
DTT-MAT: A Software Toolbox on Design-to-Test Approach for Testing
of Embedded Programmable Controllers

Canlong Ma and Julien Provost

Abstract— This paper presents a continuation of previous
results on a design-to-test (DTT) approach for black-box testing
of embedded programmable controllers, where the specifi-
cations and implementations can be modeled as finite state
machines [1]. The proposed approach checks the specification
models and modify them in order to improve the testability
of their physical implementation with limited design and
testing overhead. This approach also guarantees by design
that the behavior of the implementation remains unchanged
during its normal execution (i.e. when not connected to a test-
bench). Based on proposed refinements of technical details and
improvements of algorithms, a MATLAB toolbox ‘DTT-MAT’
has been developed.

I. INTRODUCTION

Testing of industrial automation systems is facing chal-
lenges owing to new and diverse requirements from cus-
tomers.

On the one side, in many applications, also in critical fields
such as railway, power production and medical systems, au-
tomation systems are becoming more and more complex [2].
International safety standards such as [3] highly recommend
the use and documentation of testing as a validation tech-
nique on top of formal verification methods, which brings
a huge challenge to traditional testing approaches based on
‘expert knowledge’.

On the other side, in some other fields, the life cycle
of industrial products is also constantly shortening. As a
consequence, the introduction of new products and modi-
fication of existing designs are carried out more frequently,
which causes frequent changes in system specifications [4].
This also requires efficient system engineering approaches
including powerful testing techniques.

Embedded programmable controllers such as ECU (Elec-
tronic Control Unit), PLC (Programmable Logic Controller)
and SBC (Single-Board Computer) are widely used in var-
ious automation fields, also within safety critical systems
such as automotive, railway, chemical industry, power pro-
duction and medical systems. Compared to computers, which
are global purpose, embedded programmable controllers are
dedicated to a limited set of specific tasks.

To obtain a dependable and reliable system, requirement
for testing tends to be automatic, efficient and economic.
‘Automatic’ means demanding as less ‘expert knowledge’ as
possible, ‘efficient’ means generation and execution of test

Canlong Ma and Julien Provost are with Assistant Professor-
ship for Safe Embedded Systems, Faculty of Mechanical Engineer-
ing, Technische Universität München, Garching bei München, Germany
ma@ses.mw.tum.de; provost@ses.mw.tum.de

cases being simple and fast, ‘economic’ means costing as
less testing overhead as possible.

Recently, a design-to-test (DTT) approach, which aims at
fulfilling these requirements, has been proposed in [1]. This
approach can be applied to a broad field of automation sys-
tems where controllers receive inputs signals from multiple
sources like sensors, internal buses and external networks.

In a traditional engineering process (Fig. 1, left V-model),
testing is usually not concerned until the design phase is
finished. In contrast, the proposed DTT approach takes
testing performance into consideration during the design
of specification (Fig. 1, right V-model). Before testing a
programmable controller, the proposed DTT approach au-
tomatically updates the initial specification models in order
to improve the testability of the final implementation.

In brief, the proposed DTT approach permits to save time
during the test execution and guarantees better test coverage
while paying limited design overhead.

Req.

Spec.

Verif. Test

Implemen-
tation

Req.

Spec.

Verif. Test

Implemen-
tation

Spec.’

Fig. 1. V-model of the system engineering process

The contributions of this paper consist of: the refinement
and optimization of the DTT algorithms, the development
of the DTT-MAT toolbox, and its application to a realistic
industrial case study.

The remainder of the paper is organized as follows:
Section II presents the notations of Moore machines extended
with Boolean signals, and black-box conformance testing for
programmable controller. In section III, the testing issues
encountered with embedded programmable controllers are
reminded and the DTT methods are introduced with refined
and optimized algorithms. The workflow of DTT-MAT and
a case study are respectively illustrated in section IV and V.
Discussion and perspectives are given in the last section.

