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1. Why Phirotopes are Interesting

Oriented matroids are one of the most fundamental subject areas in discrete and combinatorial
geometry. They abstract the concepts of linear dependency, relative position, and orientation
in real settings. A natural mathematical advancement is to extend these structures to complex
numbers. This led to the invention of “phirotopes”, that is complex oriented matroids. This
thesis is dedicated to the research of phirotopes.
As the field of complex numbers is not an ordered field, complex oriented matroids are

a structure that differs from real oriented matroids in some key areas. In particular, their
realisability theories are significantly different. In other aspects, however, complex and real
oriented matroids behave very similarly. Thus, we will encounter various definitions, concepts,
and theorems that look familiar.

We assume that the reader is familiar with the theory of matroids and (real) oriented matroids,
especially with chirotopes. There is plenty of very good literature on these topics that one might
want to consult, if this is not the case.

The invention of matroids is attributed to Whitney and his work on linear dependencies
[Whi35]. Since then, there has been a lot of intensive research in the field of matroids. The
early work on matroid theory was outlined in 1986 by Kung [Kun86]. To familiarise oneself with
matroid theory the books of Welsh [Wel76], Oxley [Oxl92], and Läuchli [Läu98] might be good
starting points.
Oriented matroids were introduced by several researchers independently and almost simultane-

ously. They were all working on different approaches (cf. Las Vergnas [LV75], Bland [Bla77], and
Folkmann and Lawrence [FL78]). The definitive book on oriented matroids, which summarises
the state of the art of that time, was written by Björner et al. in 1993 [BLSWZ93]. A survey
that allows for a quick overview of oriented matroids was written by Richter-Gebert and Ziegler
(cf. [RGZ04]), and for a short introduction that contains all important concepts we refer the
reader to the first chapter of [RG92a].
Compared to matroids and oriented matroids, the concept of complex oriented matroids is

relatively young. It was introduced in 2003 by Below, Krummeck, and Richter-Gebert [BKR03]
and continued by Delucchi [Del03], Anderson and Delucchi [AD12] and Baker and Bowler [BB17].
So far, only few applications of phirotopes have been discovered. However, the areas of

application are substantial. Oriented matroids are already known to be important tools in
some parts of modern physics, such as loop quantum gravity, gauge fields theory, and quantum
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1. Why Phirotopes are Interesting

mechanics (cf. [BR10], [Nie04], [Nie05], [Nie05], [NL10], [Nie11]). Additionally, phirotopes seem
to have an application in the super p-branes formalism and the qubit theory (cf. [Nie14]).
There is hope that the research presented here may pave the way for exciting findings in

natural sciences. Until then, we think that the theory of phirotopes is itself very rich and deserves
to be researched for its own sake. Parts of this theory will be presented in the course of this
thesis.
This thesis is structured as follows:

• In Chapter 2, we will introduce phirotopes. We will give the basic definitions and discuss
different approaches to complex oriented matroids. We compare phirotopes to chirotopes
and point out differences and similarities so as to integrate phirotopes into the knowledge
of oriented matroids and point out connecting factors. Furthermore, the concept of duality
is examined closely, as it provides powerful tools that will be used in subsequent chapters.

• In Chapter 3, we will deal with reorientations and chirotopality. We will extend the existing
theory to phirotopes of arbitrary rank and to non-uniform phirotopes. The main result of
this chapter is the characterisation of chirotopality depicted in the Theorem 3.31. While
the result is a more or less straightforward generalisation of the uniform rank-2 case, the
corresponding proof turned out to be unexpectedly involved.

• In Chapter 4, we extend the existing theory of realisability of phirotopes to arbitrary rank
and non-uniform phirotopes. We will show that the five-point condition can be generalised
to higher ranks. Furthermore, we will see that only uniform minors need to be considered
in order to decide the realisability of a phirotope.

• In Chapter 5, we will use phirotopes as a new coordinate system. With these coordinates
we seek to carry out Euclidean geometry. We will translate several Euclidean properties
into the phirotopal language and prove some Euclidean theorems with them.

• In Chapter 6, we present our findings of incidence theorems. In oriented matroid theory,
one popular tool to “bend” the lines which are subjects of incidence theorems in such a
way that the configuration at hand becomes non-realisable. We will show that similar
perturbations of the theorem of Pappus and Desargues in a complex setting are impossible.
For phirotopes, these incidence theorems are always true.

• In Chapter 7, we will discuss some open problems and point out possible topics for future
work.
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In order to enhance the readability and clarity and to make reading as enjoyable as possible,
coloured boxes were added to structure the text:

Definitions are highlighted by teal boxes, . . .

