
Implementation of a Cloud-based Service-Oriented Architecture for
Hardware Control Systems supported by Neural Network

O. Latka & J. Provost
Department of Mechanical Engineering
Technische Universität München, Germany

ABSTRACT: Embedded systems control and regulate applications in everyday life, thus changing the con-
ventional way of work to a human-robot symbiosis. This paper describes a new approach of controlling mobile
robots through a cloud-based service-oriented architecture supported by neural networks. The proposed archi-
tecture permits to operate with large and complex networks even on mobile robotic systems as illustrated on
a case-study. Therefore the proposed architecture is based on dividing the management for the high-level on a
computer or server and for the low-level directly on the mobile robot. Aiming at copying the cognitive capabil-
ities of human beings, the system is reducing the amount of required sensors significantly. Successfully applied
experimentally, the proposed architecture could also be replicated in various other industrial situations.

1 INTRODUCTION

Embedded systems control and regulate applications
in everyday life, thus changing the conventional way
of work to a human-robot symbiosis. Recently, sev-
eral topics emphasize more and more on data manage-
ment and decision making for pervasive automation
systems. Topics such as Industry 4.0 (Industrie 4.0
Working Group 2013), Industrial Internet of Things
(Atzori, Iera, & Morabito 2010, Evans & Annunziata
2012), and cloud robotics (Kehoe, Patil, Abbeel, &
Goldberg 2015) are gaining momentum in the field of
industrial and robotic automation.

Humans started to outsource service tasks to robots,
but the requirements for this services became more
complicated every year. Classic robotic system has
to carry adequate physical processing power, various
sensors and actors for fulfilling their jobs like visual
navigation, path planning, recognition and scene anal-
ysis (Wang, Liu, & Meng 2012). However, develop-
ing a universal robot covering all possible services is
infeasible due to the limitation of costs, power con-
sumption, reliability, sensory, payload or kinematic
constrains (Wang, Liu, & Meng 2015). Cloud en-
abled robots are currently an active developing and
research field. The last years, robotic systems have
been built around the paradigm of a cloud comput-
ing and service-oriented architecture, for extending
the functionality of robots. Network technologies en-
ables rapid improvements in term of performance
and accessibility by outsourcing services to web, en-
abling new application such as providing robots ac-

cess to web facilities and reducing software and hard-
ware costs to create cheaper, lighter and more ad-
vanced intelligent robots. Enabling functionality like
object recognition and voice services on demand, the
sense of touch and creating a shared knowledge base
in the cloud accessible for several robots (Doriya,
Chakraborty, & Nandi 2012) gets possible to be im-
plemented.

In this paper, a novel approach of controlling mo-
bile robots using cloud-based service-oriented archi-
tecture supported by neural networks is described.
This approach permits to operate with large and com-
plex networks even on mobile robotic systems. As
a proof of concept, a case-study combining soft-
ware and hardware components is used as an illus-
tration. Therefore the service-oriented architecture is
composed to be distributed on several platforms. All
software modules communicate over TCP socket us-
ing the programming language independent messag-
ing protocol JSON (MacKenzie, Laskey, McCabe,
Brown, Metz, & Hamilton 2006).

The proposed architecture is based on dividing the
management for the high-level tasks on a computer
or server and for the low-level tasks directly on the
mobile robot. A state machine is taking care of the
critical decisions, a neural network, however, is con-
trolling the cognitive capabilities. Output data of the
neural network can also be used for decision making
and controlling of the process carried out by the state
machine. The neural network is able to handle avail-
able and reliable measurements from sensors as inputs
and to produce predicted values (Girish, Lam, & Ja-



yaram 2003). The division of tasks on high- and low-
levels controllers permits to benefit from huge com-
putational power for complex tasks while using con-
trollers with limited computational power on the em-
bedded system. Also, in the event of a disruption of
the connection between the high- and low-levels con-
trollers, the system is still able to complete low-level
tasks independently (if information is required from a
high-level controller, the low-level controller would
then halt waiting for the connection to be reestab-
lished).

