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Abstract 
Motivated by the recent advances of information technology and big data tools, this thesis 
investigates how the robustness and accuracy of demand fulfilment as well as service levels can 
be increased in industrial settings by systematically exploiting newly available data and setting 
the right framework conditions in customer contract portfolio management. The studied system 
consists of customer contract portfolios directly influencing demand fulfilment, the processes 
demand planning and supply network planning, the demand fulfilment processes customer 
segmentation, allocation planning, and order promising, as well as the interface of these 
processes to the set of customers. 

After discussing the role of demand fulfilment in supply chain planning and reviewing the 
relevant literature from several related disciplines, first, a data driven supply chain planning 
framework is presented, which surpasses current industry practice. The framework streamlines 
all planning decisions of the system and incorporates demand fulfilment relevant supply chain 
and customer data. Enabler processes are integrated, which provide the planning processes 
with data on the capabilities of the supply chain in terms of flexibility, the customer forecasting 
and ordering behaviour in terms of the accuracy of advance demand information and the length 
of customer order lead times, and the contractual, strategic, and operational obligations of the 
supplier towards its customers. 

Following, parts of this framework are detailed through the development of three methods 
that increase demand fulfilment performance by exploiting big data. An order promising 
method is presented, which anticipates supply changes due to unforeseen demand arrivals in 
environments with heterogeneous customer order lead times. Product and process flexibilities 
of supply chains are identified, formalized, and used to represent supply chain flexibility in ATP 
information. Product flexibility is the possibility to produce several kinds of products from one 
predecessor product. Process flexibility is the possibility to use one production process to 
manufacture several products. The method uses shop floor information on individual product 
and process level. A numerical study based on a case from the semiconductor industry 
demonstrates that the method increases the accuracy and robustness of order promises. 

Additionally, two demand fulfilment approaches considering customer profitability, the 
accuracy of advance demand information provided by customers, and the lengths of customer 
order lead times are proposed. The methods exploit data on individual customers and products 
by allocating supply on a highly granular level at high planning frequencies. Numerical studies 
show that the approaches support efficient supply allocation, lowering inventory levels, and 
increase service levels, especially for customers with truthful forecasts. Consequently, the 
planning security is raised for the supplier because customers are incentivised to provide 
truthful advance demand information. 

On basis of these approaches, industrial contract portfolios with customer-specific terms are 
analysed in order to derive insights aiding suppliers in their contract portfolio management and 
in their design of demand fulfilment processes. The analysis shows that demand fulfillment 
performance is not primarily determined by the absolute length of the order lead times but by 
the presence of a negative correlation with the accuracy of advance demand information in the 
entire customer contract portfolio. Consequently, suppliers must consider the portfolio of all 
customers and negotiate relatively long order lead times for customers showing relatively low 
accuracy of advance demand information. 
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Finally, all results, contributions, and limitations of the presented work are discussed with 
regards to the studied system as a whole. Managerial insights are derived and possible 
directions for future research are outlined.  
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Zusammenfassung 
Vor dem Hintergrund tiefgreifender Fortschritte in der Verarbeitung großer Datenmengen (Big 
Data) werden Verfahren entwickelt, die durch systematische Nutzung von Daten und das 
richtige Setzen von Rahmenbedingungen im Kundenvertragsportfolio-Management die 
Robustheit und Genauigkeit von Auftragszusagen im Demand Fulfilment, sowie das 
Kundenservicelevel in industriellen Umfeldern erhöhen. Das untersuchte System besteht aus 
Kundenvertragsportfolios, welche das Demand Fulfilment direkt beeinflussen, den 
Planungsprozessen Demand Planning und Supply Network Planning, den Demand Fulfilment-
Prozessen Customer Segmentation, Allocation Planning und Order Promising, sowie deren 
Schnittstellen zu externen Kunden. 

Nach der Einordnung des Demand Fulfilment in die Supply Chain-Planung und der Diskussion 
des Standes der Wissenschaft in relevanten Forschungsgebieten wird zunächst ein 
datenbasiertes Supply Chain Planungsframework dargestellt, welches die aktuelle industrielle 
Praxis weiterentwickelt. Das Framework koordiniert die Planungsentscheidungen des 
betrachteten Systems und integriert Demand Fulfilment-relevante Supply Chain- und 
Kundendaten. Darüber hinaus beinhaltet das Framework sogenannte Enabler-Prozesse, die den 
Planungsprozessen Daten bezüglich der Flexibilitäten in der Supply Chain, des Prognose- und 
Bestellverhaltens von Kunden und der vertraglichen, strategischen und operationellen 
Verpflichtungen des Zulieferers gegenüber Kunden bereitstellen. Daten bezüglich des 
Kundenverhaltens beinhalten dabei Informationen zur Genauigkeit von Advance Demand 
Information und Auftragsvorlaufzeiten.  

Anschließend werden drei Methoden für Teile des Frameworks entwickelt, die die 
Leistungsfähigkeit des Demand Fulfilment durch die Nutzung von großen Datenmengen 
erhöhen. Es wird eine Order Promising-Methode für industrielle Umfelder mit heterogenen 
Auftragsvorlaufzeiten entwickelt, welche in der Lage ist, Supply-Veränderungen zu antizipieren, 
die durch unvorhergesehene Nachfrageschwankungen hervorgerufen werden. Dazu werden 
vorhandene Flexibilitäten der Supply Chain in ATP-Information abgebildet. Die genutzten 
Informationen beziehen sich auf Produkt- und Prozessflexibilitäten der Supply Chain, welche 
identifiziert und formalisiert werden. Produktflexibilität wird als die Möglichkeit definiert, 
mehrere unterschiedliche Arten von Produkten aus einem Vorgängerprodukt zu erstellen. 
Prozessflexibilität wird als die Möglichkeit definiert, einen Produktionsprozess für die 
Herstellung mehrerer unterschiedlicher Produkte zu verwenden. Die Methode nutzt dabei 
Daten bezüglich individueller Produkte und Prozesse aus der Fertigung. Eine numerische Studie, 
welche mit Daten aus der Halbleiterindustrie durchgeführt wird, weist die Fähigkeit der 
entwickelten Methode nach, die Genauigkeit und Robustheit von Auftragszusagen zu erhöhen. 

Darüber hinaus werden zwei Demand Fulfilment-Verfahren vorgeschlagen, welche Daten 
über die Kundenprofitabilität, die Genauigkeit von vom Kunden bereitgestellter Advance 
Demand Information und die Länge von Kundenauftragslaufzeiten verarbeiten. Die Methoden 
verwenden Daten individueller Produkte und individueller Kunden und führen die 
Supplyallokation mit hoher Planungsfrequenz auf sehr feinen Granularitätsstufen durch. 
Numerische Studien zeigen die Eignung der Verfahren, die Effizienz der Supplyallokation sowie 
den Servicelevel für Kunden zu erhöhen und gleichzeitig Lagerbestände zu verringern. Durch die 
besonders ausgeprägte Erhöhung der Servicelevel für Kunden mit hoher Prognosegenauigkeit 
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werden entsprechende Anreize für Kunden gesetzt, welche die Planungssicherheit für den 
Lieferanten erhöhen. 

Auf Basis dieser Verfahren werden Portfolios Kunden-individueller Verträge analysiert, um 
Erkenntnisse abzuleiten, welche Lieferanten in der Gestaltung des Kundenvertragsportfolios 
und des Demand Fulfilment-Prozesses unterstützen. Die Analyse zeigt, dass die Güte des 
Ergebnisses des Demand Fulfilment Prozesses nicht primär durch die absolute Länge der 
Kundenauftragsvorlaufzeit bestimmt wird, sondern durch die Existenz einer negativen 
Korrelation mit der Genauigkeit der Advance Demand Information im Portfolio. Folglich muss 
beim Verhandeln neuer Verträge das gesamte Vertragsportfolio berücksichtigt werden. Mit 
Kunden, deren Advance Demand Information eine relativ niedrige Genauigkeit aufweist, müssen 
lange Auftragsvorlaufzeiten verhandelt werden. 

Abschließend werden die Ergebnisse, Beiträge und Beschränkungen der Arbeit ganzheitlich 
im Lichte des betrachteten Systems diskutiert und mögliche Wege für zukünftige Forschung 
aufgezeigt.  
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𝐾  Set of customer segments. 
𝐾𝑖  Set of segments from which customer 𝑖 is allowed to consume supply. 
𝑘  Index for customer segments. 
𝑘∗  Index of segment of ordering customer. 
𝑀  Set of intermediate products 
𝑁𝑔′𝑔  Number or units of 𝑔 being produced from 𝑔′ on 𝑆𝑔′𝑔. 

𝑛𝜃  Bill of material coefficient for combination 𝜃. 
𝑂  Set of customer orders. 
𝑂𝑖  Set of all orders from customer 𝑖. 
𝑜  Index of customer orders. 
𝑜𝑙𝑡𝑖  Average order lead time of customer 𝑖. 
𝑜𝑙𝑡𝑖

𝑚𝑎𝑥   Maximum order lead time of customer 𝑖. 
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𝑜𝑙𝑡𝑖
𝑚𝑖𝑛  Minimum order lead time of customer 𝑖. 

𝑜𝑙𝑡𝑖
𝑛𝑜𝑟𝑚  Normalised average order lead time of customer 𝑖. 

𝑃  Set of finished products. 
𝑝𝑖𝑡𝜏  Delivery quantity consuming supply becoming available in period 𝑡, which is 

promised for demand from customer 𝑖 being due in period 𝜏. 
𝑃𝐴𝑆𝑖  Profitability accuracy score of customer 𝑖. 

𝑃𝐴𝑆𝑘
𝑠𝑒𝑔

  Profitability accuracy score of segment 𝑘. 

𝑝𝑟𝑜𝑓0  Base profit for promising an order (single product case). 
𝑝𝑟𝑜𝑓𝑖  Per-unit profitability of customer 𝑖. 
𝑝𝑟𝑜𝑓𝑘  Per-unit profitability of segment 𝑘. 
𝑝𝑟𝑜𝑓𝑖

𝑛𝑜𝑟𝑚  Normalised profitability of customer 𝑖. 
𝑝𝑟𝑜𝑓𝑘

𝑛𝑜𝑟𝑚  Normalised profitability of segment 𝑘. 
𝑝𝑟𝑜𝑓𝑡  Per-unit profit generated by fulfilling an order in period 𝑡 (single product case). 

𝑝𝑟𝑜𝑓𝑖𝑡𝑖
𝐶𝐴𝑃  Total profit achieved with conventional allocation planning. 

𝑝𝑟𝑜𝑓𝑖𝑡𝑖
𝐷𝐷𝐴𝑃  Total profit achieved with data driven allocation planning. 

𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑖
𝐶𝐴𝑃  Promise for customer 𝑖 resulting from conventional allocation planning 

𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑖
𝐷𝐷𝐴𝑃  Promise for customer i resulting from data driven allocation planning. 

𝑞𝑑  Requested quantity of demand 𝑑. 
𝑞𝑖  Order quantity of customer i. 
𝑞𝑜  Order quantity of order 𝑜 (single period case). 
𝑞𝑖𝜏  Demand quantity of customer 𝑖 in period 𝜏. 

𝑞𝑖𝜏
ℎ𝑖𝑠𝑡  Quantity of historical demand placed by customer 𝑖 with a due date in period 𝜏. 

𝑅  Set of raw materials. 
𝑟(𝑜𝑙𝑡𝑖, 𝑎𝑐𝑐𝑖)  Pearson Correlation of order lead time and forecast accuracy of advance demand 

information in the entire set of customers. 
𝑅𝑁𝐾()  Ranking function. 
𝑆𝑔′𝑔  Sequence of processes transforming product 𝑔′ into product 𝑔. 

𝑠𝑐𝑜𝑟𝑒𝑖
𝑐𝑢𝑠𝑡  Customer score of customer 𝑖. 

𝑠𝑐𝑜𝑟𝑒𝑘
𝑠𝑒𝑔

  Segment score of segment 𝑘. 

𝑠𝑚𝑖𝑛  Minimum size for customer segments. 
𝑆𝐿𝐶𝐴𝑃  Service level resulting from conventional allocation planning. 
𝑆𝐿𝐷𝐷𝐴𝑃  Service level resulting from data driven allocation planning. 

𝑠𝑡𝑜𝑐𝑘̅̅ ̅̅ ̅̅ ̅  Average stock level. 
𝑠𝑡𝑜𝑐𝑘𝑡  Stock level at the end of period 𝑡. 
𝑇  Set of time periods. 

𝑇ℎ𝑖𝑠𝑡  Set of historical time periods for calculation of customer ordering behaviour. 
𝑇𝑠  Set of time periods in the total horizon of the experiment. 
𝑡, 𝜏  Index for time period. 
𝑡𝑑 / 𝑡𝑜 Due date of demand 𝑑 / order 𝑜. 
𝑡𝑜

𝑑   Realised delivery period for order 𝑜. 

𝑡𝑜
𝑝  Promised delivery period for order 𝑜. 

𝑡𝑜
𝑝𝑙𝑎𝑐𝑒𝑑  Time period of placement of order 𝑜. 

𝑢  Upward nesting level. 
𝑣𝑖𝑘  Decision variable assigning customer 𝑖 to segment 𝑘. 
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�̅�  Maximum distance between any two customers belonging to the same segment. 
𝑥𝑑𝑡  Delivery quantity used to fulfil demand 𝑑 in period 𝑡. 
𝑌𝜃𝑡  Already started, but not yet finished production quantities for combination 𝜃 in 

period 𝑡. 
𝑦𝑗𝑔′𝑔𝑡  Production quantity for production of product 𝑔 started in period 𝑡 with 

predecessor product 𝑔′ on resource 𝑗. 
𝑦𝜃𝜏  Production quantity for combination 𝜃 in period 𝜏. 
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1 Introduction 
 

“Next generation global order management leverages the power of technologies including 
Web 2.0, mobility, big data analytics, social media, and cloud-based solutions.” 

(TATA Consultancy Services 2013) 
 

1.1 Motivation and background 
Viewing their supply chain as a potential competitive advantage, companies raise resource 
utilization and reduce inventories in order to increase their operational efficiency. At the same 
time, companies have to focus on their core competencies in order to maintain their 
competitiveness in global markets. This specialization leads to an increasing number of partners 
interacting in supply chains and a constant rise of supply chain complexity. Moreover, an 
increase in merge and acquisition activities and a growing number of demand fulfilment 
channels, which often result in heterogeneous and misaligned planning systems, further 
challenge supply chain management. 

In consequence, supply chains become increasingly sensitive to human and system-caused 
disturbances. Simultaneously, such disturbances appear more frequently as economic cycles are 
shortening and growing supply chain sizes lead to a more pronounced bullwhip effect, i.e. an 
increase of demand variation and uncertainty when demand moves upstream in a supply chain 
(see e.g. Lee et al. 2004). The reasons for these distortions are, on the one hand, of behavioural 
nature. Customers do not share their private information with suppliers, who, in turn, 
misinterpret demand signals they receive (see e.g. Kilger and Meyr 2015 or Vogel 2014). On the 
other hand, Lee et al. (2004) list the four operational causes rationing gaming, order batching, 
forecast updating, and pricing, which increase the amplitude of demand in every echelon of the 
supply chain. 

Oftentimes, the operational flexibilities of companies to react to sudden demand distortions 
are limited. Long production cycle times force forecast-based production starts long before 
customers place their orders. Additionally, short and further decreasing product life cycles limit 
the possibilities to compensate demand uncertainty with increased buffer stocks, because the 
risk of obsolescence of stocks is too high. Furthermore, capital intensive capacities constrain the 
possibilities to increase manufacturing flexibility to react to unforeseen demand changes with 
adapted production volumes. 

In consequence, periods of supply shortage, in which the supply output of the chain is 
maximised and cannot be adapted to demand changes anymore, occur more frequently. Then, 
the demand fulfilment decision, i.e. when to fulfil which (current or future) customer demand 
with which supply is of utmost importance. However, the capability of companies to fulfil orders 
as required, meet contractual obligations towards the customers, keep customer satisfaction on 
a high level, and maintain a high customer retention rate is challenged by short and 
heterogeneous customer order lead times (OLTs), low customer forecast accuracy, and frequent 
order cancellation and rescheduling, all caused by the changing demand fulfilment expectations 
of customers in demand driven markets. 

A typical example for the above described situation is the semiconductor manufacturing 
industry. The companies of this sector are usually situated in upstream positions of their supply 
chains. Therefore, they are exposed to severe demand fluctuations due to the bullwhip effect. 
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For example, the global semiconductor market without memory and microprocessors shrank by 
almost 40% in 2009 while it grew by over 50% in 2010. In the same timeframe, the global gross 
domestic product only varied between -4% and +4% (WSTS Inc. 2015). Additionally, customer 
OLTs are with a maximum of six weeks relatively short compared to the production cycle times, 
which are up to four times as long. Therefore, production needs to be started based on internal 
and external forecasts, which, because of their long horizon, are subject to substantial 
uncertainties. However, because of short product life cycles of only a few months holding high 
buffer stocks implies a high risk of obsolescence. On the other hand, as semiconductor 
manufacturing equipment is highly capital intensive, the possibilities to buffer demand 
fluctuations with additional capacity are limited. 

A survey performed by Oracle and Capgemini in 2013 among 589 supply chain executives 
from the manufacturing, high-tech, and retail industries shows that, under the above described 
circumstances, companies are struggling to fulfil customer demands on-time and according to 
initially given commitments. The study reveals that 42% of manufacturing and high-tech 
companies view accurately promising delivery dates as the main challenge in maintaining 
customer satisfaction. Additionally, inaccurate order promising is seen as one of the main cost 
drivers for demand fulfilment as it causes additional efforts such as procuring costly external 
production resources in the short-term, triggering emergency processes in logistics, or 
intensifying communication with suppliers and customers in order to meet committed delivery 
dates (Oracle and Capgemini 2013). Another survey from 2013, performed by the Aberdeen 
Group among 151 chief supply chain officers shows that even best-in-class companies are 
unable to forecast their customer demands with more than 85% accuracy on the product family 
level, leading to the need for expensive buffer stocks and additional capacities in order to 
compensate this lack of forecast accuracy with increased supply chain flexibility (Aberdeen 
Group 2013). 

All this shows that companies need new demand fulfilment approaches in order to cope 
with the above mentioned challenges. To exploit the full potential of these approaches, they 
also need to understand the interactions between demand fulfilment and other processes 
setting framework conditions for demand fulfilment. The recent advances in big data 
technology, i.e. the new possibilities of data storage, data mining, data exchange, and data 
analysis, are seen as enablers for research and practice to develop new demand fulfilment 
approaches that improve the performance of current state of the art methods (e.g. TATA 
Consultancy Services 2013). For example, with the newly available data, companies can monitor 
the forecast accuracy and OLTs, i.e. the time between order placement and requested delivery 
date, of their customers on a high granularity. This higher transparency of the ordering 
behaviour of customers provides opportunities to increase the efficiency, accuracy, and 
robustness of demand fulfilment activities. Moreover, the new technologies also provide 
transparency of supply chain characteristics and flexibilities that can be exploited in demand 
fulfilment to significantly increase its performance. 

While big data applications are widely studied in, e.g., marketing, sales, finance, product 
development, compliance, and fraud prevention, only little initial research exists that deals with 
the exploitation of data in demand fulfilment. This thesis is a first step towards the systematic 
exploitation of data in industrial demand fulfilment approaches in order to increase its 
robustness, accuracy, and service levels. It is furthermore the first studying the interrelation of  
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Figure 1: Overview of studied system 

the terms in customer contract portfolios and the order promising and supply allocation rules in 
demand fulfilment. 

1.2 Studied system 
The software tools supporting demand fulfilment in industrial environments are typically 
enterprise resource planning (ERP) and advanced planning systems (APS). This thesis focusses 
on demand fulfilment related processes, which are usually implemented in APS. Figure 1 
provides an overview. In the context of APS, typically only the processes customer 
segmentation, allocation planning, and order promising are seen as demand fulfilment 
processes. They are usually implemented in a respective software module. Other relevant 
processes are the demand planning and the supply network planning process, which provide 
necessary input for the three demand fulfilment processes. Customer contract portfolios set 
framework conditions for demand fulfilment. In the following, the purposes, objectives, inputs, 
and outputs of the processes shown in Figure 1 are outlined shortly. More details are provided 
in Chapter 2. 

Dyadic contracts between customers and suppliers set the terms and conditions for the 
exchange of demand information, i.e. the exchange of customer demand forecasts, also called 
advance demand information (ADI), and customer orders. The contractual terms include the 
horizon and maximum volatility of ADI as well as minimum order lead times and maximum 
allowed deviations between order and ADI. All contracts in place between a supplier and their 
customers, called the customer contract portfolio, set the framework conditions for the demand 
fulfilment process of the supplier. 

On basis of customer forecasts and orders as well as internal forecasts coming from 
marketing, sales, and operations functions, demand planning generates short- and mid-term 
forecasts for the total market demand that is addressed to the supply chain. The forecasts 
typically include contingencies in form of planned buffer stocks in order to deal with 
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uncertainty. The objective of the process is to forecast total market demands as accurately as 
possible. The results are provided to the supply network planning process. 

In the supply network planning process, the total supply chain demands are matched with 
the total supply chain resources to generate a global master production schedule. Resources 
are, amongst others, machine capacities, stocks, work in progress, and raw materials. Often, 
supply network planning methods only use bottleneck capacity information, i.e. the capacity of 
machinery, which is constraining production. Other machinery is then modelled as a time delay 
between the bottlenecks. The objective of the supply network planning process is to generate a 
master production schedule that utilizes available supply chain resources at a certain target 
level and fulfils supply chain demands according to their due date. From the master production 
schedule, the supply information is generated, which is used in the demand fulfilment processes 
to generate delivery date confirmations to the customers. This supply information is called 
available-to-promise (ATP) and comprises current inventory as well as planned supply receipts 
from production. 

The customer segmentation process clusters customers into segments based on their 
importance for demand fulfilment. The objective of the process is to generate segments in 
which customers are as homogeneous regarding their importance as possible. Typically, the 
importance of customers is determined by their profitability for the company. Other approaches 
also consider the strategic importance of customers. 

Based on ADI provided by the customers, the allocation planning process generates ATP 
reservations, called allocated available-to-promise (AATP), for customer segments. The AATP is 
determined such that the demand of important customers is fulfilled with priority. Note that, 
besides supply network planning, allocation planning is the second interface of supply chain 
planning with ADI from the customer.  

The AATP is then forwarded to the order promising process which generates delivery date 
commits for incoming customer orders in real-time, i.e. a first come first served (FCFS) manner. 
Here, AATP quantities can be segmented or nested. If they are segmented, the order promising 
process can only exploit AATP in the time dimension, if not enough AATP exists in the planning 
period of the order due date. If AATP is nested, supply that is reserved for customer segments 
with lower importance can be consumed additionally. 

1.3 Problem statement 
Demand fulfilment has been studied extensively in the literature. However, the presented 
approaches oftentimes ignore important aspects of demand fulfilment in industrial practice or 
are tailored for very specific problem settings, making it difficult to apply the solutions to other, 
more general, problem settings. Many challenges and characteristics of industrial settings have 
not been addressed so far. Some of these are: 

 Demand fulfilment processes stand in the context of short-, mid- and long-term demand 
planning and supply network planning. Allocation planning and order promising must be 
considered in this context in order to increase the robustness and accuracy of demand 
fulfilment as well as customer service levels. 

 Customer OLTs are heterogeneous leading to hybrid make-to-order (MTO), make-to-
stock environments (MTS). 
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 Production is planned on finished product level whereas demand is forecasted on 
product family level. Therefore, demands used to plan production are uncertain 
regarding the mix on finished product level. 

 Supply network planning exploits supply chain flexibilities to change the master 
production schedule when unforeseen demand realises. These changes are not 
anticipated in current order promising approaches. 

 Customers inflate their demand forecasts (i.e. ADI) strategically in order to game the 
allocation planning procedure of their suppliers. 

 Customers provide orders with the minimum OLT contractually agreed upon, which is 
oftentimes much shorter than production cycle times. Therefore, production must be 
started on uncertain forecast information. 

 Advances in big data tools enable companies to monitor the forecasting and ordering 
behaviour of their customers on high granularity. Furthermore, data on the status of the 
shop floor can be provided to, and processed in demand fulfilment processes. 

 In supply shortage situations, the accuracy of ADI and the length of OLT interact in the 
demand fulfilment decision. Especially regarding the length of OLT, customers and 
suppliers follow conflicting goals. While customers try to negotiate short OLTs in order to 
reduce uncertainty, suppliers prefer long OLTs, which increase planning security. 

 The portfolio of contractual terms and conditions negotiated with customers influence 
the performance of the demand fulfilment of the supplier. Therefore, suppliers need to 
consider the interactions between the contracts negotiated with individual customers 
with regards to overall system performance. 

Approaches integrating some of the different planning processes presented in Section 1.2 exist. 
However, so far no framework has been presented that considers all of these processes and 
integrates newly available data on high granularity with respect to robust and accurate demand 
fulfilment in industrial settings. Also, the majority of publications on demand fulfilment presents 
models for homogeneous customer OLTs and ignores the flexibilities exploited in supply 
network planning as well as the interdependencies between supply network planning and order 
promising with regards to the robustness and accuracy of promised delivery dates. 
Furthermore, the effects of the uncertainty of the realisation of demands on finished product 
level on these measures have not been studied yet. Some initial steps towards the consideration 
of heterogeneous customer OLTs and the integration of supply network planning and order 
promising have been taken. However, until now no order promising approach has been 
presented that anticipates changes in the master production schedule caused by new order 
arrivals by integrating shop floor data into the promising decision. Moreover, there is a lack of 
literature presenting demand fulfilment approaches that increase service levels by considering 
customer forecasting and ordering behaviour and raise planning security by counteracting the 
strategic inflation of ADI and incentivizing customers to provide orders with lead times being 
longer as the contractually agreed minimum. Also, the interactions of contractual agreements of 
a supplier with its entire customer set with regards to demand fulfilment performance have not 
been studied so far. 

This thesis addresses the following research questions in order to close the gaps described 
above: 
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RQ1. How should the supply chain planning processes of the studied system (Figure 1) be 
integrated in order to increase customer service levels and the robustness and accuracy 
of demand fulfilment? 

RQ2. How should available data on supply chain capabilities be considered in demand 
fulfilment in order to increase the accuracy and robustness of order promises in 
industrial settings with heterogeneous customer OLTs and uncertainty regarding the 
realisation of aggregated demand forecasts on finished product level? 

RQ3. How should available data on the forecasting and ordering behaviour of customers be 
considered in demand fulfilment in order to increase service levels in supply shortage 
situations? 

RQ4. How does integrating data on customer forecasting and ordering behaviour into 
demand fulfilment processes increase planning security? 

RQ5. How should the portfolio of contractual agreements with the entire set of customers 
be managed in order to maximise the demand fulfilment performance of the supplier? 

1.4 Outline of the thesis 
This thesis investigates how the robustness and accuracy of demand fulfilment as well as service 
levels can be increased in industrial settings by exploiting newly available data being enabled by 
recent advances of information technology and big data tools. 

First, the role of demand fulfilment in supply chain planning is discussed in Chapter 2. Then, 
relevant literature from several related disciplines is reviewed in Chapter 3, which in parts bases 
on the literature discussions in Seitz et al. (2016a), Seitz and Grunow (2017) and Seitz et al. 
(2016b). In Chapter 4, a data driven supply chain planning framework for robust and accurate 
demand fulfilment is presented, which surpasses current industry practice. Chapter 4 is based 
on Seitz et al. (2016a). 

The Chapters 5 to 7 detail parts of this framework and develop methods that exploit big data 
in order to increase demand fulfilment performance.  

In particular, an order promising method that represents supply chain flexibilities in ATP 
information is developed in Chapter 5. The approach uses shop floor data on individual product 
and process level. A numerical study shows the superiority of the presented approach 
compared to conventional order promising and demonstrates increased robustness and 
accuracy of demand fulfilment. Chapter 5 is based on Seitz and Grunow (2017). 

In Chapter 6, an allocation planning approach considering the historical bias of ADI provided 
by the customers is proposed. The approach allocating supply to individual customers increases 
service levels and incentivises customers to provide truthful ADI. A numerical case study using 
data from the semiconductor industry shows that the advantages of the methodology decrease 
with declining predictive quality of data. Chapter 6 is based on Seitz et al. (2016b). 

Chapter 7 extends this approach to also consider data on the OLT of customers. Conclusions 
on the optimal management of the portfolio of customer contracts are derived from a 
numerical study testing the developed method for several problem instances with different 
correlations between the accuracy of ADI and the length of OLT in the set of customers. 

Finally, Chapter 8 discusses the results, contributions, and limitations of the research 
presented in this thesis. Managerial insights are derived from the results and possible directions 
for future research are outlined. 
  



 

22 
 

2 The role of demand fulfilment in supply chain planning 
This chapter gives an overview of supply chain planning and discusses the role of demand 
fulfilment in this context. Also, the nature and sources of available data are presented. 

After a generic overview of industrial supply chain planning as a hierarchical planning 
structure in Section 2.1, the concepts and typical planning approaches for demand planning and 
supply network planning are illustrated in Section 2.2. Section 2.3 details the demand fulfilment 
processes customer segmentation, allocation planning, and order promising, presents their 
interlinkages with supply network planning, and lists typical performance measures. Finally, the 
sources of data in industrial supply chain planning are discussed in Section 2.4. For a more 
comprehensive discussion of supply chain management and planning, the interested reader is 
referred to Vogel (2014). 

2.1 Overview of supply chain planning 
A supply chain is a network of organizations, whose processes and activities are interlinked by 
material, information, and financial flows with the purpose to fulfil demands of end customers 
(see e.g. Stadtler et al. 2015). Industrial supply chains are customer and profit oriented. Their 
core activities are the procurement of raw materials, the production of semi-finished and 
finished products, the distribution of these products within the supply chain, and, ultimately, 
selling the products to customers (Lee and Billington 1993). 

The coordination of the activities and flows within a supply chain as well as the management 
of the relationships of the supply chain partners is the task of supply chain management (see 
e.g. Christopher 1998). Supply chain management aims at improving the competitiveness of the 
entire chain through superior – and profitable – customer service. Means to increase 
competitiveness are, for example, to reduce supply chain costs and cycle times, to increase 
supply chain flexibility and efficiency, to raise customer service levels, and to improve the 
robustness and accuracy of supply chain planning (see e.g. Stadtler et al. 2015). 

The coordination of these partly conflicting goals requires sophisticated strategic, tactical, 
and operational planning and decision making. It is a complex planning task that can neither be 
tackled simultaneously nor sequentially. For simultaneous planning, the problem size simply is 
too large. Sequential planning, e.g. using the MRP (Orlicky 1975) or MRP II (Wight 1984) 
concepts, does not consider bilateral interdependencies of the planning tasks adequately 
(Fleischmann et al. 2015). 

Therefore, industrial supply chain planning typically employs the concept of hierarchical 
planning. Building on the seven principles decomposition, aggregation, coordination, model 
building, anticipation, disaggregation, and model solving, the hierarchical planning concept 
divides a decision problem into hierarchically structured planning levels and links these levels 
with each other so that a feasible solution of good quality for the original problem results (see 
e.g. Stadtler et al. 2012). Aggregation along the dimensions time and entity (e.g. product, 
customer, site, etc.) is used to reduce the complexity of the addressed planning problems. 
Rolling horizon schedules, i.e. the typical iterative re-planning scheme of industrial supply chain 
planning, result from aggregation along the time dimension. The decisions on the different 
levels of the hierarchy are coordinated by top-down instructions and bottom-up feedbacks. For 
each level, models of the decision problem are built. These anticipate the capabilities and 
potential reactions of the models on subordinate levels and disaggregate the instructions from 
higher planning levels. By solving the models of the hierarchy in an appropriate manner, the  
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Figure 2: Supply chain planning matrix (taken from Stadtler et al. 2012) 

original planning problem is solved. The recent advances in data storage, data mining, data 
exchange, and data analysis technology enable manifold ways to improve hierarchical supply 
chain planning in the industry. 

For a more detailed discussion of the hierarchical planning concept, see e.g. Fleischmann 
and Meyr (2003) or Stadtler et al. (2012). Rohde et al. (2000) apply this concept to supply chain 
planning and complement the hierarchical structure with a functional layer that is oriented at 
the four above mentioned core activities of supply chains, namely procurement, production, 
distribution, and sales. The resulting supply chain planning matrix is a framework depicting the 
interdependencies of supply chain planning tasks in the two dimensions activity and time. 
Amongst others, the publications of Schneeweiß (2003) and Fleischmann et al. (2015) are 
developing this concept further. Figure 2 shows a typical representation. 

In the time dimension, the matrix differentiates between long-, mid-, and short-term 
planning tasks, which correspond to strategic, tactical, and operational supply chain 
management decisions. The supply chain planning problem is decomposed into individual 
planning tasks, which are interlinked by horizontal and vertical information flows. Vertical 
interactions represent the instructions and feedbacks from hierarchical planning. Horizontal 
information flows coordinate the planning of closely interrelated supply chain activities. 

The so-called customer order decoupling point is a central characteristic of a supply chain 
that influences the nature of the planning tasks in the supply chain planning matrix (see e.g. 
Fleischmann and Meyr 2003). It separates the forecast-driven planning tasks focussing on 
inventory management from the order-driven planning tasks concentrating on accurate and 
robust fulfilment of customer orders. Hence, the customer order decoupling point corresponds 
with the horizon, over which customer orders are known to the supply chain planning 
processes, i.e. the time between the placement of orders and their due dates. In this thesis, this 
horizon is called customer OLT. Oftentimes, supply chain planning literature refers to the 
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location of the customer order decoupling point as a managerial decision influencing the time 
needed to fulfil an order and the value of stocking units that need to be held at this point (see 
e.g. Stadtler et al. 2012). While this is true for many business-to-customer environments, in 
industrial business-to-business settings, especially for suppliers located upstream in industrial 
supply chains, customer OLTs and, consequently, the customer order decoupling point is a given 
input parameter for supply chain management and planning. This is because customer OLTs are 
negotiated between suppliers and customers in bilateral contractual agreements. Thereby, 
customers usually try to negotiate short OLTs in order to shift the supply risk to the suppliers, 
while suppliers try to set long OLTs in order to reduce planning uncertainties. Depending on the 
market power of suppliers and customers, customer OLTs are set to different lengths. 
Moreover, customer OLTs also depend on the specific planning tools and processes employed 
by different customers. Therefore, customer OLTs in industrial environments are usually 
heterogeneous. 

