-DRB1 gene (gene boundaries
±10 kb including 101 SNPs) using di�erent kernels. At �rst glance, it seems like the higher
the polynomial degree, the better the model performance gets. Approximately 20 features
contribute in�uence to reach the maximum performance. Upon further inspection, we based
our decision of kernel choice on the steepest ascent (from the right of the plot) indicating the
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performance increase when adding features to the model. Therefore, the radial basis kernel
seems to be the best choice.
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Figure 7.8: Comparison of pruning results of the HLA-DRB1 gene (gene boundaries ±10 kb includ-
ing 101 SNPs) with di�erent kernels set for SVM calculations. For each pruning step
(x-axis) the performance (y-axis) is displayed. The pruning curves show calculations
using di�erent polynomial kernels degree 2 to 5 as well as the radial basis kernel. The
best choice of kernel for calculations within this project is the radial basis kernel, as it
shows the steepest ascent, on the righ side of the plot, when adding features to the
model.

7.2.2.4 Permutation

Permutation is a well-known technique used to validate study results and review their signi�-
cance. A permutation estimates the distribution of the null-hypothesis and is used to reproduce
no signi�cant e�ects.

Within a permutation of our project, we randomly assign phenotype information to di�erent
individuals to break up any real relationship between genotypes and phenotype. In other words,
the genotype data are kept �xed while the antibody titer against interferon-β is randomly
rematched to the individuals. Assuming there had been a meaningful association in the original
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data, this would most likely have been destroyed in the new rearrangement of genotypes
to phenotype. Calculated correlations for this situation should be weaker than for the real
data. However, as discussed in section 6.1.3 in the context of calculation p-values within the
GWAS, even for random data (under the null hypothesis) highly signi�cant results may be
found (false positives), as shown in Fig. 6.3 on page 50, although unlikely. In this sense, using
a permutation produces data according to the null hypothesis. By repeating this step many
times and evaluating the correlation each time, we get an approximation to the distribution of
the expected correlation for random data. Comparing the correlation found for the real data
with this distribution, the signi�cance of the �nding can be estimated. In some cases, a slightly
better outcome can be accepted, such as in situations where data is, by chance, a better match
than the real distribution.
For this reason, permutations need to be repeated many times to �nd a su�ciently �ne

approximation to the null distribution. Permutations should be repeated 100, 1 000 . . . or even
10 000 times to avoid accepting an occasional outstanding result. This way, the permutation
can represent the averaging distribution.
In order to evaluate the performance of the SVM pruning calculations, we performed a

permutation of the phenotype values of the HLA-DRB1 gene ±10 kb including 101 SNPs. The
top plot in Fig. 7.9 on the facing page shows the permutation results. Once the phenotype
was permutated an SVM model (cross-validation with newly set parameters) was created and
evaluated. The blue line shows results of the real data, the x-axis indicating the number of
included SNPs displayed against its r-values. For each number of SNPs (1 to 12) 100 permuations
were performed with the resulting distribution of correlation values shown as violins. The
numbers on the upper margin of the plot indicate how many permutation results achieved
higher prediction than the real data e. g., the signi�cance level in percent. It is noticeable
that with only one SNP in the model, SVM yields the highest r-value with real data and no
permutation can exceed this result. This indicates that the top SNP is a relatively powerful
predictor within the HLA-DRB1 gene. However, when growing the model to include more
SNPs the signi�cance drops.
The plot on the left side in �gure 7.9 shows permutation results (1 000 iterations) of the

HLA-C gene as light grey violins in the background. This �gure shows that permutations of
di�erent genes reveal similar results, indicating that SVM is able to achieve a certain amount
of prediction power by creating the prediction model on the given training data, regardless
whether in�uencing SNPs are involved. On the right side, permutation results of 10 genome-
wide randomly selected SNPs, again with 1 000 iterations, were added. As expected, the high
variance of the SNPs are able to achieve even higher r-values, whereas within the single SNP
e�ects the randomly selected dataset can not outperform the real data and shows comparable
results to the HLA-genes permutation.
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Figure 7.9: Permutation of HLA-genes and 10 random SNPs. On the top: permutation of HLA-
DRB1 as violins, the blue line indicating the real data prediction. On the bo�om
le�: permutation of HLA-C gene included as light grey violins, the bo�om right also
including permutation results of 10 genome-wide randomly selected SNPs. On the top
margins of the plots the percentile range compared to real data.
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8 Procedures for Evaluation

8.1 Working process with the combined dataset
With the combined dataset, introduced in section 6.3, the following calculations were performed
to create the prediction model and review the results:

• divide data into genes and expand boundaries ±200 kb, see 7.2.1
• preFilter on 0.9 correlation, see 7.1.2.2
• SVM pruning and notation of performance, see 7.2.2.2

Contrary to the idea of reducing the number of features for SVM calculations, we decided
for the �nal evaluation of the model and to detect potentially relevant biomarkers in�uencing
antibody production against interferon-β, to expand the gene boundaries ±200 kb. In�uencing
features may lie in promotor regions or close to gene boundaries. In fact, a lot of in�uencing
features can be localized up- and down-stream a few hundred thousand base pair positions
from the actual probe on the genome. For our genomic reference data, we again used the UCSC
annotation database Kent et al. (2002). SNP information and position was adapted from dbSNP
Bethesda (2005); Sherry et al. (2001). For details, see section 7.2.1 and www.genome.ucsc.edu.

8.2 Reference performance
To identify genes with signi�cant pruning performance, a reference for comparison is needed.
For this we decided to randomly select 110 SNPS genome-wide (5 SNPs per chromosome) and to
once again perform a permutation. This means a SVM pruning with 10 of the 100 selected SNPs
was performed. Limiting the pruning to 10 extracted SNPs per permuation kept the calculation
time to a couple of days. The permutation was repeated for a total of 1 million iterations. The
�gure 8.1 shows the resulting reference curve of achieved performances from the permutation.

The randomly selected SNPs may yield a higher performance compared to gene-wise calcu-
lations, since they show no dependence (LD) and more variance in their genotypes. Therefore,
only genes exceeding the reference can be assumed to be relevant to antibody production. To
compile the signi�cant gene selection even more strictly a modi�ed reference curve adjusted for
multiples testing was drawn: Each modi�ed threshold value—for 1 to 10 SNPs included—results
from the mean value mean() of the permutations result plus qnorm(), which indicates the
distance to the 2.5 % probability of a two-sided normally distributed curve. Having a total of
approximately 20.000 unique genes and calculations with 10 SNPs for each permutation the
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equitation demands a distance of 2.5 · 10�7 for a 5 % probability divided by 2 for each tail of the
bell curve, see Fig. 6.3 on page 50. A multiplication by the standard deviation sd() is needed,
since it is not equal to 1 in our data.

threshold

modified

= mean(x) + qnorm(1� 2.5 · 10�7

/2) ⇤ sd(x) (8.1)

This assumes a close to normal distribution within each of the violins which is then extrap-
olated to the desired signi�cance level. An acceptable accordance of observed and expected
performances is shown in the respective QQ-plots from 2 to 10 SNPs within the permutations,
shown in �gure 8.2 so we attempted this estimation.

This way, we can detect all signi�cant genes, which exceed the reference curve performance
in one or more times. This means that if the single SNP performance of a gene outperforms the
extrapolated reference performance of one SNP, it will be selected. If the two-SNP pruning
performance exceeds the reference value of the two-SNP permutations, it will also be regarded
as signi�cant. We repeat this analysis up to the maximum number of 10 SNPs. In other
words: independent of the size of the model (from one to ten SNPs), a gene with at least
one performance higher than the corresponding extrapolated reference performance will be
considered as signi�cant and selected for further interpretation.
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Figure 8.1: The figure shows the reference pruning performance as violins, from 1 to 10 SNPs on the
x-axis and the performance value on the y-axis. The red line indicates the absolut top
performance a�er 1000 permutations, the grey line a�er 1 million permutations, and
the blue do�ed line the modified reference curve of 1 million permutations corrected
for multiple testing.
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Figure 8.2: QQ plot of the expected (x-axis) and observed (y-axis) performances of the permutation.
From top le� indicating 2, reading horizontally to the lower right indicating a total of
10 SNPs being included to pruning calculations.
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9 Results of Chromosome 6

We �rst evaluated the results on chromosome 6. They show that 13 genes, listed in the table 9.2,
yield a signi�cant pruning performance. Note that 7 genes are HLA genes, which are known
to have in�uence on antibody production. Interestingly, all HLA genes, with exception of the
HLA-DRB1 gene, contain the SNP rs34784936 as being the best residual SNP from the pruning
calculation with a top single SNP performance of r = 0.2.

Correspondingly, the GWAS results of this particular SNP yield the second lowest p-value of
2.457 · 10�8 out of over 6 million SNPs, as reiterated in table Table 9.1. This accordance seems
to reveal a certain plausibility within our calculations.

SNP alleles frequency allele 1 info score β SE p-value
rs34784936 G T 0.8461 0.7448 -13.6487 2.4254 2.457 · 10�8

Table 9.1: GWAS result of the pruning top SNP rs34784936

The HCG23 and BTNL2 genes are located in short distance to the HLA genes, as shown in
table Table 9.2 on the next page, and contain the SNP rs35380574, with the best single SNP
performance of a comparable r-value of 0.19. They do not include the HLA pruning top SNP but
upon closer inspection, although not in LD, these two top SNPs show a genotype correlation
of 0.94, which explains that after preFiltering with a correlation threshold of >0.9, only one
of the SNPs can be left in the genewise dataset. The HCG23 gene, which is an abbrevation
for HLA complex group 23, is part of the non-protein coding region of the HLA region, as
denoted by dbSNP Bethesda (2005); Sherry et al. (2001). However, by extending the gene
boundaries, the HCG23 and the BTNL2 gene contain the same in�uencing SNP rs35380574.
Allel variants of the BTNL2 gene have been associated with high risk for sarcoidosis, which
is an autoimmune disease of unknown origin developing in�ammatory granuloma Li et al.
(2009); Morais et al. (2012); Wennerstroem et al. (2013). It is presumed an infectious trigger may
provoke the immune system to overreact in major T-cell proliferation and damage own tissue.
This hypothesis shows similarities to the etiology of multiple sclerosis and may explain the
close localization of in�uencing genes on the genome.

