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Kurzzusammenfassung

Die modellbasierte Optimierung der enzymatisch katalysierten Depolymerisation von verzweigten Poly-

meren könnte die Transformation der Ökonomie in die Bioökonomie erleichtern. Um dies zu realisieren,

wird ein deterministisches Modell benötigt. Im Rahmen dieser Dissertation wurde ein deterministisches

Populationsbilanzmodell entwickelt. Dies ist das erste Modell, das die Denaturierung der Enzyme mit-

tels der „Equilibrium Theory" und die Abhängigkeit der Hydrolyserate von der Anzahl der Monomerein-

heiten und der Verzweigungsdichte mittels der „Subsite Theory" berücksichtigt. Daher handelt es sich

um ein mechanistisches Modell. Weiterhin ist es das erste Populationsbilanzmodell für die enzymatisch

katalysierte Depolymerisation von verzweigten Polymeren. Eine erste vorläufige Validierungsstudie hat

gezeigt, dass das entwickelte Populationsbilanzmodell sowohl experimentelle Daten als auch mittels

einem stochastischen Modell simulierte Daten wiedergeben kann. Allerdings erscheint die für exo-

aktive Enzyme vorhergesagte Reaktionsrate falsch zu sein, was darauf hindeutet, dass der Gültigkeits-

bereich einer getroffenen Annahme nicht hinreichend groß ist.

Um dieses Modell zu lösen, wurde die „Direct Quadrature Method Of Moments" modifiziert und auf ihre

Eignung getestet. Obwohl diese Modifikation die Stabilität und Genauigkeit von der „Direct Quadra-

ture Method Of Moments" erhöht hat, wurde herausgefunden, dass die „Direct Quadrature Method Of

Moments" keine geeignete Methode zur Beschreibung von Depolymerization ist, weil die Abweichung

zwischen der mit Monte Carlo Technik erzielten Ergebnissen und denen mit der „Direct Quadrature

Method Of Moments" erzielten zu groß war.

Deswegen wurde untersucht, ob sich die „Cell Average Technique" und die „Fixed Pivot Technique"

als Lösungsverfahren eignen. Es wurde herausgefunden, dass beide Methoden Ergebnisse mit ähn-

licher Genauigkeit erzielen, jedoch war die „Fixed Pivot Technique" wesentlich schneller. Die mit der

„Fixed Pivot Technique" erzielten Ergebnisse wurden mit Monte Carlo Simulationsergebnissen für die

Depolymerisation von einem verzweigten Polymer für eine einfache und eine realistischere Reaktions-

rate verglichen. Es wurde herausgefunden, dass für stark verzweigte Polymere die Wirkung von einem

zufällig Verzweigungen hydrolyisierenden und einem endo-aktiven Enzym nicht gut beschrieben wer-

den können. Allerdings sind nicht lineare Reaktionsraten unproblematisch.

Die mechanistische Grundlage und deterministische Formulierung haben es ermöglicht, dieses Modell

für Optimierung und Optimalsteuerung zu verwenden. Eine Parameterstudie für ein lineares Poly-

mer wurde durchgeführt. Für die untersuchten Parametersätze hatten die Optimierung der Enzym-

mischungzusammensetzung und -menge wie auch der isothermen Prozesstemperatur die größten
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Auswirkungen. Der Prozess konnte weiter verbessert werden, wenn nicht-isotherme Temperaturver-

läufe verwendet wurden. Es wurde herausgefunden, dass ein vereinfachtes lineares Temperaturprofil

schon den größten Teil der Einsparungen realisieren könnte. Der Algorithmus wurde erfolgreich für ein

verzweigtes Polymer angewendet.
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Abstract

Applying model-based optimization of the enzymatically-catalyzed depolymerization of branched

biopolymers would aid the transformation of the economy into the bioeconomy. To perform this, a

deterministic model is required. In this dissertation, a deterministic Population Balance Model for the

enzymatically catalyzed depolymerization of a branched polymer was developed. This is the first model

that accounts for denaturation of enzymes by using the Equilibrium Theory and the amount of monomer

units and branching density dependence of the hydrolysis rate by using the Subsite Theory. The model

is, therefore, a mechanistic model. Furthermore, it is the first Population Balance Model for the en-

zymatically catalyzed depolymerization of a branched polymer. A preliminary validation study showed

that the developed population balance model could describe experimental data as well as a stochastic

literature model. However, the reaction rate predicted for end-chain scission performing enzymes ap-

peared to be wrong which suggests that the region of validity of one taken assumption is not sufficiently

large.

In order to solve this model, the Direct Quadrature Method Of Moments was modified and tested as

a possible solution technique. While the modification improved the stability and accuracy of the Direct

Quadrature Method Of Moments, it was found that the Direct Quadrature Method Of Moment is not a

suitable technique to describe depolymerization because the deviation between Monte Carlo technique

based solutions and Direct Quadrature Method Of Moment based solution was too large.

Accordingly, the Cell Average Technique and the Fixed Pivot Technique were investigated as possible

solution techniques. It was found that both techniques obtained solutions with comparable accuracy,

but the Fixed Pivot Technique was significantly faster. The results were compared to Monte Carlo sim-

ulation results for depolymerization of a branched polymer described using simple and more realistic

reaction rates. It was found that for highly branched polymer the action of a random debranching and

an endo-active enzyme together could not be described well. However, non-linear reaction rates did

not pose any problem.

The mechanistic foundation and the deterministic formulation allowed using this model for optimization

and optimal control. A parameter study for a linear polymer was performed. For the investigated pa-

rameter sets, optimization of the enzyme mixture composition and amount as well as the isothermal

process temperatures had the greatest effect. The process could be further optimized by applying

non-isothermal temperature profiles. It was discovered that a simplified linear temperature profile could

already realize most of the savings. The algorithm was successfully applied to a branched polymer.
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T Temperature
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Chapter 1

Introduction

This thesis is motivated by the desire to apply Process Systems Engineering (PSE) tools to the sac-

charification process. After giving a short overview why this process is important, the state of the art in

modeling and the use of the PSE tool optimal control for this process is reviewed. Then in Chapter 2 a

Population Balance Model (PBM) for the enzymatically catalyzed saccharification is derived. In Chap-

ter 3 and 4 two simulation techniques are applied to this process and evaluated. As an example for a

PSE tool optimal control is applied in Chapter 5. In Chapter 6 the results are summed up, conclusions

are drawn, and further work to be undertaken is outlined.

1.1 Motivation

Several nations, including Germany, have signed the Paris Agreement [4]. In this agreement, they have

expressed their desire to reduce the emission of carbon dioxide. This requires transforming the current

oil based economy into a renewable resources based economy, the bioeconomy. In the bioeconomy fu-

els and chemicals have to be produced using biomass as a feed stock. For ethical reasons usage of this

biomass should increase (or at least not decrease) food security world wide, which could be achieved

by using a wide variety of different crops for biofuel production [5]. One way of utilizing biomass is to

produce chemicals directly by photosynthesis which is used for fine chemicals [6]. Another way is to

use vegetable or algal oil or fat as a starting material [6–8]. The last way is to use polymers or oligomers

of glucose (e.g. sugar, starch, cellulose, and lignocellulose) as the feed stock [8, 9]. Sugar produced

by sugarcane is directly fermented into ethanol and used as fuel in South America [7].

Because the polymers starch and cellulose are present in wide variety of crops and other plants [10, 11],

utilization of them would be beneficial for the transformation. However, they need to be broken down

either into sugars, which are fermented into more desirable chemicals [9], or by thermal means into

syngas, which is used as the feed stock for Fischer-Tropsch synthesis [12]. The conversion into sugars,

i.e., saccharification, followed by fermentation is already in industrial use [13]. Currently, the most com-

monly used method is the enzymatic catalyzed depolymerization into glucose [13]. This process is also

quite established as this is one of the steps of brewing beer which has been performed for centuries
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[14]. The economic optimization of enzymatically catalyzed depolymerization, e.g. by increasing the

yield or reducing the required processing time or enzyme amount, is therefore highly desirable [9].

Accordingly, much research has been undertaken for process optimization, e.g. by improving the pre-

treatment step [15], combining the saccharification with the fermentation step [16], using an additional

acidic catalyst to accelerate the hydrolysis [17], breeding better biomass producing plants [18], and

engineering more suitable enzymes [19]. It is well known [16, 20] that the temperature profile has a

great influence on process performance.

Optimizing the temperature profile using model-based optimal control is chosen as the most promising

method. Other PSE tool such as process design or advanced process control (e.g. model predictive

control) can also benefit from the developed model and simulation technique.

1.2 Modeling enzymatic depolymerization

A model suitable for PSE needs to represent reality sufficiently well. With data driven methods [21, 22]

experimental data can be represented well. However, extrapolation to parameter combinations not used

for parameter estimation might not be possible. Accordingly, in this thesis only mechanistic models are

considered.

The simplest model with some mechanistic background describes the polymer as a homogeneous sub-

stance with an average amount of monomer units and models the conversion to product by a Michaelis-

Menten equation [23, 24]. Several studies have extended this to also tracking the evolution of a few

representative degradation products [25, 26]. However, it is well known [26, 27] that naturally occurring

polymers are distributed in the amount of monomer units. Experimental results and predictions from

theory [28, 29] agree that the reaction rates of enzymes depend on the amount of monomer units of a

polymer. Therefore, models that do not include the distributed character of the polymers have a very

weak mechanistic basis [30]. It is therefore expected that variations in the amount of monomer distri-

bution of the starting material, e.g. because of seasonal changes or different pretreatment steps, will

not be represented well by such models. This might necessitate a seasonal recalibration of the model

parameters. Furthermore, studying the influence of the pretreatment step would require a significant

experimental effort. Another problem is that the model parameters are measured for temperature pro-

files that are significantly different from the ones computed by optimal control. It is expected that the

parameters of a non-mechanistic model will not describe these different conditions well. Accordingly,

simple models might predict the wrong result around the optimal point, which will likely result in the

identification of suboptimal process conditions.

To overcome the weak mechanistic basis, models to describe the depolymerization of cellulose [31]

and starch [32–34] starting from the subsite theory of enzymes [28] have been proposed. Furthermore,

models to take the structure of the substrate into account have been developed [35]. These models are

so complicated that they could only be solved using the kinetic Monte Carlo (kMC) technique. However,

kMC simulations are unsuitable for optimal control due to their high computational cost and stochastic
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nature. Accordingly, detailed structure requiring models are not used in this work and also not further

reviewed. Instead the reader is referred to the review of structure based models, non-distributed mod-

els, and data driven approaches written by Galanakis et al. [22].

The approach used in this work copes with the complexity of the distributed chain length by formulat-

ing a balance equation for each species of polymer. The earliest work found using this approach for

enzymatic depolymerization was authored by Chang et al. [36]. Watanabe et al. then modeled the

enzymatic depolymerization of xenobiotic polymers using a PBM [37–39]. The first work using this

approach in a bioenergy context was undertaken by Hosseini and Shah [40] who modeled the degra-

dation of cellulose by endo-cellulase. This approach was extended by the second paper in this series

[41]. Several other works have focused on cellulose [42–47]. All of these approaches consider a linear

polymer which is depolymerized at isothermal conditions. Except Hosseini and Shah [40] all authors

consider cellulose to be an insoluble polymer which is present in a particulate form. The enzymes bind

on the surface and cleave the polymer. In all works (except the one authored by Hosseini and Shah

[40]) cellulose is attacked by two enzymes: one exo-active, i.e., only active on the end of the polymer,

and one endo-active, i.e. active (not exclusively) on the inner part of the polymer. Besides Lebaz et al.

[46] all authors assume the particles to be monodisperse and the polymer to be distributed in the chain

length.

Starch is rarely modeled using population balance approaches. Only one other group has published on

enzymatic depolymerization of starch using a population balance approach [48, 49]. Their work focuses

on the simultaneous fermentation and saccharification. They assumed starch to be linear and soluble.

It was attacked by two enzymes at isothermal conditions.

1.3 Population Balance Modeling

PBM as a term was coined by Randolph [50], but the framework was also independently derived by

Hulburt and Katz [51]. Parts of the framework can be traced back to at least 1916 [52] (see Sporleder

et al. [53] for a more detailed history). In short, PBM introduces further inner coordinates (e.g. chain

length for polymers [54] or size and shape for crystals [55]) and formulates a balance equation for the

number density for the variable of interest (here polymer amount). The theory is explained with a focus

on crystallization but great clarity by Randolph and Larson [56] and with a solid theoretical foundation

by Ramkrishna [57]. PBMs are used in a great variety of field (see [58, 59] for good reviews). As most

polymers are distributed at least in the amount of monomer units the usage of PBM is well established

in polymer modeling [54, 60–62] and even depolymerization modeling [40, 42, 63–68].

Analytic solutions of the Population Balance Equation (PBE) are only possible for some cases, e.g.

[57, 69–75]. Accordingly, numerical solution techniques are necessary. A wide variety of solution

techniques has been developed in the past. Only some of these techniques have already been applied

to depolymerization or breakage PBEs.
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1.3.1 Review of solution techniques for the Population Balance Equation

The solution techniques are presented shortly in an arbitrary order in this section.

Kinetic Monte Carlo technique

kMC techniques were developed for particle physics in the 40s [76] and have been used in many fields

[77, 78]. kMC techniques are stochastic solution technique. Accordingly, noisy results are obtained.

Furthermore, they are often very slow [77]. Combined this makes using them for control and optimiza-

tion purposes unsuitable.

There are two approaches in using kMC for solving PBEs. The first approach, sometimes called equa-

tion free, does not formulate a PBE, but rather simulates the particles directly [33–35, 79]. This allows

access to detailed information, such as molecular structure [33], but also is quite time consuming. The

second approach brought to sophistication by Smith and Matsoukas [80] and Lin et al. [81] evolves a

selected set of particles according to the underlying kinetics, which is described using a PBE.

Method of Weighted Residuals

The Method of Weighted Residuals is a family of solution techniques and is used for solving Partial

Differential Equations (PDEs) in general. For example the popular software COMSOL® Multiphysics

[82] uses the Finite Element Method (FEM) which is a subclass of the Method of Weighted Residuals.

All of the techniques within this class assume the Number Density Function (NDF) to be a weighted

sum of basis functions, substitute this sum into the PBE, and then derive evolution laws for the weights.

The methods in the family differ in how they derive the evolution laws.

Collocation methods evolve the weights such that at certain points the error in solving PBE is minimal.

The Collocation method was found to be inferior in performance for solving PBE when compared to the

FEM [83].

Galerkin methods multiply the approximated PBE with a basis function and integrate over the whole

domain. If this is carried out for all basis functions, one can obtain a system of Ordinary Differential

Equations (ODEs) that describes the evolution of the weights. If the basis functions are defined over

the whole domain, this is a spectral method [84]. And if the basis function are only defined on finite

elements, this is FEM [85]. FEM has found to be inferior for solving the PBE compared to a Method of

Classes (CM) [85] and Quadrature Method of Moments (QMOM) [86]. The software PARSIVAL® [87]

and PREDICI® [88] use a Galerkin based method to solve PBEs.

Methods Of Moments

The Method Of Moments (MOM) is again a family of solution techniques. It appears to yield approximate

solutions of PBEs at moderate computational cost [89–92]. Instead of solving for the NDF the moments

of the NDF are solved for. For several systems, only a few moments have been required to provide

meaningful results [89–92]. The major problem occurring, except in rare cases, e.g. [60, 93], is that
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the equations for the moments are not closed. That means that in the equations for the moments not

computed moments appear. For moment closure several strategies can be pursued:

Simplification of the Population Balance Equation Sometimes [94], the PBE is simplified until

the moments can be closed. This results in being able to obtain a solution to a simplified and not

necessarily correct model. A more rigorous way of simplifying the PBE was proposed by Yu et al. [95]

with the Taylor Extension Method Of Moments. In this method the Taylor expansion of the terms in the

PBE are used which allows closure. This approach was further extended by Yu et al. [96]. However,

this method only works well if the terms can be described with a low order Taylor expansion [96] which

cannot be guaranteed in this work.

Method Of Moments with Interpolative Closure By interpolation between known moments one can

obtain the moments needed for closure [97]. This approach is only applicable to rational moments

which cannot be guaranteed in this work.

Assuming a number density function If one assumes the NDF to be a certain distribution, e.g. a

Gamma distribution [98, 99], a log-normal distribution [99], or a normal distribution [55] one can obtain

an approximation of the NDF from the moments and compute the missing moments by this method. The

parameters of the NDF are set such that the moments of the NDF are equal to the known moments. This

method obviously works well if the NDF is described well by the assumed distribution shape, but fails

otherwise [99]. By making the NDF to be sufficiently general this method can be made very powerful

and in fact all closures mentioned afterwards are a subset of this method. As the NDF is non-negative,

the reconstructed NDF should also be non-negative. If a polynomial basis [100], piecewise constant

functions [101], or splines [102] are used, one can not guarantee non-negativity.

Quadrature Method Of Moments The Quadrature Method of Moments (QMOM) was first applied to

a PBE by McGraw [90]. It applies a Gaussian quadrature rule of an appropriate order to the integrals

defining the moments and obtains the approximated NDF as a sum of Dirac delta functions. Gaussian

quadrature rules have the desirable property that they integrate polynomials up to a certain order ex-

actly [103] which approximates most functions well. Furthermore, if the moments are realizable, the

weights are positive [103]. The computation of the position and the weights of the quadrature points is

problematic [104, 105]. This has motivated Marchisio and Fox [106] to develop the Direct Quadrature

Method of Moments (DQMOM) which directly tracks the weights and position of the quadrature points

(see Chapter 3). QMOM and Direct Quadrature Method of Moments (DQMOM) are widely used meth-

ods (see Marchisio and Fox [107] and Chapter 3 for an overview).

It was modified to the Sectional Quadrature Method of Moments [108]. This method attempts to com-

bine the benefits of sectional methods with the MOM by dividing the domain into sections and defining

the moments only in this section. By increasing the number of sections the accuracy but also the

computational effort increases. It is slightly more difficult to implement than standard QMOM but more
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robust [108].

Yuan et al. [109] proposed the Extended Quadrature Method of Moments which uses a sum of distri-

butions instead of Dirac deltas. The mean and weight of the distributions are chosen as the position

and weight of the quadrature points. In addition, there is one shape factor for all distribution which is

chosen to satisfy one more moment. Obtaining the shape factor requires solving a non-linear set of

equations. Furthermore, the distribution is not only defined at the quadrature points but rather over the

whole domain. This necessitates an approximation of integrals. The main advantage is in describing

behavior (such as dissolution) at boundaries. It has not been extended to multivariate cases.

Maximum entropy The distribution having maximal entropy at the given moments and being uniquely

determined can be expressed as the exponential of a polynomial [110]. Because the distribution with

the maximal entropy is the statistically most likely, Attarakih and Bart [111] used this closure rule to solve

the PBE. The approximated NDF is defined over the whole domain which necessitates approximation

of integrals but increases stability.

Methods of Classes

Method of Classes (CM) divide the computational domain into sections, also called bins or classes, and

approximate the NDF in this section by one Dirac delta [112–114]. The only difference between the

methods is how created particles and growth are handled. CM are very commonly used. As they are

also used in this thesis, they are described in Chapter 4 in more detail.

Probability Generating Functions

Using Probability Generating Functions [115, 116] a z-Transform is applied to the PBE. The transformed

equation is then solved approximately in the z-Domain. If the NDF is required, the transform is inverted.

For the studied problems, this method provided good results [115, 116]. However, the usage as a

numerical technique is a very new method and has only recently been used by more than one group.

The usage of this method to obtain analytical solution is established [61, 117]. Currently, as a numerical

method it cannot handle size dependent reaction rates [115, 116]. Therefore, it can not be used in this

work.

Other methods

The PBE can also be solved efficiently and accurately using the Finite Volume Method [118, 119].

However, as the method has not been rigorously compared to modern CM, it is not known whether

using the Finite Volume Method would be beneficial.

The Finite Difference method can also be used to solve PBEs. However, it requires a very fine grid and

accordingly many equations [85, 98, 120].

The Method of Characteristics [121, 122] is the best method to describe process with only growth and
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nucleation. However, it has never been extended to breakage.

The Lattice Boltzmann method has also been used in the last several years to solve PBEs [123].

However, it has not been used in depolymerization context and has been found to best describe growth

dominated processes [124].

1.3.2 Solving the Population Balance Equation describing depolymerization

As almost all polymers are distributed in the molar mass (and therefore in the amount of monomer

units) PBEs are widely used to describe polymers undergoing reactions. If the balance equation for

each discrete amount of monomer units (and branching bonds, etc.) are formulated and solved directly,

one does - in theory - not need a numerical technique besides the one required to integrate the resulting

system of ODEs. For oligomers and small polymers [40] this is computational feasible [125]. However,

the number of equations to be solved increases at least linearly with the molar mass which makes this

unsuitable for the large biopolymers considered in this work. In some cases [88, 126, 127] discrete

simulations were performed for validating a new algorithm. Also for some unrealistically simple cases,

e.g. [69, 93, 128], analytical solutions were found. These cases can be used to validate algorithms

but not to describe enzymatic depolymerization. Accordingly, numerical techniques are required. If the

amount of monomer units is sufficiently high, one can regard the polymer to be continuous in the molar

mass [54]. Then again for some unrealistic cases analytical solutions can be found [128, 129]. But

again these cannot be used and numerical techniques are required.

PREDICI

Computing in Technology has developed PREDICI and PARSIVAL [130]. PARSIVAL is a general

solver for PBEs, whereas PREDICI is developed for processes involving polymers. It uses an adaptive

Galerkin method [131] and describes the polymer as being discrete. It has been used to describe degra-

dation dominated processes [66, 132] and polymerization processes with scission present [62]. Just

using the Galerkin method implemented in PREDICI allows describing linear polymers and copolymers.

In order to be able to describe branching several techniques were used in combination with PREDICI:

Iedema et al. [62] introduced the concept of pseudo-distributions. The amount of polymer and branch-

ing bond at a certain amount of monomer units is obtained by summation of the PBE. This converts the

2D PBE into two 1D PBEs. However, one needs to provide closure which is normally [62, 133] done

by simplification. Because scission cannot be simplified with a high accuracy [66], this cannot be be

used in this work. Iedema et al. [88] solved the PBEs for each amount of branching bonds which is

only numerically feasible with a low amount of branching bonds. However, one could also use a CM for

the branching bonds as done by Seferlis and Kiparissides [134] who combined a collocation method

with a CM and did not use PREDICI. Recently, an algorithm similar to the one implemented in PREDICI

has also been implemented by Yaghini and Iedema [135], extended to 2D [136], and using a pseudo-

distribution approach even to 3D [133]. In the most recent work [133] good results at an acceptable

computational cost were obtained.
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Method of Classes

Assuming the PBE to be continuous and the polymer to be linear, several authors [36, 37, 42–44, 48, 49,

127, 137, 138] have used a CM with good results. However, for branched polymers the variation in the

amount of monomer units and the degree of branching must be considered. For such bivariate cases

CMs have not been used for depolymerization. However, for polymerization Krallis and Kiparissides

[139] have used the fixed pivot technique with around 800 ODEs to describe bivariate polymerization.

Iedema and Hoefsloot [140] have also solved a PBE for a polymerization reaction with a branched

polymer using a CM. However, they did not provide any further details.

Method of moments

The Method Of Moments (MOM) has often been applied to polymerization and depolymerization. In

early works simple systems were studied and the equation for the moments of the continuous PBE

were closed (for polymerization [60] and depolymerization [63, 65]). Saidel and Katz [141] proposed

to close the moments by approximating the NDF as a Gamma function. They used this to study a

continuous-discrete 2D polymerization process. This approach was later used for polymerization [142]

and depolymerization [98]. A purely continuous approach was found to not be sufficient to describe the

evolution of the product. Therefore, Kruse et al. [143] tracked the product discretely, while describing

the polymer with a Gamma function. In order to describe the branching of the linear polymer during

depolymerization they lumped all branched polymer into one group and used a binomial distribution for

branching bonds within this group. In a later work, the group used the same approach while tracking

more species discretely [144].

Recently, Lebaz et al. [46, 67] used DQMOM to describe the depolymerization of linear cellulose. Even

though they considered cellulose to be continuous, they still tracked the product discretely.

Other methods

The PBE has been solved by Probability Generating Functions numerically in a discrete form [115, 116,

145]. This method has also been used for a bivariate polymerization process [116]. However currently,

this method cannot be used for internal coordinate dependent reaction rates, therefore it is unsuitable.

In order to solve a 2D discrete polymerization process, Kryven and Iedema [146] approximated the NDF

in one coordinate as a sum of Gaussian distribution with fixed mean and standard deviation. The other

coordinate was solved directly. The numerical effort for polymers with a significant amount of branching

bonds would be prohibitive.

Mechanisms of depolymerization

The most well studied mechanisms for the depolymerization include Random-chain scission (RCS)

and End-chain scission (ECS) [42, 63]. This two mechanisms also serve as the extreme cases for most

depolymerization mechanisms. Solving RCS with high-resolution methods has been reported to be
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problematic [66]. Solver for the ECS based on the method of moments are also difficult to implement

[147]. Solving ECS dominated processes using high-resolution methods requires a very fine resolution

[127].

1.4 Optimal control

The aim of optimal control is to find the optimal control action profile (over time and/or space) that

minimizes an objective functional. This is different from normal optimization that searches an optimal

scalar value (or a vector thereof) [148–151]. Optimal control as a mathematical field started in the 17th

century. It was put on a solid foundation by Euler and Lagrange in the 18th century by the introduction

of the calculus of variations [152]. With the advent of computers in the mid of the 20th century it

started being applied to engineering problems which were at first aeronautical problems [153]. In the

60s Horn [154] introduced optimal control into the chemical engineering community. He found the

spatial temperature profile that allows attaining the highest possible yield for a system with coupled

reversible and for the starting material competing reactions. Later in this decade, Chou et al. [155]

found the optimal spatial temperature profile for a problem with decaying catalyst. The first works

derived analytical solution, but numerical solutions started being applied [156] in the 60s. In the 70s

and afterwards, the amount of publications is too great to provide a comprehensive review here. But

it should be noted that already in 1970 Ho and Humphrey [157] used optimal control to find the best

temperature profile for an enzymatically catalyzed reaction. The interest into using optimal control for

enzymatically catalyzed processes is still high, e.g. [158, 159]. Even though, only temperature was

mentioned here, optimal control has been used to optimize e.g. the pH profile [159], the enzyme

dosage profile [160], and the substrate feed profile [161].

The works mentioned above designed open loop control. This means that the proposed control profile

is optimal if no disturbances occur. Already in the late 70s, Brisk and Barton [162] developed the

first algorithm that allowed closed loop optimal control of a chemical process. Therefore, the process

can react to disturbances (and model mismatches) by taking the measured values into account and

updating the control action to still find the optimal profile. This model predictive control is a topic of

research [163] and already applied [164–166]. Another topic of research is to find an optimal profile

that is robust to uncertainty in parameters or inputs [167].

1.4.1 Review of solution techniques

The solution strategies for optimal control of systems described by ODEs can be broadly classified into

three groups [151, 168]: Indirect and direct solution strategies and full discretization.
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Indirect solution strategies

Indirect solution strategies try to satisfy the necessary conditions at all times. This necessitates solving

the set of ODEs for the states coupled with the ODEs for the adjoint states (see e.g. [168, 169] and

Section 5.1). Numerically this is tricky because one has to solve a boundary value problem which can

be handled using appropriate solvers [170]. For the complicated set of ODEs obtained by approximation

of the PBE having to solve a boundary value problem with double the amount of equations did not seem

promising and this approach was therefore not attempted. Most analytical solutions are obtained using

indirect solution strategies. Analytical solutions have been obtained for some simple problems relevant

to optimal temperature control of reactors [154, 171] and more recently [172].

Complete discretization

If complete discretization is used, the states as well as the control variables are discretized in time/or

space. Then one searches for the values of the states that would result in a solution of the governing

equations coupled together with the optimal control variables. This results in large scale non-linear

programming problem [151, 168]. This approach is used in a commercial solver based on a pseudo-

spectral method [173]. However, one obtains an optimization problem with the number of states plus the

number of control variables times the number of time steps as the size [151]. For the large systems of

ODEs (up to 1000 ODEs with more than 300 time steps taken) studied this also did not seem promising

and this approach was therefore not attempted.

Direct solution strategies

The control variable is parametrized and the optimal value of those parameters is searched. This reduce

the problem to a finite dimensional optimization problem [151, 174]. The states corresponding to any

parameter value can easily be obtained by integration of the ODE system using any time integrator.

This is the easiest method to implement, but one is not guaranteed to obtain the true optimal solution.

Rather only the optimal parametrized profile is obtained. If the parametrization is able to represent the

true solution, one however obtains a true solution [175]. As very complicated profiles are unlikely to be

used in industrial practice [175], this constraint is not critical and a direction solution method was used.

Parametrization One can use any parametrization for the optimal heating profile [174]. A very general

approach is due to Sirisena [176] who used piecewise polynomials. The usage of high order polynomial

introduces assumptions on the continuity of the profile which can be minimized if a piecewise constant

approach is used.

Single and multiple shooting With single shooting the ODEs describing the problem are solved

forward in time from the initial state to the final state. However, with multiple shooting the problem

is divided into several subproblems. Each subproblem is solved forward in time from a guess of the
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state vector at the start of the subproblem. The state vector at the start of each subproblem has to be

obtained numerically. Multiple shooting can solve some problems that are inefficient or impossible to

solve using single shooting [177]. However, estimating the state vector at the start of each subproblem

adds the amount of state variables times the amount of evaluation of the right hand side of the system

of ODEs. This would lead to a very large system of equations and, accordingly, single shooting is used.

1.4.2 Model-based optimal control of enzymatic depolymerization

Of course one does not need PSE to propose a temperature profile and experimentally test this. How-

ever, already in 1998 Einsiedler et al. [178] formulated using optimal control of the temperature as a

modeling goal. Currently, a heuristical experimental approach is used to optimize depolymerization

temperature ramps: First, one gains knowledge about the behavior of the enzymes by suitable ex-

periments and then proposes to operate the process at "optimal temperatures" of the enzymes. This

results in a temperature profile that can be used to handle polymer from a novel source [20]. However,

a truly optimal profile is unlikely to be found by such a method and the experimental effort is large. This

becomes even more of an issue if one considers that polymers from a natural source, which are subject

to change [179], are to be used. Accordingly, it might be necessary to perform the optimization with

every change of source and at least every season anew. This makes a model-based approach highly

desirable.

Model-based optimal control has been applied to the saccharification process, though models that

neglect the amount of monomer units distribution were used [16, 23] with the above mentioned defi-

ciencies. Optimal control has been applied to polymerization, instead of depolymerization, processes

described by PBEs [94, 180, 181], though. However, those studies used either a very coarsely dis-

cretized optimal profile because of computational limitations [180, 181] or were able to use simplifi-

cations not possible for enzymatically catalyzed reactions [94]. Optimal control for depolymerization

processes represented by a complex PBM is challenging and has, to the best of my knowledge, not

been pursued yet.

