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Abstract

Background: The technical progress in the last decade has made it possible to sequence millions of DNA reads
in a relatively short time frame. Several variant callers based on different algorithms have emerged and have made
it possible to extract single nucleotide polymorphisms (SNPs) out of the whole-genome sequence. Often, only a
few individuals of a population are sequenced completely and imputation is used to obtain genotypes for all
sequence-based SNP loci for other individuals, which have been genotyped for a subset of SNPs using a
genotyping array.

Methods: First, we compared the sets of variants detected with different variant callers, namely GATK, freebayes
and SAMtools, and checked the quality of genotypes of the called variants in a set of 50 fully sequenced white and
brown layers. Second, we assessed the imputation accuracy (measured as the correlation between imputed and
true genotype per SNP and per individual, and genotype conflict between father-progeny pairs) when imputing
from high density SNP array data to whole-genome sequence using data from around 1000 individuals from six
different generations. Three different imputation programs (Minimac, FImpute and IMPUTE2) were checked in
different validation scenarios.

Results: There were 1,741,573 SNPs detected by all three callers on the studied chromosomes 3, 6, and 28, which was
71.6 % (81.6 %, 88.0 %) of SNPs detected by GATK (SAMtools, freebayes) in total. Genotype concordance (GC) defined
as the proportion of individuals whose array-derived genotypes are the same as the sequence-derived genotypes over
all non-missing SNPs on the array were 0.98 (GATK), 0.97 (freebayes) and 0.98 (SAMtools). Furthermore, the percentage
of variants that had high values (>0.9) for another three measures (non-reference sensitivity, non-reference genotype
concordance and precision) were 90 (88, 75) for GATK (SAMtools, freebayes). With all imputation programs, correlation
between original and imputed genotypes was >0.95 on average with randomly masked 1000 SNPs from the SNP array
and >0.85 for a leave-one-out cross-validation within sequenced individuals.

Conclusions: Performance of all variant callers studied was very good in general, particularly for GATK and SAMtools.
FImpute performed slightly worse than Minimac and IMPUTE2 in terms of genotype correlation, especially for SNPs
with low minor allele frequency, while it had lowest numbers in Mendelian conflicts in available father-progeny pairs.
Correlations of real and imputed genotypes remained constantly high even if individuals to be imputed were several
generations away from the sequenced individuals.
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Background
The technical progress in the last decade has made it
possible to sequence millions of DNA reads in a
relatively short time frame for reasonable costs. Thus,
whole-genome sequencing has become available that al-
lows us to gather more information on genetic variation,
genes, gene function and other characterizations of
genomes [1, 2] and the number of research projects
dealing with whole-genome sequencing data has been
emerging in humans [3–6], domestic animals [7–9] and
other species [10] in the last years. Large consortia (e.g.
1000 bull genomes project [9, 11] or the human genome
project [12, 13]) have been established to accumulate
available resources, detect new variants in genomes, bet-
ter understand genetic architecture of different traits
and find or narrow down positions of potential causal
loci. In dairy cattle, for example, 28.3 million variants in
the whole genome were identified from 234 bulls se-
quenced with an average coverage of 8.3X in the first
phase of the 1000 bull genomes project, and loci associ-
ated with milk production and curly coat were detected
by genome-wide association studies [9]. In chicken, re-
search projects using whole-genome sequencing data
have been rare so far. Rubin et al. [8] generated pooled
whole-genome sequencing data representing eight
populations of domestic chickens in order to identify
how genetics adapt to new environments. In the
study of Qanbari et al. [14] genome regions with
strong evidence of selection were identified from
pooled whole-genome sequencing data of 15 laying
chickens. Within the framework of the project Synbreed
(http://www.synbreed.tum.de/) whole-genome sequencing
data of 50 individuals from commercial layer lines were
generated which built the basis for this study.
Several variant callers based on different algorithms

have emerged using single or multiple samples simultan-
eously, e.g. SAMtools [15] or GATK [16]. Recently, some
studies have shown that there is significant difference in
the set of variants called by different variant callers [7,
17, 18]. Baes et al. [7] found that the number of variants
varied between variant callers (i.e. Platypus, SAMtools
and two difference GATK utilities: UnifiedGenotyper
and HaplotypeCaller) in whole-genome sequencing data
of dairy cattle. O’Rawe et al. [18] carried out a study to
examine the concordance among different variant calling
pipelines with default parameters, but their analyses
mainly focused on exome sequencing and did not assess
multiple sample variant calling algorithms. Thus, it is
still important to evaluate genotype concordance and pre-
cision obtained with different variant callers in whole-
genome sequencing data in chicken.
Although over the past several years the cost of DNA

sequencing has decreased by several orders of magnitude
due to the rapid development of sequencing technology,

