
Fakultät für Maschinenwesen

Lehrstuhl für Flugsystemdynamik

Utilization of Problem and Dynamic

Characteristics for Solving

Large Scale Optimal Control Problems

Matthias Bittner

Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Prof. Carlo L. Bottasso, Ph.D.

Prüfer der Dissertation: 1. Prof. Dr.-Ing. Florian Holzapfel

2. Prof. Dr. rer. nat. Matthias Gerdts

Universität der Bundeswehr München

3. Prof. Joseph Z. Ben-Asher, Ph.D.

Technion – Israel Institute of Technology, Haifa, Israel

Die Dissertation wurde am 18.01.2017 bei der Technischen Universität München eingereicht

und durch die Fakultät für Maschinenwesen am 06.04.2017 angenommen.

Abstract

This thesis presents several approaches, based on the characteristics of the problem formula-

tion and the involved dynamic systems, for solving large scale, complex, and real world optimal

control problems. Application-wise, the work focuses on aircraft trajectory optimization prob-

lems.

In many applications, the performance of a dynamic system needs to be increased without

the possibility to change the system itself or any of its inherent properties. In these cases,

optimal operation strategies are required. Optimal control theory is one means to calculate

these. Currently, many optimal control problems resulting from real world engineering chal-

lenges are hard to handle, as the numerical optimization problems, one gets after the required

discretization, cannot be solved efficiently.

The methods presented in this work target the bridging of the gap between the afore-

mentioned real world applications and the available mathematical theory. On the one side,

methods for improving the solution process, and on the other side, methods for the assessment

of the solution quality of optimal control problems are presented. This includes the generation

of enhanced initial guesses, the handling of multi criteria optimal control problems, a thorough

analysis of model properties – suggesting improvements in the model formulation – and the

exploitation of sparsity features. Besides, a novel, combined transcription method for models

incorporating different time scales is introduced. Moreover, a previously published control grid

refinement method is enhanced and adapted such that it can exploit physical properties of the

dynamic models under consideration.

The ideas presented here are incorporated in an optimal control tool developed at the

Institute of Flight System Dynamics of TU München in order to be able to easily reuse them.

This tool is also used to solve illustrative examples from air traffic management and air race

trajectory optimization that demonstrate the presented methods.

Zusammenfassung

Die vorliegende Dissertation stellt verschiedene Ansätze, die auf der Nutzung von Merkmalen

der Problemformulierung und des beteiligten dynamischen Systems basieren, vor, die zur Lö-

sung von großen, komplexen Optimalsteuerungsproblemen aus dem realen Leben verwendet

werden können. In den Anwendungen konzentriert sich die Arbeit dabei vornehmlich auf Flug-

bahnoptimierungsprobleme.

In vielen Anwendungen soll die Leistungsfähigkeit eines dynamischen Systems erhöht wer-

den, ohne dass das System oder seine Eigenschaften verändert werden können. In diesen

Fällen sind optimale Nutzungsstrategien erforderlich, die unter anderem mit den Methoden

der Optimalsteuerung bestimmt werden können. Derzeit sind viele der Optimalsteuerungs-

probleme, die aus realen technologischen Herausforderungen resultieren, schwer zu lösen, da

die numerischen Optimierungsprobleme, die nach der notwendigen Diskretisierung entstehen,

nicht effizient gelöst werden können.

Die in dieser Arbeit vorgestellten Methoden zielen auf die Überbrückung der Kluft zwischen

den vorgenannten realen Anwendungen und der verfügbaren mathematischen Theorie ab. Da-

her werden hier einerseits Methoden zur Verbesserung des Lösungsprozesses, und andererseits

Ansätze zur Abschätzung der Lösungsqualität von Optimalsteuerungsproblemen vorgestellt.

Dies umfasst die Erzeugung besserer Anfangslösungen, die Behandlung von multikriteriellen

Optimalsteuerungsproblemen, eine detaillierte Analyse von Modelleigenschaften – die auch

Vorschläge zur Verbesserung der Modellformulierung enthält – und die Ausnutzung der Be-

setztheit der Problemstruktur. Außerdem wird ein neuartiges, kombiniertes Transkriptionsver-

fahren für Modelle mit verschiedenen Zeitskalen eingeführt. Weiterhin wird ein zuvor veröf-

fentlichtes Steuergitterverfeinerungsverfahren verbessert und so angepasst, dass physikalische

Eigenschaften der betrachteten dynamischen Modelle ausgenutzt werden können.

Um eine einfache Wiederverwendung der hier präsentierten Ideen zu ermöglichen, sind

diese in das am Lehrstuhl für Flugsystemdynamik der TU München entwickelte Optimals-

teuerungstool integriert. Dieses wird auch verwendet um anschauliche Beispiele aus dem

Flugverkehrsmanagement und der Flugbahnoptimierung für Luftrennen zu lösen und dabei die

hier vorgestellten Methoden zu demonstrieren.

Danksagung

Diese Arbeit entstand während meiner Zeit als wissenschaftlicher Mitarbeiter am Lehrstuhl für

Flugsystemdynamik der TU München, der von Prof. Florian Holzapfel geleitet wird.

Ebendiesem gilt zuallererst mein Dank dafür, dass er mir die Tätigkeit am Lehrstuhl er-

möglicht hat und mich in allen Anliegen – seien sie fachlicher oder nicht-fachlicher Natur –

stets bereitwillig unterstützt hat. Weiterhin möchte ich mich bei Prof. Matthias Gerdts

bedanken, der meine Arbeit, genauso wie die gesamte Flugbahnoptimierungsgruppe, stets mit

größter Hilfsbereitschaft gefördert hat. Besides, I really want to thank Prof. Joseph Z.

Ben-Asher for the many enjoyable and revealing discussions and for his commitment as

third examiner. I am also very grateful that Prof. Carlo L. Bottasso agreed to chair the

exam.

Bei Michael Buhl möchte ich mich für die Übernahme des Mentorats im Rahmen der

TUM Graduate School und die vielen interessanten Gespräche bedanken.

Zudem möchte ich mich ganz herzlich bei meinen Kollegen am Lehrstuhl bedanken, wobei

vor allem Maximilian Richter hervorzuheben ist, der mich gerade in den besonders

anstrengenden Phasen der Tätigkeit am Lehrstuhl immer unterstützt hat. Ich habe die Zusam-

menarbeit und die Diskussionen mit ihm stets sehr geschätzt. Jakob Lenz, Matthias

Rieck, Benedikt Grüter, Johannes Diepolder und David Löbl gilt mein Dank für

viele kritische Diskussionen und die überaus konstruktive Zusammenarbeit. Bei Christoph

Göttlicher möchte ich mich für die hilfreichen Hinweise rund um Modellidentifikation und

Filterung bedanken.

Mein besonderer Dank gilt meiner wundervollen Frau Clarissa, die mich trotz der

notwendigen Entbehrungen während der gesamten Zeit bestärkt und unterstützt hat.

Garching, im Januar 2017 Matthias Bittner

This document contains information (BADA 4) which has been made available by the European Organ-

isation for the Safety of Air Navigation (EUROCONTROL). EUROCONTROL ©2017. All rights reserved.

EUROCONTROL shall not be liable for any direct, indirect, incidental or consequential damages arising out

of or in connection with this document, in particular with respect to the use of BADA 4.

Contents

List of Figures vii

List of Tables xi

Acronyms xiii

Symbols and Indices xv

Symbols . xv

Indices . xviii

1 Introduction 1

1.1 Goals and Contributions . 3

1.2 Structure of the Thesis . 5

2 Aircraft Modeling 11

2.1 Nomenclature and Relevant Quantities . 13

2.2 Coordinate Frames and Transformations . 13

2.3 Modeling Requirements . 17

2.4 Point Mass Simulation Model . 18

2.4.1 Position Propagation Equations of Motion 18

2.4.2 Translation Equations of Motion . 19

2.5 Rigid Body Simulation Model . 23

2.5.1 Attitude Propagation . 23

2.5.2 Rotational Equations of Motion . 25

2.6 Atmosphere Model . 27

2.6.1 Static Atmosphere . 28

2.6.2 Dynamic Atmosphere . 30

2.7 External Forces and Moments . 33

2.7.1 Aerodynamics . 33

2.7.2 Propulsion Forces and Moments . 34

2.7.3 Gravitational Force . 35

2.8 Model Extensions . 36

2.8.1 Fuel Consumption . 36

2.8.2 Actuator Dynamics . 37

i

CONTENTS

3 Mathematical Preliminaries 39

3.1 Numerical Optimization . 40

3.1.1 Unconstrained Optimization Problems 40

3.1.2 Constrained Optimization Problems 43

3.1.3 Sequential Quadratic Programming (SQP) 48

3.1.4 Interior Point Algorithm . 49

3.1.5 Sparse Optimization Problems . 50

3.1.6 Parametric Optimization Problems 51

3.2 Applied Optimal Control . 54

3.2.1 Optimal Control Problems . 54

3.2.2 Transformation Techniques for Optimal Control Problems 55

3.2.3 Indirect Solution Approach . 58

3.2.4 Direct Solution Approach . 64

3.2.5 Relations Between the Direct and the Indirect Approach 82

3.2.6 Problems with Linearly Appearing Controls and Singular Arcs 87

3.3 Multi Criteria Optimization and Optimal Control 89

3.3.1 Weighted Sum Scalarization . 90

3.3.2 Weighted Metrics Scalarization . 91

3.3.3 ε-Constraint Scalarization . 91

3.3.4 Tschebyscheff Scalarization . 91

3.3.5 A Priori Methods . 92

3.3.6 Interactive Methods . 93

3.3.7 Multi Criteria Optimal Control . 93

4 Implementation of a Discretization Scheme in an Optimal Control Tool 95

4.1 Other Available Optimal Control Software 97

4.1.1 DIDO . 97

4.1.2 GESOP . 97

4.1.3 GPOPS and GPOPS-II . 97

4.1.4 NUDOCCS . 98

4.1.5 PSOPT . 98

4.1.6 OCPID-DAE1 . 98

4.1.7 SOCS . 98

4.1.8 TOMLAB/PROPT . 99

4.2 Problem Formulation for FALCON.m . 99

4.3 Problem Setup Process . 101

4.4 Problem Structure . 102

4.5 Derivative Calculation and Code Generation 104

4.6 Sorting and Indexing . 105

4.7 Numerical Scaling . 105

ii

CONTENTS

4.8 Software Components . 105

4.8.1 Value Containers . 106

4.8.2 Structuring Elements . 109

4.8.3 Solution Methods . 111

4.8.4 Model Builder . 113

5 Improving Robustness by Initial Guess Generation 117

5.1 Initial Guess Generation Based on Homotopy 117

5.1.1 Basic Homotopy . 118

5.1.2 Homotopy for Multi Aircraft Trajectory Optimization Problems 120

5.1.3 Extended Homotopy Using Sensitivity Updates 121

5.2 Initial Guess Generation Using Rauch-Tung-Striebel Smoothing 122

5.2.1 Extended Rauch-Tung-Striebel Smoother 123

5.2.2 Optimization Process . 126

6 Improving Performance Based on Modeling Alternatives 129

6.1 Analysis of Simulation Models for Optimal Control 131

6.2 Analysis of the Point Mass Simulation Model 131

6.3 Analysis of the Rigid Body Simulation Model 133

6.4 Reformulation of the Point Mass Simulation Model to Avoid Linear Controls . 135

6.5 Smooth Data Modeling Using Hyperbolic Tangent Functions 136

7 Improving Performance by the Exploitation of Problem Sparsity 141

7.1 General Problem Sparsity . 142

7.2 Local Sparsity Considerations . 144

7.2.1 Sparsity of the Control Discretization 144

7.2.2 Model and Constraint Sparsity . 146

7.3 Global Sparsity Considerations . 147

7.4 Sparsity in Multi System Problems . 149

8 Improving Robustness by the Use of Combined Transcription Methods 151

8.1 Overview of Existing Approaches . 152

8.1.1 Multi Rate Runge-Kutta Methods 152

8.1.2 Multi Timescale Collocation Method 152

8.1.3 Direct Single-Multiple Shooting Method 153

8.2 Combined Direct Collocation and Multiple Shooting 154

9 Improving Performance Based on Control Grid Refinement 159

9.1 Overview of Mesh Refinement Techniques 159

9.2 From Density Functions to the DENMRA Algorithm 162

9.3 Physically Motivated Density Functions . 164

9.4 Enhanced Refinement Strategy . 164

iii

CONTENTS

10 Applications Related to Commercial Air Traffic 167

10.1 Literature Review . 169

10.2 Approach Scenarios Including Several Aircraft 171

10.2.1 Aircraft Simulation Model . 171

10.2.2 Wind Model . 172

10.2.3 Force Model . 174

10.2.4 Discrete Configuration Changes . 174

10.2.5 Flight Envelope of Each Aircraft . 175

10.2.6 Combined Dynamic Model . 176

10.2.7 Separation . 176

10.2.8 Cost Modeling . 177

10.2.9 Sparsity . 178

10.2.10 Solution Process . 181

10.2.11 Scenario and Results . 183

10.3 Optimization of Mid to Long Range Flights Considering Air to Air Refueling . 188

10.3.1 Simulation Models . 189

10.3.2 Flight Envelope Constraints . 190

10.3.3 Redesign of a Long Haul Aircraft for Aerial Refueling 190

10.3.4 Multi-Aircraft Optimal Control Problem 193

10.3.5 Results . 194

10.4 Fairness considerations in ATM scenarios . 199

10.4.1 Aircraft Simulation Model . 200

10.4.2 Separation Constraints . 200

10.4.3 Multi-Aircraft Optimal Control Problem 201

10.4.4 Cost Functions and Fairness . 202

10.4.5 Multi Criteria Optimization . 203

10.4.6 Scenarios and Results . 206

11 Air Race Related Applications 215

11.1 Simulation Model . 217

11.1.1 Aerodynamic Model . 217

11.1.2 Engine Dynamics . 220

11.1.3 Augmented Point Mass Simulation Model 220

11.1.4 Path Constraints . 220

11.1.5 Race Gate Constraints . 221

11.1.6 Cost Function . 221

11.1.7 Initial Guess . 222

11.2 Low Fidelity Trajectory Optimization . 222

11.2.1 Augmented Point Mass Simulation Model 224

11.2.2 Point Mass Model with Dynamic Control Constraints 231

11.3 High Fidelity Trajectory Optimization . 235

iv

CONTENTS

11.4 Combined Collocation and Shooting . 243

11.5 Comparison of the Results for the Different Models 253

11.6 Initial Guess Generation Using Extended Homotopy 256

11.6.1 Basic Homotopy Scheme . 257

11.6.2 Sensitivity Based Homotopy Scheme 260

11.7 Initial Guess Generation Based on RTS Smoothing 260

11.8 Control Grid Refinement . 267

12 Summary and Perspective 275

A Coordinate Frames I

A.1 Earth-Centered Inertial (ECI), Index I . I

A.2 Earth-Centered Earth Fixed Frame (ECEF), Index E I

A.3 North-East-Down Frame (NED), Index O . II

A.4 Navigational Frame, Index N . II

A.5 Aerodynamic Frame, Index A . II

A.6 Rotated Aerodynamic Frame, Index Ā . III

A.7 Kinematic Frame, Index K . III

A.8 Rotated Kinematic Frame, Index K̄ . III

A.9 Body Fixed Frame, Index B . IV

B Scientific Publications V

Bibliography IX

v

List of Figures

2.1 Causal chain from elevator deflection to altitude change 11

2.2 Main coordinate frames . 14

3.1 Principle of a line search algorithm for determining the step size 44

3.2 Examples for the LICQ . 45

3.3 Examples illustrating the KKT conditions . 47

3.4 Augmented cost function of the interior point method 51

3.5 Solution scheme used in direct discretization methods 65

3.6 General scheme of the shooting approach . 73

3.7 Single and multiple shooting principles . 77

3.8 Convex Pareto front for a multi-criteria optimization problem 90

4.1 Logo of the optimal control tool FALCON.m 95

4.2 Structure of optimal control problems within FALCON.m 103

4.3 Sparsity pattern of the gradient of a discretized optimal control problem 106

4.4 Value container types in FALCON.m . 107

4.5 Numerical discretization methods available in FALCON.m 112

4.6 Numerical optimization algorithms available in FALCON.m 113

4.7 The BaseBuilder class and its child classes 114

4.8 The DerivativeBuilder class, the DerivativeEvaluator class, and child classes . . 115

5.1 Basic and extended homotopy principle . 119

5.2 Homotopy scheme for multi aircraft optimization problems 120

6.1 Sparsity of the Jacobian and the Hessian of the point mass model 132

6.2 Sparsity of the Jacobian and the Hessian of the point mass path constraint . . 133

6.3 Sparsity of the Jacobian and the Hessian of the rigid body simulation model . 134

6.4 Sparsity of the Jacobian and the Hessian of the rigid body path constraint . . 134

6.5 Sparsity of the Jacobian and Hessian of the basic point mass simulation model 136

6.6 Sparsity of the Jacobian and Hessian of the basic point mass path constraint . 136

6.7 Illustrative example for the hyperbolic tangent data modeling 137

6.8 Derivative of the hyperbolic tangent data modeling example 139

6.9 Transition function for multi dimensional hyperbolic tangent modeling 140

7.1 Elements of optimization process relevant for problem sparsity 143

vii

LIST OF FIGURES

7.2 Sparsity patterns of different control interpolation schemes (part 1) 145

7.3 Sparsity patterns of different control interpolation schemes (part 2) 146

7.4 Sparsity of an illustrative example problem using single shooting 148

7.5 Sparsity of an illustrative example problem using multiple shooting 148

7.6 Sparsity of an example problem using full discretization 149

7.7 From local to global sparsity patterns in multi system optimization problems . 150

8.1 Discretization scheme based on collocation and multiple shooting 155

9.1 Example for a densitiy function and its coresponding distribution function . . . 163

10.1 Wind speed components over altitude . 173

10.2 Local sparsity pattern for the gradient of the simulation model 179

10.3 Overall model sparsity . 180

10.4 Global sparsity pattern of the discretized optimal control problem 181

10.5 Detail of the upper left corner of the global sparsity pattern 182

10.6 Optimal flight tracks for all aircraft in the scenario 185

10.7 Final part of the trajectories and separation ellipsoids for the aircraft 186

10.8 Separation margin between all pairs of aircraft over time 186

10.9 Structure of the calculation process of aircraft masses and parameters 192

10.10 Phase structure for aerial refueling problem 193

10.11 Trajectories for the airliner and the tanker in the first example scenario. 195

10.12 Fuel masses on board the aircraft in the first example scenario 195

10.13 Part of the trajectory while refueling above Dakhla, Marocco 196

10.14 Trajectories of the aircraft in the second aerial refueling scenario 197

10.15 Fuel masses on board the aircraft in the second example scenario 198

10.16 Overall cost minimal solution for scenario 1 207

10.17 Results in mean and standard deviation for scenario 1 208

10.18 Mean and standard deviation for different parameters kT in scenario 1 208

10.19 Mean and standard deviation for different parameters kc in scenario 1 209

10.20 Approximation of the Pareto front for scenario 1 209

10.21 Overall cost minimal solution for scenario 1 210

10.22 Results in mean and standard deviation for scenario 2 211

10.23 Mean and standard deviation for different parameters kT in scenario 2 211

10.24 Mean and standard deviation for different parameters kc in scenario 2 212

10.25 Approximation of the Pareto front for scenario 2 213

11.1 Optimal spatial trajectory through the air race course 216

11.2 Part of the lift coefficient depending on the angle of attack 219

11.3 Initial guess for the spatial trajectory through the air race course 223

11.4 Optimal spatial trajectory for the augmented point mass simulation model . . 224

11.5 Optimal state histories for the augmented point mass simulation model 225

viii

LIST OF FIGURES

11.6 Optimal control histories for the augmented point mass simulation model . . . 226

11.7 Constrained load factor for the augmented point mass simulation model 227

11.8 Costate histories for the augmented point mass simulation model 229

11.9 Augmented Hamiltonian for the augmented point mass simulation model . . . 230

11.10 Derivative of Hamiltonian w. r. t. controls for augmented point mass model . . 231

11.11 Optimal spatial trajectory for the model including dynamic control constraints . 232

11.12 Optimal state histories for the model including dynamic control constraints . . 233

11.13 Optimal control histories for the model including dynamic control constraints . 234

11.14 Constrained load factor for the model including dynamic control constraints . . 235

11.15 Costate histories for the model including dynamic control constraints 236

11.16 Augmented Hamiltonian for the model including dynamic control constraints . 237

11.17 Dynamic Control Constraint for limiting the control rates 237

11.18 Derivative of Hamiltonian w. r. t. controls for model with control constraints . 238

11.19 Optimal state histories for the high fidelity simulation model 239

11.20 Optimal state histories for the high fidelity simulation model 240

11.21 Optimal control histories for the high fidelity simulation model 241

11.22 Projection of the Hodograph to different subspaces during chattering 242

11.23 Constrained load factor for the high fidelity simulation model 243

11.24 Costate histories for the high fidelity simulation model 244

11.25 Costate histories for the high fidelity simulation model 245

11.26 Augmented Hamiltonian over time for the high fidelity simulation model 246

11.27 Derivative of Hamiltonian w. r. t. controls for high fidelity model 247

11.28 Optimal spatial trajectory for the combined simulation model 248

11.29 Optimal state histories for the combined simulation model 249

11.30 Optimal state histories for the combined simulation model 250

11.31 Optimal control histories for the combined simulation model 251

11.32 Constrained load factor for the combined simulation model 251

11.33 Detail of the roll rate history for the combined simulation model 252

11.34 Detail of the z-position history for the combined simulation model 252

11.35 Detail of the bank angle history for the combined simulation model 252

11.36 Comparison of optimal race trajectories for the different models 253

11.37 Position difference w. r. t. the solution for the rigid body simulation model . . . 254

11.38 Optimal spatial trajectory through the race course 256

11.39 Optimal state histories for the homotopy example 258

11.40 Optimal control histories . 259

11.41 Optimal spatial trajectories for the basic homotopy steps 259

11.42 Optimal spatial trajectories for the extended homotopy steps 260

11.43 Optimal spatial trajectory for the RTS smoother example 263

11.44 Optimal state histories for the RTS smoother example 264

11.45 Optimal state histories for the RTS smoother example 265

ix

LIST OF FIGURES

11.46 Optimal control histories for the RTS smoother example 266

11.47 Optimal spatial trajectory through the race course 268

11.48 Optimal state histories for the grid refinement example 269

11.49 Optimal control histories for the grid refinement example 270

11.50 Detail of the optimal control histories for the grid refinement example 271

11.51 Dynamic control constraint for the grid refinement example 272

11.52 Distribution and density function for the grid refinement example 273

x

List of Tables

2.1 Relevant quantities for aircraft modeling . 14

2.2 Constants for the Standard Atmosphere model 28

3.1 Butcher tableaus for numerical integration methods 68

3.2 Selected numerical integration methods . 69

9.1 Butcher tableau for the Fehlberg variable step size integration method 160

10.1 States and controls of each aircraft in the scenario 172

10.2 Coefficients of the approximation polynomials for the wind speed components . 173

10.3 Aircraft weight categories and separation limits 177

10.4 Elements of the gradient of the discretized optimal control problem. 183

10.5 Data for the aircraft and the trajectories in the example scenario 184

10.6 Basic data of the aircraft redesigns . 192

10.7 Example civil refueling scenario from Munich to São Paulo 194

10.8 Results for refueling a flight from Munich to São Paulo 196

10.9 Example civil refueling scenario involving two airliners 197

10.10 Results for the masses in the second example scenario 198

10.11 Cost function values for scenario 1 for the minimization of the mean 208

10.12 Cost function values for scenario 2 for the minimization of the mean 210

11.1 Position and orientation of the race gates relative to the start gate 216

11.2 General model parameters for the aircraft used in the examples 218

11.3 Parameters for the lift coefficient depending on the angle of attack 218

11.4 Aerodynamic force coefficients . 219

11.5 Aerodynamic moment coefficients . 219

11.6 Path constraints applied in the air race examples 221

11.7 Constraints applied at the race gates in the air race examples 222

11.8 Initial guess for the states and the controls of the air race examples 222

11.9 Results for different simulation models and discretization methods 255

11.10 Race gate constraints in the extended homotopy example 256

11.11 Solution times for the different initial guess approaches 257

11.12 Race gate constraints for initial guess generation example using RTS smoother 261

11.13 Variables appearing in the RTS smoother . 262

11.14 Results for the RTS smoother example . 267

xi

LIST OF TABLES

11.15 Race gate constraints for the grid refinement example 268

11.16 Results for the grid refinement example . 272

xii

Acronyms

ADOL-C Automatic Differentiation by OverLoading in C++

AIAA American Institute of Aeronautics and Astronautics

AMPL A Mathematical Programming Language

API Application Programming Interface

ATC Air Traffic Control

ATM Air Traffic Management

BADA Base of Aircraft Data (published by EUROCONTROL)

BFGS Broyden-Fletcher-Goldfarb-Shanno (update)

CARATS Collaborative Action for Renovation of Air Traffic Systems (Japan)

CNS Communication, Navigation, Surveillance

CPDLC Controller-Pilot Data Link Communications

CPU Central Processing Unit

DAE Differential Algebraic Equation

DENMRA Density Function Based Mesh Refinement Algorithm

DoF Degree of Freedom

ECEF Earth Centered Earth Fixed

ECI Earth Centered Inertial

ENRI Electronic Navigation Research Institute

FAA Federal Aviation Administration

FALCON.m FSD OptimAL CONtrol Tool for MATLAB

FEM Finite Element Method

FRA Frankfurt Airport

FSD Institute of Flight System Dynamics (at TUM)

GESOP Graphical Environment for Simulation and Optimization

GPOPS General Purpose OPtimal Control Software

GRU Guarulhos-Governador André Franco Montoro Int. Airport, São Paulo

GUI Graphical User Interface

ICAO International Civil Aviation Organization

IFR Instrument Flight Rules

IP Interior Point (Method)

IPOPT Interior Point OPTimizer

ISA International Standard Atmosphere

xiii

Acronyms

JHS Sisimiut Airport

KKT Karush-Kuhn-Tucker

LAX Los Angeles International Airport

LICQ Linear Independence Constraint Qualification

MILP Mixed Integer Linear Programming (problem)

MINLP Mixed Integer non-linear Programming (problem)

MIOCP Mixed Integer Optimal Control Problem

MLIT (Japanese) Ministry of Land, Infrastructure, Transport and Tourism

MPC Model Predicitve Control

MSL Mean Sea Level

MTOW Maximum Take-Off Weight

MUC Munich Airport

NED North East Down

NLP non-linear Programming (problem)

NUDOCCS Numerical Discretisationmethod for Optimal Controlproblems with Con-

straints in Controls and States (sic)

OCP Optimal Control Problem

OCPID-DAE1 Optimal Control and Parameter Identification with Differential-Algebraic

Equations of Index 1

ODE Ordinary Differential Equation

OWE Operating Weight Empty

PSOPT PseudoSpectral OPTimal control solver in C++

QP Quadratic Programming

RAM Random Access Memory

RCV Row Column Value (format of sparse data)

RPAS Remotely Piloted Aerial System

RTS Rauch-Tung-Striebel (Smoother)

SAGE System for Assessing Aviation’s Global Emission

SESAR Single European Sky ATM Research

SFO San Francisco International Airport

SNOPT Sparse non-linear OPTimizer

SOCS Sparse Optimal Control Software

SQP Sequential Quadratic Programming

TMA Terminal Maneuvering Area

UAS Unmanned Aerial System

UAV Unmanned Aerial Vehicle

VIL Dakhla Airport

WGS84 World Geodetic System 1984

WORHP We Optimize Really Huge Problems

ZFW Zero Fuel Weight

xiv

Symbols and Indices

Symbols

◦,�, ∗ General placeholders

A State matrix of the linearized system dynamic

a Acceleration vector

α Angle of attack

B Base function for the control discretization

b Wing span

β Angle of sideslip

C State matrix of the linearized output equation

C Constraint vector

ck k-th state defect

C◦ Aerodynamic coefficient for force or moment ◦
C◦� Aerodynamic coefficient for force or moment ◦ depending on quantity �

c̄ Mean aerodynamic chord

C̄eq Discretized equality path constraints

Ceq Equality path constraints

χ Course angle

CI Cost index

C̄ineq Discretized inequality path constraints

Cineq Inequality path constraints

D Drag force

d Separation distance

deg Degrees

Uδ(◦) δ-Environment of ◦
δSB Spoiler / speed brake position

δT Thrust lever position

�′
◦ Derivative of � with respect to ◦

�′′
◦∗ Second derivative of � with respect to ◦ and ∗

∇◦ Gradient with respect to ◦
e Mayer cost function

xv

Symbols

η Elevator deflection

η Weighing factor in the interior point algorithm

F Cumulative distribution function for the grid refinement

F Forces acting on the aircraft

f System dynamics

f̄ Normalized density function for the grid refinement

G Center of gravity

g Gradient vector

g Gravitational acceleration vector

Γ Mapping matrix for the process noise

M State update matrix of the smoother (backward)

γ Climb angle

H Angular momentum

H Hessian matrix

h Altitude

H Hamilton function

H̃ Extended Hamilton function

hk Numerical integration step size at time step k

I Inertia

J Cost function

J̄ Augmented cost function

K State update matrix of the smoother (forward)

k Fading factor (in multi aircraft problem)

b Base function for grid refinement

κ◦ Curvature of ◦
L Lagrange cost function

L Lift force

L Rolling moment

l Steepness of fading function for data interpolation

L Lagrange function for constrained optimization problems

λ Costates

λ Geodetic longitude

λ Lagrange multipliers for equality constraints

ν Lagrange Multipliers for inequality constraints

lh Local error of the numerical integration scheme

M Mach number

M Moments

M Pitching moment

M Transformation matrix between two coordinate frames

m Mass

xvi

Symbols

µ Bank angle

µ Multipliers for the constraint equations in the OCP

N Yawing moment

n Load factor

ω Rotational vector

P State covariance matrix of the smoother

P Arbitrary point on the aircraft

p Impulse acting on the aircraft

p Vector of additional parameters

p Roll rate

Φ Roll angle

ϕ Geodetic latitude

Φk Increment function of the numerical integration scheme at time step k

Ψ Azimuth angle

Ψ0 Initial boundary conditions

Ψf Final boundary conditions

q̃ Dimensionless aerodynamic pitch rate

p̃ Dimensionless aerodynamic roll rate

r̃ Dimensionless aerodynamic yaw rate

Q Cross-stream force

Q Power spectral density of discretized process noise

Q Hessian approximation

q Pitch rate

q Quaternion

Q̄ Power spectral density of process noise

q̄ Dynamic pressure

R Power spectral density of discretized output noise

R Reference point

R Separation radius

r Interior point constraints

r Yaw rate

R̄ Power spectral density of output noise

aij, bj , cj Coefficients of the Runge-Kutta integration scheme

kj k-th Stage derivative of the Runge-Kutta integration scheme

f̃F Extended state dynamics, including zero dynamics for the controls in the

smoothing

G◦ Discretized grid for the values ◦
S Combined State and Control Constraint

S Sensitivity of the state / control with respect to a parameter

S Wing reference area

xvii

Indices

s Fading function for data interpolation

σ0 Multiplier for the initial boundary conditions

σf Multiplier for the final boundary conditions

σSF C Specific fuel consumption

s Slack variables in the interior point algorithm

T◦ Diagonal scaling matrix used to scale the value ◦
t Independent variable, mostly time

Θ Pitch angle

tol Optimization tolerance

TS Dynamic time constant

u Control vector

u Velocity component in x-direction

ū Coefficient for control base function

p Optimization update step

V Scalar velocity

V Value function

V Velocity vector

v Discretized stochastic output noise

v Velocity component in y-direction

v̄ Stochastic output noise

w Discretized stochastic process noise

wi Weight of the i-th cost function in the scalarized cost function

w Velocity component in z-direction

w̄ Stochastic process noise

R̄u Weighting matrix for penalty cost function

xk
0 k-th multiple shooting state

x Position of a point

x State vector

x Position in x-direction

x̄ Augmented state vector

ξ Aileron deflection

y Position in y-direction

z Optimization value

z Optimization parameter vector

z Position in z-direction

ζ Rudder deflection

Indices

A With respect to Aerodynamic Frame

xviii

Indices

A Aerodynamic quantity

Ā With respect to Rotated Aerodynamic Frame

B With respect to Body Fixed Frame

b Related to the backward run of the smoother

C Constraint related (tolerance)

CAS Calibrated air speed

CMD Commanded value

E With respect to Earth-Centered Earth Fixed Frame

eq Equality

F States of the fine simulation model, not appearing in the simplified model

f Fast (states or dynamics)

f Related to the forward run of the smoother

FB Final boundary

G Gravitational quantity

I With respect to Earth-Centered Inertial Frame

IB Initial boundary

I Identity matrix

ineq Inequality

J Cost related (tolerance)

K With respect to Kinematic Frame

K Kinematic quantity

K̄ With respect to Rotated Kinematic Frame

MSL Mean Sea Level

N With respect to Navigational Frame

O With respect to North-East-Down Frame

opt Optimal value

P Propulsive quantity

ref reference

S States appearing in the fine simulation model and in the simplified model

s Slow (states or dynamics)

SFC Specific fuel consumption

T Target value in multi criteria optimization

0 Initial value

τ̄ Nodes on the fine grid of the combined discretization scheme

TEngine Time constant of the engine dynamics

f Final value

u Eastward wind component

upd Updated value

v Northward wind component

W Wind quantity

xix

Chapter 1

Introduction

Whenever the performance of a system should be increased without changing its design or any

of its inherent properties, methods for optimizing its operation strategies are required. Different

methods exist for such optimizations, ranging from empirical and statistical approaches to more

theoretical methods based on modeling, simulation, and mathematical optimization. In this

work, mathematical optimal control of dynamic systems – being a particular example for the

aforementioned approaches – is considered. Here, the applications of the regarded technologies

are all related to aircraft trajectory optimization and, hence, are using models of the underlying

aircraft dynamics.

As always when using technologies that are based on the modeling of real systems, the

quality of the achievable results strongly depends on the quality of the model used. Besides

the determination of precise dynamic models itself, in optimal control the solution of such

high fidelity problems poses its own challenges that will be described and approached in more

detail in this work.

In the past decades, many applications of optimal control theory from different fields

have been investigated in the literature, one of them being space sciences. In particular, this

includes the calculation of optimal ascend trajectories for the so-called Goddard Rocket.

Even though being one of the first optimal control problems ever solved, and initially coming

up in 1919, it is still subject to investigations nowadays, like in [Ben10, ch. 9] and [BMT08].

[PP12]

Besides, many other space related applications have been investigated, like the determi-

nation of optimal orbit transfers by Wiesel and Alfano in the 1980s in [WA85]. Therein,

the authors formulate a many-revolution orbit transfer as an unconstrained optimal control

problem that can be solved analytically based on the indirect solution approach (which is de-

scribed in more detail in section 3.2.3). With the evolution of digital computer technology,

direct solution methods (see section 3.2.4) became more and more popular. They are e. g.

used by Herman and Conway in [HC98], where optimal, low-thrust, earth-moon transfers

are calculated. In 2003, Betts and Erb considered optimal low thrust trajectories to the

moon in their work [BE03]. The cost functions minimized in their examples are the overall fuel

consumption of the spacecraft powered by solar electric propulsion during the 201 day mission,

1

and the transfer time, then resulting in a 198 day mission. The large numerical optimization

problem that results from the employed direct discretization can only be solved by exploiting

its sparsity. Moreover, time minimal spin-up maneuvers of a flexible spacecraft are analyzed

from an optimal control point of view in [Ben10, ch. 11], not only considering rigid body

dynamics but also flexible modes of the structure.

In chemical engineering, optimal control is widely used to optimize processes and reactors.

To mention only one, [Upr13] is a textbook that shows many basics of optimal control theory, as

well as applications like batch distillation and chemotherapy. Moreover, production processes

are, for example, analyzed in the works [CB07] and [BE12]. In the first, a production system

is modeled in discrete time and the optimal controls – representing the work schedule – are

determined using dynamic programming. In the latter, a production system with deteriorating

items is regarded in continuous time. The respective optimality conditions are formulated

based on an indirect solution approach, and solved numerically.

In the late 1940s and the 1950s, Hestenes, Bellmann and Isaacs researched a min-

imum time intercept problem for aircraft in the USA, while approximately at the same time,

Pontryagin, Boltyanskii and Gamkrelidze tried to solve a similar problem in the

Soviet Union. They realized that the commonly used theory for linear systems was not suf-

ficient anymore, because of non-linear effects in the models that could not be neglected due

to the increased speed of the aircraft. The respective problem is nowadays also known as the

minimum time to climb problem, and may be seen as the first aircraft trajectory optimization

problem ever solved. [PP12]

Since then, many researchers have been working on aircraft trajectory optimization prob-

lems, targeting different goals, using different models and different methods. Emissions and

noise nuisance in departure and arrival scenarios for commercial airliners are investigated, for

example, in [FB11, FB12, RBH13, Ric+13, Ric+14a, Ric+14b]. In [Tor+15], aircraft move-

ment in terminal maneuvering areas is considered and the resulting optimization problems are

solved by a combination of optimal control methods and Mixed Integer non-linear Program-

ming (MINLP). At the same conference, the papers [Mat+15, OWH15] regarding optimal

sequencing and arrival management were presented. Therein, the problems were solved using

dynamic programming and pseudospectral collocation.

Another challenge in the context of air traffic management (ATM) that has been researched

during the last years (also using optimal control methods) is optimal conflict avoidance in air

space sectors. In [Sol+12], such conflict avoidance problems, also considering hazardous

weather obstacles, are modeled using a multiphase approach, resulting in a mixed-integer

optimal control problem. The same author uses a hybrid optimal control problem formulation

in the context of conflict avoidance in [Sol+16], solving problems for seven aircraft in one

airspace sector. Wickramasinghe assesses the possible performance improvements in the

ATM system by a comparison of the currently used trajectories with optimal trajectories based

on dynamic programming in [Wic+15].

While the aforementioned examples mainly used point mass dynamics or even more simpli-

2

Chapter 1: Introduction

fied simulation models, others also published work on aircraft trajectory optimization problems

incorporating more complex dynamics. In [DC08a], a full non-linear rigid body model of

a reentry vehicle is used together with a two-timescale direct collocation method (see also

chapter 8). Optimal collision avoidance for an Ekranoplan is considered in [CG09], again em-

ploying rigid body dynamics. Another full non-linear rigid body simulation model is used in

[PKH11] for determining safe passage trajectories of a transport aircraft through microburst

wind shear by solving an optimal control problem. Bottasso worked on optimization prob-

lems regarding complex rotorcraft models, including slow and fast states, and presents a direct

solution approach combining single and multiple shooting in [BM09, BLM12]. In this thesis,

air race trajectory optimization examples are considered whenever problems with high fidelity

simulation models are investigated. Fisch used similar examples in his thesis [Fis11].

In [Len15], periodic optimal control problems are considered, illustrating the results by

the optimization of trajectories for a solar powered aircraft, a powered glider with retractable

engine, and a bird (the Siskin).

Another aerospace field in which optimal control problems have been solved during the last

years is flight control law clearance, where optimal control methods are used for determining

control inputs that push a flight control system outside its safety bounds. This way, deficiencies

should be identified in order to finally improve the control laws. Two of the many publications

in that field are [FP11] and [Die+16].

Moreover, aircraft trajectory optimization methods have been used to infer the intent of

an aircraft from a trajectory by estimating the weights of the underlying cost functions in an

inverse optimal control problem in [Yok16].

Nowadays, many textbooks on optimal control theory and respective applications exist. For

this work, the books of Kirk [Kir70], Bryson and Ho [BH75], Betts [Bet09], Gerdts

[Ger12], and Ben-Asher [Ben10] were especially helpful.

A more detailed literature review, concerning the particular aspects of optimal control

problems investigated in this work, can be found in the introductions of the topics in the

respective chapters.

1.1 Goals and Contributions

The main goal of the efforts taken in this research can be summarized as to solve large scale,

complex, and especially realistic aircraft trajectory optimization problems. In order to be able

to do so, the gap between the possibilities that are offered by mathematical optimal control

theory on the one side, and the requirements that real life problems pose on the other side,

needs to be bridged.

This high level goal can only be reached by considering both aforementioned sides of the

gap and by dividing the challenges into several sub-aspects. Approaching these challenges,

contributions to the state of the art are made by this thesis that are outlined and broken down

to the respective sub-aspects within the next paragraphs.

3

1.1 Goals and Contributions

After a revision of flight system dynamics in chapter 2, chapter 3 represents a compara-

bly short but yet comprehensive summary of the theoretical fundamentals of optimal control

and the required gradient based optimization methods for engineering purposes. Much em-

phasis was put on descriptive explanations and derivations supporting the understanding of

the principles. The goal was clearly not to deliver another mathematical textbook including

well-known proofs, but to highlight the relations between the many aspects of optimization

and optimal control theory for engineering applications. This way, this chapter contributes a

very condensed guide to optimal control theory for engineering applications.

Besides, in section 3.2.4 the general sensitivity equations are reviewed, before the numerical

integration of the sensitivity equations based on a Runge-Kutta scheme is compared to the

differentiation of the numerical integration scheme for the dynamics. The derivation shows

that both calculations lead to the same results, if the gradients of the dynamic system are

evaluated at the same intermediate stages as the model dynamics itself in both approaches.

This section delivers rigorous conditions for the equality of the two approaches.

Additionally, in section 3.2.5, the relations between the direct and the indirect solution

approach are discussed in detail. The derivation is based on the book [Ger12, Sec. 5.4] but

is extended to general Runge-Kutta integration schemes. Consequently, relationships for

the approximation of the costates from Lagrange multipliers for many integration schemes

can be established using the findings, also enabling the estimation of the Hamiltonian of a

problem and allowing for an assessment of the achieved optimality. This analysis is conducted

exemplarily in the application in section 11.2–11.3, showing that it can be done for real life

problems.

In order to be able to solve many different, large, and complex optimal control problems

without the need to re-implement the discretization code over and over again, the optimal

control tool FALCON.m was developed during the time of this research. Of course, as described

in chapter 4, the tool has been developed by a team of engineers at the Institute. However,

the structure of the software, including the implemented class hierarchy, has been mainly

developed by this author. This architecture is described in chapter 4 in more detail.

Furthermore, the generation of best possible initial guesses is considered in chapter 5.

Therein, the widely used homotopy approach is extended, on the one side, to the special

class of optimal control problems containing multiple systems (like multi aircraft trajectory

optimization problems), and, on the other side, by the use of sensitivity information for an

improved homotopy update. Both of these extensions contribute to the generation of initial

guesses for complex optimal control problems. Moreover, a novel method to create initial

trajectories for a high fidelity problem from the solution of a simplified problem is presented

in section 5.2 that employs a Rauch-Tung-Striebel (RTS) smoother.

In chapter 6, an analysis of the properties of the point mass aircraft simulation model

and the rigid body simulation model for the use in optimal control problems is presented.

This analysis reveals that under certain circumstances more complex and thus more non-

linear optimization models improve the performance of the solution process of the optimal

4

Chapter 1: Introduction

control problem, compared to more linear and simplified simulation models. In section 6.4 an

approach presented in [Bet09, p. 172] is applied to the point mass simulation model, resulting

in a reformulation of the respective optimal control problem that clearly improves solution

performance. In section 6.5, a novel method for smoothly approximating empirical data is

introduced. Examples for these approaches are presented in chapter 11.

Chapter 8 introduces a novel discretization method that uses direct collocation on a rel-

atively coarse grid for slow varying states, while multiple shooting is used to represent the

fast varying states on a finer grid. This way, the size and the complexity of the discretized

optimal control problem can be reduced without any deterioration in solution accuracy. A

corresponding illustrative example is discussed in section 11.4.

The last novelty in the theoretical part of this work is the physically motivated control

grid refinement that is presented in chapter 9. It improves the previously published DENMRA

algorithm ([ZT11]) for real world applications by exploiting underlying physical properties.

Besides, the algorithm is extended by a small optimization process that can determine the

ideal number of grid points based on a given minimum and maximum allowed grid spacing.

To the knowledge of this author, the application presented in section 10.2 is the largest

ever published aircraft trajectory optimization problem by means of number of participants in

the scenario. Therein the simultaneous approach of 18 aircraft to Tokyo International Airport

is optimized with respect to a combination of arrival time and fuel burn. In the next section,

civil aerial refueling scenarios regarding a reduction in fuel burn for airliners are optimized.

The analysis reveals the potential savings of the concept when using current aircraft types as

well as especially tailored redesigns. In section 10.4, multi criteria optimal control methods

are employed to calculate trajectories of several aircraft passing through a single airspace

sector. Therein, not only the minimum overall cost, but also a fair distribution of the costs is

considered. To the knowledge of the author, such a multi aircraft and multi criteria analysis

has not yet been published elsewhere.

The applications in chapter 11 need to be seen as illustrative examples for the increased

performance and robustness of the solution process for complex optimal control problems.

Although improvements can be clearly seen in most of the examples, none of the tools presented

here is the perfect tool that helps in every case. In optimization and optimal control, still a

lot of problem specific tuning is required. Here, the best a user can get is a large tool set with

different tools for a great variety of problems. This thesis contributes to the algorithmic and

methodological tools available in this toolbox.

1.2 Structure of the Thesis

After this introduction, the thesis starts with a description of the required aircraft simulation

models in chapter 2. After introducing the nomenclature and coordinate frames in sections

2.1 and 2.2, section 2.3 summarizes all assumptions and requirements for the following model

derivations. Next, the equations of motion for a point mass simulation model are derived from

5

1.2 Structure of the Thesis

kinematic relations and Newton’s second law. Afterwards, the dynamic system is extended

by rotational dynamics, resulting in a description of the movement of a rigid body aircraft in

section 2.5. Section 2.6 reviews the International Standard Atmosphere (ISA) and the basics

for modeling wind influences. In section 2.7 the external forces and moments acting on the

aircraft are described, before in the last section of this chapter some commonly used model

extensions are summarized.

In chapter 3, the mathematical background for the remainder of the work is recapitulated.

In the first section, an extensive overview over numerical optimization is given, starting with

unconstrained optimization, before heading over to constrained problems. Next, two commonly

used types of algorithms for solving constrained optimization problems are briefly described in

sections 3.1.3 and 3.1.4. The next section emphasizes the importance of sparsity in numerical

optimization problems, which will be discussed for discretized optimal control problems in more

detail in chapter 7 and in section 10.2.9. The discussion of parametric optimization problems

presented in section 3.1.6 will later be required for the derivation of the relationship between

an optimal control problem and the numerical optimization problem that results from the

discretization. Section 3.2 gives an extensive overview of the mathematical class of optimal

control problems and the existing solution strategies. After a definition of the problem class

under consideration, transformation techniques are shown that are commonly used to map

the wide class of general optimal control problems to a more specific class of optimal control

problems. In section 3.2.3, the indirect solution approach, in which optimality conditions for

an optimal control problem are derived analytically before it is discretized, is presented. An

overview of the direct solution approach is given in section 3.2.4, where the optimal control

problem is first discretized and then solved using one of the numerical optimization algorithms

from section 3.1. Next, the direct and the indirect solution approach are put into relation,

resulting in a connection between the Lagrange multipliers of the discretized problem and

the costates of the continuous problem. In the last subsection considering optimal control

problems, issues are discussed that appear when controls enter the dynamic model linearly.

Methods for handling these issues are later presented in chapter 6. The last section of this

chapter focuses on multi criteria optimization and optimal control problems. In there, different

scalarization techniques are repeated that can be used to transform a multi criteria problem

into multiple regular optimization problems. An application for these methods is presented in

section 10.4.

In the fourth chapter of this thesis, the implementation of a discretization scheme in the

optimal control tool FALCON.m is presented. After a short introduction of the core features

of the tool, an overview of other existing optimal control software is given. The problem

formulation that is used within FALCON.m is presented in section 4.2, before the process

for setting up such a problem with the tool is described. The structure that is internally

used in FALCON.m to represent an optimal control problem within MATLAB is presented in

section 4.4. Next, sections 4.5, 4.6, and 4.7 present some details of the implementation for the

calculation of derivative information, code generation, sorting, indexing, and numerical scaling.

6

Chapter 1: Introduction

The last section of this chapter roughly describes the software components of FALCON.m,

their functionalities, and their interaction.

Methods for enhancing the robustness of the solution process of optimal control problems

based on improved initial guesses are presented in chapter 5. First, the general and well-

known idea of homotopy is reviewed. Second, an extended homotopy scheme for problems

containing several dynamic systems – like multi aircraft problems – is introduced. Finally,

an enhanced homotopy principle for regular optimal control problems is presented that uses

sensitivity information to improve the initial guesses between the homotopy steps. In section

5.2, a method for the generation of initial guesses for high fidelity optimal control problems

based on the solution of simplified problems is introduced. In order to determine any potentially

missing state and/or control histories from the available information, a RTS smoother based

on the high fidelity simulation model is suggested. The ideas of this chapter are illustrated by

examples in sections 10.2, 11.6, and 11.7.

Chapter 6 focuses on different properties of the dynamic models and the constraints ap-

pearing in an optimal control problem as well as their particular influence on the solution

performance. The aspects regarded here are model fidelity and linear appearing controls. Af-

ter generally introducing the aspects of a model analysis for optimal control in the first section,

this analysis is performed for the point mass simulation model and the rigid body simulation

model. The results are used in the examples in chapter 11, in sections 6.2, and 6.3. The

respective issues are approached by a model reformulation based on the idea from [Bet09,

p. 172]. In the last section of the chapter, a method for representing tabulated data using

different base functions that are combined by hyperbolic tangent functions is presented. The

resulting models feature beneficial smoothness properties.

In the next chapter, several aspects of problem sparsity – meaning the sparsity patterns of

the Jacobian and the Hessian of discretized optimal control problems – are discussed. After a

brief introduction of the different elements influencing the sparsity in section 7.1, section 7.2

focuses on the local sparsity, which is the sparsity of the model, the constraints and the control

discretization. Next, the sparsity resulting from the discretization scheme is combined with

the local one, resulting in the overall sparsity pattern. Finally, the special sparsity properties

of problems with multiple participants, like multi aircraft problems, are briefly introduced.

The main sparsity considerations for this particular class of problems can be found with the

respective example, in section 10.2.

One aspect that makes the solution of high fidelity optimal control problems so challenging,

is that normally high fidelity simulation models feature multiple time scales. In order to

properly resolve the dynamic effects of these systems, many discretization nodes for the state

and control histories are required, posing a numerical challenge for solving the discretized

problem. First, section 8.1 gives an overview of already existing methods for handling this

issue. In section 8.2 a new approach is presented that combines a multiple shooting scheme

for the fast part of a dynamic system with a collocation scheme for the slow part of a dynamic

system. This way, the number of discretization points – and consequently also the number of

7

1.2 Structure of the Thesis

optimization parameters – is reduced without deteriorating the solution accuracy. The benefit

that can be achieved by this method is presented in the example in section 11.4.

In the last theoretical chapter, a novel control grid refinement method is presented that

uses physical properties of the system under consideration. After an overview of the different

grid refinement methods in section 9.1, the idea of control grid refinement based on density

functions is recapitulated. In section 9.3, a physically motivated density function for point

mass aircraft models is presented. An enhanced strategy for selecting an appropriate number

of grid points and an appropriate scaling for the density function is introduced in section

9.4. This strategy formulates another small optimization problem for determining the relevant

quantities. An illustrative example for the method is presented in section 11.8.

In chapter 10 the exemplary aircraft trajectory optimization problems that are related to

ATM are collected. After a short introduction of the challenges to be approached with the

methods presented here, a brief overview of other work is given. Next, the optimization

of approach scenarios including up to 18 aircraft, configuration changes, and disturbances

is presented in section 10.2. In the first subsections of this section, the models used and

the constraints to be respected are presented. Then, the combination of the models for

the individual participants to one overall simulation model and the modeling of the resulting

separation constraints are discussed. Reconsidering the thoughts on problem sparsity from

chapter 7, a detailed analysis of the sparsity in the particular case is given. Besides, the

homotopy process for multi aircraft problems from section 5.1.2 is employed. Finally, the

results for the scenario are presented and discussed. In section 10.3 another problem involving

multiple aircraft is described. Therein, airliners are refueled by tanker aircraft in order to

improve the overall fuel efficiency. The models and the constraints are introduced, before the

redesign of a long haul aircraft is considered, as aerial refueling during the flight changes the

general performance requirements for such an aircraft. Similar to the previously mentioned

example, all individual aircraft are combined to one large optimal control problem in the

next step. This time another approach is used for this purpose that is based on multiple

phases. Before moving over to the next application, the results for two exemplary scenarios

are presented and discussed. The first scenario includes one aircraft being refueled once, while

in the second two aircraft are refueled by the same tanker aircraft. In the last example related

to ATM, the fairness within airspace sectors is investigated based on multi criteria optimal

control. Once more, the models, the constraints, and the construction of the overall problem

are shown in the first parts of the section. Before presenting the results for two example

scenarios and discussing them, the different scalarization techniques shown in section 3.3 are

adopted to the particular problem to be solved.

All illustrative examples related to air races can be found in chapter 11. After a short

introduction of a race track, that is used for the first couple of examples, the respective

simulation models are described in detail in section 11.1. The results and the achievable

performance for a low fidelity optimization based on a point mass simulation model can be

found in section 11.2, while those for a high fidelity rigid body model are in section 11.3.

8

Chapter 1: Introduction

The analysis of the results uses the derivations from section 3.2.5 for an estimation of the

Hamiltonian and the optimality of the underlying continuous optimal control problem. In

section 11.4 the results for the same problem, this time solved using the combined collocation

and shooting approach from section 8.2, are presented. Afterwards, section 11.5 compares

the outcomes and the performance for the different model fidelities. The extended homotopy

idea from section 5.1.3 is applied to another air race optimal control problem in section 11.6.

In section 11.7, a further application demonstrates the method based on the RTS smoother

that was introduced in section 5.2. Finally, in the last section of the chapter, the control grid

refinement introduced in sections 9.3 and 9.4 is exemplarily demonstrated.

The work conducted in this research and the respective results that have been achieved

are summarized in chapter 12, before the conclusions drawn throughout the thesis are recalled

and a perspective on work yet to be done is given.

This thesis contains two appendices. In appendix A the coordinate frames used, and

partially introduced in chapter 2, are listed in more detail. The scientific work that has been

published by this author during the time at the Institute of Flight System Dynamics at TUM

is listed in appendix B.

9

Chapter 2

Aircraft Modeling

This chapter focuses on the mathematical modeling of the dynamic behavior of a flight system.

The goal of the modeling is the derivation of a system of (non-linear) differential equations

that can be used to simulate and consequently also optimize trajectories for these systems.

The dynamics are modeled in two different levels of fidelity, being motivated by the principles

of the flight physics.

η M .q q .α α nz
.γ γ

.
h h

E
le

va
to

r

D
efl

ec
ti

on

P
it

ch
in

g

M
om

en
t

P
it

ch

A
cc

el
er

at
io

n

P
it

ch
R

at
e

A
n
gl

e
of

A
tt

ac
k

R
at

e

A
n
gl

e
of

A
tt

ac
k

L
oa

d
F
ac

to
r

C
lim

b
A

n
gl

e

R
at

e

C
lim

b
A

n
gl

e

A
lt

it
u
d
e

R
at

e

A
lt

it
u
d
e

∫∫∫ ∫

Inner Loop

Rotational Motion

Outer Loop

Translational Motion

Figure 2.1: Causal chain from an elevator deflection to an altitude change. [Fis11]

Figure 2.1 depicts the exemplary physical causal chain of the vertical movement of an

aircraft, that is flying with zero bank angle, between an elevator deflection η and the resulting

change in altitude h. Whenever the pilot deflects the elevator of the aircraft, the lift at the

elevator changes, which for a negative deflection leads to a positive pitching moment M . This

moment produces a pitch acceleration .
q finally leading to a positive pitch rate q after one

time integration. As a consequence to the aircraft rotating its nose up, an angle of attack

rate .
α is created. This rate – after another time integration – leads to an increase in the

angle of attack α. Now, the aerodynamic situation for the whole aircraft changes, inducing

an additional lift force and consequently also an additional load factor nz. A load factor that

is oriented perpendicular to the aircraft’s velocity – as it is the case here – bends the flight

11

trajectory, leading to a climb angle rate .
γ which is integrated to a change in the climb angle γ.

As a change in the climb angle directly correlates with a changed altitude rate
.
h, the aircraft

finally moves upwards and reaches its new altitude h. The first part of this chain, ranging

from the elevator deflection to the load factor incorporates two time integrations. It covers

the rotational motion of the aircraft dynamics and is also called inner loop. Typically, it shows

much faster dynamic behavior than the outer loop, representing the translational movement

of an aircraft and ranging from the load factor to the change in altitude with another two time

integrations.

When using the knowledge that the rotational dynamics are much faster than the trans-

lational dynamics, for trajectory analysis, the aircraft may be approximated as a point mass

traveling through the atmosphere. This assumption appears to be valid as e.g. for an airliner

pitching the aircraft up or down several degrees is only a matter of seconds, whereas climb-

ing several hundred meters may be a matter of minutes. For high performance aircraft the

timescales are scaled down accordingly, but the difference in the timescales remains. In the

simplified point mass approach the aircraft model only features a total of three degrees of

freedom, being the translational motion. Consequently, this aircraft model is often also called

3-degree-of-freedom or 3-DoF model. As all degrees of freedom are of second order, a basic

point mass model features six states.

On the contrary, in some applications the approximation of the aircraft as a point mass is

not sufficient, requiring the model to comprise the full causal chain as described above. In this

case, one speaks of the 6-degree-of-freedom or 6-DoF model, also called rigid body model.

Additionally to the degrees of freedom specified above, the rotational motion of the aircraft,

being the roll, bank, and yaw motion, is considered now. Again, all degrees of freedom are of

second order, now leading to a baseline of twelve states. When using conventional simulation or

optimization techniques the whole simulation of these (something like) stiff dynamics needs

to be done on a comparably fine grid as otherwise the fast rotational dynamics cannot be

resolved accurately (section 3.2.4 gives more details on numerical simulation in general, while

chapter 8 suggests an approach for handling optimal control problems with dynamics with

different time scales).

As flight system dynamics have been a field of research and analysis for several decades

now, there is plenty of literature available on the topic. More details can e.g. be found in

[BAL11, Hol04, Hol15, Hol+15, Fis11, Höc14, Len15, Ros79, ER96, Zip07].

The remainder of this chapter is structured as follows: First the nomenclature to be

used is briefly introduced before afterwards the required coordinate frames and transformation

matrices are recalled. More details on the relevant coordinate frames can be found in appendix

A. In section 2.3 the modeling requirements are stated. Afterwards, the equations of motion

for the point mass simulation model and those needed additionally to build up the full rigid

body dynamics are recapitulated. Furthermore, the influence of wind on the dynamics of each

of the models is shortly recapitulated. At this point the pure dynamics and kinematics of the

motion of an aircraft are fully stated. However, the calculation of external forces and moments

12

Chapter 2: Aircraft Modeling

is still an open point. Hence, these effects are discussed in section 2.7. A basic model for

the aerodynamic behavior of an aircraft is given in 2.7.1, while 2.7.2 repeats some propulsion

models. In 2.7.3 the modeling of the gravitational force is discussed, before this section is

closed by models for the fuel consumption in 2.8.1 and some for actuator dynamics in 2.8.2.

The chapter is concluded by a short revision of the standard atmosphere model.

2.1 Nomenclature and Relevant Quantities

In order to be able to uniquely identify all quantities required to model the motion of an aircraft,

a set of nomenclature principles and indices is used throughout this work. When considering

physical quantities, vectors are printed using bold characters, while for scalars regular characters

are used. Angles and angular rates use mainly Greek letters, while quantities that are related

to linear motion use Latin letters.

For scalar quantities, the following index notation is used

quantity reference point(s)
type of quantity , (2.1)

where the type of the quantity may e.g. be aerodynamic or kinematic. A missing index for

the type indicates an overall force or moment, or a kinematic quantity, respectively.

Vector valued quantities in Euclidean space feature additional properties as they may be

written with respect to different coordinate frames. Moreover, they may express a change over

time relative to a coordinate frame. Consequently, vectors are denoted as
(

vector reference point(s)
type of quantity

)derivative frame(s)

notational frame
(2.2)

The vector notation is also used in combination with scalars in case they are single components

of a vector requiring the specification of reference frames. For plain scalar quantities, like e.g.

the kinematic velocity VK or the angles χK and γK , that are uniquely defined, the vector

notation is omitted. The notation scheme is based on the one used at the Institute of Flight

System Dynamics at TUM and can e.g. be found in [Hol15].

In the remainder of this work, the index P denotes an arbitrary point on the body of the

aircraft, while R designates the Aircraft Reference Point and G the center of gravity of the

aircraft.

Table 2.1 lists selected quantities that can be used as states within the dynamic model of

the aircraft. They are grouped by their physical meaning where in every group one subgroup

may be selected for modeling the respective physical effects. Special care has to be taken as

not every combination of subgroups is possible.

2.2 Coordinate Frames and Transformations

In order to model the flight system dynamics, a set of coordinate frames and transformations

between them is required. Figure 2.2 lists the main coordinate frames used in the derivation.

13

2.2 Coordinate Frames and Transformations

Table 2.1: Relevant quantities for modeling aircraft dynamics with their default units.

Position

Symbol Description Unit

λ Geodetic longitude rad

ϕ Geodetic latitude rad

h WGS84 altitude m

(x)N x-position in N Frame m

(y)N y-position in N Frame m

(z)N Downward position m

(Kinematic) Velocity

Symbol Description Unit

(uK)E
O Northward velocity m/s

(vK)E
O Eastward velocity m/s

(wK)E
O Downward velocity m/s

VK Absolute velocity m/s

χK Course angle rad

γK Climb angle rad

VK Absolute velocity m/s

αK Kin. angle of attack rad

βK Kin. angle of sideslip rad

Attitude

Symbol Description Unit

Ψ Azimuth angle rad

Θ Pitch angle rad

Φ Roll angle rad

αK Kin. angle of attack rad

βK Kin. angle of sideslip rad

µK Kin. bank angle rad

q0 First quaternion -

q1 Second quaternion -

q2 Third quaternion -

q3 Fourth quaternion -

(Kinematic) Angular Rate

Symbol Description Unit

pK Roll rate rad/s

qK Pitch rate rad/s

rK Yaw rate rad/s
(

ωIB
x

)

B
Inertial ang. rate in xB rad/s

(

ωIB
y

)

B
Inertial ang. rate in yB rad/s

(

ωIB
z

)

B
Inertial ang. rate in zB rad/s

N O

K K̄

Ā A

B
χN

χK , γK

χA, γA

µK

µA

Ψ, Θ, Φ

−βK , αK

−βA, αA

Figure 2.2: Main coordinate frames required to model the dynamics of a flight system and

the angles between them. [Hol15]

14

Chapter 2: Aircraft Modeling

Starting from the left it shows the Navigational Frame N which is still fixed to the surface of

the earth, whereas the next frame, the North-East-Down Frame O is fixed to the aircraft and

marks the starting point for several ways of describing the aircrafts attitude. These ways are

via the Kinematic Frame K and the Rotated Kinematic Frame K̄ on the top, via the Rotated

Aerodynamic Frame Ā and the Aerodynamic Frame A on the bottom, or directly to the Body

Fixed Frame B using the Euler angles (or more precise the Tait-Bryan angles) Ψ, Θ, Φ

in the center. More details on the coordinate frames can be found in appendix A.

During the formulation of the aircraft dynamics in the next sections, several Cartesian

vectors need to be transformed between different coordinate frames. Using the predefined

sequences of rotation for each of these transformations, the following transformation matrices

and rotation vectors can be derived. The coordinate frames and transformations used here

can similarly be found e.g. in [Hol15, Hol+15, Höc14, Fis11].

For the transformation from the North-East-Down Frame to the Navigational Frame

MNO =







cos χN sin χN 0

− sin χN cos χN 0

0 0 1







, and (ωNO)O =







0

0
.
χN







O

(2.3)

are used. The rotational rate between the frames can generally be derived using the strapdown

equation.

In order to transform the coordinate frame O into the K-frame, first a rotation about χK

is required and afterwards the resulting frame needs to be rotated around γK . The overall

coordinate transformation can be achieved by the transformation matrix

MOK =







cos χK cos γK − sin χK cos χK sin γK

sin χK cos γK cos χK sin χK sin γK

− sin γK 0 cos γK







(2.4)

and the rotational rate:

(

ωOK
)

K
=







− .
χK sin γK

.
γK

.
χK cos γK







K

(2.5)

For performing the transformation to the Body Fixed Frame B from the K frame, three

more rotations are necessary that can be combined into the matrix:

MKB =







cos αK cos βK sin βK

− cos αK sin βK cos µK + sin αK sin µK cos βK cos µK

− cos αK sin βK sin µK + sin αK cos µK cos βK sin µK

sin αK cos βK

− sin αK sin βK cos µK − cos αK sin µK

− sin αK sin βK sin µK + cos αK cos µK







(2.6)

15

2.2 Coordinate Frames and Transformations

The rotational rate between the two frames consequently is:

(

ωKB
)

B
=







.
µK cos αK cos βK +

.
βK sin αK

.
αK +

.
µK sin βK

−
.
βK cos αK +

.
µK sin αK cos βK







B

(2.7)

Similarly to the path along the kinematic transformations, the Body Fixed Frame can also

be reached starting from the NED Frame and using the aerodynamic angles. As the z-axis

of the Aerodynamic Frame is already rotated into the symmetry plane of the aircraft, the

transformation matrix

MOA =







cos χA cos γA cos χA sin γA sin µA − sin χA cos µA

sin χA cos γA sin χA sin γA sin µA + cos χA cos µA

− sin γA cos γA sin µA

cos χA sin γA cos µA + sin χA sin µA

sin χA sin γA cos µA − cos χA sin µA

cos γA cos µA







(2.8)

results. Again, the rotational rate between the two coordinate frames can be derived from this

matrix as:

(

ωOA
)

O
=







.
µA cos χA cos γA − .

γA sin χA
.
µA sin χA cos γA +

.
γA cos χA

.
χA − .

µA sin γA







O

(2.9)

Starting from the Aerodynamic Frame, the Body Fixed Frame can be reached by first

rotating around −βA and afterwards around αA. The transformation matrix that results from

this sequence is:

MAB =







cos αA cos βA sin βA sin αA cos βA

− cos αA sin βA cos βA − sin αA sin βA

− sin αA 0 cos αA







(2.10)

The rotational rate between the two frames is:

(

ωAB
)

B
=







.
βA sin αA

.
αA

−
.
βA cos αA







B

(2.11)

When using the Euler angles to directly transform the North-East-Down Frame into the

Body Fixed Frame, three rotations need to be coupled together, resulting in the transformation

matrix:

MBO =







cos Ψ cos Θ sin Ψ cos Θ − sin Θ

cos Ψ sin Θ sin Φ − sin Ψ cos Φ sin Ψ sin Θ sin Φ − cos Ψ cos Φ cos Θ sin Φ

cos Ψ sin Θ cos Φ − sin Ψ sin Φ sin Ψ sin Θ cos Φ − cos Ψ sin Φ cos Θ cos Φ







(2.12)

16

Chapter 2: Aircraft Modeling

The rotational rate of the Body Fixed Frame with respect to the North-East-Down Frame can

be derived as:

(

ωOB
)

B
=







.
Φ −

.
Ψ · sin Θ

.
Θ cos Φ +

.
Ψ sin Φ cos Θ

−
.

Θ sin Φ +
.

Ψ cos Φ cos Θ







B

=







pK

qK

rK







(2.13)

The kinematic body rates pK , qK and rK may also be used as states.

Besides the transformations presented above, the one between the Earth-Centered Earth

Fixed Frame and the North-East-Down Frame is required for the derivation of the equations

of motion of an aircraft. The transformation matrix is found to be

MOE =







− sin ϕ cos λ − sin ϕ sin λ cos ϕ

− sin λ cos λ 0

− cos ϕ cos λ − cos ϕ sin λ − sin ϕ







(2.14)

while the transport rate, that keeps the North-East-Down Frame always aligned to the North,

the East and downwards, is:

(

ωEO
)

E
=







.
ϕ sin λ

− .
ϕ cos λ

.
λ







E

(2.15)

2.3 Modeling Requirements

When building a mathematical model to represent the behavior of real systems, some assump-

tions have to be made in order to keep complexity at a reasonable level. The general principle

one needs to follow is “as complex as necessary, as simple as possible”. Here, the following

assumptions are made in order to achieve a reasonable model complexity (similar assumptions

are also made in [Fis11, Höc14, Hol15]).

• The mass of the flight system is considered to be quasi-steady. This means that even

if fuel consumption is considered, the influence of any exhaust mass on the translation

equations of motion is neglected.

• Aircraft are considered to be rigid bodies, meaning that no shifting of mass elements

inside the body is allowed. Consequently, the mass distribution is assumed to be static.

• The reference point R is selected to be the center of gravity G:

R = G (2.16)

• The Earth Centered Inertial Frame I is considered to be an Euclidean frame in which

Newton’s second law may be applied.

• The rotation of the earth ωIE , modeled between the ECEF -frame and the ECI-frame,

is assumed to be constant. Consequently, the respective rotational acceleration is zero:
(.
ω

IE
)E

=
(.
ω

IE
)I

= 0 (2.17)

More details on the errors resulting from some of these assumptions can be found in [Len15].

17

2.4 Point Mass Simulation Model

2.4 Point Mass Simulation Model

As stated above, for most real aircraft configurations, the rotational dynamics are much faster

than the translational dynamics, allowing for the simplified modeling as a point mass moving in

three dimensional space. In this model, the rotational dynamics are always seen to be decayed.

All equations used in the next sections are intentionally not fully simplified according to the

point mass assumptions as they are intended to stay valid for the rigid body case.

In order to be able to model the point mass dynamics, three degrees of freedom – all being

second order – are necessary resulting in a model comprising six states. As several modeling

alternatives exist, depending on the applications and any inherent additional assumptions,

the states need to be selected from table 2.1 appropriately. The following sections give a

short overview of the equations of motion resulting for the different formulations. The model

equations presented here are mostly taken from [Hol15, Hol+15, Fis11, Höc14].

2.4.1 Position Propagation Equations of Motion

In a general aircraft simulation model, the earth has to be considered round and rotating.

Then, the position equations of motion are normally given in WGS84 coordinates [Nat00],

using the ECEF Frame as a reference frame and using the geodetic longitude λ, the geodetic

latitude ϕ and the geodetic altitude h as coordinates and consequently also as states in the

model. In the WGS84 model, the earth is approximated by a rotational ellipsoid that features

the following properties: The length of the semi major axis is

a = 6378137.0m, (2.18)

the flattening is

f =
1

298.257223563
, (2.19)

while the semi minor axis is

b = a · (1 − f) (2.20)

and the eccentricity is:

e2 = 2f − f 2 (2.21)

Hence, the differential equation for the position (of the center of gravity of the aircraft)

can be formulated as







.
λ
.
ϕ
.
h







E

=

















(

vG
K

)E

O

(Nϕ + h) · cos ϕ
(

uG
K

)E

O

Mϕ + h

−
(

wG
K

)E

O

















=
















VK · sin χK · cos γK

(Nϕ + h) · cos ϕ

VK · cos χK · cos γK

Mϕ + h

VK · sin γK
















, (2.22)

18

Chapter 2: Aircraft Modeling

with

Nϕ =
a

√

1 − e2 sin2 ϕ
(2.23)

being the Radius of Curvature in the Prime Vertical and

Mϕ = Nϕ · 1 − e2

1 − e2 sin2 ϕ
=

a · (1 − e2)

(1 − e2 sin2 ϕ)
3

2

(2.24)

being the Meridian Radius of Curvature.

In case flight trajectories of a small spatial extent are considered (Brockhaus suggests

a range of less than 100 NM in [BAL11, Sec. 2.4]), the earth may also be considered as flat.

If the kinematic velocity of the considered system is also low enough (Lenz presents some

numerical studies on error estimations for different velocities in Appendix A of [Len15]), the

earth may besides be considered as non-rotating. In this case the position equations of motion

for the aircraft can be given with respect to the Navigational Frame fixed at a reference point

on the surface of the earth. The resulting dynamics are







.
xG

.
yG

.
zG







E

N

=
(

VG
K

)E

N
= MNO · MOK ·







VK

0

0







E

K

= MNO ·







VK · cos χK · cos γK

VK · sin χK · cos γK

−VK · sin γK







E

O

=







VK · cos(χK − χN) · cos γK

VK · sin(χK − χN) · cos γK

−VK · sin γK







E

N

, (2.25)

where χN = 0 and consequently (VG
K)E

O = (VG
K)E

N in case the Navigational Frame is oriented

like the North-East-Down Frame.

More details on these models can besides many others be found in [Fis11, Hol15, Hol+15,

Len15].

2.4.2 Translation Equations of Motion

The translation equations of motion lead to the time derivative of the Cartesian velocity vector

for the center of gravity G of the aircraft (also being the reference point R). The derivation

presented here can similarly be found in e.g. [Hol15, Höc14, BAL11, Len15].

The derivation is started with the change of the velocity of the aircraft with respect to the

NED frame O, where the velocity itself represents the change of the position of the aircraft

with respect to the Earth-centered Earth Fixed Frame E:

(

d

dt

)O (

VG
K

)E
=
(.

V
G

K

)EO

=
(.

V
R

K

)EO

(2.26)

19

2.4 Point Mass Simulation Model

In general, the translation equations of motion are derived using Newton’s second law applied

in an inertial frame, which is the ECI Frame I in this case:

∑

FG =

(

d

dt

)I

pG =

(

d

dt

)I ∫

m

(

VP
K

)I
dm (2.27)

with pG being the linear momentum acting in the center of gravity of the aircraft. Using the

vector chain
(

xP
)

=
(

xG
)

+
(

xGP
)

(2.28)

and Euler’s derivative rule, the velocity of an arbitrary point on the aircraft can be calculated

as:
(

VP
K

)I
=
(.
x

G
)I

+
(.
x

GP
)I

=
(

VG
K

)I
+
(.
x

GP
)B

+
(

ωIB
)

×
(

xGP
)

(2.29)

The rigid body assumption leads to

(

d

dt

)B (

xGP
)

=
(.
x

GP
)B

= 0, (2.30)

and consequently, Newton’s second law becomes

∑

FG =

(

d

dt

)I

pG =

(

d

dt

)I ∫

m

(

VG
K

)I
+
(

ωIB
)

×
(

xGP
)

dm

=

(

d

dt

)I




∫

m

(

VG
K

)I
dm +

(

ωIB
)

×
∫

m

(

xGP
)

dm



 (2.31)

with the definition of the center of gravity

∫

m

(

xGP
)

dm = 0, (2.32)

and the fact that
(

VG
K

)I
is independent of the mass, the equations of motion result in:

(.
V

G

K

)II

=
1

m
·
∑

FG (2.33)

Now, the expression on the left needs further investigation, as we are looking for a relationship

to calculate the time derivative
(.

V
G

K

)EO

of the velocity. The total acceleration
(.

V
G

K

)II

of

20

Chapter 2: Aircraft Modeling

the aircraft’s center of gravity can be written as:
(.

V
G

K

)II

=

(

d

dt

)I (

VG
K

)I

=

(

d

dt

)I ((

VG
K

)E
+
(

ωIE
)

×
(

xG
))

=
(.

V
G

K

)EE

+
(

ωIE
)

×
(

VG
K

)E

︸ ︷︷ ︸
(.

V
G

K

)EI

+
(.
ω

IE
)I

︸ ︷︷ ︸

=0

×
(

xG
)

+
(

ωIE
)

×
((

VG
K

)E
+
(

ωIE
)

×
(

xG
))

︸ ︷︷ ︸

(VG
K)

I

=
(.