II. BACKGROUND

A. Moore machine extended with Boolean signals

In this paper, the specification of a system is modeled
as a set of Moore machines, and Boolean signals are used
as inputs. In order to apply DTT-MAT, other kinds of

formalisms could also be transformed into this notation.
It has been proven that many other modeling languages
can easily be translated into Moore machines, e.g., Mealy
machines and Petri nets [5]. Besides, event inputs can also
be expressed in equivalent signals. For example, a rising
edge, as a typical event, is equivalent to a value change from
‘0’ to ‘1’ of a signal. Also, contrary to many event-based
models, Moore machine extended with Boolean signals does
not restrict signals to change only one at a time.

A Moore machine extended with Boolean signal inputs is
defined by a 6-tuple (S, sinit, I, O, δ, λ), where:
• S is a finite set of states
• sinit is the initial state, sinit ∈ S
• I is a finite set of Boolean input signals
• O is a finite set of Boolean output signals
• δ : S× 2I → S is the transition function, that maps the

current state and the input signals to the next state
• λ : S → 2O is the output function, that maps the states

to their corresponding output signals
A transition guard is a Boolean expression that consists of

input signal values and state variables. A transition is fired
when its source state is active and its guard is evaluated
as ‘1’ (i.e. True). In this paper, the symbol g(δ) is used to
denote the guard of a transition δ, and G to denote a set of
transitions’ guards.

In this paper, Moore machines are also represented in their
graphical form. A simple example is given in Fig. 2. A state
s is drawn as a circle (or a rounded rectangle) inside which
a corresponding action λ(s) is written (e.g. A3 in S3). A
transition δ is represented by an oriented arc, upon which its
guard g(δ) is placed (e.g. ¬a ∧ b for the transition from S1
to S2).

A state can either have an externally observable action,
e.g. A3 in S3 and A4 in S4, or no observable action, e.g. ∅
in S1 and S5. Besides, a state can also be given an internal
state variable, e.g. XS2 in S2 and XS6 in S6. The internal
state variables can also be used as Boolean transition guards,
e.g. when the state S2 is activated, XS2 is assigned the value
‘1’, then the transition from S4 to S5 can be fired.

∅
S1

XS2

S2

A3

S3

A4

S4

∅
S5

XS6

S6

¬a ∧ b ¬XS6

XS2 a ∧ ¬b

Fig. 2. A simple example of Moore machine with Boolean signals

The first step of the DTT approach is to composed in
parallel all individual Moore machine models w.r.t stability
research semantics. During the composition, a situation is
transient if at least one transition of one of the Moore
machines can be fired from this situation without change of
the input signal values; a situation is stable when no more
enabled transition can be fired from this situation for the
current values of the input signals. The stability research

semantics implies that the firing of transitions must continue
until a stable situation is reached. For this purpose, DTT-
MAT uses the Teloco algorithm proposed in [6].

Similarly to an individual Moore machine, a composed
machine is defined by a 6-tuple (L, linit, I, O, δL, λL),
where:
• L is a finite set of locations
• linit is the initial location, linit ∈ L
• I is a finite set of Boolean input signals (same as for

the individual models)
• O is a finite set of Boolean output signals (same as for

the individual models)
• δL : L × 2I → L is the evolution function, that maps

the current location and the input signals to the next
location

• λL : L → 2O is the output function, that maps the
locations to their corresponding output signals

A location represents a combination of states from the
individual models. Besides, the symbols gE(δL) and GE are
respectively used to denote the guard of an evolution δL and
a set of evolutions’ guards.

B. Black-box conformance testing

Black-box conformance testing is a testing strategy that
doesn’t peer at internal structure but only concentrates on
the functional requirement, i.e. checking whether an imple-
mentation, seen as a black-box with inputs/outputs, behaves
correctly with respect to its specification [7]. It is widely
applied in late phases of testing, where the internal structures
are not easily visible.

In this paper, the implementations under test (IUT) are
physical embedded programmable controllers and the spec-
ifications are Moore machine models. The test objective is
to perform a complete testing of the specification behavior
(i.e. testing the behavior of the IUT for all combinations of
input signals from all the states defined in the specification
models).

A unit of a test sequence consists of three phases, each
one containing a few steps [8]:
• Before testing the transition of interest:

– bring the specification model and the IUT to a
certain state by inputting a signal sequence (syn-
chronizing or homing sequences)

• Testing the transition of interest:
– apply the testing input signals to both the specifi-

cation and the IUT
• After testing:

– if needed, apply a distinguishing sequence to both
the specification and the IUT

– observe the emitted output signals by the specifi-
cation model and the IUT

– compare the results and continue to the next unit
of the test sequence

The first and third phases constitute the testing overhead
of a test sequence.