1.5 Aims and scope

PSE has been used to improve a lot of chemical processes. However, it is rarely applied in biotechnol-

ogy and food engineering. Applying PSE methods such as optimal control to biotechnological process

might help in establishing biotechnology. Thereby, the economy can be transferred more easily into the

bioeconomy.

Thesis statement This thesis aims at showing that PSE methods (as an example optimal control of

temperature) can be used to optimize the enzymatically catalyzed depolymerization process. It is the

aim of this thesis to use a mechanistic model that can deal with variabilities in the starting material and

the enzymes.
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Formulating a Population Balance Model A PBM that takes degradation of enzymes and the dis-

tributed nature of the polymer into account is developed in Chapter 2. Furthermore, the model is on

solid mechanistic foundation and is extended from linear polymers to branched polymer. The predic-

tions of this model are compared to a stochastic model and experimental data from the literature in

Chapter 4.

Solving the Population Balance Model Three techniques are evaluated for their ability to describe

depolymerization of branched polymer. This is done in this dissertation by comparing the results to

kMC results. The three methods are DQMOM (see Chapter 3), Cell Average Technique (CAT), and

Fixed Pivot technique (FP) (see Chapter 4 for both methods). All of the methods had to be modified in

order to be used for the problem studied in this work.

Optimal control of temperature Optimal control of the temperature profile is performed for enzymatic

depolymerization in Chapter 5. For a linear polymer several objectives and parameters are studied.

Furthermore, the effect of using a more realistic product distribution function and considering the effect

of branching is investigated.

Limitations In this dissertation the developed model is not thoroughly validated with experimental

data. No experiments to investigate the validity of the assumptions were undertaken. The parameters

used in this dissertation are taken from literature sources and not estimated from experimental data.
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Chapter 2

Modeling enzymatic depolymerization

Having a model is, obviously, a necessity for applying model-based Process Systems Engineering

(PSE) methods. The model must be able to predict the state, even for conditions that were not used

for calibration or parameter estimation. For example, optimal control can result in temperature profiles

whereas most parameters are estimated for isothermal conditions. Therefore, a mechanistic model

should be used. As the priorly derived models (see Chapter 1) are either too simplistic or too com-

plicated for optimal control, a new model (see Figure 2.1 for a schematic drawing) to describe the

enzymatic depolymerization with coupled denaturation of enzyme is derived in this chapter.

2.1 Starch

One of the most abundant polymers in the world is starch. It is so common because many plants

produce it to store energy. Plants synthesize it by linking the monomer glucose by α-1-4 and α-1-6-

glycosidic bonds. As the polymer is less soluble than the monomer glucose it is then deposited in

granules of different radii. Nevertheless, the polymer is still soluble in water at moderate temperatures

[10].

Starch has been converted into saccharides (the monomer glucose and small oligomers) for millennia

as a step in brewing beer [182]. 2015 in Germany more than 467×103 ton of ethanol for usage as

fuel were produced via saccharification of starch followed by fermentation [13]. Accordingly, starch was

chosen as the model polymer.

Starch is made up by two fractions: A linear (or almost linear) fraction, called amylose, and a branched

fraction, called amylopectin. Depending on the origin of the polymer the percentage of linear polymer

can be significant [10]. Amylose has a broad distribution in the amount of monomer units with a mean

amount of monomer units in the order of 10×103 [183]. Amlyopectin is also broadly distributed but

much larger with a mean amount of monomer units up to around 10×106 [184]. Furthermore, it is

highly branched with a branching density greater than 4 % [185].

The α-1-4 bonds are linear bonds, whereas the α-1-6 bonds are responsible for branching. As starch

does not crosslink the amount of branching bonds b must be less than that of monomer units k minus
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Figure 2.1: Schematic drawing of the model. The model parts (circle) provide information (arrows) to
other parts of the model or ordinary differential equations (rectangles). The blue parts belongs to the
simplified model. The numbers show in which section the part is explained.
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one. However, two glucose units can be linked with an α-1-6 bonds. Accordingly, a branching bond

is not necessarily the start of a new chain but every new chains starts with a branching bond [10].

The nomenclature of calling α-1-6 bonds bonds associated with branching would be more clearly than

calling them branching bonds but rather tiresome, accordingly, in this work α-1-6 bonds are called

branching bonds.

2.1.1 Structure of starch

The structure of starch is not fully known. Because detailed modeling of the structure is not possible with

the approach used here, the readers are referred to Pérez and Bertoft [10] for an overview over models

of the structure. For the purpose of this work a chain is defined as the α-(1-4) (linearly) connected

monomers between the start of a chain at either the reducing end or at a monomer unit with a branching

bond up to either the end of the polymer or to another branching bond. Accordingly, every branched

starch polymer has 2 ·b+1 chains: b+2 chains are end-chains and b−1 chains are inner chains. The

average amount of monomer units per chain is k
2·b+1 . It is well established that there are several types

of chains and that the amount of monomer units per chain1 is distributed [10]. This cannot be modeled

using the chosen approach.

2.1.2 Initial distribution

The form of the amount of monomer unit distribution of starch is not yet clear, but the commonly used

Schulz-Zimm distribution [186, Ch.5] was found to fit experimental data from Rolland-Sabate et al. [187]

reasonably well. The Number Density Function (NDF) for a linear polymer would be

n̄(t = 0, k̄) = n0 ·
k̄σ−1 ·Θσ

Γ(σ)
· exp(−Θ · k̄), (2.1)

where n0 is the initial molar concentration and σ and Θ are parameters that are chosen such that the

measured mean molar mass by weight and the polydispersity agree with the computed values. The

Schulz-Zimm distribution, however, assumed that the polymer can be described as being continuous.

If one wants to avoid this assumption, one can use the discrete distribution with the same shape which

is a negative Binomial distribution [188]

n̆(t = 0, k̆) = n0 ·
Γ(r+ k̆)

Γ(r) ·Γ(k̆)
· (1− p)r · pk̆, (2.2)

where r and p are parameters that are chosen such that the measured mean molar mass by weight

and the polydispersity agree with the computed values.

It is reasonable to assume that the degree of branching is also distributed. However, no measurements

1In this work chain length means the amount of monomer units per chain, whereas the (total) amount of monomer units
without any specifying words means the total amount of monomer units of a polymer. For a branched polymer the chain length
is not the total amount of monomer units.
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of the degree of branching distribution haven been undertaken. Rolland-Sabate et al. [184] have found

that the average degree of branching is a function of the molar mass. In this work, two different functions

are assumed for the degree of branching. For the continuous case it is assumed that the NDF is

distributed by a symmetric Beta distribution with the shape parameter set arbitrarily to 2. This case is

only used for testing the numerical solver and therefore agreement with reality is not imperative. This

results in a distribution

n̄(t = 0, k̄, b̄) = n0 ·
k̄σ−1 ·Θσ

Γ(σ)
· exp(−Θ · k̄) · 1

β (2,2)
·
(

b̄
k̄−1

)
·
(

1− b̄
k̄−1

)
. (2.3)

For the discrete case, the simplest one parameter distribution with a limited supporting domain is used

which is the Binomial distribution. This results in the distribution

n̆(t = 0, k̆, b̆) = n0 ·
Γ(r+ k̆)

Γ(r) ·Γ(k̆)
· (1− p)r · pk̆ ·

(
k̆−1

b̆

)
·db̆

b · (1−db)
k̆−b̆−1, (2.4)

where db is the degree of branching. To better compare the model developed in this Chapter with

literature data, the limitation that between two branching bonds are at least to unbranched glucose units

[32, 189] was implemented. This structure imposes an upper limit on the branching bonds b̆ ≤ b
k̆
3−1

2 c.
This results in a slightly different initial distribution

n̆(t = 0, k̆, b̆) =n0 ·
Γ(r+ k̆)

Γ(r) ·Γ(k̆)
· (1− p)r · pk̆

·

(
b

k̆
3−1

2 c
b̆

)
·

 k̆−1

b
k̆
3−1

2 c
·db

b̆

·

1−

 k̆−1

b
k̆
3−1

2 c
·db

b
k̆
3−1

2 c−b̆−1

(2.5)

This initial distribution provides the initial value for the number concentration (see Fig. 2.1).

2.2 Enzymes

Due to their normally high specificity enzymes are desired catalysts. Enzymes are proteins and have a

complicated tertiary structure which is required for the catalytic function [190]. The loss of this structure

is modeled in Section 2.5.3. Here, the hydrolysis of glycosidic bonds of starch is considered. The

enzyme is then a type of hydrolase (EC number top level 3) producing a type of sugar (EC class 3.2)

and acting on the O- and S-glycosydic bonds (EC subclass 3.2.1 [191]). This family of enzymes is called

Glycosidases. Four enzyme types are considered in this work. α-amylase (EC 3.2.1.1) is present in

the mashing process [14] and during bioethanol production [48, 49, 192]. The enzyme performs endo-

active attacks (i.e., not exclusively, on inner bonds) on α-1-4-bonds (linear bonds) of starch. β-amylase

(EC 3.2.1.2) is present in the mashing process [14], but is rarely used in bioethanol production. It

performs exo-active attack (i.e., on the ends of the polymer) on α-1-4-bonds of starch and releases
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the dimer maltose. Glucan 1-4-α-glucosidase or glucoamylase (EC 3.2.1.3) is generally not held to be

important in the mashing process [14, 20, 193] but is used in bioethanol production [49, 192, 194]. It

also performs exo-active attack on α-1-4-bonds of starch but releases the monomer glucose. It has

been reported that some glucoamylase attack α-1-6-bonds [195] which is neglected in this work as

the effect is small. One can easily include this though. As an example for a debranching enzyme

limit dextrinase (EC 3.2.1.142), which hydrolyzes α-1-6-bonds but not α-1-4-bonds, is considered. It

performs endo-active attack on the branching bonds. The model could easily be extended to dextranse

(EC 3.2.1.11) and pullulanse (EC 3.2.1.41) which also perform endo-active attack on the branching

bonds.

2.3 Population Balance Equation

Starch is a branched polymer with a wide distribution in the amount of monomer units as mentioned

in Section 2.1. The amount of monomer units is an important property to characterize the attack

of enzymes on starch [125]. Furthermore, experimental effects of the branching bonds have been

observed [196]. Accordingly, the distributed nature of the polymer and the branching should be included

in a model. This is done in this work using a two dimensional Population Balance Model (PBM). The

amounts of monomer units k and bonds associated with branching (called branching bonds for brevity)

b are used as internal coordinates.

2.3.1 Assumptions

To describe the depolymerization process using a Population Balance Equation (PBE) some simplifying

assumptions must be made. One assumption inherent in the use of population balances is that all poly-

mers with the same internal coordinates behave identically and deterministically [57]. This assumption

is only valid if the used internal coordinates are able to describe the behavior of the polymer. Further-

more, the amount of polymers must be sufficiently large that the required averaging of the (stochastic)

hydrolysis rate of bonds is valid [78].

The choice of internal coordinates implies that all the polymers are ideally dissolved. One can easily

adapt the population balance to not ideally dissolved polymer [36, 42]. Only having two internal coor-

dinates prohibits knowing the chain length distribution. In addition, the reaction is assumed to occur in

an ideally stirred batch reactor, and thus no spatial distribution is considered. Spatial distributions can

be described using population balances, but this increases the numerical effort [107, 197, 198] and is,

therefore, not considered here.

The population balance is formulated here for a pure breakage problem. This is due to the assumption

that only the enzymes act on the polymer and the enzymes only break the polymer into smaller poly-

mers (or oligomers or monomer). For some enzymes the reverse reaction (polymerization or branching)

have been observed [193], but for commercially used enzymes under real process conditions this effect

can be neglected. Further effects such as precipitation, chemical modification, or release by granules
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is not taken into account in this work. However, release can be described easily [36] and precipitation

would also not pose a problem. Because the enzymes catalyze the hydrolysis very selectively, chemical

modification should not occur [193].

2.3.2 Population Balance Equation for a branched polymer

The computation domain is complicated by the fact that the amount of branching bonds must be less

than that of monomer units minus one because the polymer is assumed to not crosslink. This restriction

on the amount of branching bonds has not previously been included in any population balance formu-

lation. However, the inclusion of this restriction is crucial in this work because physically impossible

polymers would otherwise be created. These polymers would not be a numerical problem, but would

lead to erroneous reaction patterns because the reaction mechanisms strongly depend on the pres-

ence of branching bonds. Due to this constraint the domain of valid amount of monomer units k and

amount of branching bonds b is a triangular domain with k−1≥ b. Furthermore, each polymer has to

have at least monomer unit k ≥ 1 and negative branching bonds are not possible b≥ 0. This domain is

shown in Figure 2.2.

If the degree of branching bonds would be adopted as the second internal coordinate, a rectangular

domain would be the benefit. However, subdividing the domain (see Chapters 3 and 4) would be much

more complicated because the lines with a constant amount of branching bonds would not be straight.

This approach is therefore not adopted in the present study.

Discrete population balance No additional assumption is required to derive a discrete PBE with the

internal coordinates k̆ ∈ N (the accent ˘ indicates that a variable belongs to a discrete equation or is

discrete) and b̆ ∈ N0 with the only remaining constraint k̆−1≥ b̆. The corresponding domain is shown

in Figure 2.2a. A polymer can either be destroyed by being split into smaller polymers or can be created

by a larger polymer being split into this smaller polymer and other polymers. A balance equation for the

number concentration n̆(t, k̆, b̆) of polymer, which is attacked by several enzymes, can then be derived

dn̆(t, k̆, b̆)
dt

=−D̆∑(t, k̆, b̆)+ B̆∑(t, k̆, b̆). (2.6)

Equation (2.6) defines a set of Ordinary Differential Equation (ODE)s for the concentration of polymers

with k̆ monomer units and b̆ branching bonds (refer to Fig. 2.1). Here D̆∑(t, k̆, b̆) is the reaction rate on

the polymer with k̆ monomer units and b̆ branching bonds due to all enzymes and is obtained by sum-

ming up the individual contributions of the enzymes. The individual reaction rates of the enzymes are

described in Section 2.5. B̆∑(t, k̆, b̆) is the sum of the production rates of polymer with k̆ monomer units

and b̆ branching bonds due to attack of all enzymes on all larger polymers. This birth rate is described

in Section 2.4. All of the PBEs used in this work have the same general form of the death term being

subtracted from the birth term and this being equal to the change of polymer number concentration or
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Figure 2.2: The domains on which the population balance for branched starch can be formulated.

density. They are shown in Appendix A. Further on, for clarity dependency on time, amount of monomer

units, and enzyme and polymer concentration are only noted if they aid understanding.

Continuous population balance For sufficiently large polymers one would obtain the same results

if one uses a continuous PBE [54]. The extension to also considering the amount of branching bonds

to be continuous, if the amount of branching bonds is sufficiently high, is straightforward. But this PBE

would be in a form more suitable for efficient numerical population balance solvers (see Chapter 3).

Instead of a set of ODEs for the concentration one obtains one two dimensional Partial Differential

Equation (PDE) for the number density n̄ (the accent ¯ indicates that a variable belongs to a continuous

equation or is continuous). The amount of monomer units k̄∈R : k≥ 1 and branching bonds b̄∈R : b≥ 0

is then continuous and the second coordinate for the PDE. The domain is still triangular and shown in

Figure 2.2b.

Mixed continuous-discrete population balance As the amount of branching bonds is less than

the amount of monomer units (see Section 2.1) the assumption of large amount of branching bonds

is questionable. Accordingly, a mixed continuous-discrete PBE, discrete in the amount of branching

bonds b̆ and continuous in the amount of monomer units k̄, is more appropriate. One obtains a system

of one dimensional partial differential equations for the number density n̂ (the accent ˆ indicates that

a variable belongs to a mixed continuous-discrete equation). This also results in a triangular domain

{k̄ ∈ R, b̆ ∈ N0 : k̄ ≥ 1∧ k̄−1≥ b̆} (see Figure 2.2c).

2.3.3 Population Balance Equation for a linear polymer

If one assumed that the polymer is almost linear and the effect of branching bonds can be neglected,

one obtains a one dimensional PBE. This assumption has been validated for soluble starch by Ho et al.
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[48]. The resulting equation is easier to solve. Again one obtains a set of ODEs for a discrete PBE

for the number concentration n̆ which now depends only on the amount of monomer units k̆ ≥ 1. Or

if one assumes the polymer to be continuous, one obtains a one dimensional PDE for the number

concentration n̄.

2.4 Production rate

A hydrolysis of one bond of a polymer results in the creation of two smaller polymers which corre-

sponds to binary breakage in the PBM nomenclature [57]. Some experimental results [199] can be

well explained by multiple attack of exo-active enzymes which results in the creation of more than two

fragments. However, there are currently no mathematical models for the rate of multiple attacks. There-

fore, only binary breakage is considered in this work. But multiple fragments can be handled by PBM

[57, 200], if the reaction rate is known.

The production rates are only derived for a discretely represented polymer here but the remaining cases

are derived in Appendix A.2.

2.4.1 Production rate for a linear polymer

The production rate of a polymer with k monomer units (variables without accents can either be discrete

or continuous) is obtained by first finding an expression for the production of the polymer due to attack

of an arbitrary enzyme • on a polymer of k′ monomer units and then summing up (or integrating) this

production rate. The production of polymer k due to attack on k′ can be expressed as the product of

the hydrolysis rate D•(t,k′) and a normalized non-negative Product Distribution Function (PDF) γ•(k,k′)

times 2 [57]. This relation is also detailed in Figure 2.1.

The production rate for a discrete polymer can then be expressed as follows

B̆•(t, k̆) = 2 ·
∞∑

k̆′=k̆

γ̆•(k̆, k̆′) · D̆•(t, k̆′). (2.7)

The normalization condition for the PDF is

1 =

k̆′∑
k̆=1

γ̆•(k̆, k̆′). (2.8)

Furthermore, as all mechanisms conserve the amount of monomer units the PDF must be symmetric

[57, pp.53]

γ̆•(k̆, k̆′) = γ̆•(k̆′− k̆, k̆′). (2.9)

This symmetry means that if a polymer with k̆ monomer units is produced, the other produced polymer

has k̆′− k̆ monomer units. Furthermore, physically impossible polymers with k̆ cannot be produced
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which coupled with symmetry results in

γ̆•(k̆, k̆′) 6= 0⇒ 1≤ k̆ ≤ k̆′−1. (2.10)

One can reformulate the equations for the production rate and the normalizing condition using the above

condition

B̆•(t, k̆) =2 ·
∞∑

k̆′=k̆+1

γ̆•(k̆, k̆′) · D̆•(t, k̆′) (2.11)

1 =

k̆′−1∑
k̆=1

γ̆•(k̆, k̆′). (2.12)

2.4.2 Production rate for branched polymers

The production rate for branched polymers is obtained similarly to the linear case. The PDF is now

a function of the amount of monomer units k and branching bonds b of the created polymer and the

amount of monomer units k′ and branching bonds b′ of the attacked polymer. The transfer of the

production rate and the normalizing condition is straightforward

B̆•(t, k̆, b̆) =2 ·
∞∑

k̆′=k̆

k̆′−1∑
b̆′=b̆

γ̆•(k̆, k̆′, b̆, b̆′) · D̆•(t, k̆′, b̆′) (2.13)

1 =

∞∑
k̆=1

k̆−1∑
b̆=0

γ̆•(k̆, k̆′, b̆, b̆′). (2.14)

However, there is difference whether linear or branched bonds are hydrolyzed.

Production rate for hydrolysis of linear bonds Every mechanism conserves the amount of

monomer units and the mechanisms that work on linear α-1-4-bonds also conserve the amount of

branching bonds. Accordingly, additivity holds: a polymer with k̆′ monomer units and b̆′ branching

bonds decomposes into a polymer with k̆ monomer units with b̆ branching bonds and a polymer with

k̆′− k̆ monomer units and b̆′− b̆ branching bonds. Thus, the PDF γ̆• must be symmetric, according to

the straightforward extension of the reasoning of Ramkrishna [57, pp.53] when applied to the bivariate

case.

γ̆•(k̆, k̆′, b̆, b̆′) = γ̆•(k̆′− k̆, k̆′, b̆′− b̆, b̆′). (2.15)

Because physically impossible polymers cannot be created, the fragment distribution function must be

zero for the physically impossible polymers with k̆ < 1 or b̆ > k̆−1. The above derived symmetry then

implies that the fragment distribution is zero for k̆ > k̆′−1 or b̆′− b̆ > k̆′− k̆−1. By changing the limits
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of summation the production rate can be rewritten

B̆•(t, k̆, b̆) = 2 ·
∞∑

k̆′=k̆+1

k̆′−1−k̆+b̆∑
b̆′=b̆

γ̆•(k̆, k̆′, b̆, b̆′) · D̆•(t, k̆′, b̆′). (2.16)

If one, furthermore, changes the order of summation one obtains the normalizing condition

1 =
b̆′∑

b̆=0

k̆′−1+b̆−b̆′∑
k̆=b̆+1

γ̆•(k̆, k̆′, b̆, b̆′). (2.17)

In order for the upper limit of the second sum to be larger than the lower limit the condition k̆′−2 ≥ b̆′

needs to be fulfilled. By analogy to integration and the non-negativity this is also the necessary condition

for attack being able to occur on linear bonds.

Production rate for hydrolysis of branching bonds If a branching bond is hydrolyzed the sum of

the amount of branching bonds in the created polymers is one less than in the attacked polymer, but

still the amount of monomer units is conserved. Accordingly, a polymer with k̆′ monomer units and

b̆′ branching bonds decomposes into a polymer with k̆ monomer units with b̆ branching bonds and a

polymer with k̆′− k̆ monomer units and b̆′− b̆− 1 branching bonds. Thus, the PDF has a different

symmetry condition:

γ̆•(k̆, k̆′, b̆, b̆′) = γ̆•(k̆′− k̆, k̆′, b̆′− b̆−1, b̆′). (2.18)

To avoid the production of physically impossible polymers, the PDF must be zero for k̆ < 1 and b̆ > k̆−1.

The symmetry then implies that the fragment distribution function is also zero for k̆ > k̆′−1 and b̆′− b̆ >

k̆′− k̆. The production rate and normalizing condition are

B̆•(t, k̆, b̆) =2 ·
∞∑

k̆′=k̆+1

k̆′−k̆+b̆∑
b̆′=b̆+1

γ̆•(k̆, k̆′, b̆, b̆′) · D̆•(t, k̆′, b̆′) (2.19)

1 =

b̆′−1∑
b̆=0

k̆′−b̆′+b̆∑
k̆=b̆+1

γ̆•(k̆, k̆′, b̆, b̆′). (2.20)

The necessary condition for attack on branching bonds is that a branching bond is present: b̆′ ≥ 1. If

one (closely) compares the normalization condition for hydrolysis of linear and branched bonds, one

sees that the upper limits of summation are different which will have an effect in the following section.

2.4.3 Product Distribution Function

The reaction rates for all enzymes are described in Section 2.5. For a complete model specification

the PDFs have to be provided. The PDFs strongly vary for the different mechanisms. The different

22



forms of the PDF are discussed in this section, except for the one derived from the subsite theory (see

Section 2.6). The PDFs discussed here are the blue part in Figure 2.1.

Product distribution function for random-chain scission Random-chain scission (RCS) is an ab-

straction of an important mechanism in depolymerization. It is often used to model thermal [63, 79, 133]

and by endo-active enzymes catalyzed [44, 48, 67, 68] degradation of polymers. Here, RCS implies

that every linear bond has the same probability of being cleaved. It follows that the PDF is uniform with

respect to the product size (i.e., RCS). This behavior implies that the PDF has a constant value for a

given polymer size and physically possible fragment polymers:

γRCS(k,k′,b,b′) = fRCS(k′,b′) ·H(k′−1− k) ·H(b−b′+ k′−1− k) ·H(k−1) ·H(k−1−b), (2.21)

where H is the Heaviside function

H(x) =

{
1 x≥ 0

0 x < 0
. (2.22)

Because the fragment distribution function is normalized (see Equation (2.17)), the value of fRCS(k′,b′)

can be readily obtained for the discretely represented branched polymer:

f̆RCS(k̆′, b̆′) =
1

(b̆′+1) · (k̆′− b̆′−1)
. (2.23)

The linear case can easily be obtained from the branched case as the special case of b̆′ = 0. For the

continuous representation Equations (A.13) and the mixed continuous-discrete representation Equa-

tion (A.15) is used

f̄RCS(k̄′, b̄′) =
1

b̄′ · (k̄′− b̄′−2)
(2.24)

f̂RCS(k̄′, b̆′) =
1

(b̆′+1) · (k̄′− b̆′−2)
. (2.25)

There is a difference in the PDF for a discretely and continuously represented polymer. However,

this difference is only important for polymers with a low amount of branching bonds and with small

difference between the amount of monomer units and branching bonds. The birth terms due to RCS

for a discretely and continuously represented branched polymer can then be written as follows (see

Appendix A.2 for the remaining equations):

B̆RCS(t, k̆, b̆) =2 ·
∞∑

k̆′=k̆+1

b̆+k̆′−k̆−1∑
b̆′=b̆

D̆RCS(t, k̆′, b̆′)
(b̆′+1) · (k̆′− b̆′−1)

(2.26)

B̄RCS(t, k̄, b̄) =2 ·
∫

∞

k̄+1

∫ b̄+k̄′−k̄−1

b̄

D̄RCS(t, k̄′, b̄′)
b̄′ · (k̄′− b̄′−2)

db̄′ dk̄′ (2.27)
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Product distribution function for random-debranching scission If the enzymes hydrolyzes a ran-

dom branching bond, one has random scission of branching bonds called Random-debranching scis-

sion (RDS). Again, the PDF has a constant value for a given polymer size and physically possible

fragment polymers:

γRDS(k,k′,b,b′) = fRDS(k′,b′) ·H(k−1−b) ·H(k′−1− k) ·H(k−1) ·H(b−b′+ k′− k). (2.28)

Due to normalization (see Equation (2.20)), fRDS is obtained as follows:

f̆RDS(k̆′, b̆′) =
1

b̆′ · (k̆′− b̆′)
. (2.29)

The birth term due to RDS is as follows:

B̆RDS(t, k̆, b̆) =2 ·
∞∑

k̆′=k̆+1

b̆+k̆′−k̆∑
b̆′=b̆+1

D̆RDS(k̆′, b̆′, t)
b̆′ · (k̆′− b̆′)

. (2.30)

Note that the limits of summation and integration are different than those of RCS. Again slightly different

PDFs are obtained depending on the representation.

Production distribution function for end-chain scission End-chain scission (ECS) is a common

model for thermal [63, 201] and by exo-active enzymes catalyzed [34, 44, 48, 67, 68] degradation.

The mechanisms describes that a smaller fragment is released from the end of the attacked polymer.

Glucoamylase is generally [48, 147] considered to scissor aways one monomer unit. Whereas β-

amylase [34] and β-glucosidase (EC 3.2.1.21) [44, 67, 68] are generally held to scissor away the dimer

unit. The mechanisms is abbreviated as ECSă where ă is the amount of monomer units of the released

small polymer. If no index is used, the release of monomer unit (ă = 1) is meant. The PDF is therefore

given as follows

γECS,ă(k,k′,b,b′) =
1
2
·δ (k′,k+ ă) ·δ (b,b′)+ 1

2
δ (k, ă) ·δ (b,0), (2.31)

where for discrete inputs δ is the Kronecker delta2 and for continuous δ (x,y) = δ̄ (x−y), where δ̄ is the

Dirac delta function. The birth of polymers is given by:

B̆ECS,ă(t, k̆, b̆) =D̆ECS,ă(t, k̆+ ă, b̆)+δ (k̆, ă) ·δ (b̆,0) ·
∞∑

k̆′=1+ă

k̆′−1−ă∑
b̆′=0

D̆ECS(t, k̆′, b̆′). (2.32)

2The Kronecker delta is defined as δ (x,y) =
{

1 x = y
0 otherwise

. Normally, it is written as δx,y. However, in this work this

usage would be cumbersome.
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Production distribution function for random scission of inner monomer units The result of Sub-

site Theory (see Section 2.6) can be best explained, if one also considers a mechanisms that only at-

tacks the inner monomer units of a linear polymer and attack those with uniform probability. A monomer

unit is counted as an inner monomer unit if it is at least k̆′′−1 monomer away from the end. The product

distribution and the birth term are

γ̆inner,k̆′′(k̆, k̆
′) =

1
k̆′−2 · k̆′′+1

·H(k̆− k̆′′) ·H(k̆′− k̆− k̆′′) (2.33)

B̆inner,k̆′′(t, k̆) =2 ·
∞∑

k̆′=k̆+k̆′′

D̆inner,k̆′′(t, k̆)

k̆′−2 · k̆′′+1
. (2.34)

Product distribution function for random scission of inner chains If random scission of a linear

bond of an inner chain is performed, the small polymer has at least k̆′′ monomer units and at least one

branching bond. Accordingly, the PDF and birth term are

γ̆inner,k̆′′(k̆, k̆
′, b̆, b̆′) =H(b̆−1) ·H(b̆′−1− b̆) ·H(k̆− k̆′′) ·H(k̆′− k̆− k̆′′) ·H(k̆−1− b̆)

·H(k̆′− k̆−1− b̆′+ b̆) ·


1

(b̆′−1)·(k̆′−b̆′−1)−(k̆′′−1)·(k̆′′−2)
b̆′ ≥ k̆′′

1
(b̆′−1)·(k̆′−2·k̆′′+1)

b̆′ < k̆′′
(2.35)

B̆inner,k̆′′(t, k̆, b̆) =2 ·H(b̆−1) ·H(k̆− k̆′′) ·
∞∑

k̆′=k̆+k̆′′

b̆+k̆′−k̆−1∑
b̆′=b̆+1

D̆inner,k̆′′(t, k̆, b̆) · γ̆inner,k̆′′(k̆, k̆
′, b̆, b̆′) (2.36)

2.5 Reaction rate

As only Glycosidases are considered the reaction rate on the polymers is the hydrolysis rate. Further-

more, the enzymes themselves undergo a irreversible denaturation reaction.

2.5.1 Michaelis-Menten kinetics

Michaelis and Menten [202] (see [203] for a translation into English and current usage of terminology)

have postulated a reaction mechanism that is nowadays generally used for enzymatically catalyzed

reactions. It comprises out of the formation of an enzyme-substrate complex that can either decay

back into enzyme and substrate or react to products and enzyme. One can formulate this reaction

mechanism for the hydrolysis of a polymer Sk̆′,b̆′ , with the concentration n̆, by the enzyme E.