V
G

K

)EE

+ 2 ·
(

ωIE
)

×
(

VG
K

)E
+
(

ωIE
)

×
((

ωIE
)

×
(

xG
))

(2.34)

Using the Euler derivative rule for the first element
(.

V
G

K

)EE

=
(.

V
G

K

)EO

+
(

ωEO
)

×
(

VG
K

)E
, (2.35)

the equations of motion can further be reformulated to:
(.

V
G

K

)II

=
(.

V
G

K

)EO

︸ ︷︷ ︸

A

+
(

ωEO
)

×
(

VG
K

)E

︸ ︷︷ ︸

B

+ 2 ·
(

ωIE
)

×
(

VG
K

)E

︸ ︷︷ ︸

C

+
(

ωIE
)

×
((

ωIE
)

×
(

xG
))

︸ ︷︷ ︸

D

(2.36)

Physically, the expression

A represents the kinematic acceleration of the aircraft with respect to the NED Frame,

B represents the kinematic acceleration due to the transport rate,

C represents the Coriolis acceleration due to the rotation of the earth and

D represents the centripetal acceleration due to the rotation of the earth.

Using Newton’s second law from equation (2.31), the acceleration of the aircraft with respect

to the NED Frame becomes:






.
uK
.
vK
.

wK







EO

=
(.

V
G

K

)EO

=
1

m

∑

FG −
(

ωEO
)

×
(

VG
K

)E − 2 ·
(

ωIE
)

×
(

VG
K

)E

−
(

ωIE
)

×
((

ωIE
)

×
(

xG
))

(2.37)

In case the effects of a round earth are neglected,
(

ωEO
)

= 0 and consequently expression

B vanishes. Whenever the rotation of the earth is neglected,
(

ωIE
)

= 0 and expressions C

and D vanish. For the most simple case of a flat and non-rotating earth
(.

V
G

K

)EO

=
1

m

∑

FG (2.38)

21

2.4 Point Mass Simulation Model

results. Furthermore, in case the equations are written down with respect to the K-Frame,

the relation
(.

V
G

K

)EO

K
=
(.

V
G

K

)EK

K
+
(

ωOK
)

K
×
(

VG
K

)E

K

=








.
V

G

K

0

0








EK

K

+







− .
χK · sin γK

.
γK

.
χK cos γK







K

×







VK

0

0







E

K

=







.
V K

VK · .
χK · cos γK

−VK · .
γK







EO

K

(2.39)

can be derived. Using equations (2.38) and (2.39), the well-known translation equations of

motion for the absolute kinematic velocity and the flight path angles result as:

.
V K =

1

m

(

F G
x

)

K
(2.40)

.
χK =

1

m · VK · cos γK

(

F G
y

)

K
(2.41)

.
γK = − 1

m · VK

(

F G
z

)

K
(2.42)

When using an approach that is more focused on the Body Fixed Frame and the angles

between the K̄-Frame and the B-Frame, for a flat and non-rotating earth, VK , αK and βK

may also be used to describe the aircraft’s translational state. Starting with equation 2.39

denoted in the rotated kinematic frame K̄:

(.
V

G

K

)EO

K̄
=
(.

V
G

K

)EK̄

K̄
+
(

ωOK̄
)

K̄
×
(

VG
K

)E

K̄

=
(.

V
G

K

)EK̄

K̄
+
((

ωOB
)

K̄
+
(

ωBK̄
)

K̄

)

×
(

VG
K

)E

K̄

=
(.

V
G

K

)EK̄

K̄
+
(

MK̄B

(

ωOB
)

B
−
(

ωK̄B
)

K

)

×
(

VG
K

)E

K̄

=








.
V

G

K

0

0








EK̄

K̄

+







sin βK · (qK − .
αK) + cos βK · (rK · sin αK + pK · cos αK) − .

µK

cos βK · (qK − .
αK) − sin βK · (rK · sin αK + pK · cos αK)

.
βK + rK · cos αK − pK · sin αK







K̄

×







VK

0

0







E

K̄

=







.
V K

VK · (
.
βK + rK · cos αK − pK · sin αK)

VK · (cos βK · (
.
αK − qK) + sin βK · (pK · cos αK + rK · sin αK))







EO

K̄

(2.43)

22

Chapter 2: Aircraft Modeling

equations of motion similar to those in (2.40)–(2.42) can be derived:

.
V K =

1

m

(

F G
x

)

K̄
=

1

m

(

F G
x

)

K
(2.44)

.
βK =

1

m · VK

(

F G
y

)

K̄
+ (pK · sin αK − rK · cos αK) (2.45)

.
αK =

1

m · VK · cos βK

(

F G
z

)

K̄
+ qK − tan βK · (pK · cos αK + rK · sin αK) (2.46)

In this case, special care has to be taken in the selection of the rotational and attitude states

of the aircraft. The different formulations of the equations of motion have been taken from

[Hol15, Fis11, Len15, Hol+15].

2.5 Rigid Body Simulation Model

In case the rotational dynamics cannot be neglected, the aircraft may be considered as a rigid

body. With the same assumptions as above, the attitude and rotation differential equations

– that add three more degrees of freedom and six more states to the system (seven in case

Quaternions are used) – can now be derived. Again, in general, several possibilities exist for the

choice of states as well as reference frames. In the following, the most common representations

will be recapitulated.

As mentioned before, the rotational dynamics are normally much faster than the trans-

lational dynamics resulting in a system of differential equations that is hard to solve (it is

something like stiff, even though the word should be used carefully). The consequence is

that for accurate simulation results, all dynamic equations need to be simulated with either a

numerical scheme of high order or a very small step size, which results in a big computational

burden. This problem is tackled in chapter 8.

More details on the rigid body simulation model can besides others be found in [BAL11,

Fis11, Len15, Hol15, Hol+15, Hol04].

2.5.1 Attitude Propagation

The attitude dynamics represent the kinematics of the aircraft’s rotation, calculating the

attitude derivatives from the respective rotational rates. In the conventional approach, the

attitude of the aircraft is given with respect to the NED Frame, using the Euler angles as

states. In contrary to this, Fisch proposes a new modeling approach in [Fis11] that states

the attitude dynamics with respect to the Kinematic Frame or the kinematic flight path of the

aircraft. He uses αK , βK and µK as the attitude states of the aircraft. The benefit Fisch

sees in this new approach is the fact that the rotational dynamics of the aircraft can easily be

changed to more simple linear models without affecting any other part of the dynamic model.

Both of the above mentioned representations feature a singularity for either a climb angle

or a pitch angle of ±π
2
. The solution to overcome this issue is to use Quaternions for the

23

2.5 Rigid Body Simulation Model

representation of the respective attitude. Here, Quaternions are only presented for replacing

the Euler angles, while Fisch uses them to replace χK , γK and µK .

Equation (2.13) can be solved for the time derivatives of the Euler angles, resulting in






.
Φ
.

Θ
.

Ψ







=







1 sin Φ · tan Θ cos Φ · tan Θ

0 cos Φ − sin Φ

0 sin Φ
cos Θ

cos Φ
cos Θ







·







pK

qK

rK







︸ ︷︷ ︸

=(ωOB)B

(2.47)

As can clearly be seen, the matrix in equation (2.47) shows the aforementioned singularity

for Θ = ±π
2

(as cos ±π
2

= 0). Consequently, trajectories featuring vertical climb or descent

segments cannot be modeled this way.

The four Quaternions q0, q1, q2 and q3 can be seen as a three dimensional rotational axis

and an angle around this axis. The attitude equation in Quaternions can be written as:









.
q0
.
q1
.
q2
.
q3










=
1

2










−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0










·







pK

qK

rK







︸ ︷︷ ︸

=(ωOB)B

(2.48)

The Quaternion vector is not uniquely defined as it features four degrees of freedom for only

three physical degrees of freedom. In order to make it locally unique again, it is normalized to

unit length:
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥










q0

q1

q2

q3










∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

= 1 (2.49)

The Quaternion representation of the attitude can be calculated from the Euler angles

according to [SL03, p. 52]:

q0 = cos
Ψ

2
cos

Θ

2
cos

Φ

2
+ sin

Ψ

2
sin

Θ

2
sin

Φ

2
(2.50)

q1 = cos
Ψ

2
cos

Θ

2
sin

Φ

2
− sin

Ψ

2
sin

Θ

2
cos

Φ

2
(2.51)

q2 = cos
Ψ

2
sin

Θ

2
cos

Φ

2
+ sin

Ψ

2
cos

Θ

2
sin

Φ

2
(2.52)

q3 = sin
Ψ

2
cos

Θ

2
cos

Φ

2
− cos

Ψ

2
sin

Θ

2
sin

Φ

2
(2.53)

Conversely, the Euler angles can be calculated from:

Φ = tan−1 2(q2q3 + q0q1)

q2
0 − q2

1 − q2
2 + q2

3

(2.54)

Θ = sin−1 (−2(q1q3 − q0q2)) (2.55)

Ψ = tan−1 2(q1q2 + q0q3)

q2
0 + q2

1 − q2
2 − q2

3

(2.56)

24

Chapter 2: Aircraft Modeling

The transformation matrix from the NED Frame to the Body Fixed Frame may also be written

using Quaternions:

MBO =







q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)

2(q0q2 + q1q3) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3







(2.57)

Alternatively to the Quaternions or the Euler angles, Fisch uses the definition of the

rotational rate between the Body Fixed Frame and the Kinematic Frame

(

ωKB
)

K
=







ωKB
x

ωKB
y

ωKB
z







K

=







.
µK +

.
αK · sin βK

.
αK · cos βK · cos µK +

.
βK · sin µK

.
αK · cos βK · sin µK −

.
βK · cos µK







K

(2.58)

for deriving relations for the time derivatives of the kinematic angle of attack αK , the kinematic

angle of sideslip βK and the kinematic bank angle µK and introduces the three of them as

states. The resulting differential equation reads







.
αK
.
βK
.
µK







=








1
cos βK

·
((

ωKB
y

)

K
· cos µK +

(

ωKB
z

)

K
· sin µK

)

(

ωKB
y

)

K
· sin µK −

(

ωKB
z

)

K
· cos µK

(

ωKB
x

)

K
− tan βK ·

((

ωKB
y

)

K
· cos µK +

(

ωKB
z

)

K
· sin µK

)








, (2.59)

where the required rotational rate
(

ωKB
)

K
can be calculated from:

(

ωKB
)

K
= MKB ·

(

ωOB
)

B
−
(

ωOK
)

K
(2.60)

When using this representation of the attitude, special care has to be taken concerning the

selection of the translation states as otherwise some states may be “used twice” resulting in

unsolvable dynamic equations.

2.5.2 Rotational Equations of Motion

The rotational dynamics can be seen as the equivalent to the translational equations of motion,

but affecting the rotational dynamics of the aircraft. They are also based on Newton’s second

law and use the moments acting on the system as their input. Again, the reference point R

is selected to be the aircraft’s center of gravity G which is assumed to be fixed. The angular

momentum of a body with respect to the inertial center of the earth O is given as

HO =
∫

m

(

xP
)

×
(

VP
)I

dm (2.61)

25

2.5 Rigid Body Simulation Model

using equations (2.28), (2.29) and (2.32) it results that:

HO =
∫

m

((

xG
)

+
(

xGP
))

×
((

VG
)I

+
(

ωIB
)

×
(

xGP
))

dm

= m ·
((

xG
)

×
(

VG
)I
)

+
(

xG
)

×
(

ωIB
)

×
∫

m

(

xGP
)

dm

︸ ︷︷ ︸

=0

+
∫

m

(

xGP
)

dm

︸ ︷︷ ︸

=0

×
(

VG
)I

+
∫

m

(

xGP
)

×
((

ωIB
)

×
(

xGP
))

dm

= m ·
((

xG
)

×
(

VG
)I
)

+
∫

m

(

xGP
)

×
((

ωIB
)

×
(

xGP
))

dm (2.62)

Using the anti commutativity property of the cross product and the fact that the cross product

can be written as a matrix vector product involving a skew-symmetric matrix, the last term of

equation (2.62) can be written as

∫

m

(

xGP
)

×
((

ωIB
)

×
(

xGP
))

dm = −
∫

m

(

xGP
)

×
(

xGP
)

×
(

ωIB
)

dm

= −
∫

m

R̃GP · R̃GP dm ·
(

ωIB
)

, (2.63)

where R̃GP denotes the skew-symmetric representation of the cross product
(

xGP
)

× ◦. The

element-wise multiplication and integration of
∫

m
R̃GP · R̃GP dm leads to the widely used

symmetric moment of inertia IG with respect to the point G. Now, using the definition for

the linear momentum pG, equation (2.62) can be written as:

HO =
(

xG
)

×
(

pG
)

+ IG ·
(

ωIB
)

(2.64)

Newton’s second law applied to the rotational dynamics results in

(

d

dt

)I

HO =
∑

MO (2.65)

Consequently, equation (2.64) has to be differentiated with respect to time and the Earth

Centered Inertial Frame:

(

d

dt

)I

HO =
(

VG
K

)I ×
(

pG
)

+
(

xG
)

×
(.
p

G
)I

+

(

d

dt

)B (

IG ·
(

ωIB
))

+
(

ωIB
)

×
(

IG ·
(

ωIB
))

=
(

VG
K

)I ×
(

VG
K

)I

︸ ︷︷ ︸

=0

·m +
(

xG
)

×
(.
p

G
)I

+ IG ·
(.
ω

IB
)B

+
(

ωIB
)

×
(

IG ·
(

ωIB
))

(2.66)

26

Chapter 2: Aircraft Modeling

Here, the fact that the moment of inertia does not change over time – as the mass distribution

in the body was assumed to be stationary – was used. On the other side, the moments acting

on the body can be shifted into the center of gravity of the body:
∑

MO =
∑

MG +
(

xG
)

×
∑

FG (2.67)

Using Newton’s second law for the linear momentum (2.27) and combining equations (2.66)

and (2.67), the commonly known equation
∑

MG = IG ·
(.
ω

IB
)B

+
(

ωIB
)

× IG ·
(

ωIB
)

(2.68)

results. This equation can be solved for the rotational acceleration of the aircraft as:
(.
ω

IB
)B

=
(

IG
)−1 ·

(∑

MG −
(

ωIB
)

× IG ·
(

ωIB
))

(2.69)

In case a round and rotating earth is considered,
(

ωIB
)

B
is mostly used as the aircraft’s rota-

tional state, as then equation (2.69) can directly be used to simulate the rotational dynamics.

The body rates pK , qK and rK can then be calculated from
(

ωIB
)

=
(

ωIE
)

+
(

ωEO
)

+
(

ωOB
)

(2.70)

and consequently:






pK

qK

rK







=
(

ωOB
)

B
=
(

ωIB
)

B
− MBO ·

((

ωIE
)

O
+
(

ωEO
)

O

)

(2.71)

This requires the formulation of the rotational dynamics in the Body Fixed Frame B.

In case, a flat and non-rotating earth is considered,
(

ωOB
)

B
=
(

ωIB
)

B
(2.72)

holds. Then, the body rates pK , qK and rK can directly be used as states and the resulting

dynamic equation reads:






.
pK
.
qK
.
rK







=
(.
ω

OB
)B

B
=
(

IG
)−1

BB
·
(∑(

MG
)

B
−
(

ωOB
)

B
×
(

IG
)

BB
·
(

ωOB
)

B

)

(2.73)

Further details on the errors that result from modeling the earth as flat and non-rotating in

different cases can be found in [Len15].

2.6 Atmosphere Model

As atmospheric flights are considered within this work, a description of the air mass surrounding

the vehicle is required. The following sections first describe a standard model for a static

atmosphere, before the influences of wind within a dynamic atmosphere are discussed. The

effects within the second part are further divided into those influencing the translational motion

of the aircraft and those influencing the rotational motion.

27

2.6 Atmosphere Model

2.6.1 Static Atmosphere

The Standard Atmosphere model is used to describe the physics of the air surrounding the

aircraft. It is based on DIN ISO 2533:1979-12 [Deu79]. Table 2.2 lists the most important

parameters of the model. More details on the Standard Atmosphere model can besides others

be found in [ICA02, Len15, Hol+15, Hol15].

To remove the influence of the decrease in the gravitational acceleration with increasing

altitude, the Standard Atmosphere introduces the geopotential altitude

HG =
rE · h

rE + h
, (2.74)

where rE is the mean radius of the earth as listed in table 2.2.

Table 2.2: Constants for the Standard Atmosphere model. [Len15]

Symbol Value Unit Description

rE 6.356766 · 106 m Mean radius of the earth

HG,ref, Trop 0 m Reference altitude for Troposphere

gS 9.80665 m/s2 Acceleration of gravity at sea level

pref, MSL 101.325 · 103 N/m2 Air pressure at sea level

Tref, MSL 288.15 K Temperature at sea level

ρref, MSL 1.225 kg/m3 Air density at sea level

R 287.05287 J/(kg · K) Gas constant of air

κ 1.4 − Isentropic exponent of air

γref, Trop −6.5 · 10−3 K/m Temperature gradient in Troposphere

γref, U-Strat 1 · 10−3 K/m Temperature gradient in Upper Stratosphere

Furthermore, in the model, the lower atmosphere is divided into three parts, being the

Troposphere (−2000 ≤ HG < 11000), the Lower Stratosphere (11000 ≤ HG < 20000) and

the Upper Stratosphere (20000 ≤ HG < 32000). For the last two, the reference altitude

is their respective minimum altitude, whereas the Troposphere uses the mean sea level as

reference altitude.

Within the polytropic Troposphere and Upper Stratosphere, the temperature can be cal-

culated using the temperature gradient from table 2.2 and the equation:

TLayer(HG) = Tref, Layer ·
(

1 +
γref, Layer

Tref, Layer

· (HG − HG,ref, Layer)

)

(2.75)

while the correlated pressure can be calculated from:

pLayer(HG) = pref, Layer ·
(

1 +
γref, Layer

Tref, Layer

· (HG − Href, Layer)

)−
gS

γref, Layer·R

(2.76)

28

Chapter 2: Aircraft Modeling

The air density can be calculated from its profile:

ρLayer(HG) = ρref, Layer ·
(

1 +
γref, Layer

Tref, Layer
· (HG − Href, Layer)

)−

(
gS

γref, Layer·R
+1

)

(2.77)

In the isothermal Lower Stratosphere, the temperature is constant

TL-Strat(HG) = Tref, L-Strat, (2.78)

while the pressure and the density change exponentially with the geopotential altitude:

pL-Strat(HG) = pref, Layer · exp

(

−gS

R
· HG − Href, Layer

Tref, Layer

)

(2.79)

ρL-Strat(HG) = ρref, Layer · exp

(

−gS

R
· HG − Href, Layer

Tref, Layer

)

(2.80)

Any one of the three states T, p, rho of the ideal gas may also be calculated using the

ideal gas law, whenever two of the quantities are known:

ρ =
p

R · T
(2.81)

The speed of sound can be calculated from

a =
√

κ · R · T , (2.82)

where κ is the isentropic exponent of air and can also be found in table 2.2. Using the current

speed of sound, any aerodynamic velocity can be transformed into a Mach number by:

M =
VA

a
(2.83)

The Mach number is important for analyzing the fluid dynamic effects around the wings or

the body of the aircraft. In optimal control problems, the Mach number may appear in some

of the constraints.

Deviations from the standard conditions in the atmosphere may be implemented in the

Standard Atmosphere model by changing the temperature and the pressure at mean sea level:

Tref Trop = Tref, MSL + ∆T (2.84)

pref Trop = pref, MSL + ∆p (2.85)

As the Standard Atmosphere model is continuous at the boundaries of the different layers,

it is smooth enough to be used within optimal control problems. Whenever problems are

solved that take place directly along one of the boundaries, it is recommended to make the

problem continuously differentiable by smoothing the atmosphere model in the derivatives at

these points. The smooth table interpolation presented in 6.5 may be used for this purpose

by introducing a fading between the equations for the different layers.

29

2.6 Atmosphere Model

2.6.2 Dynamic Atmosphere

Whenever wind should be considered within dynamic simulations of aircraft movement, a

distinction between aerodynamic and kinematic quantities is required. The next subsections

go through the effects of wind on the translational and the rotational motion of a flight system

again.

Wind Influences on the Translational Dynamics

In this section, the influence of wind on the point mass simulation model is revisited. In case

no wind is considered, all aerodynamic values coincide with their kinematic counterparts and

the Rotated Kinematic Frame K̄ is equivalent to the Aerodynamic Frame A and vice versa.

This is obviously not true in case of wind – then the aerodynamic velocity required for the

calculation of the aerodynamic forces can be derived from the kinematic velocity using the

wind equation:
(

VG
A

)E
=
(

VG
K

)E −
(

VG
W

)E
(2.86)

Therein,
(

VG
W

)E
denotes the wind velocity at the center of gravity of the aircraft with respect

to the Earth-Centered Earth Fixed Frame E. It has to be noted here that in the nomenclature

used,
(

V G
)E

in the first place is uniquely defined as the velocity of the point G with respect

to an inertial point. Anyway, the index A indicates that only the part of the velocity with

respect to the surrounding airflow is considered while the index W marks the velocity of the

air with respect to the initial point. Both components together result in the overall velocity
(

V G
K

)E
=
(

V G
)E

. More precisely, the velocity
(

V G
W

)E
does not indicate the velocity of the

point G with respect to an inertial point at all, but it marks the velocity of the surrounding

air with respect to an inertial point at the position G. The restoration of the aerodynamic

flight path quantities can be performed using

VA =

√
[

(uA)E
O

]2
+
[

(vA)E
O

]2
+
[

(wA)E
O

]2
(2.87)

χA = arctan2

(

(vA)E
O

(uA)E
O

)

(2.88)

γA = arctan2







(wA)E
O

√
[

(uA)E
O

]2
+
[

(vA)E
O

]2







, (2.89)

where arctan2 denotes the extended version of the arcus tangens also considering the signs in

the components of the fraction and selecting the appropriate quadrant for the resulting angle.

Depending on the chosen state set, the aerodynamic angle of attack and the aerodynamic

angle of sideslip can be recovered from the aerodynamic velocity vector given in the Body

30

Chapter 2: Aircraft Modeling

Fixed Frame by:

αA = arctan2

(

(wA)E
B

(uA)E
B

)

(2.90)

βA = arctan2







(vA)E
B

√
[

(uA)E
B

]2
+
[

(wA)E
B

]2







(2.91)

By definition of the aerodynamic frame, the aerodynamic velocity of the aircraft can be

written as:

(

VG
A

)E

A
=







V G
A

0

0







E

A

(2.92)

Besides, the wind equation can be written with respect to the NED Frame resulting in







VK · cos χK · cos γK

VK · sin χK · cos γK

−VK · sin γK







E

O

=







VA · cos χA · cos γA

VA · sin χA · cos γA

−VA · sin γA







E

O

+







VW · cos χW · cos γW

VW · sin χW · cos γW

−VW · sin γW







E

O

(2.93)

The derivative of the wind equation with respect to time is:

(.
V

G

A

)EO

=
(.

V
G

K

)EO

−
(.

V
G

W

)EO

(2.94)

In case the wind field is not depending on the position of the aircraft, the total time derivative

of the wind field can be replaced by the partial one. Otherwise, the total derivative comprises

three components:

(.
V

G

W

)EO

=

(

d

dt

)O (

VG
W

)E

=

(

∂

∂t

)E (

VG
W

)E
+
(

ωOE
)

×
(

VG
W

)E
+
(

∇O
(

VG
W

)E
)⊺

·
(

VG
K

)E
, (2.95)

where ∇O represents the spatial Jacobian of the wind velocity with respect to the O-Frame.

Mostly, equation (2.95) is evaluated in the NED Frame. In case of a time-invariant wind, it

simplifies to:
(.

V
G

W

)EO

=
(

∇O
(

VG
W

)E
)⊺

·
(

VG
K

)E
(2.96)

For a rigid body aircraft of a certain spatial extent, more facets of wind influence need

to be considered as will be shown in section 2.6.2. More details on wind modeling and its

influence on the aircraft dynamics can besides others be found in [BAL11, Hol15].

Wind Influence on the Rotational Dynamics

In contrast to the wind considerations from section 2.6.2, here the influence of wind on an

aircraft of finite spatial extent is considered. As one can imagine, if the wind field changes

31

2.6 Atmosphere Model

along the body of the aircraft, not only are wind forces affecting the aircraft but also wind

moments. These influences are especially relevant in case of turbulent or strong local winds.

In general, not all effects of a turbulent, time and spatially dependent wind field can be taken

into account [BAL11, Ch. 4]. Hence, only the effects of the mathematical rotation of the

wind field – that can directly be modeled using aerodynamic derivatives – is considered in the

model presented here. More details on the rotational effects of wind can, besides many others,

be found in [BAL11].

Similarly to equation (2.86) for the wind velocities, the rotation of the aircraft can be

divided into the rotation with respect to the surrounding air and the rotation of the air itself,

resulting from wind. In order to calculate the aerodynamic rotation of the aircraft,

ωA = ωK − ωW (2.97)

can be used. Using a notation similar to the one used in section 2.6.2, equation (2.97) can be

written as:
(

ωOB
A

)

=
(

ωOB
K

)

−
(

ωOB
W

)

(2.98)

Again, special care has to be taken considering the nomenclature, as now the aerodynamic

rotation
(

ωOB
A

)

denotes only the part of the rotation between the coordinate frames O and

B that can be “seen” with respect to the surrounding air.
(

ωOB
W

)

consequently marks the

rotation of the air with respect to the O-Frame such that the overall rotation of the aircraft
(

ωOB
K

)

=
(

ωOB
)

results. Technically, in a simulation,
(

ωOB
)

can be calculated from the

equations of motion, while
(

ωOB
W

)

needs to be calculated from the wind field. If equation

(2.98) is written with respect to the NED Frame, the rotation of the wind field can be calculated

from:

(

ωOB
W

)

O
=

1

2
rotO

(

VG
W

)E

O
=

1

2

[

∇O ×
(

VG
W

)E

O

]

=
1

2
·













∂(wG
W)

E

O

∂(y)O
− ∂(vG

W)
E

O

∂(z)O

∂(uG
W)

E

O

∂(z)O
− ∂(wG

W)
E

O

∂(x)O

∂(vG
W)

E

O

∂(x)O
− ∂(uG

W)
E

O

∂(y)O













O

(2.99)

Then, the aerodynamic rotation results as:

(

ωOB
A

)

O
= MOB ·

(

ωOB
A

)

B

= MOB ·







pA

qA

rA







=
(

ωOB
K

)

O
−
(

ωOB
W

)

O
(2.100)

Equation (2.99) shows that the rotation of the wind field may not be modeled independently

of the velocities. More details on this model and more complex wind models can e.g. be found

in [BAL11].

32

Chapter 2: Aircraft Modeling

2.7 External Forces and Moments

The equations of motion above require the calculation of input forces and moments. For an

aircraft, these cannot directly be controlled but result from external effects and the current

configuration of the aircraft. In general, the forces and moments comprise aerodynamic effects

(index A), the system’s propulsion (index P) and the gravitational effects (index G). The total

forces and moments can consequently be written as

∑(

FG
)

=
(

FG
A

)

+
(

FG
P

)

+
(

FG
G

)

(2.101)
∑(

MG
)

=
(

MG
A

)

+
(

MG
P

)

+
(

MG
G

)

︸ ︷︷ ︸

=0

, (2.102)

where gravity does not create moments in case the center of gravity is chosen to be the

reference point. More information on modeling the external forces and moments can e.g. be

found in [Fis11, Höc14, Len15, BAL11, And11, Hol15, Hol+15].

For the air traffic application presented in section 10.2, the aerodynamic data as well as

the propulsion and fuel consumption models are based on the Base of Aircraft Data Family 4

(BADA4) published by EUROCONTROL [EUR12].

2.7.1 Aerodynamics

The most important forces and moments acting on the aircraft’s body are the aerodynamic

forces and moments. Hereby, lift and drag have the most significant impact on the motion of

the aircraft. In general, the three components of the aerodynamic force (with respect to the

Aerodynamic Frame) and the moment (with respect to the Body Fixed Frame) are written as:

(

FG
A

)

A
=







−D

Q

−L







= q̄ · S ·







−CD

CQ

−CL







A

(2.103)

(

MG
A

)

B
=







L

M

N







= q̄ · S ·







b
2

· Cl

c̄ · Cm

b
2

· Cn







B

(2.104)

In these equations, the following quantities are important:

• D, Q and L: The drag, cross-stream and lift force

• L, M and N : The aerodynamic roll, pitch, and yaw moments

• S, b and c̄: The wing reference area, the wing span and the mean aerodynamic chord

• q̄ = 1
2
ρV 2

A : The dynamic pressure

• C◦: The aerodynamic coefficients

33

2.7 External Forces and Moments

The aerodynamic coefficients of the models considered here mainly depend on the aerodynamic

angle of attack, αA, the aerodynamic angle of sideslip, βA, the control surface deflections ξ,

η and ζ as well as the dimensionless aerodynamic angular rates:

p̃ =
pA · b

2 · VA

(2.105)

q̃ =
qA · c̄

2 · VA
(2.106)

r̃ =
rA · b

2 · VA
(2.107)

The aerodynamic rates are defined as the rotational motion of the aircraft with respect to the

surrounding air and can be calculated according to equation (2.100). In case a point mass

model is considered, the control surface deflections cannot be used as controls as they hardly

affect the linear motion of the aircraft but mainly the rotational dynamics.

The particular models used for calculating the aerodynamic derivatives depend on the

particular application. In the air traffic problems considered in section 10.2, the aerodynamic

forces are calculated based on the Base of Aircraft Data Family 4 (BADA 4) [EUR12]. There,

the equations for the forces depend on the Mach number M , the speed of sound a, the current

air temperature T and other atmospheric quantities. These values are calculated according to

the ISA Standard Atmosphere which is briefly reviewed in section 2.6.1.

In the air race examples within this work the aerodynamic models as described in the work

by Fisch, [Fis11] have been used, with slightly different parameter values and an updated lift

model. The model is based on a set of basic aerodynamic derivatives as they are e.g. also

described in [Hol15]. More details can be found in section 11.1.

2.7.2 Propulsion Forces and Moments

The goal of the propulsion system on board an aircraft is the creation of thrust force (and in

some cases also moments) that are used to accelerate and control the aircraft. In general, the

thrust reference point T is not identical to the center of gravity of the aircraft, resulting in

additional moments. Besides, the thrust force does neither necessarily act in the direction of

the x-axis of the Body Fixed Frame nor in the direction of the aerodynamic or the kinematic

velocity. Consequently, a new coordinate frame is required, called the Propulsion Frame. It is

defined by the engine mounting angle κ in the Body Fixed x-y plane and the thrust elevation

angle σ, resulting in the transformation matrix:

MBP =







cos κ · cos σ − sin κ cos κ · sin σ

sin κ · cos σ cos κ sin κ · sin σ

− sin σ 0 cos σ







(2.108)

Thus, the propulsion forces in the Body Fixed Frame can be calculated from:

(

FG
P

)

B
= MBP ·

(

FG
P

)

P
(2.109)

34

Chapter 2: Aircraft Modeling

In some simplified approaches the Propulsion Frame may be chosen similar to the Body Fixed

Frame or the Aerodynamic Frame. Physically, the thrust has to be modeled as the vectorial

difference between the impulse of the air flowing through the outlet of the aircraft’s engine and

the one flowing into its inlet. This model may generally also be used if no clear geometrical

inlet and outlet of an engine can be defined (as e. g. for propeller engines). As the inlet and

outlet forces do not necessarily affect the aircraft at the same point, additional moments may

also result. Here, the resulting thrust force is directly modeled, constituting a simplification.

The moment resulting from an offset between the propulsion reference point and the center

of gravity of the system can be calculated from:
(

MG
P

)

=
(

xGT
)

×
(

FT
P

)

(2.110)

Additionally, the propulsion system may create gyroscopic moments
(

MT
Gyro

)

that need to be

added to the overall propulsion moments
(

MG
P

)

.

As in real systems, the thrust commanded by the pilot and the one created by the aircraft’s

engine feature a time delay, the relation between the two may be modeled using a PT1 dynamic

system. In the model the dynamics are directly coupled to the thrust lever position δT :
.
δT =

1

TS
(δT,CMD − δT) (2.111)

The thrust lever position is controlled by the value of δT,CMD ∈ [0, 1], while the resulting

engine thrust is a function of δT . Considering the problem of singular arcs, described in

section 3.2.6, this model may not be favorable in optimal control applications. This is why it

is also considered in chapter 6.4. More details on the model can be found in [Fis11, Hol+15].

2.7.3 Gravitational Force

In [Len15], Lenz gives a detailed overview of the different fidelities of gravitational modeling

available for aircraft trajectory optimization. Besides, he explains the difference between grav-

itation and gravity, where the latter is the combination of the gravitational and the centrifugal

components of force or acceleration. Lenz finally shows, that for aircraft flying below 30km,

a series expansion for modeling the gravitational force is far sufficient as it features an abso-

lute accuracy of 3.4 · 10−4m/s2. Moreover, he shows that the horizontal component of the

acceleration created by gravity is far below 1h and can also be ignored in atmospheric flight

optimization problems.

In the examples presented in the remainder of this work, the spatial extent of the trajectories

is small and the flights are performed far below an altitude of 30km, allowing for the use of

a constant gravitational model. Additionally, the reference point is selected to be the center

of gravity, resulting in no additional gravitational moments. The resulting gravitational force

can be transformed into the Kinematic Frame, K:

(

FG
G

)

K
= MKO ·

(

FG
G

)

O
= MKO ·







0

0

m · g







O

(2.112)

35

2.8 Model Extensions

In case the influence of the latitude ϕ on gravity should be taken into account, the formula

of Somigliana may be used to calculate a local gravity constant gϕ replacing g in equation

(2.112):

gϕ =
a · ge · cos2 ϕ + b · gp · sin2 ϕ
√

a2 · cos2 ϕ + b2 · sin2 ϕ
(2.113)

with

• ge = 9.78032533590m/s2 being the normal gravity at the equator,

• gp = 9.83218493786m/s2 being the normal gravity at the pole and

• a and b being the semi major axis from equation (2.18) and the semi minor axis from

equation (2.20).

2.8 Model Extensions

Besides the pure mechanics presented before, in the applications shown below, auxiliary effects

influence the dynamics and consequently the solutions to the problems. The most important

effects to be incorporated are a change in the aircraft mass due to fuel consumption and

actuator dynamics representing the movement of the control surfaces of an aircraft.

2.8.1 Fuel Consumption

Especially when considering air traffic applications, fuel consumption may be one of the opti-

mization criteria. In order to accurately model the influence of fuel consumption on the aircraft

dynamics, the resulting change in mass needs to be taken into account in these applications.

Even when the fuel consumption is not part of the cost function, but long trajectories are

considered, the fuel consumption needs to be taken into account as the mass of the aircraft

may change dramatically. In [Hol+15] the example of an Airbus A380 is given, that fea-

tures an approximate maximum takeoff weight of 569 tons, where 256 tons thereof are fuel.

Consequently, the change in mass may not be neglected.

The general equation for modeling the fuel consumption is given as

.
m = − .

mfuel (2.114)

where several different models for the calculation of the current fuel flow .
mfuel exist. The most

simple approach suggested in [Hol+15] is to use a constant specific fuel consumption σSF C

that is multiplied by the current thrust force resulting in the current fuel flow:

.
mfuel = σSF C ·

∥
∥
∥

(

FG
P

)∥
∥
∥ (2.115)

More elaborate models for the approximation of fuel consumption exist, where the following

list gives a short overview.

36

Chapter 2: Aircraft Modeling

• Base of Aircraft Data, Family 3 (BADA 3) Eurocontrol’s Base of Aircraft Data in

Family 3 contains relationships and parameters to approximate the specific fuel consump-

tion during flight depending on the aircraft’s velocity as well as a model for estimating

the fuel flow for engine idle. [EUR14]

• Base of Aircraft Data, Family 4 (BADA 4) In Family 4 of Eurocontrol’s Base of

Aircraft data much more elaborate fuel flow models are included, now taking the aircraft

weight, the pressure, the temperature and the Mach number into account, modeling

idle and non-idle fuel flow values. [EUR12]

• System for Assessing Aviation’s Global Emission (SAGE) This model developed by

the American Federal Aviation Administration (FAA) Is based on the fuel consumption

model in BADA 3, introducing additional correction terms. [Kim+07, Lee+07]

• ICAO Aircraft Engine Emissions Databank The Aircraft Engine Emissions Databank

developed by the International Civil Aviation Organization (ICAO) gives approximate fuel

flow values for takeoff, cruise, approach, and idle settings at mean sea level. [ICA95,

ICA16]

• Fuel Flow Method 2 The Fuel Flow Method 2 from Boeing is based on the data from

the Aircraft Engine Emissions Databank but introduces additional correction terms for

air pressure and temperature. [DP06]

This listing of fuel consumption models has mainly been taken from [Hol+15]. The air traffic

examples presented in this work use the fuel flow models from BADA 4 and BADA 3, as

stated.

2.8.2 Actuator Dynamics

Similarly to the engine dynamics, the control surfaces of an aircraft may not be able to instan-

taneously follow a given command. In this case, additional dynamics need to be introduced

modeling the behavior of the control surface deflections. These dynamics are called actuator

dynamics.

In [Fis11], Fisch uses a second order linear system to model the actuator dynamics.

This approach is also suggested in [Hol15, Hol+15]. The control surface deflection u can be

calculated from the input control uCMD using the dynamic equation




.
x1
.
x2



 =




0 1

−ω2
0 −2ζω0



 ·



x1

x2



+




0

ω2
0



 · uCMD (2.116)

and the output equation:

u =
(

1 0
)

·



x1

x2



 (2.117)

Considering the problem described in section 3.2.6, this model extension is problematic

as now the control of the dynamic system appears linearly even though the original control

37

2.8 Model Extensions

surface deflections may not have appeared linearly in the flight dynamic model. In section 6.4

approaches to overcome this issue are discussed.

38

Chapter 3

Mathematical Preliminaries

This chapter presents the mathematical preliminaries required for solving optimal control prob-

lems. However, no full mathematical proof and derivation is given here (they can be found

e.g. in [Ger12, Ger08, Ger09, Ben10, BH75, Lei81, Bie10]), but the purpose of this chapter is

more to be a “quick start guide” in optimization and optimal control for engineers. Thus, the

statements made are mostly not of general nature but more application driven and limited to

the respective cases.

The chapter is organized as follows: First, an introduction to numerical optimization is

given, starting with the simplest problem of numerical optimization, which is the minimization

of an unconstrained, scalar function. After focusing on multidimensional optimization prob-

lems, constrained problems are treated, leading to the well-known Karush-Kuhn-Tucker

conditions (KKT conditions). Besides those theoretical considerations, sections 3.1.3 and

3.1.4 focus on the sequential quadratic programming algorithm and the interior point algo-

rithm which help solving numerical optimization problems in real life applications. The last

section on numerical optimization focuses on parametric optimization problems, which on the

one hand help to understand some aspects of regular optimization problems and on the other

hand will later also be used in the context of optimal control problems.

The second part of this chapter focuses on the solution of optimal control problems.

After stating the problem to be treated, some theoretical aspects are discussed. These include

transformation techniques required to be able to reduce a wide set of optimal control problems

to a basic problem type, as well as the indirect solution approach, introducing the Hamiltonian

and finally leading to the respective optimality conditions. In section 3.2.4 the direct solution

methods are presented that – similarly to before – can be used to solve complicated real life

optimal control problems. Afterwards, the relations between the indirect approach and the

direct approach, including the transformation of the Lagrange multipliers to the costates,

are recalled.

The third part of the chapter gives a short introduction and an overview of commonly

used methods for multi criteria optimization and multi criteria optimal control problems. The

findings from this chapter will later be used to determine solutions for multi criteria aircraft

trajectory optimization problems (see section 10.4).

39

3.1 Numerical Optimization

An overview of a general implementation of a direct optimal control algorithm, that has

been developed at the Institute of Flight System Dynamics at TUM, and is implemented in

MATLAB, is given in chapter 4 of this work.

3.1 Numerical Optimization

From a historical point of view, the problem of finding extremal values of functions was solved

long before optimal control problems came up. When considering continuous values for the

variables, these so-called finite dimensional optimization problems can mainly be divided into

two groups: Those not having additional equality or inequality constraints and those being

constrained. However, when using direct discretization methods (see 3.2.4 for more details) for

solving optimal control problems, they are transformed to constrained numerical optimization

problems.

Before focusing on constrained numerical maximization and minimization problems, this

section gives a short overview of the solution techniques for unconstrained optimization prob-

lems. A more detailed discussion of the problem classes and the solution techniques can besides

others be found in [Bet09, Ben10, Ger08].

Throughout the remainder of this chapter the following wide spread terms will be used:

• zopt is called global minimum if J(zopt) ≤ J(z) ∀z in the admissible set.

• zopt is called strict global minimum if J(zopt) < J(z) ∀z 6= zopt in the admissible set.

• zopt is called local minimum if J(zopt) ≤ J(z) ∀z in a bounded area around zopt.

• zopt is called strict local minimum if J(zopt) < J(z) ∀z 6= zopt in a bounded area

around zopt.

This section will focus on gradient based approaches as they are normally used for solving

the large scale numerical optimization problems resulting from discretized optimal control

problems. For general problems, gradient based approaches can only find local minima.

3.1.1 Unconstrained Optimization Problems

The basic problem of optimization is finding a minimum of a sufficiently smooth, vector

dependent function J : Rnz → R not being constrained:

min
z

J(z), z =











z1

z2

...

znz











∈ R
nz (3.1)

Any minimization problem can be turned into an equivalent maximization problem by multi-

plying J by −1.

40

Chapter 3: Mathematical Preliminaries

The derivative of the function J is written as the gradient vector

(J ′
z)⊺ = ∇zJ =











∂J
∂z1

∂J
∂z2

...
∂J

∂znz











, (3.2)

and the second derivative is represented by the symmetric Hessian matrix:

H(z) = J ′′
zz = (J ′′

zz)⊺ =












∂2J
∂z2

1

∂2J
∂z1∂z2

. . . ∂2J
∂z1∂znz

∂2J
∂z2∂z1

∂2J
∂z2

2

. . . ∂2J
∂z2∂znz

...
. . .

...
∂2J

∂znz ∂z1

∂2J
∂znz ∂z2

. . . ∂2J
∂z2

nz












(3.3)

The conditions for a local minimum point zopt are [Bet09, Ger08, Ben10, Bie10]:

Necessary conditions:

∇zJ(zopt) = 0 (3.4)

(zopt − z)⊺ · H(zopt) · (zopt − z) ≥ 0 ∀z ∈ Uδ(zopt) (3.5)

with Uδ(zopt) = {z ∈ R
nz| ‖z − zopt‖ < δ}

Sufficient conditions:

∇zJ(zopt) = 0 (3.6)

(zopt − z)⊺ · H(zopt) · (zopt − z) > 0 ∀z ∈ Uδ(zopt), z 6= zopt (3.7)

with Uδ(zopt) = {z ∈ R
nz| ‖z − zopt‖ < δ}

Equations (3.5) and (3.7) are equivalent to the Hessian being positive semi-definite or positive

definite, respectively.

In the special case of nz = 1, the well-known conditions for a local minimum of J result:

1. First order condition: J ′
z(zopt) = 0

2. Second order condition: J ′′
zz(zopt) ≥ 0

with the second one being not sufficient. Whenever the second order derivative J ′′(zopt) = 0

one needs to evaluate higher oder derivatives until one of them evaluates to a value different

from zero: J (p)(zopt) 6= 0. If p is an even number and J (p)(zopt) > 0 then zopt is a minimum,

too. In case no derivative evaluates to a value other than zero or p is an odd number, zopt

is neither a minimum nor a maximum. This can easily be verified using a Taylor series

approximation.

41

3.1 Numerical Optimization

Newton Method

When trying to numerically determine the minimum of a function, one approach is to use

Newton’s method in order to find candidates fulfilling the first order condition from above.

The main problem there is that no distinction between maximum values, minimum values, and

saddle points is possible as the first order condition is true for every stationary point. One

approach when using Newton’s method is to approximate the first derivative of the function

to be minimized by a linear function and to determine the zero crossing of it iteratively. For

sufficiently smooth functions, this approach leads to the same result as the approach used

here and also presented in [Ger08, sec. 3.9]. This approach is to iteratively approximate the

function itself by a quadratic function (instead of using an approximation for the derivative)

and then determine the minimum of this approximation. It yields that (again, for sufficiently

smooth functions) the new point zk+1 can be found as [Bet09, Ger08, Ben10, Bie10]:

zk+1 = zk + pk (3.8)

with pk being the update step:

pk = −[J ′′
zz(zk)]−1∇zJ(zk) = −H−1

k (∇zJ)k (3.9)

In order to ensure that the update step improves the cost function, the projection of the

update step on the gradient should be negative:

(∇zJ)⊺kpk = −(∇zJ)⊺kH−1
k (∇zJ)k < 0 (3.10)

If (3.10) holds, then pk is a direction of descent. Furthermore, (3.10) holds if Hk is positive

definite and (∇zJ)k 6= 0. Normally this is not the case in all points passed during the solution

of a problem. The next section gives some approaches to overcome this issue. [Bet09, sec.

1.8.1]

Hessian Free Methods

Besides the problem stated before, in a lot of applications – particularly in optimal control

problems – the calculation of the gradient and especially the Hessian of a problem may be

quite costly. One approach to tackle these issues is to (at least) use an approximation of the

Hessian matrix. The most simple idea is to replace Hk by the identity matrix leading to the

gradient method with the update step:

pk = −(∇zJ)k (3.11)

The benefits of this method are quickly visible as it does not require any information about

the Hessian, nor is it complicated to implement. The main drawback is its poor convergence

behavior.

Another method that does not require information about the Hessian is the so-called Quasi-

Newton method. There, the Hessian Hk is replaced by the symmetric and positive definite

42

Chapter 3: Mathematical Preliminaries

matrix Qk that is updated in each iteration according to an appropriate update scheme. Here,

the BFGS (Broyden, Fletcher, Goldfarb, Shanno) update rule is considered:

Q̄k = Qk +
∆(∇zJ)(∆(∇zJ))⊺

(∆(∇zJ))⊺∆z
− Qk∆z(∆z)⊺Qk

(∆z)⊺Qk∆z
(3.12)

with ∆z = zk+1 − zk and ∆(∇zJ) = (∇zJ)k+1 − (∇zJ)k

The BFGS method can e.g. be initialized using the identity matrix. The theoretical motivation

of the BFGS update rule is based on a minimization of the Frobenius matrix norm of the

matrix equation resulting from the Taylor expansion of the gradient. [HG16]

Of course, other update rules for the Hessian exist and may also be used here. [Ger08,

Bet09, Bie10]

Line Search

In order to achieve convergence from any starting point and not just from points in the vicinity

of the solution, a line search procedure can be utilized. The goal of this is to determine the

step size for each iteration individually. Instead of doing a full step

zk+1 = zk + pk (3.13)

the scalar step size α ∈ [0, 1] is introduced:

zk+1 = zk + αpk (3.14)

The step size is determined such that

J(zk+1) ≤ J(zk) + αk · σ · J ′
z · pk, σ ∈ [0, 1] (3.15)

is ensured. To achieve this, most of the currently used algorithms first perform a full iteration

step using α = 1, before reducing α until a step length is found that satisfies a sufficient

decrease condition, like e.g. the Armijo rule or the Wolfe-Powell rule [Bet09, sec.

1.11.2], [Arm66, Wol69, Wol71]. Figure 3.1 visualizes the general idea. The point on the left

is the current point and the cost function may be sufficiently improved for α < 1, but may

not be improved for a full step with α = 1.

3.1.2 Constrained Optimization Problems

In real world applications, optimization problems are hardly ever unconstrained. In these cases,

instead of only having a cost function to be minimized, additional constraints have to be taken

into account. The resulting problem formulation for the multi dimensional case is:

min
z

J(z) (3.16)

s. t. h(z) = 0 (3.17)

g(z) ≤ 0 (3.18)

z ∈ R
nz

43

3.1 Numerical Optimization

α = 1

α < 1 α

J

zk

Figure 3.1: Principle of a line search algorithm for determining the step size. In this example,

α = 1 is not a valid step size, whereas the shortened step is accepted.

with

J : R
nz → R, (3.19)

h : R
nz → R

nh and (3.20)

g : R
nz → R

ng (3.21)

being sufficiently smooth functions.

An inequality constraint gi(z) ≤ 0 is called active at z if gi(z) = 0 holds. On the other

hand, it is called inactive at z if gi(z) < 0 holds. The index i describes the i-th element of

the vector g.

Lagrange Function

For solving constrained optimization problems the Lagrange function is introduced:

L(z, λ, ν) = J(z) + λ⊺h(z) + ν⊺g(z) (3.22)

with λ ∈ Rnh and ν ∈ Rng being the Lagrange multipliers for the equality and inequality

constraints, respectively. At this point the Lagrange function must be seen as an auxiliary

function simplifying the results derived below. A more descriptive explanation of the results,

also explaining the meaning of the Lagrange function in more detail, will be given below

and in 3.1.6. [Ger08, Ben10, Bie10]

Linear Independence Constraint Qualification (LICQ)

In order to be able to mathematically derive the optimality conditions listed in the next section,

the problem formulation has to fulfill certain regularity conditions. One commonly used set of

regularity conditions for constrained optimization problems is the so-called Linear Independence

44

Chapter 3: Mathematical Preliminaries

Constraint Qualification (LICQ). It is fulfilled in zopt if the gradients for the active set of the

inequality constraints and the gradients of the equality constraints are linearly independent.

The outer lines in figure 3.2 – illustrating the LICQ – represent some inequality constraints.

If the optimal solution is located in the interior, none of the constraints is active and the LICQ is

fulfilled. For the points in the second and the third case, the gradients of all active constraints

are independent, eventually also fulfilling the LICQ. In the last two cases the gradients of the

active constraints are dependent, resulting in the LICQ not being fulfilled.

Figure 3.2: Examples for the LICQ. In the first three points the LICQ are fulfilled, in the last

two they are not. cf. [Ger12]

The LICQ and alternative regularity conditions for optimization problems can e.g. be

found in [BH75, Ger08, Bie10]. The regularity conditions are required for the Karush-

Kuhn-Tucker conditions and the sufficient conditions of the next sections.

Karush-Kuhn-Tucker Conditions (KKT Conditions)

We assume zopt to be a local minimum of the problem stated in (3.16)–(3.21). Furthermore,

the conditions stated in the LICQ are fulfilled in zopt. Then, there exist unique Lagrange

multipliers λopt and νopt such that the following Karush-Kuhn-Tucker (KKT) conditions

hold [KT51], [Ger08, p. 146], [Bie10, ch. 4], [BH75, Ben10]:

1. Sign conditions

νopt ≥ 0 (3.23)

2. Optimality conditions

∇zL(zopt, λopt, νopt) = ∇zJ(zopt) + ∇zh(zopt)λopt + ∇zg(zopt)νopt = 0 (3.24)

3. Complementary conditions

gi(zopt) · νi,opt = 0, ∀i = 1, . . . ng (3.25)

45

3.1 Numerical Optimization

4. Constraints

∇λL(zopt, λopt, νopt) = h(zopt) = 0 (3.26)

∇νL(zopt, λopt, νopt) = g(zopt) ≤ 0 (3.27)

The complementary conditions in 3. can element-wise be further resolved to two cases:

• If the constraint gi(zopt) is active, gi(zopt) = 0 and νi,opt ≥ 0 (with sign conditions 1.).

• If the constraint gi(zopt) is not active, gi(zopt) < 0 and νi,opt = 0.

Geometric Interpretation

The optimality conditions from (3.24) can be reformulated to:

− ∇zJ(zopt) = ∇zh(zopt)λopt + ∇zg(zopt)νopt (3.28)

This means that, in the optimal solution, the negative gradient of the cost function J can

be written as a linear combination of the gradients of the active inequality constraints and

the equality constraints. Special care has to be taken considering the sign of νopt ≥ 0, not

allowing all possible linear combinations. In general, only two cases can appear:

1. Unconstrained in the current solution zopt: Then the KKT point is located in the

interior of the constrained set and the Jacobian of the cost function is equal to zero.

∇zJ(zopt) = 0 (3.29)

2. Some or all constraints are active: Then the KKT point is located on the border

of the constrained set and the Jacobian of the cost function can be represented as a

combination of the gradients of the active constraints (regular case as stated above).

Figure 3.3 shows two exemplary points illustrating the KKT conditions. In the left graph,

the negative gradient of the cost function can be represented as a linear combination of the

gradients of the (active) constraints with positive Lagrange multipliers. The considered

cost function is

J(z) = (z1 − 1)2 + (z2 − 1)2 (3.30)

while the constraints are:

g =




z1

z2



 ≤ 0 (3.31)

In this case the gradients evaluate to:

∇zJ(z) =




2 · (z1 − 1)

2 · (z2 − 1)



 , ∇zg(z) =




1 0

0 1



 (3.32)

46

Chapter 3: Mathematical Preliminaries

z2z2

z1z1

J(z)

= (z1 − 1)2 + (z2 − 1)2

J(z)

= (z1 − 1)2 + (z2 − 1)2

g1(z) = z1 ≤ 0g1(z) = z1 ≤ 0

g2(z) = z2 ≤ 0g2(z) = z2 ≤ 0

Figure 3.3: Examples illustrating the KKT conditions. The point on the left is a KKT point,

the one on the right not cf. [Hol+14].

The optimal solution is

zopt =




0

0



 (3.33)

and consequently the Lagrange multipliers evaluate to:

−∇zJ(zopt) = −



−2

−2



 =




1

0



 ν1 +




0

1



 ν2 (3.34)

ν1 = 2 ν2 = 2

The KKT conditions are necessary conditions which means that they are fulfilled in every

optimal point as long as the LICQ are fulfilled and we remain in the framework discussed here

(sufficiently smooth functions, etc.). On the other hand, in this framework, no optimal point

can exist that violates the KKT conditions. In the right graph of figure 3.3, the considered point

is not a valid KKT point as the gradient of the cost function (black) cannot be represented

by the gradient of the active constraint (red). Furthermore, it can be seen that the cost can

further be improved (until the optimal solution is reached) as there remains a component of

the negative gradient that is not aligned perpendicular to the constraint. Or, in other words,

if the KKT are fulfilled, a decrease in the cost function can only be achieved by violating the

constraints (the improvement that can be achieved by a violation is related to the Lagrange

multipliers, see section 3.1.6). Moreover, if the LICQ are not fulfilled the determination of

the multipliers may have no unique solution anymore and no unique direction of improvement

may be found. [BH75, Bie10, Hol+15]

Sufficient conditions

Using the necessary conditions (3.23)–(3.27) (KKT conditions), one can only determine candi-

dates for optimal points. In order to validate if a given candidate is really an optimal solution

47

3.1 Numerical Optimization

to the constrained optimization problem, sufficient conditions are required. For stating a

sufficient condition [Ger08, sec. 5.3] introduces the critical cone TK :

TK(zopt) =
{

d ∈ R
nz | ∇ḡi(zopt)

⊺d ≤ 0, νi,opt = 0,

∇ḡi(zopt)
⊺d = 0, νi,opt > 0, (3.35)

∇hj(zopt)
⊺d = 0}

with ḡ being the active subset of the inequality constraints.

Now, the sufficient conditions are:

If (zopt, λopt, νopt) is a KKT point with

d⊺L′′
zz(zopt, λopt, νopt)d > 0 ∀d ∈ TK(zopt), d 6= 0 (3.36)

of the problem stated above, then there exists a neighborhood Uδ(zopt) = {z ∈ Rnz|‖z −
zopt‖ ≤ δ} with α > 0 such that:

J(z) ≥ J(zopt) + α ‖z − zopt‖2 ∀z ∈ Uδ(zopt) (3.37)

This means that zopt is a local minimum of the problem and the cost function is growing at

least quadratic in a neighborhood of zopt. Visually speaking, the Hessian of the Lagrangian

must be positive definite in all directions of the critical cone, which means that its curvature

must be positive in all directions of the critical cone.

3.1.3 Sequential Quadratic Programming (SQP)

As the conditions from 3.1.2 can – in most cases – not directly be used to calculate optimal

points, a numerical approach is needed that returns (at least) candidates for optimal points. In

section 3.1.1, the Newton method for unconstrained problems was presented, also introduc-

ing two ideas for motivating it. Here, again, the approach of approximating the function to be

optimized by quadratic functions will be used. Now, the method will be applied to a problem

with equality and inequality constraints. The considered auxiliary Quadratic Programming

(QP) subproblem for the point (z, λ, ν) is

min
d∈Rnz

1

2
d⊺L′′

zz(z, λ, ν)d + ∇zJ(z)⊺d

s. t. gi(z) + ∇zgi(z)⊺d ≤ 0, i = 1, . . . , ng (3.38)

hj(z) + ∇zhj(z)⊺d = 0, j = 1, . . . , nh

Using the aforementioned stepwise quadratic approximation, the local Sequential Quadratic

Programming (SQP) method can be derived.

The SQP algorithm requires the following steps:

1. Choose initial values
(

z[0], λ[0], ν [0]
)

.

48

Chapter 3: Mathematical Preliminaries

2. If the current point
(

z[k], λ[k], ν [k]
)

is a KKT point of the constrained optimization

problem then STOP.

3. Otherwise, calculate a new KKT step
(

d[k], λ[k+1], ν [k+1]
)

by solving the QP problem

(3.38).

4. Perform the step z[k+1] = z[k] + d[k], increase the step counter k = k + 1 and continue

with 2.

It can be shown that under certain conditions, the SQP method shows quadratic convergence

to the real solution of the constrained problem.

Similar to the Hessian free methods presented in 3.1.1, the Quasi-Newton-Method can also

be applied to constrained optimization problems. In this case, the BFGS update formula needs

slight modifications and the resulting algorithm shows superlinear convergence properties.

Details can e.g. be found in [Ger08, sec. 5.8], [Bet09, sec. 1.13], [Bie10].

There exists a variety of numerical optimization algorithms based on SQP methods that

can be used to solve real life numerical optimization problems. All of them are far more

sophisticated than the basic approach presented here, as one can imagine that there are many

pitfalls in real applications that need to be overcome. This includes numerical problems as well

as implementational details that were left out here for the sake of simplicity. Currently available

implementations include e.g. MATLAB’s fmincon function (depending on the settings) [Mat],

SNOPT [GMS02], KNITRO [Art], SOCS [Bet09], WORHP [BW13] and many others.

3.1.4 Interior Point Algorithm

The two basic ideas of an interior point algorithm are

• to introduce slack variables s > 0 for the inequality conditions and

• to couple these to the cost function using logarithmic expressions with a weighting factor

η > 0.

When doing so the following barrier problem results:

Determine z ∈ R
nz and s ∈ R

ng , s. t.

min
z,s

J(z) − η
ng∑

i=1

log(si)

under the constraints gi(z) + si = 0, i = 1, . . . , ng (3.39)

hj(z) = 0, j = 1, . . . , nh

Hence, the Lagrange function of the barrier problem becomes:

L(z, s, λ, ν) = J(z) − η
ng∑

i=1

log(si) + ν⊺ (g(z) − s) + λ⊺h(z) (3.40)

49

3.1 Numerical Optimization

The KKT conditions for this equality constrained problem evaluate to

∇zL(z, s, λ, ν) = 0 (3.41)

∇sL(z, s, λ, ν) = 0 (3.42)

gi(z) + si = 0 i = 1, . . . , ng (3.43)

hj(z) = 0 j = 1, . . . , nh. (3.44)

Now, the optimality condition (3.41) is used to determine candidates for the optimal solution,

introducing the diagonal Matrix S = diag(si):

∇zL(z, s, λ, ν) = ∇zJ(z) + ∇zg(z)ν + ∇zh(z)λ (3.45)

∇sL(z, s, λ, ν) = −ηS−1e + ν ⇒ η = siνi (3.46)

with e being a vector of ones of appropriate size. The conclusion from equation (3.46) is used

to determine si.

Again, the Newton method may be applied for solving the resulting problem. While

doing so, the barrier parameter is stepwise decreased. As a large barrier parameter results in

smoothed inequality constraints, the first solutions are forced further away from the border

of the feasible set. Consequently, in this simplified version of the method, the sequence of

iterates tends to approach the barrier from the inside and therefore “orthogonal” to the border

instead of “tangential” along the constraints. An example for the augmented cost function

J(z) − η
ng∑

i=1

log(si) (3.47)

for different values of η, also showing the described behavior, can be seen in figure 3.4. More

details on the interior point method can be e.g. be found in [Ger08, sec. 5.11], [Bet09,

p. 1.14], [Hol+14].

Similar to the SQP methods, there are algorithms available that are based on interior point

methods. These include e.g. MATLAB’s fmincon function (depending on the settings) [Mat],

KNITRO [Art] and IPOPT [WB06].

3.1.5 Sparse Optimization Problems

Before considering sparse optimization problems, a definition of the word “sparse” is required.

In [Bet09, sec. 2.1], Betts calls matrices sparse if many of the elements are zero. Fur-

thermore, he states that for most problems the number of non-zero elements remains below

1%. When tackling sparse optimization problems, the Jacobian and the Hessian matrix of

the problem are the matrices that have to be sparse in order to have a sparse problem. In

this work, we mainly focus on the Jacobian of the problem, as the Hessian is mostly only

approximated anyway. Moreover, in general, a structurally sparse Jacobian results in a mostly

sparse Hessian, too. When considering discretized optimal control problems, sparse optimiza-

tion problems mostly have a band structure, meaning that most of the non-zero entries are

50

Chapter 3: Mathematical Preliminaries

x

η = 0η = 0.05

η = 0.25

x

η = 0.5

y

y

η = 0.1

x

η = 1

-1 0 1-1 0 1-1 0 1

-1 0 1-1 0 1-1 0 1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

Figure 3.4: Augmented cost function of the interior point method for different weighting

factors η. The example shown is min(x,y) J(x, y) = y, under the conditions that g(x, y) =

y2 + x2 ≤ 1. The augmented cost function can only be evaluated inside the constrained area.

[Bet09]

grouped around the diagonal of the matrix. This structure can be created in discretized op-

timal control problems by sorting all values with respect to their time of appearance. More

details on the use of problem sparsity for discretized optimal control problems can be found in

chapter 7.

A lot of technologies exist for efficiently solving sparse numerical optimization problems.

These include special approaches for the efficient calculation of the Jacobian or Hessian using

finite differences if the sparsity pattern of a problem is known. Furthermore, special techniques

for solving sparse QP problems as well as sparse formulations for merit functions exist. Using

the aforementioned techniques, mostly sparse SQP and interior point algorithms can be built

up. Examples for sparse Non-Linear Programming (NLP) problem implementations include

IPOPT [WB06], SNOPT [GMS02] or WORHP [BW13]. In [Bet09], Betts gives an overview

of the different techniques for sparse optimization problems.

3.1.6 Parametric Optimization Problems

In some cases, an optimization problem does not only depend on the parameters that are

subject to optimization in order to minimize the given cost function, but also on additional

parameters that influence the problem without being part of the solution. Problems of this

51

3.1 Numerical Optimization

class are called parametric optimization problems and can generally be stated as

min
z

J(z, p)

s. t. g(z, p) ≤ 0 (3.48)

h(z, p) = 0

for given parameters p ∈ Rnp .

Value Function

When analyzing this class of problems, the main question often is how different values for the

parameter vector p influence the solution of the optimization problem. The function to be

considered for this analysis is called value function:

V (p) = inf {J(z, p) | g(z, p) ≤ 0, h(z, p) = 0} (3.49)

It represents the greatest lower bound for the cost function of the parametric optimization

problem. The investigation of this value function on the one hand leads to another interpreta-

tion of the Lagrange multipliers, which will later be used to establish a relationship between

continuous optimal control problems and their discretized counterparts. Besides, the thoughts

enable the fast calculation of suboptimal solutions for perturbed problems that may be used

to perform on-line updates of optimal trajectories or that may be used to further improve the

initial guess generation. Chapter 5 gives more details on the generation of initial guesses for

optimal control problems. [Ger08]

Perturbed Optimization Problem

The perturbed optimization problem

min
z

J(z)

s. t. g(z) + ǫg ≤ 0 (3.50)

h(z) + ǫh = 0

represents a special case of a parametric optimization problem with ǫg and ǫh being arbitrary

disturbance vectors of appropriate dimensions. In this case, ǫg and ǫh can be seen as the

external parameters p = [ǫg, ǫh]⊺ from (3.48) with nominal values ǫg = 0 and ǫh = 0.

Now, the value function of the optimization problem is defined as

V (ǫg, ǫh) = inf
z

{J(z) | g(z) + ǫg ≤ 0, h(z) + ǫh = 0} (3.51)

Analyzing the value function, the following relations between V and the Lagrange multipliers

of the nominal optimization problem can be derived [BH75], [Ger08, p. 180ff.], [Ben10, p. 17]:

∂V (0, 0)

∂(ǫh)
= λ⊺

opt (3.52)

∂V (0, 0)

∂(ǫg)
= ν

⊺
opt (3.53)

52

Chapter 3: Mathematical Preliminaries

This delivers another interpretation of the Lagrange multipliers: They are the local gra-

dient of the value function of the optimization problem with respect to disturbances in the

constraints. In section 3.2.4 discretized optimal control problems will be analyzed, where some

of the equality constraints are a discretized representation of the differential equations gov-

erning the respective dynamic system. There, the Lagrange multipliers can be seen as a

sensitivity of the optimal solution with respect to the dynamic equations (more details can be

found in section 3.2.5).

Besides the analysis of parametric optimization problems, the value function can be used to

formulate a dual problem which leads to other optimality criteria that can be used in numerical

optimization algorithms. Further details can e.g. be found in [Ger08, GL11].

Sensitivities

Looking at the value function V (p), one question to be answered is how the optimal solution

of the underlying optimization problem changes, when the parameters p are perturbed. It

is important to note that the question is not how the cost function value J(z, p) or the

constraints change in the current point when altering p but one wants to know how the

optimal point (Jopt, zopt, λopt, νopt) moves with perturbations in p. The value function can

deliver information on how the cost function value J changes, but here the question is how the

solution to the problem zopt changes. Mathematically, the following derivatives in the nominal

point p̂ are sought:
dzopt

dp
(p̂),

dλopt

dp
(p̂),

dνopt

dp
(p̂) (3.54)

Using the theorem of Fiacco [Fia76] – also referred to as the sensitivity theorem (e.g. by

[Ger08, sec. 5.4], [Ger12, sec. 6.1.1], [Büs98, ch. 9]) – these derivatives can be calculated.

The theorem requires the functions J , g and h to be twice continuous differentiable. Let

(zopt, λopt, νopt) (3.55)

be a unique and strictly regular local minimum. Then there exist neighborhoods

Vǫ(p̂) and Uδ(zopt, λopt, νopt) (3.56)

in which the local minimum is pertained and the set of active constraints does not change.

The sought derivatives can be calculated from








dz
dp

dλ
dp
dν
dp








= −







∇2
zzL ∇zg ∇zh

Λ · (∇zg)⊺ Γ 0

(∇zh)⊺ 0 0







−1

·







∇2
zpL

Λ · ∇pg

∇ph







(3.57)

with Λ = diag(λopt) and Γ = diag(g). All functions need to be evaluated in (zopt, λopt, νopt, p̂).

The theorem of Fiacco can be derived by applying the implicit function theorem to the KKT

conditions. It is helpful to regard z, λ and ν as one vector of unknowns in this derivation.

53

3.2 Applied Optimal Control

3.2 Applied Optimal Control

This section gives a brief overview of the class of optimal control problems to which aircraft

trajectory optimization problems belong to. More details on optimal control problems, the

theory behind them and their application can e.g. be found in [Bet09, Büs98, Kir70, Ger09,

Ger12, Ben10, Alb13, BH75].

This section is structured as follows: First, the general optimal control problem to be

solved is stated. Next, transformation techniques are revisited that enable the formulation

of one standard optimal control problem for several different problem formulations. In the

next section these transformation techniques are used to reformulate the optimal control

problem such that it can be tackled using the indirect solution approach. Therein, first,

optimality conditions for unconstrained optimal control problems are derived and the general

idea of costates is introduced and interpreted. Afterwards, the basic ideas required to extend

the indirect approach to constrained problems is described. Subsection 3.2.4 introduces the

basic principles required to solve optimal control problems based on the direct approach.

Some facts about the required numerical simulation techniques, on sensitivity equations and

the control parametrization are recalled, before the shooting and collocation approaches are

discussed, both forming the basis for the solution of the problems presented in chapters 10

and 11. Moreover, the numerical scaling of optimal control problems is briefly discussed as

it is crucial for a fast and stable solution process. Subsections 3.2.5 and 3.2.6 set the direct

and indirect approaches for solving optimal control problems into relation and reveal some

additional properties that are helpful for understanding optimal control problems better.

3.2.1 Optimal Control Problems

The main goal in optimal control is to determine time dependent state histories x(t), control

histories u(t) and possibly additional parameters p minimizing a given cost function J , without

violating any of the algebraic or dynamic constraints. The general optimal control problem

arising in aircraft trajectory optimization, and thus also treated here, can be stated as follows:

Find the optimal control history

uopt(t) ∈ R
nu (3.58)

and the corresponding optimal state trajectory

xopt(t) ∈ R
nx (3.59)

as well as the optimal parameters

popt ∈ R
np (3.60)

that minimize the Bolza cost functional

J = e(x(t0), x(tf), p, t0, tf) +

tf∫

t0

L(x(t), u(t), p, t) dt (3.61)

54

Chapter 3: Mathematical Preliminaries

subject to the dynamics:

.
x(t) = f(x(t), u(t), p, t) f : Rnx × R

nu × R
np × R → R

nx (3.62)

the initial and final boundary conditions:

Ψ0(x(t0), p, t0) = 0 Ψ0 : Rnx × R
np × R → R

nΨ0 (3.63)

Ψf(x(tf), p, tf) = 0 Ψf : Rnx × R
np × R → R

nΨf (3.64)

the interior point constraints:

ri(x(ti), p, ti) = 0 ri : Rnx × R
np × R → R

nr, ∀i = 1, . . . , Nr (3.65)

and the equality and inequality path constraints:

Ceq(x(t), u(t), p, t) = 0 Ceq : Rnx × R
nu × R

np × R → R
nCeq (3.66)

Cineq(x(t), u(t), p, t) ≤ 0 Cineq : Rnx × R
nu × R

np × R → R
nCineq (3.67)

In this formulation the final time tf may be fixed or free. In aircraft trajectory optimization

problems the final time is often subject to optimization and thus needs to be regarded as free.

Technically, optimal control problems may also be stated as multi phase problems, meaning

that several sub-problems of the form presented above are combined into one big optimal

control problem. The sub-problems may have their own time axis, their own constraints,

parameters, and models and may be connected by additional constraints as necessary. The

only restriction is, that all of them have to contribute (directly or indirectly) to one common

cost function. This multi phase formulation allows the use of different models and different

constraints in the different phases. [Hol15]

3.2.2 Transformation Techniques for Optimal Control Problems

The optimal control problem formulated in (3.58)–(3.67) is mathematically equivalent to

several other formulations that may arise from similar applications. This section gives a short

overview of the most important transformation techniques for optimal control problems. Again,

it shall only give a glimpse on the relevant ideas, as more information on the transformations

can, e. g., be found in [Ger09, Ger12, Büs98]. At the end of this section a problem formulation

will be stated that is used for the derivation of the theoretical results in section 3.2.3.

Transformation of Problems with Free Initial or Final Time

Problems with free final (and) or initial time can be transformed into problems with fixed

final (and) or initial time by introducing one additional parameter per free time that is used

to perform a linear time transformation. In the following equations, τ ∈ [0, 1] represents the

normalized time and t0 and tf are the initial and final time parameters. The real simulation

time t is mapped to the normalized fixed time τ using the linear transformation:

t(τ) = t0 + (tf − t0) · τ (3.68)

55

3.2 Applied Optimal Control

Consequently, the derivatives with respect to t have to be transformed, too. The transformed

state dynamics resulting from

dt

dτ
= (tf − t0) (3.69)

are:

dx(t(τ))

dτ
=

dx(t)

dt
· dt

dτ
= f (x(t(τ)), u(t(τ)), p, t(τ)) · (tf − t0) (3.70)

Similarly, the Lagrange cost function becomes:

tf∫

t0

L(x(t), u(t), p, t) dt =

1∫

0

L(x(t(τ)), u(t(τ)), p, t(τ)) · (tf − t0) dτ (3.71)

With the transformation technique shown below, the newly introduced parameters t0 and tf

can also be further transformed to constant states with free initial conditions if one wants to

remove the parameters from the problem formulation. [Ger12, Büs98, Hol15]

Transformation of Cost Function Formulations

Different cost function formulations for optimal control problems exist, also determining the

name of the problem type. An optimal control problem is called Lagrange problem if the

cost function is of the form:

J =

tf∫

t0

L(x(t), u(t), p, t) dt (3.72)

In case the cost function is formulated as

J = e(x(t0), x(tf), p, t0, tf) (3.73)

the problem is called Mayer problem. A Tschebyscheff problem results if the goal is to

minimize a function of the form:

J = max
t∈[t0,tf]

f0(x(t), u(t), p, t) (3.74)

From a mathematical point of view, all those cost function formulations are equivalent

and also similar to the one given in (3.61). In order to transform a Lagrange problem into

a Mayer problem an additional state keeping the integrated Lagrange cost needs to be

added to the problem. Here, x̄ is the new, augmented state vector:

.
l(t) = L(x(t), u(t), p, t), l(t0) = 0

x̄ = [x⊺, l]⊺ (3.75)

J = l(tf)

The inverse transformation in general uses the same idea but is far more complicated and may

even be impossible, depending on the problem formulation.

56

Chapter 3: Mathematical Preliminaries

When looking at the Tschebyscheff formulation from (3.74) the introduction of an addi-

tional parameter pT is required that is used as a limit within a new path constraint:

pT , free

f0(x(t), u(t), p, t) ≤ pT (3.76)

J = pT

More details on these and other transformations can e.g. be found in [Bet09, Ger12, Büs98,

Hol15].

Transformation of Problems with Interior Point Constraints

Problems with interior point constraints of the form

r(x(ti), p, ti) = 0 r ∈ R
nr (3.77)

can be transformed into problems without these constraints by dividing the overall time interval

in multiple phases at the respective points ti in time. Afterwards, constraints have to be added

ensuring continuity of the relevant values and ensuring that the interior point conditions are

met [Ger12, Büs98].

Transformation of Problems with Parameters

Problems with additional optimization parameters can be reformulated to optimal control

problems without parameter dependencies by augmenting the state vector with constant states

with free initial values representing the parameters:

.
x̄ =





.
x(t)
.
p(t)



 =




f(x(t), u(t), p(t))

0



 = f̄(x̄, u) (3.78)

p(t0) = p0, free (3.79)

Transformation of Non-Autonomous Problems

Without loss of generality any non-autonomous problem can be transformed into an auto-

nomous one, where neither f nor J nor the path constraints Ceq and Cineq are dependent

on t explicitly, by adding an additional state representing the simulation time [Ger09, Ger12,

Büs98, Hol15]:

.
T (t) = 1, T (0) = T0 (3.80)

x̄(t) =




x(t)

T (t)



 (3.81)

.
x(t) = f(x(t), u(t), p, T (t)) (3.82)
.
x̄(t) = f̄(x̄(t), u(t), p) (3.83)

Normally, flight systems can be represented by an autonomous differential equation anyway.