Trying to copy the cognitive capabilities of persons,
the case-study robot is using its ultrasonic and com-
pass sensors like human senses, just getting the dis-
tance to the next object and its orientation to evaluate
the environment. Thus, it is able to build up a map
for localization. All needed information are stored in
a database, accessible for the mobile system as well
as for the human user. A recursive MySQL database
structure is used to retrieve historic neural network
test, sensor and map data. The robot is moving based
on the sensor and map information combined and cal-
culated in the neural network and localization section.

The software module responsible for controlling
the hardware is divided in two parts. One part is han-
dling the TCP socket communications, logging and
processing the data, the other part, used as a library,
connects the hardware platform and is responsible
for the data transmission to several microcontrollers.
Thus, recompiling and testing the hardware is not nec-
essary when changing or adding redundancy hard-
ware. In this approach several microcontroller boards
on the mobile robot are taking over the low-level ac-
tions to read in sensors, control actors and providing
this information to other services. The experiment’s
platform is composed out of two parts.

The case study is illustrated in details in section 6 is
based on a mobile self-constructed robot using ARM-
Cortex-M0, ARM-Cortex-M4 and Arduino Boards
with ultrasonic and/or compass sensors and a sta-
tionary computer processing the state machine, neu-
ral network, database, websocket server and hosting
the HTML interface. For controlling the robot a mo-
bile phone is used to browse the webpage. The results
support the ideas and concept of the initial model. The
successfully implementation of the proposed architec-
ture on a case study could also be replicated in various
other industrial situations.

2 MOTIVATION AND CHALLENGES

2.1 Motivation

One of the most interesting tasks that the human
brain is capable of doing is to recognize the envi-
ronment. Our brain distinguishes known surroundings
almost momentarily despite of changes. People are
able to combine the information from few sensors to
a picture of the whole surrounding, without having

as much computational power as modern computers.
Over thousands of years the humans developed a min-
imum, but redundant set of sins, as the sight, the taste,
the smell, the touch and the hearing, which are essen-
tial for recognizing the environment.

Therefore the question arises, why do modern
Robots have to carry power consuming computers
along? Is it possible to reduce the calculating and
the large amount of sensors on a mobile robot by
transforming the highly optimized and efficient bionic
technologies to modern technology? Comparing with
the humans behavior, obstacle recognition, localiza-
tion, movement, sense of touch and learning are es-
sential skills for the robot to recognize the environ-
ment.

The motivation of the paper is to build up a soft-
ware architecture for robots, enabling to use all listed
methods above operating reliable in unknown and for
humans unsafe environment.

2.2 Challenges

Developing reusable robotic software is difficult, pri-
marily due to the variability in robotic platforms (Nes-
nas, Simmons, Gaines, Kunz, Diaz-Calderon, Es-
tlin, Madison, Guineau, McHenry, Shu, et al. 2006).
The list of challenges below is not complete, but
it is focused on the key challenges for developing
a distributed, highly adjustable, neural network us-
ing robot. For operating in an unknown environment,
which is hostile to life and therefore impossible to
gain a broken machine, the robot shall meet the fol-
lowing challenges:

Control heterogeneous robots
Currently, there are no standard robotic platforms or
framework flexible enough to address the variations
in robots. The system has to handle differences in the
sensor configuration, physical capabilities and hard-
ware control. For example, an autonomous car can be
composed out of different number of wheels, but it is
also possible to use legs or create a hybrid using both,
however, it is solving the same tasks in the end. This
physical variability leads to different capabilities. The
software, which will be deployed across several vari-
ous platforms, has to provide a generic interface that
handles these constraints.

Integrate new capabilities
The fast technological progress will produce more
effective and powerful actors, sensors and com-
putational platforms, providing more abilities. The
software architecture has to consider modular self-
reconfigurable structures for updating and upgrading
the software modules automatically or remotely mak-
ing significant technological advances to the field of
robotics in general (Nesnas, Simmons, Gaines, Kunz,



Diaz-Calderon, Estlin, Madison, Guineau, McHenry,
Shu, et al. 2006).

