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Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Thomas Huckle
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Abstract

This work is part of the joint developments in the field of Nuclear Imaging by the Chair

of Computer Aided Medical Procedures at Technische Universtät München and the De-

partment of Nuclear Medicine at Klinikum Rechts der Isar starting in 2005. Within this

collaboration freehand SPECT was born, a new imaging modality that generates 3D gamma

reconstructions with mobile devices. Thus it can provide easy detection of labeled structures

as well as guidance during biopsy and resection in an interventional setup.

Freehand SPECT has however limitations. Due to the freehand acquisition, the expertise

of the operator has a great impact on the quality of the reconstruction. Furthermore, the

lack of repeatability makes systematic adjustments very challenging. This thesis therefore

presents a flexible imaging setup using a robotic arm (UR5 of Universal Robots) in order to

tackle those challenges.

Beyond these, in a robot-assisted freehand, the robot can perform the same experiment an

indefinite number of times, which makes it possible to see how variables like collimator type

or acquisition speed play a role in the reconstruction quality. Thus it brings advantages

within the improvement and understanding of freehand SPECT.

Against our expectations, the results of this work showed that the quality of the robotically

acquired reconstructions were not significantly better than the ones produced by handheld

human acquisitions. Together with the arrival of a better detector – the CrystalCam mini

gamma camera of Crystal Photonics – as well as an exhaustive characterization and faster

reconstruction algorithms, this work lead to a major step forward as the imaging results

were improved to such an extent that entirely new possibilities opened up.

Whereas the original freehand SPECT – which this thesis is based on – had been developed

to guide the biopsy and resection of sentinel lymph nodes in breast cancer, the robotic setup

presented here renders it possible to also image smaller and more complex structures such

as the thyroid, in which even nodules with no tracer uptake (cold nodules) become visible.

Moreover, by co-calibrating the robotic arm holding the mini gamma camera with a C-arm

CT, a first flexible SPECT-CT prototype was developed. This resulting combination of

inherently co-registered anatomical and functional information allows for a very intuitive

and semi-automatic workflow for a use in an interventional setup.
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As a conclusion this work extends the application possibilities of freehand SPECT and

provides also means for a thorough analysis of the nature of this new imaging technology.

With the tools developed here go thus beyond a theoretical improvement but bear the

possibility of making freehand SPECT a successful approach in selected routine clinical

applications, in particular in setups were flexibility and guidance are demanded.



Zusammenfassung

Diese Dissertation ist Teil einer Forschungskollaboration zwischen dem Lehrstuhl für Infor-

matikanwendungen in der Medizin an der Technischen Universität München und dem Insti-

tut für Nuklearmedizin am Klinikum Rechts der Isar, welche bereits seit 2005 besteht. Im

Rahmen dieser Kollaboration wurde “freehand SPECT” ins Leben gerufen, eine neue nuk-

learmedizinische Bildgebungsmodalität, die es erlaubt, mit mobilen Gammadetektoren 3D-

Bildrekonstruktionen zu erstellen. Somit ermöglicht es eine einfachere Detektion markierter

Strukturen sowie eine interventionelle Navigation während Biopsien und Resektionen.

Freehand SPECT hat jedoch gewisse Limitierungen. Wegen der freihändigen Aufnahme hat

die diesbezügliche Expertise des Operateurs einen hohen Einfluss auf die Qualität der Bil-

drekonstruktion. Zudem macht die fehlende Wiederholbarkeit systematische Verbesserun-

gen zu einer großen Herausforderung. In der vorliegenden Arbeit wird daher ein flexibles

Bildgebungsverfahren unter Verwendung eines Roboterarms vorgestellt (UR5 von Universal

Robots).

Darüber hinaus kann der Roboter in diesem roboterassistierten Freihandscan das gleiche

Experiment beliebig oft wiederholen, was es ermöglicht, den Einfluss von Variablen wie Kol-

limatortyp und Aufnahmegeschwindigkeit auf die Rekonstruktionsqualität systematisch zu

untersuchen. Damit bringt die Roboterassistenz große Vorteile bezüglich der Verbesserung

und des Verständnisses von freehand SPECT mit sich.

Entgegen unserer Erwartungen zeigten die ersten Ergebnisse, dass die Qualität der robo-

tisch aufgenommenen Rekonstruktionen nicht signifikant besser war als von Aufnahmen, die

von Menschen durchgeführt wurden. Durch die Verwendung eines besseren Detektors – der

CrystalCam mini Gammakamera von Crystal Photonics – sowie einer ausführlichen Charak-

terisierung des Aufnahmesystems und schnellerer Rekonstruktionsalgorithmen konnte ein

großer Schritt nach vorne gemacht werden, da die Bildgebungsergebnisse in einer solchen

Art verbessert wurden, dass sich komplett neue Anwendungsmöglichkeiten auftaten.

Während das ursprüngliche freehand SPECT – auf welchem diese Arbeit basiert – entwickelt

wurde um Biopsien und Resektionen von Wächterlymphknoten bei Brustkrebs zu navigieren,

macht es der hier vorgestellte robotische Aufbau möglich, Bilder von kleineren und kom-

plexeren Strukturen wie der Schilddrüse aufzunehmen, in welchen sogar Schilddrüsenknoten

ohne Traceraufnahme (kalte Knoten) sichtbar werden.
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Durch eine gemeinsame Kalibrierung des Roboterarms, welcher die mini-Gammakamera

hält, mit einem C-Bogen CT wurde der erste mobile SPECT-CT Demonstrator entwickelt.

Die sich daraus ergebende Kombination von inhärent koregistrierten anatomischen und funk-

tionalen Bildinformationen erlaubt einen hochintuitiven und semi-automatischen Workflow

möglich, welcher in Interventionen integriert werden kann.

In der Schlussfolgerung erweitert die vorliegende Arbeit die Anwendungsmöglichkeiten von

freehand SPECT und stellt die Mittel für eine eingehende Analyse der Natur dieses neuen

Bildgebungsverfahrens zur Verfügung. Die entwickelten Methoden und Werkzeuge stellen

nicht nur eine theoretische Verbesserung dar, sondern ermöglichen es auch, freehand SPECT

zu einem erfolgreichen Ansatz für spezifische klinische Routineanwendungen zu machen, in

denen Flexibilität und Navigation benötigt werden.
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Introduction

Medical doctors, up until mid 19th century, had to rely only on their senses to diagnose

a patient. A bone fracture would be checked by observing and touching the patient, and

diabetes would be diagnosed by checking if the urine tasted sweet.

The discovery of X-Rays and its application to medical diagnostics opened a new era in

medicine, an era where it was possible to see what was inside the human body without

having to open it, and to plan an intervention knowing the patient’s internal anatomy,

understanding the risks of it and evaluating the expected outcome. This revolution has not

ceased and until today new imaging techniques based on different physical phenomena are

produced. The goal has remained the same, to help physicians achieve better diagnosis.

On the interventional side, imaging techniques were not so popular, mainly because of the

constraints inside the operating room. It is not possible to have big machines and, besides,

to wait long for the results. Today fortunately this has changed thank to the advances in

electronics, mechanics and computing capabilities, which are immensely superior to what

was possible twenty or thirty years ago.

Nowadays it is possible to have anatomical information of the patient in real time inside of

the operating room. For example, a patient can be re-positioned in order to have better

access to a certain structure (organ, bone, etc.), after which new images can be obtained so

that the surgeon can proceed with the intervention supported by this new information. This

concept, known as Image Guided Surgery, is currently the trend and the basis of techniques

like endoscopic and minimally invasive surgery.

The imaging devices used in nuclear medicine are, on the contrary, fairly big, and the

acquisition time for diagnostic images is also long enough to make them unpractical as an

intraoperative modality, therefore limiting its use to diagnostic imaging. Some years ago,

around 2007, a group at Technische Universität München started with the idea of having

tracked handheld detectors with the aim of generating nuclear images inside the operating

room with a small footprint device. This device, called freehand SPECT, the starting point

for the work here presented.
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The original motivation was to evaluate the possible improvements for freehand SPECT

by combining with a robotic arm. That way, it would be possible to generate repeatable

experiments, which would help us better understand what produces a good or a bad image

acquisition.

Later on, this motivation shifted towards the development of a robotic freehand SPECT de-

vice, since substantial improvements could be observed with the replacement of the original

single pixel detectors by a calibrated small gamma camera. The potential of this new setup

determined the evaluation of different acquisition protocols and tomographic reconstruction

methods, which would help optimize the process and maximize the quality of the outcome.

In parallel, the idea of using the output of a C-Arm CT as reference to guide the robotic

freehand SPECT acquisition was successfully tested, opening the door for the first prototype

of an interventional SPECT-CT device.

The present work is divided in two parts: the first one introduces the context in which this

research is situated, presenting the fields of medical and nuclear medical imaging, to follow

with freehand SPECT and theoretical basis. Chapter 5, Robotics, serves as introduction to

the field in which this work is set. The second part aims to explain the contributions made

and how these can be extended and integrated with the current medical workflow.



Part I

State of the Art
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Chapter 1

Introduction to Medical Imaging

Medical imaging is a collection of techniques designed to provide graphical representations

(images) of anatomy and functions of parts of the human body. This representations include

data in multiple spatial dimensions, and also changing in time. In general, the notation to

describe them is to say the number of dimensions (0D to 3D) and append ”+t” when

the modality describes also a time variant signal. Examples of this are electrocardiograms

(0D+t), radiographs (2D), ultrasound (2D, 2D+t, 3D, 3D+t), Magnetic Resonance (3D,

3D+t) and Computer Tomography (3D, 3D+t).

The aim of these imaging techniques is usually to provide physicians a better understanding

of the underlying anatomy and process, so they can perform a better diagnosis. The current

trend is to use also similar techniques inside the operating or interventional theaters, to

provide guidance and feedback for physicians during the procedure and with this improve

performance and optimize the results of the treatment.

It is important to note that Medical Imaging is not a goal per se, but a way to improve

the outcome of the patient. A new imaging technique has to improve the workflow of the

physician, e.g. making it shorter or cheaper, reducing the radiation levels or increasing the

accuracy, otherwise it will not be useful.

The medical imaging domain is very wide, with hundreds if not thousands of image modali-

ties, using very different physical phenomena to obtain information. Some imaging concepts

in the scope of this thesis will be explained, and from these, most common image modalities

will be explained in more detail.

5
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1.1 Basic Imaging Concepts

Imaging modalities use several physical principles to generate graphical representations,

therefore these could be very different, even tough they show the same anatomical structure.

It is in general the physician who decides which image modality to use, depending on

his/her own judgment, and several other constraints, like device availability, acquisition

time, radiation damage, cost, etc. The decision of which modality to use is not arbitrary,

but it is based on the current information on the patient health and his/her medical history

(anamnesis), and of course the experience and knowledge of the patient.

A physician in the emergency unit will in general rely more on modalities like ultrasound and

X-rays, since those can generate very fast images, needed for a fast diagnosis. On the other

hand, planned events like pre-surgery diagnostic imaging in general rely in the best possible

imaging acquisitions for that particular pathology, and those can last several minutes, even

hours.

Before introducing the image modalities, some basic concepts are presented here.

1.1.1 Anatomical Imaging

Anatomical imaging, as the name says, groups the image modalities that show structures

of the body. These are used to locate anomalies within the body, like broken bones, in-

ternal bleeding, oversized or undersized organs or structures, etc. Ultrasound, radiographs,

computer tomography and magnetic resonance are examples of anatomical imaging devices.

1.1.2 Functional Imaging

Functional imaging, in contrast to anatomical imaging, depicts how the body is functioning

with respect to certain variable, for example distribution of glucose consumption, blood

flow, etc. This imaging approach usually uses a contrast agent, that is then visualized

in the final image. Examples of these contrast agents are radioactive sugar ( F18 -FDG), X-

ray opaque agents (iodine, barium) and structure-specific bonding molecules ( In111 -PSMA).

SPECT and PET, described in the next chapter, are examples of functional imaging devices.

Since in many cases functional imaging is very difficult to interpret without an anatomical

reference, it is today very common to see devices that generate such images bundled with

an anatomical imaging device.
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1.1.3 Ionizing Radiation

An important criteria for the physician about the imaging device is the probability of harm-

ing the patient during the process. Modalities like ultrasound and MR, given the nature of

the imaging process, are considered harmless and can be used without major concerns.

On the other hand, modalities that use X-rays for imaging or radioactive compounds can

be harmful for the patient[1]. The reason is that the underlying imaging process uses high

energy photons (gamma rays or X-rays) or beta particles that can damage the tissues while

traveling through the body.

Ionizing radiation comprises particles and photons carrying enough energy to liberate elec-

trons from atoms or molecules, thereby ionizing them. Particles moving at relativistic speed1

and photons over 4− 10 eV (ultraviolet or higher) are considered ionizing. See the electro-

magnetic spectrum chart in Figure 1.1.

There are several types of ionizing radiation, but the most common sources for medical

imaging are X-rays or gamma rays, and positrons.

E (eV)

Figure 1.1: Electromagnetic spectrum. The three scales, energy (in eV ), frequency (in Hz) and
wavelength (in m) are depicted.[2]

1.1.4 Tomography

Tomography comes from the Greek τόμος (tomos), slice and γράφω (graph), to carve or to

write[3].

Tomography is a technique to obtain higher dimensional data (3D, 3D+t) from several

lower dimensional projections (2D, 1D). The projections contain partial information from

the volume. These projections, with a proper model of the acquisition device and protocol

are used to reconstruct the higher dimensional model.

1Relativistic speed is not strictly defined, but it is considered when Newtonian mechanics are not accurate
enough. A reasonable boundary is at about 0.1 c, that translates in roughly 1% error in speed and masses
using Newtonian physics.
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The most known example is the CT (Computer tomography), that uses a rotating X-ray

source and detector that rotate around the object of interest, obtaining projections of the

volume over a detector, that are then used to compute a 3D reconstruction. Advanced

versions of this, including some extra mathematical models, can generate a 3D volume set

depicting the movement of the object of interest (e.g. a heart beating) during the projections.

This produces a time sequence of 3D reconstructions (3D+t), where it is possible to see the

movement in three dimensions.

1.2 Description of common imaging devices

There is an incredible number of imaging devices used for medical purposes and new ones

appear constantly in the market, providing new or improved techniques. For this reason,

it is impossible to list here all the existing ones. However, a brief description of common

devices currently in mainstream usage and will be provided.

1.2.1 Electrocardiography (ECG)

This modality measures and records the electrical activity of the heart[4]. It uses one or

more electrodes placed normally on the chest, which measure the variation in the voltage

around the place where they are located with respect of a reference one. Each electrode value

is then plotted with respect of time, and this response is then analyzed by the physicians.

Since the cardiac signal is quasi-periodic [5], and it is possible to discern the cardiac phases

from the electrode plots, the ECG is also used in different imaging modalities, like CT or

MRI as a synchronization signal (ECG gating) to reduce the artifacts generated with the

cardiac movement.

An ECG plot can be seen in Figure 1.2.

1.2.2 Radiography

Together with the ECG, radiograms are among the oldest imaging techniques used in

medicine. The German physicist Wilhelm Röntgen is known as the person who discov-

ered X-rays in 1895, and systematically studied them and its interaction with matter. X-

rays penetrate matter and, depending on the energy of each photon, are absorbed with an

increasing probability depending on the density and amount of matter they need to cross.
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Figure 1.2: Electrocardiogram (ECG), showing the output of several electrodes mounted around
the body. Image courtesy Dr. Ludwig Hennersperger.

This principle, coupled with a device able to record the X-rays that were not absorbed,

generate a 2D image that shows a projection of the inner structure of the imaged ob-

ject (anatomical imaging). These absorption images (radiograms) are extremely useful for

physicians to visualize, for example, a bone fracture, liquid in the lungs, etc., since different

components (soft tissue, bone, air) absorb different amounts of X-rays. The main limitations

of radiograms are the fact that soft tissues have little difference in absorption among them,

so the contrast among them is fairly limited, and the overlap of the structures makes the

interpretation more difficult.

A radiography image can be seen in Figure 1.3.

Figure 1.3: Radiography of a bone fracture (right clavicle). Image courtesy Klinikum Bogenhausen.

Radiographs are classified as ionizing radiation imaging devices, since they use an X-ray

source for imaging.
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1.2.3 Computer Tomography (CT)

Computer tomography is a technique used to obtain 3D tomographic reconstructions using

X-Ray projections. The first device was originally developed by Sir Godfrey Hounsfield, and

the fundamental design remains the same until today.

The machine consists on an X-ray source and a planar detector (currently semiconductor

detectors, replacing film that was used in the past), with the object to be imaged in between

those. The source and the detector rotate around the object, capturing several X-ray pro-

jections. This projections are transferred to a computer, where they are used to compute

a tomographic reconstruction of the object. The mathematical part of this reconstruction

process is explained in chapter 4, and a sample image can be seen in Figure 1.4.

The computer tomography was the first technique that allowed the physicians to see the

body of the patient and understand a particular anatomy before surgery, allowing them

to make a much better diagnosis, anticipate possible problems and to plan accordingly. It

generated a revolution in diagnostic medicine, and its mathematical principle was adapted

for several other modalities, including SPECT and PET.

The main disadvantage of CT is the radiation that the patient receives. Compared to a

standard radiogram, a CT delivers about 100 to 400 times higher radiation dose, mainly

because it takes this same number of projections, and each projection is a normal radiogram.

This can be reduced by using better reconstruction algorithms that can cope with lower dose

radiograms.

Figure 1.4: 3D rendered model of a CT data, showing the same bone fracture as Figure 1.3. Image
courtesy Klinikum Bogenhausen.
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1.2.4 Ultrasonography

Ultrasonography is an imaging technique that uses high frequency mechanical waves (com-

monly 2− 18MHz) [6] that are induced in the region of interest from the skin. The tissue

response time and amplitude (known as echo) is recorded and used to form an image.

Figure 1.5: Prenatal diagnostic ultrasonography. Image courtesy Dr. Andrea Wendler.

The most common image configuration is called “B mode”, where an array of transducers

is used simultaneously to generate a beam, that produces a 2D transverse image, as seen

in Figure 1.5. The frequency selected is usually a trade off between resolution and image

penetration. The fast image generation process is used to produce one ultrasound image

after the other, making this a 2D+t modality. It is also possible to use a moving 1D detector

(with respect of the probe) to sweep and generate a spatial sequence that can be seen as

a 3D ultrasound (assuming no patient movement). A newer generation of 2D ultrasound

arrays allow the direct acquisition of 3D data, without artifacts produced by the movement

of the patient.

It is also possible to measure if a certain structure is moving towards the probe or away

from it using the Doppler principle. This is used, for example, to see if there is flow in an

artery during an emergency diagnostic procedure.

The main advantage of ultrasonography is the ability to create anatomical images extremely

fast, cost-effectively and without harming the patient or physician[7].

The most important disadvantage is the fact that the images are subjective, and need an

expert to interpret them correctly. Other issues are the need of very complex (and usually

proprietary) imaging filters to improve the image quality. The quality of the images is
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particularly low when there is a mismatch in density of the tissue, like bones or gases (lungs

or gastrointestinal track). The fact that the transducer needs to be in contact with the skin

and needs a certain pressure leads to deformation in the anatomy, so it is also difficult to

combine with different imaging modalities.

1.2.5 Magnetic Resonance Imaging (MRI / MR)

Magnetic Resonance Imaging is an anatomical imaging technique that is used to visualize

soft tissue in the body with much higher contrast than a CT.

Figure 1.6: Slice of a brain MR reconstruction. The MR acquisition protocol produces a recon-
struction capable of differentiate the gray and white matter. Image courtesy Aslı Okur-Kuru.