Since SVMs— in contrast to other machine learning and gene analysis programs—can account
for interactions, some genes may give us impressions of a higher prediction power due to
SNP-interactions. For example, the DYNLT1 gene on chromosome 6, represented in the upper
left corner of the �gure Fig. 9.1 on page 87, shows no particulary noticeable performance unless
all of the top four SNPs ranked by SVM pruning are included. A signi�cant drop in performance
can be observed when the SNP rs2919753 is excluded while pruning calculations. On the
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86 9. Results of Chromosome 6

other hand, including even more SNPs to the data can not achieve signi�cant improvements of
performance.

This means that the top ranked four SNPs rs2919753, rs9355655, rs341122 and rs3102978 show
multiple SNPs interactions. Similarly, the PKHD1 and the LINC00518 genes appear interesting
due to SNP interactions. While the performance of one SNP does not appear signi�cant, the
performance after adding the second SNP yields signi�cant pruning results. See �gure 9.1 to
�nd the pruning plot for the 13 signi�cant genes on chromosome 6. These examples indicate
candidate genes in association to antibody production against interferon-β, which could not be
identi�ed with single SNP methods.
Also notable are four genes on chromosome 6, in particular DYNLT1, LINC00518, MDGA1

and PKHD1. Since they are localized outside the HLA region, they might imply independent
in�uence to antibody production. For the gene positions see table 9.2.

gene start position end position
BTNL2 32362512 32374900
DYNLT1 159057506 159065818
HCG23 32358286 32361468
HLA-DQA1 32605182 32611429
HLA-DQA2 32709162 32714664
HLA-DQB2 32723874 32731330
HLA-DRA 32407618 32412826
HLA-DRB1 32546546 32557613
HLA-DRB5 32485153 32498006
HLA-DRB6 32520489 32527779
LINC00518 10428017 10435055
MDGA1 37600283 37665766
PKHD1 51480144 51952423

Table 9.2: Significant genes on chromosome 6. Highlighted
are candidate genes localized outside the HLA
region.

To summarize the candidate SNPs re-
lated to antibody production, we decided to
execute one pruning calculation including
all signi�cant SNPs localized on chromo-
some 6 to one dataset. This was performed
by choosing every SNP exceeding the ex-
trapolated reference performance (SNPs
marked red in Fig. 9.1 on the next page)
and every higher ranked SNP in a gene’s
performance to include potential SNP in-
teractions. A total of 24 SNPswere selected.
To exclude high correlated SNPs a pre�lter-
ing preFilter() on genotype correla-
tion >0.9 was performed. Within this step,
only one SNP rs34784936, in correlation
with rs35380574 as mentioned above, was
excluded. Experimentally, we exchanged
the two correlating SNPs. Within the geno-
type data of the HLA-DRA gene, we excluded the top SNP rs34784936 and replaced it with
the correlated SNP rs35380574. So once more, calculations with the 23 signi�cant SNPs on
chromosome 6 were performed. Pruning computed comparable results indicating that it makes
no di�erence which SNP to choose. Figure 9.2 shows the pruning result compared to the
reference curve. Notable is the overall pruning performance of all selected 23 SNPs as it reaches
an total r-value of 0.7573, as shown in �gure 9.3. As metioned before in section 7.1.2.1 of this
thesis, so far a single-SNP e�ect of only 2.6 % could be associated with the antibody titer Weber
et al. (2012). The SVM calculation with 23 selected top SNPs could achieve a r-value of 0.7573 —
this means a three-fold increase of prediction power could be achieved when accounting SNP
interactions. The SVM prediction plot, �gure 9.4, displays the impressive correlation of the
measured and predicted antibody titer.
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Figure 9.2: Pruning results in comparison to referance performance of combined significant SNPs
on chromosome 6. Green marked SNPs exceed 99% and light blue marked SNPs
outperform 95% of the reference results.
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of 0.7573.
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Figure 9.4: SVM prediction plot of the measured versus predicted antibody titer. The dataset
contains 23 significant SNPs localized on chromosome 6 and reaches a r-value of
0.7573.

Dissertation Theresa Schmiedlechner



10 Genome-wide results

Extending this approach to consider all genes genome-wide, we �nd that a total of 78 genes
exceed the extrapolated reference. In addition to the genes on chromosome 6, many other
genes on various chromosomes achieve remarkable pruning performances. Figure 10.1 shows
their distribution on the genome highlighted as red dots. With a total of 9 signi�cant genes
each, chromosomes 15 and 20 de�nitely attract attention. With the inclusion of chromosomes
1 and 19, each containing a total of 8 signi�cant genes, these chromosomes turn out to be the
most represented chromosomes within this studys results. A list of the gene names is provided
in table 10.1. Furthermore, a list of the 315 signi�cant SNPs and their base position is enclosed
in the appendix.
The pruning performance plots in comparison to the reference curve for each gene are

displayed in �gures A.1 a to A.1 d, which can be found in the appendix.
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Figure 10.1: Significant genes exceeding the extrapolated referance performance are displayed
with localization on the genome. The x-axis indicating the base position, y-axis
indicating the chromosome.
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92 10. Genome-wide results

Chromosome 1 CAMTA1 Chromosome 11 CARS
Chromosome 1 BGLAP Chromosome 11 ALKBH8
Chromosome 1 SLAMF9 Chromosome 11 LDLRAD3
Chromosome 1 PTPN14 Chromosome 12 POLE
Chromosome 1 LOC339529 Chromosome 15 GJD2
Chromosome 1 CCDC24 Chromosome 15 LOC101928174
Chromosome 1 AGBL4 Chromosome 15 GCOM1
Chromosome 1 LRRC40 Chromosome 15 RASGRF1
Chromosome 2 BRE Chromosome 15 ARNT2
Chromosome 2 KCNK12 Chromosome 15 MIR1179
Chromosome 3 NCBP2-AS2 Chromosome 15 MIR7-2
Chromosome 3 KY Chromosome 15 MIR3529
Chromosome 4 MRPS18C Chromosome 15 NR2F2-AS1
Chromosome 5 HEIH Chromosome 17 CA10
Chromosome 5 CLPTM1L Chromosome 17 LOC102723641
Chromosome 5 SLIT3 Chromosome 17 MGC12916
Chromosome 6 DYNLT1 Chromosome 17 C17orf97
Chromosome 6 HCG23 Chromosome 17 C17orf102
Chromosome 6 BTNL2 Chromosome 18 GTSCR1
Chromosome 6 HLA-DRA Chromosome 18 TXNDC2
Chromosome 6 HLA-DRB5 Chromosome 19 SNAR-A6
Chromosome 6 HLA-DRB6 Chromosome 19 CELF5
Chromosome 6 HLA-DRB1 Chromosome 19 ZNF611
Chromosome 6 HLA-DQA1 Chromosome 19 ARID3A
Chromosome 6 HLA-DQA2 Chromosome 19 USHBP1
Chromosome 6 HLA-DQB2 Chromosome 19 C19orf12
Chromosome 6 MDGA1 Chromosome 19 IFNL1
Chromosome 6 PKHD1 Chromosome 19 PLEKHG2
Chromosome 6 LINC00518 Chromosome 20 TRMT6
Chromosome 7 ACTR3B Chromosome 20 ANKEF1
Chromosome 8 BIN3-IT1 Chromosome 20 MKKS
Chromosome 8 DEFA6 Chromosome 20 PSMF1
Chromosome 8 LINC0097 Chromosome 20 LOC101929698
Chromosome 9 IGFBPL1 Chromosome 20 FKBP1A
Chromosome 9 OR1L3 Chromosome 20 SIRPB1
Chromosome 9 MIR3689A Chromosome 20 SNORA71C
Chromosome 10 PARD3 Chromosome 20 PTPRA
Chromosome 10 MIR202HG Chromosome 21 TMPRSS3
Chromosome 10 MIR202 Chromosome 22 ARHGAP8

Table 10.1: List of 78 genes considered significant in pruning.
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Figure 10.2: SVM prediction plot of the measured versus predicted
antibody titer. The dataset contains 315 significant
SNPs and reaches an absolute r-value of 0.951.

For further interpretation and
analysis of the 78 signi�cant genome-
wide genes, we also performed the
same procedures as for chromo-
some 6 in section 9. All signi�cant
SNPs exceeding the absolute extrap-
olated reference performance and
those ranked previously - to not
drop possible interactions - were se-
lected. Again, a pre�ltering was per-
formed, interestingly not excluding
futher correlated SNPs except the
one highly correlated SNP on chro-
mosome 6, see chapter 9. With a to-
tal of 315 SNPs an SVM pruning was
performed, see the pruning plot in
�gure 10.5. Figure 10.4 again shows
the pruning results in comparison
to the reference curve. Including
all 315 variables, a performance of
0.951 could be achieved. The notable top SNP rs35380574 on chromosome 6, which achieved a
remarkable single SNP performance of 0.19 within the pruning of the HCG23 and the BTNL2
gene, is consistently ranked as top single SNP of all genomewide signi�cant SNPs. Secondly
ranked is the SNP rs6064776 within the limits of the SNORA71C gene on chromosome 20. The
third ranked SNP is rs11033303, which achieved top performance localized on the LDLRAD3
gene on chromosome 11.

Including too many SNPs within SVM calculations may lead to over�tting - a problem
of achieving arti�cally high correlations. In regard to not using the identical parameters in
former calculations, the results in the �gure Fig. 5.5 on page 36 may not be accurate to be
compared. Still, we suppose the number of 315 features do reveal reliable results. Even with
a clearly lower amount of features, including only 30 SNPs as Fig. 10.5 on page 96 shows, a
remarkable r-value over 0.9 can be reached. With this amount of SNPs, no over�tting errors are
expected. Figure 10.3 recapitulates the signi�cant SNPs and their localization on the genome.
Clearly recognizable is the HLA region localized around 30 Mb on chromosome 6. Also the
chromosomes 17 to 21 contain some signi�cant top hits, whereas chromosome 13, 14, and 16
seem to have no in�uence regarding the prediction of the antibody titer. The SVM prediction
plot in Fig. 10.2 shows a high correlation of the measured and predicted antibody titer reaching
an r-value of 0.951.

