
TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Proteomik und Bioanalytik

An in-memory platform for the exploration
and analysis of big data in biology

Mathias Wilhelm

Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für
Ernährung, Landnutzung und Umwelt der Technischen Universität München zur
Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzender: Univ.- Prof. Dr. Dmitrij Frischman

Prüfer der Dissertation: 1. Univ.- Prof. Dr. Bernhard Küster
2. Univ.- Prof. Dr. Hans-Werner Mewes
3. Univ.- Prof. Dr. Oliver Kohlbacher

Die Dissertation wurde am 22.12.2016 bei der Technischen Universität München
eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung,
Landnutzung und Umwelt am 07.03.2017 angenommen.





“We can only see a short distance ahead,
but we can see plenty there that needs to be done.”

- Alan Turing
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Abstract
Mass spectrometry-based proteomics has become the leading technology to identify and quantify
thousands of proteins in a single experiment and has plenty of applications in discovery and
targeted experiments ranging from characterizing biological samples, over drug-protein
interaction analysis to biomarker discovery and patient classification. Providing access to
previously conducted experiments is key to make use of the wealth of data in order to correlate
or cross-compare studies. In the past, multiple databases and platforms have been developed to
address questions arising in both wet and dry lab, but these lack depth, performance and
versatility. If data are available in public repositories, their annotation is often superficial and the
data generation and processing platforms are of varying capability, performance and maturity.
Importantly, there is also a significant challenge in making ‘big data’ more widely accessible to the
scientific community because the development of scalable analysis tools is only in its infancy.
Chapter 2 describes the implementation and design choices made to build a versatile and
performant database to store and analyze bottom-up mass spectrometry-based proteomics data,
termed ProteomicsDB. Due to the use of the in-memory database technology SAP HANA, this
system not only allows the integration of thousands of proteomic experiments on both
identification and quantification level but also to perform complex queries. The addition of the
experimental  design,  a  versatile  data  model  to  portray  the  heterogeneity  of  proteomics
experiments, allows ProteomicsDB to model and visualize complex experimental setups. This is
illustrated on two assays that are used to find protein-drug interactions. The integration of
multiple experiments and transcriptomic data allows cross experiment analysis and illustrates the
utility beyond protein expression profiles. ProteomicsDB thus enables the navigation of
proteomes, provides biological insight and fosters the development of proteomic technology.
In chapter 3 the assembly and analysis of a first draft of the human proteome is described. For
this purpose, re-analyzed results of more than 16,000 raw data files were imported into
ProteomicsDB providing peptide level evidence for about 18,000 human genes. The information
assembled from human tissues, cell lines and body fluids allowed estimating the size of the protein
coding genome and identified organ-specific proteins. Analysis of mRNA and protein expression
profiles of human tissues revealed conserved control of protein abundance, integration of drug
sensitivity data allowed the identification of proteins predicting resistance or sensitivity to
targeted cancer drugs and proteome profiles also hold considerable promise for analyzing the
composition and stoichiometry of protein complexes. However, this assembly also highlighted
major issues in the standard approach of calculating the protein FDR in ‘big data sets’.
Chapter 4 addresses the issue of estimating the protein FDR in large scale studies, databases and
repositories. Here, a simple and readily available adjustment, termed the ‘picked approach’, of
the commonly used classical protein FDR model is described which allows an unbiased, scalable
and precise estimation of the number of false positive identification. The picked protein FDR
approach treats target and decoy sequences of the same protein as a pair rather than individual
entities and chooses either the target or the decoy sequence depending on which receives the
highest score. The results suggest that this method scales to any size, is less susceptible to low
quality, noisy data and can be used on both protein and gene level while also increasing the
number of identified proteins at low FDR cutoffs.
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Zusammenfassung
Massenspektrometrie-basierte Proteomik ist zur Standardmethode in der Proteinanalytik
geworden und ermöglicht die gleichzeitige Identifizierung und Quantifizierung tausender
Proteine. Ihr Anwendungsbereich reicht von der Charakterisierung unbekannter Proben, der
Analyse von Protein-Wirkstoff-Wechselwirkungen bis zur Identifizierung von Biomarkern und zur
Klassifizierung von Patienten. Die Bereitstellung erhobener und bereits publizierter Daten erlaubt
es, Wissenschaftlern eigene Ergebnisse und veröffentlichte Experimente zu vergleichen und zu
validieren. Für diesen Zweck wurden einige Datenbanken entwickelt, jedoch fehlt es vielen an
Tiefe, Performance und Vielseitigkeit, um komplexe Experimente miteinander zu vergleichen.
Daten in öffentlichen Datenbanken sind oft nur unzureichend annotiert und von variierender
Qualität. Zudem befindet sich die Bereitstellung von großen proteomischen Datenmengen noch
in der Anfangsphase, da skalierbare Methoden und Applikationen für die interaktive Exploration
und Analyse weitgehend fehlen.
Kapitel 2 beschreibt die Entwicklung und Implementierung von ProteomicsDB, einer vielfältig
einsetzbaren und performanten Datenbank für die Speicherung und Analyse von Daten aus
bottom-up-Proteomik-Experimenten. Der Einsatz von HANA, einer In Memory Datenbank,
entwickelt von SAP als Datenbankmanagementsystem, erlaubt hierbei die Integration von
Ergebnissen aus tausenden Experimenten. Die Ablage des experimentellen Designs ermöglicht
sowohl die Visualisierung komplexer Zusammenhänge als auch vergleichenden Analysen von
Ergebnissen aus verschiedenen Experimenten. Deutlich gemacht wird dies am Beispiel der
Wirkstoffforschung, indem zwei Experimenttypen zur Aufklärung von Protein-Wirkstoff-
Beziehungen unterstützt werden. Diese Integration und die Erweiterung des Datenbankmodells
auf quantitative Transkriptdaten zeigt die Nützlichkeit von ProteomicsDB jenseits von
Proteinexpressionsdaten.
In Kapitel 3 wird die Zusammenstellung und Analyse eines ersten Entwurfs des menschlichen
Proteoms beschrieben. Hierfür wurden die Ergebnisse von mehr als 16.000 Datensätzen in
ProteomicsDB importiert, die zusammengenommen Evidenz für rund 18.000 menschliche Gene
beinhalten. Die Daten umfassen Experimente von menschlichen Zelllinien, Geweben und
Körperflüssigkeiten und erlauben damit in erster Näherung eine Abschätzung des translatierten
menschlichen Genoms und die Identifizierung Gewebe-spezifischer Proteine. Desweiteren wird
gezeigt, dass Proteinexpressionsdaten sowohl für die Vorhersage von Sensitivität- und
Resistenzmarkern für Wirkstoffe als auch zur Bestimmung der Zusammensetzung und
Stöchiometrie von Proteinkomplexen verwendet werden kann. Die integrative Analyse von
mRNA- und Proteinexpressionsdaten offenbarte ein konserviertes Verhältnis von Transkript- und
Proteinmenge, das zur Vorhersage von Proteinabundanzen verwendet werden kann. Die
Zusammenstellung der Daten legt jedoch auch offen, dass die Bestimmung der false discovery rate
auf Proteinebene in großen Datensätzen mit Hilfe des Standardmodells nur sehr eingeschränkt
möglich ist.
Kapitel 4 beschäftigt sich mit der Abschätzung von Protein false discovery rate in großen
Einzelstudien, Datenbanken und Repositorien. Hier wird eine einfache und leicht einsetzbare
Methode, der sogenannte „picked“-Ansatz, vorgestellt, der die Standardmethode erweitert und
eine genaue und unvoreingenommene Abschätzung der false discovery rate liefert. Im Vergleich
zur Standardmethode werden beim „picked“-Ansatz Target- und Decoy-Sequenzen eines Proteins
als zusammengehörendes Paar und nicht als einzelne Sequenzen interpretiert. Vor Berechnung
der FDR wird pro Paar jeweils nur die Sequenz mit höchster Konfidenz ausgewählt und die
Akkumulierung von falsch-Positiven verhindert. Die Ergebnisse zeigen, dass die hier vorgestellte
Methode auf beliebige Datensatzgrößen skalierbar ist, weniger anfällig gegenüber schlechter
Datenqualität ist und sowohl auf Protein- als auch Gene-Ebene anwendbar ist.
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“It always takes longer than you expect, even when you take into account Hofstadter's Law”
- Hofstadter's Law; Gödel, Escher, Bach: An Eternal Golden Braid
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1 From genomics to proteomics
More than a decade ago, an international research effort changed todays view on all major areas
of life. The completion of the Human Genome Project1 led to many technological2 and scientific3

advancements and even affected modern legislation and politics4. With the advent of genomics
and its technologies, culminating in high-throughput next generation sequencing5, the routine
sequencing of entire genomes and quantification of ribonucleic acid (RNA) even in single cells is
possible. Today, this allows the systematic interrogation of the dynamics of transcription6,7,
enabling us to investigate processes such as alternative splicing, mRNA processing and gene
expression8.
While the genome is generally viewed as the blueprint of an organism, the complexity of a living
organism is largely determined by the dynamic and versatile nature of its products. Following
transcription, messenger RNA (mRNA) is translated into proteins, which carry out almost all
chemical reactions in cells. Proteomics, the study of proteomes and their function, provides a
complementary approach to study the molecular processes of living organisms by adding yet
another level of complexity. Fueled by the ability to decipher the genetic code, proteomics enables
the methodical interrogation of processes such as mRNA translation, protein stability, protein-
protein interactions, protein localization, and post-translational modifications. However, the
ultimate goal of proteomics is to identify and quantify all protein isoforms including their present
modifications in any living system simultaneously.
Proteomics has experienced a significant evolution within the past decades. Starting with two-
dimensional gel electrophoresis9,10, especially the advances in mass spectrometry11,12 enabled the
identification and quantification of more than 10,000 proteins in single cell lines13,14, covering up
to 10 orders of magnitude in dynamic range of expression15. Mass spectrometers have proven its
applicability in a broad range of applications in history and led to major scientific discoveries even
on distant planets16. Today, mass spectrometry is an irreplaceable tool for the analysis of a wide
range of (bio) molecules17-20, enabling the exploration of almost all biological processes. However,
especially the large number of applications in the field of proteomics has led to its vital role in bio
sciences12,21,22, ranging from discovery23 to targeted experiments24,25 covering  e.g.  the
characterization of biological samples13,14, biomarker discovery26, patient classification27, signaling
pathway analysis28 and drug discovery22.  However,  in  order  to  reach  the  ultimate  goal  of
proteomics, many technical but also computational challenges lay ahead.
The amount and complexity of data generated by genomics, transcriptomics and proteomics
propelled the development of automatic processing, annotation and storage tools29. Covered by
the field of bioinformatics30, particularly today, mass spectrometry-based proteomics requires
novel and sophisticated algorithms and tools to address both data processing and data
integration. This need gave rise to computational proteomics31, a field of research dedicated to
improve and simplify data acquisition, processing, analysis, integration and interpretation26,32-35.
Due to the complexity of proteomic experiments, defining a unified facility to store well annotated
results is challenging. While many efforts to collect and integrate publicly available proteomics
datasets exist36,37,  it  is often difficult to retrieve a comprehensive list of identified proteins in a
specific biological source or a list of biological sources where a specific protein or post-
translational modification is present. Moreover, the lack of integrated meta data24,38 and
quantitative information often only enables the interaction with identification data, rendering this
valuable part of the data inaccessible and futile.
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2 Mass spectrometry-based proteomics
Mass spectrometry-based proteomics is divided into two prevalent paradigms39. The “top-
down”40 approach studies intact proteins and thus enables the identification of proteoforms.
However, due to the large diversity of proteins with respect to biochemical and physical
properties, both sample preparation and data acquisition are difficult and hinder the systematic
and automatic analysis of complex mixtures. The alternative is the more commonly applied
“bottom-up” approach17,23,41,42. Here, proteins are digested into peptides using site-specific
proteases prior to mass-spectrometric analysis (see Figure 1.1). Depending on the complexity of
the resulting peptide mixture, subsequent on- or off-line separation, most commonly utilizing
liquid chromatography (LC), is necessary. Modern (tandem) mass spectrometers (MS) enable the
identification and quantification of tens of thousands of peptides to infer the presence and
abundance of proteins in almost any biological sample.
Due to the scope of this thesis, the main focus is on bottom-up mass spectrometry-based
proteomics. This section briefly covers all general aspects of sample acquisition starting with the
sample preparation, basics in mass spectrometry and its application and acquisition methods in
proteomics and quantification approaches.

Figure 1.1 | Generic bottom-up proteomics workflow. A typical mass spectrometry-based proteomics
workflow includes (1) protein extraction, (2) protein digestion, (3) peptide separation, (4) sample ionization,
(5) MS measurement and (6) data analysis. Figure from42.

2.1 Sample preparation
The general goal of sample preparation is to resolve and identify as many proteins in a complex
biological matrix as possible or to enrich sub-proteomes or complexes which are otherwise not
accessible43,44. Even though a generic bottom-up proteomics workflow exists (Figure 1.1),
individual steps can be achieved and modified by several different means. After the extraction of
proteins from a biological sample such as cells, tissues or body fluids, the protein mixture can be
further separated45 by immunoassays or other affinity extractions, chromatography and, more
commonly, electrophoresis46. Subsequently, proteins are digested into peptides using sequence-
specific proteases. The most commonly used protease is trypsin, which specifically cleaves
proteins on the carboxyl-terminal side of lysine and arginine residues47. Trypsin enjoys great
popularity since the resulting peptides contain a basic residue at the C-terminus and an average
length of 10-14 amino acids, both highly desired properties for subsequent MS analysis. However,
alternative proteases such as Lys-C, Asp-N, Glu-C can be used to generate complementary
peptides which can significantly increase the sequence coverage in comparison to solely using
trypsin48,49 and also enable access to proteins which do not generate MS-accessible or any tryptic
peptide.
The resulting complex mixture of peptides typically exceeds the capacity on any analytical
acquisition method used to date50. Especially when trying to analyze post-translationally modified
(PTM) peptides additional purification steps are necessary to enrich these typically low abundant
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peptide species51-55. Thus, prior to injection of the analyte into the mass spectrometer, additional
offline peptide separation techniques can be employed to further decrease the complexity of the
sample and thus increase the number of identified peptides56. Sample acquisition benefits most
when orthogonal dimensions of separation are used. Common approaches for peptide separation
utilizing orthogonal separation techniques are isoelectric focusing (IEF)57,58, strong cation or anion
exchange chromatography (SCX and SAX)59 or hydrophilic interaction chromatography (HILIC)60.
Liquid chromatography (LC) can be coupled directly (online) to the mass spectrometer (LC-MS).
Due to the high compatibility of the solvent components (water, acetonitrile, organic acids),
reversed phase ion-pairing separation is almost exclusively used in mass spectrometry-based
proteomics applications. The general principle is that under aqueous acidic conditions the
protonated peptides are retained on the C18 material (stationary phase) of the chromatographic
column. This force is reduced when an increasing percentage of organic solvent is added to the
mobile phase, thus increasing the hydrophobicity. A typical setup used for online peptide
separation in nanoflow LC-MS uses column lengths of 10 to 50 cm with an inner diameter of 50 to
100 μm, a particle size of 1 to 5 μm and an applied flow rate of 100 to 500 nL/min.

2.2 Mass spectrometry
A mass spectrometer generally is comprised of three parts: 1) an ionizer, 2) a mass analyzer and
3) an ion detector. After ionization, the analyte is transferred into the mass spectrometer via an
electrostatic potential. Subsequent separation and detection of ions reaching the detector
generate a mass spectrum which records the measured signal at an m/z (mass-to-charge) value.

2.2.1 Sample ionization
Ionization describes the process of adding charges to a molecule of interest. Several ionization
methods are available, where the principle is the same: Removing or adding protons or electrons
causes the molecule to retain one or multiple charges.
Electrospray Ionization (ESI) is the most commonly used ionization technique in mass
spectrometry-based proteomics61. It allows an automated analysis of peptide mixtures by means
of LC, due to the direct infusion of the sample into the detector (Figure 1.2). For this purpose, a
small needle is filled with a solution containing the molecules of interest. A high voltage is applied
between the needle and the detector entrance, which separates the charges at the surface of the
fluid and forces the fluid to emerge from the needle, creating an aerosol. The resulting droplets
are attracted to the entrance of the detector and, in the transition, the volatile solvents (mostly
acetonitrile) evaporate (desolvation) until they become unstable upon reaching the Rayleigh limit.
Due to the ever-decreasing size of the droplets, the electrostatic repulsion becomes more
powerful than the surface tension of the droplets, which leads to Coulomb fission, whereby the
original droplets explode. The newly created droplets again undergo desolvation and Coulomb
fission. The exact mechanisms of how gas-phase ions are produces is still debated, but two main
theories, the ion evaporation model and the charge residue model, exist62,63. In bottom-up
proteomics, ESI generates mostly doubly or higher charged peptides. The efficiency of ionization
can be enhanced by the introduction of additives, such as DMSO64.
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Figure 1.2 | Schematic visualization of electrospray ionization. A complex mixture of peptides is separated
by liquid chromatography. Prior to the injection into the mass spectrometer, peptides are ionized by a
applying a high voltage between the electrospray needle and the entrance to the mass spectrometer. The
emerging droplets release charged peptides which can be manipulated and measured by a mass analyzer
and detector. Figure from42.

Nanoelectrospray Ionization (NanoESI) is a variant of ESI with a very small needle diameter65. The
ionization efficiency is increased and thus smaller amounts of the sample are needed. A
convenient side effect of having a smaller needle and smaller droplets is less evaporation is
needed, which means that solvent impurities are less concentrated as compared to ionization with
ESI.

2.2.2 Mass analyzers and ion detectors
A mass analyzer measures ions with respect to their mass-to-charge (m/z) ratio by separating
them in space or time. Their performance is generally described by two different terms. First, the
resolution or resolving power R depends on the full width at half maximum of an m/z peak and
the expected m/z of an ion, and describes the ability to differentiate an ion from any other.
Contrary, the accuracy describes the ability to calibrate an instrument against a known entity.
Electron multipliers are ion detectors commonly used in combination with mass analyzers which
do not have an integrated detector. They consists of a series of dynodes which emit electrons
upon the impact of an ion. Each dynode in this series is held at a higher potential, causing more
electrons to be expelled in each step. This cascade results in a detectable electrical signal which
can be recorded.
Ion trap66,67 mass analyzers or quadrupolar traps are typically composed of four parallel rod-
shaped electrodes. The general mechanisms of confining ions in space is realized by applying
direct (DC) and alternating current (AC) to opposing rods. The AC, also referred to as main RF due
to its frequency, confines ions radially, whereas DC creates a potential well for axial confinement.
Trapped ions are in a cork-screw like (secular) motion, proportional to the main RF amplitude and
the mass of the ion. Ion trap scanning employs “resonance ejection”, which is realized by applying
an additional AC to the exit rods within the trap. For this purpose, both the additional AC and the
main RF are ramped so that ions of different m/z enter resonance with the exit rod and are ejected
through their slits. During scanning, the number of ejected ions are recorded using electron
multiplier. For isolation, all frequencies necessary for the ejection of unwanted ions are
superimposed, resulting in a complex AC waveform. The most widely used two dimensional linear
ion trap enables ions to spread out axially more than in three dimensional traps, increasing their
capacity.
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Quadrupole (Q) mass filters, similar to ion traps, consist of four parallel metal rods67,68. In contrast
to traps ions are, depending on the field, moving through the quadrupole. This is possible because
a DC with equal amplitude but opposing sings is applied to pairs of rods. Similar to traps, changing
the DC and AC amplitude influences the ions’ movement depending on the m/z. The secular
motion of the ions is altered by the AC and can be used to let ions with small m/z collide with or
pass through the rods (high mass pass filter). Similarly, the DC is used to “eject” ions with high m/z
(low mass pass filter). While the quadrupole is often used as a mass filter, enabling the isolation
of ions within a specific m/z range, it can also be used for scanning, but also relies on subsequent
ion detectors such as the electron multiplier.
Time-of-flight (TOF) mass analyzers utilize an electric field to accelerate ions in a high vacuum to
the same kinetic energy69.  Due to  their  higher  velocity,  lighter  ions  will  reach the ion detector
earlier than heavier ions. The time an ion needs to arrive at the detector is used to calculate the
m/z of the ion. The reflectron TOF (re-TOF) uses a constant electrostatic field to reflect ions before
they arrive at the detector. It combines the TOF technology with an electrostatic mirror, the
reflector, to increases the time ions need to reach the ion detector. The reflector also reduces the
variance of the kinetic energy of the ions and, in combination with the increased flight path, results
in a higher resolution.
Fourier transform (FT)  mass  analyzers  use the principle  of  monitoring the motion of  ions  in  a
magnetic field70. After excitation, the ions orbit at their cyclotron frequency as a coherent cluster.
The induced image current at two electrodes is recorded and by performing an Fourier transform
the mass to charge ratio of the oscillating ions can be deduced. Frequencies can be measured with
very high accuracy and thus the resolution of FT mass analyzers increases when acquiring the FT
spectrum for a longer time (increased transient time). Typically, several quadrupole ion guides are
used to select and direct the ions into the FT mass analyzer. An implementation of an FT MS is the
Fourier transform ion cyclotron resonance mass spectrometer (FT ICR)71.
Orbitrap mass analyzers are part of the FT MS family72,73. An electric field is applied between an
outer barrel-like electrode and an inner spindle-like electrode. Ions are injected tangentially to the
electric field which causes the ions to move in a stable orbit around the inner electrode, balanced
by their centrifugal force. This equilibrium also forces ions with lower m/z closer  to  the  inner
spindle. In contrast to FT MS, the ions show an axial oscillating movement along the inner
electrode. The frequency of the axial movement is inversely proportional to the square root of the
m/z value, which is used to calculate the m/z of the ions. Recent advancements further increased
the mass accuracy and resolving power by the introduction of a compact high-field Orbitrap and
an enhanced Fourier transform algorithm11,74,75, rendering Orbitrap mass analyzers one of the
most commonly used mass spectrometer in discovery bottom-up mass spectrometry-based
proteomics experiments.

2.3 Tandem mass spectrometry
Tandem mass spectrometry enables the identification of the primary sequence of a peptide. For
this purpose a first mass spectrum of the intact peptides is recorded, referred to as full or survey
scan (Figure 1.3). These spectra are typically recorded with high mass accuracy and resolution to
allow the precise calculation of the neutral peptide mass. To derive sequence information, a
subsequent tandem fragmentation spectrum (product ion spectrum or MS/MS spectrum) is
acquired. Therefore, a peptide ion of interest is selected (precursor selection) and a population of
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that ion is collected for fragmentation, which introduces random breaks in the peptide backbone
thus generating a population of fragment ions. The position and differences of the resulting
fragment ions can be used to determine the sequence of the selected peptide.

Figure 1.3 |Acquisition schema of a bottom-up shotgun proteomics experiments. The peptide mixture is
separated by HPLC and analyzed by MS in full-scan mode. Using simple data-dependent acquisition
heuristics based on signal intensity, peptide ions are selected for fragmentation and dissociated by
collisional activation. The resulting MS/MS spectra permit determination of the amino acid sequence of the
fragmented peptide. The intensity of the precursor ion signal in the survey scan is used for quantification.
The insert indicates the different modes of acquisition; either sequential MS and MS/MS analysis as
performed using a quadrupole/time-of-flight instrument (A), or parallel analysis as performed on a linear
ion trap/Orbitrap mass spectrometer (B). Figure from26.

A commonly employed method to select precursor ions is data-dependent acquisition (DDA)
which chooses intact peptide ions based on their signal intensity in the survey scan. To avoid
multiple selection of the same peptide ion, the selected neutral mass is temporarily stored in a
dynamic exclusion list which is maintained by the mass spectrometer.

2.3.1 Fragmentation
A variety of fragmentation techniques were developed and implemented76-78 to derive structural
information about a peptide. For this purpose, random breaks in the backbone of the peptide are
induced and in an optimal case produce all possible fragment ions along the peptide backbone. In
principle, the peptide backbone can break at three positions (Figure 1.4). The nomenclature of the
resulting peptide fragments was first described by Roepstorff and Fohlmann79, followed by
Johnson et al.80. Fragments containing the N-terminal site of the peptide are termed an, bn, and
cn-ions whereas C-terminal containing fragments are named xn, yn and zn-ions. Here, n indicates
the position of the break within the peptide backbone.
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Figure 1.4 | Peptide fragmentation nomenclature according to Roepstorff and Fohlmann79,80. N-terminal
fragments are named an, bn, cn ions and C-terminal fragments are xn, yn, zn.

In collision-induced dissociation (CID) ions are vibrationally excited by an electrical potential to a
high kinetic energy81.  This  is  typically  performed in  an ion trap using the same principle  as  for
ejection. However, because the ion trap is filled with an inert gas, such as helium or nitrogen, ions
stay in resonance without ejection. To avoid the balance between scanning/filtering and
fragmentation, the dual linear ion trap consists of a low- (scanning) and high- (fragmentation)
pressure cell. In the high-pressure cell, ions will eventually collide with molecules of the inert gas.
The collision converts some of the kinetic energy into internal energy, which causes the weak
peptide bonds to break and thus lead to fragmentation. Because the resulting fragment ions have
lower m/z, the applied AC does not further excite them, thus preventing further fragmentation.
However, this leads to problems in the analysis of labile modifications, such as phosphorylation.
Weak bonds preferentially break and because of no further fragmentation, no structural
information about the peptide is generated. CID generates predominantly b, and y-ions.
Higher-energy collisional dissociation (HCD), also termed high-energy CID or beam-type CID uses
the same principle as CID but with higher collision energies82. This is achieved by accelerating ions
by a stronger electric field which is commonly applied between the first mass analyzer and a
dedicated collision chamber. Again, the collision chamber is filled with an inert gas but in contrast
to CID, peptide bonds fragment almost instantaneously, leading to information-rich spectra with
mostly b and y-ions as well as internal and immonium fragments. Because fragment ions can
further collide, HCD is preferentially used for the analysis of labile modifications.
Electron-transfer dissociation (ETD) fragments multiple protonated molecules by transferring
electrons83. It utilizes radical anions, such as fluoranthene, to break the backbone of peptides by
generating a charge-reduced species with an unpaired electron (odd-electron molecule). Side
chains and peptide modifications are generally left intact. ETD predominantly produces c and z-
ions and is, for instance, implemented in the Orbitrap XL. However, ETD requires higher charge
states to induce efficient fragmentation and is thus not often used for tryptic peptides which
predominately ionize as doubly-charged peptides during ESI.

Figure 1.5 shows the MS/MS spectrum of the doubly-charged peptide LTQLGTFEDHFLSLQR upon
HCD fragmentation. Here, the entire y- (red) and almost entire b-ion (blue) series was generated
leading to a complete sequence coverage of the peptide. For clarity, the annotation of the singly-
charge precursor (m/z 1904.98653), neutral losses (predominantly -H2O, -NH3 on b- and y-ions)
and immonium ions were suppressed, but are able to explain the majority of the non-annotated
peaks (black) in the fragment spectrum.
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Figure 1.5 | Annotated MS/MS (MS2) spectrum of the peptide LTQLGTFEDHFLSLQR. Visualization of an
MS/MS spectrum (left panel) acquired on an Orbitrap Q Exactive Plus of a doubly charged precursor mass
of 952.99  including the mass deviation plot of the annotated fragment peaks (bottom panel). The table on
the right lists the expected masses of all theoretical fragment ions. Numbers in bold (blue for b- and red for
y-ions) indicate that this fragment is annotated in the MS/MS spectrum.

2.3.2 Tandem mass spectrometer
Triple-Quadrupole (QQQ or triple quad) mass analyzers utilize three consecutively placed
quadrupoles84. The first quadrupole is in scanning mode and selects ions of interest, which are
fragmented in the second quadrupole (collision cell). The fragment ions are analyzed in the third
quadrupole. By deactivating the selection of ions in the first quadrupole and the collision cell, full
MS1 spectra can be acquired.
Quadrupole-TOF (QTOF) and TripleTOF combine the stability of a quadrupole with the advantages
of a TOF mass analyzer85,86. The quadrupole scans, selects and isolates the precursor ion, which
are introduced into the collision cell. The resulting fragments are analyzed by the TOF reflectron
mass analyzer.
The LTQ Orbitrap Velos87 combines a quadrupole, ion trap and Orbitrap to allow rapid low
resolution scanning performed in the low pressure cell (ion trap) or high resolution scans in the
Orbitrap mass analyzer. Furthermore, both CID and HCD fragmentation can be performed by
utilizing the high pressure cell or HCD collision cell (Figure 1.6) offering a wide range of acquisition
schemes.
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Figure 1.6 | Schematic of the LTQ Orbitrap Velos MS instrument. A, the stacked ring ion guide (S-Lens)
increases the ion flux from the electrospray ion source into the instrument by a factor 5–10 in comparison
to older machines. B, the dual linear ion trap design enables efficient trapping and activation in the high-
pressure cell (left) and fast scanning and detection in the low pressure cell (right). C, the combo C-trap and
HCD collision cell with an applied axial field with improved fragment ion extraction and trapping capabilities.
Figure and caption from87.

2.3.3 Alternative acquisition methods
Data-dependent acquisition (DDA) has become a standard method in mass spectrometry-based
proteomics and is used in a wide range of applications. While this method is particularly designed
to measure samples of unknown composition (discovery proteomics), the stochastic nature of
selecting the top N most intense precursor ions for subsequent fragmentation within two MS
scans hampers the acquisition of data which require very high reproducibility and
accuracy26,27,88,89. As a matter of fact, even technical replicates acquired by measuring the same
analyte twice do not typically result in the same identification and quantification results90 as
mostly low abundant features are randomly selected and furthermore not always generate
interpretable spectra due to for example a low signal intensity.
To circumvent this, the acquisition can be “directed” (Extended Figure C1.1 in the Appendix) by
entering an inclusion list26. This list contains precursor masses and their expected elution time
which will be, despite their intensity, preferentially selected for subsequent fragmentation. If
none of the specified precursor masses is present, the classical DDA approach is used to select
precursor ions. While this method increases the reproducibility, the large dynamic range and the
high complexity of the peptide mixture can still result in missed identifications.
The emerging class of data-independent acquisition (DIA) methods offers an alternative. Targeted
peptide measurements25,27 implemented in single reaction monitoring (SRM), multiple reaction
monitoring (MRM) and parallel reaction monitoring (PRM)91 allows the precise and reproducible
quantification of analytes88. In contrast to the directed DDA approach, here only user defined
transitions are recorded (targeted proteomics). A transition consists of a precursor mass and a
fragment mass. Depending on the implementation, either only some (SRM/MRM) or all fragment
ions (PRM) are recorded, sometimes with a survey or full  scan (Figure 1.7). While this method
offers precise quantification due to the increased signal to noise ratio, higher dynamic range and
lower limit of detection and quantification, generally SRM And MRM experiments cannot be used
to identify peptides26 and rely on prior knowledge and experiments.
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Figure 1.7 | Acquisition schema of a targeted bottom-up shotgun experiments. As  the  experiment  is
hypothesis-driven, it targets a very specific subset of peptides uniquely associated with the proteins of
interest. An instrument method is built using existing proteomic resources (peptide spectral libraries)
required for a target analysis and is typically performed using a triple-quadrupole (QQQ) instrument. For
each peptide, a series of transitions (pairs of precursor and fragment ion m/z values) are monitored during
a time that specifically corresponds with its predicted elution time. This enables the reproducible analysis
of hundreds of peptides in a single experiment. Figure from26.

The unbiased but still reproducible identification and quantification of peptides is promised by
acquisition methods such as SWATH92,93, AIF94 or Waters HDMSe, where all or a major slice of all
precursor ions are fragmented simultaneously (multiplexed fragmentation). The increased
complexity and size of the raw files renders manual interpretation and validation of results almost
impossible. Even though new methods and algorithms were developed to analyze data from these
multiplexed fragmentation methods95,96,  severe challenges remain. The large dynamic range of
the analytes often results in the identification and quantification of only high abundant proteins.
Furthermore, the increased complexity of the fragmentation spectra hinders the ability to identify
PTMs and completely prevents multiplexing different samples at MS/MS level. However, the
promise of acquiring a digital map of the proteome, which can be reanalyzed at any time, sounds
very intriguing.

2.4 Quantification
Mass spectrometry-based proteomics has become the method of choice not only to identify but
also to quantify peptides and proteins23,41,97. However, in all bottom-up proteomics experiments,
the abundance of proteins cannot be measured directly, but instead has to be inferred from the
quantification of their peptides98. Quantitative proteomics can generally be divided into two
groups. First, label-free quantification which compares the mass spectrometric response of two
or more conditions from separate acquisitions (Figure 1.8, right most column). Second, label-
based quantification99 which induces a mass shift that can be recognized by the mass
spectrometer thus separating multiple conditions and permitting separate quantification and
comparison within one acquisition (Figure 1.8, first two columns).



Chapter 1 | General Introduction

13 | P a g e

Figure 1.8 | Quantitative mass spectrometry workflows. Boxes in blue and yellow represent two
conditions. Horizontal lines indicate when samples are combined. Dashed lines indicate points at which
experimental variation and thus quantification errors can occur. Figure from41.

To date, label-free quantification can be performed using spectral counting100-103 or integration of
MS signal intensities104.  The first  approach exploits  the fact  that  in  a  classical  DDA experiment
(without or with limited dynamic exclusion) peaks for further fragmentation are selected based
on their signal intensity. Due to the correlation of signal intensity to absolute concentration, highly
abundant peptides are selected more frequently and thus those peptides (and proteins that match
to these peptides) accumulate more MS/MS events. In contrast to spectral counting, intensity-
based quantification uses the area of the extracted ion intensity chromatogram (XIC) of the
precursor or intensities of specific reporter fragments in the MS/MS spectrum as a direct readout
of the peptide abundance. This approach only requires one MS/MS event per precursor and thus
more fragmentation events can be used to sample low abundant and previously undetected
peptide species (dynamic exclusion). Using the signal intensities of ions thus offers many
advantages over spectral counting methods. Both the precursor signal recorded at MS level as
well as fragment intensities recorded at MS/MS level can be used for quantification, and thus
allow its use independent of the labeling technique.

Label-free quantification allows the comparative analysis of an unlimited number of samples, but
at the expense of data acquisition time and require careful parallel sample handling. Label-based
quantification enables the simultaneous quantification of multiple samples. This is realized by the
incorporation of stable isotopes into peptides either via change of the growth medium or the
addition of isotope-coded chemical tags via amine reactive groups. This is based on the
assumption that the physiochemical properties of the labeled and native version of a peptide are
identical and thus behave identical during sample preparation and mass spectrometric analysis.
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However, some studies show minor effects on the chromatographic behavior of peptides labeled
with deuterium105 which in turn requires the labeling of the native peptides with similar light
counterparts. Nonetheless, stable isotope labeling has become a standard technique in
quantitative proteomics and over the past two decades, multiple strategies were developed to
measure the abundance of peptides over multiple conditions23,106.  Most  of  them  are  used  for
relative quantification since absolute quantification strategies ideally involve the spike-in of stable
isotope-labeled peptides as an internal standard (Figure 1.8 third column) to mimic the native
peptides, like AQUA107. In practice, two major variants of label-based quantification exist, using
either MS or MS/MS spectra for the quantitative readout.

2.4.1 MS-based quantification
Peptide quantification methods using the signal intensity of peptides at the precursor level are
more stable and exhibit less noise as compared to spectral counting or MS/MS-based
quantification due to higher sample statistics and higher signal-to-noise ratio. In order to multiplex
samples at MS level, peptides are either metabolically or chemically labeled.
Stable isotope labeling by amino acids in cell culture (SILAC)108 is the prime example of metabolic
labeling (Figure 1.8, first column) and introduces isotope-labeled heavy or medium amino acids.
The culture media contains isotope labeled amino acids which are incorporated into proteins
during synthesis. An extension to this approach was published allowing higher multiplexing by
exploiting the mass defect109. Acquiring MS1 spectra at high mass resolution reveals the
isotopologue-embedded peptide signals and thus allows quantification.
Metabolic labeling is impractical for clinical samples or higher organisms, although in principle
possible110. Comparatively cheap and easy alternatives are methods such as ICAT111 and
dimethyl112 labeling. Here, a chemical modification carrying different isotopes is incorporated
after or during protein digestion (Figure 1.8, second column).
However, the introduction of a second or third condition in one MS run using MS1-based
quantification doubles and triples the number of features eluting at any time due to the mass shift
of the differently labeled peptides. Given the limited number of MS/MS scans possible in order to
maintain a reasonable duty cycle between MS1 scans to track the elution of a peptide species, the
incorporation of stable isotopes typically results in less peptide and protein identifications since
often both the light and heavy counterparts are selected for fragmentation.