The working principle is fairly complex, but the important part is that the image is con-

structed using strong magnetic fields that align the spin of certain nuclei (mainly H1 , C13 ),

and the recovery time from this excited state to its relaxed state is measured and used to

generate the images. This means that it is possible to obtain 3D reconstructed data from

those signals without the need of ionizing radiation. It is also possible to image different

nuclei by varying the acquisition protocol (frequency and amplitude of the magnetic fields)

and combine the acquisition to maximize the contrast between the desired tissues (e. g. the

gray and white matter in the brain). An example of a brain magnetic resonance can be seen

in in Figure 1.6.

The main disadvantages of the MR devices are the long and noisy acquisitions and the run-

ning cost of the devices. Metallic devices have to be kept away, and persons with pacemakers

or ferromagnetic implants cannot be safely scanned.
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1.2.6 Scintigraphy

This modality produces a 2D projection image, similar to a radiogram, but generating a

functional image. The image is generated by administering a radioactive compound to the

patient, waiting a known time until the tracer reaches the organs or regions of interest and

collecting the photons emitted by the compound in a 2D detector. The compound and the

administration method (oral, intravenous) depend on the type of image required.

To give a rough anatomical reference in scintigraphy, it is common to put the patient between

the detector and a low dose flood-source (flat radioactive plate), so it is possible to see the

silhouette of the patient in the final image, as shown in Figure 1.7a.

(a) Gynecological scintigraphy. The anatomical silhouette is visible
by putting a planar low dose radioactive source behind the patient.

(b) Slice of a SPECT image overlaid with
anatomical information from CT.

Figure 1.7: Scintigraphy and SPECT slice from a patient. In both cases, the injection site, two
visible lymph nodes (upper right and upper left of the injection site) and the liver are seen. Images
courtesy Klinikum Rechts der Isar.

Since the physical principle is based on a radioactive compound, this imaging technique is

classified as ionizing.

1.2.7 Single photon emission computer tomography (SPECT)

SPECT is a tomographic modality, similar to CT, but it generates a functional 3D volume

of a radioactive compound administered in the same way as in scintigraphy. Similar to

the CT, the way to generate the volume is to acquire several projections by rotating a 2D

detector around the patient. This projections are then used together with the mathematical

model of the device to generate a tomographic reconstruction.

Since this 3D volume is functional, sometimes it is very difficult to understand the image

without anatomical references (bones, organs, etc.). It is currently a standard practice to
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combine the SPECT device with a CT, to provide this reference in one machine, called

SPECT-CT.

It is also possible to improve the reconstruction quality of the SPECT image by using the

acquired CT image as a map to correct for the absorption of the of the gamma rays in the

body.

A SPECT-CT image of the same patient as shown in Figure 1.7a is shown in Figure 1.7b.

1.2.8 Positron emission computer tomography (PET)

Positron emission tomography produces a 3D tomographic volume, similar to SPECT. The

main difference here is the imaging principle. For PET, a positron emitter compound is

used as contrast agent. When the radioactive nucleus decays, a positron is emitted, and this

travels a short distance before it interacts with an electron, annihilating and generating two

511 keV gamma rays travelling in (almost) perpendicular directions.

Figure 1.8: Slice of a PET scan, using
MR as an anatomical reference. Image
courtesy Klinikum Rechts der Isar.

The PET machine has then a ring with detectors

around the patient. The ring collects the 511 keV

gamma rays with a very high temporal resolution.

This allows to infer when two detected events might

come from from the same annihilation, narrowing

down its location to (approximately) a line segment

that connects both detections.

Similar to SPECT, PET devices are also currently

integrated with a CT device to provide anatomical

reference of the generated images. Very new devices

are coupled with a magnetic resonance device (MR)

instead of the CT. A PET-MR image is shown in

Figure 1.8.
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Medical Nuclear Imaging

Medical nuclear imaging comprises all kinds of contrast-based (functional) imaging tech-

niques where the contrast is a radioactive compound (radiotracer). The objective of nuclear

imaging is to generate functional images to help physicians in their diagnosis, as guidance

inside the operating theater, follow-up of treatments, intervention planning, etc.

2.1 Why Nuclear Imaging?

Nuclear imaging uses radiotracers that are, by definition, radioactive, and therefore generate

ionizing radiation, which is harmful for living beings. So the question is, why would you use

a technique that is harmful for the patient?

The reason is that most of the time there is no other way to visualize the problem of

the patient. The physician is then the responsible of weighting the potential damage to

the patient versus the positive outcome the visualization might provide. Nuclear imaging

is then used when there is a reasonable suspicion of a disease that cannot be imaged by

a harmless technique, and where the result of a better diagnosis outweighs the possible

radiation damage.

To understand the reasons why radioactive compounds allow the visualization of processes,

it is necessary to look at their chemical properties. In general, the molecules used for

carrying the radioactive atoms have a small molar mass, so the molecules themselves are

very compact, so they can have higher affinity and penetrate tissues with a much higher

probability. This makes the needed amount of tracer injected to the patient lower, since a

higher percentage of it will end at the correct location for imaging.

The second reason is the high sensitivity of the PET and SPECT machines, down to

10−12mol/L, compared to other modalities suitable for humans, like MRI, that work in

15
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the order of 10−3 − 10−5mol/L[8]. That makes the amount of tracer required in the region

of interest much smaller than other modalities. These two concepts, higher penetration and

high sensitivity, align with the principle stated by De Hevesy, the father of the isotope tracer

and nuclear medicine, that the concentration of the tracer has to be as small as possible in

order not to interfere with the biological processes.

2.2 How Nuclear Decay Works

Nuclear imaging works by capturing and recording information carried by the particles

emitted from the decay of radioactive nuclei, or the subsequent interactions of those particles.

A radioactive nuclei is an unstable nuclei, that can spontaneously transform into a more

stable one, and emit particles (for example alpha and beta radiation) or photons (gamma

radiation, characteristic X-ray lines) in the process [3].

The time it takes for a nucleus to produce an emission is unknown, and it is not possible to

influence it. This means that, if you have many molecules with a radioactive atom, all of

them will decay independently. If the radioactive atom is the same in those molecules, the

probability of each atom to decay within certain time is also the same. This is the concept

behind a Poisson process, and it has been successfully tested that nuclear emission in fact

follows this definition[9].

Since it is possible to understand the nuclear emission as a Poisson process, it is possible to

measure certain properties. The most important one is the concept of half life, that is the

time it takes for half of the sample to decay. This time is constant for a certain isotope and

it can go from millions of years (e.g. W180 ) to fractions of attoseconds (e.g. O12 ). Useful

radioisotopes in Nuclear Imaging usually decay in the range of a minute to a couple of days.

The equation that describes the behaviour of the radioactive decay is the following:

N(t) = N0 · e−λ·t (2.1)

where N0 is number of radioactive atoms at t = 0, N is the number of atoms at time t, λ

is the decay constant of this particular isotope and t is the time passed since there were N0

atoms. From the equation it is possible to see that the number of radioactive atoms decays

exponentially, and if one takes two points in time it is also possible to calculate the average

decays per second. The SI unit to measure the decays per second is the Becquerel (Bq).

An example to understand the importance of this equation is the following: Let’s assume

we have in t = 0, 1012 atoms of Tc99m . The half life of Tc99m is 6.01h. One second after
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we will have roughly 9.99968 · 1011 atoms. So, approximately 32 · 106 atoms decayed in the

first second, that means we have an emission of 32MBq.

In practice, with the measurement of the number of decays within certain time and knowing

the half life of the isotope, it is possible to know how many radioactive atoms are still in

the sample, how much it was originally, how long is is necessary to wait until the emission

is below certain threshold (e.g. to safely dispose it), etc.

With several emission counts on time it is also possible to fit the exponential decay curve

and calculate the half life of the isotope.

2.3 Nuclear Emission

There are basically two types of nuclear emission, particles and energy. Particle emission,

as its name says, occurs when an atom expels a particle. This particle can be, depending

on the atom, alpha, beta, proton or neutron. Those emissions occur in the nucleus of the

atom, and this changes the nuclear configuration. For example, when a F18 atom emits a

β+ particle, a proton is converted into a neutron, and the resulting atom is O18 .

The energy emission consist when an atom emits a photon. This photon can come from the

nucleus of the atom, in the form of gamma rays(γ). There are other sources of gamma rays

not coming from the atomic nucleus, which are also described below.

A brief description of the most common emissions can be summarized as it follows:

2.3.1 Alpha emission

Alpha radiation consists in the expulsion of two protons and two neutrons bound together.

Alpha particles are highly ionizing, and have very little penetration. For example in the case

of Ra223 , used in bone cancer treatment, it emits alpha particles with a kinetic energy of

5.78MeV and a speed of 0.05 c. That penetrates less than 100µm of tissue. Alpha particles

inside the body are extremely destructive, so they are not used directly for imaging.

2.3.2 Beta emission

Beta radiation consists in electrons (β−) or positrons (β+) expelled from nuclei at high

speed. When an electron is expelled1, it travels a short distance (relatively low penetration)

until most of its kinetic energy is dissipated, and then is absorbed by an atom. There is

1An electron antineutrino ν̄e is also expelled and one neutron is converted to a proton in the nucleus.
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not much of this process that can be used to generate images, except the bremsstrahlung

radiation, explained later in this chapter.

On the other hand, when a positron is expelled2, it also travels a short distance dissipating

its kinetic energy, until it interacts with an electron. This interaction between the positron

and an electron is called annihilation, where both particles are destroyed, and two gamma

rays of 511 keV are created, which travel in opposite directions3. It is possible to detect those

gamma rays, as explained in the next section, and generate an image of the distribution of

the annihilations.

2.3.3 Gamma emission

Gamma emission from a nuclei can occur in conjunction of other alpha and beta emission,

or as a product of the transition of a higher energy state to a lower energy state in a nucleus.

A gamma ray (γ) is a high energy photon (same as an X-ray), so it travels at the speed of

light, and its energy depends on the specific decay process.

Examples of those are Y90 , that decays to Sr90 emitting a β− (electron), and in 0.01 % of

the cases it produces also a 1.7MeV γ-ray. Also, Tc99m decays to Tc99 with a 140 keV

γ-ray.

The penetration of gamma rays depends on their energy, but in the range used in nuclear

imaging (roughly between 30 keV to 511 keV ), most of them can pass through the imaging

body and be detected outside. This property makes gamma rays the most suitable type of

radiation for nuclear imaging.

2.3.4 Other Gamma sources

There are three other gamma sources suitable to be detected that don’t come directly from a

nuclear emission, but they are directly (generally) related to a previous decay. The first one

is the β+ annihilation mentioned in the beta emission, that is used as operating principle of

the PET machines (briefly described in the previous chapter).

The second source of γ-rays is called bremsstrahlung (decelerated radiation), and it is pro-

duced on every interaction of β particles while losing their kinetic energy after being expelled

from the nuclei. This radiation can have any energy between zero to the current kinetic

energy of the particle, and there can be several interactions before the electron is absorbed

2An electron neutrino ν̄e is also expelled and one proton is converted to a neutron in the nucleus.
3It is important to consider here the conservation of energy and momentum. The directions are exactly

180° and the energy of the gamma rays is 511 kEv if the sum of their kinetic energies before the annihilation
is zero. If that is not the case, the kinetic energy will be distributed between the two gamma rays.
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or the positron is annihilated, which makes this radiation difficult to discriminate against

background radiation. It is anyway possible to use this radiation to generate images in

certain medical interventions[10].

The third source of gamma emission occurs in a process called electron capture and it occurs

in atoms with excess of protons (compared to neutrons). The mechanism is basically that

the nucleus absorbs an electron, and converts one proton to a neutron, emitting a photon

(gamma ray)4. I123 is an example of electron capture, decaying to an excited state of Te123 ,

that immediately decays to an stable state, producing (87% of the time) a 159 keV gamma

ray.

Since the electron is usually taken from the lower energy orbit, there will be a missing

electron there. One electron from a higher energy orbit will eventually drop to this free

orbit, releasing part of its energy in the form of a photon. Since the energy of the electrons

is fixed in the orbits, the change from one orbit to another also produces a photon with

a fixed energy. Those photons are called characteristic X-rays, and are not necessarily

produced by an electron capture process, but by any process that removes an inner shell

electron.

2.4 How Nuclear Detection Works

As presented in the previous section, most of the time in nuclear imaging the goal is to detect

gamma rays. The detection is done mostly from outside the body with special detectors

placed around it.

When a gamma ray is expelled, it travels in a straight line until it interacts with matter.

The interaction itself is also a probabilistic event, and the main variables that control this

probability are the energy of the gamma ray, the atomic mass of the atoms in the material,

the density and the length traveled by the ray through the material. The correct physical

equations are outside the scope of this chapter, but in general a good rule of thumb is that

the higher the energy of the photon, the longer it needs to travel in a material to interact,

and at the same time, the higher the nuclear density of the material, the higher is the

probability of interaction with a gamma ray. Table 2.1 shows some concrete examples of

this relationship.

Some materials are particularly interesting for the detection process, since it is possible to

measure when an interaction occurs. The NaI(Tl) is an example of this. This compound

is a crystal that emits visible photons when there is an interaction with a gamma ray (this

interaction is called scintillation). NaI(Tl) is a transparent crystal, so it is possible to count

4and an electron neutrino ν̄e is expelled
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Energy Water Lead NaI(Tl)

50 keV 164mm 0.1mm 0.3mm
100 keV 272mm 0.3mm 1.0mm
150 keV 251mm 0.6mm 1.8mm
200 keV 234mm 1.0mm 3.2mm
300 keV 217mm 2.5mm 7.7mm
400 keV 211mm 4.5mm 13.8mm
500 keV 210mm 6.7mm 20.7mm

Table 2.1: Required thickness of a material to absorb 50% of gamma rays, versus gamma ray
energy.

the visible photons by coupling it with a visible light detector (photomultiplier), making a

gamma ray detector. There are also more advanced detectors, like CdZnTe crystals, where

the crystal itself is part of the measuring circuit, and the detection is done directly (without

generating visible photons).

Having a device able to detect gamma rays is half of the problem, the other half is to know

from where those photons come, to be able to generate images that show how the radioactive

compound emitting the gamma rays is distributed. To solve the problem of knowing where

the gamma rays come from, there are basically two approaches. In scintigraphs and SPECT

machines, the detectors are shielded with a material capable of absorbing the gamma rays,

and a small window is left opened, so the detected gammas come from the side of the

opening. This is called collimator, and the size of the opening defines how precise the

localization of the photons is (a small opening means that the gammas can only come from

a certain angle) and also how many gammas can be detected (a bigger opening means more

gammas can reach the crystal and be detected). There is a compromise to be made when

selecting the aperture geometry, between resolution, sensitivity and the amount of material

needed for blocking the unwanted gamma rays. PET Machines use a different principle, to

be discussed in Section 2.6.3.

2.5 Imaging the functional behavior

The objective of having a functional imaging modality is to visualize information that is not

really available in an anatomic image, or not easily discernible. For that, the chemistry of

the process to image is vital. Once the process is understood, it is then necessary to design

a chemical compound that can take part of the process and, at the same time, it does not

interfere with the process.

For example, F18 -FDG (Fludeoxyglucose 18F) is a radioactive glucose analogue which, once

injected in the human body, is consumed as glucose, so it will be more concentrated on
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places where there is high energy consumption. It is normal to expect higher concentrations

in the brain, liver and bladder (superfluous glucose gets disposed by the body over urine and

as a result accumulates in the bladder), but if some other areas show higher concentrations

of F18 -FDG, the reason should be studied.

Some other compounds, like Ga68 -HBED-PSMA (hydroxybenzyl ethylenediamine) or In111 -

PSMA, Prostate-Specific Membrane Antigens[11][12], as their names say, are radioactive

molecules designed to attach specifically to the prostate membrane, and with even higher

probability[13] to cancerous tissue in the prostate. The first molecule has a Ga68 atom

that is a β+ emitter (suitable for PET imaging), whereas the In111 , present in the second

molecule, decays by electron capture with γ emissions at 171 keV and 245 keV , suitable for

SPECT imaging.

2.6 Imaging machines

As named before, the most common machines used in nuclear medicine are the Scintigraphy,

SPECT and PET. The working principle of those devices is presented here.

2.6.1 Scintigraphy

This machine, as briefly mentioned in Section 1.2.6, produces 2D images of the radioactivity

distribution of the observed region, and it is used mainly as a diagnostic machine. The

device has various names, gamma camera, scintillation camera or Anger camera, and the

technique itself is called scintigraphy. This name derives from Latin ”scintilla”, that means

spark.

Figure 2.1: Schematic drawing of a scintigraphy. The machine comprises an array of crystals
(cyan), surrounded by shielding in the form of a pinhole collimator (black). The Shepp-Logan[14]
phantom represents the region of interest, and the green bar represents the low dose background
radiation source, to generate the silhouette.

The machine has a two-dimensional array of gamma detectors with collimator(s), that is

big enough to cover the region of interest in the patient. In general, they use scintillation
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crystals coupled with photodetectors. In many scintigraphy machines it is also possible to

exchange the collimator array, depending on the needs of the acquisition. In general, a

more restrictive collimator gives better spatial resolution, at expense of the sensitivity (less

collected photons).

The patient is positioned next to the detector, and the camera remains static with respect

of the patient during the acquisition. The result is a 2D projection of the radioactive

distribution within the region of interest.

The images obtained from nuclear devices have no anatomical references, so that in order to

provide some, a low dose planar source is usually positioned on the other side of the patient,

to produce a small amount of events in the detector forming a silhouette that the physician

can then use as reference.

A schematic drawing is presented in Figure 2.1

2.6.2 SPECT

The acquisition principle of a SPECT machine is very similar to the scintigraphy one. There

is one or more planar 2D detector arrays positioned around the patient, able to acquire a

2D projection of the radioactive distribution. The first big difference is that the detectors

rotate around the patient, obtaining sequences of 2D projections from different perspectives.

Those projections, plus information on position and orientation, are then used to generate

a 3D reconstruction of the radioactive distribution within the patient. The reconstruction

process is described in Chapter 4.

Figure 2.2: Schematic drawing of a SPECT machine. The detectors, two planar surfaces (in this
case) depicted in cyan are shielded and have parallel hole collimators (depicted in black). The
maximum scanning area is represented with a grey circle and inside is the region of interest, depicted
with the Shepp-Logan phantom[14]. The shadowed versions of the detectors show how they are
rotated around the patient.
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The patient, in general, can also be moved with respect to the detectors, so it is possible

to cover a bigger region of interest than what the detectors can see. To provide anatomical

references, SPECT machines today come with an integrated CT machine.

A SPECT machine is mechanically much more complex than a scintigraphy one, since

it needs to rotate around the patient. This extra complexity (and cost) is compensated

with the ability to produce 3D distribution images, that provide the physician with better

information, which consequently help to take better decisions. In many routine scans SPECT

machines have displaced scintigraphy as the default imaging device.

A schematic drawing is presented in Figure 2.2

2.6.3 PET

PET machines, in a similar way to SPECT machines, produce a 3D reconstruction of the

radioactive tracer distribution inside the human body. The tracers are different, and the

machines and physical principles are also different.

The objective of the PET machine is to detect a pair of gamma rays coming from the same

positron annihilation. Those photons have an energy of 511 kEv and travel in (almost)

opposite directions, at the speed of light.

Figure 2.3: Schematic of a PET machine. In this drawing, the crystals are arranged forming
a circular ring. The region of interest, depicted with the Shepp-Logan phantom[14] is inside the
maximum scanning area (depicted with a grey circle).

The idea behind this is that it is possible to narrow down the volume from where the

annihilation occurred to a straight line between the points where the gamma photons were

detected, without needing to use collimators. Moreover, if the detection of the gamma

photons can be constrained in time (the detection process is done in some fractions of

nanoseconds), the line itself can be reduced to a shorter segment. In practice, the line is a
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volumetric structure, since it is not really possible to pinpoint the detection of the positions

exactly.

The PET machine itself comprises one or several crystal rings forming a crystal cylinder.