Computational power limits
One key challenge for robotic is the power consump-
tion. Processing sensor data and controlling actors are
high resources taking tasks. Thus mobile robot suffers
from a limited operating time and physical processing
power. There are two ways of solving this problem. At
first reducing the amount and type of sensors and ac-
tors. Secondly distributing the calculation to station-
ary computer. Therefore, the mechanical and electric
hardware has to be changed accordingly and algo-
rithms for distributed robotic software architectures
has to be implemented. The CPU heavy tasks, such
as image recognition, voice recognition, path plan-
ning can be performed in the cloud which reduces
the energy consumption up to 40 (Jordan, Haidegger,
Kovács, Felde, & Rudas 2013).

Artificial robots
Artificial intelligence improves robots with the capa-
bility of making their own decisions. Their sensors
mostly have low accuracy because of technological
restrictions and absence of built-in correction means
(Sachenko, Kochan, Turchenko, Tymchyshyn, & Va-
sylkiv 1999). Dealing with uncertainties will open a
wild field of tasks, which robots cannot fulfill cur-
rently. Neural networks provide the robot the ability
to get trained and make their own decisions.

Accessibility of the robots
Cloud robotics can be divided into two areas, acces-
sibly to the robot and increasing the limited com-
putational capabilities. Transforming the potential of
robotics will enable poor equipped robots to fulfill
complex tasks by reducing the hardware limitation,
while large amount of available resources and paral-
lel computing capability are accessible in the cloud
(Wang, Liu, & Meng 2012). The second area concen-
trates on monitoring and controlling the robot. The
goal is to achieve telepresence for getting fully capa-
ble virtual representation, as well as to perform com-
plex tasks. Supporting the robot with services about
the environment, like Google maps for navigation,
could exceed the limit of its on-board capacity (Jor-
dan, Haidegger, Kovács, Felde, & Rudas 2013).

Implement a generic framework
A software framework is providing generic software
functionalities, as part of a larger software platform,
to reduce the development time. Frameworks include
support for libraries, tool sets, application program-
ming interfaces and further more to implement soft-
ware projects. In computer systems, a framework is
often a layered structure indicating what kind of pro-
grams can or should be built and how the different

software parts would interrelate. Following require-
ments are set:

• Adaptable

• Updatable

• Upgradable

• Adjustable without recompiling

• Monitoring

• Cloud ready

• Multiple clients

• Supporting real and simulated platforms

• Addressing distributed computation

3 SOFTWARE BACKGROUND AND
STATE-OF-THE-ART

3.1 Robotic Framework

Frameworks are providing generic functionality for
programming software. The DAvinCi framework is
used for generating 3D models of environments
allowing robots to perform simultaneous localiza-
tion and mapping (SLAM) (Arumugam, Enti, Bing-
bing, Xiaojun, Baskaran, Kong, Kumar, Meng, & Kit
2010). For addressing the current limitations of com-
putational power a robot cloud center is designed,
called RoboEarth, enabling robots to autonomously
share information concerning description of the envi-
ronment, object models as well as the assigned tasks.
This framework allows the user to run their software
with minimal configuration in the cloud (Hunziker,
Gajamohan, Waibel, & D’Andrea 2013). The Robotic
Operating System (ROS) is also providing a frame-
work and will be discussed further more:

3.2 Robotic Operating System

The Robot Operating System is a software framework
for developing robotic software and providing func-
tionality like an operating system. Developed in 2007
by the Stanford Artificial Intelligence Laboratory in
support of the Stanford AI Robot project, the devel-
opment was continuing primarily at Willow Garage in
2008 The ROS is providing operating system services
such as:

• Hardware abstraction

• Low-level device control

• Implementation of commonly used functionality

• Message passing between processes

• Package management (Adiprawita & Ibrahim
2012)



Service tasks are requested and respond between
nodes. A collection of libraries and tools provide
several services, easy to include in the developer’s
robotic system are available for Unix based operating
systems. In the past years ROS has become by far the
most wide-spread robot library (Jordan, Haidegger,
Kovács, Felde, & Rudas 2013). This paper gets also
proved by the group of supporter, such as Google and
NASA. The rosjava package was developed by Wil-
low Garage and Google, aiming to become a leader in
the field of Cloud Robotics. Google is also developing
an Android cloud robot in collaboration with NASA
(Jordan, Haidegger, Kovács, Felde, & Rudas 2013).