E + Sk̆′,b̆′ ESk̆′,b̆′ E +
∑

k̆,b̆ 2 · γ̆(k̆′, b̆′, k̆, b̆) ·Sk̆,b̆

k+1,k̆′,b̆′

k−1,k̆′,b̆′

kcat,k̆′,b̆′

Under the assumptions that the enzyme-substrate complex concentration is constant (quasi-steady

state) and the enzyme concentration is negligible compared to the substrate concentration one can
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obtain the hydrolysis rate

D̆(t, k̆′, b̆′) =
kcat,k̆′,b̆′

K̆m(k̆′, b̆′)
·E• ·

n̆(k̆′, b̆′)

1+ n̆(k̆′,b̆′)
K̆m(k̆′,b̆′)

(2.37)

K̆m(k̆′, b̆′) =
k−1,k̆′,b̆′+ kcat,k̆′,b̆′

k+1,k̆′,b̆′
, (2.38)

where E• is the total active enzyme concentration. If there is more than one species of polymer

presents, one obtains a competitively inhibited Michaelis-Menten kinetics

D̆(t, k̆′, b̆′) =
kcat(k̆′, b̆′)
K̆m(k̆′, b̆′)

·E• ·
n̆(k̆′, b̆′)

1+
∑

k̆,b̆
n̆(k̆,b̆)

K̆m(k̆,b̆)

. (2.39)

The Michaelis constant K̆m(k̆′, b̆′) and the catalytic constant need to be determined which is also shown

in Figure 2.1. This is done in Section 2.6. One can already see that the parametrization introduced

by Michaelis and Menten [202] is not the most efficient parametrization. It is rather more convenient to

define the specificity [204]

scat(k̆′, b̆′) =
kcat(k̆′, b̆′)
K̆m(k̆′, b̆′)

(2.40)

and the inverse of the Michaelis constant

I(k̆′, b̆′) =
1

K̆m(k̆, b̆)
. (2.41)

This allows writing the Michaelis-Menten kinetics as

D̆(t, k̆′, b̆′) =
scat(k̆′, b̆′) ·E•n̆(k̆′, b̆′)

1+
∑

k̆,b̆ n̆(k̆, b̆) · Ĭ(k̆, b̆)
. (2.42)

2.5.2 Simplified validation case

For validation, it is appropriate to start with a simplified model for the reaction. If the polymer concen-

tration is very small compared to the Michaelis constant and the enzymes do not denature, a first order

reaction results from Equation (2.42). However, as explained in Section 2.4 the reaction mechanisms

have necessary conditions on the cleaved polymer, in order to produce only physically feasible polymer.

Therefore, the reaction rates for validation are chosen as

DRCS/ECS(t,k,b) =CRCS/ECS ·H(k−2−b) ·n(t,k,b) (2.43)

DRDS(t,k,b) =CRDS ·H(b−1) ·n(t,k,b). (2.44)

This reaction rate is linear in the amount of polymers.
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2.5.3 Equilibrium Model

The Michaelis-Menten kinetics includes denaturation and inactivation of enzymes by using the active

amount of enzymes in the model without providing a model for it. The Equilibrium Model proposed by

Daniel et al. [205] for non-polymeric reactions and validated by Daniel and Danson [206] for several en-

zymes including several Glucosidase enzymes (exoactive enzymes) provides a model for the enzyme

denaturation rate and amount of inactive enzyme. For α-amylase (endoactive enzyme) the mecha-

nism described by the Equilibrium Model has also been observed [207]. The extension to distributed

polymers is quite straightforward and is given in this section. Therefore, it is appropriate to use this

mechanism. The studied depolymerization scheme then features temperature dependent denaturation

kinetics and an inactivation equilibrium:

E•,den

E•,in

E•,act + S(k̆′, b̆′) [E•,actS(k̆′, b̆′)] E•,act +
∑

k̆,b̆ 2 · γ̆(k̆′, k̆, b̆′, b̆) ·S(k̆, b̆)
k•,+1(k̆′, b̆′)

k•,−1(k̆′, b̆′)

k•,cat(k̆′, b̆′)
k•,+3k•,−3

k•,inact

The mechanism postulates that the active free enzyme E•,act can either bind a polymer to form an

enzyme-polymer complex [E•,actSi] or be inactivated to the enzyme form E•,inact . This inactive form

can either fold back to the active form or it can be unfolded irreversibly into the denatured form E•,den.

The polymer bound in the enzyme-polymer complex can either be released or it is hydrolyzed into two

smaller polymers. Note that in the following the notation and equations from Daniel and Danson [208]

are used which are extended to a polymeric substrate.

Reaction rate

As the mechanisms is similar to the Michaelis-Menten mechanisms one takes the same assumptions

to obtain

D̆•(t, k̆′, b̆′) =
s̆•,cat(k̆′, b̆′) ·E•(t) · n̆(t, k̆′, b̆′)

1+K•,eq +
∑

k̆,b̆ n̆(t, k̆, b̆) · Ĭ•(k̆, b̆)
(2.45)

K•,eq =
k•,+3

k•,−3
=

E•,in
E•,act

(2.46)

Ĭ•(k̆, b̆) =
k•,+1(k̆′, b̆′)

k•,−1(k̆′, b̆′)+ k•,cat(k̆′, b̆′)
(2.47)

dE•
dt

=−
k̆•,inact ·E•(t) ·K•,eq

1+K•,eq +
∑

k̆,b̆ n̆(t, k̆, b̆) · Ĭ•(k̆, b̆)
. (2.48)
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If the denaturation rate is very high, the equation for the denaturation rate poses a numerical problem

because the system of equations become stiff. However, by considering the evolution of the logarithm

of the enzyme concentration one can remedy this stiffness. Furthermore, this also removes the problem

that the enzyme concentration can become negative due to rounding issues

dlog(E•)
dt

=−
k̆•,inact ·K•,eq

1+K•,eq +
∑

k̆,b̆ n̆(t, k̆, b̆) · Ĭ•(k̆, b̆)
. (2.49)

This equation for the denaturation rate is a part of the model (see Fig. 2.1).

Temperature dependence

The essence of a potentially optimal temperature profile is the strong dependence of the enzymatic

process on temperature. Accordingly, this has to be modeled which is called Equilibrium Model in

Figure 2.1. The ratio of E•,in to E•,act is

E•,in
E•,act

= K•,eq = exp
(

∆H•,eq

R
·
(

1
T•,eq

− 1
T

))
, (2.50)

where ∆H•,eq is the enthalpy difference between the active and inactive enzyme form, T the absolute

temperature, R is the universal gas constant, and T•,eq is defined as the temperature where the active

and reversible inactive form have equal concentrations (K•,eq(T•,eq) = 1). The Michaelis constant is

assumed to follow an Arrhenius temperature dependence

I•,i = I•,i(Tre f ) · exp
(

∆Hm

R
·
(

1
Tre f
− 1

T

))
, (2.51)

where K•,m,i(Tre f ) is the Michaelis constant of a polymer of chain length i at the reference temperature

Tre f and ∆Hm is the enthalpy of substrate binding. The rate constant of inactivation is

k•,inact =
kB ·T

h
· exp

(
−

∆G‡
•,inact

R ·T

)
, (2.52)

where kB is the Boltzmann constant, h is Planck’s constant, and ∆G‡
•,inact the activation energy of the

inactivation step. The catalytic constant for a polymer of chain length i is

k•,cat =k•,cat,i(Tre f ) ·
T

Tre f
· exp

(
−

∆G‡
•,cat

R
·
(

1
T
− 1

Tre f

))
, (2.53)

where ∆G‡
•,cat is the activation energy of the hydrolysis. This leads to

s•,cat = s•,cat,i(Tre f ) ·
T

Tre f
· exp

(
∆Hm−∆G‡

•,cat

R
·
(

1
T
− 1

Tre f

))
. (2.54)

28



The temperature dependencies given by the above rate or equilibrium equations yield a reaction rate

that first increases for increasing temperature. However, the equilibrium shifts to the inactivated form of

the enzyme, which causes the reaction rate to decrease above a critical temperature. Furthermore, the

denaturation rate increases with temperature due the equilibrium shift and the increase in the denatu-

ration constant.

2.6 Subsite Theory

One approach to describe the hydrolysis of linear short-chained glycosidic connected polymers is

the Subsite Theory. Development was started in the 60s [209] to explain the strong dependence of

Michaelis constant and maximal reaction rate on the chain length of the polymers. Furthermore, it was

developed to explain preferential scission. It has been applied successfully to endo-active [210–212]

as well as exo-active [28, 213, 214] enzymes. All of the mentioned studies also estimated the param-

eters for their specific enzymes. First the theory is reviewed for linear polymers and then extended to

branched polymer. Refer to Figure 2.1 to see what this model provides.

2.6.1 Linear polymer

The Subsite Theory [28] postulates that the active site of an enzyme consists of several subsites, which

are responsible for binding the substrate, and one catalytic site which is responsible for hydrolyzing the

bond. This is consistent with visualization of 3D structures of enzymes [212]. Each monomer unit can

only bind to one subsite and each subsite can only bind one monomer unit. This binding is reversible.

Definitions and assumptions

For ease of discussion, the subsites are numbered (note that other numberings are sometimes used

in literature): The first subsite gets the number 1. There are z̆ subsites and the catalytic center lies

between subsite z̆− and z̆−+1. The number of subsites above the catalytic center defines z̆+. Further-

more, the monomer units of the polymer are indexed with the reducing end having the number 1 and

the non-reducing end assigned to the number k̆′. s̆ is defined as the index of the monomer unit which

occupies the subsite 1.

The polymer has to occupy contiguous subsites. This means that, if subsite 3 and 5 are occupied,

subsite 4 needs to be occupied. Furthermore, the polymer is oriented in such a way that the index

of the monomer unit decreases with the subsite number. This means that if monomer unit 7 occupies

subsite 3 then monomer unit 8 occupies subsite 2 and not 4. Additionally, the polymer cannot leave the

active site of the enzyme. This means that, if monomer unit 2 occupies subsite 3, subsite 2 can only be

empty if the polymer has only two monomer units [28].
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Reaction mechanism

All this assumptions together allow the formulation of the reaction mechanism:

E + Ss̆,k̆′ ESs̆,k̆′ E + Sk̆′−k̆ + Sk̆

k+1,s̆,k̆′

k−1,s̆,k̆′

k+2,s̆,k̆′

For each polymer many bindings are possible. Precisely, the binding modes s̆ ∈ [1, z̆ + k̆′ − 1] are

possible. Furthermore, because the bond at the catalytic center is hydrolyzed one can specify k̆ =

s̆− z̆−−1. It follows trivially that the catalytic constants is only different from zero if the catalytic center

is occupied. This is the case if s̆ ∈ [z̆−1 +1, z̆−+ k̆−1].

Hydrolysis rate

The reaction mechanism describes a reaction of Michaelis-Menten type. Accordingly, each binding

mode can be described with the following equation, if quasi-steady state is assumed and the enzyme

concentration is sufficiently low

Ds̆,k̆′ =(k+2,s̆,k̆′ · Is̆,k̆′)
E• · n̆(k̆)

1+ n̆(k̆) ·
∑k̆′+z̆−1

i=1 Ii,k̆′

(2.55)

Ii,k̆′ =
k+1,s̆,k̆′

k−1,s̆,k̆′+ k+2,s̆,k̆′
. (2.56)

This equation for each mode is quite inconvenient and one desires one equation for each amount of

monomer unit. By summing up the hydrolysis over all productive modes one obtains this equation which

is of Michaelis-Menten type:

D(k̆′) =
s̆cat(k̆′) · n̆(k̆) ·E•
1+ n̆(k̆) · Ĭ(k̆′)

(2.57)

Ĭ(k̆′) =
k̆′+z̆−1∑

s̆=1

Ĭs̆,k̆′ (2.58)

s̆cat(k̆′) =kcat(k̆′) · Ĭ(k̆′) =
k̆′+z̆−−1∑
s̆=z̆−+1

k+2,s̆,k̆′ · Is̆,k̆′ . (2.59)

Microscopic constants

In the Subsite Theory it is assumed that the subsites do not further interact with each other. The

association constant K̆′
s̆,k̆

, which describes how strongly a polymer with k̆′ monomer units binds to the

30



enzyme in position s̆, is then given by

∆Gmixing +
s̆∑

i=s̆−k̆′+1

∆Gi =−R ·T · ln(K̆′s̆,k̆′), (2.60)

where the cratic free energy of mixing ∆Gmixing is the contribution of the solvent to the binding energy

∆Gmixing = R ·T · ln55.51, (2.61)

where x = 55.51 is a physical constant of water [215, ch.5]. The unitary free energy of binding ∆Gi is

the contribution of the binding of the polymer to subsite i to the binding energy. This contribution is zero

for imaginary subsites (i < 0 or i > z̆++ z̆−). Under the assumption that the hydrolysis of the bond is

much slower than the binding of the polymer (assumption of fast equilibrium) the Michealis constant for

each binding mode Km,s̆,k̆′ is equal to the inverse of the association constant for this binding mode. An

alternative way of stating this is to say that the inverse of the Michaelis constant for each binding mode

Ĭs̆,k̆′ is equal to the association constant for this binding mode K̆′
s̆,k̆′

K̆′s̆,k̆′ ≈ Ĭs̆,k̆′ . (2.62)

In the standard Subsite Theory k+2,s̆,k̆′ would be only temperature dependent and the equation above

would be fully specified. However, some authors [125, 216] have found that the Subsite Theory cannot

describe the hydrolysis by all enzymes. They have introduced an ad hoc strain to allow for interaction

between subsites. It is assumed that the binding of a substrate monomer unit lowers the activation-

energy barrier by a constant amount. This constant amount ∆Ga is called the acceleration factor.

k̆+2,s̆,k̆′ =

{
C(T ) · exp

(∑s̆
i=s̆−k̆′+1

∆Ga
R·T ·H(i−1) ·H(z̆++ z̆−− i)

)
z̆−+1≤ s̆≤ z̆−+ k̆′−1

0 otherwise
(2.63)

The proportionality factor C is a product of the temperature dependent catalytic constant and the time

and temperature dependent concentration of active enzyme. Both of which can be described using the

Equilibrium Model. If the acceleration factor is set to zero, the standard Subsite Theory is obtained

again. Nevertheless, the specificity of the enzyme can be computed.

Product distribution function

If the polymer of length k̆′ is hydrolyzed while in position k̆+ z̆−+1, two polymers one with k̆ monomer

units and another with k̆′− k̆ monomer units are produced. The polymer of length k̆ is also produced

from position k̆′− k̆+ z̆−+1. By summing up the production rate due to this two positions and division

by the total production rate, the PDF is obtained

γ̆(k̆, k̆′) =
1

2 · s̆cat(k̆′)
·
(

k̆+2,k̆+z̆−+1,k̆′ · Ĭk̆+z̆−+1,k̆′+ k̆+2,k̆′−k̆+z̆−+1,k̆′ · Ĭk̆′−k̆+z̆−+1,k̆′

)
. (2.64)

31



Simplification for sufficiently large polymer

For polymers with more monomer units than there are subsites one can simplify the equations because

the binding modes that occupy all bindings sites have the same affinity K̆′int and the same catalytic

constant k̆+2,max

K̆′int =exp

(
−

∆Gmixing

R ·T
−
∑z̆++z̆−

i=1 ∆Gi

R ·T

)
≈ Ĭint (2.65)

k̆+2,max =C · exp
(
(z̆++ z̆−) ·∆Ga

R ·T

)
(2.66)

Ĭ(k̆′) =(k̆′− z̆) · Ĭint +
2·z̆−1∑
s̆=1

K̆′s̆,z̆ (2.67)

k̆cat(k̆′)
K̆m(k̆′)

=k̆+2,max · (k̆′− z̆) · K̆′int +

z̆+z̆−−1∑
s̆=z̆−1+1

k̆+2,s̆,z̆ · Ĭs̆,z̆. (2.68)

If the polymer has more than 2 ·max(z̆−, z̆+) monomer units, the product distribution can be expressed

as a weighted sum of ECS and random scission on inner monomers

γ̆(k̆, k̆′) =
1

s̆cat(k̆′)

[
k̆+2,max · Ĭint · (k̆′−2 ·max(z̆−, z̆+)+1) · γ̆inner,max(z̆−,z̆+)(k̆, k̆

′)

+

max(z̆−,z̆+)−1∑
k̆′′=1

k̆+2,k̆′′+z̆−,z̆Ĭk̆′′+z̆−,z̆ + k̆+2,z̆++2·z̆−−k̆′′,z̆Ĭz̆++2·z̆−−k̆′′,z̆

2
· γ̆ECS,k̆′′(k̆, k̆

′)

 (2.69)

Parameter estimation

The estimation of the binding energies ∆Gi, the acceleration factor ∆Ga, and the proportionality con-

stant C between catalytic constant and the reaction rate was studied by Allen and Thoma [216] who

found that given the likelihood of cleavage of a bond, Michealis constants, and the maximal reaction

rates the parameters could be well estimated. The likelihood of cleavage of a bond can be obtained

by letting the enzyme cleave a radioactive labeled polymer of a certain chain length for a short time

followed by chromatography separation of the products [217]. The Michaelis constants and catalytic

rates are obtained by letting the enzymes act for a short time on a polymer of a certain chain length and

measuring the increase in polymer concentration. By performing repeated experiments at different con-

centration one can then apply the standard Lineweaver-Burk method to obtain the Michealis constant

and the maximal reaction rate from the initial reaction rate [217].

2.6.2 Extension to branched polymer

Marchal et al. [33] have extended the Subsite Theory for α-amylase to amlyopectin. However, their

model required a detailed structure of amylopectin, which was created using a Monte Carlo algorithm
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[189], and had to be solved using a kinetic Monte Carlo (kMC) technique. This model was found to

have to satisfactory agreement with experimental data by Marchal et al. [33] and Besselink et al. [32].

Because the detailed polymer structure is not available using PBM, the model has to be adapted. A

schematic drawing of this model is shown in Figure 2.3.

Monte Carlo model

The model postulated by Marchal et al. [33] assumes that the binding of the enzyme to the polymer

is not influenced by the branching bonds. Thereby, they neglect effects of the tertiary structure of the

polymer and different length and orientations of branching bonds. However, it has been experimentally

observed that α-amylase cannot attack close to a branching bond and the hydrolysis rate decreases

close to a branching bond [218]. The model handles this by multiplying the catalytic constant with an

inhibition factor kbr between 0 and 1. Only branching bonds removed less than 4 glucose units from

the catalytic center can inhibit the hydrolysis. Branching bonds that are further away, have a inhibition

factor of 1. An exponential relation between the inhibition and the distance y to the branching bond is

assumed

kbr(y̆) =

{
min(1,exp(b · y̆)−1) y̆≤ 4

1 y̆ > 4.
. (2.70)

b ∈ [0, ln(2)] is a parameter that describes the strength of inhibition. Marchal et al. [33] tried several

values of this parameters and choose the value which resulted in the best fit to experimental data. The

index T indicated which type of inhibition is considered. There are three types of inhibition:

I Inhibition on a newly started side chain due to the branching bond starting the chain.

II Inhibition on any other branching bond towards the reducing end.

III Inhibition on any other branching bond towards the non-reducing end.

The catalytic constant is multiplied with the inhibition factor due to each inhibition.

Modeling the structure of starch

The chosen population balance model does not have the ability to represent the chain length distribu-

tion. Therefore, it is assumed that every chain has the average chain length c̄ = k̆
2·b̆+1

. As the PBM

does not provide the detailed structure, one does not know whether an arbitrary chosen end-chain has

started at the last branching point. Accordingly, one does not know which inhibition to select. Here,

it is assumed that every end-chain has started newly and can be described with inhibition I. This also

neglects the one end-chain carrying the reducing end. However, this can be included, but is not thought

to be necessary because it is only one chain.
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Figure 2.3: Schematic drawing of the model for branched polymer. The arrows indicated with informa-
tion is provided.
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Hydrolysis of branched polymer

If the hydrolysis of the bond is much slower than the binding and unbinding of the polymer, the inverse

of the Michaelis parameter Ĭ(k̆, b̆) can be obtained by summing up the affinities

Ĭ(k̆, b̆) = (b̆+2) · Ĭend(c̄)+(b̆−1) · Ĭinner(c̄), (2.71)

where Ĭend is the affinity and inverse Michaelis constant of one end chain and Ĭinner the affinity and

inverse Michaelis constant of one inner chain. The effective specificity s̆cat

s̆cat(k̆, b̆) =(b̆+2) · s̆cat,end(c̄)+(b̆−1) · s̆cat,inner(c̄), (2.72)

where s̆cat,end and s̆cat,inner are the effective specificities of one end chain and, respectively, one inner

chain.

The average chain length is not necessarily an integer, but the Subsite Theory and the extension

demand integer amount of monomers. Therefore, all computations demanding integers as input are

evaluated at the two neighboring integers and the value is obtained by interpolation between these two

values. Accordingly, a function f is evaluated by

f (c̄) = (dce− c) · f (bcc)+(c−bcc) · f (dce). (2.73)

Hydrolysis of end chains The affinity of an end chain Ĭend is obtained by summing up the affinity

of unproductive bindings and productive bindings

Ĭend(c̆) =
min(z̆+,c̆)∑

i=1

Ĭz̆,i +
c̆∑

i=1

Ĭz̆,i+z̆+ . (2.74)

In this computation it it assumed that every end chain ends on a non-reducing end which implies that

the enzyme is always oriented with the subsite with the lowest number towards the end of the chain.

Furthermore, it is assumed that there are sufficiently many monomer units after the branching bond

that the subsites after the branching bonds are always occupied. The effective specificity of one inner

chain is

s̆cat,end(c̄) =
c̆∑

i=1

kbr,I(c̆+1− i) · k̆+2,z̆,i+z̆+ · Ĭz̆,i+z̆+ . (2.75)

Hydrolysis of inner chains It is assumed that every subsite of the enzyme is occupied during a

binding to an inner chain. This assumption leads to an underestimation of the Michaelis constant of the

branched polymers. The affinity of each is therefore Ĭint and the uninhibited catalytic constant k̆+2,max.

The affinity of one inner chain is then

Ĭinner(c̄) = Ĭint · c̄. (2.76)

35



The effective specificity can be easily computed by

s̆cat,inner(c̆) = k̆+2,max · Ĭint ·
c̆∑

i=1

kbr,II(i) · kbr,III(c̆+1− i). (2.77)

Product distribution function The enzyme is assumed to perform random scission on the inner

chains. It is more likely that more monomer units than belonging to two end chains are scissored aways.

Therefore, the assumption of random scission is not strictly speaking correct, but this is neglected here.
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Chapter 3

Solving the Population Balance Equation
using the Direct Quadrature Method Of
Moments

The Population Balance Equation (PBE) formulated in the previous chapter needs to be solved. Be-

cause an analytical solution is not possible, the PBE has to be solved numerically. In order for the model

to be useful for optimization the solution technique needs to be efficient. A promising candidate for an

efficient solution technique is the Direct Quadrature Method of Moments (DQMOM). In this chapter

first the theory for the DQMOM is explained. The DQMOM is applied to the depolymerization of linear

polymers in order to investigate the appropriateness of the method and to introduce all concepts. After-

wards, the DQMOM is applied to the depolymerization of branched polymer. Last, a short conclusion

is drawn.

3.1 Direct Quadrature Method Of Moments

Instead of solving the PBE to obtain the Number Density Function (NDF), the Method Of Moments

(MOM) solves the evolution equation for the moments of the NDF. Then with the Quadrature Method of

Moments (QMOM) and DQMOM a closure rule is used to reconstruct the NDF from the moments. This

approximation of the NDF is then used to compute all terms in the evolution equation for the moments.

Here, first the monovariate and then the bivariate DQMOM is explained.

3.1.1 Monovariate Population Balance Equation

Even though all functions can be used to obtain scalar values from a NDF [89], typically monomials of

the internal coordinates are used to generate the moments. The moments used in the work are of the

form:

µ̄
i(t) =

∫
∞

1
k̄in̄(t,k)dk̄, (3.1)
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where i ∈ N0 : i ≤ 2 ·N− 1 is the order of the moment and N is the number of quadrature points. The

number of quadrature points is proportional to the quadrature order [106]. Here, two moments have a

clear physical meaning: The zeroth order moment (i = 0) is the total amount of polymers and the first

order moment (i = 1) is the total amount of monomer units.

Taking the moments of the PBE Equation (A.2) yields the equation for the evolution of the moments as

follows:
dµ̄ i

dt
=−ω̄

i∑+ ᾱ
i∑, (3.2)

where ω̄ i∑ and ᾱ i∑ are the i-th moments of the death and birth term, respectively:

ω̄
i∑ =

∫
∞

1
k̄i · D̄∑(t, k̄)dk̄ (3.3)

ᾱ
i∑ =

∫
∞

1
k̄i · B̄∑(t, k̄)dk̄. (3.4)

The moments of the death and birth term can, generally, not be expressed as a function of the moments

solved for. Thus, the system of Ordinary Differential Equations (ODEs) is not closed. Accordingly,

closure is required. QMOM provides closure by using a quadrature rule [90]. This approximates the

NDF as a sum of Dirac deltas:

n̄(t, k̄) =
N∑

l=1

w̄l(t) ·δ (k̄− k̄l(t)), (3.5)

where w̄l is the weight of the l-th quadrature point and k̄l is the position (or abscissa) of the l-th quadra-

ture point. To use QMOM or a QMOM derived technique, the PBE needs to be formulated contin-

uously. To show that closure is required and to illustrate QMOM, the simplified validation case (see

Section 2.5.2) is considered.

Application to validation case The hydrolysis rates of the validation case can be expressed as the

product of a function f and the NDF

D̄•(t, k̄) = f̄•(k̄) · n̄(t, k̄). (3.6)

Substitution into Equation (3.3) yields

ω̄
i
• =

∫
∞

1
k̄i · f̄•(k̄) · n̄(t, k̄)dk̄. (3.7)
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Unless the function is constant, ω̄ i∑ cannot be expressed as a function of µ̄ i. But if one substitutes the

QMOM approximation into the NDF, one obtains after some calculations

ω̄
i
• =

∫
∞

1
k̄i · f̄•(k̄) ·

N∑
l=1

w̄l(t) ·δ (k̄− k̄l(t))dk̄ (3.8)

=

N∑
l=1

w̄l(t) · k̄i
l · f•(k̄l) ·H(k̄l−1). (3.9)

Therefore, the moment of the death rate can be computed if the weights and positions of the quadrature

points are known. The moments of the birth rate have the following form for the validation case

ᾱ
i
• = 2 ·

∫
∞

1
k̄i
∫

∞

k̄+1
γ̄•(k̄, k̄′) · f̄•(k̄′) · n̄•(t, k̄′)dk̄′dk̄. (3.10)

Again using the approximation for the NDF the moments can be simplified

ᾱ
i
• = 2 ·

N∑
l=1

w̄l(t) · f̄•(k̄l)

∫ k̄l−1

1
k̄i · γ̄•(k̄, k̄l)dk̄. (3.11)

This integral can be solved either analytically or numerically.

Quadrature The weights and positions of the quadrature points have to be chosen to satisfy the

system of equations defined by

µ̄
i =

N∑
l=1

w̄l · k̄i
l. (3.12)

The solution of this system of equation is called quadrature. To avoid the ill-conditioned quadrature,

Marchisio and Fox [106] developed DQMOM, which has been successfully applied to several problems

[107]. DQMOM has also been shown to be suitable for bivariate [219–221] and breakage [220] prob-

lems. The quadrature is avoided by solving the ODEs for the evolution of the weights and position of

the quadrature points [106]. Marchisio and Fox [106] suggested writing the evolution equation of the

moments as follows:
dµ̄ i

dt
=

N∑
l=1

(1− i) · k̄i
l ·

dw̄l

dt
+ i · k̄i−1

l · dw̄l · k̄l

dt
. (3.13)

If the variables are written into a vector, this equation can be rewritten as follows

dµ̄

dt
=Ā(k̄) ·

[
dw
dt

dw◦k
dt

]
(3.14)

Āi, j(k̄) =

{
(1− i) · k̄i

j j ≤ N

i · k̄i−1
j−N j > N

(3.15)

39



The symbol ◦ specifies the Hadamard product resulting in the entry-wise multiplication of two vectors.

If the weights and position of the quadrature points is known at the initial time, the system of ODEs can

be solved using any appropriate numerical solver.

3.1.2 Bivariate Population Balance Equation

The extension to a bivariate PBE is straightforward. The moments are obtained by multiplication with

k̄i · b̄ j and integration over the entire domain

µ̄
i, j =

∫
∞

1
k̄i
∫ k̄−1

0
b̄ j · n̄(t, k̄, b̄)db̄dk̄. (3.16)

The moment with i = 0 and j = 1 is the total amount of branching bonds. Using the same operation on

the PBE (3.28) yields the equation for the evolution of the moments as follows:

dµ̄ i, j

dt
=− ω̄

i, j∑+ ᾱ
i, j∑

,I. (3.17)

where ω̄
i, j∑ and ᾱ

i, j∑
,I are the moments of the death and birth terms, respectively. The NDF is again

expressed as a sum of Dirac deltas

n̄(t, k̄, b̄)≈
N∑

l=1

w̄l ·δ (k̄− k̄l) ·δ (b̄− b̄l). (3.18)

For the left hand side of Equation (3.17) Marchisio and Fox [106] suggested writing the evolution equa-

tions of the moments as follows:

dµ̄ i, j

dt
= ·

NI∑
l=1

(
(1− i− j) · ¯̃ki

l · ¯̃b
j
l ·

dw̄l

dt
+ i · k̄i−1

l · b̄ j
l ·

d( ¯̃wl · k̄l)

dt
+ j · k̄i

l · b̄
j−1
l · d(w̄l · b̄l)

dt

)
. (3.19)

If the variables are written into a vector, this equation can be rewritten as follows:

dµ̄

dt
=AI(k̄, b̄) ·


dw̄
dt

d(w̄◦k̄)
dt

d(w̄◦b)
dt

 (3.20)

Al, f I =


(1− i(l)− j(l)) · k̄i(l)

f b̄ j(l)
f f ≤ NI

i(l) · k̄i(l)−1
f−NI

NI < f ≤ 2 ·NI

j(l) · b̄ j(l)−1
f−2·NI

2 ·NI < f

, (3.21)

where AI is the nonlinear inversion matrix. Fox [222] showed that the stability of DQMOM depends on

the selected set of moments. His suggested set of moments is adopted for the cases when 4 and 9

quadrature points are used. The moments are given in Table 3.1. The number of moments is always 3

times the number of quadrature points. Therefore, for the results presented below, the first 3, 6, 9, and
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so on moments are used.

Table 3.1: Exponents used to compute the moments corresponding to their quadrature point [2] (With
kind permission from Elsevier).

NI i j NI i j
1 0 0 6 4 1
1 1 0 6 3 2
1 0 1 6 2 3
2 0 2 7 1 4
2 1 2 7 5 0
2 2 0 7 0 5
3 2 1 8 5 1
3 3 0 8 1 5
3 0 3 8 4 2
4 1 1 9 2 4
4 3 1 9 5 2
4 1 3 9 2 5
5 2 2
5 4 0
5 0 4

3.2 Direct Quadrature Method of Moment for a divided domain

The assumption of continuity is valid for sufficiently large polymers, but not for small polymers [54].