57

3.2 Applied Optimal Control

Standard Optimal Control Problem

When applying the aforementioned transformations as necessary, the optimal control problem

can always be stated in the form:

Determine the optimal states and controls as stated in (3.58)–(3.59) that minimize the cost

function

J = e(x(t0), x(tf)) +

tf∫

t0

L(x(t), u(t)) dt (3.84)

respecting the dynamic constraints

.
x(t) = f(x(t), u(t)) (3.85)

as well as the algebraic constraints:

Ψ0(x(t0)) = 0 Ψ0 : Rnx → R
nΨ0 (3.86)

Ψf(x(tf)) = 0 Ψf : Rnx → R
nΨf (3.87)

Ceq(x(t), u(t)) = 0 Ceq : Rnx × R
nu → R

nCeq (3.88)

Cineq(x(t), u(t)) ≤ 0 Cineq : Rnx × R
nu → R

nCineq (3.89)

with fixed initial and final time t0 and tf .

Consequently, this problem formulation will be used for the derivation of the theoretical

results in the next section.

3.2.3 Indirect Solution Approach

The general idea of the indirect solution approach is to first derive optimality conditions for

the problem stated above. Afterwards, these conditions are evaluated and thus a solution

for the problem can be determined. From a historical point of view, the indirect solution

approach for optimal control problems is the older one, emerging from the field of calculus

of variations. The basic problem in this mathematical domain is to determine a continuous

function that minimizes another functional. The basic principles of calculus of variations have

been laid by Johann Bernoulli. In 1696 he – besides Jacob Bernoulli, Sir Isaac

Newton, Guillaume Francois Antoine Marquis de L’Hospital, Ehrenfried

Walter von Tschirnhaus and Gottfried Wilhelm Leibnitz – found a solution

to the famous Brachistochrone problem. After those first steps, Euler and Lagrange

made significant progress in that field deriving the famous Euler-Lagrange Equation. In the

twentieth century Hestenes, Bellmann, and Isaacs on the one hand and Pontryagin,

Boltyanskii, and Gamkrelidze on the other hand independently developed the Minimum

Principle (sometimes also called Maximum Principle), laying the foundation for the optimal

control theory as we know it today [Kir70, Ben10, PP12, Ger12, Ger09].

Most of the real world applications arising in the field of aircraft trajectory optimization are

too complex to be solved using indirect methods. Consequently, this approach may be seen

58

Chapter 3: Mathematical Preliminaries

as a pure “mathematical” approach helping a lot in understanding the properties of optimal

control problems but not so much in determining solutions for real world applications.

Unconstrained Optimal Control Problems

First of all, problems without any path constraints and only having equality conditions for the

initial and final boundaries are considered. Using the transformations from above, the resulting

problem formulation is:

Find the control history uopt(t) ∈ Rnu and the state history xopt(t) ∈ Rnx that minimize the

cost functional

J = e(x(t0), x(tf)) +

tf∫

t0

L(x(t), u(t)) dt (3.90)

subject to the dynamics
.
x(t) = f(x(t), u(t)) (3.91)

and the boundary conditions

Ψ0(x(t0)) = 0 (3.92)

Ψf(x(tf)) = 0 (3.93)

Similarly to the idea of Lagrange in section 3.1, for sufficiently smooth functions, an

extended cost function J̄ can be constructed by coupling the dynamic constraints to the

cost function using multipliers. Opposite to the pure optimization in 3.1, now the multipliers

λ(t) ∈ Rn for the state equations are no single values any more, but continuous functions

over time that are called costates. This idea has been taken from the calculus of variations

approach. Anyway, the multipliers l0 for the cost function components that are appearing

there, have already been set to l0 = 1 as the required conditions (e.g. Mangasarian-

Fromowitz constraint qualification) for a regular problem are assumed to be fulfilled here

(see [Ger09], [Ger12, sec. 2.3] for details):

J̄ = e(x(t0), x(tf)) + σ
⊺
0Ψ0(x(t0)) + σ

⊺
fΨf (x(tf))+

tf∫

t0

L(x(t), u(t)) + λ(t)⊺ (f(x(t), u(t)) − .
x(t)) dt

(3.94)

In the following, the argument t will be omitted for better readability. For the sake of

simplicity, the Hamiltonian for an optimal control problem in Bolza form is defined as [Büs98,

Ger09, Ger12, Ben10]:

H(x, λ, u) = L(x, u) + λ⊺f(x, u) (3.95)

For problems in Mayer formulation the Hamiltonian simplifies to:

H(x, λ, u) = λ⊺f(x, u) (3.96)

59

3.2 Applied Optimal Control

Applying the minimum principle to the problem stated above using the extended cost

function (3.94), the following optimality conditions can be derived. A proof and more details

can besides others be found in [Ger09, Ger12, Büs98].

If the Mangasarian-Fromowitz constraint qualification (or another set of appropriate

conditions) is fulfilled, for the optimal solution (xopt, uopt) it holds that

∃ λopt : [t0, tf] → R
nx and

∃ σ0 ∈ R
nΨ0 (3.97)

∃ σf ∈ R
nΨf

such that the following conditions are fulfilled:

1. Minimum condition

For all t where uopt is continuous it holds

H(xopt, λopt, uopt) = min
u

H(xopt, λopt, u) (3.98)

where U is the admissible set for the controls.

Remark. For sufficiently smooth functions, the minimum condition can be weakened to

H ′
u = 0 (3.99)

In order to achieve strong minimum conditions either (3.98) has to hold, or (3.99) and

the so-called Legendre-Clebsh condition

H ′′
uu ≥ 0 (3.100)

both have to hold.

2. Adjoint differential equation

For all t where uopt is continuous it holds

.
λ = −∇xH(xopt, λ, uopt) = −∇xf(xopt, uopt) · λ − ∇xL(xopt, uopt) (3.101)

3. Transversality conditions

λ(t0) = − ∇x(t0) (e(xopt(t0), xopt(tf)) + σ
⊺
0Ψ0(xopt(t0)))

= −
(

∇x(t0)e + ∇x(t0)Ψ0 · σ0

)

λ(tf) = ∇x(tf)

(

e(xopt(t0), xopt(tf)) + σ
⊺
f Ψf(xopt(tf))

)

=
(

∇x(tf)e + ∇x(tf)Ψf · σf

)

(3.102)

4. In case of free final time

H(xopt(tf,opt), λ(tf,opt), uopt(tf,opt)) = 0 (3.103)

60

Chapter 3: Mathematical Preliminaries

5. Furthermore, for autonomous problems as discussed here, it holds that

d

dt
H(xopt, λ, uopt) = 0 (3.104)

and consequently H is constant over time

H(xopt, λ, uopt) = L(xopt, uopt) + λ⊺f(xopt, uopt) = const., ∀t ∈ [t0, tf] (3.105)

For autonomous problems with free final time:

H(xopt(t), λ(t), uopt(t)) = 0, for almost all t ∈ [t0, tf] (3.106)

The Hamiltonian is called regular if the condition (3.98) determines the control uniquely

in some neighborhood of xopt and λopt for all t ∈ [t0, tf]. In this case, the optimal control

uopt is a continuous function in t [Ben10].

In cases where the controls only appear linearly in the dynamic constraints and the cost

function, the solution has a special bang-bang structure. In these cases, the optimal solution

for the control takes values at the upper or lower limit of the given control range and possibly

has singular arcs in between. In some cases these singular arcs cannot be determined exactly.

As this is an inherent structural problem it also appears if the direct approach from 3.2.4 is

used. See section 3.2.6 for more details concerning this issue. [Büs98, Ger09]

Solution Process Using Indirect Methods

In case of a regular Hamiltonian (controls appearing non-linearly) the procedure for solving an

optimal control problem is as follows:

1. Solve equation (3.98) (or its weakened version) for uopt(t).

2. Eliminate uopt(t) in equations (3.91) and (3.101) leading to the following system of

dynamic equations:

.
x = f(x, uopt) = h1(x, λ) (3.107)
.
λ = −∇xH(x, λ, uopt) = h2(x, λ) (3.108)

3. Solve this resulting two-point boundary value problem for x(t) and λ(t) using the initial

and final conditions from (3.92), (3.93) and (3.102).

4. Evaluate the solution of step 1. using the solution of step 3. to get the control history

uopt(t).

The main difficulty when applying this solution scheme lies in finding a solution for the resulting

boundary value problem. Anyway, as long as no inequality constraints are present it is possible

to numerically determine a solution for this problem by e.g. solving it using a multiple shooting

approach similar to the one shown in 3.2.4. Compared to the direct solution approach presented

in 3.2.4, where the minimization of the cost still needs to be performed, here a pure boundary

value problem has to be solved. In the latter case, the conditions for obtaining a minimum

have already been evaluated in the optimality conditions before.

61

3.2 Applied Optimal Control

Interpretation of the Costates

Recalling the findings from the geometric interpretation in section 3.1.2 as well as the findings

on the Lagrange multipliers from 3.1.6, one may find an interpretation for the costates λ,

accordingly. A value function for continuous optimal control problems may be defined as:

V (t̂, x̂) = inf
u

J(x, u) s. t. xopt(t̂) = x̂ (3.109)

In the optimal solution, V (t̂, xopt) = J(xopt, uopt). Using the Hamilton-Jacobi-Bellman

equation, (assuming that V is differentiable) it can be shown that:

∂V (t, x)

∂x
= λ⊺(t) (3.110)

Details and references for further reading can e.g. be found in [Ger09, sec. 7.1], [Ben10].

It can be seen from the Lagrangian of the optimal control problem in equation (3.94) that

the Hamiltonian represents one part of it. In this setting, the costates can be interpreted

equivalently to the Lagrange multipliers from section 3.1.2, applied to the dynamic con-

straints posed by the differential equation (3.91). Above, the Lagrange multipliers were

constant vectors, whereas now, the costate vectors are functions over time. Using the value

function (and assuming sufficient smoothness), the costates can be seen as the sensitivity of

the optimal value of the cost function with respect to the states:

δJopt = λ⊺(t) · δx(t) (3.111)

Moreover, it has to be emphasized that the costates give the local sensitivity of the optimal

cost value with respect to the states, meaning that they represent the first order approximation

of the optimal solution of the optimal control problem with respect to the state histories. As

the states cannot be chosen freely but have to fulfill the dynamic equation of the system, the

costates – similarly to the Lagrange multipliers in 3.1.2 – are a measure for how the cost

function could be improved in case the dynamic constraints were changed.

Constrained Optimal Control Problems

When using the indirect solution approach one has to distinguish between problems with

combined state and control constraints and problems with pure state constraints. As here

only the basic idea should be presented, this work focuses on problems with combined state

and control constraints. These constraints can be stated as

S(x(t), u(t)) ≤ 0 ∀t ∈ [t0, tf] (3.112)

In order to tackle this problem, the extended Hamilton function is defined:

H̃(x, λ, µ, u) = L(x, u) + λ⊺f(x, u) + µ⊺S(x, u)

= H(x, λ, u) + µ⊺S(x, u)
(3.113)

62

Chapter 3: Mathematical Preliminaries

For problems

• without pure control constraints,

• if all relevant functions are sufficiently smooth,

• the Mangasarian-Fromowitz constraint qualification (or another appropriate qual-

ification) is fulfilled,

• and the solution is feasible,

then for a solution (uopt, xopt), there exist multipliers λopt, µopt, σ0, and σf such that the

following conditions hold:

1. Minimum condition

For almost all t it holds that uopt may be determined from

uopt = arg min
u

H̃(xopt, λopt, µopt, uopt) (3.114)

which is equivalent to

H̃ ′
u(xopt, λopt, µopt, uopt) = 0 (3.115)

as no pure control constraints are considered here.

2. Adjoint differential equation
.
λ = −∇xH̃(xopt, λ, µopt, uopt) (3.116)

3. Transversality conditions

λ(t0) = − ∇x(t0) (e(xopt(t0), xopt(tf)) + σ
⊺
0Ψ0(xopt(t0)))

= −
(

∇x(t0)e + ∇x(t0)Ψ0 · σ0

)

λ(tf) = ∇x(tf)

(

e(xopt(t0), xopt(tf)) + σ
⊺
f Ψf(xopt(tf))

)

=
(

∇x(tf)e + ∇x(tf)Ψf · σf

)

(3.117)

4. Complementary conditions

For almost all t it holds:

µopt(t)
⊺S(xopt(t), uopt(t)) = 0, µopt(t) ≥ 0 (3.118)

In case no combined control and state constraints appear in the problem the conditions get

more complicated as the adjoint variables may be discontinuous then. More details can e.g.

be found in [Büs98, Ger09, Ger12, BH75, Bet09].

The procedure for solving optimal control problems with inequality constraints using the

indirect approach is similar to the procedure for the unconstrained case that was presented

above but with one critical change. Now, the complementary conditions from (3.118) need to

be taken into account, too. The problem is now, that one needs to know in which segment of

the solution which set of constraints is active in order to determine the solution. Consequently,

information about the structure of the solution is necessary in order to determine the solution

of the problem. In most cases this information is not available.

63

3.2 Applied Optimal Control

An Engineers View on Indirect Methods

When using indirect methods for solving optimal control problems, Betts identifies three

major drawbacks in [Bet09, sec. 4.3]:

1. The computation of the Hamiltonian and the required derivatives may be complex and

furthermore needs to be redone each time a new problem should be solved.

2. Problems with path inequality conditions require an a priori estimate of the sequence of

constrained arcs.

3. The method lacks robustness as good initial guesses for the costates λ are required

which are hard to estimate because they normally do not have a physical meaning.

Due to these difficulties that arise when using indirect optimization methods, they will not

be considered in more detail in the remainder of this work. The following section outlines the

most important ideas of direct discretization methods and the required numerical optimization

procedures. However, understanding the general principles of optimal control problems will

help understand the mechanisms presented here to improve the solution methods.

3.2.4 Direct Solution Approach

When using the direct solution approach, the optimal control problem is first discretized and

then optimized whereas in the indirect approach it was done the other way round. Instead

of deriving optimality conditions for the optimal control problem, this section focuses on

techniques to numerically discretize the problems in order to prepare them for a numerical

optimization. The discretized problem represents a regular (and mostly sparse) numerical

optimization problem that can be solved using the ideas from section 3.1. Here, problems

explicitly depending on additional parameters p are considered.

In [Ger09, sec. 6.1], Gerdts lists the three main components for solving a discretized

optimal control problem as:

• The control parametrization. The control history u(t) needs to be represented by a

finite set of parameters uk.

• The discretization scheme for the differential equation. The differential equation
.
x(t) = f(x(t), u(t), p) needs to be discretized using e. g. a numerical integration or

collocation scheme.

• The numerical optimization. The problem resulting from the discretization is a

non-linear, constrained (mostly sparse) optimization problem that needs to be solved

numerically.

These main components and their relationships will be described in more detail in the next

sections of this work.

64

Chapter 3: Mathematical Preliminaries

Optimal Control Problem

Discretization Method

Optimization Problem

Numerical Solver

Discretized Solution

The problem in function space. For most real-world prob-

lems the optimality conditions cannot be evaluated.

The discretization method used to transform the problem.

This can e.g. be a collocation or a shooting method.

The constrained numerical optimization problem. Values

are sought, not functions, no longer continuous dynamics.

The numerical algorithm to solve the optimization problem

on a computer. Based on the ideas from 3.1.

The solution for the discretized problem. Convergence to

the solution of the continuous problem has to be checked.

Figure 3.5: Solution scheme used in direct discretization methods.

Figure 3.5 illustrates the basic steps of a direct solution scheme. First, the continuous

optimal control problem is stated. Afterwards, the problem is discretized over time (or the

respective independent variable of the problem) using an appropriate discretization method.

After doing so, a constrained numerical optimization problem of the form presented in 3.1.2

results. This problem needs to be solved numerically where the ideas from section 3.1.3, 3.1.4

and 3.1.5 are helpful. As the discretized problems may become relatively large, even though

they are sparse, this step normally requires considerable computational power. This is also the

reason why the direct solution approach became popular during the last couple of years, with

the wide availability of increasingly powerful computer systems. The result of the numeric

optimization is a discretized representation of the solution to the optimal control problem. As

this solution does not necessarily need to converge to the solution of the original problem it is

generally recommended to evaluate the optimality conditions from section 3.2.3 for validation.

The most intuitive way of motivating the direct solution methods is from a discretization

of the state and control histories. Instead of using the continuous dynamics as stated in the

problem definition in (3.62) and a continuous function u(t) the functions are transformed

into sequences {xk = x(tk)} and {uk = u(tk)} on discrete points tk ∈ {t0, . . . , tf } with

k = 0, . . . , N in time. After transforming all relevant constraints to this grid, a numerical

optimization problem results. Besides, the direct discretization approach may also be derived

using the idea of dynamic programming (see [Kir70, Ben10]).

There exists a variety of methods for transforming optimal control problems into optimiza-

tion problems. Like the widely used Pseudospectral Methods that use global approximation

65

3.2 Applied Optimal Control

polynomials for the state and the control histories. In order to avoid oscillations in the global

representation, the grid points may not be chosen freely. One possible set of grid points is

determined by the roots of so-called Legendre-Gauss-Lobatto polynomials. The main

benefit of the pseudospectral methods is their good convergence behavior, while the main

drawback is that only smooth time histories can be represented accurately by the global ap-

proximation. To overcome this issue, most pseudospectral codes (like e.g. GPOPS-II [PR14])

come with algorithms that determine necessary stitching points and afterwards combine the

initial problem out of several smaller subproblems – the idea used is similar to the multi-phase

idea described in section 3.2.1. More details on pseudospectral methods can besides other be

found in [Ben10].

In general, the solution of multi-phase optimal control problems using direct discretization

techniques is possible by first discretizing the problem for every phase and then combining

them together in one numerical optimization problem. Additionally, the cost functions of all

phases need to be summed up and the constraint vectors need to be “stacked” together.

After presenting required techniques for numerical simulation and sensitivity calculation,

the shooting approach as well as the collocation approach will be revisited based on the optimal

control problem formulation stated in equations (3.58)–(3.67).

Numerical Simulation

In order to be able to discretize the differential equation of the model dynamics, several

methods exist. Here, mainly one-step methods are discussed as they are widely used in optimal

control.

For sufficiently smooth functions, the continuous dynamics

.
x = f(x, u, p), x(t0) = x0 (3.119)

may be approximated by a discrete system of the form:

x(tk+1) = x(tk) + hk · Φ(x(tk), x(tk+1), ū, p; hk)

x(t0) = x0

(3.120)

on a grid

GN = {t0 < t1 < t2 < · · · < tN−1 < tN = tf } (3.121)

with the time step

hk = tk+1 − tk, (3.122)

using numerical integration techniques. The function Φ is called increment function. In the

following, the nomenclature x(tk) = xk will be used. Additionally, the input hk to Φ will

be omitted for notational convenience. Besides, the control parametrization from equation

(3.148) is used with the parameters introduced there being combined in ū = [u0, u1, . . . , uN].

Consequently, u(t) can be determined at any point in time.

66

Chapter 3: Mathematical Preliminaries

If Φ does only depend on values at time tk the method is called explicit and the determi-

nation of the value xk+1 from the value xk is possible without further efforts:

xk+1 = xk + hk · Φ(xk, ū, p) = xk + hk · Φ[tk] (3.123)

Otherwise, if Φ depends on the state value xk+1, the method is called implicit and the calcu-

lation of xk+1 requires the solution of the (mostly non-linear) system of equations (3.120).

The most simple approach for solving this problem is the explicit forward Euler method,

where Φ = f(xk, u(tk), p) and consequently:

xk+1 = xk + hk · f(xk, u(tk), p) (3.124)

Similarly, the most simple implicit integration method is the implicit backward Euler method

with:

Φ[tk] = f(xk+1, u(tk+1), p) (3.125)

The benefits of implicit methods are better stability properties, in some cases justifying the

computational burden required to solve the non-linear system of equations.

Generalizing the idea of the Euler method to a multi stage approach (multi stage methods

should not be confused with multi step methods), one ends at the general Runge-Kutta

methods. The general s-stage Runge-Kutta method is defined by the coefficients bj , cj , aij

with i, j = 1, . . . , s and the increment equation

xk+1 = xk + hk

s∑

j=1

bjkj (xk, ū, p) , (3.126)

with the stage derivatives:

kj (xk, ū, p) = f

(

xk + hk

s∑

l=1

ajlkl (xk, u(tk)) , u(tk + cjhk), p

)

(3.127)

Therein, using the control parametrization and the respective parameters ū, the values u(tk +

cjhk) can be calculated. The coefficients bj , cj, and aij are often written into a condensed

table, called the Butcher tableau, uniquely defining a Runge-Kutta scheme. Table 3.1

shows the Butcher tableaus for some numerical integration schemes, with subtable 3.1a

giving the general scheme and subtable 3.1b showing the widely used short notation. In an

explicit Runge-Kutta scheme, the upper right triangular part of the matrix A needs to

contain only zeros that are normally omitted in the tableaus.

The local discretization error lh of a numerical integration scheme is defined as the dif-

ference between the real solution x̃ of the respective differential equation f(x, u, p) and the

solution Φ(x(tk), x(tk+1), ū, p) calculated in one integration step using a numerical integration

method:

lh(tk) =
x̃(tk+1) − x(tk)

h
− Φ (x(tk), x(tk+1), ū, p) (3.128)

The order of consistency p of a numerical integration scheme is defined by

max
tk

‖lh(tk)‖ ≤ Chp ∀ 0 < h < h0 (3.129)

67

3.2 Applied Optimal Control

Table 3.1: Butcher tableaus for numerical integration methods

(a) General

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s

...
...

...
. . .

...

cs as1 as2 . . . ass

b1 b2 . . . bs

(b) General short

c A

b⊺

(c) Euler forward method

0

1

(d) Euler backward method

1 1

1

(e) Trapezoidal rule

0

1 1
2

1
2

1
2

1
2

(f) Classical Runge-Kutta method

0

1
2

1
2

1
2

0 1
2

1 0 0 1

1
6

1
3

1
3

1
6

with the constants C > 0 and h0 > 0 independent of h. The consistency order is widely used

to characterize the accuracy of a numerical integration scheme. Table 3.2 lists some commonly

used methods as well as their order and type. Special care has to be taken as the conditions

for determining the order of a Runge-Kutta scheme from the coefficients are more strict

for optimal control problems than for pure forward integration (see [Hag00, Ger09, Ger12] for

more details). However, the methods listed in table 3.2 fulfill all the requirements for optimal

control problems and feature the same order for forward integration and for integration in

optimal control problems.

There exist two ways of improving the accuracy of a numerical simulation, as can clearly

be seen from (3.129): Either the order p is increased or the step size h is decreased. The

problem when lowering the step size too far, is that in parts of a trajectory that do not require

a small step size, additional (and superfluous) computations are done. To overcome this issue,

automatic step size selection algorithms exist. More details can e.g. be found in [Ger12].

Besides the selection of one step methods shortly listed here, a variety of other methods like

68

Chapter 3: Mathematical Preliminaries

Table 3.2: Selected numerical integration methods

Method Type Order

Euler Forward Explicit 1

Euler Backward Implicit 1

Method of Heun Explicit 2

Trapezoidal Rule Implicit 2

Classical Runge-Kutta Method Explicit 4

Fourth Order Lobatto IIIA Implicit 4

other one step approaches or multi step methods exist. More details on numerical integration

methods can be found in many sources, like e.g. [Ger12, Bet09].

Sensitivity Equations

As gradient based optimization algorithms will be used to solve the discretized optimal control

problem, it is necessary to calculate the gradient of the discretized optimal control problem

with respect to all relevant optimization parameters. When using a shooting method (see the

section below for details) a forward integration is performed and the gradients of the integrated

states need to be calculated. Besides numerical finite differences (which is quite costly in this

case), for sufficiently smooth functions, these gradients can be calculated using sensitivity

equations [Ger12, Hol15].

Starting from the general parametric dynamic system

.
x(t, p) = f(x(t, p), p), x(t0, p) = x0(p) (3.130)

the derivative of (3.130) with respect to the parameter p evaluates to:

d
.
x(t, p)

dp
=

df(x(t, p), p)

dp
=

∂f(x(t, p), p)

∂x(t, p)
· dx(t, p)

dp
+

∂f(x(t, p), p)

∂p
(3.131)

dx(t0, p)

dp
=

dx0(p)

dp
(3.132)

In this derivation, a control parametrization like the one presented in equation (3.148) in the

next section is assumed. The respective parameters can be seen to be part of the parameter

vector p. With
d

.
x(t, p)

dp
=

d

dp

(

dx(t, p)

dt

)

=
d

dt

(

dx(t, p)

dp

)

, (3.133)

the sensitivity matrix

S(t) =
dx(t, p)

dp
, (3.134)

69

3.2 Applied Optimal Control

and the short form of the partial derivatives

∂f(x(t, p), p)

∂x(t, p)
= f ′

x,
∂f(x(t, p), p)

∂p
= f ′

p, (3.135)

equation (3.131) can be reformulated as:

.
S(t) = f ′

x · S(t) + f ′
p = G(S, x, p) (3.136)

S(t0) = S0 (3.137)

It is worth mentioning that equation (3.136) contains one column for every parameter appearing

in the problem (as will later be shown, this may be model parameters, initial states, or the

discretized controls) and integrated along with the dynamic equations of the system.

In the next paragraphs the numerical integration of the sensitivity equations will be com-

pared to the differentiation of the numerical integration scheme for the states. When using the

sensitivity equations together with a numerical integration scheme, they must be integrated

numerically on the same grid as the dynamics themselves (using the same integration method)

in order to achieve accurate results. Applying the general Runge-Kutta integration scheme

from equation (3.126) to equation (3.136), one integration step of the sensitivity equation

results as

Sk+1 = Sk + hk

s∑

j=1

bjKj(Sk, x̄kj, p) (3.138)

with the stage derivatives from equation (3.127)

Kj(Sk, x̄kj, p) = G

(

Sk + hk

s∑

l=1

ajlKl(Sk, x̄kl, p), x̄kj, p

)

, (3.139)

using the intermediate stages x̄kj and x̄kl from the integration of the state dynamics (see

equation (3.143)).

On the other side, one integration step of the state dynamics needs to be considered.

When deriving the equation for one numerical integration step with respect to p, the following

equation can be derived from equations (3.126):

dxk+1

dp
=

d

dp



xk + hk

s∑

j=1

bjkj (xk, p)



 (3.140)

=
dxk

dp
+

d

dp



hk

s∑

j=1

bjkj(xk, p)





=
dxk

dp
+ hk

s∑

j=1

bj
d

dp
(kj(xk, p)) (3.141)

The same can be done for the stage derivatives (equation (3.127)):

d

dp
(kj(xk, p)) =

d

dp

(

f(xk + hk

s∑

l=1

ajlkl(xk, p), p)

)

(3.142)

70

Chapter 3: Mathematical Preliminaries

Using the abbreviation

x̄kj = xk + hk

s∑

l=1

ajlkl(xk, p) (3.143)

for the intermediate stages, equation (3.142) can be written as:

d

dp
(kj(xk, p)) =

d

dp
(f(x̄kj, p))

=
∂f(x̄kj, p)

∂x̄kj
· dx̄kj

dp
+

∂f(x̄kj, p)

∂p

=
∂f(x̄kj, p)

∂x̄kj
·
(

dxk

dp
+ hk

s∑

l=1

ajl
d

dp
kl(xk, p)

)

+
∂f(x̄kj, p)

∂p
(3.144)

Now, for comparison, taking equation (3.139) and replacing Sk and G by their definitions,

Kj(Sk, x̄kj, p) =
∂f(x̄kj, p)

∂x̄kj
·
(

dxk

dp
+ hk

s∑

l=1

ajlKl(Sk, x̄kl, p)

)

+
∂f(x̄kj, p)

∂p
(3.145)

results. Finally, equations (3.144) and (3.145) can be compared, showing that for a general

Runge-Kutta scheme the numerical integration of the sensitivity dynamic equation and

the differentiation of the integration scheme lead to the same results if the gradients of f are

evaluated at the intermediate stages from the integration of the state dynamics. Then

d

dp
(kj(xk, p)) = Kj(Sk, x̄kj, p) (3.146)

and consequently:

d

dp
(kl(xk, p)) = Kl(Sk, x̄kl, p) (3.147)

Control Parametrization

As stated above, one component required for solving optimal control problems using a dis-

cretization scheme is the parameterization of the control history u(t). In general, almost any

control parameterization

u(t) = u(t, u0, u1, . . . , uN), (3.148)

mapping a set of parameter values to the continuous control history, can be used. Anyway, as

highlighted in section 3.1.5, it is desirable to obtain sparse numerical optimization problems.

Hence, control parameterizations having local support are favorable as there one control value

only has an influence on a limited time range of the control function, resulting in more sparse

optimization problems. Chapter 7 gives more details on problem sparsity considerations. In

[Ger12, sec. 5.1.3], Gerdts recommends the use of B-splines as basis functions for the control

discretization. In order to use B-splines an arbitrarily chosen (but not necessarily equidistant)

grid

Gu = {tu,0 < tu,1 < · · · < tu,N−1 < tu,N = tf } (3.149)

is required. Afterwards, the control history can be reconstructed based on that grid.

71

3.2 Applied Optimal Control

The easiest continuous B-splines are second order B-splines that result in a linear interpo-

lation scheme:

u(t) = uk + (uk+1 − uk) · t − tu,k

tu,k+1 − tu,k

, tu,k ≤ t < tu,k+1 (3.150)

It can clearly be seen, that the linear interpolation scheme features local support as changing

a control value uk only influences the grid segments tk−1 < t < tk and tk < t < tk+1. When

later calculating the gradients of the control parametrization

∂u(t)

∂z
=

∂u(t)

∂uk
· ∂uk

∂z
(3.151)

it becomes clear that the local support leads to more sparse gradient matrices for the discretized

problem (see equation (3.155) for details on the vector z, and section 7.2 for details on

sparsity).

The first and second order approximation have the nice feature of being interpolating

approximations, meaning that:

u(tk) = uk ∀k = 0, . . . , N (3.152)

In many real world application, limits for the control values can directly be specified as umin ≤
u(t) ≤ umax. Even though the higher order splines are not interpolating, they are smoothing,

meaning that choosing

umin ≤ uk ≤ umax ∀k = 0, . . . , N (3.153)

directly results in:

umin ≤ u(t) ≤ umax ∀t ∈ [t0, tf] (3.154)

Besides the classical B-spline representation, cardinal B-splines may be used for approximating

the controls [MU10]. They are more simple to calculate as the same basis function (which

is just shifted) is used for all sampling points. The main drawback is that cardinal B-splines

with an order higher than two are neither passing through the interior points nor through the

boundary points, where regular B-splines meet the first and the last point of the approximation.

Single Shooting Method

The probably most intuitive approach to directly solve optimal control problems is via direct

single shooting. Therein, the control history is parametrized using the control discretization

from above. Besides, the system dynamics are simulated using the numerical simulation

methods from above. Overall, apart from the control values uk, the initial state x0 and the

additional problem parameters p that are subject to optimization need to be combined to the

numerical optimization vector:

z =














x0

u0

...

uN

p














(3.155)

72

Chapter 3: Mathematical Preliminaries

The values for this vector need to be determined by the numerical optimization algorithm

during the optimization process.

Numerical

Optimization

(See 3.1)

z

J, C

x0(z), (u(t))(z),

p(z)

Discretized

Optimal

Control

J(x(t), u(t), p),

C(x(t), u(t), p)

x0, u(t), p

x(t)

Simulation

x(t) =

tf∫

0

.
x dt

Dynamic Model

.
x = f(x, u, p)

Initial

Guess

Discretized

Solution

Figure 3.6: General scheme of the shooting approach. Gradient information is omitted for

better readability. [Hol15]

Having the discretized controls and the numerical integration techniques at hand, the

process for solving an optimal control problem is straight forward. Figure 3.6 gives an overview

of the main components involved in the solution of an optimal control problem using shooting

methods as well as their interaction.

• The block on the very left represents the whole numerical optimization from section

3.1, which needs to be initialized with an initial guess for the problem. The initial guess

may be specified as a continuous function together with the continuous optimal control

problem before also being discretized or it may directly be specified for the discretized

problem.

• In the first iteration, the initial guess is used as the optimization parameter vector z

and is fed into the function comprising the discretized optimal control problem. This

function extracts the initial state, the discretized control histories and the additional

required parameters from the parameter vector. It is represented by the block in the

middle of figure 3.6.

73

3.2 Applied Optimal Control

• After reconstructing the control history using the selected control parameterization, the

simulation of the dynamic model can be performed (see the blocks on the right of figure

3.6). This simulation may either be done on a fixed grid, which does not have to be

equal to the control grid, or even on a variable grid determined by an automatic step

size selection algorithm during the simulation. Anyway, if choosing a grid based control

representation, the grid points of the control grid should also be part of the integration

grid as otherwise changes in the control values cannot be resolved correctly.

• Afterwards, the resulting state trajectory is used to calculate the cost function value J

as well as all relevant constraints C within the function taking care of the discretization

of the optimal control problem in the block in the middle. These values and their

derivatives, namely the cost and its gradient, and the constraints and their Jacobian are

then required to solve the numerical optimization problem.

• In order to calculate these aforementioned derivatives, on the one hand, the chain rule

is very helpful as it enables the step-wise calculation of the derivatives not requiring a

full derivation of the mapping from the parameters of the optimal control problem to

the cost and constraint values. Fisch gives a detailed explanation on how to use the

chain rule in discretized optimal control problems in [Fis11]. On the other hand, the

sensitivity equations from section 3.2.4 can be used to calculate the derivatives of the

states along the simulation.

• Using J and C and their derivatives, the numerical optimization algorithm in the block

on the left can determine the next iterate of the parameter vector z, starting the next

optimization iteration.

In order to be able to solve problems with variable initial and final time, the linear time

transformation from section 3.2.2 needs to be applied, resulting in the extended state dynamics

f(x, u, p) = f̄ (x, u, p) · (tf (p) − t0(p)), (3.156)

with f̄ being the original state dynamics and f being the new transformed state dynamics.

Furthermore, the cost function (3.61) can be transformed to its discretized representation

J(z) = e(x0(z), xf(z), p(z), t0(z), tf(z))+

1∫

0

L̄(x(z), u(z), p(z), t(z)) · (tf (p) − t0(p)) dτ
(3.157)

with

L(x(z), u(z), p(z), t(z)) = L̄(x(z), u(z), p(z), t(z)) · (tf(p) − t0(p)) (3.158)

where the continuous integral is also replaced by a numerical integration algorithm. By col-

74

Chapter 3: Mathematical Preliminaries

lecting all discretized constraints of the problem, the constraint vector

C(z) =













Ψ0(x0(z), p(z), t0(z)) = 0

Ψf(xf (z), p(z), tf(z)) = 0

r(xi(z), p(z), ti(z)) = 0

C̄eq(x(z), u(z), p(z), t(z)) = 0

C̄ineq(x(z), u(z), p(z), t(z)) ≤ 0













=













Ψ0(z) = 0

Ψf(z) = 0

r(z) = 0

C̄eq(z) = 0

C̄ineq(z) ≤ 0













(3.159)

results. The discretized constraints C̄eq and C̄ineq contain the values of the continuous path

constraints Ceq and Cineq evaluated on an appropriate user defined grid.

If the gradients are evaluated using the sensitivity equations from 3.2.4, the following

relationships hold:

d
.
x(t)

dx0
=

d

dt

(

dx(t)

dx0

)

=
∂f(x(t), u(t), p)

∂x(t)
· dx(t)

dx0
(3.160)

d
.
x(t)

duk

=
d

dt

(

dx(t)

duk

)

=
∂f(x(t), u(t), p)

∂x(t)
· dx(t)

duk

+
∂f(x(t), u(t), p)

∂u(t)
· du(t)

duk

(3.161)

d
.
x(t)

dp
=

d

dt

(

dx(t)

dp

)

=
∂f(x(t), u(t), p)

∂x(t)
· dx(t)

dp
+

∂f(x(t), u(t), p)

∂p
(3.162)

Using similar abbreviations as above,

Sxx0
=

dx(t)

dx0

, Sxuk
=

dx(t)

duk

, Sxp =
dx(t)

dp
, Suuk

=
du(t)

duk

,

f ′
x =

∂f(x(t), u(t), p)

∂x(t)
, f ′

u =
∂f(x(t), u(t), p)

∂u(t)
, f ′

p =
∂f(x(t), u(t), p)

∂p
,

the equations can be written as:

.
Sxx0

= f ′
x · Sxx0

(3.163)
.
Sxuk

= f ′
x · Sxuk

+ f ′
u · Suuk

(3.164)
.
Sxp = f ′

x · Sxp + f ′
p (3.165)

The overall state Jacobian can then be evaluated using:

dx(t)

dz
=

dx(t)

dx0
· dx0

dz
+
∑

k

dx(t)

duk
· duk

dz
+

dx(t)

dp
· dp

dz

= Sxx0
· dx0

dz
+
∑

k

Sxuk
· duk

dz
+ Sxp · dp

dz
(3.166)

The evaluation of the local derivatives dx0

dz
, duk

dz
and dp

dz
is trivial as all those values explicitly

appear in z resulting in constant matrices.

Multiple Shooting Method

As one can imagine, the single shooting approach may, in some cases, be very sensitive to

the initial state values or control values at the beginning of the trajectory, resulting in large

75

3.2 Applied Optimal Control

sensitivities and in some cases even in instabilities in the simulation. To overcome these issues

and to additionally increase the sparsity of the problem (see chapter 7 for more details), the

idea of multiple shooting came up. Therein, the simulation interval is partitioned into several

subintervals, called multiple shooting segments. Instead of simulating the whole time range

of the dynamics in one sweep, the integration is stopped at the boundaries of the multiple

shooting segments and afterwards restarted using a set of intermediate states xm
0 – where

m = 1, . . . , M is the index of the current segment and M is the total number of segments –

that are also determined by the optimization algorithm. The multiple shooting segments are

defined on a grid:

Gx0
= {tx0,0 < tx0,1 < · · · < tx0,M}, with tx0,M < tf (3.167)

Again, it is recommended to have a control grid point located at every multiple shooting node

as otherwise a change in multiple control values may affect multiple segments of the discretized

problem which has a negative influence on the sparsity of the problem. Figure 3.7 shows the

general idea of multiple shooting compared to single shooting. Summing up, the optimization

parameter vector becomes:

z =
(

x1
0 x2

0 . . . xM
0 u0 . . . uN p

)⊺
(3.168)

In order to ensure the state history forming a valid solution to the problem, the last state

of each segment has to be equal to the first one of the subsequent segment. This is ensured

using additional equality constraints that might not be fulfilled as long as the optimization

is in progress but that have to be fulfilled as soon as a valid solution is found. The overall

constraint vector consequently becomes

C(z) =
















Ψ0(x0(z), p(z), t0(z)) = 0

Ψf (xf(z), p(z), tf(z)) = 0

r(xi(z), p(z), ti(z)) = 0

cm(x(z), u(z), p(z), t(z)) = 0

C̄eq(x(z), u(z), p(z), t(z)) = 0

C̄ineq(x(z), u(z), p(z), t(z)) ≤ 0
















(3.169)

where

cm(x(z), u(z), p(z), t(z)) = xm
0 (z) +

tx0,m+1∫

tx0,m

.
x(t) dt − xm+1

0 (z) (3.170)

∀m = 1, . . . , M − 1

is called multiple shooting defect of segment m.

For multiple shooting, the sensitivity equations from above can be used similarly to the

single shooting case. The control and parameter sensitivities do not change but need to be

76

Chapter 3: Mathematical Preliminaries

tx0,0 tx0,1 tx0,2 tx0,3 tx0,4 tx0,M−1 tx0,M = tf

tu,0 tu,1 tu,2 tu,N. . .

u

Gx0

Gu

x

x1
0

x2
0

x3
0

x4
0

x5
0

defect c3 xM−1
0

Figure 3.7: Single and multiple shooting principles. Top graph: Discretized control history

over control grid. Bottom graph: Gray Line: Single shooting state history. Black segments:

Multiple shooting segments before finding a feasible solution. The bottom axis shows the

multiple shooting grid, the top one the control grid.

simulated on each segment separately. The sensitivities with respect to the initial states need

to be extended as every segment has its own initial state vector:

d
.
x(t)

dxm
0

=
d

dt

(

dx(t)

dxm
0

)

=
∂f(x(t), u(t), p)

∂x(t)
· dx(t)

dxm
0

(3.171)

As no correlation between the different segments exists in the simulation, the initial state

sensitivities only need to be calculated within their own respective segment:

d
.
x

m(t)

dxk
0

=
dxm(t)

dxk
0

= 0 ∀k 6= m (3.172)

for xm(t) = x(t) for t ∈ [tx0,m, tx0,m+1]. Consequently, the overall state Jacobian can be

calculated as:

dx(t)

dz
=
∑

m

dx(t)

dxm
0

· dxm
0

dz
+
∑

k

dx(t)

duk
· duk

dz
+

dx(t)

dp
· dp

dz

=
∑

m

Sxxm
0

· dxm
0

dz
+
∑

k

Sxuk
· duk

dz
+ Sxp · dp

dz
(3.173)

More details on shooting methods can besides others be found in [Bet09, Ben10, Ger09,

Ger12, Fis11, Hol15].

77

3.2 Applied Optimal Control

Full Discretization

When implementing the multiple shooting approach very consistently on a fixed integration

grid, one could reset the state after every integration step. The resulting optimization pa-

rameter vector would then contain a state value at every time step. This is only one way of

motivating the full discretization approach, sometimes also called collocation approach (even

though in a strict sense collocation denotes a subset of full discretization methods).

We define the (not necessarily equidistant) collocation or state grid as

Gx = {tx,0 < tx,1 < · · · < tx,K−1 < tx,K = tf} (3.174)

with K + 1 being an arbitrary number of discretization points. Again, the control grid does

not have to match the integration grid, even though it is often chosen to do so. Anyway, it is

generally recommended to choose Gu ⊆ Gx as otherwise changes in the control values may

not be resolved accurately by the integration scheme. The control parametrization is again

done based on the ideas presented above.

When now collecting all relevant values, the optimization parameter vector

z =
(

x0 x1 . . . xK u0 . . . uN p
)⊺

(3.175)

results. The constraints can be built up similarly as before, now containing one integration

defect

ck(z) = xk(z) − xk+1(z) + hk · Φ(xk(z), xk+1(z), uk(z), uk+1(z), p(z))
!

= 0 (3.176)

for every point on the collocation grid. Herein, uk and uk+1 denote the interpolated control

values at the respective point on the collocation grid. Again, the formulation does not allow

higher order control discretizations as they might be used in higher order collocation schemes.

Thus, equation (3.176) is a simplification of a general collocation scheme. Φ designates an

arbitrary integration scheme as defined in equation (3.120). Collecting all constraints in one

vector,

C(z) =
















Ψ0(x0(z), p(z), t0(z)) = 0

Ψf (xf(z), p(z), tf(z)) = 0

r(xi(z), p(z), ti(z)) = 0

ck(x(z), u(z), p(z), t(z)) = 0

C̄eq(x(z), u(z), p(z), t(z)) = 0

C̄ineq(x(z), u(z), p(z), t(z)) ≤ 0
















(3.177)

results, with

ck(x(z), u(z), p(z), t(z))

= xk(z) − xk+1(z) + hk · Φ(xk(z), xk+1(z), uk(z), uk+1(z), p(z)) = 0

∀k = 0, . . . , K − 1

(3.178)

and C̄eq and C̄ineq again being discretized representations of Ceq and Cineq.

78

Chapter 3: Mathematical Preliminaries

Besides, it is also possible to formulate the defect in the time derivative of x. For the

simplified formulation presented in equation (3.176) a simple division by h results:

c̄k(z) =
xk(z) − xk+1(z)

hk

+ Φ(xk(z), xk+1(z), uk(z), uk+1(z), p(z))
!

= 0 (3.179)

When using higher order collocation schemes, the transformation becomes more complicated

and more non-linear. In these cases, the interpretation of the Lagrange multipliers asso-

ciated with the defects also changes. More details on the interpretation and higher order

collocation schemes can be found, besides others, in [Bet09, EC92].

As all state values are now part of the optimization vector z, the use of an implicit

integration method becomes feasible very easily and without the need to solve an additional

non-linear equation in every integration step. The solution of this integration is done by

the numerical optimization algorithm in parallel to the solution of the optimization problem,

automatically. This may in some cases enable the use of a coarser grid as stiff dynamics can

in some cases be well integrated using an implicit integration scheme.

The main drawback of the collocation method (full discretization) is the fact that very large

numerical optimization problems may result as all state and all control values become part of

z. In case a system with many states is considered that requires a simulation on a fine grid

with thousands of discretization points, an optimization problem with several ten thousands

of variables and constraints can result. The good thing is, that the problem structure is highly

sparse in this case as the defects now only depend on some control values and normally only

two to three state values. Consequently, when using a full discretization scheme, it is of utmost

importance to use a numerical optimization algorithm specially tailored to sparse optimization

problems, like those listed in 3.1.5. Chapter 7 gives more details on the exploitation of

the sparsity inherent to an optimal control problem when transforming it to a numerical

optimization problem.

When using the Euler forward method for performing the numerical integration, the

defect equation becomes

xk(z) − xk+1(z) + hk · f(xk(z), uk(z), p(z))
!

= 0, (3.180)

while for the implicit Euler backward scheme it is:

xk(z) − xk+1(z) + hk · f(xk+1(z), uk+1(z), p(z))
!

= 0 (3.181)

The implicit trapezoidal rule, which is widely used with collocation schemes, results in the

following defect equation:

xk(z) − xk+1(z) +
hk

2
· (f(xk(z), uk(z), p(z)) + f(xk+1(z), uk+1(z), p(z)))

!
= 0 (3.182)

In [HC96], Herman and Conway present higher order Gauss-Lobatto quadrature rules

based on a polynomial approximation of the integral. The most accurate scheme they are

listing in the work is the fifth-degree Gauss-Lobatto rule, which has an order of accuracy

79

3.2 Applied Optimal Control

of 8. Therein, every integration step is based on the left sided xk, the right sided xk+1 and

the central state vector xk+ 1

2

(that all need to be added to the optimization parameter vector)

and produces two defects that are calculated from

ck,1 =
1

360

(

(32
√

21 + 180)xk − 64
√

21xk+ 1

2

+ (32
√

21 − 180)xk+1+

hk

(

(9 +
√

21fk + 98fk,1 + 64fk+ 1

2

+ (9 −
√

21)fk+1

))
!

= 0 (3.183)

ck,2 =
1

360

(

(−32
√

21 + 180)xk + 64
√

21xk+ 1

2

+ (−32
√

21 − 180)xk+1+

hk

(

(9 −
√

21fk + 98fk,3 + 64fk+ 1

2

+ (9 +
√

21)fk+1

))
!

= 0 (3.184)

with the abbreviations

fk = f(xk(z), uk(z), p(z)) (3.185)

fk+ 1

2

= f(xk+ 1

2

(z), uk+ 1

2

(z), p(z)) (3.186)

fk+1 = f(xk+1(z), uk+1(z), p(z)) (3.187)

fk,1 = f(xk,1(z), uk,1(z), p(z)) (3.188)

fk,3 = f(xk,3(z), uk,3(z), p(z)) (3.189)

xk,1 =
1

686

(

(39
√

21 + 231)xk + 224xk+ 1

2

+ (−39
√

21 + 231)xk+1+

hk

(

(3
√

21 + 21)fk − 16
√

21fk+ 1

2

+ (3
√

21 − 21)fk+1

))

(3.190)

xk,3 =
1

686

(

(−39
√

21 + 231)xk + 224xk+ 1

2

+ (39
√

21 + 231)xk+1+

hk

(

(−3
√

21 + 21)fk + 16
√

21fk+ 1

2

+ (−3
√

21 − 21)fk+1

))

(3.191)

and uk,1 = u(tk,1) and uk,3 = u(tk,3) being appropriate control interpolations at:

tk,1 = tk+ 1

2

−
√

3

7
· hk

2
and tk,3 = tk+ 1

2

+

√

3

7
· hk

2
(3.192)

It can clearly be seen that the defect constraint given in equation (3.176) can only represent

a constant or linear interpolation in the controls for calculating the intermediate values uk,1

and uk,2. In general, higher order approximations may also be used. All other constraints in

equation (3.177) are not affected by the choice of the collocation scheme.

More details on full discretization methods can besides others be found in [Bet09, Ben10,

Ger09, Ger12, Hol15, EC92]

Scaling

To be able to efficiently solve the numerical optimization problem resulting from discretizing

the optimal control problem, the numerical scaling of the problem is of utmost importance

[Bet09, Fis11]. The solution of the optimization problem can be handled especially easily by

the NLP solver, in case all numerical values remain within the same order of magnitude, where

a magnitude around 1 is favorable as digital computers normally have the best computational

80

Chapter 3: Mathematical Preliminaries

accuracy in this domain [Gol91]. The purpose of numerical scaling is to bring all values into

this domain.

The parameter vector z can be scaled using a diagonal scaling matrix Tz. The scaled

optimization parameter vector z̃ results from:

z̃ = Tz · z (3.193)

The scaling of the cost J is similarly done by using a scalar TJ :

J̃ = TJ · J (3.194)

The constraint vector C is scaled using another diagonal matrix TC:

C̃ = TC · C (3.195)

The gradient and the Jacobian of the discretized problem consequently have to be scaled

using:

˜(

dJ

dz

)

=
dJ̃

dz̃
= TJ · dJ

dz
· T−1

z (3.196)

˜(

dC

dz

)

=
dC̃

dz̃
= TC · dC

dz
· T−1

z (3.197)

When changing the scaling of the parameters and the constraints, the Lagrange multi-

pliers are also affected. The scaled Lagrange function can be written as

L̃(z̃, λ̃, ν̃) = TJ · J(z̃) + λ̃
⊺ · Th · h(z̃) + ν̃⊺ · Tg · g(z̃) (3.198)

with Th and Tg being the respective parts of TC for the equality and inequality constraints

in the problem. By comparing L̃ with L

L̃ = TJ · L (3.199)

the scaling of the multipliers results as:

λ = Th · λ̃ · T −1
J (3.200)

ν = Tg · ν̃ · T −1
J (3.201)

It is generally recommended to take the Lagrange multipliers into account when considering

numerical scaling. However, this cannot always be done easily as the values for the multipliers

are normally not known before having found a solution to the problem. When using the

methods described below to determine the values of the costates of the original optimal

control problem, their order of magnitude may also be considered when scaling the problem.

In most numerical optimization software, the user can specify only one tolerance for all

constraints in the problem. If the exact fulfillment of some of the constraints is more important

than the fulfillment of some other constraints, numerical scaling may also be used to achieve

a weighting. If the user, e.g. selects a numerical tolerance of ε and scales one constraint

value by a value in the order of magnitude of ε, then the real unscaled value only achieves an

absolute tolerance within the order of 1 for this particular constraint.

81

3.2 Applied Optimal Control

An Engineers View on Direct Methods

Betts and Büskens identify several advantages of direct discretization methods in [Bet09,

sec. 4.14], [Büs98, sec. 5.2.4]:

1. The user does not necessarily need to have any knowledge of optimal control theory.

2. Analytical derivatives are not required but can be replaced by numerical finite differences.

3. The constrained-arc sequence does not need to be determined a priori as the NLP solver

can determine it.

4. No initial guess for the costates is required. On the other hand, an initial guess for the

Lagrange multipliers is necessary. Anyway, the method is more robust at this point.

5. The radius of convergence is higher in the direct approach than in the indirect approach.

6. Using the theory of parametric optimization, an extension to parametric optimal control

becomes possible.

Finally, from an engineering point of view, if one wants to solve real life optimal control

problems containing high fidelity dynamic models, highly non-linear equality and inequality

constraints and several phases, the only way to tackle such problems is via a direct discretiza-

tion scheme. The reasons for this are manifold, as mostly the analytical optimality conditions

required for an indirect approach may not be computed for complex systems, the switching

structure of the inequality constraints is normally not known in advance, and no closed for-

mulation for multi-phase problems exists in indirect methods. The direct approach can be

seen as the “engineering” approach for solving optimal control problems. Anyway, special care

has to be taken concerning the convergence to the real solution of the problem in this case.

In some cases it is possible that the solution of the discretized problem does not converge

to the solution of the original problem. In order to avoid this, the optimality conditions for

optimal control problems stated in section 3.2.3 should be checked using the costate estimates

calculated from the equations presented in section 3.2.5, whenever possible.

3.2.5 Relations Between the Direct and the Indirect Approach

In this section, the discretization of the optimal control problem using direct methods and the

optimality conditions derived using the indirect approach will be put in relation. In general,

the relations can be established for the shooting and the collocation approach. Anyway, for

the sake of simplicity, here only collocation will be regarded. Moreover, the standard optimal

control problem from section 3.2.2 without parameter dependencies is considered. More details

on the relations between the direct and the indirect approach can, besides others, be found in

[Bet09, sec. 4.11] , [Ben10, p. 170] , [Ger12, sec. 5.4], [Büs98, ch. 7].

In order to be able to distinguish between the values appearing in the continuous optimal

control problem (in the Hamiltonian) and those of the Lagrange function of the discretized

problem that are represented by the same symbol, the latter are marked with a ◦̃.

82

Chapter 3: Mathematical Preliminaries

Discrete Minimum Principle

In order to clarify the relationship between the extended Hamiltonian H̃ (see equation (3.113))

of the continuous optimal control problem and the Lagrangian L of the numerical optimization

problem resulting from the discretization (see equation (3.22)), Gerdts derives a discretized

version of the minimum principle for a constrained problem in [Ger12, sec. 5.4]. His results

are now applied to the problem stated in section 3.2.3, using an implicit Euler backward col-

location method with the defect from equation (3.181). Moreover, the following assumptions

have to hold:

• The Mangasarian-Fromowitz constraint qualification (or another appropriate con-

straint qualification) is fulfilled.

• All functions appearing in the problem definition in (3.91)–(3.93) and (3.112) are con-

tinuously differentiable in x and u. The same holds for the Mayer cost function

J = e(x(t0), x(tf)) = e(x0, xf) (3.202)

which is used as the only cost function in this derivation (without loss of generality, see

section 3.2.2).

• S(x, u) is a mixed state and control constraint that is not degraded to a pure state or

a pure control constraint.

• (x, u) is a local minimum of the problem.

Then, there exist multipliers λk, µk, σ0 and σf , being discretized representations of the mul-

tipliers in the Hamiltonian of the optimal control problem, such that

1. The discrete optimality conditions are fulfilled for all k = 1, . . . , N and all admissible

controls u (see equation (3.115) for the continuous representation)

H̃ ′
u(xk, λk−1, µk, uk) = 0 (3.203)

2. The discrete adjoint equation is fulfilled for all k = 1, . . . , N (see equation (3.116)

for the continuous representation)

λk−1 = λk + hk · ∇xH̃(xk, λk−1, µk, uk) (3.204)

3. The discrete transversality conditions are fulfilled (see also equation (3.117))

λ0 = − (∇x0
e + ∇x0

Ψ0 · σ0)

λN = (∇xf
e + ∇xf

Ψf · σf)
(3.205)

4. The discrete complementary conditions hold for all k = 1, . . . , N (see also equation

(3.118)):

µk ≥ 0 (3.206)

µ
⊺
kS(xk, uk) = 0 (3.207)

83

3.2 Applied Optimal Control

It is important to mention that the index shift appearing in λ is required in order to get the same

implicit integration scheme for the system dynamics and the adjoint equations, as the latter

need to be solved backwards in time. The discrete representation of the continuous optimality

conditions for optimal control problems can be derived from the Lagrange function of the

discretized problem. In the next section, this derivation will be used for the costate estimation.

Further details on discretized optimality conditions for optimal control problems can besides

others be found in [Ger12, sec. 5.4], [Ben10, ch. 6], [Bet09, sec. 4.2], [Str93, Str94].

Costate Estimation for Collocation Methods

In this section, the relations between the costates appearing in the Hamiltonian and the

Lagrange multipliers of the discretized problem will be further examined starting with the

derivations for a Euler backward scheme as presented in [Ger12, p. 254], before moving

over to a more general full discretization scheme. Besides others, Betts, Ben-Asher, and

Enright and Conway present equations for costate estimation for a Hermite-Simpson

scheme in [Bet09, p. 177], [Ben10, p. 170] and [EC92].

For the Euler backward collocation scheme, Gerdts shows how the discretized opti-

mality conditions can be derived for the discretized problem using its Lagrange function.

For the formulation used in this work, the Lagrangian becomes:

L(x, u, λ̃, σ̃0, σ̃f , ν) = e(x0, xf) + σ̃
⊺
0Ψ0 + σ̃

⊺
fΨf +

N∑

k=1

hk−1λ̃
⊺

k−1f(xk, uk)

+
N∑

k=1

λ̃
⊺

k−1(xk−1 − xk) +
N∑

k=1

ν
⊺
kS(xk, uk)

(3.208)

with the original Lagrange multipliers λ̃ being split up to the different multipliers for the

equality constraints. Consequently, the derivatives with respect to the states x and the controls

u evaluate to:

L′
uk

= hk−1λ̃
⊺

k−1f
′
uk

(xk, uk) + hk−1 · ν
⊺
k

hk−1
· S′

uk
(xk, uk)

= hk−1 · H̃ ′
uk

(

xk, λ̃k−1,
νk

hk−1
, uk

)

(3.209)

L′
xk

= e′
xk

+ σ̃
⊺
0(Ψ0)

′
xk

+ σ̃
⊺
f(Ψf)′

xk
+ hk−1λ̃

⊺

k−1f
′
xk

(xk, uk)

− λ̃
⊺

k−1 + λ̃
⊺

k + ν
⊺
kS′

xk
(xk, uk)

(3.210)

Using the optimality conditions (KKT conditions) from equation (3.24), for k = 1, . . . , N −1,

it follows that:

L′
xk

= hk−1λ̃
⊺

k−1f
′
xk

(xk, uk) − λ̃
⊺

k−1 + λ̃
⊺

k + ν
⊺
kS′

xk
(xk, uk)

= hk−1 · H̃ ′
xk

(

xk, λ̃k−1,
νk

hk−1
, uk

)

− λ̃
⊺

k−1 + λ̃
⊺

k = 0
(3.211)

For the special case of k = 0

L′
x0

= e′
x0

+ σ̃
⊺
0(Ψ0)′

x0
+ λ̃

⊺

0 = 0 (3.212)

84

Chapter 3: Mathematical Preliminaries

results, while for k = N and xN = xf , one gets:

L′
xN

= e′
xN

+ σ̃
⊺
f(Ψf)′

xN
+ hN−1λ̃

⊺

N−1f
′
xN

(xN , uN) − λ̃
⊺

N−1 + ν
⊺
NS′

xN
(xN , uN)

= e′
xN

+ σ̃
⊺
f(Ψf)′

xN
+ hN−1 · H̃ ′

xN

(

xN , λ̃N−1,
νN

hN−1
, uN

)

− λ̃
⊺

N−1 = 0 (3.213)

Now, λ̃N may be defined as:

λ̃N = e′
xN

+ σ̃
⊺
f(Ψf)′

xN
(3.214)

resulting in:

L′
xN

= hN−1 · H̃ ′
xN

(

xN , λ̃N−1,
νN

hN−1
, uN

)

− λ̃
⊺

N−1 + λ̃
⊺

N = 0 (3.215)

Focusing on the intermediate steps, by rearranging equation (3.211) to

λ̃k − λ̃k−1

hk−1

= −H̃ ′
xk

(

xk, λ̃k−1,
νk

hk−1

, uk

)

(3.216)

it can be seen that for the Euler backward integration scheme the Lagrange multipliers

λ̃k−1 and νk are connected to the discretized multipliers of the Hamiltonian λk−1 and µk by:

λ̃k−1 = λk−1 ≈ λ(tk−1) (3.217)

µk =
νk

hk−1
(3.218)

Similar derivations can also be done based on equations (3.205) resulting in connections for

the remaining multipliers:

σ̃0 = σ0

σ̃N = σN

(3.219)

Now, the more general discretization scheme as stated in equations (3.176) and (3.177)

will be used, resulting in the following Lagrange function for the discretized optimal control

problem:

L(x, u, λ̃, ν) = e(x0, xf) + σ̃
⊺
0Ψ0 + σ̃

⊺
fΨf +

N−1∑

k=0

λ̃
⊺

kck + λ̃
⊺

C̄eq
C̄eq + ν⊺C̄ineq (3.220)

In this formulation the global vector of Lagrange multipliers λ̃ has been split up into the

separate multipliers σ̃0, σ̃f , λ̃k and λ̃C̄eq
for each constraint appearing in equation (3.177).

As the initial and final boundary conditions as well as the cost function formulation do not

change when selecting another discretization scheme, the relations from (3.219) are still valid.

Anyway, when considering L′
xk

for k = 1, . . . , N − 1, equation (3.211) changes to:

L′
xk

=
N−1∑

i=0

λ̃
⊺

i

dci

dxk

+ λ̃
⊺

C̄eq

dC̄eq

dxk

+ ν⊺dC̄ineq

dxk

(3.221)

85

3.2 Applied Optimal Control

Inserting the general defect equation of the collocation scheme (3.176) into equation (3.221)

and simplifying the sum, the following equation results:

L′
xk

= λ̃
⊺

k · d (xk − xk+1 + hk · Φ(xk, uk, xk+1, uk+1))

dxk

+ λ̃
⊺

k−1 · d (xk−1 − xk + hk−1 · Φ(xk−1, uk−1, xk, uk))

dxk

+ λ̃
⊺

C̄eq
· dC̄eq

dxk
+ ν⊺ · dC̄ineq

dxk

(3.222)

= λ̃
⊺

k ·
(

I + hk · dΦ(xk, uk, xk+1, uk+1)

dxk

)

+ λ̃
⊺

k−1 ·
(

−I + hk−1 · dΦ(xk−1, uk−1, xk, uk)

dxk

)

+ λ̃
⊺

C̄eq
· dC̄eq

dxk
+ ν⊺ · dC̄ineq

dxk

(3.223)

The sum can be collapsed as stated above, as for every xk only two defects depend on the

value of xk, resulting in dci

dxk
= 0, ∀k 6= i ∧ k 6= (i + 1).

For simplicity, from now on an equidistant grid is used, where it holds that h = hk = hk−1.

Now, equation (3.223) can be rearranged to:

λ̃
⊺

k − λ̃
⊺

k−1

h
= −λ̃

⊺

k · dΦ(xk, uk, xk+1, uk+1)

dxk

− λ̃
⊺

k−1 · dΦ(xk−1, uk−1, xk, uk)

dxk

−
λ̃
⊺

C̄eq

h
· dC̄eq

dxk
− ν⊺

h
· dC̄ineq

dxk

(3.224)

The fraction on the left approximates
.
λ for h → 0 while the first two summands on the right

represent a weighted (by the derivative of the increment function) approximation for λ̃ within

the considered interval. The last two summands of equation (3.224) are a discretized approx-

imation of the constraints appearing in the discretized Hamiltonian (see equations (3.203)–

(3.207)). The relation (3.218) is now valid for C̄eq and the active subset of C̄ineq.

Using the aforementioned general integration scheme, the discrete adjoint equation reads:

λk−1 = λk + hk · Φ∇xH̃

(

xk, λk−1, µk, uk, xk+1, λk, µk+1, uk+1

)

(3.225)

with Φ∇xH̃ being the increment function for the backward integration of the adjoint equation

for the Hamiltonian H̃ . Here, the same integration scheme as for the state dynamics has to

be used. When assuming Φ∇xH̃ to be a general Runge-Kutta scheme, the summands of

the augmented Hamiltonian H̃ can be considered separately. Focusing on the costates, the

increment function

Φ(λ· df
dx) (xk, λk−1, uk, xk+1, λk, uk+1) (3.226)

for the model related summand of H̃ can be formulated.

86

Chapter 3: Mathematical Preliminaries

Now, the same comparison between the discretized Hamiltonian H (left side of equation

(3.227)) and the Lagrangian of the discretized problem (right side of equation (3.227)), as

also done in equation (3.216) can be performed again. It results that:

Φ(λ· df
dx) (xk, λk−1, uk, xk+1, λk, uk+1)

≈ λ̃
⊺

k · dΦ(xk, uk, xk+1, uk+1)

dxk
+ λ̃

⊺

k−1 · dΦ(xk−1, uk−1, xk, uk)

dxk

(3.227)

This result is valid for every integration scheme considered in this work. Anyway, no further

simplification is possible for this general formulation, prohibiting further general statements.

Hence, now the Euler forward scheme is considered, resulting in

dΦ(xk, uk, xk+1, uk+1)

dxk
=

df(xk, uk)

dxk
(3.228)

dΦ(xk−1, uk−1, xk, uk)

dxk
= 0 (3.229)

and

Φ(λ· df
dx) (xk, λk−1, uk, xk+1, λk, uk+1) = λk · df(xk, uk)

dxk
(3.230)

that is finally leading to:

λ̃k = λk ≈ λ(tk) (3.231)

Otherwise, using a trapezoidal collocation scheme, things become more complicated, as

now

dΦ(xk, uk, xk+1, uk+1)

dxk
=

1

2
· df(xk, uk)

dxk
(3.232)

dΦ(xk−1, uk−1, xk, uk)

dxk
=

1

2
· df(xk, uk)

dxk
(3.233)

and

Φ(λ· df
dx) (xk, λk−1, uk, xk+1, λk, uk+1)

=
1

2
·
(

λk−1 · df(xk, uk)

dxk
+ λk · df(xk+1, uk+1)

dxk+1

) (3.234)

still resulting in:

λ̃k−1 ≈ λk−1 ≈ λ(tk−1) (3.235)

3.2.6 Problems with Linearly Appearing Controls and Singular Arcs

Recall the extended Hamiltonian from equation (3.113)

H̃(x, λ, µ, u) = L(x, u) + λ⊺f(x, u) + µ⊺S(x, u) (3.236)

and the optimality condition for constrained optimal control problems from equations (3.114)

uopt = arg min
u

H̃(x, λ, µ, u) (3.237)

87

3.2 Applied Optimal Control

that may also be formulated using

H̃ ′
u(x, λ, µ, u) = L′

u(x, u) + λ⊺f ′
u(x, u) + µ⊺S′

u(x, u) = 0 (3.238)

according to equation (3.115), whenever u is either generally unbounded or not at its bound-

aries in the respective part of the optimal solution.

Now, if the controls u appear linearly in all summands of the Hamiltonian and at least

one component of u is not determined by its boundary value along a particular part of the

trajectory, equation (3.238) does not deliver any information on the optimal control history,

as all of the gradients L′
u(x, u), f ′

u(x, u) and S ′
u(x, u) are independent of u. Consequently,

∇uH̃ = 0 cannot be solved because ∇uuH is singular. These parts of a trajectory where

the optimal control u(t) cannot be determined uniquely using the aforementioned optimality

conditions are called singular arcs. In most cases, a unique solution to the optimal control

problem exists even when singular arcs appear that cannot be determined. [Ben10, p. 119]

Using the relationship between the continuous optimal control problem and its discretized

representation, as shown in section 3.2.5, it can be seen that singular arcs still remain prob-

lematic as the NLP problem resulting from the discretization still features a singular Hessian

in this case. For a collocation approach, this can e.g. be seen from equation (3.208) where

the Hessian of the Lagrangian is singular if the Hessian of the Hamiltonian and the one of the

constraints are singular. If this happens, normally, the numerical algorithm utilized to solve

the problem, uses a regularization approach to “fix” the issue. Anyway, as the underlying

theoretical problem will not be fixed this way, this approach often results in bad convergence,

in chattering control histories or may completely fail in practice.

In [Bet09], Betts suggests to fix the real underlying problem by imposing the required

higher order necessary condition:
d2

dt2
(∇uH̃) = 0 (3.239)

However, he also states that this hybrid technique (that requires the calculation of the Hamil-

tonian) inherits the major drawbacks of the indirect approach as the arc sequence needs to be

known in advance.

In the general literature, a widely used approach to overcome the problem of singular arcs

is to add an additional penalty Lagrange cost function

Jpenalty =

tf∫

t0

u⊺Ruu dt, (3.240)

with Ru ∈ Rnu×nu being an arbitrary positive definite weighting matrix, to the problem. This

way, the singularity is fixed and the solution to the problem can normally be determined.

Anyway, choosing the weighting factors is not a simple task, as numbers too small do not

remove the numerical pitfalls, while numbers too large influence the whole solution of the

original problem. Besides, this additional Lagrange cost function influences the whole

trajectory, while only one part of it may be singular.

88

Chapter 3: Mathematical Preliminaries

One way of overcoming this issue is by already respecting it in setting up the model (if

possible) and changing it e.g. to another set of controls that do not appear linearly in the

problem anymore. In chapter 6, different modeling ideas for aircraft will be discussed also

taking singularities related to linear controls into account. [Bet09, p. 125, p. 212].

3.3 Multi Criteria Optimization and Optimal Control

In many real world applications competing objectives make it impossible to determine one single

optimal solution for a problem. Instead, these problems can be formulated as multi criteria or

multi objective optimization problems. In case the underlying problem was an optimal control

problem, one speaks about multi criteria or multi objective optimal control problems. In these

problems, the goal is to determine either one or several “best possible compromises”.

Mathematically speaking, the previously scalar cost function now becomes vector valued:

min J(z) = min











J1(z)

J2(z)
...

JN(z)











=











min J1(z)

min J2(z)
...

min JN(z)











(3.241)

The “best possible compromise” is mathematically expressed as Pareto optimality, where a

Pareto optimal point zopt is defined as a point in which the further decrease of one cost

function is only possible by increasing (at least one) other cost function values. The solution

zopt is called Pareto optimal if no z exists such that

Ji(z) ≤ Ji(zopt), ∀i = 1, . . . , N and

Jj(z) < Jj(zopt) for at least one index j
(3.242)

Besides, the solution zopt is called weak Pareto optimal if no z exists such that:

Ji(z) < Ji(zopt), ∀i = 1, . . . , N (3.243)

The set of all these “best compromise” solutions is called Pareto set or Pareto front

[KM13, Mie01, Lei81]. Figure 3.8 depicts some Pareto points along a convex Pareto

front for an optimization problem with two competing cost functions (non-convex Pareto

fronts also exist, being computationally more challenging). With the shaded area representing

the feasible objective region, one can see that no further improvement of neither one of the

cost functions is possible along the Pareto front without increasing the other cost.

The main problem to be solved in multi criteria optimization is the determination of (at

least some) points along the Pareto front in order to be able to calculate (at least) an

approximation of the front. If one single solution is required in the end, the involvement of a

(human) decision maker is inevitable. The decision maker has to define his/her preferences,

which then need to be used to sort the Pareto optimal solutions of the problem. Miettinen

distinguishes between no-preference methods, a posteriori methods, a priori methods, and

89

3.3 Multi Criteria Optimization and Optimal Control

J1

J2

Increase in cost J2

Decrease in cost J1

Increase in cost J1

Decrease in cost J2

Decrease in cost J1

Decrease in cost J2

Pareto optimal points

Not Pareto optimal

Figure 3.8: Convex Pareto front for a multi-criteria optimization problem with two com-

peting cost functions. The shaded region marks the feasible objective region. A decrease in

one cost function always comes with an increase in the other along the Pareto front. In all

other feasible points, a decrease in both cost directions is possible.

interactive methods where the name suggests where in the process the decision maker comes

into play. In some cases the decision maker may want to combine the cost functions using

his/her own scheme as sometimes particular compromises are sought. In most cases, an

analytical solution of the problems is not possible, requiring numerical techniques. [Mie01]

The general idea for solving multi criteria optimization problems is based on scalarization,

which combines the different cost functions to one scalar cost function using a parametric

scalarization scheme. Afterwards, the problem needs to be solved for different parameter

sets of the scalarization scheme, hoping to find Pareto points for the original multi criteria

optimization problem. In the following sections different scalarization schemes for multi criteria

optimization problems are presented, for which more details can e.g. be found in [Mie01].

3.3.1 Weighted Sum Scalarization

The most intuitive idea of determining points along the Pareto front is the weighted sum of

cost functions, also called Bolza scalarization. Therein, the cost values are summed up by:

Jsum =
N∑

i=1

wi · Ji with

wi > 0,
N∑

i=1

wi = 1, ∀i = 1, . . . , N

(3.244)

Anyway, the main drawback of the weighted sum scalarization is that it cannot generate any

non-convex parts of a Pareto front as it minimizes the cost function values along a tangent

90

Chapter 3: Mathematical Preliminaries

to the Pareto front, depending on the parameters wi. Besides, the systematic perturbation

of the weights wi is another challenge, as the relation between the weights and the position of

a point along the Pareto front may be highly non-linear. This means that slightly different

weights may produce completely different points and vice versa. Miettinen references some

methods for efficiently selecting the weights in her work. [KM13, Mie01]

3.3.2 Weighted Metrics Scalarization

The weighted metrics scheme uses a target cost value JT as reference and tries to minimize

the weighted distance in the p-norm between the current solution and the reference cost.

Jp =

(
N∑

i=1

wi |Ji − Ji,T |p
) 1

p

, p ≥ 1, wi > 0, i = 1, . . . , N (3.245)

The method is also called compromise programming and the different solutions are produced

by weighting the metrics. For positive weights the solution produced by the weighted metrics

scheme are weakly Pareto optimal. For convex problems, every Pareto optimal point can

be found by this method. The main challenge in applying the method lies in the determination

of a target cost value JT . In the exemplary application in section 10.3 a method for overcoming

this challenge in the particular application is proposed. [Mie01]

3.3.3 ε-Constraint Scalarization

In this method, one of the objectives is optimized while all other cost function values are

bounded:
Jε = Jk subject to

Ji < εi, ∀i = 1, . . . , N, i 6= k
(3.246)

The problem needs to be solved for all k = 1, . . . , N . The main challenge in this approach is

the selection of the upper bounds εi for the constrained cost functions. Miettinen states

that solutions to the problem defined by the ε-constraint scalarization are weakly Pareto

optimal. [Mie01]

3.3.4 Tschebyscheff Scalarization

In [KM13], Kaya uses the weighted Tschebyscheff scalarization for finding a solution to

non-convex multi-criteria optimal control problems. This scalarization uses the minimization

of the maximum of the weighted cost components as its cost function:

J∞ = lim
p→∞

(
N∑

i=1

wi |Ji − Ji,T |p
) 1

p

= max
i

(wi(Ji − Ji,T))

wi > 0, i = 1, . . . , N

(3.247)

In order to be able to find valid solutions for the multi criteria optimization problem, all cost

function values have to be positive, which can easily be achieved by modifying the target cost

91

3.3 Multi Criteria Optimization and Optimal Control

Ji,T appropriately. Kaya further states that a point zopt is a weak Pareto minimum of the

multi criteria optimization problem, if and only if it is a solution to the optimization problem

using the scalarized cost function from (3.247).

In order to numerically solve the min-max problem that results from the weighted Tsche-

byscheff scalarization, the transformation listed in equation (3.76) can be used, with the

constraint that is introduced there applied to all weighted parts of the cost function. This

reformulation is also known as the Pascoletti-Serafini scalarization.

For determining the Pareto front efficiently, a strategy for choosing the weights wi is

required that reduces the number of optimization problems that need to be solved. In [KM13],

Kaya presents an algorithm for this purpose. Moreover, in the standard formulation of the

Tschebyscheff scalarization, all cost function values that are currently eliminated by the

max statement in equation (3.247), are not considered at all, resulting in possible further un-

used optimization potential. In the exemplary application in section 10.3, this issue is handled

by combining several scalarization approaches. More information on the Tschebyscheff

method and its application can besides other be found in [Mie01, Lin05].

3.3.5 A Priori Methods

Methods in which the decision maker specifies his/her preferences in advance to performing

any optimization are called a priori methods. The main drawback of those methods is that

they do not try to determine the Pareto front (or parts of it), but directly try to find one

solution that best fits the needs of the decision maker. Anyway, as the decision maker often

does not know what can be achieved within a problem and what not, the application of such

methods may be tough. On the contrary, the main benefit is a short solution time as in most

of the methods very little optimization problems need to be solved.