. . . , further notation is highlighted by smaller and lighter teal boxes, . . .

. . . , theorems and lemmas come in purple boxes, . . .

. . . , conjectures are bordered in violet, . . .

. . . , and examples are marked by yellow boxes.
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2. Axioms and Duality

In this chapter we will introduce complex oriented matroids. We will summarise the status quo
of the research on this topic. Particular attention will be paid to the concepts of duality and
realisability, as those will be treated extensively in the next chapters.

2.1. Axiom systems

There are many cryptomorphic ways to define oriented matroids. Three axiomatisations that
are often used define oriented matroids via chirotopes, circuits, or cocircuits. In [BLSWZ93]
the equivalence of these different axiom systems is shown. The situation for complex oriented
matroids is similar. In [BKR03] complex oriented matroids are defined as phirotopes – the
analogue of chirotopes. One can also define complex oriented matroids as complex circuits. The
latter were introduced in [Del03] and [BB17]. The equivalence of so called F -circuits of a strong
F -matroid and phirotopes is shown in [BB17].
In this chapter, the definition of phirotopes will be examined and compared to the definition

of chirotopes. This will give a first insight into the structure of complex oriented matroids and
the basic paradigmatic idea behind them. We will then see different ways to generalise oriented
matroids.

Phirotopes

To avoid ambiguities, we first introduce some notation:

Sk is the k-sphere.

[n] := {1, . . . , n}.

Omitting the element λi in the sequence λ = (λ1, . . . , λn) is denoted by

λ\i := (λ1, . . . , λ̂i, . . . λn) := (λ1, . . . , λi−1, λi+1, . . . , λn).

For two sequences λ = (λ1, . . . , λn) and τ = (τ1, . . . , τk), their concatenation is
λτ := (λ, τ) := (λ1, . . . , λn, τ1, . . . , τk).

Sk is the symmetric group of degree k.

Ik is the k × k identity matrix.
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2. Axioms and Duality

The following definition originates from [BKR03] and corresponds to the definition of strong
Grassmann-Plücker functions in [BB17].

Definition 2.1 (Phirotope)
Let E ⊂ N be a finite index set. The mapping ϕ : Ed → S1 ∪ {0} ⊂ C is called a rank-d
phirotope on the index set E , if

(ϕ0) it is non-zero, meaning:
ϕ 6≡ 0,

(ϕ1) it is alternating, meaning:
ϕ(λπ(1), . . . , λπ(d)) = sign(π) · ϕ(λ) for all λ ∈ Ed and all π ∈ Sd, and

(ϕ2) it does not obviously violate the Grassmann-Plücker relations, meaning:
for all sequences λ ∈ Ed−1, τ ∈ Ed+1 there are r1, . . . , rd+1 ∈ R+ such that

d+1∑
i

ri · ϕ (λτi) · ϕ (τ\i) = 0.

Grassmann-Plücker relations are formulae that hold true for determinants. To shorten the
following formulae, for X1, . . . , X − d ∈ Kd with K ∈ {R,C} set

[X1, . . . , Xd] := det(X1, . . . , Xd)

We further introduce the notation

(P1, . . . , Pd−1 |Q1, . . . , Qd+1) :=
d+1∑
i=1

[P1, . . . , Pd−1, Qi] · [Q1, . . . , Q̂i, . . . , Qd+1] = 0.

to denote the Grassmann-Plücker relation on the elements P1, . . . , Pd−1 and Q1, . . . , Qd+1. With
the notion that a mapping should “not obviously violate” the Grassmann-Plücker relations, we
mean, loosely speaking, that the behaviour of phirotopes should not differ too much from the
behaviour of determinants of a point configuration. In other words, the abstract concept of
phirotopes should not differ to much from the realisable situation. A nice visualisation of the
non-violation requirement is given in [BKR03] and reproduced here: We visualise every summand
of the Grassmann-Plücker relation as a vector in R2. Then, the Grassmann-Plücker relation is
not obviously violated, if the origin is contained in the interior of the convex hull of the three
vectors, see Figure 2.1.

The definition of phirotopes is very similar to the well-known definition of chirotopes. In fact,
the two definitions only differ in the range of the respective mapping:
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2.1. Axiom systems

Figure 2.1.: A visualisation of configurations that (do not) violate the Grassmann-Plücker rela-
tions. The first four configurations contain the origin in the interior of their convex
hulls and, thus, represent configurations that do not obviously violate the Grassmann-
Plücker relations. The last five configurations do violate the Grassmann-Plücker
relations.