The degradation of polymer results in an increasingly large amount of small polymer. Accordingly,

one cannot justify the continuity assumption for the whole process time. In order to use DQMOM,

however, the continuity assumption is required. A division of the domain into subdomains can unify

both approaches [223]. In addition, the low molecular weight polymers are represented with a high

resolution while still DQMOM can be used for the large polymers. The high resolution of the low

molecular weight polymers is beneficial, because their processability and value can depend strongly

on their molar mass and degree of branching. For the large polymers, on the other hand, total mass is

the main property of interest in industrial practice [143] and can be sufficiently determined at a quite

low resolution.

3.2.1 Linear polymer

In Subdomain II the continuity simplification justified by McCoy and Madras [54] is used, whereas

in Subdomain III the PBE is discrete (see Figure 3.1). There appears to be no experience in using

DQMOM for such a mixed continuous-discrete formulation. However, there have been reports of the
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use of the MOM for the mixed continuous-discrete formulation [143].

Subdomain II consists of all polymers with more than k̆c monomer units. k̆c is the critical amount of

monomer units. It is a numerical parameter that can be set to every natural number. The NDF n̄(t, k̄) is

thus defined on {k̄ ∈ R : k̄ > k̆c}. Subdomain III consist of all polymer with less than k̆c monomer units.

Here, rather than the NDF, the amount of polymers with a discrete amount of monomer units is known.

Therefore, to still maintain the NDF, the NDF in this subdomain is represented by a sum of Dirac deltas

centered on {k̆ ∈ N : k̆ ≤ k̆c].

Population balance equation in Subdomain II

As breakage of polymers only creates smaller polymers, Subdomain II is independent of Subdomain III.

Therefore, the PBE remains unchanged:

∂ n̄(t, k̄)
∂ t

=−D̄∑(t, k̄)+ B̄∑
,II(t, k̄), (3.22)

where B̄∑
,II is the birth due to hydrolysis on polymers in Subdomain II. However, the definitions of the

moments has to be changed, in order to not include Subdomain III. The moments are then

µ̄
i
II =

∫
∞

k̆c

k̄i · n̄(t, k̄)dk̄. (3.23)

Integer moments of order up to 2 ·N − 1 are used in this study. The approximation for the number

density function is used to compute the terms of the right-hand side of Equation (3.17). The resulting

equations are shown in Appendix B.

0 1 2 3 4 5 6 7 8 9 10

Subdomain III Subdomain II

Amount of monomer units k

Figure 3.1: The domain and the subdivisions,
where k̆c = 5 for illustrative purposes.

ᾰ
j=1

• ,II (t,k̆ − 1)

ᾰ
j=0

• ,II (t,k̆ − 1)

ᾰ
j=1

• ,II (t,k̆)

ᾰ
j=0

• ,II (t,k̆)
k̆ −1 k̆ k̆ +1

Amount of monomer units

Figure 3.2: Discretization of the birth term in Sub-
domain III.
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Population balance equation in Subdomain III

The hydrolysis of polymers in Subdomain II creates polymer in Subdomain III. The PBE has to be

extended by B̆∑
,II , which is the birth of polymers due to hydrolysis on polymers in Subdomain II:

dn̆(t, k̆)
dt

=−D̆∑(t, k̆)+ B̆∑
,III(t, k̆)+ B̆∑

,II(t, k̆), (3.24)

where B̆∑
,III is the birth of polymer due to hydrolysis on polymers in Subdomain III. Every reaction

• in Subdomain II produces B̄•,II continuous polymer in Subdomain III. Because Subdomain III is not

continuous, this birth has to be discretized in that coordinate to yield B̆•,II. B̆•,II is only defined for integer

values of k̆. Kumar and Ramkrishna [112] suggested a method for distributing the birth of particles to

adjacent pivots while preserving two arbitrary moments. This method is adopted here to discretize the

birth term while preserving two moments of the polymer production rate: The production rate of polymer

ᾰ
j=0
•,II and monomer units ᾰ

j=0
•,II in the interval [k̆, k̆+1]:

ᾰ
j=0
•,II (t, k̆) =

∫ k̆+1

k̆
B̄•,II(t, k̄′)dk̄′ (3.25)

ᾰ
j=1
•,II (t, k̆) =

∫ k̆+1

k̆
k̄′ · B̄•,II(t, k̄′)dk̄′. (3.26)

Once the total production rate moments over the interval [k̆, k̆+ 1] are known, the polymer generation

must be distributed to k̆ and k̆+ 1 such that the above computed moments are preserved. Because

every point, except the first and last point, belongs to two interval (as shown in Figure 3.2), the contri-

bution due to the intervals [k̆, k̆+1] and [k̆−1, k̆] must be added at the point at k̆ yielding the equation

for B̆•,II :

B̆•,II(t, k̆) =(1+ k̆) · ᾰ j=0
•,II (t, k̆)− ᾰ

j=1
•,II (t, k̆)+(1− k̆) · ᾰ j=0

•,II (t, k̆−1)+ ᾰ
j=1
•,II (t, k̆−1). (3.27)

The above introduced discretization of produced amount of polymers in the discrete domain ensures

consistency with regard to the zeroth and first order moments due to a mechanism in the continuous

domain. The discretization could be modified to preserve any other two moments.

3.2.2 Branched polymer

Figure 3.3 shows a representation of the domain and its division into three subdomains (continuous,

continuous-discrete, and discrete). This division is mainly governed by the choice of the critical amount

of monomer units k̆c, which can be any natural number. The domain division additionally facilitates

a high resolution of the nearly linear polymers that comprise a significant fraction of e.g. starch [10].

However, for the bivariate case the mixed continuous-discrete case has only been investigated by the

author [2].

Subdomain I consists of all the polymers with a high amount of monomer units and many branching
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bonds. The simplification that the internal coordinates can be considered as continuous quantities is

used in this domain. The NDF in Subdomain I is thus represented by n̄(k̄, b̄, t) on the triangle {k̄, b̄ ∈
R|k̆c < k̄ < ∞∧ k̆c−1 < b̄≤ k̄−1}. The polymers within Subdomain II have a lower amount of branching

bonds, but the assumption that the amount of monomer units is continuous remains justified. However,

the amount of branching bonds in this subdomain is assumed to be discrete. The polymers within

this region are therefore only defined on the dashed horizontal lines shown in Figure 3.3. The NDF in

Subdomain II is thus represented by n̂(k̄, b̆, t) on the rectangular set {k̄ ∈ R, b̆ ∈ N0|k̆c < k̄ < ∞∧ 0 ≤
b̆ ≤ k̆c − 1}. The variables that belong to this subdomain always have the accent mark ˆ. Finally,

Subdomain III consists of polymers with a low amount of monomer units and branching bonds. Here,

rather than the NDF, the amount of polymers with a discrete amount of monomer units and branching

bonds is known. Therefore, to still maintain the NDF, the NDF in this subdomain is represented by

a sum of Dirac deltas centered on the integer arguments of the triangular set {k̆ ∈ N, b̆ ∈ N0|1 ≤ k̆ ≤
k̆c−1∧0≤ b̆≤ k̆−1}. This approach is equivalent to considering the NDF n̆(k̆, b̆, t) to be defined only

for integer arguments.

Population balance equation in Subdomain I

Subdomain I can be treated quite straightforwardly because the reactions in the other subdomains do

not affect the polymers within this subdomain. The PBE for the NDF n̄ within Subdomain I is then simply

the PBE for the continuous case:

∂ n̄
∂ t

=− D̄∑+ B̄∑
,I, (3.28)

where B̄∑
,I is the birth due to hydrolysis on polymers in Subdomain I. In this study, non-dimensional

moments are used for Subdomain I, because this approach has been reported to be beneficial for the

numerical solution of the problem [219] by improving the condition number of the inversion matrix. The

scaling factors w̃, k̃ and b̃ are selected such that the initial zeroth and first order moments are unity at the

start of the simulation. The moments for Subdomain I are obtained by multiplication with 1
w̃ ·
(

k̄
k̃

)i
·
(

b̄
b̃

) j

and integration over the entire domain

¯̃µ i, j =
1
w̃
·
∫

∞

k̆c

(
k̄
k̃

)i∫ k̄−1

k̆c−1

(
k̄
b̃

) j

n̄db̄dk̄. (3.29)

Population balance equation in Subdomain II

The PBE for the NDF of polymers n̂ within Subdomain II is then as follows:

∂ n̂
∂ t

=− D̂∑+ B̂∑
,I + B̂∑

,II. (3.30)
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In Subdomain II the moments are not non-dimensionalized because non-dimensionalization is not ex-

pected to have a benefit. The evolution equation for the moments is as follows:

dµ̂ i∈N0(b̆, t)
dt

=− ω̂
i∈N0∑ + α̂

i∈N0∑
,I + α̂

i∈N0∑
,II , (3.31)

where ω̂
i∈N0∑ , α̂

i∈N0∑
,I and α̂

i∈N0∑
,II are the moments of the death and birth terms, respectively.

No reaction in Subdomain III produces any polymer within Subdomain II. However, every reaction • in

Subdomain I produces B̄•,I continuous polymers in Subdomain II. As with production in Subdomain III

due to reaction in Subdomain II B̄•,I needs to be discretized to B̂•,I. However, as the branching bond

coordinate is used the production rates of polymer α̂
j=0
•,I and branching bonds α̂

j=1
•,I in the interval

[b̆, b̆+1], are used as moments:

α̂
j=0
•,I (k̄, b̆, t) =

∫ b̆+1

b̆
B̄•,I(k̄, b̄′, t)db̄′ (3.32)

α̂
j=1
•,I (k̄, b̆, t) =

∫ b̆+1

b̆
b̄′ · B̄•,I(k̄, b̄′, t)db̄′. (3.33)

Once the total production rate moments over the interval [b̆, b̆+ 1] are known, the polymer generation

must be distributed to b̆ and b̆+ 1 such that the above computed moments are preserved. Because

every line (b̆ = const) belongs to two intervals (as shown in Figure 3.4), the contribution due to the
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intervals [b̆, b̆+1] and [b̆−1, b̆] must be added at the line at b̆ yielding the equation for B̂•,I:

B̂•,I(k̄, b̆, t) =(1+ b̆) · α̂ j=0
•,I (k̄, b̆, t)− α̂

j=1
•,I (k̄, b̆, t)+(1− b̆) · α̂ j=0

•,I (k̄, b̆−1, t)+ α̂
j=1
•,I (k̄, b̆−1, t). (3.34)

Population balance equation in Subdomain III

The PBE within Subdomain III is given as follows:

∂ n̆
∂ t

=− D̆∑+ B̆∑
,I + B̆∑

,II + B̆∑
,III. (3.35)

No scaling is performed in this subdomain because no suitable scaling factor is known. Initially, almost

no polymer is in this subdomain, but the depolymerization produces intermediate product in this subdo-

main. Because of the mechanisms in Subdomain II, B̂•,II polymers are created in Subdomain III. While

already discrete in the amount of branching bonds, the rate must also be discretized in the coordinate

for the amount of monomer units. The discretization procedure is equivalent to the one described previ-

ously. The two preserved moments are the production rates of polymers ᾰ i=0
•,II and monomer units ᾰ i=1

•,II
in the interval [k̆, k̆+1]:

ᾰ
i=0
•,II (k̆, b̆, t) =

∫ k̆+1

k̆
B̂•,II(k̄′, b̆, t)dk̄′ (3.36)

ᾰ
i=1
•,II (k̆, b̆, t) =

∫ k̆+1

k̆
k̄′ · B̂•,II(k̄′, b̆, t)dk̄′. (3.37)

The discretized birth term is as follows:

B̆•,II(k̆, b̆, t) =(1+ k̆) · ᾰ i=0
•,II (k̆, b̆, t)&− ᾰ

i=1
•,II (k̆, b̆, t)+(1− k̆) · ᾰ i=0

•,II (k̆−1, b̆, t)+ ᾰ
i=1
•,II (k̆−1, b̆, t). (3.38)

A mechanism in Subdomain I causes the birth of B̄•,I polymers in Subdomain III. This birth term must

be discretized in the amount of monomer units and amount of branching bonds. Thus, B̆•,I is also only

defined for the integer values of k̆ and b̆. Chakraborty and Kumar [224] extended the work of Kumar

and Ramkrishna [112] to a bivariate problem. In the present study the discretization is performed using

a triangulated Subdomain III, as shown in Figure 3.5. There are two types of elements (L and T ) that

must be considered. For the discretization of type L elements the method preserved the three moments:

production rates of polymers ᾰ
i=0, j=0
•,I,L , monomer units ᾰ

i=1, j=0
•,I,L , and branching bonds ᾰ

i=0, j=1
•,I,L

ᾰ
i, j
•,I,L(k̆, b̆, t) =

∫ k̆+1

k̆

∫ k̄′−k̆+b̆

b̆
k̄′i · b̄′ j · B̄•,I(k̄′, b̄′, t)db̄′ dk̄′. (3.39)

The resulting births in the lower left corner, lower right, and upper right corner in Figure 3.5 are

B̆•,I,L,ll(k̆, b̆, t), B̆•,I,L,lr(k̆, b̆, t), and B̆•,I,L,ur(k̆, b̆, t), respectively:

B̆•,I,L,ll(k̆, b̆, t) = (1+ k̆) · ᾰ i=0, j=0
•,I,L (k̆, b̆, t)− ᾰ

i=1, j=0
•,I,L (k̆, b̆, t) (3.40)
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corresponding indices [2] (With kind permission from Elsevier).

B̆•,I,L,lr(k̆, b̆, t) = (b̆− k̆) · ᾰ i=0, j=0
•,I,L (k̆, b̆, t)+ ᾰ

i=1, j=0
•,I,L (k̆, b̆, t)− ᾰ

i=0, j=1
•,I,L (k̆, b̆, t) (3.41)

B̆•,I,L,lr(k̆, b̆, t) =−b̆ · ᾰ i=0, j=0
•,I,L (k̆, b̆, t)+ ᾰ

i=0, j=1
•,I,L (k̆, b̆, t). (3.42)

For elements of type T , the same three moments are preserved: production rates of polymers ᾰ
i=0, j=0
•,I,T ,

monomer units ᾰ
i=1, j=0
•,I,T , and branching bonds ᾰ

i=0, j=1
•,I,T :

ᾰ
i, j
•,I,T (k̆, b̆, t) =

∫ k̆+1

k̆

∫ b̆+1

k̄′−k̆+b̆
k̄′i · b̄′ j · B̄•,I(k̄′, b̄′, t)db̄′ dk̄′. (3.43)

The resulting births in the lower left, upper left, and upper right corner are B̆•,I,T,ll(k̆, b̆, t), B̆•,I,T,ul(k̆, b̆, t),

and B̆•,I,T,ur(k̆, b̆, t), respectively:

B̆•,I,T,ll(k̆, b̆, t) = (1+ b̆) · ᾰ i=0, j=0
•,I,T (k̆, b̆, t)− ᾰ

i=0, j=1
•,I,T (k̆, b̆, t) (3.44)

B̆•,I,T,ul(k̆, b̆, t) = (k̆− b̆) · ᾰ i=0, j=0
•,I,T (k̆, b̆, t)− ᾰ

i=1, j=0
•,I,T (k̆, b̆, t)+ ᾰ

i=0, j=1
•,I,T (k̆, b̆, t) (3.45)

B̆•,I,T,ur(k,b, t) =−k̆ · ᾰ i=0, j=0
•,I,T (k̆, b̆, t)+ ᾰ

i=1, j=0
•,I,T (k̆, b̆, t). (3.46)

The contributions of each element, that contains point [k̆, b̆], must be summed up. As shown in Fig-

ure 3.5, up to six elements may contain the point. Type L elements touch the point with their lower left

corner, lower right corner, and upper right corner, whereas type T elements touch the point with their

lower left corner, upper left corner, and upper right corner. The total birth B̆•,I(k̆, b̆, t) at the point is then
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given as follows

B̆•,I(k̆, b̆, t) =B̆•,I,L,ll(k̆, b̆, t)+ B̆•,I,T,ll(k̆, b̆, t)+ B̆•,I,L,ur(k̆−1, b̆−1, t)

+ B̆•,I,T,ur(k̆−1, b̆−1, t)+ B̆•,I,L,lr(k̆−1, b̆, t)+ B̆•,I,T,ul(k̆, b̆−1, t). (3.47)

3.3 Numerical implementation

In this section the details of the numerical implementation are provided.

3.3.1 Initial moments

The initial moments are obtained by integration of the initial distribution times the appropriate monono-

mials numerically using the MATLAB integration integral2. The average degree of polymerization is

1000 and the polydispersity is 1.1.

3.3.2 Initial quadrature

Before the time integration of the equations is performed, the initial values for the weights and coordi-

nates of the quadrature points must be calculated from the moments. For the univariate problem there

exist efficient algorithms [90, 105, 225] performing this task. For Subdomain II the Chebyshev algorithm

described by Upadhyay [105] is used.

However, for the bivariate case with more than one quadrature point, the roots of the following nonlinear

system have to be determined:

∀i, j :
NI∑

l=1

¯̃wl · ¯̃ki
l · ¯̃b

j
l − ¯̃µ i, j = 0. (3.48)

The variables are subject to the constraint that all quadrature points lay within Subdomain I:

∀l ≤ NI : ¯̃wl ≥ 0, b̃ · ¯̃bl ≥ k̆c−1, k̃ · ¯̃kl ≥ k̆c, k̃ · ¯̃kl−1≥ b̃ · ¯̃bl (3.49)

The existing algorithm [107] cannot handle non-rectangular domains, and thus a suitable brute force

algorithm had to be developed for Subdomain I. Starting from an initial guess, the norm of the error

between the calculated and the given moments is minimized using the MATLAB® optimizer lsqnonlin:

min
¯̃wl ,

¯̃kl ,
¯̃bl

∑
i

∑
j

NI∑
l=1

(
¯̃wl · ¯̃ki

l ·
¯̃b j

l
¯̃µ i, j −1

)2
 . (3.50)

If the minimizer cannot reduce the error below the desired tolerance of 10−6 after 400 iterations, a new

initial guess is generated. These steps are repeated until the error is sufficiently small or 10 ·NI initial
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guesses have been generated.

The initial guesses are obtained by first assigning uniform random values between 0 and 1 to the

weights, then values between k̆c
k̃

and 1 to the amount of monomers coordinate, and finally, values

between k̆c−1
b̃

and 1 to the amount of branching bonds using the default random number generator

rand. If a quadrature point lies outside the valid region, then new random numbers are drawn. A point

is considered to be outside the valid region if

¯̃bl · b̃ > ¯̃kl · k̃−1. (3.51)

3.3.3 Solution of the resulting equations with error handling

Starting from the computed initial quadrature points, the resulting system of nonlinear coupled ODEs

is integrated in time using the ode45 integrator in MATLAB® with a relative tolerance of 10−5. Because

the problem is not well conditioned, several errors are possible and require handling.

If the inversion matrix becomes numerically singular, the moments in the corresponding step are com-

puted, and the number of quadrature points is decreased until a successful quadrature is realized. If the

number of quadrature points reaches zero, the moments are not realizable. If a successful quadrature

is obtained, the simulation is continued from this point with the new quadrature. For negative weights or

quadrature points outside the valid domain, the same reduction of quadrature points is attempted from

the last valid time step.

If a quadrature point of Subdomain I moves into Subdomain II, the quadrature point is transformed

to Subdomain II. Using the algorithm to discretize B̄•,I, the quadrature point is distributed to Subdo-

main II and then the quadrature point is removed from Subdomain I. Similarly, if a quadrature point of

Subdomain II moves into Subdomain III, it is transformed to Subdomain III. The disappearance of all

quadrature points from Subdomain I does not cause any problem. However, if the number of quadra-

ture points in Subdomain II for a branching becomes zero while there is still a quadrature point above

it, the algorithm will fail because any birth due to action on other lines or Subdomain I cannot be added

to any quadrature point. To avoid this problem, a quadrature point is added at the arbitrary position

k̆c + 10 with a small weight of 2−1074 when there is no quadrature point at one amount of branching

bonds in Subdomain II. The error introduced by this introduction of one quadrature point is negligible

and enables the continuation of the computation.

Another issue is the inability of the selected time integrator to guarantee the conservation of positivity

of the weights and coordinates of quadrature points. Unfortunately, solvers capable of ensuring positive

values are significantly slower than the selected solver. Therefore, if small negative weights or concen-

trations occur in Subdomain III with an absolute value of less than 10−15 occurred, the weights are set

to zero and the simulation continues.
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Computation time

The computations were performed on a 3.7 GHz 6 cores Intel® E5 processor with more than 128 GB

RAM running MATLAB® 2014a. The simulations for the different numerical settings were run in parallel

on all cores. The simulation time was measured using the MATLAB® internal stopwatch timer and the

measured time was the time required to compute the time evolution of quadrature points given the initial

moments.

3.3.4 Validation with Monte Carlo simulations

The completely discrete PBE was solved using a Constant Number Monte Carlo method for Random-

chain scission (RCS) and Random-debranching scission (RDS) and a Constant Volume Monte Carlo

method for End-chain scission (ECS) [81]. The Constant Volume Monte Carlo was modified to track the

ECS product directly. Therefore, no polymer had to be removed after an ECS event, which improved

the accuracy of the algorithm. The initial distribution was sampled using the implemented distributions

in MATLAB®. When RCS or RDS occurred, 5 ·106 polymers were used. Because ECS is much slower

than RCS, only 105 polymers were used for pure ECS. Five runs of each simulation were performed.

3.4 Results and Discussion

In the following plots and discussion, nondimensional coordinates are used. The amount of polymer

units is nondimensionalized by dividing them with their corresponding initial values. The time is nondi-

mensionalized by multiplying it with CRCS +CRDS +CECS. None of the mechanisms change the amount

of monomer units. Thus, this value remains constant and is therefore not shown. In Figures 3.10 - 3.16

the solid curves show the mean value for the Monte Carlo runs. The dashed curves are interpolations

between the last two values obtained at a finite time and the end of the simulation.

3.4.1 Monte Carlo technique

The Constant Number Monte Carlo method does not guarantee that moments are conserved. The

amount of polymers must be increased until the error is sufficiently small [81]. Here, the errors in the

amount of monomer units and amount of branching bonds relative to the initial values were less than

1%. The time at which a certain amount of polymer units was reached also deviated less than 5% from

the mean value of all the runs. The results for the Monte Carlo runs can therefore be reasonably used

as reference solutions. The average simulation time per run for RCS was more than 6.5 hours, for RDS

more than 5.5 hours, for ECS more than 5.5 hours, and for a mixture of RCS and ECS approximately

8 hours. However, the computaton time was dominated by creation of output for comparision and the

code could be further optimized. Nevertheless, the computations times using kinetic Monte Carlo (kMC)

would be unreasonable for optimal control.
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3.4.2 Linear polymer

Grosch et al. [89] showed that typically the accuracy of DQMOM increases as the number of quadrature

points increases. However, they also reported that an increase in the number of quadrature points

results in a decrease in stability. The dependence of the stability and speed of the algorithm were

accordingly studied for different numbers of quadrature points.

The results for RCS on linear polymers are shown in Figures 3.6 and 3.7. The behavior at the initial

time and the final state were described well even for low values of k̆c and NII. However, the quantitative

transient behavior deviated quite strongly for low values of k̆c and NII. The results for mixed continuous-

discrete DQMOM converged to the Monte Carlo result as the number of quadrature points and k̆c

increased.

The results for ECS on linear polymers are shown in Figures 3.8 and 3.9. The behavior at the initial

time and the final state were described well even for low values of k̆c and NII. However, the transient

behavior is a weak approximation to the real profile. DQMOM returns a non-smooth profile because the

approximated NDF is concentrated at a few chain lengths. The profile converges quickly to the exact

profile, but with k̆c = 20 only computations with NII = 1 were successful. For describing ECS only the

product created by each scission needs to be represented discretely. Accordingly, increasing k̆c above

2 does not result in improved accuracy, but it decreases numerical stability.

3.4.3 Branched polymer

Variation of the number of quadrature points in Subdomain II

If the number of quadrature points in Subdomain II (NII) was increased to values greater than one, the

simulation failed for almost all cases. This result is attributed to the fact that the required time steps

were in the order of magnitude of the machine accuracy because the weights of quadrature points in

Subdomain II were very small. Therefore, it was necessary for the integrator to take very small time

steps to resolve their evolution correctly. All further simulations were performed accordingly with NII = 1.

Variation of the number of quadrature points in Subdomain I and the amount of monomer units

for discrete consideration

In the next three sections, the stability, computation cost, and accuracy are discussed for several values

of k̆c and NI. Note that no results were obtained for NI = 5 because the initial quadrature was not

possible. This situation may be due to an improper set of moments. Separately, if k̆c is set to zero, the

undivided domain is obtained. In this case, the domain consists only of Subdomain I and the equations

for the other subdomains are not used.

End chain scission If ECS was active exclusively, it was only possible to simulate the degradation to

the completion for NI = 1,2,3,6. For other NI values, the simulation generally halted at more than 50 %

percent conversion, except when NI = 9, for which the simulation stopped much earlier.
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Figure 3.6: Polymer concentration as a function
of time for linear polymers attacked by RCS with
varying NII [2] (With kind permission from Else-
vier).
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Figure 3.7: Polymer concentration as a function
time for linear polymers attacked by RCS with
varying k̆c [2] (With kind permission from Elsevier).
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For the undivided domain (k̆c = 0) and for NI < 8, instead of the correct constant rate of increase of the

amount of polymer units an exponential increase was obtained at the beginning. However, after some

time a constant rate of increase was obtained. Furthermore, the wrong final state was computed. The

time taken to obtain a constant rate decreased as the value NI increased until NI = 8, for which the

correct rate was obtained. In addition, the final state for NI = 6 was closer to the true solution than that

for NI = 3, but the true value was not obtained. On the other hand, if the domain was divided (k̆c = 2),

the correct qualitative behavior was obtained for every NI (see Figure 3.10) and the final state was

predicted within the accuracy of the Monte Carlo results. In addition it was observed that the results

converged to the Monte Carlo results with increasing NI. However, a further increase in k̆c did not show

any further improvement in the results.

The strong benefit of dividing the domain can be explained as follows. If the domain is undivided, the

product of ECS (monomer) is created in Subdomain I. Accordingly, the amount of polymer units that

can be hydrolyzed is increased erroneously and the reaction rate increases, resulting in an exponential

increase rather than a uniform increase. Creation of monomer in Subdomain I forces one quadrature

point to describe it. If the monomer is represented by one quadrature point, the amount of polymer

units that can be attacked does not increase, and the correct behavior is obtained. In addition, the time

taken for one quadrature point to represent the ECS product is reduced with an increase in the number

of quadrature points. Therefore, the time taken to predict the right behavior decreases. Furthermore, if

the domain is divided, the ECS product is created in the discrete domain and accordingly the reaction

is better described.

A further increase in k̆c does not have any benefit because no intermediate products are created and

the initial quantity of the polymer in Subdomain II and III is negligible.

Note that the computation time for the action of ECS (see Table 3.2) grew nearly quadratically with k̆c for

NI = 1 and 2 because the number of discrete equations is a quadratic function in k̆c. For NI ≥ 3, several

computations took unexpectedly longer times and were aborted because they reached the maximum

allowed simulation time of 2 hours. These simulations took longer because the problem became very

ill-conditioned such the integrator had to take very small time steps to satisfy the tolerance constraints.

The computation time also increased with an increase in the value of NI.

Random chain scission of linear bonds If only the RCS mechanism was active, the simulations

were successful for up to NI = 4 for all values of k̆c, except for NI = 4 and k̆c = 9. This simulation failed

because the integrator had to take very small steps, which resulted in an unacceptably high simulation

time. Results for NI > 4 could only be obtained in very few cases.

Notably, the results obtained with the DQMOM and the Monte Carlo simulations deviated quite strongly,

although the same qualitative behavior was obtained (see Figures 3.11 and 3.12). For low values of k̆c

not even the final state was predicted correctly (see Figure 3.11). The final state did, however, converge

to the Monte Carlo solution with increasing k̆c. In addition, while the value for the final state approached

the true solution very slowly with increasing NI, the transient behavior approached the Monte Carlo

result rapidly as the value of NI increased (see Figure 3.12). The accuracy increased as the value
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of NI increased because larger polymers are better described using more quadrature points. On the

other hand, the increase in accuracy as the value of k̆c increased can be attributed to a more accurate

description of the degradation of small polymers, which are created as intermediate products because

the assumption of continuity is not made for them and their resolution is higher. The representation of

the intermediate product is important because a significant percentage of the monomer units are within

Subdomain II and III after a short time. Therefore, a higher resolution for low molecular weight polymers

yields a smaller error.

As an example of the concentration of a low molecular weight polymer, the number concentration of the

dimer without a branching bond is shown in Figure 3.13. The concentration first increases as the dimer

is formed. At a certain point in time, however, the dimer is degraded into monomers as rapidly as it is

formed. Subsequently, the dimer concentration decreases. Interestingly, the profile for these polymers

was correct qualitatively in the DQMOM simulations, whereas it was quantitatively wrong . However, as

the value of k̆c increase, the concentration approached the Monte Carlo result. Here, the approach for

NI was very slow.

In addition, the simulation time increased with increasing NI (see Table 3.2). Furthermore, dividing

the domain first increased the computation time significantly because it enabled a quadrature point to

leave the domain at a certain time and determining that point in time is computationally expensive.

However, the computation time decreased with a further increase in k̆c because the quadrature point

left the domain more rapidly. Subsequently, the computation time increased again because the number

of equations to be solved is a quadratic function of k̆c. The table shows that the simulations with k̆c = 10

were always faster than the Monte Carlo simulations.

Random debranching scission If only RDS was active, the simulations were successful for up to

NI = 4 for all values of k̆c, except for two cases. Those two cases failed because of negative weights in

the continuous-discrete region. Values of NI greater than 5 only succeeded for three cases. But those

cases only succeeded because the number of quadrature points was decreased almost immediately to

values < 4 (see the discussion of error handling in Section 3.3.3).

The amount of polymer units deviated quite strongly from the Monte Carlo result for the undivided

domain (see Figure 3.15), whereas for the divided domain, convergence to the Monte Carlo results was

observed. Notably, an increase in the value of NI (see Figure 3.14) from 1 to 2 decreased the deviation

considerably, but further increase only had a small influence on the results. In addition, the results for

the amount of monomers (see Figure 3.16) deviated quite strongly from the Monte Carlo results at low

values of k̆c and NI, but approached the Monte Carlo results as both k̆c and NI increased.