2.4.2 MS/MS-based quantification
To circumvent the addition of additional MS1 features by labeling peptides species with different
isotopes, MS/MS-based quantification offers the simultaneous quantification of up to 10 samples
while maintaining the same number of MS1 features. Perhaps the most popular methods are
isobaric tags for relative and absolute quantification (iTRAQ)113 and tandem mass tags (TMT)114.
Both target primary amines of the peptide and protein N-terminus and the ε-amino group of lysine
using NHS (N-Hydroxysuccinimide) chemistry. Each sample is labeled at the peptide level with an
isobaric group, resulting in the same precursor mass shift. However, the isobaric group consists of
two components, the reporter group for quantification and a balancer group to generate the same
precursor mass shift. Upon fragmentation the tag dissociates whereas only the reporter retains a
charge and is thus visible in the lower mass region of the MS2 scan. The ratio between the reporter
fragments can be used for absolute and relative quantification.
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However, while MS/MS-based quantification offers precise and sensitive multiplexed
quantification, isolation windows are typically not free of peptide-interference. This leads to ratio
compression as the resulting reporter fragments are identical for all isolated peptides and thus
show the sum of their intensities. While there are methods to circumvent115 or repress116 ratio
compression, they typically come at the expense of peptide identifications due to a more complex
data acquisition method leading to less MS/MS spectra and loss in coverage.

2.4.3 Sources of variance
Multiplexing samples offers the reduction of technical variances at the expense of higher sample
complexity, thus leading to a lower identification rate. As depicted in Figure 1.8, in label-free
experiments, both technical and biological variations are carried to the data analysis. Differences
in peptide purification and fractionation, protein digestion and MS performance can impair
subsequent analysis. Metabolically labeled samples can be pooled directly after sample collection
due to the incorporation of heavy amino acids into newly synthesized proteins. However, this step
requires separate cultivation and thus introduces biological variance. Chemical labeling allows the
pooling of samples typically at the peptide level after digest, keeping technical variations at a
minimum due to the possibility to perform subsequent sample handling steps on the combined
pool.
Not only the choice of labeling, but also general sample preparation and acquisition methods
affect the overall variance and have to be taken into account when designing an experiment. Each
method offers specific advantages (e.g. good cross-experiment comparability of MS-based
peptide intensities) and disadvantages (e.g. metabolic labeling not possible for patient derived
samples) and choosing the most appropriate for an experiment is a challenging task because cost
per acquisition hour, sensitivity and comparability have to balanced.

2.5 Mass spectrometric data
The raw data acquired on (most) mass spectrometers typically consist of a simple but ever
increasing list of spectra. A spectrum again is list of tuples containing m/z and intensity
information of detected ions. Annotated with additional information such as acquisition time, type
of mass spectrum (MS vs. MS/MS) and acquisition parameters, these information can be
aggregated into different views (e.g. XICs, TICs). The large number of spectra acquired on modern
machines renders manual data interpretation impossible, thus requiring automated processing.
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3 Computational proteomics
Mass spectrometry-based proteomics has developed into a high-throughput technology
generating huge amounts of data per single study rendering manual interpretation of raw data
impossible43,56,117-119. Automatic data processing tools and pipelines, such as MaxQuant120 or
OpenMS121-123,  are  central  and  critical  for  the  success  of  any  proteomics  experiment124 and
perform numerous computational steps to turn raw MS data into interpretable information
(Figure 1.9)23,31,33,41,125. Depending on the analysis pipeline used126,  raw  MS  data,  often  only
readable using proprietary libraries supplied with the mass spectrometer, have to be converted
into open data formats in order to allow the interpretation, validation and quantification of
peptides. The resulting list of peptides enables the identification and quantification of proteins.
Although this process is fully automatic and aided by empirical, statistical and machine learning
approaches32, some of these steps require manual data inspection which especially for large
studies remains a challenge24,127.

Figure 1.9 | Schematic overview of the typical analysis workflow of MS data. After data acquisition,
multiple computationally intense steps are necessary to identify, validate and interpret the raw MS data.
Starting with the conversion of raw data into open data formats, the processed spectra are then submitted
to a search engine for identification. Subsequent validation and inference enables the quantification of
peptides and proteins for successive statistical analysis. Figure from124.

3.1 Data formats
Mass spectrometry data are acquired on a wide variety of mass analyzer technologies and brands,
delivering datasets in various proprietary formats. In order to allow vendor-neutral and
independent analysis of the raw data, multiple open-source data formats have been proposed and
implemented. The Proteomics Standards Initiative (PSI) of the Human Proteome Organization
(HUPO) defines community standards for data representation in proteomics to facilitate data
comparison, exchange and verification128. In 2008 the mzML-format129 was released and provides
an open platform XML-based data format for mass spectrometry data. However, with the
increasing amount of data generated by modern mass spectrometers, the original XML-format
had to be adjusted to stay on par with the high computational demand130. Alternatives providing
higher read performance and smaller file sizes, such as an HDF5-based format termed mz5131 and
an approach using standard database principles132,  were developed but lack the traction to be
fully employed and supported. A versatile tool which not only allows the conversion of raw MS
data into the open standard is ProteoWizard133,134 and serves as the reference implementation of
the HUPO-PSI standards.
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In addition to the raw MS data formats, multiple other data formats, such as mzIdentML135 and
mzQuantML136 for identification and quantification data respectively, intended to replace older
formats such as pepXML and protXML137, were released by the HUPO-PSI in order to harmonize
data comparison and exchange of processed data.

Figure 1.10 | Data format landscape in proteomics. The large number of file formats can be divided into
two main groups consisting of mostly unprocessed (MS analysis) or processed (informatics analysis) data.
MS files cover data acquisition methods as well as proprietary (vendor) or open data formats for storing the
peaks lists acquired by the mass spectrometer. After processing and analysis, a wide variety of open data
formats exists to store identification (e.g. mzIdentML) and quantification (e.g. mzQuantML) results of
peptides and proteins. Figure from138.

3.2 Raw data processing
Unprocessed mass spectra are subject to numerous impurities and contain many partially
unwanted features31,139,140. One of the first steps to reduce the number of features and increase
the signal-to-noise ratio is baseline correction and noise reduction. Both methods aim to increase
the  intensity  of  the  analyte  of  interest  while  filtering  or  reducing  the  amount  of  electronic  or
chemical noise126. Commonly applied techniques are simple intensity filters, local maximum
filtering, wavelet analysis and intensity normalization126,141,142. Additionally, the analyte of interest
may be present in different charge states and due to the natural isotope distribution of its atomic
constituents is split into the monoisotopic and isotopic peaks. Both effects can be reduced by de-
charging and de-isotoping the spectra31,139, but rely on the accurate determination of the charge
state and the sensitivity and accuracy to detect isotopic peaks. Especially for MS/MS spectra, the
collation of fragment peaks into one singly-charged monoisotopic peak increases the signal-to-
noise ratio and enables a more accurate identification of peptides143.
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3.3 Peptide identification and validation
Central for the analysis of any proteomics dataset is the interpretation of MS/MS spectra,
eventually generating a list of confidently observed peptides125,144,145. This process is composed of
two main steps. First, for each MS/MS spectrum, an ordered list of peptide sequences, which are
able to explain the acquired fragmentation spectrum, is generated. The ordering within this list
reflects the “likelihood” (score) for this spectrum to be generated by the peptide. However, due
to incomplete fragmentation and noise, this process is error prone and generates false matches.
In the second step, statistical measures of confidence, such as p- and q-values, are assigned to the
peptide identifications to enable subsequent filtering. Starting with the first step of this process,
two main approaches exist:
De novo identification methods146 try to identify the peptide sequence ab initio (Figure 1.11,
bottom row). Here, typically graph-based algorithms find the peptide sequence whose fragment
peaks can explain the peaks in the experimental spectrum best147,148. Empirical or probabilistic
scoring schemes are used to assign a measure of confidence to the identification.

Figure 1.11 | Peptide identification strategies. Peptide identification can be performed by correlating the
experimental MS/MS spectrum against a theoretical spectrum predicted for a peptide of interest (first row;
sequence DB search), or against previously recorded spectra in a spectral library (second row; spectral
library search). Alternatively, de novo methods can be used to directly extract sequence information from
the MS/MS spectrum (fourth row; de novo sequencing). Hybrid approaches submit partial sequences from
de novo identifications to the database search to further limit the number of peptide candidates for
matching (third row; sequence tag-assisted search). Figure from145.

The database search approach (Figure 1.11, top 2 rows) correlates the experimental spectrum
against in silico generated spectra or spectra from a reference database. To this end, either a
database of peptide sequences is used to generate (in silico) theoretical fragmentation spectra
(Figure 1.11, top row), or previously recorded and annotated spectra stored in spectral libraries
are used for comparison (Figure 1.11, second row).
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While database searching is only applicable in cases where the peptide (and protein) sequence in
question is known, de novo (Figure 1.11, bottom row) methods can be applied to almost all kinds
of data, but are almost exclusively used when the peptide sequences in question are unknown149.
Hybrid approaches, which interpret a high quality segment of the spectrum using de novo methods
followed by a database search against peptide sequences which contain the partial sequence
(Figure 1.11, third row) exist150-152, but are less frequently used.

3.3.1 Database searching
Database searches require a peptide or protein sequence database to assign amino acid
sequences to acquired spectra144,145.  To  this  end,  the  search  engine  first  generates  an in silico
digest of the expected proteins. The resulting list of peptides is filtered by the precursor mass of
the experimental MS/MS spectrum where the allowed mass range depends on the resolution and
accuracy of the mass analyzer. For each peptide candidate left, an in silico spectrum is generated
by populating the theoretical spectrum with all possible fragment ions, taking into account the
used fragmentation technique, and is then matched against the experimental spectrum. Different
matching algorithms are used to score the experimental spectrum against the in silico generated
one and range from simply counting the number of shared peaks153, to (cross) correlations154 and
probabilistic models (binomial distributions)155,156.  The result  of  this  process  is  a  list  of  peptide
spectrum matches (PSMs). Generally, the peptide sequence whose theoretical spectrum matches
the most features in the experimental spectrum is at the top of this list (rank 1 match). However,
score based systems typically do not provide statistically meaningful significance measures such
as a p-values or E-values157. However, different methods were developed to associate p- and E-
values to PSMs158-160. Additionally, it was observed that features such as peptide length, post-
translational modifications, precursor charge and mass tolerance can introduce a bias thus require
special attention and calibration161.
Widely used search engines are Mascot155, SEQUEST154, X!Tandem162, OMSSA163, Andromeda156,
Comet164, Morpheus153 and MyriMatch165. While each search engine has its strengths, combining
results of multiple search engines is tricky and requires a unified statistical framework159 but it has
been shown to increase the number of identified spectra166.

Database searching can also be performed using libraries of well annotated spectra which scored
statistically significant in a previous run. In this case, the experimental spectra are compared
against the reference spectra167-169. However, due to the immense search space when dealing with
multiple PTMs, potentially missed cleavages sites, different collision energies and fragmentation
techniques, it seems very unlikely that in discovery-type experiments spectral libraries become
the preferred method for identification. However, data generated in DIA experiments, especially
in SWATH acquisition methods, requires such prior knowledge.

3.3.2 False discovery rates
The process of assigning peptide sequences to spectra contains deficiencies resulting in either
false positive (type I error) or false negative (type II error) identifications145,170,171. These errors can
arise by using nonrestrictive search parameters, wrong settings with regard to the search space
or acquisition method, or simply by chance due to noise. While false negative identifications do
not hamper the downstream analysis, false positive identifications can have a detrimental and
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misleading effect on the results of an MS-based proteomics experiment. Nonetheless, even under
near perfect conditions false positive identifications will randomly occur given the large amount
of MS/MS spectra acquired by a mass spectrometer.
A commonly used approach to control the number of type I errors is the false discovery rate (FDR).
If the FDR can be calculated, the list of events can be filtered to contain at most a desired number
(or percent) of false discoveries. This is often done by using q-values that describe at which FDR
cutoff a particular event is present in the result list171.  The  FDR  is  thus  a  global  measure  of
significance of a list of events, here PSMs. Similarly, local measures such as the posterior
probability or the posterior error probability (PEP) give an estimate of the chances that an
individual event is a false discovery171.
However, a priori it is not known which of the events (here identification events such as PSMs) are
true and false positive matches, thus calculating the PSM FDR is difficult and requires special
methods145. Figure 1.12 shows an example of how to estimate the posterior probabilities for a list
of PSMs. After performing a protein sequence database search of ܰ MS/MS spectra and retaining
only the rank 1 (highest/best) matches, a simple score histogram (bottom right panel) can be
computed. If the matching score ܵ  is well calibrated, true positive matches should generally
exhibit larger scores in comparison to false positive matches and thus a bimodal distribution is
visible. Assuming that the low scoring part of the distribution (dashed line in bottom right panel)
contains mostly false positive matches and the high scoring part (dotted line bottom right panel)
consists of mostly positive matches, a mixture model can be fitted using for example an
expectation maximization algorithm172,173. The fitted distributions can now be used to calculate
both  the  posterior  probability  as  well  as  the  FDR  for  any  arbitrary  score ܵ. The global FDR is
calculated by dividing the number of (likely) false positive matches (area under the dashed curve)
by the number of (likely) true matches (area under the dotted curve) with a score equal or higher
than the selected score. The local FDR is calculated by dividing the absolute (likely) false matches
by the (likely) true matches at the selected score.

Figure 1.12 | Mixture model approach for computing posterior probabilities. All MS/MS spectra from an
experiment are searched against a protein sequence database. The best database match for each spectrum
is selected for further analysis. The most likely distributions among correct (dotted line) and incorrect
(dashes) PSMs are fitted to the observed data (solid line). A posterior probability is computed for each
peptide assignment in the dataset by dividing the number of likely false matches by the number of total
matches. The parameters of the distributions, including the mixture proportion π1 are learned from the
data using e.g. the EM algorithm. Figure from145.
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This method allows the estimation of the type I error, but requires well calibrated scores with well
separated distributions of likely false and true matches. An alternative is the target decoy strategy
(TDS)174,175, a simple yet effective way to estimate the size, location and shape of the distribution
of false positive matches. The general concept is to extend the search space by introducing decoy
sequences which are by construction false positive matches. It builds on the assumption that
spectra giving rise to false positive identifications have an equal chance of being matched into the
target or decoy space. The decoy sequences are tagged and thus can be differentiated. When used
correctly176,177, the error prone process of fitting a distribution can be replaced by simply dividing
the  number  of  decoy  and  target  matches  equal  (local)  or  larger  (global)  the  score ܵ  (Figure
1.13)145,171,178,179. Once a desired FDR level is reached, this corresponding score can be used as a
threshold.

Figure 1.13 | Target decoy strategy for FDR assessment. All  MS/MS  spectra  from  an  experiment  are
searched against a composite target plus decoy protein sequence database. The best peptide match for
each spectrum is selected for further analysis. The number of matches to decoy peptides are counted and
used to estimate the false discovery rate (FDR) resulting from filtering the data using various score
thresholds. Figure from145.

While multiple approaches exist to construct and search data against the decoy database, only
minor differences in the result were observed180,181. Commonly, the target protein sequence
database is reversed (with or without using the protease cleavage sites as fixed amino acids) and
concatenated to the target protein sequence database. This ensures that a) the decoy database is
of similar size (in terms of number of proteins and peptides); b) the amino acid composition of the
decoy peptides is similar to that of the target peptides; and c) MS/MS spectra leading to false
positive identifications have an equal chance of being matched against the concatenated target-
decoy database.
The target decoy strategy became the standard to estimate global and local type I errors for both
PSMs and peptides and is implemented in a wide variety of tools145,182. Furthermore, this concept
can be extended and is also used in spectral library matching183 and the analysis of targeted
proteomics184.
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3.3.3 Identification of PTMs and unknown modifications
While MS-based proteomics has the capability of identifying thousands of transient and stable
PTMs, commonly used scoring models and FDR estimation procedures are not designed to cope
with such data. Allowing the presence of a variable PTM such as phosphorylation increases the
search space drastically (combinatorial explosion of all cases). This results in the generation of
theoretical modified peptide sequences which are sometimes only differentiable by a very small
number of fragment peaks. Due to the drastic increase in search space, similar concepts to FDR
are necessary to avoid false positive matches. Site localization probabilities and false localization
rates (FLR) using the presence of site-determining ions and score differences to the next best PSM
can be used to determine score cutoffs185-190.
Notably, the identification of unknown modifications is also possible by using blind, unrestrictive
or dependent searches120,191-193.  Here,  for  instance,  the  precursor  mass  tolerance  window  is
broadened to include the unmodified peptide sequence, even if a modified species was picked for
fragmentation. Depending on the scoring scheme and position of the modification(s), the
precursor mass difference between the measured and matched peptide allows to infer which and
how many PTMs, unknown modifications or single amino acid polymorphisms are present. Similar
to classical PTMs, site determining ions can be used to pin-point the modification within the
peptide sequence.

3.4 Protein identification and quantification
The identification of proteins using the bottom-up strategy is (strictly speaking) not possible. Since
proteins are digested into peptides prior to the injection into the mass spectrometer, only the
identification of peptides is possible. The presence of proteins can only be inferred from a list of
identified peptides (protein inference). However, this process is challenging and complicates the
analysis and biological interpretation of the data especially in the case of higher eukaryote
organisms. The same peptide sequence can be present in multiple different protein isoforms or
genes. Such shared peptides therefore can lead to ambiguities in determining the presence and
abundance of proteins194.

3.4.1 Protein inference and grouping
Figure 1.14 illustrates 6 scenarios of the protein inference problem194. The simplest case is when
proteins are distinct and do not share any peptides (Figure 1.14a). Here, any peptide evidence will
lead to the unambiguous identification a single protein. In case some of the peptides are shared
(Figure 1.14b), only the identifications of unique peptides (here peptide 1 or 4) can be used to
identify the presence of either protein. No decisive conclusion can be drawn if peptide 2 or 3 are
identified since the presence of either or both proteins can lead to the occurrence of these
peptides. It is generally impossible to undoubtedly identify a protein if all peptides are shared with
one (Figure 1.14 c and d) or many (Figure 1.14 e and f) other proteins. These groups of proteins
are classified into indistinguishable (no single peptide can distinguish these proteins), subset (a
protein contains only peptides which are shared with another differentiable protein) or
subsumable (a protein contains only peptides which are shared with multiple but distinguishable
proteins) proteins.
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Figure 1.14 | Peptide grouping scenarios. a, distinct protein identifications. b, differentiable protein
identifications. c, indistinguishable protein identifications. d, subset protein identification. e, subsumable
protein identification. f, an example of a protein group where one protein can explain all observed peptides,
but its identification is not conclusive. Figure from194.

In practice, this often leads to reporting of protein groups instead of single proteins. A protein
group consists of at least one protein which, given the peptide evidence, is not distinguishable
from  one  other  proteins  (Figure  1.15).  Here,  peptides  (rectangles)  and  proteins  (circles)  are
connected with arrows indicating their possible origin. If an experiment resulted in the
identification of the depicted 13 peptides, the distinct protein A and differentiable proteins B, C
and E can be uniquely identified (inferred). However, protein D is a subset of protein E and thus
no conclusive evidence about its presence in the sample can be drawn. While proteins F and G are
indistinguishable and collapsed into a single entry, protein H, I and J are grouped, since each of
them can be explained by a different set of peptides.

Common practice is to report the smallest list of protein groups that is sufficient to explain all
observed peptides195. The process of grouping proteins and assigning a score or probability of its
presence is, however, difficult and multiple approaches exist194-196.  Similar to PSM and peptide
FDRs, protein (group) FDRs can be calculated globally and locally using the same or similar
methods. However, especially the task of computing protein level FDRs on data sets of increasing
complexity and size is a challenge and the FDR estimation process is biased197. The separate step
of controlling the protein level FDR after applying PSM and peptide FDR score cutoffs is necessary
since the error rates are amplified when aggregating information from PSM to peptide to protein
levels145.
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Figure 1.15 | Example of a protein summary list. Peptides are assigned to all their corresponding proteins,
and the minimal list of proteins that can explain all observed peptides is derived. Proteins that are
impossible to differentiate on the basis of the identified peptides are collapsed into a single entry (F and G)
or presented as a group (H, I, and J). Shared peptides are marked with an asterisk. Proteins that cannot be
conclusively identified are shown at the end of the list but do not contribute to the protein count. Figure
from194.

3.4.2 Protein abundance estimation
One of the main reasons why MS-based proteomics finds such a wide range of applications is its
ability to identify but more important to quantify thousands of proteins. After FDR adjustment
and protein inference, two different methods exist on comparing protein abundances across
samples. Either peptide intensities are summarized on protein level or peptide-based models are
used to compare the expression of proteins across multiple conditions198.  Two commonly used
protein level summarization methods are top3 (sum of the top 3 most intense peptide intensities
of a protein group)199 and iBAQ (length normalized sum of all peptide intensities of a protein
group)200. These intensity-based approaches allow a straightforward and precise quantification201

and in contrast to spectral counting, additional retention time alignment enables the reproducible
quantification of peptides across samples by matching unidentified features between multiple LC-
MS to identified peptide species120. Recently, an alternative approach was published allowing the
calculation of the number of molecules per cell for any given protein by assuming that the number
of histones in a (human) cell is constant202. In contrast to DDA experiments, the quantification of
proteins acquired in targeted and DIA experiments require specialized software which utilize the
fragment intensities184,203.

3.5 Statistical analysis and data interpretation
Most proteomic experiments aim to find differences between two or more conditions. The goal is
to identify proteins (or peptides in case of PTM studies) which show a significant up- or down-
regulation within two or more classes, such as treated vs untreated or normal vs disease. These
proteins can act as biomarkers for subsequent sample classification or targets for potential
therapies. However, due to the diversity of experimental designs and analysis steps, most of the
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tasks necessary cannot be performed in a fully automated fashion33,98 and describing all possibly
methods and tools will go beyond the scope of the thesis. Instead, this section focuses on the most
basic tasks needed to analyze and interpret the results of a proteomic experiment (Figure 1.16).

Figure 1.16 | Computation and statistics. After the identification and quantification of peptides and
proteins, typical steps for data analysis include: peptide and protein significance analysis (left panel), class
discovery and prediction (middle panel), and data integration and for instance pathways and signaling
analysis (right panel). Especially the last step is affected by uncertainty in protein identities and the
incomplete sampling of the proteome. Figure from33.

Protein intensities are subject to technical (e.g. different sample loading, MS performance) and
biological (e.g. cell culture, amount of sample) variations. To account for that, different
normalization and batch removal techniques are available, ranging from simple median centering
or quantile and total sum normalizations to more sophisticated probabilistic and regression
models33,204-207.  While  some  methods  are  designed  for  intensities  only,  some  others  are  also
applicable to normalize ratios (e.g. median centering). A general assumption to enable
normalization is that most of the peptides and proteins do not exhibit a significant change, thus
on average no difference between two samples is expected. While this holds true for most
experiments, the applicability and choice of normalization method is experiment and experiment
design dependent.
After normalization, a typical next step is the identification of differentially regulated peptides and
proteins. The ability to identify differential features is dependent on the reproducible
identification and quantification of peptides and protein across samples. However, the lack of
information does not imply the absence of the peptide or protein in a sample. Especially low
abundant features often lead to poor fragmentation spectra due to ion counting statistics. This is
further aggravated by the incomplete sampling of the proteome, resulting from the semi-
stochastic nature of the DDA approach in combination with the complexity of the analyte (even in
cases where purification steps were performed). While processing pipelines try to circumvent this
as much as possible by matching unidentified features across samples and missing value
imputation can reduce this issues even further, missing values may introduce additional biases as
it is typically unclear which distribution of intensity values represents the features best. This is
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because the feature is actually absent, or at least below the limit of detection, or the feature is
present but not identified or matched. As for most post-processing steps, the applicability of
missing value imputation strongly depends on the experimental design, the underlying hypothesis
and acquisition method208,209.
Even without these issues, the identification of significantly changing peptides and proteins is a
challenging task and relies on a carefully designed experiment. After log-transformation to ensure
a Gaussian distribution of intensities and ratios, common statistical methods such as t-tests,
ANOVAs and f-tests can be applied to assign p-values to proteins. Each statistical test is (largely)
independent, thus multiple testing correction is essential to control the type I error210,211. After
assigning q-values to peptides and proteins, differentially changing features are selected by
filtering for both practical (fold change) and statistical (p- and q-values) significance (Figure 1.16
left panel).
After identifying proteins which show a significant regulation across samples, the discovery of
classes  using supervised or unsupervised methods such as clustering or machine learning refers
to the process of identifying features which show a similar trend and reproducibly divide samples
into classes (e.g. normal and disease; Figure 1.16 middle column)32,35,212. This process aims to
identify peptides and proteins which can be used for subsequent class prediction213.
Furthermore, sets of proteins which show a similar quantitative profile across biological samples
can also be used to generate new functional and biological insight. For example, proteins, which
show a similar trend upon drug treatment, are likely part of a larger functional network and
pathway. Molecular, functional and biological enrichment analysis of significantly differentially
regulated proteins214-216 enables the determination of common features, which can be used to
annotate groups of proteins. Briefly, the fraction of proteins assigned to a specific molecular,
functional or biological process are compared to the expected fraction. If, e.g. kinases, show a
significant enrichment within the differentially regulated proteins in comparison to the entire
proteome, kinases might be a key factor for the response.
Integrative analysis with other ‘omics’-data217,218, such as transcriptomics, genomics and
metabolomics, and correlation to previously conducted studies219 can provide additional insights
into the underlying biology (Figure 1.16 right panel) and broaden our understanding of the
molecular processes on a system-wide level. Even though most underlying mechanisms are still
not fully understood, each omic technology in itself offers specific advantages and disadvantages,
enabling scientist to retrieve confident information about e.g. mutation status, gene expression
and activation status of proteins. However, these steps require thoroughly and extensively
described resources and knowledge bases, which are in turn dependent on well-performed, freely
available and detailed data.
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4 Proteomic and annotation resources
Our ability to analyze and interpret the results of an MS-based proteomic experiment is heavily
dependent on prior knowledge. During the analysis, protein sequence databases are used to
transform raw MS data into peptide and protein result lists. Subsequently, known functions and
annotations of proteins220,221, their interaction or contribution to complexes and metabolic or
signaling pathways222-227 allow us to draw functional and biological conclusions.
The integration of different experiments enables the continuous increase in knowledge on how
biological systems work and act upon different stimuli. Thus, there is great potential in storing and
providing access to as many well annotated experiments as possible219.  For this, both raw and
result files, containing identification and quantification data, have to be archived and made
available to also non expert researchers. This will also help other disciplines to build and validate
their own findings and further advance their hypotheses. Furthermore, the integration of multiple
types of data could lead to novel findings, which could not have been uncovered by a single lab or
experiment alone.
It has become good practice to share experimental data to support novel findings38,219. However,
due to the ever-increasing amount of data generated, organizing and storing raw data has become
a challenge, especially in the field of proteomics. How to best store these was a long discussion in
the scientific community228 and gave rise to many data repositories and databases38. While there
are many challenges associated with the storage of data, especially in terms of annotating
experimental factors and conditions used to study biological systems, even the integration of
comparatively simple studies can broaden our knowledge. For example, the integration of
multiple isolated studies measuring the expression of proteins (full proteomes) in model systems
(e.g. cell lines) can help researchers to design better experiments by providing an expression map
of proteins.

This section aims to introduce some of the aspects discussed here by describing state of the art
resources available to analyze and interpret MS-based proteomics data. Last but not least, a brief
overview over databases and repositories used in the field of proteomics to share both raw and
result files is given.

4.1 Sequence database
Annotated sequence databases are essential in pre-processing mass spectrometry-based
proteomics experiments as both identification and quantification of proteins heavily depend on
them. A large variety of protein sequence databases exists spanning the entire range of simple
sequence databases to manually curated and enriched repositories/knowledge bases covering all
species220,229. The number of identifiers (IDs) mapping proteins to transcripts, genes and other
resources is steadily growing. Further aggravated, discontinued sequence databases such as IPI230

are  not  fully  integrated  into  existing  databases  resulting  in  a  “loss”  of  up  to  20%  IDs231. This
culminated in large number of identifiers requiring specialized tools and services to map them to
other databases and external resources232.
RefSeq, the Reference Sequence database, maintained by the National Center for Biotechnology
Information (NCBI), is a collection of integrated, well annotated and non-redundant set of
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sequences, including genomic DNA, transcripts and proteins. Sequence entries are generated from
selected assembled genomes available in GenBank233.
The Ensembl project234 is a collaboration between the European Bioinformatics Institute (EMBI-
EBI) and the Wellcome Trust Sanger Institute (WTSI) that provides protein, transcript and gene
identifiers from an automatic annotation of genomes, integrated with other available biological
data. Ensembl provides the commonly used human reference assembly GRCh37, now in version
GRCh38.
UniProt is the most commonly used protein sequence database. It is maintained by the Universal
protein resource (UniProt)220, a collaboration between the European Bioinformatics Institute
(EMBL-EBI), the Swiss Institute of Bioinformatics (SIB)  and the Protein Information Resource (PIR).
UniProtKB is a comprehensive resource of protein sequences enriched by additional annotations
and consists of multiple databases (Figure 1.17), namely the UniProt Knowledgebase (UniProtKB),
the UniProt Reference Cluster (UniRef) and the Uniprot Archive (UniParc). UniProtKB is composed
of two sections, UniProtKB/SwissProt and UniProtKB/TrEMBL. SwissProt is a manually annotated
high quality and non-redundant protein sequence database which brings experimental results,
computed features and scientific conclusions together. TrEMBL is the result of increased dataflow
from the genome projects and contains high quality computationally analyzed entries.

Figure 1.17 | Schematic overview of the Universal protein resource (UniProt). Uniprot consists of three
databases, the UniProt Knowledgebase (UniProtKB), the UniProt Reference Clusters (UniRef), and the
UniProt Archive (UniParc). UniProtKB, uses multiple external sources, such as Ensembl and RefSeq, to build
the automatically annotated protein sequence database UniProt TrEMBL and the manually annotated and
reviewed protein sequence database UniProt Swiss-Prot. Figure from http://www.uniprot.org/help/about.

4.2 Annotation resources
In order to interpret lists of proteins identified in any MS-based proteomics study and assign
functional and biological meaning, researchers rely on resources providing annotations of proteins
on as many levels as possible34. Large efforts exist to integrate and combine as many annotation
resources as possible.
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GO221, the Gene Ontology, is a major bioinformatics initiative to develop a representation of how
genes encode biological functions at the molecular and cellular level. For this purpose, GO
provides a controlled vocabulary of terms to describe gene characteristics and annotations by
automatically and manually annotating gene functions based on experiments reported in peer-
reviewed scientific papers. It offers these terms in three categories: i) biological process, ii)
molecular function and iii) cellular component. While providing a controlled annotation basis for
genes, GO terms can be used for enrichment analysis on gene sets214-216.
KEGG222, Kyoto Encyclopedia of Genes and Genomes, mostly known for its pathway and molecular
network database, is an integrated database resource for biological interpretation of genome
sequences and other high-throughput data. For this purpose, the KEGG Orthology (KO) database
stores associations between molecular functions of proteins with ortholog groups. Networks of
KO nodes represent high-level functions of cells and organisms and can be used for enrichment
analysis or simply to check and validate the functions of genes and their products.
Reactome223,224 is a manually curated resource of human pathways and reactions. It describes
these as chemical reactions closely mirroring the actual physical interactions in cells. Accessible
via a web interface, 6744 reactions from over 7000 human proteins can be viewed and analyzed.
Its data model allows the annotation of cancer and other disease processes to accommodate
changes in the amino acid sequence or the formation of fusion proteins. Similar to KEGG, the
annotations provided by Reactome can be used as additional information in gene set enrichment
analysis to provide supplementary information about de-regulated proteins.
IntAct225 is an open molecular interaction database developed by the European Bioinformatics
Institute (EBI). Its database is populated by either curated data from the scientific literature or
direct submissions of interaction data. Recently, the content of the molecular interaction database
(MINT)235 was fully integrated into IntAct to maximize the curation output.
BioGrid236 is a public database, similar to IntAct, that archives and disseminates genetic and
protein interaction data. It holds over 830,000 interactions derived from high-throughput datasets
and literature mining. Focusing on areas of biology which help to build insights into networks and
pathways relevant to human health, BioGrid holds data for several model organisms and provides
links to other resources.
STRING226 is a database of known and predicted protein interactions. It aims to provide a critical
assessment and integration of protein-protein interactions. It contains both direct as well as
indirect associations between proteins and covers more than 2000 organisms and 9 million
proteins. An interactive viewer allows users to enter a list of genes which is then used to build a
network based on the interactions stored in STRING.
PhosphoSitePlus227 is an open and curated resource for studying experimentally observed PTMs.
Besides its comprehensive coverage of protein phosphorylation, this resource also contains
information about acetylation, methylation, ubiquitination and O-glycosylation sites. For this
purpose, it holds structural and functional information about the topology, biological function and
regulatory significance of specific modification sites to allow users to mine and interpret their data
with respect to the biological regulation.
HPA237,238, the Human Protein Atlas, contains gene expression and localization information of the
corresponding proteins acquired from both RNA and protein data. For this purpose, high-
resolution images of 44 different normal human tissues, 20 different cancer types and 46 different
human cell lines were stained using antibodies to show the spatial distribution down to
substructures and cell types of tissues. In addition, the transcriptomics data provides quantitative
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data on gene expression levels. The recent release contains transcriptomic and proteomics
evidence for 99.9% and 86% of the predicted human genes, respectively.
GeneCards239 is a comprehensive compendium of annotations of human genes developed for
biomedical researchers. The content is automatically mined and integrated from over 80 digital
sources. Developed for the past 15 years, it is a common entry point for researchers to access the
wealth of information stored in its database and provides gene expression data on multiple levels.
NeXtProt240 is a protein-centric knowledgebase for human proteins. It aims to provide a constantly
updated view on human biology capturing a wide range of data and annotations. In order to do
this, NeXtProt includes multiple other annotation resources such as IntAct, PhosphoSitePlus and
GO via services provided by UniProt and provides cross references to many additional resources,
publications and even experimental data.

4.3 Proteomics databases and repositories
Due to the speed and advancements in MS-based proteomics, the amount of raw data but also
processed result lists require a large amount of storage space. In order to make this amount of
data available to the scientific and public domain, it is becoming a common practice to store data
in public repositories37,38,228.
Over the past years, many different proteomic repositories and compendia were developed, such
as MaxQB241, Human Proteinpedia242, PaxDB243 and Tranche244. The latter was a distributed
repository for redundant storage and dissemination of datasets and offered scientists many
features, such as prepublication access control and licensing options. For storage, it utilized an
encrypted peer-to-peer system that splits incoming data across multiple servers, making it hard
to be controlled. Unfortunately, mostly due to the lack of funding but also because of the
distributed design and de-centralized organization, Tranche was discontinued after a couple of
years. However, its disappearance triggered the proteomic community to stabilize and advance
current solutions.