Definition 2.2 (Chirotope)
Let E ⊂ N be a finite index set. The mapping χ : Ed → S0 ∪ {0} ⊂ R is called a rank-d
chirotope on the index set E , if

(χ0) it is non-zero, meaning:
χ 6≡ 0,

(χ1) it is alternating, meaning:
χ(λπ(1), . . . , λπ(d)) = sign(π) · χ(λ) for all λ ∈ Ed and all π ∈ Sd, and

(χ2) it does not obviously violate the Grassmann-Plücker relations, meaning:
for all sequences λ ∈ Ed−1, τ ∈ Ed+1 there are r1, . . . , rd+1 ∈ R+ such that

d+1∑
i

ri · χ (λτi) · χ (τ\i) = 0.

In the above definitions, the domain of chirotopes and phirotopes is Ed. Properties (ϕ1) and (χ1)
ensure that sequences in which indices appear multiple times are mapped to zero. Furthermore,
it is enough to know the values of the phirotope or chirotope on the subset Λ(E , d) that contains
all ordered d-tuples:

Λ(E , d) := {(λ1, . . . , λd) ∈ Ed | λ1 < · · · < λd}.

With the help of properties (ϕ1) and (χ1) all other values can be reconstructed.
Note that every chirotope is a phirotope whose image is purely real. Likewise, every phirotope

whose image is purely real is a chirotope. (We will see later that even if the image of a phirotope is
not purely real, the phirotope might nevertheless be a “chirotopal phirotope”, that is a reoriented
chirotope.) Thus, whenever we make statements about general phirotopes, they are also valid for
chirotopes. Although their definitions look similar, the theories of chirotopes and phirotopes have
some considerable differences. The most prominent of these differences lies in their realisability.
With this we mean the following:

Some phirotopes stem from vector configurations. They give a good intuition of what a
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2. Axioms and Duality

phirotope actually is: Much like chirotopes that originate from a (real) vector configuration
encode the combinatorics of this vector configuration by assigning to each d-tuple the sign of its
determinant, phirotopes coming from a complex vector configuration depict the combinatorics of
this configuration. A complex analogue for the sign function is given by the phase function:

Definition 2.3 (Phase function)
The function ω : C→ S1 ∪ {0} with

ω(z) =


z
|z| , if z 6= 0

0, if z = 0

is called phase function.

Definition 2.4 (Phirotope of vector configuration)
Let V = (V1, . . . , Vn) ∈ Cd×n be a configuration of finitely many vectors that linearly span
Cd. The phirotope of V is the map

ϕV : [n]d → S1 ∪ {0}, (λ1, . . . , λd) 7→ ω (det(Vλ1 , . . . , Vλd
)) .

The dimension d of the ambient space is called the rank of the phirotope.

It has been shown in [Tro13] that phirotopes of vector configurations are phirotopes as defined
in Definition 2.1: It is easy to see that (ϕ0) and (ϕ1) are satisfied. As every vector configuration
fulfils the Grassmann-Plücker relations, (ϕ2) is satisfied as well.

Definition 2.5 (Realisable phirotopes)
A rank-d phirotope on E = [n] is called realisable, if there is a vector configuration V ∈ Cd×n

such that
ϕV = ϕ.

The vector configuration V is then called a realisation of ϕ.

Compared to chirotopes that stem from real vector configurations and are discrete in nature,
phirotopes contain substantially more information. For each d-tuple of points, chirotopes only
“remember” the relative position of the points while phirotopes also contain continuous information
about angles. This additional information is the reason for the differences in realisability that we
will encounter in Chapter 4. There, the question of whether or not a phirotope is realisable will
be discussed thoroughly. For now, we will focus on properties that realisable phirotopes have.
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2.1. Axiom systems

Lemma 2.6
Let a finite complex vector configuration V ∈ Cd×n be given and let V ′ ⊂ Cd×n be a vector
configuration obtained from applying a projective transformation T ∈ Cd×d, det(T ) 6= 0, to
V . Then

ϕV ′ = ω(det(T )) · ϕV .

Proof. For every minor X ∈ Cd×d of V we have

ϕV ′(T ·X) = ω (det(T ·X)) = ω(det(T )) · ω(det(X)) = ω(det(T )) · ϕV (X).

Note that projective transformations with a positive real determinant do not alter the phirotope
at all. Also, multiplying an element of the vector configuration with a real positive scalar has no
effect on the phirotope. Because of this, we will understand the realisations of rank-d phirotopes
to be vector configurations with elements in the oriented projective space (Cd r {0})/R+. The
definition of the real oriented projective space can for example be found in [Sto91]. In that
book, the real oriented projective space of dimension ν is denoted by Tν , we will denote it by
(Rd r {0})/R+:

Definition 2.7 (Real oriented projective space)
The real oriented projective space of dimension d − 1, which is denoted by (Rd r {0})/R+,
consists of all non-zero vectors of Rd, where two vectors are identified, if multiplying one of
them by a real positive scalar will yield the other.

