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Point-interacting Brownian motions
in the KPZ universality class
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Abstract

We discuss chains of interacting Brownian motions. Their time reversal invariance
is broken because of asymmetry in the interaction strength between left and right
neighbor. In the limit of a very steep and short range potential one arrives at Brownian
motions with oblique reflections. For this model we prove a Bethe ansatz formula for
the transition probability and self-duality. In case of half-Poisson initial data, duality is
used to arrive at a Fredholm determinant for the generating function of the number
of particles to the left of some reference point at any time t > 0. A formal asymptotics
for this determinant establishes the link to the Kardar-Parisi-Zhang universality class.
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1 Nonreversible interacting diffusions

Roughly fifteen years ago, K. Johansson established that the totally asymmetric simple
exclusion process (TASEP) is in the Kardar-Parisi-Zhang (KPZ) universality class. More
precisely, for step initial conditions he studied J0,1(t), the particle current between sites
0 and 1, integrated over the time span [0, t], and proved that

J0,1(t) = cdt+ cft
1/3ξGUE (1.1)

in distribution for large t. The random amplitude ξGUE is GUE Tracy-Widom distributed.
cd, cf are explicitly known constants, but to keep the notation light we do not display
them here. These are model dependent, non-universal coefficients, which will reappear
again and may take different numerical values. (‘d’ stands for deterministic and ‘f’ for
fluctuations). The scaling exponent 1/3 was predicted before by Kardar, Parisi, and
Zhang [29], see also [25, 3]. The most striking feature is the random amplitude, telling
us that (1.1) is not a central limit theorem. Many related results have been established
since, for surveys see [16, 13, 14, 35]. Most of them are for specific interacting stochastic
particle systems in one dimension, which are discrete and have a dynamics governed by
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Point-interacting Brownian motions in the KPZ universality class

a Markov jump process. In this contribution we will explore interacting one-dimensional
diffusion processes in the KPZ universality class.

As a start we introduce a family of model systems, explain in more detail the conjec-
tures related to the KPZ universality class, and recall the two major results available so
far. The main part of our contribution concerns a singular limit, in which the Brownian
motions interact only when they are at the same location.

To motivate our model system we start from the potential of a coupled chain,

Vtot(x) =

n−1∑
j=1

V (xj+1 − xj) (1.2)

with x = (x1, ..., xn), xj ∈ R, and a twice differentiable nearest neighbor potential, V . The
precise definition of a point-interaction will be given in Sect. 2, while in the introduction
we outline the general picture. To construct a reversible diffusion process with invariant
measure

e−Vtot(x)
n∏
j=1

dxj , (1.3)

the drift is taken to be the gradient of Vtot, while the noise is white and independent for
each coordinate. Then

dxj(t) =
(

1
2V
′(xj+1(t)− xj(t))− 1

2V
′(xj(t)− xj−1(t))

)
dt+ dBj(t) , (1.4)

j = 1, ...., n, with the convention that V ′(x1(t) − x0(t)) = 0 = V ′(xn+1(t) − xn(t)). Here
xj(t) ∈ R and {Bj(t), j = 1, ...., n} is a collection of independent standard Brownian
motions. Note that the measure in (1.3) has infinite mass. Eq. (1.4) is one variant of a
Ginzburg-Landau model, see [40] for example.

The dynamics defined by (1.4) is invariant under the shift xj ; xj + a, which will be
the origin of slow decay in time. Breaking this shift invariance, for example by adding
an external, confining on-site potential Vex as −V ′ex(xj(t))dt in (1.4), would change the
picture completely. Just to give one example, one could choose V and Vex to be quadratic.
Then the dynamics governed by Eq. (1.4) is an Ornstein-Uhlenbeck process, which has a
unique invariant measure, a spectral gap independent of system size, and exponential
space-time mixing. Setting Vex = 0, slow decay is regained. Because of shift invariance,
we regard xj(t) as the height at lattice site j at time t. In applications xj(t) could describe
a one-dimensional interface which separates two bulk phases of a thin film of a binary
liquid mixture. V then models the surface free energy (surface tension) of this interface.

If in (1.4) one introduces the stretch rj = xj − xj−1 and adopts periodic boundary
conditions, then

drj(t) = 1
2∆V ′(rj(t))dt+∇dBj(t) , j = 1, ..., n , (1.5)

where ∆ denotes the lattice Laplacian and ∇ the finite difference operator, both under-
stood with periodic boundary conditions. Clearly, rj(t) is locally conserved and the sum∑n
j=1 rj(t) is conserved. As a consequence the r(t) process has a one-parameter family

of invariant probability measures, indexed by `, which is obtained by conditioning the
measure

n∏
j=1

e−V (rj)drj , (1.6)

on the hyperplane {r | ∑n
j=1 rj = n`}. In the infinite volume limit, the {rj} are i.i.d. with

the single site distribution

Z−1e−V (rj)−Prjdrj , Z =

∫
e−V (u)−Pudu , EP (rj) = ` , (1.7)
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Point-interacting Brownian motions in the KPZ universality class

where EP (·) denotes expectation with respect to the product measure. The parameter P
controls the average value of rj . To have Z <∞ for a nonempty interval of values of P ,
we require the potential V to be bounded from below and to have at least a one-sided
bound as V (u) ≥ c1 + c2|u|, either for u > 0 or for u < 0, with c2 > 0. Note that

− EP (V ′(rj)) = P , (1.8)

which means that P is the equilibrium pressure in the chain. The diffusive limit of
(1.5) has been studied in a famous work by Guo, Papanicolaou, and Varadhan [21],
who prove that on a large space-time scale the random field {rj(t), j = 1, ..., n} is well
approximated by a deterministic nonlinear diffusion equation. The fluctuations relative
to the deterministic space-time profile are Gaussian as proved by Chang and Yau [15].

KPZ universality enters the play, when the dynamics (1.4) is modified to become
nonreversible. In the physical picture of an interface, the breaking of time reversal
invariance results from an imbalance between the two bulk phases which induces a
systematic motion. On a more abstract level there are many options. One possibility is
to start from a Gaussian process by setting V (u) = u2 and adding nonlinearities such
that shift invariance is maintained and the stationary Gaussian measure of the linear
equations remains stationary, see [37] for a worked out example. Here we take a different
route by splitting the two drift terms, 1

2V
′(xj+1(t)− xj(t)) and − 1

2V
′(xj(t)− xj−1(t)), not

symmetrically but asymmetrically with fraction p to the right and fraction q to the left,
p+ q = 1, 0 ≤ p ≤ 1. Then (1.4) turns into

dxj(t) =
(
pV ′(xj+1(t)− xj(t))− qV ′(xj(t)− xj−1(t))

)
dt+ dBj(t) . (1.9)

The totally asymmetric limits correspond to p = 0, 1. One easily checks that for all p the
measure (1.3) is still invariant which, of course, is a good reason to break time reversal
invariance in this particular way. This property is in analogy to the ASEP, where the
Bernoulli measures are invariant independently of the choice of the right hopping rate p.

If, as before, one switches to the stretches rj , then

drj(t) = 1
2∆pV

′(rj(t))dt+∇dBj(t) , j = 1, ..., n , (1.10)

with periodic boundary conditions and 1
2∆pf(j) = pf(j + 1) + qf(j − 1)− f(j). Because

of the asymmetry, the macroscopic scale is hyperbolic rather than diffusive. We denote
by `(u, t) the macroscopic field for the local stretch rj(t), where u is the continuum limit
of the labeling by lattice sites j. Then, using the entropy method of Yau [47], it can be
proved that the deterministic limit satisfies the hyperbolic conservation law

∂t`+ (p− q)∂uP (`) = 0 (1.11)

with P (`) the function inverse to EP (r0) = `. Since `′(P ) < 0, the inverse is well defined.
The limit result leading to (1.11) holds for initial profiles which are slowly varying on the
scale of the lattice and up to the first time when a shock is formed.

At this point we can explain the striking difference between reversible and nonre-
versible systems. Let us impose the periodic initial configuration xj = ¯̀j, j ∈ Z and,
assuming that the dynamics for the infinite system is well defined, let us focus on x0(t),
the particle starting at the origin. For the symmetric model one expects

x0(t) = cft
1/4ξG (1.12)

as t→∞ with ξG a standard mean zero Gaussian random variable. We are not aware
of a completely written out proof, but the key elements can be found in [15]. Harris
[22] considers independent Brownian motions, such that the labeling is maintained

EJP 20 (2015), paper 87.
Page 3/28

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3926
http://ejp.ejpecp.org/


Point-interacting Brownian motions in the KPZ universality class

according to their order. For the dynamics defined by (1.4) this corresponds to the limit
of a strongly repulsive potential V with its support shrinking to zero. In [22] it is proved
that x0(t) is well-defined and that the scaled process ε1/4x0(ε−1t) has a limit as ε → 0

which is a Gaussian process with an explicitly computed covariance.
In contrast, for the nonreversible system it is conjectured that

x0(t) = (p− q)P (¯̀)t+ cft
1/3ξGOE (1.13)

in distribution as t→∞. The anticipated numerical value of cf is explained in Appendix
A. Note that, in general, there could be specific values of ¯̀, for which cf = 0. In particular,
for the Gaussian process with V (u) = 1

2u
2, one obtains P (`) = ` and cf = 0 for all `. The

random amplitude ξGOE has the distribution function

P(ξGOE ≤ s) = det(1− PsB0Ps) . (1.14)

Here the determinant is over L2(R), Ps projects onto the half-line [s,∞), and B0 is a
Hermitean operator with integral kernel B0(u, u′) = Ai(u + u′), Ai being the standard
Airy function. As proved by Tracy and Widom [42], the expression (1.14) is also the
distribution function of the largest eigenvalue of the Gaussian Orthogonal Ensemble
(GOE) of real symmetric N ×N random matrices in the limit N → ∞, see [36, 19] for
the particular representation (1.14).

As in the case of a reversible model, one can regard x0(t) as a stochastic process
in t. No definite conjectures on its scaling limit are available. We refer to [17] for a
discussion.