Figure 1.18 | Schematic overview of the ProteomeXchange consortium. The ProteomeXchange consortium
coordinates the submission of MS proteomics data to the main existing proteomic repositories and is the
central contact point for Journals and annotation resources such as UniProt and NeXtProt for experimental
data. For this purpose, ProteomeCentral assigns unique identifiers to submitted datasets and provides a
queryable interface for other resources such as GPMDB and PeptideAtlas. Figure modified from
https://www.ebi.ac.uk/training/online/course/proteomexchange-submissions-pride/data-resources-
proteomexchange
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ProteomeXchange36 fills the gap of de-centralized organization. It is a consortium with the goal to
coordinate the submission of MS-based proteomics data (Figure 1.18). It acts as a central hub for
multiple proteomics repositories to encourage optimal data dissemination. Resources within
ProteomeXchange are classified into two kinds: i) archival resources which store processed data
as published by the authors and ii) secondary data resources which store primary data. Each
dataset submitted to ProteomeXchange or a partnering resource is identified by a unique
identifier generated by ProteomeCentral. In addition, this resource allows other databases to
query datasets of interest.
PeptideAtlas245,246 is developed by the Seattle Proteome Center and part of the ProteomeXchange
consortium. As a prime example of a secondary data resource, it allows data submission via its
own  interface,  but  mostly  retrieves  data  from  ProteomeXchange.  The  main  goal  is  the  full
annotation of eukaryotic genomes though a thorough validation of expressed proteins. For this
purpose, it summarizes peptide identifications in various ways. PeptideAtlas reprocesses all
incoming data using its own pipeline. First, MS/MS spectra are searched using SEQUEST154,247 and
X!Tandem162 or SpectraST167. The initial peptide identifications are rescored and filtered using
PeptideProphet248 and the results are submitted to ProteinProphet195 for protein identification. In
addition, MAYU is used to control the protein FDR197. The results are stored and made available in
regular precompiled builds. PASSEL249, the PeptideAtlas SRM Experiment Library, is a component
of PeptideAtlas and is designed for the reuse of SRM experimental results.
PRIDE250,251, short for proteomics identifications, was established as a public data repository by
the EBI to support the publication of MS studies. It stores peptide and protein identifications, as
well as associated metadata, such as the experimental design of the study. In contrast to
PeptideAtlas, PRIDE does not reprocess submitted data “to represent the submitter’s view of the
data”. As the prime archival resource of ProteomeXchange, it became the recommended
submission point for several journals.
Chorus (https://chorusproject.org) is a cloud-based repository that provides researchers means
to securely store, analyze and share their MS data. Recently released, it aims to create a complete
catalogue of the world’s MS data and to make it openly and freely accessible to both the scientific
and the public domain. Chorus is developed for and on Amazon Web Services such as the Amazon
Elastic Compute Cloud, Amazon Simple Storage Service and Amazon Glacier. Its backend uses
MapReduce252 to distribute custom data analysis tools over multiple virtual machines to allow
parallel and distributed computing. Currently, it supports viewing chromatographic and spectral
data as well as protein sequence database searches. However, due to the use of the Amazon
services and the lack of sustained funding, users are charged to store and analyze larger amounts
of data.
GPMDB, the Global Proteome Machine database (http://gpmdb.thegpm.org/), and the underlying
database GPM253 servers, was constructed to aid the process of validating MS/MS spectra and
protein sequence coverage patterns. It allows users to compare their experimental results with
results published previously. It supports different organisms and, similar to PeptideAtlas, is
connected to ProteomeCentral. An automatic processing pipeline, using X!Tandem162 as the main
search engine, analyzes recently published data and integrates the results into GPMDB.
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5 Objectives
The central task of this thesis was to implement a central database, which can be used by scientists
to validate and build new hypotheses, aid researchers in experiment design and to validate new
computational tools tackling open and arising issues in computational proteomics. For this
purpose, a high performant and simple to use database was proposed, which enables access to
large amounts of proteomic data (Chapter 2). One of its first applications was the assembly of a
first draft of the human proteome from roughly 16,000 MS raw files on both protein identification
and quantification level (Chapter 3). The assembled data also revealed major shortcomings in the
standard approach to estimate protein FDR. For this purpose, a novel protein FDR estimation
method termed ‘picked’ protein FDR was developed (Chapter 4).
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6 Abbreviations
CETSA cellular thermal shift assays
CID collision-induced dissociation
CRM charge residue model
DDA data-dependent acquisition
DIA data independent acquisition
EBI European Bioinformatics Institute
EMBL European Molecular Biology Laboratory
ESI electrospray Ionization
ETD electron-transfer dissociation
FDR false discovery rate
FLR false localization rate
FT ICR fourier transform ion cyclotron resonance (mass spectrometer)
FT fourier transform
HCD higher-energy collisional dissociation
HILIC hydrophilic interaction chromatography
HUPO Human Proteome Organization
IAM ion evaporation model
IEF isoelectric focusing
iTRAQ isobaric tags for relative and absolute quantification
KO KEGG orthology
LC liquid chromatography
LC-MS liquid chromatography couple to mass spectrometer
LC-MS/MS liquid chromatography tandem mass spectrometry
LTQ linear trap quadrupole (mass spectrometer)
m/z mass (m) to charge ratio (z)
MALDI matrix-assisted laser desorption/ionization
MRM multiple reaction monitoring
MS mass spectrometer and mass spectrum
MS/MS tandem mass spectrometry and tandem mass spectrum
NanoESI nano flow electrospray Ionization
PEP posterior error probability
PIR protein information resource
PRM parallel reaction monitoring
PSI Proteomics Standards Initiative
PSM peptide (to) spectrum match
PTM post-translational modification
Q quadrupole
QQQ triple-quadrupole (mass spectrometer)
QTOF quadrupole time of flight (mass spectrometer)
RNASeq RNA-sequencing
SAX strong anion exchange chromatography
SCX strong cation exchange chromatography
SILAC stable isotope labeling by amino acids in cell culture
SRM single reaction monitoring
TDS target decoy strategy
TMT tandem mass tags
TOF time-of-flight
UniParc Uniprot archive
UniProt universal protein resource
UniProtKB UniProt knowledgebase
XIC extracted ion chromatogram
XML extended markup language
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“So, what you can do in Microsoft Word is what Bill Gates has decided. What you can do
in Oracle Database is what Larry Ellison and his crew have decided.”

- Ted Nelson



Chapter 2 | ProteomicsDB

47 | P a g e

1 Introduction
Mass spectrometry-based proteomics is rapidly evolving into the technology of choice to identify
and quantify thousands of proteins in a single experiment, which allows the large-scale
interrogation of biological systems. However, most studies focus their analysis and interpretation
on a few central points, such as the difference between a normal and disease state, the expression
landscape of proteins in a set of cell lines, tissues or body fluids or the elucidation of specific
signaling pathways. While this allows the in-depth investigation of specific phenomena, this
approach does not or only to a limited degree make use of previously conducted experiments. An
alternative approach is the integration of published data and thus knowledge to acquire new
insight. Multiple different databases storing the acquired data and results have been released in
the past years1.  Typically,  they include a  repository  to  allow researchers  from all  fields  to  gain
access to the raw data and result files, which facilitates re-use, re-analyses and cross experiment
comparison. However, besides the long-term storage and access to the data, most of these
resources provide no or only limited access to analytical features to cross compare or integrate
different studies. This renders the interaction with previous results without manual reprocessing
and reanalysis difficult, if not impossible, and even the comparison of protein expression patterns
across multiple experiments within a single repository is often not possible.
Three main features are prerequisite to allow the real-time analysis of data originating from
multiple studies: (i) a generic queryable data model for identification and quantification results,
(ii) the integration of the data with the underlying experimental design, and (iii) a performant and
scalable data management system. While the last prerequisite is only necessary for real-time
analysis, the lack or partial implementation of any of the first two renders the system incapable
of providing comprehensive analysis tools. The implementation of a public repository for data
dissemination is optional, but further facilitates data sharing and transparency across the scientific
community.

The Proteomics identification archive (PRIDE)2 provides central storage and archiving of mass
spectrometry data enabling users to upload raw data and search results including quantification
results. Yet, the data is not queryable and researchers with a specific question, for example which
cell line to choose to study a protein of interest, cannot make direct use of the large number of
studies stored in PRIDE. PeptideAtlas provides queryable access to identification data from mass
spectrometry-based experiments for many organisms3. The data is stored in (yearly) builds, yet is
limited to identification results. Specific identifications can be tracked to single experiments, but
PeptideAtlas lacks a comprehensive user interface to easily search for proteins in certain biological
sources. The protein abundance database (PAXDB)4 on the other hand stores quantification data
from publicly available data, yet lacks the underlying peptide identification results. Unfortunately,
no additional metadata about the experimental design is recorded and thus a cross experiment
comparison is not available.

While most repositories require a basic annotation of data, the experimental design is often not
stored in a programmatically accessible format. Besides the capabilities of proteomics to map
proteomes of biological systems where specific treatment parameters are of inferior importance,
many more applications show the power of this technology in deciphering protein dynamics5-7.
For correct data processing and interpretation, all experimental factors have to be recorded to
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enable a context-sensitive analysis and integration8. For example, mass spectrometry-based
proteomics is becoming a suitable tool in preclinical drug discovery by providing means to analyze
protein-drug interactions in both a targeted and unbiased manner. Its applications range from
target selection, deconvolution and validation to lead selection/optimization and pre-clinical
testing9. In these experiments, experimental factors, such as doses, incubation times and
temperatures are essential for individual analysis and cross-experiment comparisons.

Due to constant technological advances, manifested in higher multiplexing capabilities as well as
increased acquisition speed and thus throughput, enabling the analysis of larger sample sizes, the
amount of data generated in single experiments is continuously rising10. This poses new challenges
on existing databases and repositories. The CHORUS repository enables the storage and analysis
of MS data within a cloud environment, reducing the need of local storage and computing
resources. The general aim is to create a catalog of MS data which can be openly access by both
the general and scientific community. While this approach circumvents the challenges associated
with big data for single labs, CHORUS currently does not support cross-experiment comparisons.
On top, regular refinements of gene models require constant changes to the underlying data of a
proteomics database as identification properties of peptides and proteins change11. In order to
keep these consistent with the current gene model, regular adjustments are necessary, increasing
the need for performant database management systems. In contrast to classical disk storage, most
commonly used for (relational) database management systems, in-memory database systems
utilize the main memory as the primary data storage medium. This reduces disk seek when
querying data and, ultimately, results in faster data retrieval. Implementing common mass
spectrometry algorithms within the database exploits the fast access to the main memory and
allows both rapid reprocessing as well as real-time data analysis.

This chapter presents a novel publicly available database, termed ProteomicsDB, utilizing the in-
memory database management system SAP HANA12. ProteomicsDB allows the real-time
interactive exploration of large collections of mass spectrometry-based proteomics data. The
protein-centric interface not only enables users to quickly access quantification information across
all experiments stored in ProteomicsDB, but also to view individual peptide evidence. If available,
the integrated spectrum viewer automatically selects and presents reference data from synthetic
peptides to validate peptide identification events. Using modern web-browser technologies,
multiple interactive visualizations are available and enable the real-time exploration of multiple
proteomes at the same time. Furthermore, the implementation of an experimental design enables
ProteomicsDB to utilize meta-data attached to an experiment, exemplified on dose- and
temperature-dependent assay data. This allows the analysis of off- and on-target analysis of drugs
as well as the theoretical exploration of combination treatments.

1.1 SAP HANA
SAP HANA bundles the calculation, control flow and presentation logic into a single system (Figure
2.19). In contrast to regular databases, SAP HANA stores all data in a hardware optimized in-
memory database. The central component of the database is the index server, which processes
all incoming queries utilizing additional engines, such as the query plan optimizer and execution
engine. In distributed environments, the name server stores the topology of the servers and is
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responsible for locating components. The data can be stored in both row- and column-oriented
storage. To decrease the memory footprint and increase performance, efficient data compression
is applied to the main data. By default, each column is first compressed with a dictionary mapping
all distinct values in a column to consecutive numbers. Additional compression algorithm such as
prefix encoding, run length encoding or sparse encoding are automatically evaluated and applied.

Figure 2.19 | SAP HANA architecture overview. SAP bundles a database management system, the
calculation logic, an application server, the control flow logic, and a web server, the presentation logic.

The in memory storage reduces disk seek operation to a minimum and allows to make full use of
the speed of the processor and main memory allowing real-time analysis of large amounts of data.
Furthermore, due to the speed and compression of data, materializing views and aggregates are
in most cases not necessary. For example, multi column joins use self-generated helper indices.
However, setting secondary multi-column indices is possible and can additionally improve the
performance.
Write operations on this compressed data are computationally demanding and instead performed
on a separate data structure, called delta storage, which uses less efficient compression. This
enables the database to move changes in collections from the delta storage to the main storage
after which the main storage is persisted to the disk while the delta storage itself only exists in the
main memory. This implies that changes to the delta storage have to be written to the disk, in
form of a delta log. In case the system fails before the delta was merged into the main storage,
the database will use the delta log to replicate the last changes.
Due to the strict separation of the calculation logic, control flow and presentation layer (Figure
2.19), SAP HANA can be used as a regular database management system (calculation logic), an
application server (including control flow) or an entire web-application server (including
presentation layer). HANA-based web applications typically make use of the integrated extended
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application services (XS engine) and web/http server (HTTP Server; webdispatcher). This enables
the use of data services (XSOData), server-side JavaScript (XSJS) processed and executed in the XS
engine and SAPUI5/OPENUI5 to build modern and interactive HTML5 applications without the
need of any additional servers. This decreases the number of individual servers necessary and thus
overhead. This work is based on HANA 1.X utilizing the XS classic engine.
SAP HANA supports multiple (open) standards for data access and manipulation such as Open
Database Connectivity (ODBC), Java Database Connectivity (JDBC), Object Linking and Embedding
Database for Online Analytical Processing (ODBO) and Multidimensional Expressions (MDX).
Additionally, different strategies are implemented to connect or integrate other external data
sources as data providers (e.g. HADOOP), external applications (e.g. R via an R server) or external
C++ libraries via the application function library. These services can be implemented directly in
HANA using custom procedures or functions.

1.2 Open data protocol
The open data protocol (OData) defines the best practice for building and consuming queryable
representational state transfer (RESTful) APIs (application programming interface) using simple
hypertext transfer protocol (HTTP) or secure HTTP (HTTPS) requests. Although it is possible to alter
data using the OData standard, in this context it is only used to expose database views. It handles
the request and response headers, status codes, HTTP methods, URL conventions, payload
formats and query options. Each OData method is described in machine-readable format, lists the
input parameters and returns objects including their types, and thus allows the creation of generic
clients consuming data from ProteomicsDB. Available output formats are extended markup
language (XML) and JavaScript object notation (JSON).
OData supports various kind of query options, such as selecting a subset of the provided output
properties (keyword $select), filtering based on the provided properties (keyword $filter),
ordering (keyword $orderby) or to select only the top entries (keyword $top), skip a specified
number of entries (keyword $skip) or counting the number of entries (keyword $count). These
options are particularly helpful for querying tables with large amounts of data. Query options can
be combined and provide a great variety of filtering and restricting the response.
SAP HANA fully supports the definition and rollout of OData services. These application
programming interfaces (APIs) are directly coupled to previously defined views and procedures.

1.3 Kinobeads
Kinases are enzymes that transfer a phosphate group either to serine and threonine or tyrosine
residue of their substrate. This influences the activity, cellular localization or the interaction
spectrum of the substrate. They are one of the most important classes of drug targets, because
they are considered the key regulators of cellular signaling and malfunction is highly associated
with several human disease, like inflammation, diabetes and particularly cancer13-15. Furthermore,
protein kinases are primary regulators of all hallmarks of cancer16-18.
Small molecule inhibitors against protein kinases are designed to imitate ATP binding in the active
site19. This binding is in competition with the co-substrate ATP and thus inhibits the activity of the
kinase. However, this binding pocket is rather well conserved across most protein kinases20, thus
these small molecules often lack selectivity. Consequently, it is of great importance to deconvolute
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the target space of a kinase inhibitor. There are 518 protein kinases encoded in the human
genome20. Due to their low abundance, standard quantitative proteomics cannot readily be
applied. Although many alternative approaches exist21,22, they often suffer from several
shortcomings such as the absence of regulatory domains and interacting proteins or the
misrepresentation of the proteins’ conformational state and post translational modification
(PTMs) status.
One method to overcome these limitations is a targeted chemical proteomic assay, termed
Kinobeads23. Here, bioactive molecules are coupled to e.g. sepharose beads for the specific
enrichment of a sub-proteome. Kinobeads uses multiple immobilized unselective kinase inhibitors
as probes to fish up to 350 kinases and other ATP and nucleotide binding proteins out of lysate24.
The affinity binding constants of these proteins are monitored by increasing the concentration of
a free drug, which compete for binding with the immobilized inhibitors (see Figure 2.20). Targets
of the free drug lose their ability to bind to the matrix, thus showing a dose dependent depletion.
This process is monitored at each dose using quantitative proteomics, resulting in the ability to
calculate half maximal inhibitory concentrations (IC50) or half maximal effective concentration
(EC50) for each target. In order to apply this method, the small molecule of interest does not need
to be chemically modified. However, the method is targeted and only applicable if the drug uses
the same binding mode as the immobilized probes.

Figure 2.20 |Schematic illustration of a competitive Kinobeads pull-down. In increasing concentration, a
free drug is first incubated with cell lysate (native kinase repertoire). Subsequently, Kinobeads fish
unoccupied proteins. LC-MS readout using label-free or label-based approaches enables the quantification
of multiple dosages. Subsequent normalization and curve fitting allows the estimation of protein-drug
potencies for all interaction. Proteins, which do not interact with the free drug, show no dose-dependent
effect (yellow protein). Figure from24.

1.4 Cellular thermal shift assay
Kinobeads provide researchers with an easy to use assay to monitor the target space of kinase
inhibitors.  However,  if  the  target  space  of  the  molecule  is  not  known,  a  bioactive  modified
analogue is coupled to beads and used as the probe. The synthesis of such probes is typically
difficult and prone to errors since both the bioactivity and binding mode have to match that of the
unmodified version.
Thermal shift assays neither require the chemical modification of the small molecule nor do they
rely on the same binding mode as the coupled probe25-27. Thermal shift assays, such as microscale
thermal shift assay28, are used to study the thermal stabilization of proteins upon ligand binding
or folding and have been used in industry and academia to detect all kinds of (protein)
interactions. The basic principle behind this assay is a gradual exposure to heat, which denatures
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proteins and allows the determination of their melting point. Upon ligand binding, the melting
point of a protein may change, as the ligand (typically) increases the energy needed to unfold the
protein. This shift in the melting point can be monitored and used as an indication of interaction.
This concept has been extended to allow its application in a cellular format, termed cellular
thermal shift assay (CETSA)25-27. Briefly, cells are treated with a compound of interest, heated and
lysed. A subsequent centrifugation separates the cell debris and aggregated proteins from the
soluble proteins. Bound proteins are still in solution, even at elevated temperatures, and can be
detected in the supernatant. This process is performed at different temperatures to derive the
temperature-dependent fraction of non-denatured proteins. While the initial assay uses
antibodies for readout, limiting this assay to proteins for which suitable antibodies exist, this
method has been further extended to utilize quantitative mass spectrometry (see Figure
2.21a)29,30. This significantly increases the applications of CETSA since no prior hypothesis of
protein-drug interaction is needed and thousands of proteins can be measured in a single
experiment.

Figure 2.21 | Schematic illustration of an in-cell or in-lysate CETSA and ITDR experiment. a, To define the
target space of a drug, the vehicle (gray) and drug (orange) treated samples are aliquoted and subjected to
increasing heat. Each sample is then digested and labeled with one TMT isotope tag. Samples from drug or
vehicle treated experiments are combined and analyzed using LC-MS allowing the quantification of up to 10
temperatures. After protein identification and quantification, the normalized melting curves of drug and
vehicle treated samples of each protein are compared. Significant changes in the melting temperatures
suggest a direct or indirect protein-drug interaction. b, To determine EC and IC values of protein-drug
interactions, cells are treated with vehicle or drug (here 9 concentrations). Each sample is heated to the
same temperature where for example the proteins-drug of interest are expected to show the biggest
relative difference in fraction non-denatured (see CETSA). After digestion, labeling and LC-MS
measurement, protein identification and quantification results are used to fit dose-response curves which
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enable to determination of EC and IC values. Non drug-binding proteins show no effect, while proteins
interacting with the drug can be either stabilized or destabilized. Figure from30.

While CETSA only allows the detection of interactions of proteins and drugs in a cellular format,
the results cannot be transformed into binding constants, such as an EC50. For this purpose, the
temperature is kept constant and the lysate or cell lines are treated with increasing concentration
of the free drug (see Figure 2.21b). For maximal dynamic range, the temperature with the largest
difference in the melting behavior is chosen. This experiment enables the determination of the
EC50 and Kd of the protein-drug interaction, since the effect of binding can be monitored as the
response of the change in the melting curve. This assay is termed isothermal dose response (ITDR).



Chapter 2 | ProteomicsDB

54 | P a g e

2 Methods and implementation

2.1 Database structure
At  the  time  of  writing,  ProteomicsDB  consists  of  80+  tables  which  can  be  grouped  into  four
modules: i) static and metadata, which contains general purpose tables, such as annotations,
controlled vocabulary ontologies and fragmentation rules; ii) repository, which contains the raw
data including their annotation and metadata; iii) identification data, which stores spectra and the
associated PSMs and reference data; and iv) quantification data, which holds peptide, protein and
transcript expression data. For clarity, each module will be depicted as a simplified entity
relationship model only containing the most important attributes.

2.1.1 Static and Metadata
ProteomicsDB uses multiple ontologies and controlled vocabularies (CV) for internal
representation and annotation (Figure 2.22). At the time of writing, the following ontologies are
used: PSI-MS (terms for proteomics and MS), BTO (BRENDA tissue ontology), UO (unit ontology),
GO (gene ontology), sep (terms for chromatographic/separation methods). Terms not defined in
the imported ontologies are created manually with the prefix PDB. Furthermore, user defined
free-text input (e.g. drugs) is controlled in CVs as well.  Terms, their definition and relation are
stored in triplestore format enabling the representation of complex relations.

To model the design of an experiment, ProteomicsDB defines treatments as sets of predefined
experimental factors which represent the sequential steps performed during sample preparation
(Figure 2.22). An experimental factor is either an entity for numeric values, such as time and dose
associated with a unit, or for (controlled) free-text fields, such as drugs and baits. At the time of
writing, more than 20 treatments (e.g. heat treatment, drug treatment) are defined.
Manifestations of factors used in the experimental design are stored as conditions in the
repository.

The protein and peptide sequence space is essential for the analysis of proteomic data. For this,
the complete protease-specific in silico digest of the human proteome (Figure 2.23) is stored to
enable access to uniqueness information of all peptides. Additionally, general protein annotations,
such as gene names, loci, synonyms and cross references as well as GO and domain information
are stored (Figure 2.24).

In order to model the fragmentation of peptides, ProteomicsDB stores an internal representation
of the fragmentation behavior of peptides to enable the context-specific generation of fragment
ions of any type31. For this, masses of amino acids, immonium ions and other central atomic
building blocks such as protons and electrons are stored alongside the definition of all major
fragment ion types (ion series), such as b-ions or internal fragment ions. Depending on the
fragmentation technique and charge-state of the precursor, only specific ion series are generated
for annotation. Similarly, the annotation of neutral losses is amino acid and PTM specific and thus
depends on the composition of the fragment ion.
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2.1.2 Repository
To enable the organized and structured storage of raw data, three hierarchical layers for
annotation are implemented (Figure 2.22). A project, belonging to a specific user, groups multiple
experiments together. An experiment, apart from a name and description, requires the
annotation of a scope. Further, experiments contain one or many samples, which again are
represented by one or many raw MS files. However, due to multiplexing (e.g. SILAC or TMT), a
single raw file can contain identification and quantification information of multiple samples. The
annotation of samples contains information such as the mass spectrometer, biological material
and treatment conditions used.

Figure 2.22 | Entity relationship model of the repository.

2.1.3 Identification data
ProteomicsDB  is  designed  to  enable  the  storage  of  any  search  result  (Figure  2.23).  For  this
purpose, a search is linked to files stored in the repository and is described by search parameters
and the search engine used. Peptide spectrum matches (PSMs) associated with a search link a
spectrum from an MS-file to a peptide sequence. Besides the search engine score, the FDR and
other information about the precursor, a PSM can have multiple modifications attached to it.
These map residues and localization probabilities within the peptide sequence to predefined
modifications. While a PSM is linked to a peptide sequence from the in silico digest of the human
proteome, the identified sequence as reported from the search engine is stored as well. This
enables a later mapping if a different sequence database was used. In addition to the identified
experimental spectra, ProteomicsDB allows the storage of reference spectra acquired from e.g.
synthetic peptide standards. These are stored separately from the experimental spectra, but
contain similar information on PSM and spectrum level. While experimental spectra are annotated
using the fragmentation model stored in ProteomicsDB, the annotation of fragment peaks in
reference spectra can be stored directly to enable manual annotation but also to avoid wrong
assignment of peaks.
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Figure 2.23 | Entity relationship model of identification data.

2.1.4 Quantification data
A core requirement of ProteomicsDB is the storage and evaluation of expression data (Figure
2.24). For this purpose, each PSM is associated with a label-dependent quantification of the
corresponding MS-feature (e.g. XIC in label-free or reporter intensity in MS/MS-level
quantification). With the mapping of PSMs to peptides, all available quantified features of a
protein can be used to estimate a method-dependent expression. Besides expression estimates
of proteins, transcript abundance measures can be stored in ProteomicsDB as well. In addition to
this, the storage of (arbitrary) models which relate experimental factors (in form of conditions)
from the experimental design to the expression of proteins. This enables the analysis of e.g.
temperature- or dose-dependent data to identify differential behavior within or across
experiments. For this, all fitted parameters and related properties such as the goodness of fit of a
model are stored.

Figure 2.24 | Entity relationship model of quantification data.
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2.2 Data import and processing
The entire import process consists of 6 steps (Figure 2.25): i) data selection, ii) manual annotation,
iii) peptide identification with Mascot/Percolator32,33, iii) peptide identification and quantification
with Andromeda/Maxquant34,35, iv) metadata extraction, v) data import and vi) post import data
processing.
The primary data sources are the Chair of Proteomics and Bioanalytics and data from other
laboratories either from public repositories such as PRIDE, PeptideAtlas and MassIVE/Tranche or
direct communication. Datasets selected for import had to fulfil three criteria: (i) high resolution
MS1 spectra, (ii) well annotated with respect to sample processing, data acquisition and used
material, and (iii) increase the coverage of the human body by providing quantitative data on
additional tissues, fluids and cell lines.

Figure 2.25 | Data processing pipeline. Raw MS-data is collected from three primary sources and
subsequently processed via a uniform pipeline. After manual annotation of the data (e.g. used cell line,
quantification technique, experimental design), the raw-files are processed via Andromeda/MaxQuant and
Mascot/Percolator. Additional metadata can be extracted using an in-house Proteowizard-based
application.

2.2.1 Data processing
After selection, each dataset (project) is manually annotated to record basic parameters of data
acquisition as well the experimental setup such as utilized quantification technique, biological
entities measured and the mapping of raw-files to samples. The resulting annotation is imported
into ProteomicsDB, which generates the basic layout of projects, experiments and samples, as
described earlier. Afterwards, all raw-files are processed with Mascot/Percolator and
Andromeda/Maxquant. Additionally, a custom ProteoWizard-based36 application was used to
extract metadata associated with the mass spectrometer, the acquisition and each spectrum
stored in the raw-files, such as utilized mass analyzers, isolation windows and precursor m/z.

2.2.2 Data import
Data import is controlled by a central queue implemented in bash. A simple text file of incoming
jobs is monitored by a service on the database server. Depending on the file type (e.g. dat-file,
combined-folder or raw-file), the respective import module is triggered. Each module performs an
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initial sanity check to validate the incoming data for consistency with the annotation stored in
ProteomicsDB.
The  import  of  Mascot  search  results  expects  two  input  files,  a dat- and datp-file. The dat-file
contains the search results as provided by Mascot. The datp-file contains the percolated results
of Mascot which provides posterior error probabilities (PEPs) for each peptide spectrum match
(PSM). Before the import of the search engine results it is tested whether the processed raw-files
are present in ProteomicsDB and assigned to a sample with the same quantification properties,
e.g. SILAC or TMT. If the incoming data pass this test, the import process is triggered and all target
and decoy (including up to rank 10 matches) PSMs are imported into ProteomicsDB.
The Maxquant importer expects a combined folder generated by Maxquant containing the
mqpar.xml, a txt-folder and the respective res- and apl-files. After the input data passed the same
tests as performed by the Mascot importer, the res- and apl-files containing the processed MS/MS
spectra are indexed to enable fast data import. For this purpose, the index contains a mapping of
all spectra and their respective peptide sequence and score within all res-files. The corresponding
apl-file contains the deconvoluted spectrum which is imported into ProteomicsDB alongside the
identification data, such as score, PEP and modifications.

2.2.3 Post import data processing
After data import, each LC-MS/MS run is separately FDR adjusted. For this purpose, the highest
scoring PSMs per spectrum from one search engine are sorted by score in descending order. A
first iteration initializes the q-values with the ratio of the number of decoy matches to the number
of target matches with scores greater or equal the current selection. To allow consistent filtering,
a second iteration in reverse order sets the final q-value to the minimum q-value observed for
PSMs with a score less than or equal to the selected one. This reduces sampling artifacts and
generates a continuously decreasing q-value curve when plotted against the search engine score.
After assigning q-values to each PSM, a subsequent step aggregates spectral information on the
protein level (e.g. the number of PSMs, maximum score and minimum q-value) and stores the
results in a separate table.
Two of the most popular approaches of estimating protein expression values have been
implemented in ProteomicsDB. Protein abundance is estimated using the iBAQ approach37 as well
as the top3 intensity approach38,39. For iBAQ, peptide intensities for all peptides in a sample are
obtained, summed and divided by the number of theoretically observable peptides. For the top3
approach, peptide intensities of the three most intense peptides in a sample are obtained and
summed. In order to be able to compare protein abundances across multiple samples,
experiments and projects, iBAQ or top3 intensity values are normalized based on the total sum of
the respective protein intensities. Protein abundance is calculated for different label types (e.g.
light and heavy SILAC) separately, as these represent different samples. In the case of label-free
quantification, SILAC and dimethyl labeling experiments, iBAQ and top3 intensities are derived
from MS1 intensity measurements. For isobaric labeling (TMT or iTRAQ), iBAQ and top3 values
were calculated based on MS2 reporter intensities. However, iBAQ and top3 abundance estimates
derived from MS1 and MS2 intensity-based quantification are not directly comparable.
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2.2.4 Spectrum annotation
All experimental spectra are annotated in real-time using the fragmentation rule set described in
the CID/HCD expert annotation system31. This allows the incorporation of new fragmentation rules
without the necessity to recalculate all spectrum annotations. The fragmentation rules stored in
ProteomicsDB are used to generate lists of theoretically observable fragment ions and neutral
losses. Based on the peptide sequence, precursor charge, present modifications and
fragmentation method of the selected PSM, a procedure implemented in L generates all possible
fragment ions (ion series). All annotated ions from the experimental spectrum are then used to
generate all possible neutral loss ions. Possible neutral losses for all fragment ions are generated
based on the amino acid composition and modification status. If multiple annotations are possible
for a single peak in an experimental fragment spectrum, the one(s) with the highest priority are
chosen.

2.2.5 Curve fitting
All curve models were fitted using an in-house R-script utilizing the R packet drc40. Dose dependent
data were fitted with a log-logistic four-parameter regression model, while for temperature-
dependent data a logistic four-parameter regression model was used. Briefly, protein abundance
estimates were normalized to the vehicle control and each model was fitted separately. The four
model-parameters and the corresponding coefficient of determination41 (R2) and the Bayesian
information criterion42 (BIC) were imported into ProteomicsDB.

2.3 Data retrieval and visualization
With minor exceptions, all data shown on the user interface of ProteomicsDB are requested from
dedicated OData or XS services using Ajax (asynchronous JavaScript and XML). The response is
served in JSON-format. Depending on the complexity of the underlying data, these services access
attribute-, analytical- or calculation-views. Attribute views are simple database views without
additional aggregation. Analytical views typically provide access to measures which allow
additional aggregation. Most services, however, call calculation views which enable complex
calculations (e.g. observed and theoretical sequence coverage or the annotation of experimental
spectra) not possible without custom SQL-, L- and R-procedures. For data visualization, the
JavaScript library D3 was used.
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3 Results
The main goal of ProteomicsDB is to expedite the identification of the human proteome and foster
its use across the scientific community. For this, four main features are necessary: (i) data
deposition and annotation, (ii) data access, (iii) online data exploration and (iv) online analytical
tools supporting the cross-experiment comparison. The following four sections describe these
features in more detail. Briefly, data deposition and annotation is possible via the integrated
repository. The repository enables the structured storage and description of MS data, which is
essential for proper data dissemination and integration. Multiple OData services can be used to
retrieve data stored in ProteomicsDB. These services, described in the second section, can be
accessed via the browser, programmatically or a custom light-weight Java application. The third
section highlights the visualization of identification and quantification data and use-cases covered
by the protein-centric visualization. Lastly, ProteomicsDB enables cross-experiment data
comparison and combination via browser-based analytical tools. Three specific use-cases are
implemented at the time of writing and described in the last section.

3.1 Repository
ProteomicsDB provides a simple repository for data storage and annotation of MS data. However,
the repository is not only intended to enable access to the data. The annotation is essential for
multi-experiment comparisons or other meta-analyses as it allows to set different experiments
into context of each other or to interpret the data within the context of the experimental design.

Raw MS-files can be uploaded to ProteomicsDB once a project and an associated experiment has
been created. While a project does not need any further annotations, the scope of the experiment
has to be set, allowing different classification options such as full proteome, affinity purification
or dose-dependent inhibition. After the initial creation of a project, the project’s visibility is
“private” and thus not visible to any other visitors. The owner can share a secure link with the
public to allow others “read-only” access to the project. Additionally, the owner can modify the
visibility by altering the status of the project to frozen, preventing further changes to the
underlying data, and subsequently to public. After that, no further changes to either the data or
the annotations are possible and the project is publicly accessible.
Two additional annotation layers exist besides the scope of the experiment. First, multiple raw
MS-files can be assigned to samples within an experiment to allow both the combined expression
estimation of pre-fractionated samples (one sample many raw-files) as well as separate
expression estimation (one raw-file many samples, e.g. SILAC). A sample provides multiple basic
annotations, such as digestion conditions, sample collection, biological origin and MS settings.
However, especially in more complex experiments such as dose- or temperature-dependent
assays, experimental factors such as the specific concentration, the temperature and the used
inhibitors are necessary to correctly process, analyze and interpret the results. These information
can be provided by adding an experimental design. Figure 2.26 illustrates this on a CETSA
experiment (see Extended Data Figure A1 in the Appendix for a Kinobeads experimental design).
As described earlier, conditions and treatments are organized into columns and rows in a matrix
layout, respectively. An example of a treatment is “inhibition” which is described by a dose, a
duration and the inhibitor (see Figure 2.26, first column). Conditions are manifestations of a group
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of treatments, such as 5000 nM Dasatinib followed by heat treatment at 52 °C (see Figure 2.26,
last row). Adding a sample to a specific condition is done by dragging and dropping an unassigned
sample (Figure 2.26; list of samples) into the desired condition and biological replicate column.
While biological replicates are manually added by the user, samples assigned to the same
condition and biological replicate are considered technical replicates. The example shown in
Figure 2.26 depicts two treatments with two biological replicates. With this annotation,
ProteomicsDB is able to visualize the temperature-dependent effects of Dasatinib on any
identified protein within this experiment and also allows to compare different experiments with
each other.

Figure 2.26 | Screenshot of an experimental design of a CETSA experiment from ProteomicsDB. The
experiment consists of two treatments (inhibition and temperature). Each condition (e.g. 5 mM Dasatinib
with a subsequent heat treatment of 40 °C) was measured with two biological replicates. All samples
assigned to the experiment, but not yet used in the experimental design, are listed on the right-hand side
and can be moved by drag-and-drop to specific conditions.