Although the researches has improved, there are
still challenges to be further addressed. Respect to
the benefits mentioned previously, providing costless
and seamless services is one of the most meaningful
field to implement. For simplification the most of the
developer assume unlimited resources in the cloud.
But, for instance network bandwidth, CPU occupancy
for parallel computation and the available number of
hosts are limited. Designing a module which maxi-
mize the utility of all available resources is a chal-
lenging problem. Furthermore, ROS does not sup-
port queue management, real time robotic tasks, mi-
crocontroller support and is not sufficient for multi
robot systems (Wang, Liu, & Meng 2012). This paper
was motivated by creating a cloud-based distributed
service-oriented architecture supported by neural net-
works which solves the above mentioned problems
and is providing the following aspects:

• Publish / subscription service

• Redundancy and adjustable hardware

• Low computational power

• Executable on every platform

• High- and Low-level support

• Artificial Intelligence with online learning

• Web based monitoring and controlling interface

• service-oriented architecture

• Language independent Messaging

• Microcontroller support

• Master–Slave messaging

• Modular software and hardware design

• Tool based design

• Thin software modules

• Distributed computation in the Cloud

• Low power consumption

• Built-in logging

• High reliability of the controlling software

4 SOFTWARE AND HARDWARE
ARCHITECTURE

The selection of suitable software framework and
hardware for the robotic system was a crucial step
for the development of the modular, distributed, re-
dundant software oriented robot. The commonly used
framework ROS which was discussed in chapter two,
nevertheless, is not able to fulfill the desired tasks.

4.1 The proposal for the software and hardware
architecture

This automated, robotic systems are highly depen-
dent on the robustness and quality of their control
software while coworking next to human employees
(Knight 2015). This paper describes a new approach
of controlling mobile robots while using cloud-based
distributed service-oriented architecture supported by
neural networks. This proposed architecture permits
to operate with large and complex networks and a set
of parameters even on mobile robotic systems and in
unsafe environment. Therefore, the service-oriented
architecture is composed to be distributed on several
platforms. The proposal is based on dividing the man-
agement for the high-level on a stationary computer or
server and for the low-level direct on the mobile robot.
A state machine, named Statemachine in the remain-
der of the paper, is taking care of the critical decisions,
the neural network however, is controlling the cog-
nitive capabilities. Output data of the neural network
can also be used for decision making and controlling
of the process carried out by the Statemachine. The
neural network is able to handle available and reliable
measurements from sensors as inputs and to produce
predicted values (Girish, Lam, & Jayaram 2003).

4.2 Motivation

One of the most interesting tasks that the human
brain is capable of doing is to recognize the envi-
ronment. Our brain distinguishes known surroundings
almost momentarily despite of changes. People are
able to combine the information from few sensors to
a picture of the whole surrounding, without having
as much computational power as modern computers.
Over thousands of years the humans developed a min-
imum, but redundant set of sins, which are essential
for recognizing the environment. Aiming to copy the
cognitive capabilities of persons, the robot is using
its ultrasonic and compass sensors like human senses,
just getting the distance to the next object and itselfs
orientation to evaluate the environment. Thus it is able
to build up a map for localization. All needed infor-
mation are stored in a database, accessible for the mo-
bile system as well as for the human user. Build on a
recursive MySQL database structure to retrieve his-
toric neural network test, sensor and map data. The
robot is moving based on the sensor and map infor-