A proof of (1.13) seems to be difficult with current techniques, except for the Harris
limiting case with q = 1. Then the process {xj(t), j ∈ Z} is constructed in the following
way: for all j, xj(0) = j and xj(t) performs a Brownian motion being reflected at the
Brownian particle xj−1(t). Because of collisions, x0(t) is pushed to the right and, as
proved in [20], it holds that

lim
t→∞

(2t)−1/3(x0(t)− t) = ξGOE (1.15)

in distribution.
A second example is the O’Connell-Yor model of a directed polymer in a random

medium [32], which has been analysed in considerable detail and again confirms anoma-
lous fluctuations. As before the dynamics is totally asymmetric, q = 1, but the potential
is smooth and given by V (u) = e−u. Then

x0(t) = x0(0) +B0(t) , dxj(t) = exp
(
− xj(t) + xj−1(t)

)
dt+ dBj(t) , j = 1, 2, ... . (1.16)

The initial conditions are x0(0) = 0 and, formally, xj(0) = −∞ for j ≥ 1. As proved in
[31], there is a law of large numbers which states that

lim
t→∞

t−1xbutc(t) = φ(u) a.s. (1.17)

for u > 0 with b·c denoting integer part. The limit function φ can be guessed by realizing
that on the macroscopic scale the slope satisfies Eq. (1.11). First note that ` = −ψ(P )

with ψ = Γ′/Γ, the Digamma function. Hence

φ(u) = inf
s≥0

(
s− uψ(s)

)
, (1.18)

see [41] for details. φ(0) = 0, φ′′ < 0, and φ has a single strictly positive maximum
before dropping to −∞ as u→∞. Thus tφ(u/t) reproduces the required singular initial
conditions as t→ 0.

EJP 20 (2015), paper 87.
Page 4/28

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3926
http://ejp.ejpecp.org/


Point-interacting Brownian motions in the KPZ universality class

Even more remarkable, one has a limit result [6, 7] for the fluctuations,

lim
t→∞

t−1/3
(
xbutc(t)− tφ(u)

)
= κ(u)1/3ξGUE . (1.19)

The non-universal coefficient κ(u) will be discussed in Appendix A. Note that the proper
rule is to subtract the asymptotic mean value and not the more obvious mean at time t.
Hence the limit distribution may have a non-zero mean and in fact E(ξGUE) ≈ −1.77.

In our contribution we will study interacting diffusions with partial asymmetry and
random initial data. As in the previous example, the index j ∈ Z+. But we have to resort
to point interactions. The precise definition of the dynamics will be given in the following
section. As initial conditions we assume that {x0, xj+1 − xj , j ≥ 0} are independent
exponentially distributed random variables with mean 1. Hence at t = 0 the macroscopic
profile is φ(u) = u, u ≥ 0. For point interactions, one has V = 0 in Eq. (1.7) and thus
P (`) = `−1. The integrated version of Eq. (1.11) reads

∂tφ+ (p− q)(∂uφ)−1 = 0 , (1.20)

which for our initial conditions has the self-similar solution

φ(u, t/γ) = 2
√
ut for 0 ≤ u ≤ t , φ(u, t) = u+ t for t ≤ u (1.21)

with p < 1/2, γ = q − p. Anomalous fluctuations are expected to be seen in the window
0 < u < γt not too close to the boundary points.

The three examples discussed above require distinct techniques in their analysis.
The first example uses that, upon judiciously choosing dummy variables, there is an
embedded signed determinantal process. In the second example one derives a Fredholm
determinant for the generating function E

(
exp[−ζexj(t)]

)
with ζ ∈ C, <ζ > 0. In contrast

our analysis is based on self-duality of the particle system. xj(t) is replaced by N(u, t),
which is the number of particles to the left of u at time t, i.e. the largest j such that
xj(t) ≤ u. e is replaced by τ = p/q < 1 and exp by the τ -deformed exponential eτ .
Following the strategy in [10], we arrive at a Fredholm determinant for the expectation
E
(
eτ (ζτN(u,t))

)
. This is our main result. To establish the connection to KPZ universality,

we add a heuristic discussion of a saddle point analysis for this Fredholm determinant.
To prove duality we need some information on the transition probability, which will be
provided in a form following from the Bethe ansatz. Such a formula could be of use also
in other applications.

2 Brownian motions with point interactions, self-duality

We consider n interacting Brownian particles governed by the asymmetric dynamics
of Eq. (1.9). Point interactions are realized through a sequence of potentials, Vε, which
are repulsive, diverge sufficiently rapidly as |u| → 0, and whose range shrinks to zero
as ε → 0. More precisely, we start from a reference potential V ∈ C2(R \ {0},R+)

with the properties V (u) = V (−u), suppV = [−1, 1], V ′(u) ≤ 0 for u > 0, and, for some
δ > 0, limu→0 |u|δV (u) > 0. The scaled potential is defined by Vε(u) = V (u/ε) and the
corresponding diffusion process is denoted by yε(t). Since the potential is entrance - no
exit [30], the positions can be ordered as yε1(t) ≤ ... ≤ yεm(t). Hence yε(t) ∈W+

m, the Weyl
chamber in Rm such that the left-right order is according to increasing index. Since the
particle order is preserved, we deviate slightly from the viewpoint of the introduction
and regard the positions of particles as a point configuration in R. As will be proved
in Appendix B, there exists a limit process, y(t) ∈ W+

m, such that limε→0 y
ε(t) = y(t).
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Presumably the limit holds a.s. in the sup norm, but for our purposes it suffices to prove
that limε→0E

(
(yε(t)− y(t))2

)
= 0. The limit process y(t) is Brownian motion with point

interaction, also known as Brownian motion with oblique reflection.

y(t) is a semi-martingale satisfying

yj(t) = yj +Bj(t)− pΛ(j,j+1)(t) + qΛ(j−1,j)(t) , (2.1)

t ≥ 0, j = 1, ...,m. Here p+ q = 1, 0 ≤ p ≤ 1, and by definition Λ(0,1)(t) = 0 = Λ(m,m+1)(t).

Λ(j,j+1)(·) = Lyj+1−yj (·, 0) (2.2)

is the right-sided local time accumulated at the origin by the nonnegative martingale
yj+1(·)− yj(·). So yj(t) is pushed to the left with fraction p of the local time whenever
yj(t) = yj+1(t) and it is pushed to the right with fraction q of the local time whenever
yj(t) = yj−1(t), which implies that the drift always pushes towards the interior of W+

m.
If q = 1, yj+1(t) is reflected at yj(t). In particular, y1(t) is Brownian motion. If q = 1/2,
the dynamics corresponds to independent Brownian motions with ordering of labels
maintained. In [28] it is proved that (2.1) has a unique strong solution. Furthermore,
triple collisions, i.e. the sets {yj(t) = yj+1(t) = yj+2(t) for some t}, have probability 0.

Let f : W+
m → R be a C2-function and define

f(y, t) = Ey
(
f(y(t)

)
(2.3)

with Ey denoting expectation of the y(t) process of (2.1) starting at y ∈W+
m. As proved

in Section 6, it holds

∂tf = 1
2∆yf (2.4)

for y ∈ (W+
m)◦ and

(p∂j − q∂j+1)f
∣∣
yj=yj+1

= 0 , (2.5)

the directional derivative being taken from the interior of W+
m. q = 1/2 corresponds to

normal reflection at ∂W+
m. With this boundary condition ∆y is a self-adjoint operator.

q 6= 1/2 is also referred to as oblique reflection at ∂W+
m [45, 23].

In addition to the y-particles we introduce n dual particles denoted by (x1(t), ..., xn(t))

= x(t). They are ordered as xn ≤ ... ≤ x1, hence x ∈ W−n , the Weyl chamber in Rn

such that the left-right order is according to decreasing index. For the dual particles
the role of q and p is interchanged. Thus their dynamics is still governed by (2.1)
with Λ(j,j+1)(·) = Lxj−xj+1(·, 0). Also the boundary condition (2.5) remains valid, the
directional derivative being taken from the interior of W−n .

The main goal of this section is to establish that the x(t) process is dual to the y(t)

process. The duality function is defined by

H(x, y) =

n∏
j=1

m∏
i=1

τθ(xj−yi) , (2.6)

where τ = p/q and throughout we restrict to the case 0 < τ < 1. θ(u) = 0 for u ≤ 0

and θ(u) = 1 for u > 0. Such type of duality is known also for other stochastic particle
systems [26], in particular for the ASEP [10].

Theorem 2.1. Pointwise on W−n ×W+
m it holds

Ex
(
H(x(t), y)

)
= Ey

(
H(x, y(t))

)
. (2.7)
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Proof. We first compute the distributional derivative of H. Setting ∂xα = ∂/∂xα for
α = 1, ..., n, one obtains

∂xαH(x, y) = −(1− τ)

m∑
β=1

δ(xα − yβ)

m∏
i′=1
i′ 6=β

τθ(xα−yi′ )
n∏
j=1

j 6=α

m∏
i=1

τθ(xj−yi)

= −(1− τ)

m∑
β=1

δ(xα − yβ)

n∏
j′=1

j′ 6=α

τθ(xj′−yβ)
m∏
i′=1
i′ 6=β

τθ(xα−yi′ )
n∏
j=1

j 6=α

m∏
i=1
i 6=β

τθ(xj−yi) . (2.8)

By interchanging xα and yβ one arrives at

∂xαH(x, y) = −(1− τ)

m∑
β=1

δ(xα − yβ)

n∏
j′=1

j′ 6=α

τθ(xj′−xα)
m∏
i′=1
i′ 6=β

τθ(yβ−yi′ )
n∏
j=1

j 6=α

m∏
i=1
i 6=β

τθ(xj−yi)

= −(1− τ)

m∑
β=1

δ(xα − yβ)τα−1τβ−1
n∏
j=1

j 6=α

m∏
i=1
i 6=β

τθ(xj−yi) . (2.9)

Correspondingly for the derivative w.r.t. yβ ,

∂yβH(x, y) = (1− τ)

n∑
α=1

δ(xα − yβ)τβ−1τα−1
n∏
j=1

j 6=α

m∏
i=1
i6=β

τθ(xj−yi) . (2.10)

Let us set D(Lx) = C2
0,bc(W−n ,R), the set of all twice continuously differentiable functions

vanishing rapidly at infinity and with boundary conditions

(p∂j − q∂j+1)f
∣∣
xj=xj+1

= 0 . (2.11)

As will be discussed in Section 6, the generator Lx of the diffusion process x(t) is
given by Lx = 1

2∆x on the domain D(Lx) and correspondingly for Ly. The integral
kernel of eLxt, denoted by P−x (dx′, t), is the transition probability for x(t). It has a
density, P−x (dx′, t) = P−x (x′, t)dx′. P−x (x′, t) is C∞ in both x, x′ when restricted to the set(
W−n \ {x |xj = xj+1 = xj+2, j = 1, ..., n − 2}

)×2
. Correspondingly P+

y (y′, t) defines the
transition density for the y(t) process.