The crystals can be segmented or continuous, and can also have more than one level of

depth (one cylinder crystals within a second cylinder of crystals). One big advantage is that

no collimator is needed in PET, so no photons are lost in the collimator.

In general, PET machines are simpler in terms of mechanical construction (no need to rotate

the detectors around the patient), but the detectors and the electronics associated are much

more complex.

A schematic drawing is presented in Figure 2.3
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Freehand SPECT Imaging

3.1 Introduction and background

The contributions presented in this thesis are based in the technology developed by a group

of researchers at CAMP (computer aided Medical Procedures) and the department of Nu-

clear Medicine of Klinikum Rechts der Isar, starting in 2005[15]. Part of this group of

researchers founded their own company, SurgicEye GmbH[16], and multiple ideas, problems

and solutions were discussed among those three groups. Several people also worked in both

academical and industrial groups, so sometimes is difficult to separate what was done in one

or the other.

This chapter explains the technology itself and, except where indicated, it applies both

to commercial devices manufactured by SurgicEye and to the experimental setups done in

Klinikum Rechts der Isar and CAMP.

3.2 Motivation

SPECT-CT machines provide a very useful anatomical image (CT) registered with a func-

tional nuclear modality (SPECT). Those combined images are used on a daily basis by

physicians to perform diagnosis and therapy monitoring/follow-up on patients[17][18].

In the intra-operative scenario, in contrast to the diagnostic imaging, it is not really possible

to have big sized machines, since the working space is limited and the surgeon needs room to

perform the intervention. In the same line, for complex procedures the surgeon needs guid-

ance systems that are able to provide fast and reasonably accurate results. Diagnostic image

quality is not really needed, since the diagnosis was already done at this point. However in

general new images are needed, since the pose of the patient during the operation is usually

25
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different to that of the diagnostic images. Furthermore, as the intervention proceeds, the

anatomy is changed: organs are displaced, tissue is removed, blood vessels are rerouted, etc.

This translates in movement of the internal structures and soft tissue deformation[19][20].

Additionally, the surgeon may need to be sure that the resection volume was completely

taken out, so additional imaging during and after the procedure would be beneficial, and

sometimes it is mandatory.

There are solutions that integrate PET/CT and MR in the operating room, like the Ad-

vanced Multimodal Image-Guided Operating (AMIGO) suite[21], but the cost, the amount

of space needed, plus the fact that the patient needs to be moved constantly to acquire new

images are major disadvantages.

A different approach was presented in 2007 using single pixel directional detectors coupled

with optical tracking[22], to generate 3D reconstructions of the radioactivity distribution,

much like a SPECT machine, albeit with lower quality but with a much smaller footprint.

This setup, named freehand SPECT, resulted in a tailored solution for intraoperative nuclear

imaging.

One of the first targeted applications was the surgical procedure called the sentinel lymph

node biopsy (SLNB), where the physician try to resect the first lymph node draining a

tumor[23]. The main reason is that if cancerous cells are spreading, it is highly probable

that the first lymph node(s) that drain to the tumor (the sentinel lymph node(s)) will have

some cancerous cells inside (at least for most solid tumor entities). This procedure is done

in the case of breast cancer, where the lymph nodes are located typically in the axillary

region. This region contains usually 20 to 30 nodes, as shown in Figure 3.1

So, the task for the physician in SLNB is to resect the correct lymph node. In the past,

all lymph nodes were resected, but since approximately 20% of the liquid coming from

the circulatory system travels back through the lymphatic system, the resection of all the

nodules produced liquid accumulation in the arm (lymphedema), that leads to pain and lack

of strength.

The traditional way to deal with the identification of the correct lymph node is to inject a

traceable solution around the tumor, and follow it to the lymph nodes. The usual compounds

are Methylene blue or Patent Blue V, both commonly running under the name of blue dye,

and Tc99m colloid. The advantages of blue dye are its high optical contrast with respect to

the tissue and the fact the it is considered innocuous to a vast majority of patients (Patent

Blue V is also the food colorant E131). Its main disadvantage is that its visibility is limited

when there is even a small layer of tissue on top, so it is not possible to use as a guidance

for the resection. Furthermore, blue dye may drain and washout very fast in some patients

making its detection only possible within a short window of time.
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Figure 3.1: Lymph nodes in the axillary region.[24].

(a) Gamma probes, the topmost with an attached optical tracking
target for freehand SPECT

Detector crystal
Photodiode
Shielding
Case
Cable

(b) Schematic of the internal structure of the
gamma probe.

Figure 3.2: Gamma probe picture and schematic drawing.

The Tc99m colloids are, on the other hand, radioactive and can be detected before the

resection, so it can be used to plan the incision and the extent of the surgical procedure. To

detect the radiation emitted intraoperatively, an instrument called gamma probe is used.

This gamma probe comprises basically a detector and some shielding, to make the detection

directional. An image and an schematic drawing can be seen in Figure 3.2. The gamma

probe is typically set to beep every time a certain number of events are detected (one, ten,

one hundred, etc.), so the surgeon can use the acoustic feedback to orient the gamma probe

in the direction of maximum emission and therefore locate the sentinel lymph node(s) where

the radioactive colloids accumulate.
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The use of blue dye in combination with Tc99m colloids as a dual tracer allows the sur-

geon to navigate using the gamma probe and confirm visually the dyed lymph node. This

combination provides high concordance and high identification rate of the sentinel lymph

nodes[25].

This procedure provided a first entry point to test the idea of freehand SPECT. The idea

is to re-use the current gamma probe detectors, but adding an optical tracking target, so

it would be possible to know its position and orientation. Based on this information, 3D

images could be reconstructed providing nuclear imaging to the surgeon at any time during

the surgical procedure.

3.3 Working principle

3.3.1 Acquisition

Figure 3.3: A freehand SPECT cart,
from SurgicEye, commercially sold un-
der the name declipse© SPECT.

The gamma probe is tracked, in this case using an

optical tracking, by attaching an optical target to it,

as seein in Figure 3.2a. A second tracking target

is generally attached to the patient (on top of the

sternum for the SLNB) to have a local reference. This

allows to re-position the tracking device, in order to

improve the acquisition, without losing the previously

acquired data. The gamma probe is then used to scan

over the region of interest, trying to maximize the

coverage from all possible directions. In practice, this

is usually done by scanning the surface of the region

of interest covering it from different angles to provide

enough angular information for the reconstruction of

a 3D image.

The acquisition itself requires practice and training to produce satisfactory scans. The

scanning quality tends to vary significantly from a novice to an expert and this directly

impacts the reconstruction[26].

This is a crucial step, since it is not possible to have a good reconstruction with a bad

acquisition. What defines a good or a bad acquisition has been studied[26], and in general

the region of interest (where the tumor is) has to be seen from several different angles to
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provide enough information for the reconstruction algorithms. A more detailed, mathemat-

ical explanation to obtain an optimal acquisition trajectory a priori was developed by Vogel

et al.[27][28]

3.3.2 Calibration

To interpret the acquired data properly, it is necessary to measure or model several aspects

of the setup.

The tracking system provides the position and orientation of the tracking targets, like the

one shown in Figure 3.2a, mounted on a gamma probe. To generate the data needed for

the reconstruction, the position and orientation of the tip of the gamma probe, where the

detector is placed, have to be calculated. Since the tracking target is rigidly mounted on the

gamma probe, and the gamma probe itself is also rigid, their mechanical transformation is

fixed, and can be estimated from the mechanical drawings, or directly measured, using the

tracking system and a second target mounted on the tip.

The gamma probe produces a signal every time an event is detected, but this in itself is not

enough to define its origin, i.e. the position in space where the source that originated the

event is placed in space. It is necessary to have an idea of the spatial probability distribution

of radioactivity with respect to the detector. This is, given an event detected, what is the

spatial probability from where this event could have come from. This probability map can be

either inferred from the mechanics of the probe and physical models, simulated by software,

or directly obtained using a radioactive point source and measure the response of the gamma

detector at different locations with respect of the source.

It is essential that the readings of the tracking and the gamma detector are properly syn-

chronized, since both of them (especially the tracking system) introduce a delay in the

measurements. This can be solved using a temporal calibration, in a similar way this is

done in tracked ultrasound[29].

3.3.3 Reconstruction

The reconstruction problem is extensive, and therefore will be explained in more detail in

Chapter 4, in particular in Section 4.4. Here we will assume the reconstruction process as a

black box that gives us the correct radioactivity distribution (a 3D image) given the input

of a gamma reading and positions/orientations and the previously acquired or computed

models.
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3.4 Visualization of reconstructed data

Visualizing the data is particularly important for intra-operative usage, where the physicians

are making decisions based on this data. The visualization of the reconstructed 3D images

is done by using a co-registered optical camera, so it is possible to overlay the results with

the image live view, making it much more user friendly and intuitive.

The camera setup, that consists on one central optical camera and two infrared camera/illu-

minator pairs on the sides, is presented in Figure 3.4, the infrared system being the optical

tracking hardware.

Figure 3.4: Close-up to the optical and tracking cameras from SurgicEye’s declipseSPECT.

With this setup it is possible to present a real-time image, coming from the visible camera,

with the overlaid reconstructed nuclear imaging. This augmented view, shown in Figure 3.6,

enables the surgeon to locate the functional imaging with respect to the anatomical imaging.

The idea of combining different datasets in one view is not new[30], in fact that is the concept

behind SPECT-CT, PET-CT and PET-MR machines, but the use of augmented reality, that

is, co-register and fuse a real time acquired image with precomputed data (in this case, the

tomographic reconstruction), provides an easy and intuitive guidance for the physician[31].

3.4.1 Intraoperative Use Examples

An exemplary operation theater is shown in Figure 3.5. As it is possible to see, the working

space is fairly limited, but the low footprint of the cart allows its use without complications.

A close-up of the area during the scan is depicted in Figure 3.6. On the left, it is possible

to see the injection site (the big purple blob), and two lymphatic nodules (the smaller

purple blobs), overlaid on top of the optical camera image. The right image shows a second

reconstruction after the nodules were resected.

The overlaid visualization is presented in Figure 3.6.
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Figure 3.5: Physician in the operation room searching the sentinel lymph node with freehand
SPECT[32].

Figure 3.6: Intra-operative freehand SPECT reconstruction, overlaid on the optical camera image.
Left: pre-excision, Right: post-excision. The red circles indicates two active nodules in the axilla
that were detected and and afterwards resected during the procedure[33].





Chapter 4

The Tomographic Reconstruction

Problem

4.1 Introduction

In Physics, problems are modeled as a set of equations that explain the relationship between

cause and results (observations). Those problems can, in general, be separated in two classes:

the ones that calculate the results given the causes (direct problem), and the ones that try

to figure out the causes given the results (inverse problem).

An example to illustrate these different problems would be, if we have an X-Ray machine,

where we have a set of equations that model the machine, and we put an object we know

its structure. The direct problem is, in this case, to calculate the radiogram (X-Ray image),

given the structure of the object, the model of the X-Ray machine, and how the object is

placed with respect of the machine. The solution is, in general, unique. However most of

the time we have the X-Ray machine, so we can acquire the radiograms, but what we don’t

know is the object itself.

In this case, going from a set of radiograms and determining the structure of the object is

the inverse problem and, most likely, what we want to solve. Those problems do not have

unique solutions, some of them have infinite solutions or no solution at all, so the methods

used to deal with those inverse problems try to find the best solution, given some extra

constraints.

In general, the problem can be modeled as a mapping:

r = M(x) (4.1)
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Where r are the results (radiograms in our example) and M is our model (the mapping)

that relates our object x with the obtained results. In theory, what we would like to have

is M−1, so we could compute:

x = M−1(r) (4.2)

In general, M−1 does not exist, but there is a variety of methods to cope with that. Those

methods can be classified in two groups, analytical and iterative (series expansion) solvers.

4.2 Analytical solvers

Analytical solvers try to estimate a M−1 by making some some extra assumptions and

also simplifying the model, so an analytical inverse is possible. The big advantage of those

methods is that, for a fixed model M , there is a defined inverse M−1 that can be pre-

computed and just applied to new measurements r to estimate the corresponding objects

x. This means, in the calculation of M−1 there is no discretization, and this is only done at

the very end, when the reconstruction model is implemented.

The advantages of these methods are that the solutions have a closed form, which makes

them very fast, and can provide good results under certain conditions. The disadvantages

are that they cope poorly with noise (compared with iterative methods) and that only

certain problems can be solved with the‘se methods. For example, a CT with a gantry and

a regular sampling is a solvable problem, but a handheld nuclear acquisition (like freehand

SPECT) is not. This is the reason why these methods are not covered here in more detail.

Methods that belong to this category are the Fourier Transform and (Filtered) Back-

projection.

One good, state of the art application where these can be used is in low dose CT, as starting

point for the iterative methods. Since they give an initial result that is clearly better than

a flat zero image, it allows the iterative method to compute faster (iterate less) by starting

from an initial approximate result.

4.3 Iterative solvers

Iterative solvers have a different approach to the problem. The idea of these methods is that

they start discretizing the problem, converting it into a linear system that is then solved to

obtain the reconstruction.
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4.3.1 Discretization

What we would like to have is a mapping f : V → R, that is the physical property we

want to estimate in space[34]. Here we assume our property is a scalar, like the radiation

distribution in SPECT or the attenuation coefficient of an object in CT.

The first step is to discretize f with a finite set of basis functions bi:

f̂ =
∑
i∈I

xi · bi (4.3)

Then ~x = {xi} is the quantity we want to reconstruct. A common reconstruction basis is

setting bi as 1 if the coordinates are inside the i-th pixel, and 0 if not.

If we map ~r = {rj}j∈J as the measurements (results) acquired and Mj as our model that

relates f̂ with rj , we have:

rj =Mj · f ≈Mj · f̂ =
∑
i∈I

xi · Mj · bi (4.4)

If we also map yj =Mj · f as our physical measurements, and denoting aji =Mj · bi gives

us A = {aij}i∈I,j∈J , called System matrix.

Our equation system is then:

~y = A · ~x (4.5)

Each row of our system matrix corresponds then to one measurement in our system, and

each column represents the different contributions of a particular voxel to the results on

each measurement. A single element of our matrix corresponds to the contribution of a

particular voxel in our dataset to the corresponding measurement.

We try to determine x (using an iterative solver method), and with that we calculate f̂

using (Equation 4.3).

4.3.2 Iterative solver methods

There are multiple iterative solver methods, exploiting different properties of the data. The

first, and probably most obvious approach, would be to calculate the pseudo-inverse of A.

This is commonly done, for example, using SVD (Single Value Decomposition), and the

solution is equivalent to minx‖A · x − y‖2, the least squares solution to the problem. This
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solution is, in general, not very good, since the A matrix is ill-conditioned in almost any

setup.

There is a large variety of methods to solve those linear systems, but for our type of problem,

the most interesting are the ones that take into account the probabilistic nature of the

problem. A nuclear emission is modeled as a random, Poisson distributed event[35], and for

that there are methods that model this behavior. In particular two of them, MLEM and

List Mode EM, are suited for the type of data we need to reconstruct.

Maximum Likelihood Expectation Maximization (MLEM) was introduced by L.A. Shepp

and Y. Vardi in 1982[36], and assumes that each voxel in the discretized volume is a Poisson-

distributed emitter, which is the accepted model of radioactive emission[9]. The convergence

proof of the algorithm was done some years after[37]. The update formula of the iterative

algorithm is

xk+1
i = xki ·

1
J∑
j=0

aij

·
J∑
j=0

yj · aij
qj

qj =
I∑
i=0

xki · aij (4.6)

The equation has three multiplicative terms, first one, xki , are the values from the previous

iteration (k). The second term can be seen as a coverage factor of the voxel, that is, how

well the measurements included that particular voxel.

The third factor is the backward projection, and it is the correction factor applied to the

voxel. From this correction factor, ~q the forward projection, or the solution of the direct

problem, given the current model we have. So, if ~q = ~y, then ~xk = ~xk+1.

A common starting point is ~x0 = ~1, and it is the one used in our experiments. Some other

problems, like CT can use different starting points, like the result of a Filtered Backprojec-

tion.

List Mode EM (LMEM) was introduced by Barret and Parra[38] and shares several aspects

with MLEM, including the modeling of the voxel as Poisson emitters. The main difference

in the usage of the algorithms is that MLEM counts the events y of the j-th measurements,

whereas List Mode creates a measurement every time an event is received. The update

formula in Barret and Parra is not the same as the one obtained by Byrne[39], since they

are using slightly different assumptions in their models. In our studies we used Byrne’s

approach, so our update formula for List Mode is:

xk+1
i = xki ·

1
L∑
j=0

aij

·
J∑
j=0

aij
qj

qj =
I∑
i=0

xki · aij (4.7)
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The update formulas are very similar, but they have some key differences. The number

of measurements J is different in both, since in MLEM this is independent of the number

of events (individual detections) received and it is arbitrarily set to, for example, every m

seconds at certain position. In the case of List Mode, it corresponds to the number of events

acquired. For the same reason, there is no yj term in List mode, since it is by definition 1.

The second term of the equation has the sum with a different index L. This is to indicate

that what is being summed here are in fact not the same values of the system matrix A,

but as explained before, this is is the model of the voxel coverage in our acquisition, and

therefore independent of the events detected, as in MLEM.

For math inclined readers, a longer description of both MLEM and LMEM algorithms is

shown in Appendix A.

4.4 MLEM and LMEM for freehand SPECT

MLEM and List Mode EM algorithms were conceived for PET acquisitions, where you have

a fixed gantry. In freehand SPECT, this gantry concept does not really exist, but the

algorithms work in a similar fashion, with some small reinterpretations. The descriptions

here apply to the workflow used in CAMP and Klinikum Rechts der Isar, and not necessarily

to the one followed by SurgicEye.

The key element is the system matrix construction. If we go back to equations Equation 4.6

and Equation 4.7, they are both composed of three multiplicative terms: the first element

is the previous iteration, and both the second and third terms are computed in terms of the

system matrix.

4.4.1 Modeling the Detector

As described before, a gamma detector consists of a material that interacts with the gamma

rays and can measure or count the number of events it detects, and a partial shielding that

blocks the gamma rays, so the detected radiation comes from a certain direction.

Since the plan is to measure the incoming radiation in the detector and then produce a 3D

reconstruction that shows the correct radiation distribution map, it is extremely important

to know, given a detected event, where this might have come from. This is what is needed

to model, the spatial probability of the detector.

There are several ways to model the detector(s)[40]. In the case of a gamma probe, with a

single crystal and a symmetric shielding around the detector, making a physical model based
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on the geometry an the physical properties of the detector and the shielding, is one good

possibility. When the model is not that symmetric (e.g. in the case of a slanted probe) or

there is an array of detectors, it is possible to simulate emission in many different locations

in space, and generate a simulated model.

The third possibility is to directly measure the response of the probe with a radioactive

point source. If the point source and the gamma detector are set in a positioning table that

can move one with respect of the other, it is possible to exhaustively measure the response.

All three alternatives have advantages and disadvantages. The main advantage of the model

is that it is a continuous model, so it is resolution independent, and it is very compact in

terms of storage. The main disadvantage is that it does not scale, so it is useful only for

detectors that are simple enough. The third problem is that it is a model, so there might

be discrepancies between the model and the real construction of the detector.

The second alternative, the simulation, can cope with very complex models, and the quality

of the simulation is bound to the amount of computing power available[41]. It is possible

to improve the model afterwards, since the calculations are done based on Monte Carlo

simulations, where multiple model instances can be combined. The main disadvantages of

this approach is that it is very time consuming to set up accurate models to compute, and

the computation itself is in general also very expensive. This approach also suffers from the

inaccuracies that appear when the model is not equal to the real device.