This thesis studies the system of supply chain planning processes depicted in Figure 1, which 
are usually implemented in APS. The supply network planning process, which is termed master 
planning in Figure 2, corresponds to mid-term procurement, production, and distribution 
planning tasks. The processes demand planning, customer segmentation, allocation planning, 
and order promising correspond to the mid- and short-term sales planning tasks in the supply 
chain planning matrix. They provide all other planning tasks with demand information in form of 
already known and projected future customer demand. Since, as described above, the ultimate 
goal of supply chain management is to increase competitiveness through superior customer 
service, i.e. to meet customer demands in the best possible way, these processes are of central 
importance to supply chain planning. Hence, accurate and robust planning of the corresponding 
activities is crucial for every supply chain in order to ensure long-term business success.  

2.2 Demand planning and supply network planning 

2.2.1 Demand planning 
The first step towards meeting the ultimate goal of supply chain management, i.e. to increase 
customer service levels, is to anticipate future customer demands as accurately as possible. 
Then, subsequent planning activities are able to prepare the provision of supply in a way that 
customer orders can be fulfilled as close to their requested delivery date as possible while the 
resources of the supply chain are utilized efficiently (see e.g. Chen et al. 2007). Therefore, 
demand planning aims at predicting future customer demand as accurately as possible. 
Furthermore, safety stock levels are planned to buffer uncertainties in this forecast (see. e.g. 
Kilger and Wagner 2015). Accurately planned demand enables smooth production and 
procurement planning, because sudden changes in production and procurement plans due to 
unforeseen lacks or peaks of demand are prevented. This, in turn, leads to reduced cost for 
inventory and idle capacity (Vogel 2014). 

There are three types of techniques to generate the demand forecast: statistical, 
judgemental, and collaborative forecasting (Kilger and Wagner 2015). Statistical techniques are 
solely using historical data. The data is analysed by time-series based or causal approaches in 
order to predict the future development of demands. Judgemental forecasting includes 
additional information, e.g. on future one-time events, into the forecasting process in order to 
derive a more accurate forecast. Collaborative forecasting extends the judgemental forecasting 



 

25 
 

approach by involving several internal or external partners into the forecasting process and 
combining their forecasts and views into one aligned demand forecast. For a deeper discussion 
of these techniques, the reader is referred to Hanke and Wichern (2008), Makridakis et al. 
(1998), and Tempelmeier (2008). 

The accuracy of demand forecasts is measured by quantifying the forecast error after 
demand realisation. This is determined by evaluating the difference between the volumes of the 
forecasted and the realised demands. When analysed over a longer time period, the accuracy of 
a forecast also quantifies the uncertainty contained in it. 

A multitude of measures exists to measure the forecast error. Some of them are the mean 
error, the mean absolute deviation, the mean squared error, the root mean squared error, and 
the mean absolute percentage error (Meyr 2012). For a broad overview of measures and a 
discussion of the advantages and disadvantages, the interested reader is referred to Kilger and 
Wagner (2015). 

According to Fildes and Kingsman (2011) the forecast error is composed of a random and a 
systematic component. The latter is called bias and refers to a constant over- or 
underestimation of future demands, which can result from rationing gaming (see Lee et al. 
2004). 

Although there are many other purposes for which the results of demand planning are used 
(e.g. financial forecasting, accounting, marketing, or logistic network planning), this thesis 
focusses on the interactions of demand planning with the supply network planning process. 
Taking already known future and historical customer orders as well as ADI from customers into 
account, demand forecasts are generated on aggregated levels, like product family per 
customer segment. Supply network planning, however, oftentimes matches available resources 
with demands on finished product (also called stock keeping unit) level (Mentzer and Bienstock 
1998). Consequently, the demand forecasts have to be disaggregated for supply network 
planning purposes. In most industrial settings, this disaggregation is done according to the 
historical share of individual finished products sold in one product family as well as the current 
share of products in ADI and already received, but not yet delivered orders. 

The disaggregation of demand forecasts causes a second type of uncertainty, which in this 
thesis is called demand mix uncertainty. It is defined as the uncertainty of the demand forecast 
with regards to the ratio of the individual product volumes, when the total demand of the 
product family is given. 

In Chapters 4 and 5, the symmetric mean absolute percentage error (SMAPE) (see e.g. 
Armstrong 1985 or Ott et al. 2013) is used to determine the error of a forecast. It is chosen since 
it is widely used in the industry. The main reason for its use is its ease of implementation. It 
does not result in infeasibilities if there is no realised demand but a forecast or no forecast but 
final demand in certain time periods. 

2.2.2 Supply network planning 
In order to synchronize and coordinate the flow of materials between suppliers, production 
sites, warehouses, and customers, supply network planning balances demand with supply chain 
resources (see e.g. Albrecht et al. 2015). The process usually considers procurement, 
manufacturing, and deployment lead times and resource capacity constraints. It trades off the 
cost for additional in-house or external capacity, capacity usage, stock holding, transportation 
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between sites, and late or no fulfilment of demand for the entire supply chain. Supply network 
planning hence comprises the planning activities, which are called master planning in Figure 2. 

In industrial settings, the mathematical models used for supply network planning are usually 
deterministic and aim at cost minimisation or profit maximisation (Stadtler 2012). Because of 
the heterogeneity of customer OLTs in industrial practice, companies usually plan their 
production to the finished product storage location. Otherwise, if production was planned only 
to an intermediate product storage location, orders coming in with short lead times could not 
be fulfilled on time. 

For a basic linear programming model, the reader is referred to Fleischmann and Meyr 
(2003). In the following, a supply network planning model is presented, which is based on 
Leachman (1993). The model, which is used in Chapter 5, decides on the production quantities 
𝑦𝑗𝑔′𝑔𝑡 for production of product 𝑔 ∈ 𝑀 ∪ 𝑃 started in period 𝑡 ∈ 𝑇 with predecessor product 

𝑔′ ∈ 𝑅 ∪ 𝑀 on resource 𝑗 ∈ 𝐽. The sets 𝑅, 𝑀, and 𝑃 are defined as the sets of raw materials, 
intermediate products, and finished products, respectively. For better readability 𝜃 ∈ Θ is 
defined as an existing combination of 𝑗, 𝑔′, and 𝑔. The combinations 𝜃 are characterized by a 
resource consumption factor 𝑎𝜃, a bill of material (BOM) coefficient 𝑛𝜃, and cycle time 𝑐𝑡𝜃. The 
BOM coefficient indicates the number of units of products 𝑔 that are produced from on unit of 
product 𝑔′ on resource 𝑗. The subsets Θ𝑗 , Θ𝑔, and Θ𝑔

′  are defined as the sets of combinations 𝜃 

containing process 𝑗, 𝑔 as produced product, and 𝑔 as transformed product, respectively. The 
model further decides on the delivery quantities 𝑥𝑑𝑡 used to fulfil demand 𝑑 ∈ 𝐷 in period 𝑡. 
Because of the heterogeneous customer OLTs in industrial environments, the set 𝐷 consists of 
both customer orders and demand forecasts. Equations (1) to (8) describe the production 
planning model. 

 
Maximise 

𝑧 = ∑ ∑ 𝜌𝑑𝑡𝑥𝑑𝑡𝑡𝑑 − 𝜉𝑝 ∑ ∑ 𝑦𝜃𝑡𝑡𝜃 − 𝜉𝑖 ∑ ∑ 𝑖𝑛𝑣𝑔𝑡𝑡𝑔 ,   (1) 

subject to   
∑ 𝑥𝑑𝑡𝑡 ≤ 𝑞𝑑, ∀𝑑 ∈ 𝐷;  (2) 
𝑖𝑛𝑣𝑔

−1 + ∑ ∑ 𝑛𝜃 ∙ 𝑦𝜃𝜏−𝑐𝑡𝜃𝜃∈Θ𝑔𝜏≤𝑡 = 𝑖𝑛𝑣𝑔𝑡 + ∑ ∑ 𝑥𝑑𝜏𝑑∈𝐷𝑔𝜏≤𝑡 ,  ∀𝑔 ∈ 𝑃, 𝑡 ∈ 𝑇;  (3) 

𝑖𝑛𝑣𝑔
−1 + ∑ ∑ 𝑛𝜃 ∙ 𝑦𝜃𝜏−𝑐𝑡𝜃𝜃∈Θ𝑔𝜏≤𝑡 = 𝑖𝑛𝑣𝑔𝑡 + ∑ ∑ 𝑦𝜃𝜏𝜃∈Θ𝑔

′𝜏≤𝑡 ,  ∀𝑔 ∈ 𝑀, 𝑡 ∈ 𝑇;  (4) 

∑ 𝑎𝜃 ∙ 𝑦𝜃𝑡𝜃∈Θ𝑗
≤ 𝑐𝑗𝑡,  ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇;  (5) 

𝑦𝜃𝑡 = 𝑌𝜃𝑡,  ∀𝜃 ∈ Θ, 𝑡 ∈ 𝑇ℎ𝑖𝑠𝑡;  (6) 
𝑦𝜃𝑡 ≥ 0,  ∀𝜃 ∈ Θ, 𝑡 ∈ 𝑇;  (7) 
𝑥𝑑𝑡 ≥ 0,  ∀𝑑 ∈ 𝐷; 𝑡 ∈ 𝑇.  (8) 

 
The objective function (1) maximises profits calculated from the per-unit inventory holding cost 

𝜉𝑖, the per-unit production cost 𝜉𝑝, and the per-unit revenues 𝜌𝑑𝑡 generated from fulfilling one 
unit of demand 𝑑 in period 𝑡. Here, 𝑖𝑛𝑣𝑔𝑡 is the inventory of product 𝑔 held at the end of period 

𝑡. Constraints (2) ensure that the delivered quantity does not exceed the demand quantity 𝑞𝑑. 
Constraints (3) and (4) are inventory balance constraints with the starting inventory 𝑖𝑛𝑣𝑔

−1 of 

product 𝑔 and the set 𝐷𝑔 of all demands requesting product 𝑔. Constraints (5) are capacity 

constraints. Constraints (6), in which 𝑇ℎ𝑖𝑠𝑡 contains all time periods in the past, fix 𝑦𝜃𝑡 to 𝑌𝜃𝑡, 
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which is the production quantity started on combination 𝜃 in period 𝑡 ∈ 𝑇ℎ𝑖𝑠𝑡 not yet being 
finished. Constraints (7) and (8) are non-negativity constraints. 

The per-unit revenues 𝜌𝑑𝑡 are determined by Equations (9) and (10), which make sure that 
on-time fulfilment of demands is most preferable and early fulfilment is preferred over late 
fulfilment. The parameters 𝜌𝑑, 𝑞𝑑, and 𝑡𝑑  are defined as a base revenue, the demand quantity, 
and the due date of 𝑑, respectively. 

 

𝜌𝑑𝑡 =  
𝜌𝑑

𝑞𝑑
(|𝑇| − 𝑡𝑑 + 𝑡),  ∀𝑑 ∈ 𝐷, 𝑡 ∈ 𝑇|𝑡 ≤ 𝑡𝑑. (9) 

𝜌𝑑𝑡 =  
𝜌𝑑

𝑞𝑑
(|𝑇| − 𝑡)  ∀𝑑 ∈ 𝐷, 𝑡 ∈ 𝑇|𝑡 > 𝑡𝑑. (10) 

 
The result of the supply network planning process is the master production schedule which 
contains the product quantities to be produced or procured, which must be made available at a 
certain storage location at a certain point in time. The master production schedule serves as the 
main input for the subsequent production planning and demand fulfilment processes (Vogel 
2014). For demand fulfilment, the information contained in the master production schedule is 
translated into the so-called ATP information, which defines the quantities of current and future 
product supply that can be used to fulfil incoming customer orders. For example, the ATP 
quantities 𝑎𝑡𝑝𝑔𝑡 for product 𝑔 becoming available in time period 𝑡 can be calculated using 

Equations (11), in which 𝐹𝑔 is defined as the subset of 𝐷 containing only demand forecasts for 

product 𝑔. 
 

𝑎𝑡𝑝𝑔𝑡 = ∑ 𝑥𝑑𝑡𝑑∈𝐹𝑔
,  ∀𝑔 ∈ P, 𝑡 ∈ 𝑇. (11) 

 
For a discussion of other types of ATP and their generation from the master production 
schedule, the reader is referred to Geier (2014). 

As mentioned above, supply network planning in industrial environments oftentimes 
matches capacities with demand on finished product level. Therefore, aggregated demand 
information on product family level, which is provided by demand planning, needs to be 
disaggregated, leading to uncertainty of demand regarding the product mix. Obviously, this 
uncertainty is carried on in the ATP information generated from the master production 
schedule. If customer orders realise that deviate from the demand forecast, the following 
supply network planning run exploits flexibilities in the supply chain to change the master 
production schedule and meet requested delivery dates of the customers. Order promises to 
the customers are typically updated according to the result of supply network planning. Hence, 
demand mix uncertainty endangers the robustness of real-time order promises, which are 
generated based on ATP information. 

2.3 Demand fulfilment processes and performance measures 
Demand fulfilment is defined as the process of handling a customer order after it entered the 
planning system of a company (Fleischmann and Meyr 2004). Hence, demand fulfilment 
processes have the most immediate impact on company profits, customer service levels, and, 
consequently, customer satisfaction and retention. This thesis focusses on the planning system 
described in Section 1.2, which is typical for industrial suppliers. Note that there are other types 
of demand fulfilment systems. An overview is given in Pibernik (2005). 
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Especially in supply shortage situations, the decision when to fulfil which customer demand 
with what supply is of utmost importance for a company. In industrial settings, this decision 
must be taken in real-time upon order arrival by an order promising process. Thereby, also 
uncertain future arrivals of customer orders need to be considered. This is done by a supply 
allocation planning process that reserves supply for orders from certain customer segments or 
individual customers based on demand forecasts provided by the customer, i.e. ADI. The 
customer segments are determined by a customer segmentation process (see e.g. Meyr 2009). 

Note that, in supply shortage situations, the relevant interface of ADI with the planning 
processes of a company changes from supply network planning to allocation planning. This is 
because the supply output of the chain is maximised and cannot be adapted to demand changes 
anymore. Consequently, companies must optimise the allocation of given supply to customers 
on basis of ADI in order to keep service levels on a high level and reduce stock levels that result 
from excess allocations. 

Obviously, the accuracy of ADI strongly influences the efficiency of supply allocations and, 
thus, the customer service and stock levels. To increase planning security, industrial suppliers 
therefore try to incentivise their customers to provide their ADI with high accuracy and their 
orders long in advance of their due dates. Other objectives of demand fulfilment processes are 
to increase the reliability of real-time order promises, to improve the on-time delivery for 
customer orders, to raise the number of satisfied orders, and to increase revenue and 
profitability (see e.g. Kilger and Meyr 2015). 

In the following, the processes customer segmentation, supply allocation, and order 
promising as well as industry-typical performance measures for demand fulfilment are 
discussed. 

2.3.1 Customer segmentation 
The idea of customer segmentation is to increase profits, revenues, and customer service levels 
by exploiting the heterogeneity of customers regarding certain characteristics that determine 
the importance of customers for demand fulfilment. In industrial environments, customers are 
typically segmented according to their geographical location. This is because demand planning 
commonly uses such a segmentation of customers to generate aggregate demand forecasts (see 
e.g. Kilger and Meyr 2015) and the segmentation is simply taken over for the demand fulfilment 
processes. However, this type of customer segmentation does not necessarily lead to customer 
segments that facilitate an improvement of the demand fulfilment performance by exploiting 
customer heterogeneity regarding characteristics that influence profits, revenues, or service 
levels (see Meyr 2009). 

Meyr (2008) presents a number of methods to determine customer segments for demand 
fulfilment purposes. Here, another approach that determines customer segments 𝑘 ∈ 𝐾 based 
on customer scores 𝑠𝑐𝑜𝑟𝑒𝑖

𝑐𝑢𝑠𝑡 is described. The scores define the importance of a customer 
𝑖 ∈ 𝐼 for demand fulfilment. The mixed integer linear program, which is used in Chapter 7, 
models a K-clustering approach. It uses the distance 𝑑𝑖𝑠𝑡𝑖𝑗 between two customers 𝑖 and 𝑗, 

which is defined as the absolute value of the difference of the customer scores (Equation (12)). 
 

𝑑𝑖𝑠𝑡𝑖𝑗 = |𝑠𝑐𝑜𝑟𝑒𝑖
𝑐𝑢𝑠𝑡 − 𝑠𝑐𝑜𝑟𝑒𝑗

𝑐𝑢𝑠𝑡|   (12) 
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The model is described by Equations (13) to (18). With the binary decision variable 𝑣𝑖𝑘, 
customer 𝑖 is assigned to segment 𝑘. The decision variable �̅�, called width, is the maximum 
distance between any two customers 𝑖 and 𝑗 belonging to the same customer segment. 

 
Minimise 
𝑧 = �̅�,  (13) 
subject to 
∑ 𝑣𝑖𝑘𝑘∈𝐾 = 1,  ∀𝑖 ∈ 𝐼; (14) 

�̅� ≥ 𝑑𝑖𝑠𝑡𝑖𝑗(𝑣𝑖𝑘 + 𝑣𝑗𝑘 − 1),  ∀𝑘 ∈ 𝐾; 𝑖, 𝑗 ∈ 𝐼: 𝑖 < 𝑗; (15) 

∑ 𝑣𝑖𝑘𝑖∈𝐼 ≥ 𝑠𝑚𝑖𝑛,  ∀𝑘 ∈ 𝐾; (16) 
𝑣𝑖𝑘 ∈ {0,1},  ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼; (17) 
�̅� ≥ 0,  ∀𝑘 ∈ 𝐾. (18) 

 
The objective function (13) minimises �̅�, ensuring that the customer segment with the largest 
maximum 𝑑𝑖𝑠𝑡𝑖𝑗-value is as homogeneous regarding the customer scores 𝑠𝑐𝑜𝑟𝑒𝑖

𝑐𝑢𝑠𝑡 as possible. 

Constraints (14) ensure that each customer is assigned to exactly one segment. Constraints (15) 
state that �̅� must be greater or equal to the distance between any two customers 𝑖 and 𝑗 
belonging to the same segment. Constraints (16) set a minimum segment size 𝑠𝑚𝑖𝑛. Constraints 
(17) and (18) define 𝑣𝑖𝑘 as binary and �̅� as non-negative, respectively. 

A minimum segment size is defined because solving pure K-clustering problems can result in 
customer segments of very different sizes. Industrial companies, however, usually aim at 
levelling out the sizes of the customer segments used for allocation planning. 

2.3.2 Allocation planning 
In order to ensure satisfactory service levels for important customers in supply shortage 
situations, allocation planning reserves ATP for certain customer segments. Typical allocation 
planning methods allocate supply based on heuristic rules (see e.g. Kilger and Meyr 2015). The 
supply reservations, called AATP, are subsequently provided to the order promising process. 

In the following, a linear programming based allocation planning model is presented, which 
is based on Meyr (2009). The model, which is described by Equations (19) to (22), allocates the 
ATP 𝑎𝑡𝑝𝑡 becoming available at the beginning of planning time period 𝑡 to the customer 
segments 𝑘. It is used in Chapter 6 and 7. The allocation is done according to a segment score 

𝑠𝑐𝑜𝑟𝑒𝑘
𝑠𝑒𝑔

 that determines the priority of fulfilling the demand forecast ∑ 𝑓𝑖𝜏𝑖∈𝐼𝑘
 from segment 𝑘 

in time period 𝜏 using ATP becoming available in 𝑡. Here, 𝐼𝑘 is defined as the set of customers 𝑖 
belonging to segment 𝑘. The AATP quantities 𝑎𝑎𝑡𝑝𝑘𝑡𝜏result. 

 
Maximise 

𝑧 = ∑ ∑ [∑ (𝑠𝑐𝑜𝑟𝑒𝑘
𝑠𝑒𝑔

∙ 𝑎𝑎𝑡𝑝𝑘𝑡𝜏)𝑡 − ∑ (𝜉𝑡𝜏
𝑒 ∙ 𝑎𝑎𝑡𝑝𝑘𝑡𝜏)𝑡≤𝜏 − ∑ (𝜉𝑡𝜏

𝑙 ∙ 𝑎𝑎𝑡𝑝𝑘𝑡𝜏)𝑡>𝜏 ]𝜏𝑘 ,   (19) 

subject to 
∑ 𝑎𝑎𝑡𝑝𝑘𝑡𝜏𝑡 ≤ ∑ 𝑓𝑖𝜏,𝑖∈𝐼𝑘

  ∀𝑘 ∈ 𝐾, 𝜏 ∈ 𝑇; (20) 

∑ ∑ 𝑎𝑎𝑡𝑝𝑘𝑡𝜏𝜏𝑘 = 𝑎𝑡𝑝𝑡,  ∀𝑡 ∈ 𝑇. (21) 
𝑎𝑎𝑡𝑝𝑘𝑡𝜏 ≥ 0,  ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝜏 ∈ 𝑇;  (22) 
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The objective function (19) maximises the segment-score-weighted supply allocations and 

penalises early and late demand fulfilment with the factors 𝜉𝑡𝜏
𝑒  and 𝜉𝑡𝜏

𝑙 . It ensures that demands 
of segments with high 𝑠𝑐𝑜𝑟𝑒𝑘

𝑠𝑒𝑔 values are satisfied with priority. Constraints (20) ensure that 

the generated AATP quantities do not exceed ADI provided by the customer. Constraints (21) 
state that the sum of allocated supply quantities must equal the total available ATP quantities. 
Constraints (22) state the non-negativity of the decision variables. 

The accuracy of the demand forecasts that are used to generate the AATP is of high 
importance for the efficiency of the allocation (Vogel 2014). In industrial practice, this efficiency 
is endangered by the so-called rationing gaming behaviour of customers (see e.g. Lee et al. 
2004). In supply shortage situations, customers often deliberately provide inaccurate, i.e. falsely 
inflated, demand forecasts that do not reflect their true needs. Consequently, stocks are 
created for forecasts of highly important customers, which are not consumed by subsequent 
orders. This results in high storage costs. More importantly, due to the limited supply also the 
service levels for other customers are reduced. 

Typically, allocation planning is viewed as a mid-term planning task (see e.g. Ball et al. 2004). 
However, in industrial settings the communication with the customer and the exchange of 
demand data is often fully automated and occurs at high frequencies. Therefore, it is beneficial 
to run allocation planning as a short-term planning process in order to account for demand 
forecast changes as soon as possible. 

2.3.3 Order promising 
Order promising is subdivided into the planning tasks order acceptance and due date setting 
(see e.g. Framinan and Leisten 2010). The order acceptance decision answers the question 
whether an order should be delivered or declined. It consists of order reception, e.g. by phone, 
mail, or online (see e.g. Croxton 2003) and an ATP availability check, which searches for AATP 
supply that can be consumed to satisfy the order. Typical search dimensions are time, product, 
customer segment, and geography (see e.g. Meyr 2009 or Kilger and Meyr 2015). If these 
dimensions are applied, supply can be searched in time periods being earlier or later than the 
requested delivery date of the order, on substitute products for the requested product, in AATP 
quantities reserved for other customers, and in different locations (e.g. different distribution 
centres of the supply chain), respectively. Note that the search for AATP across customers is 
called nesting. 

Due date setting determines a delivery date for the incoming order. In most industrial 
settings orders do not have to be delivered at the requested delivery date from the customer, 
but there are delivery windows within which the supplier is free to confirm delivery dates. These 
are usually negotiated between customers and suppliers. In most cases, due date setting simply 
consists of confirming the incoming order according to the result of the ATP availability check. 
For this reason, most publications do not distinguish between order acceptance and due date 
setting. 

Fleischmann and Meyr (2004) additionally mention shortage planning as a part of the order 
promising problem. This planning task exploits options to confirm orders, if supply of the 
requested product is scarce in the requested time and location. Shortage planning can also be 
seen as part of the ATP availability check. 

In the following, an order promising model is shown, which is based on Meyr (2009). The 
linear program, which is described by Equations (23) to (26), decides on the portions of 
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allocated supply 𝑐𝑘𝑡′, which become available in period 𝑡′ and are used to fulfil an order of 𝑞𝑖∗𝜏′  
product units from customer 𝑖∗ being due in period 𝜏′. It is used in modified versions in 
Chapters 5, 6 and 7. 

 
Maximise 

𝑧 = ∑ [∑ (𝑠𝑐𝑜𝑟𝑒𝑘
𝑠𝑒𝑔

∙ 𝑐𝑘𝑡′)𝑡′ − ∑ (𝜉𝑡′𝜏′
𝑒 ∙ 𝑐𝑘𝑡′)𝑡′≤𝜏′ − ∑ (𝜉𝑡′𝜏′

𝑙 ∙ 𝑐𝑘𝑡′)𝑡′>𝜏′ ]𝑘∈𝐾𝑖∗ ,  (23) 

subject to 
∑ ∑ 𝑐𝑘𝑡′𝑡′𝑘∈𝐾𝑖∗ ≤ 𝑞𝑖∗𝜏′;  (24) 

𝑐𝑘𝑡′ ≤ ∑ 𝑎𝑎𝑡𝑝𝑘𝑡′𝜏 𝜏 , ∀𝑘 ∈ 𝐾𝑖∗ , 𝑡′ ∈ 𝑇; (25) 
𝑐𝑘𝑡′ ≥ 0, ∀𝑘 ∈ 𝐾𝑖∗ , 𝑡′ ∈ 𝑇. (26) 

 
The objective function (23) maximises the segment-score-weighted supply consumptions and 

penalises early and late demand fulfilment with the factors 𝜉
𝑡′𝜏′
𝑒  and 𝜉

𝑡′𝜏′
𝑙 . Constraints (24) state 

that the sum of consumed supply must not exceed the ordered quantity. Constraints (25) 
ensure that the allocation quantities 𝑎𝑎𝑡𝑝𝑘𝑡′𝜏 are not exceeded and Constraints (26) define the 
non-negativity of the decision variables. 

The model allows nesting of customer segments. The segments, from which customer 𝑖∗ is 
allowed to consume allocated supply, are represented in the set 𝐾𝑖∗ . This set contains all 
segments, for which Inequality (27) holds, in which 𝑘∗ represents the customer segment of the 
ordering customer. 

𝑠𝑐𝑜𝑟𝑒𝑘
𝑠𝑒𝑔

≤ 𝑠𝑐𝑜𝑟𝑒𝑘∗
𝑠𝑒𝑔

   (27) 

 
In industrial environments, early fulfilment of orders is usually not allowed. Therefore, the order 
promises 𝑝𝑖∗𝑡′𝜏′, i.e. the quantities promised for delivery in period 𝑡′, are calculated with 
Equations (28) to (30). Equations (28) state that no shipment takes place before the order due 
period 𝜏′. Equation (29) defines the promised delivery in the due period 𝜏′ as the sum of the 
supply portions 𝑐𝑘𝑡′  consuming allocated supply in all periods 𝑡′ earlier or equal to 𝜏′. Equations 
(30) state that the promised delivery quantity in all periods 𝑡′ equals the supply portions 𝑐𝑘𝑡′  
consuming allocated supply in the same period. 
 
𝑝𝑖∗𝑡′𝜏′ = 0, ∀𝑡′ ∈ 𝑇|𝑡′ < 𝜏′.  (28) 
𝑝𝑖∗𝑡′𝜏′ = ∑ ∑ 𝑐𝑘𝑡𝑡∈𝑇|𝑡≤𝜏′𝑘∈𝐾𝑖∗ , 𝑡′ = 𝜏′; (29) 

𝑝𝑖∗𝑡′𝜏′ = ∑ 𝑐𝑘𝑡′𝑘∈𝐾𝑖∗ ,  ∀𝑡′ ∈ 𝑇|𝑡′ > 𝜏′.  (30) 

 

2.3.4 Performance measures for demand fulfilment 
As mentioned in Section 2.3, the objectives of demand fulfilment are to increase the number of 
satisfied orders, the amount of orders delivered on time, the reliability of real-time order 
promises, the efficiency of supply allocation, and the profitability of the company. 

In this thesis, the number of satisfied orders is measured in terms of total service level (TSL) 
as defined in Equation (31). It is the total quantity of confirmed deliveries divided by the total 
quantity of incoming orders. 
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𝑇𝑆𝐿 =
∑ ∑ ∑ 𝑝𝑖𝑡𝜏𝑡∈𝑇𝜏∈𝑇𝑖∈𝐼

∑ ∑ 𝑞𝑖𝜏𝜏∈𝑇𝑖∈𝐼
   (31) 

 
The amount of orders delivered on time is measured by the on-time service level (OTSL) as 
defined in Equation (32). It is the total quantity of deliveries confirmed according to the 
requested delivery date of the customer divided by the total quantity of incoming orders. 

 

𝑂𝑇𝑆𝐿 =
∑ ∑ 𝑝𝑖𝜏𝜏𝜏∈𝑇𝑖∈𝐼

∑ ∑ 𝑞𝑖𝜏𝜏∈𝑇𝑖∈𝐼
   (32) 

 
The reliability of real-time order promises is determined by the measures robustness and 
accuracy, which are defined in Equations (33) and (34), respectively. Robustness is defined as 
the share of ordered quantities, which are delivered according to their original confirmed date 
that is determined by real-time order promising. Here, 𝑂 is the set of all customer orders 𝑜 that 
realised over the horizon 𝑇. The promised and realised delivery period of an order are denoted 

with 𝑡𝑜
𝑝 and 𝑡𝑜

𝑑 . The parameter 𝑞𝑜 is the order’s requested quantity, and 𝑑𝑞𝑜𝑡 is the quantity 
delivered to fulfil order 𝑜 in period 𝑡. Accuracy is defined as the complement of the share of 
order quantities, initially promised later than finally delivered. 

 

𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 =
∑ 𝑑𝑞𝑜𝑡𝑜∈𝑂,𝑡∈𝑇|𝑡𝑜

𝑝
=𝑡𝑜

𝑑

∑ 𝑞𝑜𝑜∈𝑂
  (33) 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 −
∑ 𝑑𝑞𝑜𝑡𝑜∈𝑜,𝑡∈𝑇|𝑡𝑜

𝑝
>𝑡𝑜

𝑑

∑ 𝑞𝑜𝑜∈𝑂
  (34) 

 
As explained above, if supply is allocated efficiently to customer segments, less excess stocks 
occur from over-estimating demands of high priority customers. Therefore, the efficiency of 
supply allocation can be measured by the average stock level at the end of every planning 

period 𝑠𝑡𝑜𝑐𝑘̅̅ ̅̅ ̅̅ ̅, which is defined by Equation (35). Here, 𝑠𝑡𝑜𝑐𝑘𝑡 denotes the stock level at the end 
of planning period 𝑡. 

 

𝑠𝑡𝑜𝑐𝑘̅̅ ̅̅ ̅̅ ̅ =
∑ 𝑠𝑡𝑜𝑐𝑘𝑡𝑡∈𝑇

|𝑇|
   (35) 

 
The profitability of a company is measured by the total profit generated by promising orders as 
defined in Equation (36), in which 𝑝𝑟𝑜𝑓𝑖 is the per-unit profitability of customer 𝑖. 

 
𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑓𝑖𝑡 = ∑ ∑ ∑ 𝑝𝑟𝑜𝑓𝑖 ∙ 𝑝𝑖𝜏𝑡𝑡𝜏𝑖    (36) 

 

2.4 Data sources 
In Section 1.1, the potential benefits of exploiting newly available data enabled by the growing 
usage of big data tools in industrial settings are illustrated. This section discusses the sources of 
such data. 

As mentioned in Section 2.2.1, the forecasting of future demand is based on external and 
internal data sources, which are analysed by statistical and judgemental techniques. Statistical 
forecasting uses historical demand data from internal data sources. By means of time-series 
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analyses, historical customer demand data derived from the database backbones of the ERP 
system of the company is analysed to predict future demands. 

In judgemental forecasting, additional sources of information are exploited in order to 
improve the accuracy of statistical methods. External data sources are e.g. predictions of the 
economic cycle of public or private research institutes, press releases of competitors and 
companies in related industries, and political and economic coverage in media. Internally, 
classical sources like contractual obligations or reporting from operations, sales, and marketing, 
but also novel approaches like crowd opinion or cloud data analysis are used. Crowd opinion 
techniques use the so-called wisdom of the crowd (Surowiecki 2005) by aggregating data 
coming from a large number of individuals and deriving decisions from the aggregation. The 
crowd wisdom type cognition, i.e. thinking and information processing, is of particular 
importance for demand planning since it can be used to predict global market developments. 
Crowd opinion methods can be fed with cloud data, which is collected anonymously from the 
internet utilizing user traffic data on webpages. Often large amounts of dynamic and 
unstructured data are generated, which need to be handled with newly available big data tools. 

Such tools are used to statistically analyse and aggregate the collected data to derive 
decisions from it. For demand planning and demand fulfilment, the analysis of ADI and order 
data with big data applications is of particular importance, because conclusions on the customer 
ordering behaviour, i.e. the accuracy of ADI and the length of OLTs of customers, can be drawn. 
This information can be used in demand planning and allocation planning to evaluate the 
demand information received from the customer and increase the accuracy of the forecast of 
total supply chain demand as well as the efficiency of supply allocations. Industrial customers 
usually provide their supplier with ADI and orders through an electronic data interchange (EDI) 
interface, which is connected to the supplier’s ERP system. Historical data is usually stored in a 
data warehouse backbone of the ERP system. Note that the EDI interface allows customers to 
update their demand data on a high frequency. In industrial settings, many customers update 
their data every day. Hence, the analysis of data as well as the planning processes depending on 
it must be re-run on this high frequency as well. 
Another data source for demand planning, supply network planning, and demand fulfilment are 
the contracts closed between supplier and customers. These define, for example, minimum 
OLTs, minimum and maximum order quantities, requirements regarding the accuracy of ADI, 
product prices, obligations regarding stock keeping and minimum service levels, and substitute 
products. Note that in current industry practice contract clauses are not maintained in machine 
readable form so that they cannot be used in supply network planning processes in an 
automated way. Many companies, however, are starting to establish machine readable contract 
databases containing relevant contract information for demand fulfilment. 