Lemma 2.2. Let f ∈ C2
0 (W+

m,R) and define

F (x) =

∫
W

+
m

H(x, y)f(y)dy . (2.12)

Then F ∈ D(Lx).

Proof. Since H is a product of convolutions, F ∈ C2
0 (W−n ,R). We use (2.8) for α = j, j+1.

Then
(τ∂j − ∂j+1)F

∣∣
xj=xj+1

= 0 . (2.13)

By the fundamental theorem of calculus, for 0 < ε < t− ε,

(
eLx(t−ε) ⊗ eLyεH

)
(x, y)−

(
eLxε ⊗ eLy(t−ε)H

)
(x, y) =

∫ t−ε

ε

ds
d

ds

(
eLxs ⊗ eLy(t−s)H

)
(x, y) .

(2.14)
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By Lemma 2.2 and for ε ≤ s ≤ t− ε the function

x 7→
∫
W

+
m

dy′P+
y (y′, s)H(x, y′) ∈ D(Lx) (2.15)

and correspondingly for y. Hence one can differentiate in (2.14) and obtains(
eLx(t−ε) ⊗ eLyεH

)
(x, y)−

(
eLxε ⊗ eLy(t−ε)H

)
(x, y)

=

∫ t−ε

ε

ds

∫
W
−
n

dx′
∫
W

+
m

dy′P−x (x′, s)P+
y (y′, t− s)

(
LxH(x′, y′)− LyH(x′, y′)

)
. (2.16)

Since the transition probabilities are smooth, LxH and LyH can be obtained as distribu-
tional derivatives. Hence

∆xH(x, y) = −(1− τ)

n∑
α=1

m∑
β=1

δ′(xα − yβ)τβ−1τα−1
n∏
j=1

j 6=α

m∏
i=1
i 6=β

τθ(xj−yi) = ∆yH(x, y) (2.17)

and (
eLx(t−ε) ⊗ eLyεH

)
(x, y) =

(
eLxε ⊗ eLy(t−ε)H

)
(x, y) . (2.18)

We integrate Eq. (2.18) against the smooth function f1(x)f2(y). By continuity we can
take the limit ε→ 0. The integrand of the resulting identity is continuous in x, y and the
identity (2.7) holds pointwise.

Remark. An alternative proof, based on ASEP duality, is discussed in Appendix C.

3 Half-line Poisson as initial conditions, contour integrations

We want to study the y(t)-process in case the particles are initially distributed
according to a Poisson point process with density profile ρ(u) = θ(u). By space-time
scaling, the density 1 on the half-line could be changed to any other value. The initial
macroscopic height profile is then h(x, 0) for x ≤ 0 and h(x, 0) = x for x > 0. In the
course of time the wedge is expected to smoothen with superimposed KPZ fluctuations
characteristic for droplet growth. Since for such initial condition the y(t)-process has
an infinite number of particles, our previous results cannot be used directly. So let
us choose the density of the initial Poisson point process as ρ`(u) = 1 for 0 ≤ u ≤ `

and ρ`(u) = 0 otherwise, which results in a finite number of particles. Let us denote
by N(u; y) the number of particles in the configuration y located in (−∞, u] and set
N(u, t) = N(u; y(t)) as a random variable. We first average the duality function over the
Poisson point process with density ρ`,

Epoi,`

(
H(x, ·)

)
= Epoi,`

( n∏
j=1

∞∏
i=1

τθ(xj−yi)
)

= Epoi,`

( n∏
j=1

τN(xj ;y)
)

= exp
[ ∫ `

0

du′
( n∏
j=1

τθ(xj−u
′) − 1

)]
= F̃ `n(x) , (3.1)

which defines F̃ `n. Next the duality relation (2.7) is averaged over the Poisson point
process with the result

F̃ `n(x, t) = Ex
(
F̃ `n(x(t))

)
= E`

( n∏
j=1

τN(xj ,t)
)
. (3.2)

Here E` refers to the y(t)-particle process with initial Poisson of density ρ`.
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Setting xj = u for j = 1, ..., n yields the n-th moment of τN(u,t),

E`
(
τnN(u,t)

)
= E(u,...,u)

(
F̃ `n(x(t))

)
= F̃ `n(u, ..., u, t) . (3.3)

Since N(u, t) ≥ 0 and τ < 1, the moments on the left hand side of (3.3) determine
uniquely the distribution of N(u, t). Let us denote the corresponding random variable
by N`(u, t). For fixed n in the limit `→∞, F̃ `n converges to F̃n, F̃ `n(t) converges to F̃n(t),
and the expression on the right hand side of (3.3) converges to F̃n(u, ..., u, t). Hence in
distribution N`(u, t)→ N∞(u, t) as `→∞ and

E
(
τnN∞(u,t)

)
= F̃n(u, ..., u, t) . (3.4)

Next we provide a formula for F̃n(t) at general arguments.

Theorem 3.1. Let Fn be defined through

Fn(x, t) = τn(n−1)/2

∫
C

dz1...dzn

n∏
j=1

1

zj
· τ − 1

zj + (1− τ)
exjzj+

1
2 tz

2
j

∏
1≤A<B≤n

zB − zA
zB − τzA

, (3.5)

where the contours are Cj = {aj + iϕ,ϕ ∈ R} and nested as −(1− τ) < a1 < ... < an < 0

such that τaj < aj+1. Then Fn(x, t) = F̃n(x, t).

Remark. It is understood throughout that the contour integration includes the
prefactor 1/2πi.

Proof. (i) evolution equation, uniform bound. By inspection

∂tFn(x, t) = 1
2∆xFn(x, t) (3.6)

for x ∈ (W−n )◦. We consider the boundary condition (2.13) with directional derivative
taken from (W−n )◦. One has

(∂`+1 − τ∂`)F (x, t)
∣∣
x`=x`+1

= τn(n−1)/2

∫
C

dz1...dzn

n∏
j=1

1

zj
· τ − 1

zj + (1− τ)
e

1
2 tz

2
j

×
( n∏

j=1

j 6=`,`+1

exjzj
)

(z`+1 − z`) ex`(z`+z`+1)
∏

1≤A<B≤n
(A,B)6=(`,`+1)

zB − zA
zB − τzA

. (3.7)

The integrand has no poles in the strip bordered by C` and C`+1. Hence C` can be moved
on top of C`+1. The integrand is odd under interchanging z` and z`+1 and the right hand
side of (3.7) vanishes.

From the explicit form on the right hand side of (3.5) we infer that Fn is bounded and
continuous.

(ii) initial conditions. We have to show that limt→0 Fn(x, t) = F̃n(x). Note that the
integrand in (3.5) has an integrable bound at infinity uniformly in t and hence one can
set t = 0. We define the sector S` by

xn < ... < x`+1 < 0 < x` < ... < x1 (3.8)

with ` = 1, ..., n. Then

F̃n(x)|S` = exp
[
− (1− τ)

∑̀
j=1

τ j−1xj
]

(3.9)

and Fn(x, 0) will be computed for the sector S`. Since 0 < x` < ... < x1, exp(xjzj) decays
exponentially as <zj → −∞, j = 1, ..., `, and the contours C1, ..., C` can be deformed to
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circles around z = −(1− τ), maintaining the nesting condition. Correspondingly, since
xn < ... < x`+1 < 0, the contours C`+1, ..., Cn can be deformed to circles around z = 0,
maintaining the nesting condition.

We integrate first over z1. Then on S`, denoting the deformed contours by C̃j ,

Fn(x, 0) (3.10)

= τn(n−1)/2

∫
C̃

dz2...dzn

∫
C̃1

dz1

n∏
j=1

1

zj
· τ − 1

zj + (1− τ)
exjzj

∏
1≤A<B≤n

zB − zA
zB − τzA

= e−(1−τ)x1τn(n−1)/2

∫
C̃

dz2...dzn

n∏
j=2

1

zj
· τ − 1

zj + τ(1− τ)
exjzj

∏
2≤A<B≤n

zB − zA
zB − τzA

.

Iterating the integrations over z2, ..., z` yields

Fn(x, 0) = τn(n−1)/2τ−1... τ−(`−1)e−(1−τ)x1 ... e−τ
(`−1)(1−τ)x`

×
∫
C̃

dz`+1...dzn

n∏
j=`+1

1

zj
· τ − 1

zj + τ `(1− τ)
exjzj

∏
`+1≤A<B≤n

zB − zA
zB − τzA

. (3.11)

Next we integrate successively over zn up to z`+1. Abbreviating

$ =

`−1∑
j=1

j +

n−2∑
j=`

(n− j − 1) + `(n− `) , (3.12)

one obtains

Fn(x, 0) = τn(n−1)/2e−(1−τ)x1 ... e−τ
(`−1)(1−τ)x`τ−$ = F̃n(x) . (3.13)

(iii) uniqueness. To show that necessarily F̃n(x, t) = Fn(x, t), we adopt an argument of
Warren in a similar context [46]. Let us consider Fn(x(t), T + ε− t), 0 ≤ t ≤ T with ε > 0

to have Fn a smooth function. By Ito’s formula

dFn(x(t), T + ε− t) =
(
− ∂tFn(x(t), T + ε− t) + 1

2∆xFn(x(t), T + ε− t)
)
dt

+

n∑
j=1

∂xjFn(x(t), T + ε− t)
(
dBj(t)− pdΛ(j,j+1)(t) + qdΛ(j−1,j)(t)

)
. (3.14)

The dt term vanishes because of (3.6) and the Skorokhod term vanishes, because Fn
satisfies the boundary condition (2.13). Hence

Ex
(
Fn(x(ε), T )

)
= Ex

(
Fn(x(T ), ε)

)
. (3.15)

Since Fn is bounded, by dominated convergence, in the limit ε→ 0 one obtains

Fn(x, T ) = Ex
(
Fn(x(T ), 0)

)
= Ex

(
F̃n(x(T ))

)
= F̃n(x, T ) , (3.16)

as claimed.