In the value function method, the decision maker combines the cost functions to one scalar

cost best satisfying his/her preferences. In most cases the determination of the value function

is complicated to impossible.

When using the method of lexicographic ordering, the decision maker selects the most

important cost function and solves the problem with respect to this cost. Afterwards, the

value of this cost function is constrained and the problem is solved again for the second

important cost function. This procedure is carried on until either all cost functions have been

minimized or one of the intermediate solutions is unique, not allowing any further improvement

in the remaining cost functions. The main drawback of the lexicographic ordering method is

that no trade off between the cost functions may take place.

The goal programming method requires the specification of a goal to be achieved before

the deviations to this goal are minimized. The goal should be selected such that not all cost

function values in the goal are reachable simultaneously. The method has several variants,

most of them requiring the decision maker to specify additional weights or orderings. More

details on these and other methods can e.g. be found in [Mie01].

92

Chapter 3: Mathematical Preliminaries

3.3.6 Interactive Methods

As the name suggests, in interactive methods, the decision maker uses his/her preferences to

interactively influence the optimization process. The main benefit of these methods is the

fact that in most cases not the whole Pareto optimal set needs to be determined as the

user is able to control the direction into which the Pareto set is evolving. Furthermore, the

decision maker only has part of the information at hand in every step potentially simplifying

the decision.

In [Mie01], Miettinen presents several interactive methods, all having their benefits and

drawbacks. The methods presented include the Geoffrion-Dyer-Feinberg method, the

interactive Tschebyscheff method, the Reference Point Method, the GUESS Method, the

Satisficing Trade-Off Method, the Light Beam Search and the NIMBUS Method.

3.3.7 Multi Criteria Optimal Control

Kaya distinguishes between different approaches for solving multi criteria optimal control

problems. One being the idea of scalarize-discretize-then-optimize where the original infinite

dimensional optimal control problem is scalarized and afterwards discretized and then solved

numerically. On the contrary, he mentions the discretize-scalarize-then-optimize technique

where the scalarization is performed based on the discretized finite dimensional optimization

problem. [KM13]

Considering the scalarize-discretize-then-optimize methods, Leitmann derives necessary

and sufficient optimality conditions for Pareto optimality for optimal control problems. He

uses the definition of Pareto optimality from (3.242) and combines it with the optimality

conditions for optimal control problems from (3.115)–(3.118). [Lei81]

Necessary Conditions for Pareto Optimality

Leitmann defines the extended Hamiltonian

H̃(x, λ, µ, u, α) = α⊺L(x, u) + λ⊺f(x, u) + µ⊺S(x, u) (3.248)

for a problem with vector valued cost (3.241). Using this function, the necessary conditions

can be formulated as:

If the combination (uopt(t), xopt(t)) is Pareto optimal, then there exist multipliers λ(t),

µ(t) and constants α ∈ RN such that the conditions in (3.115)–(3.118) are satisfied for the

extended Hamiltonian (3.248) and

αi ≥ 0, ∀i = 1, . . . , N (3.249)

holds. Again, the trivial solution αi = 0, ∀i = 1, . . . , N is not allowed. More details as well

as a proof for these conditions can be found in [Lei81].

93

3.3 Multi Criteria Optimization and Optimal Control

Sufficient Conditions for Pareto Optimality

Besides the necessary conditions, Leitmann also presents sufficient conditions for Pareto

optimality for optimal control problems:

The solution (uopt(t), xopt(t)) is Pareto optimal if there exists a constant α ∈ RN with

αi ≥ 0 for i = 1, . . . , N and
N∑

i=1
αi = 1 such that

N∑

i=1

αiJi(x(t), u(t)) >
N∑

i=1

αiJi(xopt(t), uopt(t)) (3.250)

for all admissible u(t) with u(t) 6= uopt(t).

Compared to the necessary conditions, now, not all components of α need to be non-zero.

Even though these conditions are mathematically correct, checking them in real applications

is often very tough.[Lei81]

94

Chapter 4

Implementation of a Discretization

Scheme in an Optimal Control Tool

In order to be able to easily solve a wide variety of optimal control problems using gradient

based optimization techniques without the need to re-implement the numerical discretization

scheme every time, an optimal control tool for MATLAB has been developed at the Institute

of Flight System Dynamics. This optimal control tool is described here, and is also used to

solve some of the examples presented in the remainder of this work. The main contributors

during the development of the different versions were Maximilian Richter, Matthias

Rieck, Benedikt Grüter, Johannes Diepolder and this author. Besides, several

Bachelor and Master thesis as well as student positions have been done on the tool. The

current version of the tool is published as FALCON.m1 [Rie+16]. Figure 4.1 shows the logo

(designed by Matthias Rieck) of the tool.

Figure 4.1: Logo of the optimal control tool FALCON.m developed at the Institute of Flight

System Dynamics. The logo has been designed by Matthias Rieck.

FALCON.m is mainly an object-oriented MATLAB library containing classes for every part

required to construct a wide variety of optimal control problems. For ensuring a fast solution

of the problems, FALCON.m uses several MATLAB specific technologies, including

• vectorial evaluations,

• symbolic computation,

1The official website for the project can be found at www.falcon-m.com.

95

www.falcon-m.com

• sparse matrices,

• automatic code generation, and

• compiled MATLAB API library functions (.mex-functions).

FALCON.m can be divided into several main components, ensuring its high flexibility, where

the most important ones are

• the so-called Model Builder that can be used to prepare dynamic simulation models as

well as cost and constraint functions for their use in an optimal control problem (see

section 4.8.4),

• the Optimal Control Problem Hierarchy which is used to represent the main structure

of the optimal control problem to be solved, also including most of the technologies

required to solve it (see section 4.4), and

• the Numerical Solver Interface that generally allows the use of FALCON.m together

with a wide variety of numerical optimization tools such as IPOPT [WB06], SNOPT

[GMS02] or WORHP [BW13].

Besides its main core, FALCON.m ships with additional tools that allow for the analysis of

calculated results including a specialized graphical user interface (GUI) for plotting. Moreover,

besides the main classes, additional required external MATLAB and C -functions are shipped

with the tool.

Historically, Maximilian Richter and this author started developing their own separate

optimization tools at the Institute of Flight System Dynamics in 2011 and 2012. At some point,

they decided to combine their knowledge in one common tool which at that time was called

iFramework. It was developed and implemented by Maximilian Richter, Matthias

Rieck and this author. This first tool contained an implementation of collocation methods

as well as multiple shooting methods. The support for both these methods was one of the

main drawbacks of the tool, as many aspects were either done twice or not to maximum

efficiency in order to cope with the particular specialties of the different methods. In this

early version of the code, the required derivatives for the model dynamics and the constraint

functions still needed to be provided by the user. Moreover, the tool was able to use dynamics

simulations either done in Simulink or in MATLAB – again, the support of both possibilities

lead to suboptimal overall performance.

For the current version of FALCON.m, the software structure was revised and the whole

code was optimized for maximum execution performance and good usability. Hence, the tool

was focused on the use of full discretization (collocation) techniques, reducing code overhead.

Anyway, the possibility to integrate shooting techniques was still kept and is also used within

this work (see chapter 8 for more details on a combined shooting and collocation approach).

Many parts of the code were re-implemented and improved, with the main implementation of

the update being done by Matthias Rieck. The main contribution of the author within

the development of FALCON.m is in the design of the software architecture and the required

structure for an efficient implementation.

96

Chapter 4: Implementation of a Discretization Scheme in an Optimal Control Tool

4.1 Other Available Optimal Control Software

Before FALCON.m was developed at the Institute of Flight System Dynamics, other tools

that are helpful for solving optimal control problems were already existing. Anyway, all of

them had drawbacks for the applications considered here or could not be adapted for the

developments done at the Institute. The following list shows the most common ones. The list

is non-exhaustive and gives only a very brief overview.

4.1.1 DIDO

The optimal control tool DIDO was invented by Michael Ross in 2001 and is based on

the Unified Covector Mapping Theorem developed by Fariba Fahroo and Michael Ross

[FR08]. It is currently commercially available at Elissar Global. DIDO is a MATLAB tool

based on the Legendre-Gauss and the Legendre-Gauss-Radau Pseudospectral Meth-

ods. The tool features a special problem formulation technique called “pencil-and-paper-like”

problem formulation. The aforementioned Covector Mapping Theorem allows for the estima-

tion of the costates that in some cases allow the verification of the results using the minimum

principle. [Eli16]

4.1.2 GESOP

GESOP, the Graphical Environment for Simulation and Optimization was developed by Astos

Solutions GmbH. GESOP offers a graphical user interface and uses different direct collocation

as well as shooting methods for solving optimal control problems. Besides, the software offers

an initial guess generator and a simulation tool. GESOP features interfaces to the numerical

optimization tools SNOPT and SOS and supports model and constraint functions provided

as Fortran 77, C, or Ada 95 functions or MATLAB scripts. GESOP uses finite differencing in

order to determine gradient information. [Ast16]

4.1.3 GPOPS and GPOPS-II

The first version of the General Purpose OPtimal Control Software developed at the Vehicle

Dynamics and Optimization Laboratory of the University of Florida was published in 2008 by

Camila Francolin and Anil V. Rao [Fra08]. GPOPS represents an implementation of

Gauss Pseudospectral Methods for MATLAB [Rao+10] that is available for free and open

source. The required gradients are determined using finite differences.

In 2013, Michael Patterson and Anil V. Rao published the first release of GPOPS-

II, being the commercial successor of their first tool. GPOPS-II uses hp-adaptive variable-

order Gaussian quadrature collocation based on Legendre-Gauss-Radau points and an

adaptive grid refinement method. The gradients are still calculated using finite differencing.

[PR14]

97

4.1 Other Available Optimal Control Software

4.1.4 NUDOCCS

NUDOCCS, short for “Numerical Discretisationmethod for Optimal Controlproblems with Con-

straints in Controls and States” [sic], has been developed by Christof Büskens in the

1990s. It is implemented in FORTRAN and is based on a multiple shooting method. In order

to solve the resulting numerical optimization problem, the routine E04UCF from the FOR-

TRAN library Nag is used. All required gradients are calculated by different finite differencing

schemes incorporated in the tool. [Büs96]

4.1.5 PSOPT

The code PSOPT was first published in 2009 and is currently available in version 3. At

the moment, the project is maintained by Victor M. Becerra. The open source tool

is implemented in C++ and compatible with Linux and Windows systems. It uses direct

collocation methods, offering global pseudospectral Legendre and Tschebyscheff ap-

proaches as well as full discretization methods like the Trapezoidal or Hermite-Simpson

method. For solving the resulting numerical optimization problem, interfaces to IPOPT and

SNOPT may be used. The required gradients may either be calculated using ADOL-C 2, an

automatic differentiation code based on operator overloading, or by finite differencing. In case

ADOL-C is used, information about the problem sparsity is also auto-generated. Furthermore,

PSOPT offers mesh refinement technologies, that are especially important when using global

approximation methods like the Pseudospectral Method. [Bec11]

4.1.6 OCPID-DAE1

Matthias Gerdts is the main developer of the optimal control tool OCPID-DAE1, short for

Optimal Control and Parameter Identification with Differential-Algebraic Equations of Index

1, which is another optimal control and parameter identification tool developed in FORTRAN.

Even though being mainly developed for Linux, a version that is compatible with Microsoft

Windows exists. The tool is based on a multiple shooting discretization method and uses the

sequential quadratic programming code from sqpfiltertoolbox, another FORTRAN library. The

required derivative information may either be calculated using sensitivity differential equations

or using finite differences. Available extensions for the tool enable an estimation of the costates

or add realtime optimization capabilities based on the sensitivity theory from section 3.1.6.

[Ger13]

4.1.7 SOCS

SOCS is the Sparse Optimal Control Software mainly developed by John Betts at The

Boeing Company. It uses a direct collocation method and features an interface to the sparse

2https://projects.coin-or.org/ADOL-C

98

https://projects.coin-or.org/ADOL-C

Chapter 4: Implementation of a Discretization Scheme in an Optimal Control Tool

numerical optimization software SPRNLP, developed in the same team. The sparsity patterns

of the Jacobian and Hessian need to be defined by the user in the implementation and are later

used to exploit overall problem sparsity. Besides, they are used for the sparse finite difference

approximation of the Jacobian and the Hessian. Furthermore, SOCS offers mesh refinement

features in order to improve accuracy. The software has been mainly developed in 1993 and

1994 and is implemented in FORTRAN 77. [Uni16]

4.1.8 TOMLAB/PROPT

Per E. Rutquist and Marcus M. Edvall from Tomlab Optimization were the main de-

velopers of PROPT, the optimal control tool offered by that company. PROP is commercially

available as part of the TOMLAB modeling and optimization suite for MATLAB. In the latest

version, the tool supports direct collocation methods based on Gauss or Tschebyscheff

points. TOMLAB/PROPT uses the TOMSYM engine and its automatic differentiation fea-

tures for determining the required gradients as well as for code generation. [RE10, Tom11]

4.2 Problem Formulation for FALCON.m

The optimal control problem introduced in section 3.2.1 needs to be transformed to a specific

formulation in order to be solved using FALCON.m. For that, the transformation techniques

from section 3.2.2 may help, depending on the particular task. In general, the tool can

determine a time discretized approximation of the box constrained optimal state and control

histories

xmin ≤ x(tk) ≤ xmax and (4.1)

umin ≤ u(ti) ≤ umax, (4.2)

with tk and ti being points in time on the state and control grids as introduced in section

3.2.4 (see equations (3.174) and (3.149)). Besides, FALCON.m can determine additional box

constrained parameters

pmin ≤ p ≤ pmax (4.3)

influencing the optimal control problem. The software treats every problem as a multi-phase

problem, even though the user may specify only one single phase.

In order to be able to cope with free final time problems, the linear time transformation

mentioned in section 3.2.2 is directly incorporated in FALCON.m. However, this problem

formulation requires that all grids and points in time are specified in normalized time τ ∈ [0, 1]

for each phase of the problem. The parameters required in the transformation for initial and

final time are either introduced by the user or automatically. They are anyway added to the

parameter vector p of the overall problem.

The cost to be minimized may be formulated as a differentiable function that is arbitrarily

depending on the states, the controls, the initial and final time, and any additional parameters

99

4.2 Problem Formulation for FALCON.m

appearing in the problem:

J = J(x(t), u(t), p) (4.4)

In this formulation, the times tk and ti are a set of points in time selected by the user. (The

points may not be selected arbitrarily but need to be a subset of the state or control grid

introduced before.) The Bolza cost function introduced in section 3.2.1 can be seen as a

subset of this formulation and can consequently be implemented in the software. Besides this

general formulation, FALCON.m allows the use of Lagrange cost functions of the form

J =

tf∫

t0

L(x(t), u(t), p, t) dt (4.5)

by directly specifying the function L inside the integral and automatically performing a nu-

merical integration.

FALCON.m is able to solve problems containing autonomous and parameter dependent

dynamic systems of the following form:

.
x(t) = f(x(t), u(t), p) (4.6)

Non-autonomous dynamic systems may be incorporated using the transformation technique

mentioned in section 3.2.2. Moreover, many other dynamic system formulations may be

transformed into this standard form using the methods listed above or employing other trans-

formations (like those for discrete controls, see [RRH13, Rie+14]) not described here.

Besides the dynamic constraints, almost every real life optimal control problem features

algebraic constraints, like initial or final boundary conditions or path constraints. FALCON.m

offers functionality to easily add path constraints of the form

Cmin ≤ C(x(t), u(t), p) ≤ Cmax (4.7)

to each phase of the optimal control problem. These path constraints are either evaluated in

every discretization point within a phase or on a user defined subset of the grid. Moreover,

the user may specify so-called Point Constraint Functions that use an arbitrary set of values

appearing in the problem in order to calculate one single constraint value:

cmin ≤ c(x(tk1), x(tk2), . . . , u(ti1), u(ti2), . . . , p)) ≤ cmax (4.8)

In this formulation, the times tk represent user selected points in normalized time that may

even be taken from different phases of the optimal control problem. In case interior point

constraints need to be specified without knowing their normalized time of appearance, the

multi-phase feature of FALCON.m must be used. Then, in the problem formulation, the

durations of the phases neighboring the respective constraint need to be of variable length and

the constraint needs to be introduced as a final or initial boundary condition in these phases.

FALCON.m offers several features to easily add initial and final boundary box constraints

of the form

x0,min ≤ x(t0) ≤ x0,max (4.9)

xf,min ≤ x(tf) ≤ xf,max (4.10)

100

Chapter 4: Implementation of a Discretization Scheme in an Optimal Control Tool

to every phase of the problem. In case the initial state of one phase is not box constrained

but should take the same value as the final state of the previous phase, there is a possibility

to directly connect the respective phases.

In all cases mentioned above, equality constraints can be modeled by simply setting the

upper limit to the same value as the lower limit:

◦min = ◦max (4.11)

4.3 Problem Setup Process

The process for setting up and solving an optimal control problem with FALCON.m contains

the following main steps:

1. Implement the subsystems of the dynamic models. The dynamic models used

within the optimal control problem need to be implemented in MATLAB functions. Large

models need to be partitioned into (smaller) subsystems, each implemented separately.

2. Build the overall dynamic models from the subsystems. The dynamic models

used in the different phases of the optimal control problem need to be combined using

the Model Builder delivered with FALCON.m.

3. Automatically differentiate all required functions. At this point, the Model Builder

will automatically create the analytic derivatives of all subsystems and combine them to

the overall gradient of the models using the chain rule.

4. Auto-generate code for the models and compile. In order to be able to execute the

aforementioned functions many times during the optimization process with maximum

evaluation efficiency, the Model Builder within FALCON.m will automatically create

C -code from the MATLAB functions including their analytic derivatives. Besides, all

required wrapper code will be created that allows for the parallelized evaluation of the

model dynamics on multi core systems. Finally, the whole code will be compiled into one

MATLAB executable (.mex-File) that will later be called in the optimization process.

5. Implement additional constraint functions. Repeat steps 1 – 4 for all required

constraint and cost functions in the problem.

6. Define the structure of the optimal control problem. This step may be seen as

the main preparation step in solving an optimal control problem with FALCON.m. The

overall problem hierarchy needs to be set up using the MATLAB classes delivered with

FALCON.m. In this step, the problem itself is created before all required elements,

like phases, models, states, controls, parameters, constraint- and cost-functions may be

added.

101

4.4 Problem Structure

7. Discretize the optimal control problem. This step can be seen as the “discretiza-

tion” itself, as now the mapping between the numerical optimization problem and the

values appearing in the optimal control problem is created. In FALCON.m, the method

preparing everything for a fast solution is called “Bake”.

8. Solve the discretized problem using state of the art numerical solvers. Now, the

numerical optimization problem resulting from the discretization of the optimal control

problem is solved using an appropriate numerical solver. At the moment, FALCON.m

features interfaces to IPOPT and SNOPT.

9. Analyze the solution and draw conclusions. After solving the numerical optimization

problem, the hierarchy created above contains all information related to the solution of

the optimal control problem. The user has free access to all datasets and can post-

process them as needed. Moreover, a graphical user interface for plotting the results

may help in understanding and interpreting the calculated values.

More details on FALCON.m and its usage can – besides some examples – be found in the

FALCON.m Documentation [Rie+16]. The documentation also lists some more basic ideas

that played an important role during the development of the software.

4.4 Problem Structure

Figure 4.2 gives a rough overview of the structure of an optimal control problem in FALCON.m

(the namespaces of the objects are omitted for better readability). As can be seen, the root

element of each optimal control problem is an object of type falcon.Problem. Below, the

children of the problem can be seen, with the list of Phases of type falcon.core.Phase

being the most important one. (Within the FALCON.m code, all classes that are directly

accessible by the user and are required to construct an optimal control problem are located in

the namespace falcon. All classes that are required to represent the optimal control problem,

but are not used by the user directly are located in the namespace falcon.core.) Besides,

each problem contains a list of all relevant parameters that are subject to optimization, a list

of all point constraint functions, a list of all Mayer cost functions and a handle to the class

containing the specifics of the applied numerical discretization method.

Each phase in the problem contains one object of type falcon.core.Model represent-

ing the dynamic model used in this phase. The state histories of each phase are stored in the

respective StateGrid which is of type falcon.core.Grid. The time discretization of the

StateGrid is the lowest common factor for all grids used for the calculation of cost and con-

straint values. (The mixed collocation and shooting approach presented in chapter 8 introduces

a finer grid for the simulation, but not for the constraints.) FALCON.m allows the use of differ-

ent discretization grids for different controls in the ControlGrids of each phase (all being of type

falcon.core.Grid). This enables a reduction in the size of the resulting optimization

102

Chapter 4: Implementation of a Discretization Scheme in an Optimal Control Tool

Problem

Phases

Parameters

PointConstraints

MayerCosts

DiscretizationMethod

Model

StateGrid

ControlGrids

DefectGrid

PathConstraints

LagrangeCosts

InitialTime

FinalTime

ModelHandle

StateDotGrid

ModelOutputGrid

ModelParameters

ModelConstants

Figure 4.2: Main elements of the structure of the representation of an optimal control problem

within FALCON.m.

problem in cases where different controls require different resolutions in time. Similar to the

StateGrid, all defects appearing in the full discretization scheme are stored in the DefectGrid of

each phase (which is again of type falcon.core.Grid). The two arrays PathConstraints

and LagrangeCosts may hold several objects of type falcon.core.PathFunction or

falcon.core.LagrangeFunction, respectively. The ones in the first array specify

functions used to calculate the path constraint values together with an upper and a lower

boundary. The ones in the latter array are numerically integrated and finally added to the cost

function value. The two fields InitialTime and FinalTime within each phase contain objects

of type falcon.Parameter and represent the initial and the final time of the respective

phase. Problems with fixed initial and/or final time can easily be represented by directly spec-

ifying a value for the respective Parameter object and setting its isFixed property to

true.

The Model of each Phase contains all information on the dynamic model used in this phase.

First of all, a ModelHandle is required that is of type function_handle pointing to the

MATLAB function holding the simulation model and its Jacobian. (In most cases, this file has

been automatically generated by FALCON.m using its Model Builder as mentioned before).

The values for the time derivatives of the states are stored in the StateDotGrid of the Model,

also being of type falcon.core.Grid. Moreover, FALCON.m allows the user to specify

additional model outputs that may later be used in the cost or constraint functions. The values

for these outputs are stored in the ModelOutputGrid of type falcon.core.Grid. Besides

103

4.5 Derivative Calculation and Code Generation

the states and the controls, the simulation model may also depend on arbitrary numbers of

Parameters and Constants. The Parameters are stored in falcon.Parameter objects in

the ModelParameters array, while the numerical values of the required constants are directly

stored in the ModelConstants field. In general, all parameters appearing in a problem are listed

in the Parameters array under the top level Problem object, but anyway not all parameters

may be necessary for evaluating the model and consequently these need to be provided with

the model. Anyway, FALCON.m takes care of proper sorting and linking of the parameters

automatically.

4.5 Derivative Calculation and Code Generation

As FALCON.m is designed to mainly support gradient based optimization algorithms, it offers

several features for the calculation of gradient information. Overall, the gradient of the cost

function and the Jacobian of all constraints for the discretized optimal control problem are

required. All formulas that calculate the overall gradient and Jacobian from the local gradients

of the functions involved, are directly integrated into FALCON.m not requiring any user input.

All required local gradients like ∂
.
x

∂x
, ∂

.
x

∂u
, and ∂

.
x

∂p
for the model – or their respective counter-

parts for constraint or cost functions – are calculated within the Model Builder functionality

of FALCON.m, using the Symbolic Math Toolbox from MATLAB. As the symbolic computing

engine is currently not capable of analytically deriving very complicated expressions, the Model

Builder calculates the derivatives of each subsystem defined by the user individually, before

combining them to the overall model, constraint, or cost function gradient using the chain

rule.

In a second step, each function and its respective derivatives are coded into one new

common function each, allowing for an easy evaluation during the optimization process. Ad-

ditionally, these functions feature an evaluation of multiple points in time within one single

call. In case MATLAB Coder and OpenMP3 are available on the target system, both are used

to create C code and finally a MATLAB executable (.mex-file) that is capable of performing

parallelized computations. Besides, FALCON.m also allows for the calculation of second order

gradient information, normally supplied in form of the Hessian matrix. This feature can be

used to further improve convergence characteristics in many cases.

To sum up, FALCON.m offers a very convenient way of using exact analytic derivatives

within the solution of optimal control problems. More details on this particular feature of

FALCON.m can be found in [Rie+15].

3http://openmp.org/wp/

104

http://openmp.org/wp/

Chapter 4: Implementation of a Discretization Scheme in an Optimal Control Tool

4.6 Sorting and Indexing

Within FALCON.m, after the discretization, all values appearing in the optimization parameter

vector or in the vector of constraints are sorted according to their time of appearance in the

optimal control problem. This means that within the parameter vector z defined in equation

(3.175), first the parameters p of the problem are listed, then all states and controls of the

first phase of the problem are sorted by increasing time. The same holds for all states and

controls of the subsequent phases.

The values within the constraint vector C(z), as defined in equation (3.177) are treated

similarly. There, all collocation defects and constraints related to the first phase are listed first,

also sorted by their time of appearance in the optimal control problem. Afterwards the same

principle is applied to all subsequent phases. The sorting of the values and the calculation

of the resulting indices is performed during the preparation of the problem, within the Bake

function.

The main benefit of this sorting lies in the resulting block diagonal structure of the overall

gradient matrix due to the causality of the dynamic systems. Figure 4.3 shows an exemplary

sparsity pattern for the gradient matrix of a discretized optimal control problem (with one

phase). Further details on problem sparsity and its exploitation can be found in chapter 7.

4.7 Numerical Scaling

Well-formed numerics are one of the core requirements for an efficient solution of a numerical

optimization problem. In many cases, bad numerics prevent the optimization algorithms from

working properly, sometimes resulting in poor convergence or even no convergence at all. One

of the most important aspects regarding the numerics of a discretized optimal control problem

is related to the orders of magnitude of the values appearing in the problem. [Bet09, p. 166 ff.]

In order to tackle this issue, FALCON.m offers a feature for the numerical scaling of the

values appearing in a problem. The user may specify scaling factors Mscaling for states, controls,

parameters, constraints, and the cost function components. These values will be used to create

a linear mapping between the values appearing in the continuous optimal control problem and

those appearing in the numerical optimization problem:

◦scaled = ◦original · Mscaling (4.12)

In case no scaling values are specified, FALCON.m tries to determine them automatically from

the given bounds and values.

4.8 Software Components

In the following subsections the most important components of FALCON.m are described

in more detail. However, they are presented rather from a conceptual point of view than

105

4.8 Software Components

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

Figure 4.3: Sparsity pattern of the gradient of a discretized optimal control problem. The

first row holds the cost function gradient, all others the constraint Jacobian. The rows marked

in red represent the Jacobian of a path constraint, all other rows hold derivatives of the defects.

The first column (green) holds the derivatives with respect to the final time parameter, the blue

columns represent derivatives with respect to the controls. All other columns hold derivatives

with respect to the states.

an applicational point of view as details on the usage can be found in the User Guide of

FALCON.m [Rie+16]. All classes described below are MATLAB handle classes [The16] that

use the call-by-reference principle.

4.8.1 Value Containers

When representing an optimal control problem in software, many quantities appearing in the

problem formulation may have some commonalities like

• a name,

• a lower bound,

• an upper bound and

• a numerical scaling factor.

106

Chapter 4: Implementation of a Discretization Scheme in an Optimal Control Tool

Hence, these properties are implemented in the abstract class falcon.core.OVC in FAL-

CON.m, where “OVC” is short for “Optimization Value Container”.

Conceptually, all value container classes define the properties of a scalar value. In case a

grid of values is required – like e.g. for the states – an object of type falcon.core.Grid

is used for expanding the properties of a scalar value container object onto a grid over time,

avoiding unnecessary duplication of information, finally resulting in less memory consumption.

This also implies that the value container objects in general do not hold any numeric values

themselves.

Figure 4.4 depicts the child classes derived from falcon.core.OVC inheriting its prop-

erties that will be described in more detail in the next sections.

OVC

State Control Parameter Output Constraint Cost

Figure 4.4: Value container types in FALCON.m.

States

Each state appearing in an optimal control problem is described by a falcon.State object.

One State object may be used within several phases of a problem as the falcon.State class

does not hold the solution of the state histories, but it only defines the properties of a single

state. In order to represent a state history based on a state definition object, FALCON.m

automatically expands a falcon.core.Grid from a falcon.core.State object as

soon as a new phase is added to the problem and a state grid is required.

The properties specified for a state, like its name and limits, are automatically applied

as the properties for the discretized state within a discretization method. Consequently, all

state values calculated on the state grid of a phase are forced to respect the given limits

in the final solution of the optimal control problem. When using the combined shooting and

collocation method described in chapter 8, the boundaries are only respected by the collocation

and multiple shooting nodes, but not by the intermediate values.

Controls

Each control required to model an optimal control problem in FALCON.m is described by an

object of type falcon.Control. Similarly to the states, they may be reused for creating

control grids in several phases. The expansion from one single control value to a control grid

is done within the method addNewControlGrid of the considered phase. This method

may be called several times (on the same phase) resulting in several control grids. The benefit

107

4.8 Software Components

of this feature is that different controls may be discretized on individual grids. Consequently,

controls that do not need to be changed as frequently as others can be discretized on a coarser

grid resulting in less optimization parameters and a smaller numerical optimization problem.

Moreover, each falcon.Control offers an option to fix its value, meaning that the

control history based on this object is not subject to optimization. In this case the initial guess

values supplied for the control history will not be changed during the optimization process.

This feature is especially handy for parameter estimation tasks where the control histories are

measured and should not be determined by optimization.

Parameters

Every additional scalar parameter appearing in the optimal control problem that is subject to

optimization is represented by an object of type falcon.Parameter within FALCON.m.

In contrast to the states and controls, parameter objects are directly storing their value during

the optimization. Consequently, their specifications may not be reused in different places of an

optimal control problem except if the same numerical value should be used in different places

across the problem.

When solving parameter identification problems, all parameters to be determined within

the model need to be represented by a falcon.Parameter object that is subject to op-

timization. Parameters that are not subject to optimization can easily be set fixed within

FALCON.m using their isFixed properties.

Outputs

Besides the state derivatives that every simulation model has to deliver, each of them may also

calculate additional model outputs that can later be used within the cost or constraint calcu-

lations. Every model output needs to be specified using an object of type falcon.Output.

The concept of model outputs has mainly been introduced in FALCON.m in order to reduce

computational overhead, as in many cases intermediate values appearing during the calcula-

tion of state derivatives in the dynamic model, are also required in the calculations of cost

or constraint values. By defining these quantities as model outputs their values are made

available to other functions within FALCON.m without the need to recalculate them.

Contrary to states and controls, model outputs are not automatically constrained within

FALCON.m. If a user requires a model output to be constrained, a path constraint function

turning the falcon.Output into a falcon.Constraint is required.

Constraints

Objects of type falcon.Constraint represent values to be constrained in an optimal

control problem. They are calculated by a path constraint function or a point constraint

function which are described below. The constraint values are calculated from the states, the

controls, the model outputs and the parameters within a problem and feature an upper and

108

Chapter 4: Implementation of a Discretization Scheme in an Optimal Control Tool

a lower bound that is respected by the final solution of the problem. Similar to parameters

and controls, constraints can be switched off, using the isActive property defined in the

class. Only active constraints are respected when solving a problem, all others are ignored.

Equality constraints can be specified by setting the lower and the upper bound of the respective

constraint to the same value.

Cost

Objects of type falcon.Cost are very similar to those of type falcon.Constraint.

Anyway, they specify an output of either a Mayer cost function or a Lagrange cost function

and are not limited by an upper and a lower bound. In the final optimal control problem, all

cost values are weighted using their respective scaling factor, summed up and then minimized

(or maximized if explicitly configured so).

4.8.2 Structuring Elements

In the following, the concepts of different classes used to structure an optimal control problem

within FALCON.m are described.

Problem

As mentioned before, the root object for every optimal control problem to be solved in FAL-

CON.m is of type falcon.Problem. This object holds all phases, functions, the discretiza-

tion method and other information required to represent an optimal control problem. It is

handed over to an object of type falcon.solver.Optimizer in order to be numerically

solved. Besides, it holds all information about a problem that is of general interest, like a

list of all parameters appearing in the problem or the global sparsity pattern of the gradient

matrix. Section 4.4 and figure 4.2 give a more detailed overview of the structure of the object.

Phase

Every optimal control problem in FALCON.m contains at least one object representing a

phase, being of type falcon.core.Phase. Each phase uses a dynamic model and a state

grid. Moreover, if required, one or more control grids, path constraints and Lagrange cost

functions may be added to each phase.

Upper and lower boundaries for the state values at the initial and final times of a phase

may be set using the methods setInitialBoundaries and setFinalBoundaries.

In case the state histories need to be continuous from one phase to another, they can be

connected using the ConnectPhases or ConnectAllPhases methods available in the

superior falcon.Problem object.

In general, the duration of a phase is free and defined by the two falcon.Parameter

objects StartTime and FinalTime stored in the phase. In most applications, the initial

109

4.8 Software Components

time is fixed while the final time may either be free or fixed. Anyway, all combinations of free

and fixed initial and final time are supported by FALCON.m.

Grid

All data appearing on a grid over time in an optimal control problem is stored in an object of

type falcon.core.Grid in FALCON.m. The most important grids are state grids, control

grids, defect grids, model output grids and path constraint grids.

The values stored in each grid are specified by the falcon.core.OVC objects stored in

the field DataTypes of the grid. All values stored within one falcon.core.Grid object

need to be calculated at the same points in time. The grid objects take care of storing and

calculating all required indices as well as any data interpolation whenever required.

Model

All required information concerning the simulation model of one phase is stored in a class of

type falcon.core.Model. This information includes a function handle to the dynamic

equations, calculating the state derivatives with respect to the independent variable (time),

as well as the required gradients with respect to the model inputs. The function is normally

created using the automatic differentiation and code generation capabilities of the Model

Builder of FALCON.m as described in sections 4.5 and 4.8.4. The model outputs calculated

by each model are stored in the field ModelOutputGrid of the falcon.core.Model

object.

Besides the states and controls, the differential equation of the simulation model may de-

pend on a set of parameters and fixed constants. As not all parameters appearing in the superior

falcon.Problem may be relevant for all simulation models, each falcon.core.Model

holds a list of relevant parameters and a list of constants required to evaluate the dynamics.

Path Function

Objects of type falcon.core.PathFunction are used in FALCON.m to represent path

constraint functions that calculate constraint values required to be within their boundaries

along the whole trajectory of a phase. Therefore, every falcon.core.Phase features the

list PathConstraintFunctions holding these objects. The OutputGrid of a path

function is not required to be equal to the state grid but may be any subset thereof.

The falcon.core.PathFunction class holds a function handle pointing to a MAT-

LAB function that calculates the constraint values as well as their gradients with respect to

the function inputs. Typically, this function is created using the automatic differentiation

capabilities of the Model Builder of FALCON.m (section 4.8.4). The calculated constraint

values are stored in the OutputGrid of the path function object. Similar to the dynamic

models, path functions may depend on parameters or may require additional constants, that

are stored in the object.

110

Chapter 4: Implementation of a Discretization Scheme in an Optimal Control Tool

Point Function

Contrary to the path constraint functions, falcon.core.PointFunction objects rep-

resent functions calculating falcon.Constraint values that do not need to be within

their limits along a complete phase but only at particular points. Moreover, point functions

may use any parameter available in the problem as well as any combination of state, con-

trol, and model output values from different phases for calculating their constraint values.

As point functions consequently cannot be allocated to a phase, they are listed in the field

PointConstraintFunctions of the problem object.

Besides, falcon.core.PointFunction objects can be used to represent Mayer

cost functions that are added to the list of MayerCostFunctions within the problem.

In this case, the output of the function is not of type falcon.Constraint but of type

falcon.Cost.

Lagrange Function

Objects of type falcon.core.LagrangeFunction are very similar to the objects of

type falcon.core.PathFunction, described above. They are used to model a cost

function to be integrated along the trajectory of a phase. The main difference regarding their

implementation is the fact that instead of only evaluating the user defined function like the

path functions do, this class evaluates the function and performs the numerical integration of

the values.

Additionally, in case a vector valued output of the function is specified, or the user even

uses several Mayer and Lagrange cost functions within a problem, all values are summed

up.

4.8.3 Solution Methods

As described above, the solution of an optimal control problem can be divided into several steps

within FALCON.m. The following subsections list the main software components involved in

the solution of an optimal control problem after it has been fully specified.

Discretization Method

Every falcon.Problem contains the field DiscretizationMethod that holds a handle

to an object of type falcon.discretization.DiscretizationMethod. At the

moment, three implementations of this abstract class exist, being

• falcon.discretization.Trapezoidal, representing a trapezoidal collocation

scheme,

• falcon.discretization.BackwardEuler, representing a Backward Euler

collocation scheme and

111

4.8 Software Components

• falcon.discretization.MixedShooting, representing the mixed collocation

and shooting approach presented in chapter 8.

Figure 4.5 shows the abstract base class and the currently available implementations – the three

dots illustrate that the object-oriented approach allows for an easy extension of FALCON.m to

support other discretization methods by deriving additional classes. When defining a problem,

the user may specify the discretization method to be used. In case no method is actively

selected, FALCON.m automatically uses Trapezoidal Collocation.

DiscretizationMethod

BackwardEuler Trapezoidal MixedShooting . . .

Figure 4.5: Numerical discretization methods currently available in FALCON.m.

All discretization method classes include the functionality required to perform the numerical

discretization of the previously defined optimal control problem. This mainly includes the

numerical integration or collocation scheme, using the model dynamics as inputs and supplying

the resulting state defects. The most important methods implemented in these classes are

the function OptiFunc, which is the function called by the numerical optimization algorithm

in each iteration, and the function Evaluate, which calculates the state defects for each

phase.

First, OptiFunc extracts all values from the optimization parameter vector, un-scales

them, and distributes them to the objects within the problem definition. Afterwards, the

control grid interpolations are updated and the simulation models of all phases are evaluated.

Now, having the state derivatives available, the collocation or integration defects, respectively,

can be calculated using the Evaluate method of the discretization scheme. In the next

step, the constraint and cost functions are evaluated, writing their values and their gradients

to the problem, and to the constraint vector and the gradient matrix that are handed back to

the numerical solver. In the last step, the numerical scaling is applied to the gradient matrix

and the constraint vector.

Besides the calculations described above, all child classes of DiscretizationMethod

need to calculate the indexing and the sparsity pattern for the respective method, as the

number of inputs and outputs as well as the sparsity pattern of the gradient may change

depending on the method.

112

Chapter 4: Implementation of a Discretization Scheme in an Optimal Control Tool

Numerical Solver

FALCON.m does not implement its own NLP-solver for determining the solution of the con-

strained numerical optimization problem that results after discretizing the optimal control

problem. Instead, the class falcon.solver.Optimizer features a flexible interface

allowing the use of many off-the-shelf tools for this purpose. In the current version, FAL-

CON.m comes with an implementation supporting the open source interior point method

IPOPT, that can be found in falcon.solver.ipopt, and one allowing for the use of

SNOPT that is implemented in falcon.solver.snopt. Figure 4.6 shows the base class

falcon.solver.Optimizer with its current implementations as well as a placeholder

box for future extensions.

Optimizer

IPOPT SNOPT . . .

Figure 4.6: Numerical optimization algorithms available in FALCON.m.

4.8.4 Model Builder

Within FALCON.m, all functions required to evaluate the dynamic model, the constraints and

the cost (as listed above) need to supply gradient information. In order to avoid the necessity

for the user to implement the Jacobians by hand, the so-called Model Builder has been

introduced in the software. The general scheme used in the Model Builder is described in

section 4.5, while in the following, the different components of the software will be considered.

The Model Builder functionalities of FALCON.m have mainly been developed and implemented

by Matthias Rieck and are described in the publication [Rie+15].

Base Builder

The abstract class falcon.core.builder.BaseBuilder represents the root of the

Model Builder, as all other classes used to construct functions in a problem are either derived

from this class or used by this class. This structure avoids code duplication and facilitates

maintenance. Currently, three implementations exist, being

• falcon.SimulationModelBuilder,

• falcon.PointConstraintBuilder and

• falcon.PathConstraintBuilder.

113

4.8 Software Components

BaseBuilder

PathConstraintBuilder PointConstraintBuilderSimulationModelBuilder

Figure 4.7: The BaseBuilder class and its child classes.

As the names suggest, they are used to build the functions required in different places of the

optimal control problem. As from a structural point of view, Lagrange cost functions are

equivalent to path constraint functions and Mayer cost functions are equivalent to point func-

tions, the respective builder classes are used there. Figure 4.7 visualizes the BaseBuilder

class and its child classes.

Derivative Builder

The creation of the code evaluating the Jacobian of a function is outsourced from the code in

BaseBuilder to the abstract class falcon.core.builder.DerivativeBuilder.

In the current version of FALCON.m the two implementations

• falcon.core.builder.AnalyticDerivative and

• falcon.core.builder.FiniteDifferenceDerivative

of this abstract class exist. The definition of a common interface for the functionality of

providing gradient code offers the possibility to use the Model Builder even when no analytic

differentiation is possible. This may happen due to the model equations or due to the fact,

that the required MATLAB toolboxes are not available.

Within FALCON.m, by default, the AnalyticDerivative implementation is used

that creates the derivative code using the Symbolic Math Toolbox of MATLAB. Anyway,

in case a problem occurs or the toolbox is not available, the code falls back to the imple-

mentation in FiniteDifferenceDerivative. Besides, the user can actively choose

to use finite differencing. The left part of figure 4.8 shows the relationship between the

DerivativeBuilder class and its children.

Derivative Evaluator

Similarly to before, the functionality generating the final code as described in section 4.5 is

extracted from the BaseBuilder class and is implemented in different child classes derived

114

Chapter 4: Implementation of a Discretization Scheme in an Optimal Control Tool

replacements

DerivativeBuilder

FiniteDifferenceDeriv. AnalyticDerivative

DerivativeEvaluator

DerivativeMatlab DerivativeCoder

Figure 4.8: Left: The DerivativeBuilder class and its child classes. Right: The DerivativeE-

valuator class and its child classes.

from the abstract class falcon.core.builder.DerivativeEvaluator. The full

feature set – using MATLAB coder and OpenMP – is implemented in

• falcon.core.builder.DerivativeCoder, while

• falcon.core.builder.DerivativeMatlab

offers some sort of compatibility mode, in case DerivativeCoder fails. The latter com-

bines all calculations for a function and its gradients into one common MATLAB function

(.m-File), without further code generation and compilation. Besides, this approach does

not support any multi-threading and consequently runs considerably slower. The relation-

ship between all DerivativeEvaluator implementations can be seen in the right part of

figure 4.8.

115

Chapter 5

Improving Robustness by Initial Guess

Generation

Any direct solution method for solving optimal control problems, like the ones used in this work

and described in section 3.2.4, require the utilization of numerical optimization algorithms such

as those from section 3.1. Here, gradient based optimization methods are considered, all only

being able to improve a previously found solution iteratively. This property requires the user

of such optimization algorithms to specify a starting point for the optimization – the initial

guess.

In general, the selection of this initial guess is crucial for the convergence properties of

an optimization problem, both by means of convergence speed and convergence robustness,

where the latter denotes if convergence can be achieved at all. Besides, the specification of

an appropriate initial guess is usually not an easy task, as the structure of the solution of an

optimal control problem is mostly unknown in advance.

In this chapter, different methods for the (at least partially) automated creation of improved

initial guesses for optimal control problems and hence also aircraft trajectory optimization

problems are described. In the first section, the idea of homotopy is presented, before being,

on the one hand, extended to be used in multi aircraft optimization problems and, on the

other hand, being improved by sensitivity updates. Second, a method for the creation of

initial guesses for high fidelity aircraft trajectory optimization problems is presented that uses

different modeling fidelities and a Rauch-Tung-Striebel (RTS) smoother. Ideas similar

to those presented there have already been published for the combination of a Kalman filter

and a pseudospectral collocation scheme in [BFH12]. Examples demonstrating the methods

can be found in sections 11.6 and 11.7.

5.1 Initial Guess Generation Based on Homotopy

Bulirsch and Pesch mentioned the general idea of homotopy within the framework of

optimal control problems in their works [BMP91] and [Pes96] during the nineties. Therein,

117

5.1 Initial Guess Generation Based on Homotopy

they applied it in combination with a multiple shooting scheme which was used to solve the

multi-point boundary value problem that results from the optimality conditions that can be

derived using the indirect solution approach (see also section 3.2.3). They define a parametric

optimal control problem and solve the problem for different values of this parameter – starting

with a value that strongly simplifies the problem – until the particular problem, that was to

be solved initially, is reached.

In [Fis11], Fisch applies a homotopy scheme in combination with a direct multiple shoot-

ing method to aircraft trajectory optimization problems focusing on air races. His exemplary

problems are very similar to the ones presented in chapter 11. Therein, he stepwise moves the

race gates to be passed by the pilots along the race track, in such a way that first a strongly

simplified track is considered, before finally the real race track is modeled.

5.1.1 Basic Homotopy

In general, a basic homotopy process for optimal control problems works as follows:

1. First, a parameter is identified that may be changed in order to simplify the problem to

be solved. The parameter may influence the model, the cost function, the constraints

or any combination thereof. In the example presented in section 11.6 the orientation of

a race gate, while in the example in section 10.2 the number of aircraft in the scenario

is used for this purpose.

2. Next, the solution process is started by altering the parameter value and thus solving

a simplified problem. Depending on the parameter, this simplification may be the re-

laxation of some constraints, simplification of the model or the cost, removing minor

aspects of the problem completely, or reducing the problem size and complexity. In the

example of section 11.6, the race gate at the center is rotated such that the trajectory

through the race track is simplified, while in the example of section 10.2 the trajectory

of each aircraft is optimized individually.

3. Afterwards, the problem complexity is stepwise increased again, always using the solution

of the previous problem as the initial guess for the consecutive one. For the problem in

section 11.6 this means that the race gate is rotated stepwise until it reaches its final

orientation and position. More details on how this step is accomplished in the example

from section 10.2 can be found in section 5.1.2.

4. Finally, the originally posed problem can be solved based on the solution of the last

problem in the homotopy process.

The left diagram in figure 5.1 illustrates the process described above.

Additionally, the solution accuracy that is required when solving the intermediate optimal

control problems in the second step of the process does not necessarily need to be as high as

the final accuracy. Usually, it is sufficient to solve the problems to a rather rough accuracy

which may be two to three orders of magnitude below the finally required accuracy. Anyway,

118

Chapter 5: Improving Robustness by Initial Guess Generation

Start

Select the

parameter to be

perturbed

Select new

parameter value

Solve optimal

control problem

Final solution

attained?

End

Yes

No

Start

Select the

parameter to be

perturbed

Select new

parameter value

Solve optimal

control problem

Final solution

attained?

Update initial

guess based on

sensitivities

End

Yes

No

Figure 5.1: Left: Basic homotopy principle. Right: Extended homotopy principle (see also

section 5.1.3).

in some cases a faster and more robust solution process may be achieved by tightening the

accuracy of the intermediate problems.

In the third step of the process – depending on the interface to the numerical solver

utilized – one may use different sets of information from one problem as initial guess for the

consecutive one. First of all, of course, the optimization parameter vector z is transferred from

one problem to the next. Besides, in some cases, the multipliers λ and ν of the constraints

in the problem may also be supplied to the numerical solver. Unfortunately, no general rule

119

5.1 Initial Guess Generation Based on Homotopy

could be determined when the initial guess for the multipliers is helpful and when it is not,

based on the results of this work.

Moreover, grid refinement – like the approach presented in chapter 9 – may also be seen as

a variant of homotopy using the number of grid points as the homotopy parameter. Therein,

a problem is solved using a small number of grid points, resulting in less accurate results but

a faster and more reliable solution process. Based on a first solution, the state and control

histories as well as all parameters appearing in the problem can be extracted. In the next step,

the grid is refined while the required initial guess can be calculated by interpolation.

5.1.2 Homotopy for Multi Aircraft Trajectory Optimization Problems

The homotopy idea may also be used with problems that comprise several individual systems,

like the multi aircraft problem presented in section 10.2. In problems of this kind, in the first

step, an individual optimal control problem for each of the systems can be solved, neglecting

the cross-influences between the systems. This way, optimal trajectories – already considering

most constraints and the cost function – for each system can be generated. This first step is

visualized in the top row of figure 5.2.

Start

Problem for

system 1

Problem for

system 2
. . . Problem for

system n

Combine

systems stepwise

Solve problem

Final solution

attained?

End

Yes

No

Figure 5.2: Homotopy scheme for multi aircraft optimization problems.

120

Chapter 5: Improving Robustness by Initial Guess Generation

In the iterative part of this homotopy approach, the problem size is increased stepwise

by adding one system after the other to the optimal control problem. In the multi aircraft

problem described in section 10.2, the aircraft are added according to their entry times in the

considered airspace, starting with the first arrival. In general, the order of adding the systems

to the problem needs to be selected by the user and may be crucial to the process. Again, no

general recommendation can be given. Next, similar to the basic homotopy approach described

above, each intermediate problem is solved, considering the cross-influences of the different

systems. As long as the final number of systems in the problem is not yet reached, the solution

for the system to be added is taken from the list of individual solutions and is added to the

overall problem. The process stops, when all aircraft are considered and the final solution is

attained. The lower part of figure 5.2 visualizes the procedure.

Similar to above, only the optimization parameter vector z may be supplied from one

problem to the next, or the parameters and the multipliers λ, ν may be used. In the example

in section 10.2, all parameters and the multipliers are used, achieving good results. This is

presumably because the trajectories of the individual systems only slightly change from one

problem to the next. It has to be noted that the transformation of the optimization parameters

as well as the multipliers has to be performed based on the discretized optimal control problem

and may not directly be done based on the numerical optimization problem, as the structure

of the optimal control problems change quite significantly when adding additional systems

between two homotopy iterations. Like before, the solution accuracies of the intermediate

problems can be chosen to be less restrictive than those in the final problem.

5.1.3 Extended Homotopy Using Sensitivity Updates

The basic homotopy process described in section 5.1.1 can be further improved based on the

sensitivity information of the optimization problem calculated using the equations from section

3.1.6. If continuous parameters are considered during the homotopy process, equation (3.57)

can deliver sensitivities for a first order update of the solution of the problem to be solved next

in zupd, λupd, and νupd based on the current solution z, λ, and ν:

zupd ≈ z +
dz

dp
· (pupd − p) (5.1)

λupd ≈ λ +
dλ

dp
· (pupd − p) (5.2)

νupd ≈ ν +
dν

dp
· (pupd − p) (5.3)

Therein, p is the homotopy parameter vector of the current problem, while pupd is the one

of the subsequent problem. In this approach, each change in the homotopy parameter may

be seen as a disturbance of the last calculated solution. In case discrete parameters are

used for the homotopy process – like the number of systems in the problem, the number of

discretization points, or the model fidelity – no sensitivities can be calculated, making the

proposed sensitivity based homotopy update impossible.

121

5.2 Initial Guess Generation Using Rauch-Tung-Striebel Smoothing

Besides, the step size chosen for the parameter update may not be too large, as otherwise

the required smoothness assumptions for equation (3.57) are not fulfilled anymore. The price

to pay for the sensitivity based update is the necessity to evaluate the Hessian of the problem

and to solve the linear system stated in the aforementioned equation. Anyway, when using

automatic differentiation, no additional user input is required for the Hessian evaluation and the

update may be performed automatically. Moreover, the numerical calculation of the Hessian

is only required for the final solution of each problem and not during the iterations of the

numerical solver of the optimization problems.

Similar to above, the solution accuracy for the intermediate problems that need to be

solved, has to be chosen with care. In the proposed extended homotopy scheme, this is

even more important, as an accuracy of the Lagrange multipliers that is too low can add

significant inaccuracies to the sensitivity equation (3.57). As a consequence, the linear system

may not be solved accordingly, reducing the quality of the updated solution.

Moreover, the numerical solution of the linear system in equation (3.57) may fail, either

because the matrix is really singular at the considered point, or because it is of bad numerical

condition. The latter may also be influenced by the solution accuracy that is chosen for the

intermediate optimization problems. If this happens, the proposed algorithm is falling back

to the basic homotopy scheme, using the previously generated solution as the initial guess for

the next problem directly. The right diagram in figure 5.1 illustrates the extended process

with the additional step added. An example application, demonstrating how the extended

homotopy process can accelerate the solution of an air race trajectory optimization problem,

can be found in section 11.6.

The idea of using sensitivities to update the solution of an optimal control problem has

also been used before for real time optimal control and non-linear model predictive control.

Besides others, Gerdts gives a detailed overview of the idea and the algorithms that may be

used within this context in [Ger12, p. 293 ff.]. Furthermore, Büskens uses sensitivity analysis

for real time optimal control in [Büs98].

5.2 Initial Guess Generation Using Rauch-Tung-Striebel

Smoothing

When considering the use of dynamic models of different fidelities for the solution of an optimal

control problem, these models may also be used for the determination of initial guesses. In

this section, an approach will be presented that uses an extended Rauch-Tung-Striebel

(RTS) smoother in order to approximate the solution of a high fidelity optimal control problem

based on a low fidelity solution for the same problem.

The process shown here can be summarized as follows: First, an initial guess for the

problem based on the simple model is generated. Second, the optimal control problem based

on this simple model is solved, before third, the determined optimal solution is transformed

122

Chapter 5: Improving Robustness by Initial Guess Generation

into an initial guess for a high fidelity optimization using filtering or smoothing techniques.

In this case a Rauch-Tung-Striebel (RTS) smoother is used for this purpose. In the

last step, the optimal trajectory for the problem using the high fidelity simulation model can

be calculated. One of the required assumptions is that at least a part of the states of the

simplified model appear in the more precise model, too.

The basic idea behind using the RTS smoother is to interpret the errors of the simplified

model (compared to the trajectory of the high fidelity model) as stochastic noise processes.

As the RTS smoother is an advancement of the well-known Kalman filter, it is based on

similar stochastic assumptions. These include that the dynamics of the model as well as

the measurements are influenced by normally distributed, white noise. By using information

generated by the simplified model as measurements for the high fidelity model, and by tuning

the parameters of the distributions, good smoothing results can be achieved as can be seen in

the example in section 11.7 (even though some assumptions are not strictly fulfilled). Another

interpretation of the RTS smoother in this application is to see it as a controller that tries

to keep the trajectory of the high fidelity model as close to the one of the simplified model

as possible. For this, all available trajectory information is used and the parameters of the

controller are tuned based on the stochastic ideas described before.

In [Fis11], Fisch uses models of different fidelity in order to solve a high fidelity air

race trajectory optimization problem, too. In his work he utilizes control algorithms and

simulations in order to generate initial guess for the next optimization from the results of the

previous one. Besides, a similar idea has been published in [BFH12], before. In the latter, an

Iterated Extended Kalman Filter has been used in combination with a Gauss Pseudospectral

Discretization Method for solving another air race trajectory optimization problem.

5.2.1 Extended Rauch-Tung-Striebel Smoother

In classical estimation theory three main problem types can be distinguished:

• In prediction tasks a future state should be estimated based on past measurements.

• In filtering tasks the current state of a system should be estimated based on measure-

ments up to the current time step,

• while in smoothing tasks the overall time history for a system should be estimated based

on measurements along the same time range.

The task to be accomplished here is clearly of the last type, as between two optimization

runs all information (system and measurements) is available and the estimation of all values

can be performed offline, not posing any runtime requirements. The extended RTS smoother

used here is an advancement of the classical Kalman filter that has initially been developed

for linear systems. Along this further development, two main improvements have been made,

where the smoother applies a forward and a backward run to the data, improving the quality

of the results by using all available information, while the extended version of a filter or

123

5.2 Initial Guess Generation Using Rauch-Tung-Striebel Smoothing

smoother can be used for non-linear dynamics. The extended variants are based on repeated

linearization of the underlying dynamic system. Besides, iterated extended versions of many of

the aforementioned algorithms exist, that iterate over the linearization of the output equations

in order to further improve the update step. In the approach presented here, a subset of the

states is considered as the model output resulting in linear output equations that remove the

benefits of iterated filtering or smoothing techniques. More details on prediction, filtering, and

smoothing can besides others be found in [Sim06, CJ12, HG16]. Additionally, Göttlicher

uses a similar smoothing approach in the paper [GH16].

In the underlying theory for the Kalman filter – or any of its derivatives – the deterministic

dynamics of the considered system are extended by a stochastic noise process w̄ of appropriate

dimensions that can be interpreted as model inaccuracies:

.
x = f(x, u) + Γ̄w̄ (5.4)

Here, Γ̄ is a constant mapping matrix of appropriate dimensions. Similarly, the output equa-

tions are extended by a noise process v̄, which is of the same size as the measurement vector:

y = h(x, u) + v̄ (5.5)

In these equations, w̄ and v̄ represent zero-mean, Gaussian white noise

w̄ ∼ (0, Q̄), v̄ ∼ (0, R̄) (5.6)

with power spectral densities of Q̄ and R̄, respectively. The derivations for the smoothing

algorithm used here have to be done in discretized time, requiring an explicit numerical in-

tegration algorithm (see section 3.2.4 for details) to be directly incorporated. The resulting

discrete dynamics are of the form:

xk = f̄(xk−1, uk−1) + Γk−1wk−1 (5.7)

yk = h(xk, uk) + vk (5.8)

Again, the noise processes wk and vk are zero-mean Gaussian with power spectral densities

of Qk and Rk:

wk ∼ (0, Qk), vk ∼ (0, Rk) (5.9)

It has to be minded that the covariance of these noise processes is related to the power

spectral density via the discretization time step. In the code that is used for performing

the data smoothing, the power spectral density of the signals is set and transformed to the

covariance accordingly. [Sim06, CJ12, HG16]

In the following, the double index notation is used to specify quantities appearing during

the smoothing. The first index specifies the particular point in time the current value is related

to, while the second index specifies the point in time to which the information that is used in

the estimation is related to. Consequently, in the forward run of the smoother both indices

are either equal or the second index is smaller than the first while in the backward run it is

124

Chapter 5: Improving Robustness by Initial Guess Generation

the other way round. The hat indicates an estimated value while the upper index specifies the

forward run f , or the backward run b.

As mentioned before, the smoother uses a repeated linearization of the system dynamics

and the output equations around the currently available estimates. In order to simplify the

notation, the following abbreviations are used:

Ak−1 =
∂f̄ (xk, uk)

∂xk

∣
∣
∣
∣
xk=x̂k−1|k−1

(5.10)

Ck =
∂h(xk , uk)

∂xk

∣
∣
∣
∣
xk=x̂k|k−1

(5.11)

The forward run of the RTS smoother is initialized using the initial estimates for the states

and the state covariance matrix P:

x̂
f
0|0 = x0 (5.12)

P
f
0|0 = P0 (5.13)

and is then performed according to the extended Kalman filter that is performing the state

estimation in an optimal way, meaning that it is minimizing the covariance matrix of the

estimated states. First, the prediction equations need to be applied in every step:

x̂
f
k|k−1 = f̄

(

x̂
f
k−1|k−1, uk−1

)

(5.14)

ŷ
f
k|k−1 = h

(

x̂
f
k|k−1, uk

)

(5.15)

P
f
k|k−1 = Ak−1P

f
k−1|k−1A

⊺
k−1 + Γk−1Qk−1Γ

⊺
k−1 (5.16)

Next, the update and correction equations are evaluated:

K
f
k = Pk|k−1C

⊺
k

(

CkPk|k−1C
⊺
k + Rk

)−1
(5.17)

x̂
f
k|k = x̂k|k−1 + Kk

(

yk − ŷk|k−1

)

(5.18)

P
f
k|k = (I − KkCk) Pk|k−1 (5.19)

In order to ensure that past and future information is used in the estimation process, the

forward filtering is combined with a backward filtering approach in a smoother. In a classical

Kalman smoother one would perform the forward filtering, then the backward filtering and

finally combine both results. At this point, the RTS smoother features a great performance

benefit as it reuses information from the forward run in a combined backward and smoothing

run. The equations to be evaluated during the backward run are:

Pb
k = P

f
k|k + Mk

(

Pb
k+1 − P

f
k+1|k

)

M
⊺
k (5.20)

x̂
b
k = x̂

f
k|k + Mk

(

x̂
b
k+1 − x̂

f
k+1|k

)

(5.21)

Mk = P
f
k|kA

⊺
k

(

P
f
k+1|k

)−1
(5.22)

Obviously, x̂
f
k|k, x̂

f
k+1|k, P

f
k|k, P

f
k+1|k, and Ak need to be saved during the forward run. [Sim06,

CJ12, HG16]

125

5.2 Initial Guess Generation Using Rauch-Tung-Striebel Smoothing

5.2.2 Optimization Process

In order to determine initial guesses for high fidelity trajectory optimization problems using

the approach based on the RTS smoother that is presented here, several steps have to be

performed.

First, for the determination of an initial guess for the simplified model, a geometric approach

or any other method (like the ones presented above) may be used. Assuming that the simplified

problem can be solved relatively easy, this first initial guess may be very rough. In the example

presented in section 11.7 a simple linear interpolation between the initial and the final values

for the states are used as initial guess. [BFH12]

Second, this simplified optimal control problem needs to be solved. Here, special care has

to be taken with respect to the chosen discretization grid to make sure that it is neither too

sparse nor too dense. In the first case, the smoothing task that needs to be performed next

may be infeasible. In the latter case, the solution of the simplified optimal control problem

may be computationally expensive or even impossible. In some cases, an interpolation of the

simplified results to a finer grid may help at this point.

In the next step, the result of the simplified solution – containing less states than required in

the full model – needs to be “extended” to an initial guess for the high fidelity model. For this

purpose, the RTS smoother presented before is utilized here. The underlying assumption is

that at least some of the states xS of the simplified model are also part of the states of the high

fidelity model xF . Then, these states (and possibly also the controls of the simplified model

uS) can be seen as the available measurements y for the high fidelity model. Consequently,

in a first step these measurements need to be calculated from the available data:

y = c(xS, uS) = h(xS, uS) (5.23)

Without loss of generality, the function c can be chosen such that the measurements y are a

subset of the state vector of the high fidelity model xF . In case the controls of the simplified

model match these of the high fidelity model, the high fidelity model fF (xF , uF) can directly

be used in the smoother equations, using the previously determined optimal controls as inputs.

If this is not the case, the high fidelity dynamic model and the state can be extended by some

zero dynamics for the controls:




.
xF
.
uF



 = f̃F =




fF

0



 (5.24)

In this formulation, the control inputs are mainly driven by the process noise and can conse-

quently be estimated by the smoother. To make sure that the estimation delivers the desired

results, the power spectral density of the noise processes w and v added to the system dy-

namics and the output equations have to be set up accordingly. In general, a high process

noise means that the dynamic model is not reliable, while high measurement noise indicates

that the measured output histories are not reliable. Here, only guidelines can be provided,

as – depending on the particular system – further tuning might be required. In the example

126

Chapter 5: Improving Robustness by Initial Guess Generation

presented in section 11.7, the coefficients for the power spectral density matrices have been

estimated based on the orders of magnitude of the values appearing in the problem as follows:

• The power spectral density of the process noise for the states that are also part of the

measurement is calculated from their order of magnitude times 103. This way, a good

following of the measurements can be achieved, even if the state dynamic equations

slightly differ.

• The power spectral density of the process noise for the states that are not part of the

measurement is calculated as their order of magnitude times 10−1 as for them the state

dynamics give the best guidance on their history.

• The power spectral density of the process noise for states representing the controls to be

estimated (featuring zero dynamics) is calculated from their order of magnitude times

106 as in this case the dynamic equations only have dummy character and the overall

history should be covered by the noise.

• The power spectral density of the measurement noise for the outputs is calculated from

the magnitude times 10−2 as they should be followed as closely as possible.

• The initial state covariance is estimated depending on the initial conditions of the optimal

control problem.

One benefit of this process that is worth mentioning is that the gradient information that

is required for the RTS smoother is also required for the optimization and hence available

anyway. Consequently, no additional differentiation of the equations is required.

The process described here works very well for optimization methods using full discretiza-

tion, because in this case the state histories appear as optimization parameters in the dis-

cretized problem directly. Therefore, they are important within the initial guess and need to

be calculated as accurately as possible. In contrary to that, the process does not speed up

the optimization using shooting methods (especially single shooting) because the state vector

only needs to be estimated at the beginning of the segments there (in case of single shooting

only once). For that reason a good initial estimate of the states is not very important when

using shooting methods.

In the last step of the overall process, the results from the smoother can be used as an

initial guess for the high fidelity optimal control problem. After solving this, the optimal state

and control histories result. In section 11.7 an air race trajectory optimization example can be

found, demonstrating the process using a simplified point mass simulation model and a high

fidelity rigid body simulation model.

Additionally, in other applications, the values calculated by the smoother may directly be

used to control the high fidelity system, depending on the requirements. In this case, solution

times can potentially be significantly decreased as no large scale, high fidelity problem needs

to be solved then.

127

Chapter 6

Improving Performance Based on

Modeling Alternatives

When trying to solve optimal control problems, one always has to consider the required fidelity

of the corresponding model. In case the model is not detailed enough, relevant effects cannot

be reproduced. Otherwise, in case a too detailed model is used, the resulting optimal control

problem may be highly non-linear and very large – consequently being hard to solve. In general,

the model fidelity is especially relevant when considering trajectories including highly dynamic

maneuvers, as otherwise simple models are normally sufficient and do not require much effort

on adaptations. In the examples presented in chapter 11 this is especially true as in the air

race related applications presented there, the aircraft are mainly operated at their limits.

Besides the pure model fidelity, that is for example the choice between a point mass

simulation model, a rigid body simulation model, or one with even more detailed subsystem

models, the selected way of modeling the dynamics of a system may strongly influence the

solution process of the problem. At this point, the issues from section 3.2.6 become relevant.

Therein, it is rehearsed that control variables that appear linearly in all relevant functions

of a problem may not be determined using optimal control theory. This also holds for the

discretized representation of the problem. The approach presented here first analyses the

different available models with respect to their suitability for optimal control problems and then

tries to overcome the issues found. It is specially tailored to aircraft models and consequently

to aircraft trajectory optimization problems.

The modeling fidelity as well as the way a dynamic system is represented in the optimal

control problem has been subject to research for several years now. In [CL98], a pure collocation

approach is compared to differential inclusion that tries to remove as many controls from the

optimal control problem as possible, replacing them by non-linear constraints in the state

derivatives. The control values need to be calculated a posteriori in this approach. Anyway,

the authors of the work suggest to not use differential inclusion instead of direct collocation,

except for cases where the direct collocation shows bad convergence behavior. The approach

presented here also tackles this issue and uses a similar idea.

129

Similarly, the work [KM03] concentrates on the solution of optimal control problems with

linearly appearing controls that additionally feature a parameter dependency. The authors give

second order sufficient conditions and present a sensitivity analysis – based on the results of

Fiacco – for the optimal bang-bang controls that may appear in such problems. Anyway,

the work does not give an overall solution to the issues appearing in combination with singular

arcs and bang-bang controls.

In [Fis11] different aircraft models are described that are consecutively used to solve an

optimal control problem. The main idea of the work is to start the solution process using a

simple point mass simulation model, before adding more and more complex rotational dynam-

ics. Between two consecutive optimizations, simulations are used to calculate the required

initial guesses. The work does not focus on linearly appearing controls and overcomes any

issues related to them by adding particular Lagrange cost functions that slightly alter the

solution.

Another approach for handling the issues coming from linearly appearing controls and

singular arcs is to introduce so-called stages for partitioning the problem over time, depending

on the properties of the controls. Whenever a control value either gets saturated or leaves

its limits, a new stage is introduced. The purpose of this is to get a representation of these

switching points that is as accurate as possible. In order to be able to use such an approach

without manual tuning, a structure detection algorithm is required. Such an algorithm is

presented by Schlegel in [SM06a] and extended in [SM06b]. Therein, the authors use a

three step procedure, starting with a first solution of the optimal control problem, before

detecting the arcs in the solution. Finally, the problem is re-parametrized and solved again as

a multistage problem. in [LZZ12] Li extends the idea from Schlegel and applies it to two

example problems.

Maurer approaches the problem of bang-bang and singular controls in his work [MTF14].

Therein, the authors use NUDOCCCS, AMPL (A Mathematical Programming Language) and

IPOPT to solve the respective problems. Besides, they introduce the points in time when the

solution changes from a singular arc to bang-bang or vice versa into the problem formulation

as individual parameters. Consequently, their approach is very similar to the multistage idea.

Again, the goal of the approach is to be able to exactly hit the switching times in order to

avoid chattering due to under- or overshoots.

The remainder of this chapter is structured as follows: First, the general ideas of the model

analysis are presented, before the point mass simulation model that is used in the examples of

chapter 11 is analyzed from an optimal control point of view. In the next section, the same

analysis is performed for the rigid body simulation model, using the aerodynamics presented

in section 11.1. Section 6.4 demonstrates a reformulation of the point mass simulation model

that significantly improves the convergence properties of the optimization. In the last section

of the chapter an approach for transcribing tabulated data by the use of multiple functions

and smooth fading is shortly presented.

130

Chapter 6: Improving Performance Based on Modeling Alternatives

6.1 Analysis of Simulation Models for Optimal Control

Recalling the extended Hamiltonian of a constrained optimal control problem from equation

(3.113):

H̃(x, λ, µ, u) = L(x, u) + λ⊺f(x, u) + µ⊺S(x, u) (6.1)

and the optimality conditions from equation (3.115):

H̃ ′
u(xopt, λopt, µopt, uopt) = 0 (6.2)

combined with the findings presented in section 3.2.6, one can see that the problem of singular

controls may appear whenever the Hessian of the Hamiltonian is singular in at least one of the

controls. This means that the Hessian of the Lagrange cost function, the Hessian of the

dynamic equations and the Hessian of the path constraints may not all be singular in any of

the controls in order to avoid these singularities in the solution. Furthermore, if the Hessian of

the simulation model is singular, it may be impossible to determine the optimal controls even

though a path constraint exists that is not singular in the controls, if this path constraint is

(at least partially) inactive.

Whenever the control that appears singular in the models is at one of its boundaries, in

most cases it is still possible to uniquely determine its value. For all controls that do only

appear linearly and still are not at their limits, singular arcs appear that may be hard to

calculate from a theoretical point of view. In practical applications, the convergence behavior

of the resulting numerical optimization problem is poor in this cases and strong chattering

appears in the solution. Depending on the dynamics, this chattering may also influence other

states and controls and may lead to an overall noisy solution.

In minimum time optimal control problems, the cost function may be represented by a

Lagrange cost function:

J =
∫ tf

t0

L(x, u)dt =
∫ tf

t0

1dt (6.3)

Consequently, the Lagrange cost function appearing in the Hamiltonian of the problem does

not depend on any of the controls:

L(x, u) = 1 (6.4)

Hence, this cost function L(x, u) is singular in the controls and does not add control de-

pendencies to the Hessian of the problem. Consequently, the issue mentioned above is not

resolved by this Lagrange cost function.

6.2 Analysis of the Point Mass Simulation Model

Based on the theoretical findings, the Hessian of the point mass simulation model will be

considered for this analysis, first. Figure 6.1 shows the sparsity patterns of the Jacobian and

the Hessian of the augmented point mass simulation model (the regular point mass simulation

131

6.2 Analysis of the Point Mass Simulation Model

Jacobian

Hessian

(x
) N

(y
) N

(z
) N

χ
K

γ
K

µ
K

V
K δ T

α
A

,C
M

D

β
A

,C
M

D

. µ
K

,C
M

D

δ T
,C

M
D

(x
) N

(y
) N

(z
) N

χ
K

γ
K

µ
K

V
K δ T

α
A

,C
M

D

β
A

,C
M

D

. µ
K

,C
M

D

δ T
,C

M
D

(x)N

(y)N

(z)N

χK

γK

µK

VK

δT

αA,CMD

βA,CMD
.
µK,CMD

δT,CMD

.
(x)N.
(y)N.
(z)N

.
χK
.
γK
.
µK
.

V K
.
δT

Figure 6.1: Sparsity patterns of the Jacobian and the Hessian of the augmented point mass

simulation model.

model with additional, linear roll dynamics, see section 11.1.3) that is used in the air race

examples from chapter 11.

It can clearly be seen that the Jacobian – left in figure 6.1 – has full rank with respect to

the controls, implying that all of them influence the dynamics. However, when looking at the

Hessian of the dynamic system – right in the figure – it can be seen that .
µK,CMD and δT,CMD

do not influence any of the second derivatives of the model dynamics, meaning that they enter

the model linearly. The sparsity pattern for the Hessian has been created by summing up the

sparsity patterns for all individual state derivatives. This is a valid representation as for this

analysis it does not matter which controls influence which state derivatives.

Moreover, the Jacobian shows that the states (x)N , (y)N and (z)N do not influence the

dynamic equations of the system. Such states are sometimes called ignorable variables in

optimal control theory. In the examples in chapter 11, it will be seen that the costates of

ignorable variables are – in accordance with the theory – constant. [Tor06]

The problems solved in chapter 11 are, besides the state dynamics, constrained in the load

factor in the (z)B direction. This load factor limit is represented by a path inequality constraint

in the optimal control problem. Figure 6.2 depicts the sparsity patterns of the Jacobian and

the Hessian of the constraint equation.

The figure shows that the relevant controls .
µK,CMD and δT,CMD do not influence the path

constraint. Consequently, the singularity in the Hessian of the Hamiltonian of the problem is

not removed by the path constraint. It is important to note that an inequality path constraint

can anyway only remove the singularity along segments of the trajectory where it is active.

Concluding the analysis in this section, it is expected to experience bad convergence prop-

erties and long convergence times for minimum time problems using the model and constraint

132

Chapter 6: Improving Performance Based on Modeling Alternatives

Jacobian

Hessian

(x
) N

(y
) N

(z
) N

χ
K

γ
K

µ
K

V
K δ T

α
A

,C
M

D

β
A

,C
M

D

. µ
K

,C
M

D

δ T
,C

M
D

(x
) N

(y
) N

(z
) N

χ
K

γ
K

µ
K

V
K δ T

α
A

,C
M

D

β
A

,C
M

D

. µ
K

,C
M

D

δ T
,C

M
D

(x)N

(y)N

(z)N

χK

γK

µK

VK

δT

αA,CMD

βA,CMD
.
µK,CMD

δT,CMD

(nz)B

Figure 6.2: Sparsity patterns of the Jacobian and the Hessian of the path constraint for the

augmented point mass simulation model.

formulation presented here. However, as minimum time trajectories require maximum speed,

one can imagine that from a physical point of view the thrust lever position δT,CMD is expected

to remain at its maximum most of the time. Consequently, singular arcs are mainly anticipated

in the bank rate .
µK,CMD which is likely not at its boundaries all the time. Matching results

can be found in section 11.2.

6.3 Analysis of the Rigid Body Simulation Model

The analysis that has been performed for the point mass simulation model above can also

be conducted for the rigid body simulation model. Of course, the same conditions have to

hold in order to be able to construct an optimal control problem that shows good convergence

behavior based on the model. Figure 6.3 shows the Jacobian of the rigid body simulation

model on the left and its Hessian on the right. Again, it can be seen that all states – except

the position states – and all controls influence the state derivatives. However, in this model,

the thrust lever position is the only control that appears linearly in the dynamics. Using the

same argumentation as above, no problems are anticipated from the linear thrust dynamics as

the thrust lever is expected to remain in full throttle position almost all the time. Matching

results can be found in section 11.3.

Figure 6.4 shows the sparsity patterns of the Jacobian and the Hessian of the load factor

constraint for the rigid body simulation model. It can be seen that in this formulation the

controls ξCMD, ηCMD, and ζCMD directly influence the path constraint non-linearly.