III. TESTING ISSUES & REFINED DTT APPROACH

While many testing methods, e.g. [9], [10] and [11] aim
at reaching a high coverage of all paths, the proposed
DTT approach permits to reach a complete testing of the
specification behavior w.r.t all the possible combinations
of input signals from all states derived from specification
models.

Several issues may occur during a complete test-
ing, namely observability, controllability and single-input-
change-testability (SIC-testability) issues.

A. Observability, Controllability and SIC-Testability Issues

The main objective of the proposed DTT approach is to
slightly modify the specification models in order to automat-
ically solve the three testing issues previously mentioned.
A brief reminder of these issues is given below. Detailed
information can be found in [1].

To realize the third phase of testing, the identification of
the current state of the IUT, two ways can be considered:
either by directly observing its output or by applying a
distinguishing sequence. Generally speaking, the first way
requires a strong hypothesis: every state must have a unique
observable output action. However, this is not always fulfilled
in real systems. The second way seems more general. How-
ever, it is also not always possible to find such sequences,
and if there exist, they might be of exponential length to
the number of states [8]. Obviously, for large scale systems,
this will generate a huge testing overhead. This is what is
referred to as the observability issue.

Similarly, during the first testing phase the specification
and the IUT should be brought to a specific state. The
controllability issue concerns how to rapidly control and
bring the IUT from an arbitrary state to another known
one. This issue can be solved by applying a homing or a
synchronizing sequence. For complex systems, this process
can also requires long sequences and thus generates lots
of testing overhead.. This is what is referred to as the
controllability issue.

In the second stage, i.e. during the actual test of the
transition of interest, a set of input signals are read by the
IUT. Because of cyclic input scanning, when several input
signals change their values at the same time, the input values
read by the IUT might deviate from the values supposed to
be [12]. Thus, another transition than the one of interest
could be fired. Such errors can be excluded if the test
sequence contains only single-input-change test steps. This
is what is referred to as the SIC-testability issue.

B. T-guard method

The proposed T-guard method (Alg. 1) permits to achieve
a full SIC-testability by adding a minimum set of T-guards
to some transitions in the models.

The example given Fig. 3 will be used to help illustrate
the algorithm. The initial model is depicted in black; blue
drawings correspond to the added T-guards. Since the exam-
ple only contain one individual model, L and δL are equal
to S and δ.

Algorithm 1: Pseudo-code of the T-guard method
Input: S, δ, I, GE−NSIC

Result: δSIC

1 Initialization: INSIC := ∅; Ttarget := ∅;
2 ST := ∅; δSIC := ∅;
3 begin
4 foreach gE−NSIC ∈ GE−NSIC and i ∈ I do
5 INSIC += {i | i ∧ gE−NSIC = gE−NSIC};
6 INSIC += {¬i | ¬i ∧ gE−NSIC = gE−NSIC};
7 foreach j ∈ INSIC do
8 j := True;
9 if

∧
GE−NSIC

gE−NSIC 6= 0 then

10 Ttarget += {j};
11 j := False;

12 foreach (s× g(δi)→ s′) ∈ δ and k ∈ Ttarget do
13 if k ∧ g(δi) = g(δi) then
14 ST += {s};

15 foreach sT ∈ ST and (s× g(δi)→ s′) ∈ δ do
16 if s = sT then
17 g(δi) := g(δi) ∧ T guard;
18 δSIC += {(s× g(δi)→ s′)};

S1 S2 S3

S4 S5

¬a ∧ ¬b a ∧ b∧T guard

¬a ∧ b∧T guard a ∧ ¬b∧T guard

Fig. 3. A simple example of Moore machine updated with T-guards

Inputs of the algorithm are S, δ, I and GE−NSIC . S,
δ and I are respectively the union of the set of states,
the union of the transition functions and the union of the
input signals of all individual Moore machines. GE−NSIC

is a subset of evolutions’ guards in the composed model
that are non-SIC-testable, which is calculated by the tool
Teloco [6] embedded in the DTT-MAT toolbox. Non-SIC-
testable guards represents the input combinations that are not
accessible by sole single input changes in existing evolutions.
In the example, GE−NSIC contains only one guard, i.e. a∧b
on the evolution from S2 to S3.