Together with (3.4) we arrive at

Corollary 3.2.

E
(
τnN∞(u,t)

)
= Fn(u, ..., u, t) (3.17)

with Fn(t) as defined in (3.5).
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4 From moments to a Fredholm determinant

To conform with the notation in [7] we relabel z1, ..., zn to zn, ..., z1. Then, by the
results of Sect. 3,

E
(
τnN∞(u,t)

)
= (−1)nτn(n−1)/2

∫
C

dz1...dzn

n∏
j=1

1

zj
f(zj ;u, t)

∏
1≤A<B≤n

zA − zB
zA − τzB

(4.1)

with

f(z;u, t) =
1− τ

z + (1− τ)
euz+

1
2 tz

2

. (4.2)

The goal of this section is to obtain a Fredholm determinant for the τ -deformed generat-
ing function of ζτN∞(u,t), i.e.,

E
(
eτ (ζτN∞(u,t))

)
= E

( 1

(ζτN∞(u,t); τ)∞

)
. (4.3)

The required definitions for τ -deformed objects are well summarized in Appendix A of
[10].

zj+1zj+1

−(1− τ)−(1− τ)

contour jcontour j

Figure 1: A single move in unnesting the contours. Displayed is only the move of contour
j across the singularity at the gray dot τzj+1 generated by a fixed point on contour j + 1.

The first step is to remove the nesting constraint by moving the contours. In Fig. 1
we display a single move. zj+1 is fixed and the integration is over zj . The singularity for
zj is at τzj+1. We deform the zj contour across the singularity and thereby pick up a pole
contribution, which is evaluated by the residue theorem. The resulting combinatorial
structure is identical to that of Proposition 3.2.1 in [6]. In the case of unbounded contours,
the same combinatorial identity is stated in Proposition 4.11 of [7] upon identifying µn
with E

(
τnN∞(u,t)

)
. The function f(z) in Proposition 4.11 is our f(z;u, t), which has a

single pole at −(1− τ) implying the simplification N = 1. Hence

E
(
τnN∞(u,t)

)
= nτ !

∑
λ`n

λ=1m12m2 ...

1

m1!m2!...

×(1− τ)n
∫
Cr

det
[ 1

wiτλi − wj

]`(λ)

i,j=1

`(λ)∏
j=1

f(w1;u, t)...f(wjτ
λj−1;u, t)dwj . (4.4)

The wj-contours are all the same and given by Cr = {−δ + iϕ,ϕ ∈ R} with 0 < δ < 1− τ .
The notation λ ` n above means that λ partitions n, i.e. if λ = (λ1, λ2, ...) then n =

∑
λi,
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and the notation λ = 1m12m2 ... means that i shows up mi times in the partition λ. Not
unexpected, for the ASEP a similar type of formula holds [10, 9]

Rearranging terms and using the τ -binomial theorem, one arrives at a Fredholm
determinant of the τ -deformed generating function (4.3).

Proposition 4.1. There exists a positive constant C ≥ 1 s.t. for all |ζ| < C−1,

E

[
1

(ζτN∞(u,t/γ); τ)∞

]
= det(1 +K)L2(Z>0×Cr) , (4.5)

where the operator K is defined through the integral kernel

K(n1, w1;n2, w2) =
ζn1f(w1;u, t)f(τw1;u, t) · · · f(τn1−1w1;u, t)

τn1w1 − w2
. (4.6)

Proof. In its algebraic steps the proof is identical to the one given in Section 7.1 of [7].
We only need to verify that the Fredholm expansion is well-defined also in our case.
Clearly, for all n ≥ 1 and on Cr,

|τnw1 − w2| ≥ (1− τ)δ . (4.7)

Also

|f(w;u, t)f(τw;u, t) · · · f(τn−1w;u, t)| ≤ (c2)ne−c3ϕ
2

(4.8)

for constants c2, c3 > 0. This ensures the convergence of the Fredholm expanded
determinant for sufficiently small |ζ|.

The Fredholm determinant in (4.5) is not yet suitable for asymptotics and one has
to replace the sum over n by a contour integral, which is achieved by a Mellin-Barnes
type integral representation, see Lemma 3.2.13 of [6]. We introduce h as the solution of
f(z, t) = h(z, t)/h(τz, t). Then

h(z, t) = exp
[(
u(1− τ)−1z +

1

2
γt(1− τ)−2z2

)] 1

(−(1− τ)−1z; τ)∞
(4.9)

with γ = q − p. Clearly the natural units are γt and w = (1− τ)−1z and we set

h((1− τ)w, t/γ) = h̃(w, t) = euw+ 1
2 tw

2 1

(−w; τ)∞
. (4.10)

We also need the integration contour, Cw, as displayed in Fig. 2. This contour is
reflection symmetric relative to the real axis and piecewise linear with starting point 1

2 ,
moving then to 1

2 + id, then to R+ id, and finally to R+ i∞, d > 0, R ≥ 1
2 .

Lemma 4.2. Let w = −δ + iϕ ∈ Cr and let R = R(ϕ) and d = d(ϕ) such that for small
|ϕ|, R(ϕ) = 1

2 and d(ϕ) = c4, and for large |ϕ|, R(ϕ) = c5 log |ϕ| and d(ϕ) = c6/|ϕ| with
c4, c5, c6 > 0 and independent of ϕ. Then one can choose the constants c4, c5, c6 such that

|τsw − w′| ≥ a0 > 0 (4.11)

uniformly for all w,w′ ∈ Cr and s ∈ Cw.

Proof. Our contour Cw equals the contour D̃w of [7]. Our contour Cr equals C̃α̃,ϕ with
ϕ = π

2 . The arguments of Definition 4.8 and Remark 4.9 of [7] still apply and assert our
claim.
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Theorem 4.3. Let ζ ∈ C \R+ and let the operator Kζ be defined by the integral kernel

Kζ(w,w
′) =

∫
Cw

dsΓ(−s)Γ(1 + s)(−ζ)s
h̃(w, t)

h̃(τsw, t)

1

τsw − w′ (4.12)

with w,w′ ∈ Cr and Cw as in Lemma 4.2. Then

E
( 1

(ζτN∞(u,t/γ); τ)∞

)
= det(1 +Kζ)L2(Cr) . (4.13)

Proof. Our theorem is in close analogy to Theorem 4.13 in [7]. When comparing Eq.
(4.13) of [7] for the particular case N = 1 with our Eq. (4.9), one notes that, upon
setting q = τ , the function gw,w′(qs) is identical to h̃(w, t)/h̃(τsw, t)(τsw − w′) except for
the exponential factor, for which

exp
(
w(qs − 1)

)
is to be replaced by exp

(
u(1− τs)w +

1

2
tw2(1− τ2s)

)
. (4.14)

The s-integration is along the same contour. Only the w-integration is along C̃α̃,ϕ in
[7], while we integrate along Cr. For the proof of Theorem 4.13 the properties of the
exponential factor are used only in Eq. (7.6) of [7], which is replaced by∣∣ exp

(
u(1− τs)w + 1

2 tw
2(1− τ2s)

)∣∣ ≤ exp
(
b1 + b2|ϕ| − b3ϕ2

)
≤ c0e−c1ϕ

2

, (4.15)

valid on Cr. Such an estimate holds, since the left hand side is bounded as | exp(·)| ≤
exp

(
b1 +b2|ϕ|−b3ϕ2

)
, where b3 = 1−(<τs)2 +(=τs)2 ≥ 1−τ . The ϕ2 term thus dominates

the linear term. Our Gaussian bound replaces the exponential bound of Eq. (7.6) in [7].
The remainder of the proof follows verbatim Section 7.2 of [7].

Cw

2d

R

1

Figure 2: Complex s-plane and the integration contour Cw. Poles of the integrand are
located at the positive integers.

5 Formal asymptotics

To obtain the long time asymptotics of N∞(u, t/γ) requires a steepest decent analysis
of the kernel Kζ of (4.12). Here we only identify the saddle point and its expansion close
to the saddle. Thereby the GUE asymptotics becomes visible. For a complete proof a
more detailed analysis of the steepest decent path would have to be carried out. There
are other models in the KPZ class for which such kind of analysis has been accomplished,
see [1, 7, 20, 8] as examples.
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One first has to figure out the law of large numbers for N∞(u, t). The quick approach
is to use the ASEP, 1

2 < q ≤ 1, with step initial conditions. On the macroscopic scale the
density, ρ, is governed by

∂tρ− γ∂u(ρ− ρ2) = 0 , (5.1)

see [4]. In the low density limit one has to shift to the moving frame, which amounts to
substituting ρ by ρ̃(u, t) = ρ(u+ γt, t). Then ρ̃ satisfies

∂tρ̃+ γ∂uρ̃
2 = 0 . (5.2)

The solution with initial data ρ̃(u, 0) = θ(u) reads ρ̃(u, t/γ) = u/2t for 0 ≤ u ≤ 2t. We
scale u = at with a > 0 and eventually t→∞. Then to leading order

N∞(at, t/γ) = 1
4a

2t , 0 ≤ a ≤ 2 , N(at, t/γ) = (a− 1)t , 2 ≤ a . (5.3)

For a > 2 one expects to have Gaussian fluctuations of size
√
t, while for a < 2 the

fluctuations should be KPZ like of size t1/3. In the following we restrict to 0 < a < 2. The
same law of large numbers can be obtained from Eq. (1.11) for the macroscopic stretch
`, by noting that P (`) = `−1 for point interactions.