The convergence of an optimal control problem using a dynamic model whose Hessian

has full rank in the controls may be bad even though the sparsity pattern looks promising.

133

6.3 Analysis of the Rigid Body Simulation Model

Jacobian

Hessian

(x
) N

(y
) N

(z
) N

χ
K

γ
K

µ
K

V
K

α
A

β
A

p K q K r K δ T
ξ C

M
D

η C
M

D

ζ C
M

D

δ T
,C

M
D

(x
) N

(y
) N

(z
) N

χ
K γ
K

µ
K

V
K

α
A

β
A

p K q K r K δ T
ξ C

M
D

η C
M

D

ζ C
M

D

δ T
,C

M
D

(x)N

(y)N

(z)N

χK

γK

µK

VK

αA

βA

pK

qK

rK

δT

ξCMD

ηCMD

ζCMD

δT,CMD

.
(x)N.
(y)N.
(z)N.
χK.
γK.
µK.
V K.
αA.
βA.
pK.
qK.
rK.
δT

Figure 6.3: Sparsity patterns of the Jacobian and the Hessian of the rigid body simulation

model.

Jacobian

Hessian

(x
) N

(y
) N

(z
) N

χ
K

γ
K

µ
K

V
K

α
A

β
A

p K q K r K δ T
ξ C

M
D

η C
M

D

ζ C
M

D

δ T
,C

M
D

(x
) N

(y
) N

(z
) N

χ
K γ
K

µ
K

V
K

α
A

β
A

p K q K r K δ T
ξ C

M
D

η C
M

D

ζ C
M

D

δ T
,C

M
D

(x)N

(y)N

(z)N

χK

γK

µK

VK

αA

βA

pK

qK

rK

δT

ξCMD

ηCMD

ζCMD

δT,CMD

(nz)B

Figure 6.4: Sparsity patterns of the Jacobian and the Hessian of the path constraint for the

rigid body simulation model.

The reason for this may be bad numerical conditioning of the Hessian resulting in a problem

that is solvable from a theoretical point of view, but remains problematic numerically. The

numerical conditioning of the matrix cannot be anticipated from the sparsity pattern but has

been verified to be unproblematic in the model considered here. However, during the studies

it turned out that the control surface drag is one critical factor for good numerical condition

of the Hessian, and consequently important for good convergence. More details can be found

in section 11.3.

134

Chapter 6: Improving Performance Based on Modeling Alternatives

6.4 Reformulation of the Point Mass Simulation Model

to Avoid Linear Controls

Considering the issue of singular arcs in the augmented point mass simulation model, the most

relevant control is .
µK,CMD. The only purpose of the linear roll dynamics

.
µK =

.
µK,CMD (6.5)

added to the model in section 11.1.3 is, to be able to limit the roll rate of the aircraft. When

controlling the kinematic bank angle µK directly, it may jump, resulting in unrealistic optimal

trajectories. Especially in the air race scenarios considered in the examples in chapter 11,

where the aircraft have to fulfill bank angle constraints when passing the race gates, jumps in

the bank angle are likely to appear in the solutions.

In [Bet09, p. 172], Betts presents one approach to handle problems with rate constraints

in the controls that is favorable to the approach discussed above, as it does not introduce

linear controls. Even though, from a theoretical point of view, it may seem that there is no

difference between adding a new state µK to the dynamics (equation (6.5)) and constraining

the associated control
.
µK,CMD,min ≤ .

µK,CMD ≤ .
µK,CMD,max (6.6)

or constraining the control derivative without adding a state equation
(

d

dt
µK,CMD

)

min

≤ d

dt
µK,CMD ≤

(

d

dt
µK,CMD

)

max

, (6.7)

for optimal control problems the two formulations are not equal.

When applying the approach presented by Betts to the augmented point mass simulation

model in the discretized problem, the control µK,CMD needs to be constrained by:

(

d

dt
µK,CMD

)

min

≤ µK,CMD(tk+1) − µK,CMD(tk)

tk+1 − tk

≤
(

d

dt
µK,CMD

)

max

(6.8)

When doing so, the Jacobian and the Hessian of the dynamic model become even smaller

than before due to the removed state. Figure 6.5 shows the sparsity patterns of the Jacobian

and the Hessian of this model formulation. It can be seen that now only the thrust lever

position appears linearly in the problem.

Similarly like before, figure 6.6 shows the sparsity patterns of the Jacobian and the Hes-

sian of the load factor path constraint. Here, nothing (except the dimensions) has changed.

Anyway, the constraint is not that important here, as the Hessian of the Hamiltonian is not

singular in the control µK,CMD in this formulation, anyway.

The results in section 11.5 show that the numerical convergence of the optimal control

problem is improved significantly compared to the naive approach of adding an additional state

equation. Consequently, convergence time and the number of iterations required to solve the

problems can be reduced.

135

6.5 Smooth Data Modeling Using Hyperbolic Tangent Functions

Jacobian

Hessian

(x
) N

(y
) N

(z
) N

χ
K

γ
K

V
K δ T

α
A

,C
M

D

β
A

,C
M

D

µ
K

,C
M

D

δ T
,C

M
D

(x
) N

(y
) N

(z
) N

χ
K

γ
K

V
K δ T

α
A

,C
M

D

β
A

,C
M

D

µ
K

,C
M

D

δ T
,C

M
D

(x)N

(y)N

(z)N

χK

γK

VK

δT

αA,CMD

βA,CMD

µK,CMD

δT,CMD

.
(x)N.
(y)N.
(z)N

.
χK
.
γK
.

V K
.
δT

Figure 6.5: Sparsity patterns of the Jacobian and Hessian of the basic point mass simulation

model.

Hessian

Jacobian

(x
) N

(y
) N

(z
) N

χ
K

γ
K

V
K δ T

α
A

,C
M

D

β
A

,C
M

D

µ
K

,C
M

D

δ T
,C

M
D

(x
) N

(y
) N

(z
) N

χ
K

γ
K

V
K δ T

α
A

,C
M

D

β
A

,C
M

D

µ
K

,C
M

D

δ T
,C

M
D

(x)N

(y)N

(z)N

χK

γK

VK

δT

αA,CMD

βA,CMD

µK,CMD

δT,CMD

(nz)B

Figure 6.6: Sparsity patterns of the Jacobian and Hessian of the path constraint for the basic

point mass simulation model.

6.5 Smooth Data Modeling Using Hyperbolic Tangent

Functions

Whenever the models in an optimal control problem should represent a real system as close

as possible, simple algebraic relationships are often not sufficient. Especially when the model

has been determined empirically or by physical experiments, tabulated data results that needs

to be incorporated in the dynamics, the constraints, or the cost function.

136

Chapter 6: Improving Performance Based on Modeling Alternatives

To be able to use gradient based optimization algorithms together with tabulated data,

the data needs to be approximated by continuous and differentiable descriptions. In general,

several approaches exist that may be used for the approximation or interpolation of such

datasets. These methods include Spline interpolation, like e. g. presented in [Ger12, p. 222],

where linear interpolation may be seen as a special case thereof, the Shepard Interpolation like

in [She68, Ren88], and many more.

The basic idea of the approach presented here is to use hyperbolic tangent functions to

fade between different piecewise base functions, and hence create a continuously differentiable

function that may be used with gradient based algorithms. The general idea of the method is

depicted in figure 6.7 where in the diagram at the top some data measurements are plotted

f
(x

)
s(

x
)

x

f
(x

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0

0.5

1

0

0.2

0.4

0.6

Figure 6.7: Illustrative example for the hyperbolic tangent data modeling. The top graph

shows the data measurements and the three base functions. The second plot shows the

transition functions based on the tanh. The third graph shows the combined result compared

to the piecewise base functions.

137

6.5 Smooth Data Modeling Using Hyperbolic Tangent Functions

in gray. Now, the red, yellow, and purple lines have been identified as piecewise fits to the

data, either manually by the user or by a fitting or approximation algorithm. These fits may

be represented by the functions

f1(x), f2(x), . . . , fn(x) (6.9)

that are continuous and continuously differentiable. Furthermore, the transition from one

function to the next takes place at the transition points:

x1 < x2 < · · · < xn−1 (6.10)

The base functions should be continuous at these transition points, requiring

f1(x1) = f2(x1), f2(x2) = f3(x2), . . . , fn−1(xn−1) = fn(xn−1) (6.11)

to hold. In case these conditions are not fulfilled, the hyperbolic tangent functions will create

more or less smooth transitions between the base functions, depending on the parameter lk

in equation (6.12). The fading from one function to the next is modeled using the transition

function

sk(x) =
(

1

2
+

1

2
· tanh (lk · (x − xin,k))

)

·
(

1

2
− 1

2
· tanh (lk · (x − xout,k))

)

(6.12)

where xin,k is the point when a function becomes active and xout,k is the point where it

becomes inactive again. The steepness parameter lk can be tuned for each application, where

values too high result in sharp edges of the final function, while values too low smoothen out

details. The second graph in figure 6.7 shows the transition functions that are used to fade

from one base function to the next in the example.

When combining the different base functions and the transition functions, one overall

function results:

f(x) = f1(x) ·
(

1

2
− 1

2
· tanh (l1 · (x − x1))

)

+ f2(x) ·
(

1

2
+

1

2
· tanh (l2 · (x − x1))

)

·
(

1

2
− 1

2
· tanh (l2 · (x − x2))

)

+ f3(x) ·
(

1

2
+

1

2
· tanh (l3 · (x − x2))

)

·
(

1

2
− 1

2
· tanh (l3 · (x − x3))

)

+ . . .

+ fn(x) ·
(

1

2
+

1

2
· tanh (ln−1 · (x − xn−1))

)

(6.13)

Here, the fade-in term of the first and the fade-out term of the last function have been omitted

for simplicity. The last graph in figure 6.7 shows the combined function as an overlay over

the piecewise defined base functions. It can be seen that the approximation based on the

hyperbolic tangent fits the piecewise functions quite closely, even at the transition points.

The main benefit of the resulting function is that it can be differentiated analytically with

respect to the input parameter x. When using these functions in the dynamic model, the

138

Chapter 6: Improving Performance Based on Modeling Alternatives

constraints or the cost function of an optimal control problem, the analytic evaluation of the

gradient remains possible. Figure 6.8 depicts the derivative of the function from the illustrative

example. It can be seen that the function is continuously and smoothly differentiable and no

large derivative values appear. All these properties are beneficial for the solution of optimal

control problems.

x

df d
x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1

0

1

2

3

Figure 6.8: Derivative of the hyperbolic tangent data modeling example.

The aerodynamics of the example presented in section 11.1.1 use the idea presented here

for modeling the dependency of the lift coefficient with respect to the angle of attack in

equation (11.4). Therein two constant values are faded using hyperbolic tangent functions.

In the example, the fading between the two functions is intentionally used for shaping the

resulting relationship.

The principle presented here may be extended to multi dimensional data by using multi

dimensional base functions and multi dimensional fading functions. For the multi dimensional

fading functions, different methods may be applied:

On the one hand, the fading may be performed as a combination of fading functions in

the different coordinate dimensions as

sk(x) =
(

1

2
+

1

2
· tanh(l1 · (x1 − x1,k))

)

·
(

1

2
− 1

2
· tanh(l1 · (x1 − x1,k+1))

)

·
(

1

2
+

1

2
· tanh(l2 · (x2 − x2,k))

)

·
(

1

2
− 1

2
· tanh(l2 · (x1 − x2,k+1))

)

· . . .

·
(

1

2
+

1

2
· tanh(ln · (xn − xn,k))

)

·
(

1

2
− 1

2
· tanh(ln · (xn − xn,k+1))

)

(6.14)

where xp represents the different coordinate dimensions of x ∈ Rn and xp,k represent the re-

spective transition points. Figure 6.9 shows an exemplary two dimensional switching function,

partitioning the area [0, 1] × [0, 1] in five regions. Each of the regions may contain another

base function.

On the other hand, the transition fading may be performed using a circular shape

sk(x) =
1

2
+

1

2
· tanh (lk · ‖x − xc,k‖ − rk) (6.15)

139

6.5 Smooth Data Modeling Using Hyperbolic Tangent Functions

x1

x
2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 6.9: Transition function for multi dimensional hyperbolic tangent modeling.

based on the Euclidean distance, where lk controls the steepness, xc,k is the center, and rk is

the radius of the fading region. In this formulation, one base function should be added to the

overall function, filling the gaps that may possibly exist between two other functions due to

the circular fading shapes.

In order to best determine the base functions, the switching points and the steepness of

the switching functions, an optimization problem may be set up, fitting the parameters of a

user defined ansatz to the available data. For that, a least squares approach may be used in

combination with a gradient based optimization approach.

140

Chapter 7

Improving Performance by the

Exploitation of Problem Sparsity

As already mentioned in section 3.2.4, the sparsity of a discretized optimal control problem

is of utmost importance for the solution process, when using direct discretization techniques.

The main reason for this is that especially efficient algorithms for the solution of sparse nu-

meric optimization problems exist that are also available in commercial solvers. In this context

sparse problem means that the matrices characterizing the structure of the respective opti-

mization problem – like the Jacobian and the Hessian – are sparse, implying that they contain

a significant relative amount of structural zeros, compared to a small relative amount of non-

zero entries. The sparsity of a problem is characterized by the pattern of zero and non-zero

entries in the corresponding matrices, often described by logical matrices also called sparsity

pattern. In the following, several generalized and exemplary sparsity patterns will be shown,

always depicting non-zero entries as points, and leaving zero entries blank.

In this chapter, the properties of an optimal control problem are examined with respect to

sparsity. The goal is to exploit this information to the maximum extent in order to improve the

performance – and also the robustness – of the overall solution process. In this section, mostly

the sparsity of the Jacobian of the problems is considered, as the structure of the Hessian is

closely related to it, anyway. If one wants to exploit the sparsity of an optimal control problem,

each aspect of the problem formulation, including the control parametrization, the model

dynamics, the cost function, the constraints, the discretization scheme, and the numerical

optimization method have to be minded. As shown in section 7.3, the discretization scheme

– be it shooting or collocation – has a strong influence on the sparsity of the problem.

In [Bet09, p. 51 ff.], Betts gives an overview of large and sparse non-linear programming.

First, he defines large problems as those with dimensions larger than approximately 1000.

Besides, he calls problems sparse if they feature less than 1% of non-zero entries in the Jacobian

or the Hessian. The next issue considered in the book is the calculation of sparse Jacobian

and Hessian information using finite differences. As FALCON.m uses analytic differentiation,

this issue does not appear in the examples presented here. Anyway, sparsity information has

to be calculated and supplied to the numerical solver, too.

141

7.1 General Problem Sparsity

The solution algorithms for large and sparse numerical optimization problems are discussed

in the next sections of [Bet09, p. 54 ff.] in detail. Besides a description of algorithms for solving

sparse QP subproblems, merit functions, and a sparse Hessian approximation, Betts gives an

overview over a completely sparse SQP algorithm. Overall, the most important conclusion that

can be taken from his work is that large optimal control and numerical optimization problems

can be solved a lot easier (sometimes even at all) if being formulated sparse.

Consequently, in section 4.6 of his book [Bet09], Betts focuses on the sparsity of the

non-linear programming problem that results from a discretized optimal control problem. After

introducing a standard formulation for the defect constraints in the discretized problem, two

reformulations for the trapezoidal scheme and two for the Hermite-Simpson discretization

are presented. All of them focus on a reduced number of model evaluations when using finite

differences but do not yield a benefit when using analytic differentiation.

Fisch discusses the inherent sparsity properties of different control parameterizations in

[Fis11] and illustrates the block structure of a multiple shooting algorithm. Thereby, he uses

another sorting logic for the states and the controls as the one implemented in FALCON.m,

resulting in two triangular blocks per segment compared to one larger block here.

Lenz solves several periodic optimal control problems in his PhD thesis, using multiple

shooting as well as full discretization methods. In [Len15, p. 138], he shows the sparsity

structures of one of his exemplary problems for a collocation and a multiple shooting scheme.

The triangular structure that becomes visible in the work of Fisch cannot be seen in the

examples of Lenz as he does not consider any path constraints. For the collocation approach,

a structure similar to the one described here results.

The remainder of this chapter is structured as follows: First, a general analysis of an optimal

control problem that is solved using a direct discretization method with respect to problem

sparsity is presented. Afterwards, local influences on the sparsity structure are discussed,

before a global picture is drawn in section 7.3. Finally, some special details for multi aircraft

optimization problems like the ones presented in chapter 10 are discussed in section 7.4.

7.1 General Problem Sparsity

Figure 7.1 shows the structure of the elements used in the solution process of an optimal

control problem when applying a full discretization scheme. (For more details on full dis-

cretization see section 3.2.4 and the references therein). In order to be able to fully exploit

the sparsity in the process, every element therein needs to be considered. Any element that is

not respecting problem sparsity, diminishes the overall problem sparsity and consequently the

solution performance (with more or less strong influences).

Within FALCON.m all sparse matrices are either stored using the sparse matrix repre-

sentation of MATLAB or by storing the data in RCV (row-column-value) format manually,

depending on what is more efficient in every particular situation.

The overall sparsity of the discretized problem is constituted by the gradient matrix ∂f
∂z

142

Chapter 7: Improving Performance by the Exploitation of Problem Sparsity

u .
x

c k

C

J

f

∂f
∂z

z

xu
k

control

discretization

model

dynamics

discretization

scheme

algebraic

constraints

cost

function

numeric

optimization

sorting and

indexing

sorting and

indexing

Figure 7.1: Overview of optimization process, listing all elements relevant for problem sparsity.

(and the Hessian of the corresponding Lagrangian) that is characterized by the definitions of

the vectors z and f , entering end exiting the numeric optimization algorithm as can be seen

in the lower center of figure 7.1. In order to be able to profit from the sparsity of the problem,

the numerical algorithm used needs to be able to exploit the problem sparsity applying means

like those described in [Bet09, p. 54 ff.]. For doing so, the sparsity pattern of the overall

problem needs to be determined and made available to the numeric optimization algorithm.

Commercial solvers that are especially tailored to the solution of sparse numerical optimization

problems, like e. g. IPOPT [WB06], SNOPT [GMS02], SOCS [Bet09], and WORHP [BW13],

feature an interface for specifying this sparsity pattern.

All blocks printed in dark blue in figure 7.1 influence the sparsity of the overall problem

and may consequently be used to shape it. Therein, the sorting and indexing of the vectors

z and f do not influence the number of non-zeros within the Jacobian and Hessian of the

problem, but just their positions within (and the shape of) the sparsity pattern. They may

be used to bring all elements as closely to the diagonal of the gradient matrix as possible,

resulting in good numerical properties for the optimization. Within FALCON.m, all elements

are sorted by their order of appearance with respect to simulation time within the phases,

leading to a distribution of the non-zero values close to the diagonal of the gradient when

assuming causality of the underlying dynamic system (see also section 4.6).

The next aspect that is important for the sparsity of the problem is the discretization

scheme used for the controls. Thereby, the sparsity of the discretized numerical problem

changes, depending on how the control histories are calculated from the control discretization

nodes that are part of the optimization parameter vector z. The control histories are then

required for the collocation (or the simulation) of the model dynamics and the evaluation of

the constraints and the cost. More details on the control discretization can be found in section

3.2.4, while more on its sparsity can be found in section 7.2.

143

7.2 Local Sparsity Considerations

Having the control values calculated from the control discretization nodes, the cost func-

tion, the model dynamics, and the constraint functions can be evaluated, also influencing the

sparsity. Considering the latter two, they can mostly be handled point-wise with respect to

the simulation time as the sparsity pattern of these functions is usually equal for every point

in time to that they apply. Further discussion on these local sparsities can be found in the

next section.

Last, the discretization scheme determines how the aforementioned local sparsities are

combined to the global sparsity ∂f
∂z

of the numerical optimization problem. The general dis-

cretization schemes are presented in more detail in section 3.2.4, while sparsity considerations

for the methods can be found in section 7.3.

7.2 Local Sparsity Considerations

As already mentioned, the global sparsity of the gradient ∂f
∂z

is influenced by all local sparsities

of the elements appearing in the problem formulation (see figure 7.1). In this section, first the

control parametrization that has been rehearsed in section 3.2.4 is analyzed with respect to

its sparsity properties. Afterwards, the sparsity of the model dynamics and the other functions

appearing in the problem are discussed.

7.2.1 Sparsity of the Control Discretization

In [Ger12, p. 222], Gerdts reviews the use of B-splines for control parametrization as they

can be constructed and evaluated comparably easily. Besides, one of their most beneficial

properties for optimal control is the fact that they have local support, meaning that a change

in a coefficient for one base function does only influence the control history within a limited

range in time. However, the lower the order of the B-spline, the smaller the range that is

influenced by one coefficient and the sparser the mapping. Figure 7.2 shows the base functions

of a linear, second order B-spline in the top left figure and those of a third order, quadratic

one in the top right figure, both using five grid nodes. The sparsity patterns of the gradients

of these mappings are plotted below the base functions. The considered mapping is

uk = u(tk) = ūp · Bp(tk) (7.1)

where uk is the control value at the time tk and ūp is the coefficient corresponding to the p-th

base function Bp(tk). It can be seen that the second order B-spline features a very narrow

local support, as no more than two segments are influenced by each base function and no

more than two base functions are active at any time. The sparsity pattern that can be seen

in the bottom left plot in figure 7.2 belongs to the gradient ∂uk

∂ūp
of the second order B-spline.

The narrow local support is reflected by the sparse band diagonal structure. For the sake of

better readability, in the sparsity plot only 21 nodes for the output discretization have been

considered. When using third order B-splines, the base functions become wider and spread

144

Chapter 7: Improving Performance by the Exploitation of Problem Sparsity

over three of the four intervals of the discretization, with up to three base functions being

active at the same point in time. These facts can also be seen in the sparsity pattern in the

bottom right plot in the figure.

Second order B-spline

nz = 37

Third order B-spline

nz = 56

0 5

0 0.25 0.5 0.75 1

0 5

0 0.25 0.5 0.75 1

0

5

10

15

20

0

0.5

1

0

5

10

15

20

0

0.5

1

Figure 7.2: Sparsity patterns of different control interpolation schemes based on B-splines

(part 1). The top figures show the base functions for the B-spline parametrization, the bottom

figures show the sparsity patterns of their gradients.

Figure 7.3 shows that the situation gets even worse, from a sparsity point of view, when

using fourth and fifth order B-splines. For the fourth order version (left in the plot), the base

function in the center already affects all segments of the discretization. It can be seen that in

the corresponding sparsity pattern, the fourth column contains only non-zero entries – except

for the first and last discretization point. In the fifth order case, the two base functions in

the center affect the whole control history. Besides, it can be seen that the definition of

B-splines requires more base functions for higher order even though the same grid is used. In

the examples shown here, the number of base functions ranges from five for the second order

B-splines to eight for the fifth order B-splines.

However, when using far more discretization points, the effects reduce significantly, because

the gradient dimensions increase. Anyway, one of the motivations for higher order control

parametrizations is a reduction of required grid points. Then, the reduced problem size comes

at the cost of decreased sparsity.

145

7.2 Local Sparsity Considerations

Fifth order B-spline

nz = 75

Fourth order B-spline

nz = 94

0 5

0 0.25 0.5 0.75 1

0 5 10

0 0.25 0.5 0.75 1

0

5

10

15

20

0

0.5

1

0

5

10

15

20

0

0.5

1

Figure 7.3: Sparsity patterns of different control interpolation schemes based on B-splines

(part 2). The top figures show the base functions for the B-spline parametrization, the bottom

figures show the sparsity patterns of their gradients.

When using another control parametrization not based on B-splines the particular sparsity

pattern changes. However, the basic statements remain valid. One may for example think

about using impulse responses from upstream systems (like control surface actuators) as base

functions for the control discretization. Anyway, in this case, base functions with global

support result in a discretization where a change at one point in time influences the complete

control history (or at least the control history from this point on). When using a control

parametrization that does not feature local support, the sparsity pattern of the respective

mapping is dense. Depending on the application and the numeric optimization algorithm

used, a simpler and more local control parametrization – like linear interpolation – with more

grid points may then show better performance than a higher order interpolation with less

nodes, even though both feature comparable smoothness properties.

7.2.2 Model and Constraint Sparsity

Next, looking at the model dynamics, the path constraints, and the point constraints, local

sparsity patterns of the respective functions may be calculated. Figures 6.1–6.6 in chapter

6 show the sparsity patterns of the different model formulations and the load factor path

146

Chapter 7: Improving Performance by the Exploitation of Problem Sparsity

constraint used in the air race examples, while figure 10.2 shows the sparsity pattern of the

model used in the air traffic management example. For the models and the path constraints,

local sparsity patterns may be calculated from one time step that can then be incorporated in

the overall problem sparsity pattern by using the chain rule and the indexing as described in

the next section. Contrary, for any other constraint function it may be required to calculate

the overall sparsity pattern directly, as any variable appearing in the parameter vector z may

be connected to any constraint value in f , in this case.

In FALCON.m all local sparsity patterns are calculated automatically, when using the

automatic differentiation feature.

7.3 Global Sparsity Considerations

In order to obtain the global sparsity pattern to be supplied to the numerical optimization

algorithm from the local sparsity information, data about the discretization scheme and the

sorting and indexing of the discretized problem is required. In the examples presented in

chapters 10 and 11, it turned out that in some cases a larger but more sparse optimization

problem can be solved more robustly and faster than a smaller but denser problem. In this

section, the sparsity properties of the numerical discretization method (see also section 3.2.4)

and the effects of sorting and indexing (see also section 4.6) will be described in more detail.

In order to build the global sparsity pattern from the local ones, the chain rule needs to be

applied to the defect equations, combining these two levels. Figure 7.4 shows an exemplary

sparsity pattern that results from a single shooting algorithm when all values in z and in f are

sorted with respect to their time of appearance as described in section 4.6. Along the vertical

dimension of the Jacobian matrix, first the cost function J appears, followed by all constraints

also sorted as described in section 4.6. Last, all constraints that combine more than one point

in time appear. Due to the causality of the dynamic systems considered here, no control that

becomes effective at one point in time affects any of the states or constraints in the past.

The other way round, no constraint is affected by any state or control of a future point in

time. Figure 7.4 shows how this results in a lower triangular structure for the single shooting

discretization.

During the calculation of the global sparsity pattern from the local ones, a “fill up” of the

local sparsity may happen in each block (fully or partially) due to the repeated application of

the chain rule along the simulation time. This effect depends on the numerical integration

algorithm used.

In figure 7.5 the sparsity pattern for a multiple shooting example can be seen. Now, the

different multiple shooting segments are decoupled, resulting in structural zeros in the lower

triangular part of the matrix, too. Here, the structure of the problem becomes visible even

clearer: The columns appearing on the left represent global parameters, like initial and final

simulation time that influence the whole trajectory and consequently almost all constraints.

The three spots in the figure, where the triangles of the four multiple shooting segments

147

7.3 Global Sparsity Considerations

0

0

0

000000000000
11

1

11

2

2
3

3
4

4 5 6 7 8 9
nz =

Figure 7.4: Sparsity of an illustrative example problem using single shooting. [Hol+15]

overlap vertically, represent the initial multiple shooting states. These influence the simulation

in the following phase as well as the final defect of the preceding one. When comparing figure

7.5 to figure 7.4 (which correspond to the exact same optimal control problem), it can be seen

how the dimensions of the problem slightly increased – due to the addition of the multiple

shooting initial states and the defect constraints – while at the same time the number of

non-zero entries in the matrix decreased strongly from 1341 to 534.

0

0

0

0

0000000

1

1

2

2
3

3

4
4

5
6 8

nz =

Figure 7.5: Sparsity of an illustrative example problem using multiple shooting. [Hol+15]

If a full discretization scheme is used for solving the same problem once more, the sparsity

of the gradient matrix rises even further as can be seen in figure 7.6. Now, along the horizontal

dimension of the matrix, the parameters, the states, and the controls are listed (again sorted

by time of appearance), while on the vertical dimension each path constraint is followed by

a collocation defect, connecting the states and controls of one point in time to the next.

In this example a trapezoidal collocation scheme is used. Here, the size of the problem

increased dramatically in both dimensions, with the number of structural non-zeros reaching

approximately the same level as in the single shooting case. Anyway, as the interconnections

between the optimization parameters and the constraints are much sparser, the problem may

be solved comparably fast and robust by current sparse numerical solvers.

Similar to the sparsity of the different control discretizations in section 7.2, the sparsity

of higher order collocation schemes may be not as high as that of lower order ones. When-

148

Chapter 7: Improving Performance by the Exploitation of Problem Sparsity

00

0

00

0

0

0000000000
1

1

1

11
2

2

22 3
4 5

5

5

555
nz =

Figure 7.6: Sparsity of an example problem using full discretization. [Hol+15]

ever more than two state and control values influence a defect, this connection also becomes

visible in the sparsity pattern. In [Bet09, sec. 4.6.5, sec. 4.6.6], Betts shows an example

demonstrating how the sparsity of a Hermite-Simpson collocation scheme can be increased

by adding additional optimization parameters for the intermediate states and additional con-

straints for the defects. In section 4.6.7 of the same work he generalizes the idea to k-stage

Runge-Kutta schemes.

7.4 Sparsity in Multi System Problems

In case multiple systems need to be optimized on the exact same grid, the model dynamics need

to be combined. The approach used in the examples in chapter 10 combines the individual

aircraft simulation models to one large simulation model by concatenating their state and

control vectors.

In this case, the sparsity patterns of the combined gradient matrices can also be calculated

by combining the sparsity patterns of all individual systems. Figure 7.7 shows the generalized

principle. At the very left of the figure, a general sparsity pattern for one dynamic model

or one constraint can be seen. In the center, the combination of all individual systems (in

this case five) can be seen, resulting in a large sparsity pattern. After this step, the regular

discretization – as described in the section above – is performed. When using a collocation

149

7.4 Sparsity in Multi System Problems

scheme, a sparsity pattern like the one illustrated in the very right diagram of figure 7.7 results.

Depending on the collocation scheme used, the sparsity pattern may be copied in this second

step, or a mapping may be needed (chain rule).

Local Sparsity Multi Model Sparsity Problem Sparsity

Figure 7.7: From local to global sparsity patterns in multi system optimization problems.

Using the aforementioned principle, a highly block diagonal model structure results, also

leading to a high sparsity of the overall discretized problem. When looking at the collocation

defects from the combined dynamics, the block diagonal structure of the different participants

in the problem remains preserved, as no interference between the dynamics may appear, in-

dependent of the collocation scheme (the same holds for shooting in this case). The only

connection between different systems in the scenario is established through separation and

safety constraints that combine states and controls of multiple participants.

A more detailed explanation based on the example can be found in section 10.2.9, and

there especially in figures 10.2–10.5 and in table 10.4. Besides, similar considerations have

previously also been published in [Bit+15, Bit+16].

150

Chapter 8

Improving Robustness by the Use of

Combined Transcription Methods

One of the issues appearing in optimal control problems with high fidelity simulation models are

different time scales that may be inherent to the model, resulting in stiff differential equations.

Especially in mechanical systems, in many cases, fast dynamics can be recognized as internal

(small scale) dynamics, while slower dynamics often represent the more visible (large scale)

outer part of the motion of a body. If one is not interested in a detailed high fidelity solution

of such an optimal control problem, the internal and fast dynamics may be considered to

be decayed. Hence, they can be removed from the dynamic equations and may be replaced

by analytic relationships. The resulting dynamic system features less states and is not stiff

anymore.

If such simplifications are not acceptable, the full dynamics have to be taken into account.

Then, the selection of an appropriate discretization grid is driven by the fast – yet small scale

– dynamics that hardly influence the overall results. Consequently, a very fine discretization

grid is required for all states in the problem, making the solution computationally expensive.

As mentioned in section 3.2.4, implicit integration algorithms can better handle stability issues

resulting from stiff dynamics. However, they do not deliver precise and detailed results if not

applied on a very fine grid. In many high fidelity optimal control problems, the required fine

grid is computationally more challenging than the additional states.

When considering aircraft trajectory optimization problems, the issue mainly relates to

the fast rotational states of the aircraft motion compared to the relatively slow translational

movement (see chapter 2). Besides, other subsystem models – like actuators – may be added

to the model, creating the same issues. In many scenarios (like the ones presented in section

10), the fast rotational states may be regarded as quasi steady, meaning that the fast decay

of any rotational dynamic effects can be ignored. Anyway, this represents a simplification and

leads to the point mass simulation model presented in section 2.4.

In this chapter a novel discretization approach is presented that combines a collocation

method with a multiple shooting approach. Therein, the dynamic equations of the system are

partitioned into a fast and a slow part. The fast dynamics are solved on a dense grid using

151

8.1 Overview of Existing Approaches

the multiple shooting approach, while the slow dynamics are solved on a relatively coarse grid

using a direct collocation scheme. The remainder of this chapter is structured as follows: First,

an overview of other existing approaches is given. Afterwards, the combination of collocation

techniques with multiple shooting is introduced. An example problem using the idea can be

found in section 11.4, together with a comparison and discussion of the respective results.

8.1 Overview of Existing Approaches

Different approaches exist for overcoming the aforementioned issue, including the idea of using

multiple timescales within one optimal control problem. The following sections present some

of the ideas found in the literature.

8.1.1 Multi Rate Runge-Kutta Methods

The issue mentioned before is not only inherent to optimal control problems but similarly

appears in pure system simulations. Anyway, in optimal control problems, efficient simulation

algorithms are of great importance as the simulations need to be performed many times in

order to evaluate the state history within every iteration. The mathematical theory developed

for simulation tasks may be useful for optimal control problems, too. Multi rate Runge-

Kutta methods have been around for some time, already being mentioned in the sixties

[Bra68], before being researched in more detail during the eighties [OS83, GW84].

During the last years, besides others, Günther has published some work on multi rate

Runge-Kutta schemes. In [GKR01], a generalized multi rate partitioned Runge-Kutta

method is presented that may also be used for the simulation of stiff differential equations.

The approach assumes that the underlying dynamic system can be partitioned in a (slow)

latent part which may be (partially) stiff and a (fast) active part which must not be stiff.

The authors of the paper propose a combined integration scheme where for the latent part

implicit methods may be used while the active part is solved using an explicit integration

scheme. When using multi stage Runge-Kutta methods, the stages of the two numerical

integration algorithms are calculated individually, not adding additional coupling.

8.1.2 Multi Timescale Collocation Method

In [DC08b], Desai and Conway present two different two-timescale discretization schemes,

based on the fifth degree Gauss-Lobatto collocation method which can also be found in

equations (3.183)–(3.192). In the first method, the fast dynamics are collocated on a grid

which has half the segment length of the grid for the slow dynamics. In the second method they

use a segment subdivision of four, meaning that the high frequency dynamics are discretized

using four times as many collocation points as the low frequency dynamics.

In both cases, the number of NLP parameters is reduced compared to a full collocation on

a fine grid, as the state values for the slow states are not added as NLP parameters any more.

152

Chapter 8: Improving Robustness by the Use of Combined Transcription Methods

Anyway, in order to evaluate the fast part of the dynamics, state and control values on the

fine grid are required. Desai and Conway considered several approaches for reconstructing

the missing state and control values and end up with quartic interpolation polynomials for the

controls and quintic interpolation polynomials for the states. Both interpolations are based on

the values of the high frequency grid.

The method has been applied to an optimal control problem using a six degree of freedom

aircraft simulation model in [DC08a]. Therein, the touchdown velocity of an unpowered reentry

vehicle is minimized under certain boundary conditions.

Compared to the method presented in section 8.2, the main drawback of this method is

that the two timescales are closely coupled together and cannot be selected independently by

the user.

8.1.3 Direct Single-Multiple Shooting Method

Bottasso et. al. combine a single shooting and a multiple shooting approach in [BM09,

BLM12]. In their work, the main issues identified are

• the amount of NLP parameters required to perform a multiple shooting integration of

the fast states, and

• the difficulty to satisfy the multiple shooting defect constraints for the fast states.

Having the potential instability of single shooting – due to the high sensitivity with respect

to the initial state – in mind, they suggest to separate the state vector into a fast and a slow

part. Then, they use one single shooting integration sweep over the whole time horizon for the

fast states, and regular multiple shooting with defect constraints (see also equation (3.170))

for the slow states.

In their formulation, no multiple shooting defect constraints and no multiple shooting

initial states are required for the fast states, decreasing the number of optimization variables.

Moreover, they state that the multiple shooting of the slow states avoids a blow up in the

solution and thereby keeps the overall solution stable. The authors of the paper identify that

no matter which initial states are chosen in the optimization, the fast states will not blow up,

whenever the slow ones do not do so.

In [BMS10] the optimization of different maneuvers of a rotorcraft are researched. It is

investigated how direct collocation and direct multiple shooting may be used in these opti-

mal control problems with models of different fidelities. They state that direct transcription

(collocation) is faster and more stable for simple models, while multiple shooting may be

used for more complex models – also including fast dynamic components. When using the

latter, the size of the discretized problem is independent of the number of integration steps

within each multiple shooting segment, enabling the use of a fine grid while avoiding extremely

large problems. The authors of the paper draw the conclusion that optimal control problems

with detailed simulation models can only be solved well using shooting methods as the fast

components require the use of a fine discretization grid.

153

8.2 Combined Direct Collocation and Multiple Shooting

Another issue that is considered in the work [BMS10] is that the states in between two

consecutive shooting nodes cannot be used in the path constraint equations as they are not

part of the numerical optimization vector. The proposed solution approach is to detect the

segments including a constraint violation after a problem has been solved. Afterwards, these

segments should be broken up into smaller ones. This issue also remains in the approach

proposed here and leaves room for future research.

8.2 Combined Direct Collocation and Multiple Shooting

The approach for overcoming the aforementioned issues that is proposed here combines a direct

collocation scheme with a direct multiple shooting approach. The basic idea is to separate

the state vector of the dynamic system into two parts, one containing the fast and the other

containing the slow dynamics. The fast dynamics are discretized using a multiple shooting

approach and the slow ones using a collocation scheme that is based on the same grid as the

multiple shooting segment nodes. The number of multiple shooting integration grid points

in between these nodes may be chosen freely by the user, forming another, finer grid. In

order to be able to evaluate the dynamic equations within the multiple shooting segments, an

approximation of the slow states is required. These values can be calculated using different

interpolation algorithms, where a cubic and a linear interpolation scheme are suggested here.

The required gradients can be evaluated using slightly modified sensitivity equations.

Figure 8.1 visualizes the general idea of the discretization scheme. The two grids inherent

to the method can be seen on the abscissa with the large markers representing the collocation

and multiple shooting segment node grid

Gxs = {t0 < t1 < t2 < . . . < tN = tf } (8.1)

and the small markers representing the multiple shooting integration grid:

Gxf
= {τ̄0,0, τ̄0,1, . . . , τ̄0,n0

= τ̄1,0, τ̄1,1, . . . , τ̄1,n1
= τ̄2,0, . . . , τ̄N,nN

} (8.2)

In the following, they will be referred to as the coarse grid Gxs and the fine grid Gxf
. The two

grids may be chosen almost independent of each other and arbitrarily. The only constraint that

needs to be considered is that the multiple shooting segment nodes (also being the collocation

nodes of the slow states) need to be part of both grids, meaning that

tk+1 = τ̄k+1,0 = τ̄k,nk
(8.3)

needs to be fulfilled. The coarse grid can hence be seen as an arbitrary subset of the fine grid:

Gxs ⊆ Gxf
(8.4)

The multiple shooting defect between the k-th and the k + 1-th multiple shooting segment is

visualized in the figure as df,k.

154

Chapter 8: Improving Robustness by the Use of Combined Transcription Methods

x

t

df,k

xf

xs

tk = τ̄k,0 tk+1 = τ̄k+1,0 tk+2 = τ̄k+2,0τ̄k,1τ̄k,2 τ̄k,3 . . .

Figure 8.1: Discretization scheme based on collocation and multiple shooting.

The dynamics of the system are partitioned into a slow part and a fast part by separating

the state vector x into the sub-vector xs for the slow states (shown in dark blue in figure

8.1) and xf for the fast states (depicted in light blue in figure 8.1). Consequently, the state

dynamics
.
x = f(x, u, p) (8.5)

also need to be partitioned into the fast dynamics ff and the slow dynamics fs. Equation (8.5)

can hence be rewritten as:

.
xs = fs(xs, xf , u, p) (8.6)
.
xf = ff(xs, xf , u, p) (8.7)

It has to be remarked that neither the slow dynamics nor the fast dynamics can be evaluated

without knowledge of the state of each other. As the slow states are implicitly integrated using

the full discretization approach from section 3.2.4, the complete history of the slow state xs

is part of the optimization parameter vector and consequently directly available on the grid

Gxs. The fast states xf are integrated using en explicit numerical integration scheme within

each multiple shooting segment as described in section 3.2.4. Again, their state history on

the coarse grid is part of the optimization parameter vector and consequently known. The

required controls are assumed to be known on the coarse grid, too, as they can be determined

there by interpolation as discussed in section 3.2.4.

The defects for the slow states xs need to be calculated based on the collocation scheme

– e. g. from equation (3.182) when using trapezoidal collocation. For the multiple shooting

of the fast states xf , the theory from section 3.2.4 is used, with the defects df,k presented

in equation (3.170). Here, the intermediate values for the slow states, that are required to

evaluate ff (xs, xf , u, p) at the nodes of grid Gxf
, are still unknown. Additionally, the control

values are also unknown at these points. However, they can easily be calculated by extending

the methods presented in 3.2.4 to the fine grid.

155

8.2 Combined Direct Collocation and Multiple Shooting

Here, two different approaches for the approximation of the slow states on the fine grid

are suggested:

• A linear interpolation based on the state values, and

• a cubic interpolation based on the state values and derivatives.

For both of them, the normalized time τ̄k ∈ [0, 1] is introduced in each segment [tk, tk+1] of

the coarse grid. In the following derivations, the abbreviation

xs(tk) = xs,k (8.8)

is used.

The linear interpolation of the slow states can directly be calculated from the initial and

the final state values of each multiple shooting segment:

xs(τ̄k) = xs,k + τ̄k · (xs,k+1 − xs,k) (8.9)

When using a cubic interpolation in the segments, the state derivatives at the initial and

the final point also need to be considered. They can be calculated from the following state

equations:

.
xs,k = fs(xs,k, xf,k, uk, p) = fs,k (8.10)

.
xs,k+1 = fs(xs,k+1, xf,k+1, uk+1, p) = fs,k+1 (8.11)

Requiring the state values and the state derivatives to match at the initial and the final point

of each segment, the cubic polynomial

xs(τ̄k) = (2 · xs,k +
.
xs,k − 2 · xs,k+1 +

.
xs,k+1) · τ̄ 3

k

+ (−3 · xs,k − 2 · .
xs,k + 3 · xs,k+1 − .

xs,k+1) · τ̄ 2
k

+
.
xs,k · τ̄k + xs,k

(8.12)

results for every grid segment. Hence, the state values at the nodes τ̄k,l of the fine grid can

be calculated using either equation (8.9) or equation (8.12).

Similar to all other discretization schemes, the calculation of analytic gradient information

is necessary in order to achieve stable and fast convergence of the discretized optimal control

problem. As the slow dynamics are solved using a regular collocation scheme, the calculation

of the gradients does not change. The multiple shooting scheme for the fast states was slightly

changed because the interpolated slow states need to be added to the equations. Consequently,

the sensitivity equations presented in section 3.2.4 need to be adapted accordingly. Starting

from equations (3.160)–(3.166), (3.171) and (3.173), the slow states can be seen as an

additional external input to the equations featuring their own interpolation scheme. The

sensitivity equations (3.160)–(3.162) need to be extended by equations for the slow states

156

Chapter 8: Improving Robustness by the Use of Combined Transcription Methods

that can be derived based on the chain rule as:

d
.
xf(τ̄k)

dxs,k
=

d

dt

(

dxf(τ̄k)

dxs,k

)

=
∂ff (xs(τ̄k), xf (τ̄k), u(τ̄k), p)

∂xf (τ̄k)
· dxf (τ̄k)

dxs,k
(8.13)

+
∂ff (xs(τ̄k), xf (τ̄k), u(τ̄k), p)

∂xs(τ̄k)
· dxs(τ̄k)

dxs,k

d
.
xf(τ̄k)

dxs,k+1

=
d

dt

(

dxf(τ̄k)

dxs,k+1

)

=
∂ff (xs(τ̄k), xf (τ̄k), u(τ̄k), p)

∂xf (τ̄k)
· dxf (τ̄k)

dxs,k+1
(8.14)

+
∂ff (xs(τ̄k), xf (τ̄k), u(τ̄k), p)

∂xs(τ̄k)
· dxs(τ̄k)

dxs,k+1

where

Sxf ,xs,k
=

dxf (τ̄k)

dxs,k
and (8.15)

Sxf ,xs,k+1
=

dxf (τ̄k)

dxs,k+1

(8.16)

represent newly introduced sensitivities that need to be determined by integration of the

sensitivity equations. Contrary, dxs(τ̄k)
dxs,k

and dxs(τ̄k)
dxs,k+1

may be seen as input sensitivities and

can be calculated from the respective interpolation scheme. In case the linear scheme from

equation (8.9) is used, the required gradients can be evaluated as

dxs(τ̄k)

dxs,k
= 1 − τ̄k (8.17)

dxs(τ̄k)

dxs,k+1
= τ̄k (8.18)

while for the cubic interpolation from equation (8.12),

dxs(τ̄k)

dxs,k
=

(

2 +
∂fs,k

∂xs,k

)

· τ̄ 3
k +

(

−3 − 2 · ∂fs,k

∂xs,k

)

· τ̄ 2
k +

∂fs,k

∂xs,k
· τ̄k + 1 (8.19)

dxs(τ̄k)

dxs,k+1
=

(

−2 +
∂fs,k+1

∂xs,k+1

)

· τ̄ 3
k +

(

3 − ∂fs,k+1

∂xs,k+1

)

· τ̄ 2
k (8.20)

results. It can be seen that in the second case the gradient of the slow state dynamics fs with

respect to the slow states xs needs to be evaluated at the initial and the final point of each

segment in order to be able to evaluate the gradient of the interpolation scheme.

Depending on which parts of the system dynamics are influenced by the controls, the control

grids may be chosen by the user. In general, it does not make sense to have more control

discretization points than collocation or integration nodes, as the changes in the controls

cannot be resolved then. Additionally, every control grid point should coincide with a point

on the state grid. Accordingly, whenever a control is (mainly) entering the slow part of the

157

8.2 Combined Direct Collocation and Multiple Shooting

dynamic equations, it does not make sense to choose a control discretization that is finer than

the one of the coarse (collocation) grid. Contrary, all controls that mainly influence the fast

dynamics of the system may be discretized on a grid which may be as dense as the fine grid of

the method. Moreover, different control values may be discretized on different control grids.

Apart from that, the statements concerning the control discretization from section 3.2.4 are

still valid here.

The method as it is presented here, represents a combination of explicit and implicit

numerical integration schemes. While for the collocation explicit algorithms as well as implicit

ones may be used, for the shooting part the use of implicit method comes at the cost of a

very high computational burden. This may be seen as a drawback of the shooting method, as

for stiff dynamics implicit methods show much better stability properties. However, the fine

integration grid that can be used in the shooting can resolve this issue.

When path constraints are to be calculated from the state histories within an optimal

control problem, the state values of the coarse grid can easily be used as they are part of the

optimization parameter vector. It may happen that the states in between two nodes of the

coarse grid lead to a violation of a path constraint that may not be detected in this case. An

example for this can be seen in figure 11.33 of the example problem solved in section 11.4.

Technically, it is possible to also evaluate the path constraints based on the states of the fine

grid. However, the additional constraints that are introduced to the discretized problem may

change the structure of the problem, resulting in convergence issues. Here, further investigation

is required. Moreover, the evaluation of the gradients of these path constraints becomes quite

cumbersome as they require the sensitivities of the simulation as input.

Concerning the implementation of the proposed scheme on a computer, the independence

of all collocation segments and all multiple shooting segments may be exploited for paral-

lelization. This means that the multiple shooting simulations for all segments as well as the

evaluation of all collocation defects may be executed in parallel. This feature has been included

in FALCON.m, resulting in considerable speedup in many cases.

The combined discretization scheme presented here may be extended even more in future

research by e. g. estimating the integration errors of the simulation in the multiple shooting

segments and using this information for a grid refinement scheme. This way, the number

of collocation and shooting nodes may be reduced, further decreasing problem size while

increasing solution accuracy and robustness.

The method presented in this section has been applied to an example scenario for air race

trajectory optimization in section 11.4.

158

Chapter 9

Improving Performance Based on

Control Grid Refinement

Especially in optimal control problems that feature fast maneuvers compared to the overall

time frame considered, a proper selection of discretization grids for the states and the controls

is of utmost importance. As one can imagine, the size of the numerical optimization problem

resulting from the discretized optimal control problem becomes large if a discretization grid

is used that is fine enough to represent fast movements accurately along the whole trajectory

– and consequently the problem becomes hard to solve. In order to overcome this issue, it is

necessary to wisely place the nodes of the grid at those particular points in time where fast

movements take place and remove superfluous grid points from parts where smooth results

can be represented using a coarser grid.

In general, two influences have to be distinguished:

• On the one hand the possibility to accurately represent the optimal control inputs based

on the control discretization,

• and on the other hand the necessity to accurately describe the system dynamics based

on the state grid.

Of course, the second is related to the first, as fast maneuvers in the controls affect the system

dynamics (possibly including some dynamic delay) and consequently require a grid that is fine

enough to fully cover the reaction of the system.

9.1 Overview of Mesh Refinement Techniques

In pure numerical simulations, the adaptation of the state grid is normally done based on the

discretization error that is estimated by comparing the results of two integration methods of

different order (see section 3.2.4 on numerical integration methods and [Ger12, p. 162 ff.]).

In case the difference in the results of the two methods remains below a certain limit, the

current integration step is accepted, otherwise the step size needs to be reduced. It is possible

159

9.1 Overview of Mesh Refinement Techniques

to construct Runge-Kutta methods, as described in section 3.2.4, that feature neighboring

orders by only using a different set of output vectors c. These Runge-Kutta schemes

are called embedded. More details on step size selection and embedded Runge-Kutta

methods can, besides others, be found in [Ger12, p. 185 ff.]. Two of the commonly used

embedded methods are the Runge-Kutta-Fehlberg method that has been published by

Erwin Fehlberg in 1969 in [Feh69], and the Dormand-Prince method [DP80]. Table

9.1 shows the Butcher tableau of Fehlberg’s method.

Table 9.1: Butcher tableau for the Fehlberg variable step size integration method.

[Feh69]

0

1/4 1/4

3/8 3/32 9/32

12/13 1932/2197 −7200/2197 7296/2197

1 439/216 −8 3680/513 −845/4104

1/2 −8/27 2 −3544/2565 1859/4104 −11/40

16/135 0 6656/12825 28561/56430 −9/50 2/55

25/216 0 1408/2565 2197/4104 −1/5 0

When using mesh refinement techniques – no matter if the control grid, the state grid or

both should be refined – one must distinguish between dynamic grid refinement methods and

static grid refinement methods. In the latter, the optimization and the grid refinement are

performed serially, meaning that several optimization runs are done while in between a mesh

refinement algorithm is used in order to formulate the next problem to be solved. Several

main benefits of these methods can be found: They are relatively stable, as the two processes

(optimization and mesh refinement) are not coupled. Besides, they are relatively easy to

implement, as they do not require any changes in the discretization scheme of the optimal

control problem. The downsides of the methods are the following: Due to the general nature

of the methods, it is necessary to solve several optimal control problems which may in some

cases not lead to an improvement by means of runtime compared to the solution of the problem

on a fine grid right in the beginning (at least if this large problem converges at all).

In contrast to the methods described before, so-called dynamic methods try to adapt

the required grid (or grids) in parallel to the optimization run. Consequently, they do not

require multiple optimization runs, but instead change the grid parameters in between two

iterations. The main benefit of the method is obvious as it only requires one optimization

run for the solution of the problem. On the other hand, the main drawbacks are as follows:

As the method strongly interacts with the optimization itself and consequently also has a

strong impact on the local gradients of the problem, a tight coupling between the mesh

refinement and the optimization exists. This coupling may lead to a situation where the mesh

refinement is somehow “fighting” against the numerical optimization, leading to convergence

160

Chapter 9: Improving Performance Based on Control Grid Refinement

problems. Moreover, the implementation of such methods is not easy as they require changes

in the discretization scheme and may also impact theoretical foundations of discretized optimal

control problems. Due to these drawbacks, in the remainder of this work only static mesh

refinement methods will be considered. In [Pol97, sec. 4.7] and [Sch96] more details and

references on static and dynamic mesh refinement can be found.

When using a shooting approach for the discretization of an optimal control problem,

dynamic grid refinement may be achieved by using a variable step ODE solver within each

shooting interval. The main problem then is, that the gradient information becomes inaccurate

as the numerical effects of the changing integration grid are not reflected in the gradient

(neither when using sensitivity equations, nor when using finite differences). Otherwise, static

state grid refinement may be achieved by using the methods for step size selection of a

variable step integration method in between two optimization runs. This idea may be used

with shooting as well as full discretization methods as the collocation approaches presented

here may be derived from the Runge-Kutta integration schemes. Consequently, the step

size selection normally used in conjunction with Runge-Kutta methods can be transferred

to the collocation approaches. Betts gives an overview of grid refinement methods in [Bet09,

Section 4.7, p. 153 ff.]. Regarding optimal control software, state mesh refinement methods

are available in PSOPT [Bec11] and GPOPS [Fra08].

After this brief discussion of state grid refinement methods, the remainder of this chapter

focuses on a static control grid refinement method. The main problem is, that the structure of

the solution of the optimal control problem is usually not known a priori, making it impossible

to select an adequate control grid before running an optimization. The following paragraphs

give a short overview of research previously done on static grid refinement methods.

Schlegel et. al. [Sch+05] and Binder et. al. [Bin+00] use the fast wavelet transforma-

tion and the resulting control representations in the wavelet space for grid refinement. Their

procedure for the elimination of unnecessary grid points is based on the norm equivalence in

the wavelet domain. This enables the elimination of all elements which are smaller than a

user defined threshold. The insertion of new grid points works very similar: Wavelet functions

with large coefficients are important for an accurate representation of the controls. Therefore,

the neighboring wavelets (corresponding to a time scale representation of the wavelets) of

these important wavelets, that are not part of the control representation yet, are added. The

algorithm presented in [Sch+05] also considers the problem of removing and re-adding the

same grid points during the run of the algorithm and therefore keeps track of all possible grid

points.

In [JT08] a multiresolution technique based on Dyadic grids is presented. The main idea

of the proposed algorithm is the use of non-uniform Dyadic grids with different resolutions

for an iterative grid refinement based on interpolation errors. Therefore, the controls, the

states or both are interpolated on a grid finer than the one used in the current iterate. The

interpolation error coefficient at these additional points is calculated and then compared to a

threshold. If the error is above the threshold the new points are added to the grid.

161

9.2 From Density Functions to the DENMRA Algorithm

Zhao and Tsiotras [ZT11] use density functions in their static grid refinement algorithm

for redistributing grid points. The idea of density functions has also been used in Finite Element

Methods (FEM) before [Hug93]. The density function as it is used in [ZT11] describes the

distribution of the time points in the control grid. The authors of that paper suggest the third

root of the curvature of the respective control as a density function because it yields the best

piecewise linear approximation of the controls. The problem for an implementation of this

algorithm is that the estimation of the second derivatives of the controls is required in order

to calculate their curvature. The authors suggest a spline interpolation to tackle this issue

which may not be exact when the underlying grid is coarse. Anyway, the Density Function

Based Mesh Refinement Algorithm (DENMRA) is the basis for the algorithm suggested here

and is described in more detail below.

The results presented in this section have been created with the support of Philip Bruhs

who did his Bachelor Thesis at the Institute of Flight System Dynamics under the supervision

of this author. The results have been published similarly in the joint paper [Bit+13a], before.

9.2 From Density Functions to the DENMRA Algorithm

Density functions for grid refinement have been used in other applications for several years

now. [Hug93] for example demonstrates the use of density functions within FEM applications.

For the algorithm presented here, the work of [ZT11] forms the main basis, which itself is

mostly based on the algorithm developed in [JT08].

The main idea of density functions for grid refinement in optimal control tasks is to identify

in which parts of a trajectory a high density and in which a low density in control grid points

is required. In the following, some facts from [ZT11] are recapitulated, considering an interval

τ ∈ [0, 1] in normalized time.

The density function has to be a non-negative Lebesgue integrable function satisfying:
1∫

0

f̄(τ)dτ = 1 (9.1)

In case one wants to use a function that does not fulfill (9.1) normalization is possible as long

as the function is non-negative and Lebesgue integrable on the relevant interval:

f̄(τ) =
f(τ)

1∫

0
f(t)dt

(9.2)

The so-called corresponding cumulative distribution function F (τ) is then defined as

F (τ) =

τ∫

0

f̄(t)dt, with F (0) = 0, F (1) = 1 (9.3)

A mesh consisting of N grid points {τi}N
i=1 with τ1 = 0 and τN = 1 is used. Every point τi is

located on the grid such that

F (τi) =
i − 1

N − 1
(9.4)

162

Chapter 9: Improving Performance Based on Control Grid Refinement

This way, the mesh is dense where the value of f̄(τ) is large and is coarse where the value

of f̄(τ) is small. Figure 9.1 visualizes the general dependency between the density function,

the cumulative distribution function and the distribution of the grid points. It can be seen

that the density of grid points is high whenever the density function has large values. Besides,

relation (9.4) is visualized on the vertical axis of the plot.

D
en

si
ty

Fu
nc

ti
on

f̄

Normalized Time τ

Normalized Time τ

D
is

tr
ib

ut
io

n
Fu

nc
ti

on
F

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

0

1

2

3

Figure 9.1: Example for a densitiy function and its coresponding distribution function.

As the calculation of all τi requires the solution of the non-linear equation (9.4) at each

grid point – which may be time consuming – Zhao and Tsiotras suggest the use of an

interpolation method. Due to f̄(τ) being non-negative on the relevant interval, F (τ) is strictly

monotone and continuous. This property can be used to approximate the inverse

τi = F −1(yi) (9.5)

by interpolation. Therefore, the values of F are evaluated at some a priori selected points τk,

which can then be used to construct a spline representation of F −1(yi) and to calculate the

required values τi.

In [ZT11] the authors use a density function of the form:

ρu(τ) = c · κu(τ)1/3 (9.6)

163

9.3 Physically Motivated Density Functions

for the control u, where c is a constant and κu(τ) is the curvature of u(τ). As u(τ) is the

result of the previous optimization and only known on the grid points used in that optimization,

its curvature κu(τ) can not be evaluated exactly. Once again, [ZT11] suggest the use of

an interpolating spline function that can then be differentiated analytically. Moreover, they

show that the exponent should be selected as 1
3

because this leads to the best piecewise linear

approximation of the considered values. Consequently, their motivation is purely mathematical.

[Bit+13a]

9.3 Physically Motivated Density Functions

The main issue when implementing the strategy described in the previous section is the calcu-

lation of the curvature of the control histories from their discretized representation. Therefore,

a new approach for a density function is introduced that takes physical properties of the point

mass simulation model from section 2.4 into account.

First of all, the influence of the thrust lever position is relatively uncritical as its dynamics

and its effect on the resulting trajectory is in general rather slow. Hence, the important controls

influencing the fast dynamics of a point mass simulation model are the angle of attack and

the bank rate or the bank angle (depending on the chosen modeling) which are closely related

to the kinematic flight path inclination angle γG
K and the kinematic course angle χG

K . Instead

of using the curvature of the controls, here the curvature of their “corresponding” states is

considered. This simplifies the further derivations as the first time derivatives of the states

are part of the simulation anyway and do not need to be calculated by interpolation or finite

differences. However, the idea that the histories of the states and the controls are precisely

approximated by their discretized representations whenever the respective curvature is small,

is kept. Additionally, the grids on which the states are evaluated during the optimization are

normally finer than the control grids, which reduces the error of finite differencing for the

calculation of the second time derivatives, too.

The following combined density function for grid refinement using a point mass simulation

model as stated in section 2.4 is used here, while a similar formulation was suggested in

[Bit+13a]:

f(τ) = (κχ + κγ)e = (b(τ))e (9.7)

where κχ is the curvature of the kinematic course angle χG
K , and κγ is the curvature of the

kinematic flight path inclination angle γG
K .

9.4 Enhanced Refinement Strategy

When not using the curvature of the controls as a density function, the argument for the

exponent e = 1
3

presented in [ZT11] also becomes invalid. Furthermore, it might be preferable

for the user to set limits for the local resolution instead of the number of grid points. This

164

Chapter 9: Improving Performance Based on Control Grid Refinement

means that the user of a grid refinement algorithm might not know how many points he would

require to resolve the control history adequately, but on the contrary he might be able to state

a maximum distance between two grid points as ∆τmax while their minimum distance shall

be ∆τmin. The exponent e can then be used to adapt these two values without changing the

general shape of the density function and therefore not changing the locations of high or low

density but only scaling their values with respect to each other.

This consideration leads to a distribution function

F (τi) =

τi∫

0
b(t)edt

1∫

0
b(t)edt

=
i − 1

N − 1
(9.8)

which has remaining degrees of freedom in e, N and the grid point values τi. Now, the user

defined grid distances ∆τmin and ∆τmax have to be met by the resulting grid:

∆τmin = min
i

(τi+1 − τi) ∧ ∆τmax = max
i

(τi+1 − τi), i ∈ 1, 2, ..., N − 1 (9.9)

As equations (9.8)–(9.9) cannot be solved analytically, a numerical optimization algorithm is

used here to determine e and N in a first step. Therefore, the integral

τi+∆τmin∫

τi

b(t)edt τi ∈ [0, 1[(9.10)

is calculated for all τi in the interval. As the minimum distance between two grid points can

be found at the position where integral (9.10) takes its maximum, the following equation must

hold to achieve a minimum grid spacing ∆τmin:

max
τi






τi+∆τmin∫

τi

b(t)emindt




 =

1∫

0
b(t)emindt

N − 1
(9.11)

It must be mentioned that emin does not denote the minimum exponent, but the exponent

belonging to the minimum grid distance. The equation for the maximum distance on the grid

has to be fulfilled analogously:

min
τi






τi+∆τmax∫

τi

b(t)emaxdt




 =

1∫

0
b(t)emaxdt

N − 1
(9.12)

Once again, emax is the exponent belonging to the maximum grid spacing. If the number of

nodes N in the grid is fixed, in most cases emax and emin would be different, meaning that

either equation (9.11) or equation (9.12) can be fulfilled, but not both. Using the degrees

of freedom in changing N and e, the solution of the system of equations is possible in most

cases. The quadratic optimization problem to determine e and N may consequently be stated

165

9.4 Enhanced Refinement Strategy

as:

min
















min
τi






ti+∆tmax∫

ti

b(τ)edτ




−

1∫

0
b(t)edt

N − 1








2

+








max
τi






ti+∆tmin∫

ti

b(τ)edτ




−

1∫

0
b(t)edt

N − 1








2








(9.13)

In the application presented in section 11.8, this problem can be solved using SNOPT [GMS02]

in some milliseconds. As this problem is solved in R for N and e, the number of grid points

N resulting from the optimization is not from N. This can easily be corrected by rounding

up to the next integer, because the interpolation is getting better with every grid point that

is added. This way, the minimum and the maximum grid distance requested by the user are

somewhat undercut by the algorithm.

The calculation of the positions of the new set of grid points can now be performed similarly

to DENMRA. The only difference is that the spline interpolation for the numeric inversion of

F (τ) may in some cases not be necessary anymore, because the distribution function can be

calculated on the relatively dense state grid. Hence, the values of the grid points can either

be read from F (τ) directly or calculated by linear interpolation.

The principle described here can be adapted to higher fidelity modeling. There, the same

density function might be used or even more sophisticated and more complex density functions

may be created by the use of more states. In a rigid body simulation model, for example, all

rotational rates of the aircraft are known and can be used to create an appropriate density

function. [Bit+13a]

Section 11.8 presents the results that have been achieved for an exemplary air race trajec-

tory using the grid refinement process described here.

166

Chapter 10

Applications Related to Commercial Air

Traffic

In this chapter, optimal control problems from the field of commercial air traffic are considered.

Several studies predict a further increase in air traffic above the world and especially above

Europe. Even in the already lowered estimations of EUROCONTROL, published in September

2013 [NE13], the number of instrument flight rules (IFR) flight movements in 2019 is expected

to be 10.8 million which is 14% more than in 2012. In their long term forecast [EUR10] a further

growth is anticipated resulting in 40% more IFR flights in 2030 compared to 2009. Besides

this growth in air traffic, EUROCONTROL records more and more problems with the current

Air Traffic Management (ATM) system. Currently, the situation at hub airports and especially

their Terminal Maneuvering Areas (TMA) is critical as they were growing dramatically during

the last decade, with this trend still lasting. [Den01]

The studies presented here have similarly been published in the works [Bit+13b, Bit+14,

Bit+15, Bit+16], before. Moreover, the works [FBH12, Ric+14c] from our group were, to

some extent, used as a basis.

Currently, many big research projects like SESAR in Europe, NextGen in the USA or

CARATS in Japan focus on the development of technologies and processes for the future

ATM system. The goal of all these endeavors is to extensively reorganize the air traffic

systems in order to bring safety and capacity to the next level while also reaching ecological

and economical goals. Even though they are all using different solutions for the challenges,

many ideas reappear in different places. These key technologies include, besides many others,

• User preferred routing [EE15], where the goal is to remove the currently existing airways

and let each participant in the ATM system choose their path freely,

• i4D trajectories [EE15], that allow an execution of user preferred routing through an

exact planing and prediction of the position of each participant at each moment in time,

and

• Free flight trajectories, that result from the combination of the two aforementioned

technologies.

167

When being able to perform flight operations based on free flight trajectories, an optimization

of each trajectory (in the optimal control sense discussed here) becomes possible. This chapter

presents some first results that have been achieved by performing simulation studies around

the performance of the air traffic system and the operation of aircraft. [EE15, Bit+16]

In the remainder of this chapter three exemplary applications using the theoretical ideas

presented in chapters 4–9 are investigated:

• First, optimal trajectories for an approach scenario are sought. Therein, 18 aircraft

approach Tokyo International Airport simultaneously under the influence of wind distur-

bances. Besides, configuration changes in form of different flaps settings are included in

the modeling.

• The second problem presented shows results for long haul trajectory optimization prob-

lems considering civil aerial refueling for efficiency improvements. The solutions acquired

for the two considered scenarios – first one aircraft that is refueled once during the flight,

and second two aircraft being refueled by the same tanker one after the other – show a

significant decrease in fuel consumption when also considering aircraft that are optimized

for long haul flights using aerial refueling.

• In the third and last air traffic related application, the trajectories of several aircraft

passing through one common airspace sector are optimized. Thereby, not only the

overall cost is considered, but also the attribution of the cost to the parties in the

scenario. This way, a fair distribution of the costs should be reached. The scenario uses

strongly simplified models and focuses on the application of multi criteria optimization

methods on aircraft trajectory optimization problems.

As commercial airliners do not feature highly agile and fast varying dynamics, the models

used are point mass models or even further simplified descriptions of aircraft movement. Hence,

the available dynamic models from the Base of Aircraft Data (BADA) from EUROCONTROL

can be used. In the examples presented below, models from BADA Family 3 [EUR14] as

well as BADA Family 4 [EUR12] are utilized. For the multi criteria studies in section 10.4,

even more simplified kinematic aircraft models have been used as no dynamic maneuvers are

considered there.

The comparably simple dynamic models do not require the use of different modeling fi-

delities and combined discretization schemes. On the other side, the problems are relatively

large, featuring many states and long simulation times. This, and the fact that the dynamics

of the different aircraft are connected via separation constraints in the multi aircraft scenarios,

require the exploitation of the problem sparsities on a local and a global scale (see chapter 7).

Furthermore, the fairness considerations of the last example presented in this chapter result

in the formulation of a multi criteria optimal control problem that can be discretized leading

to a multi criteria optimization problem. Consequently, the methodology from section 3.3 is

required there.

168

Chapter 10: Applications Related to Commercial Air Traffic

In all examples described below, the use of appropriate initial guesses is inevitable. In order

to be able to supply these initial guesses, methodologies based on the ideas from chapter 5

have been used. Therein, the complexity of the problems to be solved has been increased

stepwise, always using the solution of one optimization as the initial guess for the next.

10.1 Literature Review

The computation of optimal trajectories for scenarios including multiple aircraft has received

some attention during the last couple of years. In [FBH13] e.g., a very similar method as the

one used in the first application here has been applied to optimize an approach scenario includ-

ing four identical aircraft. There, a combined optimal control problem has been formulated

that has been solved by first optimizing each individual trajectory and afterwards calculating

the overall solution for the scenario.

The work of Mohan [MMR12] focuses on calculating a solution for obstacle avoidance

and the generation of initial guesses based on a rapidly exploring random tree algorithm.

Anyway, in the scenarios up to four aircraft landing on the same runway are considered.

The paper [Rag+04] uses a three degree of freedom model without detailed force or fuel

flow equations, a collocation scheme for discretization, and IPOPT [WB06] to solve the

numerical optimization problem. The example scenarios comprise up to eight aircraft and

cylindrical separation zones.

[RH02] uses a linear 2D-model featuring four states (planar position and planar velocities)

and linear constraints in order to build a Mixed Integer Linear Program (MILP). The safe

areas are modeled rectangular and the cost function considered is time. Finally, an example

problem containing three aircraft is solved using IBM ILOG CPLEX Optimization Studio and

the AMPL modeling language.

In [SHF04] a framework is presented that can be used for decentralized trajectory planning

of multiple aircraft. The method is based on a receding horizon strategy and a MILP problem.

The aircraft are modeled using linear dynamic systems with four states. The example problem

comprises four aircraft.

Various approaches to automatic conflict resolution have been suggested and investigated

in the past. Zhao and Schultz, in [ZS97] e.g., use optimal control methods to resolve

conflicting trajectories for two aircraft. They minimize the deviations from the intended flight

paths and finally enforce each aircraft back to their trajectory via terminal constraints.

In [Fra+01] Frazzoli et. al. use semidefinite programming to resolve conflicted tra-

jectories in the horizontal plane. In contrary to that, in [HPS02] Hu et. al. consider three

dimensional aircraft movement and present an algorithm to calculate optimal solutions for

two-aircraft cases and an approximation for the multiple-aircraft case. In [MSS99], once again

three dimensional problems are tackled and methods from optimal control are used to calculate

free-flight trajectories for multiple aircraft.

In [Vis07] Visser describes a method of optimizing the trajectories for two aircraft in

169

10.1 Literature Review

three dimensional space with respect to noise nuisance on ground. Vela et. al. in [Vel+09]

present a conflict resolution algorithm that incorporates a controller work load model and is

near-realtime capable. Once again, two dimensional scenarios are considered.

The authors of [CRS11] use a MILP formulation to solve conflicts between arriving aircraft

in a 4D approach scenario. Their objective is the minimization of the overall delay while

keeping all inbound traffic conflict free.

Previously conducted research in the field of civil aerial refueling for fuel saving has mainly

been driven by Nangia [Nan06a, Nan06b, Nan08], Green [Gre02], and Hahn [Hah07].

Nangia defines multiple efficiency values for measuring the benefits that can be achieved

when using air-to-air refueling for civil configurations. Besides, he focuses on the design of

new aircraft specifically tailored for long-haul flights using aerial refueling. This means that

the aircraft should have more or less the same payload and size as actual long-range planes but

have smaller tanks which influence the whole configuration and the aerodynamics. Green

and Hahn focus on the calculation of the most efficient range as well as a similar redesign of

aircraft as Nangia.

In the work [Sol+12] of Soler et. al. a conflict avoidance scenario is considered where

two aircraft are passing through an airspace sector and a collision needs to be avoided using

optimization. The aircraft are modeled using a point mass simulation and different flight

modes. Moreover, hazardous weather areas are modeled as avoidance zones. The discrete

flight mode switches result in a Mixed Integer Optimal Control Problem (MIOCP) that is then

reformulated as a Mixed Integer non-linear Programming Problem (MINLP). In [Sol+16] a

similar solution technique has been applied, now solving a scenario including seven aircraft.

The authors note that the minimization of the overall costs does not necessarily result in a

fair distribution of the costs to the participants in the scenario.

Archibald et. al. in [Arc+08] describe a multi-agent solution for solving conflicts based

on satisficing game theory. In this theory a decision maker (in this case an aircraft) may

sacrifice part of its achievement in case another decision maker can benefit from that. This

way, the overall performance may be improved for the cost of several individuals. This problem

formulation is close to the problem solved in section 10.4 but tackled quite differently.

In [CHL10] Chaloulos et. al. present a decentralized model predictive control scheme

(MPC) for hierarchical systems and use it to solve collision avoidance problems for unmanned

aerial vehicles (UAVs). Besides the high level MPC approach, a low level controller is imple-

mented that takes care of the internal dynamics of the aircraft. Here, a cooperative cost is

used to ensure a certain level of fairness between individual and overall costs in the scenarios.

In [TKS13], a multi criteria aircraft trajectory optimization problem is solved using a

genetic algorithm combined with the stochastic search optimizer Tabu search 2. The goal of

the optimization is to understand how environmental impact and operating cost of commercial

airliners are related to each other. The scenario that is considered in the work is the climb

phase of an Airbus A320. [Bit+14, Bit+15]

170

Chapter 10: Applications Related to Commercial Air Traffic

10.2 Approach Scenarios Including Several Aircraft, Con-

figuration Changes and Disturbances

In the problem considered in this example, cost-index-optimal trajectories for multiple aircraft

approaching an airport in the presence of wind disturbances are calculated. Besides the con-

tinuous controls, configuration changes in the form of the extension of flaps – that may be

interpreted as discrete controls – are considered with the optimal times of extension being

calculated.

The main result presented here is a modeling technique and a multi stage solution process

for large scale trajectory optimization problems from the field of ATM. In the first stage of

this process, each trajectory is optimized individually, before afterwards multiple problems for

an increasing number of aircraft are solved. Finally, optimal trajectories for all aircraft in the

scenario result, that adhere to the flight envelopes and separation limits while minimizing the

total cost index summed up over all aircraft in the scenario.

In order to be able to solve the large scale optimal control problems that result from the

scenario, the methods for initial guess generation presented in chapter 5 and especially those

concerning problem sparsity from chapter 7 have been used.

The aircraft dynamics are simulated using point mass simulation models in three dimen-

sional space with the aerodynamic model and the fuel flow models taken from the Base of

Aircraft Data Family 4 (BADA 4) [EUR12]. The considered scenario is based on real approach

trajectories extracted from MLIT CARATS Open Data published by the Japanese Ministry of

Land, Infrastructure, Transport and Tourism [Min15].

Besides, the scenario includes the influence of wind, modeled based on data from the Earth

System Research Laboratory [Com+11]. In the scenario, the optimal state and control histories

for 18 aircraft as well as the optimal points in time for deploying the flaps are determined.

The inherent discrete decision problem of sequencing the aircraft is automatically solved by

the numerical optimization algorithm in parallel to the calculation of the optimal trajectories.

However, as a gradient based optimization algorithm is used, only local optimality can be

achieved.

The main results for this example have been published in the conference papers [Bit+15,

Bit+16], before.

10.2.1 Aircraft Simulation Model

In this example, the point mass simulation model from section 2.4 for a flat and non rotating

earth is used, with the aerodynamics, the fuel flow model and other aircraft specific information

taken from the BADA4 published by EUROCONTROL [EUR12]. The simulation is performed

with respect to a locally fixed coordinate frame and includes a dynamic atmosphere model

as described in section 2.6.2. The model is directly controlled by the lift coefficient CL,

the aerodynamic bank angle µA and the thrust lever position δT . Furthermore, the spoiler

171

10.2 Approach Scenarios Including Several Aircraft

deflection δSB is considered as a continuous model input. The flaps positions – which may

be seen as discrete controls – are handled using a hyperbolic tangent function that uses the

time of extension as variable, which eventually is continuous. The modeling used for the flaps

is described in more detail in section 10.2.4. Overall, the resulting dynamic system for each

aircraft features seven states and four controls as listed in table 10.1.

