@,

Fakultat fir Elektrotechnik und Informationstechnik
Technische Universitat Minchen

Automated Power Optimization of Sequential Integrated
Circuits through Approximate Computing

David M. May

Vollstandiger Abdruck der von der Fakultét fiir Elektrotechnik und Informationstechnik
der Technischen Universitdt Miinchen zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr.-Ing. Ulf Schlichtmann

Priifer der Dissertation:
1. apl. Prof. Dr.-Ing. Walter Stechele
2. Prof. Lirida de Barros Naviner, Ph.D.

Die Dissertation wurde am 16.02.2017 bei der Technischen Universitdat Miinchen
eingereicht und durch die Fakultédt fiir Elektrotechnik und Informationstechnik am
19.06.2017 angenommen.

Abstract

Approximate Computing is a paradigm that has recently drawn interest due to its promise
to substantially increase the power efficiency of integrated circuits by lowering the re-
quirements on the precision of the calculations of a circuit. For a circuit in Approximate
Computing, results that stay within a confidence interval can be sufficient as long as the
power consumption can be reduced by tolerating this in-determinism. Not all applica-
tions are suitable for this approach. Especially applications from the signal and image
processing domain are applicable, due to their intrinsic tolerance to imprecision. Approx-
imate Computing proposes to reduce the power consumption for instance by removing, or
switching off parts of a circuit that are only required for unnecessary high precision. The
difficulty of applying the approach is to reliably and efficiently determine which parts
of the circuit can be approximated, given the quality requirements of the application.
Another approach in order to save power, is to over-scale the supply voltage and tolerate
the appearance of timing faults. In this case it is not only necessary to determine which
parts qualify for an approximation but also the degree of approximation that can be
tolerated has to be determined.

In the prior art, approximations are mainly performed by a manual inspection and
modification of the circuits. Only a few automated approaches exist, which limits the
practical applicability of Approximate Computing. Lengthy simulations at gate-level are
usually used to analyze the behavior of approximated circuits. Due to this limitation,
often the proposed approximations are limited to combinational logic, i.e. sub-blocks of
circuits, like arithmetic units.

In this work an approach is presented trying to overcome these limitations. Many
steps of the approach are automated in order to simplify the process of the approxi-
mation. Approximations in this work are not limited to combinational sub-blocks, but
can instead be applied to complex sequential logic. In order to overcome the lengthy
gate-level simulations an intermediate approximation step, at register-transfer level, is
used to analyze the behavior of the approximated circuits. In order to model a variety
of approximation techniques, probabilistic fault injections are introduced. FPGA-based,
accelerated, emulation is employed to perform the fault injections and to improve the
runtime of the approximation. In order to apply voltage over-scaling without the need of
lengthy simulations at transistor level, an analytical analysis approach is presented. This
approach builds up on top of the results gained at the register-transfer level analysis and
allows to efficiently and reliably apply voltage over-scaling to sequential circuits. With
the help of a variety of case studies, the individual steps of the presented approach are
demonstrated and validated.

iii

Zusammenfassung

Approximate Computing ist ein Paradigma, dass in letzter Zeit vermehrt Interesse in
der Forschung geweckt hat, bedingt durch das Versprechen den Stromverbrauch von
integrierten Schaltungen substantiell zu reduzieren. Fiir eine Schaltung in Approxi-
mate Computing ist es unter Umsténden egal, ob das berechnete Ergebnis nur innerhalb
eines Konfidenzintervalls bleibt, solange durch die Inkaufnahme dieser Ungenauigkeit der
Stromverbrauch gesenkt werden kann. Nicht jeder Typ Schaltung ist geeignet fiir eine
Approximierung. Besonders Schaltungen aus dem Bereich der Signal- und Bildverar-
beitung scheinen geeignet zu sein, da diese eine natiirliche Toleranz gegeniiber Fehlern
auszeichnet. Approximate Computing schligt vor, den Stromverbrauch zum Beispiel
durch das absichtliche Entfernen, bzw. Abschalten von Schaltungsteilen zu erreichen,
die nur fiir unnoétig hohe Prézision zusténdig sind. Die Schwierigkeit dabei liegt darin,
zuverléssig und effizient zu bestimmen, welche Teile approximiert werden, wenn gewisse
Qualitdtsanforderungen an die Anwendung nicht unterschritten werden diirfen. Ein an-
derer Ansatz den Stromverbrauch zu reduzieren, ist es, die Versorgungsspannung soweit
zu skalieren, so dass unter Umsténden Zeitverletzungen in sequenzieller Logik auftreten
kénnen. Bei diesem Ansatz ist es nicht nur notwendig zu bestimmen, welche Teile ap-
proximiert werden diirfen, sondern auch noch den Grad der Approximierung, der toleriert
werden kann.

Im Stand der Technik werden Approximierungen meistens mit Hilfe manueller Anal-
yse und Modifikation realisiert. Es sind nur wenige Ansétze bekannt, bei denen ein
automatisierter Ansatz durchgefithrt wird, was die praktische Anwendbarkeit vom Ap-
proximate Computing deutlich reduziert. Meistens sind zeitaufwendige Simulationen auf
Gatterebene notig um die Schaltung hinsichtlich der méglichen Approximierungen zu un-
tersuchen. Durch diese Einschriankung sind approximierte Schaltungen oftmals auf kom-
binatorische Blocke, kleine Teilschaltungen, wie zum Beispiel arithmetische Einheiten,
limitiert.

In dieser Arbeit wird versucht, diese Einschrinkungen zu iiberwinden. Viele Schritte
des présentierten Ansatzes sind automatisiert um den Prozess der Automatisierung zu
erleichtern. Die Approximierungen sind nicht limitiert auf kombinatorische Unterblocke,
sondern konnen stattdessen auf grose sequentielle Schaltungen angewandt werden. Um
die zeitaufwendigen Simulationen auf Gatterebene zu umgehen, wird ein Zwischenschritt
auf Registertransferebene eingefiihrt, um das Verhalten der approximierten Schaltung zu
analysieren. Um eine Vielzahl von Approximierungstechniken zu modellieren, wird fiir
die Analyse eine probabilistische Fehlerinjektion benutzt. Eine FPGA basierte, beschle-
unigte, Emulation um die Fehler in die Schaltung zu injizieren sorgt dafiir, dass die
Analyse schnellstméglich durchgefithrt werden kann. Um eine Approximierung durch
Versorgungsspannungsiiberskalierung, ohne den Einsatz von komplexen Simulationen auf

Transistorebene, zu bewerkstelligen, wird ein analytischer Ansatz vorgestellt. Dieser
Ansatz baut auf den Ergebnissen aus der Registertransferebene auf, und erlaubt auf zu-
verlédssige und effiziente Art und Weise die Approximierung von integrierten Schaltungen
durch Versorgungsspannungsiiberskalierung. Mit Hilfe einer Vielzahl von Fallstudien,
werden die einzelnen Teilschritte des Ansatzes demonstriert und validiert.

vi

Preface

I want to thank Walter, Andreas and Thomas, not only for giving me the opportunity
to write this thesis but also for their valuable input and support throughout my time
working at the institute. I want to thank Stefan who helped me a lot with the netlist
manipulation presented in this work. Without his help, this work would not have been
possible. Special thanks go to my wife for always supporting me and for giving me the
time to finish the thesis.