In Alg. 1, firstly the inputs that are involved in the non-
SIC-testable evolution guards will be figured out (lines 4 to
6). Ttarget which is a minimum set of inputs that covers all
gE−NSIC is obtained by removing inputs iteratively (lines 7
to 11). In other words, all previous non-SIC-testable guards
will be SIC-testable when these remaining inputs will be
protected by T-guards. In the example, the Ttarget could be
{a} or {b}.

If a state has an outgoing transition whose guard is non-

SIC-testable, all outgoing transition guards from this state
should be added with a T-guard (lines 12 to 14 and lines 15
to 18). In the example, all the transitions outgoing from S2
will be added with T-guards.

The result of this algorithm is δSIC , a transition function
which contains only transitions with updated guards, i.e.
added with T-guards. All the previous non-SIC-testable parts
of the locations can now protected by T-guards, so any
outgoing transition requiring a multiple-input-change test
step to be fired can be temporary frozen by the T-guards,
i.e. by setting the value of the input signal T guard to the
value ’0’. Now the system can be completely tested without
errors due to asynchronism between input signals.

Once the conformance testing completed, and before run-
ning the IUT in its normal mode, the input signal T guard
will be connected to the logic 1 level (3.3V, 5V or 24V
depending on the implementation architecture) so that it will
not affect the original transition guards (g ∧ 1 = g).

C. O-action method

Alg. 2 presents the method of how to achieve a full
observability with a limited design overhead by adding O-
actions into some of the states.

Algorithm 2: Pseudo-code of the O-action method
Input: L, S, λ, λL, #indi

Result: λOBS

1 Initialization: SNOBS := ∅; OOBS := ∅;
2 begin
3 foreach (li, lj) ∈ L2, li 6= lj do
4 if λL(li) = λL(lj) then
5 for n = 1: #indi do
6 if λn(si) = λn(sj) , si ∈ li, sj ∈ lj then
7 SNOBS += {si, sj};

8 #OA := dlog2
(
|SNOBS |

)
e; // number of O-actions

9 OA :=
[
oa1, oa2, · · · , oa#OA

]
∈ O#OA ;

10 // oa is a single O-action, OA is a list of oa
11 foreach s ∈ SNOBS do
12 λ(s) := λ(s) ∧ minterm(OA);
13 // where minterm(OA) returns a unique

combination of OA elements
14 λOBS += {λ(s)};

In Alg. 2, among other common inputs similar to those of
Alg. 1, #indi is the number of individual models.

First of all, output actions of all the locations will be
examined (lines 3 to 4). If at least a pair of locations share
the same actions, the individual states inside the locations
will be further analyzed (lines 5 to 6). If two different states
in the same individual model have the same action, then
they are identified as the cause of non-observability of those
locations. These states will be collected in SNOBS (line 7).

Since each O-action can be set the value ‘0’ and ‘1’, a
list of n O-actions can be used to represent 2n different

outputs. Thus, a minimum set of O-actions can be obtained
by applying the formula #OA := dlog2

(
|SNOBS |

)
e.

A unique O-action combination will be given to each state
from SNOBS (lines 11 to 14). As a result, the previous non-
observable locations will become fully observable.

It is also worth mentioning that O-actions are only observ-
able output signals. They do not affect the rest of the system
behavior throughout testing and normal executions.

D. C-guard method

The goal of the C-guard method is to solve the controlla-
bility issue, i.e., to shorten the distance between locations
during testing. It is realized by adding a set of C-guard
transitions to the models.

In some models, some states may not reachable from
some other states, e.g. in the example in Fig. 4, once δ02,
δ24 have been taken, S1 cannot be reached any more, so
δ01, δ13 cannot be tested. Now, C-guards make it possible
to completely test all transitions.