mation combined and calculated in the neural network
and localization section. The software module respon-
sible for controlling the hardware is divided in two
parts. One part is handling the TCP socket commu-
nicating, logging and processing the data, the other
part as a library connects the hardware platform and
is responsible for the data transmission to several mi-
crocontrollers. Thus recompiling and testing the hard-
ware is not necessary when changing or adding re-
dundancy hardware. In this approach several micro-
controller boards on the mobile robot taking over the
low-level actions to read in sensors, control actors
and providing this information to other services. The
experiment’s platform is composed out of two parts.
A mobile, self-constructed robot using ARM-Cortex-
M0, ARM-Cortex-M4 and Arduino Boards with ul-
trasonic and/or compass sensors and a stationary com-
puter processing the state-machine, neural network,
database, websocket server and hosting the HTML in-
terface. For controlling the robot, a mobile phone is
used to browse the webpage. The results support the
ideas and concept of the initial model. Verified by the
experience, this work allows to replicate the concept
in other industrial situations and to benefit of the re-
sults.

4.3 Hardware

The proposal is based on dividing the management
for the high-level on a stationary computer or server
and for the low-level direct on the mobile robot. The
Statemachine is taking care of the critical decisions,
the neural network however, is controlling the cog-
nitive capabilities. Output data of the neural network
can also be used for decision making and controlling
of the process carried out by the state machine. The
neural network is able to handle available and reliable
measurements from the ultrasonic and compass sen-
sors as inputs and to produce predicted values.

4.3.1 Robot Hardware
In this approach several microcontroller boards on the
mobile robot taking over the low-level actions to read
in sensors, control actors and providing this informa-
tion to other services. The experiment’s platform is
composed out of two parts. A mobile, self-constructed
robot using ARM-Cortex-M0, ARM-Cortex-M4 and
Arduino Boards with ultrasonic and/or compass sen-
sors and a stationary computer processing the state
machine, neural network, database, websocket server
and hosting the HTML interface. The connection to
the stationary computer is established using a Wi-Fi
router. All sensors, actors and microcontrollers are at-
tached to a robot car chassis. The ideas and concept
for the software architecture is verified by the experi-
ence on the build robot.

4.3.2 Software module for the mobile hardware
The software module responsible for controlling the
hardware is divided in two parts. One part is handling
the TCP socket communication, logging and process-
ing the data, the other part, designed and implemented
as a library, connects the hardware platform and is re-
sponsible for the data transmission to several micro-
controllers. Thus, recompiling and testing the hard-
ware is not necessary when changing or adding re-
dundancy hardware.

5 SOFTWARE IMPLEMENTATION

This section presents the software implementation for
the proposed cloud-based service-oriented architec-
ture supported by neural networks. The software is
divided into different modules:

• Statemachine and Orchestra

• Database connection module

• Hardware and Hardware Wrapper module

• Neural Network module

• Localization module

• Websocket server and Websocket client

In order for a structured program the architecture
has to be set and should be adhered by every soft-
ware module. The service-oriented architecture is a
paradigm for organizing and utilizing distributed ca-
pabilities that may be under the control of different
ownership domains. Therefore, distinct units, which
combines separate functions, requires to be loosely
coupled.

The several parts communicate with their corre-
sponding partner by passing data in a defined, shared
format. Nevertheless, there is the need for a router
to queue, in case of a lost connection, and route all
messages to the right module. Thus, in the event of
a lost connection, all messages will be forwarded as
soon as the connection is reestablished. Meanwhile,
the low-level controllers would continue performing
their tasks as long as they can do so independently; if
a connection to a cloud-service is required on a pe-
riodic way (and programmed adequately), the low-
level controllers would then run a safe-stop routine.
A Statemachine takes care about the critical decision
making, outsourcing the subtasks to the correspond-
ingly software modules. The Statemachine transmits
tasks to several software modules, as described in the
following.

Database connection
for performing the CRUD (create, retrieve, update,
delete) actions.



Hardware and hardware wrapper module
are creating the connection between stationary com-
puter and mobile microcontroller. The hardware
wrapper is designed as a library which is included in
the main hardware module. This way changing or/and
adding boards or new functionality do not require a
new compilation of the main hardware module.