The Hague, December 2016
David May

vii

Contents

Contents ix
List of Figures Xi
List of Tables XV
Acronyms Xvii
1 Motivation 1
2 Introduction 5
2.1 Power Consumption Dilemma of Integrated Circuits 5
2.1.1 Dynamic Power Consumption)

2.1.2 Static Power Consumption 8

2.2 Approximate Computing 10
2.2.1 Approximation Types 12

2.2.2 Suitable Applications 20

2.2.3 Levels of Approximation, 24

2.2.4 Metrics of Approximation 30

2.3 Prior Art . . . L 30
2.3.1 Fault Analysis 31

2.3.2 Confidence Intervals for Probabilistic Experiments 35

2.3.3 Circuit Approximation 36

3 Probabilistic Fault Emulation 45
3.1 Probability-awareness oL 47
3.2 FPGA-based probability-aware Fault Emulation - faultify 48
3.2.1 Software-side Emulation API 48

3.2.2 Hardware Implementation 50

3.2.3 Circuit Instrumentation 56

3.2.4 Parallel Bit-error Generation 59

3.2.5 Host vs. FPGA Generated Bit-Errors 61

3.2.6 Improved Bit-error Generation 63

3.2.7 Island Concept 66

3.2.8 Hardware Overhead 68

3.2.9 Performance Analysis oL 72

3.3 Evaluation 78

1X

Contents

4 Automated Functional Approximation of Sequential Circuits

4.1

4.2

4.3
4.4
4.5
4.6
4.7

Datapath Separation 0o
4.1.1 Netlist-based Separation Approach
4.1.2 Emulative Separation Approach
4.1.3 High-Variance Register Exclusion
4.1.4 Evaluation.
Result Significance oL
4.2.1 Variance-based Approach
4.2.2 On-the-fly Approach
423 Evaluation.o L
Application-reasoned Approximation
Coarse-grained Approximation
Fine-grained Approximation
Evaluation
SUMIMATY o o o e e e e e e

5 Approximation at Gate Level for Voltage Scaling

5.1
5.2
5.3
5.4
5.5
5.6

Determination of Failing Timing Paths
Estimation of Error Probability at Timing Endpoint
Shared Component Handling
Voltage Islands L
Applied voltage over-scaling,
SUMMArY L e

6 Conclusion and Outlook

Bibliography

Supervised Student Research

Publications

125
127
131
137
137
137
140

141

149

161

163

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5

2.6

2.7
2.8
2.9
2.10

2.11
2.12
2.13
2.14
2.15
2.16

2.17

2.18
2.19

2.20
2.21

2.22

The extended “PPA” tradeoff of today’s IC designs between power, per-

formance, area and reliability 1
Short circuit power of a CMOS inverter 6
Capacitance switching power of a CMOS inverter 7
The various forms of gate-leakage in CMOS devices 10
Approximate Computing: trading-off power consumption with precision . 11

Bit-flip probability as the mean to model a variety of faults and approxi-
mation techniques, respectively (23] oL 13
Charge generation and collection phases in a reverse-biased junction and
the resultant current pulse caused by the passage of a high-energy ion. [28] 14

Simple functional approximation at gate level of a 1-bit full adder 15
Bit-width reduction of a 4-bit addero 16
Visualization of the Energy-Delay product (EDP) of CMOS circuits 17
Timing violation in sequential circuits. The signal transition is not arriving

in time at the flip-flop 17
Intrinsic application resilience [8] o L. 20

Change in hearing threshold level between age 18 and 55, for males and
females, as a function of frequency, showing calculated medians, quartiles
and deciles [33]. oL 22
Decoder chain of a “Digital Audio Broadcast” ETSI EN 300 401 receiver . 23

Adaptive approximation of a DAB receiver based on signal-to-noise ratio

of the received signal 23
Abstraction levels already used for approximations in today’s applications 26
Approximation techniques at various abstraction levels 29
Matrix operations used to combine individual probabilistic transfer matri-

ces (PTM) to describe whole combinational circuits [57] 31
Circuit Instrumentation 34
Quality degradation of test image due to an approximated DCT-IDCT

transformation [29] 38
Sequential quality constraint circuit [97] 39
Annotated approximated circuit with timing information due to voltage

over-scaling as proposed in [32]o oL 41
Equivalent untimed circuit as proposed in [32] 42

X1

List of Figures

xii

2.23

3.1
3.2

3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20

3.21

3.22

3.23

3.24

3.25

The slack redistribution technique in order to move the slack distribution
from a critical “wall” into one with a more gradual failure characteristic

[107] . . 43
The two main blocks of FPGA-based fault emulation 46
Functional approximation of circuits with “circuit pruning” modeled as an

error rate at the input of the following flip-flop 48
Voltage over-scaling as a further approximation technique that can be

modeled as error rates at the register inputs 49
The Synopsys “CHIPit” simulation system 50

Simple block diagram of the fault emulator running on the CHIPit system 52
Detailed block diagram of the fault emulator running on the CHIPt system 53

Xilinx ML605 evaluation board connected via PCle to a host PC 55
A block diagram of the AXI-based emulator system with an Ethernet
control interface L L 56
Instrumentation flow of the proposed emulator 57
Xilinx FD flip-flop instrument enabling fault injection 58
Parallel 24-bit bit error generation 60
24-bit LFSR with maximum length 60
Block diagram of the emulator, supporting on-the-fly injection of bit-errors
generated on the host PC L. 62
Memory organization, storing injection location and time on Xilinx FP-
GAs when generated on host PC 62
Serial versus parallel random number generation 64
Improved serial bit-error generation 65
Feeding a whole “probability island” with probabilistic bit-errors from a
single generator source 67
Switch matrix connecting each register in the circuit with each “probability
island” 68
Area overhead when generating faults on the FPGA compared to when
generating on the host PC 70
Comparison of the area overhead of the probabilistic bit-error generators,
for serial, parallel and host-based generation. 72

Configuration time required to transfer desired error probabilities to the
emulator depending on the number of probabilistic elements (measured

and analytical) 73
Simulation time required to run an emulation depending on the number
of emulated clock cycles (measured and analytical) 74
Simulation speed-up when moving the random number generators on the
FPGA and the area overhead dependent on the number of PEs 76
Simulation time when generating faults on the host PC for some exemplary
circuit sizes [133] 7
Time required to generate random numbers on a regular desktop PC de-
pending on the circuit size oo 78

List of Figures

3.26 Performance comparison of host-based, parallel and serial fault generation
3.27 Possible error distribution at the flip-flops of the time synchronization
block of a DAB receiver, still meeting an arbitrary set of constraints on
the output pins [136]o
3.28 Possible maximum mean error-probability over all flip-flops of the FFT
block of a DAB receiver, still meeting an arbitrary set of constraints on
the output pins [136]o
3.29 Impact on fault injection into different functional parts of the h.264 video
decoder [135]
3.30 Relation of errors (p. = 0.5) injected at registers and resulting error rates
at output pins of the intraprediction block of a h.264 video decoder [135] .

4.1 An overview of the approximation tool-flow presented in this work

4.2 Output error probability and variance of a “spacewire” implementation
when injecting equally errors with a probability 0.0001 in both data- and
control path [143] L

4.3 Visualization of control and data flow of a generic circuit

79

89

4.4 Data and control path separation based on analyzing the netlist of a circuit 90

4.5 Visual representation of the “Probability-Relation-Matrix” of benchmark
circuit “QR Decomposition” [122] oL

4.6 Emulation results of different evaluation circuits when injecting errors with
a probability of p. = 0.0001 into registers based on different separation
techniques as presented in Section 4.1, each emulating 50 x 10? clock cycles
[143] . . .

4.7 Error probability mean and variance over 50 trials for variance-based and
“on-the-fly” approach at the data output pin of benchmark circuit b13.
Equal injection of errors with p. = 0.0001 into the data path. [143]

4.8 Figures in the left column are showing the mean variance of the measured
output error probabilities for different benchmark circuits when injecting
errors with a probability of p. = 0.0001 into registers based on different
separation techniques and for a different number of emulated clock cycles.
The right column is showing the estimated required number of cycles for
different stability thresholds using the method presented in Section 4.2.2
[143] . .