C

before after
�01�02

�13�24

�01�02

�13�24 S2 S1

S0

S4 S3

S2 S1

S0

S4 S3

Fig. 4. C-guard in testing transitions between unreachable states

In this paper, the introduction of C-guard method focuses
on the global algorithm (Alg. 3), while specific functions
have already been explained in details in [1].
DistL is a path cost matrix for all couples of locations.

During initialization (lines 3 to 9), if there is a direct
evolution from one location to another, the path cost for the
couple of locations will be set to 1, if not, then to ∞. The
Floyd-Warshall algorithm is then applied to calculate indirect
path costs between all couples of location (line 10).

After that, the maximum path cost will be compared
to LimitC , the expected path cost limit. If the maximum
path cost exceeds this limit, a set of new evolutions δL−C
will be built (lines 11 to 13). Details of the method
EvoCalc(DistL, LimitC) are given in [1].

Based on the result of δL−C , a minimum set of transitions
with associated C-guards δC for individual models, will
be calculated (lines 14 to 21). In the example in Fig. 5,
if the path cost from S1 to S2 exceeds LimitC , then a

S1 S2 S3

S4 S5

C guard 1 g23∧¬C guard 1

g24∧¬C guard 1 g25∧¬C guard 1

Fig. 5. A simple example of Moore machine updated with C-guards

new transition from S1 to S2 will be built with the guard
C guard 1.

It’s important to mention that for stability reason the
negation of the C-guards will added to the guards of the
destination state (lines 27 to 29). In the example in Fig. 5,
the guards on all the outgoing transitions from S2 will be
added with ¬C guard 1.

Similarly to T-Guards, once the conformance testing com-
pleted, the input signals C guard i will be connected to the
logic 0 level (0V or below 1V for most of the architectures)
so that they will never enable the firing of these transitions
(g ∧ 0 = 0).

Algorithm 3: Pseudo-code of the C-guard method
Input: L, δL, δ, LimitC , #indi

Result: δC
1 Initialization: δL−C := ∅; δC := ∅;
2 begin
3 foreach (li, lj) ∈ L2 do
4 if li = lj then
5 DistL(li, lj) := 0 ;
6 else if ∃ (li × g(δi)→ lj) ∈ δL then
7 DistL(li, lj) := 1 ;
8 else
9 DistL(p, q) :=∞ ;

10 DistL := Floyd−Warshall(DistL);
11 while max(DistL) > LimitC do
12

(
DistL, δL−new

)
:=

EvoCalc(DistL, LimitC);
13 δL−C += δL−new;

14 foreach (lsrc × g(δLi)→ ldes) ∈ δL−C do
15 for n = 1: #indi do
16 if @(ssrc × g(δi)→ sdes) ∈ δ, ssrc ∈

lsrc, sdes ∈ ldes then
17 δC += {(ssrc × 1→ sdes)};

18 #C := |δC |; // number of C-guards

19 C :=
{
c1, c2, · · · , c#C

}
; // set of C-guards

20 foreach δCi ∈ δC do
21 g(δCi) := C(i); // i is the index of δCi in δC ;
22 foreach δj ∈ δ |

∃g(δj), δ(dest(δCi), g(δj)) 6= ∅ do
23 g(δj) := g(δj) ∧ ¬C(i);

IV. DTT-MAT: MATLAB TOOLBOX FOR DTT
APPROACH

A toolbox DTT-MAT has been developed to realize the
proposed DTT approach. It is available from our homepage:
www.ses.mw.tum.de.

A. Workflow of DTT-MAT

The workflow of DTT-MAT is briefly depicted in Fig. 6.

System models in Stateflow

Modified Stateflow models

T-guard method

O-action method

C-guard method

Using DTT-MAT

Composition
Using Teloco

Fig. 6. Workflow of DTT-MAT

To use DTT-MAT, the user should firstly model the system
in MATLAB Stateflow. Usually, a complex system is split
into several individual models for reasons of simplicity.

Stateflow models are first transformed into Moore ma-
chines, which will next be read by Teloco [6]. Then, all
the individual models will be composed with Teloco, and
SIC-testability results will also be generated.