Furthermore, the simulation time (see Table 3.2) increased quite significantly for the undivided domain

as NI increased. This behavior can be explained by the approach of the value of the b̄ coordinate of one

quadrature point to 1. If b̄ > 1, the polymer represented by the quadrature point was attacked and b̄ was

decreased. If b̄ < 1, the polymer represented by the quadrature point could not be attacked. Because

the other quadrature point(s) still produced polymers with an average value for b̄ > 1, the value for b̄ of

the quadrature point increased again. This process was repeated several times. Because the change
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Figure 3.10: Comparison of the amount of poly-
mers generated due to ECS for various numbers
of quadrature points NI with k̆c = 2 [2] (With kind
permission from Elsevier).
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Figure 3.11: Comparison of the amount of poly-
mers generated due to RCS for several values of
k̆c with NI = 4 [2] (With kind permission from Else-
vier).
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Figure 3.12: Comparison of the amount of poly-
mers generated due to RCS for several values of
NI with k̆c = 20 [2] (With kind permission from El-
sevier).
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Figure 3.13: Number (or molar) fraction of the
dimer without a branching bond subjected to RCS
for several values of k̆c with NI = 4 [2] (With kind
permission from Elsevier).
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Table 3.2: Computation time in seconds [2] (With kind permission from Elsevier).

RCS RDS ECS
k̆c NI = 1 2 3 4 1 2 3 4 1 2 3 4
1 0.4 92.4 100.8 5695 0.4 386.3 379.9 500.2 0.4 0.6 1.1 113.9
2 1.9 319.3 652.6 7200∗ 1.3 1.8 2.8 3.6 0.6 1.0 7200∗ 32.9
3 2.5 290.6 296.6 7200∗ 1.9 2.6 3.0 4.1 1.0 1.5 2.3 7200∗

4 3.2 256.2 268.0 7200∗ 2.2 2.9 3.9 5.1 1.8 2.5 3.4 942.4
5 4.4 235.0 208.7 1051 3.1 3.5 4.7 9.6 2.2 3.2 3.7 7200∗

6 4.8 243.2 954.5 923.0 3.4 5.5 5.8 6.9 3.2 3.9 7200∗ 3360
7 6.1 296.2 285.0 7200∗ 4.8 5.9 7.7 9.3 3.4 4.6 5.1 3003
8 8.0 315.3 319.7 1162 6.4 7.2 7.8 38.2 4.6 5.6 8.0 6130
9 9.2 378.7 356.0 2173 7.8 10.0 11.4 13.7 5.2 7.4 9.2 21.4
10 11.8 424.6 424.6 2970 9.4 10.5 12.8 14.3 7.0 7.5 11.8 36.5
* Simulation aborted.

in the time derivatives was large, the time step size decreased to very small values. Consequently,

this process required a lot of computational effort. However, the computation time for two or more

quadrature points strongly decreased when a subdomain was introduced because the values of the

b̄ coordinates of the quadrature points were always > 1, and thus a discontinuity in the reaction rate

could not occur. On the other hand, a further increase in k̆c led to a nearly quadratic increase in the

simulation time because the number of discrete equations increased quadratically with k̆c.

Simultaneous random chain and end chain scissions When both RCS and ECS occurred simulta-

neously with the same reaction constant, RCS was the dominant process. RCS created polymers that

could be attacked, whereas ECS only released one monomer unit. The numerical behavior was also

dominated by RCS. Therefore if RCS is described well, the whole process is described well. Therefore,

showing the results obtained under these conditions is not necessary because they do not provide any

further insights.

3.5 Conclusion and outlook

In this chapter a novel method for describing the depolymerization of a branched polymer using Direct

Quadrature Method of Moments (DQMOM) in a mixed continuous-discrete formulation was described.

The new method increased the accuracy of the simulation for all the mechanisms considered. More

accurate results could be obtained by increasing the number of quadrature points or the amount of

monomer units to be considered discretely. However, doing so, strongly increased the simulation time

to levels not acceptable for model-based control and optimization. Furthermore, stability problem oc-

curred at high number of quadrature points or k̆c.

In particular, the discrete consideration of the monomer produced by End-chain scission (ECS) in-
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Figure 3.14: Polymer concentration as a function
of time for RDS with varying NI [2] (With kind per-
mission from Elsevier).
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Figure 3.15: Polymer concentration as a function
of time for RDS with varying k̆c [2] (With kind per-
mission from Elsevier).
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Figure 3.16: Number (or molar) fraction of
monomer in % as a function of time generated via
RDS with varying NI [2] (With kind permission from
Elsevier).
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creased the accuracy. Thus, the division of the computational domain was beneficial for removing

highly localized phenomena that are known to cause problems using Quadrature Method of Moments

(QMOM) techniques [89]. The division of the domain also removed the discontinuity in the reaction rate

of Random-chain scission (RCS), which helped reduce the required computational effort. It is postu-

lated that removing discontinuities from the reaction rates used in DQMOM will also be beneficial for

other scenarios. Simulations of ECS or similar mechanisms (e.g. preferred attack close to the chain

end [216]) must consider the end chain products discretely.

On the other hand, the accuracy of the description of RCS was not acceptable. This problem is not

related to the domain decomposition developed in this study but it is a limitation of either DQMOM or

the continuity approximation. If it is due to the continuity approximation, one should try to implement a

Method Of Moments (MOM) without using the continuity assumption. This has never been done before.

The underlying theory of QMOM is based on continuity and, therefore, application to a discrete formu-

lation will be difficult. If the problem is due to a deficiency of DQMOM, other moment-based methods

for solving bivariate Population Balance Equations (PBEs), such as the Conditional Quadrature Method

of Moments [226], the Sectional Quadrature Method of Moments [108], and the Differential Maximum

Entropy Method [111], should be evaluated in future works. If any method is suitable to describe the

validation problem considered here, it should be applied to more complicated cases where the reaction

rate depends on the characterizing variables.

This domain decomposition algorithm developed in this Chapter can also be extended to other prob-

lems besides depolymerization. It can be used when the underlying PBE is discrete. Furthermore,

the benefit is expected to be the greatest when very large values of the internal coordinates appear

together with very small values. This algorithm then allows a very fine resolution of very small values

of the internal coordinate. However, the algorithm can only be successfully applied if the method used

to simulate the evolution of Subdomain I has a sufficient accuracy and is validated.
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Chapter 4

Solving the Population Balance Equation
using a Method of Classes

Besides the Method Of Moments (MOM) Methods Of Classes (CMs), also called sectional methods,

are commonly used to solve Population Balance Equations (PBEs). In this chapter the theory behind

these sectional methods is reviewed and adapted to a discrete PBE. The implementation is described

and then the algorithm is validated by comparison to kinetic Monte Carlo (kMC) results. Afterwards,

the model proposed in Chapter 2 is solved and compared to literature data. Last, a short conclusion is

drawn.

4.1 Theory

CMs were first formulated in a general form by Kumar and Ramkrishna [112, 113, 114] in an influential

series of papers. Previous works, e.g. [227], were only formulated for specific meshes. For simplicity,

the methods are explained first for the monovariate case and then extended to the bivariate case.

4.1.1 Method of Classes for a monovariate Population Balance Equation

All CMs first divide the computational domain [km,min,km,max], where the index m stands for mesh, into

elements, called bins or classes. The borders of the i-th elements are [k̄m,i, k̄m,i+1] where k̄m,1 = kmin and

k̄m,N+1 = km,max with N being the number of elements. Then the Number Density Function (NDF) in the

bin is expressed by one particular value k̄i (k̄m,i < k̄i < k̄m,i+1), the pivot. This result in the approximation

of the NDF by a sum of Dirac deltas

n̄(t, k̄)≈
N∑

i=1

w̄i ·δ (k̄− k̄i). (4.1)

The equations for the time evolution of the weights and the pivots should result in a good approximation

of the time evolution of the NDF. CMs can be grouped into two families that obtain this equations in a
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different manner:

Moving pivot

The Moving Pivot technique was invented by Kumar and Ramkrishna [113]. In this method the position

of the Dirac delta is variable. This allows good representation of growth [113, 114]. However, numerical

problems were reported in solving breakage [228] and also encountered in preliminary work performed

by Mr. Spaunhorst and me. Furthermore, twice as many equations as with Fixed Pivot technique (FP)

based methods need to be solved. A derivative was applied to enzymatic catalyzed depolymerization

by Lebaz et al. [138], but the results did not converge to the exact solution. Accordingly, using this

method is not seen as a promising solution strategy.

Fixed pivot and derivatives

The Fixed Pivot technique (FP) was proposed by Kumar and Ramkrishna [112]. In this method the

positions of the Dirac deltas are constant. Besides increased numerical stability, often computations

can be performed prior to solving the system of Ordinary Differential Equations (ODEs) (offline) which

increases computational efficiency. However, this comes at the price of having only one degree of

freedom per bin which necessitates using a heuristical approach to close the equations. The FP and

all of its derivative demand that at least two arbitrary moments are preserved. In this study, the zeroth

and first order moments are chosen because they have a clear physical interpretation. Kostoglou

[229] extended a FP derivative to preserve more than two moments and the extension can be easily

transfered to the FP. As only two moments have a clear physical meaning this extension is not needed

here.

If one would demand that one sectional moment per bin is preserved, one would obtain a method that

preserves one moment and describes the behavior in each bin well. The l-th order sectional moment is

obtained by multiplication of the NDF with an arbitrary function (here 1 or k) and then integration from

k̄m,l to k̄m,l+1. This yields the form of the moment as follows:

µ̄
i
l =

∫ k̄m,l+1

k̄m,l

k̄i · n̄(t, k̄)dk̄. (4.2)

The equation for the time evolution of the zeroth and first order sectional moment can be easily obtained

dµ̄0
l

dt
=−

∫ k̄m,l+1

k̄m,l

D̄∑(t, k̄)dk̄+
∫ k̄m,l+1

k̄m,l

B̄∑(t, k̄)dk̄ =−ω̄
0∑

,l(t)+ ᾱ
0∑

,l(t) (4.3)

dµ̄1
l

dt
=−

∫ k̄m,l+1

k̄m,l

k̄ · D̄∑(t, k̄)dk̄+
∫ k̄m,l+1

k̄m,l

k̄ · B̄∑(t, k̄)dk̄ =−ω̄
1∑

,l(t)+ ᾱ
1∑

,l(t). (4.4)

Moments of the death and birth term If the approximation of the NDF is substituted into the above

equations, one can compute the moments. The zeroth order moment of the death term for the simplified
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linear validation case (see Section 2.5.2) can easily be computed as

ω̄
0
RCS/ECS,l =

{
CRCS/ECS ·wl kl ≥ 2

0 otherwise
. (4.5)

If the reaction rate is computed with the equilibrium model, one obtains

ω̄
0
•,l =

s•,cat(kl) ·E• ·wl

1+K•,eq +
∑N

i=1 wi · I•(ki)
. (4.6)

For most death rates, including all rates considered in this work, the first order moment can be ex-

pressed as

ω̄
1
•,l(t) = k̄l · ω̄0

•,l(t). (4.7)

Furthermore, using Equation (A.8) for the birth rate, allows expressing the moments of the birth rate as

ᾱ
0
l (t) =

N∑
j=1

ω̄
0
j (t) ·2 ·

∫ k̄m,l+1

k̄m,l

γ̄(k̄, k̄ j) ·H(k̄ j− k̄−1)dk̄ (4.8)

ᾱ
1
l (t) =

N∑
j=1

ω̄
0
j (t) ·2 ·

∫ k̄m,l+1

k̄m,l

k̄ · γ̄(k̄, k̄ j) ·H(k̄ j− k̄−1)dk̄. (4.9)

One can identify the j-th order sectional moments of birth occurring in the l-th bin due to hydrolysis in

bin j ᾱ i
l, j

ᾱ
i
l, j = ω̄

0
j ·2 ·

∫ k̄m,l+1

k̄m,l

k̄i · γ̄(k̄, k̄ j) ·H(k̄ j− k̄−1)dk̄. (4.10)

Because the product distribution function is time-invariant in this work, one can extract a matrix that

allows computation of the birth moments from the death rate

M̄i
•,l, j =2 ·

∫ k̄m,l+1

k̄m,l

k̄ j · γ̄(k̄, k̄ j) ·H(k̄ j− k̄−1)dk̄ (4.11)

ᾱ
j
•(t) =M̄ j

• · ω̄0
• (t). (4.12)

Evolution of the Number Density Function If the approximation to the NDF is substituted into the

left side, one obtains
dµ̄0

l
dt

=
N∑

i=1

∫ k̄m,l+1

k̄m,l

δ (k̄− k̄i)dk̄ · dw̄i

dt
=

dw̄l

dt
. (4.13)

This is an equation for the evolution of the weights. However, only by chance would the first order

moment be conserved. In order to also satisfy preservation of a second moment, FPs demand that a

second moment is preserved. The preservation of the second moment is guaranteed if also the second
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sectional moment is preserved. Again substitution of the NDF into the left side yields

dµ̄1
l

dt
=

N∑
i=1

∫ k̄m,l+1

k̄m,l

k̄ ·δ (k̄− k̄i)dk̄ · dw̄i

dt
= k̄l ·

dw̄l

dt
. (4.14)

If −ω̄1
l (t)+ ᾱ1

l (t) cannot be expressed as k̄l · (−ω̄0
l (t)+ ᾱ0

l (t)), application of the simple rule presented

in Equation (4.13) would not preserve both moments and, accordingly, the amount of monomer units

would not be constant. Accordingly, the sectional moments of the death rate are preserved if the change

of the l-th weight is equal to the l-th sectional zeroth moment of the death rate plus a contribution due

to the birth rate. The contribution due to the birth rate should be positive to guarantee positivity of the

NDF.

Cell Average Technique Kumar et al. [230] proposed the Cell Average Technique (CAT) as an im-

proved form of FP. In a later work [231] they proved that CAT has better convergence properties than

FP. In another work of this group [232] it was shown that for the test cases considered CAT was more

accurate than FP. Furthermore, Singh et al. [233] found that for the aggregation problems considered in

their work CAT was more accurate than FP. Mostafaei et al. [234] proposed a similar but computational

more efficient method. However, as this method has not been extended to bivariate cases as CAT has

been [235], this method is not used.

With the CAT the contribution to the pivots are set such that the zeroth and first order sectional moment

of the birth term are preserved. The contribution due to production in the i-th bin on the j-th pivot ψi, j

are

ψi, j =



ᾱ0
i ·k̄ j+1−ᾱ1

i
k̄ j+1−k̄ j

i = j and ᾱ1
i > ᾱ0

i · k̄ j

ᾱ1
i −ᾱ0

i ·k̄ j−1

k̄ j−k̄ j−1
i = j and ᾱ1

i ≤ ᾱ0
i · k̄ j

ᾱ1
i −ᾱ0

i ·k̄ j

k̄ j+1−k̄ j
i = j+1 and ᾱ1

i > ᾱ0
i · k̄ j

ᾱ0
i ·k̄ j−ᾱ1

i
k̄ j−k̄ j−1

i = j−1 and ᾱ1
i ≤ ᾱ0

i · k̄ j

0 otherwise

. (4.15)

Fixed Pivot Technique Instead of assigning the moment of the total birth rate, FP assign the i-th

order sectional moments of birth in bin l due to hydrolysis in bin j ᾱ i
l, j. This results in the equation for

the contribution due to the i-th pivot via the l-th bin on the j-th pivot ψi,l, j

ψi,l, j =



ᾱ0
l,i·k̄ j+1−ᾱ1

l,i

k̄ j+1−k̄ j
l = j and ᾱ1

l,i > ᾱ0
l,i · k̄ j

ᾱ1
l,i−ᾱ0

l,i·k̄ j−1

k̄ j−k̄ j−1
l = j and ᾱ1

l,i ≤ ᾱ0
l,i · k̄ j

ᾱ1
l,i−ᾱ0

l,i·k̄ j

k̄ j+1−k̄ j
l = j+1 and ᾱ1

l,i > ᾱ0
l,i · k̄ j

ᾱ0
l,i·k̄ j−ᾱ1

l,i

k̄ j−k̄ j−1
l = j−1 and ᾱ1

l,i ≤ ᾱ0
l,i · k̄ j

0 otherwise

. (4.16)
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This has the advantage that, if γ̄ is not a function of time, the time intensive computations can be

performed prior to the actual simulation and the result collected in a matrix P. An equation linear in the

zeroth order moment of the hydrolysis rate results

dw̄
dt

=
∑

(P•(k̄)− I)ω̄0
• (t, w̄, k̄). (4.17)

4.1.2 Fixed Pivot based techniques for a bivariate Population Balance Equation

Again first the computational domain is divided into elements. The shape of those elements can be

arbitrary. The NDF is again expressed by one particular value within this element. This results in the

approximation:

n̄≈
N∑

i=1

w̄i ·δ (k̄− k̄i) ·δ (b̄− b̄i). (4.18)

The sectional moments can also be easily extended

µ̄
i, j
l =

∫
El

k̄i · b̄ j · n̄(t, k̄, b̄)db̄dk̄, (4.19)

where El is the l-th element. The evolution equation of the moments is

dµ̄
i, j
l

dt
=−

∫
El

D̄∑(t, k̄, b̄)db̄dk̄+
∫

El

B̄∑(t, k̄, b̄)db̄dk̄ =−ω̄
i, j
•,l(t)+ ᾱ

i, j
•,l(t). (4.20)

All moments can again be expressed as a linear product of the zeroth order moment of the death term

and a time-independent multiplicator

ω̄
i, j
•,l(t) =k̄i

l · b̄
j
l ω̄

0,0
•,l (t) (4.21)

ᾱ
i, j
•,l(t) =M̄i, j

• ω̄
0,0
• (t). (4.22)

Again one wants to preserve more than one moment. However, with more than one dimension select-

ing the pivots to distribute the birth to is not unique. Kumar et al. [235] have proposed a method of

selecting four pivots and preserving three moments. This method requires a regular grid and can not

be straightforwardly used for the non rectangular domain encountered in this work. Chakraborty and

Kumar [224] have proposed a method of selecting three pivots and preserving three moments which

is used in this work. The three moments used in this work are the zeroth order and the two first order

moments which correspond to the amount of polymer, monomer units, and branching bonds produced

in a bin.

Distributing the birth rate The first step is to find a space filling triangulation of the domain with the

pivots as corner points. This can be done using for example Delaunay triangulation [236]. Then it is

determined in which element the produced particles lie. This is at the point defined by
[

ᾱ
1,0
l

ᾱ
0,0
l
,

ᾱ
0,1
l

ᾱ
0,0
l

]
. If
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the index of the corner points is i, j, and m then the following linear system has to be obtained to find

the contribution due to birth in the l-th element to the i-th pivot ψi,l

 1 1 1

k̄i k̄ j k̄m

b̄i b̄ j b̄m

 ·
 ψ̃i,l

ψ̃ j,l

ψ̃m,l

=


1

ᾱ
1,0
l

ᾱ
0,0
l

ᾱ
0,1
l

ᾱ
0,0
l

 (4.23)

ψ•,l = ψ̃•,l · ᾱ0,0
l .

The methods was described for CAT here, but was originally developed for FP and can be easily con-

verted back by substituting the moments of the birth rate to due a specific pivot in this bin. Again with the

FP one can - for time independent Product Distribution Functions (PDFs) - perform most computations

prior to solving the system of ODEs and collect the results in a matrix. This results in

dw̄
dt

=
∑

(P•(k̄, b̄)− I)ω̄0,0
• (t, w̄, k̄, b̄). (4.24)

4.2 Extension to a discrete Population Balance Equation

Polymers are built from discrete monomer units. One can assume for large polymers that the PBE is

continuous [54]. However, this assumption is not valid in the whole domain, as already discussed in the

preceding chapter. Therefore, it is desirable to use FP or CAT for a discrete PBE. The definition of the

sectional moments has to be changed from integration to summation. For the monovariate case

µ̆
i
l =

k̆m,l+1∑
k̆=k̆m,l

k̆i · n̆(t, k̆). (4.25)

Choosing the borders to be discrete is difficult with commonly used meshes. Therefore, the borders are

discretized. The left border is k̆m,l = bk̄m,l +1c and the right border k̆m,l = bk̄m,lc. This prevents double

counting and guarantees that for all k̆ in element l: k̄m,l < k̆ ≤ k̄m,l+1. The definition of the sectional

moments is changed:

µ̆
i
l =

bk̄m,l+1c∑
k̆=bk̄m,l+1c

k̆i · n̆(t, k̆). (4.26)

For the bivariate case discretizing the borders is more complicated. In this work only rectangular and

triangular elements are used. Simplifying the problem is that the triangular elements do not have a left

neighbor. The sectional moments are defined for a rectangular element [k̄m,l, k̄m,l+1]x[b̄m,l, b̄m,l+1]

µ̆
i, j
l =

bk̄m,l+1c∑
k̆=bk̄m,l+1c

bb̄m,l+1c∑
b̆=bb̄m,l+1c

k̆i · b̆ j · n̆(t, k̆, b̆). (4.27)
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For a triangular element k̆, b̆ ∈ N0 : bk̄m,l +1c ≤ k̄ ≤ bk̄m,l+1b,bb̄m,l +1c ≤ b̆≤ k̆−1

µ̆
i, j
l =

bk̄m,l+1c∑
k̆=bk̄m,l+1c

k̆−1∑
b̆=bb̄m,l+1c

k̆i · b̆ j · n̆(t, k̆, b̆). (4.28)

Furthermore, one needs to substitute the Dirac deltas in the approximation of the NDF by Kronecker

deltas which requires pivot at integer values. The pivot is almost always taken to be in the middle of

the element which would not be at an integer value. This problem is solved by simply rounding. For the

monovariate case

k̆l =round(k̄m,l, k̄m,l+1) (4.29)

n̆(t, k̆)≈
N∑

i=1

w̄i · δ̆k̆l ,k̆
(4.30)

Not having pivots on the boundary line k−1 = b could introduce problems and, accordingly, pivots are

forced to be on this lines. This leads to

k̆l =round(k̄m,l, k̄m,l+1) (4.31)

b̆l =round(b̄m,l, b̄m,l+1) (4.32)

n̆(t, k̆)≈
N∑

i=1

w̄i · δ̆k̆l ,k̆
· δ̆b̆l ,b̆

. (4.33)

The moments can again be expressed by a linear product of the zeroth order moment of the death term

and a time-independent multiplicator.

4.3 Implementation

In this section the details of the numerical implementation are described.

4.3.1 Meshing

The division of the computational domain into elements is required for applying any sectional technique.

A mesh is good if a high accuracy is obtained at a moderate computational cost.

Linear polymer

Here, the meshing strategy proposed by Ho et al. [127] is used. The mesh is visualized in Figure 4.1a.

Ho et al. [127] proposed a mesh divided in three parts: The first part up to k̆c has exactly represented

polymers. It is important to know the products (monomer and small oligomers) precisely. Therefore, the

equations describing those oligomers are solved directly without using any class method. The second
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part starts with a bin size of 1 and each bin increases in size by 1. The third part has a geometric

mesh. This means that the width of element l + 1 is equal to the width of element l times the growth

factor. In order to not have any jumps in the mesh size increase it is demanded that the first increase

of the geometric mesh is the equal to the increase of the linear mesh. The meshing is continued until a

specified amount of monomer units is within the meshed area.

Branched polymer

Several authors have studied how to best set up a multi-dimensional grid [224, 237]. However, nobody

has studied breakage or depolymerization in great detail. Here a simple meshing strategy is used.

This strategy is visualized in Figure 4.1b The meshing strategy for the linear mesh is used for both

coordinates with the same parameters, except that the exactly represented branching bonds start from

0 and go up to k̆c−1 and that the maximal amount of branching bonds is set such that almost no polymer

has a greater amount of branching bonds than the maximal amount. This results in one completely

exact region, one region in which the class method is only used in the amount of monomer unit, and the

largest region where the class method is used for both coordinates. This domain has rectangular and

triangular elements. After this meshing is done, the elements above a specified amount of branching

bonds, which is chosen to be sufficiently large, are cut away.

4.3.2 Computations prior to the solution of the Ordinary Differential Equations

The matrix describing the birth term for the Fixed Pivot technique and the initial condition can be eval-

uated prior to solving the ODEs.

Distributing the birth term

For all pivots with less than or equal to k̆c monomer units no distribution is necessary. And for all

pivots with less than or equal to k̆c− 1 branching bonds the equations have already been provided in

Equations (4.15) and (4.16). For the remaining pivots a space filling Delaunay triangulation using the

MATLAB function delaunay is used. Then the MATLAB algorithm triangulation is used to identify the

element in which the birth occurs and also to provide already the distribution to each corner. This algo-

rithm, however, returns small negative values if the birth occurs close to the boundary of the elements.

In this case the birth is shifted onto the boundary and the distribution of the birth is performed using the

1D algorithm. For CAT and FP the same algorithm is used. However, using CAT the distribution of the

birth term has to computed with every evaluation of the hydrolysis rate.

Initial condition

As the first step in initialization the amount of polymers, monomer units, and branching bonds in each

bin is obtained. Then using the algorithm to distribute the birth term, which has been described just
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Figure 4.1: The growth factor is 1.3. The maximal amount of monomer units is 55. The blue dots
represent the pivots and the black bars are separators between the bins.

before this, this is distributed to the bins. This guarantees that the amount of polymers, monomer

units, and branching bonds is computed to values close to the machine precision. By just assigning the

amount of polymer units to each pivot, the amount of monomer units would not be obtained with a high

accuracy with a coarse mesh.

For a small amount of monomer units and linear polymers the required moments can be obtained

by just evaluating the initial distribution in each point in a reasonable time (<10 minutes). However,

for branched polymer the computational time and memory requirement scales quadratically with the

amount of monomer units. This would lead to requiring days with large branched polymer. Therefore,

for such large systems the initial distribution in monomer directions is approximated as a Gamma distri-

bution for more than 1×105 monomer units and in branching bond direction with a normal distribution

for more than 1×105 branching bonds. Then instead of evaluating at every point and summation, this

can be replaced by a numerical integration with the MATLAB integrator integral2.

Normalization

The polymer concentration is low which would cause numerical problems. Furthermore, large polymers

have more monomer units than small polymers and should, therefore, be weighted more strongly in

decisions about the step size. For FP this can be implemented easily offline. However, for CAT parts of

the computations would have to be performed online, because of the non-linear nature of the distribution

of the birth term. Therefore, only normalization with the polymer concentration is performed

Normalization for the Fixed Pivot technique In order to satisfy this requirements, the initial amount

at each pivot is normalized by multiplication with the amount of monomer units of the pivot and division
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by the total initial concentration

w̃l =
wl∑N

i=1 wi(t = 0) · kl
. (4.34)

Accordingly, the inverse of the Michaelis constants needs to be normalized as well

Ĩ(kl,bl) = Ĩl =
Il

kl
·

N∑
i=1

wi(t = 0) · ki. (4.35)

Furthermore, the matrices relating the zeroth order moment of the death term to the other moments

need to be normalized

M̃i, j
• =


k1 0 · · ·
0 k2 0 · · ·
...

. . .
...

0 · · · 0 kN

 ·Mi, j
• ·


1
k1

0 · · ·
0 1

k2
0 · · ·

...
. . .

...

0 · · · 0 1
kN

 . (4.36)

This leads to a normalized distribution matrix P

P̃• =


k1 0 · · ·
0 k2 0 · · ·
...

. . .
...

0 · · · 0 kN

 ·P• ·


1
k1

0 · · ·
0 1

k2
0 · · ·

...
. . .

...

0 · · · 0 1
kN

 . (4.37)

Normalization for the Cell Average technique The initial amount of polymer at each pivot is nor-

malized by division with the total initial number concentration

w̃l =
wl∑N

i=1 wi(t = 0)
. (4.38)

Only the inverse of the Michealis constants needs to be normalized as well

Ĩ(kl,bl) = Ĩl =
Il

kl
·

N∑
i=1

wi(t = 0). (4.39)

4.3.3 Solving the system of Ordinary Differential Equations

The resulting system of ODEs is solved using the MATLAB solver ode45 with a relative and absolute

tolerance of 1×10−6 demanding that the polymer concentration is positive. If due to rounding errors a

negative value occurs, it is set to zero.
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4.4 Validation

As no prior work has investigated the use of CMs to describe the depolymerization of a branched poly-

mer a validation study has been performed. In this section the enzyme concentrations stays constant

and no enzyme becomes inactivated. This means that Keq = 0 and the denaturation rates are also zero.

In this chapter the computations for the CMs were performed on a computer with 4 Intel Core i5-2500

@3.30 GHz processors with 8 GB RAM running MATLAB® 2013b. The computations were run on

all cores at the same time. The times were measured using the internal stopwatch of MATLAB. The

computation time for FP was even for k̆c = 20 and a growth factor of 1.02 less than one minute and for

most cases studied much less. However, the Monte Carlo results were obtained on a 3.7 GHz 6 cores

Intel® E5 processor with more than 128 GB RAM running MATLAB® 2014a, where the kMC runs were

executed in parallel. The computation times of the CM and kMC can therefore not be compared.

The solid curves labeled Monte Carlo or MC are lines through the means of the kMC results. The

dashed curves are interpolations between the last two values obtained at a finite time and the end of

the simulation. Around some Monte Carlo results lines or rectangles are visible. This is the bounding

box for the kMC results.

4.4.1 Linear validation case for branched polymer

First the depolymerization of polymer by a hydrolysis rate linear in the NDF and with the three limiting

cases for depolymerization processes (Random-chain scission (RCS), Random-debranching scission

(RDS), and End-chain scission (ECS)) was investigated. This are the same cases investigated with the

Direct Quadrature Method of Moments (DQMOM) in the preceding chapter. All the parameters stayed

the same and the same kMC results were used.

The initial distribution was continuous, whereas the solved PBE was discrete. Therefore, for the rect-

angular and triangular bins instead of obtaining the amount of polymer, monomer units, and branching

bonds by summation they were obtained by integration. For the remaining part the algorithm developed

in the preceding Chapter to distributed the birth term was adopted.

Agreement of the Fixed Pivot Technique results with Monte Carlo results

In Figures 4.2, 4.3, 4.4, and 4.5 the dimensionless amount of polymer is shown over dimensionless

time. For pure RCS and RDS the agreement between the results obtained by FP and kMC is very good

for all grids with a growth factor of less than or equal to 1.5 with k̆c = 2.

If only ECS is active, the qualitative agreement is good, but the quantitative agreement is worse than

for the other mechanisms. However, with increasing fineness of the mesh the results converge to the

kMC solution. The error is acceptable for a mesh with a growth factor of less than or equal to 1.02. Ho

et al. [127] have investigated the numerical solution of a depolymerization process with pure ECS using

FP. They found that numerical diffusion occurs when an ECS dominated process is solved using FP.

Therefore, very fine meshes were required to obtain accurate solutions. The results not shown here

69



(the degree of branching and the amount of monomer, dimer, and trimer) agreed with the kMC results

within the same accuracy as the total polymer amount.