The fuel flow model for each aircraft is taken from the BADA data [EUR12] and incorpo-

rated in the system dynamics using the equations from section 2.8.1. [Bit+15, Bit+16]

Table 10.1: States and controls of each aircraft in the scenario.

Name State Unit

(x)N Northward position in locally fixed Navigation Frame N m

(y)N Eastward position in locally fixed Navigation Frame N m

(z)N Downward position in locally fixed Navigation Frame N m

VK Absolute kinematic velocity m/s

χK Kinematic course angle rad

γK Kinematic climb angle rad

m Aircraft mass kg

Name Control Unit

CL Aerodynamic lift coefficient -

µA Aerodynamic bank angle rad

δT Thrust lever position (normalized) -

δSB Spoiler position (normalized) -

10.2.2 Wind Model

In this example, the wind field is modeled to be time invariant, yet depending on the current

air pressure, which changes with altitude – however, no changes in the lateral extent are

considered. The profile of wind speeds used is an approximation of the Twentieth Century

Reanalysis (V2) wind data from the Earth System Research Laboratory [Com+11]. Based

on the daily mean wind for the region around Tokyo International Airport, polynomial wind

models of sixth order for northward and eastward wind speeds have been derived. The wind

speed components resulting from a fit of the aforementioned polynomials to the wind data,

results in the following model for the two wind speed components:

VW,u/v = p1,u/v · (pH)6 + p2,u/v · (pH)5 + p3,u/v · (pH)4

+ p4,u/v · (pH)3 + p5,u/v · (pH)2 + p6,u/v · pH + p7,u/v

(10.1)

Therein, pH is the numerically normalized pressure altitude:

pH =
p − 442.9 mbar

327.9 mbar
(10.2)

172

Chapter 10: Applications Related to Commercial Air Traffic

This normalization does not have any physical meaning but is only necessary for numerical

reasons. After performing a model fit for February 3rd, 2012 the polynomial coefficients given

in Table 10.2 result.

Table 10.2: Coefficients of the approximation polynomials for the wind speed components.

All values are calculated for wind speeds in [m/s]. [Bit+16]

Coefficient Eastward wind (u) Northward wind (v)

p1,u/v −3.409 1.584

p2,u/v 12.950 −0.08236

p3,u/v −15.310 −9.390

p4,u/v 1.831 −1.133

p5,u/v 20.220 20.750

p6,u/v −41.320 −2.118

p7,u/v 37.700 −7.854

The static air pressure p around a particular aircraft is calculated based on the current flight

altitude according to the Standard Atmosphere model as presented in section 2.6.1. Using

this model, the wind speeds can also directly be mapped to the altitude. Figure 10.1 depicts

the result of this mapping for the two wind speed components considered in the scenario.

In order to incorporate the wind model into the flight system dynamics, the relations from

section 2.6.2 have been used. [Bit+16]

Wind speed [m/s]

A
lt

it
ud

e
[m

]

Northward wind component
Eastward wind component

-10 0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Figure 10.1: Wind speed components [m/s] over altitude [m].

173

10.2 Approach Scenarios Including Several Aircraft

10.2.3 Force Model

The aerodynamic forces acting on each aircraft in the scenario are calculated as described in

the BADA documents [EUR12]. Besides others, the forces depend on the Mach number M ,

the current speed of sound a, the adiabatic index κ, the universal gas constant R, and the

current air temperature T that are all calculated according to atmosphere description from

section 2.6.1. [Bit+15, Bit+16]

10.2.4 Discrete Configuration Changes

The extension of the flaps of each aircraft – representing a discrete configuration change – is

modeled using a function based on hyperbolic tangent expressions for each position s of the

flaps that is considered. In this analysis, the main influencing parameter is the point in time

tflaps,s when the change of the flaps position takes place. This parameter is mapped to the

relative extension of the respective position kflaps,s ∈ [0, 1] by:

kflaps,s = 0.5 · tanh(ν(t − tflaps,s)) + 0.5 (10.3)

The parameter ν may be used to adjust the speed of fading between two flaps positions. A

value of ν = 1 has been used here, as this results in a change time of two flaps positions of

approximately four seconds, which is assumed to be realistic. Within the model, the value for

any exemplary aerodynamic parameter pA (e.g. drag coefficient CD,0) is calculated by fading

between the parameters for the different positions (e.g. position 1 and position 2) of the flaps

while the extension is performed:

pA = pA,flaps, clean

+ (pA,flaps,1 − pA,flaps, clean) · kflaps,1

+ (pA,flaps,2 − pA,flaps,1) · kflaps,2

+ . . .

+ (pA,flaps,N − pA,flaps,n−1) · kflaps,n

(10.4)

In equation (10.4), the values pA,flaps,s hold the aerodynamic parameters that are valid in case

the flaps are extended to position s. The fading in the parameters takes place linearly –

however, as the relative extension parameters kflaps,s are calculated based on an hyperbolic

tangent, the resulting aerodynamic parameters are also faded based on hyperbolic tangent

functions.

As every aerodynamic parameter for a certain flaps position depends on the parameter of

the previous position, the switching times need to be in proper order, which can be achieved

by the additional constraints:

tflaps,1 < tflaps,2 < · · · < tflaps,n (10.5)

In this example, besides the clean configuration, two flap configurations have been selected

and considered for each aircraft. As the final point of the optimization is before the final

174

Chapter 10: Applications Related to Commercial Air Traffic

approach fix, the aircraft still have time to establish the landing configuration. Consequently,

in the optimization no particular final flaps position is required. [Bit+16]

10.2.5 Flight Envelope of Each Aircraft

Along the trajectory of each aircraft, the following path constraints are required in order to

obtain realistic flight paths [Bit+15, Bit+16]:

• The load factor in z-direction of the Kinematic Frame K is limited to:

0.8 ≤ (nz)K ≤ 1.2 (10.6)

This ensures that a smooth trajectory results that fulfills the requirements for passenger

comfort.

• Moreover, the Mach number is limited by:

M ≤ 0.85 (10.7)

in order to avoid structural damage due to over-speeding.

• For a good pilot acceptance of the trajectories, all aircraft need to be decelerating

reasonably all the time by means of calibrated airspeed:

− 0.8
m

s2
≤

.
V CAS ≤ 0

m

s2
(10.8)

• Again, for pilot acceptance as well as passenger comfort, the aircraft must not climb

during the approach and the vertical speed is limited to approximately −2560 ft
min

≈
−13m

s
:

− 13
m

s
≤

.
h = − .

z ≤ 0
m

s
(10.9)

• The set of admissible controls for each aircraft is defined by:

0 ≤ CL ≤ 1.4 (10.10)

−30 · π

180
≤ µK ≤ 30 · π

180
(10.11)

0 ≤ δT ≤ 1 (10.12)

0 ≤ δSB ≤ 1 (10.13)

In this example the lift factor limits are not depending on the flaps configuration but are

defined constant along the whole trajectories and for all aircraft. For passenger comfort,

the kinematic bank angle µK is limited to be between ±30 deg. As the thrust lever

position as well as the speed brakes are normalized, their values have to remain within

the interval [0, 1].

175

10.2 Approach Scenarios Including Several Aircraft

10.2.6 Combined Dynamic Model

In order to be able to compare the position of all aircraft at the same points in time, a

simulation on one common grid is inevitable as the final arrival times of all aircraft are not

known in advance and may change during the optimization process. The overall optimal control

problem is modeled in one single phase, aggregating all aircraft dynamics in one simulation

model. As not all aircraft enter or leave the considered air space at the same time, the

respective dynamics are faded in or out using a hyperbolic tangent function:

.
xi = fi(xi, ui, pi) · kfade,i (10.14)

kfade,i = (0.5 · tanh (ν (t − tini,i)) + 0.5) · (−0.5 · tanh (ν (t − tend,i)) + 0.5) (10.15)

By changing ν, the steepness of the fading functions can be adjusted. In this example, ν = 1 is

used, resulting in a fade-out time of approximately four seconds which showed good numerical

behavior in the calculations. As the time when the aircraft enter the considered airspace is

known, the initial times tini,i are fixed while the final times tend,i are subject to optimization.

The same fading is used for the path constraints.

Consequently, the state, control, and parameter vectors of the multi aircraft optimization

problem are a combination of the respective vectors for each single aircraft:

x = (x1, x2, ..., xN)⊺ (10.16)

u = (u1, u2, ..., uN)⊺ (10.17)

p = (p1, p2, ..., pN)⊺ (10.18)

The same holds for the dynamic equation:

.
x = f(x, u, p) = [f1(x1, u1, p1), f2(x2, u2, p2), ..., fN(xN , uN , pN)]⊺ (10.19)

The main drawback of the simulation on the common grid is the size of the resulting simulation

model which contains seven states and four controls per aircraft in the scenario. Thus, for 18

aircraft an overall simulation model containing 126 states and 72 controls results. However,

as the states and controls of the individual aircraft are not connected to each other in the

first place, the gradient of the simulation model features a special local sparsity structure (as

presented in chapter 7) that will be shown in more detail in section 10.2.9. [Bit+15, Bit+16]

10.2.7 Separation

In addition to the flight envelope constraints for every individual aircraft – specified in section

10.2.5 – temporal and spatial separation between the aircraft has to be ensured for the whole

trajectories and especially at the end of the flights prior to landing. The times of arrival at the

final point for each pair of aircraft are constrained by:

(tend,i − tend,j)
2 ≥ tmin Sep

2, ∀(i, j), i 6= j (10.20)

176

Chapter 10: Applications Related to Commercial Air Traffic

with tmin Sep = 60s in this example. Besides, the spatial distance between each pair of aircraft,

modeled as a rotational ellipse, has to remain above the separation limit at all times:

((x)N,i(t) − (x)N,j(t))
2 + ((y)N,i(t) − (y)N,j(t))

2 +
(

Rxy

Rz

)2

((z)N,i(t) − (z)N,j(t))
2 ≥ Rxy

2,

∀(i, j), i 6= j (10.21)

The radius Rxy in the horizontal plane is selected depending on the aircraft weight classes

according to table 10.3, while the vertical separation Rz = 600ft = 183m is constant for all

combinations. In contrary to the general separation minima defined in the ICAO documents

[ICA01], in the model used no distinction with respect to flight directions can be made. This

includes that in cases where one aircraft follows the other no differentiation between the leader

and the follower is possible. As wake vortices, which have the most critical effect, strongly

depend on the order of the aircraft, the modeling is conservative in this respect because for all

aircraft combination the worst sequencing is assumed when calculating the separation limits.

However, in this approach air traffic safety is not violated, while there may remain some unused

performance potential in the solutions. [Bit+15, Bit+16]

Table 10.3: Aircraft weight categories and separation limits during approach. Based on

information taken from [ICA01].

Weight Category

Aircraft A

Weight Category

Aircraft B

Minimum

Separation [NM]

Minimum

Separation [m]

H H 4 7408

H M 5 9260

M M 3 5556

10.2.8 Cost Modeling

The cost function to be minimized in this example consists of three weighted parts, being

• the fuel consumption,

• the flight times,

• and a small auxiliary term penalizing the control effort during the faded-out parts of the

trajectories.

The overall fuel consumption is calculated from the initial and the final mass of each

aircraft by

Jfuel =
N∑

i=1

(mini,i − mend,i) (10.22)

The time cost is calculated from

Jtime =
N∑

i=1

tend,i (10.23)

177

10.2 Approach Scenarios Including Several Aircraft

where the initial times are omitted as they are constant.

The weighting of these first two cost functions is selected such that a cost index

CI =
1cost/1000sec

1cost/100kg
= 6

kg

min
(10.24)

results. This very low cost index leads to almost fuel minimal trajectories in the solution.

The third auxiliary part of the cost function is required as otherwise the controls in the

faded-out parts of the trajectories would not influence the solution of the optimization problem

at all, resulting in undefined values. Consequently, the auxiliary control effort is modeled as

Jcon =
N∑

i=1

tend,i∫

tini,i

ui(t)
⊺ui(t) · (1 − kfade,i) dt (10.25)

with kfade being the fading factor from equation (10.15). The auxiliary control cost is weighted

by wcon = 0.01 and does not influence the relevant part of the solution.

The total cost can be calculated by weighting the separate parts and summing up:

J = wfuel · Jfuel + wtime · Jtime + wcon · Jcon (10.26)

Similar cost models have also been used in [Bit+15, Bit+16].

10.2.9 Sparsity

In chapter 7 the effects of problem sparsity on the solution process have been discussed. In

order to be able to solve large scale non-linear optimal control problems, like the one presented

here, the exploitation of the problem sparsity is inevitable.

In this example, the model dynamics are block-diagonal sparse because of the different

dynamic models being concatenated together in one overall simulation model. When using the

model builder features of FALCON.m, as briefly presented in section 4.8.4, the tool determines

the sparsity structure of a model and all constraints automatically together with the automatic

differentiation before supplying this information to the numerical solver. In this example, the

automatic differentiation has only been used to create the simulation models for the individual

aircraft while the combination of the models was done manually.

Figure 10.2 shows the local sparsity pattern of the simulation model, where the dots

represent non-zero matrix entries. The first block of the matrix represents the gradient of the

state derivative with respect to the states ∂
.
x

∂x
, the second part shows the gradient with respect

to the controls ∂
.
x

∂u
and the third part represents the gradient with respect to the parameters

∂
.
x

∂p
. These are the fade in time tini,i, the fade out time tend,i, the extension time of the flaps

to the first stage tflaps,1,i, and the time when the second stage of the flaps becomes active

tflaps,2,i.

After combining the simulation models for the 18 aircraft in the scenario, the structure from

figure 10.3 results. Each block along the diagonal of this combined sparsity pattern features

178

Chapter 10: Applications Related to Commercial Air Traffic

(x
) N

,i

(y
) N

,i

(z
) N

,i

V
i

χ
i

γ
i

m
i

C
L

,i

µ
i

δ T
,i

δ S
B

,i

t i
n

i,
i

t e
n

d
,i

t fl
a
p
s,

1
,i

t fl
a
p
s,

2
,i

.
(x)N,i.
(y)N,i.
(z)N,i

.
V i
.
χi

.
γi

.
mi

Figure 10.2: Local sparsity pattern for the gradient of the simulation model consisting of the

three components:
[

∂
.
x

∂x
∂
.
x

∂u
∂
.
x

∂p

]

. (Compare [Bit+16])

the structure depicted in figure 10.2. The gradient structure of the flight envelope path

constraints can be constructed similarly; that for the separation constraints creates relations

between the different aircraft as will be seen further below.

Using the overall model sparsity together with the ones from the constraints, the global

sparsity pattern of the problem can be calculated by sorting the variables and applying the

discretization scheme. Figure 10.4 shows the global sparsity pattern of the discretized problem

with the cost function gradient being located in the first row and all constraints listed below.

The constraints contain all path constraints and collocation defects, and are sorted with

respect to simulation time. Each dot on the diagonal in the figure comprises all information

mentioned above for all aircraft at one point in time. The first columns of the matrix keep

the derivatives with respect to the parameters appearing in the problem. The gradient of

the problem discretized on a grid with 801 nodes contains 2.911 · 106 non-zero elements of

4.689 · 1010 possible elements resulting in an approximate sparsity of 99.9938%.

Figure 10.5 depicts the top left corner of the sparsity of the gradient matrix in more detail.

Again, the first row contains the gradient of the cost function, while all rows below contain

the gradients of the various constraints. Table 10.4 lists the blocks of the matrix based on the

row and column structure. It can clearly be seen how the separation constraints link the states

of the different aircraft to each other. The separation constraints are sorted such that first

the distance between the first and all other aircraft are calculated. Afterwards, the distance

between the second aircraft and all subsequent aircraft are calculated (as the distance between

the first and the second aircraft has already been evaluated). This is continued until finally

the separation between the last two aircraft is constrained. [Bit+16]

179

10.2 Approach Scenarios Including Several Aircraft

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

u1
u2
u3
u4

u5
u6

u7
u8
u9

u10
u11
u12
u13
u14
u15
u16
u17
u18
p1
p2
p3
p4
p5
p6

p7
p8

p9
p10
p11

p12
p13
p14
p15
p16
p17
p18

.x
1

.x
2

.x
3

.x
4

.x
5

.x
6

.x
7

.x
8

.x
9

.x
1
0

.x
1
1

.x
1
2

.x
1
3

.x
1
4

.x
1
5

.x
1
6

.x
1
7

.x
1
8

Figure 10.3: Overall model sparsity. (Figure rotated for better readability.)

180

Chapter 10: Applications Related to Commercial Air Traffic

0
0 5 10 15

×104

0

0.5

1

1.5

2

2.5
×105

Figure 10.4: Global sparsity pattern of the gradient of the discretized optimal control problem.

The optimization parameters are accounted for from left to right while the cost function and

the constraints appear from top to bottom. [Bit+16]

10.2.10 Solution Process

The combined optimal control problem ensuring separation at all times cannot be directly

solved due to its high non-linearity and its large size. Therefore, the following multi-stage

homotopy based process is used (see also section 5.1.2):

181

10.2 Approach Scenarios Including Several Aircraft

F

1

3

GB

9

D

2

6

E

7

8

5

4

A C

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

Figure 10.5: Detail of the upper left corner of the global sparsity pattern of the discretized

optimal control problem. The rows define which value is differentiated in the gradient and the

columns define with respect to which value. The description of the rows and columns can be

found in table 10.4.

1) Calculate an optimal approach trajectory for each aircraft individually.

2) Start with the first aircraft in the scenario and add the aircraft to the fully constrained

problem one after another, until all aircraft are considered.

In each optimization step, the states, the controls, the parameters, and all Lagrange multi-

pliers (dual variables) for the collocation defects and the constraints are used as initial guesses

for the next problem to be solved. Unfortunately, the process described in section 5.1.3 may

not be used here as the addition of an aircraft to the scenario may not be described by a

182

Chapter 10: Applications Related to Commercial Air Traffic

Table 10.4: Elements of the gradient of the discretized optimal control problem. The table

explains figure 10.5. The rows define which value is differentiated in the gradient and the

columns define with respect to which value.

Row Description

1 Initial flight envelope constraints

2 Initial separation constraints

3 Final time separation constraints

4 Flap switching time constraints (to ensure proper ordering)

5 First discretization defect

6 Flight envelope constraints at second point in time

7 Separation constraints at second point in time

8 Second discretization defects

9 Flight envelope constraints at third point in time

Column Description

A Parameters: tini,i, tend,i, tflaps,1,i, tflaps,2,i, ∀i ∈ [1, N]

B Initial states

C Initial controls

D States at second time step

E Controls at second time step

F States at third time step

G Controls at third time step

continuous parameter. Moreover, every additional aircraft changes the general structure of

the problem and it is expected that it also changes the set of active constraints. [Bit+16]

10.2.11 Scenario and Results

The scenario considered in this exemplary study focuses on the approach of 18 aircraft to Tokyo

International Airport and has been constructed using MLIT CARATS Open Data released by

the Japanese Civil Aviation Bureau of the Ministry of Land, Infrastructure, Transport and

Tourism (MLIT JCAB). Thereof, track data from the 4th of March 2013 in the time between

noon and 6 o’clock in the evening has been used. From this data, 18 tracks have been extracted

for constructing the scenario. Table 10.5 lists the 18 flights that have been considered, together

with the aircraft types, the weight categories, the initial positions, and the relevant times. It

has to be mentioned here that the wind data and the track data used do not cover the same day

as no such data was available to the author. This does not influence the results significantly.

However, no comparison of the optimization results with the real track data is possible under

these circumstances.

183

10.2 Approach Scenarios Including Several Aircraft

Table 10.5: Data for the aircraft and the trajectories in the example scenario. [Bit+16]

AC Weight Start Start Start Start Final Flap

Type Cat Lat [deg] Lon [deg] Altitude [m] Time [s] Time [s] Time [s]

B738W26 M 34.1419 138.2522 8440 0 1420 -

A330-341 H 34.1947 138.3352 10020 0 1266 1238

B738W26 M 34.2130 138.7952 8530 0 1125 -

B772LR H 34.5399 137.2626 10659 1 1645 -

B738W26 M 36.4880 140.2920 4916 2 1065 -

B772LR H 34.6585 138.7760 8564 9 835 445

B738W26 M 36.9979 140.1037 7010 23 1360 -

A321-131 M 34.8133 137.0220 10058 33 1820 -

B752WRR40 M 34.7052 137.0034 11278 308 2145 -

B738W26 M 34.0073 137.7211 10052 493 2085 -

B738W26 M 34.7028 137.0076 10659 515 2740 -

B73423 M 34.0081 137.8762 10355 562 2025 -

A320-231 M 36.9949 140.4129 7910 569 1960 -

B738W26 M 34.7031 137.0272 12490 594 2221 -

B772LR H 34.5353 137.0278 11271 869 2661 -

B763ERGE61 H 34.0140 137.7094 12497 1005 2601 -

B738W26 M 34.0067 137.9777 10058 1024 2431 -

B772LR H 35.1811 137.0097 8120 1384 3171 -

Results

In figure 10.6 the resulting optimal lateral tracks for all aircraft can be seen. They are mostly

straight lines as this is the most time and fuel efficient way to go. Almost all arising conflicts

can be solved within the optimization by adjusting the vertical profiles and the velocities along

the tracks. Only one aircraft is rerouted by the optimization algorithm in order to ensure final

time separation. At this point the main weakness of the algorithm becomes visible as (with

every gradient based approach) only local minima can be found and it cannot be determined

whether rerouting a different aircraft would lead to another (maybe even better) locally optimal

solution. Moreover, other solutions may be found by changing the way the initial guesses are

calculated or by altering the solution process described in section 10.2.10. The small arcs

in the trajectories of the aircraft coming from the north are related to the partially strong

eastward wind and its dependence on the flight altitude.

Figure 10.7 shows a close-up of the last part of the trajectories. Therein, the tracks of all

aircraft are visualized using Google Earth and the positions at one point in time is plotted. The

white ellipsoids have a diameter of 3NM being the minimum required separation between two

aircraft of weight category M. As this is the minimum of all required separations, the ellipsoids

may not interfere for any pair of aircraft along the whole trajectories.

As all aircraft in the scenario have to keep separation distances pairwise to each other,

for the considered scenario comprising 18 aircraft, a total of N · (N − 1)/2 = 153 separation

constraints result. Thus, the number of separations grows quadratically with the number of

184

Chapter 10: Applications Related to Commercial Air Traffic

Longitude [deg]

L
at

it
u
d
e

[d
eg

]

137 137.5 138 138.5 139 139.5 140 140.5

34

34.5

35

35.5

36

36.5

37

Figure 10.6: Optimal flight tracks for all aircraft in the scenario. Tokyo International Airport

is marked with a red cross. [Bit+16]

aircraft. The number of separation distance constraints is equal to the number of final time

constraints in the problem, even though the distance constraints need to be applied in every

time step, while the final time separation only adds one overall constraint per aircraft pairing.

The remaining spatial separation margins for all pairs of aircraft, that need to be positive, can

be seen in figure 10.8. For some constellations the margin is hit but it is never violated.

The last column of Table 10.5 lists the optimal extension times for the first considered

position of the flaps for every aircraft. As can be seen, only the second and the sixth aircraft

use their flaps in the considered part of the trajectory to create more lift at lower speeds.

For all other aircraft the use of the flaps is neither necessary nor does it create a benefit in

the overall cost. This is reasonable as the increased lift of the flaps comes at the price of an

increased drag which raises the fuel burn as well as the required time to the destination. No

aircraft made use of the second flaps position that was considered here.

Discussion

The results show how cost-index-optimized continuous-descent operations in a highly con-

gested airspace, like the one in the proximity of a strongly frequented airport, may look like.

The required aircraft performance envelope as well as the separation limits are thereby main-

tained at all times. Anyway, controller workload and operational coordination of the different

185

10.2 Approach Scenarios Including Several Aircraft

Figure 10.7: Final part of the trajectories and separation ellipsoids for the aircraft at one

point in time. [Bit+16]

Time [s]

S
ep

ar
at

io
n

m
ar

gi
n

[1
05

m
]

0 500 1000 1500 2000 2500 3000 3500 4000

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 10.8: Separation margin between all pairs of aircraft over time. [Bit+16]

186

Chapter 10: Applications Related to Commercial Air Traffic

aircraft is not considered here and may put some additional constraints on such a scenario.

In detail, the methods presented here cannot be directly used within the current air traffic

system, due to several reasons, with the following being some of the most important ones:

• The required controls for free flight trajectories cannot be commanded to the aircraft

by the available set of advisories. On the one hand, exact values (like e.g. a course

of 25.9 deg) can currently not be commanded to the aircraft. On the other hand, no

transmittable description of free flight trajectories exists [Sol+16]. A possible solution

may be the use of Controller-pilot data link communications (CPDLC) [RTC05].

• Current air traffic operators need to be confident in the solution of a conflict and conse-

quently also need to have a prediction of the future progress of the scenario without large

uncertainties [Sol+16]. This problem may be overcome by using the results from the

optimizations in order to provide additional information on the progress of the scenario

to the air traffic controller on some kind of a support device.

• No traffic in adjacent airspace is considered in the example that might influence the traffic

along the approach. For current operations this is not crucial as spatial separation is

used to overcome this issue. This spatial separation can be ensured in the optimization

by the definition of no-fly zones.

• The separation is currently constrained conservatively, as the ordering of the aircraft in

the calculation of the separation distances is not known. Consequently, a worst-case

assumption is used. This may be overcome by defining a new separation measure that

takes the flight directions and the weight categories into account. Anyway, this new

measure has to remain differentiable if to be used here.

• The current algorithm cannot handle changing scenarios with aircraft appearing or dis-

appearing from the considered area due to external influences (rerouting etc.). In these

cases a complete recalculation is necessary. Anyway, this recalculation may use the cur-

rent solution as an initial guess. However, the idea presented in section 5.1.3 may not

be used as the appearing and disappearing of an aircraft may not be modeled using a

continuous parameter, but they influence the overall problem structure.

• No disturbances by means of unexpectedly changing environmental conditions like wind

and weather are considered. [Sol+16] suggests to use stochastic optimal control methods

to overcome this issue.

• In the current implementation, the required computational time is above the time that is

normally available between detecting a conflict and resolving it. This may be overcome

by parallelizing the algorithm as far as possible and using more powerful computers or

even a compute cluster.

The solution of the problem discussed here takes a serious amount of computational time

and the method does not show a generally stable behavior when adding more aircraft. This is

on the one side related to the mere problem size which is hard to tackle using IPOPT [WB06].

187

10.3 Optimization of Mid to Long Range Flights Considering Air to Air Refueling

This may be overcome by using special large scale solvers like e.g. WORHP [BW13] (which

comes with other challenges like tuning the settings correctly). On the other side, the addition

of further aircraft lets the number of pairwise separation constraints grow even more which at

some point will eventually limit this method.

Overall, the method and the solution presented here is (at the moment) not intended as

an approach for improving the daily work of ATCs. Conversely, the method and the study is

much more suitable to provide a means of benchmarking different solutions for future ATM

systems against a locally optimal solution.

In order to overcome the limiting factors for the problem size and the computational time,

a hybrid optimization process may be used that separates the problem of determining the

optimal trajectory for one aircraft from the optimization of the sequencing and the ensuring of

the separations. Different methods may be used within the two levels of the resulting problem,

possibly also overcoming the issue of converging to local minima in the sequencing problem.

In a first approach, the remaining operational issues may be overcome by post processing

the results created by the optimization. The post processing algorithm needs to make sure

that – most likely based on simulations – all operational requirements can be ensured by the

resulting trajectories or controller commands. Anyway, post processing is only possible under a

deterioration of the overall performance, as any additional constraints posed on an optimization

problem will lower the performance (or not influence it in the best case). One possible result

of such a post processing algorithm may be aircraft commands that are compatible with the

CPDLC standard. [Bit+15, Bit+16]

10.3 Optimization of Mid to Long Range Flights Consid-

ering Air to Air Refueling

One idea to reduce fuel consumption of long range flights, that has been around a while now,

is the use of aerial refueling for civil flights. Therein, tanker aircraft are stationed along the

route of the long range flight that climb up to the cruising aircraft in order to refuel them at

some point (or several points) along the track. The benefit for the cruising aircraft is that

their mean mass is reduced as they do not have to carry the fuel for their complete route. This

way, fuel consumption of the cruising aircraft may be reduced. The drawback – obviously –

is that additional tanker aircraft are required that also consume fuel as they need to take-off,

climb and refuel, before descending and landing again. Besides many technical and safety

related challenges one of the questions to be answered is how much fuel can be saved in these

scenarios considering optimized operations.

In this section, aerial refueling scenarios are considered as aircraft trajectory optimization

problems in order to give a first estimate for the aforementioned question. The optimal control

problems to be solved are built up using point mass simulation models based on BADA Family

3 data [EUR14], where available. The models also implement fuel consumption depending on

188

Chapter 10: Applications Related to Commercial Air Traffic

the aerodynamic situation and the current mass. Besides the models of real, existing aircraft,

additional A380 versions with reduced range specially tailored to aerial refueling are introduced.

The relevant performance parameters for these redesigned aircraft are estimated using general

aircraft design principles. The models for the tankers have also been derived from BADA

data with fuel consumption models similar to the cruising aircraft. The exemplary refueling

scenarios show the maximum savings that could be achieved. A Euler-Forward collocation

scheme is used and the numerical optimization problem is solved using SNOPT [GMS02].

Operational aspects like air traffic control, the technical aspects of the refueling maneuver

as well as any safety considerations are not part of this study. This also includes that no

reserve fuel, that is needed to perform a safe operation, is incorporated in the fuel calculations.

However, the achieved results are not deteriorated by these issues as reserve fuel is neither

concerned in the reference scenarios nor in the refueling scenarios and finally the comparison

between the two is important.

Part of the work presented here has been conducted with the support of Christoph

Hornfeck who has done a semester thesis at the Institute of Flight System Dynamics of

TUM. The redesign of the long range aircraft for flights with refueling has been performed

by Malte Schwarze from the Institute of Aircraft Design at TUM. The results have been

published in similar form in the paper [Bit+13b], before.

10.3.1 Simulation Models

The simulation models used in this aircraft trajectory optimization task are extended point

mass simulation models like those presented in section 2.4. The aerodynamic parameters, the

thrust model as well as the fuel consumption models are taken from the BADA Family 3,

where available [EUR14]. For the derived short range versions of a wide body aircraft, that

are introduced in section 10.3.3, the parameters are based on lookup tables that are then

approximated by a continuously differentiable spline representation allowing for the analytic

calculation of all gradients. The models are controlled by the angle of attack αA, the bank

angle µA and the thrust lever position δT . No wind is considered in the scenarios, rendering

all aerodynamic and kinematic quantities equal.

To calculate the actual fuel flow from the maximum and the idle fuel flow given in the

BADA model, a linear interpolation with respect to the thrust lever position is performed:

.
mfuel =

.
mfuel,idle + δT · (

.
mfuel,max − .

mfuel,idle) (10.27)

Overall, the model for each participant P i contains seven states and three controls. The

considered states for one participant are

xP i =
(

λP i ϕP i hP i VK,P i χK,P i γK,P i mP i

)

(10.28)

where a detailed description of the quantities can be found in table 2.1 in section 2.1. In the

remainder of this example, the cruiser aircraft are marked by indices Ai while the tankers are

marked by indices T i instead of the general placeholder P i. [Bit+13b]

189

10.3 Optimization of Mid to Long Range Flights Considering Air to Air Refueling

10.3.2 Flight Envelope Constraints

In order to reach realistic aircraft trajectories that can be flown by the aircraft, several flight

envelope constraints are added to the problem formulation. The angle of attack αA is limited

to:

− 4 deg = αA,min ≤ αA ≤ αA,max = 10 deg (10.29)

The bank angle µA is mainly limited by the passenger comfort to:

− 30 deg = µA,min ≤ µA ≤ µA,max = 30 deg (10.30)

The normalized thrust lever position has to be from:

δT ∈ [0, . . . , 1] (10.31)

Additionally, the load factor in vertical direction of the Body Fixed Frame B has to remain

within:

0.85 ≤ (nz)B ≤ 1.15 (10.32)

The flight envelope by means of speed is on the one side limited by the calibrated airspeed

limits from the BADA model and on the other side by the Mach number:

VCAS,min ≤ VCAS ≤ CCAS,max (10.33)

Ma ≤ 0.85 (10.34)

Similar constraints have been used in the work [Bit+13b].

10.3.3 Redesign of a Long Haul Aircraft for Aerial Refueling

This section gives a brief overview of the redesign of an Airbus A380 for short to mid-range

flights not exceeding a maximum distance of 3000NM. Assuming that carriers wanted to of-

fer existing connections but with the benefits of aerial refueling, they would require aircraft

being able to carry the same amount of payload but over a far shorter distance. The approxi-

mate calculation of masses and aerodynamic parameters for such a plane has been conducted

by Malte Schwarze from the Institute of Aircraft Design at the Technische Universität

München. The results of this aircraft redesign have only been published in the joint research

paper [Bit+13b] but not in more detail separately.

The following assumptions have been made:

• The newly designed A380 will have the same payload,

• fuselage weight and

• design point (by means of thrust-weight ratio and area loads) as the existing one.

• Moreover, the basic performance requirements like cruise speed or

• T/O and landing distance remain the same.

190

Chapter 10: Applications Related to Commercial Air Traffic

In a first step, the original A380-800 has been recalculated to validate the underlying numerical

models. Table 10.6 lists the data from the recalculation and the dimensioning of the short

range aircraft.

The general relations used for the redesign of the A380 for short range are the following:

• The desired reduction in maximum range requires less fuel capacity which also signifi-

cantly reduces the overall weight when considering unchanged payload.

• As this means that only the fuel weight portion decreases, all other mass ratios, consisting

of the share of structural weight and the share of payload for the plane have to rise as

compensation.

• Both, the overall mass change and the mass relation change make the required lift

decrease and hence allow the use of smaller wings which also results in a reduced weight

of the wings, although they have to be reinforced because of the decreased amount of

fuel inside.

• This, in reverse, shifts the structural weight and its share again such that the problem

has to be solved iteratively.

The procedure for the calculation of the required masses, the thrust and the aerodynamic

parameters is divided into three major parts that can be seen in figure 10.9. The central

element of the algorithm is the calculation of the weights and their shares based on a given

Maximum Take-Off Weight (MTOW), the required fuel weight and the required payload.

Therein, the overall structural weight, the Zero Fuel Weight (ZFW) and the weight of the

aircraft components are estimated recursively based on general aircraft design principles as

they can for example be found in [Tor82, Ray12, Ros04, Lof80]. For the fuel calculation

the BADA Fuel Calculator [EUR14] and the aircraft performance program Piano-X 1 have

been used. The reference area – that can be calculated from the weight when assuming that

the area load remains unchanged – and the ZFW from the main calculation are fed into a

separate algorithm which estimates the wing weight based on [Tor82]. The result generated

there is afterwards compared to the result of the main computation. The whole process can

be terminated when a given tolerance in the results is reached. Thereafter, the masses and

the wing area are fed into the last part of the algorithm that assesses the basic aerodynamic

parameters as well as the required thrust based on the similarity of the aircraft performance.

This includes the design point in terms of area loading, the thrust-to-weight ratio, and the

specific fuel consumption.

The procedure described above has been performed for two different redesigns of the A380.

The first one (A380-388) is tailored for a payload of 59t (which is the design payload of the

original A380-800) and therefore has a MTOW of 388t. The second approximation (A380-

457) was done for a version designed to carry a payload of about 90t (the maximum payload

of the original A380-800) resulting in a MTOW of 457t. Table 10.6 lists the basic parameters

1http://www.piano.aero/

191

10.3 Optimization of Mid to Long Range Flights Considering Air to Air Refueling

Separate calculation

of wing weight for

comparison

Calculation of weight

and weight shares

based on MTOW, fuel

weight and payload

Share of structural

weight as input

parameter

Calculation of thrust

and aerodynamics

based on similarity of

basic performance

Result

ZFW and Reference area

Comparison, ter-

mination criterion

Input

Figure 10.9: Structure of the calculation process of aircraft masses and parameters.

[Bit+13b]

for the original A380-800, for the recalculation that was used to verify the model and the two

new redesigns for a shortened range of 3000NM . The data required for the redesign is taken

from [Air15]. [Bit+13b]

Table 10.6: Basic data of the aircraft redesigns. The base data that has been used here is

mainly taken from [Air15]. [Bit+13b]

A
3
8
0
-8

0
0

O
ri

g
in

a
l

A
3
8
0
-8

0
0

E
v
a
lu

a
ti

o
n

A
3
8
0
-3

8
8

(5
9
t

p
ay

lo
a
d

)

A
3
8
0
-4

5
7

(9
0
t

p
ay

lo
a
d

)

Maximum take-off weight (MTOW) kg 569000 568390 388000 457000

Operating weight empty (OWE) kg 270364 270600 226790 247770

Maximum fuel weight kg 253938 252020 101250 119570

Wing reference area m2 845 845 608 719

Range NM 7700 7700 3000+R 3000+R

Payload kg 59000 59110 59000 90000

CL0 - n.p. 5.24 5.51 5.51

CLα - n.p. 0.2744 0.2885 0.2885

CD0 - n.p. 0.015 0.017 0.016

CD2 - n.p. 0.051 0.045 0.045

192

Chapter 10: Applications Related to Commercial Air Traffic

10.3.4 Multi-Aircraft Optimal Control Problem

The goal of the optimization is to minimize the overall fuel consumption of all aircraft involved,

leading to the cost function:

J =
N∑

i=1

mi(t0,i) − mi(tf,i) (10.35)

The initial and final boundary conditions for every aircraft are set to the departure or arrival

runway, including the direction of the runway. The climb angle is set to γK = +3 deg for the

departure and to γK = −3 deg for the arrival. No configuration changes are considered in this

example, not allowing a detailed modeling of the climb out and the landing. As the overall fuel

consumption along the whole flight is considered, the particular optimization potentials in these

phases are negligible. Moreover, the initial mass of each aircraft is subject to optimization and

has to remain between the zero fuel weight and the maximum takeoff weight.

To be able to model the refueling, the problem is divided into multiple phases, with con-

straints on the aircraft positions and the phase times enforced. These constraints assure that

the tankers and the traveling aircraft are close enough during refueling. Figure 10.10 shows

the general phase structure used in the calculations. The two horizontal lines depict the tracks

of the two long haul aircraft traveling from two adjacent airports to two different destinations.

Their flight tracks are assumed to be roughly parallel such that the same tanker (or tankers)

may be used for refueling both flights. In the example, two tankers are used to refuel both

aircraft, twice each.

Aircraft 1

Aircraft 2

Tanker 1 Tanker 2
Take-off Landing

Take-off / LandingTake-off / Landing

1

1

2

2

3

3

4

4

5

5

1 1
2 2

3 3
4 4

5 5

Figure 10.10: Phase structure for aerial refueling problem. The numbers along the line

represent the phase numbers. [Bit+13b]

The length of each phase j of a participant P i is defined by the time TP i,j, with every

second phase being a refueling phase and every other phase being a normal travel flight phase.

In figure 10.10, for the airliners, odd phases are pure travel flight phases which for the tankers

are phases where they either travel from their base airport to the first airliner, from one airliner

to the next, or back to their base. For both the tankers and the airliners, even phases are

refueling phases. The length of the refueling phases have to have the same duration for the

airliner as for the tanker, which is assured by the constraint:

TAi,2j = TT j,2i (10.36)

193

10.3 Optimization of Mid to Long Range Flights Considering Air to Air Refueling

Furthermore, time constraints are required that ensure that the tanker and the aircraft

to be refueled are at the same location at the same time even after a different number of

preceding phases.

In the phases of the problem where the refueling takes place, the position of the aircraft

to be refueled and that of the tanker refueling have to be close enough such that the refueling

is technically possible. Here, the positions of the two aircraft are set equal during refueling,

as a precise relative position control is not part of this study. [Bit+13b]

10.3.5 Results

Multiple scenarios have been investigated using the methods described above, where two of

them are presented here in more detail. Afterwards, some general trends that have been

realized will be briefly pointed out.

The first example involves one Airbus A380 that is intended to go from Munich in Germany

(MUC) to São Paulo in Brazil (GRU). In the reference scenario without refueling, the model

of a regular A380 is used. For the flight with refueling the redesigned A380-388 with a shorter

range of 3000NM is used, while a model of a Boeing KC767-300 is used as tanker. The tanker

is based at Dakhla in Morocco (VIL). Table 10.7 lists the initial and final boundary conditions

for the airliner and the tanker. Figure 10.11 shows the optimized trajectory for the flight on

a map of the earth. The optimized refueling maneuver takes place close to the tanker base in

Dakhla.

Table 10.7: Initial and final conditions for an example refueling scenario from Munich, Ger-

many to São Paulo, Brazil. Refueling takes place close to Dakhla, Morocco. [Bit+13b]

A380 / A380-388 KC 763

Initial Airport Munich, MUC Dakhla, VIL

Initial longitude λ0 11.7510 deg E 15.9320 deg W

Initial latitude ϕ0 48.3407 deg N 23.7183 deg N

Initial altitude h0 453m 11m

Initial course angle χ0 263 deg 30 deg

Destination airport São Paulo, GRU Dakhla, VIL

Final longitude λf 46.4695 deg W 15.9320 deg W

Final latitude ϕf 23.4320 deg S 23.7183 deg N

Final altitude hf 750m 11m

Final course angle χf 254 deg 30 deg

Figure 10.12 depicts the fuel masses on board the two aircraft during the flights. It can be

seen that the airliner does not take-off fully fueled but with enough fuel on board to reach the

tanker, as this way the mass along the first part of the trajectory of the aircraft is reduced,

consequently also reducing fuel consumption.

194

Chapter 10: Applications Related to Commercial Air Traffic

MUC

VIL

GRU

Figure 10.11: Trajectories for the airliner and the tanker in the first example scenario.

[Bit+13b]

Mass airliner
Mass tanker

time [s]

fu
el

m
as

s
[k

g]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
×104

0

1

2

3

4

5 ×104

Figure 10.12: Fuel masses on board the aircraft in the first example scenario. [Bit+13b]

Figure 10.13 is an image created with Google Earth showing the trajectories while the

refueling maneuver takes place. It can be seen that the tanker climbs until it reaches the

airliner before both are flying synchronously while the refueling is performed. Afterwards, the

tanker descends to return to its base airport.

In this example fuel savings of approximately 14% with respect to the nominal scenario

without refueling could be achieved. While the regular Airbus A380 consumed approximately

156t of fuel in the simulation, the redesigned A380-388 only consumed 127t of fuel. Of course,

the fuel consumption of the tanker also has to be taken into account which was roughly 7t

in the example simulation. Overall, without refueling, 156t of fuel were consumed while with

refueling only 134t of fuel have been burnt. Table 10.8 lists the detailed masses again.

The second example involves two airliners: one flying from Munich in Germany (MUC) to

195

10.3 Optimization of Mid to Long Range Flights Considering Air to Air Refueling

Figure 10.13: Part of the trajectory while refueling above Dakhla, Morocco. [Bit+13b]

Table 10.8: Results for refueling a flight from Munich to São Paulo by a tanker based in

Dakhla, Morocco.

Fuel consumption Without refueling With refueling

Airliner, A380, MUC-GRU 156t 127t

Tanker, KC 763, VIL - 7t

Sum 156t 134t

San Francisco in the USA (SFO) and another one traveling from Frankfurt in Germany (FRA)

to Los Angeles in the USA (LAX). In the reference scenario, regular A380 models are used for

both flights, while for the refueling scenario, the redesigned A380-388 models have been used.

In the latter calculations another Airbus A380 is considered as a tanker that is stationed in

Sisimiut in Greenland (JHS), assuming all its payload to be additional fuel. Table 10.9 lists

the initial and final conditions for the two flights and the tanker.

The optimized flight tracks for the aircraft in the scenario with refueling can be seen in

figure 10.14, where the first flight going from MUC to SFO is depicted in gray, the second

flight going from FRA to LAX is depicted in blue and the trajectory of the tanker stationed in

JHS is printed in green.

Figure 10.15 illustrates the fuel on board of each of the aircraft showing that the tanker

196

Chapter 10: Applications Related to Commercial Air Traffic

Table 10.9: Example civil refueling scenario involving two airliners. The airliners are travelling

from MUC to SFO, and from FRA to LAX. The tanker base is in this case located in JHS.

[Bit+13b]

A380 / A380-388 A380 / A380-388 KC 763

Initial Airport Munich, MUC Frankfurt, FRA Sisimiut, JHS

Initial longitude λ0 11.7510 deg E 8.5342 deg E 53.7293 deg W

Initial latitude ϕ0 48.3407 deg N 50.1428 deg N 66.9513 deg N

Initial altitude h0 453m 100m 9m

Initial course angle χ0 263 deg 250 deg 62 deg

Destination airport San Francisco, SFO Los Angeles, LAX Sisimiut, JHS

Final longitude λf 122.3807 deg W 118.4190 deg W 53.7293 deg W

Final latitude ϕf 37.6068 deg N 33.9338 deg N 66.9513 deg N

Final altitude hf 3m 36m 9m

Final course angle χf 208 deg 263 deg 62 deg

MUCFRA

LAX
SFO

JHS

Figure 10.14: Trajectories of the aircraft in the second aerial refueling scenario. The flight

from MUC to SFO is depicted in gray, the flight from FRA to LAX in blue and the track of

the tanker in green. [Bit+13b]

in this example cannot carry enough fuel to refuel both aircraft completely for their remaining

routes. This leads to an optimized solution where the second aircraft does not start its flight

with the minimum amount of fuel required until the refueling (the aircraft still has fuel left at

this point), but with the minimum fuel required for the first segment plus that part of the fuel

for the second segment that cannot be delivered by the tanker.

197

10.3 Optimization of Mid to Long Range Flights Considering Air to Air Refueling

Mass airliner from MUC to SFO
Mass airliner from FRA to LAX
Mass tanker

fu
el

m
as

s
[k

g]

time [s]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
×104

0

5

10

15 ×104

Figure 10.15: Fuel masses on board the aircraft in the second example scenario. [Bit+13b]

The overall savings that could be achieved in the second example are listed in table 10.10.

The two long haul flights in the example consumed 296t of fuel, while the flights using

the redesigned models and being refueled only burnt a total of 247t of fuel. In this case,

an additional 20t of fuel are needed by the tanker, in total leading to a reduction of fuel

consumption of approximately 9.8% or 29t relative to the solution without refueling.

Table 10.10: Results for the masses in the second example scenario. [Bit+13b]

Fuel consumption Without refueling With refueling

Airliner 1, A380, MUC-SFO 149t 118t

Airliner 2, A380, FRA-LAX 147t 129t

Tanker, A380, JHS - 20t

Sum 296t 267t

In the studies on the use of aerial refueling for reducing fuel consumption based on aircraft

trajectory optimization, generally, fuel savings due to refueling have been in an approximate

range of 5% to 20%. Thereby, without redesigning the aircraft, fuel savings of approximately

5−7% could be achieved, while another 5−10% are possible when also redesigning the aircraft

for shorter ranges. Overall, the achievable savings very strongly depend on the mission profiles

to be optimized and on the size of the tanker aircraft. Moreover, the number of refueling

maneuvers per flight and per tanker have a strong influence on the results of the optimization.

In the examples presented here, the tanker bases have been chosen in advance and were

not subject to optimization. This would be one possible enhancement for future research on

the topic. It is expected to save even more fuel, when the location of the tanker bases is

also subject to optimization. Here, two possible versions might be investigated as one might

consider only existing airports or all possible airport locations.

Moreover, no safety constraints like reserve fuel remaining on board each aircraft are

considered in this work. These constraints would in some way be dynamic, when considering

198

Chapter 10: Applications Related to Commercial Air Traffic

refueling scenarios, as the refueling maneuver itself may fail and the remaining fuel should

nevertheless always be sufficient to return to a safe airport. This would lead to constraints

on the remaining fuel at each point in time depending on the distance to the nearest suitable

airport.

Furthermore, in the examples no wind is considered that has a strong influence on the

optimal trajectories and consequently can also make the aerial refueling process more com-

plicated. In case strong winds move the optimal trajectories far away from the tanker bases,

the fuel consumed by the tankers will increase, reducing the benefit that is created. Anyway,

if many tanker bases are operated at the same time it may become possible to always use

a tanker located at the best suited airport, finally weakening the aforementioned drawback.

However, the effect wind creates on the fuel consumption along the trajectory can most likely

be neglected as the reference trajectories will be affected similarly to trajectories with aerial

refueling. Further studies may be conducted that include the influence of wind and multiple

tanker bases.

The redesign that has been performed in order to estimate the parameters for the short

range Airbus A380 versions is a very rough redesign and it is almost impossible to determine

the inherent uncertainties. The fact that the redesign of the currently available Airbus A380

fits the data that is publicly accessible quite well, is a good indication that the uncertainties

within the models are below the improvements that can be achieved by civil aerial refueling.

Anyway, in order to make sure that significant benefits can be achieved further studies are

necessary. Moreover, in the particular examples presented in detail here, only the smaller

version of the redesigned aircraft has been used, while the larger Airbus A380-457 has not

been considered. If doing so, the comparison of the results becomes a lot more complicated

as the change in fuel consumption in the scenarios needs to be put in relation to the payload

that can be carried. This may be done using the efficiency metrics developed in [Nan06b].

Of course, aerial refueling in civil applications is in a very early stage of research and a

lot of technical and safety-related issues have to be tackled before a technology readiness

level could be achieved that would allow an implementation of such maneuvers into everyday

procedures. Nevertheless, aerial refueling is quite well established in military applications and

might also be used in other scenarios involving for example UAS or other modern – civil or

military – flying equipment. [Bit+13b]

10.4 Fairness considerations in ATM scenarios

In every conflicting air traffic scenario multiple aircraft – mostly operated by different airlines

that are competing on the market – are involved. Thus, every airline is interested in not only

a safe solution of the conflict but also a cost efficient solution for their aircraft. Fairness in

this environment means that the cost increases that occur by resolving the conflict are equally

distributed to all participants in the considered scenario.

In some scenarios the resolution of a conflict may be almost fully paid by one aircraft, or

199

10.4 Fairness considerations in ATM scenarios

at least a small portion of the parties involved, if the optimal solution for the overall costs

is calculated. Therefore, in these examples, air traffic scenarios are not only optimized for

the overall costs but also for the individual costs of every aircraft and the fair distribution of

them. The resulting mathematical problem can be formulated as a multi criteria optimization

problem as revisited in section 3.3. In the considered scenarios, N aircraft enter an airspace

at different times and fixed positions before flying to fixed exit positions.

The results presented in this example have been created with the support of Benjamin

Fleischmann who did his diploma thesis at the Institute of Flight System Dynamics under

the supervision of this author. The results have been published in a similar form in the joint

paper [Bit+14], before.

10.4.1 Aircraft Simulation Model

In the scenarios considered here (as well as in [Bit+14]), the influences of the inherent aircraft

dynamics are simplified as the considered maneuvers are relatively slow and far away from the

flight envelopes of the aircraft. Besides, no wind influence is incorporated here. Thus, the

aircraft dynamics are modeled using pure kinematic relations. As a flight level change is always

the last measure to be taken by an air traffic controller when resolving conflicts, the scenarios

investigated here do not take level changes into account but are modeled in two-dimensional

space. The formulation used allows for an extension to three dimensions, for the cost of a

significant increase in computational burden. Consequently, the position equations of motion

in the locally fixed Navigation Frame N for each aircraft i = 1, . . . , N are given by:

.
(x)N,i = VK,i · cos χK,i ∀i = 1, . . . , N (10.37)

.
(y)N,i = VK,i · sin χK,i ∀i = 1, . . . , N (10.38)

where N is the total number of aircraft considered.

The models are controlled by the kinematic velocity VK,i and the kinematic course angle

χK,i. This leads to the following state and control vectors xi and ui for each aircraft:

xi = ((x)N,i, (y)N,i)
⊺ (10.39)

ui = (VK,i, χK,i)
⊺ (10.40)

10.4.2 Separation Constraints

In order to maintain safe separation between all pairs of involved aircraft, a path constraint is

added to the scenarios. This constraint has to be fulfilled along the whole trajectories of all

aircraft. The minimum separation is given as:

dmin = 5NM = 9260m (10.41)

In the examples here no differentiation between the weight classes of the aircraft is made and

consequently a fixed separation distance is used. As only the horizontal motion of aircraft is

200

Chapter 10: Applications Related to Commercial Air Traffic

considered here, the distance between two aircraft can be calculated from:

d =
√

((x)N,i − (x)N,j)
2 + ((y)N,i − (y)N,i)

2 (10.42)

which is the two dimensional representation of equation (10.21). In order to avoid the square

root, the distance constraint can be reformulated and implemented as

(dmin)2 ≤ ((x)N,i − (x)N,j)
2 + ((y)N,i − (y)N,i)

2 (10.43)

which is numerically more stable.

In case of a scenario containing N aircraft, Nd pairs of distance constraints have to be

fulfilled, where Nd is the number of possible aircraft combinations and evaluates to:

Nd =
N · (N − 1)

2
(10.44)

Similar to the example presented in section 10.2, the number of separation constraints grows

quadratically with the number of aircraft and is consequently the main limiting factor when

adding aircraft to the scenarios. [Bit+14]

10.4.3 Multi-Aircraft Optimal Control Problem

The combination of all aircraft in the scenarios considered here is performed similarly to the

formulation presented in section 10.2.6, because the same problem concerning unknown and

different initial and final times needs to be solved. Again, in oder to be able to evaluate the

spatial separation constraints at the correct points in time, a simulation on one common grid

is used. Another way of solving the problem may be the partitioning of the whole scenario

into multiple phases in order to use different combinations of active aircraft in each phase

[Ric+14c].

Here, the aircraft dynamics are extended by three fading factors. One is used to activate

the dynamics at the beginning of the trajectory based on time and the other one is used to

fade out the dynamics at the final position based on the aircraft location:

.
xi =





.
(x)N,i.
(y)N,i



 =




VK,i · cos χK,i

VK,i · sin χK,i



 · δx,i · δy,i · δt,ini,i (10.45)

The three fading factors are modeled according to

δx,i =
1

2
tanh (a · |(x)N,i − xf,i|) +

1

2
(10.46)

δy,i =
1

2
tanh (a · |(y)N,i − yf,i|) +

1

2
(10.47)

δt,ini,i =
1

2
tanh (ν · (t − tini,i)) +

1

2
(10.48)

with xf,i and yf,i being the final position of aircraft i and tini,i being its initial time. As in the

examples considered here all aircraft start at the same point in time, δt,ini,i = 1 can be used

201

10.4 Fairness considerations in ATM scenarios

(also compare equation (10.48) to equation (10.15)). Additionally, depending on the final

flight direction, one of the two location dependent factors is also set to one. The splitting of

the fading factor for the final position in two factors for the coordinate directions represents

a simplification of a general model formulation using the Euclidean distance. The drawback

of the simplified formulation is that the final direction of movement has to be known for all

aircraft, its benefit is an increase in solution stability as no squared distance is required. The

parameter a used in (10.46) and (10.47) controls the steepness of fading, where values that

are too high result in very high gradients which is numerically problematic and values that are

too low result in a very long and unrealistic fading. In the examples considered here, a value

of

a = 20
1

NM
= 1.0799 · 10−2 1

m
(10.49)

turned out to be a good compromise after testing several values for a ∈ [10−3 1
m

, 1
m

]. Using

this position based fading, final boundary conditions cannot be given as equality constraints

anymore but have to be specified as small ranges. If these ranges and the steepness are tuned

accordingly, they both do not affect the solutions in practice. [Bit+14]

10.4.4 Cost Functions and Fairness

In the examples presented here, the costs generated by each flight are approximated by the

flight time required to pass through the given sector. As no fast maneuvers are performed,

no height changes are considered and the velocities are strictly limited here, this assumption

is reasonable. To be able to calculate the flight time even when considering the fading of

the dynamics presented above, the time ti for each aircraft is added as an additional state

according to the equation:
.
ti = 1 · δx,i · δy,i · δt,ini,i (10.50)

The final values for this newly introduced state, tf,i can then be used to calculate the overall

cost for a scenario as:

tsum =
N∑

i=1

tf,i (10.51)

In general, at this point, other more detailed cost functions like operational cost, fuel con-

sumption, emissions, or a combination thereof can also be integrated into the simulation.

Within the scope of this work, fairness is represented by an even distribution of costs

to all aircraft inside a scenario. As not all aircraft have the same distance to cover inside

the considered sector, the absolute costs for crossing the sector are not a suitable means of

comparison. Instead, the relative cost change with respect to the case where every aircraft

can cross the sector freely, is used. These relative increases of costs for resolving the conflicts,

compared to the reference case, are calculated from

ci =
tf,i − tf,i,min

tf,i,min
(10.52)

202

Chapter 10: Applications Related to Commercial Air Traffic

where tf,i is the crossing time of the aircraft i in the scenario with all conflicts being resolved

and tf,i,min is the minimum crossing time of the aircraft i if all other aircraft were neglected.

A scenario is considered fair if these relative cost increases are evenly distributed.

Hence, the goal of the optimization is to minimize every single cost increase ci. Thus, the

problem can be interpreted as a multi criteria optimization problem, like the ones presented in

section 3.3, with the cost function vector containing one entry for each participant:

JA =








c1

...

cN








(10.53)

When looking at the problem from a statistical point of view, the sample mean cm and

the sample variance cvar of the aforementioned cost increases can be calculated from

cm =
1

N
·

N∑

i=1

ci (10.54)

and

cvar =
1

N − 1
·

N∑

i=1

(ci − cm)2 (10.55)

The variance of the relative cost increases of all aircraft may be considered as an alternative

means of fairness which leads to another multi criteria optimization problem with the cost

function vector

JB =




csum

cvar



 =





∑N
i=1 ci

1
N−1

·∑N
i=1(ci − cm)2



 (10.56)

In this formulation, the minimization of the sum csum is equivalent to the minimization of the

mean cm and the minimization of the variance cvar is equivalent to the minimization of the

standard deviation cstd =
√

cvar. [Bit+14]

10.4.5 Multi Criteria Optimization

Several methods for solving multi criteria optimization and optimal control problems exist,

where a short overview of the most relevant scalarization techniques can be found in section

3.3.

Here, the problem is investigated using two different cost function formulations as stated

in (10.53) and (10.56). For these two formulations different solution algorithms are applied

and presented below.

Weighted Sum Scalarization

Using the method from section 3.3.1 and the cost formulation from equation (10.53), the

scalarized cost function becomes:

Jsum =
N∑

i=1

wi · ci (10.57)

203

10.4 Fairness considerations in ATM scenarios

As the relative cost increases ensure a certain fairness level in this formulation, all weights in

equation (10.57) can be chosen as:

wi = 1 ∀i ∈ 1, . . . , N (10.58)

Overall, this optimization will result in the minimum summed cost increases without considering

fairness in more detail. From a multi criteria optimization problem point of view, fixing the

weights may result in one point in the approximation of the Pareto front. [Bit+14]

Weighted Metrics Scalarization

The weighted metrics scalarization from section 3.3.2, which is based on a p-Norm, amplifies

big cost increases and reduces small ones for p > 1, potentially increasing fairness in the

scenario. When omitting a target cost value, the cost function (10.53) becomes:

J‖c‖p
=

(
N∑

i=1

wi · |ci|p
) 1

p

, p > 1 (10.59)

As the scenarios considered here get more constrained when the separation needs to be ensured

compared to the case when free flight is possible, the cost functions can only be equal to or

greater than the reference costs. Thus, all relative cost changes are positive:

ci ≥ 0, ∀i = 1, . . . , N (10.60)

by choosing all weights wi = 1, ∀i = 1, . . . , N , again, and with (10.60), (10.59) becomes:

J‖c‖p
=

(
N∑

i=1

(ci)
p

) 1

p

, p > 1 (10.61)

On the other side, when using a target cost value cT , the optimization criterion (10.53)

becomes:

JT,p =

(
N∑

i=1

wi · (ci − cT)p

) 1

p

(10.62)

To be able to use this cost function formulation, a value for cT is required, whose estimation

may be challenging for ATM scenarios. Thus, an optimization minimizing the overall costs is

performed here as a first step, before the minimum optimal cost value (regarding one aircraft)

is scaled by kT and used as target:

cT = min ci · kT , kT > 0 (10.63)

The factor kT can be tuned to shift the weight between overall costs and cost distribution

inside a scenario and therefore can be used to estimate points close to the Pareto front of

the problem – at least when chosen arbitrarily. In the example considered below, p = 1 is

chosen and all weights are set to wi = 1 using the same reasoning as before. The resulting

cost function is:

JT =
N∑

i=1

wi · (ci − cT) (10.64)

In this formulation, deviations from the target value to lower cost values are penalized equal

to deviations to higher cost values. [Bit+14]

204

Chapter 10: Applications Related to Commercial Air Traffic

Tschebyscheff Scalarization

Using the scalarization from section 3.3.4, setting all weights to wi = 1, and omitting the

target cost, the following cost function can be constructed from the cost function formulation

(10.53):

J‖c‖∞ = lim
p→∞

(
N∑

i=1

(ci)
p

) 1

p

= max
i

(ci) (10.65)

In order to be able to numerically solve the resulting Tschebyscheff problem, the transfor-

mation from section 3.2.2 is used. A problem that will arise when using this solution strategy

is the fact that only the maximum cost function is minimized. All other cost functions may

stay above their respective optimal values (but below the maximum cost function value, of

course) and will not be further pushed down by the optimization algorithm. To tackle this

problem the approach may be extended by the Limited Minimum Sum Optimization that is

presented in the next section.

Limited Minimum Sum Optimization

When using the weighted sum scalarization, the overall costs become minimal without consid-

ering a fair cost distribution between the different participants. When using the Tscheby-

scheff scalarization the opposite holds. In this approach these two techniques are combined:

First, the problem based on the Tschebyscheff scalarization is solved, before afterwards

the resulting maximum individual cost is used as a limit for all individual costs in the problem:

ci ≤ cmax, i = 1, . . . , N (10.66)

In a second optimization, a minimization of the overall cost function is performed to lower

the costs for all participants that are not at their optimum yet. This method can be further

extended by loosening the upper limit for any individual cost based on a parameter ks:

ci < ks · cmax, ∀i, j ∈ 1, . . . , N (10.67)

By tuning ks, a reduction in the overall costs may be achieved and the weighting of the overall

costs to fairness may be shifted. Consequently, for different values of ks an approximation of

some points along the Pareto front may be calculated.

Weighted Sum Scalarization in Mean and Variance

When considering the second cost function formulation for the problem as stated in (10.56),

another weighted sum formulation can be derived:

Jmv = wm ·
(

JSum

N

)2

+ wvar · Jvar = wm · c̄2 + wvar · 1

N − 1

N∑

i=1

(ci − c̄)2 (10.68)

Here, wm and wvar are the weights for the two terms of the sum and have to be chosen

arbitrarily. As only the relation between the two components is relevant the two scaling

205

10.4 Fairness considerations in ATM scenarios

factors only represent one degree of freedom. To be able to achieve a meaningful comparison

between both values, the mean has been squared, as the variance also is of second order.

One possibility to choose the weights is setting one of them to zero and the other to one.

When doing so, either a minimization of the mean, which is equal to the minimization of the

sum presented before, or a minimization of the variance results. The latter has also been

implemented in the considered scenarios. To ensure the quality of the solution by means of

overall costs, an additional condition has been added to the calculations that limits the sum

and therefore also the mean of the costs

csum ≤ csum,min · kc, kc ≥ 1 (10.69)

where csum,min is calculated by minimizing the overall costs. This condition ensures a maximum

in the summed cost and therefore also a maximum in the mean. Different values for the scaling

kc have been used in the examples leading to different optimal points.

Another possibility for the weights would be to set both to one, which leads to an equivalent

weighting of the mean and the variance but in some cases might not be numerically favorable.

Thus, the weights might also be calculated based on a previously run minimization of the

mean (indicated by the asterisk ∗). Then both parts of the sum can be weighted such that

they lie within the same numerical range by choosing:

wm =
1

(c̄∗)2
=

1
(

1
N

∑N
i=1 c∗

i

)2 (10.70)

wvar =
1

var(c∗
i)

2
=

1
(

1
N−1

∑N
i=1(c

∗
i − c̄∗)2

)2 (10.71)

The calculations based on the two latter formulations only lead to one point each on the

approximated Pareto front. Anyway, choosing different combinations of wm and wvar makes

it possible to calculate multiple points. [Bit+14]

10.4.6 Scenarios and Results

Two example scenarios have been set up and solved in [Bit+14] in order to demonstrate how

the methods presented before can be used in ATM applications considering a fair distribution

of costs. The results are shown in detail again, here. All scenarios have been discretized using

a trapezoidal collocation scheme while the numerical optimization is performed using SNOPT

[GMS02] or WORHP [BW13], respectively.

Description of Scenario 1

The first scenario consists of four aircraft that are positioned pairwise opposite to each other.

The scenario can be seen in figure 10.16. The aircraft starting points are marked by triangles,

their destinations by crosses. The intersection of the trajectories is located at the origin of the

locally fixed frame; the starting positions are 40 NM and 45 NM out and the final positions

206

Chapter 10: Applications Related to Commercial Air Traffic

are 60 NM and 65 NM out. All boundary points are either located on the (x)N -axis or on

the (y)N -axis, as can be seen in the figure. Even though in current day operations, two-way

traffic is separated vertically in order to avoid such conflicts, the example demonstrates the

capabilities of the algorithm.

Aircraft 1
Aircraft 2
Aircraft 3
Aircraft 4

(y
) N

-P
os

it
io

n
[N

M
]

(x)N -Position [NM]

-80 -60 -40 -20 0 20 40 60 80

-60

-40

-20

0

20

40

60

Figure 10.16: Overall cost minimal solution for scenario 1. [Bit+14]

The tracks in figure 10.16 show the solution for the scenario when minimizing the overall

costs and ignoring any fairness aspects. It can clearly be seen, that aircraft 3 and 4 have to fly

a noticeable detour while aircraft 1 and 2 are hardly affected by the solution of the conflict.

Hence, in this scenario the cost minimal solution is not desirable for all parties. The numerical

results for the relative increases in the flight time – compared to the conflict free scenario –

and the total time for each aircraft can be seen in table 10.11. The cost increases have a

mean of cm = 0.465% and a standard deviation of cstd = 0.339%. [Bit+14]

Results for Scenario 1

When using the aforementioned weighted metrics scalarization with p = 2 the mean of the

costs in the first scenario becomes cm = 0.468% while the variance is cvar = 0.327%. As

can be seen from figure 10.17, the results are very similar to that created using the weighted

sum scalarization. The same holds for the minimization of the mean and the variance for a

weighting of wm = wvar = 1. The results created using the Tschebyscheff scalarization,

which in this case is equal to the limited minimum sum optimization if ks = 1, tend to be

207

10.4 Fairness considerations in ATM scenarios

Table 10.11: Cost function values for scenario 1 for the minimization of the mean compared

to the reference scenario without conflict resolution.

Aircraft Number Flight Time Cost increase

1 1066s 0.170%

2 1172s 0.106%

3 1074s 0.917%

4 1178s 0.668%

slightly better in fairness and a little worse in the overall costs. The results for the minimum

target optimization as well as the results for the minimization of the variance strongly depend

on the chosen parameters as can be seen in figure 10.18 and figure 10.19.

Mean
Standard deviation

[%
]

W
ei

gh
te

d

S
um

W
ei

gh
te

d

M
et

ri
cs

T
sc

he
by

-

sc
he

ff

M
ea

n
an

d

V
ar

ia
nc

e

0

0.1

0.2

0.3

0.4

0.5

Figure 10.17: Results in mean and standard deviation for scenario 1. [Bit+14]

Mean
Standard deviation

[%
]

kT

0.1 0.25 0.5 0.75 1 2 3
0

0.2

0.4

0.6

Figure 10.18: Optimal mean and standard deviation for different parameters kT in scenario 1

using the minimum target optimization. [Bit+14]

When plotting the mean of the cost increases over its standard deviation for the different

optimization methods, an approximation of the Pareto front of the problem may be drawn.

208

Chapter 10: Applications Related to Commercial Air Traffic

Mean
Standard deviation

[%
]

kc

1 1.002 1.006 1.01 1.03 1.05 1.07 1.09 1. 1.2
0

0.2

0.4

0.6

Figure 10.19: Optimal mean and standard deviation for different parameters kc in scenario 1

using the minimum variance optimization. [Bit+14]

As stated in section 3.3, the methods used in the example are not capable of generating the

exact Pareto front of the problem as potentially non-convex parts may not be covered.

Figure 10.20 shows the results for the different methods in different colors. It can clearly

be seen that no single optimal solution in mean and standard deviation exists but that it is

only possible to improve one of them while the other gets worse. For means of comparison,

the results for mean and variance are shown here, although they are not the real criterion for

Pareto optimal points in the first problem formulation (10.53). [Bit+14]

Sum
Metric
Target
Tschebyscheff
Limit
Variance

S
ta

nd
ar

d
de

vi
at

io
n

[%
]

Mean [%]

0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56

0.24

0.26

0.28

0.3

0.32

0.34

Figure 10.20: Approximation of the Pareto front in mean and standard deviation for

scenario 1. [Bit+14]

209

10.4 Fairness considerations in ATM scenarios

Description of Scenario 2

Three aircraft are involved in the second scenario. They all start at an (x)N -position of

x0 = −50NM . Their (y)N -positions are spread regularly in δx = 10NM steps with the middle

aircraft being positioned on the (x)N -axis. They are all starting at the same time and need to

mirror their (y)N -positions until the end of the sector that is located at xfinal = 50NM .

Figure 10.21 shows the geometry of the scenario, including the solution minimizing the

overall costs. In this scenario the relative increase of costs for aircraft 1 is c1 = 3.724%

the relative increase for aircraft 2 is c2 = 0.452% and the increase for aircraft 3 also is

c3 = 3.724%. Consequently, the mean in this scenario is cm = 2.627% while the standard

deviation is cstd = 1.537%. Table 10.12 lists the results for the minimization of the mean for

the second scenario. [Bit+14]

Aircraft 1
Aircraft 2
Aircraft 3

(x)N -Position [NM]

(y
) N

-P
os

it
io

n
[N

M
]

-50 -40 -30 -20 -10 0 10 20 30 40 50

-10

0

10

20

30

Figure 10.21: Overall cost minimal solution for scenario 2. [Bit+14]

Table 10.12: Cost function values for scenario 2 for the minimization of the mean compared

to the reference scenario without conflict resolution.

Aircraft Number Flight Time Cost increase

1 1126s 3.724%

2 1069s 0.452%

3 1126s 3.725%

Results for Scenario 2

The results for scenario 2 are quite different from those of scenario 1 as the problem is more

interconnected and the cost increases are higher. The minimum mean in the costs can again be

achieved by minimizing the overall costs (of course), this time reaching a value of cm = 2.63%

with a standard deviation of cstd = 1.54%. Figure 10.22 shows the mean and the standard

210

Chapter 10: Applications Related to Commercial Air Traffic

deviation for the minimization of the weighted metric with p = 2, the Tschebyscheff

method and the optimization of mean and variance both weighted by one wm = wvar = 1. It

is striking that the Tschebyscheff optimization is able to reduce the variance to zero with

a comparably small increase in the mean of the costs.

Mean
Standard deviation

[%
]

W
ei

gh
te

d

S
um

W
ei

gh
te

d

M
et

ri
cs

T
sc

he
by

-

sc
he

ff

M
ea

n
an

d

V
ar

ia
nc

e

0

1

2

3

4

Figure 10.22: Results in mean and standard deviation for scenario 2. [Bit+14]

When using the minimum target optimization for the second scenario with different param-

eters (figure 10.23), the results are quite similar to the results calculated in the first example.

Once again, the cost increases with increasing scaling factors kT while the standard deviation

simultaneously decreases.

Mean
Standard deviation

kT

[%
]

0.1 0.25 0.5 0.75 1 2 3 4 5
0

1

2

3

4

Figure 10.23: Optimal mean and standard deviation for different parameters kT in scenario 2

using the minimum target optimization. [Bit+14]

The results for the minimization of the variance with different parameters kc look very

similar to the results in scenario 1 and can be seen in figure 10.24. Anyway, the numeric

211

10.4 Fairness considerations in ATM scenarios

values are bigger, as the conflict is generally more expensive to resolve. Thus, in this scenario

an increase in fairness can be achieved with a comparably low relative increase in the mean.

Mean
Standard deviation

[%
]

kc

1.001 1.004 1.008 1.02 1.04 1.06 1.08 1.1 1.2
0

1

2

3

Figure 10.24: Optimal mean and standard deviation for different parameters kc in scenario 2

using the minimum variance optimization. [Bit+14]

When comparing all methods for scenario 2 and plotting the mean of the costs against

their standard deviation, the result is quite similar to the result created in scenario 1. These

results can be seen in figure 10.25. This time, all Pareto optimal points are located on

one clean line which is very likely to be the real Pareto front for the problem formulated

in (10.56). Moreover, no significant point (meaning that a huge decreases in one dimension

brings a relatively small increases in the other) can be found. So, the human decision maker

is challenged and no preferable point can be detected. [Bit+14]

Discussion

The results of the calculations show that no method is superior to any other – neither regarding

the results nor with respect to computational time. Instead, all methods are able to calculate

some points that are somewhere close to the Pareto front of the overall problem. Using a

combination of the methods presented, a good approximation for the Pareto front may be

found – depending on the considered scenario. In many scenarios no preferable solution may

exist in which either the mean or the variance could be lowered without significantly increasing

the other. Finally, the decision for one point inside the solution still remains with the decision

maker, i.e. the human controller.

The presented study was a first work on the topic as no other publication was found that

combines multi criteria optimization with optimal control to calculate optimized solutions for

ATM conflicts. This may also be connected to the fact that the cost increases are marginal and

may not matter to the airlines as long as there is other aspects where much higher savings can

be achieved. Anyway, there is potential for future research: First of all, further investigations

on Pareto optimality of the calculated points can be done. Furthermore, the cost functions

used here are only based on time which is a first approximation of the real costs and can be

extended to much more realistic models. Besides the aircraft cost functions, also controller

212

Chapter 10: Applications Related to Commercial Air Traffic

Sum
Metric
Target
Tschebyscheff
Limit
Variance

S
ta

nd
ar

d
de

vi
at

io
n

[%
]

Mean [%]

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 10.25: Approximation of the Pareto front in mean and standard deviation for

scenario 2. [Bit+14]

workload and the number of maneuvers might be considered as both are crucial to safety.

Moreover, uncertainties in the scenarios like wind may be added. Finally, studies may be

conducted analyzing the multi criteria optimal control problem in more detail as introduced in

section 3.3.7. [Bit+14]

213

Chapter 11

Air Race Related Applications

The calculation of optimal air race trajectories is one of the most challenging applications

of aircraft trajectory optimization as the aircraft are mostly operated at their limits. This

requires the use of highly non-linear, high fidelity simulation models together with comparably

fine discretization grids for the controls and the states. Moreover, the different time scales of

the fast rotational dynamics (the aircraft in the examples feature roll rates of up to 420deg
s

)

and the comparably slow translational dynamics make the resulting differential equations stiff,

representing another challenge for solving respective optimal control problems.