The definition of this complex oriented projective space is completely analogous to the real case:

Definition 2.8 (Complex oriented projective space)
The complex oriented projective space of dimension d− 1, which is denoted by (Cdr {0})/R+,
consists of all non-zero vectors of Cd, where two vectors are identified, if multiplying one of
them by a real positive scalar will yield the other.

Points in oriented projective space are rays emanating from the origin, which is itself not part of
the rays. Multiplying by a positive scalar such that the last coordinate is an element in S0 (in the
real case) or S1 (in the complex case) yields the standard embedding of the oriented projective
space. This is particularly useful for visualising the point configurations.

Figure 2.2 shows how the real oriented projective space of rank 2 is visualised. In every ray we
choose the point whose last coordinate is 1 or −1. For point B some further representatives are
shown. The one that lies on the line y = 1 is the representative in the standard embedding. For
all points whose last coordinate is −1, like A, we draw the point −A and label it as a negative
point. In our visualisation, we attach to each point the element in S0 that is contained in its last

9



2. Axioms and Duality

B C−A

A

(a) The representatives of points with last coor-
dinates in S0 . . .

B+ C+A−

(b) . . . will yield positive and negative points,
respectively.

Figure 2.2.: The real oriented projective space of dimension 1 (rank 2)

coordinate in the standard embedding: The points are labelled with + or −, respectively. For
the complex case, we are going to do the same thing. Here, we attach an arrow that indicates
the corresponding element in S1, see Figure 2.3. In order to compute the phirotope of an affine

A−

B+

C+

D+
E−

(a) The real oriented projective space of dimen-
sion 2 (rank 3)

A

B

CD

E

Re

Im

(b) The complex oriented projective space of
dimension 1 (rank 2)

Figure 2.3.: Comparison of real and complex oriented projective spaces

d-dimensional point configuration V ∈ Cd×n, we append a (complex) 1 to every vector in V and
compute the rank-(d+ 1) phirotope of this configuration.

The zero vector is not part of any projective space. In some cases, however, we will allow it
to be part of the realisation (see Section 4.2). But firstly, we are going to focus on “uniform”
phirotopes.

Definition 2.9 (Uniformity)
A phirotope is called uniform, if 0 is not contained in its image.

The zero vector cannot be part of any realisation of a uniform phirotope. Thus, realisable uniform
phirotopes can be realised in projective space.

The notion of “affine representative” will be used in many theorems to come.
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2.1. Axiom systems

Definition 2.10 (Affine representative, phase)
Let P ∈ Cd with Pd 6= 0 be the homogeneous coordinates of a point. Write P as

P = rP · ωP ·


|
p

|
1

 , ωP ∈ S1, rP ∈ R+, p ∈ Cd−1.

We call ωP the phase of P , the value rP its radius, and p its affine representative.
If Pd = 0, the phase of P is the phase ωP := ω(Pk) of the last non-zero entry Pk, k < d, of P .

When working over (Cd r {0})/R+ points are represented by equivalence classes of vectors that
have the same affine representative and the same phase. Their radii may vary. Strict usage
of notation would require to distinguish points of (Cd r {0})/R+ from vectors of Cd and to
denote, for example, the latter by capital letters (P ∈ Cd) and the former by equivalence classes
([P ] ∈ (Cd r {0})/R+). For the sake of simplicity, we will denote both of them by P , whenever
no confusion can arise. The following Lemma 2.11, which will be used extensively, is taken from
[BKR03] where it is introduced as Lemma 2.3.

Lemma 2.11 (Freedom of choice of d+ 1 points)
Let ϕ be a uniform realisable rank-d phirotope on [n] with n > d. For any choice of affine
representatives p1, . . . , pd+1 ∈ Cd−1 in general position there is a realisation V = (P1, . . . , Pn)
of ϕ such that

Pk = rPk
ωPk

pk
1


where rPk

∈ R+ and ωPk
∈ S1 for all k ∈ [d+ 1].