The third approach, to directly measure the detector, has the advantage that it works

for very complex devices, and that since the characterization is based on the real device,

there are no discrepancies between the measured device and the real device, because they

are the same (the obvious limitation is that applies only to that particular device). The

disadvantages of this approach are the need of hardware (positioning table, lead shielding),

and radioactive point sources to produce an accurate model, plus a calibrator to know its

position with respect to the detector (or some calibration). These are also time consuming

(the model of the gamma camera used in the following chapters took about a month to be

acquired), and it is difficult to improve an already acquired model, since it is not mechanically

easy to re-position the complete setup as it was originally.

Each modeling alternative has a use case. The analytical model makes sense for simple

detectors, the simulation makes a lot of sense for the device manufacturers, since they

have access to the mechanical model of their own machines, and the direct measurement

makes sense when doing a simulation is not really possible, or there is a single one unit to

characterize. A combination of the simulation and partial measurement is also used to see

if a device is, for example, mechanically misaligned, or if there is an error in the modeling.
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To compute the model in the case of the simulation and the measurement, the assumption

is that the same number of events N is generated at each sampling point. For the direct

measurement, this is not possible to do, but staying on each position the same amount of

time (compensated by the decay, if the half life isotope is short), gives the same number of

expected events, since the nuclear emission is Poisson distributed.

If the number of detected events on each position is ni, Ni/N is the detection ratio on each

position. This detection ratio, normalized over the sampled volume (assuming no detection

outside the sampled volume) gives the spatial probability of a detected emission, that is the

model of the detector.

4.4.2 Building a System Matrix

The system matrix is the mapping between the known measurements and the unknown

volume. To generate it, a model of the detectors is needed, and also the spatial location of

these during the acquisition.

The reconstructions done in Chapter Chapter 6 were done using a geometrical model of the

single detector, but for Chapters Chapter 7, Chapter 9 and Chapter 8, a directly measured

look-up table model of the 2D gamma detector array (gamma camera), was used.

Assuming the canonical volume discretization presented in Equation 4.3, the system matrix

is constructed by projecting the look up table (or the model) corresponding to a certain

measurement, from the position and orientation of the detector in that measurement.

In the MLEM update formula, the equalization parameter is basically the sum over the

measurements of the system matrix, so once we have a way to compute it, we just need to

iterate once over it, summing up the values and storing them. In the case of LMEM, this

is a bit different, since our system matrix has an entry every time an event is detected, and

this does not represent the acquired volume anymore. To overcome this, the voxel coverage

is not computed from the system matrix, but from a matrix equivalent to the one used in

MLEM, which uses every position and detector, but only the sum over the positions L is

computed.

4.4.3 Filtering the System Matrix

Since the system matrix is generated using the actual trajectory, it is possible that some

rows are completely zero. This happens when the detector is in a position that covers no
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voxel. Those zero rows are eliminated. Furthermore, a threshold tr > 0 is used also to re-

move measurements with little relevance, since such measurements jeopardize the numerical

stability of the solution.

It is possible to also have voxels that were never covered given the scanned trajectory, i.e.

the detector never had them in the field of view during the scan. Those voxels are also

discarded, and again, a threshold tc > 0 is used, so voxels with little coverage, prone to

generate artifacts, are removed[26].

The third filtering uses a model of the detector, and any voxel that is in contact with the

detector is removed. The assumption here is that there is only air in those voxels, so they

do not belong to the region of interest, since the detector was physically at that location[42].

The exception here is if there is deformation of the tissues if the detector is pressed against

the patient or phantom. If that occurs, this method will certainly produce artifacts the

reconstruction, so in general contact between the detector and the scanned body is avoided.

4.4.4 Iterating

With a filtered system matrix in place, the next step is to iterate to get the reconstruction.

The question is when to stop iterating. Both MLEM and LMEM converge at infinity, but

in general we would like to have a solution in a finite amount of time.

MLEM and LMEM are not considered fast converging algorithms, so in general multiple

iterations have to be done to reach a good solution. Those algorithms resolve the low

frequency components of the images first, and the high frequency components (finer detail)

appear with more iterations.

One would think that the more iterations the better for better reconstruction results, so it

would be possible to iterate as much as possible to maximize quality. The problem here is

the noise that has mostly high frequency components, and with many iterations it tends to

be overestimated, making the reconstruction extremely noisy and generating artifacts.

To visualize the effect of the number of iterations versus the reconstructed image, a set

of planes taken from a reconstructed thyroid phantom, shown in Chapter 8, is shown in

Figure 4.1.

4.4.5 Filtering the Reconstruction

Since not all parts of the reconstruction converge at the same speed[43][44], it is difficult

sometimes to find a good compromise between the overall image quality. A good approach
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Figure 4.1: Cross section of thyroid phantom versus iterations. The number of iterations are
geometrically spaced. A good solution should be able to resolve the cold and hot nodules, without
over-fitting the results. A good compromise would be around 63 to 100 iterations.

has been to over-iterate a bit, and then to apply a Gaussian Filter over the reconstruction,

with a small kernel[45].

Figure 4.2 shows selected reconstruction cross sections from Figure 4.1, with one voxel

Gaussian filter. Structures like the hot and cold nodules are preserved, but most of the

artifacts in the reconstruction are removed.
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Figure 4.2: Cross section of thyroid phantom versus iterations, selected from Figure 4.1. The
results of the first row are not filtered (identical to Figure 4.1) and the results in the second row were
filtered with 1 voxel Gaussian blur. Here the best compromise would be around 158 iterations.

4.4.6 Cost

The size of the system matrix (in bytes) is the number of measurements, multiplied by

the number of detectors, multiplied by the number of voxels in the case of MLEM, and

the number of detected events multiplied by the number of voxels in the case of LMEM,

both multiplied by the size (in bytes) of each number. For some measurements, our system

matrix was around a terabyte in size, so it is not feasible to have those numbers in RAM.

To overcome this, the system matrix was computed ”on the fly”, so every time a value was

needed, it was re-computed.

In general, as shown in Chapter 8, if the acquisition follows a step and shoot pattern, that

is, move, acquire without moving and then move again to the next position, MLEM results

in smaller problem size. On the other hand, if the acquisition is done moving continuously,

LMEM results in a small problem size. The reconstruction quality is fairly similar for both

algorithms.

MLEM and LMEM algorithms are good candidates for parallel computation (like general

purpose GPUs or Intel MIC devices)[46][47], since they need to be executed for each voxel

in the region of interest, and the result of one voxel does not affect the results in the others

in the current iteration.
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Robotics

5.1 Introduction

Robotics is a branch of engineering that deals with the design and construction of a very wide

spectrum of autonomous and semi-autonomous machines. From very simple x-y positioning

table to fairly complex vehicles like the Curiosity Mars Rover in Figure 5.1a, they share the

ability of performing complex series of actions (movements, grasping, etc.) in an automated

way. This ability, plus the usual high accuracy in their movements and the possibility of

programming and/or remote controlling them, makes them ideal to be used in repetitive

tasks and in constrained spaces, as well as tasks performed in areas which are dangerous or

simply inaccessible for humans.

In several industries, like car manufacturing or food processing, many types of robots are

used, in activities such as palletizing, packaging, welding, painting, etc., as the one shown

in Figure 5.1b. In general, industrial robots are set to perform fixed sequences of move-

ments, with very little reaction to the environment (in general, limited to safely stopping

the process).

On the other extreme of the spectrum, the Curiosity Mars Rover is located in an unknown

environment, at approximately 225 million kilometers away, where any command sent from

Earth takes several minutes to reach the vehicle, making any type of remote control unfea-

sible. This makes the Rover a much more complex device, with multiple sensors, a software

pipeline capable of evaluating the measurements, defining the risks, making decisions, doing

corrections on the fly, an so on.

43
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(a) The Curiosity Mars Rover (Copyright
NASA).[48]

(b) Welding robot at the manufacturing plant of Kinshofer
GmbH in Germany.[49]

Figure 5.1: Examples of robots in their environment.

5.1.1 Medical Robots

In medicine, robots can be classified in two categories according to their usage: surgical

robots and imaging robots. In both cases, the safety of the patient and medical personnel is

the first priority, so systems are designed with this in mind. The majority of medical robots

consist of one or several robotic arms, a series of rigid bodies connected by an actuator (see

Section 5.2 , with a construction more similar to the industrial robots than the Curiosity

Rover.

In general, surgical robots are semi-autonomous machines that perform surgical tasks under

full control of by a human. One of the main advantages of having the robot performing the

surgery is the fact that it is possible to map the human movements to the robot’s, which

can be linearly scaled, so large human movements can be translated to small (and very

precise) robotic movements. Other advantages are the possibility of filtering the movements

and implementing tremor correction, providing a platform to perform remote surgery. The

most known example here is the da-Vinci Surgical System, from Intuitive Surgical[50]. This

robot is used in minimally invasive surgery, with a separate surgeon console and effector

arms, and it is used in prostate surgery, cardiac valve repair, gynecological procedures, eye

surgery and throat procedures[51][52].

Projects like ROBOCAST aim to have autonomous robots performing certain surgical tasks,

commanded (but not controlled) by the surgeon, like catheter positioning, biopsy sampling,

etc[53]. The challenges in this area are multiple, and there is still no solution to many of
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those problems, being the most important ones the safety of the patient and personnel, and

the guarantee of the outcome.

RoboDoc is an example of the problems an automated surgical robot can have. This system

was designed for orthopedic use, it was used for knee and hip replacement and it had a

success comparable with surgeons[54][55]. The fact that the system was automated but not

perfect ended up in a class lawsuit in Germany that took the product out of the global

market.

The second type, medical imaging robots, acquire data to create diagnostic or intraoperative

images and support the surgeon making decisions or while performing interventions[56].

Many imaging robots do not need to be in direct contact with the patient, since the adopted

modality does not require it, for example, X-Rays or detected radioactive emission[57]. In

the case of ultrasound robotics, there is direct contact between the ultrasound probe, rigidly

mounted on the robot, and the patient. The robot therefore exerts a force on the skin of

the patient equivalent to a human operator.

Imaging robots are less challenging than surgical robots, but nonetheless they have to gen-

erate results that justify their operation. The Artis zeego Imaging Suite[58] from Siemens

is a robotic C-Arm CT, designed to be used intraoperatively, and can create full body CT

inside the operating room without disrupting the workflow.

As an example, freehand ultrasound compounding is a very challenging topic[59], but by

replacing the operator by a robotic arm, it is possible to produce a scan with a regular

sampling, making better quality ultrasound volumes[60].

This work focuses mainly in robotic arms since, as mentioned early in this chapter, most

medical imaging robots are based on this type of construction.

5.2 Modeling a Robotic Arm

A robotic arm, like the one shown in Figure 5.2 can be seen as a series of rigid bodies (links)

connected by rotational articulations (joints) or translational actuators. This configuration

allows these parts to move with respect to the other (by the rotation or translation of a link

with respect to the previous one). The idea of this type of construction is that, by moving

this joints or linear actuators, the tip of the robot can be positioned in space (within the

mechanical constrains) with respect of the robot base. This joint configuration is known as

the robot pose, and the pose describes unambiguously the relationship between the robot

base and the tip, while the inverse problem, known as inverse kinematics, does not have
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a single solution. The number of joints plus linear actuators in this type of robotic arms

define, in general, the degrees of freedom (DOF) the robot has.

Figure 5.2: Robotic arm inside a virtual planning environment.

Imagining a tool on the tip of the robot (a detector, a scarpel, etc.) that is required to

be positioned in space, it can be shown[61] that 6 degrees of freedom are required for an

arbitrary positioning, 3 translational (X, Y, Z) and 3 rotational (roll, pitch, yaw), within its

dexterous workspace. Therefore, a robotic arm with 5 DOF or less cannot bring an object to

an arbitrary position in space, and one with 7 or more DOF can achieve that with multiple

poses (redundancy).

This redundancy can be seen also in the human body. It is possible to fix one hand against

an object, and move the elbow by rotating the shoulder and the wrist. The final pose,

shoulder to hand, does not change even tough it is possible to move the elbow.

To successfully have a robotic arm moving from a pose A to a pose B smoothly, an inter-

polation between the old and new pose is, in general, not possible, since this could originate

collisions between different parts of the of the robot, or with object in the environment. A

joint trajectory, that is the succession of joint values in time must be planned taking the

cartesian space in consideration, as well as the mechanical limitations of the arm and the

environment.

This joint trajectory is computed in several stages, described here:

5.2.1 Kinematics

To understand the relationship between the robot base and its tip, and how the movements

of the joints or actuators affect its positioning, a mechanical model of the robot in necessary.
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This model is usually derived using the Denavit-Hartenberg parametrization. They proposed

the first minimal parameter representation that describes unambiguously the location of

joints and links in space[62]. Without going into the details of the modeling, using this

parametrization it is possible to construct a series of matrices that, multiplied together,

result into the robot base to tip transformation of the current pose, as in the following

kinematic chain:

[T ] = [Z0] · [X1] · [Z1] · [X2] · [Z2] · [X2] · ... · [Xn−1] · [Zn]

The matrices [T ], [Xi] and [Zi] are all orientation-preserving Euclidean transformation ma-

trices, that means, they are all 4x4 matrices, where the upper left 3x3 matrix is a pure

rotation matrix without reflection, the upper right 1x3 matrix corresponds to the transla-

tion in X, Y and Z, and the lower 4x1 matrix correspond to the vector [0, 0, 0, 1][63].

The origin of the system coordinates for the robot is known as the base, and the tip of

the robot is the end of the last link, so the transformation [T ] represents the base to tip

transformation.

The matrices [Xi] represent the actuators of the robot, and they are dynamically computed

depending on the current value of the actuator. Each [Xi] transformation has a single

parameter pi that defines the matrix. In the case of a rotational joint, the angle is the

parameter; for linear actuators, the extension of the actuator is the parameter.

[Zi] represents the mechanical linkage between [Xi−1] and [Xi]. Those transformations are

fixed, and they are computed from the robot design schematics (or provided with them).

The calculation of the transformation [T ] (or segments of it) from [Xi] and [Zi] is known as

the direct kinematics.

The inverse problem, known as inverse kinematics, consists on finding one or more set of

parameters pi, that define the [Xi] matrices, to obtain a given base to tip transformation.

The parameters have to also fulfill the mechanical constrains of the particular robotic arm,

including maximum extension of the linear actuators and limitations in the rotation of the

joints.

This problem is clearly more complex, and it is in general solved by a dedicated algorithm.

Currently probabilistic sampling algorithms are the state of the art, since deterministic

methods cope with the dimensionality of the problem. A robot with 6 joints an 0.1°precision

has (360° ∗ 0.1)6 = 1021 possible configurations in a toroidal space. Actual robots have

greater precision, hence it is unfeasible to completely explore the solution space.
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There is a long list of ready-to-use solvers, but most of them have multiple configuration

parameters for them, so choosing the best for a particular application is not always an easy

task. There is also a code generator that is capable of autonomously delivering closed form

solutions for generic robots[64].

In general, finding the robot base to tip transformation for 6 degrees of freedom (3 trans-

lational and 3 rotational) is a solved problem, but it is also possible to solve for less DOF.

This is interesting in the case of a symmetric detector mounted on the robotic arm, where

the rotation about its axis is irrelevant (as long as it is known), so finding a suitable solu-

tion with less degrees of freedom allow different planning strategies to be used (minimizing

movement, dealing better with other spatial restrictions, etc.).

Another example is a distance measuring laser mounted on the tip of the robot. Since those

devices are rotation independent, and the total distance will be given by the final robot pose

plus the laser measurements, only four degrees of freedom are needed (two rotations and

two translations), assuming constant accuracy of the measuring device.

5.2.2 Collision detection

The first step to move the tip of the robotic arm from a current pose A to a new pose B, is to

know if this pose exists. Inverse kinematics solve that, but still the new joint configuration

can lead to a collision with the environment or with itself. To properly handle this, it is

necessary to have a 3D model of the robot, where it is possible to position each segment that

connects the joints separately. With this, plus a model of the environment, each possible

solution from the inverse kinematics is tested, until a valid one is found.

This is a fairly expensive step in terms of computational effort, that has to be repeated

multiple times during the trajectory planning pipeline. A reasonably way to speed up this

calculations is to pre-compute the joint ranges where the robot collides with itself, so then

it is just a matter of searching if the desired configuration is feasible or not.

The collisions with the environment cannot be pre-computed unless the environment is

static, but in general this is a very unrealistic assumption. It is, however, possible to check

for collisions at runtime with, for example, an RGBD camera, but it is still needed to

re-compute the trajectory and steer the robot away.
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5.2.3 Path Planning

Knowing that the current pose A and the final pose B are valid configurations, the next

step is to find a path that connects A and B, given that all possible poses in between are

also valid. This is an NP hard problem[65][66], but there are multiple heuristic approaches.

One basic approach is to first try to reach B from A by linearly moving the actuators (a

straight line in joint space). To do so, the path is divided in very small steps, and the

collision detection check is calculated. If that succeeds, a solution has been found. When

that is not the case, an intermediate point position M is inserted in the path, and then A

to M and next M to B are checked. If both trajectories are possible, a solution has been

found. If any of them are not valid, a new pose is inserted within the unresolved interval(s),

until there is a solution.

This algorithm does not sound very clever, but in general it finds reasonable solutions for

many cases. To improve the outcome, it is possible to try several M poses in parallel. It is

common also to add a timeout, so if there is no solution, the current state is discarded, and

new M poses are generated.

Several other algorithms are smarter variations of this one, changing how M is selected.

Just to mention one interesting variation of this is to find the first collision point C in the

path from A to B, and then try to surround the boundary of the obstacle until it reaches a

point D that is closer to the distance between C to B. If this is found, then the algorithm

continues solving from D and B. If it is not possible to find D, there is no solution available

between A and B [67].

It is also important that the planning routines that select the trajectories of the robot avoid

the ”Wrist flip“, the equivalent to a Gimbal lock in robotics (loss of one degree of freedom

at singular points). This happens, for example, when two non-consecutive joints are aligned

(e.g. 1st and 3rd joint), and the joint in the middle (2nd) needs to spin in 180°to keep the

trajectory.

5.2.4 Dynamics (Trajectory planning)

Finding a path connecting A and B is a geometric problem. A path is unfortunately not a

complete solution to the problem if there is no time component in the trajectory planning.

A trajectory is a path plus the timing specification of each point. Finding feasible trajec-

tories, so that they respect the physical limitations of the actuators of the robot requires

knowledge of the masses and inertias of the system, and other forces involved, like gravity,

friction, tip pressure (in ultrasound robotics)[68].
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Figure 5.3: Universal Robots UR5,
with a cart and control unit.

A dynamic modeling of the robot, plus torque sensors

in the robot enable the system to implement a fine-

grained closed control loop, where it is possible to

adjust a path on the fly and, for example, keep a

pressure constant (for ultrasound) or move away if

contact with the patient is detected.

The robot dynamics are normally modeled using La-

grangian mechanics, since they allow easier model-

ing of the problem[68]. The optimum solution, so,

the fastest trajectory following a given collision-free

path, that fulfills the mechanical constrains of the

robot (maximum acceleration, torque and speed) is a

solved problem[69][70].

The dynamics problem are outside the scope of this

thesis, since the robot used for the experiment did not

allow the user to interact with their internal model

and did not have torque sensors. The only available

control is to set a maximum speed and acceleration

of the joint rotations.

5.3 Universal Robots UR5

The work presented in the following chapters was

done using a Universal Robot UR5, shown in Fig-

ure 5.3. This robotic arm has 6 degrees of freedom,

can lift 5 kg, and can work in a maximum radius of

850 mm. Our version did not have any torque sensor,

so any dynamic calculation operates only in open loop

(no feedback).

This device is considered a “collaborative robot”, meaning that it can operate around hu-

mans, since the force it can exert is limited.

The UR5 was designed as an industrial arm, meant to do pick and place. The tip can be

positioned with 0.1 mm precision, but no angular precision is stated.