We substitute z = τsw, s log τ = log z − logw and set

− ζ = τ−
1
4a

2t+rt1/3 , (−ζ)s = exp
(
(− 1

4a
2t+ rt1/3)(log z − logw)

)
. (5.4)

Inserting on the left hand side of (4.13), it follows, see [7], Lemma 4.1.39, that

lim
t→∞

E
( 1

(ζτN∞(u,t/γ); τ)∞

)
= lim
t→∞

P
(
t−1/3(N∞(u, t/γ)− 1

4a
2t) ≥ −r

)
. (5.5)

Thus we have to study the corresponding limit on the right hand side of (4.12). In the
new coordinates the kernel reads

Kζ(w,w
′) =

1

log τ

∫
Cw
dz

1

z
· 1

z − w′ ·
π

sin(π(log τ)−1(logw − log z))

× exp
(
t(G(z)−G(w)) + rt1/3(log z − logw)

)
· (−z; τ)∞

(−w; τ)∞
, (5.6)

where
G(z) = − 1

2z
2 − az − 1

4a
2 log z . (5.7)

Note that

G′(z) = −1

z
(z + 1

2a)2 , G′(zc) = 0 at zc = − 1
2a , G′′(zc) = 0 , G′′′(zc) = − 2

zc
. (5.8)

We expand the kernel at the saddle by setting z = zc(1 + t−1/3z̃), w = zc(1 + t−1/3w̃),
w′ = zc(1 + t−1/3w̃′). Then, in the limit t→∞,

1

z
dz ' t−1/3dz̃ ,

1

z − w′ =
t1/3

zc(z̃ − w̃′) , (5.9)

1

log τ
· π

sin(π(log τ)−1(logw − log z))
' t1/3

w̃ − z̃ , (5.10)

t
(
G(zc(1 + t−1/3z̃))−G(zc(1 + t−1/3w̃))

)
' −1

3
z2

c

(
z̃3 − w̃3

)
, (5.11)

rt1/3
(

log(zc(1 + t−1/3z̃))− log(zc(1 + t−1/3w̃))
)
' r(z̃ − w̃) , (5.12)

(−z; τ)∞
(−w; τ)∞

' 1 . (5.13)
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There is an extra factor (zct
1/3)−1 from the volume element due to the change in w,w′.

We substitute z̃, w̃, w̃′ by (a/2)−2/3z, (a/2)−2/3w, (a/2)−2/3w′ and thereby arrive at the
limiting kernel

Kr(w,w
′) =

∫
dz exp

(
− 1

3z
3 + 1

3w
3 + (a/2)−2/3r(z − w)

) 1

w − z ·
1

z − w′ . (5.14)

The w contour is now given by two rays departing at 1 at angles ±π/3, oriented with
increasing imaginary part, and the z contour is given by two infinite rays starting at 0 at
angles ±2π/3, oriented with decreasing imaginary part. The Fredholm determinant with
this kernel is identical to the Fredholm determinant of the Airy kernel, see [44] Lemma
8.6. Hence one concludes that

lim
t→∞

P
(
t−1/3(N∞(u, t/γ)− 1

4a
2t) ≥ −(a/2)2/3r

)
= FGUE(r) (5.15)

with FGUE(r) = P(ξGUE ≤ r), under the assumption that the contribution from the
remainder of the steepest decent path vanishes as t→∞.

6 The Bethe ansatz transition probability

The goal of this section is to establish that the dynamics with point interactions has a
“smooth" transition probability, as used in Section 2 for the proof of duality. While there
should be a more abstract approach, we will use the Bethe ansatz construction of the
transition probability, as pioneered by Tracy and Widom [43, 44] in the context of the
ASEP. To make the comparison transparent, we follow closely their notation, which in
part deviates from earlier notations. The particle process is denoted by x(t) ∈W+

N with
initial condition x(0) = y. As explained before x(t) is the semi-martingale determined by

xj(t) = yj +Bj(t)− pΛ(j,j+1)(t) + qΛ(j−1,j)(t) , (6.1)

t ≥ 0, j = 1, ..., N . By definition Λ(0,1)(t) = 0 = Λ(N,N+1)(t), where

Λ(j,j+1)(·) = Lxj+1−xj (·, 0) (6.2)

is the right-sided local time accumulated at the origin by the nonnegative martingale
xj+1(·)− xj(·).

Let f : W+
N → R be a C2-function and define

f(y, t) = Ey
(
f(x(t)

)
(6.3)

with Ey denoting expectation of the x(t) process of (6.1) starting at y ∈W+
N . As to be

shown, f satisfies the backwards equation

∂tf = 1
2∆yf (6.4)

for y ∈ (W+
N )◦ and

(p∂j − q∂j+1)f
∣∣
yj=yj+1

= 0 , (6.5)

the directional derivative being taken from the interior of W+
N .

Let us define the standard decomposition

P
(
x(t) ∈ dx

∣∣x(0) = y
)

= Py(x, t)dx+ P sing
y (dx, t) . (6.6)

In spirit Py(x, t) should be the solution to the backwards equation. We follow Bethe [5]
and start from an ansatz for the solution of (6.4), (6.5) given by

Qy(x, t) =
∑
σ∈SN

∫
Γa

dz1 · · ·
∫

Γa

dzN Aσ(z)

N∏
j=1

ezσ(j)(xj−yσ(j))e
1
2 z

2
j t =

∑
σ∈SN

Iσ(y;x, t) , (6.7)
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Point-interacting Brownian motions in the KPZ universality class

where the sum is over all permutations σ of order N . The Gaussian factor ensures
that Eq. (6.4) is satisfied. The expansion coefficients Aσ are determined through the
boundary condition (6.5). We define the ratio of scattering amplitudes

S(zα, zβ) = −τzα − zβ
τzβ − zα

(6.8)

for wave numbers zα, zβ ∈ C. The expansion coefficient Aσ can be written as

Aσ(z) =
∏

{α,β}∈In(σ)

S(zα, zβ) . (6.9)

z stands for (z1, ..., zN ). In(σ) denotes the set of all inversions in σ, where an inversion
in σ means an ordered pair {σ(i), σ(j)} such that i < j and σ(i) > σ(j). The contour of
integration is Γa = {a+ iϕ,ϕ ∈ R} with positive orientation.

Theorem 6.1. Let 0 < τ < 1 and a > 0. For t > 0 and every y ∈ W+
N the transition

probability for x(t) is absolutely continuous, P
(
x(t) ∈ dx

∣∣x(0) = y
)

= Py(x, t)dx. Its
density has a continuous version on W+

N given by

Py(x, t) = Qy(x, t) a.s. . (6.10)

For 1 < τ <∞, Eq. (6.10) still holds, but one has to impose a < 0. The limiting cases
τ = 1 and τ → 0 will be discussed below.

In the remainder of this section we prove Theorem 6.1 with some estimates being
shifted to Appendix D.

We first investigate properties of Qy(x, t) and set

Qy(f, t) =

∫
W

+
N

dxQy(x, t)f(x) , Iσ(y; f, t) =

∫
W

+
N

dxIσ(y;x, t)f(x) (6.11)

with properties of the test function f to be specified later on.

Lemma 6.2. Let y ∈ W+
N and let f ∈ Dε, which consists of smooth functions with

compact support contained in W+
N,ε = {x ∈ W+

N | |xj+1 − xj | ≥ ε, all j}. Then for x ∈
(W+

N )◦ it holds
∂tQy(x, t) = 1

2∆yQy(x, t) , (6.12)

(τ∂j − ∂j+1)Qy(x, t)
∣∣
yj=yj+1

= 0 . (6.13)

For σ = id, the identity permutation,

lim
t→0

Iid(y; f, t) = f(y) (6.14)

and for σ 6= id

lim
t→0

Iσ(y; f, t) = 0 . (6.15)

We illustrate the method by means N = 2, for which

Qy(x, t) =

∫
Γa

dz1

∫
Γa

dz2

(
ez1(x1−y1)+z2(x2−y2) − τz2 − z1

τz1 − z2
ez2(x1−y2)+z1(x2−y1)

)
e

1
2 (z21+z22)t

= I12(y;x, t) + I21(y;x, t) . (6.16)

The validity of Eq. (6.12) is easily checked. For the boundary condition we note

(τ∂1 − ∂2)Qy(x, t)
∣∣
y1=y2

=

∫
Γa

dz1

∫
Γa

dz2

(
(−τz1 + z2)ez1(x1−y1)+z2(x2−y1)

−τz2 − z1

τz1 − z2
(−τz1 + z2)ez2(x1−y1)+z1(x2−y1)

)
e

1
2 (z21+z22)t = 0 (6.17)
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upon interchanging z1 and z2. Clearly, I12(y;x, t) satisfies (6.14). Thus we still have
show that limt→0 I21(y;x, t) vanishes for y ∈W+

2 and x ∈ (W+
2 )◦. For this purpose, we

introduce a new variable, z0, by z0 = z1 + z2 and substitute z2 by z0. Then

I21(y;x, t) = −
∫

Γ2a

dz0

∫
Γa

dz1
τ(z0 − z1)− z1

τz1 − (z0 − z1)
e(z0−z1)(x1−y2)+z1(x2−y1)e

1
2 (z21+(z0−z1)2)t

=

∫
Γ2a

dz0

∫
Γa

dz1
z1 − τ(1 + τ)−1z0

z1 − (1 + τ)−1z0
ez1(x2−x1+y2−y1)+z0(x1−y2)e

1
2 (z21+(z0−z1)2)t . (6.18)

The pole of z1 is at z1 = (1 + τ)−1z0 and hence to the right of Γa. Under our assumptions
one has x2 − x1 + y2 − y1 > 0.

We note the following

Distributional identities: For a ∈ R, b ∈ C with <b < a it holds∫
Γa

dz
e(z−b)u

z − b = θ(u) (6.19)

and with <b > a ∫
Γa

dz
e(z−b)u

z − b = −θ(−u) , (6.20)

where θ(u) = 1 for u > 0 and θ(u) = 0 for u < 0.