This means that we can choose the position of d+ 1 points in a realisation of a phirotope. The
phases of the corresponding points will then be fixed.
Altering the phases of points of a vector configuration will change the phirotope of this

configuration. However, the new mapping obtained in this way will again be a realisable
phirotope. This modification of phases is called “reorientation”:

Definition 2.12 (Reorientation of a phirotope)
Let ϕ be a rank-d phirotope on E = [n] and % ∈ (S1)n be a vector of phases. The map

ϕ% : Ed → S1 ∪ {0}, (λ1, . . . , λd) 7→ %λ1 · . . . · %λd
· ϕ(λ1, . . . , λd)

is called a reorientation of ϕ with the reorientation vector %.
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2. Axioms and Duality

There are two very important lemmas regarding reorientations.

Lemma 2.13 (Reorientations are phirotopes)
Any reorientation of a given phirotope is again a phirotope.

Lemma 2.14 (Reorientation preserves realisability)
A phirotope is realisable if and only if any reorientation of this phirotope is realisable.

The proof of the Lemma 2.14 can be found in [BKR03]. The proof of the Lemma 2.13 works
analogously to the proof of the same statement for chirotopes. The latter can, for example, be
found in [BLSWZ93].

When Below, Krummeck and Richter-Gebert gave their definition of complex oriented matroids,
one of their main goals was to define them in such a way that these complex oriented matroids
would support a reorientation theory that is similar to the one of real oriented matroids. This
means that reorientations of phirotopes should be phirotopes and preserve realisability, so the
Lemmas 2.13 and 2.14 should hold true. Furthermore, the realisations of oriented matroids
lie in oriented projective spaces: multiplying the coordinates of one point with a real positive
scalar does not change the sign or phase of the determinant. Thus, reorientations – that means
multiplying the coordinates of a point of the realisation with any scalar – are the next natural
generalisation.

Ziegler came up with a definition for complex oriented matroids that is different from the one
presented here and that does not allow reorientations (cf. [Zie93]). Ziegler’s complex oriented
matroids have a discrete range: They can take values in the set {0,−1,+1, i, j}, depending on
the sign of the real and imaginary part of the determinant. We will see later that realisations
of phirotopes as introduced in [BKR03] are rigid. This is due to the fact that in our definition
the range of phirotopes is S1. Thus, we have substantially more information – and substantially
less freedom in choosing points in a realisation. As (real) oriented matroids also have a discrete
range and (in general) non-rigid realisations, one could argue that this discreteness is a desirable
property. It is still an open problem whether there is a way of defining complex oriented matroids
in such a way that their image is discrete and that they allow reorientations nevertheless.

Generalisations of complex matroids

Defining them over the complex numbers is not the only way to generalise oriented matroids.
Phirotopes can also be understood as “matroids with coefficients” in the sense of Dress (cf. [Dre86]),
and Dress and Wenzel (cf. [DW88], [DW89], [DW91], and [DW92]). A different generalisation
was given recently by Baker and Bowler, who showed that phirotopes are strong matroids over
the phased hyperfield (cf. [BB17]). While the latter contains proofs that show the correspondence

12



2.1. Axiom systems

of matroids over hyperfields and phirotopes, the work of Dress and Wenzel lacks such proofs, not
least because their work preceded the invention of phirotopes. Therefore, proofs are given here.
Firstly, we will show that phirotopes are matroids with coefficients in the fuzzy ring C//R+.

To this end, the definitions of fuzzy rings, the spaces C/R+ and C//R+, and matroids with
coefficients are given here. They are taken from [Dre86] and [DW91].

Definition 2.15 (Fuzzy ring)
A fuzzy ring K = (K; +, ·; ε,K0) consists of a set K together with two compositions
+ : K ×K → K; (κ, λ) 7→ κ+ λ and · : K × K → K, (κ, λ) 7→ κ · λ, a specified element
ε ∈ K and a specified subset K0 ⊆ K such that the following holds true:

(FR0) (K,+) and (K, ·) are Abelian subgroups with neutral elements 0 and 1, respectively,

(FR1) 0 · κ = 0 for all κ ∈ K,

(FR2) α · (κ1 + κ2) = α · κ1 + α · κ2 for all κ1, κ2 ∈ K and α ∈ K̇ := {α ∈ K | 1 ∈ α ·K},

(FR3) ε2 = 1,

(FR4) K0 +K0 ⊆ K0, K ·K0 ⊆ K0, 0 ∈ K0, 1 /∈ K0,

(FR5) for α ∈ K̇ one has 1 + α ∈ K0 if and only if α = ε,

(FR6) κ1, κ2, λ1, λ2 ∈ K and κ1 + λ1, κ2 + λ2 ∈ K0 implies
κ1 · κ2 + ε · λ1 · λ2 ∈ K0,

(FR7) κ, λ, κ1, κ2,∈ K and κ+ λ(κ1 + κ2) ∈ K0 implies κ+ λκ1 + λκ2 ∈ K0.