For the �nal model, which can be applied to predict the antibody production for each patient
individually, only the 166 most relevant SNPs need to be used. This is the amount of SNPs
inlcuded when the performance of the pruning calculation reaches its maximum of 0.967, as

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=35380574
http://www.ncbi.nlm.nih.gov/gene/414764
http://www.ncbi.nlm.nih.gov/gene/56244
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=6064776
http://www.ncbi.nlm.nih.gov/gene/677839
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=11033303
http://www.ncbi.nlm.nih.gov/gene/143458
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shown in �gure Fig. 10.5 on page 96. These SNPs represent the associated SNPs to antibody
production in response to interferon-β medication in our study.
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Figure 10.3: Significant SNPs displayed with localization on the genome (the x-axis indicating
the base position, the y-axis indicating the chromosome) and pruning ranking - top
indicating small orange over green and blue to final large violet circles. The colors
are indicated in the small legend plot (which equals the pruning plot), the pointsize
reflects the performance achieved when the SNP is included in the model.
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plot. The final performance, when including all 315 SNPs, reaches an r-value of 0.951.
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11 Review of the data

In the interim period between the creation of the SVM model and the submission of this
dissertation, the data on the multiple sclerosis dataset has been modi�ed by the Department
of Neurology at the Rechts der Isar Hospital, a�liated to the Technical University of Munich.
Firstly, moremultiple sclerosis patients on interferon-β therapy have been recruited and patients
with falsely recorded or incorrectly measured data, e. g., unreliable antibody status, have been
removed from the dataset. Moreover, some patients antibody titers, and therefore their antibody
status may have changed over this period of time and may have subsequently been re- evaluated.
For example, a patient who initially produced binding antibodies in response to interferon-β
therapy may have started to develop neutralizing antibodies at a later date, which can result in
therapy failure. The SVM calculations on the prediction model have not been repeated with
the most recent dataset. My model was developed and used on data available at that time.
The �ndings are based on data collected by the Department of Neurology up to June 2014.
The following section will re�ect the di�erences between the data used for our calculations in
comparison to the on-going dataset.

Further utilization of the TUM 1 dataset in particular should be carefully evaluated. The TUM
1 dataset was gathered manually and may thusly contain transmission errors. Consequently,
the reliance of this data was uncertain to some extent and therefore it was removed from the
updated dataset completely.
As a result of repeated measurements on the TUM 2 dataset consisting of 728 individuals,

certain values were corrected and some were even excluded from the data. In 66 cases, a change
in the antibody titer could be measured and 42 patients were eliminated. This comparison is
necessary, as the data we used to create our prediction model, which would not be used again
for calculations at a later stage, could have in�uenced the outcome of the study.

As mentioned above, due to more advanced measurement techniques when collecting data
and more precise quality control, some individuals were excluded from the study after the
utilization within our project. These individuals with inaccurately measured values may have
biased the outcome of our calculations, which generated the prediction model. In other words
we included sets of data to our calculations, which would presently no longer be used. When
using such large clinical data, a certain bias concerning the patients information or the measured
values has to be anticipated. Parameters such as age, sex, components of the multi dimensional
scaling (MDS) analysis, the course of the disease, the EDSS score, the medication start as well
as the current treatment are essential covariates of this dataset. False information, confounded
values or incorrectly registered parameters would alter the dataset. Fortunately, we do not
expect severe bias in our results. Although sex, age and the MDS components C1 to C5 were
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included as covariates, our main focus for the �nal prediction model was given to the antibody
titers related to the genotype. Considering the possibility that an individuals antibody titer was
detected incorrectly, we anticipated the e�ect this would have on our SVM model. Once more,
we do not expect these values to have a great in�uence on our calculations or bias the results.
This is due to the fact that for our calculations we intentionally used individuals showing a
measured antibody titer in the extreme of the distribution curve of all patients. By doing so,
even falsely measured, very high titers, would not result in major changes of the dataset and
miscalculations. In contrast, when calculating the median of a dataset, one extreme high value
would alter the result dramatically, which is, however, not the case within this study.

Despite the mentioned defects, I believe there are no severe changes and bias to be expected
in the results. Before using the dataset we repeatedly performed a precise and accurate quality
control, both on the TUM 1 dataset and TUM 2 dataset as well as on the combined dataset. This
way, we ensured the data was free of discernible errors or inconsistencies. Every patient’s data
has been carefully evaluated before being included into our calculations. Thus, the mentioned
aspects need to be kept in mind.
In the future, it is favorable to gain a large homogenous dataset. It is important within a

dataset that obtained values are collected, measured and obtained under same circumstances
at the same point in time. This homogeneity was not provided within the data used in this study.

In our project, we examined the antibody titer against interferon-β to look for correlations
regarding genotype markers. The antibodies were detected through enzyme-linked immunosor-
bent assay (ELISA), a modern method to identify a speci�c substance within a sample. This
technique allowed us to identify the amount of antibodies produced against interferon-β. In
other words, the antibody titer can be determined. However, this method can only measure the
extent to which antibodies bind to interferon-β. It cannot distinguish between binding and
neutralizing antibodies. This means that no statement concerning the neutralizing e�ect of
antibodies or in regard to the medications residual function can be made. The MxA exclusively
measures the impact of interferon-β and therefore, only its concentration can determine the
presence of neutralizing antibodies. By measuring antibody titers with ELISA, we could not
di�erentiate between binding and neutralizing antibodies and so our results do not give any
indication concerning treatment e�ciency. Theoretically, a patient could have a very high titer
of binding antibodies, which do not in�uence the medications e�ect, and show no neutralizing
antibodies. This way, the patient would still gain therapeutic success. On the other hand, a
minimal titer of mainly neutralizing binding antibodies can result in therapy failure. For this
reason, it is important to emphasize that this model reveals the estimate of binding antibodies
and will not predict the medications residual function. As a result of mywork, one consideration
can be the creation of a prediction model that only includes the titer of neutralizing antibodies,
which attenuate the impact of interferon-β. It would be of great use to clinical practice.

Equally, this careful consideration is a critical topic in present-day research. Questions
appear on what the medically sensible approach is when detecting binding or neutralizing
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antibodies within a patients sample. A published study claimed that binding antibodies seem
to appear �rst, followed by the production of neutralizing antibodies later in time Kivisäkk
et al. (1997). This means neutralizing antibodies seem to develop after binding antibodies.
This would pose the idea that the development of binding antibodies would always precede
the production of neutralizing antibodies, which could give an indication as to when therapy
rearrangements should be reconsidered. Yet, there would be time enough to change therapy
before experiencing any treatment failure. On the downside, this would also mean a conversion
to neutralizing antibodies is inevitable. Once the immune system recognizes the interferon-β
as foreign, it will begin to �ght back. Theoretically, it will only be a matter of time before a
development of neutralizing antibodies can be measured.
At other point of view is that the production of binding and neutralizing antibodies may

display two di�erent independent immune reactions. The detection of binding antibodies
would not in�uence therapy outcome, nor imply a subsequent production of neutralizing
antibodies within time. This would also mean additional in�uencing factors, e. g., even di�erent
meaningful genes, leading to the development of neutralizing antibodies need to be considered.
So far, published studies denoted that the HLA-DRB1 gene seems to have an in�uencing

e�ect on the antibody production to interferon-β therapy Barbosa et al. (2006); Buck et al.
(2011); Buck and Hemmer (2014); Ho�mann et al. (2008); Link et al. (2014); Soelberg Sorensen
(2008); Weber et al. (2012). Nevertheless, this does not necessarily implicate a neutralizing
e�ect on the medication and therefore lead to therapy failure. On one hand, the intensity of
immune response and consequently high titers of binding antibodies may induce the formation
of neutralizing antibodies. On the other hand, other components, such as drug dose, length of
treatment or even other undiscovered genetic markers, may be relevant in the development
of neutralizing antibodies. Accordingly, a study considering the neutralizing antibodies as
the given phenotype is needed. A prediction model on the neutralizing antibodies may be
developed in the future and possibly result in even more precise prognosis concerning the
therapy outcome.

In short, the aim of this thesis was to create a SVM prediction model. The available genotype
data of multiple sclerosis patients treated with interferon-β and their corresponding antibody
status provided us with the necessary factors for our calculations. Notwithstanding, the model
can be reviewed carefully for further development, reconsidered for improvements as well as
constantly re-evaluated with more reliable data. Furthermore, a validation of the model with a
larger homogenous dataset is of great interest.

http://www.ncbi.nlm.nih.gov/gene/3123
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12 SVM Limitations

In our study on multiple sclerosis patients treated with interferon-β, we created prediction
models to forecast antibody production against interferon-β.
Firstly, an increase of prediction power could be achieved when including more features

(SNPs) to the study. This, on one hand, can display the addition of in�uencing single-SNP
e�ects. Many small combined single-SNP e�ects will increase the overall signi�cance of the
model. On the other hand including more features can increase the prediction performance
even if they are not in direct relation to antibody production. This was the case when we
extended the gene boundaries by 200 kb – the climb of the performance does not necessarily
indicate an inclusion of indicative SNPs for prediction. This may much more likely reveal a
false positive performance when the threshold of the maximal number of included features is
exceeded. In other words, regardless of the promising results some calculations can yield, a
very high performance may also re�ect a false positive result, which is referred to as over�tting.
This is a process of calculations that includes a lot of data, which creates overly good models,
when working on too many parameters. Since in this case, SVM can forecast prediction values
almost perfectly with one data, it can not be implemented reliably for another dataset. In
such cases, some preprocessing (excluding uninteresting, or highly correlated parameters and
splitting data into suitable partitions) is required to avoid this problem.

Secondly, in contrary to the addition of single-SNP e�ects, SVM are able to consider possible
SNP interactions, to again increase prediction accordance. A SNP interaction can be observed
for example due to an excessive change of performance when adding or removing one of the
interacting SNPs from the calculation. The inclusion of possible SNP interactions makes SVM
a superior method compared to many other machine learning techniques.