3.2 Data access
ProteomicsDB offers a wide variety of APIs using the OData specification for programmatic access
to  data.  Listing  1  shows  an  example  how  to  query  the  API proteinpeptideresult for all
peptides (sequence, score and search engine via $select) weighing more than 1000 Da (by using
$filter) of the protein Q92769 (InputParams PROTEINFILTER).

https://www.proteomicsdb.org/proteomicsdb/logic/api/proteinpeptideresult.xsodata/InputParams(P
ROTEINFILTER='Q92769')/Results?$select=PEPTIDE_SEQUENCE,SCORE,SEARCH_ENGINE&$filter=PEPTIDE_MA
SS gt 1000

Listing 1 | Example HTTPS OData request to proteinpeptideresult. The columns sequence,
score and search engine are requested for protein Q92769 of peptides with a mass of >1000 Da.

In order to use the API, a user has to register with ProteomicsDB and be granted the necessary
privileges.  After  that,  the user  can use the APIs  via  the browser  or  programmatically.  Listing  2
briefly shows how to use an OData service in python. After specifying the type of connection and
the username and password, a connection to an API via an URL can be opened. The response is
either delivered in JSON or XML format.
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import urllib2, urllib, httplib;
import base64

try:
import ssl

except ImportError:
print "error: no ssl support"

class ExampleAccess():
def __init__(self, username, password):

        self.default_headers = { "Authorization" : "Basic %s" % base64.encodestring( "%s:%s" %
( username, password) ).rstrip('\n') }

        self.port = 443
        self.host = 'www.proteomicsdb.org'
        self.url = '''/proteomicsdb/logic/api/proteinpeptideresult.xsodata/...'''

def connectAndRetrieve(self):
        hconn = httplib.HTTPSConnection( "%s:%d" % (self.host,self.port) )
        hconn.request("GET", self.url, headers = self.default_headers)
        resp = hconn.getresponse()

print resp.status, resp.reason
        body = resp.read()

print body
        hconn.close()

if __name__ == "__main__":
    USERNAME = "ProteomicsDBUserName"
    PASSWORD = "ProteomicsDBPassword"

    example = ExampleAccess(USERNAME, PASSWORD)
    example.connectAndRetrieve()

Listing 2 | Python example on how to use an OData service from ProteomicsDB.

Ten different services are currently available and described in more detail on the web interface.
Briefly, to retrieve:
API#1: All peptide identifications for any protein

This service returns all peptide identifications for a given protein of all public projects.
The results contain qualitative information, such as the q-value, PEP and score of the
identification, as well as metadata, such as the scope of the experiment in which it was
identified.

API#2: All peptide and protein identifications for any experiment
This service requires an experiment ID and returns a full list of identified peptides and
proteins. As described, OData allows to add custom filters, which can be used to filter
for example the q-value of the peptide identification.

API#3: The expression values for any protein

This API can be used to retrieve protein expression values (iBAQ or top3) for any protein
of interest. Additional filters enable the selection of specific tissues and experimental
scopes. Some of the filters are designed to prevent the direct comparison of protein
expression values between e.g. MS1- and MS2-based quantification or full proteomes
and affinity purifications.

API#4: The available quantification types for any protein
This  service  functions  as  a  helper  for  API#5.  The same procedure is  used in  the web
interface to limit the number of check boxes for the calculation of the experimental
proteotypicity.

API#5: The experimental proteotypicity for any protein
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Taking into account the specified labeling techniques, this service returns both
experimental proteotypicity and the experimental cumulative proteotypicity for a given
protein. Both values are calculated in real-time.

API#6: All expression values in an available organ, cell line or body fluid
This service only takes full proteomes into account and returns a full list of proteins
found to be expressed in the given biological system.

API#7: A list of all available organs, cell lines and body fluids
This service functions as a helper for API#6 and returns all available biological sources
for which full proteomes are available.

API#8: All PSMs for any peptide
Given the peptide sequence of interest and a custom q-value filter, this web service
returns a list of all PSMs available for this peptide. This includes, but is not limited to,
scores, PTMs, retention time, mass error and the experiment they were observed in.

API#9: A comprehensive list of peptides identified for any protein
In contrast to API#8, this service aggregates peptides based on their sequence, charge
and variable modification string. The best PSM is selected and chosen as a
representative.

API#10:A list of all peptides identified in any organ, cell line or body fluid
Similarly to API#9, this service compiles a list of best PSMs per sequence, charge and
modification string which have been observed in a given biological source, irrespective
of the scope of the experiment.

As both the XML and JSON output is not designed to be imported into spreadsheet programs and
not all  users might have neither the experience nor the tools at hand to use the API to its full
effect, the RequestTool, a standalone Java application (Figure 2.27) was implemented to simplify
the access to the data. This application allows registered users to login and use the API. At startup,
all currently available APIs including their required in- and output parameters are automatically
retrieved from ProteomicsDB. The RequestTool enables users to download data in csv output,
however, additional writers can be added easily by attaching new modules. Furthermore, an input
parameter syntax and a first-in-first-out request queue allows users to specify batch jobs which
either generate a single csv per job or append the output to a single file. This enables the
automatic retrieval of data from hundreds or thousands of proteins.
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Figure 2.27 | RequestTool to access the ProteomicsDB API. The RequestTool allows any ProteomicsDB user
to download data and store data in a user-friendly and simplified process. At startup, this application
connects to ProteomicsDB and retrieves all currently available APIs including their in- and output
parameters.

3.3 Protein-centric visualization
ProteomicsDB is designed to enable researchers the quick interrogation of available identification
and quantification information on single proteins. For this purpose, ProteomicsDB provides views
and tools to check and manipulate available data in a protein-centric presentation. Different use-
cases are organized into tabs, which are described in more detail in the following subsections.

3.3.1 Protein Summary
The starting  page of  every  protein  shows a  brief  summary (see Figure 2.28).  This  includes  the
number of peptides which have been detected (shared and unique on either gene or protein
level), the sequence coverage and some basic annotations such as GO terms, chromosomal
location, external links and evidence status. If high quality unique (gene or protein level) peptides
have been identified in any of the imported projects, the evidence traffic light for this protein is
green. Yellow indicates that the best peptide identification for this protein is of poorer quality and
the identification of the protein is questionable. If no unique peptide match exists for this protein,
or its evidence likely is a false match, this protein is marked red. Additionally, the protein sequence
coverage which depicts all identified peptides is shown. Similar to genomic sequence alignments,
overlapping peptides are drawn in a stacked manner. Aligned to this, a visualization of the protein
domain structure and observed PTMs is shown underneath. This quickly enables users to see
which part of the protein is covered by observable peptides (e.g. here the tyrosine kinase catalytic
domain; TyrKc). This is especially important for researchers who are interested in specific peptides
covering e.g. regions of PTMs or mutations of a protein to build targeted assays.
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Figure 2.28 |Screenshot of the DDR1 protein summary page from ProteomicsDB. This view depicts general
information about the protein, such as gene name, chromosomal location, GO annotation and external links,
as well as a brief overview of the MS-evidence, such as number of unique peptides and sequence coverage,
stored in ProteomicsDB. The graphical representation of the protein includes the MS-accessible primary
structure, the annotation of known and predicted domains and sequence features, as well as observed PTMs
and their location.

3.3.2 Sequence coverage
This tab shows the entire sequence of the selected protein including properties such as mass,
length and coverage. Amino acid stretches which are supported by the identification of a peptide
are marked in red whereas black stretches are not yet covered by confident peptide
identifications. This tab is designed to check whether certain peptides are MS-accessible to enable
e.g. the identification of SNPs or PTMs.

3.3.3 Protease Map
This tab offers an in silico digest of proteins. After selecting the proteases of interest, the user can
filter the resulting peptides by number of missed cleavages, length and mass. Each selected
protease is visualized with a sequence coverage pattern plot, which shows all possible peptides
passing the selected filters. Even though each protease is considered separately, the table
underneath the plots also shows the combined maximum expected sequence coverage when
using multiple proteases in separate digestion and analysis steps. This view is designed to guide
users  who are interested in  maximizing the sequence coverage of  a  single  protein  or  who are
interested in knowing which protease to choose when a particular area of the protein is of interest.
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3.3.4 Proteotypicity
This view is designed to guide researchers which are interested in directed or targeted acquisition
methods such as SRM/MRM or PRM assays by ordering peptides according to their potential for
reproducible and consistent identification and quantification. For this purpose, peptides are
sorted by their experimental proteotypicity. The experimental proteotypicity of a peptide is the
ratio of the number of experiments in which this peptide was identified to the number of
experiments in which the protein was identified. High values indicate good MS sample preparation
and acquisition accessibility. However, some multiplexing techniques strongly influence the
detectability of peptides, thus the user can choose between different labeling approaches in which
this protein was identified. After selecting one or multiple labeling strategies, the table depicts
the experimental proteotypicities. In addition to this, the cumulative proteotypicity predicts how
many peptides are necessary in order to reproducibly identify a protein with a certain probability
in unknown samples.
This view strongly benefits from using an in-memory database. Pre-calculating all possible
combinations  of  options  will  result  in  a  large overhead,  which has  to  be stored.  ProteomicsDB
calculates the experimental proteotypicity in real-time on request. In principle, this allows the
incorporation of even more options, such as user defined PSM or peptide FDR cutoffs, charge
states or biological sources without losing performance.

3.3.5 Expression
ProteomicsDB is designed to enable the comparison of thousands of samples from a wide range
of biological sources such as tissues, body fluids and cell lines. The expression tab allows
researchers to explore the expression of a single protein in human samples and cell lines and
further allows to trace its expression down to single samples. Consequently, a user is able to infer
the conditions under which this protein was identified.
The expression view is built out of two major components for data selection (Figure 2.29a) and
visualization (Figure 2.29b-d). In order to enable proper cross-experiment comparison of
expression values, only data from similar sources can be selected. As MS1 and MS2 quantifications
techniques cannot be compared directly, the filters only support the selection of either type.
Likewise, the comparison of full proteome data (unbiased expression analysis) with affinity type
experiments (biased expression analysis) is not possible and thus does not allow a direct
comparison. In addition, the user can choose between different biological sources and the
expression estimation technique.
The data visualization is composed of three interactive connected elements: (i) a heatmap-like
body map (Figure 2.29b),  (ii)  a  cell  type aggregated bar  chart  (Figure 2.29c),  and (iii)  a  sample
specific bar chart (Figure 2.29d). The body map depicts the median expression of a protein in the
human body. A linear color gradient from green to red is used to map low and high abundant
proteins  to  the  tissue  of  origin.  The  cell  type  aggregated  bar  chart  shows  the  median  and,  if
replicate measurements are available, the minimum and maximum expression of a protein in the
corresponding tissue, fluid or cell line. The sample-specific bar chart visualizes the expression of a
protein without aggregation across multiple selected biological sources.
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Figure 2.29 | Screenshot of the protein expression of DDR1 from ProteomicsDB. a, The data selection
interface enables users to select the data source (protein, mRNA or ratio), biological sources (tissues, fluids
and cell lines) and depending on the choice of the data source, different quantification and calculation
methods. b, The median expression of a protein is superimposed in a heatmap-like representation (high and
low expression depicted in red and green, respectively) onto the human body. The protein expression values
of cell lines are mapped to the tissue of origin using the BRENDA tissue ontology. c, The cell type aggregated
bar chart depicts the median and, if replicate measurements or multiple studies on the same cell type are
available, the minimum and maximum observed expression of a protein. Highlighted (orange bars in c and
opaque tissue in b) are all biological sources originating from human breast tissue. d, The sample-specific
bar chart visualizes the expression estimates from specific measurements. A click onto a specific bar in the
representation opens a popup showing basic sample preparation and acquisition parameters from the
experimental design. The body map and the two bar charts are connected, thus selecting a specific tissue in
the body map will both highlight all corresponding cell types as well as open the sample-specific bar chart,
and vice versa.

These visualization are connected to each other, enabling the interactive exploration of expression
patterns. For example, selecting colon in the body map will highlight all bars in the cell type
aggregated visualization (including cell lines) which originated from colon. Selecting (by clicking)
one or multiple biological sources (bars) in the aggregated visualization will both highlight the
tissue of origin in the body map as well as trigger the sample specific visualization to show all
available single measurements for the selected cell type. Additionally, a brief summary of the
sample preparation details can be opened by clicking a bar in the sample specific bar chart.

The generic implementation of the expression tab and the versatility of ProteomicsDB also enables
the storage and visualization of other omics data sources, such as RNASeq data43. During data
selection, the user can choose mRNA as the primary data source and thus explore the expression
of mRNA across the human body using the same mechanism as described for proteins.
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3.3.6 Biochemical Assay
To showcase the potential of ProteomicsDB besides visualizing expression values estimated from
full proteome data, three visualizations of data originating from biochemical assays used to study
protein-drug interactions were implemented. The biochemical assay tab shows a comprehensive
overview of all Kinobeads and CETSA experiments stored in ProteomicsDB.
Starting with Kinobeads experiments, the biochemical assay tab shows all available competition
binding curves available in ProteomicsDB. These (Figure 2.30) can be filtered by adjusting the
sliders for the EC50, R2 (R2) and BIC. Depending on the protein and the selected filters, the table
will highlight small molecules which show a dose dependent effect. The experimental data is
plotted using black circles, whereas the blue line shows the fitted dose response curve. The orange
error bar indicates the uncertainty (one standard error) associated with the estimation of the EC50

resulting from the curve fit. Deactivating all filters will list all small molecules profiled with
Kinobeads and also visualizes experiments with no dose-dependent effect. A direct link to
DrugBank44 (Inhibitor) as well as the experimental and experiment design (Repository) are
provided in the table.

Figure 2.30 | Screenshot of the biochemical assay tab – Kinobeads – from ProteomicsDB. Here, DDR1 is
shown which shows a clear inhibition upon treatment with Dasatinib (EC50 52 nM) and Bafetinib (EC50 23
nM). The underlying data as well as the curve fit are stored in ProteomicsDB to allow cross-experiment
comparison and analysis.

Two similar views are available for CETSA experiments. First, selecting the option “Melting
proteome” shows the melting behavior of the selected protein in CETSA vehicle control
experiments (mostly DMSO). This view can be used to investigate whether a protein was ever
observed in a CETSA experiment and enables researchers to estimation the CETSA accessible
proteome. The second view (see Figure 2.31) shows CETSA vehicle control and drug experiments,
similar to Kinobeads. The table lists the difference in the melting point, as well as the mean R2 of
the control and treatment curve. Major shifts in the melting behavior (large Delta Tm) indicate a



Chapter 2 | ProteomicsDB

69 | P a g e

direct or indirect protein-drug interaction. Different replicates, annotated in the experimental
design, are differentiated by the line type (e.g. solid vs dashed).

Dasatinib was initially design to target BCR-ABL, SRC, Ephrins and GFR45 for  the  treatment  of
chronic myelogenous leukemia. However, both the Kinobeads (Figure 2.30) as well as the CETSA
assay (Figure 2.31) independently support the hypothesis that Dasatinib binds to DDR1 suggesting
that DDR1 is an off-target of Dasatinib. Additionally, the Kinobeads experiment provides an
estimate of the potency of the interaction with an EC50 of  52  nM.  Kinobeads  and  its  CETSA
equivalent, the isothermal dose response (ITDR), are both supported in ProteomicsDB, however,
no ITDR data is available yet.

Figure 2.31 | Screenshot of the biochemical assay tab – CETSA – from ProteomicsDB. Here, DDR1 is shown
exhibiting a stabilizing effect upon Dasatinib treatment, further validating the observation that Dasatinib
binds to DDR1 from Figure 2.30.

3.3.7 Peptides/MSMS
The peptides/MSMS tab is dedicated to show all available peptide evidence for the selected
protein. The initial view lists all observed peptides including meta data such as mass, length,
uniqueness and the number of observations, as well as its identification score, q-value and PEP.
Each spectrum used for inference can be visualized in ProteomicsDB using the built-in spectrum
browser  (Figure 2.32).  Selecting a  peptide of  interest  opens an overlay  which lists  all  available
PSMs for this peptide (Figure 2.32a). Similar to the peptide overview, this table shows all available
information, such as individual search engine score, q-value, PEP, modifications and source. By
default, the PSM with the lowest PEP is selected and its spectrum is displayed below the table
(Figure 2.32c). The spectrum viewer offers various different options for configuration and
selection (Figure 2.32b). Starting with the annotation of the fragment ions, the spectrum viewer
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can be configured to show or hide all major fragment ions as well as specific neutral losses. By
default, the expert system annotation is used. The result is visualized in the middle panel (top
spectrum). Fragment ions are color coded and their annotations are shown above. A mass
deviation plot underneath the spectrum can be used to judge the correctness of the annotation.

Figure 2.32 | Screenshot of the fragment spectrum of the peptide LAAQGLGMQQCTLTR with the
integrated spectrum viewer from ProteomicsDB. a, This table lists all available PSMs stored in
ProtoemicsDB and provides links to the respective projects and experiment in the repository. b, The
annotation of fragment ions can be controlled by (de)-selection of the respective options in the “Fragments”
sub menu. Furthermore, the “Reference Spectrum” submenu can be opened to choose a different reference
spectrum for visualization and the “Configuration” submenu enables the configuration of visualization
options. c, The spectrum viewer visualizes the observed (top spectrum) and, if available, a reference
spectrum (bottom spectrum) of a synthetic peptide in a mirror view.

An integrated feature of the spectrum viewer is the mirror representation of a reference spectrum
(bottom spectrum) if available. These spectra originate from e.g. synthetically generated peptides
which were measured separately and can be used to validate the identification of the peptide and
thus protein. In case a reference spectrum is available, the highest scoring PSM is chosen matching
to the precursor and modification status of the selected PSM. As depicted in Figure 2.32, the
experimental spectrum identified as the peptide LAAQGLGMQAACTLTR (top spectrum) matches
the reference spectrum (bottom spectrum) in terms of fragment masses and their relative
intensities. Further reference spectra for comparison can be chosen by opening the “Reference
spectrum”  tab  on  the  left.  While  the  observed  spectrum  of  LAAQGLGMQAACTLTR  is  almost
completely annotated, leaving none of the most intense peaks unexplained, this is not always the
case. Especially for poor quality or chimeric spectra this feature can increase the confidence for a
true positive match even though the search engine score would suggest otherwise. In contrast to
regular database search approaches, this view allows the comparison of relative fragment
intensities.



Chapter 2 | ProteomicsDB

71 | P a g e

3.3.8 Reference peptides
As described in the previous section, ProteomicsDB also stores reference spectra for some
peptides. All reference spectra are accessible via the “Reference peptides” tab of a protein. This
representation is similar to the “Peptide/MSMS” tab and each spectrum can be viewed. Opening
a spectrum of a reference peptide again depicts the spectrum with respect to other available
reference spectrum, as it uses the same implementation.

3.3.9 Projects
The “Projects” tab lists all projects and experiments in which the selected protein was identified,
providing links to the repository (if set to public) and shows the number of peptides and PSMs
which led to the identification as well as sequence coverage and evidence status of the
identification.

3.4 Browser-based analytical tools
On major application of ProteomicsDB is its integrated solutions for multi experiment
comparisons. To highlights these capabilities, three use cases were implemented. First, an
expression analysis over multiple experiments utilizing the highly interactive heatmap
implemented in ProteomicsDB. Second, an application which can be used to determine the most
suitable drug for a given target. Last, the extension of the latter to the exploration of the dose-
dependent effects of on- and off-targets using multiple inhibitors.

3.4.1 Analysis of protein sets
The comparison of expression profiles across different tissues, fluids and cell lines can give rise to
new hypothesis and biological applications. While the expression tab of a single protein allows the
analysis of expression patterns over multiple biological sources, it does not enable to analysis of
expression of multiple proteins. This analysis is visually supported by the presentation of data in
a heatmap showing proteins and biological sources as rows and columns, respectively.
For this purpose, any list of gene names or Uniprot identifiers can be supplied to ProteomicsDB.
Similar to the expression analysis of a single protein, different options exist to filter the results
based on biological sources, quantification methods and calculations.
The heatmap shown on ProteomicsDB supports zooming (mouse wheel) and panning (drag). If the
resulting number of proteins or biological sources is too large, the names of one or both are hidden
and only shown once the width or height of the cells is large enough to print the names. Two
dendrograms show the results of the hierarchical clustering in both dimensions. One or multiple
sub-trees can be selected to either remove the respective rows or columns, or to perform a GO
enrichment analysis using DAVID46,47. For large heatmaps, the Ctrl-modifier can be used to directly
zoom into a specific sub-tree of the heatmap.
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Figure 2.33 | Screenshot of the protein expression heatmap of all major components of the proteasome
complex from ProteomicsDB. The  online  heatmap  allows  to  search  for  a  custom  set  of  proteins  (here
PSMB*). Different choices of biological sources, calculation methods and protein subsets exists. An online
clustering of the results is performed to help visualize differences in expression patterns. The heatmap
provides multiple interactive functions, such as zooming, panning, removing of rows and columns and a link
to DAVID to perform a GO enrichment analysis. The raw data, as well as the heatmap can be exported as
svg or png files. The subunits PSMB 5-7 (highlighted in black) are found in the constitutive proteasome,
while PSMB 8-10 can be found in the immunoproteasome. This is highlighted for immune cells (green) and
tissues or fluids expressing mostly the constitutive proteasome (orange).

Figure 2.33 shows the resulting heatmap when searched for “PSMB*” in tissues and body fluids
(see Extended Data Figure A2 in the Appendix for a heatmap containing all biological sources).
These proteins are the major components of the regular and induced proteasome. Three major
observations are directly visible: First, the immunoproteasome (induced) is highly and almost
exclusively expressed in immune related tissues (natural killer cells, B-lymphocyte, cytotoxic T-
lymphocytes and helper T-lymphocytes; Figure 2.33 green box). This is visible by the lack of the
PSMB 5-7 subunits (Figure 2.33 black box), which are replaced by subunits PSMB 8-10. Second,
while only some tissues seem to solely express the constitutive (non-induced) type (e.g. hair
follicle, spermatozoon; Figure 2.33 orange box), most of the other tissues seem to express both
types of the proteasome, with some differences in relative amount (e.g. lymph node vs cerebral
cortex). Third, no or only some subunits of the protease are detected in the tissues and fluid on
the right. While this observation can be confounded by a large dynamic range of protein
expression, their lack or very low abundance is expected (e.g. synovial fluids and urine).

The heatmap is able to show the expression of hundreds of proteins in hundreds of tissues. The
example shown in Extended Data Figure A3 in the Appendix displays the expression patterns of all
proteins which contain the word “kinase”. The interactive zoom and panning enables the
identification of interesting features, such as the small cluster in the middle of the heatmap. This
cluster contains exclusively neuronal tissues (brain, retina, spinal cord, prefrontal cortex). The 15
proteins, such as the protein kinases CAMK2A, included in this cluster are associated with learning
and memory. However, not all of these proteins are currently known to play a major role in these
processes. Their co-expression with proteins of known function could be an indication of their
function and relevance.
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3.4.2 Inhibitor potency/selectivity analysis
On common application in both research and clinics is to find the most selective and potent drug
against a target of interest. This use case is implemented in ProteomicsDB and allows the
comparison of multiple small molecules which share a common user-defined target.
Starting with the selection of the target protein, the user can additionally filter the dose-
dependent models for the EC50 range of the targets, the R2 and BIC (Figure 2.34a). The pEC50 (-log10

EC50 in  nM) distribution of  all  targets  meeting the filter  criteria  for  each drug showing a  dose-
dependent effect on the selected target are plotted in separate violin charts (Figure 2.34b).
Additionally, the red marker indicates the EC50 of the selected target protein for each drug. The
number of targets with smaller or larger EC50 with respect to the target protein is shown below
and above of the red marker, respectively. This representation visually aids the user to identify
the most selective and/or potent drug currently available in ProteomicsDB.

Figure 2.34 | Screenshot of a potency analysis of drugs targeting DDR1 from ProteomicsDB. a, At the time
of writing, three kinase inhibitors showed a dose-dependent effect below ~3000 nM with an R2 of >0.8 and
BIC < 0 on DDR1. b, The three pEC50 distributions of all protein-drug interactions passing the filter criteria is
shown using violin charts. The red line highlights the pEC50 of DDR1 in the respective drug. The number of
target which show a higher (number above red line) and lower (number below red line) pEC50 indicates the
selectivity of the drug. c, Upon drug selection (radio button in b), the entire target space of that drug is
shown (bottom left panel). Targets with a lower pEC50 in comparison to the selected protein (here DDR1,
red bar) are shown in green. Targets with an EC50 up to 10-times of the selected protein are highlighted in
blue. All other targets are shown in gray. Individual protein-drug interactions can be further investigated by
selecting a specific bar. d, The corresponding dose-response curve is loaded. The orange error bar indicates
the uncertainty of the EC50 estimation associated with the curve fit.
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For additional analysis, each drug can be selected separately (Figure 2.34b radio button). After
selection, a third layer (Figure 2.34c and d) visualizes all targets of that drug and, additionally, the
dose-dependent residual binding curve of a protein. Within the barplot, proteins with a lower EC50

than the selected target protein are highlighted in green, while proteins with a higher EC50 are
drawn in blue and gray if their EC50s are at most 10-times higher or more than 10-times higher,
respectively.

Figure 2.34 shows the results when searching for “DDR1”. Three drugs, namely Dasatinib,
Bafetinib and Imatinib, show a dose-dependent effect on DDR1. Both, Dasatinib and Imatinib are
fairly unselective as 35 and 20 targets have a smaller EC50 than DDR1, respectively. This renders
both kinase inhibitors not suitable for selective inhibition of DDR1. Bafetinib, however, is a
promising candidate for a selective inhibition of DDR1 with an EC50 of 23 nM and the smallest
number of off-targets (Figure 2.35). Bafetinib is a dual BCR-ABL/LYN inhibitor and was originally
designed against Imatinib resistant chronic myeloid leukemia48,49 and is awaiting clinical approval.

Figure 2.35 | Screenshot of the target space of Bafetinib with respect to DDR1 from ProteomicsDB. a, The
drug profiling of Bafetinib shows that DDR1 is the most potent target. b, The binding curve of DDR1 shows
a clear dose-dependent inhibition with an EC50 of 23nM.

3.4.3 Dose-dependent protein-drug interaction analysis
The potency analysis provides an interface to select an inhibitor for a given target. However, in
some applications, e.g. to suppress resistance formation, targeting multiple proteins can lead to a
more effective treatment. The dose-dependent protein-drug interaction analysis provides an
interface to explore the predicted dose-dependent effects of multiple drugs on multiple proteins
to enable the selection of the most promising drug-combination to inhibit a set of proteins with
the least amount of off-target effects. Two views are available which show the predicted target
profile of the selected drugs at a certain dosage as i) a protein-drug interaction graph and ii) a
table showing the predicted inhibition effects. Both views are based on the inhibition/competition
curves stored in ProteomicsDB.
The "Target Proteins" search field accepts sets of protein names, accession numbers or keywords
in a semicolon, comma, tab or line break separated format (Figure 2.36 top panel). On this basis,
all  drugs  which  show  at  least  one  inhibitory  effect  on  one  of  the  proteins  are  taken  into
consideration. Alternatively, the "Target Drugs" search field can be used to manually select a set
of drugs. In case both fields are used, the union of all drugs, either inhibiting at least one of the
target proteins or being selected manually, is used.
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Figure 2.36 | Screenshot of a dose-dependent protein-drug interaction map from ProteomicsDB. The
protein-drug interaction landscape of four selected (checkbox) kinase inhibitors (squares) which target
either DDR1 or EGFR enables the visual inspection of inhibitors and their combination. Edges, indicating a
dose-dependent effect of a drug on a protein, highlighted in dark gray pass the inhibition threshold (vertical
slider). The corresponding proteins (circles) are highlighted in blue if inhibited or gray.

Each drug selected for  the analysis  is  displayed on the left  hand side of  the view (Figure 2.36
bottom left panel). The checkbox can be used to disable (hide) a drug from both views.
Additionally, the dosage of each drug can be adjusted by moving the slider or by manually entering
a desired drug-concentration. The predicted inhibition of a particular protein in both the graph
and the table view are updated in real-time based on the given concentration of a drug. The
calculation uses the dose-dependent model fit (inhibition curve) stored in ProteomicsDB.
The graph-view shows the protein-drug interaction landscape of the selected drugs (see Figure
2.36 bottom right panel). Proteins (circles) are connected to drugs (squares) if a binding/inhibition
curve is available for this combination. The strength of the edge (width) indicates the EC50 of the
interaction, with potent interactions being represented with stronger edges. The vertical slider
can be used to define a threshold to filter inhibitory effects based on the predicted inhibition. If
an inhibition exceeds the selected threshold, the corresponding edge between a drug and proteins
is highlighted in dark gray and the protein is colored in light or dark blue corresponding to a low
or high inhibition. If all protein-drug interactions of a drug fall below the selected threshold, the
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drug (square)  is  also  colored in  gray  to  indicate  no major  effect.  In  cases  where proteins  have
multiple drug interactions, the strongest binding/inhibitory effect is chosen as the representative
value.
Multiple interactions in the graph-view are possible. Each node of the graph (proteins and drugs)
can be moved by drag-and-drop to enable manual disentanglement of the graph. Zoom, using the
mouse-wheel, and panning, drag-and-drop on the background, are also enabled by default.
Clicking on an edge between a protein and drug sets the dosage/concentration of that drug to the
EC50 of this interaction.
The predicted target profile can also be explored in the table view (Extended Data Figure A4 in the
Appendix). The table lists all proteins and drugs present in the graph and shows the EC50 and
predicted effective inhibition in percent based on the concentration of the drug. Clicking a column-
header allows to sort this table based on these values. For each protein, the column representing
a drug with the strongest effect is highlighted with a blue background.

The example provided in Figure 2.36 shows the protein-drug interaction map of the kinase
inhibitors Bafetinib, Dasatinib, Imatinib and Pelitinib, which target either DDR1 or EGFR. The
inhibitors Ibrutinib, Rebastinib and Sunitib are hidden. Except for the multi kinase inhibitor
Dasatinib, the inhibitor concentration of each drug is set to the EC50 of DDR1 or EGFR. Based on
this, an effective combination of drugs to inhibit DDR1 and EGFR is Pelitinib and Bafetinib at,
respectively,  15  nM  and  25  nM.  At  these  concentrations,  no  additional  (off)  targets  show  an
inhibition greater than 50%. Replacing Bafetinib by 38 nM Imatinib however will result in the
addition of GRB2, NQO2 and BCR (BCR-ABL fusion), as indicated by the dark gray edges.
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4 Discussion
Here, a novel database, termed ProteomicsDB, combining identification and quantification data
from mass spectrometry-based proteomics experiments is described. While multiple databases
and repositories exist for either data type, only some provide comprehensive information on both
levels1. Especially the introduction of a programmatically accessible experimental design in
ProteomicsDB enables data interpretation in context of the treatment conditions and thus allows
to build complex models based on experimental data. This was shown on dose- and temperature-
dependent assay data to elucidate the target space of small molecules. With all this, multi
experiment comparisons are possible and allow comprehensive data analysis of e.g. expression
patterns over multiple studies or combined treatment effect prediction when using multiple small
molecules. The generic database design of ProteomicsDB facilitates the storage of all conceivable
fractionation and labeling techniques applied in proteomics experiments. Furthermore, extension
to other omics-data is possible and was shown for RNASeq data. The web interface was built using
modern JavaScript frameworks for HTML5. On three online real-time analytical use-cases it was
shown that ProteomicsDB permits the integrated data analysis and exploration of large-scale data
without reprocessing and manual annotation.

ProteomicsDB has been implemented using SAP’s HANA in-memory computing technology. The
system currently is backed with 50 TB hard-drive storage, 2 TB main memory and 80 processing
units.  A  direct  interface  to  the  programming  languages  L,  C++  and  R  allows  calculations  not
possible with standard SQL and thus further broadens the applicability and possibilities to analyze
and integrate multiple studies. This will facilitate the development and implementation of
published or novel algorithms on open scientific questions such as false discovery estimation or
protein abundance estimation. Especially the development of novel large-scale data analysis tools
will benefit from the in-memory storage of all data since computationally intense steps do not rely
on slow hard-drive read and write operations and, hence, allows quick adjustments to the
underlying algorithms.
However, due to the constant increase of data both in terms of number of studies as well as raw
storage, any database system storing results will come to its limits. ProteomicsDB currently stores
all data, from the annotations down to single de-convoluted tandem mass spectra. Driven by the
complexity of each data type, spectra, identification data and quantification information on
peptides and proteins require vastly different amounts of storage and memory capacity. The
acquired MS/MS spectra are in most use-cases of inferior importance and yet, especially due to
its redundancy caused by the DDA approach, make up to 60% of the data. The development of
novel spectral compression algorithms, storage of representative spectra resulting from spectral
clustering and spectral libraries and the usage of modern distributed storage and computation
systems will decrease the storage and memory footprint and thus provides alternatives for large-
data scalability. In contrast, the most valuable information, which is peptide and protein
quantification values, only account for 10% and 1% of the data, respectively. While the storage of
expression values can be realized in classical database management systems without a significant
drop in performance, access to billions of identification and spectral information in the main
memory allows real-time calculations on more complex questions, such as the experimental
proteotypicity or transition interference.



Chapter 2 | ProteomicsDB

78 | P a g e

Proteomic experiments offer a huge variety of options with regard to experimental design,
acquisition method, data processing, filter criteria and analysis methods. To enable meaningful
data comparison, a uniform analysis pipeline is mandatory as each processing step (search engine,
quantification method, false discovery estimation and filter) can have a significant impact on data
comparability and even results. In order to circumvent this, data imported into ProteomicsDB is
processed and normalized using a uniform pipeline after manual annotation. This enables the
direct comparison of results, especially when data was acquired in different labs. The combination
of different experimental conditions, platforms and acquisition approaches can be used to avoid
the miss-classification and categorization of repeating signals as biologically meaningful while
being experimental artifacts. Especially the incorporation of other “omics” data sources can help
to decrease the number of experimental artifacts by providing orthogonal measurements.
However, while in theory replicate measurements of independent samples enable the separation
of real signals from noise, the complete annotation of the treatment conditions and sample origin
is essential in order to attribute and account for variations introduced during sample preparation.
This is an additional challenge since our understanding of the underlying factors is still limited.
Further aggravated by unrecognized impurities and contaminations our ability to fully characterize
and understand biological systems is hampered, often leading to irreproducible results.
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5 Outlook
ProteomicsDB in its current state does not exploit the full potential of the in-memory capabilities
of the underlying database management system. One major goal is to foster the generation,
expansion and validation of hypothesis. For this purpose, ProteomicsDB already enables the
exploration of expression patterns across multiple experiments, which, for example, enables
researchers to select cell lines which express a particular set of proteins. The extension to context-
sensitive queries could enable researchers to browse and explore quantitative data more
efficiently. Such context-specific queries could be “visualize all proteins which are x-fold
differentially expressed in comparison to the median across all tissues” or “proteins which are
significantly differentially regulated between two or more biological entities”. Furthermore, the
analysis of co-expressed proteins could provide new biological insight into the function of
uncharacterized proteins. Depending on the allowed complexity of the co-expression pattern,
these calculations generate a huge number of cross-correlations. However, ProteomicsDB could
enable researchers to investigate of such patterns in real time on a proteome-wide scale. All these
applications rely on fast and performant data access and especially when user-defined FDR filters
are possible, the in-memory computing capabilities of ProteomicsDB can be used to its full
potential.
An important aspect of repositories and databases storing results is to provide access to the
underlying data to support the re-analysis of data. For this, ProteomicsDB provides programmatic
access to the data via different OData services. However, these are currently bound to rather
specific questions a user might have and thus only provide limited functionality. With the
capabilities of the OData protocol in combination with the in-memory storage, unlimited and
comprehensive access to the entire content in ProteomicsDB is possible, but not fully
implemented yet. The implementation of such a model would provide data to many labs which
might not have direct access to large amounts proteomics data. This is of special importance to
enable researchers in the fields of computational proteomics, computational biology and related
bioinformatics to test and refine algorithms on large heterogeneous datasets.