In supply network planning, shop floor data is used to plan supply. Usually, the data is 
maintained by the production sites and stored in databases for master data and databases for 
dynamic shop floor data. In the master data databases, e.g., resource consumption factors and 
BOM information of all materials and products is stored. Databases for dynamic data contain 
information on current cycle times and yields of products on machines or groups of machines, 
which depend on the current work in progress situation of the shop floor as well as other 
external, dynamically changing factors. 
  



 

34 
 

3 Related literature 
 

Parts of this chapter base on the literature discussions in 
 

Seitz, A., Ehm, H., Akkerman, R., Osman, S., 2016a. 
A robust supply chain planning framework for revenue management in the semiconductor 

industry. 
Journal of Revenue and Pricing Management, 15(6), 523-533. 

 
Seitz, A., Grunow, M., 2017.  

Increasing accuracy and robustness of order promises.  
International Journal of Production Research, 55(3), 656-670. 

 
Seitz, A., Grunow, M., Akkerman, R., 2016b. 

Data Driven Supply Allocation to Individual Customers Considering Forecast Bias. 

Available at SSRN: https://ssrn.com/abstract=2813835. 

 
The research presented in this thesis is related to the literature streams revenue management, 
inventory rationing, due-date assignment and scheduling, supply chain coordination with 
contracts, supply network planning considering ADI, and demand fulfilment in APS. In the 
following, each of these fields will be discussed. 

3.1 Revenue management 
The literature on revenue management is divided in quantity-based and price-based approaches 
(Talluri and van Ryzin 2004). Quantity-based revenue management segments customers by 
exploiting their heterogeneity regarding, e.g., strategic importance, profitability, price-, or time-
sensitivity. Price-based approaches, on the contrary, maximise revenue by actively steering and 
influencing demand using price differentiation. 

Smith et al. (1992), Harris and Pinder (1995) and Ruff (2014) give an introduction to revenue 
management practices in the airline and manufacturing industries. Quante et al. (2009b) review 
the literature on revenue management and APS with regards to proposed models, industries 
and available software. Based on the review, they develop a framework that considers both 
streams of literature and derive future research opportunities. 

An extensive number of studies deals with quantity-based revenue management, in which 
future or current production outputs, inventories, or capacities have to be allocated to different 
segments, products, or channels (see e.g. Talluri and Van Ryzin 2004, Talluri et al. 2008, Karabuk 
and Wu 2003, or Huefner and Largay 2013). 

In the literature focussing on quantity-based approaches for industrial environments, some 
publications study single-period capacity rationing problems with two customer classes (see e.g. 
Balakrishnan et al. 1996 or Chiang and Wu 2011). Chen (2006) uses pseudo order information in 
a single period, single product environment to study the influence of demand uncertainty on 
order acceptance decisions. The author finds that excess materials increase with rising demand 
uncertainty while overall profitability of the supply chain declines.  
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Recent work almost exclusively analyses multi-period cases with multiple customers to 
derive heuristic or optimal approaches for the calculation of capacity reservations or rules for 
order acceptance (see e.g. Barut and Sridharan 2004, Hung and Lee 2010, or Chevalier et al. 
2015, Pibernik and Yadav 2008, Modarres et al. 2012, Hung et al. 2014). Pibernik and Yadav 
(2009) nest supply reservations and find that nested reservations have a positive effect on 
customer service levels. Their numerical study shows further that not knowing the true 
customer demand has a negative effect on the overall system performance. The approaches 
presented in Chapters 6 and 7 nest the supply reservations for customers and customer classes 
and set incentives for the customers to forecast their demands truthfully. 

There is also a stream of literature focussing on quantity-based approaches in the 
semiconductor industry. It is mentioned here due to the closeness of this thesis to this industry. 
The publications mostly present capacity planning and production planning approaches(see e.g. 
Huang 2005, Zhang et al. 2004, or Chien et al. 2013). The publications confirm that, due to the 
uncertainty of demands being typical for this industry, planning decisions have to be done in a 
rolling horizon manner. For this reason, all methods presented in this thesis base on a rolling 
horizon scheme. 

In the field of price-based revenue management approaches, Gallego and Van Ryzin (1994), 
Gallego et al. (2006), Gallego and Stefanescu (2009) and Gallego and Talebian (2012) investigate 
dynamic pricing problems for price-sensitive and stochastic demand. Using intensity control 
theory, bounds, and heuristics, they analyse a range of inventory pricing problems. Such 
approaches can be implemented in the demand fulfilment framework presented in Chapter 4. 
The publications of Adida and Perakis (2010) and Davizón et al. (2010) put the aforementioned 
studies in an industry context. They show that the presented approaches enable an earlier 
revenue stream for manufacturers. Applying the approaches in the semiconductor industry, 
Constantino et al. 2015 show that a joint dynamic pricing and inventory control model, like the 
one presented in Chapter 4, can reduce demand uncertainty and the bullwhip effect in supply 
chains. 

3.2 Inventory rationing 
Inventory rationing approaches model future demand as a stochastic parameter and allocate 
inventory to customers with the objective to minimise stock out cost, maximise short-term 
profits or meet service level requirements. Assuming stochastic, deterministic, or no 
replenishment lead times, inventory replenishment orders are usually part of the planning 
decision (see e.g. Ha 1997, Bassok et al. 1999, de Véricourt et al. 2002, Deshpande et al. 2003, 
Frank et al. 2003, Quante et al. 2009a, Ioannidis 2011, Pinto 2012, Chew et al. 2013, Hung and 
Hsiao 2013, Wang et al. 2013a/b, or Enders et al. 2014, Han et al. 2014, Pang et al. 2014, Wang 
and Tang 2014, or Liu et al. 2015). Samii et al. 2011 and Samii et al. 2012 study approaches 
employing nesting policies and find that nesting leads to higher service levels for high priority 
demands. Therefore, a nesting strategy is employed in the approaches presented in Chapters 6 
and 7. 

Recently, some authors have brought inventory rationing literature into the context of 
supply chain management. Chen et al. (2011) study a system of two revenue maximising 
physical retailers that serve as drop shippers for an online retailer. The publication analyses the 
value of information sharing between the retailers and shows that information sharing increases 
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the performance of the supply chain significantly. The approaches presented in this thesis 
consider ADI shared by the customers, which is typical for industrial settings. 

3.3 Due-date assignment and scheduling 
Due-date assignment and scheduling approaches quote production completion dates for 
production orders. Usually a given sequencing policy for the jobs on machines is assumed and 
the current state of the shop floor, e.g. its congestion, is considered. The publications of Cheng 
and Gupta (1989), Kaminsky and Hochbaum (2004), Gordon et al. (2012) and Janiak et al. (2015) 
provide reviews of the field. 

The vast majority of publications deals with so-called static job shop environments, in which 
all customer orders are known in advance. Hence, the studied problems are comparable to 
batch order promising cases from the demand fulfilment in APS literature (see e.g. Dumitrescu 
et al. 2014, Li et al. 2011, Steiner and Zhang 2011, Yin et al. 2014, Baker and Trietsch 2015). 

In the dynamic job shop problem, customer orders arrive within the planning horizon (see 
e.g. Moses et al. 2004, Kaminsky and Lee 2008, Lee 2010, Reindorp and Fu 2011, Slotnick 2011 
or Nguyen and Wright 2014). These problems can therefore be compared to the real-time order 
promising scenarios, this thesis is concerned with. 

Only very few publications put due date assignment and scheduling problems into a supply 
chain context. Jin et al. (2013) study a static problem consisting of one manufacturer and several 
customers where the demand quantity of the customers depends on the assigned due date. The 
objective is to maximise profit generated by exploiting heterogeneity of customers regarding 
product price and delivery time. These customer characteristics are similar to aspects described 
in Chapter 4 of this thesis. Kaminsky and Kaya (2006, 2008, 2009) look at multi-item supply 
chains consisting of one manufacturer and one or several suppliers in a stochastic environment 
with dynamic order arrivals where stocking point, stock height, online due date assignment and 
scheduling decisions have to be made simultaneously. They find that cost can be cut 
significantly in a combined MTO/MTS system, when supply chains are coordinated centrally or 
relevant information is shared between the manufacturer and the suppliers. Such environments 
are dealt with in this thesis (see e.g. Chapter 5). 

3.4 Supply chain coordination with contracts 
Contracts coordinate the material, value, and information flow in a decentrally planned supply 
chain. Cachon (2003) provides a broad overview. Tsay et al. (1999) classify contracts into eight 
categories. For this thesis, which analyses the interaction of the length of OLTs and the accuracy 
of ADI in demand fulfilment in Chapter 7, the three categories of contracts on quantity 
flexibility, allocation rules, and lead times are relevant. 

In contracts setting quantity flexibility, the maximum allowed deviation of the ADI from the 
final order of a customer and according monetary penalties are determined for different ADI 
horizons. Contracts setting minimum order lead times for customers determine the minimum 
horizon with which a customer has to place an order to its supplier. The literature in these fields 
investigates the necessary conditions for supply chain partners to conclude such contracts and 
determines the optimal behaviour of supply chain partners for a given contractual relationship 
in order to study its effects on the overall supply chain performance and the distribution of risks 
within the supply chain (Iyer and Bergen 1997; Tsay 1999; Tsay and Lovejoy 1999; Barnes-
Schuster et al. 2006; Lutze and Özer 2008; Kim 2011; Kremer and Wassenhove 2013; Kim et al. 
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2014; Knoblich et al. 2015). The publications typically assume enough supply to fulfil the total of 
the demand of the customer. 

For supply shortage situations, contracts setting the supply allocation rules, i.e. the process 
of distributing scarce supply between different customers, are needed. Publications in this field 
typically investigate the effects of such rules on their suitability to coordinate the supply chain 
efficiently by, e.g., incentivising customers to provide truthful ADI or increasing or decreasing 
overall profits, costs, stocks, and service levels (Cachon and Lariviere 1999a, 1999b; Plambeck 
and Taylor 2007; Xiao and Shi 2016; Huang et al. 2013). Many of the studied allocation rules are 
based on the customer demand forecasts. 

3.5 Supply network planning considering advance demand information 
When ADI is shared in a supply chain, customers forecast future orders to their immediate 
upstream supplier a certain time in advance of the order due date. The horizon, over which a 
customer has to provide forecasts, as well as their maximum variability, are determined in 
contracts between customers and suppliers. In the investigated system of this thesis, customers 
forecast their demands using ADI.  

The concept of ADI is introduced by Hariharan and Zipkin (1995) and Buzacott and 
Shanthikumar (1994) as an effective means to reduce uncertainty in industrial supply chains 
with exogenous and endogenous supply lead times. Most publications in this field study the 
influence of unbiased or biased ADI on the customer order decoupling point for given 
production control strategies (Karaesmen et al. 2002; Claudio and Krishnamurthy 2009; Karrer 
et al. 2012; Altendorfer and Minner 2014). Ouyang and Daganzo (2006) and Ouyang (2014) 
show that ADI can reduce, but not eliminate, demand volatility and uncertainty in supply chains. 
Therefore, it is necessary to develop operational means that exploit supply chain flexibilities to 
cope with the remaining demand uncertainty, take the heterogeneous lead times resulting from 
the ADI into account, and incentivise customers to provide unbiased ADI. Such approaches are 
presented in this thesis. 

3.6 Demand fulfilment in advanced planning systems 
The publications dealing with demand fulfilment in APS can be categorized in literature 
describing applications for homogeneous and heterogeneous customer OLTs. The former 
category can be detailed further into contributions for order promising, order re-promising, and 
their combination, so-called hybrid approaches. After giving an overview of literature dealing 
with general requirements for and applications of demand fulfilment methods (Section 3.6.1), 
the literature from each category is reviewed in Sections 3.6.2 and 3.6.3. 

3.6.1 Categorisation and conceptualisation of approaches 
Fleischmann and Geier (2012) and Kilger and Meyr (2015) give a general introduction to the 
tasks and concepts of demand fulfilment. They present models from the literature dealing with 
order promising and allocation planning. Further, the influence of the location of the customer 
order decoupling point on the demand fulfilment process is discussed. 

Ball et al. (2004) name several other dimensions and factors that affect the demand 
fulfilment process. The authors state that the robustness and accuracy of order promises, which 
is a focus of this thesis, is of high importance, especially in industrial environments. 

Pibernik (2005) proposes a theoretical framework for demand fulfilment, called advanced 
available-to-promise. The author identifies eight generic advanced available-to-promise types 
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and three additional functionalities of advanced available-to-promise approaches. Accordingly, 
the demand fulfilment methodologies presented in this thesis can be categorised as passive 
real-time multi-location approaches for finished good supply allowing partial deliveries. 

Framinan and Leisten (2010) identify order acceptance and selection, due date assignment 
and order scheduling as the main decisions of demand fulfilment. They derive eight types of 
demand fulfilment approaches, of which the methods presented in this thesis can be seen as 
Approach IV: integrated order acceptance and due date assignment. 

3.6.2 Methods for homogeneous customer order lead time environments 
Models for homogeneous customer OLT environments are divided into approaches for order 
promising, order re-promising, and hybrid methods. To structure the vast amount of literature 
presenting order promising approaches, this category is further divided into methods for MTS, 
assemble-to-order (ATO), and MTO supply chains. 

Order promising models are further divided into batch and real-time approaches. Batch 
order promising approaches imply customer prioritization possibilities and are therefore usually 
operated without preceding allocation planning. They assume that customers are willing to wait 
until they receive an order promise, because orders need to be collected over a certain amount 
of time, i.e. the batching interval. In industrial environments, however, short customer response 
time is perceived as good customer service. In such cases, real-time order promising approaches 
need to be employed, which require preceding allocation planning mechanisms. Therefore, the 
methods presented in this thesis employ allocation planning and real-time order promising 
processes. 

3.6.2.1 Allocation planning 
In practice, common allocation planning approaches still use simple business rules (Kilger and 
Meyr 2015, Cederborg and Rudberg 2009, Pibernik 2006) even though they are known to 
increase the bullwhip effect (see e.g. Bakal et al. 2011). However, many more sophisticated 
approaches can be found in the literature. Alarcón et al. (2009), Lečić-Cvetković et al. 2010, 
Babarogić et al. (2012) and Ali et al. (2014) propose procedural frameworks that include supply 
allocation and aim at maximising customer service levels or short-term profits. Other authors 
study stylised special cases using probabilistic modelling to derive algorithms (Pibernik and 
Yadav 2009) or structural characteristics of the optimal order acceptance policy (Chiang and Wu 
2011, Gao et al. 2012, Papier 2016). Many scholars present linear programming-based 
approaches in which the aim is to maximise overall profits by integrating AP with production 
planning in assemble-to-order or make-to-order environments (Ball et al. 2004, Ervolina et al. 
2009, Chen and Dong 2014, Chiang and Hsu 2014) or in make-to-stock environments (Huaili and 
Yanrong 2010, Meyr 2009, Lebreton 2015, Alemany et al. 2015). Vogel (2014) proposes a 
method for multi-stage customer hierarchies. He shows that the approach can lead to higher 
profits compared with profits achieved by an optimal central allocation approach, if demand 
forecast accuracy is very low. 

Meyr (2009) presents linear programming models for allocation planning in MTS 
environments. In a case study from the lighting industry, the approach is compared with 
conventional approaches with and without customer segmentation. The results show that 
customer segmentation and allocation planning leads to a substantial increase of profits, if 
customers are heterogeneous and the information on available supply and customer demand is 
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accurate. Another numerical finding is that the number of customer classes influences the 
performance of the approach more than the segmentation method. Parts of the presented 
demand fulfilment processes in Chapters 5 to 7 build on this work, extending and modifying the 
models presented in Meyr (2009). 

3.6.2.2 Order promising in make-to-stock supply chains 
In industrial environments, mostly rule-based MTS approaches searching through different 
dimensions of ATP like product, time, customer group, or region are used to promise orders in 
real-time (see e.g. Kilger and Meyr 2015, Pibernik 2005, Fleischmann and Geier 2012, or Ball et 
al. 2004). 

Pibernik (2005) presents a linear programming based batch order promising method. The 
model maximises profit considering revenue created through order promises, inventory holding, 
handling, and shipping costs, and penalty costs for order rejection. The publication mentions 
possible extensions for latest promising dates, multiple partial deliveries, and multiple locations. 
However, no mathematical representations of these extensions are provided. 

Jung (2010) proposes a linear programming model for batch order promising. The approach 
integrates predefined customer priorities as well as earliness and tardiness cost of order 
fulfilment. 

Meyr (2009) presents linear programming models for allocation planning and real-time order 
promising, which maximise company profits. In a numerical study, performance of the approach 
is compared to a batch order promising model without ATP allocations. The works of Yang 
(2014) and Eppler (2015) build on this publication and develop probabilistic approaches that are 
scalable to industrial problem sizes and outperform the approach presented in Meyr (2009) in 
terms of revenue. 

3.6.2.3 Order promising in assemble-to-order supply chains 
In ATO environments, the ATP information consists of supply for components that are 
assembled to finished products upon customer order arrival. Dickersbach (2009) describes a 
rule-based real-time order promising approach for material-constrained ATO environments, in 
which the availability of components is the main bottleneck for the capability of the supply 
chain to produce requested goods. When an order arrives, the availability of the needed 
components is checked separately. Afterwards, a fixed production lead time is added to the 
latest component availability date. Dickersbach reports that the approach leads to inaccurate 
delivery dates, if it is applied to complex real-world production environments. 

Cederborg and Rudberg (2009) describe the demand fulfilment process of a steel 
manufacturing company with divergent material flows. The rule based order promising 
approach is similar to that described by Dickersbach (2009). However, if upon order arrival 
certain components are not available, the standard production lead time for these components 
is used to promise the order. The authors mention that the order promising process has to take 
dynamic routing decisions into account. However, the meaning of this term remains unclear. 
Additionally, no quantitative results are presented in the publication. 

Tsai and Wang (2009) present a three stage mixed integer linear programming model for 
batch order promising. In the first step, orders are assigned to assembly plants on basis of 
coarse availability information per plant. In the second step, fine grain planning determines the 
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order promises for every plant individually. Orders that cannot be satisfied in the second step 
are assigned to other plants in the third step. 

Lin et al. (2010) suggest a batch order promising model for the TFT-LCD manufacturing 
industry that takes customer individual profits as well as capacity and material constraints of 
production sites into account. Gössinger and Kalkowski (2015) present a similar approach that 
aims at providing profitable and reliable delivery date promises by making use of three 
preventive measures. The approach is validated using a case from the customized leisure 
products industry. 

3.6.2.4 Order promising in make-to-order supply chains 
In MTO environments, production is only started after the customers submitted their orders. 
The ATP information therefore usually consists of data on material and capacity availability. 
Jeong et al. (2002) propose a greedy algorithm for batch order promising in the electronics 
industry. The approach promises orders based on finished product supply in distribution centres 
as well as idle capacities in the shop floor, which are derived from the current master 
production schedule. In the batch, orders are prioritized based on their arrival time, order 
quantity, tightness of due date and customer priority. 

Dickersbach (2009) describes two real-time order promising methods for solely capacity-
constrained cases. The approaches use the supply network planning process to promise orders. 
The order delivery dates are derived by inserting the newly arrived order into the existing 
production schedule. Thereby, promised dates of already promised orders must not be violated 
but their capacity consumptions can be rearranged. In the literature, such approaches, which 
use the supply network planning process to promise orders, are also called capable-to-promise 
(CTP). Dickersbach states that such approaches can cause scattered capacity loading. Therefore, 
they require frequent demand supply matching processes that optimise capacity utilisation. 
Such frequent re-planning activities are also employed in the methods presented in Chapters 4 
and 5. 

Moses et al. (2004) develop a CTP approach that reflects the variance of production lead 
times for individual orders. In a numerical study, the robustness of the calculated order 
promises is measured in terms of order tardiness and absolute lateness. Rabbani et al. (2014) 
develop a genetic algorithm for integrated order promising and scheduling in a multi-machine 
flow shop production environment. Jung (2012) suggests a fuzzy linear programming solution 
calculating delivery dates which are sent to the customers for negotiation. Brahimi et al. (2014) 
propose two heuristics for a mixed integer linear programming approach for integrated 
production planning and order acceptance decisions for order batches. Yang and Fung (2014) 
present two order promising solutions integrating order acceptance, due date assignment and 
order scheduling in a multi-site supply chain. 

3.6.2.5 Order re-promising 
Fleischmann and Meyr (2004) present basic linear programming models for order re-promising 
in MTS, ATO, and MTO environments. They also describe several extensions for shortage 
planning. 

For a case of a mobile phone manufacturer, Klein (2009) proposes a mixed integer linear 
programming model for an ATO environment. The model decides which orders are not 



 

41 
 

produced in case of a shortage situation. The approach penalises due date violations. 
Interdependencies with the order promising process are not investigated. 

3.6.2.6 Hybrid order promising approaches 
Ball et al. (2004) describe a hybrid order promising process for the ATO case on the example of 
the computer manufacturer Dell. Upon customer order arrival, a coarse online promise with a 
preliminary delivery date is given. These initial order promises are refined in a batch re-
promising process about 14 days after order reception. The refined order promise can deviate 
from the initial promise. No mathematical model of the approach is presented. 

Geier (2014) develops another hybrid order promising approach for another ATO case from 
the computer industry. The presented solution takes substitution of components and alternate 
sourcing as shortage planning approaches into account. It is shown that problems of realistic 
size can be solved with mixed integer linear programming approaches. The publication is the 
only one investigating the interactions between real-time order promising and re-promising. 

3.6.3 Approaches for heterogeneous customer order lead time environments 
Building on previous research published in Chen et al. (2001), Chen et al. (2002), and Ball et al. 
2003, Zhao et al. (2005) present an optimisation model for a batch order promising case from 
the electronic product manufacturer Toshiba. The order promising horizon is divided into three 
partitions, in each of which different ATP information is used to calculate order promises. In the 
near-term, incoming orders are promised on finished product ATP quantities. In the mid-term, 
order promises are calculated on the basis of component and capacity ATP. In the long-term, 
only capacity ATP is used. The publications are the only contributions describing a partitioned 
order promising process, i.e. order promising in an environment with heterogeneous customer 
OLTs. 

Kaminsky and Kaya (2008, 2009) investigate multi-item supply chains in a stochastic 
environment with dynamic order arrivals. They find that cost can be cut significantly when MTO 
and MTS systems are combined and relevant information is shared between supply chain 
partners. 

3.7 Delimitation of this thesis from the existing literature 
The above literature review shows that there is a vast number of contributions, which applies 
concepts from manifold disciplines in the individual processes described in Section 1.2. 
However, so far a supply chain planning framework that combines the different aspects 
addressed, balances demand and supply, and increases demand fulfilment robustness and 
accuracy using the different ideas from all mentioned literature streams, is missing. In Chapter 
4, this gap is filled through the proposal of such a framework. It provides a coherent structure 
for the above-mentioned literature, as well as an instrument that facilitates the implementation 
of current research and the identification of future research directions. By aligning the planning 
objectives of the different supply chain planning processes and exploiting newly available data, 
the framework improves demand fulfilment performance of industrial supply chains. 

Revenue management (see Section 3.1) and inventory rationing (see Section 3.2) 
methodologies typically include supply replenishment decisions into their allocation of 
availabilities. As described in Section 1.2, this thesis investigates common industrial 
environments, in which the planning hierarchy separates supply decisions from allocation 
decisions. In this context, allocation decisions have to be made based on exogenously given ATP 
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supply. Moreover, revenue management and inventory rationing approaches differ from the 
methods presented in this thesis in terms of the type of resources, which are considered in the 
planning decision. While revenue management approaches allocate perishable availabilities, i.e. 
production capacities, to different customer classes, inventory rationing methodologies usually 
distribute durable resources, i.e. finished products. This thesis, in contrast, considers both 
durable and perishable resources (see Chapter 5). 

Another, differentiating factor is that revenue management and inventory rationing 
methodologies usually assume stochastic demand. This requires the knowledge of the 
probability distribution functions of future demand, which is usually not the case in industrial 
environments because the planning tools used do not support the derivation of probability 
functions but use internal or external demand forecasts in demand fulfilment typically coming 
from sales and marketing functions or customers. Quante et al. (2009a) find that their stochastic 
approach outperforms deterministic optimisation methods, like the ones presented in this 
thesis, for high demand forecast errors. However, the presented solution is not scalable and 
cannot be applied to larger problem sizes often found in industrial practice. 

Due date assignment and scheduling (see Section 3.3) approaches mainly focus on 
scheduling a given or uncertain amount of production orders on production resources on the 
shop floor level. This thesis, however, deals with problem settings on a supply chain-wide level. 
Further, customer prioritization and reservation of capacities for future order arrivals are 
typically not discussed in this field. 

Most of the reviewed publications on customer contracting aim at coordinating the supply 
chain globally by using game theoretical approaches. Apart from the work on allocation rules, 
the previous research focuses on dyadic contractual relationships between a supplier and a 
customer, for which it is decided which contract terms to include and how to set them. The 
same contract terms apply to all customers. An exception is Barnes-Schuster et al. (2006), who 
determine order lead times for multiple customers minimising global supply chain cost. 
However, it is assumed that the supplier can always fulfil the total demand of customers within 
the contractual order lead time. Furthermore, the exchange of ADI is not considered in the 
publication. In general, the effects of allocation rules, ADI terms, and order lead time contracts 
have been addressed, but only separately, neglecting their interactions in the structure and 
dynamics of the demand fulfilment process. Moreover, the stylized analyses do not reflect the 
structure and dynamics of the demand fulfilment process. This, however, is necessary to 
investigate the interaction of ADI and OLTs on the demand fulfilment performance in supply 
shortage situations. The research presented in this thesis, in contrast, takes the perspective of 
the supplier. It aims at drawing conclusions on how a supplier should design the entire portfolio 
of contracts of all customers, in which the terms may be different for different customers. The 
implications of different contractual designs are investigated in the dynamic context of a new 
demand fulfilment approach, designed to be incorporated in the structure of industrial planning 
environments (see Chapter 7). 

This thesis differs from the reviewed literature on supply network planning considering ADI 
(see Section 3.5) because it investigates the influence of the design of contract portfolios 
determining order lead times and ADI on the supply chain performance for a given customer 
order decoupling point and demand fulfilment process. The relevant supply chain planning 
decision considering ADI is not the supply network planning strategy, i.e. the decision between 
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MTS, ATO, or MTO, but the distribution of scarce supply to customers considering the 
relationship of OLT and ADI in the set of customers (see Chapter 7). 

The majority of existing publications on demand fulfilment in APS (see Section 3.6) presents 
models for homogeneous customer OLTs. Only the publications of Zhao et al. (2005) and 
Kaminsky and Kaya (2008, 2009) study environments with heterogeneous customer OLTs. The 
approach presented in Zhao et al. (2005) shows similarities to the one presented in Chapter 5, 
since it considers heterogeneous customer OLTs. Moreover, supply chain flexibilities can be 
exploited in the mid- and long-term horizons, but for short-term customer orders order 
promises are calculated based on a fixed finished product production plan. Also, the ATP type 
used for the mid-term planning horizon shows similarities to the cumulated ATP (CATP) 
presented in Chapter 5. However, Zhao et al. (2005) only mention the usage, but do not show 
how to generate their mid-term ATP. Also, it remains unclear how this ATP type is consumed 
when orders are promised. Therefore, this thesis is so far the only one showing how to calculate 
ATP information that can be used to exploit supply chain flexibilities. Furthermore, the lengths 
of the partitions of the order promising horizon are fixed in Zhao et al. (2005). The approach 
presented in Chapter 5 uses product individual production cycle times in order to reflect the 
reality of different cycle times of different products. Additionally, instead of using three 
different types of ATP and order promising models in a partitioned planning horizon, the 
approach presented in Chapter 5 only uses one type of ATP and one promising model. The 
approach is therefore of higher practical usability. 

Solely the work of Geier (2014) considers the robustness of given order promises and 
penalises updates of order promises in the order re-promising step. Means to increase the 
robustness of order promises using the real-time order promising process are not addressed. 
Therefore, the approach does not increase the accuracy of order promises. Chapter 5 fills this 
research gap by presenting an order promising approach that increases the accuracy and 
robustness of order promises by making use of ATP information that considers supply chain 
flexibilities. 

CTP approaches for demand fulfilment are reported to perform poorly in complex industrial 
environments (see e.g. Dickersbach 2009 or Quante et al. 2009b). Their order promises are 
either unreliable because the aggregation level used for the planning parameters is too high, or 
their computation times are prohibitively long when planning is done on a more detailed level. 
Batch order promising approaches lead to scattered production schedules that necessitate 
regular order re-promising (see Dickersbach 2009). They are computationally expensive and of 
myopic nature since they do not take future orders into account (see Pibernik 2005). They also 
assume that customers are willing to wait until orders promised, because orders need to be 
collected into batches over a certain amount of time, i.e. the batching interval. In industrial 
environments, this is often not the case since short customer response time is perceived as 
good customer service. In such cases, real-time order promising approaches are needed, which 
are investigated in this thesis. 

Framinan and Leisten (2010) mention five flexibilities that can be exploited when it is not 
possible to fulfil orders according to the original request. With product (substitution) flexibility, 
the supplier can ship substitute products as an alternative to the originally ordered product. 
Volume flexibility provides the possibility to fulfil orders by partial shipments. Delivery flexibility 
enables postponement of the order due date. Resource flexibility allows the use of alternative 
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sources for one demand, e.g. finished goods inventories or manufacturing capacities. When 
price flexibility exists, the supplier is able to charge a higher price to make order acceptance 
profitable. This thesis, in contrast, identifies two new supply chain flexibilities that can be 
exploited in demand fulfilment. Here, product flexibility is defined as the possibility to produce 
different products from one intermediate product or raw material and process flexibility is the 
possibility to use one process for the production of different products. 

Although Chiang and Hsu (2014) mention the use of order behaviour information in demand 
fulfilment, none of the mentioned demand fulfilment approaches consider the accuracy of ADI 
provided by customers or the customer OLT in their planning models. Furthermore, all reviewed 
demand fulfilment publications allocate supply to customer segments in a mid-term rolling 
horizon fashion. In contrast to that, the allocation planning approaches presented in Chapter 6 
and 7 explicitly use ADI bias and OLT data as two examples of order behaviour information and 
allocate supply to individual customers in a short-term rolling horizon manner. 

Finally, Papier (2016) shows that the usage of ADI in allocation planning to different markets 
can increase the expected profit significantly. In contrast to the methods presented in this 
thesis, re-allocation of supply is not possible in the approach. Furthermore, as in this thesis 
supply is allocated to individual customers, the approaches are designed for a different level of 
aggregation. 
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4 A data driven framework for robust and accurate demand fulfilment 
 

This chapter bases on 
 

Seitz, A., Ehm, H., Akkerman, R., Osman, S., 2016a. 
A robust supply chain planning framework for revenue management in the semiconductor 

industry. 
Journal of Revenue and Pricing Management, 15(6), 523-533. 

 
In this chapter, a data driven framework for robust and accurate demand fulfilment in industrial 
environments is presented. It consists of robust and flexible solutions for demand steering and 
dynamic pricing, extending current industry practice in several aspects. The concept of 
availabilities and capabilities (A&C), as well as various planning processes and process enablers 
are introduced. The framework is developed on the example of the semiconductor industry, in 
which high demand uncertainties, long production lead times and short product life cycles cause 
high risks for supply chain planning. Such characteristics can be found in various other industrial 
environments. Hence, even though it is developed for the semiconductor industry, the 
framework can be applied in many other manufacturing industries as well. Based on the 
framework, directions for future research are highlighted. 

In the following, Section 4.1 gives an overview of the challenges for supply chain planning in 
the semiconductor industry. Sections 4.2 to 4.6 describe the framework in detail and contrast it 
with current best practices in the semiconductor industry. Sections 4.7 and 4.8 discuss future 
research directions based on the framework and present conclusions, respectively. 

4.1 Consequences of operational inflexibility in volatile markets 
To remain competitive in the global markets of today, companies continue to specialize on their 
core competencies. Consequently, the number of partners interacting in global supply chains 
and the complexity of company networks rise constantly. Therefore, supply chains become 
increasingly sensitive to disturbances caused by the manifold interactions between their 
entities. Human- as well as system-caused misalignments lead to distortions in forecasts and 
order management processes. In the semiconductor industry one of these distortions, the so-
called bullwhip effect (see e.g. Lee et al. 2004), causes severe amplifications of demand signals 
in the supply chain. For example, the global semiconductor market without memory and 
microprocessors shrank by almost 40% in 2009 while it grew over 40% in 2010 (WSTS Inc. 2015). 
Similar distortions are to be expected in the future as well. Since semiconductors are present in 
almost all products used by industrial and end customers, the bullwhip effect therefore poses a 
significant problem of modern society. Other challenges for the industry are very short 
customer OLTs (the time interval between order entry and requested delivery date) and low 
accuracy of the ADI, i.e. demand forecasts, provided by customers. 

However, the operational flexibilities of semiconductor manufacturers to react to such 
uncertainties are limited. On the one hand, long production cycle times of up to five months 
force manufacturers to start production long before their customers place their orders. On the 
other hand, due to the well-known Moore’s law (see e.g. Moore 1965 or Bergeron 2008), 
innovation is fast. In consequence, life cycles of semiconductor products are short and, hence, 
the risk of obsolescence of stocks is high. Thus the possibilities for semiconductor manufactu- 
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Figure 3: Data driven supply chain planning framework 

rers to adapt production volumes or buffer stocks to react to short term demand changes are 
limited. Furthermore, since the economic cycles are becoming shorter, periods of supply 
shortage and high excess supply are not only more severe but also appear more frequently. To 
keep utilizing capacity in a profitable way, semiconductor companies have started to exploit 
new ways to balance demand and supply by using ideas from various scientific literature 
streams such as revenue management, inventory rationing, and demand fulfilment in APS. 

In this chapter, a framework for robust and accurate supply chain planning in the 
semiconductor industry is presented. The basic idea of the approach, employing robust and 
flexible solutions, is twofold. First, it aims to even out demand maxima and minima, steer 
demand to otherwise unused capacities, and fulfil unforeseen short term demands by means of 
business cycle anticipation, supply chain resource adaptation, supply allocation, as well as 
dynamic pricing processes. Second, it aims to maximise revenue and build financial capabilities 
to maintain higher operational buffers leading to higher customer service through differentiated 
pricing for urgent orders. The framework outlines the current best practice in supply chain 
planning for the semiconductor industry while also being the first to apply robust revenue 
management in manufacturing practice. 