The robot was not designed to be used as a medical device, but for phantom use was perfectly

acceptable. It has several big limitations we needed to work around during operation. The
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first one is that the two joints, the 3rd and the 5th are physically too close, so it is extremely

easy to make the robot self collide. Figure 5.4 shows one common example of a joint

configuration that produces a self collision. That also made the algorithms to compute path

and trajectory planning very slow, since they had to test a huge amount of combinations

until they could find a working solution.

The second limitation was that it is not really possible to abort a command sent to the

robot using their real time controller and API, the only possibility is to hit the emergency

switch, making an abrupt interruption, and the need to re-initialize the system (and having

to rotate all the joints about 60 degrees).

Taking this in consideration, most experiments were designed to have a static setup, where

only the robot was moving, to minimize the risk of damage to the robot and the surrounding

equipment, including phantoms filled with radioactivity. For the experiments in Chapter 8,

the movements were pre-calculated, since the movement speed and the trajectory needed to

be carefully controlled.

In total, 13 publications have been written using the results from the experiments performed

with this robotic arm in Klinikum Rechts der Isar, 12 of them related to nuclear medicine,

and one hybrid robotic tracking and electromagnetic tracking.

Figure 5.4: Close-up to the joint configuration of the UR5 showing a self collision.
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Chapter 6

Robotic freehand SPECT using

Gamma Probes

6.1 Introduction

The idea of moving towards a robotic solution for freehand SPECT came from the user driven

nature of this modality, making it very difficult to systematically repeat experiments. This

is particularly complex when trying to optimize the parameters of an acquisition. In this

case an experiment has to be repeated several times trying to vary only one parameter at

a time (e.g. collimator, scanning speed, etc.), in order to evaluate how a certain variable

impacts on the reconstruction results. A robotic arm holding the probe, while keeping the

rest of the setup intact, was the starting point of our Robotic freehand SPECT journey.

The first challenge of this experimental modality was to try to reproduce a human scan with

comparable quality. The second one was to see if the system as a whole was able to perform

decay compensation, that is, to produce equivalent reconstructions after some important

portion of the radioactive tracer has decayed.

The work discussed here belongs to the paper “First flexible robotic intra-operative nuclear

imaging for image-guided surgery”, presented at “Information Processing in Computer As-

sisted Interventions (IPCAI)” in 2013[71].

6.2 Setup and Methods

The setup used in this chapter consists of a Universal Robots UR5, described in Section 5.3,

holding a single pixel gamma detector (HiSens, Crystal Photonics, Berlin, Germany[72])

55
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Figure 6.1: Experimental setup showing the (1) robotic arm, (2) gamma detector, (3) optical
tracking system and (4) phantom[71].

with their 60° collimator for radioactivity measurements. An optical tracking system (Polaris

Vicra, Northern Digital, Waterloo, ON, Canada[73]) and optical tracking targets are used

to determine the position of the gamma detector with respect to the region of interest. The

setup is shown in Figure 6.1.

Calibration The spatial relation between the gamma detector tip and the tracking target

was determined using a tracked cylindrical calibrator, provided by SurgicEye[16], fitting

around the detector. Since the location of the detector crystal inside the probe is known

with respect to the tip, the relationship between the tracker of the calibrator and the tracker

of the probe allows to compute the tracker-to-crystal transformation. The relation between

gamma detector tracking target and robot hand was determined automatically using hand-

eye calibration [74][75]. Thus, the relation between the detection crystal and the robot hand

can be computed. Figure 6.2 shows the different coordinate systems involved.

Data Acquisition The events detected by the gamma probe, combined with the tracking

information from the optical tracking and the robot, and the timestamps are recorded during

the acquisition. The gamma detector and the robot are sampled at 60Hz, and the optical

tracking system at 20Hz.

Robot Trajectories Two phantoms were scanned during the experiments, an ex-vivo

phantom and a translucent plastic phantom, see Figure 6.3. In order to generate scanning
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Figure 6.2: Coordinate systems: (1) robot base, (2) robot hand, (3) detector target, (4) detector
tip, (5) phantom target and (6) optical tracking system. All transformations can either be pre-
calibrated (detector calibration, hand-eye calibration), measured intra-operatively (robot, optical
tracking system), or computed from the precalibrated or measured ones[71].

trajectories for the ex-vivo phantom, human scans were used to compute two types of robotic

trajectories.

Figure 6.3: Setup with ex-vivo phantom (left), and plastic phantom (right). In both cases the
optical tracking target is identical to the one used for clinical patients. The hole raster of the plastic
phantom enables reproducible placement of radioactive seeds[71].

The first type of scan, called Path Follow, takes the positions recorded during the human

scan and down-sample them to 5Hz, which is then executed by the robot at constant speed.

This will produce a similar trajectory as the human one, with a slightly different movement

speed.

The second type of scan, called Area Cover, the convex hull of the human scan is computed

and a raster scan is generated within these bounds, which is then executed by the robot at

constant speed.

The different trajectories can be seen in Figure 6.4. In both cases, the orientation of the

probe is approximately the average orientation measured in the human scan.
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Figure 6.4: Area cover scan (black crosses, probe orientation in red) synthesized from human input
(green circles, orientation in blue)[71].

To scan the plastic phantom, since the geometry is known and regular, the scanning pattern

was a basic raster scan with constant speed over three orthogonal faces of the phantom

(closer to the spheres).

Decay compensation As radioactivity decays over time, the exposure time for each

measurement has to be extended, in order to achieve similar photon detection statistics

and thus comparable image quality. This becomes particularly relevant once a half-life or

more of the radioactive tracer has passed, which in the clinical case for the commonly used

Technetium-99m ( Tc99m ) is 6.01h. In this case, adjusting the acquisition speed of the robot

accordingly can compensate for the decay.

Reconstruction After acquisition, the 3D activity distribution in the volume of interest

was reconstructed from the recorded data, using MLEM, described in Chapter 4 and custom

detection models for the gamma detector [76]. The voxel size was 2.5mm for the ex-vivo

phantom and 1.5mm for the plastic phantom. The reconstruction volumes were 17.5 ×
17.5× 12.5 cm3 and 13.5× 11.25× 4.5 cm3 respectively.

6.3 Experiments and Results

Two sets of experiments were conducted, the first set to show that robotic acquisitions can

perform consistent and reproducible scans, while the second set shows the usefulness of

decay compensation.
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For the first set of experiments, the ex-vivo phantom was used, with three radioactive seeds

(1.5ml with a solution of 1.5MBq of Tc99m each). The phantom was scanned by one expert

operator and two novices, twice. The best scan of each operator was selected, and then used

to generate both a path follow scan and an area cover scan. The path follow scan was

performed by the robot three times, and the area cover scan was performed once.

Since the radioactive seeds were located at different depths, the plane containing all three

hotspots was extracted from the 3D reconstruction using PCA (Principal Component Anal-

ysis) for visualization purposes, see Figure 6.5.
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Figure 6.5: Slices through reconstructed images from human operator, robot following human path
(three scans), and robot following synthetic path covering area of interest[71].

Figure 6.6 shows an intensity profile across two rightmost hotspots (from Figure 6.5) for the

human expert scan and for the robotic scans.

NCC Human 1-2 Robot 1-2 Robot 2-3 Robot 1-3

Expert 0.942 0.990 0.979 0.989
Novice 0.709 0.980 0.971 0.980
Novice 0.896 0.966 0.973 0.965

Table 6.1: Normalized cross correlation between two operator scans, versus the robotic scan pairs
from the path follow trajectory[71].

As a measure of reproducibility, the normalized cross correlation (NCC) was computed

between the reconstructed volumes projected along their Z axis, from the two repeated

human and the three repeated robotic scans with the path follow trajectory, see Table 6.1.

For the second set of experiments, the plastic phantom containing three spherical seeds

(250µl with a solution of 500 kBq of Tc99m each) was used.

A raster scan over three orthogonal sides of the phantom was performed, and used as

reference (time t). At t+ 2 hours, t+ 6 hours and t+ 18 hours, the same scan was repeated
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Figure 6.6: Normalized intensity profiles across the rightmost two hotspots for expert and robotic
scans. Distance in mm[71].

two times each, once using the original acquisition speed, and once with the speed adjusted

to compensate for radioactive decay. In order to evaluate the compensation, again the NCC

was computed between the subsequent and the original reconstruction, see Figure 6.7 in the

same way as Table 6.1.
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Figure 6.7: Decay compensation experiment. In each column, both images were acquired at
approximately the same time t+x. Images in upper row were acquired without decay compensation,
images in lower row were acquired with decay compensation (i.e. suitably adjusted slower scanning
speeds)[71].

6.4 Discussion

The procedure to generate SPECT images from freehand acquisitions using a single detector

probe is very challenging. Since the acquisition time is shorter, the detector area is much
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smaller, the total number of photons is considerably less than in a conventional SPECT

machine. On top of that, the viewing angle of the probe is very broad, limiting the recon-

struction capabilities of the setup. Their uses, on the other hand are very different. The

SPECT machine is used for the diagnostics, and it requires a reasonably high image quality.

The freehand acquisition, on the other hand are performed for guidance purposes, so the

exact amplitude of the hot spots are less relevant, assuming that is possible to detect and

separate them.

Figure 6.5 and Figure 6.6 show that robotic scans can provide image quality and hotspot

separability close to a human expert operator. Furthermore, all robotic scans were highly

reproducible with an NCC of over 95%, see Table 6.1. The distances between the hotspots

shown in Figure 6.6 appear fairly constant, an indication of the reproducibility of the scans.

It is important to note that the path-follow scans are an approximation of the real human

scan, which for simplicity and hardware limitations were not performed at the same human

speed, and small angle variations during the scan were simply not reproduced my the robotic

arm. Those limitations can explain the differences between the human scans and the robotic

ones, but what is important to notice here is the reproducibility of the results obtained by

the robot arm, as shown before, something not really possible for human operators.

In the decay compensation experiment, after 18 hours, the non-compensated scan does not

yield a meaningful image, whereas the compensated scan is still comparable to the original

acquisition. It is important to notice, however, that the scan time increased 8-fold in order

to have comparable statistics, i.e. from 5 to 40 minutes. This is particularly important

because a 40 minute scan is not feasible with human operators, but easily doable with the

robotic arm. This experiment is particularly relevant to the clinical workflow of our medical

partners. The common procedure in sentinel lymph node biopsy for breast cancer is to inject

Tc99m to the patient during noon, acquire a scintigraphy image for lymphatic mapping, and

in the next morning the patient undergoes surgery. Such a decay compensation with robotic

imaging can provide more reliable images for incision planning compared to the ones achieved

by much shorter freehand scans.

6.5 Conclusion

In this work we presented the first setup for flexible robot controlled intraoperative functional

imaging with a first evaluation of its performance. This combination enables patient-specific,

flexible imaging in the operating room, which could be integrated to the current surgical

workflow and provide guidance for surgeons.
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The results do not show a real improvement over expert human scans, which is rather

disappointing. On the other hand, it is evident that the robot can be used to optimize the

acquisition workflow, given the consistency in the reconstruction results.
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Step and Shoot Robotic freehand

SPECT using Gamma Camera

7.1 Introduction

As shown in the previous chapter, the idea of having a robot holding a gamma detector to

generate freehand SPECT reconstructions looked promising, albeit the previous results did

not show a real quality improvement. The main limitation was, in our eyes, the detector.

A single pixel detector with a fairly broad angle collimator (60°) is not able to resolve small

structures and has a small collecting area.

Therefore, the next logical step was to replace the gamma probe. At that point we had

access to a 16 by 16 pixels mini gamma camera with a collimator of approximately 11° and

a much larger collecting area. With that we proceeded to generate a characterization of the

detector using a Co57 point source and a positioning table.

As acquisition modality, we chose step and shoot since using a camera with 256 detectors

instead of a single one resulted in a much bigger memory consumption. This fact restricted

us in the number of poses we could use for reconstruction.

The work presented here belongs to the paper “Mini Gamma Cameras for Intra-operative

Nuclear Tomographic Reconstruction”, published at “Medical Image Analysis (MedIA)” in

2014[77].
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Figure 7.1: Setup with optically tracked gamma camera attached to robot arm, scanning the
phantom[77].

7.2 Methods

The imaging setup consists of three parts: the mini gamma camera, the robot arm and the

optical tracking system, shown in Figure 7.1. The gamma camera was rigidly mounted on

the robotic arm using a custom-made holder.

In the following, we describe the methods to connect these three parts together to enable

nuclear tomographic reconstruction.

7.2.1 Measurements

The robot arm moves the camera to several measurement poses yk = (pk,ok) ∈ R3 × R3

(positions pk and orientations ok) distributed around a volume of interest V ⊂ R3. At

each position, the camera acquires the detected events for each camera pixel, during a fixed

exposure time interval (texp), giving a certain number of counts per second (cps) per camera

pixel. We use the unique index j to refer to such a single detector reading, and the respective

measured value is denoted as mj .

The number of measurement poses (k) as well as their distribution in relation to the activity

to be reconstructed has a high impact in the quality of the images. Due to the constraints

in time and space in intra-operative scenarios, the measurement poses will be very limited

in number as well as sparsely distributed.
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7.2.2 Statistical tomographic reconstruction

As explained in Chapter 4, the aim of the imaging setup is to recover the radioactivity

distribution f : V ⊂ R3 → [0,∞). We discretize this still unknown function f as

f(·) ≈ f̂(·) =
∑

i
xibi(·), (7.1)

where bi : V → [0,∞) denotes a user-defined voxel basis of V , and x = (xi) ∈ Rn the vector

of unknown coefficients. Once x is estimated from the measurements, the synthesis operator

(Equation 7.1) will yield the approximated activity signal f̂ . For simplicity, we just use the

index i to refer to voxel bi.

The process of detector j detecting emissions from voxel i is modeled using a Poisson process,

denoting the detection probability as

a(i, j) = P [detected in j | emitted from i]. (7.2)

The detector readings mj are thus interpreted as independently distributed Poisson random

variables, with expectation

E(mj) =
∑
i

xi · a(i, j).

The reconstruction is performed using MLEM, described in more detail in Section 4.3, the

update equation is:

xq+1
i = xqi ·

1∑
j a(i, j)

∑
j

mj · a(i, j)∑
i xi · a(i, j)

with an initial value of x0 = 1 ∈ Rn.

7.2.3 Modeling of the mini gamma camera

A crucial component of the reconstruction process is knowledge of the detection probabilities

a(i, j) from equation (Equation 7.2), also denoted as the model of the mini gamma camera.

While there are several ways of estimating the a(i, j) as explained in Section 4.4.1, in this

work we measure an approximation in a calibration step by directly recording the detector

response to a point source. The chosen method of direct measurement has the advantage

that the exact geometry of the camera does not have to be known, and that it accounts for
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mechanical differences between the design model and the real setup, for example a misaligned

collimator with respect to the camera pixels.

As the camera measurement poses yk (resulting in the detector readings j) are arbitrary,

and the discretization of the volume of interest V into voxels i is variable, the mini gamma

camera model has to be flexible and detailed enough to account for this. Consequently, we

decompose a(i, j) by decoupling the actual calibration measurement, the detector-relative

measurement probability p(`), from the discretization of V by a transformation T : (i, j) 7→ `

mapping the pair of detector reading j and voxel position i to the detector-relative position

` ∈ R3, that is

a(i, j) = p
(
T (i, j)

)
.

The two components p and T are explained in more detail in the following.

Detector-relative measurement probability

Figure 7.2: Calibration setup for acquisition of the mini gamma camera model p. The camera is
mounted to a positioning table to systematically measure a radioactive Co57 point source in front of
the camera in different positions[77].

The detector-relative measurement probability p : R3 → [0, 1] is the camera’s probability to

detect a decay event occurring at location ` ∈ R3, where ` is defined relative to the center

of the camera’s sensor plate. We call the latter the origin of the detector. To approximate

this mapping, a radioactive Co57 point source is measured systematically in front of the

camera using a precision positioning table, see Figure 7.2. At each position `∗ ∈ R3, camera

readings are acquired with a statistically significant exposure time t̃exp. Figure 7.3 shows p

for a single example detector pixel.
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(a) Mini gamma camera
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(b) Measurement probabilities p

Figure 7.3: Plane cut showing the camera model p of a center pixel of the mini gamma camera.
Contributions of the different voxels in front of the camera collimator to the selected camera pixel
are shown[77].

Coordinate system calibration

In order to obtain the measurement probability a(i, j) for a voxel i during acquisition j

as required for tomographic reconstruction, the voxel position first needs to be computed

relative to the detector’s origin using T . Then, the probability for this point can be extracted

from the discretized measurement p using interpolation.

We obtain T by relating the origin of the volume of interest V with the detector origin. We

define canonical coordinate systems for both of them, where the detector coordinate system

is chosen consistent with the camera model p – centered on the detector front face, with x

and y axes aligned to the camera’s pixels, and the z axis pointing away from the camera,

see Figure 7.4. Then, the crucial part of T can be written as an Euclidean transformation

volumeTdetector ∈ R4×4.

Our setup is using an optical tracking system for spatial localization, with tracking targets

attached to the phantom (where the volume of interest is) and the camera. Thus, given a

static transformation cameraTdetector from camera tracking target to its detector coordinate

system, the full transformation reads

volumeTdetector = volumeTcamera · cameraTdetector,

where the varying transformation volumeTcamera is provided by the tracking system.

The last bit, cameraTdetector, is finally obtained using a simple calibration scheme: As shown

in Figure 7.4, an optically tracked pointer tool is used to mark the corners of the housing at

the front of the camera. Based on the known design of the camera, the full transformation

to the detector coordinate system can then be computed.
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Figure 7.4: A pivoting tool is used to obtain the transformation matrix cameraTdetector between the
optical tracking target attached to the gamma camera and the detector coordinate system (overlaid
on the gamma camera)[77].

7.3 Experiments

7.3.1 Hardware setup

The mini gamma camera employed is a CrystalCam by Crystal Photonics, Germany[72].

The detector of this gamma camera consists of a 40 × 40mm2 CdZnTe crystal which has

16 × 16 pixels. The collimator measures 11.15mm in length and is made of lead for side

shielding and tungsten septa to separate the pixels. The 256 square holes are centered in

front of the detector pixels and have sizes of 2.16 × 2.16mm2 each. The energy resolution

is less than 7% at 140 keV .

The camera is attached to the hand of a robot arm (UR5, Universal Robots, Denmark) via

a custom mount, see Figure 7.1.

A tracking target is mounted to the camera housing for tracking by an optical tracking

system (Polaris Spectra, Northern Digital Inc., Canada[73]). An additional tracking target

is used to define the reconstruction volume V , in our case this target is glued to a phantom

(see Section 7.3.3).

A computer running Linux is used to control and read out all the hardware. For synchro-

nization and precise timing, the system was set up with a custom low-latency kernel with a

timer frequency of 1000Hz.

7.3.2 Gamma camera model

The detector-relative measurement probabilities are acquired separately using a high preci-

sion positioning table (OWIS, Germany) with a very low repeatability error (< 15µm), see

Figure 7.2. The mini gamma camera is attached to the z-axis of this positioning table via a

custom mount. A solid Co57 point source is attached to the x and y axes of the positioning
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table and stepped systematically in front of the mini gamma camera. Co57 has a very simi-

lar peak energy (122 keV ) to Tc99m (140 keV ) but a much longer half-life (271 days, versus

6 hours), making it the preferred choice for this experiment. The energy window was set at

10% around the energy peak.

The camera model p consists of roughly 300,000 samples in a three dimensional grid, where

each sample is acquired with an exposure time t̃exp = 7 s. The first 186,000 samples (within

50mm distance from the camera front, i.e. in z-direction) are sampled isotropically at 1mm.

The remaining samples (between 50mm and 150mm distance from the camera front, i.e.

in z-direction) are sampled isotropically at 2mm.