The Stateflow models and the composed model from
Teloco will then be analyzed by the proposed DTT methods
implemented in MATLAB. The three DTT methods can be
executed one after another, which is recommended when
modifying a new system; but is also possible to run them
separately, e.g. to compare the impact of the value of LimitC

Based on the results from the DTT methods, the Stateflow
models will be automatically updated with T-guards, O-
actions and C-guards, in order to fulfill the observability,
controllability and SIC-testability requirements.

Additionally, automatic code generation has been im-
plemented for PLC, using IEC 61131-3 Structured Text
format. Next step for the development of DTT-MAT will be
automatic generation of C code from updated specification
models.

B. Limitations for applicable Stateflow models

MATLAB Stateflow offers rich possibilities to build mod-
els. For example, signals and events are both accepted as
inputs, actions can be linked to states, transitions or transition
conditions [13].

However, only Moore machine models can be handled
with the current version of Teloco. Besides, only Boolean
signals are accepted as valid inputs for the current version
of DTT-MAT. Detailed instructions as well as some examples
are available together with the toolbox.

V. BENCHMARK CASE STUDY

In this paper, a case study (Fig. 7) slightly adapted
from [4], is used to illustrate the DTT approach and the DTT-
MAT toolbox. For more information upon the application of

the DTT approach, [14] provides two other case studies on
industrial applications.

Robot-4

Robot-1

Robot-2

Robot-3

Conveyor-1

Fixture-1

Fixture-2

Gripper

Weld gun

Turntable-2

Turntable-1

Fig. 7. Case study: a welding and material handling cell

A. Description of system

This case study contains nine machines: four robots, two
fixtures, two turntables and a conveyor.

This cell does welding tasks in three phases. At the be-
ginning, Conveyor-1 delivers a car body into the cell. Robot-
1 begins to weld the parts, which are loaded by previous
systems. This is the first weld job (J1). Meanwhile, Robot-2
picks plates from Turntable-1 and places them in Fixture-1.
Turntable-1 turns when two plates have been taken. In the
second job (J2), Robot-1 and Robot-2 work together to weld
the plates held by fixture to the car body. After they finish
J2, Fixture-1 moves away from its workstation, to enable
Robot-1 and Robot-2 weld the parts which were blocked by
Fixture-1. This is the third Job. On the opposite side, the
same work will be executed by Robot-3, Robot-4, Turntable-
2 and Fixture-2. As soon as the weld jobs are completed, the
robots also move away from their workstation. Conveyor-1
delivers then the car body out of the cell. Afterwards, the
robots and fixtures move back to their workstations, making
the cell ready for next round.

A few coordinators are set up to control the correct oper-
ation of all individual machines and robots. The complete
system can thus be modeled by 12 individual Stateflow
models, which result in a composed model containing 792
stable locations and 93,587 evolutions. The system has 34
Boolean inputs and 33 Boolean outputs. A selection of inputs
and outputs for Robot-2 is given in Fig. 8.

The model for Robot-2 is selected as an illustrative exam-
ple for this section (Fig. 9). The initial model is depicted in
black; blue, green and purple drawings and text correspond
to the elements added by DTT-MAT.

B. Testing issues

When observing the individual models, it can easily be
found that some states have the same output actions. For
example, in Robot-2, the states R2-1, R2-4, R-6, R-9, R-12

SES TUM

Machine Input Output

Plate_in_F1 Pick_place_R2

detectm ifmplatemismplacedminmFixture-1 pickmthemplatemandmplacemitminmFixture-1

G2W_R2_finished G2W_R2

detectmifmR2mfinishesmtoolmchangemG2W changemtoolmfrommgrippermtomweldmgun

W2G_R2_finished W2G_R2

detectmifmR2mfinishesmtoolmchangemW2G changemtoolmfrommweldmgunmtomgripper

J2_R2_finished Weld_J2_R2

detectmifmR2mfinishesmJob2 domthemWeld-Job2

J3_R2_finished Weld_J3_R2

detectmifmR2mfinishesmJob3 domthemWeld-Job3

Away_R2 Move_away_R2

detectmifmR2mismawaymfrommworkstation movemawaymfrommworkstation

Back_R2 Move_back_R2

detectmifmR2mismbackmtomworkstation movembackmtomworkstation

Robot-2 (R2)