it is still comparatively expensive [19]. There are two
main strategies to reduce costs: One is to only sequence
coding exons which has been commonly used in human
clinical applications [20], but actually none of the available
kits can cover all the coding exons [21]. Besides, it was
shown that both natural and positive selection eventually
occurred in the non-coding DNA blocks and some QTL
have been mapped in such blocks, so that important parts
of the genome may be missed by just using exome se-
quencing [22, 23]. The other major strategy to reduce
costs when being interested in sequence information of a
whole population is to generate whole-genome sequen-
cing data for a small set of individuals highly related to the
population and then impute SNP array data of other
individuals of the same population up to sequence level
based on the whole-genome sequencing data of the se-
quenced individuals and array based SNP array data of the
remaining individuals. Before whole-genome sequencing
data had been available, the technique of imputation has
already been used for imputing from low to high density
SNP array data with high accuracy and thus has proven to
be a successful line of action (e.g. in cattle [24]) to obtain
higher marker densities for a large number of individuals.
Heidaritabar et al. [25] showed the possibility to im-

pute SNP array data into whole-genome sequencing data
based on a small reference population of 22 sequenced
individuals in simulated data. Druet et al. [26] investi-
gated the accuracy of imputation that can be achieved
with Beagle [27] and found that the highest imputation
accuracy was 0.86 when the simulated whole-genome
sequencing data for 50 bulls with a 12X coverage was
used as reference dataset. Van Binsbergen et al. [28] and
Pausch et al. [29] showed that a reasonable accuracy of
imputation (e.g. correlation between observed and im-
puted genotypes as high as 0.83) could be achieved when
imputing from SNP array data to whole-genome sequen-
cing data in dairy cattle breeds. Nevertheless, there has
been no attempt so far to evaluate the accuracy of im-
putation from high density SNP array data (580 k) up to
sequence level with real chicken data.
In this study, we first compared the sets of variants de-

tected with different variant callers, namely GATK [16],
freebayes [30] and SAMtools [15], and checked the qual-
ity of genotypes of the called variants in a set of 25 white
layer and 25 brown layer individuals. Second, we
assessed the imputation accuracy from SNP array data
to whole-genome sequencing with three different imput-
ation programs, namely Minimac [31], FImpute [32] and
IMPUTE2 [33], in a brown layer line.

Methods
Ethics statement
Samples were collected by veterinarians in the Lohmann
Company in the course of a routine health check for
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diagnostic reasons and a partition of retained samples
was used to extract DNA. The authors collected no sam-
ples themselves.

Data
Blood samples and pedigree data of more than 5 genera-
tions backwards (2260 individuals in total) were available
for purebred individuals from different generations of a
brown layer line. Number of individuals per generation
is shown in Additional file 1. Furthermore, genotypes
from the Affymetrix Axiom® Chicken Genotyping Array
(580 k array) were available for 1081 brown layer chick-
ens (including 24 of the 25 sequenced brown layers)
from 5 different generations which were later imputed
to whole sequence level. Genotyped SNPs with minor al-
lele frequency (MAF) smaller than 0.5 % and genotyping
call rate smaller than 97 % were removed so that
350,602 SNPs remained. Individuals with a call rate
smaller than 95 % in the remaining SNPs were then
excluded leaving a set of 1075 genotyped brown layer
individuals.

Whole-genome sequencing and alignment
Fifty individuals (25 brown layers and 25 white layers)
chosen to be from one of the older generations and
highly related to the set of already genotyped individuals
were sequenced with the Illumina HiSeq2000 technology
with a target coverage of 8X. Sequence reads were
aligned to Build 4 of the chicken reference genome
(galGal4) using BWA (version 0.7.9a-r786) [34] with de-
fault parameters for paired-end alignment. In this step
SAM files were generated, which were converted to
BAM files using SAMtools [15] in the following step.
Reads were then further processed with the MarkDupli-
cates utility of Picard (http://broadinstitute.github.io/pic-
ard/) to remove potential PCR duplicates.

Variant detection
Variants including SNPs and short insertion and deletion
(INDELs) were called using different software programs:
GATK (version 3.1-1-g07a4bf8, UnifiedGenotyper) [16],
freebayes (version v0.9.15-1-g076a2a2) [30] and the mpi-
leup utility of SAMtools (version 0.1.19-96b5f2294a)
[15] with default parameters, respectively. With all pro-
grams mentioned, variant calling was performed with
multi-sample approaches using all 50 sequenced chick-
ens simultaneously. Sets of variants obtained with the
three different callers were processed in equal manner,
but independent from each other in the following. Dif-
ferent versions of the same variant callers may result in
a different set of variants for the same underlying se-
quencing data. Thus, two versions of freebayes (version
v0.9.15-1-g076a2a2 and version v9.9.2-22-gc283d6d)
were compared regarding the overlap of called variants.