While SAP HANA enables the creation of database-side R-procedure which are passed to an R-
server, due to technical limitations, this feature was not used to its full potential. With many
packages enabling data comparison, analysis and interpretation50, R provides a rich environment
to supplement and extends the capabilities of ProteomicsDB. Current use-cases, such as model
fitting, can be performed in real-time and could enable a more immersive data exploration.
In addition to different interfaces to other programming languages like C++ and python, SAP HANA
supports the integration of other data sources as so called data providers. A potentially very
powerful extension of ProteomicsDB is the access to raw MS data via Hadoop51.  In contrast to
many other “-omics” technologies, proteomics data is largely comprised of unidentified and thus
unused features52. Maxquant already enables the matching of similar but not reproducibly
identified features to reduce the number of missing values for protein quantification to increase
the accuracy of expression estimation. However, this is only performed within experiments and
does not allow the matching of features across thousands of files in an iterative and online
manner. Storing all identified isotope features within ProteomicsDB is beyond the scope, but
Hadoop might enable the integration of these features to enable the retrospective quantification
of features based on what has been observed and identified in previous runs. Similarly, only a
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fraction of the acquired MS/MS spectra is confidently identified in a single run. As previous studies
have shown, spectral clustering enables the identification of these53. Here again, previous analyses
might enable a more thorough interpretation of the acquired data due to the implementation of,
for example, a dependent peptide search or the use of spectra libraries to enable the retrospective
or additional identification of PTMs or variant peptides.
ProteomicsDB already enables the storage of reference spectra. Recently, a study reported the
generation of reference spectra on a large collection of synthetically generated peptides54.
However, since the raw MS data are not publicly available, reference spectra generated from high
quality matches stored in databases such as ProteomicsDB can be used as an alternative source.
As almost any FDR filter applied to PSMs, peptides and proteins will results in the elimination of
true-positives, resources such as ProteomicsDB could provide means to cross-validate acquired
MS/MS spectra. Since the correlation of consensus spectra to experimental spectra largely
depends on the relative intensities of reproducibly found peaks, a feature widely ignored by
common search engines, no fragment peak heuristics are necessary and thus should enable
orthogonal validation.
One major shortcoming of current bottom-up shotgun proteomics approach is our limited
understanding of its basic underlying mechanisms. For example, the exact peptide properties
which lead to for example good ionization and downstream fragmentation are not known and
thus hamper in silico prediction. However, these are of particularly importance for targeted
proteomics approaches such as multiple and parallel reaction monitoring or data independent
acquisition methods. Given the large number of spectra and identifications recorded in different
biological background, machine learning approaches applied to those will not only deepen our
understanding of the principle mechanisms, but also enable the generation of background-
dependent interference maps. With this, a data-driven automatic generation of targeted assays
for most previously identified proteins is in principle possible55.
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6 Abbreviations
OData Open data protocol
REST Representational state transfer
HTTP Hypertext transfer protocol
HTPPS Secure HTTP
API Application programming interface
JSON JavaScript object notation
XS Extended application services
PRIDE Proteomics identification archive
EC50 Half maximal effective concentration
IC50 Half maximal inhibitory concentrations
CETSA Cellular thermal shift assay
ITDR Isothermal dose response
MassIVE Mass spectrometry interactive virtual environment
PSM Peptide spectrum match
FDR False discovery rate
LC/MS-MS Liquid chromatography tandem mass spectrometry
CID Collision-induced dissociation
HCD Higher-energy collisional dissociation
Ajax Asynchronous JavaScript and XML
XML Extensible markup language
SQL Structured query language
SILAC Stable isotope labeling with amino acids in cell culture
TMT Tandem mass tag
PTM Post translational modification
GO Gene ontology
SRM/MRM/PRM Single/multiple/parallel reaction monitoring
RNA Ribonucleic acid
RNASeq RNA sequencing
BIC Bayesian information criterion
pEC50 -log10 EC50

Kd Dissociation constant
HTML HyperText markup language
DIA data-independent acquisition
PEP posterior error probability
PSM peptide spectrum match
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“The first draft of anything is shit.”
- Ernest Hemingway

„No passion in the world is equal to the passion to alter someone else's draft.”
- H. G. Wells
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1 Introduction
The human genome represents a rather static definition of the potential protein inventory of every
cell in the human body (in health and disease). In contrast, the proteomes of cells are very divers
and highly complex. Protein expression typically spans 4-5 orders of magnitude1) in cell lines (and
presumably tissues) and more than 10 orders of magnitude in body fluids2. The molecular
complexity is even higher as proteins are often expressed as splice variants and/or processed and
chemically modified on the co- or post-translational level.
The large-scale interrogation of biological systems by mass spectrometry based proteomics
provides insights into protein abundance, cell type and time dependent expression patterns, post-
translational modifications (PTMs) and protein-protein interactions, all of which carry biological
information that is best investigated at the protein level. Perhaps surprisingly, it is still not clear
which of the 19,629/20,493 human genes annotated in UniProt Swiss-Prot/TrEMBL3 are translated
into proteins. Therefore, major efforts are underway including the human proteome project (HPP)
that aims to broadly characterize the human proteome4, the human protein atlas project (HPA)
which seeks to generate antibodies for all human proteins5 and the ProteomeXchange consortium
which facilitates the gathering and sharing of proteomic data6. Despite the fact that a plethora of
individual human proteomic studies exist, only few systematic efforts in assembling and
characterizing human proteomes have been reported thus far7-10. In part this is because most mass
spectrometry-based proteomic data does not reside in public repositories, its annotation is often
sketchy and the data generation and processing platforms are of varying capability, performance
and maturity. Importantly, there also is a significant challenge in making such ‘big data’ more
widely accessible to the scientific community because the development of scalable analysis tools
is only in its infancy.
This chapter presents a mass spectrometry-based draft of the human proteome available via
ProteomicsDB, a public in-memory database for real time analysis of big data. In order to identify
at least one protein per protein coding gene, the strategy towards a mass spectrometry based
draft of the human proteome focused on the assumption that the selection of datasets has to
cover the breadth and depth of the protein repertoire in human samples (Figure 3.37a). First,
studies on (mostly cancer) cell lines which analyzed in depth a single cell line or a large number of
divers cell lines (e.g.11,12) were selected. To capture tissue and body fluid specific proteins, 31
tissues and body fluids were analyzed in-house and similar datasets from the public domain, often
from rarely analyzed or not readily accessible anatomical components, were added. In order to
address low abundant proteins such as kinases or transcription factors, ~1,300 affinity
purifications including kinome enrichments12, HDAC enrichments13 and protein-protein-
interaction studies14 were added. Similarly, numerous PTM studies, which increased the coverage
of proteins that are highly modified and/or of low abundance (e.g.15,16) were included. However,
with the progression of assembling data in ProteomicsDB, it became clear that numerous protein
groups were underrepresented (e.g. membrane proteins, keratin associated proteins, cytokines),
and the focus shifted towards datasets which may fill these gaps. For instance, to increase the
chance of identifying keratin-associated proteins as well as other proteins with only few tryptic
peptides, numerous tissues (including hair follicles) were analyzed using proteases different from
trypsin (namely chymotrypsin and/or LysC). To further increase the coverage of the human
proteome, a data-driven approach was selected to systematically assemble publically available
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and in-house data from experiments in which missing protein coding genes have been identified
in previous studies.

Figure 3.37 | Strategy for the assembly of the human proteome. a, Experimental workflow for the
identification and quantification of proteins. b, Data storage and processing is performed in ProteomicsDB,
an in-memory database enabling fast computation on large data sets backed by 160 CPUs and 2TB of RAM.

The information assembled from human tissues, cell lines and body fluids allowed estimating the
size of the protein coding genome, identified organ-specific proteins and a large number of
translated lincRNAs. Analysis of mRNA and protein expression profiles of human tissues revealed
conserved control of protein abundance, integration of drug sensitivity data allowed the
identification of proteins predicting resistance or sensitivity and proteome profiles also hold
considerable promise for analyzing the composition and stoichiometry of protein complexes. The
unique high performance in-memory platform ProteomicsDB (Figure 3.37b) enables navigation of
proteomes, provides biological insight and fosters the development of proteomic technology.
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2 Methods
Briefly, Proteomic data were downloaded from public repositories, contributed by individual
laboratories and specifically generated for this study by the authors’ laboratories. For the latter,
human tissue specimens were obtained from the bio bank of the TU München following approval
of the study by the local ethics committee. Samples were collected within the first 30 minutes
after resection, macroscopically resected by an experienced pathologist, snap frozen and stored
in liquid nitrogen until use. Body fluids requiring no invasive procedures were provided by
volunteers. Proteins were extracted under denaturing conditions and either separated by LDS-
PAGE followed by in-gel protease digestion or digested in solution in the presence of chaotropic
agents. Synthetic peptides were produced by solid phase chemistry following the standard Fmoc
strategy and used without purification. Peptides were separated by ultra-high pressure liquid
chromatography and analyzed on Orbitrap mass spectrometers using either resonance-type or
beam-type collision induced dissociation. For peptide identification, tandem mass spectra were
processed in parallel using Mascot Distiller and MaxQuant/Andromeda17 and searched against
Uniprot and/or a custom build fasta formatted sequence file containing lincRNA sequences Search
results and tandem mass spectra were imported into ProteomicsDB
(https://www.proteomicsdb.org) and filtered at 1% PSM FDR and 5% local peptide length
dependent FDR. For bioinformatic analysis, data was extracted from ProteomicsDB using HANA
Studio and further processed using custom python and R scripts. Gene ontology analysis was
performed using David (http://david.abcc.ncifcrf.gov) and REViGO (http://revigo.irb.hr/).

2.1 Sample preparation

2.1.1 Source of human tissues and fluids
Tissue samples  were obtained from the biobank of  the Klinikum rechts  der  Isar  and Faculty  of
Medicine of the TU München (BBTU). Healthy tissue samples were obtained by surgery and
macroscopically dissected by an experienced pathologist. Tissue was snap frozen within the first
20 minutes after resection and stored in liquid nitrogen (-196°C) until usage. Before analysis, tissue
type and tissue quality (no necrosis) was confirmed by a pathologist. For this purpose an HE
stained slide was prepared from the actual sample to be used. Body fluids requiring no invasive
procedures were provided by healthy volunteers. All patients/donors provided informed written
consent, and the study was approved by the Ethics Committee of the Technische Universität
München.

2.1.2 Preparation of protein extracts from tissues and body fluids
In order to generate a map of protein expression of all major tissues and organs in the human
body (‘human body map’ project in ProteomicsDB), 31 different tissues and body fluids from
healthy volunteers (see above) were analyzed. Fresh frozen tissue was thawed, cut into small
pieces and extensively washed with precooled phosphate buffered saline. The tissue was
homogenized in cold lysis buffer (50 mM Tris/HCl pH 7.5, 5% glycerol, 1.5 mM MgCl2, 150 mM
NaCl, 0.8% Nonident P-40, 1 mM dithiothreitol [DTT] and 25 mM NaF) with freshly added protease
(SIGMAFAST, Sigma-Aldrich, Germany) and phosphatase inhibitors (20 mM NaF, 1 mM sodium
orthovanadate, 5 mM calyculin A; Sigma-Aldrich, Germany) using ceramic beads and an
automated homogenizer (Precellys 24 Homogenisator, Peqlab, Germany) with 2x 10 second
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pulses at 5000 rpm. Homogenates were clarified by centrifugation for 15 minutes at 10,000 xg at
4°C and protein concentration was determined by the Bradford method. The supernatant was
stored at -80 °C. Approximately 30 µl of body fluids (cerumen, saliva, ascites etc.) were boiled with
2x NuPAGE sample buffer (Life Technologies, Germany) prior to LDS-PAGE and in-gel digestion.

2.1.3 Protein separation and in-gel digestion
100 µg protein extract from tissues or 30 µl from body fluid extracts were reduced and alkylated
by  10  mM  DTT  at  55  °C  for  10  min  followed  by  the  addition  to  55  mM  chloroacetamide  and
incubation at room temperature for 30 min and subsequently denatured at 95 °C for 10 min.
Samples were then separated via a 4–12% NuPAGE gel (Life Technologies, Germany) and cut into
24 slices prior to in-gel digestion using trypsin (Promega, Germany), LysC (Wako Chemicals, Japan)
or chymotrypsin (Roche, Germany). In-gel digestion was performed according to standard
procedures18 and peptides were analyzed by LC-MS/MS.

2.1.4 Chymotrypsin in-solution digestion and hydrophilic strong anion exchange
chromatography (hSAX) peptide separation

In-solution digestion of testis protein extract was performed according to standard high urea
procedures. Briefly, the lysate was denatured in 8 M urea, 0.1 M Tris/HCl, subsequently diluted to
2 M urea followed by protein  digestion with chymotrypsin.  After  overnight  digestion at  30 °C,
peptides were concentrated and purified on C18 StageTips as described19. Peptide separation
using hSAX was essentially performed as described20 and the resulting 48 fractions (1 minute
collection time per fraction) were dried down and subsequently analysed by LC-MS/MS.

2.2 Sample acquisition and retrieval

2.2.1 Liquid chromatography tandem mass spectrometry (LC-MS/MS)
LC-MS/MS was performed by coupling an Eksigent nanoLC-Ultra 1D+ (Eksigent, Dublin, CA) to an
Orbitrap Elite instrument (Thermo Scientific, Bremen, Germany). Peptides from an in-gel digest
were delivered to a trap column (100 μm×2 cm, packed in-house with Reprosil-Pur C18-GOLD 5
µm resin, Dr. Maisch, Ammerbuch, Germany) at a flow rate of 5 µL/min in 100% solvent A (0.1%
formic  acid,  FA,  in  HPLC  grade  water).  After  10  min  of  loading  and  washing,  peptides  were
transferred to an analytical column (75 µm×40 cm, packed in-house with Reprosil-Gold C18, 3 µm
resin, Dr. Maisch, Ammerbuch, Germany) and separated at a flow rate of 300 nL/min using a 110
min gradient from 4% to 32% solvent B (solvent A: 0.1% FA, 5% DMSO in HPLC grade water; solvent
B: 0.1% FA, 5% DMSO in acetonitrile). Both solvent A and B contained 5% DMSO to boost the nESI
response and the MS signal of peptides21. The eluent was sprayed via stainless steel emitters
(Proxeon) at a spray voltage of 2.2 kV and a heated capillary temperature of 275°C. The Orbitrap
Elite instrument was operated in data-dependent mode, automatically switching between MS and
MS2. Full scan MS spectra (m/z 360 – 1300) were acquired in the Orbitrap at 30,000 (m/z 400)
resolution using an automatic gain control (AGC) target value of 1e6 charges. Tandem mass
spectra of up to 15 precursors were generated in the multipole collision cell by using higher energy
collisional dissociation (HCD) (AGC target value 2×104, normalized collision energy of 30%) and
analyzed in the Orbitrap at a resolution of 15,000. Precursor ion isolation width was set to 2.0 Th,
the  maximum  injection  time  for  MS/MS  was  100  ms  and  dynamic  exclusion  was  set  to  30  s.
Internal calibration was performed on-the-fly using a DMSO-related lock mass (m/z 401.922718,
[C6H10O14S3]+)21.
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Measurements using an Orbitrap Velos used the same LC system, column and gradient as
described and similar data acquisition parameters. The main differences are that the Orbitrap
Velos used HCD of the top 10 precursor ions at an AGC target value of 3×104 and Orbitrap readout
at a resolution of 7,500. Measurements using a LTQ Orbitrap XL used the same LC system, column
and gradient as described and similar data acquisition parameters. The main differences are that
the LTQ Orbitrap XL used CID fragmentation with normalized collision energy of 35% of the top 10
precursor ions at an AGC target value of 5×103 and ion trap readout.

2.2.2 Retrieval of MS-based proteomics data from public repositories and other sources
Alongside published and unpublished data generated at the TU München, and datasets obtained
from individual laboratories (Parag Mallick, Stanford School of Medicine; Hanno Steen, Harvard
Medical School, Boston; Tamar Geiger and Mathias Mann, Max-Planck-Institute of Biochemistry,
Martinsried; Shabaz Mohammed, Javier Munoz and Albert Heck, Utrecht University; Magnus
Berle, Haukeland University Hospital, Oslo; Andrew Emili, University of Toronto; Roman Zubarev,
Karolinska Insitute, Stockholm), MS-based proteomics datasets were downloaded from public
repositories and servers including ProteomeXchange22,23, PeptideAtlas24,25, Tranche26,27,
MassIVE28, CPTAC data portal29,30, Broad Institute’s proteomics FTP server31, SCOR32,33, and
PRIDE22,34. Raw data files of all published studies and obtained from the public domain are made
available through ProteomicsDB1,12-16,21,32,35-81. Two exceptions are the data sets from the CPTAC
consortium because CPTAC requires permission to download/use their data. In addition, there is
a small amount of data (10% of the total) that originate from (ongoing, unpublished) projects in
the TUM lab and which are outside the scope of this work. These will also be made available for
download once the respective manuscripts have been accepted for publication. Still, even for
these projects, ProteomicsDB shows the peptides/spectra for the purpose of protein identification
(without disclosing experimental details and sample annotations).

2.3 Data analysis

2.3.1 Peptide identification using Mascot and Maxquant/Andromeda
Raw MS data files from Orbitrap-type instruments (including LTQ-FT) were processed in parallel
with two different data processing pipelines and search engines, Mascot82 and
Maxquant/Andromeda17,83.
The following protein sequence databases were used for peptide identification: (1) the UniProtKB
complete human proteome (download date: 05 Sep 2012; 86,725 sequences) contains the
UniProtKB/Swiss-Prot complete human proteome (20,225 canonical sequences of protein-coding
genes and 16,624 manually curated isoform sequences) and 49,876 UniProtKB/TrEMBL
sequences, the latter representing all predicted protein sequences from Ensembl (except
fragments) that were found to be absent from the UniProtKB/Swiss-Prot complete proteome (for
a detailed description, see also84,85); (2) the cRAP database (common Repository of Adventitious
Proteins; download date: 05 Sep 2012; 113 sequences) contains common laboratory proteins,
proteins added by accident through dust or physical contact; and proteins used as molecular
weight or mass spectrometry quantitation standards86. The UniProtKB complete human proteome
and cRAP database were concatenated and every database search was performed against both
databases.
In the Mascot workflow, raw MS data files were processed using Mascot Distiller (version 2.3.2,
Matrix Science, UK) with processing parameters separately optimized for high and low resolution
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tandem mass spectra. Data processing comprised peak picking, de-isotoping and charge
deconvolution of fragment ions. The resulting peaklist files were searched using the Mascot search
engine (version 2.4.1, Matrix Science, UK) against the UniProtKB complete human proteome and
the cRAP database. The target-decoy option of Mascot was enabled (on-the-fly search against a
decoy database with reversed protein sequences) and search parameters included a precursor
tolerance of  10 ppm and a  fragment  tolerance of  0.5  Da for  CID spectra  and 0.05 Da for  HCD
spectra. Enzyme specificity was set to trypsin, LysC, GluC, or chymotrypsin (as applicable), and up
to two missed cleavage sites were allowed. The Mascot 13C option, which accounts for the mis-
assignment of the monoisotopic precursor peak, was set to 1 and the following variable
modifications were included by default: oxidation of Met as well as acetylation of the protein
amino-terminus. Other variable and fixed modifications (such as phosphorylation of Ser, Thr and
Tyr or acetylation of Lys as well as iTRAQ, TMT, SILAC or carbamidomethylation of Cys) were set
as provided in the corresponding publications. Mascot search results were processed using the
Mascot Percolator stand-alone software to obtain posterior error probabilities (PEPs)87,88.
In the Maxquant workflow, raw MS data files were processed by Maxquant (version 1.3.0.3) for
peak detection and quantification17. MS/MS spectra were searched against the same set of target
and decoy databases as described for Mascot using the Andromeda search engine83. Proteases,
variable and fixed modifications were specified as above. Mass accuracy of the precursor ions was
determined by the time-dependent recalibration algorithm of Maxquant, and fragment ion mass
tolerance was set  to  of  0.6  Da and 20 ppm for  CID and HCD,  respectively.  No FDR cut-off  was
specified (see below), but a minimum peptide length of 6 amino acids was required. In few cases,
where  Maxquant  (version  1.3.03)  was  unable  to  process  the  raw  files,  a  newer  version  of
Maxquant (version 1.4.05) was used.
In two cases, where raw MS data were unavailable (Burkhart_Blood_2012,
Didangelos_MCP_2011), the available data was processed only through the Mascot pipeline, and,
if required, peaklist files were converted into Mascot generic format (mgf) prior to database
search. A special case represents the PeptideAtlas spectrum library (release December 2012)
containing spectra of 253,693 distinct peptides from high and low resolution tandem mass
spectra71.  In  order  to  make  this  resource  available  in  ProteomicsDB,  all  spectra  representing
peptide identifications from high resolution MS and MS/MS measurements (including their
respective modifications) were parsed and converted into mgf format and subjected to Mascot
database search.

2.3.2 Identification of peptides of lincRNAs and transcripts of unknown coding potential (TUCPs)
In order to assess the presence and abundance of peptides representing translation products of
lincRNAs and TUCPs, 23 tissue datasets of the human body map (adrenal gland, anus, cervix uteri,
esophagus, gall bladder, kidney, liver, lung, nasopharynx, oral cavity, ovary, pancreas, placenta,
prostate, salivary glands, seminal vesicle, spleen, stomach, testis, thyroid gland, tonsils, uterus
[post-menopause], uterus [pre-menopause]) as well as a deep HeLa proteome dataset66

(excluding GluC data) were searched separately against two lincRNA/TUCP sequence databases
each appended to the human UniProtKB and cRAP database using Mascot with default
parameters. The following two lincRNA/TUCP reference catalogues were used to search for
translation products: (1) The Ensembl human non-coding map (GRCh37; download date: 02 Nov.
2013) comprises 13,564 non coding genes and (2) the Broad Institute’s human body map of 21,487
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lincRNAs  and  TUCPs  (14,281  non  coding  transcripts  as  well  as  7,206  novel  transcripts  with
potential coding capacity, TUCPs)89. The Broad Institute utilized RNA sequencing and transcript
abundance estimations to identify and characterise lincRNAs across 24 tissues and cell types. The
BED files of Broad Institute’s lincRNA transcripts were converted to FASTA using BEDTools90. The
FASTA nucleotide sequences were translated to protein sequences by translating all three reading
frames using custom python scripts.
To minimize the level of uncertainty in assigning identified peptides to lincRNAs/TUCPs, the
identified peptides were as rigorously filtered as peptide identifications from standard database
searches (see above) and, in addition, a Mascot delta score of >10 was required to assure that the
best match for the spectrum is significantly better (10x) than the second best match91. Identified
lincRNA peptides were further subjected to a BLAST search against all sequences in the UniProtKB
complete human proteome database using parameters for short sequences (blastp -word_size 2
-matrix PAM30 -seg "no" -evalue 20000 -comp_based_stats 0). Peptides with identical sequence
matches (and isobaric sequence variants thereof) in the UniProtKB complete human proteome
were categorically rejected. Identified peptides representing translation products of lincRNAs or
TUCPs were imported into ProteomicsDB and the corresponding links are provided in92. To reduce
redundancy on peptide and transcript level, identified transcripts from the Ensembl and Broad
Institute’s database search were grouped together according to their matched peptides as same-
sets and sub-sets of peptide identifications.

2.3.3 Generation of reference peptide spectrum libraries
Reference peptides for uncertain protein-coding genes93 were manually selected based on MS/MS
evidence for these genes. Reference peptides for cytokines were selected for 361 proteins
associated with the keyword ‘cytokine’ in UniProtKKB/Swiss-Prot using peptides present in
SRMAtlas with lengths from 7 to 25 amino acids. Reference peptides for proteins with weak or no
evidence in  ProteomicsDB (at  the time of  synthesis)  were selected based on the availability  of
PSMs or, for proteins not observed in ProteomicsDB, a set of peptides with good MS properties
was derived by bioinformatic prediction using PeptideSieve94.
Reference peptides for uncertain genes were synthesized by resin based solid-phase peptide
synthesis at the authors labs at the TU München95 or  by  SPOT synthesis  technology96,97 at the
authors labs at JPT. After synthesis, the reference peptide sets were pooled (up to 1000 peptides
per pool) and appropriately diluted in LC solvent A (1:100-1:10,000) before LC-MS/MS analyses
using an Orbitrap Velos or Elite (see above). To generate reference spectrum libraries for both CID
and HCD spectra, the peptide pools were analyzed at least once with each fragmentation type.
Reference peptide spectra were processed using Mascot and Maxquant as described above and
imported into ProteomicsDB. Available reference spectra and their links into ProteomicsDB are
provided in92.

2.3.4 Data analysis in ProteomicsDB
ProteomicsDB utilize the main memory as the primary data storage. This reduces disk seek when
querying data and, ultimately, results in faster data retrieval. Additionally, SAP HANA is specifically
optimized for in memory operations which reduces the need of indexing tables and on top allows
direct operations on compressed columns. This allows ProteomicsDB to show data and run queries
using the entire database in real-time without the requirement of pre-assembled builds.
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All relevant information from search result files of Mascot (dat file) and Maxquant
(“combined/txt” folder, apl and res files) were imported into ProteomicsDB. In particular,
ProteomicsDB comprises the up to top 10 best matches for each experimental spectrum both for
Mascot and for Andromeda. Storing these PSMs allows to compute delta scores between the top
two (or n) best matches which is useful, for instance, for computing false localization rates for
phosphopeptides.
All projects imported into ProteomicsDB were manually annotated in order to provide high quality
meta information such as project, experiment and sample descriptions in a computer-readable
format. The annotations comprise experimental design of imported studies as well as biological
and biochemical workflows. Where available, experiment annotations were translated into
controlled vocabulary of open ontologies, remaining annotations were incorporated into a
ProteomicsDB controlled vocabulary. The following ontologies are used in ProteomicsDB: Brenda
tissue ontology (release date: 20 Dec 2012)98, PSI-MS (version 3.44.0), UO (version 1.2) and sepCV
(version 1.0). Identifiers, gene names, sequences etc. in ProteomicsDB are based on UniprotKB
(download date: 05 Sep 2012), which, for instance, allows the localization of identified proteins to
their chromosomal location (Figure 3.38a).

2.3.5 False discovery rate (FDR) control using a global and a local FDR filter
Target and decoy peptide spectrum matches (PSMs; including lower ranking hits) were imported
into ProteomicsDB irrespective of their scores or posterior error probability. A two-step approach
was chosen to control for spectrum and peptide level FDR. First, each LC-MS/MS experiment was
filtered to 1% PSM level FDR using a global target-decoy approach99. Because this can still result
in the retention of a considerable number of false matches, peptide identifications had to pass a
second length dependent Mascot or Andromeda score threshold of 5% local FDR (Extended Data
Figure B1 and B2 in the Appendix). To this end, peptide identifications of the same length from all
experiments in ProteomicsDB were sorted in bins of 1 score points and the target-decoy FDR was
calculated for each bin individually (‘local score and length dependent FDR’). As an example, an
Andromeda score of 100 (35 for Mascot) is required for peptides of length 7. This threshold is a
high hurdles for a 7 amino acid peptide and, as a result, the majority of all PSMs of length 7 are in
fact rejected.
In this study, no protein FDR measure was applied as the concept of a protein FDR is problematic
(see below and next chapter). A comparison to 27 published high-throughput studies shows that
this filtering scheme is in line with the often-used 1% protein FDR criterion and avoids the (at this
time) unsolved issue of target-decoy searching that artificially high protein FDRs are generated
when analyzing very large data sets100.

2.3.6 Analysis of protein expression
Protein abundance was estimated for UniProtKB/Swiss-Prot sequences using the iBAQ approach
(intensity based absolute protein quantification)101.  To this  end,  peptide intensities  for  a  given
protein in a sample were obtained from Maxquant, summed up and divided by the number of
observable peptides (length 6 to 30, no missed cleavage). In order to be able to compare protein
abundances across multiple samples, experiments and projects, the iBAQ protein intensities were
normalized based on the total sum of all protein intensities. Unless otherwise stated, the displayed
protein abundance values were log10 transformed and right-shifted by 10 log10 units into positive
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numerical space. It is important to note that ProteomicsDB aggregates any isoform specific
abundance information at the gene locus level. Isoform-specific abundance information is
currently not calculated as isoforms are usually under-sampled in MS-based proteomics. Protein
expression analysis including normalization, hierarchical cluster analysis and principle component
analysis was performed using R (v 2.12.1;102). Cluster analyses using a variety of common
algorithms and metrics were performed to group the tissues and body fluids on the basis of
protein expression pattern.
Principle component analysis (PCA) of proteome profiles of tissues and cell lines (Figure 3.39b,
upper panel) was performed on 6094 proteins showing significant expression differences (ANOVA,
Benjamini-Hochberg adjusted p-value of 0.05) between the tissue groups (ovary: 3 tissues, 4 cell
lines; colon: 3 tissues, 8 cell lines; kidney: 1 tissue, 8 cell lines; lung: 4 tissues, 11 cell lines). PCA of
proteome profiles of tissues samples (colon: 3; breast: 2; liver: 2; kidney: 1; ovary: 3; lung: 4;
prostate: 2) was performed on all 10,710 proteins (Figure 3.39b, lower panel).
Hierarchical clustering of the top100 proteins per tissue (Figure 3.39c) as well as protein kinases
and transcription factors (TF; Figure 3.40a) was performed on log transformed normalized iBAQ
intensities using euclidean distance and complete linkage. For the analysis of tissue-specific kinase
and TF expression, human protein kinases and TFs were retrieved from UniProtKB, resulting in
protein expression profiles for 310 protein kinases (Pfam protein kinase domain), 557
transcription factors (GO term ‘transcription factor’) and 39 proteins annotated as kinases as well
as transcription factors.
Tissue-specific proteins (Figure 3.40b) were calculated based on normalized iBAQ values for 47
tissues. Median protein expression values were used in all cases where multiple datasets for the
same tissue were available. Proteins were considered as tissue-specific if their expression in a
given tissue was at least ten-fold higher than the average expression in the remaining tissues.
Classification and functional enrichment analysis of protein lists (such as the core proteome,
missing proteins or tissue specific proteins) were performed using the DAVID Bioinformatics
Database103 as well as ReviGO104.
The stoichiometry of protein complexes (nuclear pore complex [NPC], core proteasome; Figure
3.43, Extended Data Figure B9 in the Appendix) was reconstructed using normalized iBAQ values,
and complex stoichiometry was calculated relative to either a particular subunit (nuclear pore
complex: subunit Nup43) or the median subunit expression across all subunits (core proteasome).
NPC compositions are based on data of triplicate shotgun experiments of HeLa nuclear extracts
from  a  recent  study  of  Ori et al.67, and the proteasome composition was determined for 109
different samples (29 tissues from the human body map, 80 different cell line samples from two
recent studies profiling the proteomes of 11 and 59 cell lines, respectively11,12.

2.3.7 Genome-wide comparison of protein and transcript abundance levels across twelve tissues
For the systematic genome-wide comparison of protein and mRNA abundances across multiple
tissues (
Figure 3.41), quantitative transcriptomics data (RNASeq) were downloaded from the Human
Protein Atlas105 (download date: Nov 11, 2013). Transcript expression data (abundances expressed
as fragments per kilobase per million, FPKM) was extracted from the RNA-Seq data for 12 tissues
(adrenal gland, esophagus, kidney, ovary, pancreas, prostate, salivary gland, spleen, stomach,
testis, thyroid gland, uterus). Normalized iBAQ values were exported from ProteomicsDB for
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theses tissues. In cases where multiple full proteomes were available for a single tissue or organ,
the median protein expression values were used. Proteins were mapped to transcripts using
BioMart106 resulting in 6104 transcripts/proteins with expression data. For the comparison of
protein and transcript abundances, protein and mRNA expression was re-scaled using z-score
transformation (Extended Data Figure B7a in the Appendix). Translation rate and transcript
abundance are the major determinants of protein expression, while transcript and protein half-
life only play a minor role101. The ratio between mRNA and protein abundance is a proxy for the
amount of protein which can be synthesized from a given mRNA and was calculated for all 12
tissues. The median ratio across all 12 tissues was then used to predict protein abundance from
mRNA expression.

2.3.8 Elastic net analysis
In order to predict proteins involved in drug resistance and sensitivity, proteome and drug-
response profiles for 24 FDA-approved drugs and 35 cell lines were used to identify known and
potential protein markers for drug sensitivity and resistance. As described previously12, an elastic
net regression107 was employed using full cellular proteome data of 135 experiments
corresponding to 35 cell lines and 10,825 proteins (Supporting Table 7). In cases where multiple
full cellular proteomes were available for a single cell line, the median protein expression values
were used. Drug activity levels were obtained from the Cancer Cell Line Encyclopedia (CCLE)
resource108. All features were regressed to fit a Gaussian model of drug activity area for each drug.
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3 Results

3.1 Assembly of the proteome in ProteomicsDB
This draft of the human proteome was assembled from 16,857 liquid chromatography tandem
mass spectrometry (LC-MS/MS) experiments using human tissues, cell lines, body fluids and PTM
and affinity purifications and its analysis in ProteomicsDB, an in-memory database designed for
the real time analysis of big data (https://www.proteomicsdb.org). The strategy (Figure 3.37a) was
to combine data available from repositories and otherwise contributed by colleagues (60% of
total) with published as well as new data from the authors’ laboratories (40% of total). All datasets
were re-processed using Mascot and MaxQuant17,82 and the resulting 1.1 billion peptide spectrum
matches (PSMs) were imported into ProteomicsDB. The database (Figure 3.37b) comprises a
public repository, a web interface featuring several data views and analysis tools and an
application programming interface (API). At the heart of ProteomicsDB is an ‘in-memory’
computational resource commanding 2 TB of RAM and 160 central processor units (CPUs) which
allows keeping all data in the main memory all of the time. This makes computational tasks very
efficient illustrated by the capability to display and annotate any of the currently ~71 million
identified peptide mass spectra in real time (Extended Data Figure B1 in the Appendix). Controlling
the quality of peptide and protein identifications is important but exactly how this is best
accomplished is still debated in the community109,110.
To control false-discovery rate across all samples in ProteomicsDB and find a reasonable
compromise between sensitivity and specificity of the filtered data, two-stage filtering approach
based on a classical target-decoy search strategy was applied. The results of the two-stage filtering
approach for the two separate search engines Mascot and Maxquant/Andromeda are depicted in
Extended Data Figure B1 in the Appendix.

3.2 Proteomic annotation of the genome
At the time of writing, ProteomicsDB held protein evidence for 18,097 of the 19,629 human genes
annotated in Swiss-Prot (92%) as well as 19,376 out of 86,771 protein isoforms listed in Uniprot
(22%). Chromosomes were evenly covered with the notable exceptions of chromosome 21 and
the Y-chromosome (Figure 3.38a). The former contains many proteins with few MS-compatible
tryptic peptides.257 human proteins (gene level) do not produce any such peptides rendering
trypsin as the most frequently used protease in proteomics ineffective. As a result, alternative
proteases or top down sequencing approaches will have a role to play in the eventual completion
of the human proteome (Extended Data Figure B3a in the Appendix)66,111. To facilitate this,
ProteomicsDB provides a tool predicting the best protease or combinations thereof for any
protein which can also be valuable when systematically mapping PTMs.
ProteomicsDB covers 97% of the 13,378 genes with annotated evidence on protein and 84% (of
5,531) with evidence on transcript level. The overlap with proteins detected by antibodies in the
HPA project is 93% (of 15,156 HPA proteins) providing independent evidence that these genes
exist as proteins. Conversely, proteomic coverage of genes inferred from homology (52% of 159),
genes  marked  as  predicted  (64%  of  72)  or  uncertain  (56%  of  489)  was  considerably  lower
suggesting that the protein coding human genome may be several hundred genes smaller than
previously anticipated. Of the 44 tried uncertain genes93, 36 could be manually validated by
comparing the experimental spectra against its reference spectra generated from synthetic
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peptides. Among the identified uncertain genes were three long intergenic non-coding RNAs
(lincRNAs, Extended Data Figure B3 in the Appendix). This surprising result initiated a search of ~9
million tandem MS spectra from tissues and cell lines against 13,564 lincRNA sequences from
Ensembl and 21,487 lincRNAs and TUCPs (transcripts of uncertain coding potential) from the
Broad Institute89. This returned 430 high quality peptides (no homology to Uniprot sequences)
from 404 lincRNAs/TUCPs. There was no apparent bias in chromosomal location or biological
source and the abundance distribution of translated lincRNA peptides was broadly similar to that
of peptides from ordinary proteins (Extended Data Figure B3 in the Appendix). This is the largest
number of lincRNA/TUCP translation products with direct peptide evidence reported to date112

arguing that translation of such transcripts is more common than previously anticipated113-115. The
biological significance of translated lincRNAs and TUCPs is not clear at present. These may
constitute proteins ‘in evolution’ representing hitherto undiscovered biology116 or  arise  by
stochastic chance marking such proteins as ‘biological noise’.