Fig. 8. Boolean inputs and outputs for the model Robot-2

∅ ∧oa1 ∧¬oa2 ∧ oa3 ∧
oa4 ∧ ¬oa5 ∧ ¬oa6

R2 1 Pick place R2 R2 2

G2W R2 R2 3∅R2 12

∅ ∧oa1∧¬oa2∧¬oa3∧
¬oa4 ∧ oa5 ∧ oa6

R2 4W2G R2R2 11

Weld J2 R2 R2 5Move back R2R2 10

∅ ∧oa1∧¬oa2∧¬oa3∧
¬oa4 ∧ ¬oa5 ∧ oa6

R2 6∅R2 9

Weld J3 R2 R2 7Move away R2R2 8

XC1 3 ∧¬C guard 1

Plate in F1

G2W R2 finished
∧T guard

XC1 5

J2 R2 finished
∧T guard

XC1 6

J3 R2 finished

Away R2

XC1 8

Back R2

W2G R2 finished

XC1 9

C guard 1

Robot-2

Fig. 9. A Moore machine model for Robot-2

don’t have any observable action. This implies that, after
composition, it is possible that some locations have the same
actions, which leads to the observability issue.

Even though the composed model contains 93,587 stable
evolutions, not all locations can directly be reached from
other locations. Thus, the distance from some states to other
states could be very long, i.e., this system might have the
controllability issue.

C. Testability after applying DTT-MAT

With the help of DTT-MAT, quantitative results can be
automatically obtained for the testing issues.

Out of 792 locations, 777 of them are not fully SIC-
testable. Applying T-guard method, one feasible solution is
found, 12 Boolean inputs out of 34 are involved in non-SIC-
testable transitions guards. After updating the original spec-
ification models with 14 T-guards, the composed machine

reaches a full SIC-testability. Two of the T-guards have been
drawn in blue in Fig. 9.

Then, 537 locations have the same output action with at
least one of the other locations. With traditional methods,
a distinguishing sequence may be 537 steps long. However,
analysis with the O-action method shows that the observ-
ability issue of 537 locations was caused by 33 states in the
individual models. After adding 6 O-actions (drawn in purple
Fig. 9), the issue can easily be solved.

Finally, according to the C-guard method results, some
locations are not reachable from some other locations.

After adding 14 C-guards on individual models (one of
them have been drawn in green in Fig. 9), any location can
be reached within maximum 4 steps from any other location
in the composed model.

D. Example of executable code generation

The automatically generated ST code for PLC from the
initial models of the case study contains 350 lines. Adding
the 14 T-guards only increase the code length by 1 line
(declaration of the T guard variable). Also, because T-
guards are only added to existing transitions guards instead
of creating new transition, 14 lines of code are modified by
adding ‘AND T Guard’ to existing guards.

Adding the 6 O-actions increases the code length by 12
lines: 6 lines to declare outputs variables and 6 lines to assign
the conditions when the O-actions are activated. An example
of ST code for O-action assignment is as follows:
• oa2 := XR1 3 OR XR1 1 OR XR4 1 OR XR4 6 OR

XR3 1 OR XR3 3 OR XF1 1 OR XF2 1 OR XT1 2 OR
XT1 1 OR XT2 2 OR XT2 1 OR XC1 1 OR XC1 2 OR
XC2 1 OR XC2 2 OR XC3 1 ;

Adding the 14 C-guards increases the code length by 28
lines: 14 lines to declare inputs variables and 14 lines to
create new transitions with the C-guards. An example of ST
code for a new transition with C-guard is as follows:
• tR21 := XR2 6 AND C guard 1;

Thus, concerning the design overhead added by the DTT
methods, it can be positively concluded that the increase of
the code length is linear in terms of added lines of code to
the number of inserted O-actions and C-guards, and is linear
in terms of modified lines of code to the number of T-guards.

VI. DISCUSSION AND PERSPECTIVES

This paper has presented improved algorithms for the
design-to-test approach for testing embedded programmable
controllers, and DTT-MAT, a MATLAB toolbox supporting
this approach.

The proposed DTT approach aims at improving the testa-
bility and reducing the testing overhead with limited design
overhead.