Filtering and genotype quality enhancement
To reduce the proportion of the false positive variants,
different strategies to select the so-called high-quality
variants have been suggested [14, 18, 35, 36]. We applied
thresholds for depth of coverage (DP) and mapping
quality (MQ) according to the following protocol:
Extraction of SNPs from the set of all called variants was
done using the SelectVariants command of GATK.
Filtering for the SNPs called on all chromosomes of the
whole-genome included the following criteria: First, out-
lier SNPs (top 0.5 % of DP) were removed. Then, mean
and standard deviation of DP of the remaining SNPs
were calculated and SNPs with a DP above and below 3
times the standard deviation from the mean were re-
moved as well. For mapping quality, SNPs with a MQ
score smaller than 30 within SNP sets obtained with the
variant callers GATK and SAMtools and SNPs with both
mean mapping quality of observed alternate alleles
(MQM) and mean mapping quality of observed refer-
ence alleles (MQMR) smaller than 30 within the SNP set
obtained with freebayes were excluded from further ana-
lyses. Separate SNP sets were built for brown and white
layers, respectively, in which SNPs that were mono-
morphic in the respective set of individuals were re-
moved. Finally, we used Beagle 3.3.2 [27] (see Additional
file 2 for the pipeline) in order to enhance the original
genotype quality of the remaining SNPs following the
proposal of Jansen et al. [37]. For all subsequent analyses
regarding imputation, only data from brown layers and
variants called by GATK were used. Furthermore,
considering the computational efforts especially in the
imputation process, all further analyses were not per-
formed for the entire genome, but three chromo-
somes (chromosomes 3, 6 and 28) of different length
were selected for the following analyses.

Validation of different variant callers
Genotype concordance (GC), non-reference sensitivity
(NRS), non-reference genotype concordance (NRC), and
precision were calculated based on array genotypes and
corresponding sequence-based genotypes obtained with
different variant callers (GATK [16], freebayes [30],
SAMtools [15]). For each SNP, GC is the proportion of
individuals whose array-derived genotypes are the same
as the sequence-derived genotypes over all non-missing
SNPs on the array. NRS is the number of individuals
who have at least one non-reference allele in both
whole-genome sequencing data and SNP array data di-
vided by total number of individuals who have at least
one non-reference allele in the array data. NRC is the
number of animals whose array-derived genotypes are
the same as the sequence-derived genotypes and are
not homozygous for the reference allele divided by
total number of individuals who have at least one
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non-reference allele in the SNP array data. Precision
is the number of animals whose array-derived geno-
types are the same as the sequence-derived genotypes
and are not homozygous for the reference allele di-
vided by total number of individuals who have at
least one non-reference allele in the sequencing data.
The detailed calculations are shown in Additional file
3, which were based on the definitions in DePristo et
al. [38] and Linderman et al. [20]. Validation of vari-
ant callers was done for all positions at which SNPs
from the array were available on chromosomes 3, 6
and 28 (34,311, 13,627 and 2,730 SNPs), respectively,
for the 24 brown layer individuals that were both ge-
notyped and sequenced.

Imputation
Imputation was done with three software packages:
Minimac [31], FImpute [32] and IMPUTE2 [33], among
which Minimac and IMPUTE2 are based on pedigree-
free algorithms, while FImpute can combine linkage dis-
equilibrium (LD) information and pedigree information
in the imputation process. FImpute uses an overlapping
sliding window method to detect the relationship be-
tween study and reference set, while IMPUTE2 apples a
hidden Markov model. Minimac implements the MaCH
[39] algorithm for genotype imputation. For all software,
a default number of iteration was used. As Minimac and
IMPUTE2 need phased input data, pre-phasing for
whole-genome sequencing and SNP array data was per-
formed using Beagle 4 [27].

Assessment of imputation quality
To evaluate the accuracy of imputation from SNP array
data to whole-genome sequencing data, three strategies
(described below) were used.

Leave-one-out cross-validation
Since 24 out of the 25 sequenced brown layer chickens
were also genotyped with the 580 k array, each of these
individuals was excluded from the imputation reference
data set once and imputation from SNP array data to
whole-genome sequencing data was performed with the
respective individual being one of the validation individ-
uals in the resulting dataset. Genotype concordance and
correlation between the imputed and sequenced geno-
types from these run for all non-monomorphic SNPs be-
ing not on the array was calculated afterwards per the
respective individual.

Father-progeny pair conflicts
Among the genotyped brown layer individuals there
were 134 individuals that were progeny of one of the se-
quenced individuals. Thus, genotypes on imputed SNPs
in the progeny could be compared to the father’s

genotypic information at these SNP positions and
genotype conflicts (alternative homozygotes in father
and progeny) were counted. Proportion of genotype
conflicts were calculated per father-progeny-pair over
all SNPs excluding the ones which were also geno-
typed using the 580 k array on chromosomes 3, 6
and 28, respectively.