The applied pruning calculations require a lot of computational capacity and calculation
time, since a great amount of SVM models are created for each step. These calculations do
not only provide the overall performance of the model, but also rank features on their contri-
butional in�uence to the prediction model. Through initial reduction and preprocessing, as
mentioned above, the disadvantage of high expenses can, again, be eluded. Once the model
is created and the indicative SNPs are detected, only this small set of SNPs must be included
to the prediction model for the individual patient. In this project we detected the 315 most
relevant SNPs for antibody production against interferon-β. This knowledge allows for the
creation of a reliable prediction model including only a small number of 166 SNPS — those that
achieve the r-value of 0.967 within pruning calculation. This also means that genotype sequenc-
ing only of 166 SNPs is needed from one patient, to be taken as basis for creating the SVMmodel.
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During the course of this thesis, we also investigated other machine learning methods to
look out for advanced techniques, which may outperform SVM. For example we looked at
Random Forest Liaw and Wiener (2002, 2015). This program did not show over�tting, as the
inclusion of almost unlimited features is possible. Nevertheless, results on simulated data,
which included fake highly correlated features, did not rank the indicative features in the
desired top position but in the top thirty percent margin at best. Furthermore, calculations
with kernel PCA Schölkopf et al. (1997) did not outperform SVM.

SVM reveal promising and equally importantly also reproducible results within this project.
Signi�cant genes, known to be associated with antibody production, were detected on basis
of genotype data of multiple sclerosis patients. It is conceivable that the implementation of
machine learning techniques will be increasingly important to help answer various medical
questions in the future.
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13 Discussion of the results

In this project, the SVM prediction models were created on basis of genotype information of
multiple sclerosis patients treated with interferon-β. The performance was evaluated in regard
of the correlation of the predicted value and the measured antibody titer against interferon-β.
After data was partitioned into genes-wise subsets, the signi�cant genes and corresponding
SNPs exceeding a reference curve were selected. The results displayed a total of 13 genes on
chromosome 6 which yield a signi�cant pruning performance, as shown in Fig. 9.1 on page 87.
Note that 7 genes are HLA genes, which are known to be part of the immune response pathway
and have in�uence on antibody production. The HLA genes encode for the for the expression
of immunomodulatory agents and the development of MHC class II molecules in the context of
the immune response to foreign antigens. The organism response to invasive unfamiliar agents,
such as bacterial or viral antigens, in T-cell proliferation and antibody production directed
speci�cally against the attacking agent.

Amazingly, all HLA genes, with exception of the HLA-DRB1 gene, obtain the SNP rs34784936
as being the best residual SNP from the pruning calculation with a top single SNP performance
of 0.2. This shows that regardless of the variation of features included within a gene-based
calculation in our study, the SNP rs34784936 achieves a constant top performance. Correspond-
ingly the GWAS results of this particular SNP yields the second lowest p-value of 2.457 x10�8

out of over 6 million SNPs, as listed in Table 9.1 on page 85. The results of the GWAS and SVM
calculations assure an encouraging �nding of an indicative biomarker within the prediction of
therapy response to interferon-β.

Moreover, further SNPs have been associated with antibody production against interferon-β
in previous studies. In particular the SNP rs9272105 localized close to the HLA-DQA1 gene,
and the SNP rs4961252, localized on chromosome 8, show genome-wide signi�cance Weber
et al. (2012); Buck and Hemmer (2014). In addition, the SNP rs5743810 within the TLR6 gene
on chromosome 4 does as well reveal a correlation to the production of antibodies against
interferon-β in males, whereas not in females. However, note that the authors of the study state
that further studies are needed to verify this proposition Enevold et al. (2010). Unfortunately,
the SNPs rs5743810 and rs4961252 did not reach signi�cant results within this study. The SNP
rs9272105 did not appear within our data to shed more light on the �ndings.

13.1 Gene pathway analysis
The PANTHER (Protein ANalysis THrough Evolutionary Relationships) Classi�cation System
is a web service used to analyze and classify genes and their functions Mi et al. (2016, 2013a,b);
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Mi and Thomas (2009). Information about a gene’s molecular function, biological process,
cellular component, protein class, and pathway is provided. The available information of gene
functions from PANTHER will be discussed in this section. Please note that again additional
information of a genes localization and function are retrieved from the Database of Single
Nucleotide Polymorphisms, dbSNP Bethesda (2005); Sherry et al. (2001).
The biological process of the candidate’s genes were particularly interesting for us. We

expected the signi�cant genes to be involved in some immune process in the sequence of
developing antibodies. Figure 13.1 shows a pie chart of the biological process represented by
the candidate genes from pruning calculations. Note the number of 82 genes occurs since not all
and on the other hand some genes where found repeatedly in the PANTHER database.
The red slice indicates the proportion of genes involved in immune system processes. In

this category, a total of 11 genes, corresponding to 13.4 % of all included genes, were found
related to the immune response. This includes, as expected, the genes within the HLA region
on chromosome 6, including HLA-DRA, HLA-DRB1, HLA-DRB5, HLA-DQA1, HLA-DQA2, and
HLA-DQB2. In addition, �ve other genes were found to contribute e�ects within the immune
system response:

SLAMF9 is the number nine member of the SLAM family localized on chromosome 1, which
are involved in B-cell mediated signaling. The gene codes for a trans membrane protein with
two extracellular immunoglobulin domains involving antigen detection and one intracellular
tail to communicate with other SLAM family controlled mediators. This means the coded
protein represents an important member of the defending proteins of the immune system. Once
a threatening or unknown antigen attaches to a B-cells receptor it responds with the production
of antibodies, the production of cytokines or antigen presentation to T-cells. PANTHER reveals
that the SLAM family even responds to interferon-� stimuli. This is of great interest since a
recent study revealed that the variation of alleles within the interferon-� genes might also be
of importance in�uencing interferon-β therapy outcome Enevold et al. (2010).

The LRRC40 gene, also located on chromosome 1, is primarily involved in catalytic processes
such as receptor and growth factor activity. The fact that the two mentioned genes on chromo-
some 1 do not occur in proximity to each other and, therefore, do not contain common SNPs,
indicates their independent achievement of signi�cant pruning results.
The PLEKHG2 gene on chromosome 19 was primarily associated with various forms of

leukemia and with showing in�uence on lymphocytic migration when overexpressed Runne
and Chen (2013). Now, PANTHER revealed that the PLEKHG2 gene is involved in immune
defense signals—in particular B-cell mediated immunity—and neurological processes. A study
con�rms that the genes function of activating the Ras/MAPK pathway through EGFR (epidermal
growth factor receptor) leads to modi�cation of the neural cell morphology Sato et al. (2014).
The TMPRSS3 gene on chromosome 21 found by PANTHER to be involved in the immune

system process also shows wide-ranging involvements in published studies. Beside activity
within immune response the TMPRSS3 gene shows involvements for various functions such as
lipid metabolic processes and transportation, angiogenesis, blood circulation and coagulation,
hormone receptor activity and apoptosis processes. The gene is part of the serine protease
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Figure 13.1: Representation of the biological processes associated with candidate genes. ( apop-
totic process, biological adhesion, biological regulation, cellular component
organization or biogenesis, cellular process, developmental process, immune
system process, localization, metabolic process, multicellular organismal pro-
cess, reproduction, response to stimulus)

family and has especially been associated with autosomal-recessive congenital and childhood
onset hearing loss, as it is expressed in the fetal cochlea and responsible for the inner ear
development Guipponi et al. (2002). Also tumors like ovarian and pancreatic cancer have been
associated Wallrapp et al. (2000).

The �fth gene identi�ed by PANTHER involved in immune system process is the SLIT3 gene
on chromosome 5. It is also assumed that this gene regulates cell migration, cell-cell adhesion
and signaling as well as nervous system development. Interestingly a study revealed that the
duplication of the SLIT3 gene may lead to major depression Glessner et al. (2010).
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Subdividing the genes mentioned above involved in immune system processes, the majority
of the genes indicate to be involved with antigen processing and presentation. This includes
the genes localized in the HLA region of chromosome 6. Once an antigen is detected the
HLA genes augment the production and expression of MCH-II molecules on the immune cells
surface. MCH-II molecules present peptides of an antigen. This way cells can signal their
infection and the cells apoptosis can be initiated. On the other hand, cells can prepare speci�c
immune response directed against this antigen by developing particular antibodies to eliminate
the infection. The SLAMF9 and the PLEKHG2 genes in�uence the immune response process.
This re�ects the cellular defense response, meaning in particular B-cell mediated activities are
in�uenced. It involves cell communication such as signaling and adhesion and regulation.