4.9 Software-based fault injection at application-level to determine the possi-
ble approximations at register-level for the circuit under test

4.10 Tolerable imprecision of a QR decomposition, part of a 8x8 MIMO zero-

99

forcing equalizer, for different signal qualities and a target BER=0.01 [144] 106

4.11 Tolerable imprecision of floating-point operations in a sobel filter for dif-
ferent target qualities (PSNR) [144]

4.12 The optimization problem of Approximate Computing - finding the largest
approximations for a given quality constraint

xiii

List of Figures

Xiv

4.13 The coarse approximation is detecting all circuit elements that can be
removed from the circuit as their influence on the quality of the application
is negligible o
4.14 Clock gating of coarse approximated circuit elements realized by replacing
fault injection instruments by flip-flops with clock enable input
4.15 Fine approximation algorithm - step-wise increment of error probabilities
at the registerso
4.16 Approximation result for benchmark circuit (R, showing the maximum
tolerable error probability at each register
4.17 Approximation result for benchmark circuit “fpul00”
4.18 Possible approximations in terms of tolerated error probabilities, for bench-
mark circuit viterbi for varying signal qualities and a target BER=0.0
4.19 Dynamic power consumption of benchmark circuit QR for different ap-
proximations based on varying signal qualities, when performing 8x8 ZF
Equalization [143]
4.20 Power consumption of benchmark circuit fpul00 (multiplication) for dif-
ferent approximations based on varying target qualities, when performing
asobel filter

5.2 Overview of the voltage over-scaling methodology presented in this work .
5.3 Schematic of benchmark circuit “c17”. Marked in orange the fanin of the
one output registero
5.4 Sum of failing paths (selected endpoints EP) depending on supply voltage
for benchmark circuits: “simple”,’c17” and “c432” [145]
5.6 Difference of the visual quality of a Sobel filtered still when applying no
approximation and an approximation for target qualities 30, 40 and 50 dB
5.7 Estimated power consumption of a floating point unit for different approxi-
mated operating points of a Sobel filter when applying voltage over-scaling
[145] . .

138

List of Tables

2.1
2.2

3.1

3.2

3.3
3.4

3.5

3.6

4.1

4.2

4.3

5.1

Truth table approximation of an adder [29]
Average time spent computing in resilient kernels for exemplary bench-
mark applications [37] oL oo

The resource utilization of the 24-bit wide pseudo random number gener-
ator and the injection scan chain
The overall resource utilization of the simulator for exemplary benchmark
CIrcuits
Total area requirement for the emulation of exemplary circuits (pre P&R)
Area overhead of complete simulator compared to circuit under test (pre
P&R) o
Comparison of the HW overhead for probabilistic bit-error generation on
the FPGA
Comparison of the overall simulator area overhead for ITC’99 b14 (post
P&R)

Evaluation of simulation-based data-path separation, by false-positive and
false-negative detected registers (each in total 50 x 10° emulated cycles)
The benchmark circuits used for the evaluation of the approximation
methodology L
Possible Approximation for benchmark circuit QR and fpul00 for different
quality goals

Transition possibilities of a NAND2 gate. Highlighted are the combina-
tions that transfer anedge L.

XV

Acronyms

ALU
ASIC
AST
AXI

BER

CMOS
CPU

DAB
DCT
DSP
DVB
DVFS

EDP
FFT
FIFO
FPGA
HDL
ISA
LDPC
LFSR
LTE
LUT
MBU
MIMO
MOSFET

NMOS

Arithmetic Logic Unit.

Application Specific Integrated Circuit.
Abstract Syntax Tree.

Advanced eXtensible Interface Bus.

Bit Error Rate.

Complementary Metal Oxide Semiconductor.
Central Processing Unit.

Digital Audio Broadcast.

Discrete Cosine Transformation.
Digital Signal Processing.

Digital Video Broadcasting.
Dynamic Voltage Frequency Scaling.

Energy Delay Product.

Fast Fourier Transformation.
First-In First-Out.

Field Programmable Gate Array.
Hardware Description Language.
Instruction Set Architecture.
Low Density Parity Check.
Linear Feedback Shift Register.
Long Term Evolution.

Look-Up Table.

Multi Bit Upset.
Multiple Input Multiple Output.

Metal Oxide Semiconductor Field Effect Transistor.

N Channel Metal Oxide Semiconductor.

xvii

Acronyms

xviil

P&R
PCI
PCMOS
PE
PMOS
PPA
PPAR
PSNR
PTM

QEC
SEL
SET
SEU
SPICE
sQCC
UMR

VHDL

Place and Route.

Peripheral Component Interconnect.
Probabilistic CMOS.

Probabilistic Element.

P Channel Metal Oxide Semiconductor.
Power Performance Area.

Power Performance Area Reliability.
Peak Signal to Noise Ratio.
Probabilistic Transfer Matrix.

Quality Evaluation Circuit.

Single Event Latchup.

Single Event Transient.

Single Event Upset.

Simulation Program with Integrated Circuit Empha-
sis.

Sequential Quality Constraint Circuit.

Universal Multi Resource.

Very High Speed Integrated Circuit Hardware De-
scription Language.

1 Motivation

Two main trends are dominating the development of integrated circuits over the last
decades. The first one is the unabated tendency for shrinking CMOS feature sizes. The
motivation for this is to realize more functionality on the same or even smaller chip size at
faster clock frequencies. And the second one is the ever increasing demand for low-power
applications, inevitable in our mobile society [1]. Both trends are closely connected to
each other. Unfortunately, both of these trends don’t come for free. They both have in
common that they, if driven much further, negatively affect the overall performance of
an integrated circuit. Scaled-down technology nodes result in a hard to manage man-
ufacturing process which again results in complex process variations on the IC. That
scale-down makes a circuit even more perceptible to the very same variations and to
soft-errors due to smaller threshold voltages [2]. Furthermore, in today’s designs the chip
functionality is usually not limited by the area but often constrained by a limited power
budget [3, 4]. With increasing chip density and, at the same time increasing operating
frequencies, power dissipation is becoming a serious issue that has to be considered in
the design phase. Similar problems can be observed when applying voltage scaling, the

PPA+R

Figure 1.1: The extended “PPA” tradeoff of today’s IC designs between power, performance,
area and reliability

primary technique for saving power in CMOS circuits. Voltage scaling results in a de-
graded performance of the circuit due to the decreased speed of MOSFETs, operated at

1 Motivation

a lower voltage. Usually, the performance loss is not acceptable for most applications as
performance requirements are becoming constantly more and more demanding. However,
even for those applications where voltage scaling can be applied, the gain is limited. The
margin between supply voltage and threshold voltage is becoming so small to that logic
gates are becoming more and more perceptible to small variations and noise in the circuit
and in power supplies but also to soft-errors due to radiation. Hence, IC designers have
to decide in which direction a circuit has to be optimized. The existing design trade-off
between performance, power and area, sometimes referred to as the PPA trade-off, ex-
tends by the factor “reliability”, as shown in Figure 1.1. It seems that a circuit cannot be
fast, have a low power consumption, a small footprint and be reliable at the same time.
A fast circuit needs, in order to operate reliable and correct, a sufficiently high supply
voltage. And in reverse, a circuit operated at low power cannot be fast. Small circuits
can usually not spend the area for redundancy mechanisms which would be required to
provide sufficient reliability for circuits operated at near threshold or regular circuits e.g.
in space applications. And finally, the reliability, as seen before, is depending on the
power and area budget of a circuit. A reliable circuit can basically neither be small, nor
power efficient.

However, recently one approach has appeared in the literature trying to tackle this prob-
lem, namely “Approximate Computing”. The main idea of Approximate Computing is to
relax the need for fully precise or completely deterministic operations [5], in order to sub-
stantially improve the energy efficiency. That means, Approximate Computing proposes
to tolerate faults or imprecision in a circuit in order to save power. Various means on
how the power can be saved exist and they vary a lot. The two most common approaches
are aggressive voltage over-scaling and functional approzimation. In the former case, the
supply voltage is scaled down so far, so that timing violations occur in the critical paths
of the circuit. When recalling the formula for the dynamic power consumption in CMOS
devices, as shown in Equation 1.1, one can see that this method is ideal for saving power
due to the quadratic relation of the supply voltage V;; on the power consumption.