4.2 Supply Chain Planning Framework For Dynamic Pricing And Demand Steering 
Figure 3 shows the framework. It consists of:  

 a tactical planning cycle (business cycle anticipation and resource adaptation), 

 an operational planning cycle (A&C computation and A&C allocation),  

 five real-time demand fulfilment processes (order reception, liability check, A&C 
consumption, dynamic pricing, and order confirmation), as well as  
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 three process enablers (a machine readable contract database, automated forecast accuracy 
measurement, and OLT measurement).  
Following traditional order management concepts such as ATP and CTP (see e.g. Pibernik 

2005), availabilities are defined as current inventories and future production that is planned 
based on demand information consisting of current orders on hand as well as company internal 
and customer demand forecasts. Similarly, capabilities are defined as possible production 
quantities that can be realised with idle resources in the current master production plan if 
demand can be generated. Note that capabilities are not produced if order management 
processes do not generate demand for them. 

In the following, each of the elements of the framework, their interactions, and their main 
contributions to best practice in the semiconductor industry are described in detail. 

4.3 Process Enablers 
The framework contains three process enablers that are a novelty in industry practice. The 
contract database contains demand fulfilment-relevant information from supply agreements 
between the company and its customers in machine readable form. In current industry practice 
companies usually define the terms and conditions of doing business with each of their 
customers by means of such contracts. However, the information contained in these contracts is 
not maintained in a way that it can be used for automated demand fulfilment processes. In the 
framework, information from this database is used in the processes business cycle anticipation, 
A&C computation, A&C allocation, liability check, and dynamic pricing. 

The purpose of the forecast accuracy measurement is to measure and statistically analyse 

the historical accuracy 𝑎𝑐𝑐𝑖ℎ
𝑓𝑐

 of demand forecasts, i.e. ADI, provided by customer 𝑖 depending 

on the horizon ℎ between forecast entry and forecasted demand due date. For the calculation 

of 𝑎𝑐𝑐𝑖ℎ
𝑓𝑐

, Equation (37) can be used, in which 𝑒𝑟𝑟𝑖ℎ
𝑓𝑐

 is defined as the historical forecast error of 

customer 𝑖 for horizon ℎ. For the calculation of 𝑒𝑟𝑟𝑖ℎ
𝑓𝑐

, SMAPE (see e.g. Armstrong 1985 or Ott et 

al. 2013) is used, which is defined in Equation (38). Here, 𝑓𝑖𝑡𝜏
ℎ𝑖𝑠𝑡  is the forecasted order quantity 

provided by customer 𝑖 in period 𝑡 with requested delivery date in period 𝜏, 𝑞𝑖𝜏 is the realised 

order quantity received from customer 𝑖 with requested delivery date in period 𝜏, and 𝑇ℎ𝑖𝑠𝑡 is 
the number of observed time periods. 

 

𝑎𝑐𝑐𝑖ℎ
𝑓𝑐

= (1 − 𝑒𝑟𝑟𝑖ℎ
𝑓𝑐

)   (37) 

𝑒𝑟𝑟𝑖ℎ
𝑓𝑐

=
∑ |𝑓𝑖(𝜏−ℎ)𝜏

ℎ𝑖𝑠𝑡  −𝑞𝑖𝜏|𝑇ℎ𝑖𝑠𝑡
𝜏=1

∑ (𝑓𝑖(𝜏−ℎ)𝜏
ℎ𝑖𝑠𝑡 +𝑞𝑖𝜏)𝑇ℎ𝑖𝑠𝑡

𝜏=1

  (38) 
 

 
The OLT measurement provides statistics on the historical customer OLT, i.e. the historical 
difference between order entry and requested delivery dates. To identify the distribution of 
OLTs, the Kolmogorov-Smirnov test (Massey 1951) or the Anderson-Darling test (Anderson and 
Darling 1954) are used. 

In other words, the forecast accuracy measurement and OLT measurement processes 
quantify the uncertainty of customer demands. The measurements are done on final product 
level. Data from both enablers is used in the A&C allocation process, whereas only the data 
from OLT measurement is used in the dynamic pricing process. 
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4.4 Tactical planning cycle 
The purpose of the two tactical planning processes (business cycle anticipation and resource 
adaptation) is to forecast future customer demand for the mid- and long-term horizon, and to 
adapt production resources accordingly. These semi-automated processes require decision-
making on higher management levels and provide necessary inputs for the subsequent 
processes in the framework. The forecasting of future demand is based on external and internal 
sources. External sources are e.g. predictions of the economic cycle of public or private research 
institutes, press releases of competitors and companies in related industries, and political and 
economic coverage in media. Internally, classical sources like reporting from operations, sales, 
and marketing, but also novel approaches like crowd opinion or cloud data analysis are used. 
Production resources are adapted on basis of the demand forecasts resulting from business 
cycle adaptation. The biggest challenges in these processes are to align all planning dimensions 
(i.e. demand, revenue, capacity, and production volumes) and to shorten the planning processes 
to enable shorter planning cycles. These shorter cycles are needed to cope with the increasing 
volatility of market environments and enable faster adaptation of resources. Furthermore, it is 
important to enable decision-making on aggregated planning levels while disaggregation of 
resulting decisions has to be automated. Here, the key is to identify aggregation levels that 
enable precise decision-making, while at the same time allowing a global view on the decision 
problem. Performance indicators used to measure the quality of tactical planning processes are, 
amongst others, the resulting forecast errors in terms of demands and revenues, as well as 
resource utilization and work-in-progress in manufacturing sites. 

Note that business cycle anticipation and resource adaptation are processes aiming at 
stability, i.e. constant utilization of supply chain resources during the entire economic cycle. 
However, due to the aforementioned short-term and mid-term demand uncertainties, long 
production lead times, long resource ramp-up times, and high investment cost for production 
equipment in the semiconductor industry, it is usually not possible to fully adapt production 
resources to demand. Consequently, periods of resource shortage and excess appear even 
though the above described processes are implemented and run effectively. These risks need to 
be mitigated with robust and flexible planning processes on the operational level, which are 
described below. 

Additionally, although business cycle anticipation and resource adaptation are current 
practice, the systematic usage of cloud data, crowd opinion techniques, and contractual data in 
business cycle anticipation is novel in the industry.  

4.5 Operational planning cycle 
A&C computation generates the A&Cs (whose sum is called supply in the remainder) that serve 
as input for the processes A&C allocation and A&C consumption. Standard supply chain planning 
tools and functionalities are used. First, short- and mid-term demand data is booked into supply 
chain resources to generate availabilities. Afterwards, to generate capabilities for periods, in 
which idle capacities occur, the demand information is inflated and the delta is booked into 
remaining idle capacities until capacity utilization reaches a target limit. In time periods where 
the capacity is too small to serve all forecasted demand, information from the contract 
database is used to prioritize demand that the company is obliged to fulfil. A utilization target 
rather than revenue target is employed for two reasons. First, production resources in the 
semiconductor industry are highly capital intensive and often a constraining factor for demand 
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fulfilment. Therefore, the utilization of capacities is a key driver of profitability in this industry. 
Second, due to the dynamic pricing process described below, the revenue that will be generated 
from the creation of capabilities is hard to predict. 

The resulting supply is assigned to the most profitable and strategically important customers 
in the A&C allocation process. Supply is allocated respecting contractual obligations to the 
customer, urgent supply needs due to line down threats at customer sites, strategic minimum 
service levels for customer groups, firm and already committed customer orders on hand, as 
well as individual customers and total supply available. Furthermore, the allocation fulfils 
internal demand forecasts and ADI from the customer using target service levels for customer 
groups and individual customers. The ADI is discounted by the historical bias of the customer 
demand, which is calculated in the forecast accuracy measurement process. In other words, 
customer forecast biases stemming from gaming behaviour or systematic differences in the 
planning systems of customers and the company are eliminated. Customer forecasts are 
discarded in case their remaining forecast lead time, calculated by the difference of the 
forecasted delivery date and the current date, is less than the 5% percentile of the OLT 
distribution of the respective customer, which is calculated in the OLT measurement process.  

Additionally, product substitution to increase service levels is considered in the A&C 
allocation process. Supply exceeding demand forecasts on the individual customer or customer 
group level is made available to all customers in a customer group or all customers, respectively. 
By regularly rerunning the A&C allocation process, the allocated quantities are continuously 
revised to minimise the risk to reserve supply for possible customer demand that is not likely to 
be realised while incoming orders of other customer groups have to be declined because their 
allocated quantities are used up. 

The operational planning cycle aims to ensure plan stability by calculating the maximum 
output (in terms of A&C) of the supply chain and constantly allocating this supply to customer 
groups and individual customers under consideration of contractual obligations and demand 
uncertainties. Thereby, robustness is achieved by minimising the risk of having to change 
confirmations of already accepted customer orders. Simultaneously, the generation of 
capabilities enables flexible demand steering processes in real-time demand fulfilment (see next 
section). This, as well as the usage of contractual information, forecast accuracy, and OLT 
information in A&C computation and allocation, extends current best practices in the industry. 

4.6 Real-time demand fulfilment processes 
The real-time demand fulfilment processes order reception, liability check, A&C consumption, 
dynamic pricing, and order confirmation are performed every time an order arrives. First, the 
new order is checked for contract liability. For this, agreements on minimum OLTs as well as 
minimum and maximum order quantities are retrieved from the contract database. Afterwards, 
the order is sent to the A&C consumption process which calculates the earliest possible delivery 
date, disregarding the result of the liability check, using standard order promising functionalities 
(see e.g. Kilger and Meyr 2015). Thereby, the allocations established by the A&C allocation 
process are respected. 

Note that it is always possible to promise an order with its contractually binding minimum 
OLT and maximum order quantity since contract information is used in the resource adaptation, 
A&C computation, and A&C allocation processes.  
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Figure 4: Dynamic pricing approach and order confirmation processes 

The subsequent dynamic pricing and order confirmation processes are shown in Figure 4. If the 
order is liable, the order is confirmed at its requested date with the product price contractually 
agreed on. Otherwise, if a confirmation earlier than the contractually binding delivery date is 
possible, two offers are made to the customer. One contains the earliest possible delivery date 
calculated by the A&C process. The other contains the contractually binding delivery date and 
quantity retrieved from the contract database. For the first offer, a price higher than the one 
contractually agreed on is charged. This price depends on the price-sensitivity and the strategic 
importance of the customer as well as the consumption status of supply and the opportunity 
cost for consuming supply that could otherwise be used for potentially later incoming orders of 
more profitable customers. The price of the second offer is the price contractually agreed on. 
The price of the first offer is supposed to either increase the revenue in the period of the 
delivery date calculated by A&C consumption or, in case supply in this time period is scarce, 
steer the demand to the contractually binding time period. In case it is not possible to confirm 
the order earlier than at the contractually binding delivery date, the order is confirmed with its 
agreed minimum OLT and price.  

The real-time demand fulfilment processes are flexible processes since they steer demand to 
time periods of low resource utilization, if it does not have to be fulfilled at its requested date 
because of contractual obligations. Thereby, contractual agreements as well as already 
accepted customer confirmations are taken into account so that robustness of the approach is 
ensured. Additionally, the flexible dynamic pricing process creates additive revenues enabling 
the company to hold higher buffers in the supply chain and hence provide better service to the 
customers.  

Note that in current industry practice, orders are normally promised to the requested or 
otherwise earliest delivery date possible. Contractual liability of the incoming order is usually 
not taken into consideration. Therefore, dynamic pricing of orders lying outside of contractual 
agreements is not possible, which is another aspect in the framework that surpasses current 
industry practice. 
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4.7 Future Research Directions 
Based on the framework, many directions for future research can be identified. First of all, the 
existence of the bullwhip effect as well as the mentioned demand uncertainties in current 
practice show that new and better forecast and optimisation methods are necessary in the 
business cycle anticipation process of the framework. The mentioned sources of information for 
this process are a first step towards their development. 

Moreover, today, human planners and automated planning processes are mainly working 
towards local optima for the part of the supply chain or customer segment they are responsible 
for. This leads to sub-optimal results regarding the performance of the global supply chain. 
However, changing the focus of planning activities from local to global optimisation is a 
challenging task. For example, in the A&C computation process, human planners and planning 
processes should work towards global service level and revenue optimisation considering all 
customers rather than optimising the utilization of supply chain resources as a main goal. 
Similarly, all processes of the framework should be oriented towards the ultimate goal to fulfil 
customer requirements as well as possible while increasing revenues. Establishing the necessary 
transparency, suitable performance indicators, and tools are interesting fields of research. 
Simulation techniques combining discrete-event and agent-based modelling, which have 
recently found their way into semiconductor supply chain management, could help to achieve 
this goal since they are capable of modelling system as well as human behaviour. Furthermore, 
a high effort to train human planners must be made to achieve the required robustness in 
supply chain planning.  

Additionally, the tactical processes business cycle anticipation and resource adaptation are 
currently predominantly done manually. Automated decision support systems for these 
processes would increase their efficiency and transparency substantially. However, in these 
decision processes, a multitude of quantitative and qualitative measures, including the gut 
feeling of experienced planners and managers, have to be taken into account. Tools of cloud 
data analysis, crowd opinion, and big data analysis are promising technologies to drive 
automation in these fields.  

Also, no supply allocation mechanism fulfilling all mentioned requirements has so far been 
developed. The main challenge here is to develop an approach that considers demand 
uncertainty and can be integrated into industry-typical APS, which usually consider demand 
forecasts to be deterministic. For this, forecast accuracy and OLT measurement need to be 
established and made compatible with industry-typical IT tools. Such approaches are developed 
in Chapters 6 and 7. 

A rather managerial challenge is to establish machine-readable contract databases and 
integrate them into current ERP systems. The high efforts of establishing and maintaining such a 
database makes organizations reluctant to implement such a solution. 

Finally, a method implementing the shown dynamic pricing and order confirmation process 
has to be developed. The challenge is to find industry-suitable models for customer price 
sensitivity as well as opportunity cost representations for supply consumption. 

4.8 Conclusion 
In the semiconductor industry, human- as well as system-caused misalignments across the 
supply chain lead to severe demand uncertainties that have to be dealt with in the supply chain 
planning processes of a company. In this chapter, revenue management ideas from the service 
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industries are transferred to the semiconductor industry by proposing a data driven supply 
chain planning framework supporting improved demand management. The framework was 
developed for a large European semiconductor manufacturer who currently establishes 
methodologies, algorithms, and processes to implement the framework in its own planning 
landscape. 

The framework aims at robustness by minimising the risk of supply shortage and idle 
resources by improving the quality of short-, mid- and long-term demand forecasts and 
adapting and allocating supply chain resources accordingly. This is mainly reflected in the 
processes of business cycle anticipation, resource adaptation, A&C computation, A&C 
allocation, OLT, and forecast accuracy measurement.  

The framework aims at flexibility by steering incoming demand with uncertain OLTs and 
order quantities to the most profitable point in time while at the same time mitigating the 
bullwhip effect. These aspects are mainly covered in the processes of order reception, liability 
check, A&C consumption, dynamic pricing, and order confirmation. 

Many of the elements presented in the framework surpass current best practices in the 
industry. Firstly, the concept of computing capabilities, i.e. possible production quantities that 
can be realised with idle resources in the current master production plan, if demand can be 
generated, and considering them in a continuous allocation process is not part of current 
practice. Furthermore, the idea of continuous allocation of supply for demand steering and 
smoothing purposes considering contractual obligations, forecast accuracy, and OLT statistics as 
well as the processes liability check and dynamic pricing are novelties in the semiconductor 
industry. 

The bullwhip effect is one of the main challenges in supply chain management, and has been 
extensively studied for many years. Despite this, it has not been significantly reduced yet. 
Changing human behaviour to overcome it is difficult since it requires collaboration over the 
whole supply chain. The framework presented in this chapter is a first promising step towards 
mitigation of demand fluctuations in semiconductor supply chains. 

Revenue management has been applied in the service industry for decades. However, the 
semiconductor and other business-to-business industries did not manage to transfer these ideas 
into their supply chain planning in the past. Now the introduction of revenue management can 
be successful due to three reasons: First, new data analysis, automation, and simulation 
techniques enable manufacturing companies to implement the complex processes necessary for 
revenue management in their business environments. Second, the high and further rising 
penetration of the modern society with semiconductor products empowers producers to 
enforce revenue management ideas, like dynamic pricing, in their business models. Third, the 
increasing pressure towards operational excellence has changed the mind-set of important 
decision-makers in the industry, which have traditionally been sceptical towards revenue 
management ideas. The semiconductor industry, and respectively industries consuming 
semiconductors, could be at the forefront of this move. 
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5 Increasing robustness and accuracy of demand fulfilment 
 

This chapter bases on 
 

Seitz, A., Grunow, M., 2017.  
Increasing accuracy and robustness of order promises.  

International Journal of Production Research, 55(3), 656-670. 
 

Accurate order promising is a key requirement for customer satisfaction. Nevertheless, 
practitioners struggle with the reliability of the delivery dates they promise to customers. 
Consequently, the costs of demand fulfilment soar due to intensified communication, 
emergency processes in logistics and acquisition of costly external production resources. 

Product and process flexibilities in supply chains that can be exploited in supply network 
planning are identified and formalized. Product flexibility is the possibility to produce several 
kinds of products from one predecessor product. Process flexibility is the possibility to use one 
production process to manufacture several products. In order to increase the accuracy and 
robustness of delivery dates, an order promising methodology able to deal with demand mix 
uncertainty and heterogeneous customer OLTs is developed. The approach anticipates changes 
in master production schedules made possible by product and process flexibilities. 

A numerical study based on a case from the semiconductor industry demonstrates that the 
method increases the accuracy and robustness of order promises. For the studied case the 
consideration of process flexibility is more important for the generation of accurate and robust 
order promises than the consideration of product flexibility. 

In the following, Section 5.1 introduces the problem of inaccurate order promises due to 
demand uncertainty caused changes in the master production schedule and illustrates the 
scientific contributions of the work presented in this chapter. Section 5.2 describes the planning 
environment. Section 5.3 and Section 5.4 explain the methodology and provide an illustrative 
example. Section 5.5 presents the framework and experimental design of the numerical study. 
The results are presented in Section 5.6, before Section 5.7 concludes the chapter. 

5.1 Demand uncertainty caused changes of the master production schedule 
Order promising as part of the order management of a company is known to be a key process 
for achieving long term business success (see e.g. Chen et al. 2002). Kilger and Meyr (2015) 
point out that customer retention and increase of market share strongly depend on the speed 
and reliability of the order promising process of a company. Furthermore, according to Oracle 
and Capgemini (2013) promising reliable delivery dates to the customer becomes more 
challenging. The complexity of global supply chains and the increase of order channels make 
companies face growing uncertainties in supply and demand. The study reveals that 42% of 
manufacturing and high-tech companies view accurately promising delivery dates as the main 
challenge in maintaining customer satisfaction. Additionally, Oracle and Capgemini (2013) show 
that inaccurate order promising is one of the main cost drivers for demand fulfilment since it 
causes additional efforts such as buying in costly external production resources in the short 
term, triggering emergency processes in logistics or intensifying communication with suppliers 
and customers in order to meet the promised delivery dates. Additionally, sales are lost because 
the employed order promising process is unable to anticipate possible changes in the master 
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production schedule occurring after order arrival and therefore promises orders too late, i.e. 
after the earliest feasible delivery date. Thus, potential revenues are oftentimes not realised 
because customers cancel or do not place their orders in consequence of the late promise. 

Changes of the master production schedule occur because the demand information used for 
supply network planning contains two types of uncertainty. First, demand forecasts are 
uncertain regarding volumes. Second, demand forecasts are uncertain regarding the proportion 
of the individual products in the demand mix. The sales department usually forecasts demands 
on the level of aggregate product families. However, production is planned on finished product 
level. Demand forecasts therefore have to be disaggregated for supply network planning. The 
rules used for this disaggregation usually build on ADI (see e.g. Hariharan and Zipkin 1995) and 
assumptions on how the forecast will realise on finished product level. The disaggregation 
obviously includes a second type of uncertainty, which is called demand mix uncertainty. It is 
defined as the uncertainty of the demand forecast with regards to the ratio of the individual 
product volumes, when the total demand of the product family is given. If realised orders 
deviate from the forecasted demand mix, the supply network planning process exploits 
flexibilities in the supply chain, i.e. product and process flexibilities, to change the master 
production schedule and to meet requested delivery dates of the customers. Mitigating the 
uncertainty regarding demand volumes on product family level is typically not within the scope 
of demand fulfilment approaches, but has to be dealt with in preceding processes. Therefore, 
the work focusses on demand mix uncertainty.  

In order to increase the accuracy and robustness of order promises, supply chain flexibilities 
must be reflected in the order promising process. Otherwise the promised delivery date will be 
later than possible, increasing the risk for lost sales. In this chapter, a new method is presented 
that anticipates changes in the master production schedule using rules that consider product 
and process flexibilities of the supply chain. The approach increases the accuracy of order 
promises by reducing the amount of orders initially promised too late. At the same time, the 
approach increases the robustness of order promises by raising the amount of orders, whose 
initially promised delivery date is not changed throughout the demand fulfilment process. 

The method is designed for supply chains with divergent material flows, flexible processes, 
and heterogeneous, i.e. varying and uncertain, customer OLT. Such environments are typical for 
the majority of industries. In divergent material flows several successor products can be 
produced from one predecessor product. The possibility to produce several kinds of products 
from one intermediate product or raw material is called product flexibility. The possibility to use 
one production process for the manufacturing of several products is called process flexibility. 

Due to the heterogeneity of customer OLTs, companies typically plan and start their 
production on basis of a mix of orders and demand forecasts for finished products. The resulting 
master production schedule is used as a basis for the ATP process in real-time order promising. 
Newly arrived orders replace the respective demand forecast in the next run of the supply 
network planning process. In case the order deviates from the replaced forecast, the master 
production schedule is changed, possibly necessitating an update of the order promise. This 
update leads to reduced customer satisfaction because customers have to update their own 
master production schedules, possibly causing additional order changes that further reduce the 
robustness of the master production schedule. 

The work has the following contributions: 
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Figure 5: Planning process for order promising 

 Product and process flexibilities in supply chains that can be exploited for supply network 
planning are identified and formalized. 

 A new order promising methodology is presented, which is able to deal with demand mix 
uncertainty by considering supply chain flexibilities in ATP processes commonly used in 
practice. It is also capable of coping with heterogeneous customer OLTs. 

 An increased accuracy and robustness of order promises is demonstrated in a numerical 
study of real-time order promising based on an industry case. 

5.2 Planning process for order promising 
Figure 5 shows the planning steps involved in the order fulfilment setting described in Section 
5.1. The rolling process updating the master production schedule starts with the demand 
netting process. Here, a demand forecast is matched with the already realised customer orders. 
Forecast and orders differ in aggregation level. For ease of planning in the demand planning 
processes, forecasts are given on product family level, whereas orders are provided on finished 
product level. After demand netting, the netted demand is handed over to the demand 
disaggregation process, where the remaining forecasts are disaggregated to the finished 
product level. 

Demand disaggregation is based on rules that forecast how the aggregate forecasts will 
realise on finished product level. This disaggregation of forecasts is subject to demand mix 
uncertainty. The resulting demand is used in a supply network planning process to generate the 
master production schedule. The process aims at fulfilling all demands on their requested 
delivery date. Afterwards, resulting delivery date changes are communicated to the customers 
in an updated order promise. Then, ATP information based on the master production schedule 
is calculated and forwarded to a real-time order promising process, which promises orders upon 
their arrival. These order promises might be updated after the following supply network 
planning, which exploits supply chain flexibilities described in Section 5.3 to fulfil orders on their 
requested delivery date. Finally, after every execution of the order promising step, ATP 
information needs to be updated in an ATP consumption process that reduces the available 
supply by the amount used to promise the new order. 

For the development of a new approach that aims at increasing the accuracy and robustness 
of order promises, two requirements have to be considered. First, financial forecasting is based  
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Figure 6: Formalization of supply chain flexibilities 

on the current master production schedule. Since finished products differ significantly regarding 
generated revenues, production must be planned on that level. Second, existing order 
promising solutions of companies cannot be changed radically. Therefore, companies need new 
real-time order promising solutions that can easily be implemented into their process 
landscape. In most cases this means that order promising approaches based on complex 
capacity models cannot be applied in practice. 

5.3 Representing supply chain flexibilities in ATP information 
The order promising solution anticipates changes in the master production schedule after order 
arrival by representing supply chain flexibilities, i.e. process and product flexibilities, in ATP 
information. Process flexibility is defined as the possibility to use one production process 𝑗 ∈ 𝐽 
for the production of different intermediate products 𝑔 ∈ 𝑀 or finished products 𝑔 ∈ 𝑃. 
Product flexibility is the possibility to produce different finished products 𝑔 ∈ 𝑃 or intermediate 
products 𝑔 ∈ 𝑀 out of one intermediate product 𝑔′ ∈ 𝑀 or raw material 𝑔′ ∈ 𝑅. For better 
readability, existing combinations of 𝑗, 𝑔′, and 𝑔 are defined as 𝜃 = 𝑗𝑔′𝑔, 𝜃 ∈ Θ. The 
production of 𝑔 out of 𝑔′ on 𝑗 is characterized by the resource consumption factor 𝑎𝜃 and the 
BOM coefficient 𝑛𝜃 indicating the number of products 𝑔 that are produced out of one unit of 𝑔′ 
on  𝑗. In order to increase accuracy and robustness, the ATP calculations use the same cycle 
times 𝑐𝑡𝜃 that are also used in supply network planning. Figure 6 illustrates the above described 
nomenclature on the example of a two stage production with divergent material flow. Note that 
the approach, however, is applicable to multi-stage production environments. 

To represent product and process flexibilities in ATP information, an ATP cumulation step is 
inserted into the planning process shown in Figure 5. The calculation of the CATP is triggered 
every time a new order arrives. Figure 7 presents the resulting planning setup. Since the 
cumulation is based on the ATP information provided by supply network planning, it is easy to 
implement in existing demand fulfilment solutions. 
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Figure 7: Planning process with ATP cumulation step 

Representing supply chain flexibilities in ATP information entails several potential causes for 
errors. First, differences in capacity consumption factors of products, whose ATP quantities are 
cumulated, can cause the resulting CATP to be inaccurate, if the production capabilities of the 
shop floor are not represented accurately. Consequently, the order promises have to be 
changed after the next supply network planning run. This error is called resource consumption 
factor bias. Analogously, CATP quantities can be inaccurate, if the differences in the BOM 
coefficients of products, whose ATP is cumulated, are not reflected in the cumulation. This error 
is called BOM coefficient bias. Both aforementioned biases can be avoided by considering 
resource consumption factors and BOM coefficients in the ATP cumulation logic. Finally, ATP 
quantities on production rely on planned cycle times. In reality, however, the cycle times 
depend on the production schedule. The resulting error is called cycle time bias. 

Four CATP types are formalized, which differ in the degree to which they take the above 
mentioned biases into account. Therefore, the planning horizon is structured into 𝑇 periods of 
equal length. The ATP quantity 𝑎𝑡𝑝𝑔𝑡 represents the amount of supply of finished product 𝑔 ∈ 𝑃 

becoming available in period 𝑡 ∈ 𝑇. The sequence 𝑆𝑔′𝑔 as is defined the sequence of processes 

〈𝑗, 𝑗′, … , 𝑗′′〉 transforming a product 𝑔′ ∈ 𝑀 ∪ 𝑅 into finished product 𝑔. Each 𝑆𝑔′𝑔 produces 

𝑁𝑔′𝑔 = ∏ 𝑛𝜃𝑗∈𝑆𝑔′𝑔
 units of 𝑔 from one unit of 𝑔′ with a cycle time 𝐶𝑇𝑔′𝑔 = ∑ 𝑐𝑡𝜃𝑗∈𝑆𝑔′𝑔

. 𝐺𝑔∗𝑡 is 

the set of finished products 𝑔, whose ATP quantities can be used to build CATP for product 𝑔∗ in 
period 𝑡. To fulfil this condition, it first needs to be ensured that the supply chain has the 
flexibility to produce 𝑔∗ instead of g from 𝑔′. Second, the sequences 𝑆𝑔′𝑔 and 𝑆𝑔′𝑔∗  must be 

equal. Third, it needs to be guaranteed that there is enough time to reroute intermediates 
𝑔′from production of g to production of 𝑔∗ without delay. For this, the period 𝑡, in which ATP is 
cumulated, must be at least 𝐶𝑇𝑔′𝑔 or 𝐶𝑇𝑔′𝑔∗  planning periods in the future. Hence, 𝐺𝑔∗𝑡 consists 

of all products 𝑔, whose production sequences 𝑆𝑔′𝑔 equal the production sequence 𝑆𝑔′𝑔∗  and 

for which 𝑡 ≥ 𝑚𝑎𝑥(𝐶𝑇𝑔′𝑔∗; 𝐶𝑇𝑔′𝑔) holds. Furthermore, the parameters 𝛿𝑁𝑔′𝑔𝑔∗ =

(𝑁𝑔′𝑔∗ 𝑁𝑔′𝑔⁄ ) and 𝛿𝑎𝑔′𝑔𝑔∗ = ∏ min(1; 𝑎𝑗𝑔′𝑔 𝑎𝑗𝑔′𝑔∗⁄ )𝑗∈𝑆𝑔′𝑔
 are defined for two sequences 𝑆𝑔′𝑔 

and 𝑆𝑔′𝑔∗. Then, four types of CATP are formalized as follows: 
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SUM: 𝑐𝑎𝑡𝑝𝑔∗𝑡
𝑆𝑈𝑀 = ∑ (𝑎𝑡𝑝𝑔𝑡)𝑔∈𝐺𝑔∗𝑡

   (39) 

PROD: 𝑐𝑎𝑡𝑝𝑔∗𝑡
𝑃𝑅𝑂𝐷 = ∑ (𝛿𝑁𝑔′𝑔𝑔∗ ∙ 𝑎𝑡𝑝𝑔𝑡)𝑔∈𝐺𝑔∗𝑡

   (40) 

PROC: 𝑐𝑎𝑡𝑝𝑔∗𝑡
𝑃𝑅𝑂𝐶 = ∑ (𝛿𝑎𝑔′𝑔𝑔∗ ∙ 𝑎𝑡𝑝𝑔𝑡)𝑔∈𝐺𝑔∗𝑡

   (41) 

CUM: 𝑐𝑎𝑡𝑝𝑔∗𝑡
𝐶𝑂𝑀 = ∑ (𝛿𝑎𝑔′𝑔𝑔∗ ∙ 𝛿𝑁𝑔′𝑔𝑔∗ ∙ 𝑎𝑡𝑝𝑔𝑡)𝑔∈𝐺𝑔∗𝑡

   (42) 

 
CATP type SUM (Equation (39)) sums up all ATP quantities 𝑎𝑡𝑝𝑔𝑡 of the products contained in 

𝐺𝑔∗𝑡 to build the CATP quantities 𝑐𝑎𝑡𝑝𝑔∗𝑡
𝑆𝑈𝑀. SUM therefore does not take any of the mentioned 

biases into account. PROD (Equation (40)) eliminates the BOM coefficient bias in CATP 
quantities by multiplying the CATP quantities with the parameter 𝛿𝑁𝑔′𝑔𝑔∗ , which is the ratio of 

BOM coefficients of the sequences 𝑆𝑔′𝑔 and 𝑆𝑔′𝑔∗. PROC (Equation (41)) eliminates the 

consumption factor bias in CATP quantities by considering 𝛿𝑎𝑔′𝑔𝑔∗, i.e. the ratio of consumption 

factor of the sequences 𝑆𝑔′𝑔 and 𝑆𝑔′𝑔∗. The minimum function in the calculation of 𝛿𝑎𝑔′𝑔𝑔∗  

ensures that CATP quantities are not falsely inflated, if the consumption factors of 𝑔∗ are 
smaller than the ones of 𝑔. CUM (Equation (42)) combines the bias mitigation strategies of 
PROD and PROC. Note that the cycle time bias of CATP quantities cannot be addressed with the 
approach. However, it is suggested to install a feedback loop from the shop floor to 
communicate individual production starts to the order promising process in order to eliminate 
this bias. 

5.4 Illustrating example 
The differences of the CATP quantities resulting from the four CATP types are illustrated by 
using the example supply chain shown in Figure 6. Table 1 shows the values used for the 
parameters 𝑎𝜃, 𝑛𝜃, and 𝑐𝑡𝜃. The length of the planning horizon is set to 𝑇 = 6 and the ATP 
quantities for all periods and products to a constant value of 𝑎𝑡𝑝𝑔𝑡 = 10. 

Table 2 presents the CATP quantities resulting from the different CATP types for an incoming 
order of product 5 (= 𝑔∗). The rows show for every period 𝑡 (1st column) the sets 𝐺5𝑡 (2nd 
column), containing all products that are used for the cumulation of ATP, and the resulting CATP 
quantities (3rd to 6th column). 

In periods 0 and 1, no ATP can be cumulated (𝐺50 = 𝐺51 = {5}), because the cycle time 
𝑐𝑡𝑏25 required for transforming the intermediate product 2 through process 𝑏 into the finished 
product 5 equals 2 (see Table 1). The parameters 𝛿𝑁255 and 𝛿𝑎255 equal 1. Therefore, in periods 
0 and 1, all CATP quantities equal the ATP quantity of 10 for product 5 (𝑎𝑡𝑝50 = 𝑎𝑡𝑝51 = 10). 

In periods 2 and 3, the ATP quantities of the finished products 4 and 5 can be cumulated 
(𝐺52 = 𝐺53 = {4; 5}), because the cycle times 𝑐𝑡𝑏24 and 𝑐𝑡𝑏25 are smaller or equal 𝑡. Before the 
CATP quantities can be calculated, the parameters 𝛿𝑁245 and 𝛿𝑎245 need to be determined 
(𝛿𝑁255 and 𝛿𝑎255 are already known from above). Using the equations presented in Section 5.3 
and the parameters shown in Table 1, 𝛿𝑁245 and 𝛿𝑎245 are calculated as follows: 

 

𝛿𝑁245 =
𝑁25

𝑁24
=

𝑛25

𝑛24
=

4

2
= 2  

𝛿𝑎245 = 𝑚𝑖𝑛 (1;
𝑎24

𝑎25
) = 𝑚𝑖𝑛 (1;

1

2
) =

1

2
. 
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Table 1: Example CATP types: parameters 

 𝜽 = 𝒋𝒈′𝒈 
𝒂𝟏𝟐 𝒂𝟏𝟑 𝒃𝟐𝟒 𝒃25 𝒃𝟑𝟔 𝒄37 

P
ar

a-
m

et
er

 𝒂𝜃 1 2 1 2 2 1 

𝒏𝜃 1 2 2 4 1 1 

𝒄𝒕𝜃  2 1 1 2 2 3 

 
The CATP quantities are then determined by Equations (39) to (42). They result in: 

 

𝑐𝑎𝑡𝑝52
𝑆𝑈𝑀 = 𝑐𝑎𝑡𝑝53

𝑆𝑈𝑀 = 𝑎𝑡𝑝42 + 𝑎𝑡𝑝52 = 10 + 10 = 20. 