Accuracy of randomly masked 1000 SNPs
As imputation accuracy depends (amongst others) on
the degree of relationship between sequenced individuals
and individuals to be imputed, we also checked how
imputing accuracy changes when different numbers of
generations are between sequenced individuals and in-
dividuals to be imputed. For this analysis, we ran-
domly masked (i.e. setting them to missing) 1000
SNPs (680 out of total 34’311 SNPs on chromosome
3, 270 out of 13’627 on chromosome 6 and 50 out of
2736 on chromosome 28) from the SNP array data in
all genotyped individuals and imputed those SNPs as
if they were SNPs from the sequence data. Afterwards, im-
puted genotypes on these 1000 SNPs and real array geno-
types were compared and genotype correlation was
calculated for each SNP and also for each individual. As
Calus et al. [40] and Mulder et al. [41] demonstrated that
it is better to center and scale true and impute genotype
when calculating the individual-specific imputation
accuracy, we investigated the individual-specific im-
putation accuracy based on original genotypes and
standardized genotypes. The random masking was
replicated five times with different random sets of
1000 SNPs and means of these five replicates are re-
ported in the results.

Results and discussion
Alignment and coverage
For brown layer chickens, on average 88 million paired-
end reads were obtained per individual. Among these
reads, 1.72 % (ranging from 0.76–1.98 %) on average
were marked as duplications and excluded and on aver-
age 96.7 % (ranging from 96.1–96.9 %) were mapped
against the reference genome (galGal4). Coverage per
sample ranged from 5.0 to 16.6, with an average of 7.6.
For white layer chickens, on average 94 million paired-
end reads were obtained per individual. Among these
reads, 1.69 % (range 1.45–1.92 %) were marked as dupli-
cations and excluded; and 96.7 % (range 96.3–96.9 %)
were mapped against reference genome. Coverage per
sample ranged from 7.9 to 15.6, with an average of 10.8.
Based on this data set, the number of raw paired-end
reads obtained was higher in white layer chickens than
in brown layer chickens. However there was no differ-
ence in percentage of duplications and percentage of
mapping. Details can be seen in Additional file 4.
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Variant detection
Depending on the variant caller, totally 13,442,923 (free-
bayes [30]), 13,642,483 (SAMtools [15]) and 14,757,670
(GATK [16]) variants (i.e. SNPs and INDELs) were
detected with multi-sample calling on the 50 available
brown and white layer chicken genomes (Additional
file 5). In the study of Cheng et al. [36] GATK identified
almost the same amount of variants as SAMtools, while
Pattnaik et al. [42] identified more SNPs with freebayes
than with SAMtools or GATK in the human genome. Un-
like their results, we found that GATK identified more
variants than SAMtools and freebayes, thus showing the
same tendency as in studies of Liu et. al [43], O’Rawe et
al. [18] and Baes et al. [7]. On the three chromosomes 3,
6, and 28 selected for imputation, GATK identified
2,297,603 variants per animal of which 2,054,930 were
SNPs. After excluding low-quality SNPs that did not
match the filtering criteria (as defined in the method
section), there were 2,021,911 SNPs remaining. Com-
pared to GATK, both SAMtools (2,125,837) and freebayes
(2,055,976) detected less variants, and after excluding
INDELs and filtering, there were 1,759,887 (1,652,870)
SNPs remaining with SAMtools (freebayes).
Figure 1 illustrates the number of overlapping SNPs

detected by the three variant callers on the three chro-
mosomes 3, 6 and 28. Many SNPs were detected only by
one variant caller (236,322 for GATK, 29,187 for
SAMtools, and 138,860 for freebayes). However, 1,471,573
SNPs were detected by all three callers, which is 71.6 %
(81.6 %, 88.0 %) of SNPs detected by GATK (SAMtools,
freebayes) in total. When focusing on GATK and SAM-
tools only, 1,763,383 SNPs were detected by both of them,
which were the 86 % of total SNPs detected by GATK,

and 98 % of total SNPs detected by SAMtools. Baes et al.
[7] found that around 18.3 million SNPs were both de-
tected by SAMtools and GATK in the whole-genome of
65 individuals of the Swiss dairy cattle population, which
was 83 % of the total number of SNPs detected by GATK
and 98 % of SAMtools which are very similar proportions
to the ones we observed in our study. Based on data from
exomes of 20 humans, Liu et al. [43] found in an exome
sequencing study that 23,824 SNPs were both detected by
SAMtools and GATK, which is 95.5 % of the total number
of SNPs detected by GATK and 89.8 % of SAMtools. A
high agreement of different callers (i.e. a high percentage
of SNPs detected by different callers simultaneously) with
each other in terms of called variants, is an advantage if
whole-genome sequencing data is handled in a way like
O’Rawe [18] suggested, namely using only the variants
discovered by multiple variants callers or pipelines for fur-
ther analyses.
Except the number of SNPs shared by different variant

callers, we also compared GC, NRS, NRC, and precision
of different callers as suggested in DePristo et al. and
Linderman et al. [20, 38]. Different quality measures are
shown in Table 1 and Additional file 6. In general terms,
we obtained very high values (>0.9) for all metrics
and all different callers, particularly for GATK and
SAMtools. For 90 % of variants called by GATK all
four metrics were simultaneously larger than 0.9,
while this was the case for 88 % (75 %) of variants
called with SAMtools (freebayes), which was mainly
due to lower values in NRC and precision. The four
different metrics which were binned into 100 groups
according to their array-derived MAF plotted against
array-derived MAF are shown in Fig. 2. In general,