7.3.3 Phantom

A phantom containing three hollow spheres was created to mimic scenarios found in sentinel

lymph node biopsy procedures [cf. 78]. The spheres have comparable sizes to sentinel lymph

nodes for example in the axilla (each with a volume of 0.25ml and inner diameter of 8.6mm),

and are screwed to a grid contained in a plastic box, with outer dimensions 190×110×61mm3

and usable inner dimensions 92× 97× 41mm3.

An optical tracking target to define the volume coordinate system is fixed to the lid of the

plastic box, as shown in Figure 7.5a. The three spheres are filled with a Tc99m solution,

1.2MBq in sphere (1), 0.5MBq in sphere (2) and 1.4MBq in sphere (3), cf. Figure 7.5a.

Based on the experience in our university hospital, these are realistic post-injection uptakes

for axillary sentinel lymph nodes in breast cancer patients, at a total local injection of

100 − 150MBq of Tc99m -nanocolloid around the breast nipple, where the majority of the

injected radiation stays. All spheres are located at the same height z from the bottom grid

of the phantom, the distances dm↔n between the spheres m and n are d1↔2 = 36.40mm,

d1↔3 = 40.31mm, and d2↔3 = 62.65mm.

7.3.4 Parameters for reconstruction

The reconstruction volume V is set to 84 × 100 × 40mm3, approximately the usable inner

space of the box phantom described in Section 7.3.3. The discretization of V is performed

using 1mm3 isotropic voxels, yielding 336,000 voxels in total.

The acquired data sets contain up to 5376 measurements (256 camera pixels at 21 different

poses).
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(a) Phantom from top (b) Scanning scheme

Figure 7.5: Semi-transparent phantom from top view with the white optical tracking target fixed
to the lid and the three spheres filled with radioactive Tc99m solution inside, positions indicated by
the arrows. The phantom was scanned from several perspectives, from sides x (red), y (green), and
z (yellow), as well as from three diagonal poses (brown)[77].

All tomographic reconstructions are performed using MLEM, stopping early after 20 itera-

tions to avoid detrimental noise effects. No further post-processing is applied to the resulting

images.

7.3.5 Experiment design

To generate the data for the experiments, the robot arm is set to acquire data from 21 poses

around the phantom, as shown in Figure 7.5b. To mimic an intra-operative scenario with

very limited access, for example in the abdomen, we define two pose sets covering one side

of the phantom only, once with the camera oriented orthogonal to the respective side (poses

7, 10 and 13), and once oriented orthogonal and diagonal (poses 7-15). For brevity we

denote these two pose sets as 1S (one side) and 1SD (one side with diagonals). In scenarios

like thyroid imaging, access from two perpendicular sides may be possible. Hence the next

two pose sets (2S and 2SD) include scans from two sides, again once scanned with only

orthogonal orientations (poses 1, 4, 7, 10, and 13) and once with orthogonal and diagonal

orientations (poses 1-15). Finally, the last two sets 3S (this is also similar to the one used

in [79]) and 3SD are scanned from three perpendicular sides (poses 1, 4, 7, 10, 13, 16-18

and poses 1-21, respectively). They represent clinical scenarios as found for example in

sentinel lymph node biopsy procedures for breast. The distances between the center of the

closest sphere and the tip of the camera vary between 3 cm and 15 cm, comparable to clinical

scenarios.
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The robot stops at each pose for an exposure time of 10 s, and the events detected by the

gamma camera are recorded at each pose. These six different sets of poses are acquired, as

summarized in Table 7.1, with varying amounts of exposure times texp ∈ {1, 2, 3, 5, 10} s.

Pose set Poses Description
1S 7, 10, 13 One side, orthogonal scans
1SD 7-15 One side, orthogonal and diagonal scans
2S 1, 4, 7, 10, 13 Two sides, orthogonal scans
2SD 1-15 Two sides, orthogonal and diagonal scans
3S 1, 4, 7, 10, 13, 16-18 Three sides, orthogonal scans
3SD 1-21 Three sides, orthogonal and diagonal scans

Table 7.1: Different pose sets used for experiments[77].

The first experiment (we refer to it as Experiment A) studies the influence of the chosen

acquisition poses on the quality of the reconstructed image. Hence we evaluate all six pose

sets from Table 7.1, using an exposure time texp = 10 s to have sufficient detection statistics.

This will provide an expectation of the potential imaging quality in the intra-operative

scenarios outlined above.

The second experiment (we refer to it as Experiment B) is aimed at understanding the influ-

ence of the exposure time on the reconstruction quality. For smooth workflow integration,

this time should be minimized, while for best detection statistics, exposure time per pose

should be maximized. We choose the three pose sets 1SD, 2SD and 3SD (cf. Table 7.1) and

reconstruct them using exposure times texp ∈ {1, 3, 5, 10} s for each pose. This will provide

a first guideline what exposure times will be clinically useful.

In a third Experiment C, we fix the total acquisition duration to approximately 45 s to

simulate an intra-operative workflow with limited time available for imaging, but freedom

in choosing poses. We select again the three pose sets 1SD, 2SD and 3SD (cf. Table 7.1),

and reconstruct them using exposure times of 5 s, 3 s and 2 s, respectively. This experiment

will reveal whether more acquisition poses or longer exposure times are more important for

image quality.

7.3.6 Evaluation

In order to evaluate the reconstruction results, we process the reconstructed volumetric

images of each experiment to extract information on the hot spots and compute several

quality measures.

First, we run a conservative thresholding step discarding intensities lower than 1% of the

global maximum intensity of the respective image. Subsequently, the number of recon-

structed hot spots, their respective centroids, and their uptake values based on the results

of an automatic 3D region growing algorithm are computed. The algorithm used is similar
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to the one in the work of [80], where they segment the hot spots in SPECT images to identify

lymph nodes. Our algorithm also uses local maxima in the reconstructed volume as seed

points for a recursive region growing approach to determine the hot spot candidates. Af-

terwards it iterates over the candidates and deletes the ones which were already segmented.

From these segmented hot spots, those corresponding to the ground truth spheres (true

positives), and the regions not forming a part of any sphere are labeled as artifacts (false

positives). Both the case of several reconstructed hot spots corresponding to a ground truth

sphere and the case of a ground truth sphere having no corresponding reconstruction (false

negative) did not occur in any of the experiments. Based on this data, we compute several

quality measures:

Average localization error

We compute the 3D distances of the reconstructed centroids to the ground truth centroids

of the hot spots. The average of these centroid errors evaluates the spatial accuracy of the

reconstruction as a whole.

Artifacts

We evaluate the artifacts in the reconstruction, that is the segmented hot spots not cor-

responding and not connected to a ground truth hot spot (false positive). Minimizing the

number of artifacts and the accumulated intensity in those artifacts is crucial for intra-

operative use, since high intensity artifacts may lead to false conclusions. Two measures

were evaluated for each image: the number of segmented artifacts present in the reconstruc-

tion, as well as the accumulated uptake assigned to all artifacts combined (as a percentage

of the total activity reconstructed).

Sørensen-Dice similarity coefficient

The Sørensen-Dice coefficient QS [81, 82] is a metric used for comparing the similarity of

two datasets. In our case, we compare the volumes of all three spheres f̄gt as ground truth

with the reconstructed and binary segmented spheres f̄seg. The formula

QS =
2 ·
∫
V f̄gt · f̄seg dV∫

V f̄gt dV +
∫
V f̄seg dV

(7.3)

indicates the amount of overlap ranging from 0 to 1.
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Figure 7.6: Left: Volume rendering of the reconstructed image (pose set 3SD, texp = 10 s). Right:
Photograph of the box phantom without lid from a similar perspective, showing the three spheres
containing radioactive Tc99m solution. The spheres are marked with their respective number (red)
and ground truth activity (blue)[77].

Ratio of uptake values

Finally, we compute the relative uptake in each hot spot, that is the relative activity recon-

structed per sphere as a percentage of the total activity reconstructed. Ideally, this should

be equal to the ratio of the ground truth activities per hot spot as a percentage of the total

activity in all spheres.

7.4 Results and discussion

7.4.1 Results

To give a general impression of the reconstructed images, Figure 7.6b shows an example

reconstruction of the phantom (using measurement pose set 3SD, texp = 10 s), next to a

photograph of the phantom.

Experiment A

Here we evaluate the influence of the chosen acquisition poses on the results. Figure 7.7

shows the reconstruction results of Experiment A as projection images along the z-axis as

well as the y-axis for all six pose sets using texp = 10 s, while Table 7.2 lists the quality

measures for each reconstruction. The results of pose sets 1S and 2S show elongations

and artifacts along the scanning directions. Adding more sides (3S) or diagonal orientations

(1SD, 2SD, 3SD) allows to increasingly eliminate the elongations and artifacts and to confine

the reconstructed activity in the expected areas.
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(a) Pose set 1S (one side, orthogonal
scans)

(b) Pose set 2S (two sides, orthogo-
nal scans)

(c) Pose set 3S (three sides, orthog-
onal scans)

(d) Pose set 1SD (one side, orthog-
onal and diagonal scans)

(e) Pose set 2SD (two sides, orthog-
onal and diagonal scans)

(f) Pose set 3SD (three sides, orthog-
onal and diagonal scans)

Figure 7.7: Results of Experiment A shown as projections along the z-axis (top row) and y-axis
(bottom row). The projections are individually normalized for better visualization. The ground
truth is depicted as an overlay of white circles representing the spheres of the phantom[77].

Experiment B

Here we evaluate the influence of the exposure time per pose for the pose sets 1SD, 2SD and

3SD using exposure times ranging from 1 s to 10 s. The quality measures average localization

error and ratio of uptake values do not show a significant difference (up to 10% for pose set

1SD, less than 5% for pose sets 2SD and 3SD). A more visible impact of the exposure time

is shown in the artifact quality measure where longer exposure times reduce the number of

the artifacts and their uptake, see Figure 7.8.

Experiment C

Using a fixed total acquisition duration of approximately 45 s, we evaluate the pose sets

1SD, 2SD and 3SD with corresponding exposure times texp. The results in Table 7.3 show,
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Activity uptake Artifacts Localization Sørensen- Data set
Pose set # 1 # 2 # 3 # Upt. error Dice coeff. # poses

1S 67% 20% 13% 2 0% 29.1 mm 0.03 3
2S 33% 14% 37% 5 15% 3.0 mm 0.45 5
3S 39% 16% 42% 7 2% 1.0 mm 0.78 8

1SD 42% 19% 37% 4 3% 1.6 mm 0.48 9
2SD 40% 17% 42% 3 1% 0.9 mm 0.70 15
3SD 39% 17% 44% 1 0% 0.7 mm 0.82 21

GT 39% 16% 45%

Table 7.2: Experiment A: quality measures for all six pose sets (using texp = 10 s). From left
to right: ratio of uptake values for the three spheres, number and uptake of artifacts, average
localization error, Sørensen-Dice similarity coefficient, data set information (number of poses). The
last row displays the ground truth (GT) uptake values for comparison[77].

Figure 7.8: Experiment B: influence of the exposure time on the artifacts. Gray: total number
of artifacts in volume (using left axis); Orange: percentage of activity in the artifacts compared to
total reconstructed activity (using right axis)[77].

Activity uptake Artifacts Localization Data set Total
Pose set # 1 # 2 # 3 # Upt. error # poses texp duration

1SD 42% 19% 36% 11 3% 1.6 mm 9 5 s 45 s
2SD 40% 17% 42% 6 1% 1.0 mm 15 3 s 45 s
3SD 39% 17% 44% 2 0% 0.7 mm 21 2 s 42 s

GT 39% 16% 45%

Table 7.3: Experiment C: quality measures for a fixed total acquisition duration of approximately
45 s using selected pose sets. From left to right: ratio of uptake values for the three spheres, number
and uptake of the artifacts, average localization error, and data set information (number of poses,
exposure time texp, total acquisition duration). The last row displays the ground truth (GT) uptake
values for comparison[77].

that more poses achieve better results compared to longer exposure times.

7.4.2 Discussion

As shown in the previous section, it is possible to segment and locate hot spots with high

accuracy, given that the measurements cover the phantom sufficiently. The exposure time

per pose also plays a role, but it is less crucial when considering the overall reconstruction

quality.
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Experiment A shows that the number of sides covered by the projections have great impact

on the reconstruction quality. Having diagonal views on the sides helps improving the quality

of the reconstruction, making Figure 7.7f the best reconstruction. The improvements made

by adding diagonal views is also clearly less crucial than the improvement gained by adding

poses from another, orthogonal side. Having poses from three orthogonal sides plus diagonal

views provides the best image quality. Unfortunately, this type of configuration is not always

possible within the operating room, due to the patient anatomy and limited access to the

region of interest. Consequently, studying constrained scenarios is key to understanding the

feasibility of the technology within actual clinical settings. Judging from the results, it is

clear that the 2SD case can also provide acceptable reconstructions.

Experiment B shows the existence of a clear dependency between the exposure time on each

pose and the quality of the reconstructed images. The average localization errors and ratios

of uptake values do not improve much, but the artifact quality measure improves by at

least 50% when increasing the exposure time from 1 s to 10 s, independent of the number

of poses covered. But not only the number of artifacts is important, also the accumulated

activity plays a role. For the acquisition sets 1SD and 2SD, this measure does not improve

much with longer exposure time per pose, whereas for set 3SD it improved significantly. But

since in set 3SD the number of artifacts and their total activity is already quite low, this

improvement has to be put into perspective.

Experiment C clearly shows that the main factor for improved image quality is the number of

distinct poses. All our quality measures improve within the fixed amount of approximately

45 s scanning time: The ratio of uptake values approaches the ground truth values when

adding more poses, the number of artifacts and their uptake reduces significantly and the

localization error also improves by more than 50%.

Experiments B and C show that increased exposure times do not improve the quality of

the reconstructions very much. In particular, it is much more effective to distribute the

available time to cover more poses, and in doing so increase the angular coverage of the

region of interest.

Increasing the number of poses has a direct influence in the reduction of the artifacts, as long

as the three orthogonal views are still covered. Furthermore, the activity percentages in the

segmented hotspots in all our reconstructions correspond nicely with the actual radioactivity

in the spheres, with only slight deviations.

Compared to [79], the hardware setup was upgraded and software changes were introduced.

The localization errors of the acquisition scan similar to pose set 3S are much lower in this

work, and the acquisition times were reduced tenfold in the shortest scans.
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We believe those improvements are mainly caused by a much better, high-resolution and

exhaustive characterization of the gamma camera’s measurement model. The voxel size was

also reduced from about 16mm3 to 1mm3, and as a result we can now measure the error

with much higher accuracy than before.

7.5 Conclusion

The results show that it is possible to obtain accurate reconstructions with less than one

millimeter average localization error in less than one minute of acquisition. The key param-

eter for image quality was shown to be the number of significantly different measurement

poses.

The tested configurations were comparable to an intraoperative sentinel lymph node biopsy,

where the results obtained show that this setup can be used as guidance for the surgeon to

accurately locate and resect the radioactive lymph nodes.

Compared to the results from the previous chapter using the gamma probe, the localization

error of the point sources is about one order of magnitude lower. This opened us the door

for more challenging reconstruction scenarios, presented in the next chapter.
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Continuously Moving Robotic

freehand SPECT using Gamma

Cameras

8.1 Introduction

As seen in the previous chapter, the results obtained using robotic gamma camera acqui-

sitions for freehand SPECT reconstructions meant a huge step forward in terms of image

quality. With respect to the gamma probe acquisitions, the improvement in terms of accu-

racy made us believe that we could use this technology in more complex scenarios.

To be able to reconstruct extended sources with a small camera, it is necessary to scan the

objects from many poses, which produces fairly big matrices for the reconstruction. This,

combined with the fact that the time between scanning positions is wasted and that step

and shoot with a gamma camera is not really feasible for handheld acquisitions, made us

search for new reconstruction methods.

List Mode Expectation Maximization appeared as the solution for this problem. This

method allowed us to have continuous trajectories, so no more wasted acquisition time.

This also makes it possible to have handheld acquisitions again if needed. The size of the

matrices and, therefore, the computation time were also significantly reduced when doing a

continuous acquisition.

The work presented here belongs to the paper “Flexible Mini Gamma Camera Reconstruc-

tion of Extended Sources using Step and Shoot and List Mode”, published at “Medical

Physics” [83].

79
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(a) Complete setup with part of the robotic arm (I),
gamma camera holder (II), gamma camera (III) and thy-
roid phantom (IV).

(b) Rendering of the thyroid phantom (bottom half). Two
medium-sized nodules (I, II) are on the left, a small (III)
and a big one (IV) on the right.

Figure 8.1: Hardware setup and thyroid phantom[83].

8.2 Hardware Setup

Our experiments aim at comparing different acquisition and reconstruction modes for thyroid

imaging using a flexible mini gamma camera setup. In order to have equivalent, realistic data

in each of the settings, our setup consists of three components: A custom designed thyroid

phantom, a mini gamma camera, and a robotic arm guiding the camera (see Figure 8.1).

The mini gamma camera is a CrystalCam by Crystal Photonics[72], described in detail in

Section 7.3.1. We selected an energy window of ±5% around the 140 keV gamma peak of

Tc99m . The gamma camera characterization procedure corresponds to the one presented in

Section 7.2.

The robot, a Universal Robots[84] UR5 (see Section 5.3) , and the camera are rigidly coupled

by a custom-designed adapter. The main purpose of the robot is to have accurate position

tracking and reproducible trajectories.

8.3 Phantom

Many commercial phantoms for scintigraphy are intended for planar acquisition only. Our

custom-printed phantom is designed to better mimic a human thyroid, both in terms of

three-dimensional shape as well as volume. A rendering of the model and a picture of the

complete setup are shown in Figure 8.1.

The phantom consists of a chamber shaped like a thyroid, with four inner chambers resem-

bling nodules (numbered I through IV as marked in Figure 8.1b), inside a box-like enclosure.

The phantom is mostly symmetric, with small cylindrical support structures (2mm diame-

ter) that hold the thyroid and inner chambers in place with respect to the enclosure. The
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(a) Extracted coronal section (in blue), transverse sections
(in yellow and red), and profile extraction location (in green).

(b) Mechanical drawing.

Figure 8.2: Graphical and mechanical description of the thyroid phantom[83].

support structures at the top of the phantom have a hole of 0.5mm diameter that connects

the nodule chambers with the outside of the phantom, enabling the user to fill the chambers

with a syringe. Additional hollow support structure enable separate filling of the thyroid

body and the outer chamber. The outer bottom part of the enclosure is rectangular, while

the top part is rounded, to mimic the neck region better.

The total volume of the thyroid (including the inner chambers and the support material) is

15.5ml, the effective volume is 12.6ml. The smallest chamber (III) has a volume of 0.11ml

(6mm inner diameter), the medium sized ones (I, II) 0.27ml (8mm inner diameter), and

the bigger elongated one (IV) 0.87ml (8mm diameter half spheres connected by a cylinder,

with a total length of 20mm). Figure 8.2b shows a mechanical drawing of the phantom,

including the relevant dimensions.

8.4 Experiment Design

With this setup in place, two datasets have been acquired. The first one consists of a “step

and shoot” trajectory (SAS) around the phantom. In such a setting, the camera is moved

to a certain pose, at which measurements are acquired only while the camera remains in

place. Afterwards, the camera is moved to the next pose, to resume measuring there. The

second dataset is a “continuous” trajectory where the camera is moving smoothly while

continuously measuring.
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Figure 8.3: Rendering of the gamma camera, showing the scanning positions with respect to the
phantom (in green). Measurements were acquired at each position along the trajectory (in red)
using three tilts at 0◦ and ±30◦, in plane with respect to the trajectory. In total, three half-elliptical
movement paths were performed over the thyroid to achieve full coverage[83].