𝑐𝑎𝑡𝑝52
𝑃𝑅𝑂𝐷 = 𝑐𝑎𝑡𝑝53

𝑃𝑅𝑂𝐷 = 𝛿𝑁245 ∙ 𝑎𝑡𝑝42 + 𝛿𝑁255 ∙ 𝑎𝑡𝑝52 = 2 ∙ 10 + 1 ∙ 10 = 30. 

𝑐𝑎𝑡𝑝52
𝑃𝑅𝑂𝐶 = 𝑐𝑎𝑡𝑝53

𝑃𝑅𝑂𝐶 = 𝛿𝑎245 ∙ 𝑎𝑡𝑝42 + 𝛿𝑎255 ∙ 𝑎𝑡𝑝52 =
1

2
∙ 10 + 1 ∙ 10 = 15. 

𝑐𝑎𝑡𝑝52
𝐶𝑂𝑀 = 𝑐𝑎𝑡𝑝53

𝐶𝑂𝑀 = 𝛿𝑁245 ∙ 𝛿𝑎245 ∙ 𝑎𝑡𝑝42 + 𝛿𝑁255 ∙ 𝛿𝑎255 ∙ 𝑎𝑡𝑝52 = 

= 2 ∙
1

2
∙ 10 + 1 ∙ 1 ∙ 10 = 20. 

 
Analogously, in periods 4 and 5, the CATP quantities are composed of ATP supply from the 
products 4, 5, and 6 (𝐺54 = 𝐺55 = {4; 5; 6}). This is because these products can all be produced 
from raw material 1 on the process sequence 𝑆14 = 𝑆15 = 𝑆16 = 〈𝑎, 𝑏〉 and the respective cycle 
times 𝐶𝑇14 = 𝑐𝑡𝑎12 + 𝑐𝑡𝑏24 = 3, 𝐶𝑇15 = 4, and 𝐶𝑇16 = 3 are smaller or equal 𝑡. Using the 
equations presented in Section 5.3 results in the parameter values 𝛿𝑁145 = 2, 𝛿𝑁155 = 1, 
𝛿𝑁165 = 2, 𝛿𝑎145 = 0.5, 𝛿𝑎155 = 1, and 𝛿𝑎165 = 1, which lead to the CATP quantities 
presented in Table 2, when Equations (39) to (42) are applied. 

As can be seen in Table 2, all CATP types result in different CATP quantities. BOM 
coefficients and resource consumption factors are considered to a different extent. The type 
SUM simply sums up all ATP quantities in 𝐾5𝑡. This type is therefore most suitable for 
environments, in which all products and materials have equal or at least similar BOM 
coefficients and consumption factors. 

The CATP type PROD considers differences in BOM coefficients between products used in 
the cumulation. This CATP type is therefore most suitable for environments with large 
differences in BOM coefficients between products, but small or no differences in resource 
consumption. In the example, PROD results in the highest CATP quantities because the BOM 
coefficients of product 5 are larger than those of products 4 and 6. As more units of product 5 
than of the products 4 and 6 can be produced from the same amount of intermediate products 
or raw materials the CATP quantities are increased accordingly. 

CATP quantities of the type PROC consider differences in resource consumption factors 
between products used in the cumulation. This CATP type is most suitable for environments 
with large differences in resource consumption between products, but small or no differences in 
BOM coefficients. In the example, PROC results in small CATP quantities because the 
consumption factors of product 5 are higher than those of products 4 and 6.  

Finally, the CATP type CUM considers both resource consumption and BOM coefficients. It is 
most suitable for environments with large differences between products in both factors. In the 
example, CUM results in values for the CATP quantities, which lie between those generated by  
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Table 2: Example CATP types: resulting CATP quantities 

t 𝑮𝟓𝒕 𝒄𝒂𝒕𝒑𝟓𝒕
𝑺𝑼𝑴 𝒄𝒂𝒕𝒑𝟓𝒕

𝑷𝑹𝑶𝑫 𝒄𝒂𝒕𝒑𝟓𝒕
𝑷𝑹𝑶𝑪 𝒄𝒂𝒕𝒑𝟓𝒕

𝑪𝑼𝑴 

0 5 10 10 10 10 
1 5 10 10 10 10 
2 4;5 20 30 15 20 
3 4;5 20 30 15 20 
4 4;5;6 30 50 25 40 
5 4;5;6 30 50 25 40 

 
PROD and PROC. The high BOM coefficient of product 5 increases the CATP while the high 
resource consumption factor of product 5 decreases the CATP. 

5.5 Numerical study 
The advantages of the approach are illustrated in a case study from the semiconductor 
manufacturing industry. Supply chains in this industry show divergent material flows. Silicon 
wafers are transformed into dozens of different variants of integrated circuits. It also shows 
flexible processes. The machines in this industry are highly capital intensive, leading to the 
necessity of providing the flexibility to process different products on the same resources. Hence, 
supply chains in this industry show the product and process flexibilities exploited by the 
approach. Furthermore, the production cycle times of four to six months are typically much 
longer than customer OLTs. Therefore, production is started based on aggregate demand 
forecasts, which, due to this long horizon, are subject to significant demand mix uncertainty. For 
a more detailed description of the characteristics of semiconductor manufacturing, the 
interested reader is referred to Mönch et al. (2013). 

The method is compared to conventional order promising described in Section 5.2 and a CTP 
approach that uses the supply network planning process for real-time order promising. 
Therefore, first an overview of the used framework for the numerical study is given in Section 
5.5.1. Afterwards, the design of experiments is discussed in Section 5.5.2. 

5.5.1 Framework 
For the numerical study, the planning processes presented in Figure 7 are implemented. Every 
time unit, aggregated demand forecasts are netted with already realised orders from earlier 
periods by subtracting the order quantity from the forecast quantity in the period of the 
requested delivery date. Afterwards, the remaining forecast quantities are disaggregated. Here, 
the rule employed at the case company is implemented, where the historical proportions of 
demands on finished product level are used to generate the demand mix. 

For supply network planning the approach presented in Section 2.2.2 is used. Promises of 
not yet delivered orders are updated, if the master production schedule allows earlier delivery 
or requires a postponement. After that, the production completion times of products are used 
to generate the ATP information. 

After supply network planning, several orders from different customers realise. On order 
arrival, ATP is cumulated (Section 5.3) and order promising is executed. The model used for 
order promising is an adaptation of the approach shown in Section 2.3.3. The model, which is 
modified to allow order promising based on CATP quantities and promise orders based on 
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virtual per-unit profits 𝑝𝑟𝑜𝑓𝑡 of fulfilling an order in period 𝑡, decides on the CATP quantities 
consumed to promise an incoming customer order 𝑜. Equations (43) to (46) describe the model. 

 
Maximise 
𝑧 = ∑ 𝑝𝑟𝑜𝑓𝑡𝑐𝑡𝑡 ,   (43) 
subject to   
∑ 𝑐𝑡𝑡 ≤ 𝑞𝑜,  (44) 
𝑐𝑡 ≤ 𝑐𝑎𝑡𝑝𝑡, ∀𝑡 ∈ 𝑇; (45) 
𝑐𝑡 ≥ 0,  ∀𝑡 ∈ 𝑇. (46) 

 
The objective function (43) maximises the profit generated by fulfilling 𝑜. To set the per-unit 
profits 𝑝𝑟𝑜𝑓𝑡, Equations (47) and (48) are used, which make sure that on-time fulfilment of an 
order is most preferable and early fulfilment is preferred over late fulfilment. The parameters 
𝑝𝑟𝑜𝑓0, 𝑞𝑜, and 𝑡𝑜 are defined as a base profit, the ordered quantity, and the requested delivery 
period of 𝑜, respectively. 

 

𝑝𝑟𝑜𝑓𝑡 =  
𝑝𝑟𝑜𝑓0

𝑞𝑜
(𝑇 − 𝑡𝑜 + 𝑡),  ∀𝑡 ∈ 𝑇|𝑡 ≤ 𝑡𝑜. (47) 

𝑝𝑟𝑜𝑓𝑡 =  
𝑝𝑟𝑜𝑓0

𝑞𝑜
(𝑇 − 𝑡)  ∀𝑡 ∈ 𝑇|𝑡 > 𝑡𝑜. (48) 

 
Constraints (44) ensure that the consumed CATP quantities do not exceed the ordered quantity. 
Constraints (45) state that the consumed CATP quantities must not exceed available CATP, 
which is provided by the ATP cumulation step described in Section 5.3. The conventional order 
promising approach described in Section 5.2 does not use the ATP cumulation step but promises 
orders based on finished product ATP of the requested product alone. In this case, the 
parameters 𝑐𝑎𝑡𝑝𝑡 in Constraints (45) equal the ATP quantities derived from the master 
production schedule. Constraints (46) are non-negativity constraints. 

After order promising, the promised delivery quantities are determined using Equations (29) 
and (30) from Section 2.3.3. Finally, the ATP information is updated in an ATP consumption step. 
In the CTP approach, the supply network planning model is used to generate the real-time order 
promises. 

As performance indicators the robustness, late and early promised orders are used, which 
are the share of orders, whose initially promised delivery date equals, is later or earlier than 
their delivery date, respectively. A decrease in the share of late promised orders represents an 
increase of the accuracy of order promises. The indicators early promises and late promises are 
defined in Equations (49) and (50), in which 𝑂 is the set of all customer orders that realised over 

the horizon 𝑇𝑠 of the numerical study, 𝑡𝑜
𝑝 is the promised delivery period for order 𝑜, 𝑡𝑜

𝑑  is the 
realised delivery period for order 𝑜, and 𝑑𝑞𝑜𝑡 is the delivered quantity for order 𝑜 in period 𝑡. 
The values of the indicators robustness and accuracy are derived as defined by Equations (33) 
and (34) in Section 2.3.4. 

 

𝑒𝑎𝑟𝑙𝑦 𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑠 =
∑ 𝑑𝑞𝑜𝑡𝑜∈𝑂,𝑡∈𝑇𝑠|𝑡𝑜

𝑝
<𝑡𝑜

𝑑

∑ 𝑞𝑜𝑜∈𝑂
  (49) 
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𝑙𝑎𝑡𝑒 𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑠 =
∑ 𝑑𝑞𝑜𝑡𝑜∈𝑂,𝑡∈𝑇𝑠|𝑡𝑜

𝑝
>𝑡𝑜

𝑑

∑ 𝑞𝑜𝑜∈𝑂
  (50) 

 
To be able to investigate the pure effects of demand mix uncertainty on the performance of the 
order promising approaches and eliminate all other sources of uncertainty typically appearing in 
a real world environment, the following assumptions are made: 

 Capacities and cycle times of processes are fixed, constant and deterministic. 

 No buffer stocks are considered. 

 There is no restriction on the availability of raw materials. 

 Customers do no cancel or reschedule orders. 

 Aggregated demand forecasts do not contain a forecast error. 

5.5.2 Experimental design 
The semiconductor industry shows divergent material flows and heterogeneous customer OLTs. 
The raw materials are silicon wafers, while intermediate products are processed wafers or 
separated unfinished chips and finished products are the finished chips. The processes modelled 
in supply network planning are called bottlenecks. These are representations of machine groups 
which are typically constraining the capacity of a semiconductor supply chain. Two diode 
production lines of a large European company are investigated. The products have process cycle 
times between five and eight weeks. 

Each cumulation logic is tested for every combination of levels of the factors supply chain 
flexibility, demand mix uncertainty, and customer OLT heterogeneity. For the factor cumulation 
logic, the four CATP types presented in Section 5.3 are implemented, the conventional ATP 
approach described in Section 5.2 and the CTP approach mentioned in Section 5.5.1. 

For the factor supply chain flexibility, two product lines of the case company are 
investigated, which show low and high supply chain flexibility. To measure the supply chain 
flexibility of a product line an indicator defined in Chatterjee et al. (1984) as the average 
number of alternative parts that can be manufactured on a production sequence is used. The 
investigated product lines show flexibility values of 1.5 (low) and 4.5 (high). The capacity of each 
process is chosen such that the expected capacity utilization of each process equals 80%, which 
is the value used at the case company to plan production. 

To represent demand mix uncertainty, first, two orders with a random customer OLT for 
each product and period are generated. In order to generate low, medium, or high demand mix 
uncertainty, one product within each product family is chosen randomly, to which the total 
demand of one, two, or three randomly chosen products of the same product family is assigned. 
To choose products, a uniform distribution is used. The resulting demand mix uncertainty is 
measured in terms of the SMAPE. The described approach results in SMAPE values of 30% (low), 
35% (medium), and 43% (high) for Product Line I and 35%, 52%, and 69%, for Product Line II. 
Note that, even though the order stream is generated before each run, customer orders are not 
known to the demand fulfilment processes until they realise. 

For the factor customer OLT heterogeneity, the levels MTO-skewed, ATO-skewed, MTS-
skewed, and uniform are investigated. Note that customer OLTs remain heterogeneous for all 
levels. In the MTO-skewed case, the majority of orders arrives with an OLT greater than the 
production cycle time. This case represents businesses, in which the majority of the products 
produced are highly customer specific and costumers provide long term demand forecasts. For  



 

63 
 

Table 3: Design of experiments for CATP methodology 

Factor Levels Count 

Cumulation logic conventional, SUM, PROD, PROC, CUM, CTP 5 

Supply chain flexibility low flexibility, high flexibility 2 

Demand mix uncertainty low, medium, high 3 

customer OLT heterogeneity MTO-skewed, ATO-skewed, MTS-skewed, uniform 4 

Replications  10 

  1200 

 
the level ATO-skewed, the majority of orders arrives before the final assembly step. Here, the 
majority of the products are not customer specific during production but in product assembly, 
so that customers place their orders with a customer OLT longer than the assembly cycle time. 
The level MTS-skewed stands for environments, in which the majority of products are not 
customer specific and orders arrive with short customer OLTs. In the perfectly heterogeneous 
case, orders arrive with a uniformly distributed customer OLT. A planning horizon length of 13 
weeks is used and the maximum and minimum customer OLTs are set to 13 and 0 weeks, 
respectively. 

Ten replications for each combination of factors are generated and the replication length is 
set to 52 weeks. Table 3 summarizes the described design of experiments. The material flow 
diagrams of the investigated supply chains as well as graphical representations of the used 
customer OLT profiles can be found in Appendix B. 

5.6 Results 
The numerical results presented in the following were derived on a personal computer with a 
Windows 7 (32 bit) operating system with 4 GB memory and an Intel® Xeon® CPU with 2.53 
GHz. The study was implemented in Java using the additional library Stochastic Simulation for 
Java for implementing probability distributions and the CPLEX Java API for solving the supply 
network planning and order promising methods. All figures show the performance relative to 
the conventional ATP approach, which is described in Section 5.2. 

Figure 8 presents an overview of the relative performance of the CATP approach compared 
to conventional ATP. The graphs show that CATP outperforms conventional ATP in terms of late 
promises, i.e. accuracy, and robustness. However, CATP increases early promises, but the effect 
is less strong than the reduction of late promises. In terms of robustness, the CATP types PROC 
and CUM perform worst amongst the CATP approaches, because they reduce the amount of 
available CATP in case of varying resource consumption factors in the production sequence of 
cumulated products. However, this also leads to a distinct positive effect on early promised 
orders, because of the elimination of the resource consumption factor bias. Since the 
performances of the CATP types SUM and PROD do not significantly differ, it is concluded that 
the elimination of the BOM coefficient bias alone does not have strong influence on CATP 
performance for the investigated environment. This is because in semiconductor supply chains 
products of the same family typically have similar BOM coefficients. The CTP approach 
outperforms the best CATP approach by more than 20%. The reason for this is that orders are 
promised with complete information about process utilization, work in progress and remaining  
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Figure 8: Relative performance overview CATP vs. conventional ATP 

 
 
 
 

 
Figure 9: Relative performance of CATP approaches depending on supply chain flexibility 
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flexibilities in the supply chain. ATP and CATP solutions, on the other hand, cannot make use of, 
e.g., free capacities and production start information or reschedule planned production.  

However, CTP approaches usually cannot be applied in practice because they are 
computationally expensive and hard to implement into existing order promising solutions. For 
better visibility of the performance of the CATP approaches, the performance of CTP is not 
shown in Figure 8 and the remainder. 

Figure 9 shows the relative performance of the CATP approaches depending on the supply 
chain flexibility. It can be seen that their advantage in terms of accuracy, i.e. the decrease of late 
promises, and robustness grows substantially with increasing supply chain flexibility. However, 
the amount of early promises increases significantly for the CATP types SUM and PROD because 
of the resource consumption factor bias contained in their CATP quantities. 

The relative performance of CATP approaches for different demand mix uncertainties is 
shown in Figure 10. The advantage of CATP approaches in terms of accuracy and robustness 
decreases with increasing demand mix uncertainty. Interestingly, also the increase of early 
promises decreases with increasing demand mix uncertainty for the CATP types PROC and CUM 
while it increases for SUM and PROD. For problem instances with high demand mix uncertainty, 
PROC and CUM do not show any significant advantage over the conventional ATP approach. 
However, the SMAPE value for these scenarios is above 50%, which is significantly higher than in 
most real world environments. It is therefore concluded that CATP leads to an improvement of 
order promising accuracy and robustness in practice. 

Figure 11 shows the relative performance of the CATP approach for different customer OLT 
profiles. Since the above analysis showed that the performance of the CATP types SUM and 
CUM is representative for the performance of the types PROD and PROC, respectively, only the 
performance of SUM and CUM are shown for better visibility. Both types perform best in the 
ATO-skewed problem instances because in both product lines investigated all products whose 
ATP can be cumulated differ in their consumption factors only in one specific production step. 
Since in the ATO-skewed customer OLT profile the majority of orders arrives after this step, the 
CATP quantities used for order promising do not contain a consumption factor bias. 
Additionally, orders arrive with a customer OLT long enough to prevent a cycle time bias in CATP 
quantities. Furthermore, the advantage of CATP is higher for MTO-skewed environments than 
for MTS-skewed environments. This is intuitive since when customer OLTs are long, more 
flexibilities can be exploited to meet the promised delivery dates. 

5.7 Conclusion 
Accurately promising delivery dates for customer orders is indispensable for maintaining 
customer satisfaction. However, in global supply chains it is also one of the biggest challenges. 
In this chapter, a new order promising method called CATP is presented. It is designed for 
supply chains with divergent material flows, flexible processes, and heterogeneous, i.e. varying 
and uncertain, customer OLTs. In such environments order promises are often given in real-time 
and production is planned in regular intervals on basis of forecasts subject to demand mix 
uncertainty and realised customer orders. 

CATP anticipates changes in the production plan due to newly arrived orders and increases 
the accuracy and robustness of order promises. The anticipation is done by representing supply 
chain flexibilities in ATP information used for real-time order promising. The flexibilities 
considered are product and process flexibility, which are identified and formalized. The method  
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Figure 10: Performance of CATP approaches depending on demand mix uncertainty 

 
 
 
 

 
Figure 11: Performance of CATP approaches depending on order lead time 



 

67 
 

cumulates finished product ATP information based on the product individual characteristics 
production cycle time, resource consumption factor and BOM coefficient. 

In a numerical study based on a case from the semiconductor industry, the performance of 
CATP is compared to a conventional approach in environments with different degrees of supply 
chain flexibility, demand mix uncertainty, and customer OLT heterogeneity. For benchmarking 
reasons, the method is also compared to a CTP solution which uses the production planning 
process to promise incoming orders in real-time and therefore poses an upper bound for the 
performance of CATP and conventional order promising. However, because of its high 
computational effort and necessity of substantial changes in planning processes commonly 
employed in practice, CTP cannot be applied in most supply chains. 

The study shows that CATP increases the accuracy and robustness of order promises by 
reducing the amount of orders receiving an initial order promise later than the earliest feasible 
delivery date. Thus, the approach increases the order winning probability for a company since 
the customers more often receive the earliest possible delivery date for their order. It is also 
shown that considering resource consumption factors and BOM coefficients in ATP cumulation 
reduces the amount of orders initially getting promised earlier than feasible. The advantage of 
the CATP approach grows with increasing customer OLTs and degree of flexibility in the supply 
chain. Only if the demand mix uncertainty is high, CATP does not show any advantage over 
conventional order promising. This effect, however, can only be seen for unrealistically high 
values of forecast errors. Finally, it is found that for the studied case the consideration of 
process flexibility is of more value for the generation of accurate and robust order promises 
than product flexibility. 

The research in this chapter focusses on representing the supply chain flexibilities in order 
promising that are exploited by production planning. Consequently, it is assumed that there are 
no other sources of uncertainty except demand mix uncertainty. Interesting directions for 
future research are to study the dependency of the robustness of given real-time order 
promises regarding the finally realised delivery date on the accuracy of estimated cycle times, 
especially when also demand forecast volumes are uncertain and these uncertainties interact 
with demand mix uncertainty and safety stocks. In such scenarios, also unknown future demand 
needs to be accounted for in order promising, especially when customers are heterogeneous 
regarding demand fulfillment relevant characteristics (e.g. profitability or forecast accuracy). In 
industrial environments, this is typically done by means of supply allocation methodologies, 
which should be extended to also consider forecast accuracy. Such approaches are presented in 
Chapters 6 and 7. When utilization is fluctuating and cycle times are dynamic, the CATP method 
needs to be extended to reflect additional information about the shop floor. Here, the 
consideration of order individual production cycle times as well as supply chain capabilities, i.e. 
unused capacities and swopping possibilities in the production schedule, are potential starting 
points.  

The approach aims at increasing the accuracy and robustness of order promises to ensure 
customer satisfaction. To investigate an immediate impact on profitability, research is required 
that integrates the approach with methodologies from revenue management. 
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6 Considering the bias of advance demand information in allocation planning 
 

This chapter bases on 

 

Seitz, A., Grunow, M., Akkerman, R., 2016b. 

Data Driven Supply Allocation to Individual Customers Considering Forecast Bias. 

Available at SSRN: https://ssrn.com/abstract=2813835.  

 
In this chapter, a data driven allocation planning (DDAP) approach is proposed, which exploits 
increasingly available data on individual customers and products by allocating supply on a highly 
granular level at high planning frequencies. The method considers the demand forecast bias of 
customers, supports an efficient supply allocation and incentivises the customers to 
communicate truthful forecasts. Using the approach in a numerical study based on the 
semiconductor industry, it is demonstrated that the approach increases overall service levels, 
especially for customers with truthful forecasts, and reduces excess allocations, leading to lower 
inventory levels. The analysis further shows that the allocation efficiency increases with the 
granularity level and the predictive quality of the available data. 

This chapter is organized as follows. In Section 6.1 the problem of inefficient supply 
allocations because of rationing gaming of customers is introduced and the contributions of the 
work presented in this chapter are illustrated. Section 6.2 explains the allocation planning 
approach in detail. Section 6.3 introduces a case from the semiconductor industry, describes the 
experimental design of the numerical study, and presents its results. Conclusions are presented 
in Section 6.5. 

6.1 Big data enables companies to reduce the risk of inefficient supply allocations 
Shortening economic and product life cycles lead to increasing demand variations, which are 
amplified through the supply chain by the so-called bullwhip effect. For example, the growth 
rates of the semiconductor market (without memory chips), whose companies are typically 
located upstream in the supply chain, varied between −40 % and +50 % since the beginning of 
2009 (WSTS Inc. 2015). Consequently, periods of supply shortage occur more frequently. Hence, 
allocation planning, i.e. deciding on when and how to fulfil which customer’s demand, gains 
importance. 

AP is part of a demand fulfilment process, typically implemented in software systems such as 
advanced planning systems (see Figure 12). It reserves quantities of inventory and planned 
supply receipts, together termed ATP, for certain customer segments. These supply 
reservations, called AATP, are then used to confirm delivery dates for incoming customer orders 
in a real-time order promising step. The communication with the customer is often fully 
automated and occurs at high frequencies, allowing the allocation planning to also be 
performed at high frequencies. 

With the recent advances in big data tools, companies are able to monitor the ordering 
behaviour of their customers on the granularity level of individual customers and final products. 
The higher transparency of the customers’ ordering behaviour provides opportunities to 
increase the efficiency of supply allocation. However, conventional allocation planning approa- 
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Figure 12: General structure of a demand fulfilment process 

ches based on segmentation are not able to exploit the available data because customers are 
typically clustered according to profitability and not according to their ordering behaviour. 

From the literature it is known that in order to satisfy their demands, the customers 
strategically inflate their forecasts in supply shortage situations to game the allocation planning 
procedure of their supplier. Intuitively, one would assume that customers inflate their orders by 
a fixed bias. However, the data from a large European semiconductor manufacturer, which is 
used in a case study, shows that the consumers usually communicate a stable forecast, but 
order only smaller volumes at irregular intervals. Figure 13 shows the demand errors and the 
forecast bias resulting from typical customer forecasting and ordering behaviour. The error is 
defined as the part of the forecast that is not translated into actual orders relative to the total 
forecast. Its strategic component, i.e. its non-random part, is defined as the forecast bias. In 
Section 6.2.1, the exact definitions of the forecast error and the forecast bias are provided. 

For a supplier, such customer behaviour, commonly referred to as rationing gaming (see e.g. 
Lee et al. 2004), leads to the risk of inefficient supply allocation. Stocks are created for forecasts, 
which are not consumed by subsequent orders. This results in high storage costs and, more 
importantly, low overall service levels due to the limited supply. 

In order to counteract the negative consequences of the rationing game, new approaches 
are needed to incentivise customers to truthfully forecast their demand. Herein, the results of 
big data tools monitoring historical demand forecast biases can be exploited to identify 
systematic gaming behaviour.  

This paper develops an allocation planning approach that allocates ATP supply to individual 
customers. The approach is developed for industrial environments in which standardised goods 
are mass produced and businesses use a make-to-stock strategy in supply planning. Using a 
notification-release order cycle, available supply is first allocated on the basis of demand 
forecasts, i.e. notifications, provided by the customers and released later upon order reception. 
The approach presented here considers customer demand forecasts and their historical biases 
as well as their profitability. In particular, the following contributions are made: 

 A new allocation planning approach is presented, which exploits increasingly available data 
on individual customers and products by allocating supply on a highly granular level at high 
planning frequencies. More specifically, the methodology examines the demand forecast 
bias of customers and thereby supports efficient supply allocation and incentivises the 
customers to communicate truthful forecasts. 

 Using the approach in a numerical study based on the semiconductor industry, it is 
demonstrated that 
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Figure 13: Demand forecast bias graph for a typical customer demand pattern 

o the proposed methodology leads to lower average stock levels and an increased 
overall service level, especially for customers with truthful forecasts, 

o the allocation on individual customer level is only valuable when additional data such 
as forecast bias and lead time is exploited on this granularity level. 

6.2 Data driven allocation planning methodology 
Figure 14 gives an overview of the DDAP methodology. It is developed for the single-product 
case and divided into a mid-term and two short-term planning processes, executed in a rolling 
horizon fashion. The approach can also be applied to the multi-product case provided there is 
no substitution between products. The mid-term customer PAS determination process, 
described in Section 6.2.1, uses the profitability and historical forecast accuracy of the 
customers to determine their individual profitability accuracy score (𝑃𝐴𝑆𝑖). The resulting score 
of individual customers is used in the decisions of the short-term processes allocation planning 
and order promising. 

The short-term allocation planning method, which is developed in Section 6.2.2, reserves 
supply quantities becoming available in planning period 𝑡 ∈ 𝑇 for forecasted demand being due 
in period 𝜏 ∈ 𝑇. It fulfils the demands in the sequence of the PAS of the customers. The 
allocation planning step is part of the short-term planning of the company. It is so because 
industrial customers update their demand forecasts in a frequent, short-term manner (e.g. 
every day). Accordingly, supply allocations are updated with a high frequency in order to make 
use of the newly available data. 

The real-time order promising approach employed in the DDAP methodology is an 
adaptation of the model presented in Section 2.3.3. Because DDAP allocated supply to individual 
customers 𝑖 ∈ 𝐼, the set of customer segments 𝐾 equals the set of customers 𝐼. Hence, 𝐾 is 
replaced with 𝐼, 𝐾𝑖∗  with 𝐼𝑖∗, 𝑘 with 𝑖 and 𝑘∗ with 𝑖∗ in Equations (23) to (30) for the adaptation. 

Furthermore, 𝑠𝑐𝑜𝑟𝑒𝑘
𝑠𝑒𝑔

 is replaced with 𝑃𝐴𝑆𝑖. Note that customers do not have to place an 

order in every time period and there is no predetermined sequence in which the customers 
order.  

Finally, the advantages of the allocation planning model over conventional allocation 
planning (CAP) are illustrated in Section 6.2.3. 
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Figure 14: Rolling horizon scheme for data driven allocation planning 

6.2.1 Mid-term customer PAS determination 
For the DDAP approach, the concepts of the forecast error and the forecast bias have to be 
distinguished. While the forecast error is simply defined as the deviation of the customer 
forecast from the final order, the forecast bias denotes the systematic or strategic deviation. 
Hence, the forecast error consists of a random component and a systematic or strategic forecast 
bias. If the forecast bias of a customer is positive, they systematically or strategically inflate their 
demand forecasts, i.e. show rationing gaming behaviour. The DDAP approach identifies 
rationing gaming of the customers and considers it in allocation planning in order to incentivize 
customers to truthfully forecast their demands. 

As described in Section 6.1, industrial customers displaying rationing gaming behaviour 
usually do not inflate their demand forecasts by a fixed ratio. Instead, constant demand 
forecasts of the (anticipated) maximum possible order size are given; the actual order sizes then 
experience substantial volatility (see Figure 13). Hence, an allocation approach will not lead to 
an efficient supply allocation if it integrates demand forecast bias information by discounting 
demand forecasts by a certain predetermined constant that represents the strategic forecast 
inflation of the customer. However, it is still possible to identify strategic gaming behaviour of 
the customer by determining the statistically significant positive deviation of the customers’ 
forecasts from their final orders. 

The DDAP approach determines customer scores 𝑃𝐴𝑆𝑖 , which are composed of the 
historical forecast accuracy 𝑎𝑐𝑐𝑖 and profitability 𝑝𝑟𝑜𝑓𝑖 of the customers 𝑖 ∈ 𝐼. They represent 
the priority of a customer for the supply allocation decision. Note that, here, 𝑎𝑐𝑐𝑖 is defined as 
the degree to which the forecast of customer 𝑖 is free of a strategic forecast bias. The measure 
does not take the random component of the forecast error into account. 

A factor 𝛼 ∈ [0; 1] represents the decision maker’s trade-off between forecast accuracy 𝑎𝑐𝑐𝑖 

and profitability 𝑝𝑟𝑜𝑓𝑖 in the determination of 𝑃𝐴𝑆𝑖 . At an 𝛼-value of 0 and 1, 𝑃𝐴𝑆𝑖  is 
determined solely by 𝑝𝑟𝑜𝑓𝑖 and 𝑎𝑐𝑐𝑖, respectively.  

The customer scores are determined using a four-step data analysis, which is executed in a 
mid-term rolling horizon fashion, e.g. once every year. For this analysis, the customer 
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profitability 𝑝𝑟𝑜𝑓𝑖, the historical demand forecast 𝑓𝑖𝑡𝜏
ℎ𝑖𝑠𝑡 provided by customer 𝑖 in period 𝑡 for 

period 𝜏, and the history of orders 𝑞𝑖𝜏
ℎ𝑖𝑠𝑡 placed by customer 𝑖 with a due-date in period 𝜏 are 

analysed.  
The DDAP approach is designed for large industrial suppliers, which usually only serve large 

customers with a significant revenue contribution directly. Other, smaller customers are served 
through distributors, who cumulate the demands of numerous small customers and thus 
become large customers for the supplier as well. In such environments, usually all direct 
customers place a demand forecast in every time period. 

 

Step 1: The error 𝑒𝑖𝑡𝜏 of every 𝑓𝑖𝑡𝜏
ℎ𝑖𝑠𝑡 is calculated for the past 𝜏 ∈ 𝑇ℎ𝑖𝑠𝑡 consecutive time periods 

using Equation (51). To base the customer scores on a sufficiently large dataset, 𝑇ℎ𝑖𝑠𝑡 should 
contain more than 30 time periods. However, in order to mitigate the risk of wrong customer 

scores due to changing customer behaviour over time, 𝑇ℎ𝑖𝑠𝑡 should be limited to data of 
maximum one year. 
 

𝑒𝑖𝑡𝜏 = 1 −
𝑞𝑖𝜏

ℎ𝑖𝑠𝑡

𝑓𝑖𝑡𝜏
ℎ𝑖𝑠𝑡.  (51) 

 
Equation (51) is based on the assumption of large industrial customers described above. Hence, 

𝑓𝑖𝑡𝜏
ℎ𝑖𝑠𝑡 > 0 for all 𝑖, 𝑡 and 𝜏. For environments, in which 𝑓𝑖𝑡𝜏

ℎ𝑖𝑠𝑡 can be 0, 𝑒𝑖𝑡𝜏 could be formulated 
in accordance to the symmetric mean absolute percentage error (see Chapters 4 and 5). In this 

case, if 𝑓𝑖𝑡𝜏
ℎ𝑖𝑠𝑡 = 𝑞𝑖𝜏

ℎ𝑖𝑠𝑡 = 0, 𝑒𝑖𝑡𝜏 has to be defined as zero as well. 
 
Step 2: In order to separate strategic gaming behaviour from forecasting errors, which increase 
with the forecast horizon, the average forecast error 𝑒𝑖ℎ for different forecast horizons ℎ is 
determined with Equation (52). The horizon ℎ is defined as the time interval between the 
provision of the forecast and its indicated delivery date. Customers are forecasting their 
demands every time period for all horizons with a maximum horizon of ℎ𝑚𝑎𝑥. 
 