Figure 13.2: Representation of the PANTHER Pathway Analysis associated
with candidate genes. ( angiogenesis, axon guidance
mediated by Slit/Robo, cytoskeletal regulation by Rho
GTPase, PDGF signaling pathway, TGF-beta signaling
pathway, T-cell activation )

Apart from the biological
process, an exploration of the
protein class a�liation of the
signi�cant genes also produced
interesting results, as displayed
in the bar chart 13.3. With a
total of 7 genes, two protein
classes yielded the most repre-
sented categories - classi�ed to
defense/immunity protein and
enzyme modulator. Again, a co-
herence of the immune system
involvement and the most ap-
pearing protein classes could
be found. The defense/immu-
nity protein category contains
the already familiar HLA-genes
as well as the SLAMF9 gene,
which, as a reminder, is part of
the immunoglobulin receptor
family on chromosome 1.
Within the PANTHER Path-

way Analysis, a total of 8 hits
of the signi�cant genes were detected, as shown in Fig. 13.2. In each case, a gene was found
to be involved in angiogenesis, axon guidance mediated by Slit/Robo, cytoskeletal regulation
by Rho GTPase, PDGF signaling pathway and TGF-beta signaling pathway. Three of the HLA
genes, HLA-DRA, HLA-DQA1 and HLA-DQA2, were involved in T-cell activation. T-cells are
lymphocytes, which can recognize antigens displayed on the cell surface by antigen-presenting
cells. With the T-cell receptor (CD4+ or CD8+ TCR), the lymphocyte can bind and initiate
immune defense.
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Figure 13.3: Representation of the protein class associated with candidate genes. ( calcium-
binding protein, cell adhesion molecule, cell junction protein, chaperone,

cytoskeletal protein, defense/immunity protein, enzyme modulator,
extracellular matrix protein, hydrolase, isomerase, kinase, ligase, lyase,

nucleic acid binding, oxidoreductase, phosphatase, receptor, signaling
molecule, transcription factor, transferase, transporter)

Finally, one more gene, TXNDC2 gene on chromosome 18 is worth mentioning. As the genes
function shows oxidoreductase activity, PANTHER indicates a correlation to stress response.
Since stress is a risk factor for developing multiple sclerosis and relapses, it may also imply an
augmented risk for the development of antibodies against medication.
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13.2 Consideration of additional factors

Up until this point, the discrepancy of tolerance and immunogenicity of interferon-β in patients
a�ected with multiple sclerosis has not yet been fully understood. Although recent studies
suggest an association between HLA genes and the production of antibodies, the immune
process pathway still remains fairly unexplored. Previous studies revealed that a correlation
between the HLA alleles HLA-DRB1*0401, HLA-DRB1*0408 and HLA-DRB1*1601 and the
production of antibodies to interferon-β is assumed Ho�mann et al. (2008); Buck et al. (2011).
Also, the allele HLA-DRB1*0701 especially when linked to HLA-DQA1*0201 showed an in�u-
ence on the formation of antibodies Barbosa et al. (2006). Furthermore, a recent study also
investigated a speci�c genetic predisposition for the development of neutralizing antibodies
dependent of the interferon-β-preparation given Link et al. (2014). The results showed that
the allele HLA-DRB1*15 causes an enhanced risk to develope neutralizing antibodies against
Interferon-β1a applied both subcutaneously and intramuscularly. Moreover, the well-known al-
lele HLA-DRB1*04 revealed a high risk of antibody production especially against Interferon-β1b
preparations. In this study, only patients developing neutralizing antibodies, apart from those
developing binding antibodies, were included. The �ndings of this study may be explained by a
di�erence in binding a�nity of HLA molecules to Interferon-β1a and Interferon-β1b. Summariz-
ing this study indicates a genetic predisposition to immunogenicity depending on interferon-β
preparation given, certainly further studies are needed.

Despite these imposing research �ndings, a recent study found that no direct association
between theHLA-DRB1, HLA-DQA1 or HLA-DQB genes and a response to interferon-β therapy
could be proven. This means that the previous assumptions cannot yet be veri�ed Comabella
et al. (2009). More and more research projects are initiated to delve deeply into exploring the
immunogenicity of protein therapeutics, such as interferon-β.

Beside genetic in�uence within the immune response to interferon-β therapy, possible addi-
tional factors need to be carefully considered. Immunostimulatory agents such as lipopolysac-
charide (LPS), lipopeptides or other substances added during interferon-β preparation, speci�-
cally appear to in�uence the immune system and result in stimulating antibody production
in defense to given medication, as suggested by a recent study Enevold et al. (2010). This
impression can be enhanced when considering the fact that the TLR6 gene, which carries the
associated SNP to antibody production rs5743810 on chromosome 4, is known to have a elemen-
tary part in pathogen recognition processes Enevold et al. (2010). This means that a residual
amount of bacterial lipoprotein or other bacterial traces may appear within a protein drug
and possibly trigger immunogenicity. In other words, residual substances within interferon-β
preparation may lead to a boost of the immune system and induce the formation of neutralizing
antibodies. Most of all, treatment with Betaferon seems to provoke the development of anti-
bodies. Betaferon is a Interferon-β1b obtained from E. coli bacteria or produced synthetically.
Note the accordance of the thoroughly large percentage of patients within our data developing
antibodies when treated with Betaferon (48,5 % of patients within the TUM 1 dataset and 40,9 %
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of patients within the TUM 2 dataset) in agreement with previous studies. This may indicate a
higher risk in producing antibodies when the protein drug is no human product. Moreover,
we have to bear in mind that residual agents in protein drugs can also lead to dangerous side
e�ects, cause allergic reactions or even an anaphylactic shock when not tolerated. Thus, there
is a great focus on improving the puri�cation process within drug manufacturing to provide
safer protein drugs in the future.

What is also remarkable is the extremly low amount of patients that developed antibodies after
being treated with Avonex in the TUM 2 dataset (only 9,6 %). Avonex is a Interferon-β1a obtained
from mammalian cells and therefore consists of the identical amino acid sequences to human
interferon-β. Betaferon di�ers in the initial methionine as well as two other exchanged amino
acid sequences, which can be di�erence enough to display a potential immunomodulatory factor
in inducing the formation of neutralizing antibodies. Avonex is the only interferon-β applied
intramuscularly once a week. Betaferon, Rebif 44 as well as Rebif 22 are applied subcutaneously.
This low incident of antibody production within the group of patients treated with Avonex may
also indicate a di�erent absorbance of medication and reveal a protective e�ect on antibody
production. Furthermore, the less frequent application may play a participating role in better
tolerance of the medication.
As mentioned above, Betaferon is applied subcutaneously and represents the group of

interferon-β preparation with the highest percentage of antibody production at the same
time. A recent study revealed this statistic may be additionally explained due to the fact that
the skin tissue contains a high amount of dendritic cells, which are responsible for detecting
external agents. The dendritic cells might be activated through frequently injected interferon-β
and initiate a immune response Link et al. (2014).
The discrepancy of antibody production within various interferon-β preparations and ap-

plication methods was also denoted in further studies Barbosa et al. (2006); Buck et al. (2011);
Ho�mann et al. (2008); Link et al. (2014). Note that not all of these �ndings accord to those
detected within the TUM 1 dataset, which veri�es once more as mentioned above that this
dataset needs to be reviewed carefully before further utilization (for details see chapter 6).

Summarizing various factors such as drug manufacturing, dose application and frequency
of admission as well as length of treatment need to be kept in mind since they in�uence
the balance between protein drug tolerance and immunogenicity. Even the possibility of a
missing antibody response due to a compromised immune system needs to be considered.
The progress in developing less immunogenic drugs is essential, as is exploring the impact
of genetic biomarkers. The prediction model created within the scope of this thesis can be a
supplementary screening strategy in clinical practice to forecast therapy outcome.
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14 Conclusions and Outlook

In this thesis, we investigated possible approaches to predict therapy response for MS patients
to be treated with interferon-β. The correlation of genotype information and measured antibody
titer against interferon-β yielded a �rst lead towards improving multiple sclerosis therapy. In
this study, we created prediction models on basis of gene-wise datasets and selected indicative
SNPs, which raised the prediction power. Once established, our SVM model only requires a
small group of selected biomarkers to create and predict antibody production against interferon-
β medication for each patient individually. In other words, only the indicative biomarkers,
which we found to yield high prediction power, need to be regarded in further considerations.
Our goal in creating such a prediction model for therapy response and subsequently the
possibility of adjusting prescribed medication for each individual patient was achieved and can
be applied in future medicine. This method is a powerful approach, which can avoid ine�ective
medication. Regardless of age, condition or course of disease, SVMs can be applied when
genotype information is associated with a measurable phenotype. In the future, this technique
can hopefully be generalized and applied to other questions where complex data needs to be
�ltered and the relevant subset of parameters extracted in order to answer speci�c medical
questions. Applications can be envisioned for a classi�cation into, e. g., disease subtypes,
responder/non-responder cases, or regression approaches towards treatment response. The
application of the SVM prediction models brings us one step closer to the favorable personalized
medicine for the future.
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A Complete results for whole-genome
analysis

A.1 List of 315 significant SNPs

SNP chromosome position SNP chromosome position
rs1008298 1 7245922 rs10201794 2 28668724
rs10218507 1 49017890 rs1035872 19 17546855
rs1038973 1 244240283 rs10518915 15 57684825
rs10745297 10 134881862 rs10752633 1 159896294
rs10760244 9 125385408 rs10775365 17 72780491
rs10776668 10 134862552 rs10803182 1 244357987
rs10814685 9 38381639 rs10814689 9 38406340
rs10858286 9 137730384 rs10864296 1 7403874
rs10871511 17 126701 rs10908491 1 156208230
rs10927090 1 244073630 rs10927102 1 244174161
rs11025111 11 3053234 rs11033303 11 35871266
rs11080383 18 10076750 rs11084135 19 30214277
rs11087572 20 3212741 rs11101624 10 135003852
rs11120840 1 7156082 rs11120889 1 7324323
rs11120997 1 7720924 rs111283115 15 89344863
rs11147132 12 133451540 rs111930026 20 2754511
rs11205496 1 48969477 rs112170921 9 125628835
rs1125750 17 49902734 rs113178069 15 35087741
rs113975272 3 196491701 rs1149339 1 7536743
rs11587021 1 159825916 rs11638277 15 96760138
rs11649737 17 14237195 rs11661004 18 68285549
rs11668388 19 1098809 rs11679268 2 47873170
rs116793 20 9971941 rs11682666 2 47838155
rs11698234 20 1025258 rs11702374 21 43829758
rs11702755 21 43900692 rs11737901 5 1430616
rs11750211 5 1183560 rs11756464 6 10240443
rs118183060 17 49794964 rs11855058 15 79310544