The set K0 can be understood as the “fuzziness” of K or, more casually speaking, some sort of
“not knowing”. Intuitively, K0 could for example contain those elements of which we do not know
whether they are positive or negative. Multiplying such elements with any element in K again
yields an element whose sign we do not know (compare (FR4)).

Definition 2.16 (The quotient space C/R+)
Let P(C)R+ be the set of all subsets of C that are invariant under (component-by-component)
multiplication with R+:

P(C)R+ := {T ⊆ C | R+ · T = T}

Next, let the two binary operations ⊕ and � on this set be given by

⊕ :
(
P(C)R+)2

→
(
P(C)R+)

, (T1, T2) 7→ {t1 + t2 | ti ∈ Ti},

� :
(
P(C)R+)2

→
(
P(C)R+)

, (T1, T2) 7→ {t1 · t2 | ti ∈ Ti}.

13



2. Axioms and Duality

The neutral elements with respect to these operations are

0⊕ = {0} and 1� = R+.

Furthermore, the set P(C)R+
0 shall be defined as

P(C)R+
0 :=

{
T ∈P(C)R+ | 0 ∈ T

}
⊆P(C)R+

.

Then, C/R+ is the quotient structure

C/R+ :=
(
P(C)R+ ; ⊕,� ; R− , P(C)R+

0

)
.

Note that in the definition of P(C)R+
0 , the element “0”, that is part of every subset of P(C)R+

0 ,
is the neutral element of (C,+). We will use the notation 0⊕ and 1� whenever we refer to the
neutral elements of

(
P(C)R+

0 ,⊕
)
and

(
P(C)R+

0 ,�
)
, respectively, and use 0 and 1 for 0 ∈ C

and 1 ∈ C, respectively. If one visualises C – as is customary – as a modified Cartesian plane
where the real part of a complex number is represented by a displacement along the x-axis and
the imaginary part along the y-axis, then the set P(C)R+ consists of all unions of convex cones
of this Cartesian plane. This especially includes all rays in the Cartesian plane that initiate at
the origin. Here, it does not matter whether or not the origin is included in the cones, as both
the cones with and those without the origin are part of P(C)R+ . In Figure 2.4, the highlighted
area is an example of an element of P(C)R+ .
For C/R+ to be well-defined we need to ensure that ⊕ and � really map to P(C)R+ . Let

T1, T2 ∈P(C)R+ be two R+-invariant subsets. Then (T1 ⊕ T2) is also R+-invariant:

R+ · (T1 ⊕ T2) = R+ · {t1 + t2 | ti ∈ Ti}

= {R+ · t1 + R+ · t2 | ti ∈ Ti}

= (R+ · T1)⊕ (R+ · T2)

= T1 ⊕ T2.

The same holds true for (T1 � T2):

R+ · (T1 � T2) = R+ · {t1 · t2 | ti ∈ Ti}

= {R+ · t1 · t2 | ti ∈ Ti}

= (R+ · T1)� T2

= T1 � T2.
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0 Re

Im

Figure 2.4.: An example of an element of P(C)R+ .

Definition 2.17 (The space C//R+)
Let C/R+ be given as in Definition 2.16 and let L be the smallest subset of P(C)R+ containing
c ·R+ for all c ∈ C such that L⊕ L ⊆ L and L� L ⊆ L. With L0 := L ∩P(C)R+

0 , we define

C//R+ :=
(
L ; ⊕,� ; R− , L0

)
.

Note that the set L contains the set {0}, all rays initiating at and including the origin, and all
rays initiating at but not including the origin. Furthermore, L0 = {T ∈ L | 0 ∈ T}, and thus L0

contains the set {0} and all rays initiating at and including the origin:

L0 =
{
{α · c | α ∈ R+

0 } | c ∈ C
}
.

Lemma 2.18
The space C//R+ is a fuzzy ring.

Proof. We verify the claim by considering the Definition 2.15 of fuzzy rings.

• (L,⊕) and (L,�) are Abelian semigroups, as the associativity and the commutativity are
inherited from (C,+) and (C, ·), respectively. They are furthermore closed under ⊕ and �
by definition. ⇒ (FR0)

• It holds true that 0⊕ � T = {0 · t | t ∈ T} = 0⊕ for all T ∈ L. ⇒ (FR1)

• Consider the set

L̇ := {T ∈ L | 1� ∈ (T � L)} =
{
T ∈ L | R+ ∈ (T � L)

}
= Lr {{0}}.