𝑒𝑖ℎ =
1

|𝑇ℎ𝑖𝑠𝑡|
∑ 𝑒𝑖(𝜏−ℎ)𝜏𝜏∈𝑇ℎ𝑖𝑠𝑡 .  (52) 

 
The DDAP methodology aims at measuring the strategic component of 𝑒𝑖𝑡𝜏. It therefore allows 
negative and positive values for 𝑒𝑖𝑡𝜏 that origin from random forecasting errors to cancel each 
other out in Equation (52). 
 
Step 3: To identify rationing gaming behaviour of the customers, it is tested if the values of 𝑒𝑖ℎ 
are statistically significantly larger than zero. I.e. the null hypothesis 𝐻0 ∶  𝑒𝑖ℎ ≤ 0 is tested 

using a suitable test statistic. With the result of this statistical test, the forecast bias 𝑏𝑖ℎ of 

customer 𝑖 for horizon ℎ is determined using Equation (53). If |𝑇ℎ𝑖𝑠𝑡| ≥ 30 the central limit 

theorem can be applied to assume that the distribution of 𝑒𝑖ℎ can be approximated by a normal 
distribution. Then, the student's t-test can be used to determine the values of 𝑏𝑖ℎ. 
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𝑏𝑖ℎ = {
0, 𝑖𝑓 𝐻0 𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑

𝑒𝑖ℎ, 𝑖𝑓 𝐻0 𝑖𝑠 𝑑𝑒𝑛𝑖𝑒𝑑
.  (53) 

Next, the average demand bias 𝑏𝑖 of customer 𝑖 is determined using Equation (54). In Equation 
(55), the forecast accuracy of a customer is defined as the complement of the average demand 
bias. 
 

𝑏𝑖 =
1

ℎ𝑚𝑎𝑥
∑ 𝑏𝑖ℎ

ℎ𝑚𝑎𝑥

ℎ=0   (54) 

𝑎𝑐𝑐𝑖 = 1 − 𝑏𝑖   (55) 
 
Step 4: Finally, the values of 𝑝𝑟𝑜𝑓𝑖 and 𝑎𝑐𝑐𝑖 are normalised using Equation (56) and (57) and the 

values of 𝑃𝐴𝑆𝑖  are calculated with Equation (58). 
 

𝑝𝑟𝑜𝑓𝑖
𝑛𝑜𝑟𝑚 =

𝑝𝑟𝑜𝑓𝑖−min𝑖(𝑝𝑟𝑜𝑓𝑖)

max𝑖(𝑝𝑟𝑜𝑓𝑖)−min𝑖(𝑝𝑟𝑜𝑓𝑖)
   (56) 

𝑎𝑐𝑐𝑖
𝑛𝑜𝑟𝑚 =

𝑎𝑐𝑐𝑖−min𝑖(𝑎𝑐𝑐𝑖)

max𝑖(𝑎𝑐𝑐𝑖)−min𝑖(𝑎𝑐𝑐𝑖)
;  (57) 

𝑃𝐴𝑆𝑖 = (1 − 𝛼) ∙ 𝑝𝑟𝑜𝑓𝑖
𝑛𝑜𝑟𝑚 + 𝛼 ∙ 𝑎𝑐𝑐𝑖

𝑛𝑜𝑟𝑚  (58) 

 

6.2.2 Allocation planning model 
In allocation planning, the ATP supply 𝑎𝑡𝑝𝑡 becoming available at the beginning of time period 𝑡 
is allocated to the demand forecast 𝑓𝑖𝜏 of customer 𝑖 due in period 𝜏 . The result of the process 
is the AATP quantity 𝑎𝑎𝑡𝑝𝑖𝑡𝜏. 

The allocation planning model is a modified version of the model described in Section 2.3.2. 
Though a heuristic, such as a greedy algorithm, could be used to find an optimal solution to the 
allocation planning problem, a linear programming model is chosen because of its flexibility in 
terms of adding additional constraints like minimum allocation quantities for customers 
resulting from contractual obligations of a supplier. Furthermore, the model can easily be 
extended with more complex constraints, e.g. for service level balancing between customers 
over time or allocation planning considering substitution of products. Such problems, however, 
cannot be solved to optimality by a heuristic anymore. 

Note that the DDAP approach, which is described by Equations (59) to (62), differs 
significantly from model presented in Meyr (2009), which maximises the profit of the supplier. 
DDAP, in contrast, prioritises the demand fulfilment of preferred customers, thereby explicitly 
considering customer forecast accuracy in addition to profitability. Moreover, while in Meyr 
(2009) the supply is allocated to customer segments, the model presented here allocates it to 
individual customers. Finally, while the model in Meyr (2009) allows free ATP quantities, which 
are available for consumption by all customers, in the DDAP approach the entire available ATP 
supply must be allocated to the customers. Since significant scarcity of supply at all points in 
time is assumed, this cannot lead to infeasibilities in the model. 

The objective function (59) maximises the customer-score-weighted supply allocation and 

penalises early and late demand fulfilment with the factors 𝜉𝑡𝜏
𝑒  and 𝜉𝑡𝜏

𝑙 , respectively. It ensures 

that demands of the customers with high 𝑃𝐴𝑆𝑖 -values are satisfied with priority. Constraints 
(60) ensure that the generated AATP quantities do not exceed customer demand forecasts. 
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Constraints (61) state that the sum of allocated supply quantities must equal the total available 
ATP quantities. Constraints (62) represent non-negativity constraints.  

 
Maximise  

𝑧 = ∑ ∑ [∑ (𝑃𝐴𝑆𝑖 ∙ 𝑎𝑎𝑡𝑝𝑖𝑡𝜏)𝑡 − ∑ (𝜉𝑡𝜏
𝑒 ∙ 𝑎𝑎𝑡𝑝𝑖𝑡𝜏)𝑡<𝜏 − ∑ (𝜉𝑡𝜏

𝑙 ∙ 𝑎𝑎𝑡𝑝𝑖𝑡𝜏)𝑡>𝜏 ]𝜏𝑖   (59) 

subject to 
∑ 𝑎𝑎𝑡𝑝𝑖𝑡𝜏𝑡 ≤ 𝑓𝑖𝜏  ∀𝑖 ∈ 𝐼, 𝜏 ∈ 𝑇;  (60) 
∑ ∑ 𝑎𝑎𝑡𝑝𝑖𝑡𝜏𝜏𝑖 = 𝑎𝑡𝑝𝑡  ∀𝑡 ∈ 𝑇;  (61) 
𝑎𝑎𝑡𝑝𝑖𝑡𝜏 ≥ 0  ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, 𝜏 ∈ 𝑇.  (62) 
 

6.2.3 Illustration of approach 
Table 4 illustrates the potential advantages of the DDAP approach compared to the CAP 
approach for a simple single-period allocation planning example. CAP reserves ATP to customer 
segments. It thereby solely considers segment profitability and satisfies demand forecasts of 
segments in order of their profitability. All time indices are omitted in Table 4 because a single-
period problem is investigated. Furthermore, for simplicity, the example assumes that 𝑏𝑖  =  𝑒𝑖. 

The effect of CAP and DDAP on the demand fulfilment performance is measured by using the 
customer service level, the profit generated from sales and the ending stock level. All customers 
forecast a demand 𝑓𝑖  of 100 units. However, their order quantities 𝑞𝑖 differ from this forecast. 
The sequence of order reception and the per-unit profit 𝑝𝑟𝑜𝑓𝑖 of the customers are given in the 
table. A total ATP quantity of 350 units is assumed. 

CAP allocates 200 units to segment 1 and 150 units to segment 2 and promises a total 
amount of 280 units, which leads to an ending stock level of 70 units, a total service level of 70% 
and a profit of 3780. 

For the DDAP approach the 𝛼-level is assumed to be 0.6. The normalised customer 
profitability 𝑝𝑟𝑜𝑓𝑖

𝑛𝑜𝑟𝑚 and forecast accuracy 𝑎𝑐𝑐𝑖
𝑛𝑜𝑟𝑚 are calculated on the basis of 𝑓𝑖  and 𝑞𝑖 

using Equations (51) to (57) without time indices. The customer scores 𝑃𝐴𝑆𝑖  follow from 
Equation (58). Based on these customer scores, the AATP quantities given in Table 4 are 
obtained when the DDAP model is run. After order promising, the DDAP approach leads to a 
total of 320 units of satisfied orders, an ending stock level of 30 units, a total service level of 
74.3% and a profit of 3980, i.e. lower stocks, higher service level and higher profit than the CAP 
approach. 

Such results are due to the consideration of forecast bias data on a highly granular level. 
Note that, for this exemplary case, DDAP approach leads to higher profits than the CAP 
approach even though the model does not exclusively aim at fulfilling the demands of the most 
profitable clients. The example further shows that DDAP approach incentivises the customers to 
forecast their demands truthfully, since higher values of 𝑎𝑐𝑐𝑖 result in higher service levels. For 

example, for customer 5 (𝑎𝑐𝑐5 = 0.9), 𝑆𝐿𝐷𝐷𝐴𝑃 is 100% and 𝑆𝐿𝐶𝐴𝑃 is 0%, while for customer 2 

(𝑎𝑐𝑐2 = 0.6), 𝑆𝐿𝐷𝐷𝐴𝑃 is 0% and 𝑆𝐿𝐶𝐴𝑃 is 100%. 

6.3 Experimental design and parametrisation 
The advantages of the DDAP approach are illustrated with a numerical study using historical 
demand data from the semiconductor manufacturing industry. Here, supply shortage situations 
appear frequently due to long production cycle times, high capacity investment cost and high  
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Table 4: Single-product, single-period example: CAP vs. DDAP 

customer 𝒊 1 2 3 4 5 Total 

profitability 𝑝𝑟𝑜𝑓𝑖 (per-unit) 15 14 13 12 11 - 
𝑓𝑖  100 100 100 100 100 500 
𝑞𝑖 70 60 90 80 100 400 
ordering sequence 5 4 1 2 3 - 
𝑎𝑡𝑝  - - - - - 350 

segment 𝑘 
1  
(customers 1, 2) 

2 
(customers 3, 4, 5) 

- 

𝑝𝑟𝑜𝑓𝑘  14.5 12 - 

𝑎𝑎𝑡𝑝𝑘
𝐶𝐴𝑃 200 150 350 

𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑖
𝐶𝐴𝑃 70 60 90 60 0 280 

ending stock - - - - - 70 

𝑆𝐿𝐶𝐴𝑃  100% 100% 100% 75% 0% 70% 

𝑝𝑟𝑜𝑓𝑖𝑡𝑖
𝐶𝐴𝑃 1050 840 1170 720 0 3780 

𝛼  - - - - - 0.6 
𝑝𝑟𝑜𝑓𝑖

𝑛𝑜𝑟𝑚 1.0 0.75 0.5 0.25 0.0 - 
𝑎𝑐𝑐𝑖

  0.7 0.6 0.9 0.8 1.0 - 
𝑎𝑐𝑐𝑖

𝑛𝑜𝑟𝑚 0.25 0.0 0.75 0.5 1.0 - 

𝑃𝐴𝑆𝑖  0.43 0.24 0.81 0.62 1 - 

𝑎𝑎𝑡𝑝𝑖
𝐷𝐷𝐴𝑃 50 0 100 100 100 350 

𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑖
𝐷𝐷𝐴𝑃 50 0 90 80 100 320 

ending stock - - - - - 30 
𝑆𝐿𝐷𝐷𝐴𝑃  71.4% 0% 100% 100% 100% 74.3% 

𝑝𝑟𝑜𝑓𝑖𝑡𝑖
𝐷𝐷𝐴𝑃 750 0 1170 960 1100 3980 

 
demand volatility (see e.g. Ehm et al. 2011). The customers of the industry under review display 
rationing gaming behaviour. 

After introducing the design of experiments in Section 6.3.1, the product-individual 𝛼 values 
to be used in the DDAP approach are determined in Section 6.3.2. The results of the numerical 
study are presented in Section 6.4. 

6.3.1 Assumptions, data and performance measures 
As depicted in Figure 14, allocation planning and order promising are run in a rolling horizon 
scheme. In every planning period, first, allocation planning generates AATP quantities based on 
ATP and customer demand forecast data. Afterwards, customer orders are realised and 
promised based on the allocated supply. Then, the planning horizon is rolled over, new demand 
forecasts and ATP quantities become available and allocation planning is performed again. 

To be able to measure the capability of the DDAP approach to cope with biased demand 
forecasts from the customers, the following assumptions are made, which eliminate other 
sources of uncertainty: 

1. The supply quantities 𝑎𝑡𝑝𝑡 are deterministic.  
2. Orders will not be cancelled or rescheduled by the customers once they enter the 

system. 
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Table 5: Dataset for numerical case study 

Products P1 P2 P3 P4 P5 P6 Total 

Number of customers 12 41 23 25 18 26 145 
Number of orders 182 1772 723 944 727 820 5168 
Average of demand biases 𝑏𝑖 8% 10% 5% 6% 12% 13% 9% 
Share of customers with positive bias 50% 82% 48% 83% 71% 72% 67% 

Average error of 𝑎𝑐𝑐𝑖
𝑛𝑜𝑟𝑚(𝑒𝑟𝑟

𝑎𝑐𝑐
) 0.029 0.029 0.037 0.039 0.045 0.049 0.038 

 
Furthermore, it is assumed that: 

3. Orders can be fulfilled partially and with multiple shipments. 
4. If a part of an order cannot be promised when it is received, that part is lost. 

To measure the demand fulfilment performance, the OTSL (Equation (32)), the TSL (Equation 
(31)), the profit generated from sales (Equation (36)) and the average level of stock resulting 
from excess allocation (Equation (35)) are used. For confidentiality reasons, the real profitability 
of the customers is not provided in the dataset. However, information on the relation of 
profitabilities of the customers within the dataset is available. For the numerical study, two 
scenarios for the real profitabilities of customers in the dataset are assumed. In the extreme 
case scenario, the per-piece profitabilities of the most and the least profitable customers are €1 
and €0, repectively; in the realistic case scenario, these profitabilities are € 0.1 and € 0.067, 
respectively. 

Data from a large European semiconductor manufacturer is used. The dataset contains 
orders and demand forecasts for six standard products from the automotive and industrial 
segments of the company. 

Table 5 gives an overview of the large dataset containing 78 weeks of forecast data for 145 
customers and the corresponding 5168 orders, including their arrival time details. The first 52 

weeks (in sample) are used to generate the customer scores 𝑃𝐴𝑆𝑖  with the four-step data 
analysis described in Section 6.2.1. The last 26 weeks (out-of-sample) are used for the numerical 
study. The customers in the dataset, which the case company groups into three segments, order 
with an average order lead time of 3 weeks. 

The positive values of the average of demand biases 𝑏𝑖 illustrate that the customers in the 
dataset exhibit rationing gaming behaviour. The share of customers with a positive 𝑏𝑖 shows 
that not all customers in the dataset show strategic gaming.  

When calculating the forecast accuracy for the out-of-sample time period 𝑎𝑐𝑐𝑖
𝑛𝑜𝑟𝑚(𝑜𝑢𝑡 −

𝑜𝑓 − 𝑠𝑎𝑚𝑝𝑙𝑒), the average error 𝑒𝑟𝑟
𝑎𝑐𝑐

 of the historical forecast accuracy 𝑎𝑐𝑐𝑖  can be derived 
using Equation (63). 

 

𝑒𝑟𝑟
𝑎𝑐𝑐

=
∑ |𝑎𝑐𝑐𝑖

𝑛𝑜𝑟𝑚−𝑎𝑐𝑐𝑖
𝑛𝑜𝑟𝑚(𝑜𝑢𝑡−𝑜𝑓−𝑠𝑎𝑚𝑝𝑙𝑒)|𝑖∈𝐼

|𝐼|
   (63) 

 
Smaller values indicate a higher predictive quality of 𝑎𝑐𝑐𝑖

𝑛𝑜𝑟𝑚 for the out-of-sample time period.  
Table 5 shows that the historical forecast accuracy values of the customers are of different 

predictive quality since the value of 𝑒𝑟𝑟
𝑎𝑐𝑐

 differs significantly between the products. However, 

the small values of 𝑒𝑟𝑟
𝑎𝑐𝑐

 show that for a typical industrial environment, the historical forecast 
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accuracy calculated over a period of 52 weeks is usually of high predictive quality. This 
observation validates the approach to perform allocation planning at the individual customer 
level. 

The customer forecast bias is calculated on a sample of 52 weeks and obtain 52 observations 
of the demand forecast error 𝑒𝑖(𝜏−ℎ)𝜏 for every horizon ℎ and every customer 𝑖. Consequently, 

the central limit theorem can be applied to assume that the distribution of 𝑒𝑖ℎ can be 
approximated by a normal distribution. Therefore, the student's t-test is used with a significance 

level of 10% to determine the values of 𝑏𝑖ℎ in Equation (53). 
For the penalty costs for early and late order fulfilment, values are assigned such that early 

order fulfilment (i.e. temporary stock building) is preferred over late order fulfilment. Hence, 𝜉𝑡𝜏
𝑒  

and 𝜉𝑡𝜏
𝑙  such that 𝑚𝑎𝑥(𝜉𝑡𝜏

𝑒 ) < 𝑚𝑖𝑛(𝜉𝑡𝜏
𝑙 ), 𝑚𝑎𝑥(𝜉𝑡𝜏

𝑙 ) < 𝑚𝑖𝑛(𝑃𝐴𝑆𝑖), 𝜉𝑡1𝜏
𝑒 < 𝜉𝑡2𝜏

𝑒  for 𝑡1 > 𝑡2 and 

𝜉𝑡1𝜏
𝑙 < 𝜉𝑡2𝜏

𝑙  for 𝑡1 < 𝑡2. 

The demand fulfilment performance of DDAP and CAP is compared. A FCFS real-time order 
promising without preceding allocation planning serves as a benchmark. For comparability 
reasons, the frequency of the CAP approach is set to the frequency of the DDAP approach, i.e. 
one week. 

Note that the DDAP approach is developed for the single product case. Hence, when 

applying it to multiple products like in this numerical study, the values of 𝑃𝐴𝑆𝑖  and 𝛼 can be 
determined separately for all products. 

The numerical study is implemented in Java. IBM ILOG CPLEX V12.6.0 is used to solve the 
linear programming models for allocation planning and order promising. The study was 
performed on a personal computer with an Intel Xeon E7-4860 v2 processor with 2.6 GHz and 
32GB RAM on a 64-bit Microsoft Windows 7 installation. 

6.3.2 Trade-off between profitability and forecast accuracy 
To be able to investigate the effects of considering customer forecast accuracy in allocation 
planning, first, the 𝛼 values to be used for each product dataset in the numerical study need to 

be determined. For this calibration of 𝛼, first, the 𝑃𝐴𝑆𝑖  values for each dataset are determined 
using the 52 weeks in-sample data and the DDAP method is run on the in-sample data varying 
the level of 𝛼 between 0 and 1 in five equidistant steps. The analysis is done at a supply 
shortage level of 20%, which is defined as the level to which the total customer demand 
exceeds the total available supply. The determined 𝛼 values are denoted by 𝛼∗. 

In the following, the determination of 𝛼∗ for P4 is demonstrated in detail. For all other 
products, the results look similar and the determination of 𝛼∗ is done in the same way. The 
determined 𝛼∗ values for all six products are provided at the end of the section. 

Figure 15 and Figure 16 illustrate the influence of the 𝛼 level on the service level, profit and 
average stock level resulting from excess allocations for P4. Figure 15 shows the overall service 
levels as well as the performance for the first quartiles of customers with the lowest and highest 
forecast biases. The results are shown relative to the DDAP performance at an 𝛼 level of 0. 

Intuitively, the TSL and the OTSL for customers with low forecast bias increase with increase 
in 𝛼, because demand fulfilment prioritises these customers more as 𝛼 increases. Analogously, 
the service levels decrease for the customers with high forecast biases. However, the increase in 
the service levels for low bias customers is significantly higher. It is because the majority of the 
customers with low biases have a low profitability and order relatively small volumes.  
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Figure 15: a) total service level and b) on-time service level and profits in dependence of the level of 𝜶 

Therefore, their demands are not satisfied at all when the 𝛼 level is small. When 𝛼 increases 
and their demands are satisfied, their service level increases significantly. On the other hand, 
the customers with a high forecast bias mainly order high volumes and have high profitability. 
Therefore, even though a smaller portion of their demand is satisfied at higher levels of 𝛼, their 
orders are still fulfilled partially leading to a smaller decrease in the service level. 

Figure 15 further shows that the overall TSL does not depend on the level of 𝛼. This is 
because the fulfilment of orders after their requested delivery date is allowed, AATP quantities 
are nested and problems in which ATP is scarce over the entire planning horizon are studied. 
Therefore, the entire ATP supply is always consumed, which leads to an 𝛼-level-independent 
overall TSL. 

The overall (average) OTSL first grows for 𝛼 < 0.6, then reaches a maximum and decreases 
monotonically for 𝛼 > 0.6. This has two reasons. First, prioritising the customers that forecast 
their demand truthfully reduces the risk of excess allocation. Hence, the risk of late order 
promising while at the same time generating temporary stocks is reduced. As a result, ATP 
supply can be consumed more efficiently, leading to a higher OTSL performance. Second, the 
customers with low demand biases tend to place their orders later than others. When placing 
large emphasis on forecast accuracy (high 𝛼), the supply allocation for these customers 
increases. Even though their forecasts are more accurate, they still include a demand bias. 
However, due to the short lead time, this bias cannot be compensated for by making the excess 
allocation available for other orders. Therefore, even though the OTSL for the customers with 
low forecast bias increases with increase in 𝛼, the overall OTSL deteriorates for 𝛼 levels above 
0.6. 

For the same reason, the average stock levels resulting from excess allocation show a 
minimum at an 𝛼 level of 0.6 (see Figure 16). The consideration of forecast bias data in demand 
fulfilment, thus, additionally reduces holding cost for inventory resulting from excess allocation. 

Going forward, the 𝛼 level that maximises the OTSL and minimises the average stock level is 
called SL-optimal 𝛼. As the above discussion shows, the location of the SL-optimal 𝛼 partly 
depends on the distribution of the order lead times in the customer set, i.e. the time between 
order placement and the requested delivery date. 



 

79 
 

 

Figure 16: Average stock resulting from excess allocation 

Since the profits realised are decreasing with increase in 𝛼, Figure 15 shows a trade-off between 
maximising profits and maximising the overall service levels and minimising the average stock 
levels. The trade-off exists because the highly profitable customers also show the highest 
demand bias. In practice, it can be explained by a higher market power that the highly profitable 
customers exercise over their suppliers. Being aware of their strong position, the customers 
strategically game their suppliers’ allocation planning.  

For P4, the average decrease in profit at the SL-optimal 𝛼 level is only 0.14% and 0.39% for 
the realistic case scenario and the extreme case scenario, respectively. Both values are very 
small, especially for the realistic case scenario, which shows differences in customer profitability 
that are comparable to the industry. For P4, 𝛼∗ is therefore set to the SL-optimal 𝛼, i.e. 0.6.  

For the other five products in the dataset, the same analysis is conducted. For all products 
the results look similar. Only the SL-optimal value of 𝛼 differs. As a consequence, the following 
levels of 𝛼∗ are obtained for the products P1 to P6: 0.6, 0.2, 0.4, 0.6, 0.8 and 0.4. 

Obviously, the determined value of 𝛼∗ represents the trade-off made between maximising 
profits and maximising service levels. Note that for other cases, especially when the choice of 𝛼 
affects the total profits more than in the case investigated here, the choice of 𝛼∗ can differ from 
the SL-optimal 𝛼. 

6.4 Numerical results 
This section presents the results of the numerical study defined in Section 6.3. The benefits of 
considering forecast bias data in allocation planning and order promising are analysed in Section 
6.4.1. Section 6.4.2 contains an analysis that demonstrates that the DDAP approach incentivises 
the customers to provide truthful forecasts for the given dataset. Then, the performance of 
DDAP and CAP is compared in Section 6.4.3. In Section 6.4.4, the analysis is concluded with 
investigating the effects of moving the demand fulfilment level from customer segment to 
individual customer and considering demand bias data separately. 

6.4.1 Benefits of considering forecast bias data 
To investigate the benefits of considering forecast bias data in demand fulfilment, the DDAP 

approach is used on the out-of-sample data and the level of supply shortage is varied from 10%  
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Figure 17: a) total service level and b) on-time service level in dependence of the level of supply shortage 

to 30% in two equidistant steps using, first, the 𝛼∗ values determined in Section 6.3.2 and, 
second, an 𝛼 level of 0. 

Figure 17 shows the service levels of the DDAP approach at different levels of supply 
shortages and their respective 𝛼∗. The findings are displayed relative to the performance of the 
DDAP approach at an 𝛼 level of 0, i.e. only considering customer profitability. The graphs show 
that the positive effect of considering forecast accuracy data on the overall OTSL increases with 
the level of supply shortage. The reason for the amplification of the given effects lies in the 
scarcity of supply itself.  

As shown above, supply can be allocated most efficiently at 𝛼∗. Moreover, the influence of 
allocating supply more efficiently among customers on the service levels grows with the level of 
supply shortage. While at low supply shortage levels relatively many orders of the customers 
with lower scores can be fulfilled even though excess allocation exists, lesser orders can be 
fulfilled as supply keeps becoming scarce. Hence, when allocating supply more efficiently, the 
additional number of satisfied orders from the customers with lower scores compared to 
demand fulfilment without consideration of demand bias data grows with the growing level of 
supply shortage. 

6.4.2 Impact of truthful forecasting for highly profitable customers 
It was shown above that the DDAP approach increases both the TSL and OTSL for the customers 
with high forecast accuracy. On the other hand, both the service levels decrease for the 
customers with low forecast accuracy. In this section it is shown that using this effect, the DDAP 
approach incentivises all the customers to increase their forecast accuracy. 

In order to realise this incentive, suppliers need to communicate the effects of DDAP on the 
individual service levels of customers depending on their forecast accuracy. It is obvious that 
customers with relatively low profitability have an incentive to increase their customer score 
𝑃𝐴𝑆𝑖 by sustainably improving their forecast accuracy to increase their priority in the allocation 
planning process of the supplier and consequently increase the service levels with which they 
are served. 
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Figure 18: Effect of forecast accuracy on a) TSL and b) OTSL of the most profitable customer 

However, the numerical results show that in supply shortage situations the TSL and OTSL for all 
the customers are smaller than 100%. In the following it is investigated whether such an 
incentive also exists for customers with relatively high profitability. For this, the forecast bias 
and the forecast accuracy 𝑎𝑐𝑐𝑖 of the most profitable customer 𝑖𝑝 for all six product datasets is 
varied between 0 and 1, their forecasts are adapted in the out-of-sample data and the effect of 
this variation is analysed on the TSL and OTSL of these customers. 

Figure 18 shows the effects of the variation of 𝑎𝑐𝑐𝑖𝑝  on the TSL and OTSL of 𝑖𝑝 as an average 
across all six product datasets (overall) and for the two products with the largest (P5) and the 
smallest (P2) 𝛼∗ (see Figure 16). P5 and P2 are chosen, because they show the largest and 
smallest effects. All other products display the same pattern, but the effect of 𝑎𝑐𝑐𝑖𝑝  on the 
service levels is differently strong. 

The graphs show the relative difference between the service levels at certain forecast 
accuracy and the service level at the real forecast accuracy of 𝑖𝑝 in the respective datasets. The 
vertical arrows indicate the potential improvement of TSL and OTSL for 𝑖𝑝 if they increase their 
normalised forecast accuracy to 100%. This potential represents the incentive for the customers 
to improve their forecast accuracy. Note that a normalised forecast accuracy of 100% does not 
mean a bias-free demand forecast, rather the lowest bias within the customer dataset. 

On average (solid line), the potential relative improvements of the TSL and OTSL for the 
most profitable customers are about 30% and 120%, respectively. Hence, the customers are 
strongly incentivised to increase their forecast accuracy. Due to the high 𝛼∗ of 0.8, these 
incentives are even higher for the most profitable customer of P5. The potential relative 
improvements of TSL and OTSL are about 75% and 400%. For the most profitable customer 
ordering P2 for which 𝛼∗ is low (0.2), the potential service level improvements are comparably 
low. However, the customer can still improve their OTSL by about 35% provided they increase 
their normalised forecast accuracy to 100%. 

These numerical findings show that it is not a dominant strategy for the most profitable 
customers in the dataset to inflate their demand forecasts. All investigated customers are 
incentivised to increase their forecast accuracy and, hence, forecast demands truthfully, if the 
supplier employs the DDAP approach. 
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Figure 19: Service levels of DDAP and CAP in dependence of the predictive quality of data 

6.4.3 Comparison of demand fulfilment approaches 
Figure 19 depicts the OTSLs of DDAP and CAP relative to the FCFS approach in dependence of 

the average error of the historical forecast accuracy values 𝑒𝑟𝑟
𝑎𝑐𝑐

, i.e. the predictive quality of 
the historical forecast accuracy values. Like the approach in Meyr (2009), CAP allocates supply 
to customer segments solely based on customer profitability data. The models used for 
allocation planning and order promising in the CAP approach are presented in Sections 2.3.2 
and 2.3.3. The case company groups their customers into three different customer segments. 
These are used in the CAP approach. 

The graph shows that the DDAP approach outperforms the CAP approach for all the studied 
product data sets, i.e. predictive qualities of the historical forecast accuracy values, because of 
its more efficient supply allocation; thus, exploiting the availability of highly granular data. 

However, the advantage decreases with increasing 𝑒𝑟𝑟
𝑎𝑐𝑐

. This is intuitive since high levels of 
predictive quality indicate stable forecasting behaviour of the customers. Consequently, the SL-
optimal 𝛼 values, which are chosen as 𝛼∗, do not change for the out-of-sample data, on which 

the analysis is based. On the other hand, in a situation where 𝑒𝑟𝑟
𝑎𝑐𝑐

 is high, the customers’ 
forecasting behaviour cannot be predicted accurately and the potentials of highly granular data 
cannot be exploited as efficiently by the DDAP approach. 

6.4.4 Effects of demand fulfilment on customer service level and consideration of demand 
bias 

The DDAP approach differs in two respects from the CAP approach. First, allocation planning 
and order promising are done on individual customer level. Second, the demand bias data is 
taken into account. In this section, the effects of both these aspects are investigated separately. 

To be able to measure the effect of considering forecast bias data when fulfilling demands at 
the customer segment level, the DDAP model is adapted to do allocation planning and order 
promising on customer segment level. For this, first, the average of the in-sample forecast bias 

𝑏𝑘 and the profitability 𝑝𝑟𝑜𝑓𝑘  of the customer segment 𝑘 are calculated by taking the average 

of the 𝑏𝑖 values and the 𝑝𝑟𝑜𝑓𝑖  values for all the customers 𝑖 belonging to the segment 𝑘. Here, 
again, the customer segments of the case company are used. Afterwards, the normalised  
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Table 6: Effects of demand fulfilment granularity and consideration of demand bias on the on-time service level 

   customer segments individual customers 
 product OTSL profit OTSL profit 

CAP  
(𝜶 = 𝟎) 

P1 - - +0.0% −0.01% 
P2 - - +0.9% 0.01% 
P3 - - +1.0% −0.01% 
P4 - - +0.1% 0.00% 
P5 - - +0.3% 0.00% 
P6 - - +1.1% 0.01% 

DDAP  
(𝜶 = SL-optimal) 

P1 3.3% −0.03% 8.9% −0.13% 
P2 2.4% −0.02% 9.3% −0.12% 
P3 4.0% −0.07% 5.0% −0.09% 
P4 3.1% −0.02% 5.1% −0.06% 
P5 2.2% −0.01% 2.4% −0.02% 
P6 3.2% −0.03% 1.5% −0.02% 

 
forecast accuracy 𝑎𝑐𝑐𝑘

𝑛𝑜𝑟𝑚 and profitability 𝑝𝑟𝑜𝑓𝑘
𝑛𝑜𝑟𝑚 of the segments as well as the segment 

scores 𝑃𝐴𝑆𝑘
𝑠𝑒𝑔

 are generated using Equations (56) to (58) for customer segments. Finally, the so 

generated 𝑃𝐴𝑆𝑘
𝑠𝑒𝑔

 are used as 𝑠𝑐𝑜𝑟𝑒𝑘
𝑠𝑒𝑔

 in the allocation planning model described in Section 2.3.2. 

Table 6 presents the effects of fulfilling demands at customer segment or individual 
customer levels as well as using profitability of customers for customer scores alone or 
additionally considering demand bias data. When reading the table from left to right, the effect 
of changing the demand fulfilment granularity from customer segment to individual customer is 
shown. Reading the table from top to bottom shows the effect of considering forecast bias 
information in customer scores. All numbers are relative to the performance of the CAP 
approach. 

Changing the demand fulfilment granularity from customer segment to individual customer 
increases the OTSL between 0.0 and 1.1 and the profit (real case scenario) between −0.01 and 
0.01 percentage points. Therefore, changing the demand fulfilment granularity alone only has a 
weak effect on demand fulfilment performance. This is because, first, pooling effects within 
customer segments and, thus, flexibility in order promising is lost. Second, the effect on the 
OTSL is positive due to the fact that most customers in the dataset display a tendency of 
inflating their demand forecasts, and the highly profitable customers place their orders earlier 
than others. Hence, excessive AATP quantities for the highly profitable customers can be used 
to fulfil orders of the less profitable customers, which are received later. 

Considering demand bias data when fulfilling demands at the customer segment level 
increases the OTSL moderately between 2.2 and 4.0 percentage points. Profits are decreasing 
slightly between −0.07 and −0.01 percentage points. The reason why the benefits in terms of 
OTSL are not more significant is that customers within these profit segments are very 
heterogeneous in terms of their individual forecast accuracy. As a consequence, customers with 
high demand biases are grouped with customers forecasting their demands truthfully. Raising 
the 𝛼 level leads to a prioritisation of customer segments with low average demand bias. 
Nevertheless, the demand biases of individual customers within prioritised segments can still be 
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high. The overall profit decreases since, on average, customers with higher forecast accuracy 
tend to have lower profitability. 

Finally, combining both these aspects results in the highest service level for all products 
except P6. The most distinct effects are achieved for the products P1 and P2, for which the 
OTSLs of both the DDAP approach on customer segment level and the CAP approach on 
individual customer level are significantly outperformed. Analogously, a decrease in the overall 
profits is most pronounced for these products. For the products P3 to P5, the increase in OTSL 
compared to the CAP approach at the individual customer level is moderate while the 
advantages compared to the DDAP approach at the customer segment level are low. The overall 
profits change analogously. 