Neural Network module
is supporting the Statemachine in the decision mak-
ing process. Cognitive capabilities, sensor input and
database input are combined and the result is sent
back to the Statemachine.

The Localization module
recognizes structures for setting the orientation and
position of the robot and planning the path to a target
point. For autonomous robots this function is essen-
tial. For instance, if a command for a robot to turn
right is sent by a high-level controller, the low-level
localization module will allow this operation to be
performed only if the collected data from the sur-
rounding environment permit to do so (e.g. absence
of obstacle).

Websockt server and Websocket client
are providing the graphical user interface. The web-
socket server is transferring messages with the
Statemachine, the websocket client is receiving com-
mands from the websocket server. A HTML webpage
with included Java Script as the websocket client is
creating the access point on the client side for the user,
exchanging content with the websocket server.

The described software architecture is presented in
figure 1.

Figure 1: A digramm of the proposed software architecture.

All software modules, except the Websocket server
and client, are based on the same structure. The pro-
gramming language for the software modules is pure

C++. The common parts are separated as a library.
This way updating the common software parts have
effect on all subscribed software modules, assure
sharing the same basics, except for the GUI parts.
Proving the ability of distributed software, the web-
socket client is written in HTML and Java Script talk-
ing to the websocket server, written using the C++
framework Qt. In this approach the database mod-
ule is performing the CRUD actions on a MySQL
database.

6 EXPERIMENTS AND RESULTS

The experiments are performed in an unknown, in-
door environment providing sufficient Wi-Fi recep-
tion on a six wheel robot chassis (see fig. 2).

Figure 2: The experimental robot.

The software modules on the stationary computer
are started via a controlling script. All information
about the outcome of this experiment are temporary
saved in the log file. For more accurate results, and
especially for checking the duration between the ex-
changed messages, the time resolution is increased to
microseconds. The processes list is adjusted to the ex-
perimental setup for starting the Core, the Hardware
Control, the Websocket server, HTML GUI, Database
connection and Neural Network. Within one second
all listed modules created the TCP socket connection
and are ready for communication.

• Core with Statemachine and orchestra
• Neural Network
• Database connection
• Websocket server
• HTML GUI
• Hardware control with wrapper

As shown by the experiment and verified by the log,
the Statemachine noticed the connection of all mod-
ules. Meanwhile the Hardware Module checked the
IP addresses of all available microcontrollers. Af-
ter the initialize process the Statemachine retrieves
the training set by the Database connection. Similar
to the other software modules, the connector to the



database is handling all MySQL procedures, includ-
ing connecting to the database, translating commands
to MySQL queries, refurbish the retrieved data and re-
sponding to the Statemachine. In case of the database
module the procedure of creating, retrieving, updat-
ing or deleting will not change, suited to outsource
the queries of the source code for avoiding merging
MySQL and C++. The Statemachine transmits the re-
ceived training set to the Neural Network implying
the teaching.

Meanwhile the Statemachine is waiting to receive
commands the user provided by the HTML interface
remotly. The robot is performing until completion or
an updated task is provided. The task gets started by
displaying all sensor values to the graphical user inter-
face and requesting commands for the cognitive capa-
bilities by the neural network. Almost instantly the re-
sponse arrived and is ready to be conducted. The Neu-
ral Network module’s internal structure is not based
on if clauses or switch case statements, where the in-
coming values have to be compared to a predefined
target within a certain time. The decision making is
performed by simple additions and calculating thresh-
olds between conjunct neurons and proving results
based on this procedure. As the experiment proves,
this extends also to uncertainty situations, where the
neural network decision interstates between known
circumstances. Within the limits of the task for avoid-
ing obstacles, the software system overcome all diffi-
culties and validated the proposed software architec-
ture and hardware.

Cleaning robots, as a related industrial use, demon-
strate the suitability for daily use of technical inferior
systems and the possibility for improvements in this
field.

The results of this experiment support the ideas
and concept of the initial model. Verified by the ex-
perience, this work allows to replicate the concept of
the proposed architecture in other industrial situations
and to benefit of the current results.