Note that � is to be understood component wise here, that means:

T � L = {T � L | L ∈ L}.
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For every R ∈ L̇ and all T1, T2 ∈ L it holds true that

R� (T1 ⊕ T2) = R� {t1 + t2 | ti ∈ Ti}

= {r · (t1 + t2) | r ∈ R, ti ∈ Ti}

= {r · t1 + r · t2) | r ∈ R, ti ∈ Ti}

= R� T1 ⊕R� T2.

This proves (FR2).

• It holds true that (R−)2 = R− � R− = R+ = 1�. ⇒ (FR3)

• For any K1,K2 ∈ L0 it holds true that 0 ∈ K1 and 0 ∈ K2 and, thus, 0 ∈ K1 ⊕K2. This
yields L0 ⊕ L0 ⊆ L0.
For any L ∈ L andK ∈ L0 it holds true that 0 ∈ (L�K) as 0 ∈ K. This yields L�L0 ⊆ L0.
Furthermore, it holds true that 0⊕ ∈ L0, and 1� 6∈ L0 as 0 6∈ R+.
With this we obtain (FR4).

• Certainly, 0 ∈ (R+ ⊕ R−). Conversely, for 0 ∈ (R+ ⊕ L) to hold true for some L ∈ L̇, this
L has to contain the additive inverse to some element of R+. Thus, L = R−. ⇒ (FR5)

• Let L1, L2, N1, N2 ∈ L be given with L1 ⊕ N1, L2 ⊕ N2 ∈ L0. Then there are `1 ∈ L1,
`2 ∈ L2, n1 ∈ N1, and n2 ∈ N2 such that

`1 + n1 = 0, and `2 + n2 = 0.

Then, `1 · `2 − n1 · n2 = 0 and, thus, (L1 � L2 ⊕ R− �N1 �N2) ∈ L0.

This yields (FR6).

• To see that (FR7) holds true, consider L,N,L1, L2 ∈ L and ` ∈ L, `1 ∈ L1, `2 ∈ L2, and
n ∈ N such that 0 = `+ n · (`1 + `2). This implies

0 = `+ n · `1 + n · `2

and, thus, L⊕N � (L1 ⊕ L2) ∈ L0 implies L⊕N � L1 ⊕N � L2 ∈ L0. This yields (FR7).

We will show that phirotopes are “Grassmann-Plücker maps” as defined in [DW91, Defi-
nition 4.1] and use [DW91, Theorem 4.1], which states that Grassmann-Plücker maps define
matroids with coefficients, to show that phirotopes are indeed matroids with coefficients. For
the sake of convenience, we give the above-mentioned definition and theorem here (note that we
have changed some of the notation so that it is in line with the notation we have used so far):
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2.1. Axiom systems

Definition 2.19 (Grassmann-Plücker map of degree m)
Assume E is a set and K is a fuzzy ring. For m ∈ N a map b : Em → K̇ ∪ {0} is called a
Grassmann-Plücker map of degree m, if the following conditions are satisfied:

(GP0) There exist e1, . . . , em ∈ E with b(e1., . . . em) 6= 0.

(GP1) b is ε-alternating; this means, for e1, . . . , em ∈ E and every odd permutation τ ∈ Sm we
have:

b(eτ(1), . . . , eτ(m)) = ε · b(e1, . . . , em)

and in case |{e1 . . . , em}| < m we have b(e1, . . . , em) = 0.

(GP2) For all e0, . . . , em, f2, fm ∈ E we have

m∑
i=0

εi · b(e0, . . . , êi, . . . , em) · b(ei, f2, . . . , fm) ∈ K0. (2.1)

The relations (2.1) are called the Grassmann-Plücker relations.

By setting E = E , K = C//R+, b = ϕ, we see that (GP0) corresponds to (ϕ0), (GP1) to (ϕ1),
and (GP2) to (ϕ2). Having a set of R+-invariant subsets as the range of the mappings accounts
for the fact that in phirotopes we only work over S1 ∪ {0}, that means with the phase of the
determinants, or, in other words, we choose the representatives of length 1 for every element in
C//R+.

In order to state [DW91, Theorem 4.1], we also need to give [DW91, Definition 4.2]. This, in
essence, contains the translation of phirotopes to circuits Rb and cocircuits Rb∗ :

Definition 2.20
For a Grassmann-Plücker map b : Em → K̇ ∪ {0} we define

Rb :=
{
r ∈ KE | r 6≡ 0 and there exist pairwise distinct e0 . . . , em ∈ E

and some α ∈ K̇ such that

r(x) =

0, for x 6∈ {e0, . . . , em}

α · εi · b(e0, . . . , êi, . . . , em), for x = ei

}

and

Rb∗ :=
{
s ∈ KE | s 6≡ 0 and there exist f2, . . . , fm ∈ E and some α ∈ K̇

such that s(x) = α · b(x, f2, . . . , fm) for all x ∈ E
}
.
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Now, we give an adapted version of [DW91, Theorem 4.1]:

Lemma 2.21
Assume b : Em → K̇ ∪ {0} is a Grassmann-Plücker map. Then (E,Rb) is a matroid (of finite
type) with coefficients in the fuzzy ring K.