Payn = 001 fetkCloadVad" (1.1)

The latter method, functional approximation, instead proposes to switch off or remove
those parts of the circuit that are not absolutely required for the operation, respec-
tively the desired quality of the calculated result. The pruning can be performed either
dynamically for instance by clock or power gating techniques or statically at synthesis
time. Clearly, this method promises to save even more power, as the gates are completely
switched off and therefore also the static power consumption is tackled.

Naturally, not all applications are suitable for Approximate Computing. Safety critical
applications for instance, can never be approximated. There are mainly two types of
applications that seem to suitable for such an approach. The first class of applications
are those that have an imprecision tolerance. These are e.g. applications that somehow
interfere with the human perception. For instance applications from the image, video
or audio processing domain. The second class of applications are those that have an
intrinsic reliability. These are applications that anyhow have to deal with noisy or im-
precise data and know how to deal with it, like signal processing applications in wireless

communication systems. For such systems it might be irrelevant whether the imprecision
in the processed data is coming from the communication channel or from the hardware.
The full potential of Approximate Computing can be unlocked if the approximations
are applied dynamically. Compared to state of the art optimization mechanisms, e.g.
like fixed-point arithmetic, which is usually applied statically at design time or in the
best case at synthesis time, Approximate Computing proposes to be applied at run-time.
Based on actual conditions or the actual need, the precision of the computed result, and
hence its power efficiency, can be scaled. In order to elaborate these relations more in
detail, in the following two motivational examples are given. Consider any arbitrary wire-
less communication system. Such systems are usually working with the same precision
independent of the quality of the received wireless signal. These systems are designed
to deliver fault free data at the output of the decoding chain, no matter if the signal-
to-noise ratio is high, or if it is low. However, in case the channel quality is very good,
the decoder would not be required to operate with the same high precision as in a bad
channel environment in order to deliver the same output bit error rate. For instance,
when looking at a convolutional decoder, such as a Viterb: decoder, it could be operated
with less precision while consuming less power. Alternatively, an iterative decoder could
be operated with less iterations. If the receiver is close to the transmitter, it could switch
to a resource- and power-saving, but less precise state, as the signal quality itself is good
enough to deliver a fault-free data output. However, if the receiver is moving away from
the transmitter, and if the channel quality degrades, it could switch on the “precision” of
the decoding chain, so that the output bit-error-rate remains constantly low.

The precision of an application could also be adapted based on the actual need in order
to save power either preemptive or reactive. For instance in live video streaming the
video feed is usually compressed in order to reduce the data rate. The compression is
often done using dedicated hardware accelerators, due to its complexity. However, even
hardware accelerated, this is a complex and power consuming task. For battery-powered
mobile applications, it might be conceivable to reduce the precision of the compression,
hence the resulting video quality, in order to increase the energy efficiency when running
out of battery. With today’s techniques it is already possible to reduce the resolution
or quality (e.g. based on macroblocks per second) which can also be seen as an opera-
tion trading precision with power consumption. Originally however, these features are
designed to reduce the data-rate. Again, Approximate Computing introduces the adap-
tivity into the field. Furthermore, resolution and quality profile can remain the same.
If, e.g. during a live transmission, the mobile device is running out of battery, it could
reduce the precision of the encoder. This in turn could allow to continue the stream,
while accepting some artifacts in the stream, that are barely noticeable by the user.
Clearly, some existing optimization techniques and Approximate Computing can go hand
in hand with each other, and can support each other. Some of them are closely related.
Approximate Computing is a field that can, and has to be, applied on all levels of ab-
straction in order to get the most benefit of it. In Section 2.2, the various possibilities
of approximation will be evaluated. However, the main focus of Approximate Comput-
ing up to now and its novelty is the approximation at hardware level. Approximate
Computing tries to loosen the restriction on “Boolean equivalence” of the hardware, i.e.

1 Motivation

the need for predictability of the hardware. This work focuses on the approximation of
generic sequential integrated circuits. Previous works, operating on hardware level, as
we will see in Section 2.3, either do not consider sequential hardware and do not propose
a generic approach, but only application specific optimizations. Whereas this work re-
searched the possibilities, difficulties and limitations to apply “Approximate Computing”
to any existing circuit in a generic manner. The benefit of a generic approach is that
most of the approximations can be automated, as much less specific knowledge about
the circuit and its functionality is required. This is very important in order to make this
paradigm widely applicable. The difficulty is to develop approximation algorithms that
can be, on the one hand, generally applied to any kind of circuit and, on the other hand,
are efficient in terms of approximation at the same time. Approximation algorithms have
to determine the location where approximations can be made within a circuit and the
degree of approximation that is possible for a desired quality constraint. Furthermore,
as we will see later in detail, approximation speed, i.e. the time it takes to analyze and
approximate a circuit, is also very important and hard to maintain. These considerations
were influencing the decisions throughout most of the thesis.

2 Introduction

In order to perform the approximation of integrated circuits, one first has to understand
the basic relations between imprecision in a circuit and its power consumption. In this
chapter the fundamentals of CMOS power consumption and how approximations can
be used to reduce it will be explained. A comprehensive introduction into the domain
of Approximate Computing will be given. Furthermore, the different domains where
Approximate Computing can be applied, the different types of approximation, circuit
reliability in general, as well as metrics to measure approximation will be presented.
Finally, a detailed overview about prior and related works will be given.

2.1 Power Consumption Dilemma of Integrated Circuits

The main goal of the techniques presented in this thesis is to reduce the overall power
consumption of integrated CMOS circuits. Even though some approaches can be also
used to reduce the area of an integrated circuit or increase the clock frequency, as we will
see later, this can be seen more as a secondary optimization goal.

The total power consumption of CMOS circuits can simplified be expressed as:

Piotal = denamic + Pstatic, (21)

the sum of the dynamic power consumption and the static power consumption, where
the former consumes power only when actually “switching” and the latter at any time
when connected to a supply voltage.

2.1.1 Dynamic Power Consumption

Dynamic power consumption is defined as the portion of the total power consumption
that originates from switching the state of a circuit, e.g. a logic gate. It itself again
consists of two portions.

Short Circuit Power Dissipation The short circuit current is the current that flows
from supply voltage via the pull-up path of a gate (PMOS) through the pull-down path
(NMOS) to ground, in case both blocks, pull-up and pull-down are conducting at the
same time. This can happen for instance when the input voltage Vgg is not using
the full voltage hub between Vpp and GND, resulting in one MOSFET operating in
saturation, and the other in the linear region. However as this effect is arising from
miss-dimensioning of the circuit or variation of the fabrication it cannot be counted
as a dynamic component. However, short circuit current does also arise, when regular

2 Introduction

Vbp
Vout A [
Isc

V.

- Vout
1 Il Il » —_— C
1 L » R L
Vth VppVtVpp Vin
— \
tshort-circuit

Figure 2.1: Short circuit power of a CMOS inverter

loading or unloading a load capacitance. This effect is shown in Figure 2.1. For instance
in a CMOS inverter, when Viy = Vpp/2, both NMOS and PMOS are operating in
saturation. It hence depends on the slope of the input signal how long both transistors
are in saturation. This interval is defined as tgport-circuit in the Figure. Furthermore, it
also depends on the ratio v = V;/Vpp, where V; corresponds to the threshold voltage.
For values v > 0.5 short circuit current is eliminated, as NMOS and PMOS cannot be
switched on at the same time. In today’s technology generations V; is in the range of
0.3V while the supply voltage Vy,; is at about 1V [3]. Hence, short circuit current is
negligible.