Figure 3.38 | Characterization of the human proteome. a, Chromosomal coverage of the 18,097 proteins
identified in this study exceeds 90% in all but three cases. Blue bars indicate the density of proteins in a
particular chromosomal region. b, Gene ontology analysis of the ‘missing’ proteome’ identifies GPCRs,
secreted and keratin-associated proteins as the major protein classes underrepresented in proteomic
experiments.

3.3 Estimating and normalizing protein abundance in ProteomicsDB
Protein abundance in cells is often expressed as an approximated measure of concentration, such
as copies per cell. However, this metric requires detailed knowledge about a couple of parameters
including but not limited to cell number, size and morphology, and cannot be readily translated to
tissues, extracellular structures or body fluids for which other concentration measures are
required. One pragmatic approach to overcome this issue is to express the abundance of a protein
as a fraction of all proteins detected and quantified in a sample. This normalization on the sum of
all protein abundances avoids the difficulties associated with concentration measures. However,
this approach is not particularly sensitive to the scaling of copy numbers by different parameters
such as cell volume, shape, number, and potentially many others. This may lead to some
inaccuracies, i.e. overestimating/underestimating proteins that have some relationship with a
particular parameter (e.g. histones scaling with the number of genomes, ribosomes scaling with
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the cell volume). Nonetheless, this pragmatic approach enables the straightforward comparison
of protein expression across a wide range of different types of samples.
Five intensity-based approaches for the estimation of protein abundances were systematically
investigated, in order to provide a consistent and reasonably accurate estimation of protein
abundance enabling the comparison of protein expression between samples of an experiment or
project as well as across multiple different projects. Spectral-counting based approaches were not
considered as these are associated with less accurate protein abundance estimations117,118.
The metrics investigated in detail are top3 intensity119, top3 divided by the number of observable
peptides, iBAQ101, average intensity120 and sum of all peptide intensities. The performance of
these protein abundance metrics was compared with accurate copy number estimates from a
large-scale absolute protein abundance data set (based on the AQUA technology). For this
purpose, reference protein copy numbers for U2-OS cells from Beck et al.1, and calculated copy
numbers for the five abundance metrics using a large-scale U2-OS cell line data set acquired by
Geiger et al.11 (Extended Data Figure B5a in the Appendix) were retrieved. While all five metrics
perform reasonably well (median fold error <2.5), the two approaches which take the number of
observable peptides into account (iBAQ, top3 intensity divided by the number of observable
peptides) are in better agreement with the original copy number estimates (Extended Data Figure
B5e in the Appendix). Note that the observed median fold errors are in line with the quantitative
accuracy estimated by Beck et al. using a bootstrapping approach for their AQUA quantified
proteins. When comparing the quantitative accuracy of the two most frequently employed
approaches, iBAQ and top3, as a function of the number of quantified peptides (Extended Data
Figure B5f in the Appendix) as well as protein length (Extended Data Figure B5g in the Appendix),
it becomes obvious that iBAQ is slightly less biased for low abundant proteins and small proteins
than the top3 approach.
To further investigate the effect of the normalization based on the sum of all protein abundance
measures, two data sets with considerably different proteome coverage (e. g. samples measured
on different instruments) were compared. For this purpose, the protein expression values of nine
different cell lines analyzed acquired on two different mass spectrometers12 were selected.  As
exemplified for the Colo-205 cell line dataset in Extended Data Figure B5b in the Appendix for all
five protein abundance metrics, the differences in intensity distribution before normalization
primarily reflect the differences in sensitivity of the instruments. The chosen normalization
ensures that what is an abundant protein in one data set is also an abundant protein in the other
(by virtue of each protein being expressed as the fraction of the total; Extended Data Figure B5c
in the Appendix). The main difference after normalization is thus the number of identified proteins
rather than the resulting (relative) abundances. The histograms show that the data is very well
aligned on the high abundance side of the histogram. For the low abundance proteins this
visualization is somewhat misleading because the x-axis is in log10 scale, so the right half of the
histogram actually covers >99% of the total intensity. The Q-Q plots for the same data are a more
appropriate visualization for this purpose and show that the data is well aligned over
approximately 4.5 orders of magnitude (Extended Data Figure B5d in the Appendix). As a
consequence, one should confine the interpretation of the proteome profiles to abundances of
>500-1,000 copies per cell (or an appropriate equivalent measure for body fluids), which is in line
with  e.g.  the  study  of  Beck  et  al.1. Extended Data Figure B6 a-c in the Appendix depicts the
remaining eight cell line proteomes using iBAQ quantification before and after normalization (a)
and the corresponding Q-Q plots (b).
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Following the rationale that normalization should enable the comparison of disparate data sets,
including the comparison of samples, experiments and projects based on label-free and stable
isotope labeling quantification, this analysis was extended to investigate how the normalization
affects the comparison of label-free and label-based approaches. Note that the MS1 intensity of
light, medium or heavy labeled peptides was utilized to calculate the protein abundance estimate
for every SILAC or dimethyl labeling channel separately. Similarly, for isobaric quantification, the
corresponding MS2 reporter ion intensity (for iTRAQ or TMT) was used to calculate protein
abundance estimates for the quantification channels separately. As exemplified in Extended Data
Figure B6c in the Appendix based on the comparison of data from SILAC-labeled and label-free
analyzed MCF-7 cell digests from two different studies11,49, the protein abundance of MS1 based
label-free and label-based quantification approaches exhibit a similar dynamic range of 4-5 orders
of magnitude and can be as comparably re-scaled. In contrast, as exemplified using data from
MCF-7 cell lines based on label-free11 and iTRAQ quantification56, quantification based on MS2
reporter ion signals shows drastically different intensity distribution characteristics with respect
to dynamic range and symmetry of the distribution (Extended Data Figure B6d in the Appendix).
Although desirable, the quantitative comparison of protein abundances between MS1 (label-free,
SILAC and dimethyl labeling) and MS2 based approaches (iTRAQ, TMT) is currently not possible
without introducing gross errors (or re-scaling artefacts). In light of these results, MS1 and MS2
quantification results are kept separate throughout this study as well as in ProteomicsDB.
Furthermore, affinity data are, if not mentioned otherwise, not included in any quantitative
comparison.
The distribution of 347 samples depicted in Extended Data Figure B6e in the Appendix underscores
that the re-scaling using total sum normalization actually results in very similar abundance
distributions for samples with MS1-level quantification.
Last, but not least, a commonly employed approach to illustrate that derived protein abundance
metrics actually reflect protein copy numbers is to compare the abundance of proteins with a
known stoichiometry within complexes. To this end, normalized iBAQ values were compared with
the reported composition of nuclear pore complexes from a recent study67 (NPC). As depicted in
Extended Data Figure B9a in the Appendix, the stoichiometry of the NPC components derived from
normalized iBAQ values of triplicate measurements of HeLa nuclear extracts from the same study
are  in  very  good  agreement  with  the  reported  stoichiometries  from  a  corresponding  AQUA
experiment (median fold error < 32%). Note that the components of the stable Nup107 sub-
complex even show a median fold error of less than 10%.
In summary, the results of the technical analysis as well as the biological data shown in Figure
3.39, Figure 3.40 and Figure 3.41 indicate that the overall approach is appropriate and enables a
reasonable biological interpretation of the protein expression profiles.

3.4 Core proteome and missing proteome
Aggregating the data used for building the draft proteome shows that proteome coverage rapidly
saturates at ~16-17,000 proteins, which is similar to transcriptome coverage obtained by RNAseq.
Addition of human tissue and body fluid data each led to small but noticeable contributions not
provided by cell lines. The same is true when adding PTM or affinity data to shotgun proteomic
data (Extended Data Figure B4 in the Appendix). When comparing five of the largest data sets in
ProteomicsDB11,12,15,76,  the  existence  of  a  human  core  proteome121 of ~10-12,000 ubiquitously
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expressed proteins can be postulated the primary function of which is the general control and
maintenance of cells but the low abundance range of which is, enriched in proteins with regulatory
functions (Extended Data Figure B4 in the Appendix). The observed proteome saturation implies
that adding more shotgun data will not considerably increase coverage albeit increasing
confidence in individual proteins. Instead, it is likely, that the ‘missing proteome’ (Figure 3.38b)
will have to be identified by more focused experimentation. It is also possible that a considerable
part of the missing proteome constitutes (pseudo)genes that are no longer expressed. G-protein
coupled receptors are underrepresented in ProteomicsDB and the respective transcripts are also
notoriously absent in RNAseq data105. Earlier work suggests that more than half of the 853 human
GPCRs have lost their function over the course of human evolution and may be considered
obsolete122 Similarly, a large number of functionally uncategorized proteins are annotated
pseudogenes potentially further reducing the number of (actual) protein coding genes. Cytokines
may be underrepresented because of experimental issues as small, secreted proteins can still be
difficult to obtain from the supernatants of cells, the intercellular space of tissues or from body
fluids. In order to fill the remaining gaps in the human proteome, ProteomicsDB provides a facility
to engage the community by ‘adopting’ a missing protein, i.e. to provide mass spectrometric
evidence for its existence.
In addition, reference spectra acquired from synthetic peptides for 435 peptides for all 273
cytokines  as  well  as  3,539  further  peptides  for  proteins  not  yet  well  covered  are  available  in
ProteomicsDB so that any identification of such proteins in the future may be validated using the
synthetic reference standard.

3.5 Functional proteome expression analysis
Profiles of 27 human tissues and body fluids (human body map) complemented with publically
available data were generated to begin to analyze human proteomes in functional terms. A simple
common task is to compare the expression level of a single protein across many biological sources
(Figure 3.39a). While housekeeping proteins such as GAPDH show high (and sometimes extreme)
expression throughout, high levels of the proto-oncogene EGFR are more confined to e.g. breast
(cancer) tissue. Similarly, ᆂ-catenin, a member of the Wnt pathway, is highly expressed in colon
cancer cells where the protein participates in the development of the malignancy. Principle
component analysis (PCA) of protein abundances in 42 proteomes shows that protein expression
in a particular tissue and its corresponding cell lines is broadly similar and that there are more
substantial differences between tissues of different organs (Figure 3.39b). This result is important
for the interpretation of data presented further below and also contributes to the ongoing
discussion regarding the suitability of cell lines as model systems for studying human biology. A
comparative analysis of the 100 most highly expressed proteins in each of 47 human organs and
body fluids (Figure 3.39c) revealed that ~70% of these proteins are found in common but show
expression differences of up to 5 orders of magnitude. Interestingly, even the most highly
abundant proteins in a tissue or fluid often point to molecular processes associated with the
respective biological specialization; myofibrillar proteins including troponins are abundant in the
heart, proteases in the pancreas and neuronal proteins in cerebrospinal fluid.
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Figure  3.39  |  Global  protein  expression  analysis.  a,  Protein  expression  in  different  tissues  and cell  lines
showing that levels of housekeeping (GAPDH), signaling (EGFR) and tumor-associated (CTNNB1) proteins
can vary substantially between tissues (grouped by color). b, Principle component analysis showing that cell
lines (circles) retain protein expression characteristics of their respective primary tissue (triangles) and that
proteomes of different organs are more diverse. c, Hierarchical clustering of the 100 most highly expressed
proteins from each of 47 tissues and body fluids. Despite the presence of a large group of common proteins,
clusters of organ/fluid selective proteins with respective biological functions can readily be identified.

Similar observations can be made when investigating proteins forming functional classes such as
protein kinases or transcription factors (TFs) (Figure 3.40). Akin to core proteomes, some of the
349 detected kinases and 557 TFs are broadly expressed, but others appear to be confined to few
organs where they drive more specific processes. For instance, the kinases HCK, ZAP70, LCK, JAK3,
TXK and FGR are found in a tight cluster of kinases in the spleen and all play important roles in the
biology of immune cells. This is ‘mirrored’ by transcription factors in the same cluster with strong
ties to immunity including the NFkB system (REL, PRKCH, NFKBIE) and Toll-like receptor signaling
(SIGIRR, IRF5, ARRB2, NLRC4). It is noteworthy that many of the proteins in the spleen cluster are
also highly expressed in the lung, a primary entry point for human pathogens. The number of
proteins that are exclusively or preferentially detected in a particular organ is surprisingly small
and gene ontology analysis invariably highlights organ-specific biology (Extended Data Figure B6
in the Appendix). For instance, adipocytes are rich in proteins involved in lipid storage, platelets
in growth factors and placenta in proteins relating to hormonal regulation and pregnancy. The
above shows that even disparate, but high-quality proteomic data can be used to construct
protein expression maps across an entire complex organism. A recent report has shown that this
is feasible in mice123 but, organism wide proteome expression profiling has not been described in
humans before. In addition, the identification of a considerable number of proteins with no
ascribed function but exclusive (or high) expression in particular organs implies a functional role.
The contextual information provided in ProteomicsDB may thus provide guidance for the eventual
identification of the biological role of these orphan proteins.
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Figure 3.40 | Functional protein expression analysis. Quantitative expression analysis of 906 kinases and
transcription factors (TF) across 24 tissues (top panel) identifies organ-selective signatures indicative of the
underlying biology. The highlighted cluster in spleen contains the kinases LCK, ZAP70 and JAK and the TFs
SIGIRR, NFKBIE and NLRC3 with strong links to the immune system (bottom panel).

3.6 Proteomic and transcriptomic correlation
The comparison of mRNA (RNAseq)105 and protein expression profiles for 12 human tissues
(Extended Data Figure B7 in the Appendix) shows clear correlations, although in all cases the
Spearman’s rank correlation coefficients are rather moderate and somewhat poorer than that
previously reported for cell  lines. This is likely due to the fact that tissues generally comprise a
mixture  of  cell  types,  connective  tissue  and  blood.  Both  mRNA  and  protein  levels  vary  a  lot
between tissues as one might expect; however, the ratio of protein and mRNA levels is remarkably
conserved between tissues for any given protein (Figure 3.41a)124. Schwanhausser et al.101 have
previously shown that the translation rate constant is one dominant factor determining protein
abundance in cell lines. Using the ratio of protein-to-mRNA levels as a proxy for translation rates,
the data indicates that this is also true for human tissues and that the ratio is similar in every tissue
(Figure 3.41b). It therefore appears that the translation rate is a fundamental, encoded (constant)
characteristic of a transcript suggesting that the actual amount of protein in a given cell is primarily
controlled by regulating mRNA levels. Having learned the protein/mRNA ratio for every protein
and transcript, it now becomes possible to predict protein abundance in any given tissue with
good accuracy from the measured mRNA abundance (Figure 3.41c, Extended Data Figure B7 in
the Appendix).
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Figure 3.41 | Correlation analysis of mRNA and protein expression levels. a, Analysis of mRNA and protein
levels across 12 organs shows that the protein/mRNA ratio is largely conserved. b, The median translation
rates of all transcripts across all tissues correlate well with protein abundance c, leading to the ability to
predict individual protein levels from the respective mRNA levels.

3.7 Analysis of protein expression and drug sensitivity
It was previously shown that protein expression can be correlated to drug sensitivity12. Similarly,
here this method was applied to discover sensitivity/resistance markers for 24 drugs in 35 human
cancer cell lines using drug sensitivity data provided by the cancer cell line encyclopedia (CCLE)108.
For instance, analysis of the EGFR kinase inhibitors Erlotinib and Lapatinib identified a number of
common proteins associated with drug sensitivity or resistance (Figure 3.42, Extended Data Figure
B8  in  the  Appendix).  The  primary  target  (EGFR)  as  well  as  annexin  A1  (ANXA1,  a  direct  EGFR
substrate), and EGFR interacting proteins at stress fibers (PDLIM, KRT5, KRT14) all indicate drug
sensitivity while high expression of ANXA6 or S100A4 renders cells less responsive. Consequently,
knock-down of ANXA6 in BT549 cells has been shown to sensitize cells for lapatinib 125 and addition
of S100A4 to cells in culture has been shown to stimulate EGFR and to promote metastasis126. High
expression of S100 proteins is often associated with resistance against kinase inhibitors,
suggesting that S100 overexpression may be a general molecular resistance mechanism. The data
further suggest that similar effects can be postulated for the Zn-finger protein THAP2, the NAD(P)
transhydrogenase NNT and Dermcidin (DCD). Likewise, high expression of MED11 (part of the RNA
Pol II mediator complex), IFI35 (an interferon induced protein of unknown function), HECTD1 (a
E3 ubiquitin ligase) and CDRT1 (an orphan F-box protein) should promote drug sensitivity but their
molecular  connections  to  EGFR  are  not  clear  at  present.  In  light  of  a  recent  report  showing
increased phosphorylation of HECTD1 upon EGF treatment127, it is tempting to speculate that a
HECTD1/CDRT1  complex  may  be  involved  in  regulating  the  stability  of  EGFR  via  the
ubiquitin/proteasome system.
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Figure 3.42 | Drug sensitivity and resistance analysis. Elastic net analysis for the identification of drug
sensitivity (positive effect size) or resistance (negative effect size) markers against the EGFR kinase inhibitors
Erlotinib and Lapatinib in cancer cell lines.

3.8 Composition and stoichiometry of protein complexes
The composition and stoichiometry of protein complexes is typically analyzed by affinity
purification coupled to MS-based protein analysis and it emerges that protein expression profiling
may also have potential for this purpose52. Stoichiometries measured by iBAQ for the nuclear pore
complex agreed well with a prior study using absolute protein quantification by spiked peptide
standards (Extended Data Figure B9 in the Appendix)67. Using the proteasome as an example, its
composition and stoichiometry was explored across cell lines and tissues (Figure 3.43). The
constitutive core proteasome consists of 2x7 non-catalytic alpha and 2x7 catalytic beta subunits
but e.g. an ‘immunoproteasome’ has been identified in which the ᆂ 1,2 and 5 subunits are replaced
by homologous proteins (ᆂ1i, ᆂ2i and ᆂ5i) in immune cells128,129. This analysis shows that the
proteasome in the salivary gland is primarily of the constitutive type and that lymph nodes almost
exclusively contain the immunoproteasome (Figure 3.43a and b). The same analysis across >100
cell line and tissue samples (Figure 3.43c) reveals that the immunoproteasome is surprisingly
widely expressed including in tissues for which no primary immunological function would be
expected. In addition, the data implies that the molecular composition and stoichiometry of
proteasomes is heterogeneous and cell type dependent. Correlation analysis of the expression of
all beta subunits (Figure 3.43d) strongly suggests that the ᆂ 1, 2 and 5 subunits and their respective
immunoproteasome counterparts are expressed independently (no correlation). In contrast, it
appears that the remaining subunits (ᆂ 3, 4, 6, 7) are co-expressed with either group.
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Figure 3.43 | Analysis of the composition and stoichiometry of the proteasome. a, Schematic structure of
the ‘constitutive’ proteasome and the ‘immunoproteasome’ (marked by the suffix ‘i’). b, Stoichiometry
derived by iBAQ quantification of the constitutive proteasome (grey) and the immunoproteasome (red) in
the salivary gland and the lymph node. c, Expression analysis of the ᆂ1 subunit across >100 tissue and cell
line proteomes reveals that many cells express both forms of the proteasome. d, Expression correlation
analysis of all α/ᆂ subunits across the said tissues and cell lines showing strong co-expression of the ᆂ1i,
ᆂ2i and ᆂ5i subunits as well as all other α/ᆂ subunits but no correlation with the expression of the
corresponding ᆂ1, ᆂ2 and ᆂ5 subunits.

3.9 Post-translational modifications
Proteomic data collections can be valuable data mines for post-translational modification analysis
or developing proteome technology. ProteomicsDB currently contains 81,721 unique
phosphorylated peptides representing 11,025 human genes, demonstrating that more than half
of all human proteins are substrates of kinases. Similarly, there are 29,031 unique ubiquitinylated
peptides from 5,769 proteins representing substrates of ubiquitin ligases as well as 16,693
acetylated peptides from 7,098 proteins that are substrates of acetylases. This analysis also
detected N-terminal peptides for 7,977 proteins and C-terminal peptides for 6,778 proteins
confirming a large number of translation start and stop sites (Extended Data Figure B10a in the
Appendix).

3.10 Proteotypic peptides and targeted proteomics
So-called ‘proteotypic’ peptides94 have proven useful as quantification standards in targeted
proteomic measurements which are increasingly employed to develop e.g. clinical biomarker
assays130. Briefly, experimental proteotypicity of a single peptide counts how often this particular
peptide was observed when the protein was identified. The cumulative proteotypicity describes
how often a protein was identified using either one of the top most frequently identified peptides.
Example: one particular peptide may have been observed in 50% of all cases that the protein was
identified. Another peptide may have also been observed in 50% of all cases. However, these two
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peptides are not necessarily observed together. The cumulative proteotypicity of the two peptides
may therefore vary from 50% (both peptides observed together every time a protein is identified)
to 100% (both peptides never observed together when a protein is identified). The experimental
proteotypicity of a single peptide is very useful e.g. for selecting peptides for SRM/MRM
experiments. The cumulative proteotypicity can be used in a similar fashion (i.e. deciding about
how many AQUA peptides to synthesize for a given protein) but also offers an explanation why
e.g. the top3 intensity method works well for quantifying a protein, since it turns out that very few
peptides are responsible for almost all identifications of a particular protein. An additional use is
that the detection of a proteotypic peptide gives confidence in protein identifications based on
single/few peptides (either because a particular protein may not produce more than one/few MS
compatible peptides upon protease digestion or the protein is of low abundance in which case the
detection of a proteotypic peptide is much more likely than the detection of any other peptide).
ProteomicsDB enabled the determination of the proteotypicity of ~500,000 peptides and
expanded the concept to chemically labeled peptides (Extended Data Figure B10b in the
Appendix). The 71 million peptide precursor ion and 18 billion peptide fragment ion
measurements allow the computational assessment of the specificity of targeted measurements
ahead of the actual experiment. Exemplified by the peptide LHYGLPVVVK of the proto-oncogene
ᆂ-catenin (Figure 3.44a, Extended Data Figure B10c in the Appendix), mining of ProteomicsDB
revealed a large number of potentially interfering peptides that may distort the quantification of
the target peptide. Interference can be substantially reduced by high resolution instruments
(Figure 3.44b)131 and by limiting the allowed interferences to the tissue in question (Figure 3.44c).

Likely, the combination of experimental proteotypicity, interference estimation and high
resolution instrumentation will provide for more robust targeted proteomic assays in the future.

Figure 3.44 | Computation of molecular interferences in targeted experiments. The transition of the target
peptide LHYGLPVVVK (y8 fragment ion, ᆂ-catenin) is marked with an arrow. All other circles in the plot are
interfering SRM transitions of other peptides found in ProteomicsDB that fall within the same mass
tolerance. a, The y8 transition of the peptide LHYGLPVVVK (b-catenin, marked with an arrow) in a 0.7/0.7
Da slice of the precursor and fragment ion window typically employed on triple quadrupole mass
spectrometers. The size of the circle represents the relative intensity of the y8 fragment in a full tandem
mass spectrum of this peptide. All other circles are interfering peptides (extracted from the entire
ProteomicsDB) that have precursor and fragment ions in the same m/z window and with varying intensities
(circle size). b, Interference can be reduced by using high resolution MS and confining the analysis to the
tissue in question (here colon, c). Such interference plots in conjunction with the proteotypicity of peptides
can be valuable for the design of targeted proteomic experiments.
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4 Discussion
This study showed that an extensive draft of the human proteome can be assembled from
disparate but high quality proteomic data. However, similar to the evolution of the human
genome projects, the eventual completion of the human proteome will take further time and
effort but will also lead to substantial improvements in technology which is still needed. One main
issue to address is proteome coverage and resolution. While DNA/RNA sequencing technologies
have attained single nucleotide resolution, the amino acid coverage of proteins is still poor, which
currently  impairs  our  ability  to  detect  e.g.  splice  variants,  PTMs,  mutations  or  isoforms  in  a
systematic  fashion.  A  related  challenge  is  to  improve  the  ability  to  sample  a  proteome
comprehensively i.e. ‘all proteins, all the time’. Both challenges suffer from the large dynamic
range of expression of both proteins and proteoforms, the lack of a technique similar to PCR and
the destructive measurement process.
While some of the many applications that can be envisaged for the use of this collection and some
of the biological insights that may be generated by mining the proteome were shown, another
important area of future research concerns overcoming the uncertainties associated with
peptide/protein identification by sequence database searching132. As shown for some proteins,
ProteomicsDB offers the functionality to store and compare experimentally observed spectra
against reference spectra from synthetic peptides. Expanding this to all human proteins not only
allows the systematic comparison of such spectra but also allows a more unbiased guidance when
generating targeted assays. ProteomicsDB and similar resources have a role to play in these
challenges as the data assembled will enable the development of computational tools and lab
reagents facilitating proteome wide discovery experiments, multiplexed quantitative protein
assays as well as the general exploration of the human proteome.
The estimation of protein false discovery rates in very large proteomics experiments is a challenge
for which no satisfactory solution has been found yet. The rapidly saturating number of true
positive identifications and the slow but steady growth of false positive identifications when
aggregating more and more experiments leads to the paradoxical situation that, eventually, all
true and false positive proteins will have been observed resulting in a protein FDR of up to 100%.
This is almost independent of the previous cutoffs applied. One view is that protein FDRs are
actually not very meaningful because proteomics measures peptides not proteins and the
definition of a ‘decoy protein’ is quite problematic. Another view is that one should lower the
peptide/PSM FDR to the degree necessary to reach a desired protein FDR71. The downside of this
approach is that many valid identifications are removed rendering this approach more
conservative than necessary. Then there is the ‘middle ground’ represented by e. g. the MAYU
approach that attempts to overcome the scaling issues associated with the classical protein FDR
approach. Unfortunately, these approaches also suffer from scaling issues and are generally not
designed to allow an online and real time adjustment since they require a complete re-
computation when more data is added.
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5 Outlook
ProteomicsDB has been proven to facilitate the exploration and analysis of the first draft of the
human proteome. However at its current state, it covers mostly classical full proteomes. As
technologies and sample preparation methods become more advanced and provide access to
specific sub-proteomes and other omics data, additional data types will provide additional
insights. For example PTMs provide an orthogonal view, as they directly manipulate activation,
degradation and stability of proteins and thus are of high interest when understanding e.g.
resistance or sensitivity mechanisms to drug. Even though the function of many modification sites
is not yet known, even a comparatively simple catalogue of occurrences and their abundances will
already broaden our understanding of their function as ubiquitous sites are likely not of functional
importance. The integration of e.g. phosphorylation-, ubiquitinylation- and acetylation-datasets
will help to build a future version of the human proteome that provides a more direct link between
protein expression and activity.
Of similar importance is the combination of multi omics technologies. Each of the four main omics
areas, namely genomics, transcriptomics, proteomics and metabolomics, provides unique and
orthogonal information not accessible with a single method alone. Therefore, the integration of
data across all omics levels is expected to give deeper biological insight. Many challenges lie ahead
of  this,  as  for  most  combinations  it  is  not  yet  established how to combine them properly.  For
example, only some metabolites are annotated and assigned to a process and proteins.
Quantitative co-occurrence analysis could provide first clues which biological entities influence
each other.
As shown here, the correlation of phenotypic data, such as drug sensitivity data, to protein
expression estimates can be used to find potential markers for resistance and sensitivity. The
incorporation of the activation status of proteins or the presence of specific mutations will likely
increase the accuracy of such models. This could have a direct impact on medicine as personalized
treatments depending on the molecular footprint of cancer cells can be used to predict the best
combination of drugs. Additionally, the integrated analysis of multiple omics data is expected to
provide better (multivariate) biomarkers which are able to differentiate cancer or even different
subtypes of cancer. This assumption is driven by the fact that each omics technology excels others
at specific tasks, e.g. genomics is very good at measuring mutations and proteomics is good at
measuring expression. Furthermore, the integration of longitudinal studies and more replicates of
tissues, cell lines and fluids will help to quantify the variance between or within one biological
source.
Last but not least, the extension to other organisms, such as mice, rats, mini pigs and other model
organisms used in the pharmacological industry, will provide unique opportunities to compare
proteomes of different organisms to judge and quantify the comparability of tox and disease
models. This could enable a translation of the pharmacokinetics and pharmacodynamics into
humans. However, this relies on the integration of additional data such as signaling pathways,
metabolic networks and activation status of proteins.
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6 Author Contribution
This chapter is based on92.
Mathias Wilhelm developed and implemented the database model, designed and implemented
the backend, designed and developed the frontend of ProteomicsDB, performed data analysis and
data interpretation.

7 Abbreviations
API Application programming interface
CID Collision induced dissociation
ESI Electrospray ionization
FDR False discovery rate
HCD Higher energy CID
LC-MS/MS Liquid chromatography-tandem mass spectrometry
lincRNA Long intergenic non-coding RNA
m/z mass to charge ratio
MS Mass Spectrometry
nESI nano-ESI
NPC Nuclear pore complex
PCA Principle component analysis
PEP Posterior error probability
PRM Parallel reaction monitoring
PSM Peptide spectrum match
PTM Post translational modification
QTOF Quadrupole time-of-flight
SRM Selected reaction monitoring
TF Transcription factor
TMT Tandem mass tag
TUCP Transcript of uncertain coding potential
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“The discovery of truth is prevented more effectively, not by the false appearance things present
and which mislead into error, not directly by weakness of the reasoning powers, but by

preconceived opinion, by prejudice.”
- Arthur Schopenhauer

“All generalizations are false, including this one.”
- Mark Twain
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1 Introduction
Shotgun proteomics is the most popular approach for large-scale identification and quantification
of proteins. The rapid evolution of high-end mass spectrometers in recent years1-5 has made
proteomic studies feasible that identify and quantify as many as 10,000 proteins in a sample6-8.
This enables many lines of new scientific research including, for example, the analysis of many
human proteomes, and proteome-wide protein-drug interaction studies9-11. One fundamental
step in most proteomic experiments is the identification of proteins in the biological system under
investigation. To achieve this, proteins are digested into peptides, analyzed by LC-MS/MS, and
tandem mass spectra are used to interrogate protein sequence databases using search engines
that match experimental data to data generated in silico12,13. Peptide spectrum matches (PSMs)
are commonly assigned by a search engine using either a heuristic or a probabilistic scoring
scheme14-18. Proteins are then inferred from identified peptides and a protein score or a
probability derived as a measure for the confidence in the identification13,19.

Estimating the proportion of false matches (false discovery rate; FDR) in an experiment is
important to assess and maintain the quality of protein identifications. Owing to its conceptual
and practical simplicity, the most widely used strategy to estimate FDR in proteomics is the target-
decoy database search strategy (target-decoy strategy; TDS)20. The main assumption underlying
this idea is that random matches (false positives) should occur with similar likelihood in the target
database and the decoy (reversed, shuffled, or otherwise randomized) version of the same
database21,22. The number of matches to the decoy database, therefore, provides an estimate of
the number of random matches one should expect to obtain in the target database. The number
of target and decoy hits can then be used to calculate either a local or global FDR for a given data
set21-26.  This general idea can be applied to control the FDR at the level of PSMs, peptides and
proteins, typically by counting the number of target and decoy observations above a specified
score.
Despite the significant practical impact of the TDS, it has been observed that a peptide FDR which
results in an acceptable protein FDR (of say 1%) for a small or medium sized dataset, turns into an
unacceptably high protein FDR when the dataset grows larger22,27. This is because the basic
assumption of the classical TDS is compromised when a large proportion of the true positive
proteins have already been identified. In small data sets, containing say only a few hundred to a
few thousand proteins, random peptide matches will be distributed roughly equally over all decoy
and ‘leftover’ target proteins, allowing for a reasonably accurate estimation of false positive target
identifications by using the number of decoy identifications. However, in large experiments
comprising hundreds to thousands of LC-MS/MS runs, 10,000 or more target proteins may be
genuinely and repeatedly identified, leaving an ever smaller number of (target) proteins to be hit
by new false positive peptide matches. In contrast, decoy proteins are only hit by the occasional
random peptide match but fully count towards the number of false positive protein identifications
estimated from the decoy hits. The higher the number of genuinely identified target proteins gets,
the  larger  this  imbalance  becomes.  If  this  is  not  corrected  for  in  the  decoy  space,  an
overestimation of false positives will occur.
This problem has been recognized and e. g. Reiter and colleagues suggested a way for correcting
for the over-estimation of false positive protein hits termed MAYU27. Following the main
assumption that protein identifications containing false positive PSMs are uniformly distributed
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over the target database, MAYU models the number of false positive protein identifications using
a hypergeometric distribution. Its parameters are estimated from the number of protein database
entries and the total number of target and decoy protein identifications. The protein FDR is then
estimated by dividing the number of expected false positive identifications (expectation value of
the hypergeometric distribution) by the total number of target identifications. While this approach
was specifically designed for large datasets (tested on ~1,300 LC-MS/MS runs from digests of C.
elegans proteins), it is not clear how far the approach actually scales. Another correction strategy
for over-estimation of false positive rates, the R factor, was suggested initially for peptides28 and
more recently for proteins29. A ratio, R, of forward and decoy hits in the low probability range is
calculated, where the number of true peptide or protein identifications is expected to be close to
zero, and hence, R should approximate one. The number of decoy hits is then multiplied
(corrected) by the R factor when performing FDR calculations. The approach is conceptually
simpler than the MAYU strategy and easy to implement, but is also based on the assumption that
the inflation of  the decoy hits  intrinsic  in  the classic  target  decoy strategy occurs  to  the same
extent in all probability ranges.
In the context of the above, it is interesting to note that there is currently no consensus in the
community regarding if and how protein FDR should be calculated for data of any size. One
perhaps extreme view is that, owing to issues and assumptions related to the peptide to protein
inference step and ways of constructing decoy protein sequences, protein level FDRs cannot be
meaningfully estimated at all30. This is somewhat unsatisfactory as an estimate of protein level
error in proteomic experiments is highly desirable. Others have argued that target-decoy searches
are not even needed when accurate p-values of individual PSMs are available31 while yet others
choose to tighten the PSM or peptide FDRs obtained from TDS analysis to whatever threshold
necessary to obtain a desired protein FDR32. This is likely too conservative.