8.4.1 Datasets

For the SAS case, three parallel half-elliptic trajectories were computed around the phantom,

and every 3° over the ellipse, the camera was first positioned oriented perpendicular to the

phantom, and then tilted by 30° and −30° as second and third poses, see Figure 8.3. We

measured three half-ellipses of 61 stopping points each. Considering the three perspectives

at every stopping point, the total number of poses amounts to 549 for SAS. At each pose

the acquisition time was 0.6 s, yielding an effective acquisition time of 329 s. The movement

of the camera took 654 s in total. We only consider gamma rays detected while the setup is

stationary.

For the continuous case, a similar trajectory was generated. However, this time, we were

continuously measuring gamma rays during movement without stopping the movement. We

used the same ellipses with the same ±30° tilts as basis for the trajectory. The complete

continuous trajectory was executed in 293 s.

8.4.2 Reconstruction

With these two datasets and the two expectation-maximization reconstruction algorithms,

ML-EM and LM-EM (see Chapter 4), a total of four combinations have been investigated:

For step and shoot ML-EM, the static poses were extracted, and all respective detections

were accumulated into pixel-wise counts, i.e. binned according to poses. For step and

shoot LM-EM, the same trajectory with static poses was used, and the selected events are

identical to the ones used in the previous dataset, but in this case they are represented as

a list of events without any binning. For continuous ML-EM, the data from the continuous

trajectory was temporally binned into intervals of 48ms, similar to the refresh rate of an
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optical tracking system [73] as used commercially[16]. For continuous LM-EM, we used the

continuously acquired detections directly as a list of events.

For all reconstructions, we used a volume of interest of 80×80×50mm3, with 2mm isotropic

cubic voxels.

For all reconstructions we used 166 iterations of the respective algorithm. This number was

selected as the maximum number of iterations such that all experiments achieve a likelihood

difference between subsequent iterations of less than 5 · 10−6.

Additionally, we used a simple attenuation correction built in the system matrix, assuming

that the phantom completely consists of water. No scatter correction was used. The recon-

structions were post-processed with an isotropic Gaussian filter with a kernel size of 1mm3

(0.5 voxels).

8.4.3 Radioactivity and Simulated Lower Uptake

The nodules I, III and IV (hot nodules) were loaded with a solution with the same concen-

tration of Tc99m , yielding a total of 3MBq of activity. This solution was then diluted 1:10,

and used to fill the thyroid chamber, resulting in a total activity of 6MBq for the whole

phantom. The outer chamber was filled with water, and nodule II (cold nodule) was left

empty.

In our university clinic, the patients receive an injection of 67MBq on average, and the

mean uptake in the thyroid is 1.7%, resulting in approximately 1.1MBq. In general, the

injected value is relatively constant, but the uptake is very patient-dependent. That results

in about 10% of the patients having an uptake of less than 300 kBq and about 5% of the

patients having an uptake of over 6MBq.

To understand how the uptake influences the result of the reconstructions, and to better

cover the uptake range of patients, simulated lower uptake experiments were performed

using the acquisitions with the phantom loaded as described before.

Therefore, we consider two additional virtual settings, 20 % of the total activity (equalling

1.2MBq, approximately the average in our clinic) and 5 % (0.3MBq, a lower bound covering

almost 90 % of our patients). We employed statistical rejection sampling, using the temporal

histogram of the original detections to reject measurements. Thus we produce a temporal

histogram with approximately the same shape, but with the amplitude scaled down to

the desired acceptance factor [85]. To better understand the effect of the statistical sub-

sampling, we produced multiple noise realizations for each dataset.
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In total, we repeated each of the four reconstruction experiments once with the full data

(high uptake), 16 times with 20 % (medium uptake) and 16 times with 5 % (low uptake) of

the originally acquired observations.

8.4.4 Planar Scintigraphy

Planar scintigraphy is the current main imaging modality for thyroid diagnosis. To emulate

the results of a scintigraphy, which is using a significantly bigger, stationary gamma camera,

our camera was positioned orthogonally in overlapping 21 positions that were afterwards

stitched together to generate one full image. At each position the camera was held for 3 s,

the images were up-sampled, the results in the overlapping regions were averaged, and the

image was down-sampled again to 1mm isotropic square pixels.
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Figure 8.4: Planar scintigraphy and line profiles of the thyroid phantom, created using the gamma
camera in 21 stationary positions, averaging the overlapping areas. The profiles were extracted from
the planar image in a similar fashion as the ones presented in Figure 8.7[83].

8.5 Results

Figure 8.4 shows the planar scintigraphy of the thyroid phantom acquired using our setup. In

comparison, Figure 8.5 shows the three-dimensional reconstructions using both ML-EM and

LM-EM for the “step and shoot” (SAS) and the “continuous” (Cont.) datasets when using

all the original detections, i.e. the high uptake data set. The first row shows the equivalent

coronal center cross-sections through the reconstructed radioactivity distributions. The
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transverse cross-sections shown in the second row are positioned to contain the centers of

nodules I and III, and the transverse cross-sections in the third row are positioned to show

the isthmus connecting both thyroid lobes, above nodules II and IV. The location of the

coronal cross-section and the two transverse planes with respect to the thyroid phantom is

indicated in Figure 8.2a. All intensities are scaled to the interval [0, 1] for each reconstruction

individually, and the colors are represented in a nonlinear fashion in order to highlight low

contrast regions.

As seen in Figure 8.5, the two algorithms (ML-EM and LM-EM) yield very similar re-

construction results for the same dataset, extending even to the shape of artifacts. In all

settings, the thyroid is reconstructed and hot and cold nodules are discernible. However,

the isthmus between the lobes is not reconstructed very well when using the SAS trajectory,

erroneously bulging away from the center.

SAS trajectory Continuous trajectory
ML-EM LM-EM ML-EM LM-EM

Figure 8.5: Reconstruction results of all four methods using the high uptake (6MBq) data set.
Shown are coronal cross-sections (top row) as well as two transverse cross-sections (middle and
bottom row). The locations of the cross-sections is illustrated in Figure 8.2a. All intensities are
scaled to the interval [0, 1] for each reconstruction individually[83].

Figure 8.6 compares the same cross-sections for the high uptake data set (6MBq), one

representative simulated medium uptake data set (1.2MBq, corresponding to the average

patient in our clinic), and one representative simulated low uptake data set (300 kBq, cor-

responding to less than 10% of the patients in our clinic regardless of pathology). This time

we only show the results using the SAS trajectory and ML-EM reconstruction as well as the

continuous trajectory and LM-EM reconstruction, as these are the only practically relevant

methods.



86 Chapter 8

With decreasing uptake the image quality deteriorates, as expected. In particular, for both

methods the reconstruction of the thyroid background loses homogeneity with decreasing

uptake, while maintaining the overall characteristics as described for the high-uptake exper-

iments.

High uptake (6MBq) Medium uptake (1.2MBq) Low uptake (300 kBq)

Figure 8.6: Reconstruction results of data sets with high, medium, and low uptake using the SAS
trajectory and ML-EM (left columns) and the continuous trajectory and LM-EM (right columns).
Shown are coronal cross-sections (top row) as well as two transverse cross-sections (middle and
bottom row). The locations of the cross-sections is illustrated in Figure 8.2a. All intensities are
scaled to the interval [0, 1] for each reconstruction individually[83].

Figure 8.7 shows line profiles extending in sagittal direction through the nodules in both the

left and right lobe of the thyroid phantom, respectively. The profile in the left lobe passes

through the centers of nodules I and II and the profile in the right lobe passes through the

centers of nodules III and IV, as indicated in Figure 8.2a. For reconstructions using the

SAS trajectory and ML-EM, the profiles are marked in red, for reconstructions using the

continuous trajectory and LM-EM, the profiles are marked in green.

Numerical magnitudes for quantitative comparison are given in Figure 8.8 for all experi-

ments. The Contrast Recovery Coefficient (CRC) is presented for each nodule, calculated

as cr1/cr2−1
c1/c2−1 , where cr1 is the mean concentration at the nodule location, cr2 is the mean

value of the background, and c1/c2 is the ground truth ratio between them. In the per-

fect case, the CRC has a value of 1, a value smaller or bigger than 1 indicates under- or

over-estimation, respectively.

In detail, the CRC was calculated using the following procedure: The location of each nodule

was extracted from the phantom’s drawings, and then used to select the corresponding voxels

from the reconstruction, minus a small border (0.5 voxels, or 1mm). cr1 is then computed

as the average activity of these voxels, where partially selected voxels at the borders were

weighted accordingly. To obtain the mean background activity cr2, two spheres of the same

size as the medium nodules were extracted on each side of the thyroid, where it was certain

that the area belonged to the background, and then the contained activity was averaged.



Continuously Moving Robotic freehand SPECT using Gamma Cameras 87

L
ef

t
lo

b
e

0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

R
ig

h
t

lo
b

e

0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

High uptake (6MBq) Medium uptake (1.2MBq) Low uptake (300 kBq)

Figure 8.7: Profile plots for the reconstructions computed from high, medium, and low uptake
data. For the medium and low uptake, the plot shows the average value of the realizations, and
the dotted profiles correspond to one standard deviation away from the mean. The profiles for
the reconstructions using SAS trajectory and ML-EM are shown in red, the ones using continuous
trajectory and LM-EM are shown in green. The ground truth is shown as a colored bar below the
profile; orange for 100% activity (hot nodules), light yellow for 10% activity (background) and blue
for 0%(cold nodule and areas outside the phantom). The profile in the left lobe passes through the
centers of nodules I and II and the profile in the right lobe passes through the centers of nodules III
and IV, as indicated in Figure 8.2a[83].

In general, for high uptake, the four combinations of the two datasets and the two recon-

struction algorithms yield very similar results: The CRC of the large hot nodule IV is

overestimated (as being too radioactive), and the ratios of all other nodules are slightly

underestimated. For medium uptake, ML-EM SAS also overestimates the ratio of the more

separate hot nodule I. For low uptake, the results are somewhat more diverse, and in par-

ticular, the large hot nodule IV is over-estimated in all cases. Comparing all settings, the

CRC of cold nodule II is always underestimated, i.e. reconstructed as it is less radioactive

than in reality.
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Figure 8.8: Contrast recovery coefficients for nodules I to IV in the thyroid phantom, computed
for each of the four reconstruction methods using the high, medium, and low uptake data sets. As
comparison, the contrast recovery coefficients obtained from the planar image are presented on the
right[83].

Finally, Table 8.1 provides the time required for trajectory execution and the number of
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detected emissions for each experiment. In addition to these values, the average time re-

quired to perform one iteration of the reconstruction algorithm is specified (a total of 166

iterations was performed for each reconstruction), using our own custom software package

executed on a dual Intel Xeon (E5-2687W) machine with 64GB of RAM.

Data Set high uptake medium uptake low uptake
Trajectory SAS Cont. SAS Cont. SAS Cont.

trajectory execution (s) 654 293 654 293 654 293
detected emissions 323859 313671 65056 63352 16358 15725

ML-EM iteration (s) 34 459 34 454 35 453
LM-EM iteration (s) 140 146 42 43 12 13

Table 8.1: Time required (in seconds) for trajectory execution as well as number of detected
emissions for each experiment. Additionally, average time required (in seconds) for one iteration of
the reconstruction algorithms (ML-EM and LM-EM) for each experiment[83].

8.6 Discussion

In our experiments we compare two acquisition protocols, “step and shoot” (SAS) and

“continuous”, together with two reconstruction methods, binned-data ML-EM and list-

mode LM-EM. While the SAS trajectory lends itself quite well to binned-data ML-EM,

and conversely the list-mode LM-EM fits perfectly to the continuous trajectory, the two

other combinations SAS/LM-EM and continuous/ML-EM are feasible as well and produce

reconstructions with very similar characteristics overall: As shown in Figure 8.5 for the

high uptake data, all three hot nodules are clearly visible in all four methods, and it is

also possible to infer the cold nodule with each method. The contrast recovery coefficients

for the same data set are also fairly consistent across all four methods, as seen in the left

column of Figure 8.8. Compared to the planar image in Figure 8.4, the cold nodule visibility

is the biggest improvement in the reconstructions. Additionally, the continuous trajectory

reconstructions resolve the isthmus between the two lobes of the thyroid phantom better,

yielding a significantly more accurate representation of that area. We hypothesize that this

is caused by the increased coverage of the central area, as the gamma camera sensor, which

is too small to image the entire isthmus area at once, can acquire more different view points

while continuously moving as opposed to the few viewpoints acquired by the SAS trajectory.

For the data set with medium uptake (middle columns of Figures Figure 8.6 and Figure 8.8),

the outcome is similar to the one of the high uptake data, but slightly more noise is visible

in the images, as expected from the reduction of counts. In fact, for all noise realizations,

the standard deviation of the background activity increases by 79% compared to the high

uptake data. The four nodules are qualitatively recovered clearly, including the cold nodule.
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The corresponding CRC values of all nodules are very close to the high uptake values, with

the exception of SAS ML-EM, which is now markedly overestimating nodule I.

In the low uptake results (right columns of Figures Figure 8.6 and Figure 8.8) the noise is

even more dominant. Over all noise realizations, the standard deviation of the background

activity now increases by 109% compared to the high uptake data. Qualitatively, the cross-

sectional images shown no longer allow a clear determination of which regions represent

cold and hot nodules, except for the big nodule IV, which is still visible. When taking into

account the full three-dimensional reconstructed image, however, nodule I and nodule II

(the cold nodule) can be inferred for example from the line profiles, see Figure 8.7. This is

also reflected by the CRC values in Figure 8.8. Since the background values in these images

are close to zero, the calculation of the contrast values are dominated by these regions,

explaining the highly overestimated values, in particular for nodule IV.

In terms of measurement time (see Table 8.1), the continuous trajectory is clearly preferable,

as it allows continuous movement while acquiring data. In our example, actual measurement

time was cut in half compared to SAS, while still offering comparable detection statistics.

In terms of computational effort (see again Table 8.1), the combination of SAS trajectory

and binned data MLEM performs very fast, as there is a limited number of static detection

poses, and computational complexity is roughly proportional to this number. While the

combination of SAS and list-mode LM-EM is feasible, yielding comparable image quality,

there is a big drawback in terms of computational effort, except for the case of very low de-

tection statistics. When using the continuous trajectory, the combination with binned-data

MLEM is again feasible, yielding comparable image quality, but due to the huge number of

bins required to accurately represent the data of the moving detector, the computational

effort for reconstruction is needlessly high. The LM-EM method is clearly the better choice

for continuously acquired data. It results in fast reconstruction times, and since the com-

putational effort is bound to the number of events and not camera poses, it can also result

in reconstruction times faster than SAS ML-EM for low uptakes.

In general, all four presented methods are suitable for mini gamma reconstructions of the

proposed thyroid phantom. However, the continuous trajectory achieves a better coverage of

the phantom, resulting in better resolved images in the center region of the phantom, while

also providing significantly faster acquisition speeds. Meanwhile, for continuous trajectories,

the LM-EM reconstruction method is a natural fit, yielding comparable images to ML-EM

but significantly faster reconstruction times.

Overall, our proposed approach using mini gamma cameras for three-dimensional imaging

provides image quality between scintigraphy and SPECT, while allowing significantly faster
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acquisition times. In particular, our proposed approach is more easily affordable and enables

the visualization of cold nodules, as demonstrated in case of our thyroid phantom.

We note that the field of view of the mini gamma camera is limited and usually cannot

cover the entire region of interest at once. As a result, additional uptake, such as in salivary

glands, might be in the field of view only for some of the recorded view points, potentially

leading to artifacts in the reconstructed image.

Another important point to consider for clinical implementation is the tracking and guidance

of the camera. One option is to remove the robot, to add a tracking system of sufficient

accuracy for localization of the detector, such as outside-in [73] or inside-out [86] tracking,

and to leave the movement of the camera entirely to a human operator. This approach is

currently used in radio-guided surgery on an open situs[26, 87]. Naturally, this implies a

continuous trajectory and list-mode data LM-EM reconstruction. The main disadvantage

of the hand-held approach is the loss of repeatability and the weight of the gamma camera

that has to be borne by the human operator.

While using a robotic arm eliminates these disadvantages, it requires developments to en-

sure the required safety for patient applications. Collaborative medical robotic systems

that interact with a human operator in order to provide nuclear imaging in addition to

ultrasound[88], or that can autonomously acquire ultrasound images on human probands

[89] are a precursor for the wider introduction of robotic imaging. Additionally, a robot

enables the incorporation of optimized trajectories based on the scanning geometry [28] to

even further reduce acquisition times. A more elaborate option are acquisition optimization

schemata, where, for example, the robot adjusts the scanning speed to provide a simul-

taneously good spatial coverage and good detection statistics, generating patient-specific

scans. Robotic nuclear imaging systems could find their application in real-time imaging of

the radioactivity distribution during radioembolization of the liver[90], or the application of

radioguidance to laparoscopic surgeries[91].

8.7 Conclusion

In this work we have presented a way to acquire and reconstruct extended phantoms using

a mini gamma camera and a robotic arm. For the tests we generated two datasets, a step

and shoot and a continuous scan, following the same trajectory around a thyroid phantom

with multiple nodules. Both datasets were then sub-sampled to simulate lower activity, and

afterwards the original and the new datasets were reconstructed with both ML-EM and

LM-EM algorithms.
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The reconstruction quality in all four cases produced satisfactory results for all the nodules.

This is specially relevant with cold nodules, since it is not possible to detect them in the

scintigraphy simulation, albeit its clinical relevance.

The combination of continuous trajectory and LM-EM emerged as the clear favorite. The

continuous trajectory enabled a better coverage of the phantom, improving the reconstruc-

tion results and reducing the acquisition time. The results of the reconstruction algorithms

were fairly equivalent, but for the continuous acquisition LM-EM generated the results much

faster.
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Combining Robotic freehand

SPECT and C-Arm CT

9.1 Introduction

As presented in Chapter 7, the reconstruction quality of robotic freehand SPECT with

a Gamma Camera was clearly improved with respect to the gamma probe case. In this

line, the idea of having an intraoperative SPECT device based on this Robot plus Gamma

Camera combination appeared as feasible. The goal here was to create a first prototype of

an intaoperative SPECT-CT by using the results of a C-Arm CT to guide a robotic SPECT

acquisition and afterwards combine the results of both devices.

The main challenges that we faced were, on the one hand, to solve the co-registration of the

systems and, on the other, the surface extraction from a C-Arm CT and on-the-fly planning,

based on this extraction and the selected region of interest.

The work presented here is part of the paper “Towards personalized interventional SPECT-

CT imaging”, presented at “Medical Image Computing and Computer Assisted Interventions

(MICCAI)” in 2014[90].

9.2 Clinical Motivation

One particular example of an interventional application where a device like this is highly

desirable, is the brachytherapy of unresectable liver tumors, like hepatocellular carcinoma

(HCC). Brachytherapy in the form of radioembolization (Selective Internal Radiotherapy –

SIRT) is an alternative to classical chemoembolization or chemotherapy [92][93]. In this

93
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case, microspheres loaded with Y90 are injected into the hepatic arteries using a catheter

for selective internal irradiation of the tumor cells. Y90 mainly undergoes β− decay, emitting

electrons that are absorbed within at most 11 mm of tissue, making it possible to inject very

high doses within a single treatment. It is, however, crucial to ensure that the radioactive

compound remains confined to the injection site in order to irradiate only the surrounding

cancer tissue. Any leakage to other parts of the liver or other organs, for example through

a shunt to the lung, must be prevented.

The current practice is to inject Tc99m -MAA through a catheter first, which has demon-

strated good prognostic value for the Y90 distribution [94]. The patient is then transferred

from the radiology department, where the catheterization and injection take place, to the

nuclear medicine department for a whole-body SPECT scan, usually combined with CT,

to monitor the Tc99m distribution. This process takes four to six hours on average and

requires, if the result is positive, a second intervention in the radiology department with

another catheterization for the actual radioembolization with Y90 itself.