Capacitance Switching Power Dissipation The main factor of the dynamic power
consumption is generated by loading and unloading the load capacitance of a gate. The
load capacitance consists of the gate capacitance of all gates that are connected to the
output of a gate (fanout). Additionally, the capacitance of the wires, as well as the
intrinsic capacitance between source and drain are contributing as well. Every time the
load capacitance is loaded and unloaded a charge of Q = CpVpp is transferred from
Via to GND, as depicted in Figure 2.2. Hence the current that flows in each complete
charge-discharge cycle can be calculated as:

Icap = C’L‘/DDf (22)

The resulting power consumption due to loading and unloading the load capacitance can
hence be calculated as:
P.op = a01CLVpp?f, (2.3)

where «q; corresponds to the switching factor, as usually a gate is not switching in every
clock cycle. As the short circuit power dissipation is negligible compared to the power

2.1 Power Consumption Dilemma of Integrated Circuits

dissipation resulting from un-/loading the load capacitance, one usually focuses on the
latter in order to minimize the power consumption of integrated circuits. In the following

Vbp

—

Vout 4

>

Vout

|| <

CL

v

—L|

Figure 2.2: Capacitance switching power of a CMOS inverter

we will see, how each of the factors of Equation 2.3 can be used to reduce the overall power
consumption of integrated circuits. Starting from the left, the first term that could be
reduced in order to minimize the dynamic power consumption is the switching factor ;.
The switching factor is defined as the probability of a signal transition in one clock cycle.
Reducing the switching factor by architectural changes is not simple and not intended, as
this also correlates with the circuit efficiency. A circuit, by definition, cannot be efficient
if it changes its state rarely. However, one very efficient technique in order to reduce
the dynamic power consumption based on the switching factor is “Clock Gating”. By
disabling the clock of a circuit, the switching factor reduces to zero in sequential circuits.
Applying this technique dynamically to sub-blocks of a circuit, that are not used all the
time, can save a tremendous amount of power. Especially in the age of “Dark Silicon”
this is a widely used technique. The second factor of Equation 2.3 is the capacitance Cf,.
Capacitance can be reduced by either reducing the gate capacitance Cy of a technology,
or by reducing the wire capacitance of the circuit. The former can only reduced by
introducing a new CMOS technology that usually results in a shorter gate length and
hence a smaller gate capacitance Cf,. However, a reduction of technology node sizes is a
complex task that requires tremendous research effort. It is not a parameter the designer
can choose. Additionally, today a reduction of the technology size is usually accompanied
with an increase of parameter variations like threshold voltage, which requires a certain
delta between Vy;, and Vpp, large enough to tolerate these variations. This in turn
makes it difficult to save power by reducing the supply voltage. The third parameter is
the supply voltage Vpp. Reducing the supply voltage in order to reduce the dynamic
power consumption of an integrated circuit seems to be the primary choice due to the

2 Introduction

quadratic relationship. However, the most important drawback is that the by decreasing
the supply voltage of CMOS gates, the propagation delay is increasing. The propagation
delay can be approximated as follows:

t, = In(2)CLR, (2.4)
where R corresponds to:

_ Vbsp 1

R = ~
Ipsy B(|Vasy

, (2.5)

- ‘V;fh,p

In CMOS circuits Vgs, equals Vpp. Hence one can see that a reduction of the supply
voltage increases the propagation delay. This again would require, in order to main-
tain the functionality of a circuit, to reduce the operating frequency of the circuit in
order to meet the timing constraints. For most applications this performance loss is
not acceptable. One approach to scale the supply voltage anyway is “Dynamic Voltage
Frequency Scaling”. This technique however is usually only applicable to CPUs. The
idea of this technique is to scale the supply voltage in conjunction with the operating
frequency depending on the actual work load. Hence, in case a CPU has a low workload,
the operating voltage and frequency can be reduced in order to save power. When the
workload increases, the voltage and operating frequency is increased as well in order to
offer the performance required for the workload. This technique is widely applied in
today’s CPUs. In today’s technologies where chip size is cheap, one can think of another
method as well. Instead of dynamically adjusting the voltage-frequency operating point
based on the workload, one could simply add another low-voltage CPU to the system.
This slow, but power efficient CPU can then be used for simple computational tasks
like background calculations, while the faster variant is used for peak workload. This
technique is usually more power efficient than DVF'S as the variants can be optimized ex-
actly for their operating point. This heterogeneous technique is widely applied in today’s
mobile devices, where most of the workload can be seen as background tasks, and fast
and responsive calculations are only required when the user interacts with the device.
Reducing the supply voltage close to the threshold voltage does not only impose a
performance loss. Unfortunately, supply voltage noise is not scaling with the voltage.
This effect is similar to the parameter variations as we have seen before. Usually, a
certain “guard band” between Vi; and Vpp is required in order to be robust against
thermal noise and parameter variations. One possibility to overcome this problem could
be to equally reduce the threshold voltage. However, this results in yet another problem.
A reduced threshold voltage results in increased sub-threshold leakage, which in turn
results in an increased, not negligible, static power dissipation, as we will see in following.

2.1.2 Static Power Consumption

The static power consumption is the power that is consumed even if no load capacitance is
switched. It is therefore independent of the operating frequency f as well as the switching
activity app of a circuit. There are multiple sources for static power consumption from

2.1 Power Consumption Dilemma of Integrated Circuits

which the two most important ones will be shortly explained here. Simplified, the leakage
current can be described as:
Ileak - Isub + on (26)

where I, is the “subthreshold leakage” component and Iy is the “gate leakage’component.

Subthreshold Leakage Subthreshold leakage is defined as the current that flow between
source and drain, when the MOSFET channel is supposed to be off. This can happen
when the channel is in “weak inversion”. Even if the gate-source voltage Vg is below
the threshold voltage Vj free charge carriers can be observed between source and drain.
These carriers can create a current mainly due to diffusion. The intensity of the weak
inversion is depending on two factors. On the one hand the current is depending on
the channel width W. In a wide channel the current increases while in a narrow one it
decreases. And on the other hand the intensity is depending on the threshold voltage
Vin. A smaller threshold voltage is drastically increasing the weak inversion as even small
noise on the gate voltage will have a large effect on the inversion. The relations are again
shown simplified in Equation 2.7 [6].

Toup = KyWeVin/nVe (1 — gVaa/Ve), (2.7)

where K7 and n are experimentally derived values and Vjp is a value depending on the
temperature.

Gate Leakage During the last decade a new leakage source arose, the gate leakage. Gate
leakage became the dominant factor of static power consumption for technology genera-
tions < 65nm [7]. Due to the fact that the oxide is becoming thinner every technology
generation, more and more electrons can tunnel through the oxide. Gate leakage current
can be observed between gate-source, gate-drain, gate-channel-source, gate-channel-drain
and gate-bulk, as shown in Figure 2.3.

1
Iox =Igs + Igp + Igecs + Icep + Igp o . (2.8)

ox

The effects of gate leakage are much worse in NMOS than in PMOS.
We can see from Equations 2.7 and 2.8 that basically four possibilities to reduce [jq) exist.
In order to reduce Igy, one can either reduce the supply voltage, the threshold voltage
or the channel width. This, as we have seen before, results in a usually not acceptable
performance loss. In order to reduce I, one can reduce the dielectric thickness. However,
in order keep the influence of short-channel MOSFET effects low, the oxide thickness has
to be scaled proportionally to the channel length. New techniques like high-k insulators
are improving the situation due to their superior insulation capabilities. However, in
general one can see that if MOSFETSs shall be fast, the leakage current is inevitably
increasing. The same can be seen for the switching current. A reduction of the power
consumption results in a decreasing performance either resulting in a decreased operating
frequency or in timing violations.

Therefore, the dilemma of integrated circuits built in their current technology is that
they cannot be fast, reliable an energy efficient at the same time.

2 Introduction

Vpbp

Figure 2.3: The various forms of gate-leakage in CMOS devices

2.2 Approximate Computing

Approximate Computing is a novel paradigm for energy-efficient digital systems that
has considerably attracted interest over the last decade [5, 8, 9]. The core principle of
Approximate Computing is to trade off power with precision, as visualized in Figure 2.4.
It hereby relies on the ability of many applications and the end-user itself to tolerate a
loss of quality or imprecise computational results. Clearly, the idea of computing results
that are good enough for a certain application, instead of computing with unnecessary
high precision is not new. For instance, any lossy compression system for video or audio
data is applying the same principle, even though the motivation is slightly different.
However, in the last years an increasing number of application fields, at various points
in the design flow, have discovered the paradigm for themselves. A variety of techniques
have been started capturing under the hood of Approximate Computing. Especially on
the hardware level, tolerated non-determinism is a novelty.