Fig. 1 The overlap of single nucleotide polymorphisms detected by different variant callers

Ni et al. BMC Genomics  (2015) 16:824 Page 5 of 12



the similarity of metrics based on the SNPs called by
GATK and SAMtools in different MAF bins was
extremely high when compared to metrics based on
SNPs called by freebayes. Results obtained with
GATK and SAMtools were rather insensitive to MAF
with the exception of GC, which showed a slight in-
crease when MAF (<0.05) was low. Metrics for free-
bayes were in general lower (with the exception of
NRS) and showed a slight increase with increasing
MAF. The different properties of results of freebayes
compared to GATK and SAMtools is likely due to
(dis)similarities of the algorithms underlying the three
programs. Although the priors are different, GATK
[16] and SAMtools [15] use rather similar Bayesian
methods for estimation of the posterior probability of
the genotype and detection of variants relying on
alignment. freebayes [30] also uses Bayesian methods
to detect variants, but is haplotyped-based, in the sense
that it calls variants based on the literal sequences of reads
aligned to a particular target, not their precise alignment
(https://github.com/ekg/freebayes). Although GATK and
SAMtools have equivalent performances and both

perform better than freebayes, the metrics used here
relied on the accuracy of array-derived genotypes which
were assumed to be the ‘true’ genotypes. Eventually exist-
ing genotyping errors may thus bias the results. Besides,
SNPs on the array were selected to be almost evenly dis-
tributed across the genome and were preselected to match
a certain MAF spectrum which differs from the MAF dis-
tribution present in the sequence [44], which also could
bias the relative performance of variant callers if they dif-
fer in sensitivity to such patterns. Furthermore, the cover-
age of sequencing as a potential influence factor was not
under consideration here. Linderman et al. [20] discovered
that insufficient coverage could bias the GC metrics, par-
ticularly the NRS. Thus, freebayes might have more simi-
lar results to GATK or SAMtools if individuals were
sequenced with a higher coverage.
In this study, the analyses were mainly focused on the

comparison of specific versions (namely the newest at
the time point of performing the analyses) of different
variant callers. Different versions of the same variant
callers may result in a different set of variants for the
same underlying sequencing data. We thus compared

Table 1 Genotype concordance metrics

Genotype concordance Non-reference sensitivity

GATK Freebayes SAMtools GATK Freebayes SAMtools

No.SNPs Mean ± SD No.SNPs Mean ± SD No.SNPs Mean ± SD No.SNPs Mean ± SD No.SNPs Mean ± SD No.SNPs Mean ± SD

≤0.1 23 0.03 ± 0.03 9 0.03 ± 0.03 3 0.08 ± 0.00 3 0.01 ± 0.02 9 0.04 ± 0.04 5 0.04 ± 0.04

≤0.2 18 0.14 ± 0.03 6 0.15 ± 0.03 6 0.15 ± 0.02 13 0.15 ± 0.03 10 0.14 ± 0.03 15 0.14 ± 0.03

≤0.3 12 0.25 ± 0.02 9 0.27 ± 0.02 9 0.25 ± 0.03 25 0.25 ± 0.03 7 0.24 ± 0.03 20 0.24 ± 0.03

≤0.4 13 0.33 ± 0.02 5 0.33 ± 0.01 18 0.35 ± 0.03 20 0.34 ± 0.02 11 0.34 ± 0.03 19 0.34 ± 0.03

≤0.5 22 0.45 ± 0.03 18 0.45 ± 0.03 24 0.45 ± 0.03 20 0.45 ± 0.02 14 0.45 ± 0.03 24 0.44 ± 0.03

≤0.6 42 0.55 ± 0.03 39 0.55 ± 0.04 43 0.55 ± 0.03 59 0.52 ± 0.03 89 0.51 ± 0.02 82 0.51 ± 0.03

≤0.7 73 0.65 ± 0.03 64 0.66 ± 0.03 62 0.66 ± 0.03 96 0.66 ± 0.02 105 0.66 ± 0.02 158 0.66 ± 0.03

≤0.8 110 0.76 ± 0.03 183 0.76 ± 0.03 123 0.76 ± 0.03 152 0.75 ± 0.02 150 0.75 ± 0.02 215 0.75 ± 0.02

≤0.9 679 0.87 ± 0.03 3828 0.88 ± 0.02 738 0.87 ± 0.03 1206 0.86 ± 0.03 1171 0.86 ± 0.03 1561 0.86 ± 0.03

≤1 50441 0.98 ± 0.02 46725 0.97 ± 0.02 50334 0.98 ± 0.02 49732 0.99 ± 0.02 49206 0.99 ± 0.02 49148 0.99 ± 0.02

Non-reference genotype concordance Precision

≤0.1 55 0.02 ± 0.03 34 0.02 ± 0.03 35 0.02 ± 0.03 46 0.02 ± 0.04 28 0.01 ± 0.03 28 0.01 ± 0.03