Table A.1 a: List of significant SNPs genome-wide a�er SVM pruning, part 1
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SNP chromosome position SNP chromosome position
rs11857451 15 89321584 rs11871882 17 14129359
rs11876181 18 68499645 rs12439411 15 80525919
rs12440569 15 96623769 rs12450662 17 72487
rs12457955 18 68128269 rs12459085 19 17567428
rs12548614 8 22560438 rs12600962 17 32895461
rs12766409 10 134969638 rs12806492 11 107352012
rs12904245 15 79515988 rs12945409 17 72796667
rs13102255 4 84524957 rs13157838 5 168896501
rs13161677 5 168622840 rs13171076 5 1120954
rs132021 22 45425233 rs1386267 17 50323521
rs1411271 9 125315778 rs143127860 2 28335060
rs143148060 1 44546452 rs147990233 19 39952475
rs148224267 1 214460766 rs1484405 1 49104821
rs148476860 10 34550696 rs148579485 2 28289041
rs148747747 6 32575078 rs150463293 6 32755842
rs150938005 8 130338309 rs1541204 20 36918992
rs1541379 17 49910764 rs1565824 1 244225402
rs163184 11 2847069 rs1660364 1 214405605
rs16959793 15 35071718 rs1737890 20 31042595
rs181311005 2 47660259 rs182632445 4 84570345
rs1865094 19 39976969 rs1877674 8 22606292
rs191795474 1 156131050 rs1966755 15 58200847
rs2038180 20 5766395 rs2185214 1 159976751
rs2191055 17 32833531 rs2232003 19 49621964
rs2235954 20 2644975 rs225430 21 43801712
rs225439 21 43731405 rs2256258 20 1518586
rs2269546 22 45254717 rs2281118 22 45002548
rs2299845 18 9807564 rs2302063 19 3150418
rs2317651 20 1414025 rs2395150 6 32326045
rs241436 6 32797876 rs2436206 8 130361779
rs2493215 1 8007716 rs2500499 1 244271051
rs2582848 10 34453743 rs27047 5 1412251
rs2735946 5 1300429 rs2741665 8 6806289
rs2741702 8 6774720 rs2840595 1 159884109
rs28451948 9 137542038 rs28482886 20 31291483
rs28528230 17 32702452 rs28536730 20 31301954
rs28698282 9 137876465 rs28752497 6 32568481
rs2912095 8 6633130 rs2919753 6 159094468
rs2951847 8 6764166 rs29653 5 180266951
rs2993129 9 38563171 rs307808 5 180069124
rs308049 19 3116725 rs3102978 6 159263542
rs310679 19 3150681 rs3109676 9 137631198
rs3123025 1 156267004 rs312926 19 3275315
rs319959 1 49145514 rs341122 6 158864800

Table A.1 b: List of significant SNPs genome-wide a�er SVM pruning, part 2

Dissertation Theresa Schmiedlechner
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SNP chromosome position SNP chromosome position
rs34436555 11 36171911 rs34538402 20 37009728
rs34636157 7 152512629 rs34784936 6 32559648
rs34866848 15 89058528 rs35164930 6 51730580
rs35244005 17 286825 rs35380574 6 32560051
rs36265 19 39862881 rs363018 20 10236231
rs3760965 19 3030052 rs3780889 10 35299715
rs3795138 20 1292606 rs3811159 9 137688657
rs3818331 20 1281685 rs3842947 15 80608149
rs3918350 8 6786781 rs3922644 9 137593392
rs4041594 17 32766923 rs4054648 17 14343290
rs424694 21 43789772 rs4254288 15 79234123
rs429034 11 36413934 rs441327 2 47982572
rs442262 20 1207138 rs4433388 1 159729337
rs445208 19 3054699 rs4512645 1 159729047
rs4516708 4 84219635 rs451778 19 3119406
rs4596720 9 137587628 rs4693608 4 84241357
rs4701016 5 180458539 rs4726173 7 152261079
rs4726203 7 152472045 rs4778791 15 80724551
rs4788857 17 73018906 rs4789112 17 72943929
rs4791571 17 14215076 rs4792477 17 14275086
rs4795950 17 32932859 rs4807478 19 3493601
rs481068 3 196720038 rs4842174 9 137722311
rs4867890 5 168185423 rs4872016 8 22652045
rs4883632 12 133198021 rs4890190 17 62820
rs4926749 1 49203349 rs4934506 10 34236915
rs4968145 17 455814 rs4975622 5 1232666
rs4992762 12 133140352 rs5000634 6 32663564
rs5024475 1 159946733 rs509880 20 897095
rs530652 20 930560 rs532385 6 32195359
rs55653899 6 51630989 rs55806543 6 51381205
rs55903142 17 160514 rs56003400 1 160112660
rs5741814 20 36979049 rs5766045 22 45202832
rs57990176 17 14377998 rs58669357 19 53185582
rs59194105 19 30116512 rs59966862 15 57928978
rs6006853 22 45115904 rs6006915 22 45432447
rs6007309 22 45223887 rs6039649 20 9983300
rs6039732 20 10121178 rs6039885 20 10351696
rs6042009 20 1382965 rs6053821 20 5984173
rs6056276 20 946366 rs6064323 20 36914386
rs6064779 20 37252342 rs6074096 20 10085320
rs6074148 20 1098486 rs6077755 20 1089961
rs6078095 20 1171788 rs6079606 20 1544162
rs608684 9 137933064 rs6087052 20 9879166
rs6107718 20 5911963 rs6109816 20 1385863

Table A.1 c: List of significant SNPs genome-wide a�er SVM pruning, part 3
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SNP chromosome position SNP chromosome position
rs61226110 8 130390408 rs61247522 1 160068629
rs6133850 20 10286150 rs61376711 18 9685980
rs62006070 15 34952513 rs62054200 17 14187847
rs62081250 18 9840972 rs62185615 20 10070110
rs62269488 3 134131069 rs6427299 1 156027550
rs6456334 6 10259818 rs6502354 17 14312297
rs6504752 17 49993999 rs6510919 19 728416
rs6514392 20 1390247 rs6547816 2 28169597
rs6565719 17 215798 rs6669634 1 159855986
rs6669999 1 7263923 rs6670333 1 156153535
rs6674401 1 70499373 rs6686288 1 7129505
rs66938508 19 17264097 rs67251149 3 196603520
rs67594359 19 1168467 rs67792753 19 53398266
rs6795013 3 134139460 rs6831788 4 84282828
rs6966090 7 152675764 rs7040397 9 38392256
rs707475 1 7917076 rs7107975 11 36071441
rs7124550 11 36145810 rs71484072 10 135230128
rs7164134 15 79496143 rs7169894 15 96822001
rs7180365 15 96945057 rs718202 19 3374702
rs7211270 17 49515133 rs7245516 19 39715209
rs7246865 19 17219105 rs7252729 19 3182501
rs72848265 11 3251845 rs73029471 19 30041862
rs73050931 19 49065791 rs73165329 22 45454171
rs7412689 1 44537663 rs742196 22 44974767
rs4867890 5 168185423 rs4872016 8 22652045
rs745136 15 96899827 rs7508601 19 50151686
rs7535810 1 244358308 rs75430132 9 137784552
rs758403 17 32956286 rs7603494 2 47904096
rs76125718 1 44593335 rs763213 22 45075738
rs7708552 5 180195645 rs7735612 5 168509732
rs7745656 6 32680970 rs7832303 8 130270531
rs78906436 1 49038072 rs7929961 11 36388162
rs79579224 7 152742530 rs79830201 20 10497034
rs8075272 17 33042432 rs8099879 19 17230287
rs8119636 20 1162370 rs8180668 6 10316668
rs8182303 17 49526882 rs875789 2 28700759
rs886862 17 14215436 rs893129 15 35093454
rs905449 17 50342947 rs914353 6 37474875
rs9273415 6 32627310 rs9275312 6 32665728
rs9355655 6 158901809 rs9357152 6 32664960
rs9675446 18 9703304 rs9787643 10 35267810
rs9862761 3 134502697 rs9867805 3 196685436
rs9898067 17 50411839 rs9899546 17 14256093
rs9899744 17 49613095 rs9978405 21 43891087

Table A.1 d: List of significant SNPs genome-wide a�er SVM pruning, part 4

Dissertation Theresa Schmiedlechner
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A.2 Performance plots of significant genes
The following pages show the performance plots for all 78 genes where at least one SNP
exceeds the reference performance. These genes represent the signi�cant results associated
with antibody production against interferon-β in our study.