There are two other noticeable research fields that are related to Approximate Com-
puting. One is “Probabilistic Computing” and the other is “Near-Threshold Computing”,
which will be shortly explained in the following.

10

2.2 Approximate Computing

Figure 2.4: Approximate Computing: trading-off power consumption with precision

Near-Threshold Computing Near-threshold computing proposes to apply voltage-scaling
in order to reduce the power consumption. Compared to regular voltage-scaling tech-
niques it is trying to aggressively scale the voltage in the range of the CMOS threshold
voltage. The concomitant performance loss is tried to be overcome by massive paral-
lelism and modern design techniques like 3D integration. Near-threshold computing is
also aware of functional failures. However, compared to Approximate Computing, it tries
to completely avoid them by design changes or redundancy mechanisms. A comprehen-
sive overview can be found in [10] and [11].

Probabilistic Computing Probabilistic computing proposes to exploit the probabilistic
nature of circuit elements. Palem et al. developed the notion of probabilistic binary
switches under the influence of thermal noise, i.e. operated at low-voltage [12]. Based
on these switches probabilistic CMOS circuits (PCMOS) have been proposed, developed
and the approach been evaluated [13, 14, 15, 16, 17, 18]. The principal idea of proba-
bilistic computing is the same as of Approximate Computing, namely trading off power
consumption with accuracy. The main difference however is, that Approximate Com-
puting is usually using deterministic circuit elements to generate imprecise results. In
contrast, probabilistic computing usually uses non-deterministic elements, and is hence
considering another fault model. The methodology developed in this work is also not lim-
ited to deterministic CMOS elements. Due to the probability-awareness of the presented
approach, hence assigning error probabilities to circuit elements, it can be applied as well
in the domain of probabilistic computing. Indeed, techniques like circuit pruning, which
can be applied for Approximate Computing, have their origin in probabilistic computing
[19].

The consideration of imprecisions and non-determinism in digital circuits is going back
to the origin of digital design using electromagnetic switches and vacuum tubes. Von Neu-
mann himself, was searching for ways to build reliable circuits from unreliable elements
[20]. With the rise of semiconductors and improving process technologies, the problems
of unreliable building blocks seemed to disappear. For safety-critical or radiation-intense
applications, reliability, of course, has always been an issues. However, means like error
correction or redundancy could be exploited to guarantee a functional correctness, at
least to a certain degree. However, now as it seems that the end of the classical Moore’s

11

2 Introduction

law has been reached [21], it looks like the problems are coming back. Increasing pa-
rameter variations, due to shrinking feature sizes, as well as ultra low-power operation
tend to make the building blocks again unreliable. At least if the, so called, “happy
scaling” continues. Approximate Computing is still assuming that the building block are
working correctly. It is trying to directly tackle the power density problems of today’s
circuits. With the end of classical Dennard scaling [22] about 10 years ago, new technol-
ogy generations do not lead to a constant frequency increase or a decrease of the power
consumption, respectively. Even the shift to the multi-core era is not solving the problem
of the high power density, which has led to dark silicon on the chip. In contrast to dark
silicon management approaches, Approximate Computing is trying to reduce the power
consumption on a chip, while preserving the speed and the functional density. This is
achieved by tolerating imprecisions and non-determinisms in the circuit, for instance due
to aggressive voltage-scaling or by removing parts of a circuit that are not required for
an approximate, yet sufficiently correct, result. The main problem to be solved can be
regarded as to find a distribution of approximations made within the circuit as large as
possible, while at the same time meeting the constraint on the quality at the output of
the circuit.

“Voltage over-scaling” and “circuit pruning”’ are the main approximation techniques
considered in this work. While the former is going in the direction of probabilistic
computing, the latter is going in the direction of Approximate Computing. However, as
already mentioned, most methods developed to realize such approaches can be shared
between these two fields. In the following the types of approximations and sources of
imprecisions, hence the fault model, will be described more in detail.

2.2.1 Approximation Types

As already mentioned, Approximate Computing can be applied on multiple levels of
abstraction. Hence, the actual point where a circuit is approximated can differ. For
instance, in case the approximation is done for an application on algorithm-level, for
instance by applying fixed point arithmetic instead of floating-point operations, the ap-
proximation is solely based on an algorithmic modification. No changes are made on the
hardware level. However, for instance, when removing the least significant bit calcula-
tions of a floating-point unit at register-transfer level, hardware is indeed modified, while
the initial algorithm of the application remains untouched. This work is focusing on
approximations at hardware level. As it has been shown in previous work [23], bit-flips
can be used to model a variety of physical sources of faults. Figure 2.5 illustrates this
relation. All of these faults in the lower half of the hourglass concentrate in a potential
error as bit-flips. As we will see in the following chapters in detail, the abstraction to
RT-level, at least for an initial analysis of a circuit, gives a balanced trade-off between
imprecision due to abstraction and analysis speed-up. When approximating an appli-
cation one is not only interested in where approximations can be applied but also to
what extent. Therefore, in this work bit-flip probabilities at register-transfer level have
been introduced. This allows to model the probability of occurrence of the individual
approximations, for instance due to masking effects.

12

2.2 Approximate Computing

Hence, the fault model for the initial analysis and approximation of a circuit in the
presented methodology are bit-flips at registers that appear with a certain probability.
For an exact analysis the information gained at RT-level has to be transferred down to
gate-level, depending on the applied approximation techniques, in order to model the
corresponding effects. In the following, the approximation techniques considered in this
work will be presented in detail.

Crash Data “No effect”
corruption
Failure Wrong CPU Wrong branch
reg. value decision
Single/multi
Permanent/ . . Il Error observation >
Error transient Bit Flip < r— I
Temporal and Spatial correlated
Faults Jitter Crosstalk
Signal / Electro-
Vdd noise migration
Physical Temperature Coupling (C)
sources Radiation Process variation

Figure 2.5: Bit-flip probability as the mean to model a variety of faults and approximation
techniques, respectively [23]

Physically Unreliable Circuit Elements The first type of approximations considered in
this work is the use of Unreliable Circuit Elements. Clearly, these are not approximations
per se, but anyhow result in a non-deterministic behavior of a circuit. Unreliable circuit
elements are the main source of imprecision in the domain of probabilistic computing.
There are various reasons why circuit elements, usually logic gates, can be unreliable.
The first category are unreliable circuit elements due to “noise-based” faults [24]. The ever
increasing demand for fast and energy-saving, hence small, devices led to this problem.
Due to the reduced supply voltage and the increasing integration density, noise immunity
is becoming difficult to achieve. This results in very tight noise margins, leaving no room
for further optimization. Thermal noise in the circuit or voltage regulators [25, 26| can
therefore actually limit a further decrease of supply voltage. Similar behavior can be
seen with parameter and process variations in the circuit [27]. For a further scale-down
of the MOSFETs either the technology process has to be improved, or one has to deal
with the resulting non-determinism.