For an equal mixture of RCS and RDS, shown in Figure 4.5, the agreement is significantly worse

than with either pure RCS or pure RDS. The results converge towards the kMC results. However,

there is even for the finest mesh a deviation between the two methods. As with all other mechanisms

increasing k̆c above 2 did only improve the results slightly. This bad performance of FP for the mixture

is surprising as the results for the pure mechanisms look very good. If one compares the results for

the amount of linear polymer excluding the monomer, which is shown in Figure 4.6, one can see that

for pure RCS and a mixture of RCS and RDS the results agree very well. However, for pure RDS

the FP results in a lower amount of linear polymers than the kMC even for the fine mesh used here.

The amount of polymers with only branching bonds - the limit dextrines for RCS and ECS - which

is shown in Figure 4.7, is well reproduced by FP for RDS. But the results for RCS and the mixture

of both mechanisms show a deviation. No clear explanation, why the results for the enzyme mixture

are worse than for the pure enzymes, can be offered. It is postulated that the hard switch in the

reaction rate causes small deviations to become larger. Accordingly, it should be studied whether the

description of molar mass and branching density dependent reaction rates can be well described using

the FP. However, one should note that the branching density was 0.5 in this validation case, whereas

experimental values are around 0.05 [185]. The production of limit dextrines, which likely causes the

deviation in RCS should therefore be smaller. Furthermore, any debranching mechanism will be less

important for less highly branched polymers. Such a high branching density was chosen to test a

limiting case for the algorithm.

The results for a mixture of ECS and RCS were very good and the deviation was smaller than the mean

of the deviations of pure ECS and pure RCS separately. As this process is dominated by RCS it is not

surprising that the error is dominated by RCS as well. An equal mixture of all enzymes had a slightly

smaller deviation than the mixture of RCS and RDS which can be explained by the well described

mechanism of ECS also being active.

Computation time

The computation times for the cases discussed above are presented in Tables 4.1 and 4.2. One can

see that increasing k̆c and the fineness of the mesh increases the computational effort. However,

the computation time was for all cases discussed above in the order of seconds. For all mechanisms,

except ECS, the computation time can be described as a quadratic function with mechanism dependent

parameters of the number of pivots .

Comparison between the Fixed Pivot Technique and the Cell Average Technique

The deviation between the kMC results and the CAT results was approximately the same as between

FP and kMC. No difference was visible. This appears to be a contradiction to the better convergence

properties proved by Kumar and Warnecke [231]. However, the better convergence properties were
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Figure 4.2: Amount of polymer for the validation
case of branched polymer for RCS.
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Figure 4.3: Amount of polymer for the validation
case of branched polymer for RDS.
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Figure 4.4: Amount of polymer for the validation
case of branched polymer for ECS.
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Figure 4.5: Amount of polymer for the validation
case of branched polymer for an equal mixture of
RCS and RDS.
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Figure 4.7: Amount of polymer with only branch-
ing bonds for the validation case of branched poly-
mer for three cases with a growth factor of 1.02
and k̆c = 20.

Table 4.1: Computation times in seconds for the Fixed Pivot technique at k̆c = 2.

Growth rate 2 1.5 1.2 1.1 1.05 1.02

Pure RCS 0.22 0.16 0.18 0.37 0.82 1.67
Pure ECS 0.52 0.59 0.58 0.67 0.81 1.09
Pure RDS 0.14 0.14 0.17 0.38 0.82 1.62

Equal mixture of RCS and RDS 0.17 0.18 0.25 0.72 1.66 3.23

Table 4.2: Computation times in seconds for the Fixed Pivot technique at a growth factor of 1.1.

k̆c 2 5 10 20

Pure RCS 0.37 0.44 0.57 1.06
Pure ECS 0.67 0.96 1.40 1.65
Pure RDS 0.38 0.43 0.62 0.92

Equal mixture of RCS and RDS 0.72 0.93 1.29 2.27
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neither proved for geometric meshes nor for bivariate cases. CAT took at least 4 times and up to

~140 times as long as FP to solve. The faster computation can be explained by CAT having to perform

the computation for the birth distribution online whereas for FP those can be performed offline. Fur-

thermore, the code used for the FP was optimized slightly more. However, as the main computational

effort for CAT is the distribution of the birth term, optimization of the CAT is expected to only change the

numbers slightly.

4.4.2 Validation for linear polymer

In the preceding section it could not be determined whether the FP is suitable for reactions rates which

are a function of the molar mass. Accordingly, a case with a linear polymer being depolymerized by a

single enzyme (BLA-F) described by the subsite theory is investigated. The enzymes has z̆− = 6 and

z̆+ = 2 subsites and an acceleration factor ∆Ga of 0. The binding energies are provided in Table 4.3.

The subsite map is evaluated at 20 ◦C. Initially the polymer has an average degree of polymerization

of 1000 and a polydispersity of 1.1. The initial mass concentration is 3 g l−1. The maximal amount of

monomer units is set to 3000 which is sufficiently large that almost no polymers are above this value.

Due to limitations of the implementation, the minimal value of k̆c was 12 which was also the value

chosen here. The implementation cannot handle values of k̆c less than 2 ·max(z̆−, z̆+) because only

above this value can the PDF expressed with Equation (2.69). However, one can implement this without

any difficulties. This was not regarded as necessary in this work because the computational effort was

already sufficiently low.

Table 4.3: Used binding energies in kJmol−1.

Subsite 1 2 3 4 5 6 7 8 9 10

BAA a -4.48 -10.21 -0.67 -4.23 -9.54 13.81 -14.39 -7.2 -4.02 5.27
BLA-F b -4.60 -10.04 0 -2.51 -10.04 12.97 0 -1.2

a Ref: [32] originally from Allen and Thoma [217]
b Ref: [238]

Monte Carlo results

Four kMC runs with 1×105 particles using a Constant Number approach were performed to obtain a

reference solution. The amount of monomer units was constant within 1 %. However, after a short time

the time at which a certain number concentration was reached differed by more than 10 %. The results

can, therefore, used a reference solution, but the deviation from a solution obtained by a CM to the

reference solution cannot be quantified.
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Agreement between the Fixed Pivot Technique and the Monte Carlo results

The total polymer concentration for a very coarse mesh with a growth factor of 2 and a very fine mesh

with a growth of 1.01 is shown in Figure 4.8 both with k̆c set to the minimal value of 12. For both meshes

do the FP and kMC results agree almost perfectly. Increasing k̆c did, therefore, not reduce the error. In

Figure 4.9 the concentration of the 4 smallest polymers is shown with k̆c = 12 and a growth factor of 1.1.

It is very difficult to tell the FP and kMC results apart because FP is so accurate. One can therefore

conclude that FP is able to handle very well hydrolysis rates which depend on the amount of monomer

units.

Comparison between the Fixed Pivot Technique and the Cell Average Technique

The results with the CAT were as accurate, but took longer to compute. Again this is partially due to the

birth term distribution and to the further optimization of FP. Additionally, during computation FP does

not differentiate between pivots in the different domains, whereas CAT has to do so. This additional

bookkeeping slows CAT down. One can, therefore, conclude that the CAT is a worse method than FP

for solving depolymerization processes. Further on, only FP is used.

4.4.3 Validation for a branched polymer

One should also investigate, how well the FP can solve the model proposed in Chapter 2 to described

the depolymerization of branched starch. Accordingly, the depolymerization of branched starch by a

single enzyme described by the subsite theory was investigated here. The parameters from the linear

case studied in the subsection before were used. Additionally, a mean degree of branching of 0.05, a

maximal amount of branching bonds of 450, and inhibition constants bI = 0.3, bII = 0.1, and bIII = 0.1

were used.

Monte Carlo results

Six kMC runs with 5×105 particles using a Constant Number approach were performed to obtain a

reference solution. This large number of particles was necessary because the error was otherwise not

acceptable. The amount of monomer units was constant within 2 % and the amount of branching was

constant within 4 %.

Agreement with Monte Carlo technique results

The total amount of polymer is shown in Figure 4.10. One can see that the amount of polymer agrees

quite well with the kMC results even for a very coarse mesh with a growth factor of 2 and k̆c = 12.

Increasing k̆c from 12 to 50 decreases the deviation only by a tiny bit. The decrease of the growth factor

from 2 to 1.1 causes the FP results to be almost indistinguishable from the mean of the kMC results. A

further refinement of the mesh changed the results only slightly.
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Figure 4.8: Concentration of polymer for the vali-
dation case of linear polymer with an enzyme de-
scribed by the subsite theory for several growth
factors.
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oligomers for the validation case of linear polymer
with an enzyme described by the subsite theory
for k̆c = 12 and a growth factor of 1.1.

The concentration of a few small oligomers is shown in Figure 4.11. Except for the dimer the agreement

between kMC and FP is excellent and even for the dimer the agreement is very good. The degradation

of branched polymer with a realistic branching density by an enzyme described by the subsite theory

can be described well using FP.

Computation times

The computation times for the branched validation case is shown in Table 4.4. If one compares the

computation times to the ones obtained for the simpler validation case, one can see that this compu-

tation takes significantly longer. If one compares the amount of polymer for the simple validation case

and this one, one can see that the dynamics of the process is qualitatively different. The fast initial

rise and the slower rise at the end would - even with a time step control - require more time steps

than the constantly declining rise. This suggest that using a solver for stiff ODEs would be beneficial.

However, the large number of equations (~1000) makes using them inefficient. One can again correlate

the computation time with the square of the pivot numbers.

4.5 Validation of the Population Balance Model

Besselink et al. [32] have investigated the depolymerization of branched starch by α-amylase by a

kMC simulation and experimental measurements. This data is used to perform a first validation of the
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Figure 4.11: Concentration of some oligomers for
the validation case of branched polymer with an
enzyme described by the subsite theory for k̆c =
12 and a growth factor of 1.1.

Table 4.4: Computation times in seconds for the Fixed Pivot technique.

Growth rate 2 1.5 1.2 1.1 1.05 1.02 1.01

k̆c = 12 5.64 12.13 9.84 27.15 77.07 79.85 211.74
k̆c = 50 15.41 35.88 183.97 153.90 346.97 649.60 848.34
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Population Balance Model (PBM) for branched starch proposed in Chapter 2. The kMC simulations

were performed without using a PBE. Instead they constructed polymers using a stochastic algorithm

[189] and used rules [33] to simulate their hydrolysis.

4.5.1 Parameters

Two enzymes were investigated by Besselink et al. [32]. Here the results are compared for the enzyme

BAA, because this enzyme had better agreement between experiment and simulation. The subsite

map was estimated by Allen and Thoma [217] and is provided in Table 4.3. All remaining parameters

are given in Table 4.5. Besselink et al. [32] used the inhibition factor estimated by Marchal et al. [33].

The experiments were conducted at 50 ◦C and an initial concentration of 100 g l−1.

The approach used by Besselink et al. [32] does not consider the branched polymer to be distributed

in the total amount of monomer units. Instead each polymer has a distribution of chain lengths 1. How-

ever, the model developed in this work can consider the polymer to be distributed in the total amount

of monomer units and branching bonds but not in the chain length. The measured value of the mean

molar mass by weight and polydispersity of waxy wheat starch measured by Rolland-Sabate et al. [184]

were used. A mean degree of branching 5 %, which is reasonable [32, 184], was used. For amlyose

the average degree of polymerization measured by Hanashiro and Takeda [183] was used. The poly-

dispersity was choosen such that the 10 % and 90 % cutoff agreed with the data measured in the same

paper.

The mesh parameter were chosen based on the prior validation study. The maximal amount of

monomer units and branching bonds were chosen such that almost no polymer was above it.

Besselink et al. [32] did compute the factor to convert from computational to experimental time. How-

ever, it was not provided in the paper. Therefore, the same algorithm to do the conversion was used:

The scaling factor was chosen such that the deviation between the simulated and measured dextrose

equivalent for the first two experimental time points was minimal. This is equivalent to having the same

slope in the initial almost linear region.

4.5.2 Results

Besselink et al. [32] used the Dextrose Equivalent (DE) to compare simulation and experiment. It is

computed here as

DE = 100 ·
(MH2O +MGlu) ·

∑
i w̆i∑

i w̆i · (MH2O + k̆i ·MGlu)
. (4.40)

Furthermore, the mass fraction was used. The mass fraction x j of the j-th pivot is

x j = 100 ·
(MH2O +MGlu · k̆ j) · w̆ j∑

i w̆i · (MH2O + k̆i ·MGlu)
. (4.41)

1Here, a chain is defined as the amount of linearly connected monomer units starting from a branching bond [10].
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Table 4.5: Parameters used to compare the developed Population Balance Model to data from Besselink
et al. [32].

Parameter Symbol Value

Subsites below the catalytic centera z̆− 6
Subsites above the catalytic centera z̆+ 4

Acceleration factord ∆Ga 1.55 kJmol−1

Molar mass of watera MH20 18.02 gmol−1

Molar mass of anhydro-glucosea MGlu 162.14 gmol−1

Inhibition by chain starting branching bondb bI 0.1
Inhibition by branching bond towards the reducing endb bII 0.2

Inhibition by branching bond towards the non-reducing endb bIII 0.4
Temperaturec T 50 ◦C

Initial concentration of starchc 100 g l−1

Mass percentage of starch as amylopectinc 75 %
Mean molar mass by weight of amylopectine 2.27×108 gmol−1

Polydispersity of amylopectine 1.13
Mean degree of branching of amylopectinc 5 %
Average polymerization degree of amylosef 1220

90 cutoff of amylosef 3130
10 cutoff of amylosef 190
Mesh growth factor 1.1

Amount of exactly represented monomer units k̆c 14
Maximal amount of monomer units 4.20×106

Maximal amount of branching bonds 2.12×105

a Ref: Besselink et al. [32] originally from Allen and Thoma [217]
b Ref: Besselink et al. [32] originally from Marchal et al. [33]
c Ref: Besselink et al. [32]
d Ref: Allen and Thoma [217]
e Ref: Rolland-Sabate et al. [184]
f Ref: Hanashiro and Takeda [183]
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The Dextrose Equivalent is plotted over time in Figure 4.12. There is good qualitative agreement

between kMC results and the PBE results. The difference between the two methods can be either

attributed to the assumptions made in deriving the PBE model or the to different initial conditions. How-

ever, the agreement between the experimental and the PBE results is slightly better than for kMC re-

sults. The mass fraction of the monomer and the linear trimer is plotted in Figure 4.13. One can see that

the overprediction of Maltotriose is greater for the PBE model than for the kMC results. Furthermore,

the underprediction of the glucose is also sightly worse. The total mass fraction of the heptamers and

hexamers (both branched and linear) is shown in Figure 4.14. The agreement between experimental

data and PBE model is better than for the kMC results.

4.6 Conclusion and outlook

In this chapter the Fixed Pivot technique (FP) and Cell Average Technique (CAT) were adapted to a

discrete Population Balance Equation (PBE). For several test cases the results of FP and CAT were

compared with kinetic Monte Carlo (kMC) simulations based on the PBE. Both methods were found to

have comparable accuracy but FP was found to be significantly faster. Therefore, FP should be used

to describe depolymerization processes of the kind studied in this work.

It was found that End-chain scission (ECS) is solved with a significant error, unless very fine meshes

were used. This has already been reported by Ho et al. [48]. For Random-chain scission (RCS) and

Random-debranching scission (RDS) alone the solution of the products and the amount of polymers

were found to be in excellent agreement for quite coarse meshes. However, the combination of those

two mechanisms resulted in a deviation which did only slowly disappear with increasing mesh fineness.

For linear polymer the dependence of the reaction rate on the chain length and the complicated Product

Distribution Function (PDF) predicted by the subsite theory did not pose any issues. However, no rigor-

ous convergence study was performed. Also for the branched polymer using the reaction rate and the

PDF of the subsite model developed in Chapter 2 did not pose any problems, but rather the agreement

between kMC and FP was excellent.

For one case the results of the model developed in Chapter 2 were compared to literature data. The

agreement between FP data and experimental data was slightly better than between the kMC results

and the experimental data. There was a significant deviation between the FP results and the kMC

results. This does not allow a definite statement on the validity of the developed PBE. But the re-

sults raise confidence that a Population Balance Model (PBM) approach can be used to describe this

process. One could validate the PBM by comparison with either experiments or kMC simulations. If

experimental validation is chosen, the initial state and the parameters of the enzymes need to be deter-

mined. The effort for experimental validation is high but would result in a model able to describe reality.

If validation by kMC simulation is chosen, further simulations need to be performed, because not all

input data for the PBE model was provided by Besselink et al. [32]. Because the initial conditions do

not necessarily agree, one cannot state whether the deviations between the kMC and the PBE results
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Figure 4.12: Dextrose equivalent over time.
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Figure 4.13: Mass fraction of the monomer (glu-
cose) and linear trimer (maltotriose) over time.
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are due to invalid assumptions or different starting conditions. One should therefore implement the

model used by Besselink et al. [32] and for example extract the branching distribution directely from the

structures generated by the kMC algorithm.

It was found that increasing the exactly represented region increased the computation time by a signif-

icant amount but only had a minor benefit for the accuracy. The simulations times and the accuracy of

FP are acceptable for usage in optimal control which is therefore performed in the following chapter.
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Chapter 5

Optimal control

Here, first the necessary conditions for optimality are derived for one specific case. Then possible

numerical techniques to solve optimal control problems are reviewed and the implemented algorithm is

described. The algorithm is applied to a case study and the effect of branching is investigated. Last, a

short conclusion is drawn.

5.1 Necessary conditions for optimality

In this work an optimal profile in time is desired and, therefore, the necessary conditions are derived for

such a profile. The necessary conditions are required input for an indirect solver.

5.1.1 Problem statement

The optimality conditions are derived for a system of Ordinary Differential Equations (ODEs) because

this approach requires the smallest number of assumptions. The problem is then given in the form

dn
dt

=fn(t,n,E,T ) (5.1)

dE
dt

=fE(t,n,E,T ) (5.2)

dT
dt

=u (5.3)

n(t = 0) =n0 (5.4)

E(t = 0) =E0 (5.5)

T (t = 0) =T0, (5.6)

where u is the rate of temperature change, T0 is the initial temperature, E0 is the initial concentration

of the enzymes, and n0 is the initial distribution. This system of ODEs is solved until the final time t f .

The temperature and the initial temperature should be within a certain range T ∈ [Tmin,Tmax] where a

hard limit for Tmin are the freezing point and for Tmax is the boiling point. For ease of discussion this
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condition is neglected in deriving the necessary conditions here but it is included in the algorithm used

to compute the optimal profiles.

Control variables

In this section it is assumed that the initial temperature and the initial concentration of enzymes can be

varied freely. Not for all cases considered in this chapter will the initial enzyme concentration be allowed

to vary freely. The initial enzyme concentration cannot be negative E0 ≥ 0. Furthermore, the rate of

temperature change will be allowed to vary freely within the interval [umin,umax]. The reaction duration

t f is not a control variable. However, it is allowed to vary freely.

Objective functional

The purpose of optimal control is to optimize something with regard to an objective. The objective

is a maximization of profit (minimization of costs) and is quantified by an objective functional. This

objective functional takes the control variable functions as the input and returns a scalar value as the

output. Given that enzymes cost money and also heating up or cooling down the starting material costs

money one should include those in the objective functional. This is done by the function fi(T0,E0).

Operating the reactor also costs money, therefore the reaction duration t f should be included in the

cost. Furthermore, depending on the final state of the distribution the reaction product might have more

or less values. This is included in the objective functional by the function f f (t f ,n(t = t f )). The cost of

heating up or cooling down the reactor is taken into account by the Lagrange function L(u(t)) which

needs to be integrated over the whole reaction duration. Summing up of the objectives leads to an

objective functional of Bolza type [148]:

J(u,T0,E0, t f ) = fi(T0,E0)+ f f (t f ,n(t = t f ))+

∫ t f

0
L(u(t))dt. (5.7)

Final condition

It might be desirable to operate the reactor at such conditions that the final distribution fulfills a condition.

For example, one might require the reactor to have certain yield. This can be expressed by demanding

g(n(t = t f )) = 0, (5.8)

where g is a problem specific function.

In conclusion, it is desired to find the optimal profile of the rate of temperature change, the optimal

initial temperature, the optimal concentration of enzymes, and the optimal reaction duration such that

an objective functional is minimized. The states have to follow a system of ODEs and be within a certain

range. Furthermore, some states have to fulfill a condition at the final time.
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5.1.2 Derivation

In order to solve the problem, all the conditions have to collected into the objective functional which is

achieved by the use of Lagrangian multipliers [148].

J = fi(T0,E0)+ f f (t f ,n(t = t f ))+Ψg ·g(n(t = t f ))+µ
E
·E0

+

∫ t f

0
L(u(t))+Ψn · (fn− ṅ)+ΨE · (fE − Ė)+ΨT · (u− Ṫ )+µmin · (u−umin)+µmax · (umax−u)dt.

(5.9)

With a suitably defined Hamiltonian H the equation can be written more elegantly

H =L+Ψn · fn +ΨE · fE +ΨT ·u+µmin · (u−umin)+µmax · (umax−u) (5.10)

J = fi(T0,E0)+ f f (t f ,n(t = t f ),T (t = t f ))+Ψg ·g(n(t = t f ))+µ
E
·E0

+

∫ t f

0
H(t,u,n,E,T,Ψn,ΨE ,ΨT ,µmin,µmax)dt

−
∫ t f

0
Ψn · ṅ+ΨE · Ė+ΨT · Ṫ dt. (5.11)

This equation can be rewritten using integration by parts [188]

J = fi(T0,E0)−Ψn(t = 0) ·n(t = 0)+(µ
E
−ΨE(t = 0)) ·E(t = 0)−ΨT (t = 0) ·T (t = 0)

+ f f (t f ,n(t = t f ),T (t = t f ))+Ψn(t = t f ) ·n(t = t f )+ΨE(t = t f ) ·E(t = t f )

+ΨT (t = t f ) ·T (t = t f )+Ψg ·g(n(t = t f ))+

∫ t f

0
H(t,u,n,Ψn,ΨE ,ΨT ,µmin,µmax)dt

−
∫ t f

0
Ψ̇n ·n+ Ψ̇E ·E+ Ψ̇T ·T dt. (5.12)

Calculus of variations

The necessary condition for a function to have an optimum is that the first derivative is zero [148]. In

order to transfer this definition to optimal control calculus of variations (see e.g. [148, 150, 239]) is

used. In order to transform the functional into a function the functions are expressed as the sum of the

optimal function ∗ and the product of an arbitrary fixed function˜and a scalar ε :

u(t) =u∗(t)+ ε · ũ(t) (5.13)

n(t) =n∗(t)+ ε · ñ(t) (5.14)

ñ(t = 0) =0 (5.15)

E(t) =E∗(t)+ ε · Ẽ(t) (5.16)

T (t) =T ∗(t)+ ε · T̃ (t) (5.17)
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This allow expressing, the functional as a scalar function Φ

Φ(ε) = fi(T (t = 0)∗+ ε · T̃ (t = 0),E∗(t = 0)+ ε · Ẽ(t = 0))

−Ψn(t = 0) ·n∗(t = 0)+(µ
E
−ΨE(t = 0)) · (E∗(t = 0)+ ε · Ẽ(t = 0))−ΨT (t = 0) · (T ∗(t = 0)+ T̃ (t = 0))

+ f f (t f ,n∗(t = t f )+ ε · ñ(t = t f ),T ∗(t = t f )+ ε · T̃ (t = t f ))

+Ψn(t = t f ) · (n∗(t = t f )+ εñ(t = t f ))+ΨE(t = t f ) · (E∗(t = t f )+ ε · Ẽ(t = t f ))

+ΨT (t = t f ) · (T ∗(t = t f )+ ε · T̃ (t = t f ))+Ψg ·g(n∗(t = t f )+ ε · ñ(t = t f ))

+

∫ t f

0
H(t,u∗+ ε · ũ,n∗+ εñ,Ψn,ΨE ,ΨT ,µmin,µmax)dt

−
∫ t f

0
Ψ̇n · (n∗+ ε · ñ)+ Ψ̇E · (E∗+ ε · Ẽ)+ Ψ̇T · (T ∗+ ε · T̃ )dt. (5.18)

The necessary condition for an optimal point is then that the derivative with respect to ε at ε = 0 is zero

∂Φ

∂ε

∣∣∣∣
ε=0

=
∂ fi(T ∗0 ,E∗0)

∂T ∗0
· T̃ (t = 0)+

∂ fi(T ∗0 ,E∗0)
∂E∗0

· Ẽ(t = 0)

+(µ
E
−ΨE(t = 0)) · Ẽ(t = 0)−ΨT (t = 0) · T̃ (t = 0)

+
∂ f f (t f ,n∗(t = t f ),T ∗(t = t f ))

∂n
· ñ(t = t f )+

∂ f f (t f ,n∗(t = t f ),T ∗(t = t f ))

∂T
· T̃ (t = t f )

+Ψn(t = t f ) · ñ(t = t f )+ΨE(t = t f ) · Ẽ(t = t f )

+ΨT (t = t f ) · T̃ (t = t f )+Ψg ·
∂g(n∗(t = t f ))

∂n
· ñ(t = t f )

+

∫ t f

0

∂H(t,u∗,n∗,Ψn,ΨE ,ΨT ,µmin,µmax)

∂u
ũdt

+

∫ t f

0

(
∂H(t,u∗,n∗,Ψn,ΨE ,ΨT ,µmin,µmax)

∂n
− Ψ̇n

)
ñdt

+

∫ t f

0

(
∂H(t,u∗,n∗,Ψn,ΨE ,ΨT ,µmin,µmax)

∂E
− Ψ̇E

)
Ẽdt

+

∫ t f

0

(
∂H(t,u∗,n∗,Ψn,ΨE ,ΨT ,µmin,µmax)

∂T
− Ψ̇T

)
T̃dt

Because the functions with the accent ˜ are arbitrary, every term multiplied with such a function has to

be zero in order for the functions ∗ to be optimal. This is the fundamental lemma of the calculus of

variations [148]. This leads to the necessary conditions for optimality:

ΨE(t = 0)−µ
E
=

∂ fi

∂E0
(5.19)

ΨT (t = 0) =
∂ fi

∂T0
(5.20)

Ψn(t = t f ) =−
∂ fn

∂n
−Ψg ·

∂g
∂n

(5.21)

ΨE(t = t f ) =0 (5.22)
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ΨT (t = t f ) =−
∂ fn

∂T
(5.23)

g(n(t = t f )) =0 (5.24)

∂H
∂u

=0 (5.25)

Ψ̇n =
∂H
∂n

(5.26)

Ψ̇E =
∂H
∂E

(5.27)

Ψ̇T =
∂H
∂T

(5.28)

u≥ umin (5.29)

u≤ umax (5.30)

µmin ≥ 0 (5.31)

µmax ≥ 0 (5.32)

E0 ≥ 0 (5.33)

µ
E
≥ 0 (5.34)

Note that if L is not a function of u the solution would have a singular arc [148] and the necessary

conditions for optimality would have to be changed.

Final time

The above stated conditions are valid for every value of the reaction duration. However, in order for t f

to be optimal the derivative of the objective function with respect to t f must be zero

dJ
dt

= 0. (5.35)

This is equivalent to taking the derivative of Equation (5.11). If one used the chain rule and the rule

about derivatives of parameter integrals [188], one obtains this derivative as

∂ f f

t f
+ ṅ(t = t f ) ·

(
∂ f f

∂n
+Ψg ·

∂g
∂n
−Ψn(t = t f )

)
−ΨE(t = t f ) · Ė(t = t f )+ Ṫ (t = t f ) ·

(
∂ f f

∂T
−ΨT (t = t f )

)
+H(t f ,u(t = t f ),n(t = t f ),E(t = t f ),T (t = t f ),Ψn(t = t f ),ΨE ,ΨT ,µmin,µmax) = 0 (5.36)

5.2 Algorithm

Both approaches (continuous and discrete) to the Population Balance Equation (PBE) introduce prob-

lems for optimal control. If the PBE is assumed to be continuous, one needs to solve a Partial Differen-

tial Equation (PDE) with an integral term. Even though there is some work on optimal control of PDEs
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[239], I have not found any theoretical approaches to optimal control of PDEs with an integral term. If

the PBE is assumed to be discrete, the resulting system of ODEs cannot be solved directly, but rather

one has to use a numerical technique (see Chapter 4). To the best of my knowledge nobody has made

any investigation one how optimal control combines with the Fixed Pivot technique (FP). It is therefore

assumed that the result of optimal control of the approximated ODE system is also optimal for the exact

system. This is likely to be valid because the results of FP and the kinetic Monte Carlo (kMC) reference

solution result agree very well with each other.

The PBE is solved using the FP as presented in Chapter 4. The optimal control algorithm is explained

in this subsection.

Parametrization or discretization of the optimal control problem

The optimal control problem is solved using a direct single shooting approach [176]. Here, this means

that the optimal rate of change of temperature profile is approximated by a piecewise constant function.

Additionally, the optimal starting temperature is found. This reduces the infinite dimensional optimal

control problem to a finite dimensional one. The temperature change rate is bounded between 0K/min,

which implies that the temperature does not decrease, and 0.1K/min which is much lower than the rate

of temperature change of 1K/min commonly used in the mashing process [14]. The low value of the

maximal temperature change rate guarantees that the process can be implemented on a large scale.

Furthermore, the maximal temperature change rate is not reached in any case discussed in this study.

A successive refinement approach for computing the optimal control similar to the one developed by

[175] is used here. For simplicity, first only the algorithm for the fixed time problem, where the yield is

maximized and the reaction time is fixed at a preset value, is explained. Starting from an initial guess

of 40 ◦C the optimal isothermal profile is found. Then, using the optimal isothermal temperature as

the initial guess, the next step extends the profile to a simple constant temperature change rate over

the complete fixed time. Subsequently, the time intervals are bisected in each loop to increase the

resolution of the temperature change rate profile, always using the previous profile as the initial guess

to improve the speed and robustness of the algorithm. In all shown cases, the domain is bisected

6 times (up to 64 intervals). An example for this routine is shown in Figure 5.2b.

If the reaction time is minimized at a fixed yield and enzyme concentration, the reaction time is always

set to reach the desired yield. The first bisection is performed for the interval starting at t = 0 and the

time required to reach the desired yield for the linear profile. For the further bisections, these times are

kept constant.

If a trade-off between the reaction time t f and any other variable is performed, the t f is determined by

the optimizer as an additional optimization variable. In this case the interval borders shift with t f such

that the intervals have equal length and that the last interval ends at t f .
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Solving the discrete optimal control problem

An efficient optimizer requires gradients and the Hessian matrix. The gradients are computed using

Internal Numerical Differentiation with a forward finite difference with the square root of the machine

precision as the step size (1.4901×10−8) [177] in a code written by me. The Hessian is computed

using forward finite difference for the derivative with the fourth root of the machine precision as the step

size (1.2207×10−4). Computation of the derivatives by solving the system of ODEs for the derivative of

the states with respect to the control as done in other works [175, 240] is too computationally expensive

here due to the large size of the system (up to approximately 1000 equations). Furthermore, computing

the Hessian at every time step is also computationally expensive, therefore it is updated using the BFGS

algorithm [241].