This chapter characterizes the picked TDS for protein FDR estimation and investigates its scalability
compared to that of the classic TDS FDR method in datasets of increasing size up to ~19,000 LC-
MS/MS runs. The results show that the picked TDS is effective in preventing decoy protein over-
representation, identifies more true positive hits and works equally well for small and large
proteomic data sets.
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2 Methods

2.1 Datasets and data processing
The data basis for this study was a large collection of LC-MS/MS runs along with the derived human
protein identification data deposited in ProteomicsDB (https://www.proteomicsdb.org). At the
time of writing, this comprised 19,013 LC-MS/MS runs, the majority of which represent two
recently published drafts of the human proteome9,10. In ProteomicsDB, biological samples are
grouped into experiments of varying number of LC-MS/MS runs. Raw MS files from each
experiment were searched in parallel using Mascot16 and Maxquant/Andromeda15,33 against a
concatenated protein sequence database containing the UniProtKB complete human proteome
(download date: 05 Sep 2012; 86,725 sequences) and cRAP (common Repository of Adventitious
Proteins; download date: 05 Sep 2012; 113 sequences) as described9. Briefly, in the Mascot
workflow, MS files were processed using Mascot Distiller using peak picking, de-isotoping and
charge deconvolution. The resulting peaklist files were searched with the target-decoy option
enabled (on-the-fly search against a decoy database with reversed protein sequences), a
precursor tolerance of 10 ppm and a fragment tolerance of 0.5 Da for CID spectra and 0.05 Da for
HCD spectra, an enzyme specificity of trypsin, LysC, GluC, or chymotrypsin (as appropriate), a
maximum of two missed cleavages sites, the Mascot 13C option of 1 and oxidation of Met as well
as acetylation of protein amino-terminus as variable modifications. Additional variable and fixed
modifications  were  set  as  appropriate  for  individual  experiments  (e.g.  SILAC  or  TMT  or
phosphorylation etc.). In the Maxquant workflow, MS files were searched against the same target-
decoy protein sequence database as described above but using the Andromeda search engine.
Proteases, variable and fixed modifications were specified as above. Mass accuracy of the
precursor ions was determined by the time-dependent recalibration algorithm of Maxquant, and
fragment ion mass tolerance was set to 0.6 Da and 20 ppm for CID and HCD, respectively. Further
details regarding sample handling and data acquisition can be found in9.

2.2 Procedure for peptide length dependent score normalization
Search engine-specific local peptide length-dependent score cutoffs as reported in Wilhelm et al.9

were calculated as follows. All peptide spectrum matches (PSMs) of the same length were binned
separately for Mascot and Andromeda in intervals of 1 score point and smoothed by a moving
average with a window size of 5 to account for fluctuations likely introduced by the scoring
algorithm. The local false discovery rates in each score bin were calculated by dividing the number
of decoy PSMs by the number of target PSMs and the resulting distribution was smoothed using
a moving average with a window size of 5 to account for small fluctuations. The minimum score
over all bins with a local false discovery rate less than 0.05 was defined to be the local peptide
length-dependent cutoff. Normalized scores of PSMs were calculated by dividing the Mascot ion
score or Andromeda score by the corresponding search engine specific local peptide length-
dependent cutoff.

2.3 PCM q-value calculation
For the purpose of this study, a q-value is defined to be the minimum FDR at which a PSM, peptide
or protein will appear in the filtered output list. Such q-values are commonly used to filter a list of
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observations to obtain a particular FDR. Instead of using all PSMs for this purpose, only the PSM
with the highest normalized search engine score was chosen that represents one peptide
sequence detected at one charge state and carrying a particular peptide modification (termed
PCM). PCMs for each LC-MS/MS run were then sorted in decreasing order by their normalized
Mascot or Andromeda scores. Empirical q-values were calculated by traversing the list from top
to bottom and dividing the cumulative number of decoys by the number of cumulative targets. To
assure monotonicity a second traversal from bottom to top changes the empirical q-value from
the  top  to  bottom  traversal  to  the  minimum  q-value  observed  so  far.  Next,  the  relationship
between logarithmic q-values and normalized scores was modeled by a linear regression using the
highest and lowest scoring PCMs with an empirical q-value below 0.01 as fulcrums. Then, all q-
values were recalculated using the predicted slope ܽ and intercept ܾ of the model: ݋݈− ଵ݃଴ݍ −
݁ݑ݈ܽݒ = ܽ ∙ ݁ݎ݋ܿݏ ݀݁ݖ݈݅ܽ݉ݎ݋݊ + ܾ , by multiplying the normalized score with the predicted
slope ܽ and adding the predicted intercept ܾ. Last, the resulting list of PCMs was filtered at 1%
FDR.

2.4 Protein inference
Peptides matching to either one particular protein isoform (protein unique) or to multiple protein
isoforms originating from the same gene (gene unique) are classified as unique peptides (gene-
centric uniqueness). All other peptides are classified as shared (Figure 4.45). Shared peptides were
discarded from protein inference. For the purpose of this study, it is not differentiated between
the identification of a specific protein isoform and the identification of at least one protein isoform
of a gene, thus proteins/genes colored in blue and green are used.

Figure 4.45 | Gene-centric uniqueness calculation. Peptides matching to either one particular protein
isoform (green circles, protein unique) or to multiple protein isoform but with the same gene name (blue
circles, gene unique) are classified as unique peptides. All others, namely peptides matching to multiple
protein isoforms with different gene names (red circles), are classified as shared. Shared peptides were
discarded during the protein inference whereas both protein unique and gene unique peptides give rise to
the identification of gene products.
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2.5 Protein score calculation
For data presented in Figure 4.47a, protein scores were calculated as the sum of Mascot ion scores
of the best scoring peptide matches below 1% PSM FDR. For all  other analyses, protein scores
were calculated either as the sum of the Q-scores (–log10 transformed q-values) of all matched
PCMs which passed a defined q-value threshold or by the maximum Q-score of all PCMs. Again,
all methods only considered unique peptides.

2.6 Protein q-value calculation
To estimate protein q-values, proteins were sorted in decreasing order by their score. Empirical
protein q-values were calculated by traversing the list from top to bottom and dividing the
cumulative number of decoys by the number of cumulative targets. To assure monotonicity, a
second traversal from bottom to top changes the empirical q-value to the minimum q-value
observed so far. This step was repeated each time a new dataset was introduced. For Figure 4.47a,
the experiment containing the largest number of IDs was selected first, followed by the
experiment with the second largest number of IDs and so forth. This was necessary to illustrate
that the number of protein IDs at 1% FDR initially rises, reaches a maximum and then decreases
again. For data shown in Figure 4.51, data were aggregated in random order.

2.7 Picked protein FDR approach
In contrast to the classic TDS, the picked TDS treats target and decoy sequences of the same
protein as a pair. If the protein score for the target (forward) amino acid sequence is higher than
that of the respective decoy (reversed) sequence, the target sequence is counted as a hit and the
decoy sequence is discarded. Conversely, if the decoy sequence scores higher than the target
sequence, it counts as a decoy hit and the target sequence is discarded. This way, no bias is
introduced with respect to how target and decoy proteins contribute to the protein FDR. The
protein FDR was estimated using the target and decoy hits in the same way as in the classic
approach.

2.8 Protein FDR simulation
A simulated dataset consists of a set of true positive ࡿ ௜ࡼ  (present proteins), false positive ௜࡭

(absent proteins) and decoy identifications ௜. For each dataset࡮ ௜ࡿ  during the aggregation, the
number of identified proteins ࢏݇ = ห࢏ࡼห + ห࢏࡭ห was drawn from a normal distribution. The dataset
specific protein FDR ௜ݎ݂݀  was drawn from a modified exponential distribution which ensures that
the protein FDR is worse than a user specified value. Next, the set of true positive identifications
containing ݇௜  ∙ (1 − ௜) proteins is sampled from a set of observable proteinsݎ݂݀ ,using a prior ࡻ
which reflects the relative observation rates of proteins as seen in ProteomicsDB. This ensures
that certain proteins are present in almost every single dataset and only a couple of datasets add
rare proteins (if at all). False positive protein identifications were sampled uniformly from the set
of proteins which are left after sampling the true positive identifications (ࡻ \ ௜) to ensure that aࡼ
protein is either a true positive or false positive. In contrast, decoy identifications are uniformly
sampled from the set of all observable proteins The assumption that the number of false .ࡻ
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positive protein identifications is equal to the number of decoy identifications ௜࡮ = ௜࡭  holds and
thus the estimated and actual protein FDR using the classic model are equal.

The aggregated dataset ௔௚௚௥௘௚௔௧௘ௗࡿ
௝ = ൛ࡿଵ, … , ௝ൟࡿ is composed of true positive identifications

௝ࡼࢀ = ⋃ ௞௝ࡼ
௞ୀଵ , false positive identifications ௝ࡼࡲ = ⋃ ௞௝࡭

௞ୀଵ \ ௝ࡼࢀ  and decoy identifications

௝ࡰ = ⋃ ௞௝࡮
௞ୀଵ . Notably, the set of false positive identifications cannot contain proteins which are

present in the union of all true positive identifications. However, with an increasing number of
aggregated datasets, the underlying assumption of หࡼࡲ௝ห = ௝|does not hold since the set ofࡰ|
false identifications will decrease as หࡼࢀ௝ห increases.
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3 Results

3.1 Breakdown of the classic target-decoy protein FDR model
In large proteomic studies, identifying tens or hundreds of thousands of peptides, the classic
target-decoy strategy (TDS) model overestimates protein FDR due to the fact that the higher the
number of genuinely identified target proteins gets, the more imbalanced the ratio of potential
new target and decoy protein identifications becomes. This inevitably leads to an accumulation of
decoy proteins and overestimated protein FDR. To illustrate this problem, a simulation study using
empirical probabilities was performed followed by a validation using real data.

3.1.1 Simulation of protein FDR overestimation in large datasets
Generally, the aggregation of multiple datasets will lead to an inflated protein FDR. However, a
priori it is unclear which proteins are truly present or absent, thus the accumulation effect can
only be studied using the observed numbers of target and decoy identifications while the effect
on true and false positive identifications is hidden. Figure 4.46a shows the result of a simulated
aggregation of 500 distinct datasets. In contrast to real data, it is known which dataset (for
instance a single raw file, the results of an experiment or an entire study) introduces which protein
as a true or false positive and thus allows the assessment of the classical TDS estimated protein
FDR.  Each dataset  is  filtered to  a  minimum of  0.01 protein  FDR and contains  on average 5000
target protein identifications. In order to reflect real data, both the number of proteins as well as
the individual protein FDR is drawn from a distribution (Figure 4.46b and c, see methods for
details) including which proteins are likely to be present in a single dataset (Figure 4.46d). As
expected, both the number of target (depicted in solid blue, containing true and false positive
identifications) and decoy (solid red line) identifications rise constantly and reach almost the same
total number of proteins after adding 500 datasets. The estimated protein FDR using the classic
TDS (solid purple line) is close to 1 (100%). However, the number of true positive identifications
(dashed blue line) actually totals at 15,940 protein identifications. This shows that the number of
false positive identifications cannot be used without correction since the number of decoy protein
identifications significantly overestimates the number of false positive target identifications
(dashed red line). Notably, the actual or real protein FDR (dashed purple line) reaches its maximum
after adding roughly 100 datasets and starts to decrease after that, indicating that new datasets
provide new and unique evidence for proteins formerly being unidentified or were the result of
false matching. After aggregating hundreds or even thousands of datasets, most of the true
positive target identification will contain some false positive peptide spectrum matches but this
does not undermine their presence. This effect is not model by the classical TDS and thus the
number of decoy identifications rises irrespectively of the protein FDR of an individual dataset.
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Figure 4.46 | Protein FDR simulation. a, Simulation of 500 datasets each containing evidence for about
5000 proteins each at varying protein FDR (minimum 1%). While the number of target protein identifications
(solid blue) containing true and false positive identifications saturates quickly, the number of decoy proteins
(solid red) increases almost linearly, reaching almost the same total number. In contrast, the number of true
positive target protein identifications (dashed blue) reaches saturation much quicker and plateaus at 15940
proteins. The number of false positive protein identifications (dashed red) reaches its maximum at around
100 datasets but then starts to decrease as more and more datasets are added which provide new and
correct  evidence  for  the  presence  of  a  protein.  The  overall  trend  is  mirrored  by  the  classic  protein  FDR
estimation (solid purple), increasing constantly and reaching almost 1.0, and the real protein FDR (dashed
purple), which increases first, but reaches its maximum at around 100 datasets (15% protein FDR) but then
decreases. b, shows the distribution of the number of proteins drawn for a dataset. c, shows the distribution
of individual dataset protein FDR levels. d, shows the probability distribution of selecting a protein being a
true positive (green) and false positive or decoy (red) identification. e, shows the distribution of
observations for target (blue) and decoys (red) identifications after aggregation of 500 datasets.

3.1.2 Experimental validation of simulation study
To  validate  the  effects  shown  in  Figure  4.46a,  the  protein  identification  results  from  1,974
aggregated Mascot searches (representing a total of >18,000 distinct LC-MS/MS runs) were
analyzed  (Figure  4.47a).  Search  results  of  each  LC-MS/MS  run  were  filtered  at  0.01  PSM  FDR
threshold and all search results were subsequently ranked in descending order according to the
number of proteins identified. Individual protein scores were calculated by summing up Mascot
ion scores of the best PSM for all unique peptides of that protein. Based on these criteria, the
largest search result contained 8,255 target proteins and 321 decoy proteins with 7,250 identified
proteins at <1% protein FDR. Subsequently the second, third and so on largest search result was
added and the calculation of the protein FDR was repeated each time. Figure 4.47a shows that
the number of identified target proteins quickly rose when adding further search results and that
considerable saturation occurred by the time 100-150 search results had been combined. Decoy
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protein identifications rose at a slower rate but nevertheless approached the number of target
hits as the number of aggregated search results reached completion. As an example, 14,137 target
proteins were identified when aggregating the first 50 search results but the protein FDR had
meanwhile reached 35%. Adding another 1,924 search results increased the target protein IDs by
4,137  proteins  but  also  increased  the  classic  TDS  FDR  to  ~89%  implying  that  only  1,936  of  all
proteins were true. It is obvious, that the latter figure cannot be correct if the first search results
alone already contained 7,250 proteins at 1% FDR.
The situation could only be partially remedied by introducing a protein FDR filter. When forcing a
1%  protein  FDR  at  each  aggregation  step,  protein  coverage  peaked  at  the  110th search result
(10,433 proteins) but then dropped to 6,511 proteins when 1,860 further search results were
added. Given this clear breakdown of the classic TDS protein FDR approach, this study proposes
an alternative idea, which is refer to as the ‘picked’ target decoy strategy (picked TDS). Before
introducing this concept, the heterogeneous nature of the data in ProteomicsDB required data
harmonization that is described in the following section.

Figure 4.47 | Breakdown of the classic TDS and q-value calculation for data harmonization. a, To illustrate
the breakdown of the classic TDS 1970 Mascot search results (18754 raw files) filtered at 1% PSM FDR, were
aggregated while re-computing the number of proteins at 1% protein FDR at each step. Protein scores were
derived by summing Mascot ion scores of the best peptide matches. The number of target (blue) and decoy
(red) proteins saturated quickly while the number of proteins at 1% protein FDR (green) reached its
maximum at an early stage but then continuously decreased and stopped at less proteins than in the
beginning. This indicates that the classic TDS is not working when dealing with large data. b, The Mascot
(dashed) and Andromeda (solid) target (blue) and decoy (red) PSM score distributions show vast differences
in the scoring scheme precluding their combination without prior normalization. c, To obtain continuous
PCM q-values, a linear extrapolation model (black) trained on the empirically calculated PCM q-values
(orange) was used. The inset shows that after extrapolation, meaningful q-values can be assigned to PCMs
which have a higher score than the best decoy. d, Following q-value extrapolation (Q-score is defined as –
log10(q-value)), Mascot (dashed) and Andromeda (solid) target (blue) and decoy (red) q-value distributions
align well, particularly in the q-value range where most false positive identifications are expected and thus
allow the combination of the search results.
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3.2 Data harmonization using extrapolated q-values
The human proteome data deposited in ProteomicsDB comes from a wide variety of biological
samples and biochemical experiments and was acquired on different generations of Thermo
Orbitrap instruments and using different fragmentation methods as well as resolution settings.
Therefore, the data needed to be aggregated and harmonized in a way that allows a consistent
and unified treatment of the results. At the time of writing ProteomicsDB contained 18,754
Thermo Orbitrap raw files for which Mascot was used as a search engine and 17,471 raw files for
which Andromeda was used. Figure 4.47b illustrates profound differences in the score distribution
of the two search engines which is rooted in the differences in the underlying scoring schemes.
Both Mascot and Andromeda assign significantly higher scores to longer peptides. To correct for
that, both scores are normalized using the length dependent thresholds (see methods section for
details and Figure C1a and b in the Appendix)9,21,33,34.

The target decoy score distributions are strongly dependent on the type of sample analyzed and
the type of fragmentation method used (high or low resolution CID, HCD). For instance, dimethyl
labeled tryptic digests of human embryonic stem cells measured by low resolution CID yielded
very different target-decoy distributions compared to unlabeled tryptic digests of the melanoma
cell line A375 measured by HCD (Figure C1c and d in the Appendix). Thus, it is not sensible to use
a single threshold value to achieve say 1% PSM FDR in heterogeneous and large data sets. Instead,
these thresholds should be derived for each LC-MS/MS run separately (Figure C1e and f in the
Appendix). This is achieved by calculating q-values or posterior error probabilities, e.g. using
routines implemented in Maxquant33 for Andromeda results and Percolator24 or PeptideProphet35,
for Mascot results. In order to be consistent for both Andromeda and Mascot datasets,
ProteomicsDB offers a simple procedure to calculate q-value compatible with both search engines.
Instead  of  using  all  PSMs  for  this  purpose,  only  the  highest  scoring  PSM  is  chosen.  This  PSM
represents one peptide sequence that can carry modifications and is detected with a certain
charge state (termed PCM, the best PSM so to speak) because reducing the redundancy of the
PSM information (i.e. many spectra hitting the same peptide) into the best PCMs (here) or the
best peptide21,36 results in more robust significance threshold estimates and which are less
affected by the oversampling of high abundance peptides compared to using PSMs37.
In order to appropriately deal with the fact that the number of decoy hits is very small for high
scoring PCMs, q-value are linearly extrapolated using the empirical q-values (Figure 4.47c).
Without extrapolation, there would be no difference in q-value between say a PCM of Mascot
score of 70 and 150 even though the PCM with the higher score should carry more weight than
the lower  scoring PCM (or  peptide for  that  matter).  This  procedure allows the combination of
results from the two search engines because the distributions of –log10 transformed q-values
(referred to as Q-scores) aligned very well (Figure 4.47d), particularly at low q-values where most
of the false positives are expected. Target and decoy PCMs that passed the q-value requirement
of 0.01 showed only a weak saturation trend as a function of the size of the dataset and
consequently lead to only a minimal increase in global PCM FDR (Figure C2 in the Appendix).
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3.3 The ‘picked’ TDS to estimate protein FDR
After data harmonization, the overestimation of false positive protein identifications with the
classic TDS was investigated. The PCM q-value cut-off was set to 0.01. Proteins scores were
derived from the best scoring unique peptide for every protein (the peptide with the best PCM Q-
score, see above). While other more sophisticated strategies exist for calculating protein
scores22,28,  using the best peptide hit or the sum of peptide scores are common practice in the
proteomics community. The resulting Q-score distribution of target and decoy proteins according
to  the  classical  TDS  is  shown  in  Figure  4.48a.  As  one  might  expect,  the  bimodal  appearance
suggests that the lower score range mainly contains false positive protein identifications35. At the
same time, the number of decoy proteins in that score range is massively higher than that of the
target proteins clearly illustrating the aforementioned overestimation of false positive proteins.

Figure 4.48 | Protein FDR estimation using the classic and picked target-decoy strategy. A PCM q-value
cut-off  of  below  0.01  was  used. a, Using  the  number  of  decoy  proteins  from  the  classic  TDS  massively
overestimates the number of false positive protein identifications. This is apparent by the almost 6-fold
higher amplitude of the decoy (red) protein distribution in the low scoring region compared to that of the
target proteins (blue). b, The picked TDS treats target and decoy sequences of the same protein as a pair. If
the protein score of the target (blue) amino acid sequence is higher than that of the respective decoy (red)
sequence, the target sequence is counted as a hit and the decoy sequence is discarded. Conversely, if the
decoy sequence scores higher than the target sequence, it counts as a decoy hit and the target sequence is
discarded. c, After applying the picked approach, the decoy (red) protein distribution superimposes with
the target (blue) protein distribution which allows proper protein FDR estimation using the number decoy
proteins, and yields a reasonable distribution of true protein hits (green dashed line), calculated as the
difference between the distributions of target and decoy hits.

In contrast to the classic TDS, the ‘picked’ TDS (Figure 4.48b) treats target and decoy sequences
of the same protein as a pair rather than as individual entities. If the protein score (Q-score) for
the target sequence is higher than that of the respective decoy sequence, the target sequence is
counted as a hit and the decoy sequence is discarded. Conversely, if the decoy sequence scores
higher than the target sequence, it counts as a decoy hit and the target protein is discarded. This
idea was in part inspired by the decoy fusion approach used for peptides38, and in part by the
established practice in the field of using a concatenated target and decoy database in order to
select only for those PSMs that have the best score in either the target or the decoy space, rather
than selecting hits which pass a score threshold in both target and decoy space20,36.
Figure 4.49 depicts an exaggerated example of how the picking is performed and its impact on the
global protein FDR estimation. In large single or combined datasets, the major proportion of both
target and decoy proteins are matched by PSMs. In this example (left hand side) the database
consists of 9 proteins (listed from A-I) and all, except 1 target and 2 decoy proteins are supposedly

a b c
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identified. The classic TDS (without picking) estimates the protein FDR to be 87% since 7 decoy
proteins  are  present.  However,  the real  FDR is  only  37% since only  3  of  the estimated 7  false
positive protein identifications are present. The picking approach (right panel) selects either the
target or the decoy protein from a target-decoy pair based on their scores and discards the other.
For instance, for protein A the target was selected since the decoy was not identified, for protein
B the decoy was selected since its score is higher than that of its target identification, and so on.
This process is performed on all proteins separately leaving a list of 9 proteins in the final result
set. The effect is a superior (here perfect) estimation of the protein FDR. Note that all true positive
target identifications are still present, however, 1 (namely that of protein B) of the false positive
identifications was discarded in favor of its decoy version.

Figure 4.49 | Example of the overestimation of protein FDR on large datasets. Most  of  the  decoys  are
identified a large proteomics experiments (or repository). As illustrated, the classic approach overestimates
the number of false positive identifications (here) by almost 3-fold. The picked approach controls for the
overestimation by “picking” either the target or the decoy and precisely estimates the true protein FDR.

This picking approach is symmetric, as it has no built-in bias for the selection of either a decoy or
a false positive target protein. For the picked TDS, the target distribution is again bimodal (Figure
4.48c), but now, the decoy distribution is nearly identical to the low Q-score range of the target
distribution as would be expected for well-functioning FDR approach35. As a result, the distribution
of true positive protein identifications (i.e. the difference between the target and decoy hits,
dotted green line in Figure 4.48c) approaches zero for very low protein scores indicating that the
estimation of false positive IDs is accurate. Results also compared favorably to the recently
described R-factor correction approach29 that addresses over-estimation of decoy hits by an
empirically derived correction factor. Performed on the same data, the R-factor corrected decoy
distribution alternates between positive and negative values for true positive protein
identification at low protein scores, but still provides a much more sensible overall picture than
the uncorrected TDS (Figure 4.50).
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Figure 4.50 | R factor correction. a, Using the number of decoy proteins from the classic TDS massively
overestimates the number of false positive protein identifications, decoy proteins (red), target proteins
(blue). b, The R factor is calculated as the ratio between the number of target and decoy hits with a score
below  the  2.4  (score  at  which  the  FDR  passes  the  0.8  value  as  suggested  in  Shanmugam  et  al) c, After
applying the R factor correction, the decoy (red) protein distribution agrees better with the target (blue)
protein distribution which yields more reasonable protein FDR estimation using the adjusted number of
decoy proteins. The distribution of true protein hits (green dashed line), calculated as the difference
between the distributions of target and decoy hits is more sensible than for the standard decoy approach,
although negative values are observed for low scoring proteins.

Interestingly, when using the sum of Q-scores of all PCMs of a given protein as a score, a much
poorer separation between the false positive and true positive distribution can be observed
(Extended Data Figure C3a and b in the Appendix), which might be attributed to the fact that large
decoy proteins can accumulate high Q-scores by way of many low scoring peptides.

3.4 Performance evaluation of the picked target decoy strategy
As one might expect, when comparing the differences between target and decoy protein
identifications at different PCM q-value cut-offs (Figure 4.51a), very similar numbers of proteins
were  observed  for  low  PCM  q-values.  However,  at  higher  q-value  cut-offs  (starting  at
approximately 10-4), the number of true positive identifications approaches zero for the classic
TDS. Conversely, the number of true positive protein identifications for the picked TDS reaches a
stable plateau at 15,817 proteins. The non-decreasing true positive trend as a function of more
permissive q-value cut-offs is a hallmark of a well-functioning FDR estimation method35. When
examining protein FDR in the same way (Figure 4.51b), the classic TDS protein FDR approaches 1.0
for q-values of 0.001 and higher. Instead, the picked TDS protein FDR plateaus at a maximum of
10%. Interestingly, the picked TDS protein FDR using summed Q-scores showed similar
performance suggesting that the picked TDS is a more reliable and generally applicable protein
FDR estimation method (Extended Data Figure C3c and d in the Appendix).
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Figure 4.51 | Comparison of the classic TDS to the picked TDS. First, the performance of the picked (solid)
and classic (dashed) approach when filtering the PCMs on various FDR cutoffs using the best PCM q-value
as protein score was compared. a, With increasing PCM q-value cutoffs, the number of true positive protein
identifications (number of target proteins – number of decoy proteins) increases and is comparable
between the picked and classic approach. At roughly 10-4 PCM q-value cutoff, the number of true positive
proteins starts to decrease and quickly drops to almost 0 for the classic approach, whereas true positive
proteins IDs increase further and converges at stable plateau of 15,817 proteins in the picked approach. b,
The estimated protein FDR of the classic and picked approach mirrors the trend seen in panel A. While the
estimated protein FDR increases constantly when increasing the PCM q-value cutoff and eventually reaches
100%, the picked approach starts to rise much later and plateaus at roughly 10%. c, Second, the classic and
picked approach when accumulating experiments was compared. The cumulative number of target (blue)
protein identifications of the classic and picked approach increases with increasing amount of data whereas
the classic approach saturates more rapidly and reports higher numbers of proteins. Conversely, while the
number of decoy (red) protein identifications reported by the classic approach saturate and approach the
number of target proteins, the number of decoy proteins reported by the picked approach quickly reaches
a maximum and decreases when adding more experiments. d, This is again mirrored in the estimated overall
protein FDR of the picked and classic approach (see Figure 4.46a for comparison with the simulation data).
e, The number of proteins identified at 1% proteins FDR is increasing in both picked and classic approach,
but the picked approach consistently reports higher numbers of proteins. f, The difference between the
number of proteins reported at 1% proteins FDR between the picked and classic approach increases with
increasing number of experiments reaching close to 800 proteins.
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Repeating the analysis shown in Figure 4.47a, this time using a PCM q-value cut-off of 0.01, the
best PCM for protein scoring and a random aggregation of the experiments (both Mascot and
Andromeda results), shows a significant difference between the classical and the picked TDS. It is
apparent, that the picked TDS identifies fewer target proteins than the classic TDS but,
importantly, shows a massively lower number of decoy protein identifications too (Figure 4.51c
and Extended Data Figure C4a in the Appendix). At some point, the decoys increase faster than
the targets when using the classic TDS (Extended Data Figure C4b in the Appendix). For the picked
TDS, the decoy protein hits show the opposite trend: after an initial very mild increase, the number
of decoys actually decreases (Extended Data Figure C4c in the Appendix) implying that addition of
new data holds the potential that a protein previously assigned as a false positive (or not identified
at all) is supported by a high quality PCM in the new data (see Figure 4.46a for comparison with
the simulation data). The above trends are mirrored in the respective protein FDR calculations
(Figure 4.51d and Extended Data Figure C4d in the Appendix): while the protein FDR increases for
the classic TDS as the dataset grows larger, it steadily decreases for the picked TDS. When filtering
the data at 0.01 protein FDR, the number of confidently identified proteins increases for both the
classic  and  the  picked  TDS  as  the  analyzed  dataset  grows  larger  (Figure  4.51e).  However,  the
picked TDS is consistently more sensitive and the absolute difference of identified proteins also
steadily increases as the dataset grows larger (Figure 4.51f). In the complete dataset, the classic
approach detects 14,638 proteins at 1% protein FDR whereas 15,375 proteins are found with the
picked TDS. It is worth noting that the before mentioned R-factor correction approach only
partially compensates for this difference (Extended Data Figure C5 in the Appendix).
An interesting detail in the described analysis is the observation that using the best PCM for a
protein is very robust with respect to which PCM q-value threshold is applied, whereas the results
of protein identification using the sum of Q-scores of PCMs for a protein are much more sensitive
to picking an optimal PCM q-value threshold and may completely collapse at high PCM q-values
(Extended Data Figure C6 in the Appendix). The picked TDS using the sum of Q-scores does
however perform as well as the best Q-score approach at a PCM FDR of 0.0001. It is important to
note  though,  that  permissive  FDR  thresholds  (e.g.  FDR  >  0.01)  lead  to  accumulation  of  false
peptide identifications in the data set and might impair other aspects of data analysis such as
quantification, identification of post translational modifications, and protein isoforms and
therefore should be avoided in practice. Applying too stringent PCM FDR criteria, however, can
also impair subsequent analyses, e.g. quantification, since a lot of good peptide data are excluded.
Filtering the PCMs for each LC-MS/MS run in the data set to q < 0.01 and applying 1% protein FDR
yields 0.13% PCM FDR using the classic TDS and 0.086% PCM FDR with the picked TDS and provides
a good balance between peptide coverage and FDR.

This study has shown that the picked TDS outperforms the classical TDS for very large datasets. Its
utility is, however, already evident for small or medium sized individual studies (Figure 4.52a). In
no case does the picked TDS result in less protein identifications and, interestingly, the gain in
protein IDs becomes larger as the number of protein identifications in a particular study increases.
Finally, the picked TDS was applied to a number of published large scale protein identification
projects9,39-45. Figure 4.52b shows that the picked TDS consistently identified a larger number of
proteins than the classic TDS. However, the differences in data processing, the search engine and
database used and other parameters might also contribute to the observed differences to
published protein identifications.
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Figure 4.52 | Effects of the picked approach on focused datasets. a, This shows the increase of confidently
identified proteins using the picked approach versus the number of proteins reported by the classic
approach for 76 data sets (green dots) to illustrate the effect of the picked approach on studies of varying
size. The picked approach invariably identifies more proteins than the classic approach and the difference
increases with the number of proteins identified in a given data set. b, Re-assessment of the number of
proteins reported in a number of publications showed that the picked approach (blue) identified more
proteins than the classic approach (red). It is also evident that the picked TDS is more conservative than the
number of proteins reported in many of these publications (grey).
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4 Discussion
This study investigated the scalability and performance of the “picked” target decoy strategy for
estimating protein false discovery rates in large proteomics data sets. The picked TDS addresses
decoy protein overestimation typically observed for the classic TDS and takes into account that
the probability of creating a false positive PSM is not equal for all  proteins. For example, large
target and decoy proteins are more prone to accumulating high scoring random matches and are
likely to accrue higher protein scores than small proteins both of which artificially inflates the
protein FDR. Other parameters that may give rise to similar or related effects are amino acid
composition, the number of measurable proteotypic peptides, the type of protease used, the
number of tolerated missed cleavages sites, type of mass spectrometer and fragmentation
technique used and so on. All of these can be at least partially addressed by simple data
harmonizing steps and conceptually extending the line of reasoning from the commonly employed
approach of concatenating target and decoy sequences for database searching, to treating target
and decoy versions of a given protein sequence as a pair. For proteins that have PSMs/PCMs in
both their respective target and decoy sequences, this algorithm will only “pick” the one with the
highest score and discard the other. As demonstrated above, this approach does not create the
excess  of  decoy  hits  observed  for  the  classic  TDS  FDR  but  does  not  alter  the  target  protein
distribution. The almost perfect overlap of target and decoy distributions in the low-scoring region
suggests little or no bias and, therefore, explains the superior performance of the picked TDS, in
line with prior work on the theoretical treatment of the matter35. The obtained results also
compare favorably to the previously described R-factor approach that corrects for over-
representation of decoy hits by normalizing the distribution with an empirically derived factor29.
The superior performance of the picked TDS is likely due to the fact that it avoids a bias intrinsic
in traditional target decoy strategies, whereas the R-factor approach aims at compensating for
this bias using a simple but assumption-based model.
A major shortcoming of any decoy generation method is the uncertainty regarding whether or not
a decoy peptide is in fact a decoy peptide. While this is easily checked by comparing all peptide
sequences to the limited target space that is typically used for protein identification (e.g. Uniprot),
it is quite difficult to exclude the possibility that a decoy sequence may actually represent a
genuine variant of a known peptide sequence or indeed a genuine but so far undetected or
modified peptide. Even if this number of peptides may be fairly low, each might contribute one
high scoring decoy protein identification and thus increase the protein FDR. If there are more such
cases, it may even substantially limit the number of proteins that can be identified in a complete
proteome because the control of protein FDR may create a glass ceiling, a barrier that cannot be
breached no matter how good the mass spectrometric data may be.

Even though the picked strategy is unbiased with respect to the compared sets (here sets of
highest scoring PCMs) and can thus be used for both a gene-centric (all peptides matching
uniquely to a single gene model) or isoform-centric (all peptides matching uniquely to an isoform)
analysis, pairing sets is only allowed if each property of the paired sets follow the same
distribution. In proteomics, these are mainly features that affect the matching and quality of the
spectra, such as peptide length, number of missed cleavages and number of peptides theoretically
achievable. However, comparing protein groups is not possible, since it is unlikely that a target
and decoy protein group will contain the exact same proteins and thus are comparable in terms
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of number of peptides. While this is not an issue in ProteomicsDB, this will affect the usability of
this method in smaller studies, unless proteins are grouped in e.g. a gene-centric fashion, since
both the quantification as well as interpretation of groups of proteins which do not share a
common biology (e.g. same gene) is difficult and may lead to wrong conclusions.

The analysis further revealed that protein scoring using the best PCM score for a given protein
performed better than summing up all PCM scores for a protein. At least in part this is due to the
fact that the latter is more susceptible to protein length bias, and that the inevitable accumulation
of low-scoring peptide matches observed in large data sets has a stronger impact on sum-based
protein scoring be it the number of PSMs, the search engine score or posterior error probabilities.
Similar observations have lead researchers to adopt the ‘best peptide’ approach which is
conceptually similar to the PCM scoring22. Applying extremely stringent peptide filters might
improve scalability of sum-based protein scoring, however this will come at the loss of protein and
peptide coverage.
For both protein scoring approaches (best Q-score or sum of Q-scores), and in contrast to the
classic TDS FDR estimate that approaches 100% protein FDR as the dataset grows larger, the
number of decoy hits is actually reduced upon adding new experimental data when using the
picked TDS. This is an entirely expected behavior because a false positive protein identification
represented by a low scoring target or decoy hit might ‘switch’ to become a true positive, high
scoring target hit when new high quality experimental evidence (i.e. a good tandem MS spectrum)
is added to the dataset. It is often assumed that adding more data to an already large data set will
only add more false positives. This is a misconception, at least as far as whole proteome
identification is concerned because the quality of the extra data will determine if a novel protein
can or cannot be identified (Extended Data Figure C4c in the Appendix).

An important conclusion from this analysis is that it should be possible, at least in principle, to
confidently identify all proteins in a proteome by accumulating large quantities of high quality LC-
MS/MS data provided that all the relevant biological protein sources of an organism have been
sampled with sufficient depth.
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5 Outlook
While the best PCM approach showed the strongest separation between false and true positives,
this method does not take multiple or reproducible evidence into account. As indicated, the
generation of the decoy space is thus critical to the success of this method. To circumvent this,
further investigations into alternative approaches have to be conducted. Furthermore, this
method does not allow the assignment of proper p-values. However, it is possible to use the
protein score distributions to calculate posterior error probabilities (local FDR).