13

2 Introduction

Another source of unreliable circuit elements are soft errors due to radiation. Alpha-

lon track

N/

charge

>
t
(a) (b) (c)

Figure 2.6: Charge generation and collection phases in a reverse-biased junction and the resul-
tant current pulse caused by the passage of a high-energy ion. [2§]

particles as well as high-energy and low-energy rays are the dominant sources of soft errors
due to cosmic radiation [28]. These mechanisms are generating ions, either directly or
indirectly, in the silicon, as shown in Figure 2.6. The ion’s impact results in a track
of electron hole pairs (a). Afterwards, the carriers get rapidly collected, resulting in
a current peak (b). The impact ends with a diffusion of the electrons and holes (c).
Depending on the amount of energy induced by the particle strike and the resulting
current pulse, a logical value in the circuit can possibly be flipped. The amount of
energy required to induce a soft-error in a MOSFET, usually denoted as Q¢+, the critical
charge, is depending on technology and type of the gate, as well as the location of the
strike. Additionally, the time instant when the particle is striking is highly influencing
the impact of the strike. If the energy is high enough, the value of a net can change
from “0” -> “1”. This effect is called a “single-event transient” (SET). This SET is
then possibly latched into a register, resulting eventually in a “soft-error”, also called
“single-event upset” (SEU). Clearly, the transition from SET to SEU is depending on the
Boolean function of the combinational logic, the actual state of the logic and the time
instant when the particle strikes. It is also possible that multiple particles strike the
circuit at the same time. However, the occurrence of multi-bit upsets (MBU) is rare. On
the other hand it not unlikely that a single-event upset results in multiple errors not only
over time but also at several locations. Technically, it is also possible that the particle
energy is large enough to permanently damage a circuit. This can “single-event latchup”
(SEL) results in a permanent malfunction of the circuit. A SEU instead is reversible.
Hence, in the next clock cycle the error is overwritten by a new value.

Compared to traditional Approximate Computing, in this case one is not only aiming
for a reduction of the power consumption. Approximations with unreliable elements
due to soft-errors can also be used to reduce the logic overhead that would be regularly
introduced by redundancy or error correction mechanisms. Hence, by omitting them not
only area on the chip can be saved but also the static and dynamic power consumption
of these blocks.

14

2.2 Approximate Computing

The difficulty of exploiting this behavior as an approximation technique lies clearly in
the estimation of the error rates. For noise-based faults, as well as for soft-errors it is
nearly impossible to analytically predict the error rates, as the physical context is very
complex. However, a lot of research has been made in the classical reliability domain
over the last decades to estimate the error rates, or at least to give worst-case rates.
These values can be used to describe the non-determinism of the elements and use them
for Approximate Computing.

Functional Approximation Functional approximation is the most common approxima-
tion technique. It proposes the intentional modification of a circuit in order to save
power or area, while making the operation imprecise. Various forms of functional ap-
proximation exist, there is no common approach. First of all the modifications made,
can be either temporal or permanent. A permanent modification clearly results in the
highest savings concerning power and area. This technique is usually referred as “Circuit
Pruning”, hence parts of the circuit get removed, in order to implement a less power
consuming but less precise algorithm. A simple exemplary approximation of a 1-bit full
adder is shown in Figure 2.7. By simply removing the marked AND gate, the calculation

B 7 SUM

L/

Cout

/ Cout = (ANB)V (A5 B)AC,

Figure 2.7: Simple functional approximation at gate level of a 1-bit full adder

of Cout approximates. A subsequent change in order to compute more precise results,
e.g. due to changed precision requirements, is not possible. For ASIC technology, once
the circuit has been approximated, it cannot be reverted. On re-programmable devices,
like FPGAs, the situation is different. For changing demands on the precision, a differ-
ent bitstream with differing precision settings could be loaded on demand. A dynamic
adaption of precision using functional approximation on ASICs is possible as well. This
procedure is usually referred to as “Dynamic Bit-With Reduction”. The idea is to change
the precision of a calculation based on the actual demand of the application, by changing
the bit-with precision. A simple example for bit-width reduction is shown in Figure 2.8
for a 4-bit adder. By removing either the complete lowest 1-bit adder or parts of it,

15

2 Introduction

A0 SO 13 RN AF LIS 10 54

ca Cs Cs Cy

<«€— 1-bit adder |€&— 1-bitadder |€— 1-bitadder |€&— 1-bitjdder

I A A

Figure 2.8: Bit-width reduction of a 4-bit adder

the resulting sum of A and B is approximated. Later in this work, when presenting the
approximation methodology of this work in Chapter 4, one can see that circuit prun-
ing is not limited to bit-width adaptation of mathematical calculations. The presented
methodology considers each register as a potential candidate for dynamic approximation,
in order not to impose unnecessary restrictions. The savings of a dynamic adaption are
of course less than of static circuit pruning. Area cannot be saved at all, as no elements
get removed. Power consumption can be saved either in form of dynamic power con-
sumption, by gating the gates not needed or even as static power, by applying power
gating to the unused gates. However, the main benefit of this approach is the adaptivity.
Precision can be switched on and off based on the actual requirement of the application.
If the application, for instance due to actual conditions, requires less precision, parts of a
circuit can be switched off, and energy can be saved. If, however, the application at some
point needs a highly precise result, the precision can simply turned on again, accepting
a higher power consumption.

The difficulty, as with all approximation techniques, is to find out how pruning, or a
bit-width adaption influences the overall behavior of a circuit. The analysis usually has
to be fast and precise at the same time, and should be generally applicable to all kinds of
circuits. Existing approaches are usually limited to the approximation of basic building
blocks. In this work however, a methodology will be presented that allows to functional
approximate complete circuits at once. The verification of these techniques is compa-
rably simple, as fast functional simulations are sufficient. Similar, the power savings of
static as well as dynamic modification can be easily estimated, by using power estimation
tools. By generating simulation traces for realistic scenarios the switching factor of the
individual nets can be calculated. By applying them to power estimation tools, a realistic
estimation of the power consumption before and after approximation can be calculated.

Voltage & Frequency Scaling Voltage scaling is another main approximation technique
considered in this work. As we have seen earlier, reducing the supply voltage of a circuit
can result in large power savings due to its quadratic relation on the dynamic power
consumption. However, as we have seen as well, the propagation delay of MOSFETs
increases inverse proportional to the supply voltage. This relation is again visualized

16

2.2 Approximate Computing

in Figure 2.9. Depending on the supply voltage Vy; the operating point can be moved
between power efficiency and performance. An optimal point can be found regarding
these two criteria. The characteristic of a circuit are sometimes measured in form of the
“Energy-Delay Product”, which gives an indication about the power consumption and
speed at certain supply voltage. When operating a sequential circuit with reduced supply

A A
o
N
>
S
[}
© m
c =
o ®
= =
«Q
g <
®©
o
o
} .
o
A .
Ll
Vbp

Figure 2.9: Visualization of the Energy-Delay product (EDP) of CMOS circuits

voltage and constant operating frequency, the propagation delay of the MOSFETs will
be larger than at nominal voltage and the timing constraints might not be met anymore,
i.e. setup times could be violated, as shown in Figure 2.10. While a transition on the
longest path is arriving prior the setup time #getup for voltage Vi it is arriving within
the setup time for a supply voltage V5, and there is a probability that the transition
is not sampled in the Flip-flop and hence can be seen as a bit-flip. The appearance of

tsetup
—t

- I

tIogic,max(vlow) /

tIogic,max(vhigh) /

Figure 2.10: Timing violation in sequential circuits. The signal transition is not arriving in
time at the flip-flop