Future work considers the evaluation safety impli-
cations associated with each component of the pro-
posed architecture and the implementation of robust
state-of-the-art solutions when possible (e.g. for the
message routing functionality).

REFERENCES

Adiprawita, W. & A. R. Ibrahim (2012). Service oriented ar-
chitecture in robotic as a platform for cloud robotic (case
study: human gesture based teleoperation for upper part of
humanoid robot). In 2012 International Conference on Cloud
Computing and Social Networking (ICCCSN).

Arumugam, R., V. R. Enti, L. Bingbing, W. Xiaojun,
K. Baskaran, F. F. Kong, A. S. Kumar, K. D. Meng, & G. W.
Kit (2010). Davinci: A cloud computing framework for ser-
vice robots. In Robotics and Automation (ICRA), 2010 IEEE
International Conference on, pp. 3084–3089. IEEE.

Atzori, L., A. Iera, & G. Morabito (2010). The internet of things:
A survey. Computer networks 54(15), 2787–2805.

Doriya, R., P. Chakraborty, & G. C. Nandi (2012). Robotic ser-
vices in cloud computing paradigm. In Cloud and Services
Computing (ISCOS), 2012 International Symposium on, pp.
80–83. IEEE.

Evans, P. C. & M. Annunziata (2012). Industrial internet: Push-
ing the boundaries of minds and machines. General Electric,
21.

Girish, T., S. Lam, & J. Jayaram (2003). Reliability predic-
tion using degradation data–a preliminary study using neu-
ral network-based approach. In Proc. European Safety and
Reliability Conference (ESREL 2003), pp. 15–18. Citeseer.

Hunziker, D., M. Gajamohan, M. Waibel, & R. D’Andrea
(2013). Rapyuta: The roboearth cloud engine. In Robotics
and Automation (ICRA), 2013 IEEE International Confer-
ence on, pp. 438–444. IEEE.

Industrie 4.0 Working Group (2013). Recommendations for im-
plementing the strategic initiative industrie 4.0. acatech.

Jordan, S., T. Haidegger, L. Kovács, I. Felde, & I. Rudas (2013).
The rising prospects of cloud robotic applications. In Com-
putational Cybernetics (ICCC), 2013 IEEE 9th International
Conference on, pp. 327–332. IEEE.

Kehoe, B., S. Patil, P. Abbeel, & K. Goldberg (2015, April). A
survey of research on cloud robotics and automation. IEEE
Transactions on Automation Science and Engineering 12(2),
398–409.

Knight, W. (2015). Inside amazon. MIT Journal.
MacKenzie, C. M., K. Laskey, F. McCabe, P. F. Brown, R. Metz,

& B. A. Hamilton (2006). Reference model for service ori-
ented architecture 1.0. OASIS standard 12.

Nesnas, I. A., R. Simmons, D. Gaines, C. Kunz, A. Diaz-
Calderon, T. Estlin, R. Madison, J. Guineau, M. McHenry,
I.-H. Shu, et al. (2006). Claraty: Challenges and steps toward
reusable robotic software. International Journal of Advanced
Robotic Systems 3(1), 023–030.

Sachenko, A., V. Kochan, V. Turchenko, V. Tymchyshyn, &
N. Vasylkiv (1999). Intelligent nodes for distributed sensor
network. In IEEE INSTRUMENTATION AND MEASURE-
MENT TECHNOLOGY CONFERENCE PROCEEDINGS,
Volume 3, pp. 1479–1484. INSTITUTE OF ELECTICAL
ENGINEERS INC (IEEE).

Wang, L., M. Liu, & M. Q.-H. Meng (2012). Towards cloud
robotic system: A case study of online co-localization for
fair resource competence. In Robotics and Biomimetics (RO-
BIO), 2012 IEEE International Conference on, pp. 2132–
2137. IEEE.

Wang, L., M. Liu, & M. Q.-H. Meng (2015). Real-time multi-
sensor data retrieval for cloud robotic systems. Automation
Science and Engineering, IEEE Transactions on 12(2), 507–
518.