Thus, problems from the field of air race trajectory optimization are used in this chapter

to demonstrate the results presented in chapters 5–9. The first scenario considered in the

examples contains an air race track, defined by seven race gates that are located at the

positions given in table 11.1. All positions are measured with respect to the start gate (Gate

1) – which at the same time is the final gate – and are given in meters. The orientation for

each gate is the direction of the first passing – later in the race it may also be reversed. The

aircraft competing in the race have to pass the gates several times, where the race gate order

is given as:

1 − 2 − 3 − 4 − 5 − 4∗ − 6∗ − 7∗ − 1∗ − 7 − 6 − 4 − 5 − 4∗ − 3∗ − 2∗ − 1∗

Here, an asterisk indicates that the respective race gate needs to be passed from the opposite

direction. Consequently, the overall race course is defined by 17 interior point conditions that

are transformed to boundary conditions using the transformation from section 3.2.2, resulting

in a total of 16 phases in the optimal control problem.

Figure 11.1 depicts the optimal trajectory for the full rigid body simulation model with the

race gates being represented by red crosses. The starting gate, also forming the final gate,

can be seen in the bottom right corner of the plot, located at (0, 0, 0).

Moreover, the theory presented in section 3.2.5 is used in the examples to perform a further

analysis of the results. In this analysis, the costates (estimated based on the Lagrange mul-

tipliers of the discretized problem) and the multipliers for the controls are used to approximate

the Hamiltonian. Furthermore, the derivative of the Hamiltonian with respect to the controls

is derived from the discretized problem and is used in the analysis. Overall, the numerical

215

Table 11.1: Position and orientation of the race gates relative to the start gate.

Gate Gate Position Orientation

No. (x)N [m] (y)N [m] (z)N [m] χG [rad]

Gate 1 0 0 0 −0.174

Gate 2 237.63 −58.55 0 −0.174

Gate 3 565.00 54.45 0 −0.172

Gate 4 880.01 −29.25 0 0

Gate 5 1127.08 −79.46 0 0

Gate 6 610.39 −110.02 0 3.142

Gate 7 299.40 35.62 0 3.140

(y)N [m]

(x)N [m]

(z
) N

[m
]

-100
-50

0 50
0

200

400

600

800

1000

0

50

100

Figure 11.1: Time optimal spatial trajectory through the air race course.

results show very good accordance with the underlying theory, confirming good accuracy of

the computations.

The optimization of air race trajectories has some tradition at the Institute of Flight System

Dynamics of TUM. Florian Fisch worked on the topic for some years and published his

results on several conferences [Fis+08, Fis+09, FLH12], in a scientific journal [FBH12] and in

his dissertation [Fis11]. Results similar to the ones shown here were partially also presented in

the conference papers [BFH12, Bit+13a], before.

In [Fis11] different aircraft models are described that are consecutively used to solve an

optimal control problem. The main idea of the work is to start solving the respective optimal

216

Chapter 11: Air Race Related Applications

control problem using a simple point mass simulation model before adding more and more

complex rotational dynamics. Between two consecutive optimizations, simulations are used to

calculate the required initial guesses. The work does not focus on linearly appearing controls

and overcomes any issues related to them by changing the problem formulation by adding

particular Lagrange cost functions.

11.1 Simulation Model

The simulation model used in the optimization studies presented here has been constructed

based on the work [Fis11] and the experience of Herbert Weirather who is an aerobatic

pilot also flying the Zivko Edge 540T. Based on his expert knowledge about the aircraft

behavior, the parameters of the simulation model have been tuned in order to match the

behavior of the real aircraft as closely as possible. Anyway, no real parameter estimation has

been performed. Herbert Weirather did his Bachelor Thesis at the Institute of Flight

System Dynamics under the supervision of this author. [Wei14]

The models are based on the theory presented in chapter 2. In all examples a locally fixed

navigation frame is used for determining the position of the aircraft as the spatial extent of

air race trajectories is comparably small and does not require the use of any global coordinate

reference. Consequently, the position propagation equations (2.25) were used. For the same

reason, a flat and non-rotating earth is used in the models, like in equation (2.39), (2.59)

and (2.73). Furthermore, no wind is considered in the examples, rendering all aerodynamic

and kinematic quantities equal. Anyway, the addition of wind to the simulation model is

easily possible, even though it cannot be determined in advance how the performance of the

optimization algorithm may change when doing so. The origin of the locally fixed coordinate

frame used for determining the position of the aircraft is located at the center of the start gate

of the race course. As only races above water are considered here, all race gates are located

at the same altitude in the examples.

The basic parameters of the aircraft model are listed in table 11.2, while the aerodynamic

parameters are described in the next sections. [Wei14]

11.1.1 Aerodynamic Model

The aerodynamic forces are calculated based on the force equation (2.103), using the following

relationships for the aerodynamic coefficients:

CL = CL,0 + C∗
L,α(αA) + CL,q · q̃ + CL,η · η (11.1)

CQ = CQ,β · βA + CQ,p · p̃ + CQ,r · r̃ + CQ,ζ · ζ (11.2)

CD = CD,0 + k · (CL,α · αA)2 + kβ · (CQ,β · βA)2+

(CD,ξ · ξCMD)2 + (CD,η · ηCMD)2 + (CD,ζ · ζCMD)2 (11.3)

217

11.1 Simulation Model

Table 11.2: General model parameters for the aircraft used in the examples.

Parameter name Symbol Unit Value

Aircraft mass m kg 693.0

Wing reference area S m2 8.928

Wing span b m 7.5

Mean length of aerodynamic chord c̄ m 1.44

Propulsion reference velocity VR m/s 30

Maximum engine thrust TR N 0.8 · m · g

Moments of inertia Ixx kg · m2 420.3035

Iyy kg · m2 726.7184

Izz kg · m2 827.3201

As the flights are partially conducted in the proximity of stall, a model for the lift coefficient

that features a linear dependency on the angle of attack is not sufficient. Hence, a non-linear

function C∗
L,α(αA) is used in the lift equation, that is modeled as

C∗
L,α = a · tanh

(

αA · 180

π
· b
)

− e ·
(

1 + tanh
(

αA · 180

π
· d − c

))

(11.4)

using the idea of combining different functions and fading them by a hyperbolic tangent that

is presented in section 6.5. The parameters for equation (11.4) are listed in table 11.3. Figure

11.2 shows a plot of the relationship. As a decrease in lift close to stall does not come with

a decrease in drag, a quadratic lift-drag relationship may not be used here. Instead, a basic

linear lift model incorporating the constant value CL,α is used to calculate the lift that is used

in the quadratic drag equation (11.3). The remaining aerodynamic force coefficients can be

found in table 11.4.

Table 11.3: Parameters for the lift coefficient depending on the angle of attack.

a b c d e

2.763 0.0443 8.1722 0.4473 0.791

The aerodynamic moments of the model are calculated using the relationship from equa-

tion (2.104). The coefficients appearing therein are modeled using the following relationships:

Cl = Cl,ξ · ξ + Cl,ζ · ζ + Cl,p · p̃ + Cl,r · r̃ + Cl,β · βA (11.5)

Cm = Cm,0 + Cm,η · η + Cm,q · q̃ + Cm,α · αK (11.6)

Cn = Cn,ξ · ξ + Cn,ζ · ζ + Cn,p · p̃ + Cn,r · r̃ + Cn,β · βA (11.7)

As can be seen, the model for the aerodynamic moments is linear, using the coefficients that

can be found in table 11.5.

218

Chapter 11: Air Race Related Applications

C
∗ L

,α

Angle of attack [deg]

-10 -5 0 5 10 15 20 25
-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 11.2: Part of the lift coefficient depending on the angle of attack.

Table 11.4: Aerodynamic force coefficients.

CD,0 0.0295 CQ,β −0.589355 CL,0 0.055

k 0.05134 CQ,p 0.042480 CL,α 4.75

kβ 1.696770 CQ,r 0.048340 CL,η −0.073242

CD,ξ 0.05 CQ,ζ −0.195313 CL,q −3.479492

CD,η 0.05

CD,ζ 0.05

Table 11.5: Aerodynamic moment coefficients.

Cl,β 0.024902 Cm,η −0.317383 Cn,β 0.149902

Cl,p −0.583008 Cm,q −16.930176 Cn,p 0.014648

Cl,r 0.087891 Cm,α −0.145406 Cn,r −0.4731

Cl,ξ −0.2126 Cm,0 −0.004883 Cn,ξ −0.0073

Cl,ζ 0.001 Cn,ζ 0.170898

219

11.1 Simulation Model

11.1.2 Engine Dynamics

Even though in realistic air races the pilots are hardly ever touching the thrust lever, its position

is considered as an input to the optimal control problem here for the sake of completeness.

As the thrust created by the engine cannot follow the commanded thrust instantaneously, a

dynamic model is incorporated here. The engine dynamics are directly applied to the thrust

lever position command, using the dynamic equation

.
δT =

1

TEngine

· (δT,CMD − δT) (11.8)

with TEngine = 0.5. The resulting thrust force is then modeled depending on the current air

speed and linear in the thrust lever position:

(

F G
P,x

)

B
= δT · VR

VA
· TR (11.9)

11.1.3 Augmented Point Mass Simulation Model

In the pure point mass formulation, the bank angle is directly used as a control, allowing

discontinuities if not further constrained. In order to prevent jumps in the bank angle, strongly

simplified linear roll dynamics may be added to the point mass equations as:

.
µK =

.
µK,CMD (11.10)

In this augmented model formulation, .
µK,CMD is used as a command that is integrated along

with the model dynamics to get a continuous behavior of the bank angle µK . The limits in

the roll dynamics of the aircraft can then be accounted for by limiting the admissible range of
.
µK,CMD.

Alternatively, µKCMD can directly be used for controlling the bank angle, where the same

roll rate limits can be achieved using the dynamic constraint formulation from section 6.4.

11.1.4 Path Constraints

Besides the dynamic constraints formed by the aircraft simulation model presented before,

algebraic constraints have to hold along the whole trajectory. Table 11.6 lists the limits for

these path constraints.

As the (z)N -axis is pointing downwards and the origin of the locally fixed frame is located

at the center of the clearance area of the initial race gate, the limit in the (z)N position of

the aircraft is positive and 10m below the center of this area. The regulations of air races

limit the load factor in (z)B direction of the body fixed frame as stated in table 11.6. In order

to prevent the aircraft from stalling, the stall speed limit needs to be satisfied. On the other

hand, the maximum speed is limited by the regulations of the air race and should ensure safety.

The aerodynamic angle of attack and the aerodynamic angle of sideslip need to be limited as

the aerodynamic model is only valid within the given range. Extreme aerodynamic situations

220

Chapter 11: Air Race Related Applications

may not be described correctly by the formulation introduced above and consequently must

be avoided. The roll rate limits given in table 11.6 are motivated by the structural limits of

the aircraft and the pilot.

Table 11.6: Path constraints applied in the air race examples.

Description Symbol Unit Value

z-Position limit due to ground clearance (z)N,max m 10

Load factor limits due to regulations (nz)B,min - −2

(nz)B,max - 10

Stall speed limit VA,min m/s 25

Maximum speed due to regulations VK,max m/s 102.9

Aerodynamic angle of attack limits αA,min rad −0.17

αA,max rad 0.35

Aerodynamic angle of sideslip limits βA,min rad −0.17

βA,max rad 0.17

Roll rate limits pmin rad/s −7.33

pmax rad/s 7.33

11.1.5 Race Gate Constraints

Besides the path constraints that have to be fulfilled along the whole trajectory, additional

constraints need to be respected whenever the aircraft is passing through a race gate. Table

11.7 lists the constraints applicable there. As the time of passing through a race gate is

unknown before solving the respective optimal control problem, the race gate constraints need

to be incorporated in the problem formulation using the phase approach described in section

3.2.2.

At every race gate, the position of the aircraft has to match the center of the clearance

area of the race gate in all three spatial dimensions. Here, no tolerance in the position is

allowed resulting in equality constraints. The same holds for the kinematic course angle χK of

the aircraft which is required to exactly match the orientation of the race gate. Furthermore,

the regulations of the air races require the pilots to pass through the race gates wings level,

meaning that the bank angle of the aircraft needs to be zero: µk = 0. Here, the rules allow a

tolerance of ±10 deg that is also used in the optimizations.

11.1.6 Cost Function

The cost function to be minimized is the overall race time. This cost function may be formu-

lated as the Lagrange cost function:

L(x(t), u(t), t) = 1 (11.11)

221

11.2 Low Fidelity Trajectory Optimization

Table 11.7: Constraints applied at the race gates in the air race examples.

Description Symbol Unit Tolerance

x-Position of the race gate (x)N m ±0

y-Position of the race gate (y)N m ±0

z-Position of the race gate (z)N m ±0

Orientation of the race gate χK rad ±0

Bank angle in the race gate µA deg ±10

resulting in the following overall cost function:

J =

tf∫

t0

1 dt = tf − t0 (11.12)

The initial time is fixed to t0 = 0 as it represents a redundant degree of freedom.

11.1.7 Initial Guess

In the first examples, the initial guess that is required for solving the optimal control problem

is determined based on two dimensional Dubins paths [Dub57] for the position of the aircraft

– unless specified otherwise. Figure 11.3 shows the initial trajectory for the race course that

has been defined in table 11.1. All other values are initialized according to table 11.8.

Table 11.8: Initial guess for the states and the controls of the air race examples.

Variable Type Value

(x)N Dubins path -

(y)N Dubins path -

(z)N constant 0

χK from Dubins path -

γK constant 0

µK constant 0

VK constant 100m
s

αA constant 0

Variable Type Value

βA constant 0

p constant 0

q constant 0

r constant 0

δT constant 1

ξ constant 0

η constant 0

ζ constant 0

11.2 Low Fidelity Trajectory Optimization

First, the results for the trajectory optimization using low fidelity simulation models will be

presented and discussed. These include

222

Chapter 11: Air Race Related Applications

(y)N [m]

(x)N [m]

-100
0

100
200

0

200

400

600

800

1000

1200

Figure 11.3: Initial guess for the spatial trajectory through the air race course.

• the straight forward approach using the augmented point mass simulation model formu-

lated before, and

• the idea for the model reformulation avoiding singular controls, discussed in chapter 6

and especially presented in section 6.4.

Both problems were solved on a grid containing 501 discretization points per phase, re-

sulting in a total of 8016 nodes. The states and the controls were discretized on the same

grid. As the race gates are not distributed equally along the race track, not all phases in

the optimal control problem feature the same simulation time. With a fixed number of grid

points per phase, this results in different resolutions of the discretization with respect to the

simulation time. In the examples shown here, the distance between two discretization points

varies between:

0.0048s = ∆tmin ≤ ∆t ≤ ∆tmax = 0.0129s (11.13)

The grid is intentionally chosen this fine for two reasons: First, the results of the low fidelity

optimization should be compared with the results from the high fidelity optimization presented

in the next section, which requires a very fine grid due to the fast internal dynamics. Second,

and more important, the highly dynamic race course requires the pilots to perform the right

maneuvers at the exact right time, leading to the necessity of a very fine control grid. Con-

sequently, the state grid also needs to be chosen very fine, as it may not be coarser than the

control grid. This phenomenon will be seen in the discussion of the resulting control histories

below.

For the solution of the discretized numerical optimization problems, IPOPT [WB06] is

used with the constraint tolerance set to tolC = 10−6 and the optimality tolerance set to

tolJ = 10−5 for the augmented point mass model. The relatively low optimality tolerance is

223

11.2 Low Fidelity Trajectory Optimization

required due to the bad numerical properties of the dynamic model (see section 6.2) which

makes it impossible to solve the problem to a higher accuracy. When using the formulation

with the dynamic constraints from section 11.2.2, an optimality tolerance of tolJ = 5 · 10−6

is feasible and used. All optimizations were performed on a personal computer equipped

with an Intel Core i7-950 CPU with 3.07GHz and 20GB of RAM. The collocation code

of FALCON.m features multi-threading and consequently makes use of all four CPU cores

installed in the machine.

11.2.1 Augmented Point Mass Simulation Model

In this first section, the results for the optimization using the augmented point mass simulation

model without any model reformulations are presented. Figure 11.4 shows the overall optimal

trajectory through the given race course. The positions of the race gates are indicated by the

red crosses. As most of the race gates have to be passed several times, the trajectory partially

overlaps itself.

(x)N [m]

(z
) N

[m
]

(y)N [m]

-100
-50 0

50
0

200

400

600

800

1000

0

50

100

Figure 11.4: Time optimal spatial trajectory for the augmented point mass simulation model.

After discretization, the numerical optimization problem contained 96208 optimization

variables and 72152 constraints. Hence, the gradient matrix of the discretized problem might

contain up to 6.9416 · 109 elements but has a sparsity ratio of 99.9901%, resulting in 684336

structural non-zero entries. The numerical optimization took 13219 iterations to converge

which equals approximately 10782s on the aforementioned machine. The resulting optimal

cost function value is a race time of tf = 60.2253s.

224

Chapter 11: Air Race Related Applications

µ
K

V
K

γ
K

δ T

t [s]

(x
) N

χ
K

(y
) N

(z
) N

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0

0.5

1

50

100

150

-5

0

5

-2

0

2

-5

0

5

-200

0

200

-200

0

200

-2000

0

2000

Figure 11.5: Optimal state histories for the augmented point mass simulation model.

225

11.2 Low Fidelity Trajectory Optimization

Figure 11.5 shows the state histories along the optimal trajectory through the air race. In

this and all forthcoming plots, the phase boundaries are illustrated by the gray, vertical lines.

The dashed red lines represent the state boundaries to be respected along the race trajectory

as given before. It can be seen that only the limits for (z)N and δT become active during the

race. Furthermore, the three half Cuban eights – performed by the aircraft to achieve quick

turns – become clearly visible in the (z)N , VK and γK states. The kinks that can be seen

in the history of µK are required to fulfill the bank angle constraints when passing the race

gates. At these points the aircraft is using the full dynamic envelope in the roll motion.

β
A

,C
M

D
α

A
,C

M
D

t [s]

δ T
,C

M
D

. µ
K

,C
M

D

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0

0.5

1

-10

0

10

-0.2

0

0.2

-0.2

0

0.2

0.4

Figure 11.6: Optimal control histories for the augmented point mass simulation model.

The optimal control histories can be found in figure 11.6. It can be seen that only the bank

rate .
µK,CMD and the thrust lever position δT reach their limits. The angle of attack αA,CMD

is not at its boundaries except during the half Cuban eight maneuvers, where it reaches its

maximum allowed value. The angle of sideslip βA,CMD is zero almost everywhere as it induces

too much drag that slows the aircraft down and eventually causes it to loose time. Only when

226

Chapter 11: Air Race Related Applications

passing the race gates, the angle of sideslip is used to be able to continue turning even though

no bank angle is allowed. At these points the faster turning of the aircraft compensates for

the loss in speed. The bank rate .
µK,CMD reaches its limit whenever the aircraft is passing

through a race gate, as mentioned before. The thrust lever δT,CMD remains in full throttle

position throughout the whole race. Only at the very last instant in time a decrease can be

seen which is a numerical artifact as the thrust at the very final discretization point does not

influence the solution anymore. Especially in the angle of attack and the bank rate, quick

jumps in the control inputs can be seen. The determination of the precise moment in time

where these jumps take place require the aforementioned fine control grid. When too coarse

grids are used in optimal control problems, one can often see chattering in the solution which

can be interpreted as a repeated overshooting of the dynamics around the true location of the

jump. When the resulting control history should be used in a real application, jumps are often

not possible and an additional smoothing or filtering of the histories is required.

In figure 11.7 the vertical load factor in the body fixed frame (nz)B is plotted together

with its boundary values. The load factor constraint becomes active when performing the

half Cuban eight maneuvers due to the high velocity of the aircraft in combination with the

requirement to turn as quickly as possible. As soon as the velocity of the aircraft drops due

to climbing, the load factor experienced by the pilot also drops and the limit becomes inactive

again. As the velocity of the aircraft is decreasing along the race track (due to the drag induced

by the agile maneuvers), the activation duration of the constraint decreases from each Cuban

eight maneuver to the next because the critical velocity is undercut faster each time.

(n
z
) B

t [s]

0 10 20 30 40 50 60

0

5

10

Figure 11.7: Constrained load factor and its limit for the augmented point mass simulation

model.

Figure 11.8 shows the costates (or adjoint variables) that have been estimated by FAL-

CON.m based on the Lagrange multipliers determined by IPOPT as described in section

3.2.5. Multiple theoretical findings can be recovered from the costate histories of the problem.

227

11.2 Low Fidelity Trajectory Optimization

First of all, the costates for the position states λ(x)N
, λ(y)N

, and λ(z)N
are constant almost

everywhere within each phase but jump between the phases. This makes sense as the position

states do not influence the dynamics and consequently the derivative of the Hamiltonian H

with respect to them is zero. As this derivative equals the negative time derivative of the

respective costates (equation (3.101)), these have to be constant. The only exception is the

costate of the (z)N -position, that jumps whenever the vertical position constraint becomes

active or inactive. The jumps appearing when a race gate is passed (visualized by the vertical,

gray lines in the plots) can easily be explained by the constraints that apply there: All costates

related to states that are forced to a value at the gates, feature a jump at this point due to

the transversality conditions (equation (3.102)). The costate history of the course angle λχK

can be interpreted using the same argumentation. For all other states a continuous costate

history results – which is in perfect compliance with optimal control theory. Additionally, it can

be seen that all costates related to states that are not constrained at the final point in time

become zero at the end. Using optimal control theory and the interpretation of the costates

as sensitivities of the cost (see section 3.2.3), they have to be zero, as a change in these final

optimal states does not influence the cost function anymore.

As described in section 3.2.3, using the costate estimates, the state derivatives, and the

constraint values in the problem, the Hamiltonian can be approximated. Figure 11.9 shows

the time history of the Hamiltonian of the problem that contains four parts here:

H̃(x, λ, µS, µC, u) = L(x, u)
︸ ︷︷ ︸

A

+ λ⊺ f(x, u)
︸ ︷︷ ︸

B

+ µ
⊺
S S(x, u)

︸ ︷︷ ︸

C

+ µ
⊺
C C(x)

︸ ︷︷ ︸

D

(11.14)

A The Lagrange cost function,

B the costates times the state derivatives,

C the multipliers for the path constraints times the constraint margin, and

D the multipliers for the state inequality constraints times their margin.

Compared to the Hamiltonian in equation (3.113), here – besides the mixed state control

constraints – pure state constraints are present making the underlying theory a little more

complicated. However, this issue is not discussed here and in this analysis the two constraints

S and C may be seen as a separation of the ones presented in equation (3.113), with µ being

partitioned into µS and µC.

As can be seen in figure 11.9, the portions coming from the constraints are all zero as

either the constraint margins (the difference between the value and the related limit) or the

respective multipliers are zero. The portion coming from the state dynamics sums up to a value

of λ⊺ f(x, u) = −1, constant over time. Using the Lagrange cost function from equation

(11.11), the overall Hamiltonian may be estimated accordingly and is also shown in the plot.

As the whole problem formulation is not time dependent (the problem is autonomous), the

Hamiltonian needs to be constant. Additionally, for free final time problems, the Hamiltonian

is required to be H(tf) = 0 at the end. With both conditions combined, the Hamiltonian

228

Chapter 11: Air Race Related Applications

λ
(z

) N
λ

(y
) N

λ
(x

) N
λ

γ
K

λ
χ

K
λ

µ
K

λ
δ T

λ
V

K

t [s]

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

-0.1

0

0.1

-0.2

0

0.2

-0.1

0

0.1

-5

0

5

-2

0

2

-0.05

0

0.05

-0.01

0

0.01

-0.02

0

0.02

Figure 11.8: Costate histories for the augmented point mass simulation model.

229

11.2 Low Fidelity Trajectory Optimization

Overall
State Dynamics
Path Constraints
State Boundaries
Lagrange Cost function

H

t [s]

0 10 20 30 40 50 60
-1.5

-1

-0.5

0

0.5

1

Figure 11.9: Augmented Hamiltonian over time for the augmented point mass simulation

model.

is required to be constant zero along the whole trajectory. Again, nice accordance with the

underlying optimal control theory from section 3.2.3 becomes visible, confirming the optimality

of the numerical solution.

In the last step, the derivative information – that has been automatically calculated by

FALCON.m – is used to estimate the derivative of the Hamiltonian with respect to the con-

trols along the trajectories. The theory of optimal control states that this derivative tells

where the respective control is saturated and where not. In optimal control problems with

linearly appearing controls, this derivative is called switching function. For the nonlinear cases

considered here, the derivative of the Hamiltonian with respect to the controls is called ex-

tended switching function as it delivers similar information. Whenever the extended switching

function is negative, the respective optimal control has to be chosen to be at its upper bound,

while it needs to be at its lower bound for positive values. This can also be seen from equa-

tion (3.98) for bounded controls. In case the extended switching function is zero, the related

control cannot be determined directly but needs to be calculated by solving the underlying

equations. Then, its value is not at the boundaries. Besides, as all discretized controls enter

the numerical optimization problem as optimization variables, IPOPT also calculates multipli-

ers for the control values. Now, the derivative of the Hamiltonian with respect to the controls

can be compared to the multipliers from IPOPT. The plots in figure 11.10 show the respective

histories, each calculated by the two different approaches, where good compliance can be

seen (except for some small spikes at the phase boundaries coming from numerical effects).

Additionally, when comparing the plots to the control histories in figure 11.6, it can clearly

be seen that whenever a control hits one of the boundaries, the related derivative is non-zero,

fulfilling the aforementioned sign condition.

230

Chapter 11: Air Race Related Applications

From Hamiltonian
From Control Multipliers

H
′ δ T

,C
M

D

t [s]

H
′ α

A
,C

M
D

H
′ . µ

K
,C

M
D

H
′ β

A
,C

M
D

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

-0.2

-0.1

0

0.1

-0.1

-0.05

0

0.05

-5

0

5

10

-3

-2

-1

0

1

Figure 11.10: Derivative of the Hamiltonian with respect to the controls for the augmented

point mass simulation model.

11.2.2 Point Mass Model with Dynamic Control Constraints

In this section, the results for the optimization using the reformulated model based on the idea

presented in section 6.4 are shown. Now, the overall race trajectory is depicted in figure 11.11

showing good agreement with the previously presented results.

In the model used in this example, the linear dynamic equation for the bank angle has been

removed and replaced by a discrete, finite difference approximation. Hence, along the whole

trajectory the condition

− 7.33
rad

s
=

.
µK,min ≤ .̄

µK,CMD =
µK(tk) − µK(tk−1)

tk − tk−1
≤ .

µK,max = 7.33
rad

s
(11.15)

231

11.2 Low Fidelity Trajectory Optimization

replacements

(y)N [m]

(x)N [m]

(z
) N

[m
]

-100
-50 0

50
0

200

400

600

800

1000

0

50

100

Figure 11.11: Time optimal spatial trajectory for the model including dynamic control con-

straints.

has to hold ∀tk ∈ [t1, tf]. Similarly, the dynamic equation for the thrust lever has been removed

because the thrust lever control also appears linearly in the problem. Anyway, δT,CMD is almost

always at its boundaries, not making it the critical control in the problem. However, for the

sake of completeness of the transformation, the dynamic equation (11.8) was replaced by the

constraint:

− 1 =
.
δT,min ≤

.̄
δT,CMD =

δT (tk) − δT (tk−1)

tk − tk−1
≤

.
δT,max = 1, ∀tk ∈ [t1, tf] (11.16)

The selection of the limits for
.̄
δT,CMD is based on the time delay TEngine = 0.5 and the

respective range δT ∈ [0, 1] of the removed linear dynamic and represents an approximation

thereof.

After the discretization, the numerical optimization problem contained 80176 optimization

variables and 72184 constraints. Hence, the gradient matrix of the discretized problem might

contain up to 5.7875 · 109 elements but has a sparsity ratio of 99.9887%, resulting in 652368

structural non-zero entries. The numerical optimization took 1927 iterations to converge

which equals approximately 1730s on the aforementioned machine. The resulting optimal cost

function value is a race time of tf = 60.2304s

In figure 11.12 the state histories for the optimal trajectory can be seen which in general

are very similar to the results presented in section 11.2.1. Again, the phase boundaries are

illustrated by the gray, vertical lines. In this formulation only the altitude constraint in (z)N

becomes active – all other states do not reach their boundaries.

232

Chapter 11: Air Race Related Applications

(y
) N

(x
) N

(z
) N

γ
K

t [s]

V
K

χ
K

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

50

100

150

-2

0

2

-5

0

5

-200

0

200

-200

0

200

-2000

0

2000

Figure 11.12: Optimal state histories for the model including dynamic control constraints.

The optimal control histories for the problem are depicted in figure 11.13. When com-

paring the results to the ones for the augmented point mass simulation model in figure 11.6,

no differences in the angle of attack αA,CMD or the angle of sideslip βA,CMD can be seen.

Moreover, the newly added control µK,CMD shows a great similarity to the respective state in

233

11.2 Low Fidelity Trajectory Optimization

figure 11.5. The thrust lever δT,CMD again remains at full throttle position, not even showing

the decrease at the final time. The reason for this is that with the thrust dynamics being

removed, the final thrust lever control influences the trajectory and consequently the solution

of the problem.

β
A

,C
M

D
α

A
,C

M
D

µ
K

,C
M

D

t [s]

δ T
,C

M
D

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0

0.5

1

-4

-2

0

2

4

-0.2

0

0.2

-0.2

0

0.2

0.4

Figure 11.13: Optimal control histories for the model including dynamic control constraints.

The history of the load factor constraint is plotted in figure 11.14 and shows very good

agreement with the one in figure 11.7. Thus, the explanation given there is also valid here.

Figure 11.15 depicts the costate histories, again showing the same results as already visible

in figure 11.8 and explained there.

Similarly to the previous section, it is possible to estimate the Hamiltonian of the problem.

Figure 11.16 shows the parts of the Hamiltonian as described in equation (11.14). In the

theory used therein, the dynamic control constraints are not covered, resulting in errors in the

estimation whenever the dynamic control constraints are active. Figure 11.17 shows the two

dynamic control limits as described in equations (11.15) and (11.16). One can see that the

bank rate is hitting its limits at almost the same points as in the example presented before (see

234

Chapter 11: Air Race Related Applications

t [s]

(n
z
) B

0 10 20 30 40 50 60

0

5

10

Figure 11.14: Constrained load factor and its limit for the model including dynamic control

constraints.

figure 11.6). Moreover, it becomes visible how the approximation of the Hamiltonian is not

constantly equal to zero whenever the dynamic constraints are active. This becomes visible

when comparing figures 11.16 and 11.17. This perfectly fits the theory as the approximation

of the Hamiltonian does not cover the constraint and consequently is not precisely correct at

these points.

Figure 11.18 shows the derivative of the Hamiltonian with respect to the controls, again

estimated twice: On the one hand from the approximation of the Hamiltonian, and on the

other hand from the control multipliers calculated by IPOPT. In this case the two approaches

deliver slightly different results – again as expected, because of the errors in the estimate of the

Hamiltonian. Whenever the dynamic control constraint is not active and the approximation

of the Hamiltonian is consequently good, the two results for the function match. Besides, it

can again be seen that all controls – except the thrust lever position – are not at their limits

almost everywhere.

11.3 High Fidelity Trajectory Optimization

In this section, the results for the optimization of air race trajectories using the full rigid body

simulation model are presented. More details on the model can be found in chapter 2 and in

section 11.1. Similar to before, the problem was solved on a grid containing 501 discretization

points per phase, resulting in a total of 8016 nodes. Again, due to the different lengths of the

phases, the distance between two nodes varies from 0.0048s to 0.0129s. IPOPT [WB06] was

used to solve the problem to a feasibility tolerance of tolC = 10−6 and an optimality tolerance

of tolJ = 5 · 10−6 on the previously mentioned machine.

After discretization, 136288 optimization variables and 112227 constraints need to be con-

sidered. The sparsity ratio of the gradient matrix is 99.9864%, resulting in 2074082 structural

235

11.3 High Fidelity Trajectory Optimization

λ
(y

) N
λ

(z
) N

λ
(x

) N
λ

γ
K

t [s]

λ
χ

K
λ

V
K

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

-0.2

-0.1

0

0.1

-4

-2

0

2

-1

0

1

2

-0.04

-0.02

0

-0.01

0

0.01

-0.01

0

0.01

Figure 11.15: Costate histories for the model including dynamic control constraints.

236

Chapter 11: Air Race Related Applications

Overall
State Dynamics
Path Constraints
State Boundaries
Lagrange Cost function

H

t [s]

0 10 20 30 40 50 60
-1.5

-1

-0.5

0

0.5

1

Figure 11.16: Augmented Hamiltonian over time for the model including dynamic control

constraints.

.̄ µ
K

,C
M

D

t [s]

t [s]

.̄ δ T
,C

M
D

0 10 20 30 40 50 60

0 10 20 30 40 50 60

-1

-0.5

0

0.5

1

-10

-5

0

5

10

Figure 11.17: Dynamic Control Constraint for limiting the control rates.

237

11.3 High Fidelity Trajectory Optimization

From Hamiltonian
From Control Multipliers

H
′ α

A
,C

M
D

H
′ µ

K
,C

M
D

t [s]

H
′ δ T

,C
M

D
H

′ β
A

,C
M

D

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

-0.4

-0.3

-0.2

-0.1

0

-1

-0.5

0

0.5

1

-2

0

2

4

6

-3

-2

-1

0

1

Figure 11.18: Derivative of the Hamiltonian with respect to the controls for the model

including the control constraints.

non-zero entries in the overall gradient matrix. The numerical optimization converged to a

solution after 883 iterations which equals approximately 2290s.

The spatial trajectory that results from the optimization can be found in figure 11.1, above.

The minimal race time calculated in the optimization is 60.3437s. Figures 11.19 and 11.20

show the state histories along the air race, with the phase boundaries being represented by

the gray, vertical lines. Now, besides the limits for (z)N , also the limits for pK become active

during the race. The remainder of the analysis is similar to that of the point mass simulation

model, except that now, when passing the gates, the aircraft is rotating around the bank axis

using the full envelope in the rotational dynamics, pushing the roll rate pK to the limits.

The histories of the optimal controls can be found in figure 11.21. It can be seen that fast

238

Chapter 11: Air Race Related Applications

(z
) N

χ
K

(x
) N

(y
) N

µ
K

γ
K

t [s]

V
K

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

60

80

100

120

-5

0

5

-1

0

1

2

-2

0

2

4

-200

-100

0

100

-200

-100

0

100

-1000

0

1000

2000

Figure 11.19: Optimal state histories for the high fidelity simulation model.

239

11.3 High Fidelity Trajectory Optimization

α
A

β
A

q K
r K

p K
δ T

t [s]

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0

0.5

1

-5

0

5

-5

0

5

-10

0

10

-0.2

0

0.2

-0.2

0

0.2

0.4

Figure 11.20: Optimal state histories for the high fidelity simulation model.

240

Chapter 11: Air Race Related Applications

and full movement of the aileron ξCMD is required in the proximity of the race gates – again

for fulfilling the bank angle constraints there. The elevator ηCMD is only hitting its boundaries

at the second last race gate. Moreover, the rudder ζCMD is only used when passing the race

gates. Again, this behavior is attributed to the bank angle constraint which renders a small

angle of sideslip valuable that is built up and relieved using the rudder. As can be seen in the

last graph in the figure, the thrust lever δT,CMD remains in full throttle position all the time

except at the very last instant. The argumentation from section 11.2.1 applies again.

ξ C
M

D
η C

M
D

ζ C
M

D
δ T

,C
M

D

t [s]

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0

0.5

1

-1

0

1

-1

0

1

-1

0

1

Figure 11.21: Optimal control histories for the high fidelity simulation model.

It is noticeable that there is slight chattering in the elevator control when passing the race

gates right before the half Cuban eights. Neither a purely mathematical nor a numerical reason

was found during the analysis of the results which leads to the assumption that the aircraft

may gain something in the cost function by the slightly increased drag that results from the

elevator movement (see (11.3) for the drag equation). In [Ben10, p. 110] Ben-Asher shows

how an analysis of the Hodograph plot of the state derivatives may be used to determine if

chattering may appear or not. In order to get the Hodograph, one has to plot the set of

241

11.3 High Fidelity Trajectory Optimization

reachable state derivatives for the whole set of possible controls at the state values under

consideration. In case this set is not strictly convex, chattering may appear. In the example

presented here the state space – and consequently also the state derivative space – features

13 dimensions, not allowing for a simple visual convexity check. Anyway, different projections

of the Hodograph to three dimensional space can be drawn. Then, the overall set can only

be convex if every projection to the subspaces is convex. On the other hand, if one such

projection is not strictly convex, the original set cannot be so, neither. Figure 11.22 shows

two such projections, clearly indicating that the set is not strictly convex at the state values

where chattering appears. As not all possible combinations of control inputs may be checked,

the controls have been discretized in order to create the figures. The left plot in figure 11.22

shows the linear (and consequently not strictly convex) influence of the controls on the body

rates, while the graph on the right show a clearly non-convex shape in direction of the time

derivative of the velocity. Anyway, this is not proving that the slight chattering is part of the

real solution to the problem, but another strong indication. Of course, this slight chattering

also becomes visible in other places throughout the solution.

replacements

.
q .

χK
.
p

.
γK

. V
K. r

0.2

0.4

-100

0

100

0.75
0.8

0.85
0.9

0.95

-40
-20

0
20

-5.4

-5.2

-5

-4.8

-50

0

50

Figure 11.22: Projection of the Hodograph to different three dimensional subspaces during

chattering.

In figure 11.23, the vertical load factor (nz)B is plotted. It can be seen that the history of

the values is similar to the results calculated before, rendering the same explanation valid.

The figures 11.24 and 11.25 show the costate estimates from FALCON.m. The behavior

of the costates for the position states λ(x)N
, λ(y)N

, and λ(z)N
is found to be similar to above,

with the same explanation being applicable. The jumps in all costates related to states that are

constrained at the phase boundaries can also be found again here (compare section 11.2.1).

The remainder of the analysis is also similar to above, except that here, the slight chattering

that appears in the elevator also becomes visible in some of the costates.

Figure 11.26 shows the time history of the augmented Hamiltonian of the problem con-

242

Chapter 11: Air Race Related Applications

t [s]

(n
z
) B

0 10 20 30 40 50 60

0

5

10

Figure 11.23: Constrained load factor and its limit for the high fidelity simulation model.

structed from the four parts presented in equation (11.14). As in this example no differential

constraints are present, all effects may be covered by the theory, resulting in a good approxi-

mation of the Hamiltonian. Again, a nice accordance to the underlying optimal control theory

becomes visible, supporting the optimality of the numerical solution.

The derivative of the Hamiltonian with respect to the controls for the optimization based

on the rigid body simulation model can be found in figure 11.27. On the one hand, the plots

show that in this case the derivation based on the approximated Hamiltonian matches the

multipliers calculated by IPOPT nicely. Besides, the location of the arcs where the controls

are not saturated, that may be determined from the histories, matches those of the control.

Finally, again, good compliance between the numerical results and the underlying optimal

control theory can be seen.

11.4 Combined Collocation and Shooting

Next, the results to the air race problem described above that have been obtained using the

method suggested in section 8.2 will be discussed. The approach uses a collocation scheme

for the slow states of the aircraft motion while the fast states are integrated using a multiple

shooting scheme. According to the statements in chapter 2, the rotational states are to

be considered fast, while the translational ones represent the slow dynamics of the aircraft.

Consequently, the fast states in the model from above are

xf = [µK , αK , βK , p, q, r]⊺ (11.17)

while the remaining states are considered to be slow:

xs = [(x)N , (y)N , (z)N , χK , γK , VK , δT]⊺ (11.18)

The dynamic equations of the system are partitioned similarly to the state vector, resulting

243

11.4 Combined Collocation and Shooting

λ
(x

) N
λ

χ
K

λ
(z

) N
λ

γ
K

λ
(y

) N
λ

V
K

t [s]

λ
µ

K

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

-0.2

-0.1

0

0.1

-0.1

0

0.1

-4

-2

0

2

-1

0

1

2

-0.04

-0.02

0

-0.01

0

0.01

-0.01

0

0.01

Figure 11.24: Costate histories for the high fidelity simulation model.

244

Chapter 11: Air Race Related Applications

λ
α

A
λ

β
A

λ
δ T

λ
p

K
λ

q K

t [s]

λ
r K

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

-0.1

-0.05

0

0.05

-5

0

5

-2

0

2

4

-5

0

5

-0.05

0

0.05

-0.1

0

0.1

Figure 11.25: Costate histories for the high fidelity simulation model.

245

11.4 Combined Collocation and Shooting

Overall
State Dynamics
Path Constraints
State Boundaries
Lagrange Cost function

replacements

t [s]

H

0 10 20 30 40 50 60
-1.5

-1

-0.5

0

0.5

1

Figure 11.26: Augmented Hamiltonian over time for the high fidelity simulation model.

in an equation of motion for the fast states

.
xf = ff(xs, xf , u, p) (11.19)

and one for the slow states:
.
xs = fs(xs, xf , u, p) (11.20)

In this example, the slow states were discretized on an equidistant grid containing 101

points per phase. For the fast states a subdivision of five grid points was used, resulting in

a total of 501 grid points per phase. Overall, for the slow states 1616 collocation nodes and

for the fast states 8016 multiple shooting nodes result. For the approximation of the slow

states onto the grid of the fast states, the linear interpolation from equation (8.9) has been

implemented. The controls are also discretized on the coarse collocation grid formed by 101

points per phase and have been linearly interpolated to the fine multiple shooting integration

grid. The simulation within the multiple shooting segments was done using an explicit Euler

forward integration scheme.

Due to the different lengths of the phases, the distance between two collocation points

for the slow states varies from 0.024s to 0.065s while for the fast states the grid spacing is

between 0.0048s and 0.0129s. Again, IPOPT [WB06] was used to solve the problem to a

feasibility tolerance of tolC = 10−6 and an optimality tolerance of tolJ = 5 · 10−6.

The number of optimization variables decreased to 27488 while the number of constraints

dropped to 22627 in the discretized problem, as less grid points are required in the combined

discretization scheme. Even though the number of 764082 structural non-zero elements in the

gradient is also comparably low, the sparsity ratio of 99.8772% is not as high as it is with pure

246

Chapter 11: Air Race Related Applications

From Hamiltonian
From Control Multipliers

H
′ ξ C

M
D

t [s]

H
′ ζ C

M
D

H
′ η
C

M
D

H
′ δ T

,C
M

D

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

-0.2

-0.1

0

0.1

-0.04

-0.02

0

0.02

0.04

-15

-10

-5

0

5

-0.4

-0.2

0

0.2

Figure 11.27: Derivative of the Hamiltonian with respect to the controls for the high fidelity

simulation model.

collocation – as expected due to the higher interdependence in the shooting scheme and the

smaller overall problem size.

On the aforementioned machine, the problem converged in approximately 2144s and 1355

iterations. Contrary to the pure shooting code, the code used in this mixed approach has not

yet been tuned for maximum efficiency, leaving room for further improvements by means of

execution time. The trajectory that results from the optimization can be found in figure 11.28.

The minimal race time calculated in the optimization is 60.3512s.

The state histories along the trajectories are depicted in figures 11.29 and 11.30. It can

be seen that similar to before, the limits for (z)N and for pK become active during the race.

When comparing figures 11.21 and 11.31 no large differences can be observed, keeping the

analysis from section 11.3 valid here.

247

11.4 Combined Collocation and Shooting

replacements

(x)N [m]

(y)N [m]

(z
) N

[m
]

-100
-50 0

50
0

200

400

600

800

1000

0

50

100

Figure 11.28: Time optimal spatial trajectory for the combined simulation model.

The same is true for the path constraint on the load factor in (z)B direction that is depicted

in figure 11.32. Therein, no violation of the constraints in between two grid points can be

observed. Contrary, this is not true for the roll rate limit as can be seen in figure 11.33. In

the interval between 24.5s and 24.6s the roll rate limit is violated by the states resulting from

the multiple shooting integration. As only the states at the collocation nodes (marked by the

crosses in the figure) are considered in the path constraint, the violation cannot be detected.

Figure 11.34 shows a magnified part of the history of the vertical position of the aircraft. It

can clearly be seen that the position dynamics can smoothly be represented by the collocation

nodes marked by the crosses. Opposite to this, the detail of the bank angle history in figure

11.35 shows that the collocation grid points are not sufficient for a smooth representation of

the history of this fast varying state. Hence, the blue line shows the state history calculated

by the multiple shooting approach.

As the theory for the costate estimation from section 3.2.5 is only valid for collocation

approaches, no costate histories can be given for the fast states here. The derivation of this

theory for multiple shooting schemes remains an open issue for future research. Hence, the

approximation of the Hamiltonian is not possible.

The aforementioned control discretization based on the coarse grid of the method is not

ideal for all the controls as the control surface deflections ξCMD, ηCMD and ζCMD mainly

influence the fast rotational dynamics and consequently also would require faster control inputs.

Therefore, a future extension of the algorithm may be the use of a control grid which is similar

to the multiple shooting integration grid, containing 501 nodes per phase. Thus, the problem

248

Chapter 11: Air Race Related Applications

(y
) N

(z
) N

(x
) N

µ
K

χ
K

γ
K

t [s]

V
K

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

60

80

100

120

-5

0

5

-1

0

1

2

-2

0

2

4

-200

-100

0

100

-200

-100

0

100

-1000

0

1000

2000

Figure 11.29: Optimal state histories for the combined simulation model.

249

11.4 Combined Collocation and Shooting

δ T

t [s]

q K
r K

p K
β

A
α

A

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0

0.5

1

-5

0

5

-5

0

5

-10

0

10

-0.2

0

0.2

-0.2

0

0.2

0.4

Figure 11.30: Optimal state histories for the combined simulation model.

250

Chapter 11: Air Race Related Applications

η C
M

D

t [s]

ζ C
M

D
δ T

,C
M

D
ξ C

M
D

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0

0.5

1

-1

0

1

-1

0

1

-1

0

1

Figure 11.31: Optimal control histories for the combined simulation model.

t [s]

(n
z
) B

0 10 20 30 40 50 60

0

5

10

Figure 11.32: Constrained load factor for the combined simulation model.

251

11.4 Combined Collocation and Shooting

t [s]

p K

24.3 24.4 24.5 24.6 24.7 24.8 24.9 25

-5

0

5

Figure 11.33: Detail of the roll rate history for the combined simulation model.

(z
) N

t [s]

13 13.5 14 14.5 15 15.5 16
-150

-140

-130

-120

-110

-100

-90

-80

Figure 11.34: Detail of the z-position history for the combined simulation model.

t [s]

µ
K

24.3 24.4 24.5 24.6 24.7 24.8 24.9 25
0

0.5

1

1.5

Figure 11.35: Detail of the bank angle history for the combined simulation model.

size will be increased by the additional control parameters without increasing the number of

constraints. Anyway, the calculation of the gradient matrix will change in this case, requiring

further implementation efforts. In cases where some controls are influencing the fast states

while others are mainly changing the slow ones, one may want to use different control grids.

252

Chapter 11: Air Race Related Applications

11.5 Comparison of the Results for the Different Models

In this section the results from sections 11.2–11.4 are compared to each other and further

discussed. Figure 11.36 shows all spatial trajectories created above. No large deviations can

be seen in the trajectories, illustrating that the results match closely.

Augmented Point Mass Model
Point Mass with Dynamic Constraints
Rigid Body Model
Mixed Collocation/Shooting

(z
) N

[m
]

(y)N [m]

(x)N [m]

-100
-50

0
50

0

200

400

600

800

1000

0

50

100

Figure 11.36: Comparison of optimal race trajectories for the different models.

In figure 11.37 the situation becomes even more clear. Therein, the Euclidean difference

between the spatial solution of the highest fidelity solution and those using the other simulation

models are visualized. The difference has been calculated based on the relative time progress

along the results as the different models lead to different minimal race times. The abscissa of

the plot is based on the time of the solution for the rigid body simulation model. As expected,

no position differences can be seen when passing the race gates. Moreover, the overall maxi-

mum position difference that appears in the results is 4.22m, which is approximately half the

wing span of the aircraft.

Besides, the results of the augmented point mass simulation model and the point mass

simulation model with the dynamic control constraints do not differ much. Again, this was

expected beforehand, as from a theoretical point of view they both use the same physical

model. Anyway, a different numerical behavior was experienced in the solution process, also

253

11.5 Comparison of the Results for the Different Models

Augmented Point Mass Model
Point Mass with Dynamic Constraints
Mixed Collocation/Shooting

∆
P

O
S

[m
]

t [s]

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 11.37: Position difference with respect to the solution for the rigid body simulation

model.

leading to different achievable solution accuracies for the two formulations. Compared to the

mixed shooting and collocation approach – which is also based on the rigid body simulation

model – the trajectory differences between the pure rigid body simulation model and the point

mass simulation models are larger.

The yellow line in figure 11.37 shows the difference between the mixed collocation and

shooting approach and the pure collocation of the rigid body simulation model on the fine

grid. The observed difference in the trajectory is within the range of some centimeters. Here,

the reason is twofold:

• On the one hand, the discretization of the controls is coarser, reducing the theoretical

“possibilities of the pilot”, and

• on the other hand, different integration schemes are used for the fast dynamics in the

two approaches, which influences the numerical solution of the differential equation.

Anyway, the differences in the results achieved are expected to be much lower than any possible

errors due to model inaccuracies.

Table 11.9 gives a numeric overview of the different results. First of all, one can see that

the optimality tolerance that can be achieved when using the augmented point mass simulation

model is worse than that of the other models and methods. The reason for this is the pure

numerical condition of the discretized optimization problem. More details on this can be found

in chapter 6.

When comparing the results for the first two models listed in the table, it can be seen how

the number of optimization parameters can be reduced by removing the linear state equations

254

Chapter 11: Air Race Related Applications

Table 11.9: Overview of the results using the different simulation models and discretization

methods.

O
p

ti
m

a
li
ty

to
le

ra
n

ce

O
p

ti
m

iz
a
ti

o
n

p
ar

a
m

e
te

rs

C
o
n

st
ra

in
ts

It
e
ra

ti
o
n

s

S
o
lu

ti
o
n

ti
m

e

C
o
st

fu
n

ct
io

n

v
a
lu

e

Augmented point mass model 1 · 10−5 96208 72152 13219 10782s 60.2253s

Point mass with control constraint 5 · 10−6 80176 72184 1927 1730s 60.2304s

Rigid body simulation model 5 · 10−6 136288 112227 883 2290s 60.3437s

Combined collocation and shooting 5 · 10−6 27488 22627 1355 2144s 60.3512s

and moving them to a dynamic control constraint. On the other side, the number of constraints

hardly changes, as only a transformation of them takes place there. The number of iterations

as well as the solution time show that this problem reformulation leads to a significant decrease

in the required computational effort, due to a better conditioned problem, without significant

changes in the cost function value.

Comparing the resulting cost values for the rigid body simulation model (in the last two

rows of table 11.9) to that of the point mass simulation model, one can see how the additional

constraints inherent in the rotational dynamics increase the minimum race time. The marginal

difference in the race time between the two last rows of the table is attributed to the coarser

control grid in the last case which reduces the theoretical “control authority of the pilot”.

Of course, the number of optimization parameters and controls increases when adding the

rotational dynamics to the simulation model. Interestingly, the number of iterations required

to solve the optimal control problem with the rigid body simulation model is smaller than

that of the point mass simulation model. Again, the reason seems to be the better numerical

condition of the problem. On the other side, the solution time of the optimization is larger

for the more precise model as the evaluation of the model dynamics is more complex. When

using the combined discretization method, the number of optimization parameters as well as

the number of constraints decreases strongly as the number of collocation grid points is also

reduced. However, IPOPT takes more iterations to converge in the last case, even though

convergence can be achieved in a shorter time.

For the sake of completeness of the comparison, another optimization has been performed

for the point mass simulation model with the dynamic control constraints, using 101 grid

points per phase. This way the results of the point mass model and the ones of the com-

bined collocation and shooting can also be compared. Interestingly, the results for the point

mass optimization were barely different from the ones for 501 discretization points, listed in

table 11.9.

Summarizing, one of the most significant result of this thesis is, that there are cases where a

high fidelity optimization using a rigid body simulation model converges better and faster than

one using a pure point mass simulation model. This can clearly be seen from the comparison

of the first and the third row of table 11.9.

255

11.6 Initial Guess Generation Using Extended Homotopy

11.6 Initial Guess Generation Using Extended Homotopy

An exemplary slalom part of an air race has been selected for demonstrating the extended

homotopy principle based on sensitivities that is described in section 5.1.3. The problem is

built up by three race gates, located and oriented as given in table 11.10. The orientation of

Gate 2 is chosen as the homotopy parameter using the values also given in the table.

Table 11.10: Race gate constraints in the extended homotopy example.

Gate 1 Gate 2 Gate 3

(x)N 0m 200m 400m

(y)N 0m 0m 0m

(z)N 0m 0m 0m

χK 0 [π
36

, π
12

, π
6
] π

4
0

γK 0 0 0

µK − π
18

< µK < π
18

The dynamic model used in the example is the point mass simulation model with dynamic

control constraints from section 11.2.2. The general model parameters are taken from sec-

tion 11.1. The states and the controls in each phase are discretized on a grid containing

151 nodes. The numerical optimization problems are solved using IPOPT [WB06]. In the

example, the analytic Hessian is calculated and also handed over to IPOPT where it is used

for the optimization.

As reference, the final problem was directly solved, starting from an initial guess that has

been obtained by linear interpolation of the gate constraints. Figure 11.38 shows the optimal

spatial trajectory through the race course.

(y)N [m]

(x)N [m]

-20
0

20

0

50

100

150

200

250

300

350

400

Figure 11.38: Optimal spatial trajectory through the race course for the homotopy example.

256

Chapter 11: Air Race Related Applications

In figure 11.39 the optimal state histories are depicted. It can be seen that none of the pure

state constraints becomes active and the aircraft is not required to exploit the allowed vertical

range. Similar to the optimizations performed before, the aircraft is not able to maintain the

initial velocity as the drag during the agile maneuvers cannot be compensated by the thrust

installed on board the vehicle.

The optimal control histories resulting from the optimization can be seen in figure 11.40.

Around the second race gate, the angle of sideslip reaches its maximum, as this allows a

faster turn and a faster passing through the race gate while maintaining the required aircraft

orientation. In the bank angle control a turn with maximum allowed bank rate can be seen

around the second gate and between the first and the second gate. The thrust lever position

is always at full throttle, in order to best compensate for the drag and reaching the highest

possible velocity.

The computational times required to solve the optimal control problems to a feasibility

tolerance of tolC = 10−6 and an optimality tolerance of tolJ = 5 · 10−6 directly, using the

basic homotopy approach or based on the extended homotopy approach from section 5.1.3 are

summed up in table 11.11. It can be seen how, in this example, a reduction in computational

time by approximately 34% can be achieved by using the basic homotopy method while a

reduction by approximately 38% is possible using the sensitivity based extended homotopy

procedure. Additionally, it has to be mentioned that the evaluation of the sensitivity update

has a noticeable influence on the runtime of the extended homotopy procedure and is not yet

tuned to maximum efficiency in the code. Hence, further improvements in computational time

may be possible here.

Table 11.11: Solution times for the different initial guess approaches.

Method Solution time

Solve final problem directly 199s

Basic homotopy 130s

Sensitivity based homotopy 123s

11.6.1 Basic Homotopy Scheme

In this section the results using the basic homotopy scheme from section 5.1.1 are presented.

In the problem considered here, the second race gate is stepwise rotated from an orientation

of χG2 = π
36

= 5 deg to an orientation of χG2 = π
4

= 45 deg. Figure 11.41 shows the spatial

trajectories for the different orientations of the race gate. The intermediate solutions have been

calculated to an optimality tolerance of tolJ = 10−4 and a feasibility tolerance of tolC = 10−4,

while the final problem has again been solved using tolJ = 5 · 10−6 and tolC = 10−6. Each

solution for the optimization parameter vector of the intermediate problems is directly used as

the initial guess for the next problem. The same holds for the multipliers that are supplied to

IPOPT.

257

11.6 Initial Guess Generation Using Extended Homotopy

(x
) N

γ
K

t [s]

V
K

(z
) N

χ
K

(y
) N

0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1 1.5 2 2.5 3 3.5 4

90

95

100

105

-0.1

0

0.1

-0.5

0

0.5

1

-5

0

5

10

-50

0

50

0

200

400

Figure 11.39: Optimal state histories for the homotopy example.

258

Chapter 11: Air Race Related Applications

µ
K

,C
M

D

t [s]

δ T
,C

M
D

β
A

,C
M

D
α

A
,C

M
D

0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

-4

-2

0

2

4

-0.2

0

0.2

-0.2

0

0.2

0.4

Figure 11.40: Optimal control histories.

Solution 5 deg
Solution 15 deg
Solution 30 deg
Solution 45 deg

(y)N

(x)N

-20

0

20

0

50

100

150

200

250

300

350

400

Figure 11.41: Optimal spatial trajectories for the basic homotopy steps.

259

11.7 Initial Guess Generation Based on RTS Smoothing

11.6.2 Sensitivity Based Homotopy Scheme

Now, the results using the sensitivity based homotopy scheme from section 5.1.3 are presented.

Similar to the procedure above, the second race gate has been turned in three steps from

χG2 = π
36

to χG2 = π
4
. The same intermediate and final tolerances have been used as with the

basic homotopy scheme. Figure 11.42 shows the optimal spatial trajectories for the different

problems as well as the initial guess trajectories calculated using equations (5.1)–(5.3).

Solution 5 deg

Initial guess 15 deg

Solution 15 deg

Initial guess 30 deg

Solution 30 deg

Initial guess 45 deg

Solution 45 deg

(y)N

(x)N

-20
0

20
0

50

100

150

200

250

300

350

400

0

Figure 11.42: Optimal spatial trajectories for the extended homotopy steps.

The blue line represents the optimal trajectory for the first problem, with a course angle for

the second race gate of χG2 = π
36

. Based on this solution and the sensitivities, the first order

update of the trajectory can be calculated. When using a gate angle of χG2 = π
12

, the orange

line in figure 11.42 results. Even though the figure only depicts the spatial states, during the

process all states and all multipliers are updated. Now, the problem is solved again, resulting

in the yellow line. The previously mentioned steps are repeated again in order to determine

the purple and the green lines. When moving from χG2 = π
6

to χG2 = π
4

the update of the

trajectory results in the light blue line that can be seen in the figure. Strangely, at this point

the update seems to be worse than the previous solution. At this point the explanation for

this result is not clear and needs further research.

11.7 Initial Guess Generation Based on RTS Smoothing

In order to demonstrate the idea presented in section 5.2, a short part of an air race track has

been chosen as an illustrative example. The considered race course is defined by five race gates

that are positioned and oriented as given in table 11.12. The point mass simulation model with

the dynamic control constraints from section 11.2.1 is used in the simplified optimal control

problem for determining the initial result. The full problem is then formulated based on the

260

Chapter 11: Air Race Related Applications

rigid body simulation model from section 11.1. The same model – extended by zero dynamics

for the controls – is also used for the Rauch-Tung-Striebel (RTS) smoother.

Table 11.12: Race gate constraints for the initial guess generation example using an RTS

smoother.

Gate 1 Gate 2 Gate 3 Gate 4 Gate 5

(x)N 0m 300m 600m 600m 0m

(y)N 0m 100m 0m 100m 100m

(z)N 0m 0m 0m 0m 0m

χK 0 0 0 π 3
2
π

µK − π
18

< µK < π
18

Besides the initial and final boundary conditions defined in table 11.12, the initial velocity

is bounded by 80m
s

≤ VK ≤ 102.9m
s

. As the race course is defined by five race gates, the tra-

jectory optimization problem consists of four phases, each discretized using 201 discretization

nodes for the states and the controls, independent of the model. Due to the different lengths

of the phases, a grid spacing of 0.0156s ≤ ∆t ≤ 0.0370s results. In order to achieve smooth

results, in this case, a small Lagrange cost function of the form

L =
1

2
·
(

ξ2
CMD + η2

CMD + ζ2
CMD

)

(11.21)

has been added in the examples using the rigid body simulation model.

In the optimization that has been performed for comparison as well as in the initial opti-

mization using the point mass simulation model, the initial guess has been generated by linear

interpolation between the initial and the final boundary conditions of each phase. In case

no such conditions were present, the mean between the upper and lower boundaries for the

respective value has been selected.

The model used in the RTS smoother is based on the rigid body simulation model, and has

been extended by three dimensional zero dynamics in order to estimate the unknown control

inputs based on the process noise, as described in section 5.2.2:








.
ξ̂
.
η̂
.
ζ̂








=







0

0

0







(11.22)

Overall, a model containing 16 states and one control (the thrust lever position δT) results.

The measurements for the filter are chosen to be the states and the controls of the point mass

simulation model.

All variables appearing in the model of the RTS smoother can be found in table 11.13.

The table lists in which groups the respective values appear, with x̂ representing the states

of the smoother, û its controls, and ŷ the measurements. In the next column, the orders of

magnitude for the values are given that can either be derived from the solution of the point mass

261

11.7 Initial Guess Generation Based on RTS Smoothing

optimization or from the constraints that apply along the trajectory. The last three columns

of the table list the assumed stochastic properties of the noise processes associated to the

signals. Therein, Q represents the process noise power spectral density, R the measurement

noise power spectral density, and Pxx,0 the initial state covariance. It can be seen that they

have been estimated from the orders of magnitude as described in section 5.2.1 with some

slight modifications. The process noise for the rotational states pK , qK , and rK has been

decreased, putting more weight on the system dynamics. On the other side, the measurement

noise of the attitude states µK , αA, and βA has been increased, also tying the attitude more

to the dynamics than to the measurements.

Table 11.13: Variables appearing in the RTS smoother. x̂ represents the states of the

smoother, û the controls, and ŷ the measurements. The process power spectral density is

given by Q, the measurement noise power spectral density by R, and the initial state covariance

by Pxx,0.

Variable Part of Magnitude Q R Pxx,0

(x)N x̂, ŷ 103 106 10 1

(y)N x̂, ŷ 103 106 10 1

(z)N x̂, ŷ 103 106 10 1

χK x̂, ŷ 1 103 10−2 10−3

γK x̂, ŷ 1 103 10−2 10−3

µK x̂, ŷ 1 103 1 1

VK x̂, ŷ 102 105 1 102

αA x̂, ŷ 1 103 1 1

βA x̂, ŷ 1 103 1 1

pK x̂ 10 1 – 10

qK x̂ 5 0.5 – 5

rK x̂ 5 0.5 – 5

δT x̂ 1 103 – 1

ξ x̂ 1 106 – 104

η x̂ 1 106 – 104

ζ x̂ 1 106 – 104

δT,CMD û 1 – – –

In this example, an initial guess for the Lagrange multipliers of all constraints appearing

in the discretized optimal control problem, that already have been in the simplified problem

has been specified. In order to do so, the resulting multipliers from the simplified problem

have been resorted to the multiplier vector of the high fidelity problem. All remaining values

have been initialized with zeros.

Figure 11.43 depicts the resulting spatial trajectory for the final rigid body optimization.

Similar to the previous examples, the positions of the race gates are marked by red crosses.

262

Chapter 11: Air Race Related Applications

replacements

(y)N [m]

(x)N [m]

(z
) N

[m
]

0
50

100
150

0

100

200

300

400

500

600

700

0

50

100

Figure 11.43: Optimal spatial trajectory through the race course for the RTS smoother

example.

The plots in the figures 11.44 and 11.45 show the state and control histories that result

from the different steps of the method. As the optimal simulation times for the point mass

model and the rigid body simulation model slightly differ (see table 11.14), the histories are

drawn with respect to relative time along the race track. This way, the states and controls at

the same point along the trajectory can be directly compared. Where available, the yellow line

represents the optimal histories for the point mass optimization, and the red line the one for

the rigid body optimization (the final result). The blue line shows the states and the controls

that result from the RTS smoother.

It can be seen that the smoother can follow the measured states very well – as expected

due to the specification of the noise processes. Concerning the controls of the simplified

model, the smoother is able to follow µK quite closely, while in αA and especially in βA

slight deviations appear. When looking at the results for the rotational rates pK , qK , and rK

the reason becomes more visible: As the point mass simulation model does not feature any

rotational dynamics (except the limit in .
µK), differences have to be expected there. In general,

the results from the smoother are not as smooth as the optimal trajectory. The reason here is

twofold: On the one hand, the underlying assumption that the control surfaces of the aircraft

and the inaccuracies in the dynamics are driven by noise processes is not valid. On the other

hand, the smoother tries to reconstruct the trajectory from the available information, while

263

11.7 Initial Guess Generation Based on RTS Smoothing

Smoother
Rigid body solution
Point mass solution

(y
) N

(z
) N

τ

χ
K

γ
K

V
K

(x
) N

µ
K

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

60

80

100

120

-2

0

2

4

-1

0

1

-5

0

5

-200

-100

0

100

-100

0

100

200

0

500

1000

Figure 11.44: Optimal state histories for the RTS smoother example.

264

Chapter 11: Air Race Related Applications

Smoother
Rigid body solution
Point mass solution

α
A

β
A

p K
q K

τ

δ T
r K

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

-4

-2

0

2

-2

0

2

4

-10

0

10

-0.2

0

0.2

-0.2

0

0.2

0.4

Figure 11.45: Optimal state histories for the RTS smoother example.

265

11.7 Initial Guess Generation Based on RTS Smoothing

the optimization has another goal, namely to find a race track that minimizes the race time.

As the thrust lever is in principle not touched throughout the race, no differences between the

estimated values and the real values can be seen.

Figure 11.46 compares the controls estimated by the smoother to these calculated in the

high fidelity optimization. In general, good accordance between the estimated values and the

optimal values can be seen. (One has to keep in mind that the model that has been used to

determine the data that is used in the smoother does not feature any rotational dynamics.)

Again, the optimal history is slightly more steady than the estimated one as the basis for

the estimation of the control surface deflections is pure Gaussian white noise. As the thrust

lever dynamics is not used in the example, no meaningful conclusions can be drawn for the

corresponding history.

Smoother
Rigid body solution

τ

δ T
η C

M
D

ζ C
M

D
ξ C

M
D

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

-2

-1

0

1

-2

-1

0

1

-2

0

2

Figure 11.46: Optimal control histories for the RTS smoother example.

In table 11.14, the results from this example are summarized, showing that the runtime

and the number of required iterations for the high fidelity rigid body optimization can be

significantly improved when using a good initial guess calculated based on the result from the

simplified model. Anyway, when summing up the overall calculation time that is required for

the process described here, no runtime improvement can be achieved in this example. However,

in other cases where the solution of the high fidelity problem may even be impossible as no

266

Chapter 11: Air Race Related Applications

convergence can be achieved, the process described may be helpful for improving solution

robustness or solution speed.

Table 11.14: Results for the RTS smoother example.

Grid Iterations Runtime Cost function value

Point Mass Model 1196 186s 18.90s

Rigid Body Model (direct) 679 262s 19.10s

Rigid Body Model (after smoothing) 479 147s 19.10s

The idea illustrated here has already been introduced in [BFH12], using a Gauss Pseu-

dospectral Discretization Method and SNOPT [GMS02] for solving the numerical optimiza-

tion problem. The example presented there was slightly different from the one used here, both

regarding the models and the race track, and resulted in an overall improvement of optimiza-

tion runtime. It turned out in several tests that SNOPT – which cannot be used for solving

extremely large scale discretized problems like the one presented here – is more sensitive with

respect to the initial guess, possibly explaining that overall runtime improvements could be

achieved there.

Depending on the application and the required optimality of a trajectory, it may even be

feasible to only perform an optimization using the simplified model and then use the method

presented here to create an approximation for the final trajectory. Of course, feasibility with

respect to the constraints and the dynamics has to be ensured in these cases by other means.

Further research is required here.

11.8 Control Grid Refinement

In this section, an air race trajectory optimization problem comprising four segments, bounded

by five race gates, is presented that has been solved using the control grid refinement method

from section 9.3 and 9.4. In the example the same model as in section 11.6 is used but a

different race track is considered. Table 11.15 lists the race gate constraints that have been

taken from the first part of a real air race track. Besides, the initial velocity has been bounded

by 80m
s

≤ VK ≤ 102.9m
s

. The problem has been solved on a state grid containing 101 state

nodes per phase, resulting in a total of 404 grid points. As a trapezoidal collocation scheme

is used for the discretization of the problem, the control grid nodes have to coincide with

the state nodes, resulting in a maximum of 404 control grid points. Figure 11.47 shows the

optimal spatial trajectory, while in figure 11.48 the state trajectories are depicted. The vertical,

gray lines represent the times when a race gate is passed.

The optimal control histories that have been calculated during the optimization can be

seen in figure 11.49. In the first plot therein, the nodes of the different grids are shown.

From bottom to top, the nodes of the regular grids with 84, 204, and 404 nodes can be seen.

267

11.8 Control Grid Refinement

Table 11.15: Race gate constraints for the control grid refinement example.

Gate 1 Gate 2 Gate 3 Gate 4 Gate 5

(x)N 0m 237.6m 565.0m 880.0m 1127.1m

(y)N 0m −58.5m 54.4m −29.3m −79.5m

(z)N 0m 0m 0m 0m 0m

χK
π
18

−0.1747 −0.1728 0 0

γK 0 0 0 0 0

µK − π
18

< γK < π
18

(y)N [m]

(x)N [m]

-50
0

50100

200

300

400

500

600

700

800

900

1000

1100

Figure 11.47: Optimal spatial trajectory through the race course.

The topmost line represents the refined grid that has been calculated based on the solution

discretized on the regular grid with 84 nodes.

In figure 11.50 a detail of the control histories around the second last race gate is plotted.

Again, the grid points are visualized in the top plot. It becomes visible how the refinement

algorithm places nodes in the area where control action is required for fulfilling the race gate

constraints. Moreover, especially the control histories in αA,CMD and µA,CMD show how the

coarser, regular grids with 84 and 204 nodes are not dense enough to represent the optimal

control history accurately. On the other side, the refined grid, which features many control

points in this critical area, matches the finest possible grid (with 404 nodes) closely.

The dynamic control constraint – that is required in the model formulation used here –

can be seen in figure 11.51 for the refined grid. Again, the coarse grid in between the race

gates and the fine grid at the race gates become visible in the plot. Similar to the control

histories, the regions in between two race gates are not critical by means of the constraints,

268

Chapter 11: Air Race Related Applications

γ
K

t [s]

V
K

(x
) N

χ
K

(y
) N

(z
) N

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

98

100

102

104

-0.1

0

0.1

0.2

-0.5

0

0.5

1

-5

0

5

10

-100

0

100

0

500

1000

1500

Figure 11.48: Optimal state histories for the grid refinement example.

269

11.8 Control Grid Refinement

84 regularly distributed nodes
204 regularly distributed nodes
404 regularly distributed nodes
Refined control grid (112 nodes)

G
ri

d
no

de
s

α
A

,C
M

D
µ

K
,C

M
D

β
A

,C
M

D

t [s]

δ T
,C

M
D

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0

0.5

1

-4

-2

0

2

4

-0.2

-0.1

0

0.1

0.2

-0.2

0

0.2

0.4

Figure 11.49: Optimal control histories for the different control grids in the grid refinement

example.

not requiring a finer discretization there. Consequently, the dynamic constraint can also be

evaluated on the refined grid with a high accuracy, where required.

In figure 11.52, the density base function b(t) (yellow), the density function (b(t))e (orange,

the exponent was found to be e = 0.925 in the example), and the resulting distribution function

F (t) (green) over the real simulation time t can be seen. More details on the functions can

be found in section 9.2 and in equations (9.4) and (9.8). In the example, the density and

the distribution function have been interpolated onto a finer grid in order to achieve a better

numerical accuracy. As a consequence, not all grid points resulting from the refinement process

270

Chapter 11: Air Race Related Applications

84 regularly distributed nodes
204 regularly distributed nodes
404 regularly distributed nodes
Refined control grid (112 nodes)

t [s]

δ T
,C

M
D

β
A

,C
M

D
µ

K
,C

M
D

G
ri

d
no

de
s

α
A

,C
M

D

8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10 10.2

8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10 10.2

8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10 10.2

8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10 10.2

0

0.5

1

-4

-2

0

2

4

-0.2

-0.1

0

0.1

0.2

-0.2

0

0.2

0.4

Figure 11.50: Detail of the optimal control histories for the different control grids in the grid

refinement example.

can be used in the optimal control problem, as they may be located in between two state grid

points. Hence, the diagram at the top of figure 11.52 shows the theoretically resulting grid,

while the bottom diagram shows the result after matching it to the state grid nodes. As

expected, a high density function results in a dense grid.

The minimum allowed grid distance in the refinement algorithm has been chosen to be

equal to the state grid spacing while the maximum was set to be ∆τmax = 0.8s, resulting in

a grid containing 112 nodes. Anyway, due to the required rounding of N to the next integer,

the maximum grid spacing in the result is reduced to ∆τmax = 0.64.

271

11.8 Control Grid Refinement

.̄ µ
C

M
D

t [s]

0 2 4 6 8 10
-8

-6

-4

-2

0

2

4

6

8

Figure 11.51: Dynamic control constraint for the grid refinement example.

The different achievable minimum cost function values for the different control grids are

listed in table 11.16. It can be seen how the reachable cost function value – which may be

seen as an indicator for the real optimality of the solution – drops with an increasing number

of grid points as the authority of the controls also increases. The reachable cost function value

for the refined grid is slightly larger than the one for the full grid containing 404 nodes, but

still lower than the result for a control grid with 204 nodes. In the example presented here,

no convergence could be achieved for a regular grid with less than 84 control nodes, as the

maneuvers required to meet the constraints while passing the race gates cannot be performed

with less control grid points.

Table 11.16: Results for the grid refinement example.

Grid Nodes Cost function value

Regularly distributed grid 84 11.75971s

Regularly distributed grid 204 11.75779s

Regularly distributed grid 404 11.75753s

Refined grid 112 11.75757s

In the paper [Bit+13a] an earlier version of the algorithm used here and the example shown

here has been presented, using a multiple shooting approach and SNOPT [GMS02] for the

optimizations. Therein, the results of the presented method have also been compared to the

classical DENMRA approach, showing superior performance.

272

Chapter 11: Air Race Related Applications

t

D
is

tr
ib

ut
io

n
fu

nc
ti

on
D

is
tr

ib
ut

io
n

fu
nc

ti
on

t

D
en

si
ty

fu
nc

ti
on

D
en

si
ty

fu
nc

ti
on

00
0

00
0

2

2

4

4

6

6

8

8

10

10

10

10

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

5

5

15

15

20

20

25

25

Figure 11.52: Distribution and density function for the grid refinement example. Green line:

distribution function F , yellow line: density base function b, orange line: density function be.

The top diagram shows the directly calculated grid based on the interpolation (134 nodes)

while the bottom graph shows the grid matched to the state grid (112 nodes).

273

Chapter 12

Summary and Perspective

In the work at hand, different approaches that facilitate the solution of large scale, complex,

and especially realistic optimal control problems are presented. This requires on the one hand

adaptations of the implementation of the mathematical theory to the applications, and on the

other hand the formulation of the problems to be especially tailored for optimal control. In

the following, the presented approaches are recapitulated and extended by some outlooks on

potential future work.

After an introduction in chapter 1, chapter 2 describes the aircraft simulation models used

in the aircraft trajectory optimization examples that are presented in chapters 10 and 11.

Motivated by the physical causal chain, the dynamics of the movement of an aircraft in three

dimensional space, based on a point mass model and a rigid body model, is presented. The

difference between the two model formulations, also resulting from the inherent timescales,

has a strong impact on the properties of the solution process of respective optimal control

problems. The effects are analyzed in more detail in chapters 6, 7, and 8. Moreover, ideas

for extensions of the dynamic model, like actuator dynamics, are presented. Anyway, they are

not fully incorporated in the exemplary models used for the optimization tasks, leaving room

for future work.