17

2 Introduction

timing errors depends on the circuit, its state and input transitions. Timing errors are
comparable to soft errors, as they are of temporary nature and can be modeled with a
bit-flip probability at a register. Like soft-errors, timing errors are usually critical. Their
appearance can, dependent on location and time, result in a complete malfunction of
the circuit. However, they don’t have to necessarily result in a failure of the circuit as
the value which is actually wrong can be masked, i.e. it is not read due to the Boolean
function and state. The difficulty as we will see later is to determine if and when timing
violations are critical and their influence on the overall functionality of the circuit. The
goal of voltage over-scaling is to reduce the supply voltage of a circuit (or parts of it) in
such a way that the power consumption is significantly reduced, but the influence of the
resulting timing violations on the functionality of the application are minimal. Voltage
over-scaling is closely related to frequency over-scaling. Operating a circuit at a higher
frequency than the one determined in the timing analysis results in the same timing
errors as when over-scaling the supply voltage. The optimization goal however in this
case would be the circuit performance and not the power consumption. Nevertheless,
the same methods developed throughout this work could be used to realize approximate
frequency over-scaling. Similar to functional approximations, voltage over-scaling can be
either applied statically or dynamically. In case of static voltage over-scaling the designer
has to decide at design time the degree of approximation through voltage scaling. I.e.
one has to decide how imprecise the final circuit should operate. Clearly, this can only be
applied for circuits whose purpose is fixed, like hardware accelerators. For multi-purpose
circuits like CPUs a static approximation is not suitable as the work is not known at
design time, and the precision requirements are changing over time. The complexity
of static voltage over-scaling however is much less than that of dynamic voltage over-
scaling, as only one approximate operating point has to be determined at design time.
The benefit of a dynamic approach is clearly that the circuit can adapt the current
requirements on the precision and power consumption. The drawback however is not only
the requirement for configurable power supplies. Considering that at design time a set of
gates that can be operated at a reduced supply voltage V1 and an approximate operating
point OP,pprox, (€.g. an error probability at an output pin) have been determined. For
a second, more precise approximate operating point OP;pprox,, it might not be sufficient
to simply increase the supply voltage of that voltage island uniformly. It could happen
for instance that for that new operating point certain gates have to be operated at
nominal voltage in order to meet the requirements on the precision, while other can still
be operated at a scaled voltage. It would then be required, in order to have an optimal
operating point, to reorder the voltage domains, which is of course very complex. Instead
one could define at design time the voltage domains. These domains would then be fixed.
The supply voltage of these domains however can change. The assigned supply voltage
however has to be always the maximum one that has been determined for a set of gates
and one operating point, even if some gates could be operated at lower frequency. This
circumstance will be explained later in Chapter 5 in more detail. Another question that
has to be answered at design time is how many voltage islands an approximate circuit can
have. The more domains can be implemented, the more fine-granular the approximation
can be made. More voltage domains however are complex to route and require external

18

2.2 Approximate Computing

Table 2.1: Truth table approximation of an adder [29]

Inputs Accurate out | Approximate out
A| B | Cy | Sum | Cou Sum’ | Couy’
01010 0 0 0 0
001 1 0 0 0
0110 1 0 1 0
0111 0 1 1 0
11010 1 0 0 1

1 101 0 1 0 1

1 110 0 1 1 1

1 (11 1 1 1 1

power supply units. Therefore a trade-off has to be found between the efficiency of the
approximation and the additional required area. Nevertheless, as we will see later, even
a very small number of voltage domains can be sufficient to get a significant reduction
of the power consumption.

Boolean Modification Similar to functional approximation, and in particular to the
example shown in Figure 2.7, in this approach the existing circuit is optimized by using
less components (e.g. gates or transistors). To judge the effect on the circuit objectively,
again the primary outputs are observed. In order to do so, the differences between
the modified design’s truth table and the original design are compared. To keep the
complexity of the optimization problem and the effects on the primary outputs low,
the technique is normal applied to sub circuits that are supposed to bear a certain
error tolerance. Ideally, these sub circuits are used frequently in the containing design.
Note, that the approximate units not only have reduced number of transistors, but also
the internal node capacitances are reduced [29]. This overall leads to a design with
lower complexity and therefore lower static (leakage current) and dynamic (switched
capacitance) power consumption. Another benefit of a circuit containing less transistors
can be shorter critical paths that in turn allow reducing the supply voltage, without
causing timing errors. A general tactic to find such a design can be to inspect the
truth table for outputs that are correlated to a combination of a low number of other
outputs or inputs. These correlations could be a hint for a simple logic combination of in-
and/or outputs that can give the right result of the target output for most of the input
combinations. An example can be seen in Table 2.1, where the approximation Sum’ =
B and C,,;’ = A have been made. Errors are marked in red. As with all approximations
presented in this work, it is very important to respect their position and influence on
the whole system under real operation circumstances [140]. Boolean modification is not
further considered in this work as the methods developed in this work lead to the same
benefits, while being at the same time more general and flexible.

19

2 Introduction

2.2.2 Suitable Applications

As we have already seen in the motivation of this work, not all types of applications are
suitable for approximation. This is one of the main limitation of Approximate Computing
and it is very important to be aware of it and it must not be withheld. It has to be clear
that an approximated circuit will always give a less precise result. This is a core principle
of Approximate Computing. Hence applications that need a numerical correct result, will
never be suitable for Approximate Computing. However it is important to keep in mind
that the idea of Approximate Computing is to operate only less precise, not wrong. That
means that ideally the user can still trust the result, at least up to a certain point, a
confidence interval. This is also one important part of this work. The functionality of an
application, hence its control flow, should never be affected. Nevertheless, control centric
applications and of course safety critical applications cannot be used for Approximate
Computing. Fortunately however, as we will see, the field of potential applications is still
large. In general, applications suitable for Approximate Computing qualify themselves

Self-healing/ Statistical

Iterative Probabilistic
Algorithms Computations

) S—
Redundant No Golden
Input Data Output

-

-

R R
"Noisy" Real Perceptual
World Inputs Limitations

- -

Figure 2.11: Intrinsic application resilience [§]

by having one or more of the following properties regarding the requirements on the
result [5, 8, 30, 31]:

No golden result exists, a range of answers is acceptable This applies for instance for
applications in the “search” & “recommendation” domain, where multiple answers
are correct.

The golden result exists, but even a perfect circuit is unlikely to find it Applications

YR I3

like “Machine learning”, “Pattern matching” do fall into this category.
The golden result is not necessary, a less-than-optimal result is sufficient A wide range

of applications falls into this category, as on can see below. This category has been
focused mainly in the scope of this work.

20

2.2 Approximate Computing

Usually applications are said to be suitable for Approximate Computing that have a
intrinsic imprecision tolerance [32], which corresponds mainly to the last of the above
mentioned category. A wide branch of applications falls into this category as shown in
Figure 2.11.

Interaction with (limited) perceptual capability of humans This is the most common
mentioned category of applications when talking about Approximate Computing.
Due to the fact that the human perception and the sensory system is not perfect,
minor differences and imperfection in application results that interfere with the
human perception will not be noticed by the user. For instance, the physical
reception of sound is limited to a range of frequencies. Humans normally hear sound
in frequencies between approximately 20 Hz and 20,000 Hz while the upper limited
decreases with the age [33], as shown in Figure 2.12. Hence, any audio information
outside of these limits will not be noticed. But not only the resulting information
at those frequencies is irrelevant, but also all calculations within the application
that have been made in order to come to that result. This is an important fact
to remember as it is responsible for the majority of potential power savings. The
visual perception of humans is limited as well. First of all are the photoreceptor
cells on the retina in the human eye noisy sensors. Hence, the image that gets
forwarded to the brain always has a certain noise floor. As we all know this noise
floor increases in low light situations. Furthermore, the human eye is only able
to distinguish about 10 million colors 34|, which is why usually 24bit are used as
“true color” color depth. But also for the visual perception a certain contrast in
the image is required in order to detect objects. Hence applications that interact
with the human visual perception can be imprecise regarding noise up to a certain
point without the user would notice any difference. But also certain frequencies of
an image are not required as the human perception is not able to recognize them.
The remaining human sensory systems, somatosensory system, olfaction and taste
behave very similar, but at least today, potential applications are limited. Clearly
these observations are not new, and have been exploited for a long time in lossy
video and audio compression systems. Approximate Computing tries to extend
these principles down to the hardware level. Also, the motivation is different.
While these mechanisms have previously been applied in order to save memory or
data-rate, Approximate Computing is using them to reduce the power consumption.

Noisy and redundant input data This category can be found especially in wireless com-
munication systems. For instance, wireless radio receivers in this domain usually
have to deal with noisy and imperfect input data due to the imperfect radio chan-
nel. The useful data has to be extracted from a noisy input stream. For the user
however, it is not important whether the noise in the receiver chain is coming from
the wireless radio channel or from noise within the circui<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>