At the starting point, the function value, derivative, and Hessian are computed, then the direction and

step length that minimizes the quadratic approximation to the objective function is found using the

MATLAB® solver quadprog. Afterwards, a line search based on bisection and parabolic approximation

is performed to find the length of the step in the previously computed direction. If the length of the

step is larger than 1×10−6, the step is accepted and the derivative and function value is updated. This

iteration is performed until the decrease in the function value is less than the tolerance of 1×10−9. If

the step length of the quadratic programming step is smaller than the tolerance, a steepest descent

step with a line search is performed. The Hessian is then reinitialized to an unity matrix times the step

length of the previous steepest descent step.

5.3 Problem specification

In order for the problem to be specified the objective functional and the parameters need to be specified.

5.3.1 Objective function

Many criteria may be selected for which an optimal temperature profile could be found. The general

objective functional (see Eq (5.7)) can handle most of them. The cost of heating the starting material

and the reactor was neglected. The reaction time and amount of added enzymes should be minimized

while maximizing the yield Φ of the product. The following functional formalizes these criteria:

J =−t f ·M.U.h−1+C1 ·φ︸ ︷︷ ︸
f f

−C2 ·
ẼRCS(t = 0)+ ẼECS(t = 0)

2︸ ︷︷ ︸
fi

(5.37)

The weighting factors C1 in Monetary Units (M.U.) and C2 in M.U. convert yield φ and normalized

enzyme concentration into the profit J expressed in M.U.. If no other value is stated, C1 = 6M.U. and

C3 = 96M.U.. In this study, the yield φ is defined as the amount of monomer units present as free

monomers and dimers at the final time divided by the total initial amount of monomers, which is a

similar definition to the one used by Ouyang et al. [17]
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φ =
n1(t f )+2 ·n2(t f )∑k̆max

i=1 i ·ni(t = 0)
·100%. (5.38)

ẼRCS(t = 0) and ẼECS(t = 0) are the initial concentrations of the Random-chain scission (RCS) and

End-chain scission (ECS) performing enzymes divided by the initial concentration of enzyme necessary

to cut the percentage of bonds specified in the case definition. The concentration of the enzyme can be

varied in some cases to obtain a more economical process. Furthermore, in all cases the temperature

can be varied freely.

If C1 and C2 are set to arbitrary positive values and the initial enzymes concentrations, the reac-

tor operation time, and the temperature profile are optimized simultaneously, one obtains the optimal

operating conditions. However, for ease of discussion, four simpler objectives are investigated in this

work:

Maximizing yield in fixed time with fixed enzyme concentration

If the reaction time of the process is fixed, e.g. due to limitations of the up- or downstream processes,

one might be interested in finding a temperature profile that enables the highest possible yield. Thereby,

the profit is maximized. By fixing the final time t f as well as the enzyme concentration to be constant

(ẼRCS(t = 0) = ẼECS(t = 0) = 1), the benefit of temperature profile optimization alone can be studied.

Minimizing reaction time with a fixed yield and enzyme concentration

A certain yield might be required but the reaction time t f of the process can be varied. Then it is

desirable to find a temperature profile which minimizes the reaction time. In this case, the enzyme

concentration is again kept constant (ẼRCS(t = 0) = ẼECS(t = 0) = 1). By specifying a desired yield

Φdes, the time optimal problem (i.e., the shortest possible processing time) is formulated. If the yield is

fixed, the function g is given as Φ(t f )−Φdes.

Trade-off between reaction time and yield with fixed enzyme concentration

A longer reaction time allows higher yield. But in order to handle the same amount of starting material in

a given time the reactor needs to be larger or there must be more reactors which increases the capital

costs. For this case, the enzyme concentration is kept constant (ẼRCS(t = 0) = ẼECS(t = 0) = 1). By

setting C1 to an arbitrary positive value the goal of maximizing profit for a specified enzyme dosage is

realized. C1 indicates how much the product is worth, e.g. a value of C1 = 6M.U. means that a one

percent increase in yield justifies an increase of reactor occupation by six hours.

Trade-off between reaction time and enzyme concentration at a fixed yield

Increasing the enzyme concentration allows one to reach a fixed yield in shorter time. However, due to

the increased cost of enzymes this might make the process less economically viable. By setting C2 to an
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arbitrary positive value, and specifying a desired yield, the profit at this yield is maximized. C2 indicates

the cost of the enzyme, e.g. a value of C2 = 96M.U. means that the initial enzyme concentration needed

to cut the desired percentage of bonds costs as much as operating the reactor for four days. This

optimization can be performed either by keeping the ratio between ERCS and EECS constant (Constant

enzyme mixture composition), in which case only the amount of enzyme cocktail is optimized, or by

letting the optimizer find the best ratio (Optimizing the enzyme mixture composition), in which case the

enzyme mixture is also optimized. Both problems might be encountered in industrial practice depending

on whether one uses a mixture of enzymes or two pure enzymes.

5.3.2 Parameters

Ho et al. [48] have experimentally validated a Population Balance Model (PBM) of enzymatically cat-

alyzed depolymerization of linear and soluble starch at isothermal conditions. The enzymes were de-

scribed by a simplified version of the Subsite Theory. The Michaelis constant was computed by the

Subsite Theory, but the catalytic constant was approximated by a ramp function. Furthermore, they

assumed that the single enzyme performed ECS. In another paper [49] they performed simulations that

suggest that the presence of a RCS performing enzyme is beneficial for the conversion. As this model

is able to describe experimental data an analog model was used. Later on a study to investigate the

effects of using the product distribution predicted by the Subsite Theory and the effect of branching is

performed.

Base case

The model used in this study takes temperature effects into account by using the equations derived with

the Equilibrium model. Both the catalytic constant and the Michaelis constant are computed using the

Subsite Theory but instead of using the Product Distribution Function (PDF) derived using the Subsite

Theory the simplified extreme cases of RCS and ECS are used. The values of the parameters of the

base case are provided in Table 5.1 and 5.2. Each initial enzyme concentration is chosen such that at

a temperature of 50 ◦C during a reaction time of 24 hrs the single enzyme cuts 5% of the bonds.

Parameter study

The amount of bonds cut is not taken from a literature reference. It is therefore desirable to study

the effect of the amount of enzymes on the optimal temperature profile and process performance.

Accordingly, the case "Doubled RCS activity" with twice as many bonds cut by RCS and "Doubled ECS

activity" with twice as many bonds cut by ECS were considered. As with all other cases, the other

parameters are kept constant at the value of the base case.

In order to study the influence of the equilibrium temperature, two additional cases were considered.

In the case "Equal equilibrium temperature" both equilibrium temperature are set to 67.8 ◦C, and in the

case "Switched equilibrium temperature" TRCS,eq is set to the base case value of TECS,eq and vice versa
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Table 5.1: Parameters of the base case [3] (With kind permission from Springer).

Name Symbol Value Unit

Mass concentrationa 38.4 g l−1

Mean amount of monomer unitsa 160
Polydispersitya 1.325

Maximal amount of monomer unitsa k̆max 878
Enthalpic change associated with enzyme folding RCSc ∆Heq,RCS 192 kJmol−1

Activation energy of hydrolysis RCSc ∆G†
cat,RCS 6.9 kJmol−1

Activation energy of irreversible inactivation RCSc ∆G†
inact,RCS 105 kJmol−1

Equilibrium temperature of RCSc Teq,RCS 90 ◦C
Position of the catalytic center of RCS z̆− 6
Enthalpic change associated with enzyme folding ECSe ∆Heq,ECS 225 kJmol−1

Activation energy of hydrolysis ECSe ∆G†
cat,ECS 64 kJmol−1

Activation energy of irreversible inactivation ECSe ∆G†
inact,ECS 96 kJmol−1

Equilibrium temperature of ECSe Teq,ECS 67.8 ◦C
Position of the catalytic center of ECS z̆− 2
Reference temperature Tre f 30 ◦C

a Ref: [48]
b Ref: [238]
c Estimated from [207]
d Ref: [28]
e Ref: [242]

Table 5.2: Subsite binding energies in kJmol−1 from Ho et al. [49].

Enzyme 1 2 3 4 5 6 7 8

Random-chain scission 4.6 10.0 0 2.5 10.0 -13.0 0 5.0
End-chain scission -Inf 0 20.3 6.7 1.8 0.9 0.5 0.4
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for ECS.

As starting material quality varies in a real process, the effect of variation is investigated. In the case

"Sweet potato starch" the values (a mean amount of monomer units of 4100, a maximal amount of

monomer units of 22496, and a polydispersity of 1.324) provided by Ho et al. [48] for sweet potato

starch are used.

Effect of the Product Distribution Function and branching

Ho et al. [48, 49] used a simplified PDF instead of using the PDF derived using the Subsite Theory.

Using the parameters of the base case including the initial enzyme concentration, the effect of using

the more realistic but also more complicated PDF computed using the Subsite Theory is investigated.

In order to investigate the effect of branching on optimal control the optimal temperature profile max-

imizing the yield in fixed time is computed for a branched polymer. The average branching density is

taken to be 5 % and all parameters, including the initial enzyme concentration, of the base case are

used. Additionally, a maximal amount of branchings of 88 is used which is sufficiently large to have

almost no polymer above this value. In order to include the effect of branchings on the reaction rate,

the reaction rate derived by the extension of the Subsite Theory to a branched polymer is used. To stay

consistent also the PDF derived using this extension is used.

5.3.3 Numerical parameters and settings

For the case using the simplified PDF a very fine mesh with a growth factor of 1.01 and k̆c = 20 was

used. These were the values proposed by Ho et al. [48]. Also normalization was only done with respect

to the initial polymer concentration as with the Cell Average Technique (CAT) because for the small

polymer considered here further normalization was not necessary.

The case with the more realistic PDF and the branched cased used a fine mesh with a growth rate of

1.1 and k̆c = 12. Also normalization with the pivot position was performed. The choice of normalization

does not have an effect for the small polymer investigated in this study though.

5.4 Results and Discussion

First the results for the parameter study are discussed. Followed by the presentation of the effect of

using a different PDF and including the effect of branching are discussed.

5.4.1 Isothermal operation

Among other information Figure 5.1 shows the yield of the base setting at isothermal processing versus

time. If one compares the yield obtained at the optimal isothermal temperature 51.9 ◦C for maximizing

yield within the specified processing time of 7 d with the yield at a 2.5 ◦C higher temperature, one can

see that the higher temperature initially leads to a higher hydrolysis rate. But the increased denaturation
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causes the hydrolysis rate to reduce at later times. This leads to a lower final yield. The yield of both

enzymes acting together is greater than the yield obtained by summing up the yield obtained from

simulations using either one or the other enzymes separately at the optimal isothermal temperature.

This is a clear indication that the synergy due to multi-enzymatic degradation plays a major role in this

system.

5.4.2 Maximizing yield in fixed time with fixed enzyme concentration

Figure 5.1 shows the yield over time for some selected cases. First the increase of yield for the optimal

linear profile is discussed. The corresponding temperature profile is shown in Figure 5.2 b). At first the

lower temperatures of the optimal linear profile result in a low hydrolysis rate but also in a low enzyme

denaturation rate. Therefore, at a later time more enzyme is present. This enzyme is then activated

by the higher temperature compared to the optimal isothermal temperature at later times which results

in a increased hydrolysis efficiency. The final yield, therefore, increases by 4.73 percentage points

to 48.38%. It has to be noted that the mean temperature of the optimal linear profile is not the optimal

isothermal temperature but rather a higher temperature.

The maximal obtainable yield after 7 d for an isothermal reactor with the parameters of the base case

and with sweet potato starch is presented in Figure 5.2 a) for several levels of resolution of the opti-

mized temperature profile. For the base case the maximal yield at the optimal isothermal temperature

of 51.9 ◦C is 43.65%. Note that this temperature is below TRCS,eq and TECS,eq given in Table 5.1. The

short reaction time coupled with a relatively low enzyme amount results in this low yield. Introducing

the first profile resolution refinement increases the yield by only 0.006 percentage points. The next re-

finement increases the yield further by 0.32 percentage points to 48.71%. The benefit decreases upon

further refinement of the temperature profile, e.g. the increase from 32 to 64 intervals (the fully refined

profile) only increases the yield by 0.01 percentage points to 48.93%. However, using 64 intervals (the

fully refined profile) instead of the optimal linear profile increases the yield by 0.55 percentage points in

total. In all investigated cases (not shown) the first refinement only brought a tiny benefit. The second

refinement then increased the profit more strongly and the effect leveled off for further refinements.

5.4.3 Minimizing reaction time with a fixed yield and enzyme concentration

Here, a high yield of 90% is demanded. The base case requires 435.6 hrs at optimal isothermal opera-

tion to reach this yield. Using the optimal linear profile reduces this by 6.14% and the fully refined profile

results in a reduction of 7.63%. The processing of sweet potato starch takes slightly longer (451.7 hrs),

but the optimization potential for the optimal linear and fully refined profile increases to 8.09% and

10.31%, respectively. If the activity of RCS or ECS is doubled, the required times reduces to 387.0 hrs

and 198.3 hrs, respectively. The reduction using the optimal linear profile were 3.99% and 7.92% and

for the fully refined profile 5.60% and 9.20%. If the equilibrium temperature of the two enzymes were

switched, the required time at isothermal operation reduces to 200.1 hrs. This can be explained by ECS

having a higher optimal isothermal temperature and therefore contributing more towards the hydrolysis.

94



0 1 2 3 4 5 6 7
0

10

20

30

40

50

Time in days

Y
ie

ld
 Φ

 in
 %

 

 
Summation of RCS and ECS yield at
optimal isothermal temperature   
Optimal isothermal 51.9°C
T=54.4°C
Optimal linear
profile       
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Figure 5.2: Yield after 7 d for several refinements and the corresponding optimal temperature profile.
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The reductions for this case were 15.29% for the optimal linear profile and 16% for the fully refined

profile. Both enzyme having the same equilibrium temperature of the ECS enzyme results in a required

time of 436.7 hrs which is almost the same as for the base case. Surprisingly, the reductions were

also similar with 6.21% and 7.68%. The high reduction using the optimal linear profile or even the fully

refined profile is surprising because previous studies [20] focused on pauses at - here almost equal -

optimal isothermal temperatures of the enzymes.

Further cases, not shown here, suggest that the behavior observed in this study is likely to be not

very dependent on specific parameter values. Even without denaturation it is desirable to operate at

non-isothermal conditions. However, then the maximum reduction in the reaction time is approximately

0.4%, which is much smaller than for denaturating enzymes.

In Figure 5.3 the temperature profiles are shown for several cases with a desired yield of 90%. One

can see that the fully refined temperature profile is strongly non-linear, even though a linear profile is a

good approximation. The temperature profiles are all different from each other and there appears to be

no simple correlation between them. Therefore, no general guideline on how to choose an optimal tem-

perature profile can be given. Rather optimal control as described in this study should be performed.

However, the optimal linear profile always realizes most of the saving potential. I cannot offer any sound

explanation why the linear profile is such a good approximation.

5.4.4 Trade-off between reaction time and yield with fixed enzyme concentration

If the default value of product (C1 = 6M.U.) is used, a yield of 75.97% is optimal for isothermal opera-

tion. This yield takes 335.61 hrs to reach and results in profit of 120.21M.U.. Using the optimal linear

temperature profile a yield of 76.25% is obtained. This higher yield is reached in a shorter time of

308.49 hrs which results in a higher profit of 149.03M.U.. The fully refined temperature profile had a

yield of 77.08% which takes 309.12 hrs to reach and results in a profit of 153.39M.U.. The overall profit

can therefore be increased using optimal control.

If the product had a higher market value C1 = 12M.U., a higher yield of 93.06% is favorable. This

takes 467.59 hrs to reach and delivered a profit of 649.13M.U.. Using the optimal linear profile the yield

slightly reduces to 92.6% in a shorter time of 436.65 hrs which results in a greater profit of 674.52M.U..

The fully refined profile slightly increases the yield to 92.82% with a lower time of 432.66 hrs and a

greater profit of 681.19M.U..

5.4.5 Trade-off between reaction time and enzyme concentration at a fixed yield

Here, an equivalent enzyme cost C2 of 96M.U. is used. The results of the optimization are shown in

Table 5.3.

Trade-off between reaction time and enzyme mixture at constant enzyme mixture composition

One can see that the reactor runs significantly faster than the one without the optimized enzyme

amount. This is because of the usage of additional enzyme. However, the total cost is much lower
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Figure 5.3: The fully refined temperature profile to obtain a desired yield in the shortest time over the
normalized time for several cases.

than the one obtained for the original enzyme amount. An interesting result is that the enzyme amount

and the reaction time reduce with using the optimal linear temperature profile. This results in a de-

crease of the cost due to reactor occupation and due to enzyme. Further on, no trend of the enzyme

amount increasing or decreasing is visible. The cost reduction due to enzyme amount optimization is

much larger than the cost reduction due to temperature profile optimization.

The small variation in the optimal enzyme amount was the motivation to try a simpler strategy. First the

enzyme amount is optimized together with temperature for isothermal operation. Then the temperature

profile is optimized at the fixed enzyme amount optimal for isothermal operation. One can see that for

the optimal linear temperature profile almost all of the saving potential is realized using this simplified

strategy.

Optimizing the enzyme mixture composition For the isothermal case, the reaction is faster with

less enzymes than the optimization at constant enzyme mixture composition. Using the optimal linear

temperature profile results in a greater cost reduction than for the enzyme amount optimization alone.

The enzyme composition and amount change only slightly. Further refinement reduces the cost even

further and one can see that enzyme mixture amount and composition changes only slightly. The cost

reduction due to enzyme mixture optimization is much larger than the cost reduction due to temperature

profile optimization.

Again a simpler strategy is pursued. First the enzyme amount and mixture composition is optimized

for isothermal operation. Then the temperature profile is optimized at this fixed enzyme amount and

mixture composition. One can see that almost all of the saving potential is realized. However, a

simultaneous optimization of temperature profile and enzyme mixture is always better by a small margin.
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Table 5.3: Cost and profit in M.U. for trade-off between reaction time and enzyme concentration at a
fixed yield of 90%.

Optimal isothermal Optimal linear Fully refined

Without optimization of enzyme mixture amount or composition

Total profit 8.44 35.18 41.66

With enzyme amount optimization
but constant enzyme mixture composition

Cost due to reactor 168.63 163.28 161.19
operation
Cost due to enzymes 207.5 201.72 201.68
Total profit 163.87 175.01 177.12

Without optimization of enzyme mixture amount and composition
at isothermal operation already optimized for enzyme amount

Cost due to reactor 168.63 157.67 155.23
operation
Total profit 163.87 174.83 177.27

With optimization of the enzyme mixture amount and composition

Cost due to reactor 143.03 136.89 135.14
operation
Cost due to RCS 26.08 24.37 24.63
Cost due to ECS 148.23 142.57 142.76
Total profit 222.65 236.17 237.47

Without optimization of enzyme mixture amount or composition
at isothermal operation already optimized for

enzyme mixture amount and composition

Cost due to reactor 143.03 129.87 128.39
operation
Total profit 222.65 235.82 237.30
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5.4.6 Necessity for optimization

In Figure 5.4 the yield is shown for several temperature change rates at fixed average temperature.

The average temperature is chosen as the optimal isothermal temperature. As already mentioned,

the optimal linear temperature profile is not centered on the optimal isothermal temperature. However,

finding the temperature on which the optimal linear profile is centered would be experimentally very

difficult. Therefore, this simplified strategy is used here. One can see that the yield reaches a maximum

and then drops strongly off and even falls below the yield for the isothermal process. This implies that

just heating the process is not bound to increase the yield. Therefore, just using linear temperature

profiles without an enzyme specific optimization is not recommended.

5.4.7 Effect of using the Product Distribution Function derived by Subsite Theory

The yield over temperature at isothermal operation is plotted in Figure 5.5 for the case using the simpli-

fied PDF as well as the more realistic PDF predicted by the Subsite Theory. One can see that the yields

agree very well with each other. As the enzyme approximated as performing ECS actually does ECS

due to the non-finite binding energy this is not very surprising. The small difference can be explained

by the fact that the enzyme approximated by RCS does not attack the bonds randomly, but rather has

a weak preference for inner bonds of large polymers. The optimal temperature profile maximizing the

yield in fixed time, which is shown in Figure 5.6, agrees accordingly also quite well.

5.4.8 Effect of branching bonds

The yield over temperature at isothermal operation is plotted in Figure 5.5 for the linear polymer as

well as the branched polymer. It is very surprising that the yield is higher for the branched polymer.

The branching bonds should reduce the activity of the endo-active enzyme. And limit dextrines, which

cannot be attacked and therefore should decrease the yield, for the attack on end-chains by the exo-

active enzyme are possible if branching bonds exist. The contribution of the enzymes to the rate of

yield increase over time is shown in Figure 5.7. One can see that the ECS enzyme increases the yield

much more than the RCS enzymes. This is due to ECS producing directly monomer and dimer that

is counted as product whereas RCS enzyme produces smaller polymer that are still larger than the

product. Initially, the rates are higher for the branched polymer because each polymer has more than

one end-chain. The enzymes are therefore more likely to create small polymers by each attack. How-

ever, if one compares the contribution of the ECS enzyme for the linear and branched polymer, one can

see that the rate increases for the branched polymer whereas it decreases for the linear polymer. The

rate decreases for the linear polymer because the effect due to denaturation of enzyme and increased

product inhibition is larger than the effect from having more attackable polymers due to the action of the

RCS enzyme. This should also occur for the branched polymer. However, instead the rate increases up

to 80 hrs. This is likely due to each attack of the RCS enzyme on an inner chain creating one end-chains

with a reducing end and a non-reducing end. In the model it was assumed that the chain carrying the
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non-reducing end could be handled like a chain carrying a reducing end because it was only one chain

out of many chains. However, due to this assumption every attack of RCS increases the amount of ECS

attackable chain by 2 instead of by 1. This is a shortcoming of the model which should be redeemed.

The validation performed in the preceding chapter did not include an enzyme that performs mainly ECS

and therefore did not catch this. However, the increased production of maltotriose, which is another

short oligomer, might also be explained by having too many chains with reducing ends.

The temperature profile maximizing conversion computed for the branched polymer is shown in Fig-

ure 5.6. This shows that the temperature profile depends on the model used and also that the algo-

rithm is able to deal with branched polymer. No further investigation into the effect of branching on the

predicted optimal control profiles was undertaken because the underlying model is not correct.

5.5 Conclusion and outlook

A model-based optimization study of depolymerization described by a population balance approach

was performed. The enzyme mixture amount and composition were predicted to have the greatest

influence on economic feasibility. But, temperature has also a major influence on process performance.

Therefore, those parameters should be optimized. Furthermore, non-isothermal and non-linear temper-

ature profiles have the potential to increase profitability. However, using the optimal linear temperature

already realizes much of the saving potential. Even though the optimization problem is non-linear, multi-

dimensional, and dependent on the starting material, it could be solved in a simple sequential manner

in this study with only a small loss of saving potential.

Model-based optimization of enzyme mixture composition and amount and temperature should be ap-

plied to real processes and other biopolymers. This requires including e.g, the dissolution of polymer

particles using models such as proposed by Griggs et al. [42], Lebaz et al. [46] or deactivation by ir-

reversible unproductive binding [30]. Furthermore, experimentally obtained parameters are needed.

Then there is only a small extra effort for additionally exploiting temperature trajectory optimization.

It should be studied whether an (easy-to-implement) linear temperature profile would also be a good

approximation for these more realistic cases.

Additionally, the objective functional should be extended to include more cost factors such as the energy

consumption due to heating. If required, it can also be extended to include boundary conditions such

as a given starting or end temperature. Furthermore, a more sophisticated refinement algorithm, e.g.

[240], may be used to speed up computation. Optimal control can also be applied to optimal enzyme

dosage [160] and substrate feeding [23].
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Chapter 6

Conclusion and outlook

In this dissertation a Population Balance Model (PBM) to describe the enzymatically catalyzed depoly-

merization of branched starch was developed. Three techniques (Direct Quadrature Method of Mo-

ments (DQMOM), Cell Average Technique (CAT), and Fixed Pivot technique (FP)) to solve such PBMs

were adapted to the problem and a convergence study was performed. The adaption for DQMOM made

the application of a domain decomposition technique necessary which was the first time such a decom-

position was used for non-monovariate problems and with DQMOM. As FP was the best technique an

optimal control algorithm was developed using this technique to find the optimal temperature profile.

6.1 Population Balance Model

For several mechanisms (Random-chain scission (RCS), End-chain scission (ECS), and Random-

debranching scission (RDS)) the Product Distribution Function (PDF) was derived for the first time for a

branched non-crosslinking polymer. This PDFs can be used whenever usage of these mechanisms can

be justified. The PBM developed in Chapter 2 is the first model that accounts for the distributed nature

of the polymer as well as the temperature dependence of the enzyme. Both effects are described us-

ing established and mechanistically sound models (the Subsite Theory [209, 216] and the Equilibrium

Model [205]). For the first time a Population Balance Equation (PBE) that extends the Subsite Theory

to a branched polymer was developed. Previously, only kinetic Monte Carlo (kMC) solvers could be

used [32, 33].

The developed model was tested in Chapter 4 and found to describe experimental data as good as the

only other currently available mechanistic model [32]. However, in Chapter 5 the model was found to

predict likely false reaction rates for enzymes that perform mainly exo-active attacks. Accordingly, the

assumption causing this effect should not be used and the model should be changed. This is not held

to be a difficult task. Afterwards, the model should be validated more rigorously by comparison with re-

sults obtained using the kMC algorithm proposed by Marchal et al. [33] at precisely defined conditions.

Furthermore, one can extract more information from the kMC simulations than just the evolution of the

amount of polymers and some species. Rather, one can directly obtain the reaction rate and PDF as a
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function of branching density and the amount of monomer units. This information can then be used to

validate the PBM. Additionally, one could investigate the PBM separately from a solution technique for

the PBE.

The model developed in this work neglects several effects which are relevant to obtaining a truly uni-

versal model. Pressure [243], pH-value [243, 244], and ion concentration [243, 245] are known to have

an influence on the activity and stability of starch degrading enzymes. If those values vary between or

during production runs, then they need to be included in the model. This is possible for a PBM and has

been done by Obersteiner [246] for a version of the DQMOM code used in this work. If inhibitors, e.g.

cellulose [247], are present, they should also be modeled using an appropriate model (see e.g. [248]).

6.2 Direct Quadrate Method of Moments

In Chapter 3 a modification for the DQMOM to be able to describe depolymerization was proposed. This

modification introduced a domain decomposition into a continuous, discrete, and mixed continuous-

discrete subdomain. By comparing the results of DQMOM to kMC solutions of the underlying discrete

PBE, it was shown that the modification was able to increase the accuracy for all cases considered in

this work. However, except for ECS, the accuracy was not acceptable for the branched polymer. For

the linear polymer one could find sufficiently high values of the domain decomposition parameter and

the number of quadrature points such that the agreement between kMC and DQMOM was acceptable.

However, for the branched polymer - even using a highly sophisticated solution technique - the number

of quadrature points could not be increased to a level where the agreement was sufficient. This is

consistent with Lebaz et al. [67] and Lebaz et al. [46] being able to obtain satisfactory results using

DQMOM for describing the depolymerization of linear polymer. Theoretically, one would be able to in-

crease the discrete domain in size until the accuracy would be good. However, the computational effort

would not be feasible. Therefore, DQMOM was shown to be unable to handle the depolymerization

problem handeled here.

The strong benefit of increasing the discrete domain in size and the good performance of the discretely

implemented class methods implies that the continuity assumption is not valid for the depolymeriza-

tion process. Therefore, one should modify the Method Of Moments (MOM) such that it can be used

for a discrete PBE which has never been done before. Furthermore, other MOMs, such as Sectional

Quadrature Method of Moments [108] or the Maximum entropy method [111] should be tested, if the

continuity assumption is valid, but rather DQMOM is not able to describe the process.

6.3 Methods of Classes

In Chapter 4 two Methods Of Classes (CMs), which have the same principal idea, were implemented

in a discrete manner: FP and CAT. Both methods were found to have similar accuracy, but as FP was

significantly faster it should be preferred. The faster computation with FP has been reported [230] and
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is, therefore, not surprising. The literature on the relative performance of FP and CAT does not allow

any conclusions. Some studies found comparable accuracies [233, 249], but theoretical derivations

[231] and other computational experiments [231, 235] agree on CAT being superior.

As already mentioned in the literature [48] and similar to other methods [147] a high resolution was

required to obtain accurate results for ECS. A case study for a highly branched polymer being attacked

by enzymes described using the simplest feasible reaction rates was undertaken. It was found that RCS

and RDS together had a much worse agreement with kMC solutions than both mechanisms alone. No

clear explanation for this was found. The attack on linear and branched polymer by one enzyme that

was described using the subsite theory was represented with a very high precision.

The reason for the bad performance of the combination of RCS and RDS should be investigated in

more detail. Also a more rigorous convergence analysis of the algorithm should be undertaken. This

study should focus on the behavior for multimodal distributions, larger polymers, and multiple enzymes

described by the subsite theory.

6.4 Optimal control

In Chapter 5 an optimal control algorithm for the enzymatic catalyzed depolymerization was described.

This algorithm was used for a case study. This case study predicted that there is significant saving

potential. Most of this saving potential could be realized using a simple linear profile. Prior studies

of optimal control of enzymatically catalyzed depolymerization [16, 23, 159, 250] did not investigate

simpler profiles but found significant benefits.

Furthermore, it was found that optimizing the reaction duration and the enzyme mixture composition

and amount had potential to increase the feasibility of the process by a significant amount. However,

as it was not possible to find a consistent data set for a realistic enzyme cocktails (see [251] for one

part of the effort undertaken) the parameters cannot be applied directly to a real process. Therefore,

the parameters of one enzyme cocktails should be determined to enable model-based optimization and

optimal control. Another shortcoming of the case study was that no cost parameters for a real process

were used. By cooperation with an industrial partner the cost parameters should be obtained for one

specific process to obtain realistic data for one specific test case. Additionally, the cost of heating the

process should be implemented.

It was also shown that the algorithm can be applied to branched polymers. The algorithm can be sped

up by using a more sophisticated refinement technique [240]. The algorithm can also be extended to

study optimal enzyme dosage [160] and substrate feeding [23].

6.5 Application to cellulose

The most common polymer is cellulose. It is also a biopolymer and homopolymer of glucose [11, 252].

Furthermore, it is also distributed in the amount of monomer units [27]. As it cannot be consumed by
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humans and can be grown in locations, where no food stuff can be produced, it does not create a rivalry

between the "tank" and the "fork" [11, 252]. Furthermore, it extends the number of plants that can be

farmed which would be beneficial to rural areas [5]. Accordingly, there is significant interest in depoly-

merization of cellulose by enzymes [35, 42, 253, 254] as this polymer can enable the transformation

into the bioeconomy.