The introduction to optimization and optimal control theory in chapter 3 gives a short, yet

comprehensive overview of the relationships between numerical optimization and discretized

optimal control. Whenever shooting methods are used for the discretization and are combined

with a gradient based optimization algorithm, sensitivity equations are one possibility for the

analytic calculation of the required gradient information. In section 3.2.4 it is shown that the

analytic differentiation of a general Runge-Kutta integration scheme leads to the same

results as the numeric integration of the sensitivity equations, if the gradient of the state

equation is evaluated at the same intermediate stages as the state equation itself. The relations

between the Lagrange multipliers of the numerical optimization and the costates of the

optimal control problem, that are derived in section 3.2.5, enable a thorough analysis of the

results of optimal control problems. The general formulation derived is further simplified

and applied to a Euler forward and a trapezoidal collocation scheme. However, a direct

application to other schemes needs to be done in further research. The examples in sections

275

11.2 and 11.3 show results for the aforementioned analysis. The last section of chapter 3

focuses on multi criteria optimization and optimal control, where the example in section 10.4

demonstrates how a fair distribution of the cost created by a conflict resolution within an

airspace sector can be achieved.

FALCON.m, the optimal control tool for MATLAB that is described in chapter 4 allows for

the solution of many different optimal control problems without the need to re-implement the

underlying discretization code over and over again. The software architecture developed in this

work enables the easy use of many different combinations of parameters, cost and constraint

functions in a large variety of optimal control problems.

In chapter 5, methods for the generation of initial guesses are considered that improve the

convergence robustness of discretized optimal control problems. After a short repetition of the

basic idea of homotopy, a specially tailored homotopy approach for optimal control problems

containing multiple systems is presented. The example in section 10.2 applies this method to

an approach optimization at Tokyo International Airport, incorporating 18 aircraft. In the next

part of section 5.1, the sensitivity information, calculated based on the theory from section

3.1.6, is used to enhance the homotopy idea for continuously varying parameters. The results

of the example in section 11.6 show a slight decrease in computational time for the solution

of an exemplary air race trajectory optimization problem when using the enhanced homotopy

scheme. However, at some of the homotopy steps performed, the sensitivity update does not

lead to an improvement. Further research is required in order to be able to make more precise

predictions about the influence of the method on the solution process. In section 5.2, an

extended RTS smoother is used to calculate an approximation of the optimal trajectory for a

rigid body simulation model based on the optimal state and control histories for a point mass

simulation model. In the example in section 11.7, the solution time for the high fidelity optimal

control problem is reduced by approximately 44%. However, in this example, no reduction in

overall solution time can be achieved as the calculation of the optimal trajectory for the

simplified model also consumes time. Anyway, the trajectory resulting from the smoother

shows very good accordance with the final optimal trajectory for the rigid body simulation

model. In some applications this may enable the use of the state and control histories resulting

from the smoother directly and without any high fidelity optimization. This way, high fidelity

realtime applications may be more feasible. Again, further research may show the applicability

of this idea to real problems.

In chapter 6, the different model fidelities of an aircraft simulation model and some con-

straints are analyzed from an optimal control point of view. The analysis shows that for

the particular models presented before, in some cases the high fidelity model shows preferable

properties compared to the low fidelity model. However, based on the book of Betts [Bet09],

a model reformulation can be found that is at least partially removing the inherent drawbacks.

The optimal control problems solved in sections 11.2 and 11.3 illustrate that the solution time

of an optimal control problem based on a (not obviously) malformed but simple simulation

model may be significantly larger than that of a problem based on a far more complex simula-

276

Chapter 12: Summary and Perspective

tion model. In the example for the simple point mass model, the solution time can be reduced

by 84% when using the suggested model reformulation. The chapter on aircraft modeling for

optimal control is concluded by a novel method of smooth data representation using freely

selected base functions that are blended by a hyperbolic tangent. The method is used in the

examples of chapter 11.

The exploitation of problem sparsity is of utmost importance in the examples presented

here, because the numerical optimization algorithms used to solve the resulting optimization

problems are all tailored to sparse formulations. Chapter 7 gives an overview of the different

components of an optimal control problem that influence the sparsity of the Jacobian and the

Hessian. Besides local effects originating from the model dynamics, the control discretization,

and the path constraints, more global effects of the discretization schemes are discussed. When

considering problems incorporating multiple dynamic systems, sparsity becomes even more

relevant. In the example in section 10.2, the sparsity ratio of the Jacobian of the discretized

problem is 99.9938%, this means more vividly that in average only 62 out of 1, 000, 000 possible

entries of the Jacobian are non-zero. Besides, in all other examples, problem sparsity is also

exploited automatically by the algorithms included in FALCON.m.

In chapter 8, a novel transcription method for optimal control problems is introduced that

combines multiple shooting and collocation. The method is used in an example in section 11.4

for a rigid body simulation model. Here, the model dynamic equations are divided into fast and

slow varying groups. The fast dynamics are integrated using multiple shooting, while the slow

group is discretized by a direct collocation method on the grid of the multiple shooting nodes.

In the example, the dimensions of the optimization parameter vector and the constraint vector

are reduced by approximately 80%. The solution time is decreased by roughly 7% without a

significant deterioration of the solution accuracy. The large decrease in problem size is mainly

related to the smaller number of required grid nodes, as the fast and the slow dynamics are

not discretized on the same grid anymore.

An enhanced control grid refinement method is presented in chapter 9. After a short intro-

duction of commonly used approaches, one that is based on the concept of density functions,

is adapted to the physical properties of a point mass simulation model. Besides, an extension

is presented that uses a small optimization in order to determine the ideal number of control

grid points from a user defined maximum and minimum grid spacing. The example in section

11.8 demonstrates that the control grid refinement allows for a reduction of control nodes

from 404 to 84 without a significant decrease in solution accuracy. As expected, the resulting

numerical optimization problem shrinks in size, allowing for a faster and more robust solution.

It this point, the adaptation of the method to other models leaves room for further research.

Chapter 10 collects all examples that are related to air traffic management. First, the

simultaneous optimization of approach trajectories for 18 aircraft in the vicinity of Tokyo

International Airport is considered, where a combination of fuel and time minimal trajectories is

determined. Next, the calculation of trajectories for civil airliners that are refueled during flight

in order to reduce overall fuel consumption is presented, allowing for a reduction in fuel burn of

277

up to 14% when redesigning the carrier aircraft for the refueling mission. Otherwise, savings

of up to 7% are still possible in the simulations. The last example in the chapter focuses on

the aforementioned multi criteria optimization considering fairness and shows approximations

for the different Pareto optimal points of the problems.

All examples related to air race trajectories are comprised in chapter 11. Here, the influence

of the different model fidelities is investigated, before the combined shooting and collocation

discretization is applied. In section 11.6, the initial guess generation based on the extended

homotopy is presented, while in the next section the initial guess generation based on the

RTS smoother is demonstrated. The final example shows the physically motivated control

grid refinement. The main results of these examples are the methodological achievements,

illustrated mainly by means of overall feasibility, reduced convergence time, or smaller number

of iterations. More details on the particular optimizations performed in the examples have

already been recapitulated in relation to the respective theoretical contributions of this work.

Moreover, one of the main results derived from the examples and their analysis is that there

are cases where a high fidelity optimization converges better and faster than one using a more

simplified model, if the model formulation is not chosen appropriately.

Overall, the methods presented in this work improve the solution process for large scale,

complex, and real world optimal control problems. However, none of the methods currently

available – may it be presented here or elsewhere – does work always and for every problem. In

general, a larger set of tools available to the user improves the chances of solving a particular

optimal control problem. From this perspective, the contributions of this thesis can be seen

as additions to and extensions of the global toolset for large and complex optimal control

problems.

278

Appendix A

Coordinate Frames

The coordinate frames used here, can e.g. be found in [Fis11, Hol+15].

A.1 Earth-Centered Inertial (ECI), Index I

Index I

Purpose Euclidian frame, inertial system, system to apply Newton’s law

Origin Center of mass of the earth

Translation Around the sun, with the solar system

Rotation None

x-axis In the equatorial plane, pointing to the vernal equinox

y-axis In the equatorial plane, forming a right hand system with the x and z-axis

z-axis Earth’s rotational axis

A.2 Earth-Centered Earth Fixed Frame (ECEF), Index E

Index E

Purpose Frame for navigation and positioning

Origin Center of mass of the earth

Translation Moves with the ECI Frame

Rotation Earth rotation around z-axis with earth’s rotational rate ωIE , i.e. approx-

imately 2π
24h

x-axis In the equatorial plane, pointing through the Greenwich meridian

y-axis In the equatorial plane to form a right-hand system with the x and z-axis

z-axis Rotation axis of earth, identical to z-axis of the ECI system

I

A.3 North-East-Down Frame (NED), Index O

A.3 North-East-Down Frame (NED), Index O

Index O

Purpose Frame for describing the aircraft’s orientation, rotation, and velocity

Origin Aircraft’s reference point R

Translation Moves with the aircraft’s reference point

Rotation Rotates with the transport rate of the earth ωEO in order to keep the NED

alignment

x-axis Parallel to the local geoid surface, pointing to the geographic north pole

y-axis Parallel to the local geoid surface, pointing to the east in order to form a

right hand system with the x and z-axis

z-axis Pointing downwards, perpendicular to the local geoid surface

A.4 Navigational Frame, Index N

Index N

Purpose Local navigational frame, derived from the NED frame, but fixed to the

earth’s surface, used for local positioning

Origin Point on the earth’s surface

Translation Moves with the point on the earth’s surface

Rotation Rotation of the earth

x-axis Parallel to the local geoid surface, pointing to the geographic north pole

y-axis Parallel to the local geoid surface, pointing to the east in order to form a

right hand system with the x and z-axis

z-axis Pointing downwards, perpendicular to the local geoid surface

A.5 Aerodynamic Frame, Index A

Index A

Purpose Frame for notating aerodynamic quantities

Origin Aircraft’s reference point R

Translation Moves with the aircraft’s reference point

Rotation Rotates with the direction of the airflow

x-axis Aligned with aerodynamic velocity (with respect to the E-Frame, pointing

into the direction of the aerodynamic velocity)

y-axis Pointing to the right to form a right hand system with the x and z-axis

z-axis Pointing downwards in the symmetry plane of the aircraft, perpendicular

to the x-axis

II

Chapter A: Coordinate Frames

A.6 Rotated Aerodynamic Frame, Index Ā

Index Ā

Purpose Intermediate notation frame

Origin Aircraft’s reference point R

Translation Moves with the aircraft’s reference point

Rotation Rotates with the direction of the airflow

x-axis Aligned with aerodynamic velocity, pointing into the direction of the aero-

dynamic velocity

y-axis Pointing to the right to form a right hand system with the x and z-axis

z-axis z-axis of the aerodynamic frame A rotated counterclockwise by the aero-

dynamic flight-path bank angle µA

A.7 Kinematic Frame, Index K

Index K

Purpose Frame for notating the flight path

Origin Aircraft’s reference point R

Translation Moves with the aircraft’s reference point

Rotation Rotates with direction of kinematic aircraft motion (w.r.t. the E-Frame)

x-axis Aligned with the kinematic velocity, pointing into the direction of the

kinematic velocity

y-axis Pointing to the right in order to form a right hand system with the x and

z-axis

z-axis Pointing downwards, parallel to the projection of the local surface normal

of the WGS-84 ellipsoid into a plane perpendicular to the x-axis

A.8 Rotated Kinematic Frame, Index K̄

Index K̄

Purpose Intermediate notation frame

Origin Aircraft’s reference point R

Translation Moves with the aircraft’s reference point

Rotation Rotates with direction of kinematic aircraft motion

x-axis Aligned with the kinematic velocity, pointing into the direction of the

kinematic velocity

y-axis Pointing to the right in order to form a right hand system with the x and

z-axis

z-axis z-axis of the Kinematic Frame K rotated clockwise by the kinematic flight-

path bank angle µK

III

A.9 Body Fixed Frame, Index B

A.9 Body Fixed Frame, Index B

Index B

Purpose Frame for notating frames and moments

Origin Aircraft’s reference point R

Translation Moves with the aircraft’s reference point

Rotation Rotates with the aircraft

x-axis Pointing towards the nose of the aircraft, in the aircraft’s symmetry plane

y-axis Pointing towards the right wing to form a right hand system with the x

and z-axis

z-axis Pointing downwards in the symmetry plane of the aircraft

IV

Appendix B

Scientific Publications

During the period at the Institute of Flight System Dynamics at TUM, the following scientific

publications have been published by this author. Besides, the author contributed to the notes

for the lecture Aircraft Trajectory Optimization [Hol15] and to the notes for the lab course

Optimal Control [Hol+14].

• M. Bittner, M. Rieck, B. Grüter, and F. Holzapfel. “Optimal Approach Trajectories

for Multiple Aircraft Considering Disturbances and Configuration Changes.” In: 30th

International Congress of the International Council of the Aeronautical Sciences, ICAS.

Daejeon, South Korea. 2016.

• B. Grüter, M. Bittner, M. Rieck, J. Diepolder, and F. Holzapfel. “Optimal Sequencing

in ATM Combining Genetic Algorithms and Gradient Based Methods to a Bilevel Ap-

proach.” In: 30th International Congress of the International Council of the Aeronautical

Sciences, ICAS. Daejeon, South Korea. 2016.

• C. Göttlicher, M. Gnoth, M. Bittner, and F. Holzapfel. “Aircraft Parameter Estimation

Using Optimal Control Methods.” In: AIAA Atmospheric Flight Mechanics Conference.

San Diego, California, USA. 2016.

• M. Bittner, M. Rieck, B. Grüter, and F. Holzapfel. “Optimal Conflict Free Approach

Trajectories for Multiple Aircraft.” In: ENRI Int. Workshop on ATM/CNS, EIWAC.

Tokyo, Japan. 2015.

• B. Grüter, M. Bittner, M. Rieck, F. Holzapfel, and A. Harada. “Allocation, Sequencing

and Trajectory for Aircraft Using Superimposed Navigation and Optimal Control.” In:

ENRI Int. Workshop on ATM/CNS, EIWAC. Tokyo, Japan. 2015.

• M. Rieck, M. Bittner, B. Grüter, and F. Holzapfel. “Generation of dynamic models with

automatically generated derivatives for ATM optimal control in MATLAB.” In: ENRI

Int. Workshop on ATM/CNS, EIWAC. Tokyo, Japan. 2015.

• M. Bittner, M. Buhl, B. Lohmann. “Zustandsschätzung nach Kalman auf einem be-

wegten Horizont variabler Länge.” In: Methoden und Anwendungen der Regelungstech-

nik. Erlangen-Münchener Workshops 2013 und 2014. Ed. by B. Lohmann, G. Roppe-

V

necker. 1. Aufl. Berichte aus der Steuerungs- und Regelungstechnik. Herzogenrath:

Shaker, 2015. ISBN: 978-3-8440-3797-5.

• M. Rieck, M. Richter, M. Bittner and F. Holzapfel, “Optimal trajectories for RPAS with

discrete controls and discrete constraints.” In: 2014 IEEE International Conference on

Aerospace Electronics and Remote Sensing Technology. Yogyakarta, Indonesia. 2014.

pp. 34–38. ISBN: 978-1-4799-6187-0.

• M. Rieck, M. Richter, M. Bittner, and F. Holzapfel. “Generation of Initial Guesses

for Optimal Control Problems with Mixed Integer Dependent Constraints.” In: 29th

International Congress of the International Council of the Aeronautical Sciences, ICAS.

St. Petersburg, Russia. 2014.

• M. Richter, M. Bittner, M. Rieck, and F. Holzapfel. “A Non-Cooperative Bi-Level

Optimal Control Problem Formulation for Noise Minimal Departure Trajectories.” In:

29th International Congress of the International Council of the Aeronautical Sciences,

ICAS. St. Petersburg, Russia. 2014.

• M. Richter, M. Bittner, M. Rieck, and F. Holzapfel. “A Realistic Flight Path Parame-

terization for Calculation of Noise Minimal Trajectories using Bi-level Optimal Control.”

In: AIAA GNC and Co- located Conferences. National Harbor, Maryland, USA. 2014.

• M. Richter, M. Hochstrasser, M. Bittner, L.Walter, and F. Holzapfel. “Application of

MINLP Techniques to Conflict Resolution of Multiple Aircraft.” In: AIAA GNC and Co-

located Conferences. National Harbor, Maryland, USA. 2014.

• F. Fisch, M. Bittner and F. Holzapfel, “Optimal Scheduling of Fuel-Minimal Approach

Trajectories.” In: Journal of Aerospace Operations. 2014.

• M. Bittner, B. Fleischmann, M. Richter, and F. Holzapfel. “Optimization of ATM

Scenarios Considering Overall and Single Costs.” In: 6th International Conference on

Research in Air Transportation, ICRAT. Istanbul, Turkey. 2014.

• M. Richter, M. Bittner, M. Rieck, and F. Holzapfel. “Berechnung lärmminimaler An-

und Abflugrouten.” In: Matlab Expo 2013. Munich, Germany. 2013.

• M. Richter, M. Bittner, and F. Holzapfel. “Noise Minimal Approaches on Parallel Run-

ways.” In: 4th International Air Transport and Operations Symposium, ATOS. Toulouse,

France. 2013.

• M. Bittner, C. Hornfeck, F. Fisch, M. Schwarze, and F. Holzapfel. “Optimization of

Mid to Long Range Flights Considering Air-to-Air Refueling for Fuel Savings.” In: 5th

European Conference for Aeronautics and Space Sciences, EUCASS 2013. Munich,

Germany. 2013.

• M. Bittner, P. Bruhs, M. Richter, F. Holzapfel, “An Automatic Mesh Refinement Method

for Aircraft Trajectory Optimization Problems.” In: AIAA GNC and Co-Located Con-

ferences. Boston, Massachusetts, USA. 2013.

VI

Chapter B: Scientific Publications

• F. Fisch, M. Bittner, and F. Holzapfel. “Optimal Scheduling of Fuel-Minimal Approach

Trajectories.” In: 3rd International Air Transport and Operations Symposium, ATOS.

Delft, the Netherlands. 2012.

• M. Bittner, F. Fisch and F. Holzapfel, “A Multi-model Gauss Pseudospectral Opti-

mization Method for Aircraft Trajectories.” In: AIAA Atmospheric Flight Mechanics

Conference. Minneapolis, Minnesota, USA. 2012.

VII

Bibliography

[Air15] Airbus S.A.S. A380, Aircraft Characteristics - Airport and Maintenance

Planning. Version Mar 30/05, Dec 01/15. Airbus S.A.S., Customer Services,

2015. url: http://www.airbus.com/fileadmin/media_gallery/files/tech_data/

AC/Airbus-AC-A380-Jan16.pdf.

[Alb13] S. Albrecht. “Modeling and numerical solution of inverse optimal control

problems for the analysis of human motions.” Dissertation. München:

Technische Universität München, 2013.

[And11] J. D. Anderson. Fundamentals of Aerodynamics. Fifth edition. McGraw-Hill

Series in Aeronautical and Aerospace Engineering. New York: McGraw-Hill,

2011. isbn: 978-0-07-339810-5.

[Arc+08] J. K. Archibald, J. C. Hill, N. A. Jepsen, W. C. Stirling, and R. L. Frost. “A

Satisficing Approach to Aircraft Conflict Resolution.” In: IEEE Transactions on

Systems, Man, and Cybernetics, Part C: Applications and Reviews Vol. 38.

No. 4 (2008), pp. 510–521.

[Arm66] L. Armijo. “Minimization of functions having Lipschitz continuous first partial

derivatives.” In: Pacific Journal of Mathematics Vol. 16. No. 1 (1966), pp. 1–3.

[Art] Artelys. Artelys Knitro. Artelys Optimization Solution. url: http://www.

artelys.com/en/optimization-tools/knitro (visited on 12/16/2015).

[Ast16] Astos Solutions GmbH. GESOP - Astos Solutions. 2016. url: https://www.

astos.de/products/gesop (visited on 04/21/2016).

[BAL11] R. Brockhaus, W. Alles, and R. Luckner. Flugregelung. 3., neu bearb. Aufl.

Heidelberg, Dordrecht, London, New York: Springer, 2011. isbn:

978-3-642-01442-0.

[BE03] J. T. Betts and S. O. Erb. “Optimal Low Thrust Trajectories to the Moon.” In:

SIAM Journal on Applied Dynamical Systems Vol. 2. No. 2 (2003),

pp. 144–170. issn: 1536-0040.

[BE12] F. A. Bukhari and A. El-Gohary. “Optimal control of a production-maintenance

system with deteriorating items.” In: Journal of King Saud University - Science

Vol. 24. No. 4 (2012), pp. 351–357. issn: 10183647.

IX

http://www.airbus.com/fileadmin/media_gallery/files/tech_data/AC/Airbus-AC-A380-Jan16.pdf
http://www.airbus.com/fileadmin/media_gallery/files/tech_data/AC/Airbus-AC-A380-Jan16.pdf
http://www.artelys.com/en/optimization-tools/knitro
http://www.artelys.com/en/optimization-tools/knitro
https://www.astos.de/products/gesop
https://www.astos.de/products/gesop

BIBLIOGRAPHY

[Bec11] V. M. Becerra. PSOPT Optimal Control Solver. User Manual, Release 3. 2011.

url: https://psopt.googlecode.com/files/PSOPT_Manual_R3.pdf (visited on

04/21/2016).

[Ben10] J. Z. Ben-Asher. Optimal Control Theory with Aerospace Applications. AIAA

Education Series. Reston, VA, USA: American Institute of Aeronautics and

Astronautics, 2010. isbn: 978-1600867323.

[Bet09] J. T. Betts. Practical Methods for Optimal Control and Estimation Using

Nonlinear Programming. Second edition. Advances in Design and Control.

Philadelphia: SIAM, Society for Industrial and Applied Mathematics, 2009.

[BFH12] M. Bittner, F. Fisch, and F. Holzapfel. “A Multi-Model Gauss Pseudospectral

Optimization Method for Aircraft Trajectories.” In: AIAA Atmospheric Flight

Mechanics Conference. (Minneapolis, Minnesota, USA, Aug. 13–16, 2012).

AIAA, American Institute of Aeronautics and Astronautics. 2012.

[BH75] A. E. Bryson and Y.-C. Ho. Applied Optimal Control. Optimization, Estimation,

and Control. Revised Printing. Washington and New York: Hemisphere, 1975.

isbn: 978-0891162285.

[Bie10] L. T. Biegler. Nonlinear Programming. SIAM, Society for Industrial and Applied

Mathematics, 2010. isbn: 978-0-89871-702-0.

[Bin+00] T. Binder, A. Cruse, C. A. Cruz Villar, and W. Marquardt. “Dynamic

Optimization Using a Wavelet Based Adaptive Control Vector Parameterization

Strategy.” In: Computers and Chemical Engineering Vol. 24 (2000),

pp. 1201–1207.

[Bit+13a] M. Bittner, P. Bruhs, M. Richter, and F. Holzapfel. “An Automatic Mesh

Refinement Method for Aircraft Trajectory Optimization Problems.” In:

Guidance, Navigation, and Control and Co-located Conferences. (Boston,

Massachusetts, Aug. 19–22, 2013). AIAA, American Institute of Aeronautics

and Astronautics. 2013.

[Bit+13b] M. Bittner, C. Hornfeck, F. Fisch, M. Schwarze, and F. Holzapfel.

“Optimization of Mid to Long Range Flights Considering Air-to-Air Refueling

for Fuel Savings.” In: EUCASS 2013, 5th European Conference for Aeronautics

and Space Sciences. (Munich, Germany, July 1–5, 2013). 2013.

[Bit+14] M. Bittner, B. Fleischmann, M. Richter, and F. Holzapfel. “Optimization of

ATM Scenarios Considering Overall and Single Costs.” In: 6th International

Conference on Research in Air Transportation (ICRAT). (Istanbul, Turkey,

May 26–30, 2014). 2014.

X

https://psopt.googlecode.com/files/PSOPT_Manual_R3.pdf

BIBLIOGRAPHY

[Bit+15] M. Bittner, M. Rieck, B. Grüter, and F. Holzapfel. “Optimal Conflict Free

Approach Trajectories for Multiple Aircraft.” In: The 4th ENRI International

Workshop on ATM/CNS (EIWAC2015). (Tokyo, Japan, Nov. 17–19, 2015).

ENRI. 2015.

[Bit+16] M. Bittner, M. Rieck, B. Grüter, and F. Holzapfel. “Optimal Approach

Trajectories for Multiple Aircraft Considering Disturbances and Configuration

Changes.” In: 30th Congress of the International Council of the Aeronautical

Sciences (ICAS). (Daejeon, Korea, Sept. 25–30, 2016). The International

Council of the Aeronautical Sciences. 2016.

[BLM12] C. L. Bottasso, F. Luraghi, and G. Maisano. “Efficient rotorcraft trajectory

optimization using comprehensive models by improved shooting methods.” In:

Aerospace Science and Technology Vol. 23. No. 1 (2012), pp. 34–42. issn:

1270-9638.

[BM09] C. L. Bottasso and G. Maisano. “Efficient Rotorcraft Trajectory Optimization

using Comprehensive Vehicle Models by Improved Shooting Methods.” In: 35th

European Rotorcraft Forum Proceedings. (Hamburg, Germany, Sept. 22–25,

2009). Ed. by I. Lopez and P. Brandt. Red Hook, NY: Curran Associates, 2009.

isbn: 9781615678747.

[BMP91] R. Bulirsch, F. Montrone, and H. J. Pesch. “Abort landing in the presence of

windshear as a minimax optimal control problem, part 2: Multiple shooting and

homotopy.” In: Journal of Optimization Theory and Applications Vol. 70. No. 2

(1991), pp. 223–254.

[BMS10] C. L. Bottasso, G. Maisano, and F. Scorlcelletti. “Trajectory Optimization

Procedures for Rotorcraft Vehicles, Their Software Implementation, and

Applicability to Models of Increasing Complexity.” In: Journal of the American

Helicopter Society Vol. 55. No. 032010 (2010).

[BMT08] F. Bonnans, P. Martinon, and E. Trélat. “Singular Arcs in the Generalized

Goddard’s Problem.” In: Journal of Optimization Theory and Applications

Vol. 139. No. 2 (2008), pp. 439–461.

[Bra68] D. H. Brandin. “Mathematics of continuous system simulations.” In: AFIPS ’68

(Fall, part I) Proceedings of the December 9-11, 1968, fall joint computer

conference, part I. (San Francisco, California, Dec. 9–11, 1968). New York, New

York, USA: ACM Press, 1968, pp. 345–352.

[Büs96] C. Büskens. Lösung Optimaler Steuerprozesse, Lösung adjungierter Variablen,

Automatische Gitteranpassung. Anleitung zur Benutzung der Fortran Bibliothek

NUDOCCS, Version 8.04. Münster: Westfälsiche Wilhelms-Universität, 1996.

url: http://wwwmath.uni-muenster.de/num/Arbeitsgruppen/ag_maurer/

XI

http://wwwmath.uni-muenster.de/num/Arbeitsgruppen/ag_maurer/Lehrveranstaltungen/NUDOCCCS/Nudocccsanleitung.pdf

BIBLIOGRAPHY

Lehrveranstaltungen/NUDOCCCS/Nudocccsanleitung.pdf (visited on

04/21/2016).

[Büs98] C. Büskens. “Optimierungsmethoden und Sensitivitätsanalyse für optimale

Steuerprozesse mit Steuer- und Zustands-Beschränkungen.” Fachbereich

Mathematik und Informatik. Dissertation. Münster: Westfälische

Wilhelms-Universität, 1998.

[BW13] C. Büskens and D. Wassel. “The ESA NLP Solver WORHP.” In: Modeling and

Optimization in Space Engineering. Ed. by G. Fasano and J. D. Pintér. Vol. 73.

New York: Springer, 2013, pp. 85–110. isbn: 978-1-4614-4468-8.

[CB07] J. L. Christensen and W. L. Brogan. “Modelling and optimal control of a

production process.” In: International Journal of Systems Science Vol. 1. No. 3

(2007), pp. 247–255. issn: 0020-7721.

[CG09] M. Ciarcià and C. Grillo. “Collision Avoidance Trajectory for an Ekranoplan.” In:

AIAA Atmospheric Flight Mechanics Conference. (Chicago, Illinois, Aug. 10–13,

2009). AIAA, American Institute of Aeronautics and Astronautics. 2009.

[CHL10] G. Chaloulos, P. Hokayem, and J. Lygeros. “Distributed hierarchical MPC for

conflict resolution in air traffic control.” In: 2010 American Control Conference

(ACC2010). (Baltimore, Maryland, USA, June 30–July 2, 2010). 2010,

pp. 3945–3950.

[CJ12] J. L. Crassidis and J. L. Junkins. Optimal Estimation of Dynamic Systems. 2nd

ed. Vol. 24. Chapman & Hall/CRC applied mathematics & nonlinear science.

Boca Raton, FL: CRC Press, 2012. isbn: 9781439839850.

[CL98] B. A. Conway and K. M. Larson. “Collocation Versus Differential Inclusion in

Direct Optimization.” In: Journal of Guidance, Control, and Dynamics Vol. 21

(1998), pp. 780–785. issn: 0731-5090.

[Com+11] G. P. Compo et al. “The Twentieth Century Reanalysis Project.” In: Quarterly

Journal of the Royal Meteorological Society Vol. 137. No. 654 (2011), pp. 1–28.

issn: 1477-870X.

[CRS11] Y. Cao, S. Rathinam, and D. Sun. “A Rescheduling Method for Conflict-free

Continuous Descent Approach.” In: AIAA Guidance, Navigation, and Control

Conference. (Portland, Oregon, USA, Aug. 8–11, 2011). AIAA, American

Institute of Aeronautics and Astronautics. 2011.

[DC08a] P. N. Desai and B. A. Conway. “Six-Degree-of-Freedom Trajectory Optimization

Using a Two-Timescale Collocation Architecture.” In: Journal of Guidance,

Control, and Dynamics Vol. 31. No. 5 (2008), pp. 1308–1315. issn: 0731-5090.

[DC08b] P. N. Desai and B. A. Conway. “Two-Timescale Discretization Scheme for

Collocation.” In: Journal of Guidance, Control, and Dynamics Vol. 31. No. 5

(2008), pp. 1316–1322. issn: 0731-5090.

XII

http://wwwmath.uni-muenster.de/num/Arbeitsgruppen/ag_maurer/Lehrveranstaltungen/NUDOCCCS/Nudocccsanleitung.pdf

BIBLIOGRAPHY

[Den01] N. Dennis. “Developments of Hubbing at European Airports.” In: Air & Space

Europe Vol. 3. No. 1-2 (2001), pp. 51–55. issn: 12900958.

[Deu79] Deutsches Institut für Normung, ed. Normatmosphäre. DIN ISO.

Version 1979-12. Berlin: Beuth Verlag GmbH, 1979.

[Die+16] J. Diepolder et al. “Flight Control Law Clearance Using Worst-Case Inputs.” In:

30th Congress of the International Council of the Aeronautical Sciences (ICAS).

(Daejeon, Korea, Sept. 25–30, 2016). The International Council of the

Aeronautical Sciences. 2016.

[DP06] D. DuBois and G. C. Paynter. ““Fuel Flow Method2” for Estimating Aircraft

Emissions.” In: Non-Conference Specific Technical Papers - 2006. ().

Warrendale, PA, United States: SAE International, 2006.

[DP80] J. R. Dormand and P. J. Prince. “A family of embedded Runge-Kutta formulae.”

In: Journal of Computational and Applied Mathematics Vol. 6. No. 1 (1980),

pp. 19–26.

[Dub57] L. E. Dubins. “On Curves of Minimal Length with a Constraint on Average

Curvature, and with Prescribed Initial and Terminal Positions and Tangents.” In:

American Journal of Mathematics Vol. 79. No. 3 (1957), pp. 497–516. issn:

00029327.

[EC92] P. J. Enright and B. A. Conway. “Discrete Approximations to Optimal

Trajectories Using Direct Transcription and Nonlinear Programming.” In: Journal

of Guidance, Control, and Dynamics Vol. 15 (1992), pp. 994–1002. issn:

0731-5090.

[EE15] European Union and EUROCONTROL. European ATM Master Plan. The

roadmap for delivering high performing aviation for Europe. Executive View.

Edition 2015. Luxembourg: Publications Office, 2015. isbn: 978-92-9216-034-0.

[Eli16] Elissar Global. DIDO leading optimal control software. 2016. url: http://www.

elissarglobal.com/academic/products/ (visited on 04/21/2016).

[ER96] B. Etkin and L. D. Reid. Dynamics of Flight. Stability and Control. Third

Edition. New York: Wiley, 1996. isbn: 0-471-03418-5.

[EUR10] EUROCONTROL. Long-Term Forecasts. Flight Movements 2010 - 2030. 2010.

[EUR12] EUROCONTROL Experimental Centre. User Manual for the Base of Aircraft

Data (BADA) Family 4. Ed. by European Organisation for the Safety of Air

Navigation. 2012.

[EUR14] EUROCONTROL. User Manual for the Base of Aircraft Data (BADA) Revision

3.12. EUROCONTROL Experimental Centre, 2014.

XIII

http://www.elissarglobal.com/academic/products/
http://www.elissarglobal.com/academic/products/

BIBLIOGRAPHY

[FB11] R. Fernandes de Oliveira and C. Büskens. On-Board Trajectory Optimization of

RNAV Departure and Arrival Procedures Concerning Emissions and Population

Annoyance. SAE Technical Paper 2011-01-2595, 2011.

[FB12] R. Fernandes de Oliveira and C. Büskens. “Benefits of Optimal Flight Planning

on Noise and Emissions Abatement at the Frankfurt Airport.” In: AIAA

Guidance, Navigation, and Control Conference. (Minneapolis, Minnesota,

Aug. 13–16, 2012). AIAA, American Institute of Aeronautics and Astronautics.

2012. isbn: 978-1-60086-938-9.

[FBH12] F. Fisch, M. Bittner, and F. Holzapfel. “Optimal Scheduling of Fuel-Minimal

Approach Trajectories.” In: Air Transport and Operations. Proceedings of the

third International Air Transport and Operations Symposium 2012. (Delft, the

Netherlands, June 12–20, 2012). Ed. by R. Curran and L. Fischer. Amsterdam

and Washington, D.C.: IOS Press, 2012. isbn: 978-1-61499-119-9.

[FBH13] F. Fisch, M. Bittner, and F. Holzapfel. “Optimal Scheduling of Fuel-Minimal

Approach Trajectories.” In: Journal of Aerospace Operations Vol. 2. No. 2–4

(2013), pp. 145–160.

[Feh69] E. Fehlberg. Low-order classical Runge-Kutta formulas with stepsize control and

their application to some heat transfer problems. Washington, United States:

NASA Marshall Space Flight Center, Huntsville, AL, United States, 1969. url:

http://ntrs.nasa.gov/search.jsp?R=19690021375 (visited on 07/26/2016).

[Fia76] A. V. Fiacco. “Sensitivity Analysis for Nonlinear Programming using Penalty

Methods.” In: Mathematical Programming Vol. 10 (1976), pp. 287–311. issn:

0025-5610.

[Fis+08] F. Fisch, H. Pfifer, M. Weingartner, F. Holzapfel, G. Sachs, and S. Myschik.

“Airframe and Trajectory Pursuit Modeling for Simulation Assisted Air Race

Planning.” In: AIAA Modeling and Simulation Technologies Conference and

Exhibit. (Honolulu, Hawaii, USA, Aug. 18–21, 2008). AIAA, American Institute

of Aeronautics and Astronautics. 2008.

[Fis+09] F. Fisch, J. Lenz, F. Holzapfel, and G. Sachs. “Trajectory Optimization Applied

to Air Races.” In: AIAA Atmospheric Flight Mechanics Conference. (Chicago,

Illinois, Aug. 10–13, 2009). AIAA, American Institute of Aeronautics and

Astronautics. 2009.

[Fis11] F. Fisch. Development of a Framework for the Solution of High-Fidelity

Trajectory Optimization Problems and Bilevel Optimal Control Problems. 1.

Aufl. München: Verlag Dr. Hut, 2011. isbn: 978-3-86853-851-9.

[FLH12] F. Fisch, J. Lenz, and F. Holzapfel. “Aircraft Configuration Settings within the

Optimization of Approach Trajectories.” In: 28th International Congress Of The

Aeronautical Sciences. (Brisbane, Australia, Sept. 23–28, 2012). 2012.

XIV

http://ntrs.nasa.gov/search.jsp?R=19690021375

BIBLIOGRAPHY

[FP11] R. Fernandes de Oliveira and G. Puyou. “On the use of optimization for flight

control laws clearance. A practical approach.” In: IFAC Proceedings Volumes

Vol. 44. No. 1 (2011), pp. 9881–9886. issn: 14746670.

[FR08] F. Fahroo and I. M. Ross. “Advances in Pseudospectral Methods for Optimal

Control.” In: AIAA Guidance, Navigation and Control Conference and Exhibit.

(Honolulu, Hawaii, USA, Aug. 18–21, 2008). AIAA, American Institute of

Aeronautics and Astronautics. 2008.

[Fra+01] E. Frazzoli, Z.-H. Mao, J.-H. Oh, and E. Feron. “Resolution of Conflicts

Involving Many Aircraft via Semidefinite Programming.” In: Journal of Guidance,

Control, and Dynamics Vol. 24. No. 1 (2001), pp. 79–86. issn: 0731-5090.

[Fra08] C. Francolin. GPOPS - File Exchange - MATLAB Central. 2008. url: http://

www.mathworks.com/matlabcentral/fileexchange/21729-gpops (visited on

04/20/2016).

[Ger08] M. Gerdts. Optimierung. Vorlesungsskript. Edgbaston, Birmingham:

Management Mathematics Group, School of Mathematics, University of

Birmingham, 2008. url: https://www.unibw.de/lrt1/gerdts/lehre/optimierung.

pdf (visited on 12/08/2015).

[Ger09] M. Gerdts. Optimale Steuerung. Vorlesungsskript der Universität Würzburg

2009/2010. Würzburg: Institut für Mathematik, Universität Würzburg, 2009.

url: https://www.unibw.de/lrt1/gerdts/lehre/optimale_steuerung.pdf (visited

on 12/08/2015).

[Ger12] M. Gerdts. Optimal Control of ODEs and DAEs. De Gruyter Textbook. Berlin

and Boston: De Gruyter, 2012. isbn: 978-3-11-024995-8.

[Ger13] M. Gerdts. User’s Guide - OCPID-DAE1. Optimal Control and Parameter

Identification with Differential-Algebraic Equations of Index 1. Institut für

Mathematik und Rechneranwendung, Universität der Bundeswehr München,

2013. url: https://www.unibw.de/lrt1/gerdts/lehre/

praktikum-optimale-steuerung/ocpiddae1.pdf (visited on 04/21/2016).

[GH16] C. Göttlicher and F. Holzapfel. “Flight Path Reconstruction for an Unmanned

Aerial Vehicle Using Low-Cost Sensors.” In: 30th Congress of the International

Council of the Aeronautical Sciences (ICAS). (Daejeon, Korea, Sept. 25–30,

2016). The International Council of the Aeronautical Sciences. 2016.

[GKR01] M. Günther, A. Kværnø, and P. Rentrop. “Multirate Partitioned Runge-Kutta

Methods.” In: BIT Numerical Mathematics Vol. 41. No. 3 (2001), pp. 504–514.

issn: 00063835.

[GL11] M. Gerdts and F. Lempio. Mathematische Optimierungsverfahren des

Operations Research. De Gruyter Studium. Berlin and Boston: De Gruyter,

2011. isbn: 3110249987.

XV

http://www.mathworks.com/matlabcentral/fileexchange/21729-gpops
http://www.mathworks.com/matlabcentral/fileexchange/21729-gpops
https://www.unibw.de/lrt1/gerdts/lehre/optimierung.pdf
https://www.unibw.de/lrt1/gerdts/lehre/optimierung.pdf
https://www.unibw.de/lrt1/gerdts/lehre/optimale_steuerung.pdf
https://www.unibw.de/lrt1/gerdts/lehre/praktikum-optimale-steuerung/ocpiddae1.pdf
https://www.unibw.de/lrt1/gerdts/lehre/praktikum-optimale-steuerung/ocpiddae1.pdf

BIBLIOGRAPHY

[GMS02] P. E. Gill, W. Murray, and M. A. Saunders. “SNOPT. An SQP Algorithm for

Large-Scale Constrained Optimization.” In: SIAM Journal of Optimization

Vol. 12. No. 4 (2002), pp. 979–1006.

[Gol91] D. Goldberg. “What every computer scientist should know about floating-point

arithmetic.” In: ACM Computing Surveys Vol. 23. No. 1 (1991), pp. 5–48. issn:

03600300.

[Gre02] J. E. Green. “Greener by Design – the Technology Challenge.” In: Aeronautical

Journal Vol. 1056. No. 106 (2002), pp. 57–103.

[GW84] C. W. Gear and D. R. Wells. “Multirate linear multistep methods.” In: BIT

Numerical Mathematics Vol. 24. No. 4 (1984), pp. 484–502. issn: 00063835.

[Hag00] W. W. Hager. “Runge-Kutta methods in optimal control and the transformed

adjoint system.” In: Numerische Mathematik Vol. 87. No. 2 (2000),

pp. 247–282. issn: 0029-599X.

[Hah07] A. Hahn. “Staging Airliner Service.” In: 7th AIAA ATIO Conf, 2nd CEIAT Int’l

Conf on Innov & Integr in Aero Sciences,17th LTA Systems Tech Conf; followed

by 2nd TEOS Forum. (Belfast, Northern Ireland, Sept. 18–20, 2007). AIAA,

American Institute of Aeronautics and Astronautics. 2007. (Visited on

02/04/2013).

[HC96] A. L. Herman and B. A. Conway. “Direct optimization using collocation based

on high-order Gauss-Lobatto quadrature rules.” In: Journal of Guidance, Control,

and Dynamics Vol. 19. No. 3 (1996), pp. 592–599. issn: 0731-5090.

[HC98] A. L. Herman and B. A. Conway. “Optimal, Low-Thrust, Earth-Moon Orbit

Transfer.” In: Journal of Guidance, Control, and Dynamics Vol. 21. No. 1

(1998), pp. 141–147. issn: 0731-5090.

[HG16] F. Holzapfel and C. Göttlicher. Flight System Identification. Lecture Notes.

München: Lehrstuhl für Flugsystemdynamik, Technische Universität München,

2016.

[Höc14] L. Höcht. “Advances in Stability Analysis for Model Reference Adaptive Control

Systems and Application to Unmanned Aerial Systems.” Lehrstuhl für

Flugsystemdynamik. Dissertation. München: Technische Universität München,

2014.

[Hol+14] F. Holzapfel, M. Rieck, M. Bittner, M. Richter, and J. Diepolder. Practical

Course on Optimal Control. Lecture Notes. München: Lehrstuhl für

Flugsystemdynamik, Technische Universität München, 2014.

[Hol+15] F. Holzapfel, M. Gerdts, F. Fisch, and M. Bittner. Aircraft Trajectory

Optimization. Lecture Notes. München: Lehrstuhl für Flugsystemdynamik,

Technische Universität München, 2015.

XVI

BIBLIOGRAPHY

[Hol04] F. Holzapfel. “Nichtlineare adaptive Regelung eines unbemannten Fluggerätes.”

Lehrstuhl für Flugmechanik und Flugregelung. Dissertation. München:

Technische Universität München, 2004.

[Hol15] F. Holzapfel. Flight System Dynamic II. Lecture Notes. München: Lehrstuhl für

Flugsystemdynamik, Technische Universität München, 2015.

[HPS02] J. Hu, M. Pradini, and S. Sastry. “Three Dimensional Optimal Coordinated

Maneuvers for Aircraft Conflict Avoidance.” In: Journal of Guidance, Control,

and Dynamics Vol. 25. No. 5 (2002), pp. 888–900. issn: 0731-5090.

[Hug93] J. Hugger. “The theory of density representation of finite element meshes.

Examples of density operators with quadrilateral elements in the mapped

domain.” In: Computer Methods in Applied Mechanics and Engineering

Vol. 109. No. 1 (1993), pp. 17–39.

[ICA01] ICAO. Procedures for Air Navigation Services, Air Traffic Management. Doc

4444. Version Fourteenth Edition. International Civil Aviation Organization,

2001.

[ICA02] ICAO. Manual of the ICAO standard atmosphere. Extended to 80 kilometres

(262 500 feet). Version Third Edition. Montreal: International Civil Aviation

Organization, 2002.

[ICA16] ICAO. ICAO Aircraft Engine Emissions Databank. International Civil Aviation

Organization. 2016. url: https://easa.europa.eu/document-library/

icao-aircraft-engine-emissions-databank#2 (visited on 03/03/2016).

[ICA95] ICAO. ICAO Engine Exhaust Emissions Databank. Montreal, Quebec:

International Civil Aviation Organization, 1995.

[JT08] S. Jain and P. Tsiotras. “Trajectory Optimization Using Multiresolution

Techniques.” In: Journal of Guidance, Control, and Dynamics Vol. 31. No. 5

(2008), pp. 1424–1436. issn: 0731-5090.

[Kim+07] B. Y. Kim et al. “System for assessing Aviation’s Global Emissions (SAGE), Part

1. Model description and inventory results.” In: Transportation Research Part D:

Transport and Environment Vol. 12. No. 5 (2007), pp. 325–346. issn:

13619209.

[Kir70] D. E. Kirk. Optimal Control Theory. An Introduction. Prentice-Hall Networks

Series. Englewood Cliffs, N.J.: Prentice-Hall, 1970. isbn: 978-0-486-43484-1.

[KM03] J.-H. R. Kim and H. Maurer. “Sensitivity Analysis of Optimal Control Problems

with Bang-Bang Controls.” In: 42nd IEEE Conference on Decision and Control.

(Maui, Hawaii, USA, Dec. 9–12, 2003). Piscataway, N.J.: IEEE, 2003,

pp. 3281–3286. isbn: 0-7803-7924-1.

XVII

https://easa.europa.eu/document-library/icao-aircraft-engine-emissions-databank#2
https://easa.europa.eu/document-library/icao-aircraft-engine-emissions-databank#2

BIBLIOGRAPHY

[KM13] C. Y. Kaya and H. Maurer. “A numerical method for nonconvex multi-objective

optimal control problems.” In: Computational Optimization and Applications

Vol. 57. No. 3 (2013), pp. 685–702. issn: 0926-6003 1573-2894.

[KT51] H. W. Kuhn and A. W. Tucker. “Nonlinear Programming.” In: Proceedings of

the Second Berkeley Symposium on Mathematical Statistics and Probability.

Berkeley, Calif.: University of California Press, 1951.

[Lee+07] J. J. Lee, I. A. Waitz, B. Y. Kim, G. G. Fleming, L. Maurice, and

C. A. Holsclaw. “System for assessing Aviation’s Global Emissions (SAGE), Part

2. Uncertainty assessment.” In: Transportation Research Part D: Transport and

Environment Vol. 12. No. 6 (2007), pp. 381–395. issn: 13619209.

[Lei81] G. Leitmann. The calculus of variations and optimal control. An introduction.

Mathematical Concepts and Methods in Science and Engineering. New York:

Plenum Press, 1981. isbn: 0306407078.

[Len15] J. Lenz. “Optimisation of Periodic Flight Trajectories.” Lehrstuhl für

Flugsystemdynamik. München: Technische Universität München, 2015.

[Lin05] J. G. Lin. “On min-norm and min-max methods of multi-objective optimization.”

In: Mathematical Programming Vol. 103. No. 1 (2005), pp. 1–33. issn:

0025-5610.

[Lof80] Loftin, L. K., Jr. Subsonic aircraft: Evolution and the matching of size to

performance. NASA Langley Research Center and Hampton, VA, United States,

1980. url: http://ntrs.nasa.gov/search.jsp?R=19800020744.

[LZZ12] S. Li, R. Zhao, and Q. Zhang. “Optimization method for solving bang-bang and

singular control problems.” In: Journal of Control Theory and Applications

Vol. 10. No. 4 (2012), pp. 559–564. issn: 1672-6340.

[Mat] T. MathWorks. fmincon - Documentation. Find minimum of constrained

nonlinear multivariable function. url: http://de.mathworks.com/help/optim/

ug/fmincon.html (visited on 12/16/2015).

[Mat+15] H. Matsuda, A. Harada, T. Kozuka, and Y. Miyazawa. “Arrival Time

Assignment by Dynamic Programming Optimization.” In: The 4th

ENRI International Workshop on ATM/CNS (EIWAC2015). (Tokyo, Japan,

Nov. 17–19, 2015). ENRI. 2015.

[Mie01] K. Miettinen. “Some Methods for Nonlinear Multi-objective Optimization.” In:

Evolutionary Multi-Criterion Optimization. Ed. by E. Zitzler, L. Thiele, K. Deb,

C. Coello Coello, and D. Corne. Vol. 1993. Lecture Notes in Computer Science.

Berlin and Heidelberg: Springer, 2001, pp. 1–20. isbn: 978-3-540-41745-3.

XVIII

http://ntrs.nasa.gov/search.jsp?R=19800020744
http://de.mathworks.com/help/optim/ug/fmincon.html
http://de.mathworks.com/help/optim/ug/fmincon.html

BIBLIOGRAPHY

[Min15] Ministry of Land, Infrastructure, Transport and Tourism. Data Extracted from

the Air Navigation Services Department’s Database Becomes Available. Air

Navigation Services Department, Civil Aviation Bureau, MLIT. 2015. url:

http://www.mlit.go.jp/common/001082594.pdf (visited on 06/10/2016).

[MMR12] K. Mohan, Michael A. Patterson, and A. V. Rao. “Optimal Trajectory and

Control Generation for Landing of Multiple Aircraft in the Presence of

Obstacles.” In: 28th International Congress Of The Aeronautical Sciences.

(Brisbane, Australia, Sept. 23–28, 2012). 2012.

[MSS99] P. K. Menon, G. D. Sweriduk, and B. Sridhar. “Optimal Strategies for

Free-Flight Air Traffic Conflict Resolution.” In: Journal of Guidance, Control,

and Dynamics Vol. 22. No. 2 (1999), pp. 202–211. issn: 0731-5090.

[MTF14] H. Maurer, T. Tarnopolskaya, and N. Fulton. “Computation of bang-bang and

singular controls in collision avoidance.” In: Journal of Industrial and

Management Optimization Vol. 10. No. 2 (2014), pp. 443–460. issn:

1547-5816.

[MU10] G. V. Milovanović and Z. Udovičić. “Calculation of coefficients of a cardinal

B-spline.” In: Applied Mathematics Letters Vol. 23. No. 11 (2010),

pp. 1346–1350. issn: 08939659.

[Nan06a] R. K. Nangia. “Efficiency Parameters for Modern Commercial Aircraft.” In: The

Aeronautical Journal Vol. August 2006. No. 110 (2006).

[Nan06b] R. K. Nangia. “Operations and Aircraft Design Towards Greener Civil Aviation

Using Air-to-Air Refueling.” In: The Aeronautical Journal Vol. November 2006.

No. 110 (2006).

[Nan08] R. K. Nangia. “Highly Efficient and Greener Civil Aviation - Organising a Step

Jump towards ACARE Goals. An Opportunity for the Present & a Vision for

Future.” In: Royal Aeronautical Society Conference. Aerospace 2008, The Way

Forward. (London, Apr. 22–24, 2008). Royal Aeronautical Society. 2008.

[Nat00] National Imagery and Mapping Agency, NIMA. Department of Defense World

Geodetic System 1984. Its Definition and Relationships with Local Geodetic

Systems. Technical Report 8350.2. Version Third Edition, incl. Amendment 1.

St. Louis, MO: National Imagery and Mapping Agency, NIMA, 2000.

[NE13] Network Manager nominated by the European Commission and

EUROCONTROL. EUROCONTROL Seven-Year Forecast September 2013.

Flight Movements and Service Units 2013 - 2019. 2013.

[OS83] S. Osher and R. Sanders. “Numerical approximations to nonlinear conservation

laws with locally varying time and space grids.” In: Mathematics of Computation

Vol. 41. No. 164 (1983), p. 321. issn: 0025-5718.

XIX

http://www.mlit.go.jp/common/001082594.pdf

BIBLIOGRAPHY

[OWH15] A. Okubo, S. Watanabe, and M. Harada. “Three-Dimensional Trajectory

Optimization Considering Arrival Time at the Merging Point.” In: The 4th

ENRI International Workshop on ATM/CNS (EIWAC2015). (Tokyo, Japan,

Nov. 17–19, 2015). ENRI. 2015.

[Pes96] H. J. Pesch. “A Practical Guide To The Solution Of Real-Life Optimal Control

Problems.” In: Control and Cybernetics Vol. 23. No. 1 (1996). issn: 0324-8569.

[PKH11] S. H. Pourtakdoust, M. Kiani, and A. Hassanpour. “Optimal trajectory planning

for flight through microburst wind shears.” In: Aerospace Science and

Technology Vol. 15. No. 7 (2011), pp. 567–576. issn: 1270-9638.

[Pol97] E. Polak. Optimization. Algorithms and Consistent Approximations. Vol. 124.

Applied Mathematical Sciences. New York, NY: Springer, 1997. isbn:

1461206634.

[PP12] H. J. Pesch and M. Plail. “The Cold War and the Maximum Principle of

Optimal Control.” In: Optimization stories. 21st International Symposium on

Mathematical Programming, Berlin, August 19 – 24, 2012. Ed. by M. Grötschel.

Vol. Extra Volume. Documenta Mathematica Extra Volume. Bielefeld, 2012.

isbn: 978-3-936609-58-5.

[PR14] M. A. Patterson and A. V. Rao. “GPOPS-II: A MATLAB Software for Solving

Multiple-Phase Optimal Control Problems Using hp-Adaptive Gaussian

Quadrature Collocation Methods and Sparse Nonlinear Programming.” In: ACM

Transactions on Mathematical Software Vol. 41. No. 1 (2014). issn: 0098-3500.

[Rag+04] A. U. Raghunathan, V. Gopal, D. Subramanian, L. T. Biegler, and T. Samad.

“Dynamic Optimization Strategies for Three-Dimensional Conflict Resolution of

Multiple Aircraft.” In: Journal of Guidance, Control, and Dynamics Vol. 27.

No. 4 (2004), pp. 586–594. issn: 0731-5090.

[Rao+10] A. V. Rao et al. “Algorithm 902: GPOPS, A MATLAB Software for Solving

Multiple-Phase Optimal Control Problems Using the Gauss Pseudospectral

Method.” In: ACM Transactions on Mathematical Software Vol. 37. No. 2

(2010), pp. 1–39. issn: 0098-3500.

[Ray12] D. P. Raymer. Aircraft design. A conceptual approach. 5th ed. AIAA Education

Series. Reston, VA: American Institute of Aeronautics and Astronautics, 2012.

isbn: 1600869114.

[RBH13] M. Richter, M. Bittner, and F. Holzapfel. “Noise Minimal Approaches on

Parallel Runways.” In: Proceedings of the Fourth International Air Transport and

Operations Symposium (ATOS). (Toulouse, France, July 8–12, 2013). 2013.

XX

BIBLIOGRAPHY

[RE10] P. E. Rutquist and M. M. Edvall. PROPT - Matlab Optimal Control Software. -

One of a kind, lightning fast solutions to your optimal control problems! Tomlab

Optimization Inc., 2010. url: http://tomopt.com/docs/TOMLAB_PROPT.

pdf (visited on 04/21/2016).

[Ren88] R. J. Renka. “Multivariate Interpolation of Large Sets of Scattered Data.” In:

ACM Transactions on Mathematical Software Vol. 14. No. 2 (1988),

pp. 139–148. issn: 0098-3500.

[RH02] A. Richards and J. P. How. “Aircraft trajectory planning with collision avoidance

using mixed integer linear programming.” In: Proceedings of the 2002 American

Control Conference. (Anchorage, Alaska, USA, May 8–10, 2002). Piscataway,

NJ: IEEE, 2002, pp. 1936–1941. isbn: 0-7803-7298-0.

[Ric+13] M. Richter, M. Bittner, M. Rieck, and F. Holzapfel. “Berechnung lärmminimaler

An- und Abflugrouten.” In: Matlab EXPO 2013. (Munich, Germany, July 2,

2013). The MathWorks. 2013.

[Ric+14a] M. Richter, M. Bittner, M. Rieck, and F. Holzapfel. “A Non-Cooperative

Bi-Level Optimal Control Problem Formulation for Noise Minimal Departure

Trajectories.” In: 29th Congress of the International Council of the Aeronautical

Sciences (ICAS). (St. Petersburg, Russia, Sept. 7–12, 2014). The International

Council of the Aeronautical Sciences. 2014.

[Ric+14b] M. Richter, M. Bittner, M. Rieck, and F. Holzapfel. “A Realistic Flight Path

Parameterization for Calculation of Noise Minimal Trajectories using Bi-level

Optimal Control.” In: AIAA Guidance, Navigation, and Control Conference.

(National Harbor, Maryland, USA, Jan. 13–17, 2014). AIAA, American Institute

of Aeronautics and Astronautics. 2014.

[Ric+14c] M. Richter, M. Hochstrasser, M. Bittner, L. Walter, and F. Holzapfel.

“Application of MINLP Techniques to Conflict Resolution of Multiple Aircraft.”

In: AIAA Guidance, Navigation, and Control Conference. (National Harbor,

Maryland, USA, Jan. 13–17, 2014). AIAA, American Institute of Aeronautics

and Astronautics. 2014.

[Rie+14] M. Rieck, M. Richter, M. Bittner, and F. Holzapfel. “Generation of Initial

Guesses for Optimal Control Problems with Mixed Integer Dependent

Constraints.” In: 29th Congress of the International Council of the Aeronautical

Sciences (ICAS). (St. Petersburg, Russia, Sept. 7–12, 2014). The International

Council of the Aeronautical Sciences. 2014.

[Rie+15] M. Rieck, M. Bittner, B. Grüter, and F. Holzapfel. “Generation of Dynamic

Models with Automatically Generated Derivatives for ATM Optimal Control in

MATLAB.” In: The 4th ENRI International Workshop on ATM/CNS

(EIWAC2015). (Tokyo, Japan, Nov. 17–19, 2015). ENRI. 2015.

XXI

http://tomopt.com/docs/TOMLAB_PROPT.pdf
http://tomopt.com/docs/TOMLAB_PROPT.pdf

BIBLIOGRAPHY

[Rie+16] M. Rieck, M. Bittner, B. Grüter, and J. Diepolder. FALCON.m User Guide.

Institute of Flight System Dynamics, Technical University of Munich, 2016.

url: www.falcon-m.com.

[Ros04] J. Roskam. Airplane Design. 8 Volumes vols. Lawrence, Kansas:

DARcorporation, 2004. isbn: 1884885241.

[Ros79] J. Roskam. Airplane Flight Dynamics and Automatic Flight Controls. Ottawa,

Canada: Roskam Aviation and Engineering Corporation, 1979.

[RRH13] M. Rieck, M. Richter, and F. Holzapfel. “Discrete Control Dependent

Constraints in Multiple Shooting Optimal Control Problems.” In: Guidance,

Navigation, and Control and Co-located Conferences. (Boston, Massachusetts,

Aug. 19–22, 2013). AIAA, American Institute of Aeronautics and Astronautics.

2013.

[RTC05] RTCA. DO-258A Interoperability Requirements for ATS Applications Using

ARINC 622 Data Communications. Radio Technical Commission for

Aeronautics, 2005.

[Sch+05] M. Schlegel, K. Stockmann, T. Binder, and W. Marquardt. “Dynamic

optimization using adaptive control vector parameterization.” In: Computers &

Chemical Engineering Vol. 29. No. 8 (2005), pp. 1731–1751. issn: 0098-1354.

[Sch96] A. L. Schwartz. “Theory and implementation of numerical methods based on

Runge-Kutta integration for solving optimal control problems.” Electrical

Engineering and Computer Sciences. Doctoral Thesis. University of California at

Berkeley, 1996.

[She68] D. Shepard. “A Two-dimensional Interpolation Function for Irregularly-spaced

Data.” In: ACM ’68 Proceedings of the 1968 23rd ACM National Conference.

(Aug. 27–29, 1968). New York, NY, USA: ACM, 1968, pp. 517–524.

[SHF04] T. Schouwenaars, J. How, and E. Feron. “Decentralized Cooperative Trajectory

Planning of Multiple Aircraft with Hard Safety Guarantees.” In: AIAA Guidance,

Navigation, and Control Conference and Exhibit. (Providence, Rhode Island,

Aug. 16–19, 2004). AIAA, American Institute of Aeronautics and Astronautics.

2004. isbn: 978-1-62410-073-4.

[Sim06] D. Simon. Optimal State Estimation. Kalman, H Infinity, and Nonlinear

Approaches. Hoboken, N.J.: Wiley-Interscience, 2006. isbn: 978-0-470-04533-6.

[SL03] B. L. Stevens and F. L. Lewis. Aircraft control and simulation. 2nd ed.

Hoboken, N.J.: J. Wiley, 2003. isbn: 9780471371458.

[SM06a] M. Schlegel and W. Marquardt. “Adaptive Switching Structure Detection for

the Solution of Dynamic Optimization Problems.” In: Industrial & Engineering

Chemistry Research Vol. 45. No. 24 (2006), pp. 8083–8094. issn: 0888-5885.

XXII

www.falcon-m.com

BIBLIOGRAPHY

[SM06b] M. Schlegel and W. Marquardt. “Detection and exploitation of the control

switching structure in the solution of dynamic optimization problems.” In:

Journal of Process Control Vol. 16. No. 3 (2006), pp. 275–290. issn: 09591524.

[Sol+12] M. Soler, M. Kamgarpour, C. Tomlin, and E. Staffetti. “Multiphase

mixed-integer optimal control framework for aircraft conflict avoidance.” In:

2012 IEEE 51st Annual Conference on Decision and Control (CDC). (Maui, HI,

USA). 2012, pp. 1740–1745.

[Sol+16] M. Soler, M. Kamgarpour, J. Lloret, and J. Lygeros. “A Hybrid Optimal Control

Approach to Fuel-Efficient Aircraft Conflict Avoidance.” In: IEEE Transactions

on Intelligent Transportation Systems Vol. 17. No. 7 (2016), pp. 1826–1838.

issn: 1524-9050.

[Str93] O. von Stryk. “Numerical Solution of Optimal Control Problems by Direct

Collocation.” In: Optimal Control. Calculus of Variations, Optimal Control

Theory and Numerical Methods. Ed. by R. Bulirsch, A. Miele, J. Stoer, and

K. Well. Vol. 111. International Series of Numerical Mathematics 111. Basel:

Birkhäuser, 1993, pp. 129–143. isbn: 978-3-0348-7541-7.

[Str94] O. von Stryk. “Numerische Lösung Optimaler

Steuerungsprobleme: Diskretisierung, Parameteroptimierung und Berechnung

adjungierter Variablen.” Fakultät für Mathematik. Dissertation. München:

Technische Universität München, 1994.

[The16] The MathWorks. Comparison of Handle and Value Classes. 2016. url: http://

de.mathworks.com/help/matlab/matlab_oop/

comparing-handle-and-value-classes.html?refresh=true (visited on 04/28/2016).

[TKS13] C. Tsotskas, T. Kipouros, and M. Savill. “Biobjective Optimisation of

Preliminary Aircraft Trajectories.” In: Evolutionary Multi-Criterion Optimization.

Ed. by R. C. Purshouse, P. J. Fleming, C. M. Fonseca, S. Greco, and J. Shaw.

Vol. 7811. Lecture Notes in Computer Science. Berlin and Heidelberg: Springer,

2013, pp. 741–755. isbn: 978-3-642-37139-4.

[Tom11] Tomlab Optimization Inc. PROPT - Matlab Optimal Control Software (DAE,

ODE). 2011. url: http://tomdyn.com/propt_key_features.html (visited on

04/21/2016).

[Tor+15] D. Toratani, D. Delahaye, S. Ueno, and T. Higuchi. “Merging Optimization

Method with Multiple Entry Points for Extended Terminal Maneuvering Area.”

In: The 4th ENRI International Workshop on ATM/CNS (EIWAC2015). (Tokyo,

Japan, Nov. 17–19, 2015). ENRI. 2015.

[Tor06] D. F. M. Torres. “On the Constancy of the Pontryagin Hamiltonian for

Autonomous Problems.” In: International Journal of Applied Mathematics &

Statistics (IJAMAS) Vol. 4. No. J06 (2006), pp. 23–24.

XXIII

http://de.mathworks.com/help/matlab/matlab_oop/comparing-handle-and-value-classes.html?refresh=true
http://de.mathworks.com/help/matlab/matlab_oop/comparing-handle-and-value-classes.html?refresh=true
http://de.mathworks.com/help/matlab/matlab_oop/comparing-handle-and-value-classes.html?refresh=true
http://tomdyn.com/propt_key_features.html

BIBLIOGRAPHY

[Tor82] E. Torenbeek. Synthesis of Subsonic Airplane Design. Dordrecht: Springer

Netherlands, 1982. isbn: 978-90-481-8273-2.

[Uni16] University of Wisconsin. SOCS - NEOS. 2016. url: http://www.neos-guide.

org/content/socs (visited on 04/21/2016).

[Upr13] S. R. Upreti. Optimal control for chemical engineers. Boca Raton, FL: CRC

Press, 2013. isbn: 978-1-4398-3895-2.

[Vel+09] A. E. Vela, S. Solak, E. Feron, K. Feigh, W. Singhose, and J. P. Clarke. “A fuel

optimal and reduced controller workload optimization model for conflict

resolution.” In: IEEE/AIAA 28th Digital Avionics Systems Conference, 2009

(DASC ’09). (Orlando, Florida, Oct. 25–29, 2009). IEEE/AIAA. 2009.

[Vis07] H. G. Visser. “Environmentally-Optimized Air Traffic Conflict Resolution.” In:

7th AIAA Aviation Technology, Integration and Operations Conference. (Belfast,

Northern Ireland). AIAA, American Institute of Aeronautics and Astronautics.

2007. isbn: 978-1-62410-014-7.

[WA85] W. E. Wiesel and S. Alfano. “Optimal many-revolution orbit transfer.” In:

Journal of Guidance, Control, and Dynamics Vol. 8. No. 1 (1985), pp. 155–157.

issn: 0731-5090.

[WB06] A. Wächter and L. T. Biegler. “On the Implementation of a Primal-Dual Interior

Point Filter Line Search Algorithm for Large-Scale Nonlinear Programming.” In:

Mathematical Programming Vol. 106. No. 1 (2006), pp. 25–57. issn:

0025-5610.

[Wei14] H. Weirather. “Flugrennsimulation gegen ein zeitoptimiertes Flugzeug.” Institute

of Flight System Dynamics. Bachelor Thesis. Garching: Technische

Universität München, 2014.

[Wic+15] N. K. Wickramasinghe, M. Brown, S. Fukushima, and Y. Fukuda.

“Optimization-Based Performance Assessment on 4D-Trajectory Based

Operations with Track Data.” In: The 4th ENRI International Workshop on

ATM/CNS (EIWAC2015). (Tokyo, Japan, Nov. 17–19, 2015). ENRI. 2015.

[Wol69] P. Wolfe. “Convergence Conditions for Ascent Methods.” In: SIAM Review

Vol. 11. No. 2 (1969), pp. 226–235.

[Wol71] P. Wolfe. “Convergence Conditions for Ascent Methods. II: Some Corrections.”

In: SIAM Review Vol. 13. No. 2 (1971), pp. 185–188.

[Yok16] N. Yokoyama. “Inference of Flight Intent Based on Inverse Optimal Control.” In:

30th Congress of the International Council of the Aeronautical Sciences (ICAS).

(Daejeon, Korea, Sept. 25–30, 2016). The International Council of the

Aeronautical Sciences. 2016.

XXIV

http://www.neos-guide.org/content/socs
http://www.neos-guide.org/content/socs

BIBLIOGRAPHY

[Zip07] P. H. Zipfel. Modeling and simulation of aerospace vehicle dynamics. 2nd ed.

AIAA Education Series. Reston, Va.: American Institute of Aeronautics and

Astronautics, 2007. isbn: 978-1-56347-875-8.

[ZS97] Y. Zhao and R. Schultz. “Deterministic Resolution of two aircraft conflict in

free flight.” In: Guidance, Navigation, and Control Conference. (New

Orleans,LA,USA, Aug. 11–13, 1997). AIAA, American Institute of Aeronautics

and Astronautics. 1997.

[ZT11] Y. Zhao and P. Tsiotras. “Density Functions for Mesh Refinement in Numerical

Optimal Control.” In: Journal of Guidance, Control, and Dynamics Vol. 34.

No. 1 (2011), pp. 271–277. issn: 0731-5090.

XXV

	Contents
	List of Figures
	List of Tables
	Acronyms
	Symbols and Indices
	Symbols
	Indices

	1 Introduction
	1.1 Goals and Contributions
	1.2 Structure of the Thesis

	2 Aircraft Modeling
	2.1 Nomenclature and Relevant Quantities
	2.2 Coordinate Frames and Transformations
	2.3 Modeling Requirements
	2.4 Point Mass Simulation Model
	2.4.1 Position Propagation Equations of Motion
	2.4.2 Translation Equations of Motion

	2.5 Rigid Body Simulation Model
	2.5.1 Attitude Propagation
	2.5.2 Rotational Equations of Motion

	2.6 Atmosphere Model
	2.6.1 Static Atmosphere
	2.6.2 Dynamic Atmosphere

	2.7 External Forces and Moments
	2.7.1 Aerodynamics
	2.7.2 Propulsion Forces and Moments
	2.7.3 Gravitational Force

	2.8 Model Extensions
	2.8.1 Fuel Consumption
	2.8.2 Actuator Dynamics

	3 Mathematical Preliminaries
	3.1 Numerical Optimization
	3.1.1 Unconstrained Optimization Problems
	3.1.2 Constrained Optimization Problems
	3.1.3 Sequential Quadratic Programming (SQP)
	3.1.4 Interior Point Algorithm
	3.1.5 Sparse Optimization Problems
	3.1.6 Parametric Optimization Problems

	3.2 Applied Optimal Control
	3.2.1 Optimal Control Problems
	3.2.2 Transformation Techniques for Optimal Control Problems
	3.2.3 Indirect Solution Approach
	3.2.4 Direct Solution Approach
	3.2.5 Relations Between the Direct and the Indirect Approach
	3.2.6 Problems with Linearly Appearing Controls and Singular Arcs

	3.3 Multi Criteria Optimization and Optimal Control
	3.3.1 Weighted Sum Scalarization
	3.3.2 Weighted Metrics Scalarization
	3.3.3 epsilon-Constraint Scalarization
	3.3.4 Tschebyscheff Scalarization
	3.3.5 A Priori Methods
	3.3.6 Interactive Methods
	3.3.7 Multi Criteria Optimal Control

	4 Implementation of a Discretization Scheme in an Optimal Control Tool
	4.1 Other Available Optimal Control Software
	4.1.1 DIDO
	4.1.2 GESOP
	4.1.3 GPOPS and GPOPS-II
	4.1.4 NUDOCCS
	4.1.5 PSOPT
	4.1.6 OCPID-DAE1
	4.1.7 SOCS
	4.1.8 TOMLAB/PROPT

	4.2 Problem Formulation for FALCON.m
	4.3 Problem Setup Process
	4.4 Problem Structure
	4.5 Derivative Calculation and Code Generation
	4.6 Sorting and Indexing
	4.7 Numerical Scaling
	4.8 Software Components
	4.8.1 Value Containers
	4.8.2 Structuring Elements
	4.8.3 Solution Methods
	4.8.4 Model Builder

	5 Improving Robustness by Initial Guess Generation
	5.1 Initial Guess Generation Based on Homotopy
	5.1.1 Basic Homotopy
	5.1.2 Homotopy for Multi Aircraft Trajectory Optimization Problems
	5.1.3 Extended Homotopy Using Sensitivity Updates

	5.2 Initial Guess Generation Using Rauch-Tung-Striebel Smoothing
	5.2.1 Extended Rauch-Tung-Striebel Smoother
	5.2.2 Optimization Process

	6 Improving Performance Based on Modeling Alternatives
	6.1 Analysis of Simulation Models for Optimal Control
	6.2 Analysis of the Point Mass Simulation Model
	6.3 Analysis of the Rigid Body Simulation Model
	6.4 Reformulation of the Point Mass Simulation Model to Avoid Linear Controls
	6.5 Smooth Data Modeling Using Hyperbolic Tangent Functions

	7 Improving Performance by the Exploitation of Problem Sparsity
	7.1 General Problem Sparsity
	7.2 Local Sparsity Considerations
	7.2.1 Sparsity of the Control Discretization
	7.2.2 Model and Constraint Sparsity

	7.3 Global Sparsity Considerations
	7.4 Sparsity in Multi System Problems

	8 Improving Robustness by the Use of Combined Transcription Methods
	8.1 Overview of Existing Approaches
	8.1.1 Multi Rate Runge-Kutta Methods
	8.1.2 Multi Timescale Collocation Method
	8.1.3 Direct Single-Multiple Shooting Method

	8.2 Combined Direct Collocation and Multiple Shooting

	9 Improving Performance Based on Control Grid Refinement
	9.1 Overview of Mesh Refinement Techniques
	9.2 From Density Functions to the DENMRA Algorithm
	9.3 Physically Motivated Density Functions
	9.4 Enhanced Refinement Strategy

	10 Applications Related to Commercial Air Traffic
	10.1 Literature Review
	10.2 Approach Scenarios Including Several Aircraft
	10.2.1 Aircraft Simulation Model
	10.2.2 Wind Model
	10.2.3 Force Model
	10.2.4 Discrete Configuration Changes
	10.2.5 Flight Envelope of Each Aircraft
	10.2.6 Combined Dynamic Model
	10.2.7 Separation
	10.2.8 Cost Modeling
	10.2.9 Sparsity
	10.2.10 Solution Process
	10.2.11 Scenario and Results

	10.3 Optimization of Mid to Long Range Flights Considering Air to Air Refueling
	10.3.1 Simulation Models
	10.3.2 Flight Envelope Constraints
	10.3.3 Redesign of a Long Haul Aircraft for Aerial Refueling
	10.3.4 Multi-Aircraft Optimal Control Problem
	10.3.5 Results

	10.4 Fairness considerations in ATM scenarios
	10.4.1 Aircraft Simulation Model
	10.4.2 Separation Constraints
	10.4.3 Multi-Aircraft Optimal Control Problem
	10.4.4 Cost Functions and Fairness
	10.4.5 Multi Criteria Optimization
	10.4.6 Scenarios and Results

	11 Air Race Related Applications
	11.1 Simulation Model
	11.1.1 Aerodynamic Model
	11.1.2 Engine Dynamics
	11.1.3 Augmented Point Mass Simulation Model
	11.1.4 Path Constraints
	11.1.5 Race Gate Constraints
	11.1.6 Cost Function
	11.1.7 Initial Guess

	11.2 Low Fidelity Trajectory Optimization
	11.2.1 Augmented Point Mass Simulation Model
	11.2.2 Point Mass Model with Dynamic Control Constraints

	11.3 High Fidelity Trajectory Optimization
	11.4 Combined Collocation and Shooting
	11.5 Comparison of the Results for the Different Models
	11.6 Initial Guess Generation Using Extended Homotopy
	11.6.1 Basic Homotopy Scheme
	11.6.2 Sensitivity Based Homotopy Scheme

	11.7 Initial Guess Generation Based on RTS Smoothing
	11.8 Control Grid Refinement

	12 Summary and Perspective
	A Coordinate Frames
	A.1 Earth-Centered Inertial (ECI)
	A.2 Earth-Centered Earth Fixed Frame (ECEF)
	A.3 North-East-Down Frame (NED)
	A.4 Navigational Frame
	A.5 Aerodynamic Frame
	A.6 Rotated Aerodynamic Frame
	A.7 Kinematic Frame
	A.8 Rotated Kinematic Frame
	A.9 Body Fixed Frame

	B Scientific Publications
	Bibliography