≤0.2 18 0.13 ± 0.03 10 0.14 ± 0.03 23 0.14 ± 0.03 11 0.14 ± 0.03 12 0.15 ± 0.03 11 0.16 ± 0.03

≤0.3 24 0.26 ± 0.03 20 0.25 ± 0.03 24 0.25 ± 0.03 22 0.25 ± 0.03 22 0.25 ± 0.03 17 0.25 ± 0.03

≤0.4 32 0.34 ± 0.02 35 0.34 ± 0.02 43 0.35 ± 0.02 26 0.35 ± 0.03 21 0.34 ± 0.02 20 0.35 ± 0.03

≤0.5 32 0.43 ± 0.03 41 0.43 ± 0.03 38 0.43 ± 0.03 15 0.42 ± 0.02 36 0.43 ± 0.03 21 0.44 ± 0.03

≤0.6 144 0.52 ± 0.03 249 0.52 ± 0.03 168 0.52 ± 0.03 99 0.52 ± 0.03 161 0.52 ± 0.03 99 0.53 ± 0.03

≤0.7 245 0.66 ± 0.03 540 0.66 ± 0.03 297 0.65 ± 0.03 157 0.66 ± 0.03 499 0.66 ± 0.03 156 0.66 ± 0.03

≤0.8 445 0.75 ± 0.02 1725 0.76 ± 0.03 584 0.76 ± 0.02 270 0.75 ± 0.02 2246 0.76 ± 0.02 240 0.75 ± 0.02

≤0.9 3019 0.86 ± 0.03 6607 0.86 ± 0.03 3720 0.86 ± 0.03 1644 0.86 ± 0.03 6808 0.85 ± 0.03 1964 0.86 ± 0.03

≤1 47312 0.98 ± 0.03 41511 0.97 ± 0.03 46315 0.98 ± 0.03 49038 0.99 ± 0.02 40941 0.97 ± 0.03 48692 0.98 ± 0.03

The calculation based on array genotypes and corresponding sequence-based genotypes obtained with different variant callers at positions where SNPs from the
array were available on chromosomes 3, 6 and 28
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two different versions of freebayes. The older version of
freebayes (version v9.9.2-22-gc283d6d) called 524,938
SNPs (29 %) more than the newer version (version
v0.9.15-1-g076a2a2) based on the same data material on
chromosomes 3, 6, and 28. Thus, our ranking of callers
is only valid for the specific versions used here.
It needs to be mentioned that the only alignment tool

used in this study was BWA with different variant callers
to make sure that variants are called based on the same
basic data sets, to ensure a fair comparison of the callers.
However, each step listed in the pipeline (Additional
file 7) affects the quality of the final SNP calls, in-
cluding the alignment step. Besides, it is possible that
different callers combined with different alignment
tools may have a different performance, an aspect
which was not investigated in this study. However,
BWA is one of the widely used alignment tools,
which is known to have a good performance as well
[34]. Based on the results on the quality measures
and regarding computation time (GATK which sup-
ports multiple threads was faster than SAMtools and
freebayes, as shown in Additional file 8) and useful-
ness (i.e. quality, completeness and availability) of the

software documentation, we decided to use the vari-
ants called by GATK as basis for the imputation part
of this study. It turned out that there were 1,652,105
SNPs remaining on chromosomes 3, 6 and 28 totally
in the brown layer chicken dataset for the imputation
study. As mentioned before, there were different pipe-
lines to deal with the whole-genome sequencing data
with or without strictly filtering on genotype quality
of each SNP and each individual. In this study, we
did not filter genotype quality while enhancing the
original genotype quality with Beagle 3.3.2 as was
done in the study of Jansen et al [37] in order to use
more SNPs in the analysis.

Imputation accuracy
Leave-one-out cross-validation
A leave-one-out cross-validation was performed for each
individual that was both sequenced and genotyped (i.e.
24 out of 25 sequenced individuals) to assess imputation
accuracy from SNP array data to whole-genome se-
quence. For chromosomes 3, 6 and 28, the genotype cor-
relation and concordance achieved by three different
imputation packages (Minimac, FImpute and IMPUTE2)

Fig. 2 Comparison of the genotype concordance, non-reference sensitivity, non-reference genotype concordance and precision of GATK,
freebayes and SAMtools over various minor allele frequency bins. SNPs were binned into 100 groups according to their array-derived
MAF. The mean of each metric was calculated within each minor allele frequency bin. The statistics of different genotype concordance
metrics were measured according to Linderman et.al [20]. The orange squares represent variant caller GATK. The green circles stand for
variant caller freebayes. The blue triangles stand for variant caller SAMtools
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are shown in Fig. 3. Generally speaking, imputation ac-
curacy assessed as correlation and concordance between
imputed and sequence-derived genotypes within se-
quenced individuals was high with all imputation pack-
ages, with the performance of FImpute being slightly
worse than the one of Minimac and IMPUTE2.
Over all three chromosomes, the average genotype