122 A. Complete results for whole-genome analysis

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

C
A
M
TA
1

num
ber of SN

Ps

performance

rs10864296

rs2493215

rs11120840

rs1008298

rs11120889

rs707475

rs6669999

rs1149339

rs6686288

rs11120997

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

B
G
LA
P

num
ber of SN

Ps

performance

rs12401854

rs72710255

rs12401436

rs10908491

rs71519506

rs72708251

rs6668857

rs2475757

rs4661039

rs6670333

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

SLA
M
F9

num
ber of SN

Ps

performance

rs2185214

rs6669634

rs4433388

rs10752633

rs5024475

rs56003400

rs11587021

rs4512645

rs61247522

rs2840595

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

PTPN
14

num
ber of SN

Ps

performance

rs7513897

rs4626855

rs12745587

rs12047119

rs12129409

rs7543972

rs2016976

rs11580603

rs148224267

rs1660364

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

LO
C
339529

num
ber of SN

Ps

performance

rs576682

rs10927108

rs56100931

rs1565824

rs10803182

rs10927090

rs7535810

rs2500499

rs1038973

rs10927102

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

C
C
D
C
24

num
ber of SN

Ps

performance

rs2486010

rs35592643

rs60488005

rs3011216

rs12024345

rs2428954

rs586529

rs7412689

rs76125718

rs143148060

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

AG
B
L4

num
ber of SN

Ps

performance

rs11583036

rs2803271

rs7538861

rs3001640

rs319959

rs78906436

rs11205496

rs1484405

rs4926749

rs10218507

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

LR
R
C
40

num
ber of SN

Ps

performance

rs1576118

rs1496240

rs12024618

rs482094

rs12025026

rs12029977

rs269271

rs827810

rs6675982

rs6674401

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

B
R
E

num
ber of SN

Ps

performance

rs4260198

rs13023754

rs35595918

rs140970916

rs925255

rs143127860

rs6547816

rs875789

rs10201794

rs148579485

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

K
C
N
K
12

num
ber of SN

Ps

performance

rs1863332

rs7559733

rs11125145

rs6727575

rs4953510

rs11682666

rs181311005

rs7603494

rs441327

rs11679268

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

N
C
B
P2−A

S2

num
ber of SN

Ps

performance

rs76114543

rs471195

rs11927266

rs74367407

rs9829778

rs505651

rs9867805

rs481068

rs67251149

rs113975272

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

K
Y

num
ber of SN

Ps

performance

rs9866933

rs62269565

rs6777246

rs9825708

rs7638920

rs35782477

rs9845757

rs6795013

rs9862761

rs62269488

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

M
R
PS18C

num
ber of SN

Ps

performance

rs4693618

rs12507011

rs57516559

rs34803094

rs10026591

rs182632445

rs4693608

rs6831788

rs13102255

rs4516708
2

4
6

8
10

0.0

0.2

0.4

0.6

0.8

1.0

H
EIH

num
ber of SN

Ps

performance

rs10069994

rs899546

rs9688180

rs6601136

rs13175335

rs6601162

rs4701016

rs307808

rs29653

rs7708552

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

C
LPTM

1L

num
ber of SN

Ps

performance

rs2962042

rs62331080

rs11957528

rs1316830

rs2735946

rs4975622

rs27047

rs11737901

rs11750211

rs13171076

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

SLIT3

num
ber of SN

Ps

performance

rs77809775

rs2432649

rs1806840

rs1875972

rs6883683

rs255738

rs4867890

rs13157838

rs7735612

rs13161677

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

DYN
LT1

num
ber of SN

Ps

performance

rs9347236

rs117061303

rs3123090

rs6911161

rs12201279

rs3123128

rs2919753

rs9355655

rs341122

rs3102978

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

H
C
G
23

num
ber of SN

Ps

performance

rs3129882

rs404860

rs434841

rs3115573

rs2050189

rs3129890

rs411326

rs443198

rs532385

rs35380574

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

B
TN
L2

num
ber of SN

Ps
performance

rs443198

rs3129890

rs2050189

rs434841

rs404860

rs411326

rs3135363

rs2395150

rs28752497

rs35380574
Figure

A
.1
a:Top

genes
-
chrom

osom
e
1
to

6.R
ed

denoted
SN

Ps
(u

)indicate
a
perform

ance
over

100
%
ofthe

extrapolated
reference

curve,SN
Ps

m
arked

green
(u

)exceed
99

%
,SN

Ps
m
arked

lightblue
(u
)95

%
,and

dark
blue

colored
SN

Ps
(u)indicate

a
perform

ance
over90

%
ofthe

perm
utation

results.SN
Ps

below
90

%
are

notm
arked.

Dissertation Theresa Schmiedlechner



A.2. Performance plots of signi�cant genes 123

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

H
LA
−D
R
A

nu
m

be
r o

f S
N

Ps

performance

rs6910071

rs9271465

rs2050189

rs9501626

rs3130340

rs28752501

rs3129890

rs743862

rs411326

rs34784936
2

4
6

8
10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

H
LA
−D
R
B
5

nu
m

be
r o

f S
N

Ps

performance

rs3873444

rs9273500

rs2073048

rs12529049

rs28752497

rs9501626

rs9272492

rs3129763

rs9357152

rs34784936

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

H
LA
−D
R
B
6

nu
m

be
r o

f S
N

Ps

performance

rs2073048

rs3763313

rs2760983

rs9272492

rs9501626

rs2050189

rs3129890

rs3916765

rs28752497

rs34784936

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

H
LA
−D
R
B
1

nu
m

be
r o

f S
N

Ps

performance

rs28752497

rs1383265

rs719654

rs3129890

rs3916765

rs9268542

rs17613125

rs5000634

rs150463293

rs148747747

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

H
LA
−D
Q
A
1

nu
m

be
r o

f S
N

Ps

performance

rs2228396

rs3129763

rs3129890

rs28366278

rs3892710

rs3763349

rs241424

rs241436

rs9275312

rs34784936

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

H
LA
−D
Q
A
2

nu
m

be
r o

f S
N

Ps

performance

rs194682

rs2071540

rs7745656

rs3132132

rs2071556

rs151719

rs9276797

rs3129763

rs2228397

rs34784936

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

H
LA
−D
Q
B
2

nu
m

be
r o

f S
N

Ps

performance

rs181997

rs2071538

rs2228397

rs151719

rs3132132

rs9276797

rs209474

rs9273415

rs7745656

rs34784936

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

M
D
G
A
1

nu
m

be
r o

f S
N

Ps

performance

rs4329108

rs73413362

rs804837

rs76437270

rs36037415

rs6929224

rs62398366

rs10947690

rs4711505

rs914353

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

PK
H
D
1

nu
m

be
r o

f S
N

Ps

performance

rs7746090

rs2439040

rs11751694

rs9800616

rs1892275

rs11966760

rs2397081

rs35164930

rs55806543

rs55653899

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

LI
N
C
00
51
8

nu
m

be
r o

f S
N

Ps

performance

rs4236028

rs3798694

rs2230906

rs2763072

rs9358529

rs9393456

rs9295574

rs6456334

rs11756464

rs8180668

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

AC
TR
3B

nu
m

be
r o

f S
N

Ps

performance

rs74598747

rs12770432

rs11146671

rs7068365

rs10870446

rs74598747

rs12770432

rs11146671

rs7068365

rs10870446

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

B
IN
3−
IT
1

nu
m

be
r o

f S
N

Ps

performance

rs11998649

rs1482335

rs11136094

rs10099206

rs4872004

rs2443499

rs1040053

rs4872016

rs12548614

rs1877674

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

D
EF
A
6

nu
m

be
r o

f S
N

Ps
performance

rs2978887

rs2738077

rs929973

rs2978946

rs5743464

rs3918350

rs2741665

rs2951847

rs2741702

rs2912095

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

LI
N
C
00
97
7

nu
m

be
r o

f S
N

Ps

performance

rs62527421

rs7014288

rs2579867

rs12548661

rs12543255

rs2719210

rs2436206

rs7832303

rs61226110

rs150938005

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

IG
FB
PL
1

nu
m

be
r o

f S
N

Ps

performance

rs4878196

rs34717002

rs10973731

rs1885493

rs13294303

rs1467574

rs7040397

rs10814685

rs2993129

rs10814689

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

O
R
1L
3

nu
m

be
r o

f S
N

Ps

performance

rs143234506

rs10985655

rs10513404

rs75272457

rs10513413

rs237617

rs1962091

rs1411271

rs10760244

rs112170921

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

M
IR
36
89
A

nu
m

be
r o

f S
N

Ps

performance

rs75430132

rs10858286

rs28698282

rs3109676

rs28451948

rs4596720

rs3922644

rs608684

rs3811159

rs4842174

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

PA
R
D
3

nu
m

be
r o

f S
N

Ps

performance

rs7100980

rs2749608

rs12355985

rs1780422

rs2665898

rs3780889

rs9787643

rs4934506

rs2582848

rs148476860

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

M
IR
20
2H
G

nu
m

be
r o

f S
N

Ps

performance

rs60995209

rs12257869

rs3008320

rs4838774

rs7071927

rs10745297

rs10776668

rs11101624

rs12766409

rs71484072

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

M
IR
20
2

nu
m

be
r o

f S
N

Ps

performance

rs60995209

rs12257869

rs3008320

rs4838774

rs7071927

rs10745297

rs10776668

rs11101624

rs12766409

rs71484072

Fi
gu

re
A
.1
b:

To
p
ge
ne
s
-c

hr
om

os
om

e
6
to

10
.R

ed
de
no

te
d
SN

Ps
(u

)i
nd

ic
at
e
a
pe
rf
or
m
an

ce
ov
er

10
0
%
of

th
e
ex
tr
ap

ol
at
ed

re
fe
re
nc
e
cu
rv
e,
SN

Ps
m
ar
ke
d
gr
ee
n
(u

)e
xc
ee
d
99

%
,S
N
Ps

m
ar
ke
d
lig

ht
bl
ue

(u
)9

5
%
,a
nd

da
rk

bl
ue

co
lo
re
d
SN

Ps
(u
)i
nd

ic
at
e
a
pe
rf
or
m
an

ce
ov
er

90
%
of

th
e

pe
rm

ut
at
io
n
re
su
lts
.S

N
Ps

be
lo
w
90

%
ar
e
no

tm
ar
ke
d.