As shown by this example, the use of a diagnostic device incurs organizational complex-

ity and prolongs the duration of the intervention. For this reason, we propose a novel

approach to interventional SPECT/CT imaging consisting of a C-arm CT scanner and a

robot-controlled gamma camera, where the latter’s trajectory is optimized based on the pa-

tient’s anatomy as extracted from the C-arm CT data. This approach enables clinicians to

perform interventions like radioembolization on a single site and during a single procedure,

substantially reducing patient stress and time commitment of the medical personnel. On

top of this, the core imaging process also benefits from this fusion, as the required data

can be collected very efficiently in a patient-specific manner, leading to equivalent medi-

cal information significantly faster and with similar accuracy as currently available in the

state-of-the-art whole-body scenario.

9.3 Materials and Methods

9.3.1 Overview

As shown in Figure 9.1, we extend an angiography suite by placing a robotic arm with a mini

gamma camera next to the C-arm. Using appropriate calibration techniques as detailed in

Section 9.3.2, we can co-registered them, and acquire all relevant data, X-ray transmission

and gamma radiation, with respect to a single, common coordinate frame.

With this setup in place and calibrated, we first acquire a CT image of the volume of interest.

Based on it, we extract the convex hull of the patient’s (or phantom’s) surface and compute



Combining Robotic freehand SPECT and C-Arm CT 95

an optimal trajectory for acquiring the SPECT images from minimal, but safe distances.

Finally, we record the emission data by moving the gamma camera along the trajectory using

the robotic arm and reconstruct the tracer distribution using likelihood-based tomographic

reconstruction, as described in Chapter 4.

Figure 9.1: Combined C-arm CT and robotic SPECT setup in the operating room[90].

9.3.2 Coordinate systems calibration

Since we have fairly limited access to the C-Arm in terms of configuration or coordinate

systems, the most reasonable approach is to use the C-Arm coordinate system, and calibrate

the robotic arm to the C-Arm.

For this purpose, we mount a custom-designed calibration target, shown in Figure 9.2a, to

the gamma camera (replacing the collimator), as shown in Figure 9.2b. The target contains

special CT marker spheres in a well-defined pattern, that can be segmented easily in the

CT volume. Using point-based registration as suggested by Umeyama [95], we obtain the

transformation between the CT image and the calibration target, which allow us to compute

the robot-base-to-CT-image transformation, thanks to the forward kinematics of the robot.

9.3.3 Trajectory planning

The first step of the core acquisition protocol consists of recording the X-ray component of

the joint signal by rotating the C-arm over 180◦ around the region of interest and recon-

structing it into a 3D volume.

In a second step, we compute a model of the patient’s (or phantom’s) surface from the

CT image. As X-ray transmission through the surrounding air is significantly higher than
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(a) Calibration tool (b) Calibration setup

Figure 9.2: a) CAD drawing of the calibration tool and b) setup used to map the C-arm coordinate
system to the robot coordinate system. The spheres attached to the fins appear prominently in the
CT volume and can be easily segmented[90].

through tissue, it is possible to distinguish both regions by applying a threshold. The convex

hull is then a suitable mesh-model for the surface.

Finally, the trajectories are generated as parallel scan-lines normal to the convex hull of the

patient (up to a certain security distance, 1 cm in this case), as shown in Figure 9.3. Note

that, unlike a fixed gantry in diagnostic SPECT, the camera poses are much closer for a

personalized trajectory with better detection statistics.

Patient's Convex Hull
Robot Trajectory

Gamma Camera Acquisition

Figure 9.3: Schematic representation of an in-progress personalized trajectory for the robot-guided
gamma camera along the convex hull of the patient/phantom as extracted from CT. The green line
represents the planned robot trajectory, that follows the convex hull plus the safety margin (1 cm),
the red arrows indicate positions where the gamma camera acquires images[90].

9.3.4 Image reconstruction

As shown in previous chapters, the reconstruction was done using MLEM, given that the

data was acquired using a Step and Shoot procedure. The gamma camera characterization

procedure, the same as the one used in the previous chapters, is explained in Section 7.2.
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The X-ray CT reconstruction is directly obtained from the software solution of the C-arm

manufacturer, and is based on Feldkamp’s variant of Filtered Back-Projection [96]. As the

SPECT measurements have been collected relative to the C-arm’s coordinate frame, the two

volumetric images are inherently aligned.

9.4 Experiments

9.4.1 Setup

The imaging setup consists of a C-arm CT and a mini gamma camera mounted on a robotic

arm, as illustrated in Figure 9.1. The C-arm CT is a Philips Allura Xper FD20 set up in an

angiography room. The mini gamma camera (CrystalCam, Crystal Photonics, Germany)

is described in Section 7.3.1. The camera is mounted on a robotic arm (UR5, Universal

Robots, Denmark) placed next to the C-arm, see Figure 9.4b.

We use software provided by ROS INDUSTRIAL (USA) that we extend with our own

collision meshes, a resampling of the existing visual meshes and a modification of the joint

limits in order to improve its inverse kinematics.

9.4.2 Experimental procedure

Verification experiment

In a first experiment, we verify the quality of our calibration procedure. We attach a single

Co57 point source to a torso phantom and obtain a CT image. Based on the location of the

point source segmented from the CT image, we instruct the robot with the gamma camera

to acquire a single image centered on the point source. The expected result is a gamma

camera image with the point source showing as a hotspot in the center.

Reconstruction experiment

In a second experiment, we place a human torso phantom with a liver model made out of

candle gel (Ceraflex N 530 transparent, Wachs-und Ceresinfabriken, Germany) on the exam

table. Liver arteries are imitated by plastic tubes (4mm diameter), filled with 4MBq of

Tc99m .

We obtain a CT image of the torso and compute the trajectory for the SPECT acquisition

according to the procedure described in section Section 9.3.3. The emission data recorded
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by the robot-positioned gamma camera is reconstructed as an image inherently co-registered

with the CT image. We expect to see the liver arteries in the reconstructed SPECT image

embedded in the anatomical information from the CT.

9.5 Results

9.5.1 Verification experiment

Figure 9.4a shows a planar scintigraphy of the Co57 source, acquired with the gamma

camera instructed to point its center at the source (see Figure 9.4b), based on the source

position as detected from the C-arm CT as well as the coordinate system calibration. The

relocalization error, i.e. the offset from the hotspot’s center of mass to the center of the

image, is 1.6 camera pixels (corresponding to 3.9 mm).

(a) Gamma camera image of point source (b) Photo of gamma camera acquiring image shown in (a)

Figure 9.4: Result of calibration verification experiment[90].

9.5.2 Reconstruction experiment

Figure 9.5a shows a 3D rendering of the robotic SPECT image of our phantom. The

branching blood-vessels simulated by three activity-filled tubes are clearly distinguishable.

The co-registered robotic SPECT/C-arm CT slice image in Figure 9.5b shows that the offset

between the tubes in the SPECT and the CT image is minimal.

9.6 Discussion

Calibration of the C-arm and gamma camera coordinate systems is a vital part of the

imaging protocol. Our first experiment validates our approach, as the relocalization error

is within the acceptable error limit for interventions. In addition to this, we performed a
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(a) Robotic SPECT (b) Slice of fused SPECT/CT

Figure 9.5: (a) 3D rendering of the SPECT image of the liver phantom with radioactive blood
vessels and (b) slice of fused robotic SPECT/C-arm CT[90].

comparable experiment under guidance of an optical tracking system, and only achieved

considerably higher errors.

The second experiment confirms the possibility of acquiring bi-modal interventional robotic

SPECT and C-arm CT images in a clinical environment, with a realistic liver phantom. We

were able to extract a patient-specific acquisition trajectory based on the convex hull of the

torso and record a SPECT image that is naturally aligned to the C-arm CT image.

Our setup is limited by the C-arm that does not allow any customization of the acquisition

protocol. A C-arm CT mounted on a robotic arm [97] would overcome this limitation,

provided that the respective control interface is accessible. It would further allow to define

personalized C-arm CT acquisition trajectories as suggested by Stayman et al. [98]. Also,

the spectrum-based trajectory optimization for SPECT as proposed by Vogel et al. [28] could

be considered. Both would lead to fully personalized interventional SPECT/CT acquisition.

9.7 Conclusion

This paper presents the first prototype for an interventional SPECT/CT scanner. In recent

time, the medical community has shown considerable interest in such a device, and simula-

tion studies have been published, for instance by Bowsher et al. [99], where a much heavier

robot is used, which makes relocation or removal rather difficult. In contrast, our device is

very light, thus meeting the accessibility and flexibility requirements of clinical practice.

The main advantages of an interventional SPECT/CT, as the one proposed here, are a re-

duction of the duration and complexity of the interventions, plus the ability to continuously

monitor the progress in an easy and flexible way (for instance, by acquiring a bremsstrahlung
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SPECT image [100]). The latter can also be used to quickly detect anomalies in the proce-

dure such as leaks, thus enabling effective quality control.

The suggested method is ready for further investigation in the operating room, opening the

path for alternative applications, for example in the head and neck region.



Conclusions

This work presented a small overview of image modalities, in order to put nuclear medicine

in context with respect of other common imaging approaches. The goal was to highlight the

crucial role it has by allowing physicians to understand how a certain structure inside the

body is working (functional imaging) versus how it looks (anatomical imaging).

The core of of the first part of the thesis is an explanation of the working principles of nuclear

medicine and, in particular, freehand SPECT, together with the mathematical models used

to generate tomographic images. An introduction to robotics close the states of the art

chapters.

The second part shows clear milestones we reached by trying to make freehand SPECT

more predictable in terms of results and aim to understand how different parameters affect

the reconstruction quality.

The first acquisition and reconstruction attempts, shown in Chapter 6 cannot be really seen

as a success, but more like a turning point. The results showed that there was no real gain

by using a robot instead of a human when scanning with a single pixel detector.

The real advantages of the robot appeared by using the 16x16 pixel gamma camera with

its characterization (Chapter Chapter 7), combination that made it possible to localize

point sources with sub-millimetric precision, an order of magnitude better than previous

reconstructions using a single pixel detector. It is also possible to observe how different

views of the camera with respect to the phantom define how much can be resolved by the

reconstruction algorithms. The latter is consistent with the experience of limited angle

tomography.

The combination of the robotic freehand SPECT with a C-Arm CT (Chapter 9) showed us

that this setup is feasible and makes sense, since the C-Arm image may be used to direct the

robot to a certain region of interest, reducing the scanning and reconstruction time. It also

made us aware of several limitations in our setup, being the most important one the camera

size. Scanning a human-sized liver (about 1.6 L) with a small 40x40 mm2 detector proved

101
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to be a real challenge, and the reconstruction quality also suffered. Those experiments were

also our first ones using extended phantoms, instead of point sources as hot nodules.

After these, two facts were clear: the targets to scan had to be proportional to the detector

size and, by scanning in a step-and-shoot manner, we were wasting time and limiting the

reconstruction capabilities of our setup. That pushed the idea of moving to continuous

acquisitions and also to move from the well known MLEM reconstruction algorithm to List

Mode (Chapter 8), to efficiently make use of the new scans. For the first time in our setups,

our phantom had different radioactive isotope concentrations in different chambers, making

it more realistic, but also more difficult to reconstruct.

The present work took several years and, in the process, I was able to draw several key

conclusions of freehand SPECT, robotics, detectors and reconstructions, highlighted here:

• Freehand SPECT makes sense inside the operating theater, and gamma probes (single

pixel detectors) make only sense if it is not possible to use gamma cameras, like if

imaging through natural orifice or minimally invasive surgeries.

• Robotic freehand SPECT makes procedures much more complicated, in terms of lo-

gistics and safety for the patient so that, unless those aspects are properly solved

(including a better robotic arm than the one used in this thesis), the application on

real patients is not feasible. On the other hand, the improvement in the image quality

with respect to the handheld version, and the fact that it is possible to guarantee

a certain coverage (spatial and angular) of the region of interest, makes it a more

accurate and reliable option.

• The idea of having a robotic SPECT-CT inside the operating theater still makes sense

for me, but looking at the past experience, a much bigger detector is needed (about

six to ten times the area of the mini gamma camera). A collaboration with the C-Arm

CT manufacturer would make the integration task much easier.

• In terms of scanning protocols, continuous scanning is clearly more attractive than

step-and-shoot, both in terms of acquisition efficiency and angular coverage. The fact

that the sensor is continuously acquiring while moving maximizes both of them.

• This continuous trajectory makes sense only with List Mode, otherwise the reconstruc-

tion times are prohibitive but, even in the case of List Mode reconstructions, a GPU

implementation of the algorithm is mandatory. For freehand SPECT in general, this

would be for me the preferred reconstruction in every case.

• Moving from the current pre-planned trajectories towards a more flexible scan, that

takes advantage of the force feedback integrated in the Kuka robots, could be the way

to have a safe robotic acquisition inside the operating room.
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• The trajectory optimization from Jakob Vogel [28], computed during the acquisition,

can produce minimal scanning trajectories that guarantee coverage and reconstruction

quality, might further improve the acquisition and reconstruction times without risking

the reconstruction quality.

What started like a side project of freehand SPECT, as a way to better understand how to

scan, what collimators to use, etc., is today a different way to do freehand SPECT and, in

some cases, the better way, at least from the side of reconstruction quality. There are, of

course, many open challenges, most of them from the robotics point of view, that I am sure

will be solved by the next generation of PhD students.





Appendix A

Reconstruction Methods

This appendix describes the fundamentals of both Maximum-Likelihood Expectation-Maxi-

mization and List-Mode Expectation-Maximization algorithms, used to generate the recon-

structions in the second part of this thesis.

The work presented here is part of the paper “Flexible Mini Gamma Camera Reconstruction

of Extended Sources using Step and Shoot and List Mode”, published at “Medical Physics”

[83] in 2016.

Fundamentals

As a non-negative quantity, the mean number of emissions within the volume V ⊂ R3 can

be considered a function f : V → R+
0 = [0,∞), discretized as

f(·) ≈ f̂(·) =
J∑
j=1

xjbj(·), (A.1)

with bj(·) denoting spatial basis functions, in our case isotropic cubic voxels, and x =

(xj)
J
j=1 representing their respective coefficients – voxel-wise mean number of emissions, so

to say. The latter are initially unknown, and will be computed during reconstruction. An

approximation of f can later be recovered via (A.1). For simplicity, we just use index j to

refer to voxel bj .

Reconstruction itself is based on observation of nuclear decay events. Following a “preset

time” acquisition protocol (rather than “preset counts”), both the total number of detected
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emissions N as well as the individual occurrences are random. In particular, N is a realiza-

tion of a Poisson distributed random variable with

N =

J∑
j=1

xjdj , (A.2)

denoting its expectation. (For brevity we assume unit measurement times.) dj is the

detection sensitivity of voxel j, i.e. the probability that an emission from voxel j was

detected, or in other words, a number giving an estimate for how well a voxel is covered

during the measurements. Considering our flexible detector, the robotically controlled mini

gamma camera, this magnitude can vary noticeably over j.

We use two different recording schemes – binned-mode for time-integrated count values, and

list-mode for individually detected emissions. Each of them leads to a specific expectation

maximization algorithm for reconstruction, to be outlined below. In both cases, the detector

is moved robotically during acquisition of data, and we mark the different detector poses

using the index t ∈ {1, . . . , T}.

Furthermore, we need to know the general measurement probability

Ptj := P [emission from voxel j detected at detector pose t] (A.3)

that, for example, can be measured by systematic long-term observation of the imaging

setup. In traditional tomographic reconstruction nomenclature, P can be called system ma-

trix, describing the characteristics of the imaging setup independent of actual distributions.

We consider it known for now; the calibration procedure[77] is outlined in Chapter 7. Note

that P relates to independent emissions and is hence valid for all recording modes. Also

consider that geometrical information such as position and orientation of the gamma camera

with respect to the volume of interest is indirectly contained within P .

Based on P , it is also possible to give an estimate for the voxel-wise detection sensitivity,

dj =

T∑
t=1

Ptj (A.4)

Unrelated to actual emissions, dj contains purely geometrical information only, describing

how well voxel j is observed.
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A.1 Maximum-Likelihood Expectation-Maximization

A common approach is to store counts yi ∈ N0 := {0, 1, . . .} of emissions integrated over

certain time frames. This corresponds to temporal binning, and may happen natively in

the detector hardware, or retrospectively in software. The number of detector poses T then

equals the number of measured time-integrated counts y = (yi)
I
i=1, and we can use the

indices t and i interchangeably.

Now we introduce the discrete random variables Yij as the number of emissions from voxel

j detected at time frame i. We assume, as is typical[35] and experimentally confirmed[9],

that the Yij are independent and Poisson distributed with mean Pijxj , using the general

measurement probability Pij from equation (A.3). Let further the discrete random variables

Yi =
∑J

j=1 Yij denote the number of emissions detected at time frame i. The Yi are then

again Poisson distributed with mean

(Px)i :=

J∑
j=1

Pijxj (A.5)

Our task is now to estimate x = (x1, . . . , xJ) using the binned-mode data likelihood function

Lbin(x) =

I∏
i=1

exp
(
− (Px)i

)(Px)yii
yi!

(A.6)

Ignoring constants irrelevant to subsequent optimization, the corresponding binned-mode

data log-likelihood function is

`bin(x) = −
I∑
i=1

(Px)i + yi log(Px)i + const (A.7)

A well-known algorithm maximizing (A.7) is the Maximum-Likelihood Expectation-Maxi-

mization[36] (ML-EM), iteratively updating a vector initialized as x(0) = 1 using the fol-

lowing multiplicative update

x
(k+1)
j = xkj ·

1

dj

I∑
i=1

Pij
yi

(Px(k))i
(A.8)

for j = 1, . . . , J . Here, dj =
∑I

i=1 Pij again denotes the voxel-wise detection sensitivity.
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A.2 List-Mode Expectation-Maximization

In general, binning may lead to aliasing artifacts, as additional measurement errors are

inherently introduced during the process, and it may be advisable to treat the original

measurements separately. In our case, for instance, the camera will move during the ac-

quisition, thus invalidating the static model implicitly assumed when using time-integrated

count values. Therefore, in list-mode recording settings, instead of counts, every individual

detected emission (or ‘event’) is stored in a list, and the total number of emissions is N ,

a realization of the Poisson random variable introduced earlier with mean N =
∑J

j=1 xjdj

and probability mass function

P (N) = exp(−N)
N
N

N !
(A.9)

Let Z denote the set of all possible emissions, and let {z1, . . . , zN} ⊂ Z denote the list

of detected emissions. The probability density function for an emission zn on the list,

n ∈ {1, . . . , N}, is

h(zn) = N
−1 ·

J∑
j=1

Pnjxj (A.10)

using the general measurement probability Pnj from equation (A.3).

Our task is now to estimate x = (x1, . . . , xJ) using the list-mode data likelihood function

Llist(x) = P (N) ·
N∏
n=1

h(zn) (A.11)

Again ignoring constants irrelevant to subsequent optimization, the corresponding list-mode

data log-likelihood function is

`list(x) = −N +

N∑
n=1

log

 J∑
j=1

Pnjxj

+ const (A.12)

An algorithm maximizing (A.12) similar to ML-EM has been proposed[38, 39, 101], itera-

tively updating a vector initialized as x(0) = 1 using the following multiplicative update:

x
(k+1)
j = x

(k)
j ·

1

dj

N∑
n=1

Pnj
1

(Px(k))n
(A.13)

for j = 1, . . . , J , employing the short-hand notation (Px)n :=
∑J

j=1 Pnjxj . Here, dj =∑T
t=1 Ptj again denotes the voxel-wise detection sensitivity, which is dependent only on the

detector’s trajectory, i.e. the poses t ∈ {1, . . . , T}, and on the choice of collimation.
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We use the term List-Mode Expectation-Maximization (LM-EM) to refer to this method.
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