correlation ± standard deviation between imputed and
sequence-derived genotypes was 0.91 ± 0.028 for Mini-
mac, 0.89 ± 0.028 for FImpute and 0.90 ± 0.027 for IM-
PUTE2. These results implied that also pedigree-free
imputation software (Minimac and IMPUTE2) yielded
accurate genotypes for whole sequence variants in this
data set. Most of the sequenced individuals in this study
were contemporaries in a commercial breeding program
which controls for the level of relationship and inbreed-
ing, thus pedigree relationship among these individuals
was relatively low. This may explain why imputation
programs based on pedigree algorithms, such as FImpute,
have no advantage in this leave-one-out cross-validation
strategy.
Over all three imputation programs, the average geno-

type correlations for SNPs on chromosomes 3 and 6
were quite similar. However, for chromosome 28, which
is much smaller than the other two chromosomes stud-
ied, the average genotype correlation was slightly lower
and the standard deviation was larger compared to chro-
mosomes 3 and 6. In the study of Hancock et al. [45], it
was also found that imputation accuracy tended to be
better on larger chromosomes (i.e. chromosome 1) than
on smaller chromosomes (i.e. chromosome 22) in the

human genome, even when there was no significant dif-
ference between these two chromosomes in typical char-
acteristics (e.g. SNP density). The results of genotype
concordance had a similar tendency as genotype correl-
ation, but with a smaller standard deviation, particularly
for chromosome 28. Overall, the imputation accuracies
of different programs were largely similar in this scheme,
although FImpute again performed slightly worse than
the other two on chromosomes 3 and 6.
Leave-one-out cross-validation is the only strategy of

assessment of imputation quality that allows taking all
SNPs from sequenced data into account when calculat-
ing measures like genotype correlation. However, it
should be mentioned that in most cases in practice indi-
viduals to be imputed are descendants of the sequenced
individuals, which was not the case in this leave-one-out
setup. Assessing whether the sequence of offspring is
correctly imputed can only be done if a sample of such
offspring is actually sequenced, and such data are pres-
ently not available in sufficient quantities. Thus these re-
sults of this analysis should only be extrapolated with
caution to the practically most relevant case of imputing
sequence of current selection candidates based on se-
quenced founder animals.

Genotype conflicts in father-progeny pairs
Based on the available pedigree, it is possible to apply
Mendelian rules to estimate the percentage of genotype
conflicts for all SNPs in father-progeny pairs (i.e.
progeny’s genotype is alternatively homozygous to fa-
ther’s homozygous genotype) for an imputed progeny

Fig. 3 Imputation accuracy assessed by leave-one-out cross-validation. Genotype correlation (top panel) and genotype concordance (bottom
panel) between the sequenced and imputed genotypes for 24 sequenced individuals with different imputing programs
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compared to each sequenced individual. There were
134 father-progeny pairs in the available pedigree for
which the father was sequenced and the progeny
was imputed. The number of progenies per father
varied from 1 to 44. Comparisons of the imputation
performance based on the father-progeny pair con-
flict (Fig. 4) show that FImpute (on average 0.01 %)
outperformed Minimac and IMPUTE2 clearly, which
should be expected, since pedigree information is
used in FImpute while both other programs are
pedigree-free algorithms. Furthermore, Minimac was
still much better (on average 0.11 %) than IMPUTE2
which produced conflicts with 2.5 % of the imputed
SNPs on average. When focusing on the performance
of Minimac and FImpute on each chromosome,
Minimac showed better performance on the larger
chromosome 3 than on smaller chromosomes, likely
due to the fact that there is more recombination on
the micro-chromosomes which can result in less LD
[46]. The results of FImpute for the three chromosomes
were similar, in spite of the fact that the percentage of
conflicts was slightly higher on chromosome 28 than on
the other two.

Imputation accuracy for randomly masked 1000 SNPs in
genotyped individuals
In this scenario, the quality of imputation was assessed
by the correlation between imputed and masked true
genotypes per individual and/or per SNP. The average
imputation accuracy of different software programs
plotted for MAF bins is shown in Fig. 5. Correlation
between imputed and true genotypes per SNP over all
individuals was calculated. For this, all SNPs ran-
domly masked in all 5 replicates were binned based
by their sequence-derived MAF, and the average

correlation in each bin was assessed. In general, the
imputation accuracy (± S.D.) of FImpute was lower
(0.90 ± 0.11) compared to Minimac (0.97 ± 0.033) and
IMPUTE2 (0.97 ± 0.036). FImpute performed particu-
larly poor for SNPs with a MAF smaller than 0.2. Im-
putation accuracies from Minimac and IMPUTE2
were comparatively stable with different MAFs, with a
small reduction when MAF was low (<0.1). Our re-
sults are in general agreement with several previous
studies (e.g. in cattle [9, 47, 48] or human [49, 50])
which also found that imputation accuracy decreased
rapidly when MAF is low with different imputation
software packages. Hence, the ability to accurately im-
pute SNPs with low MAF is one of the most import-
ant criteria to assess the imputation programs. Usage
of a diverse reference population may increase the
imputation accuracy of rare variants [50–52], however,
the computational burden also increases with the in-
crease of the size of the reference population [31, 49].