Using (6.20) implies limt→0 I21(y;x, t) = 0 for x ∈ (W+
2 )◦.

Proof of Lemma 6.2: Property (6.12) is easily checked. The argument leading to
(6.13) is identical to Theorem 2.1, proof of (b), in [43]. Property (6.14) follows directly
from the definition. The difficult part is (6.15). In fact, for the ASEP the analogue of
Iσ is not necessarily equal to 0 and one has to use cancellations. In this respect the
contour integral for Brownian motions with oblique reflections has a somewhat simpler
pole structure than its lattice gas version.

We choose subsets A,B ⊂ [1, ..., N − 1], such that A ∩ B = ∅, A ∪ B = [1, ..., N − 1],
0 ≤ |A| ≤ N − 2, 1 ≤ |B| ≤ N − 1. For 1 ≤ n < N we set σ(n) = N , A = {i1, ..., in−1} and
B = {in+1, ..., iN}. A generic permutation then reads

σ =

(
1 2 · · · n− 1 n n+ 1 · · · N

i1 i2 · · · in−1 N in+1 · · · iN

)
. (6.21)

If n = N , one falls back onto the case N − 1. Thus without loss of generality one can
restrict to n < N .

By separating the factors corresponding to the inversions (N, j) with j ∈ B, the
integrand of Iσ can be written as

∏
j∈B

S(zN , zj)
∏

{α,β}∈In(σ), α 6=N

S(zα, zβ)

N∏
j=1

ezj(xσ−1(j)−yj)e
1
2 z

2
j t . (6.22)

We set
z0 = z1 + ...+ zN (6.23)

and substitute zN by z0. Hence z0 ∈ ΓNa. The phase factor transforms to

N∏
j=1

ezj(xσ−1(j)−yj) =

N−1∏
j=1

ezj(xσ−1(j)−xσ−1(N)+yN−yj)ez0(xσ−1(N)−yN ) . (6.24)
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Since σ−1(N) = n and n < σ−1(j) for j ∈ B, one concludes

xσ−1(j) − xσ−1(N) + yN − yj ≥ ε , j ∈ B . (6.25)

We set ` = minB and first integrate over z`. Poles may arise from S(zN , zj) [case 1]

and S(zα, zβ) [case 2]. In the first case, if j = `, the denominator reads

(1 + τ)z` − (z0 − z1 − ...−��z` − ...− zN−1) , (6.26)

where ��z` means that this term is omitted from the sum. Since τ < 1, the pole for the z`
integration lies to the right of Γa. Furthermore, if j 6= `, the denominator reads

z` + (1 + τ)zj − (z0 − z1 − ...−��zj −��z` − ...− zN−1) . (6.27)

As before, the pole for the z` integration lies to the right of Γa. In the second case a
generic factor reads

S(zα, zβ) = −τzα − zβ
τzβ − zα

(6.28)

with α > β. For the z`-integration either ` = α or ` = β need to be considered. If ` = α,
then ` > β. Since ` = minB, one must have β ∈ A. But then (`, β) is not an inversion.
Hence ` = β and the pole for the z` integration is at τ−1zα for some α ∈ [1, ..., N − 1] and
hence to the right of Γa. Thus the z` integration has no poles to the left of Γa. If ` = β,
then α > ` and the argument just given applies. With this information Property (6.15)
can be proved, but we leave the details for Appendix D.

Lemma 6.3. For f ∈ Dε it holds

Ey
(
f(x(t))

)
= Qy(f, t) . (6.29)

Proof. Let us denote Py(f, t) = Ey
(
f(x(t))

)
. We have to show that Py(f, t) = Qy(f, t),

which corresponds to Theorem 3.1 upon identifying Py(f, t) with Fn and Qy(f, t) with F̃n.
We have established already that Qy(f, t) satisfies the properties (i) and (ii) in the proof
of Theorem 3.1. In addition x 7→ Qx(f, τ) is continuous and bounded. So we merely have
to copy part (iii) with the result

Ey
(
Qx(ε)(f, T )

)
= Ey

(
Px(T )(f, ε)

)
. (6.30)

Continuously in ε, x(ε)→ y and Px(T )(f, ε)→ f(x(T )). Hence

Qy(f, T ) = Ey
(
f(x(T ))

)
. (6.31)

Lemma 6.4. For t > 0 and y ∈W+
N ,

P sing
y (dx, t) = 0 . (6.32)

Proof. In (6.29) we insert the decomposition in (6.6). Then∫
f(x)Py(x, t)dx+

∫
f(x)P sing

y (dx, t) = Qy(f, t) , (6.33)

which implies that Py(x, t) = Qy(x, t) a.s. and P sing
y ((W+

N )◦, t) = 0. To prove that the
singular part vanishes, by normalization one only has to establish that Qy(11, t) = 1 with
11(x) = 1. We set

gN (u) =

∫ u

−∞
dxN · · ·

∫ x2

−∞
dx1Qy(x, t) . (6.34)
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Point-interacting Brownian motions in the KPZ universality class

gN (u) is the distribution function for the N -th particle at fixed initial configuration y.
Since a > 0, all x-integrals are convergent and

gN (u) =
∑
σ∈SN

∫
Γa

dz1 · · ·
∫

Γa

dzN Aσ(z)

× 1

(zσ(1) + · · ·+ zσ(N)) · · · (zσ(2) + zσ(1))zσ(1)

N∏
j=1

ezj(u−yj)e
1
2 z

2
j t . (6.35)

Following [43], one can rewrite

Aσ(z) = sgnσ
∏

1≤i<j≤N

qzσ(j) − pzσ(i)

qzj − pzi
. (6.36)

To apply the first combinatorial identity of Tracy and Widom [43], Section VI, one has to
invert the order as σ̃(j) = σ(N − j). Then (6.35) reads∑

σ̃∈SN

sgn σ̃
∏

1≤i<j≤N

pzσ̃(j) − qzσ̃(i)

qzj − pzi
1

(zσ̃(1) + · · ·+ zσ̃(N)) · · · (zσ̃(N−1) + zσ̃(N))zσ̃(N)

= qN(N−1)/2
∏

1≤i<j≤N

zj − zi
qzj − pzi

N∏
j=1

1

zj
=

∏
1≤i<j≤N

zj − zi
zj − τzi

N∏
j=1

1

zj
.(6.37)

In the second line we used the combinatorial identity in the limit ξj = 1 + zj to linear
order in zj . Inserting in (6.35), one arrives at

gN (u) =

∫
Γa

dz1 · · ·
∫

Γa

dzN
∏

1≤i<j≤N

zj − zi
zj − τzi

N∏
j=1

1

zj
ezj(u−yj)e

1
2 z

2
j t . (6.38)

We have to show that limu→∞ gN (u) = 1.
We integrate over z1. The poles for z1 are at τ−1zj , zj ∈ Γa, j = 2, ..., N , and at z1 = 0.

We choose u sufficiently large such that u− yj > 0. Then the contour Γa can be deformed
to a contour Γ̃a plus a small positively oriented circle around 0. Γ̃a coincides with Γa far
away from the origin and lies to the left of z1 = 0 close to the origin. Integrating along
the circle yields gN−1(u) and one arrives at the identity

gN (u) =

∫
Γa

dz2 · · ·
∫

Γa

dzN

∫
Γ̃a

dz1

∏
1≤i<j≤N

zj − zi
zj − τzi

N∏
j=1

1

zj
ezj(u−yj)e

1
2 z

2
j t + gN−1(u) .

(6.39)
In the limit u→∞ the first summand vanishes, since all poles of the z1-integration are
to the right of Γ̃a. Hence limu→∞ gN (u) = limu→∞ gN−1(u). But limu→∞ g1(u) = 1 and
the claim follows by induction.

This concludes the proof of Theorem 6.1.
There are two limiting cases of interest, τ → 1 which corresponds to the symmetric

interaction and τ → 0 which corresponds to the maximally asymmetric interaction. In
the limit τ → 1 one has S(zα, zβ) = −1.

Corollary 6.5. For τ = 1

Py(x, t; τ = 1) = perm
(
pt(xi − yj)

∣∣N
i,j=1

)
(6.40)

with the Gaussian kernel pt(u) = (2πt)−1/2 exp(−u2/2t) and perm denoting the perma-
nent, i.e. omitting the factor sgnσ in the definition of the determinant.
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The contribution of Harris [22] relies on the formula (6.40). The limit τ → 0 of the
transition probability has been first written down in [39], see also [46].

Corollary 6.6. For q = 1

Py(x, t; q = 1) = det
(
Fi−j(xi − yj)

∣∣N
i,j=1

)
, (6.41)

where for m ∈ Z
Fm(u) =

∫
Γa

dzzmezue
1
2 z

2t . (6.42)

Proof. For q = 1 the integrand in (6.7) reads

∑
σ∈SN

sgnσ
∏

1≤i<j≤N

zσ(j)

zj

N∏
j=1

ezσ(j)xj−zjyje
1
2 z

2
j t =

∑
σ∈SN

sgnσ
∏

1≤i<j≤N

zj
zσ(j)

N∏
j=1

ezj(xσ(j)−yj)e
1
2 z

2
j t .

(6.43)
Using the identity ∏

1≤i<j≤N

zj
zσ(j)

=

N∏
j=1

(zj)
σ(j)−j (6.44)

results in (6.41).

A Non-universal constants

The asymptotics in (1.13) is the sum of two terms. The deterministic term is propor-
tional to t. Its prefactor can be guessed on the basis of the Hamilton-Jacobi equation for
the height,

∂th = γP (∂xh) , (A.1)

γ = q − p, compare with (1.11). The solution to (A.1) should be of the self-similar
form, h(x, t) = tφ(x/t), for large t. Then the reference point is chosen as x = ut and to
leading order the height grows linearly in t. Such structure can be achieved for wedge
initial conditions including the degenerate linear profile, h(x, 0) = `x, which is referred
to as either flat or stationary initial condition. The fluctuating part of (1.13) is more
difficult. Here our conjecture relies on a particular model with exact solutions. The
respective formula can be put in a form which makes its generalization evident and can
be checked against a few other models. In fact, the conjectures are really based on the
universality hypothesis for models in the KPZ class. In our context the hypothesis states
that, for γ 6= 0, the fluctuation properties are independent of the choice of the interaction
potential V , except for potential dependent scales. The non-universal prefactors listed
below could possibly vanish, in which case a more detailed analysis is required.