Specifically, DTT-MAT accepts system specifications
modeled as Moore machines with Boolean signal inputs in
MATLAB Stateflow. By running the T-guard, O-action and
C-guard methods, the specification models are modified to

meet the requirements of full SIC-testability, full observabil-
ity and better controllability. A realistic industrial case study
is used to illustrate the application of DTT-MAT.

A key point of the proposed DTT method to remind is
that, during normal execution, all T-guards and C-guards
can be inhibited (by connecting them to the logic 1 and 0
levels, respectively), and all O-actions are only additional
output signals that can be ignored. Thus, none of the added
T-guards, C-guards and O-actions is affecting the behavior of
the system in its normal mode. Also, all these T-guards, O-
actions and C-guards could be use again during maintenance
and inspection to assist in the identification of problems.

Future work is aiming at extending this DTT approach
to more general applications, e.g. specification models with
analog signals.

REFERENCES

[1] C. Ma and J. Provost, “Design-to-Test Approach for Black-Box Testing
of Programmable Controllers,” in IEEE Int. Conf. on Automation
Science and Engineering (CASE), 2015, 2015, pp. 1018–1024.

[2] B. Vogel-Heuser, C. Diedrich, A. Fay, S. Jeschke, S. Kowalewski,
M. Wollschlaeger, and P. Göhner, “Challenges for Software Engineer-
ing in Automation,” Journal of Software Engineering and Applica-
tions, vol. 07, no. 05, pp. 440–451, 2014.

[3] IEC61508, Functional safety of electrical / electronic / programmable
electronic safety-related systems, 2nd ed. International Electrotech-
nical Commission, 2010.

[4] J. Richardsson and M. Fabian, “Modeling the control of a flexible
manufacturing cell for automatic verification and control program
generation,” Int. Journal of Flexible Manufacturing Systems, vol. 18,
no. 3, pp. 191–208, 2007.

[5] C. K. Chang and H. Huang, “On transforming Petri net model
to Moore machine,” in 14th Annual Int. Computer Software and
Applications Conf., no. 052. Chicago: IEEE, 1990, pp. 267—-272.

[6] J. Provost, J. M. Roussel, and J. M. Faure, “Translating Grafcet
specifications into Mealy machines for conformance test purposes,”
Control Engineering Practice, vol. 19, no. 9, pp. 947–957, 2011.

[7] R. S. Pressman, Software Engineering A Practitioner’s Approach
Seventh Edition. MC Graw Hill, 2010.

[8] D. Lee and M. Yannakakis, “Principles and methods of testing finite
state machines – a survey,” Proceedings of the IEEE, vol. 84, no. 8,
pp. 1090–1123, 1996.

[9] a. S. Kalaji, R. M. Hierons, and S. Swift, “An Integrated Search-
Based Approach for Automatic Testing from Extended Finite State
Machine (EFSM) Models,” Information and Software Technology,
vol. 53, no. 12, pp. 1297—-1318, 2011.

[10] A. Denise, M. C. Gaudel, S. D. Gouraud, R. Lassaigne, J. Oudinet, and
S. Peyronnet, “Coverage-biased random exploration of large models
and application to testing,” International Journal on Software Tools
for Technology Transfer, vol. 14, no. 1, pp. 73–93, 2012.

[11] T. Shu, T. Ye, X. Yin, and J. Xia, “A Test Generation Method for
EFSM-based Protocols Using the Transitions Feasibility Estimation,”
International Journal of Control and Automation, vol. 9, no. 5, pp.
207–218, 2016.

[12] J. Provost, J.-M. Roussel, and J.-M. Faure, “Generation of Single Input
Change Test Sequences for Conformance Test of Programmable Logic
Controllers,” IEEE Trans.on Ind. Inform., vol. 10, pp. 1696–1704,
2014.

[13] Mathworks, “Stateflow User’s Guide,” Tech. Rep., 2015. [Online].
Available: http://nl.mathworks.com/help/pdf doc/stateflow/sf ug.pdf

[14] C. Ma and J. Provost, “Design-to-test : an approach to enhance
testability of programmable controllers for critical systems – two case
studies,” in European Conference on Safety and Reliability - ESREL
2016, Glasgow, Scotland, 2016, pp. Sept, 2016.