The rationale behind the different magnitudes of leveraging effect is the difference between 
the predictive qualities of forecast accuracy values. While these values are of high predictive 
quality for the product datasets P1 and P2, they are of moderate quality for P3 to P5, and give 
only little indication of the forecast accuracy of customers out-of-sample in the dataset P6. The 
higher the predictive quality of the forecast accuracy values, the less temporary are the stocks 

resulting from excess allocation that are built by the DDAP approach. In dataset P6, 𝑒𝑟𝑟
𝑎𝑐𝑐

 is 
exceptionally high so that the usage of forecast accuracy data at the individual customer level 
leads to a negative effect on the OTSL compared to the DDAP approach at the customer 
segment level. 

We, therefore, draw the following conclusions. First, the use of the DDAP approach is only 
meaningful when additional data at the individual customer level is considered. Second, when 
looking at OTSL, allocation planning at the individual customer level, considering demand bias 
data robustly outperforms the conventional allocation planning approaches, allocating supply to 
customer segments purely based on profitability data. In exceptional cases, when the predictive 
quality of the historical forecast accuracy is very low, it is, however, more beneficial to fulfil 
demands at the customer segment level. Third, the benefits of the DDAP approach increase with 
the predictive quality of the historical data on customer forecast accuracy. 

6.5 Summary and conclusion 
The recent advances in big data analysis tools represent an opportunity for companies to 
further improve their demand fulfilment processes. In particular, the exploitation of data on the 
ordering behaviour of customers, e.g. their forecast biases, can enable companies to improve 
the accuracy and robustness of their order promises and increase the performance of their 
demand fulfilment systems. Here, a first step towards integrating such newly available data into 
allocation planning and order promising has been taken. 

Research has shown that customers systematically inflate their demand forecasts in supply 
shortage situations to make suppliers increase the supply quantities reserved for them and 
finally satisfy their total actual demand. This behaviour called the rationing gaming significantly 
impairs the ability of the supplier to efficiently allocate current and future supply to customers. 

An allocation planning methodology called the data driven allocation planning (DDAP) is 
proposed, which considers the data on individual customers and products by allocating supply 
on a highly granular level, taking systematic biases in demand forecast into account. The DDAP 
approach supports an efficient supply allocation, leading to a significant increase in customer 
service levels compared to conventional allocation approaches. In addition, the approach 
reduces stocks that are created by excess allocation to customers showing low forecast 
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accuracy. By increasing service levels for customers with high forecast accuracy, the approach 
incentivises customers to provide truthful demand forecasts and, thus, counteracts rationing 
gaming. 

The DDAP approach is tested in a numerical study using data from a large European 
semiconductor manufacturer. The analysis proves that allocating supply to individual customers 
is only valuable when additional data on this granularity level is available and taken into 
account. The results demonstrate the capability of the proposed approach to significantly 
increase allocation efficiency and incentivise customers for truthful forecasting for the 
investigated case. The improvements become more distinct with growing scarcity of supply and 
increased predictive quality of the available data.  

This work uses an extensive dataset from the semiconductor industry. Considering the 
special characteristics of this industry; i.e. high volatility of demand, long production lead time, 
capital intensive manufacturing and particularly short product life cycles; it is reasonable to 
believe that the DDAP approach is also beneficial in other industries, which are typically less 
dynamic. Nonetheless, to prove its benefits in general also for other industries, this work could 
be complemented by testing the applicability of the approach in different environments. In this 
context, especially the optimal weight factor for balancing forecast bias and profitability of 
customers and a general analytical proof of the incentive for customers to forecast their 
demands truthfully would warrant further investigation. 

The findings of the study presented here indicate that an allocation approach additionally 
accounting for data on customer order lead times could lead to even better results. Thus, for 
further research purposes, it would be interesting to integrate order lead time data on the 
individual customer level into allocation planning approaches. Additionally, approaches to 
increase the performance of DDAP in environments with varying predictive quality of historical 
data have to be developed. Allocation planning methods switching from an individual customer 
level to a customer segment level when the volatility of demand biases reaches a certain 
threshold should be investigated. Moreover, considering substitute products in the allocation 
planning decision would be interesting; especially, taking into account data on the individual 
willingness of customers to substitute products has so far not been addressed. Finally, the 
examination of the performance of DDAP under supply uncertainty or demand uncertainty after 
order arrival indicates possibility of a further extension. Hereby, order rescheduling and 
cancellation rules, which industrial suppliers and customers agree upon in supply contracts, 
have to be taken into consideration. Obviously, several of these further research directions can 
be realized by exploiting additional data. 
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7 Managing the contract portfolio to increase demand fulfilment performance 
When demands exceed capacities, suppliers allocate available supply to customers based on 
customer importance and advance demand information. The accuracy of advance demand 
information interacts with the length of customer order lead times and influences the overall 
customer service levels. 

In this chapter, industrial contract portfolios with customer-specific terms are analysed in 
order to derive insights aiding suppliers in their contract portfolio management and in their 
design of demand fulfilment processes. For this purpose, a framework is developed for an 
analysis of contract portfolios capturing the dynamics of industrial planning processes. The 
framework is applied to portfolios from the semiconductor sector. 

A numerical analysis shows that, in order to improve service levels, an industrial demand 
fulfilment process must take all contract terms, including order lead times and historical 
forecasting and ordering behaviour, of all customers into account. 

In general, suppliers prefer long order lead times. However, the analysis shows that demand 
fulfillment performance is not primarily determined by the absolute length of the order lead 
times but by the presence of a negative correlation with the accuracy of advance demand 
information in the entire contract portfolio. Consequently, suppliers must consider the portfolio 
of all customers and negotiate relatively long order lead times for customers showing relatively 
low accuracy of advance demand information. 

In the following, Section 7.1 describes the use of ADI in industrial demand fulfilment and 
illustrates the contributions of the work presented in this chapter. Section 7.2 explains the 
allocation planning approach in detail. Section 7.3 introduces a case from the semiconductor 
industry, describes the experimental design of the numerical study and presents its results. 
Section 7.4 gives managerial implications and concludes the chapter. 

7.1 Advance demand information in demand fulfilment 
In environments in which production cycle times exceed customer order lead times, i.e. the time 
between order placement and the requested delivery date, the move towards mass 
customisation has led to a high risk of too long demand fulfilment lead times and excessive 
stocks (see e.g. Giard and Mendy 2008). Companies therefore share so-called ADI, which are 
forecasts of future demands that customers provide to their immediate upstream suppliers (see 
e.g. Hariharan and Zipkin 1995). The literature dealing with ADI usually assumes enough supplier 
capacity to fulfil the total forecasted demand in the forecast horizon. In this case, suppliers feed 
the ADI into their demand planning process, where it is consolidated with internal forecasts (see 
left side of Figure 20) and forwarded to the supply network planning process, which plans 
supply chain activities accordingly (see e.g. Karrer et al. 2012 or Altendorfer and Minner 2014). 
The resulting supply information is then passed on to the demand fulfilment process, where it is 
used to promise delivery dates for incoming customer orders in real-time (see Chapter 5). For 
such situations, previous research has shown that ADI increases the supply chain performance 
by reducing the planning uncertainty of the supplier and increasing on-time service levels at 
lower inventory levels (see e.g. Thonemann 2002).  

The time horizon over which ADI is shared is usually not longer than a few months. Capacity 
planning decisions, however, are made on longer time horizons. Hence, the exchange of ADI 
does not mitigate the risk of investing in the wrong amount of capacities. Consequently, 
demand often exceeds capacities. Then, suppliers usually do not use ADI to improve their  
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Figure 20: ADI interface to the planning process for a product group (for demand shortage and supply shortage). 

internal forecasts, because any produced volumes can be sold (see right side of Figure 20). 
Instead, supply is planned so that profits are maximised and strategic requirements are met. 
The supply is allocated to customers based on the provided ADI while considering customer 
importance. Afterwards, the allocated supply is forwarded to the order promising process.  

Anticipating such allocation mechanisms, customers strategically inflate their ADI in order to 
influence the allocation. This behaviour, called rationing gaming, results in the risk of low on-
time service levels and high inventories due to excess allocations (see e.g. Lee et al. 2004). As 
the ADI inflation, also called bias, is usually not constant over time, suppliers cannot discount 
the ADI by a fixed value in order to improve its accuracy (Chapter 6). Consequently, suppliers 
aim to reduce planning uncertainty by substituting ADI through orders as early as possible, i.e. 
by increasing the order lead time of customers. However, because of their own demand 
uncertainty, customers are usually not willing to place orders long in advance. 

This conflict of interests is dealt with in contract negotiations between customers and 
suppliers. Supply chain partners typically agree on two separate contracts. One contract sets the 
terms and conditions for the ADI exchange including horizon and maximum volatility. The other 
contract regulates the ordering process and sets i.a. the minimum order lead time and the 
maximum deviation between order and ADI. Hence, the contractual terms agreed upon set the 
boundary conditions for the demand fulfilment process of the supplier. 

Since the negotiated contracts are different for different customers and the demand 
fulfilment process of the supplier must decide whether an incoming order from a customer with 
a long order lead time should be accepted or if the order should be declined to reserve the 
supply for other customers based on their (possibly biased) ADI, the contractual terms for the 
minimum order lead times and the accuracy of the ADI interact not only for one customer but 
also across different customers. Therefore, when negotiating new dyadic contracts, the order 
promising and allocation rules and the ADI and order lead time terms in the contract portfolio 
must be considered simultaneously. This highly relevant problem has so far not been addressed 
in academic publications. 



 

88 
 

The work presented in this section has the following contributions: 

 Industrial contract portfolios with customer-individual terms for order lead times and 
ADI are analysed in order to derive insights for portfolio management. 

 A framework is developed that extends the demand fulfilment methodology presented 
in Chapter 6 to investigate contract portfolios in the dynamic context of industrial 
planning processes. 

 It is demonstrated how to apply and parametrise the framework to contract portfolios 
from the semiconductor sector and show that customers should not be grouped into 
segments but receive allocations individually. 

 The numerical analysis shows that the consideration of order lead times results in 
significant improvements in service levels and performance robustness. 

 The numerical results show that those portfolios, in which order lead times and the 
accuracy of ADI are negatively correlated, perform substantially better. Such portfolios 
are even superior to portfolios in which all customers have long order lead times. They 
allow a more efficient reallocation of excess allocations. 

The main managerial implications are: 

 Demand fulfilment approaches should not cluster customers in segments, but allocate 
ATP to individual customers, taking the individual lead times and ADI accuracy into 
account. Thereby it is important to know the predictive quality of the data used. 

 Order lead times of a portfolio are ideally distributed such that relatively long order lead 
times are negotiated with customers providing ADI with relatively low accuracy. 

7.2 A flexible demand fulfilment framework for evaluation of ADI and order lead time 
contracts 

In this section, a new demand fulfilment framework is developed, which is used as a testbed for 
industrial contract portfolios. The framework considers the contractual parameters set for each 
individual customer as well as the resulting customer forecasting and ordering behaviour. It 
extends the methodology presented in Chapter 6 by (1) considering order lead times, (2) using a 
dynamic updating process for customer scoring to reflect changing customer ordering 
behaviour, and (3) adding flexibility to the supply allocation and order promising processes. Its 
processes are executed in a short-term rolling horizon fashion (e.g. every week). Figure 14 
provides an overview. 

Based on profitability, order lead time and ADI data, the customer score determination 
process determines the importance, i.e. the customer score 𝑠𝑐𝑜𝑟𝑒𝑖

𝑐𝑢𝑠𝑡, of every individual 
customer 𝑖 ∈ 𝐼 in demand fulfilment (see Section 7.2.1). 

The customer segmentation process (Section 7.2.2) segments customers into a given 

number of segments |𝐾| (𝑘 ∈ 𝐾) that, together with their respective segment score 𝑠𝑐𝑜𝑟𝑒𝑘
𝑠𝑒𝑔

, 

are used in the allocation planning and order promising processes. 
In allocation planning (Section 7.2.3), the ATP supply 𝑎𝑡𝑝𝑡 becoming available at the 

beginning of planning time period 𝑡 is allocated to the customer segments 𝑘. The allocation is 
based on ADI demands 𝑓𝑖𝜏 of the customers 𝑖 being forecasted for period 𝜏. The resulting AATP 
supply 𝑎𝑎𝑡𝑝𝑘𝑡𝜏 is used by a real-time order promising process to generate order promises 𝑝𝑖𝑡′𝜏′ 
for incoming orders with order quantity 𝑞𝑖𝜏′. Here, the delivery period and the time period of 
the requested delivery date are denoted by the indexes 𝑡′ and 𝜏′. 
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Figure 21: Rolling horizon scheme for customer ordering behaviour driven allocation planning 

The order promising step allows for upward nesting in order to increase order promising 
flexibility (see Section 7.2.4). Orders can consume AATP quantities reserved for customers with 
lower priority. Additionally, allocations of 𝑢 customers with higher priority can be consumed. 

7.2.1 Customer score determination 
The customer score determination approach uses the normalised profitability 𝑝𝑟𝑜𝑓𝑖

𝑛𝑜𝑟𝑚, ADI 
accuracy 𝑎𝑐𝑐𝑖

𝑛𝑜𝑟𝑚, and average order lead time 𝑜𝑙𝑡𝑖
𝑛𝑜𝑟𝑚 of the customers to determine their 

priority in demand fulfilment. 
The parameters 𝑝𝑟𝑜𝑓𝑖

𝑛𝑜𝑟𝑚 and 𝑎𝑐𝑐𝑖
𝑛𝑜𝑟𝑚 are derived as presented in Chapter 6. To determine 

𝑜𝑙𝑡𝑖
𝑛𝑜𝑟𝑚, Equations (64) and (65) are used. The time period of the due date and the time period 

of the placement of order 𝑜 are represented by 𝑡𝑜  and 𝑡𝑜
𝑝𝑙𝑎𝑐𝑒𝑑. The set 𝑂𝑖 contains all orders 𝑜 

of customer 𝑖 in the past 𝑡 ∈ 𝑇ℎ𝑖𝑠𝑡 time periods. Note that the boundary conditions for 𝑜𝑙𝑡𝑖  are 
set by the contracts the supplier closes with their customers. 

 

𝑜𝑙𝑡𝑖 =
∑ (𝑡𝑜 −𝑡𝑜

𝑝𝑙𝑎𝑐𝑒𝑑
)𝑜∈𝑂𝑖

|𝑂𝑖|
.  (64) 

𝑜𝑙𝑡𝑖
𝑛𝑜𝑟𝑚 =

𝑜𝑙𝑡𝑖−min 𝑖(𝑜𝑙𝑡𝑖)

max 𝑖(𝑜𝑙𝑡𝑖)−min 𝑖(𝑜𝑙𝑡𝑖)
   (65) 

 
The customer scores 𝑠𝑐𝑜𝑟𝑒𝑖

𝑐𝑢𝑠𝑡 are determined by Equations (66). The factors 𝛼, 𝜔, and 𝜋 
determine the weight of the historical ADI accuracy, order lead time, and profitability of a 
customer in 𝑠𝑐𝑜𝑟𝑒𝑖

𝑐𝑢𝑠𝑡. 
 

𝑠𝑐𝑜𝑟𝑒𝑖
𝑐𝑢𝑠𝑡 = 𝛼 ∙ 𝑎𝑐𝑐𝑖

𝑛𝑜𝑟𝑚 + 𝜔 ∙ 𝑜𝑙𝑡𝑖
𝑛𝑜𝑟𝑚 + 𝜋 ∙ 𝑝𝑟𝑜𝑓𝑖

𝑛𝑜𝑟𝑚  (66) 
 

7.2.2 Customer segmentation 
For customer segmentation, the model presented in Section 2.3.1 is used. The minimum 

segment size 𝑠𝑚𝑖𝑛 is set to the value of ⌊
2−|𝐼|−|𝐾|

2(1−|𝐾|)
⌋, which sets a rather large minimum segment 

size, but still leaves flexibility to the customer segmentation model to optimise the overall 
maximum segment width �̅� (see Appendix A). The value is chosen because industrial companies 
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usually aim at levelling out the sizes of the customer segments in demand fulfilment. Note that 

|𝐾| ≥ 3 is assumed, for which 𝑠𝑚𝑖𝑛 = ⌊
2−|𝐼|−|𝐾|

2(1−|𝐾|)
⌋ always leaves at least (𝑠𝑚𝑖𝑛 − 1) customers 

unassigned (see Appendix A). 
After customer segmentation, the set of customer segments 𝐾, the sets 𝐼𝑘 containing the 

customers belonging to the segment 𝑘 and the segment scores 𝑠𝑐𝑜𝑟𝑒𝑘
𝑠𝑒𝑔

 are provided to the 

allocation planning process. The segment scores are calculated with Equation (67), in which 𝑣𝑖𝑘
∗  

are the optimal values of the binary decision variables 𝑣𝑖𝑘, which assign assign customer 𝑖 to 
segment 𝑘. 

 

𝑠𝑐𝑜𝑟𝑒𝑘
𝑠𝑒𝑔

=
∑ (𝑣𝑖𝑘

∗ ∙𝑠𝑐𝑜𝑟𝑒𝑖
𝑐𝑢𝑠𝑡)𝑖∈𝐼

∑ 𝑣𝑖𝑘
∗

𝑖∈𝐼
  (67) 

 
Note that, if |𝐾| = |𝐼|, each customer segment contains only one customer and the subsequent 
allocation planning and order promising processes will be performed on individual customer 
level. 

7.2.3 Allocation planning model 
The allocation planning process of the framework is a modification of the approach in Chapter 6. 
Its mathematical representation is presented in Section 2.3.2. The model uses the segment 
scores 𝑠𝑐𝑜𝑟𝑒𝑘

𝑠𝑒𝑔 that consider customer profitability and ordering behaviour data. 

7.2.4 Order promising 
For order promising, the model presented in Section 2.3.3 is used. The model allows nesting of 
customer segments. The segments, from which customer 𝑖∗ is allowed to consume allocated 
supply, are represented in the set 𝐾𝑖∗ . This set contains all segments for which Inequality (68) 
holds. The function 𝑅𝑁𝐾 ranks the customer segments in descending order of their segment 
scores into the interval [1; |𝐾|]. The customer segment of the ordering customer is represented 
by 𝑘∗. The upward nesting level 𝑢 determines the number of customer segments with higher 

𝑠𝑐𝑜𝑟𝑒𝑘
𝑠𝑒𝑔

, whose AATP quantities 𝑘∗ can consume. 

 

[𝑅𝑁𝐾(𝑠𝑐𝑜𝑟𝑒𝑘
𝑠𝑒𝑔

) + 𝑢] ≥ 𝑅𝑁𝐾(𝑠𝑐𝑜𝑟𝑒𝑘∗
𝑠𝑒𝑔

)    (68) 

 
In the numerical study presented below, fulfilment of orders before their due date is not 
allowed. Therefore, the promises 𝑝𝑖𝑡′𝜏′ are calculated with Equations (29) and (30) in Section 
2.3.3. 

7.3 Performance analysis of contract portfolios from the semiconductor industry 
In this section, different customer contract portfolios are analysed using data from the 
semiconductor industry. The contract portfolios are designed so that the resulting customer 
ordering behaviour shows different correlations of the length of the order lead time and the 
accuracy of ADI in the customer set. 

After introducing the design of experiments in Section 7.3.1, the demand fulfilment 
framework presented in Section 7.2 is parametrised in Section 7.3.2. In Section 7.3.3, a 
numerical analysis on the impact of exact parametrization of the approach is performed, its  
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Table 7: Contract portfolios for numerical case study 

 
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Total 

Customers 16 12 13 13 16 14 14 16 15 14 143 
Orders 105 98 131 136 197 185 153 210 214 215 1644 

Average 𝑏𝑖 15% 21% 18% 7% 9% 12% 32% 13% 9% 1% 14% 

Average 𝑜𝑙𝑡𝑖 2.20 3.38 3.07 1.87 1.47 3.44 2.98 2.82 3.15 2.98 2.73 

Average 𝑒𝑟𝑟
𝑎𝑐𝑐

 
(in-sample) 

0.03 0.19 0.27 0.31 0.41 0.38 0.40 0.44 0.51 0.65 0.36 

Average 𝑒𝑟𝑟
𝑎𝑐𝑐

 
(out-of-sample) 

0.04 0.21 0.29 0.30 0.38 0.39 0.40 0.46 0.48 0.59 0.35 

𝑟(𝑜𝑙𝑡𝑖, 𝑎𝑐𝑐𝑖)  0.28 -0.42 -0.18 0.43 0.05 -0.39 0.11 -0.03 0.32 0.23 0.04 

 
performance is compared to other demand fulfilment methodologies and the influence of 
different contract portfolio designs on the demand fulfilment performance is analysed. 

7.3.1 Assumptions, performance measures, and contract portfolios 
The approach presented in Section 7.3.2 is implemented as shown in Figure 14. The following 
two assumptions are made to eliminate all sources of uncertainty other than ADI bias: 

 ATP quantities are deterministic. 

 Orders will not be cancelled or rescheduled by customers once they enter the system. 
Furthermore, two assumptions on the demand fulfilment processes are made: 

 Orders can be fulfilled partially and with multiple shipments. 

 If a part of an order cannot be promised when it is received, this part is lost. 
The effect of the design of contract portfolios on the demand fulfilment performance is 
measured in order to derive insights for portfolio management. The chosen indicators are the 
OTSL (Equation (32)) and the total profit (Equation (36)). 

The dataset contains 78 weeks of ADI for 143 customers and the corresponding 1644 orders 
for ten products (Table 7). The design of the contract portfolio differs for all products. As a 
result, the length of the order lead time and the accuracy of ADI (𝑎𝑐𝑐𝑖) show different 
correlations 𝑟(𝑜𝑙𝑡𝑖, 𝑎𝑐𝑐𝑖) for all products. Furthermore, the demand data for all ten products 
differs in its predictive quality, i.e. the degree to which the future customer ADI accuracy can be 

predicted from the past. To measure the predictive quality of data, the average error 𝑒𝑟𝑟
𝑎𝑐𝑐

 of 
the ADI accuracy (Equation (69)) is used. It calculates the average of the actual error in every 
period 𝑡. Here, 𝑎𝑐𝑐𝑖

𝑛𝑜𝑟𝑚(𝑡) is the (normalised) actual accuracy of customer 𝑖 in period 𝑡 and 
𝑎𝑐𝑐𝑖

𝑛𝑜𝑟𝑚 is the (normalised) accuracy of customer 𝑖 calculated with historical demand data. To 

calculate 𝑎𝑐𝑐𝑖
𝑛𝑜𝑟𝑚, a history of 30 periods before 𝑡 is used. Smaller values of 𝑒𝑟𝑟

𝑎𝑐𝑐
 indicate a 

higher predictive quality of data. In the remainder, the term contract portfolio is used as a 
synonym for a product of the dataset. 
 

𝑒𝑟𝑟
𝑎𝑐𝑐

=
∑ ∑ |𝑎𝑐𝑐𝑖

𝑛𝑜𝑟𝑚−𝑎𝑐𝑐𝑖
𝑛𝑜𝑟𝑚(𝑡)|78

𝑡=53𝑖∈𝐼

|𝐼|∙|𝑇|
  (69) 

 
In the numerical study presented below, the weeks 31 to 52 of the data set are used to 
parametrise the approach (in-sample). The experiments are then conducted on the weeks 53 to 
78 of the dataset (out-of-sample). The weeks 1 to 30 are used to initialise 𝑎𝑐𝑐𝑖

𝑛𝑜𝑟𝑚.  



 

92 
 

 Table 8: On-time service levels per ADI accuracy error and number of customer segments 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

𝒆𝒓𝒓
𝒂𝒄𝒄

  0.03 0.19 0.27 0.31 0.41 0.38 0.40 0.44 0.51 0.65 

|K| = 2 23% 31% 35% 22% 31% 25% 28% 29% 23% 28% 

|K| = 4 24% 33% 35% 24% 31% 26% 32% 32% 25% 35% 

|K| = 6 28% 34% 39% 25% 35% 29% 33% 34% 28% 37% 

|K| = |I| 35% 41% 43% 29% 42% 33% 37% 37% 29% 31% 

 

Table 7 presents the 𝑒𝑟𝑟
𝑎𝑐𝑐

 values calculated on the in-sample and the out-of-sample data. For 
confidentiality reasons, the real profitability of the customers is not provided in the used 
dataset. However, information on the relation of profitabilities of the customers within the 
dataset is available. For the numerical study, the per-piece profitabilities of the most and least 
profitable customers are set to 0.1€ and 0.067€, which represents a realistic relation between 
customer profitabilities in the semiconductor industry. Further, the level of supply shortage is 
set to 20%, i.e. the total demand of all customers exceeds the available ATP for every product by 
20%. To generate the supply values, the average cumulated demand of always five periods is 
calculated and multiplied with 0.8. The result is taken as the ATP supply in the respective weeks. 

The numerical study is implemented in Java. IBM ILOG CPLEX V12.6.0 is used to solve the 
customer segmentation, allocation planning, and order promising models. The study was 
performed on a personal computer with an Intel Xeon E7-4860 v2 processor with 2.6 GHz and 
32GB RAM on a 64-bit Microsoft Windows 7 installation. 

7.3.2 Framework parametrisation 
Before the influence of the design of the customer contract portfolio on the demand fulfilment 
performance can be investigated, the demand fulfilment framework has to be parametrised. For 
this, a full factorial design of experiments is used on the first 52 weeks of the dataset. The 
customer scores are initialised on the first 30 weeks and the demand fulfilment framework is 
run on the weeks 31 to 52. For the number of customer segments, the values {2; 4; 6; |𝐼|} are 
used for |𝐾|. The upward nesting level is varied between 0 and |𝐼| and the relative weights of 𝛼 

and 𝜔, i.e. 
𝛼

(𝛼+𝜋+𝜔)
 and 

𝜔

(𝛼+𝜋+𝜔)
, between 0 and 1 in ten equidistant steps. 

 Table 8 presents the OTSL resulting for the different values of |𝐾| at the service level-
optimal relative weights of 𝛼 and 𝜔 and an upward nesting level of 0. The table shows that, 
except for one portfolio, the service level-optimal number of customer segments equals the 

number of customers. Only for P10 showing exceptionally low (𝑒𝑟𝑟
𝑎𝑐𝑐

= 0.65) predictive quality 
of demand data it is better to make use of aggregation. However, the size of these segments lies 
between two and three customers, which is much smaller than the segment size used in 
conventional demand fulfilment approaches (e.g. Meyr 2009).  

If upward nesting is allowed (u>0), then the results are even more in favour of not combining 
customers into segments. This is because, upward nesting reduces the advantage of 
segmentation by adding flexibility in order promising also for allocation planning on customer-
individual level. 

The maximum OTSL in  Table 8 for all contract portfolios is approximately 40%. These rather 
low values result from the experimental design. The distribution of ATP is not aligned with the  
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Figure 22: a) Service level by upward nesting level, b) service level-optimal upward nesting level by error of ADI 
accuracy. 

distribution of the requested delivery dates of customer orders, the customer segments are 
nested, and the total customer demand exceeds the total available supply significantly by 20%. 
Consequently, early incoming orders consume large parts of the supply becoming available in 
later time periods. Hence, most of the later incoming orders cannot be promised on time. The 
theoretical maximum of 80% would be achieved, if all supply would be available already at the 
beginning of the experiment and the ADI and, hence, the AATP would be unbiased. 

Figure 22 a) shows the average OTSL over all contract portfolios and the OTSLs of the 

contract portfolios with an 𝑒𝑟𝑟
𝑎𝑐𝑐

-value of 0.03 and 0.65 for different levels of 
𝑢

|𝐼|
. All figures are 

shown relative to the OTSL at an upward nesting level of 𝑢 = 0 and at the optimal levels of 𝛼 
and 𝜔. 

For all contract portfolios, the OTSL increases up to a certain level of 𝑢 and decreases 
monotonically for higher values of 𝑢. For high 𝑢 the OTSL falls below the OTSL without upward 
nesting. The reason for the increase of the service level for small 𝑢-levels is that errors in 
customer accuracy values can be compensated in the order promising process. However, with 
further increasing 𝑢, the order promising moves towards a FCFS approach since incoming orders 
can consume allocated supply quantities of any customer. It is shown in Chapter 6 that an FCFS 
order promising leads to lower service levels than allocation planning based demand fulfilment. 

Figure 22 b) presents the service level-optimal upward nesting level 
𝑢

|𝐼|
 for the 𝑒𝑟𝑟

𝑎𝑐𝑐
-values 

of the contract portfolios investigated. It shows that the choice of 𝑢 depends on the predictive 

quality of data. For low values of 𝑒𝑟𝑟
𝑎𝑐𝑐

the optimal 𝑢 is smaller than for high values. 
For the service-level-optimal values of 𝑢 and |𝐾|, Figure 23 shows the average relative 

difference of the OTSL relative to the case when 𝛼 and 𝜔 are set to 0 for different levels of 𝛼 
and 𝜔. The average is taken over all ten investigated portfolios. The figure illustrates that, for 
the in-sample data, the OTSL can be increased significantly (44% at the maximum) when 
customer order lead times and the accuracy of ADI of the customers are taken into account. In 
Section 7.3.3, it is investigated, if such benefits also exist for out-of-sample data. 
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Figure 23: Average on-time service level performance of contract portfolios 

Table 9 shows the service-level-optimal 𝛼, 𝜔, and 𝜋 levels for all ten contract portfolios 
separately. It shows that with decreasing predictive quality of ADI data customer order lead 
times get emphasized more in the customer scores. I.e. the service-level-optimal 𝜔 increases 
with increasing 𝑒𝑟𝑟̅̅̅̅̅𝑎𝑐𝑐. Therefore, it is important to know the predictive quality of data in order 
to be able to determine the correct values of 𝛼, 𝜔, and 𝜋. 

The impact of the parameter variations on profit is small. Compared to a profit-optimal 
parametrisation, the profit only declines by an average of 0.19%, when using the service-level-
optimal parameters. Therefore, for the out-of-sample numerical experiments, the service-level-
optimal parameters are used. 

7.3.3 Numerical results 
In the following, the demand fulfilment performance of the framework presented in Section 
7.3.2 is investigated and insights on how to design contract portfolios for the set of customers 
are derived. For this, the parameters determined in Section 7.3.2 are used and the framework is 
run using the last 26 weeks of data in the datasets presented in Section 7.3.1. 

7.3.3.1 Impact of parametrisation 
In this section, the importance of exact parametrisation of the framework is determined and 
conclusions on its ease of implementation are drawn. 
Table 10 shows the OTSL resulting from different levels of exact parametrisation. The second 
row of the table shows, which parameters are set to the exact values determined in Section 
7.3.2. The parameters that are not shown in row two are set to the average of the exact values 
over all ten datasets.The table illustrates that exact parametrisation consistently leads to the 
highest OTSL. Comparing the values to the in-sample results in  Table 8 shows that the usage of 
the framework on out-of-sample data leads to equally good results. I.e. the parametrisation of 
the approach robustly leads to good results also for out-of-sample data.  

Table 10 further shows that using average values for the parameters generally results in 
good performance of the approach. This makes implementation easy. Exact parametrisation  
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Table 9: Service-level-optimal weight factors 

 
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

𝒆𝒓𝒓
𝒂𝒄𝒄

  0.03 0.19 0.27 0.31 0.41 0.38 0.40 0.44 0.51 0.65 

𝛼  0.6 0.5 0.4 0.5 0.4 0.4 0.3 0.2 0.1 0.0 

𝜔  0.4 0.4 0.6 0.4 0.5 0.6 0.7 0.8 0.8 1.0 

𝜋  0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.0 

 
 

Table 10: Impact of exact parametrisation 

OTSL 

 - 𝜶, 𝝎, 𝝅 𝜶, 𝝎, 𝝅, |𝑲| |𝑲|, 𝒖 𝜶, 𝝎, 𝝅, 𝒖 𝜶, 𝝎, 𝝅, 𝒖, |𝑲| 

P1 32.2% 34.7% 34.7% 34.2% 35.9% 35.9% 

P2 40.2% 41.0% 41.0% 40.6% 41.8% 41.8% 

P3 43.2% 43.2% 43.2% 43.9% 43.9% 43.9% 

P4 31.6% 33.1% 33.1% 31.6% 33.1% 33.1% 

P5 42.9% 43.7% 43.7% 42.9% 43.7% 43.7% 

P6 40.3% 40.3% 40.3% 40.3% 40.3% 40.3% 

P7 36.4% 38.2% 38.2% 36.4% 38.2% 38.2% 

P8 38.7% 40.7% 40.7% 40.9% 41.3% 41.3% 

P9 34.0% 34.5% 34.5% 34.7% 35.4% 35.4% 

P10 29.7% 32.3% 34.5% 35.4% 33.2% 36.2% 

average 36.9% 38.2% 38.4% 38.1% 38.7% 39.0% 

 
 

Table 11: The value of considering order lead time, ADI accuracy and profitability in demand fulfilment 

OTSL 

 𝛼 = 1 𝜔 = 1 all 

P1 28.7% 35.1% 35.9% 

P2 29.9% 37.3% 41.8% 

P3 31.2% 38.5% 43.9% 

P4 25.9% 32.1% 33.1% 

P5 30.5% 39.8% 43.7% 

P6 28.2% 37.0% 40.3% 

P7 28.5% 36.6% 38.2% 

P8 27.1% 37.2% 41.3% 

P9 26.4% 35.0% 35.4% 

P10 26.1% 35.8% 36.2% 
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further improves the performance of the approach. The difference between the OTSL resulting 
from exact parametrisation and the OTSL resulting from parametrisation with averages can 
however be rather large (as, e.g., for P10). Depending on the portfolio, there is a significant 
contribution of exact parametrisation of all parameters. 

7.3.3.2 Performance analysis of proposed demand fulfilment methodology 
In this section, the performance of the framework is measured and the value of considering 
order lead times and ADI accuracy of customers is determined. 

Table 11 shows the OTSL of the framework, when only ADI accuracy is considered (𝛼 = 1), 
only order lead times are considered (𝜔 = 1), and when all parameters are taken into account 
(all). For all scenarios, the values of the parameters 𝑢 and |𝐾| are set to the service-level-optimal 
values determined in Section 7.3.2. 