We discuss separately the three canonical cases, wedge, flat, and stationary initial
conditions.

(i) wedge initial conditions. We consider two initial wedges, labelled by σ = +,− and
given by

h+(x, 0) = `−x for x ≤ 0 , h+(x, 0) = `+x for x ≥ 0 , (A.2)

h−(x, 0) = `+x for x ≤ 0 , h−(x, 0) = `−x for x ≥ 0 (A.3)

with `− < `+ and denote by hσ(x, t) the corresponding solution of (A.1). Our initial
value problem is equivalent to the Riemann problem for a scalar conservation law in one
dimension, which is well studied, see [24], Chapter 2.2, for a detailed discussion.
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We define
φ+(y) = sup

`−≤`≤`+

(
`y + γP (`)

)
(A.4)

and correspondingly
φ−(y) = inf

`−≤`≤`+

(
`y + γP (`)

)
. (A.5)

φ+ is convex up and φ− is convex down. φσ is linear outside the interval [y−σ , y
+
σ ] with

slope `−σ to the left and `σ to the right of the interval. Inside the interval there are finitely
many cusp points, i.e shocks for the slope. We label them as y−σ < y1

σ < ... < ykσσ < y+
σ ,

where the cases y−σ < y+
σ , no cusp point, and y−σ = y+

σ are admitted. Then hσ(x, t) is
self-similar and reads

hσ(x, t) = tφσ(x/t) . (A.6)

We consider now the coupled diffusions xj(t), j ∈ Z, governed by Eq. (1.9). As initial
measure we choose x0 = 0, xj+1 − xj , j ≥ 0, independently distributed according to
(1.7) with pressure P (`+), and xj − xj−1, j ≤ 0, independently distributed according to
(1.7) with pressure P (`−). For case (A.3) we impose the obviously interchanged initial
conditions.

Conjecture A.1. Let u ∈ ]y−σ , y
+
σ [ and different from a cusp point. Furthermore set

`0 = φ′σ(u), A = −P ′(`0) > 0, λ = γP ′′(`0) 6= 0. Then

lim
t→∞

P
(
xbutc(t)− tφσ(u) ≤ −sgn(φ′′σ(u))( 1

2 |λ|A2t)1/3s
)

= FGUE(s) . (A.7)

ξGUE has a negative mean and the actual interface is more likely located towards
the interior of tangent circle at (u, φσ(u)). If P ′′ has a definite sign, then one of the two
cases is empty. But in general either case has to be considered.

Our conjecture is based on the KPZ equation, from which the non-universal coeffi-
cients follow immediately by its scale invariance [1, 38]. The result has been confirmed
by the TASEP with step initial conditions [27] and a variety of similar models [7, 41].

(ii) flat initial conditions. If `− = ` = `+, then the solution to (A.1) reads h(x, t) =

`x+ P (`)t. A natural microscopic choice would be the deterministic data xj(0) = `j, as
discussed in the Introduction. Such a microscopic configuration is called flat, since there
are no deviating fluctuations from strict periodicity.

Conjecture A.2. For flat initial conditions with slope `, λ = γP ′′(`) 6= 0, and A = −P ′(`),

lim
t→∞

P
(
xbutc(t)− (u`+ γP (`))t ≤ −sgn(λ)(|λ|A2t)1/3s

)
= FGOE(2s) (A.8)

with FGOE(s) = P(ξGOE ≤ s).
Note that, as in Conjecture A.1, the term linear in t is dictated by the solution to

the macroscopic equation. The non-universal scale coincides with one for the wedge.
But the statistical properties of the fluctuations are distinct. They are now given by
the Tracy-Widom GOE edge distribution, and more generally by the Airy1 process, in
contrast to the wedge, where one obtains GUE and the Airy2 process.

Since there is no exact solution for the KPZ equation available, this time we use as
reference model the TASEP with a periodic particle configuration as initial condition
[36, 12]. The resulting formula has been checked for a few other models [11, 20].

(iii) stationary initial conditions. A second choice for a macroscopically flat height profile
is to make the increments {rj , j ∈ Z} time stationary, see (1.6), (1.7).

Conjecture A.3. For stationary conditions with slope `

lim
t→∞

P
(
xb−tγP ′(`)c(t)− (−`P ′(`) + P (`))γt ≤ −sgn(λ)( 1

2 |λ|A2t)1/3s
)

= FBR(s) . (A.9)
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The Baik-Rains distribution function, FBR(s), also denoted by F0(s), is defined in
[2, 33]. As far as known, it is not related to any of the standard matrix ensembles.
In (A.7) and (A.8) the reference point butc is arbitrary, while (A.9) only close to the
characteristic of Eq. (A.1) one observes the anomalous t1/3 scaling. Away from the
characteristic the fluctuations would be Gaussian generically.

The asymptotics of the KPZ equation with stationary initial data has been accom-
plished recently [8]. By scaling the result (A.9) follows, which is then confirmed through
the TASEP [2, 34, 19] and the stationary version of the model defined in (1.16) [8].

B Convergence to point-interaction

The main text concerns Brownian motions with oblique reflection. In the introduction
we argued that such point-interaction can be approximated through a short range,
sufficiently repulsive potential. Here we prove such a claim. To keep matters simple, we
only establish convergence of the second moments.

To start we choose a potential V ∈ C2(R \ {0},R+) with the properties V (u) = V (−u),
suppV = [−1, 1], V ′(u) ≤ 0 for u > 0, and, for some δ > 0, limu→0 |u|δV (u) > 0. The
scaled potential is defined by Vε(u) = V (u/ε). As in the introduction, we introduce the
diffusion process, xε(t), governed by

dxε0(t) = pV ′ε (xε1(t)− xε0(t))dt+ dB0(t) ,

dxεj(t) =
(
pV ′ε (xεj+1(t)− xεj(t))− qV ′ε (xεj(t)− xεj−1(t))

)
dt+ dBj(t) , j = 1, ..., n− 1 ,

dxεn(t) = −qV ′ε (xεn(t)− xεn−1(t))dt+ dBn(t) . (B.1)

The potential is entrance - no exit [30], hence xε(t) ∈ W+
n+1 almost surely. The limit

process, y(t), is governed by (2.1),

y0(t) = y0(0) +B0(t)− pΛ(0,1)(t) ,

yj(t) = yj(0) +Bj(t)− pΛ(j,j+1)(t) + qΛ(j−1,j)(t) , j = 1, ..., n− 1 ,

yn(t) = yn(0) +Bn(t) + qΛ(n−1,n)(t) . (B.2)

The processes xε(t), y(t) are defined on the same probability space.

Theorem B.1. Let xε(t), y(t) be defined as in (B.1), (B.2) with xε(0) = y(0) ∈W+
n+1. Then

lim
ε→0

E
(
(xε(t)− y(t))2

)
= 0 . (B.3)

Proof. We switch to relative coordinates, rε0 = xε0, rεj = xεj − xεj−1, u0 = y0, uj = yj − yj−1,
j = 1, ..., n. Then

rε0(t) = u0(0) +B0(t)− pΨε
1(t) ,

rε1(t) = u1(0) +B1(t)−B0(t)− pΨε
2(t) + Ψε

1(t) ,

rεj(t) = uj(0) +Bj(t)−Bj−1(t)− pΨε
j+1(t) + Ψε

j(t)− qΨε
j−1(t) , j = 2, ..., n− 1 ,

rεn(t) = un(0) +Bn(t)−Bn−1(t) + Ψε
n(t)− qΨε

n−1(t) , (B.4)

where

Ψε
j(t) = −

∫ t

0

V ′ε (rεj(s))ds . (B.5)

Correspondingly for the limit process,

u0(t) = u0(0) +B0(t)− pΛ1(t) ,

u1(t) = u1(0) +B1(t)−B0(t)− pΛ2(t) + Λ1(t) ,

uj(t) = uj(0) +Bj(t)−Bj−1(t)− pΛj+1(t) + Λj(t)− qΛj−1(t) , j = 2, ..., n− 1 ,

un(t) = un(0) +Bn(t)−Bn−1(t) + Λn(t)− qΛn−1(t) , (B.6)
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with Λj(t) = Λ(j−1,j)(t) which depends only on uj(t).
On the right of (B.4) and (B.6) we note the Töplitz matrix A, Aij = −qδij+1+δij−pδij−1,

i, j = 1, ..., n. A has the explicit inverse

(A−1)ij = Pij , for 1 ≤ i ≤ j , (A−1)ij = Pjiτ
j−i , for j ≤ i ≤ n , (B.7)

with

Pij =
(ki1 − ki2)(kn+1−j

1 − kn+1−j
2 )

p(k1 − k2)(kn+1
1 − kn+1

2 )
(B.8)

and k1, k2 the two real and distinct roots of −q + k − pk2 = 0. Thereby one confirms that
there exists a n× n matrix C, with C = Ct, C > 0, such that CA = diag(τ0, ..., τn−1).

Let us consider the quadratic form 〈(rε(t)−u(t)), C(rε(t)−u(t))〉, where rε = (rε1, ..., r
ε
n),

u = (u1, ..., un). The component j = 0 will be treated separately. Then

d〈(rε(t)− u(t)), C(rε(t)− u(t))〉 = 2

n∑
j=1

τ j−1(rε(t)− u(t))j(dΨε
j(t)− dΛj(t))

≤ 2

n∑
j=1

τ j−1
(
− rεj(t)V ′ε (rεj(t))

)
dt , (B.9)

since rεj(t), uj(t),dΨε
j(t),dΛj(t) ≥ 0, and uj(t)dΛj(t) = 0. Using suppVε = [−ε, ε] and

rεj(t) ≤ ε on [0, ε], one arrives at

〈(rε(t)− u(t)), C(rε(t)− u(t))〉 ≤ −2ετ−n
n∑
j=1

∫ t

0

V ′ε (rεj(s))ds . (B.10)

To deal with rε0(t) one notes that

rε0(t)− u0(t) = −p(Ψε
1(t)− Λ1(t)) , Ψε

1(t)− Λ1(t) = [A−1(rε(t)− u(t))]1 . (B.11)

Thus the proof is completed, provided E(Ψε
j(t)) is bounded uniformly in ε.