One possible improvement is to use all  highest scoring spectra per PCM (multiple evidence) to
generate a distribution of all pairwise PCM ratios. The resulting distributions can be used for
multiple purposes. First, all pairwise ratios within the target space should in theory only generate
a unimodal distribution centered on 1. If the set of best PCMs contains a significant number of
false positive matches, two mirrored modes to the left and right of the center should appear since
all ratios generated with the false positives will be higher or lower. More interestingly, generating
the same distribution for the decoy space might provide hints to which peptides within the decoy
space might be unknown but present since these should likewise generate the same effect as
described in the target space. PCMs exclusively (or enriched) present in the distribution which is
centered at a ratio larger than 1 are likely “true positive” decoy matches. Second, generating all
pairwise PCM ratios between the target and decoy space will result in a bimodal distribution. False
positive matches should be located around 1 while true positive matches appear as outliers to the
right. Using this approach, an individual PCM FDR can be computed which can be used to filter
false positive PCMs within each target-decoy pair. This should further decrease the number of
false matches and thus increase quantification accuracies.
Another approach is the direct comparison of the target and decoy score distribution of all highest
scoring spectra per PCM. Here, known statistical methods for comparing distributions can be used
such as the Kolmogorov–Smirnov test or a modified Bayesian test46. In contrast to the sum of best
PCMs for scoring proteins, this approach should not be affected by the dilution of true positives.
The dilution effect mainly originates from the fact that long protein, generating a lot of peptides,
can accumulate the same total score as short proteins matched with only a couple but high scoring
PCMs.



Chapter 4 | Picked protein FDR

138 | P a g e

6 Author Contribution
This chapter is based on47.
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7 Abbreviations
CID Collision-induced dissociation
FDR False discovery rate
HCD Higher energy collision induced dissociation
IDs Identifications
PSM Peptide spectrum match
PCM Best scoring PSM per peptide charge modification combination
Q-score –log10 q-value
SILAC Stable isotope labeling with amino acids in cell culture
TDS Target-decoy strategy
TMT Tandem mass tag
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“The Guide says there is an art to flying", said Ford, "or rather a knack.
The knack lies in learning how to throw yourself at the ground and miss.

… Clearly, it is this second part, the missing, that presents the difficulties.”
- Douglas Adams; The Hitchhiker's Guide to the Galaxy
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1 Big biological data
With advances in genomics, transcriptomics, proteomics and imaging, researchers are now
generating data at unprecedented speeds. For example, Gene Expression Omnibus1 and
ArrayExpress2 provide microarray and next-generation sequence datasets on more than one
million samples. Ultimately, the goal of such efforts is to generate new hypothesis from big data.
Yet, scientists have to be aware that these are not experimentally verified and typically only
describe correlations of factors. Less ambitious but equally important goals are to provide means
to validate and expand hypotheses using for example larger cohorts or to support the design of
experiments by the wealth of data that is available3. In all these applications, knowing the precise
context of the experiment is essential. Both the experimental conditions as well as the
characterization of the environment under which the data was collected have to be monitored
and recorded in order to allow cross-experiment comparisons. This in itself is a challenge as our
understanding of which and how many factors interact and influence the outcome of an
experiment is limited4.
Especially in proteomic experiments, the wealth of techniques regarding cell culture, sample
preparation, multiplexing, measurement technique, data analysis and the combination thereof
increases the complexity of cross-experiment data analysis. Sampling artifacts, protein extraction
protocols and dynamic range issues impair even the comparison of protein expression values
between cell lines, body fluids and tissues. In contrast, genomics datasets did not suffer from this
to  the  same  extend.  An  example  is  the  analysis  of  the  mutation  status  of  genes,  which  is
comparatively static information with rather binary readout. Driven by this, genomics and also
transcriptomics matured into the prime data providers for big biological resources and enabled
the analysis of large cohorts of cell lines and also patients5. However, the complexity of living
organisms is largely determined by the dynamic and versatile nature of the products of its
genome. Proteins are often directly responsible for the abnormal behavior of cells and thus are
the primary target of almost all drugs. Most treatments neither directly nor immediately alter the
genome of a system, but rather modify the complex interactions of protein and enzymes.
To be able to describe and quantify biological effects in terms of their variability, many replicates
or longitudinal studies are necessary. While earlier efforts largely focused on the acquisition of
disease states6, today’s research is shifting towards understanding what can be expected to be
normal7. This is only economically feasible if multiplexing technologies enable the parallel
identification and quantification of biological entities. Proteomics provides such methods, yet lags
behind genomics in terms of throughput and depth, thus falling short in its ability to
comprehensively characterize the variability of biological systems8,9.  However,  the  ability  to
differentiate repeating signals from technical or biological artifacts as biologically significant and
functionally relevant is a common problem in each omics measurement. The combination of
different experimental conditions, platforms and acquisition approaches can be used to avoid the
misclassification of such signals as functionally relevant. The analysis of multiple omics datasets is
expected to provide insight into the underlying mechanisms not achievable from individual studies
alone. If the results of different studies are stored including their (complete) experimental
annotation, the continuous integration of new studies allows us to broaden our understanding of
living systems.
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Beyond the experimental challenges in big biological data, many statistical challenges exist as well.
A typical problem is that measurement depth typically surpasses the number of independent
samples10. This impairs statistical analysis as it increases the number of false positive correlations
by generating correlations just by chance alone. Additionally, the reliability of models decreases
with each dimension added to the system. Dimensionality reduction can reduce this problem,
however, this is problematic as key mechanistic information can be lost. So far, most big data
efforts have almost invariably generated data that is much more complex than anticipated.

1.1 Re-analysis versus re-measurement
One of the hopes of big data is that not all questions have to be defined beforehand but permit
the validation or invalidation of hypotheses based on data mining or re-analysis. For this to work,
the acquired data, their annotation and the obtained results of studies have to be as complete
and comprehensive as possible in order to enable their unbiased integration. However, most
analyses are driven towards a specific hypothesis, which influences data processing decisions. For
example, the identification of peptides in a proteomics measurement is typically based on a
database containing known (expected) protein sequences. While this approach generally
increases the selectivity11, researchers interested in the occurrence of peptides resulting from e.g.
untranslated regions cannot readily use such processing results. With the implementation of
repositories providing raw data through standardized services12, an alternative is to retrieve and
re-process data under different hypotheses using newly developed and specialized software. The
results could be re-imported and result in the piecemeal annotation of data.
With the constant upward trend in terms of storage and computational demand in all omics
technologies, local reprocessing of large amounts of data is likely not feasible in the long term.
While the cost of most omics technologies has fallen fast enough to enable individual labs to
operate their own machines, storage and processing infrastructure has not followed suit. A
possible alternative are cloud-based applications, enabling the processing of big data using custom
pipelines in large data centers13.

However, to date even whole genome next-generation sequencing data is criticized for being
incomplete. As described by Alkan et al.14, limitations of the next-generation shotgun sequencing
approach and properties of the data itself, rather than algorithmic inefficiencies, lead to the loss
of more than 20% of the genome during assembly of raw data. This incompleteness of data is
certainly also the case for proteomic measurements. Data acquired only a couple of years ago is
generally viewed outdated and corresponding samples are re-measured using new mass
spectrometers to increase coverage and depth. While this creates a conflict for big data efforts,
the storage and integration of multi-omics datasets might be able to depict a (more) complete
picture of the complexity of living systems than any technology alone. Additionally, providing
unified and easy to use access to previous research also enables researchers, which lack access to
or knowledge of how to process specific omics technologies, to cross compare and analyze their
data together with other data.
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2 Bottom-up proteomics
Ultimately, proteomics seeks to consistently and reproducibly identify and quantify all
proteoforms, a specific molecular form of a product of a single gene including changes due to
genetic variations, alternative splicing and post-translational modifications15, in any biological
system. A particularly interesting technology is using pores of nanometer diameter. The analyte
of interest is passed through a protein pore and the sequence is deduced by measuring the drop
in current16. While it has been shown to work with single un-digested proteins, this technology is
still in its infancy and does not yet allow the high-throughput analysis of samples17.
Bottom-up mass spectrometry-based proteomics is receiving more and more attention in the
scientific community18 because the characterization of thousands of proteins is possible. This
enables the precise monitoring of the complex interplay between proteins and their function with
regard to e.g. post translational modifications, protein-protein or protein-drug interactions. Yet,
many challenges lie ahead to transform this technology into a method that can be used as reliably
as modern genomics technologies19. This is in large driven by two reasons. First, the peptide-
centric data acquisition requires the digestion of proteins using site-specific proteases. This not
only disconnects the entities we measure (peptides) from the entities we are primarily interested
in (proteins), but also introduces a significant source of variation due to the digestion and
fractionation (offline and online) of the sample. Many approaches exist to control and monitor
each step, yet studies have shown that differences between labs exists when multiple labs
analyzed the same sample20. However, data generated within one lab does not seem to suffer
from the same issues21. Second, the semi-stochastic nature of the data-dependent acquisition
impairs the consistent and reproducible measurement of samples. With increasing sample
heterogeneity, the number of missing values increases rapidly and, because the lack of
identification does not imply absence, significantly impairs subsequent statistical analysis. While
many alternative acquisition approaches exist which try to circumvent some of these issues, their
implementation is often complicated, not readily available in many labs or only enables the
measurement of a limited set of entities22. Post-acquisition data processing is contributing to this,
as many different search engines, quantification methods and statistical tests exist to identify
differentially regulated or otherwise interesting proteins. Each possible combination of these
tools, often a choice based on personal experience, typically generates different but equally
significant lists of features.

Bottom-up proteomics has been transformed into a high-throughput technology, yet only a
miniscule fraction of the information generated by an LC-MS measurement is being used for data
analysis. This is because only a comparatively small percentage of eluting features are selected for
fragmentation, and only up to half of these generate interpretable MS/MS spectra. While some
efforts exist to help decrease the number of unmatched MS/MS spectra23,24, it is largely unknown
how many potentially productive spectra are typically acquired.
These “unidentified” features hold a lot of potential and their integration into current
bioinformatics workflows could allow a more comprehensive data analysis or enable retrospective
data analysis and integration. However, their use is currently limited by the lack of specialized
software, databases and models, especially since most experiments are being analyzed in isolation
of previous measurements.
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Because of the data-dependent acquisition and the lack of a persistent memory of the mass
spectrometer, many features picked for fragmentation were already identified in previous
measurements. With an estimated core proteome of 10,000-12,000 proteins, the number of
redundant MS/MS spectra being acquired in each experiment is considerable, leading to
comparatively low entropy (information theory)25. The following subsections highlight potential
scenarios in which both data acquisition and analysis of bottom-up proteomics measurements
could make use of prior knowledge in order to increase the information content of new MS runs.
This can be realized by utilizing performant databases, machine learning and smarter data
acquisition, all of which exploit the reproducible characteristics of the underlying measurements
(m/z, retention time and fragmentation).

2.1 Machine learning
Machine learning is becoming a popular tool in proteomics26 to model complex processes covering
nearly the entire workflow from wet- to dry-lab27. With the ever increasing amount of data and
the wealth of problems in proteomics, many applications are available which model complex
relationships to predict for example proteotypicity28, retention time29-31 and fragmentation32 of
peptides. However, the development typically relies on the selection of features which are likely
associated with the problem. While this approach works in most cases, it is not farfetched to
assume that, because this approach relies on our (limited) understanding of the underlying
mechanism, the accuracy of the resulting models is limited. Neuronal networks provide an
alternative approach as these systems automatically infer rules. Culminating in deep learning,
neural networks have proven to be able to learn complex problems without prior selection of
specific features on games like Mario and Go33,34.
Due to the lack of specific models, many processes in proteomics data analysis still rely on (simple)
heuristics. For example, the interpretation of experimental fragmentation spectra is largely driven
by the number of peaks matching to all possible fragment peaks without considering their relative
intensity. With modern machine learning frameworks35 and the large number of spectra stored in
public repositories, the development of applications for fragmentation prediction is possible.
While algorithms such as deep learning will not directly result in the generation of new knowledge,
since the extraction of the learned rules is often not possible, once learned, such fragmentation
models could greatly increase the sensitivity and accuracy of search engines. By generating in silico
spectra comprised of only expected observable fragment peaks associated with a predicted
intensity, the number of false positive matches generated by chance will be decreased.

ProteomicsDB already enables the storage of reference spectra, including the acquisition
parameters such as fragmentation method, collision energy and retention time. At the time of
writing, reference data on 4000 synthetically generated peptides are already available and more
than 1 million are being generated. Being able to trains models for experimental properties on
hundred thousands of data points will result in models that are more accurate. This could be of
high importance in targeted proteomics, since retention time and fragmentation of peptides is
crucial as it defines their accessibility. Models which accurately predict both will not only simplify
the generation of such assays, but can also be used to optimize the chromatographic gradient and
fragmentation by choosing parameters which favor the generation of specific fragment peaks and
reduce the expected interference.
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This concept can be expanded to store measurements of synthetically generated proteins. Having
such data allows the modeling of other important peptide properties, such as digestion and
ionization efficiencies. This could enable the prediction of expected visible features based on the
presence of proteins, again with possible applications in targeted assays. Being able to predict the
potential search space will decrease the search space in database searching and thus likely
decrease the number of false positive matches.

2.2 Feature matching
The reproducibility of precursor m/z, retention time and fragmentation of peptides are key to
enable their targeted measurement and machine learning. However, these characteristics can also
be exploited in data-dependent acquisition approaches by matching eluting isotope features
across multiple aligned LC-MS runs36. This processing step, implemented as “match-between-
runs” within Maxquant37,38, increases the reproducible quantification of features as long as it was
identified in at least one run and thus reduces the number of missing values. Taken one step
further, a recent study has shown that this feature can be used to quantify peptides and thus
proteins to a depth generally not possible without fractionation by adding a deep-coverage
sample during data processing39. This reduced measurement time while keeping the number of
quantified features high.

The concept of providing identifications from other (potentially unrelated) LC-MS runs for feature
matching during data analysis can be further extended to a database which stores previously
identified features40. This would not only reduce computation time, since Maxquant performs a
database search every time a sample is analyzed, but feature matching would also benefit from
all previously conducted measurements. With the in-memory computing capabilities of
ProteomicsDB, an online match-between-runs service based on all identifications stored in
ProteomicsDB is technically conceivable. This could increase the number of features used for
quantification significantly and circumvent the necessity of an in-depth measurement of each
specimen. Further supplemented by specific models enabling for example the conversion of
retention times between different gradients or stationary phases using retention time indices,
new identifications added to such a system could be matched onto old data, ultimately enabling
the post hoc quantification of unidentified features in previous experiments.
Such a retrospective match-between-runs system would benefit most when MS1 features are
recorded at maximum depth. However, the sampling depth of mass-spectrometers is best when
the abundance distribution of features is narrow (homogenous), because the limited dynamic
range creates an artificial lower bound on the limit of detection. Due to the large dynamic range
of protein expression, only the most abundant features within an MS1 spectrum are visible,
leaving low abundant features such as peptides from low abundant proteins or peptides carrying
PTMs largely unseen. In order to increase the dynamic range in an experiment, offline
fractionation or the depletion of high abundant proteins can be performed. However, this
increases the necessary acquisition time and potentially introduces unreliable sample preparation
steps, leading to larger technical variation. In order to circumvent this, the typical MS1 scan range
could be acquired in multiple smaller windows while decreasing the number of MS/MS spectra.
With this, only a small proportion of the acquired m/z range will be affected by highly abundant
feature. This should increase the apparent sensitivity and thus also the number of visible features
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in most windows. However, the identification of such low abundant features is challenging since
current acquisition methods are optimized for high throughput (high duty cycle) and thus high
abundant peptide species (low automatic gain control and maximum injection time).

2.3 Smart data acquisition
As previously discussed, many MS1 features can potentially be deduced and matched from
previous experiments. When doing so, the number of necessary MS/MS scans can be reduced and
thus increase the accuracy of quantification and visible features due to a decreased duty cycle. In
order to increase entropy of proteomic measurements, one approach could be to spend the
available time on characterizing unexpected or unseen features by selecting precursors based on
real-time, prior MS data or external knowledge41,42. Features visible in MS1 can be classified into
four categories: (I) features which were successfully identified in previous runs, (II) features which
were picked but did not lead to an identification, (III) features which were not yet selected for
fragmentation, and (IV) features which should not be selected for fragmentation. High performant
resources such as ProteomicsDB could play an important role in guiding data acquisition by
enabling fast queries on large collections of both identified and unidentified features from
previous runs. Interfaced with the acquisition software of a mass spectrometer, the prioritization
and acquisition parameters of fragmentation spectra of visible features can be controlled and
adjusted. The highest priority is on the identification of class II and III features. For example,
previously picked but unidentified features can be re-measured under different acquisition
conditions by adjusting the fragmentation method, collision energy or maximum injection time.
At least important are confirmatory scans to validate previously identified features.

Smart acquisition methods will benefit from machine learning approaches for example by
predicting optimal fragmentation energies of phosphorylated peptides or injection times of low
abundant features. Furthermore, this concept can be extended to specifically prioritize predicted
peptides of proteins, which have only been observed with a few peptides. Predicted proteotypic
peptides of these proteins, including retention time and acquisition parameters, can be
preferentially selected for fragmentation, confirming or supporting the identification of (thus far)
poorly identified proteins.

2.4 Protein fingerprints
The protein inference problem is one of the most challenging issues in proteomics43. While recent
studies suggest that only one predominant isoform per gene is expressed per cell type44, the
unambiguous identification of specific isoforms using proteomics is still a challenge due to shared
peptides. In part, this can only be tackled by increasing the depth at which complex mixtures of
peptides are analyzed. This will not only generate more peptide identifications, potentially
identifying isoform specific peptides, but also enable the systematic integration of quantification
information of peptides during protein inference45.
In theory, a protein present in a sample should leave a unique fingerprint of multiple m/z and
retention time features. Limited by sampling depth and dynamic range, most of them are likely
currently not visible or not identified by commonly employed acquisition approaches and thus
cannot be used in bioinformatics workflows. However, the combination of the approaches
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proposed here might enable the systematic identification and quantification of such fingerprints
by increasing depth, coverage and specificity. With increased dynamic range and match-between-
runs, these fingerprints can be extracted and could enable the differentiation of protein isoforms.
Additionally, the models learned from synthetically generated peptides and proteins can be used
to predict expected fingerprints under the hypothesis that a specific protein is present. If visible
but unidentified, these features could be used as confirmatory information during protein
inference by supporting the presence of a protein via additional features, boosting q-values of
proteins which were only observed with e.g. one peptide in a sample. In theory, the lack of specific
features can also be used to deduce the presence of truncates protein isoforms. A model requiring
the presence of such fingerprints should decrease the number of false matches by requiring many
features  to  be  present  simultaneously.  The  presence  of  two  or  more  features  at  expected  or
predicted retention times is much less likely for decoy proteins than for targets and thus likely
increases specificity.
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“… in rabbits, hares, and some other herbivores
it is involved in the digestion of cellulose.”

- Unknown
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0 - Introduction

Extended Figure 01 | Acquisition schema of a directed bottom-up shotgun experiments. The sample is first analyzed
in LC-MS mode, and the results are analyzed using a suite of bioinformatic tools to quantify the peptides. Typically,
peptides that are of particular interest (e.g., those that are regulated by comparing multiple samples) are included in a
list of targets for MS/MS sequencing. In a second step, the sample is reanalyzed to sequence exclusively the peptide
ions present on the target list. The resulting MS/MS spectra enable the amino acid sequence to be determined.
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A - ProteomicsDB

Extended Data Figure A1 | Screenshot of an experimental design of a Kinobeads experiment from ProteomicsDB.  The
experiment consists of one treatment (column, inhibition). Each condition (e.g. 3 mM Imatinib) was measured with one
biological replicate. All samples assigned to the experiment, but not yet used in the experimental design, are listed on
the right-hand side and can be moved by drag-and-drop to specific conditions.

Extended Data Figure A2 | Screenshot of the protein expression heatmap of all major components of the proteasome
complex from ProteomicsDB. The online heatmap allows to search for a custom set of  proteins (here PSMB*).  This
figure is an extension to Figure 2.15 and shows the expression of the major components of the proteasome across
tissues, fluids and cell lines.
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Extended Data Figure A3 | Screenshot of the protein expression heatmap of all proteins which have the term “kinase”
in their description. The highlighted cluster contains exclusively neuronal tissues (brain, retina, spinal cord, prefrontal
cortex). The 15 marked proteins, such as the protein kinases CAMK2A, included in this cluster are associated with
learning and memory.
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Extended Data Figure A4 | Screenshot of a dose-dependent protein-drug interaction map from ProteomicsDB.  The
protein-drug interaction landscape of four selected (checkbox) kinase inhibitors which target either DDR1 or EGFR
enables the visual inspection of inhibitors and their combination. This figure is the extension to Figure 2.18 and shows
the predicted effects of drugs (columns) on proteins (rows) based on the stored curve fits.
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B - Mass spectrometry based draft of the human proteome

Extended Data Figure B1 | Peptide and protein identifications. a, Spectrum viewer enabling access to >70 million
annotated tandem mass spectra of endogenous peptides and synthetic reference standards in real time. b, Peptide and
protein identification criteria followed a two-step process. 1. For each LC-MS/MS run, we applied a global 1% target-
decoy False Discovery Rate (FDR) cut on the level of peptide spectrum matches (PSMs, not shown). 2. In addition, we
applied a peptide length dependent local FDR cut of 5% for all PSMs (prior to 1% filtering using all PSMs). Peptide length
and score distribution for targets and decoys for the search engine Mascot. c, same as in a but for Andromeda. d, e Heat
maps showing false discovery rates as a function of search engine score and peptide length. Solid lines indicate the 5%
local FDR.
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Extended Data Figure B2 | Protein identification quality in very large data sets. a, The first step filters every LC-MS/MS
run  at  1%  PSM  FDR.  Upper  panel:  Score  distribution  for  target  and  decoy  PSMs  following  1%  PSM  FDR  filtering  for
Maxquant identifications. Lower panel: shows the binned peptide length distribution for target PSMs. b, Same as a, but
for Mascot identifications. c, Second filtering step. Same as a, but this time applying an additional 5% local length and
score dependent FDR on the total aggregated data for Maxquant identifications in ProteomicsDB. It is apparent, that
the second filtering step improves the FDR about 3-fold and removes most PSMs shorter than 9 amino acids. d, Same
as c, but for Mascot identifications. e, Comparative analysis of protein FDR characteristics of two different approaches
based on Mascot analysis. In the classical target-decoy approach, aggregation of large quantities of data leads to
accumulation of large numbers of decoy proteins and a concomitant loss of true target proteins when filtering the data
at 1% protein FDR. The alternative ‘picked’ target-decoy method does not suffer from this scaling problem and maintains
a constant decoy rate (and therefore lower protein FDR) but at the expense of lower sensitivity of target protein
detection compared to the classical target-decoy approach.
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Extended Data Figure B3 | Further characterization of the proteome. a, Some proteins are refractory to identification
using tryptic digestion because they do not generate sufficient/any peptides that are within the productive mass range
of a mass spectrometer typically used for bottom up proteomics. This can be improved by the use of alternative
proteases e.g. chymotrypsin as shown here for one of the many keratin associated proteins localized on chromosome
21 (detected chymotryptic peptides in red). b and c, Translation of lincRNAs is rare but does exist and can be identified
a across all  chromosomes as well  as b in many tissues and in HeLa cells. d, Peptide intensity distribution of protein-
coding genes and non-coding transcripts. Interestingly, the abundance of translated lincRNAs is broadly similar to that
of classical proteins.
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Extended Data Figure B4 | Further characterization of the proteome. a, Proteome coverage rapidly saturates with the
addition of shotgun proteomic data. Tissue proteomes saturate at ~16,000 proteins but both body fluids and cell lines
add small but noticeable numbers of proteins not covered in the tissues (see also b and c for a different ordering of
samples). b,  Same  plot  as  a,  but  different  ordering  of  samples. c, Saturation plots showing that PTMs and affinity
purifications each contribute distinctly to the coverage of the proteome. d, Comparison of five large-scale projects
suggesting that a ‘core proteome’ of 10-12,000 ubiquitously expressed proteins exists. e, Abundance distribution of the
‘core proteome’ based on the normalized iBAQ method. The 10% most highly expressed proteins are dominated by
proteins relating to energy production and protein synthesis. The 10% lowest abundant proteins are enriched in proteins
with regulatory functions. f, Tree view summary of GO term analysis for the proteins constituting the ‘core proteome’
showing that the core proteome is mainly concerned with biological processes relating to the homeostasis and life cycle
of cells.
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Extended Data Figure B5 | Comparative analysis of five intensity based label-free absolute quantification approaches.
a, Linearity of intensity (U2-OS cell line data from Geiger et al., Mol. Cell. Proteomics, 2012) and copies per cell for AQUA
quantified proteins (red dots, red regression line; same cell line; Beck et al.,  Mol.  Syst.  Biol.  2012) and derived copy
number estimates (grey dots, blue regression line; from the same study). b, Total sum normalization re-scaled intensity
distributions of Colo-205 cell digests measured on two different mass spectrometers (Orbitrap Elite data in red, LTQ
Orbitrap XL data in blue; Moghaddas Gholami et al., Cell Rep. 2013). c, Q-Q plots of the normalized data presented in
(b) illustrating good alignment of data across 4.5 orders of magnitude. d, Empirical cumulative density function (ECDF)
of error distributions derived from (a). e, Comparison of the fold error of iBAQ and top3 as a function of the number of
quantified peptides. f, Same as (e) but for protein length. iBAQ shows slightly smaller errors from low peptide numbers
compared to the top3 method. g, Comparison of iBAQ and total sum normalized iBAQ for heavy SILAC-labeled MCF-7
cell digests (red bars; Geiger et al., Cancer Res., 2012) and label-free quantified MCF-7cell digests (blue bars) before (left
panel) and after normalization (right panel) showing no influence of the presence of the SILAC label on quantification
results. h, Comparison of iBAQ and total sum normalized iBAQ for iTRAQ reporter ion intensity based quantification (red
bars; MCF-7 cell digest; Johansson et al., Nat. Commun., 2013) and label-free quantified MCF-7 cell digests (blue bars;
same as (a) and (c)) before (left panel) and after normalization (right panel). The intensity distribution characteristics of
iTRAQ  and  label-free  measurements  are  too  different  to  allow  for  comparative  analyses  of  MS1  and  MS2  based
quantification data. i, Normalized iBAQ distributions of 347 cell line and tissue proteomes (all MS1 quantified) available
in ProteomicsDB showing the general applicability of MS1 based quantification across many sources of biological
material.
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Extended Data Figure B6 | Functional protein expression analysis. Gene ontology analysis of proteins with 10x above
average expression levels in a particular organ/body fluid invariably highlights protein signatures with direct organ
related functional significance.
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Extended Data Figure B7 | Protein vs mRNA expression analysis. a, Comparison of mRNA and protein expression of 12
human tissues showing the general rather poor correlation of protein and mRNA levels implying the widespread
application of transcriptional, translational and post-translational control mechanisms of protein abundance regulation.
Spearman correlation coefficients vary from 0.41 (thyroid gland) to 0.55 (kidney). ‘Corner proteins’ (0.5 logs to either
side of zero) are marked in colors. b, Clustering of mRNA expression (left triangle) and protein expression (right triangle)
across the 12 tissues does not reveal tissues with common profiles suggesting that the transcriptomes and proteomes
of human tissues are quite different from each other. c, The  ratio  of  protein  and  mRNA  level  for  a  protein  is
approximately constant across many tissues. The heatmap shows proteins and tissues clustered according to their
protein/mRNA ratio. d, Using the median ratio of protein/mRNA across 12 tissues, it is possible to predict protein levels
from mRNA levels for every tissue with a good correlation coefficient.
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Extended  Data  Figure  B8  |  Protein  markers  for  drug  sensitivity  and  resistance.  a, Elastic net analysis of protein
expression and drug sensitivity for the EGFR kinase inhibitor Erlotinib. Positive effect size values indicate that high
protein expression is associated with drug sensitivity. Negative effect size values indicate that high protein expression
is associated with drug resistance. b, Same as in (a) but for the EGFR kinase inhibitor Lapatinib. c, Correlation analysis
of the elastic net effect sizes for Erlotinib and Lapatinib (proteins with elastic net frequencies of <600 are not shown for
clarity). Proteins in the upper right quadrant are common markers for drug sensitivity (including EGFR as the primary
target of both drugs). Proteins in the bottom left quadrant are common markers for drug resistance (including S100A4,
a known resistance marker for Lapatinib). Proteins that are strong markers for sensitivity or resistance are annotated in
each plot and most proteins can be easily placed into EGFR signaling and regulation pathways.
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Extended Data Figure B9 | Protein complex composition and stoichiometry from shotgun proteomic data. a,
Stoichiometry of the nuclear pore complex (NPC) reconstructed from shotgun proteomics data. To illustrate that
normalized iBAQ values from shotgun experiments actually reflect protein copy numbers, we reconstructed the
stoichiometry of the NPC (data from nuclear extracts of HeLa cells; Ori et al., Mol. Syst. Biol., 2013; blue bars; error bars
indicate standard deviation from triplicate experiments) and compared it to the stoichiometry determined in the same
study using AQUA peptides and MRM experiments (red bars). Note that most of the time the stoichiometries are in very
good agreement between the methods and the stoichiometries reported in the literature. b, Stoichiometry of the α and
ᆂ subunits of the proteasome reconstructed from shotgun proteomics data (examples). ᆂ subunits of the constitutive
proteasome are indicated in grey, immunoproteasome subunits (ᆂi) are indicated in red. Note that PC-3 cells are devoid
of the immunoproteasome while cells in the lymph node almost exclusively express this version of the molecular
machine. c, Systematic assessment of the fraction of ᆂi subunits (red bars) and ᆂ subunits (grey bars) across 29 tissue
samples and 80 cell line samples. Note that many cell lines and tissues contain both versions of the proteasome and the
data also suggests that further forms of the proteasome with different subunit composition may exist.
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Extended Data Figure B10 | Examples for the analytical utility of large MS-based data collected in ProteomicsDB. a,
Enumeration of post-translational modifications and protein termini. b, Computation of proteotypic peptides. Generally
the same 1-5 peptides are identified every time a protein is identified (left panel) making proteotypic peptides useful
for assessing protein identification and as reagents for targeted MS measurements. We note that the proteotypicity of
a peptide strongly depends on the presence/absence of a chemical modification (right panel, here TMT or iTRAQ). c,
Analysis of the selectivity of MRM transitions. The left panel shows the y8 transition of the peptide LHYGLPVVVK (b-
catenin, marked with an arrow) in a 0.7/0.7 Da slice of the precursor and fragment ion window typically employed on
triple quadrupole mass spectrometers. The size of the circle represents the relative intensity of the y8 fragment in a full
tandem mass spectrum of this peptide. All other circles are interfering peptides (extracted from the entire
ProteomicsDB) that have precursor and fragment ions in the same m/z window and with varying intensities (circle size).
Interference can be reduced by using high resolution MS (middle panel) and confining the analysis to the tissue in
question (here colon, right panel). Such interference plots in conjunction with the proteotypicity of peptides can be
valuable for the design of targeted proteomic experiments.
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C - Picked protein FDR

Extended Data Figure C1 | Search engine score normalization and variations in score cutoffs to reach 1% PCM FDR. a,
b The local peptide length dependent score cutoffs at 5% PSM FDR between Mascot (a) and Andromeda (b) used for
the score normalization are vastly different. While the cutoffs determined for Mascot decrease at the beginning and
converge at ~17, the cutoffs used for Andromeda decrease constantly. c, d To illustrate vast differences in data quality
dependent on technical and biological differences we plotted the score histograms of length normalized Mascot ion
scores for (c) a dimethyl labeled tryptic digests of human embryonic stem cells measured by low resolution CID and (d)
an unlabeled tryptic digests of the melanoma cell line A375 measured by HCD. To reach 1% PCM FDR, the labeled dataset
had to be cut at  0.63 whereas the unlabeled dataset at  1.27. e,f Differences in data quality require different length
normalized score cutoffs to reach 1% PCM FDR. While the range of length normalized score cutoffs is similar for Mascot
(e) and Andromeda (f), the shape of the distribution varies.

Extended Data Figure C2 | Target and decoy PCM saturation. a, In contrast to the saturation of proteins when
accumulating multiple experiments, the number of unique target PCMs (blue) only shows a slight saturation effect.
Furthermore, the numbers of unique decoy PCMs (red) increases linearly with increasing amount of data. b, This is
mirrored  by  the  global  PCM  FDR.  The  sharp  increase  at  ~250  experiments  in  the  PCM  FDR  is  due  to  an  experiment
containing multiple LC-MS/MS raw files acquired while optimizing an acquisition method and thus contains highly
redundant target PCMs but many random decoy PCMs.
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Extended Data Figure C3 | Protein FDR estimation using the classic and picked TDS using the sum of best Q-scores as
protein score. a, Using the sum of best Q-scores of all PCMs matching to a protein as protein score, the number of decoy
proteins (red) of the classic TDS massively overestimates the number of false positive protein identifications.
Furthermore, the target distribution (blue) shows no bimodal shape and is not well separated from the decoy
distribution. b, After applying the picked approach, the decoy (red) protein distribution superimposes with the target
(blue) protein distribution which allows a more accurate protein FDR estimation. c, Comparing the performance of the
picked (solid) and classic (dashed) approach when filtering the PCMs on various FDR shows a similar trend as in Figure
4.51. With increasing PCM q-value cutoffs, the number of true positive protein identifications (number of target proteins
– number of decoy proteins) increases and is comparable between the picked and classic approach. At roughly 10-4 PCM
q-value cutoff, the number of true positive proteins starts to decrease and quickly drops to 0 for the classic approach,
whereas true positive proteins IDs increase further and converge at a rather stable plateau in the picked approach. The
slight decrease at the end is likely due to accumulation of false positive PCMs which further deteriorates the separation
of decoy and target proteins. d, The estimated protein FDR of the picked (solid) and classic (dashed) approach mirrors
the trend seen in panel c. While the estimated protein FDR increases constantly when increasing the PCM q-value cutoff
and eventually reaches 100% in the classic approach, the picked approach starts to rise much later and plateaus at
roughly 10%.
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Extended Data Figure C4 | Enlarged illustrations of the comparison of the classic and picked TDS from Figure 4.51. a,
Even when aggregating small numbers of experiments, the picked (solid) TDS outperforms the classic (dashed) TDS.
While the numbers of target proteins (blue) is comparable (marginally higher number of the classic approach) the
difference between the number of decoy proteins (red) reported by the classic and picked approach is starting to
increase. b, The overestimation of false positive proteins by the classic approach is particularly apparent when
comparing the number of target (dashed blue) and decoy (dashed red) proteins at the end of the aggregation process.
The number of decoy proteins is increasing more rapidly than the number of target proteins and is approaching the
same limit. c, The picked approach shows a complete opposite effect. The number of decoy proteins reported by the
picked approach (solid red) is decreasing because of new evidence (especially at ~1540 experiments) introduced by
additional experiments. d, The trend explained in panel b and c is mirrored by the estimated protein FDR in the picked
(solid) and classic (dashed) TDS. While the protein FDR increases and approaches 100% in the classic approach, the
picked approach sows a decrease, potentially reaching close to 0% when adding more data.

Extended Data Figure C5 | R factor FDR. a, R factor correction produces more reasonable protein FDR curves than the
standard  decoy  strategy,  the  agreement  between  the  picked  and  R  factor  approach  is  not  perfect,  but  better  than
between either of the approaches and the standard approach. b, Number of true protein hits as a function of FDR for
the standard, picked and R factor approach. Both the R factor and picked approaches perform better than the standard
strategy, with the picked TDS consistently yielding higher coverage.
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Extended Data Figure C6 | Comparison of best and sum Q-score protein scoring of the classic and picked TDS. a, When
using the best Q-score to score proteins, the number of proteins identified at 1% proteins FDR is increasing in both
picked (solid) and classic (dashed) approach, but the picked approach consistently reports higher numbers of proteins.
b, Using the sum of best Q-scores of all PCMs matching to a protein, the number of proteins identified at 1% protein
FDR is first increasing in both picked (solid) and classic (dashed) approach, but is starting to decrease and breaks down
at high PCM q-value cutoffs. The picked approach shows a delayed behavior but also overestimates the number of false
positive proteins IDs using the decoy proteins. Especially at high PCM q-value cutoffs, the decoy and target protein
distribution start to blend into each other (data not shown) and shows almost no separation any more.
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