Fig. 4 The percentage of genotype conflicts in father-progeny pairs. The conflicts were calculated within 952,826 (365,802, 37,556) imputed SNPs
on chromosome 3 (6, 28) for 134 pairs of sequenced fathers and imputed progeny. Imputation was performed using Minimac (left), FImpute (mid-
dle) or IMPUTE2 (right)

Fig. 5 Mean of imputation accuracy of different software against
minor allele frequency among 5 replications. SNP were binned by
their sequence-derived MAF
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Thus, the trade-off between the imputation accuracy
and imputation efficiency needs to be considered.
As imputation accuracy depends (amongst others) on

the relationship between reference individuals and indi-
viduals to be imputed, the trend of imputation accuracy
when there was a different number of generations be-
tween reference and validation individuals was investi-
gated. The relationship between sequenced individuals
and genotyped individuals, which was estimated as the
percentage of genotyped individuals having a high rela-
tionship ≥ 0.25 (or 0.5) with at least one of sequenced
individual is shown in Additional file 9. Imputation
accuracy with 95 % confidence interval obtained for
individuals from different generations with different
imputation programs is shown in Fig. 6. Imputation ac-
curacy measured as the correlation between original im-
puted and original true genotype per individual is shown
in Fig. 6a, while imputation accuracy measured as the
correlation between standardized imputed and standard-
ized true genotype per individual is shown in Fig. 6b.
Generally, imputation accuracies for all three programs
based on standardized genotype were lower than based
on original genotype with larger standard deviation;
however, the tendency of imputation accuracy along
generations was the same for both measures. In the sce-
nario with original genotype, comparing the three im-
putation software studied here, IMPUTE2 showed the
highest genotype correlation for individuals from all gen-
erations, while FImpute showed the lowest genotype
correlation. From generations 1 to 3, the average geno-
type correlation increased slightly, while from genera-
tions 4 to 6 hardly any trend was observed. However,
there was no significant difference between adjacent
generations while there was significant increase when

comparing generation 1 to generations 4, 5 and 6 re-
spectively for Minimac and IMPUTE2, and there was a
significant increase between generation 1 and 4 for FIm-
pute. In the scenario with standardized genotype, there
was a significant increase between generation 1 and gen-
eration 2. These results suggested that imputing SNP
array data up to sequence level is possible with high ac-
curacy even across several generations. Our results thus
confirm results from a previous study [25] which sug-
gested that imputation quality did not deteriorate when
the imputed population was three generations away
from the sequencing population. It should be mentioned
that the data we used here were from a closed line
(Qanbari et al. [53] estimated the effect population size
(Ne) for individuals from a commercial brown layer line
cross and found a recent Ne of 70) and the results may
differ in more open populations with higher effective popu-
lation size, migration or variability in mating schemes.

Conclusions
Based on data from 50 sequenced individuals from two
layer lines, we compared the performance of three vari-
ant callers for a subset of SNPs (~50 k) that were avail-
able from whole-genome sequencing and SNP array in
24 out of 1081 individuals that were both fully se-
quenced and genotyped with the 580 k array. Results
showed that a high proportion of SNP calls had high
values in different measures of quality (amongst others
genotype concordance and non-reference sensitivity)
with all variant callers. GATK showed a slightly better
performance than SAMtools and freebayes. We further
demonstrated that three commonly used imputation
programs were capable of imputing from SNP array data
up to whole-genome level in a brown layer line based on

Fig. 6 Imputation accuracy with 95 % CI of masked SNPs in different generations obtained with different imputation software package. The
imputation accuracy is the correlation between the sequenced and imputed genotypes which were masked as dummy genotypes on 3
chromosomes (3, 6 and 28) with 5 replications. Imputation accuracy measured as the correlation between original imputed and original true
genotype per individual is shown in (a), while imputation accuracy measured as the correlation between standardized imputed and standardized
true genotype per individual is shown in (b)
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a small number of sequenced individuals with substan-
tial imputation accuracy, even across several generations.
FImpute performed slightly worse than Minimac and
IMPUTE2 in terms of genotype correlation, especially
for SNPs with low minor allele frequency, while it
yielded the lowest numbers of Mendelian conflicts in
available father-progeny pairs. Imputation accuracy was
lower for rare SNPs than for common SNPs, which con-
firmed previous results in other species. Overall, se-
quence imputation from a very limited number of
sequenced individuals appears to yield reasonably accur-
ate results in closed breeding populations as available in
many nucleus breeding programs.

Availability of supporting data
The reference genome used for alignment was taken from
a public database and is available for download from
UCSC genome browser (http://hgdownload.soe.ucsc.edu/
downloads.html#chicken). PLINK binary files containing
genotype and map information of all variants on chromo-
somes 3, 6 and 28 detected by GATK in the 50 sequenced
individuals are available at doi: 10.6070/H47H1GKK.
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