For this purpose note that

E
(
[A−1(rε(t)− rε(0))]j

)
= E

(
Ψε
j(t)
)
. (B.12)

We choose f ∈ C2(R+), such that f(r) = 1 for 0 ≤ r ≤ 1, f(r) = r for large r with smooth
interpolation satisfying f ′(r) ≥ 0, |f ′′(r)| ≤ c0. Let Lε denote the generator for rε(t).
Then, for j = 2, ..., N − 1,

Lεf(rj) =
(
qV ′ε (rj+1)− V ′ε (rj) + pV ′ε (rj−1)

)
f ′(rj) + f ′′(rj) (B.13)

and correspondingly for j = 1, N . Since V ′ε ≤ 0, f ′ ≥ 0, and V ′ε f
′ = 0, one arrives at the

bound
E
(
rεj(t)

)
≤ E

(
f(rεj(t))

)
≤ f(rεj(0)) + c0 . (B.14)

with some constant c0 independent of ε. Thus E(Ψε
j(t)) is bounded uniformly in ε.

C Low density ASEP

We explain an alternative proof of Theorem 2.1 based on ASEP duality.

Proposition C.1. Let ρ+ : W+
m → R, ρ− : W−n → R be bounded, continuous probability

densities. Then∫
W
−
n

∫
W

+
m

dxdyρ−(x)ρ+(y)Ey
(
H(x(t), y)

)
=

∫
W
−
n

∫
W

+
m

dxdyρ−(x)ρ+(y)Ey
(
H(x, y(t))

)
.

(C.1)
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Remark. Since by Theorem 6.1 the transition probability has a continuous density,
one can take the limits ρ−(x) → δ(x − x0), ρ+(y) → δ(y − y0) and duality holds in fact
pointwise.

Proof. We set

H+(y) =

∫
W
−
n

dxρ−(x)H(x, y) , H−(x) =

∫
W

+
m

dyρ+(y)H(x, y) . (C.2)

H+, H− are continuous and (C.2) reads

Eρ−
(
H−(x(t))

)
= Eρ+

(
H+(y(t))

)
. (C.3)

(i) The approximation theorem. It suffices to discuss the particle process y(t). We
consider m ASEP particles with positions w1(t) < ... < wm(t), wj(t) ∈ Z. Particles jump
with rate p to the right and rate q to the left, subject to the exclusion rule. Switching to
the moving frame of reference and under diffusive rescaling one obtains

yεj(t) = ε
(
wj(ε

−2t)− b(p− q)ε−2tc
)

(C.4)

with b·cdenoting integer part. Clearly yεj(t) ∈ (W+
m)◦ ∩ (εZ)m.

Proposition C.2. Let f : W+
m → R be bounded and continuous. Then for initial condi-

tions yε such that yε → y ∈W+
m it holds

lim
ε→0

Eyε
(
f(yε(t))

)
= Ey

(
f(y(t))

)
. (C.5)

In [28], the proposition is proved for the asymmetric zero range process with constant
rate, c(n) = 1− δ0n, which differs from the ASEP at most by m uniformly in t.

(ii) ASEP duality. We introduce n dual particles. They jump with rate q to the right and
rate p to the left, subject to the exclusion rule. The diffusively rescaled positions of the
dual particles in the moving frame are denoted by xεj(t).

Proposition C.3. For all x ∈ (W+
m)◦ ∩ (εZ)m and y ∈ (W+

m)◦ ∩ (εZ)m it holds

Eεx
(
H(xε(t), y)

)
= Eεy

(
H(x, yε(t))

)
. (C.6)

In [10] the assertion is proved for ε = 1 at fixed lattice frame. In (C.6) the yε(t) frame
moves with velocity p − q, while the xε(t) frame with velocity q − p. To check that the
terms just balance one uses that θ(λu) = θ(u) for λ > 0 and the translation invariance of
the ASEP dynamics.

Proof of Proposition C.1: In (C.6) we regard both sides as a piecewise constant function
on W+

m ×W−n . Integrating over ρ+ × ρ− yields∫
W
−
n

∫
W

+
m

dxdyρ−(x)ρ+(y)Ebxcε
(
H(xε(t), bycε)

)
=

∫
W
−
n

∫
W

+
m

dxdyρ−(x)ρ+(y)Ebycε
(
H(bxcε, yε(t))

)
(C.7)

with b·cε the integer part mod ε. By continuity of ρ−, ρ+,∫
W
−
n

∫
W

+
m

dxdyρ−(x)ρ+(y)Ebxcε
(
H(xε(t), y)

)
=

∫
W
−
n

∫
W

+
m

dxdyρ−(x)ρ+(y)Ebycε
(
H(x, yε(t))

)
+ o(ε). (C.8)

Using Proposition C.2 establishes the claim.
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D Proof of (6.15)

We fix σ, σ 6= id, n, hence the sets A, B, and ` = minB. We have argued already that
the integration over z` results in an expression vanishing as t→ 0. To have a proof we
have to study the full 2N -dimensional integral. For f ∈ Dε, this integral reads

Iσ(y; f, t) =

∫
RN

dxf(x)

∫
ΓaN

dz0

∫
Γa

dz1...dzN−1

×
∏
j∈B

S(zN , zj)
∏

{α,β}∈In(σ), α 6=N

S(zα, zβ)

N∏
j=1

ezj(xσ−1(j)−yj)e
1
2 z

2
j t (D.1)

with z0 = z1 + ...+ zN . The phase factor for z` is given by

ez`(xσ−1(`)−xn+yN−y`) . (D.2)

By construction, xσ−1(`) − xn ≥ ε on the support of f . We introduce the change of
variables

w = xσ−1(`) − xn , wj = xσ(j) − xn , j = 1, ..., N , j 6= ` , w0 = xn . (D.3)

Also, as shorthand, we introduce z∨` = (z0, ...,��z` , ..., zN−1), z∨` = z0 − z1 − ...−��z` − ...−
zN−1, z∨`,j = (z0, ...,��z` ,��zj , ..., zN−1), z∨`,j = z0 − z1 − ...−��z` −��zj − ...− zN−1. Then

Iσ(y; f, t) =

∫
RN−1

dw∨`
∫

dz∨`
∫

Γa

dz`

∫ ∞
ε

dwf̃(w,w∨`)ez`(w+yN−y`)e
1
2 z

2
` t

×
∏
j∈B

S(zN , zj)
∏

{α,β}∈In(σ), α 6=N

S(zα, zβ)

N∏
j=1,j 6=`

ezj(xσ−1(j)−yj)e
1
2 z

2
j t , (D.4)

where f̃ denotes f under the linear transformation (D.3).
The strategy is to first integrate over w∨` which results in g(w, z∨`), where by con-

struction g is supported in [ε,∞) in dependence on w and is smooth with a rapid decay
on the contours Γa,ΓaN . Secondly we bound the integration in dz`dw with an explicit
dependence on z∨`. For this purpose we have to study the S-factors. One has

τzN − z`
τz` − zN

=
τz∨` − (1 + τ)z`
(1 + τ)z` − z∨`

(D.5)

and for j ∈ B \ {`}
τzN − zj
τzj − zN

=
τz` − (1 + τ)zj − τz∨`,j
z` + (1 + τ)zj − z∨`,j

. (D.6)

The integrand for z` has the form ∏
j∈B∪A(`)

z` + aj
z` − bj

, (D.7)

with A(`) ⊂ A, aj , bj linear in z∨`, and <(bj) > a. For the remaining factors one only uses
the bound

|S(zα, zβ)| ≤ c(1 + |zα|+ |zβ |) (D.8)

on Γa,ΓaN .

Lemma D.1. Let aj , bj ∈ C and <(bj) > a, j = 1, ...,m, and define

I(t) =

∫ ∞
ε

dwf(w)

∫
Γa

dz e
1
2 z

2tezw
m∏
j=1

z + aj
z − bj

(D.9)
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for f ∈ Dε. Then, uniformly in t, 0 ≤ t ≤ 1,

|I(t)| ≤ c
m∏
j=1

(1 + |aj |+ |bj |) and lim
t→0

I(t) = 0 . (D.10)

Proof. The z-integrand is a product of ezw and

F0(z) = e
1
2 z

2t , Fj(z) =
z + aj
z − bj

. (D.11)

As distributions we define

F̂0(w) =

∫
Γa

dz e
1
2 z

2tezw = pt(w) , (D.12)

F̂j(w) =

∫
Γa

dz ezw
z + aj
z − bj

= −θ(−w)ebjw + (aj + bj)δ(w) . (D.13)

Then I(t) is expressed as an (m+ 1)-fold convolution,

I(t) =

∫ ∞
ε

dwf(w)(F0 ∗ F1 ∗ · · · ∗ Fm)(w) . (D.14)

Since |θ(−w)ebjw| < 1, one obtains the bound of (D.10). F̂j is supported on (−∞, 0], f on
[ε,∞), and limt→0 pt(w) = δ(w), which establishes the limit of (D.10).

Next note that
|S(zα, zβ)| ≤ c(1 + |z1|+ |z2|) . (D.15)

Hence∣∣ ∫
Γa

dz`

∫ ∞
ε

dwg(w, z∨`)ez`(w+yN−y`)e
1
2 z

2
` t
∣∣∣∣ ∏
j∈B

S(zN , zj)
∏

{α,β}∈In(σ), α 6=N

S(zα, zβ)

×
N∏

j=1,j 6=`

ezj(xσ−1(j)−yj)e
1
2 z

2
j t
∣∣ ≤ PN (|z∨`|) sup

w
|g(w, z∨`)| (D.16)

uniformly in t with some polynomial PN at most of order N . Thus we can use dominated
convergence to conclude that

lim
t→0

Iσ(y; f, t) = 0 . (D.17)
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