There have been many studies that focused on modeling the depolymerization of cellulose using PBEs

[40–44, 47, 67, 68, 138] besides many other modeling studies [21, 22, 24, 30, 31, 35, 255, 256]. The

reaction rate has been modeled without full success using the subsite theory [257]. Furthermore, the

deactivation mechanisms is not fully understood [258] and may partially be due to irreversible bindings

[255, 259]. Other studies regard thermal deactivation as important [260–263].

If a suitable model is selected, which might need to include both thermal inactivation and irreversible

binding, and the effect of the polymer being insoluble, e.g. using the model proposed by Griggs et al.

[42], this model can then be used instead of the less mechanistically based simpler model used for

optimal control of this process previously [16, 23, 159, 250]. Furthermore, instead of performing exper-

imental optimization [264, 265] one could perform model-based optimal control which would reduce the

costs required for optimization. The algorithm developed here can be used to also perform optimal con-

trol for cellulose depolymerization. Furthermore, the results gained here in solving a depolymerization

PBE can be transferred to cellulose.
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Appendix A

Different formulations of the Population
Balance Equation and production rate

A.1 Formulations of the Population Balance Equation

The different formulations of the Population Balance Equation (PBE) are shown here.

A.1.1 Population Balance Equation for a linear polymer

For a linear polymer the discrete PBE defines a system of Ordinary Differential Equations (ODEs):

dn̆(t, k̆)
dt

=−D̆∑(t, k̆)+ B̆∑(t, k̆). (A.1)

If the continuity assumption is taken, a Partial Differential Equation (PDE) is obtained

∂ n̄(t, k̄)
∂ t

=−D̄∑(t, k̄)+ B̄∑(t, k̄). (A.2)

A.1.2 Population Balance Equation for a branched polymer

For a branched polymer the discrete PBE defines a system of ODEs:

dn̆(t, k̆, b̆)
dt

=−D̆∑(t, k̆, b̆)+ B̆∑(t, k̆, b̆). (A.3)

If the continuity assumption is valid for both coordinates, a two dimensional PDE is obtained

∂ n̄(t, k̄, b̄)
∂ t

=−D̄∑(t, k̄, b̄)+ B̄∑(t, k̄, b̄). (A.4)
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If the continuity assumption is only valid for the amount of monomer units, a system of one dimensional

PDEs is obtained
∂ n̂(t, k̄, b̆)

∂ t
=−D̂∑(t, k̄, b̆)+ B̂∑(t, k̄, b̆). (A.5)

A.2 Formulations of the production rate

A.2.1 General form for a linear polymer

The necessary condition for attack is always k′ ≥ 2.

Discrete representation The production rate and normalization for a discrete polymer can be ex-

pressed as follows

B̆•(t, k̆) =2 ·
∞∑

k̆′=k̆+1

γ̆•(k̆, k̆′) · D̆•(t, k̆′) (A.6)

1 =
k̆′−1∑
k̆=1

γ̆•(k̆, k̆′). (A.7)

Continuous representation The symmetry and the deductions are also valid for a continuously rep-

resented polymer. Accordingly, one can express the production rate and normalization condition as

B̆•(t, k̄) =2 ·
∫

∞

k̄′=k̄+1
γ̄•(k̄, k̄′) · D̄•(t, k̄′)dk̄′ (A.8)

1 =

∫ k̄′−1

k̄=1
γ̄•(k̄, k̄′)dk̄′. (A.9)

A.2.2 General form for a branched polymer for hydrolysis on linear bonds

The necessary condition for attack is always k′−2≥ b′.

Discrete representation The production rate and normalization conditions have already been de-

rived

B̆•(t, k̆, b̆) =2 ·
∞∑

k̆′=k̆+1

k̆′−1−k̆+b̆∑
b̆′=b̆

γ̆•(k̆, k̆′, b̆, b̆′) · D̆•(t, k̆′, b̆′) (A.10)

1 =

b̆′∑
b̆=0

k̆′−1+b̆−b̆′∑
k̆=b̆+1

γ̆•(k̆, k̆′, b̆, b̆′). (A.11)
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Continuous representation The symmetry and the deductions are also valid for a continuously rep-

resented polymer. Accordingly, one can express the production rate and normalization condition as

B̄•(t, k̄, b̄) =2 ·
∫

∞

k̄+1

∫ k̄′−1−k̄+b̄

b̄
γ̄•(k̄, k̄′, b̄, b̄′) · D̄•(t, k̄′, b̄′)db̄′ dk̄′ (A.12)

1 =

∫ b̄

0

∫ k̄′−1+b̄−b̄′

b̄+1
γ̄•(k̄, k̄′, b̄, b̄′)dk̄ db̄. (A.13)

Mixed continuous-discrete representation The symmetry and the deductions are also valid for a

mixed continuously-discretely represented polymer. Accordingly, one can express the production rate

and normalization condition as

B̂•(t, k̄, b̆) =2 ·
∞∑

b̆′=b̆

∫
∞

k̄+1+b̆′−b̆
γ̂•(k̄, k̄′, b̆, b̆′) · D̂•(t, k̄′, b̆′)dk̄′ (A.14)

1 =

b̆′∑
b̆=0

∫ k̄′−1+b̆−b̆′

b̆+1
γ̂•(k̄, k̄′, b̆, b̆′)dk̄.. (A.15)

A.2.3 General form for a branched polymer for hydrolysis on branching bonds

The necessary condition for attack is always b′ ≥ 1.

Discrete representation The production rate and normalization condition have already been derived

B̆•(t, k̆, b̆) =2 ·
∞∑

k̆′=k̆+1

k̆′−k̆+b̆∑
b̆′=b̆+1

γ̆•(k̆, k̆′, b̆, b̆′) · D̆•(t, k̆′, b̆′) (A.16)

1 =
b̆′−1∑
b̆=0

k̆′−b̆′+b̆∑
k̆=b̆+1

γ̆•(k̆, k̆′, b̆, b̆′). (A.17)

Continuous representation The symmetry and the deductions are also valid for a continuously rep-

resented polymer. Accordingly, one can express the production rate and normalization condition as

B̄•(t, k̄, b̄) =2 ·
∫

∞

k̄+1

∫ k̄′−k̄+b̄

b̄+1
γ̄•(k̄, k̄′, b̄, b̄′) · D̄•(t, k̄′, b̄′)db̄′ dk̄′ (A.18)

1 =

∫ b̄′−1

0

∫ k̄′−b̄′+b̄

b̄+1
γ̄•(k̄, k̄′, b̄, b̄′) ·H(b̄− b̄′+ k̄′− k̄)dk̄ db̄. (A.19)

Mixed continuous-discrete representation The symmetry and the deductions are also valid for a

continuously represented polymer. Accordingly, one can express the production rate and normalization
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condition as

B̂•(t, k̄, b̆) =2 ·
∞∑

b̆′=b̆+1

∫
∞

k̄+b̆′−b̆
γ̂•(k̄, k̄′, b̆, b̆′) · D̂•(t, k̄′, b̆′)dk̄′ (A.20)

1 =
b̆′−1∑
b̆=0

∫ k̄′−b̆′+b̆

b̆+1
γ̂•(k̄, k̄′, b̆, b̆′)dk̄. (A.21)

A.2.4 Product Distribution Functions for specific mechanism

Random-chain scission Because the fragment distribution function is normalized (see Eqs. (2.12),

(A.9), (2.17), (A.13), and (A.15)), the value of fRCS(k′,b′) for all the cases described priorly can be

readily obtained:

f̆RCS(k̆′) =
1

k̆′−1
(A.22)

f̄RCS(k̄′) =
1

k̄′−2
(A.23)

f̄RCS(k̄′, b̄′) =
1

b̄′ · (k̄′− b̄′−2)
(A.24)

f̂RCS(k̄′, b̆′) =
1

(b̆′+1) · (k̄′− b̆′−2)
(A.25)

f̆RCS(k̆′, b̆′) =
1

(b̆′+1) · (k̆′− b̆′−1)
. (A.26)

The birth terms due to Random-chain scission (RCS) can then be written as follows:

B̆RCS(t, k̆) =2 ·
∞∑

k̆′=k̆+1

D̆RCS(t, k̆′)
k̆′−1

(A.27)

B̄RCS(t, k̄) =2 ·
∫

∞

k̄+1

D̂RCS(t, k̄′)
k̄′−2

dk̄′ (A.28)

B̆RCS(t, k̆, b̆) =2 ·
∞∑

k̆′=k̆+1

b̆+k̆′−k̆−1∑
b̆′=b̆

D̆RCS(t, k̆′, b̆′)
(b̆′+1) · (k̆′− b̆′−1)

(A.29)

B̂RCS(t, k̄, b̆) =2 ·
∞∑

b̆′=b̆

∫
∞

k̄+1+b̆′−b̆

D̂RCS(t, k̄′, b̆′)
(b̆′+1) · (k̄′− b̆′−2)

dk̄′ (A.30)

Random-debranching scission Due to normalization (see Eqs. (2.20),(A.19), and (A.21)), fRDS is

obtained as follows:

f̄RDS(k̄′, b̄′) =
1

(b̄′−1) · (k̄′− b̄′−1)
(A.31)
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f̂RDS(k̄′, b̆′) =
1

b̆′ · (k̄′− b̆′−1)
(A.32)

f̆RDS(k̆′, b̆′) =
1

b̆′ · (k̆′− b̆′)
. (A.33)

The birth terms due to Random-debranching scission (RDS) are as follows:

B̆RDS(t, k̆, b̆) =2 ·
∞∑

k̆′=k̆+1

b̆+k̆′−k̆∑
b̆′=b̆+1

D̆RDS(k̆′, b̆′, t)
b̆′ · (k̆′− b̆′)

(A.34)

B̄RDS(t, k̄, b̄) =2 ·
∫

∞

k̄+1

∫ b̄+k̄′−k̄

b̄+1

D̄RDS(t, k̄′, b̄′)
(b̄′−1) · (k̄′− b̄′−1)

db̄′ dk̄′ (A.35)

B̂RDS(t, k̄, b̆) =2 ·
∞∑

b̆′=b̆+1

∫
∞

k̄+b̆′−b̆

D̂RDS(t, k̄′, b̆′)
b̆′ · (k̄′− b̆′−1)

dk̄′. (A.36)

End-chain scission The birth of polymers is given by:

B̆ECS,ă(t, k̆) =D̆ECS,ă(t, k̆+ ă)+δ (k̆, ă) ·
∞∑

k̆′=1+ă

D̆ECS,ă(t, k̆′) (A.37)

B̄ECS,ă(t, k̄) =D̄ECS,ă(t, k̄+ ă)+ δ̄ (k̄− ă) ·
∫

∞

1+ă
D̄ECS,ă(t, k̄′)db̄′ dk̄′ (A.38)

B̆ECS,ă(t, k̆, b̆) =D̆ECS,ă(t, k̆+ ă, b̆)+δ (k̆, ă) ·δ (b̆,0) ·
∞∑

k̆′=1+ă

k̆′−1−ă∑
b̆′=0

D̆ECS(t, k̆′, b̆′). (A.39)

B̄ECS,ă(t, k̄, b̄) =D̄ECS,ă(t, k̄+ ă, b̄)+ δ̄ (k̄− ă) · δ̄ (b̄) ·
∫

∞

1+ă

∫ k̄′−1−ă

0
D̄ECS,ă(t, k̄′, b̄′)db̄′ dk̄′ (A.40)

B̂ECS,ă(t, k̄, b̆) =D̂ECS,ă(t, k̄+ ă, b̆)+ δ̄ (k̄− ă) ·δ (b̆,0) ·
∞∑

b̆′=0

∫
∞

b̆′+1+ă
D̂ECS,ă(t, k̄′, b̆′)dk̄′. (A.41)

A more common, but equivalent form, for the linear discrete case is

B̆ECS,ă(t, k̆) = D̆ECS,ă(t, k̆+ ă)+

{ ∑
∞

k̆′=1+ă D̆ECS,ă(t, k̆′) ă = k̆

0 otherwise
. (A.42)

Random scission of inner monomer units and inner chains They are only shown discretely be-

cause this are only used for the discrete PBEs in this work. Therefore, everything is already provided

in the main text.
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Appendix B

Closure of the moments

In this chapter the closure rules provided by Direct Quadrature Method of Moments (DQMOM) are used

to provide closure to the moments of the birth and death terms.

B.1 Subdomain I

In Equation (3.17), ¯̃α i, j∑
,I and ¯̃ω i, j∑

,I need to be determined. They can be computed as follows:

¯̃α i, j∑
,I =

¯̃α i, j
RCS,I +

¯̃α i, j
ECS,I +

¯̃α i, j
RDS,I (B.1)

¯̃ω i, j∑
,I =

¯̃ω i, j
RCS,I +

¯̃ω i, j
ECS,I +

¯̃ω i, j
RDS,I. (B.2)

The terms appearing in the equation for ¯̃ω i, j∑
,I are the moments of the reaction rate. After closure (see

Equations (2.43) and (2.44)), they are as follows:

¯̃ω i, j
RCS/ECS =CRCS/ECS ·

NI∑
l=1

¯̃wl · ¯̃kl
i
· ¯̃b j

l ·H(k̃ · ¯̃kl−2− b̃ · ¯̃bl) (B.3)

¯̃ω i, j
RDS =CRDS ·

NI∑
l=1

¯̃wl · ¯̃ki
l · ¯̃b

j
l ·H(b̃ · ¯̃bl−1). (B.4)
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The terms appearing in the equation for ¯̃α i, j∑
,I are the moments of the birth terms. After closure (see

Equations (2.27), (A.35) and (A.40)), they are:

¯̃α i, j
RCS,I =2 ·CRCS ·

1
j+1

·
NI∑

l=1

¯̃wl ·H(k̃ · ¯̃kl−2− b̃ · ¯̃bl)

¯̃bl ·
(

¯̃kl− b̃· ¯̃bl
k̃
− 2

k̃

)
·


i−1∑
f=0

[(
i
f

)
·
(

b̃
k̃

) f+1

·

(
1
k̃

)i− f
−
(

¯̃kl− b̃
k̃
· ¯̃bl− 1

k̃

)i− f

j+2+ f
·

 ¯̃bl
j+2+ f

−

(
k̆c−1

b̃

) j+2+ f



+
1

i+1
·

[
¯̃bl

j+1
·

((
¯̃kl−

1
k̃

)i+1

−
(

b̃
k̃
· ¯̃bl +

1
k̃

)i+1
)

−

(
k̆c−1

b̃

) j+1

·

( ¯̃kl−
b̃
k̃
· ¯̃bl +

k̆c

k̃
− 2

k̃

)i+1

−

(
k̆c

k̃

)i+1
 (B.5)

¯̃α i, j
RDS,I =2 ·CRDS ·

1
j+1

·
NI∑

l=1

¯̃wl ·H
(

b̃ · ¯̃bl−1
)

¯̃bl · ¯̃kl−
¯̃kl
b̃
− b̃· ¯̃bl

2

k̃
+ 1

k̃·b̃

·


i−1∑
f=0

( i
f

)
·
(

b̃
k̃

) f+1

·

(
1
k̃

)i− f
−
(

¯̃kl− b̃
k̃
· ¯̃bl

)i− f

j+2+ f
·

( ¯̃bl−
1
b̃

) j+2+ f

−

(
k̆c−1

b̃

) j+2+ f



− 1
i+1

·

(
k̆c−1

b̃

) j+1

·

( ¯̃kl−
b̃
k̃
· ¯̃bl +

k̆c

k̃
− 1

k̃

)i+1

−

(
k̆c

k̃

)i+1


+
1

i+1
·
(

¯̃bl−
1
b̃

) j+1

·

((
¯̃kl−

1
k̃

)i+1

−
(

b̃
k̃
· ¯̃bl

)i+1
)}

(B.6)

¯̃α i, j
ECS,I =CECS ·

NI∑
l=1

¯̃wl ·H(k̃ · ¯̃kl−2− b̃ · ¯̃bl) ·

[(
¯̃kl−

1
k̃

)i

·
(

¯̃bl

) j
+(δk̆c,0 +δk̆c,1) ·δ j,0 ·

(
1
k̃

)i
]
, (B.7)

where δx,y is the Kronecker delta, which equals one if x = y and zero otherwise.

B.2 Contribution of Subdomain I to Subdomain II

In Equation (3.31), α̂
i∈N0∑

,I must be determined. It is defined as follows:

α̂
i∈N0∑

,I = α̂
i∈N0
ECS,I + α̂

i∈N0
RCS,I + α̂

i∈N0
RDS,I. (B.8)

ECS in Subdomain I has no contribution to Subdomain II, therefore:

α̂
i∈N0
ECS,I = 0. (B.9)
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The other two unknown terms are determined using Equation (3.34), where B̂•,I and α̂
j∈N0
•,I are substi-

tuted by α̂
i∈N0
•,I and α̂

i, j
•,I , respectively. The necessary α̂

i, j
•,I are:

âl(b̆) =k̃ · ¯̃kl− b̃ · ¯̃bl + b̆− k̆c (B.10)

α̂
i, j=0
RCS,I =2 ·CRCS ·

w̃
k̃ · b̃
·

NI∑
l=1

¯̃wl ·H(k̃ · ¯̃kl−2− b̃ · ¯̃bl)

¯̃bl ·
(

¯̃kl− b̃· ¯̃bl
k̃
− 2

k̃·b̃

) · H(âl(b̆))
i+1

·
{

1
i+2

·
[
(b̆+ k̃ · ¯̃kl− k̆c)

i+2−max
(

b̆+ k̃ · ¯̃kl− b̃ · ¯̃bl−1, k̆c

)i+2
]

−k̆i+1
c ·

[
b̆+1−max

(
b̆, k̆c + b̃ · ¯̃bl +1− k̃ · ¯̃kl

)]}
(B.11)

α̂
i, j=1
RCS,I =2 ·CRCS ·

w̃
k̃ · b̃
·

NI∑
l=1

¯̃wl ·H(k̃ · ¯̃kl−2− b̃ · ¯̃bl)

¯̃bl ·
(

¯̃kl− b̃· ¯̃bl
k̃
− 2

k̃·b̃

) · H(âl(b̆))
i+1

·
{

1
i+3

·
[
(b̆+ k̃ · ¯̃kl− k̆c)

i+3−max
(

b̆+ k̃ · ¯̃kl− b̃ · ¯̃bl−1, k̆c

)i+3
]

− k̃ · ¯̃kl− b̃ · ¯̃bl−1
i+2

·
[
(b̆+ k̃ · ¯̃kl− k̆c)

i+2−max
(

b̆+ k̃ · ¯̃kl− b̃ · ¯̃bl−1, k̆c

)i+2
]

− k̆i+1
c

2
·
[
(b̆+1)2−max

(
b̆, k̆c + b̃ · ¯̃bl +1− k̃ · ¯̃kl

)2
]}

(B.12)

ĉl(b̆) =min(b̆+1, b̃ · ¯̃bl−1) (B.13)

d̂l(b̆) =max(b̆, k̆c + b̃ · ¯̃bl− k̃ · ¯̃kl) (B.14)

α̂
i, j=0
RDS,I =2 ·CRDS ·

w̃
k̃ · b̃

NI∑
l=1

¯̃wl ·H(b̃ · ¯̃bl−1)
¯̃bl · ¯̃kl−

¯̃kl
b̃
− b̃· ¯̃bl

2

k̃
+ 1

k̃·b̃

· H(ĉl(b̆)− k̆c + k̃ · ¯̃kl− b̃ · ¯̃bl)

i+1

·
{

1
i+2

·
[(

ĉl(b̆)+ k̃ · ¯̃kl− b̃ · ¯̃bl

)i+2
−
(

d̂l(b̆)+ k̃ · ¯̃kl− b̃ · ¯̃bl

)i+2
]

−k̆i+1
c
(
ĉl(b̆)− d̂l(b̆)

)}
(B.15)

α̂
i, j=1
RDS,I =2 ·CRDS ·

w̃
k̃ · b̃
·

NI∑
l=1

¯̃wl ·H(b̃ · ¯̃bl−1)
¯̃bl · ¯̃kl−

¯̃kl
b̃
− b̃· ¯̃bl

2

k̃
+ 1

k̃·b̃

· H(ĉl(b̆)− k̆c + k̃ · ¯̃kl− b̃ · ¯̃bl)

i+1{
1

i+3
·
[(

ĉl(b̆)+ k̃ · ¯̃kl− b̃ · ¯̃bl

)i+3
−
(

d̂l(b̆)+ k̃ · ¯̃kl− b̃ · ¯̃bl

)i+3
]

k̃ · ¯̃kl− b̃ · ¯̃bl

i+2
·
[(

ĉl(b̆)+ k̃ · ¯̃kl− b̃ · ¯̃bl

)i+2
−
(

d̂l(b̆)+ k̃ · ¯̃kl− b̃ · ¯̃bl

)i+2
]

− k̆i+1
c

2

(
ĉl(b̆)

2− d̂l(b̆)
2
)}

(B.16)
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B.3 Subdomain II

In Equation (3.31), ω̂
i∈N0∑ must be determined. It is defined as follows:

ω̂
i∈N0∑ = ω̂

i∈N0
ECS + ω̂

i∈N0
RCS + ω̂

i∈N0
RDS . (B.17)

The moments of the reaction rates (see Equations (2.43) and (2.44)) are closed as follows:

ω̂
i∈N0
RCS/ECS(b̆, t) =CRCS/ECS ·

NII∑
l=1

ŵl · k̂i
l ·H(k̂l−2− b̆) (B.18)

ω̂
i∈N0
RDS (b̆, t) =CRDS ·H(b̆−1) ·

NII∑
l=1

ŵl · k̂i
l. (B.19)

Furthermore, in Equation (3.31), α̂
i∈N0∑

,II must also determined. It is defined as follows:

α̂
i∈N0∑

,II = α̂
i∈N0
ECS,II + α̂

i∈N0
RCS,II + α̂

i∈N0
RDS,II. (B.20)

The moments of the birth (see Equations (A.30), (A.41), and (A.36)) can be closed as follows:

α̂
i∈N0
RCS,II =2 ·CRCS ·

k̆c−1∑
b̆′=b̆

NII(b̆′)∑
l=1

ŵl

(b̆′+1) · (k̂l− b̆′−2)
·H(k̂l−2− b̆′) ·H

(
k̂l− k̆c−1+ b̆− b̆′

)
· (k̂l−1+ b̆− b̆′)i+1− k̆i+1

c

i+1
(B.21)

α̂
i∈N0
ECS,II =CECS ·


NII(b̆)∑
l=1

ŵl ·H(k̂l−2− b̆) · (k̂l−1)i ·H(k̂l−1− k̆c)

 (B.22)

α̂
i∈N0
RDS,II =2 ·CRDS ·

k̆c−1∑
b̆′=b̆+1

NII(b̆′)∑
l=1

ŵl ·
H(k̂l− k̆c− b̆′+ b̆)

b̆′ · (k̂l−1− b̆′)
· (k̂l− b̆′+ b̆)i+1− k̆i+1

c

i+1
. (B.23)

B.4 Contribution of Subdomain I to Subdomain III

To solve Equation (3.35) via Equation (3.47), ᾰ
i, j
•,I,T and ᾰ

i, j
•,I,L must be known.

The only contribution of ECS in Subdomain I to Subdomain III is through the creation of the monomer,

therefore:

ᾰ
i=0, j=0
ECS,I,L =ᾰ

i=1, j=0
ECS,I,L = δk̆,1 ·δb̆,0 ·CECS · w̃ ·

NI∑
l=1

¯̃wl ·H(k̃ · ¯̃kl−2− b̃ · ¯̃bl) (B.24)

ᾰ
i=0, j=1
ECS,I,L =ᾰ

i=0, j=0
ECS,I,T = ᾰ

i=1, j=0
ECS,I,T = ᾰ

i=0, j=1
ECS,I,T = 0. (B.25)
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After closure, the moments of the contribution of RCS in Subdomain I to Subdomain III are as follows:

R̆RCS,I,l =2 ·CRCS ·
w̃

k̃ · b̃
· ¯̃wl ·

H(k̃ · ¯̃kl−2− b̃ · ¯̃bl)

¯̃bl · ( ¯̃kl−
¯̃bl ·b̃
k̃
− 2

k̃·b̃)
(B.26)

R̆RCS,I,L,l =R̆RCS,I,l ·H(k̃ · ¯̃kl−1− b̃ · ¯̃bl + b̆− k̆) (B.27)

L̂RCS,I,L,l =1−min(1, k̃ · ¯̃kl−1− b̃ · ¯̃bl + b̆− k̆) (B.28)

ᾰ
i=0, j=0
RCS,I,L =

NI∑
l=1

1
2
· R̆RCS,I,L,l ·

(
1− L̂2

RCS,I,L,l
)

(B.29)

ᾰ
i=1, j=0
RCS,I,L =

NI∑
l=1

R̆RCS,I,L,l ·

[
k̆
2
+

1
3
−

L̂2
RCS,I,L,l

2
·
(

k̆+1−
L̂RCS,I,L,l

3

)]
(B.30)

ᾰ
i=0, j=1
RCS,I,L =

NI∑
l=1

R̆RCS,I,L,l ·

[
b̆
2
+

1
6
−

L̂2
RCS,I,L,l

2

(
b̆+1+

L̂RCS,I,L,l

3

)]
(B.31)

L̂RCS,I,T,l =min(1, k̃ · ¯̃kl− b̃ · ¯̃bl + b̆− k̆) (B.32)

ᾰ
i=0, j=0
RCS,I,T =

NI∑
l=1

R̆RCS,I ·H(L̂RCS,I,T,l) (B.33)

ᾰ
i=1, j=0
RCS,I,T =

NI∑
l=1

R̆RCS,I,T,l ·
L̂2

RCS,I,T,l

2
(B.34)

ᾰ
i=0, j=1
RCS,I,T,l =RIII,I

RCS,B ·
L̂2

RCS,I,T,l

2
·
(

k̆+
L̂RCS,I,T,l

3

)
(B.35)

ᾰ
i=0, j=1
RCS,I,T =

NI∑
l=1

RIII,I
RCS,I,T,l ·

L̂2
RCS,I,T,l

2
·
(

b̆+
2 · L̂RCS,I,T,l

3

)
. (B.36)

After closure, the moments of the contribution of RDS in Subdomain I to Subdomain III are as follows:

ăl =k̃ · ¯̃kl− b̃ · ¯̃bl + b̆− k̆ (B.37)

d̆l =min(k̆+2− k̃ · ¯̃kl,0)+ b̃ · ¯̃bl−1 (B.38)

R̆RDS,I =2 ·CRDS ·
w̃

k̃ · b̃
(B.39)

ĕRDS,l =
¯̃wl

¯̃kl · ¯̃bl−
¯̃kl
b̃
−

¯̃b2
l ·b̃
k̃

+ 1
k̃·b̃

(B.40)

ᾰ
i=0, j=0
RDS,I,L =R̆RDS,I

NI∑
l=1

ĕRDS,l ·

[
H(ăl−1) · (ĉ(b̆)− b̆) · (2+ b̆− ĉ(b̆))

2
(B.41)

+(1−H(ăl−1)) ·H(ăl) ·

(
(d̆l− b̆) · ăl +

ĉ(b̆)− d̆l

2
· (2+2 · b̆− ĉ(b̆)− d̆l)

)]
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ᾰ
i=1, j=0
RDS,I,L =R̆RDS,I

NI∑
l=1

ĕRDS,l ·

{
H(ăl−1) · ĉ(b̆)− b̆

6
·
[
3 · k̆ · (2+ b̆− ĉ(b̆))+3− (ĉ(b̆)− b̆)2]

+(1−H(ăl−1)) ·H(ăl) ·

[
d̆l− b̆

2
· ăl · (ăl− b̆+ d̆l)+

ĉ(b̆)− d̆l

6

·
[
3 · (k̆− b̆) · (2 · b̆+2− ĉ(b̆)− d̆l)+3 · (b̆+1)2− (ĉ(b̆)+ d̆l)

2 + ĉ(b̆) · d̆l
]]}

(B.42)

ᾰ
i=0, j=1
RDS,I,L =R̆RDS,I

NI∑
l=1

ĕRDS,l ·

{
H(ăl−1) · ĉ(b̆)− b̆

6
·
[
(3+ b̆) · (ĉ(b̆)+ b̆)−2 · ĉ(b̆)2]

+(1−H(ăl−1)) ·H(ăl) ·

[
d̆l− b̆

2
· ăl · (d̆l + b̆)+

ĉ(b̆)− d̆l

6

·
[
3 · (1+ b̆) · (ĉ(b̆)+ d̆l)−2 · (ĉ(b̆)+ d̆l)

2 +2 · ĉ(b̆) · d̆l
]]}

(B.43)

ᾰ
i=0, j=0
RDS,I,T =R̆RDS,I

NI∑
l=1

ĕRDS,l ·
[

H(ăl)

2
+(1−H(ăl)) ·H(ăl +1) · (ăl +1)2

2

]
(B.44)

ᾰ
i=1, j=0
RDS,I,T =R̆RDS,I

NI∑
l=1

ĕRDS,l ·

[
H(ăl) ·

(
k̆
2
+

1
6

)
+(1−H(ăl)) ·H(ăl +1) · (ăl +1)2 · (ăl +3 · k̆)

6

]
(B.45)

ᾰ
i=0, j=1
RDS,I,T =

NI∑
l=1

ĕRDS,l

·

[
H(ăl) ·

(
b̆
2
+

1
3

)
+(1−H(ăl)) ·H(ăl +1) · (ăl +1)2 · (k̆− k̃ · ¯̃kl + b̃ · ¯̃bl +2 · b̆+2)

6

]
.

(B.46)

B.5 Contribution of Subdomain II to Subdomain III

To solve Equation (3.35) via Equation (3.38), ᾰ i=0
•,II and ᾰ i=1

•,II must be known:

ᾰ
i∈N0
RCS,II =2 ·CRCS ·

k̆c−1∑
b̆′=b̆

NII(b̆′)∑
l=1

ŵl

(b̆′+1) · (k̂l− b̆′−2)
·H(k̂l−2− b̆′)

·H
(
k̂l− k̆−1+ b̆− b̆′

)
· min(k̂l−1+ b̆− b̆′, k̆+1)i+1− k̆i+1

i+1
(B.47)

ᾰ
i∈N0
ECS,II =CECS ·


NII(b̆)∑
l=1

[
ŵl ·H(k̂l−2− b̆) · (k̂l−1)i ·H(k̂l−1− k̆) ·H(k̆− k̂l +2)

]

+δb̆,0 ·δk̆,1 ·
k̆c−1∑
b̆′=0

NII(b̆′)∑
l=1

ŵl ·H(k̂l−2− b̆′)

 (B.48)
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ᾰ
i∈N0
RDS,II =2 ·CRDS ·

k̆c−1∑
b̆′=b̆+1

NII(b̆′)∑
l=1

ŵl ·
H(k̂l− k̆− b̆′+ b̆)

b̆′ · (k̂l−1− b̆′)
· min(k̂l− b̆′+ b̆, k̆+1)i+1− k̆i+1

i+1
. (B.49)
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