Table 11 shows that considering all parameters of the framework consistently leads to the 
highest OTSL values. Only considering ADI accuracy leads to the lowest OTSL for all ten 
portfolios. Taking only order lead times into account leads to a significant increase of OTSL when 
compared to only considering ADI accuracy. For the portfolios showing low predictive quality of 
data, only considering order lead times results in good OTSL values also compared to the case 
making use of all parameters. 

The analysis shows that taking order lead times into account has a high positive influence on 
the performance of the demand fulfilment process. This is because it allows prioritising 
customers with long order lead times in the allocation planning step. When their orders realise, 
excess allocations resulting from biased ADI can be redistributed without loss of OTSL because 
other customers place their orders later. The additional consideration of ADI accuracy reduces 
the risk of excess allocations and leads to even higher performance, if the predictive quality of 
historical ADI accuracy values is high enough. 

7.3.3.3 Dependence of customer service levels on the design of contract portfolios 
This section draws conclusions on how contract portfolios should be designed such that the 
resulting interdependencies of the length of customer order lead times and the accuracy of ADI 
maximise the overall OTSL of the supplier. For the analysis, the demand fulfilment framework is 
run on the last 26 weeks of the dataset, using the parametrisation determined in Section 7.3.2. 

Figure 24 a) shows the OTSL of the ten portfolios in dependence of the average customer 
order lead time of the portfolios. The linear regression function evaluating the strength of the 
correlation of the length of the average customer order lead times and the resulting OTSL is 
shown as a dotted line. Its 𝑅2 value of 0.00 shows that the two measures do not correlate. This 
is especially interesting because practitioners often solely focus on the negotiation of long order 
lead times with their customers. Figure 24 a), however, demonstrates that the length of the 
order lead time alone does not determine the OTSL. 

Figure 24 b) shows the OTSL of the ten portfolios in dependence of the correlation 
𝑟(𝑜𝑙𝑡𝑖, 𝑎𝑐𝑐𝑖) between order lead times and ADI accuracy. If 𝑟(𝑜𝑙𝑡𝑖, 𝑎𝑐𝑐𝑖) is positive, customers 
with long order lead times provide more accurate ADI than customers with shorter order lead 
times and vice versa. 

Figure 24 b) shows better OTSL when order lead times and ADI accuracy are negatively 
correlated. Further, the OTSL grows with the strength of the correlation. The linear regression  
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Figure 24: on-time service level in dependence of a) the average customer order lead time; b) the correlation of 

order lead time and advance demand information bias 

function (dotted line) illustrates this negative correlation of 𝑟(𝑜𝑙𝑡𝑖, 𝑎𝑐𝑐𝑖) and OTSL. Its 𝑅2 value 
of 0.60 indicates that it describes the relation well. 

A negative 𝑟(𝑜𝑙𝑡𝑖, 𝑎𝑐𝑐𝑖) leads to high OTSL values because ADI-bias-caused excess allocations 
for customers with long order lead times can be reallocated to customers with shorter order 
lead times but more accurate ADI. The redistributed supply allocations are less likely to be 
excessive because the ADI of the customers to which the supply is allocated is more accurate. 
Hence, the utilization of the available supply as well as the overall OTSL are improved. 

Figure 25 a) shows the portfolios’ OTSL in dependence of the total demand share of 
customers with a high absolute ADI accuracy (𝑎𝑐𝑐𝑖) and a short relative order lead time 
(𝑜𝑙𝑡𝑖

𝑛𝑜𝑟𝑚) in the portfolio. The customers taken into consideration show an accuracy above 90% 
and a and 𝑜𝑙𝑡𝑖

𝑛𝑜𝑟𝑚 value of below 0.25. The demand share is calculated using realised demands. 
The 𝑅2 value representing the strength of the correlation of the demand share and the OTSL 
shows that the volume of the demands being forecasted with a high absolute accuracy is not 
determining the OTSL performance of the portfolio. Figure 25 b) shows that it is more important 
for the supplier to create contract portfolios that lead to a significant demand share of 
customers showing high relative ADI accuracy (𝑎𝑐𝑐𝑖

𝑛𝑜𝑟𝑚) compared to the other customers in 
the portfolio. However, the positive correlation of the demand volume of customers with high 
relative accuracy and short relative order lead times and the OTSL performance of the 
portfolios, which is expressed in the 𝑅2 value of 0.30, is not strong either. 

Figure 26 a) and Figure 26 b) depict the OTSL in dependence of the share of total demands of 

customers with long relative order lead times (𝑜𝑙𝑡𝑖
𝑛𝑜𝑟𝑚) and low absolute (𝑎𝑐𝑐𝑖 ) and relative 

(𝑎𝑐𝑐𝑖
𝑛𝑜𝑟𝑚) ADI accuracy. In analogy to Figure 25 it is illustrated that there is no correlation 

between the OTSL resulting from the setup of a customer contract portfolio and the demand 
volume of customers showing low absolute ADI accuracy and relatively long order lead times, 
while there is a weak positive correlation of the OTSL performance of a portfolio and the 
demand share of customers with low relative ADI accuracy and long order lead times. 

Summarizing the findings of the Figures 24, 25 and 26, it is more important to design 
contract portfolios such that order lead times and ADI accuracy are negatively correlated than  
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Figure 25: on-time service level in dependence of the demand share of customers with low relative order lead 

times and a) high absolute ADI accuracy and b) high relative ADI accuracy 

to maximise the average order lead times of customers or to contract all customers for low 
(absolute) ADI accuracy. Customer contract portfolios have to be built such that there is a 
gradient of order lead times and ADI accuracies in the portfolio (see Figures 25 b) and 26 b)) and 
the correlation of the two measures is negative. Then, it is best possible to redistribute excess 
supply allocations to customers with long order lead times but low ADI accuracy to customers 
with short order lead times and high ADI accuracy. 
 
 
 
 

 
Figure 26: on-time service level in dependence of the demand share of customers with long relative order lead 

times and a) low absolute ADI accuracy and b) low relative ADI accuracy 
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7.4 Managerial implications and conclusion 
When supply is short, supply distributed to customers by means of customer segmentation, 

supply allocation planning, and order promising. In this research, industrial contract portfolios 
with customer-specific terms for order lead times and ADI are analysed in order to derive 
insights for contract portfolio management. For this purpose, different portfolio designs are 
investigated in the dynamic context of industrial planning processes, for which a framework is 
developed that captures the interrelationship between order lead time and ADI. The approach 
extends the work presented in Chapter 6 by not only taking profitability and accuracy of ADI of 
individual customer into account, but also customer order lead times. In order to reflect 
changing customer ordering behaviour, a dynamic process is used to continuously update 
customer data. If the ordering behaviour of individual customers is hard to measure accurately, 
either upward nesting is allowed in order promising to increase the flexibility of the approach or 
customers are grouped into segments. 

In a numerical study, it is first demonstrated how to set up the framework for different 
contract portfolios from the semiconductor industry. It is shown that demand fulfilment should 
take all contract terms, including order lead times and historical forecasting and ordering 
behaviour of all customers into account, that it should be performed on the individual customer 
level, and that it is of special importance to determine the predictive quality of ADI in order to 
be able to parametrise the framework right. Furthermore, the analysis illustrates that the 
framework leads to significant improvements in service levels and robustness in performance. 

Second, insights aiding suppliers in their contract portfolio management are derived. The 
analysis shows that demand fulfillment performance is not primarily determined by the 
absolute length of the order lead times or the absolute level of ADI accuracy of the customers in 
the portfolio. Instead, the presence of a negative correlation with the accuracy of advance 
demand information in the entire contract portfolio is important. Then, excess allocations can 
be redistributed to other customers without loss of service levels. Consequently, suppliers must 
consider the portfolio of all customers and negotiate relatively long order lead times for 
customers showing relatively low accuracy of advance demand information. On the other hand, 
contracts with customers showing relatively high forecast accuracy should allow the customers 
to place their orders with short lead times. 

For future research, considering additional data in demand fulfilment activities is interesting. 
For example, substitution of products taking into account the individual willingness of 
customers to substitute has not been dealt with so far. Also, including uncertainty of supply and 
volatility of demand after order realization is a further extension possibility. Moreover, further 
investigating the interactions between supply network planning, demand fulfilment, and 
customer contracting is an interesting direction of further research. In many industries, 
production quotas for supply planning are negotiated between different business divisions of a 
company. For example, efforts could be spent on integrating this type of allocation with supply 
allocation for customers taking contracts into account and streamlining all these activities in a 
holistic approach aiming at the maximisation of customer service levels and profits.  



 

100 
 

8 The value of data for demand fulfilment 
This chapter summarizes and discusses the results of the research presented in this thesis 
(Section 8.1). The main scientific contributions are highlighted in Section 8.2. Managerial 
insights are derived in Section 8.3. Finally, the limitations of the presented research are detailed 
(Section 8.4). From these, directions for future research are derived in Section 8.5. 

8.1 Summary and discussion of results 
Taking the perspective of an industrial supplier, this thesis deals with the exploitation of big data 
in demand fulfilment related supply chain planning processes to increase the robustness and 
accuracy of demand fulfilment and raise customer service levels. The studied system consists of 
the processes demand planning and supply network planning, the demand fulfilment processes 
customer segmentation, allocation planning, and order promising, the interface of these 
processes to the set of customers and the contract portfolio a supplier has with their customers 
(see Section 1.2). The presented research focusses on the interdependencies between the 
processes and the data exchanged in the system. 

For this purpose, Chapter 2 discusses the role of demand fulfilment in supply chain planning. 
Then, relevant literature from related disciplines is reviewed in Chapter 3. In Chapter 4, a data 
driven supply chain planning framework for robust and accurate demand fulfilment is 
presented. Chapters 5 to 7 detail parts of this framework and develop methods that exploit big 
data in order to increase demand fulfilment performance. In particular, a method that 
represents supply chain flexibilities in supply information used for order promising is developed 
in Chapter 5. In Chapter 6, an allocation planning approach considering the historical bias of ADI, 
i.e. demand forecasts, provided by the customers is proposed. Chapter 7 analyses industrial 
contract portfolios with customer-individual terms for order lead times and ADI in order to 
derive insights for portfolio management. For this purpose, the demand fulfilment methodology 
developed in Chapter 6 is extended to also consider data on the OLT of customers. Insights on 
the management of the portfolio of customer contracts are derived considering the dynamics of 
real-world demand fulfilment processes. 

Five research questions are addressed, which are answered in the following considering the 
results of the research presented in this thesis. 
RQ1. How should the supply chain planning processes of the studied system (Figure 1) be 

integrated in order to increase customer service levels and the robustness and accuracy 
of demand fulfilment? 

The data driven supply chain planning framework developed in Chapter 4 shows that, in order 
to increase customer service levels and improve the robustness and accuracy of demand 
fulfilment, all planning decisions of the system need to be streamlined and consider demand 
fulfilment relevant supply chain and customer data. Enabler processes need to be integrated 
into the supply chain planning landscape, which provide the planning processes with data on 
the capabilities of the supply chain in terms of flexibility, the customer forecasting and ordering 
behaviour in terms of the accuracy of ADI and the length of OLTs, and the contractual, strategic, 
and operational obligations of the supplier towards its customers. 

The concepts of robust and flexible planning have to be employed on different levels of the 
planning hierarchy in order to be able to react on short-term demand variations and utilise 
supply chain resources like capacities, materials, and supply efficiently. Flexibility is attained by 
steering incoming demand to the most profitable point in time using price-based revenue 
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management methodologies in the order promising process. Robustness is achieved by 
improving the long-term, mid-term, and short-term demand planning processes, the supply 
network planning process, the customer segmentation process, and the allocation planning 
process by integrating the additional data mentioned above. Because several demand fulfilment 
related supply chain planning processes consider customer demand data directly in their 
decisions, customers must be incentivised to provide truthful ADI and long OLTs in order to 
increase the accuracy of planning. How this can be done is described in the answer to Research 
Question RQ4. 

The research results presented in this thesis show that the most important factor for 
increasing service levels and the robustness and accuracy of demand fulfilment is the availability 
of highly granular data provided by the mentioned enabler processes to all planning processes 
in the system. Moreover, the allocation planning and order promising processes have to be 
provided with supply information reflecting the production capabilities of the supply chain, 
which go beyond planned supply for forecasted demands. 
RQ2. How should available data on supply chain capabilities be considered in demand 

fulfilment in order to increase the accuracy and robustness of order promises in 
industrial settings with heterogeneous customer OLTs and uncertainty regarding the 
realisation of aggregated demand forecasts on finished product level? 

Chapter 5 shows that representing supply chain flexibilities in the availability information used 
for order promising increases both the robustness and the accuracy of delivery date 
confirmations. More precisely, these flexibilities must be represented in the ATP information, 
which is calculated on basis of the master production schedule and used in the order promising 
process. It is shown that CTP methods, which use the supply network planning process to 
promise orders, have an even better capability of considering flexibilities in the supply chain and 
therefore increase the robustness and accuracy of order promises more than ATP based order 
promising approaches. However, CTP is usually not suitable for real-time order promising in 
industrial settings, because the necessary data and models are too complex and, hence, the 
computation times are prohibitively long. 

The supply chain capabilities, which have to be represented in the ATP information, are 
product and process flexibilities. Product flexibility is the possibility to produce different 
products from one type of material. Process flexibility is the possibility to use one production 
process for the production of different products. These flexibilities can be presented in ATP 
information using the methodologies introduced in Chapter 5, which exploit data on supply 
chain flexibilities such as production cycle times, resource consumption factors, and BOM 
information and cumulate ATP quantities accordingly. The data has to be provided on individual 
product and process level. Then, changes in the master production schedule due to newly 
arrived orders can be anticipated and the accuracy and robustness of order promises can be 
increased. 

The numerical analysis in Chapter 5 shows that the developed methodologies reduce the 
amount of orders receiving an initial order promise later than the earliest feasible delivery date. 
Thus, representing supply chain flexibilities in supply information increases the order winning 
probability of a company, because customers more often receive the earliest possible delivery 
date for their order. Furthermore, it is shown that the benefits of such approaches grow with 
increasing customer OLTs and degrees of flexibility in the supply chain. 
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RQ3. How should available data on the forecasting and ordering behaviour of customers be 
considered in demand fulfilment in order to increase service levels in supply shortage 
situations? 

In supply shortage situations, the relevant interface of the supply chain planning processes with 
the ADI provided by the customers moves from supply network planning to allocation planning 
(see Chapter 7). Allocation planning uses ADI to allocate supply to customer segments. Since 
ADI, by its nature, is uncertain and possibly biased, the supply allocations as well as their 
consumption policy in order promising influence the service levels with which customers are 
served. Consequently, data on the forecasting and ordering behaviour of customers has to be 
considered in the demand fulfilment processes customer segmentation, allocation planning, and 
order promising. 

Chapters 6 and 7 show that this data should be considered in the customer scores, which 
indicate the priority of the customers for demand fulfilment. Furthermore, the data should be 
considered on the individual customer and product level, if the predictive quality of historical 
ADI accuracy is not very low. If this is done, it is most beneficial to also perform allocation 
planning and order promising on the individual customer and product level. Furthermore, 
service levels can be increased by applying flexible concepts in demand fulfilments that 
compensate for low predictive quality of the used data. For example, upward nesting can be 
allowed in order promising or customers can be grouped into segments dynamically in order to 
pool uncertainties. 

The studies show that, since the accuracy of ADI and the length of OLT interact in the 
demand fulfilment processes, both need to be taken into account. Then, the service levels of a 
supplier can be increased significantly, because supply can be allocated and consumed 
effectively and efficiently, leading to reduced stock levels that result from excess allocations to 
certain customer segments. Additionally, considering ADI and OLT data in demand fulfilment 
helps industrial suppliers to further improve the accuracy and robustness of their order 
promises, since re-allocations of supply become necessary less often. 

The analyses further show that the benefits of considering customer forecasting and 
ordering behaviour data in demand fulfilment become more distinct with growing scarcity of 
supply and increased predictive quality of the available data. It is also demonstrated that the 
consideration of the accuracy of ADI improves service levels by raising the efficiency of 
allocation planning while the consideration of the length of OLT enables the supplier to raise 
service levels by effectively reallocating excess allocations. 
RQ4. How does integrating data on customer forecasting and ordering behaviour into 

demand fulfilment processes increase planning security? 
Customers systematically inflate their demand forecasts in supply shortage situations to make 
suppliers increase the supply quantities reserved for them and finally satisfy the total of their 
actual demand. This behaviour, called rationing gaming, reduces planning security since it is 
significantly impairing the ability of the supplier to efficiently allocate current and future supply 
to customers (see Chapter 6). Therefore, suppliers want their customers to provide orders with 
long OLTs. However, customers are usually not willing to place orders long in advance of their 
due date (see Chapter 7). 

The study conducted in Chapter 6 demonstrates that customers can be incentivised to 
provide truthful ADI, when data on the historical bias of ADI is taken into account in the demand 
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fulfilment processes of a supplier. To realise these incentives, customers providing ADI with low 
biases must be prioritised in demand fulfilment and the mechanisms of such demand fulfilment 
approaches must be communicated to customers. Because of the prioritisation, the service 
levels for customers with high ADI accuracy increase over-proportionally compared to the 
service levels of other customers. Furthermore, Chapters 6 shows that it is not a dominant 
strategy for the most profitable customers to still inflate their ADI systematically. Hence, the 
incentive to forecast their demands truthfully in ADI exists for all customers. 

This work does not study the effect of the consideration of OLTs in demand fulfilment on the 
incentive for customers to provide their orders with longer OLTs. It can however be assumed 
that taking OLTs into account leads to a similar effect as the one demonstrated for ADI accuracy 
in Chapter 6, because considering OLTs enable the supplier to prioritise customers with long 
order lead times in demand fulfilment. 

Consequently, the approaches developed in Chapters 6 and 7 lead to higher planning 
security and potentially enable the supplier to move the order decoupling point upstream, 
further revealing cost saving potential and flexibility that result from holding stocks of materials 
rather than final products. 
RQ5. How should the portfolio of contractual agreements with the entire set of customers be 

managed in order to maximise the demand fulfilment performance of the supplier? 
Chapter 7 shows that, since the accuracy of ADI and the length of customer OLTs interact in the 
demand fulfilment processes, the conditions for both parameters in form of maximum and 
minimum bounds for the deviation of ADI from the final order and minimum OLTs influence the 
overall demand fulfilment performance of the supplier. These conditions are determined in 
dyadic contracts negotiated between the supplier and its customers individually. Chapter 7 
illustrates that, when negotiating new contracts, the entire portfolio of contracts the supplier 
holds with its customers must be considered in order to improve the supplier’s demand 
fulfilment performance. 

The analysis in Chapter 7 shows that only focussing on negotiating long OLTs with customers 
does not increase the performance of demand fulfilment. Instead, the contractual terms need 
to be designed in a way such that the length of OLTs and the accuracy of ADI are negatively 
correlated; i.e. customers providing their ADI with low accuracy have to be contracted for long 
OLTs and vice versa. Then, excess allocations for customers with low ADI accuracy can be 
redistributed without loss of service level. 

8.2 Contributions 
The research presented in this thesis contributes in several ways to the current state of the art. 
Chapter 4 presents a data driven framework for robust and accurate demand fulfilment in 
industrial environments. It consists of robust and flexible approaches for demand steering and 
dynamic pricing, extending current industry practice in several aspects. The concept of 
availabilities and capabilities (A&C), as well as various planning processes and process enablers 
are introduced. Further, the framework is the first to transfer revenue management ideas to 
industrial supply chain planning. It streamlines the decisions of demand planning, supply 
network planning, allocation planning, and order promising towards robustness and accuracy of 
order confirmations and integrates data on supply chain capabilities, customer ordering 
behaviour, and the contractual, strategic, and operational obligations of the supplier towards its 
customers. 
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Chapter 5 develops an order promising methodology able to deal with demand uncertainty 
and heterogeneous customer OLTs in industrial environments by considering supply chain 
flexibilities in ATP processes commonly used in practice. The approach exploits product and 
process flexibilities, which are formalized for the first time. An increased accuracy and 
robustness of order promises is demonstrated in a numerical study of real-time order promising 
based on an industry case. 

Chapter 6 introduces a new allocation planning approach that exploits increasingly available 
data on individual customers and products by allocating supply on a highly granular level at high 
planning frequencies. More specifically, the methodology considers the demand forecast bias of 
customers and thereby supports an efficient supply allocation. The approach also incentivizes 
the customers to communicate truthful ADI. Using the method in a numerical study based on an 
industrial case it is demonstrated that the proposed methodology leads to lower average stock 
levels and an increased overall service level, especially for customers with a low ADI bias. The 
analysis further shows that supply allocation on individual customer level is only valuable, if 
additional data such as ADI bias and OLT is also exploited on this granularity level. 

Chapter 7 derives insights for contract portfolio management by analysing industrial 
contract portfolios with customer-individual terms for order lead times and ADI. A framework is 
developed that extends the demand fulfilment methodology presented in Chapter 6 to 
investigate contract portfolios in the dynamic context of industrial planning processes. It is 
demonstrated how to apply and parametrise the framework to contract portfolios from the 
semiconductor sector. In a numerical study, it is shown that customers should not be grouped 
into segments but receive allocations individually. The analysis illustrates that the consideration 
of order lead times results in significant improvements in service levels and performance 
robustness. The results further show that those portfolios, in which order lead times and the 
accuracy of ADI are negatively correlated, perform substantially better. Such portfolios are even 
superior to portfolios in which all customers have long order lead times. They allow a more 
efficient reallocation of excess allocations. 

8.3 Managerial insights 
The results of the research presented in this thesis have several implications for practitioners. 
First, they show that planners have to consider the entire system of planning processes and 
their decisions in order to achieve planning stability, i.e. robustness and accuracy of order 
promises, and increase the service levels for their customers. The decision of single planning 
steps must be seen in the context of the ultimate goal of supply chain planning, i.e. achieving a 
competitive advantage through superior customer service. This means that local optima for 
single planning steps are to be avoided in case they counteract global optima of demand 
fulfilment performance.  

For example, from a supply network planning point of view it might seem optimal to only 
plan production for demand forecasts and existing orders in order to reduce production and 
stock holding cost to a necessary level. However, from a demand fulfilment point of view it is 
necessary to also plan production to a certain target utilisation level of capacities so that supply 
allocation and order promising processes are able to promise robust and accurate delivery dates 
for unforeseen incoming orders (see Chapter 4). It might also seem logical for customer 
relationship managers to negotiate OLTs and ADI flexibility boundaries that are as long and 
narrow as possible, respectively. However, as shown in Chapter 7, the whole portfolio of 
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customers, their contracts and their forecasting and ordering behaviour need to be considered 
in individual contract negotiations in order to maximise overall service levels. This means that it 
is necessary to negotiate narrow ADI flexibility boundaries and short OLTs with some customers, 
while wide ADI flexibility boundaries and long OLTs need to be agreed upon with others.  

In consequence, the requirements towards supply chain planners in terms of education and 
knowledge increase. Planners need to be able to understand the planning methods and 
decisions in all relevant planning steps, which are part of the demand fulfilment context of the 
planning process they are responsible for. Furthermore, the planning methods and decisions 
also need to be transparent for all planners. In industrial practice, this is often not the case, 
because responsibilities are distributed and often customized planning tools are purchased from 
internal or external service providers, which do not provide sufficient documentation of the 
developed solutions. 

Moreover, in order to achieve robustness in demand fulfilment, the planning processes must 
consider the interrelations of the planning system and reflect the characteristics and current 
status of the supply chain appropriately. Feedback loops between the planning processes of 
demand fulfilment and the physical supply chain have to be installed in order to be able to 
adapt planning. For example, the information about early production starts due to pre-
production must be forwarded to the demand fulfilment processes when ATP is cumulated in 
order to represent supply chain flexibilities based on production cycle time information (see 
Chapter 5). 

The results of this thesis also show that enriching planning processes with available data 
improves the quality of the decision and the performance of the planning system, if the type of 
the new data is appropriate regarding the purpose and objective of the planning step, in which 
it is integrated. Given sufficient predictive quality of the data, the granularity level of the 
decision must be adapted to the granularity of the used data in order to achieve best results. 
For example, the demand fulfilment methods developed in Chapter 6 and 7 perform best, if 
allocation planning and order promising decisions are taken on the individual customer level, on 
which also the used data on customer forecasting and ordering behaviour is available. 

Consequently, practitioners should invest in the necessary infrastructures to collect, store, 
process, and analyse demand fulfilment relevant data. With the newly available big data 
processes and tools, this is made possible. However, many companies in different industries still 
lack this infrastructure. 

Finally, the results presented here demonstrate that it is possible for suppliers to incentivise 
customers to change their forecasting and ordering behaviour only by using certain demand 
fulfilment policies. Importantly, this can be done without forcing certain behaviour through 
contracts. In order to do so, not only the demand fulfilment methodologies used by the supplier 
need to be adapted. The used allocation planning and order promising policies, especially 
regarding the dependency of the priorities of customers on their forecasting and ordering 
behaviour, must be communicated to the customers in order to become effectual. This is 
especially beneficial in environments, where customers, due to their market power, cannot be 
forced by contracts to reduce gaming behaviour or provide orders with long lead times. Using 
the methods developed in Chapter 6 and 7 and communicating their demand fulfilment policies 
to customers incentivises the customers to change their behaviour on their own in order to be 
served with high service levels. 
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8.4 Limitations 
Due to its scope, the research presented in this thesis has several limitations. First, since all 
numerical studies use data from the semiconductor industry and the framework presented in 
Chapter 4 has been developed for a semiconductor manufacturer, there is a clear focus on this 
industry. However, considering the special characteristics of semiconductor manufacturing, i.e. 
high volatility of demand, long production lead time, capital intensive manufacturing, and 
particularly short product life cycles, the developed approaches are likely to also be beneficial in 
other industries, which show similar characteristics and are typically less dynamic. Nonetheless, 
the work should be complemented by testing the applicability of the approaches in other 
industrial environments. 

The numerical study in Chapter 6 shows several case specific trade-offs between profitability 
and service levels depending on the weight of ADI accuracy in the prioritisation of customers for 
demand fulfilment. These mainly exist because the most profitable customers in the 
investigated dataset, due to their strong position towards the supplier, do not provide their 
orders with long OLTs and their ADI with high accuracy. On the other hand, the numerical study 
shows that the developed data driven demand fulfilment methodology incentivises customers 
to change their forecasting and ordering behaviour to provide truthful ADI. Hence, if customers 
consequently change their ordering behaviour, the basis for the analysis changes as well.  

The thesis does not investigate how the resulting change in customer ordering behaviour 
affects the performance of the developed demand fulfilment approaches. However, the effects 
can be foreseen without an extensive study. First, because the most profitable customers are 
incentivized to provide truthful ADI, the changing customer behaviour leads to increased profits, 
because these customers adjust their ordering behaviour to increase their priority in demand 
fulfilment. Second, the changed customer behaviour leads to higher planning security for the 
supplier, resulting in even higher efficiency of supply allocations, lower average stock levels, and 
higher service levels. Therefore, the benefits of employing the developed approaches further 
increase when customers change their behaviour. 

The research presented in this thesis is based on assumptions that exclude certain 
characteristics of real world supply chains. For example, capacity and supply uncertainty is 
excluded in all performed case studies. Moreover, buffer stocks for materials and finished 
products and corresponding supply contingencies are not considered. These assumptions are 
made to isolate the effects of demand uncertainty and customer gaming behaviour on the 
performance of the developed demand fulfilment methodologies and prove their improvement 
potential compared to conventional approaches. In practice, demand uncertainties interact with 
supply uncertainties and buffer stocks. The effect of these interdependencies on the 
performance of the developed methodologies is not tested. However, it is intuitive to assume 
that the positive effects of the presented approaches on demand fulfilment performance 
remain under these conditions as well. Only their magnitude decreases. 

Furthermore, in all studies, ADI and firm orders are clearly differentiated. In reality, logistic 
concepts exist, which do not allow such a clear distinction. For example, customers can change 
requested quantities and delivery dates within certain boundaries also for orders. Therefore, if 
the developed approaches are implemented in practice, they need to be modified to also 
consider uncertainties in orders. This can be done by including a respective term in the 
customer scoring approaches, allocate supply not only on basis of ADI but also on order and 
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internal demand forecast information considering this additional uncertainty, and performing 
order re-promising frequently for all open orders in the system. 

Chapter 7 lacks an analysis, if the presented demand fulfilment approach incentivises 
customers to provide their orders with long OLTs. It can however be assumed that taking OLTs 
into account leads to a similar effect as the one demonstrated for ADI accuracy in Chapter 6, 
because considering OLTs enables the supplier to prioritise customers with long order lead 
times in demand fulfilment. Nonetheless, investigating the effects of the demand fulfilment 
methodology presented in Chapter 7 on the incentive for customers to provide long OLTs would 
be a worthwhile extension of this work. 

Finally, this thesis does not consider the roles and behaviour of human planners in supply 
chain planning processes. This is standard in the related literature. However, in practice, human 
planners might take sub-optimal or irrational decisions regarding the global demand fulfilment 
optimum because service levels for certain customers are maximised based on individual 
situations. Then, the performance of the developed approaches might differ from the analyses 
presented in this thesis. 

8.5 Directions for future research 
There are many possibilities to develop the research presented in this thesis further. Based on 
the framework presented in Chapter 4, first, new forecasting and optimisation techniques for 
demand planning can be developed, which include the mentioned internal and external sources 
of information. Additionally, the long- and mid-term demand planning and supply chain 
planning processes are currently predominantly done manually in the industry. Automated 
decision support systems for these processes would increase their efficiency and transparency 
substantially. Cloud and big data analysis tools and crowd opinion techniques are promising 
technologies to drive automation in these fields.  

A rather managerial challenge is to establish machine-readable databases containing 
contract and customer forecasting and ordering behaviour data and integrate these into current 
ERP systems. The high practical efforts of establishing and maintaining such a database make 
organizations reluctant to implement such databases. Also, a method implementing the shown 
dynamic pricing and order confirmation process has to be developed. The challenge is to find 
industry-suitable models for customer price sensitivity as well as opportunity cost 
representations for supply consumption. 

For the study conducted in Chapter 5, it is assumed that except demand there are no other 
sources of uncertainty. It would be interesting to study the dependency of the robustness of 
order promises on the accuracy of estimated cycle times when demand uncertainties interact 
with capacity and supply uncertainties and safety stocks. When utilization is fluctuating and 
cycle times are dynamic, the method needs to be extended to reflect additional information 
about the shop floor. Here, the consideration of order individual production cycle times as well 
as supply chain capabilities, i.e. unused capacities and swopping possibilities in the production 
schedule, are potential starting points. 

To include more aspects of real world industrial supply chains, the research presented in 
Chapters 6 and 7 could be extended to consider substitute products in the allocation planning 
and order promising processes. Especially taking data on the individual willingness of customers 
to substitute products into account has so far not been addressed. The examination of the 
performance of the approaches under supply and demand uncertainty after order arrival is a 
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further extension possibility. Here, order rescheduling and cancellation rules, which industrial 
suppliers and customers agree upon in supply contracts, have to be taken into consideration. 
Moreover, in many industries, production quotas for supply network planning are negotiated 
between different business divisions of a company. Efforts could be spent on integrating this 
type of allocation with supply allocation for customers taking contracts into account. Also, the 
benefits of the approach could be confirmed for changing forecasting and ordering behaviour in 
response to the set incentives for accurate forecasting and long term ordering. 

As mentioned in Section 8.4, it is also interesting to test the developed approaches for 
industries other than the semiconductor sector in order to analyse their performance under 
different environmental characteristics and derive more improvement potential.  

On a more general scale, further investigating the interactions between supply network 
planning, demand fulfilment, and customer contracting is an interesting direction of further 
research. In particular, new approaches need to be developed for environments, which do not 
show a clear distinction between firm orders and customer forecasts. Moreover, suitable 
performance indicators and tools need to be developed, which establish the necessary 
transparency for human planners in the supply chain to work towards global instead of local 
optima and fulfil customer requirements while increasing revenues at the same time. Simulation 
techniques combining discrete-event and agent-based modelling could help to achieve this goal 
since they are capable of modelling system as well as human behaviour. Such tools can also help 
to analyse the interactions of human planners, planning methods, and planning tools, like ERP 
systems, supply network planning, allocation planning, and order promising. With the results, 
misalignments of these planning elements, which cause instabilities in the system, can be 
identified. 
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Appendix 
A Customer segmentation: Minimum segment size 
The customer segmentation model presented in Section 7.2.2 sets the minimum segment size 

𝑠𝑚𝑖𝑛 to ⌊
2−|𝐼|−|𝐾|

2(1−|𝐾|)
⌋, which maximises 𝑠𝑚𝑖𝑛 under the constraint that, if a number of |𝐾| customer 

segments 𝑘 ∈ 𝐾 of this size are distributed over a sequence 𝑆 of customers 𝑖 ∈ 𝐼, the segments 
have a number of at least (𝑠𝑚𝑖𝑛 − 1) unassigned customers in between each other. 

The value results, if the 𝑠𝑚𝑖𝑛 last customers and the 𝑠𝑚𝑖𝑛 first customers of 𝑆 are assigned to 
the first two segments and the remaining |𝐾| − 2 segments are built by starting with the 𝑠𝑚𝑖𝑛th 
customer after the last customer that was assigned to the last segment before and assigning 
𝑠𝑚𝑖𝑛 consecutive customers. 

Obviously, 𝑠𝑚𝑖𝑛 is maximised by the maximum integer value that fulfils Condition A.1. 
 

|𝐼| − 2𝑠𝑚𝑖𝑛 − (|𝐾| − 2)(2𝑠𝑚𝑖𝑛 − 1) ≥ 0  (A.1) 
 

Solving Condition A.1 and considering the integer condition on 𝑠𝑚𝑖𝑛 leads to a value of 

⌊
2−|𝐼|−|𝐾|

2(1−|𝐾|)
⌋. 

The value is used in the customer segmentation approach in Section 7.2.2 because it sets a 
rather large minimum segment size, but, assumed that |𝐾| ≥ 3, still leaves flexibility to the 
model to optimise the overall maximum segment width �̅�. 
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B Case study cumulated ATP: Material flows and order lead times 

 
Figure 27: Material flow diagram for product line I 

 

 
Figure 28: Material flow diagram of product line II 
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Figure 29: Customer order lead time profiles 