124 A. Complete results for whole-genome analysis

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

C
A
R
S

num
ber of SN

Ps

performance

rs2283229

rs11025649

rs12798015

rs7103117

rs2237888

rs12274507

rs452338

rs163184

rs72848265

rs11025111

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

A
LK
B
H
8

num
ber of SN

Ps

performance

rs502537

rs71488269

rs10890733

rs10789635

rs1939894

rs747160

rs499499

rs35131078

rs144186849

rs12806492

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

LD
LR
A
D
3

num
ber of SN

Ps

performance

rs1900335

rs597254

rs634885

rs262448

rs7107975

rs7124550

rs34436555

rs7929961

rs429034

rs11033303

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

PO
LE

num
ber of SN

Ps

performance

rs12828534

rs11146984

rs10870551

rs1317522

rs10160957

rs12314373

rs4883593

rs4992762

rs4883632

rs11147132

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

G
JD
2

num
ber of SN

Ps

performance

rs13329640

rs533021

rs62006118

rs117736484

rs518506

rs1436917

rs28460188

rs893129

rs16959793

rs113178069

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

LO
C
101928174

num
ber of SN

Ps

performance

rs62006118

rs117736484

rs1834574

rs670957

rs518506

rs28460188

rs62006070

rs893129

rs16959793

rs113178069

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

G
C
O
M
1

num
ber of SN

Ps

performance

rs1511954

rs2932193

rs12439863

rs11857838

rs1079208

rs61998127

rs536089

rs1966755

rs10518915

rs59966862

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

R
A
SG

R
F1

num
ber of SN

Ps

performance

rs74518012

rs8028654

rs997285

rs10163145

rs4344705

rs78118096

rs4254288

rs12904245

rs11855058

rs7164134

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

A
R
N
T2

num
ber of SN

Ps

performance

rs28368913

rs11858262

rs4778611

rs3858966

rs28399347

rs4778790

rs7180520

rs12439411

rs3842947

rs4778791

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

M
IR
1179

num
ber of SN

Ps

performance

rs28544036

rs8025983

rs112351064

rs2350271

rs4932198

rs11634144

rs2028389

rs11857451

rs34866848

rs111283115

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

M
IR
7−2

num
ber of SN

Ps

performance

rs28544036

rs8025983

rs112351064

rs2350271

rs4932198

rs11634144

rs2028389

rs11857451

rs34866848

rs111283115

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

M
IR
3529

num
ber of SN

Ps

performance

rs28544036

rs8025983

rs112351064

rs2350271

rs4932198

rs11634144

rs2028389

rs11857451

rs34866848

rs111283115

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

N
R
2F2−A

S1

num
ber of SN

Ps

performance

rs62011586

rs8031676

rs11856262

rs1550234

rs76360980

rs12440569

rs745136

rs11638277

rs7169894

rs7180365
2

4
6

8
10

0.0

0.2

0.4

0.6

0.8

1.0

C
A
10

num
ber of SN

Ps

performance

rs7211270

rs1541379

rs905449

rs9899744

rs1386267

rs6504752

rs1125750

rs8182303

rs9898067

rs118183060

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

LO
C
102723641

num
ber of SN

Ps

performance

rs689782

rs880827

rs28478327

rs4789104

rs572415

rs9896254

rs4788857

rs12945409

rs4789112

rs10775365

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

M
G
C
12916

num
ber of SN

Ps

performance

rs62054200

rs57990176

rs6502354

rs11649737

rs4791571

rs11871882

rs4054648

rs4792477

rs886862

rs9899546

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

C
17orf97

num
ber of SN

Ps

performance

rs12945309

rs148361449

rs8072809

rs55903142

rs6565719

rs4890190

rs4968145

rs12450662

rs10871511

rs35244005

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

C
17orf102

num
ber of SN

Ps

performance

rs756880

rs4795976

rs55745966

rs12600962

rs2191055

rs4795950

rs758403

rs8075272

rs4041594

rs28528230

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

G
TSC

R
1

num
ber of SN

Ps
performance

rs12373401

rs2031042

rs17083217

rs11662429

rs72956998

rs1730528

rs9797334

rs11661004

rs12457955

rs11876181

2
4

6
8

10
0.0

0.2

0.4

0.6

0.8

1.0

TXN
D
C
2

num
ber of SN

Ps

performance

rs930841

rs2045232

rs29031

rs8093100

rs11081510

rs61376711

rs2299845

rs9675446

rs62081250

rs11080383

Figure
A
.1
c:Top

genes
-chrom

osom
e
11

to
18.Red

denoted
SN

Ps
(u

)indicate
a
perform

ance
over100

%
ofthe

extrapolated
reference

curve,SN
Ps

m
arked

green
(u

)exceed
99

%
,SN

Ps
m
arked

lightblue
(u
)95

%
,and

dark
blue

colored
SN

Ps
(u)indicate

a
perform

ance
over90

%
ofthe

perm
utation

results.SN
Ps

below
90

%
are

notm
arked.

Dissertation Theresa Schmiedlechner



A.2. Performance plots of signi�cant genes 125

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

SN
AR
−A
6

nu
m

be
r o

f S
N

Ps

performance

rs79989778

rs4802476

rs11669782

rs11666177

rs1290754

rs13343588

rs10415586

rs2232003

rs73050931

rs7508601
2

4
6

8
10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CE
LF
5

nu
m

be
r o

f S
N

Ps

performance

rs310679

rs2302063

rs312926

rs451778

rs7252729

rs445208

rs308049

rs718202

rs4807478

rs3760965

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

ZN
F6
11

nu
m

be
r o

f S
N

Ps

performance

rs4450518

rs11084197

rs2608523

rs12973417

rs2927750

rs1046648

rs1816083

rs11881877

rs58669357

rs67792753

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

AR
ID
3A

nu
m

be
r o

f S
N

Ps

performance

rs2304260

rs1651886

rs12460890

rs892225

rs168405

rs7251106

rs11673121

rs67594359

rs11668388

rs6510919

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

US
HB
P1

nu
m

be
r o

f S
N

Ps

performance

rs2162889

rs9797484

rs12151127

rs8109775

rs8110145

rs8099879

rs1035872

rs66938508

rs12459085

rs7246865

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

C1
9o
rf1
2

nu
m

be
r o

f S
N

Ps

performance

rs10853829

rs891199

rs2866461

rs56335657

rs10413275

rs8106649

rs4805496

rs59194105

rs73029471

rs11084135

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

IF
NL
1

nu
m

be
r o

f S
N

Ps

performance

rs73050457

rs2277743

rs564377

rs251912

rs12610093

rs12327657

rs7259794

rs1865094

rs36265

rs147990233

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

PL
EK
HG

2

nu
m

be
r o

f S
N

Ps

performance

rs147362412

rs58736064

rs35379130

rs251896

rs34936989

rs1368442

rs113917523

rs3746086

rs7245516

rs147990233

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

TR
M
T6

nu
m

be
r o

f S
N

Ps

performance

rs11682845

rs150722257

rs11884174

rs1562392

rs899152

rs66663726

rs76688408

rs55935512

rs7569316

rs6731730

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

AN
KE
F1

nu
m

be
r o

f S
N

Ps

performance

rs4813909

rs6118835

rs2210578

rs6039732

rs6087052

rs62185615

rs363018

rs6039649

rs6074096

rs116793

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

M
KK
S

nu
m

be
r o

f S
N

Ps

performance

rs6039820

rs71334888

rs34988838

rs4549171

rs2210586

rs6077798

rs6133870

rs6039885

rs6133850

rs79830201

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

PS
M
F1

nu
m

be
r o

f S
N

Ps

performance

rs6074148

rs6056276

rs530652

rs8119636

rs11698234

rs6077755

rs3818331

rs509880

rs6078095

rs442262

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

LO
C1
01
92
96
98

nu
m

be
r o

f S
N

Ps
performance

rs77495189

rs6087406

rs79716458

rs28555675

rs2889678

rs11697843

rs6119908

rs28536730

rs28482886

rs1737890

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

FK
BP
1A

nu
m

be
r o

f S
N

Ps

performance

rs12981741

rs35973699

rs4801531

rs4801544

rs5029044

rs2074078

rs56356559

rs1009158

rs138423547

rs34204844

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

SI
RP
B1

nu
m

be
r o

f S
N

Ps

performance

rs6044841

rs11696836

rs1294689

rs2247082

rs200888

rs11712

rs58532

rs6109816

rs2256258

rs2317651

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

SN
O
RA
71
C

nu
m

be
r o

f S
N

Ps

performance

rs220541

rs4811625

rs1780629

rs6064382

rs805533

rs34538402

rs5741814

rs6064323

rs1541204

rs6064779

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

PT
PR
A

nu
m

be
r o

f S
N

Ps

performance

rs1003525

rs4813623

rs7263489

rs3810560

rs6076469

rs6051617

rs6084265

rs2235954

rs11087572

rs111930026

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

TM
PR
SS
3

nu
m

be
r o

f S
N

Ps

performance

rs4148106

rs225346

rs172826

rs3827232

rs225439

rs9978405

rs11702755

rs424694

rs225430

rs11702374

2
4

6
8

10
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

AR
HG

AP
8

nu
m

be
r o

f S
N

Ps

performance

rs6006915

rs73165329

rs2269546

rs2281118

rs6006853

rs132021

rs763213

rs6007309

rs5766045

rs742196

Fi
gu

re
A
.1
d:

To
p
ge
ne
s
-c

hr
om

os
om

e
19

to
22
.R

ed
de
no

te
d
SN

Ps
(u

)i
nd

ic
at
e
a
pe
rf
or
m
an

ce
ov
er

10
0
%
of

th
e
ex
tr
ap

ol
at
ed

re
fe
re
nc
e
cu
rv
e,
SN

Ps
m
ar
ke
d
gr
ee
n
(u

)e
xc
ee
d
99

%
,S
N
Ps

m
ar
ke
d
lig

ht
bl
ue

(u
)9

5
%
,a
nd

da
rk

bl
ue

co
lo
re
d
SN

Ps
(u
)i
nd

ic
at
e
a
pe
rf
or
m
an

ce
ov
er

90
%
of

th
e

pe
rm

ut
at
io
n
re
su
lts
.S

N
Ps

be
lo
w
90

%
ar
e
no

tm
ar
ke
d.



126 A. Complete results for whole-genome analysis

Dissertation Theresa Schmiedlechner



B Working procedures

In this following section, the working procedures will be presented. For this project, we used
the package e1071Meyer (2012); Meyer et al. (2015) within the programming language R to
perform calculations to create prediction models and detect the most relevant SNPs associated
with antibody production against interferon-β.

For each genewise dataset, we performed the following steps:
The syntax of the svm call is as follows:

pf.data <- preFilter(data, ...)

The function is available in the package caretKuhn et al. (2016). In thefindCorrelation()
function, the correlation threshold can be chosen. In this project we �ltered all SNPs having a
correlation >0.9.

prune <- prune.svm(formula, data, cost, gamma, ...)

The function prune.svm() performs the pruning calculations. For each step, new SVM
models are created and evaluated. The parameters cost and gamma can be set within this
command.
To review the signi�cance of the results, we created a reference curve by permutating the

phenotype. The rearranged data of randomly assigned phenotypes to di�erent individuals
represents the null-hypothesis. For each chromosome, I selected 5 random SNPs to be included
for calculations creating the reference curve.

reference.curve <- perm.and.perf(data, m, ...)

In each iterations of the function perm.and.perf(), the phenotype was permutated, 10
of 110 included SNPs were selected, and the performance from 1 to 10 SNPs included in the
pruning calculation was recorded. The iteration was repeated 1 million times, as indicated by
the parameter m.
To identify which genes and relevant SNPs reach a higher performance compared to the

referance curve, we wrote the function sig.prune(). The input genotype data and reference
data needs to be provided. From this process, we received a list of the signi�cant gene names.

127
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128 B. Working procedures

significant.SNPs <- sig.prune(data, ref.curve, ...)

To obtain a �nal model which can be applied for multiple sclerosis patients to predict
antibody prodution, we performed one more calculation. For this, all SNPs which exceeded the
reference curve were summarized. This dataset, including 315 signi�cant SNPs localized in 78
genomewide genes, was used to perform a prune.svm() calculation.
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