With this knowledge at hand, we can use the results of Dress, and Dress and Wenzel [Dre86],
[DW88], [DW91]. Primarily, we will use their results regarding duality.

Another generalisation of complex matroids is given by Baker and Bowler in the form of weak
and strong matroids over hyperfields [BB17]. A hyperfield is a field where the addition might be
multivalued. The following definition is taken from [BB17].

Definition 2.22 (Phased hyperfield)
The phased hyperfield P is given by the set S1 ∪ {0} together with the usual multiplication of
C and the hypersum, which for x, y 6= 0 is given by

x� y :=


{−x, 0, x}, if x = −y, αx+ βy

|αx+ βy|

∣∣∣∣ α, β ∈ R+

 , else.

Note that the multivalued addition corresponds to the fuzziness of the fuzzy rings. For the
detailed definitions of P-circuits, strong and weak P-matroids and proofs of the corresponding
equivalences, we refer the interested reader to [BB17]. The results there generalise the work of
Anderson and Delucchi [AD12] on phirotopes but also rectify a fault that was made in [AD12]
and copied in the previous version of the paper of Baker ([Bak16]).
In [AD12] the authors try to prove that phirotopes are equivalent to phased circuits in the

sense of [Del03]. However, in [BB17] it is shown that their proof is not correct and that two
notions of Grassmann-Pücker functions as well as two notions of phased circuits are needed to
properly show the equivalence of the definitions:
Strong Grassmann-Plücker functions are phirotope as we defined them. Baker and Bowler prove
that these are equivalent to strong P-matroids in terms of strong P-circuits, see [BB17].
Weak Grassmann-Plücker functions are maps that also satisfy the phirotope axioms (ϕ0) and

(ϕ1) but satisfy only a weaker version of (ϕ2): Only the three-term Grassmann-Plücker relations
are not obviously violated by a weak Grassmann-Plücker function:

(ϕ2)’: For all sequences λ ∈ Ed−1, τ ∈ Ed+1 such that |τ r λ| = 3 there are r1, . . . , rd+1 ∈ R+

such that
d+1∑
i

ri · ϕ (λτi) · ϕ (τ\i) = 0.
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2.2. Duality

Weak Grassmann-Plücker functions are equivalent to weak P-matroids in terms of weak P-circuits,
see [BB17].
In [BB17], there is also an example that shows that while every strong Grassmann-Plücker

function is also a weak Grassmann-Plücker function, the reverse it not true.
Both the work of Anderson and Delucchi [AD12] and of Baker and Bowler [BB17] contain

useful theorems that we will make use of. For example those that concern duality.

2.2. Duality

In this section we will discuss the perception of duality. Firstly, the duality of chirotopes will be
reviewed shortly as the construction of dual phirotopes works similarly. We will then construct a
realisation of the dual phirotope starting from a configuration of the primal.

Dual chirotopes

To construct dual chirotopes, we follow the instructions in [BLSWZ93, p. 135]. We use their
notation but extend their concept to handling the case of an index appearing repeatedly in the
input.

Definition 2.23 (Dual chirotope)
Given a rank-d chirotope χ on E = [n]. Its dual is the rank-(n− d) chirotope χ∗ on E given by

χ∗ : En−d −→ S0 ∪ {0}

(x1, . . . , xn−d) 7−→

0, if |{x1, . . . , xn−d}| < n− d,

χ(x′1, . . . , x′d) · sign(x1, . . . , xn−d, x
′
1, . . . , x

′
d), else,

where (x′1, . . . , x′d) is a permutation of the elements in E r {x1, . . . , xn−d}.

It is noted in [BLSWZ93] that the choice of the permutation does not affect the outcome of the
construction.

Example 2.24 The dual of a rank 3 chirotope χ on E = {1, 2, 3, 4, 5} is given by

χ∗ : E2 −→ {−1, 0,+1}

χ∗(12) = χ(345) · sign(12345) = +χ(345),

χ∗(13) = χ(245) · sign(13245) = −χ(245)

. . .

χ∗(45) = χ(123) · sign(45123) = +χ(123).
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As dualising changes the rank of a chirotope but leaves other properties unchanged, it is often
used in proofs to reduce the rank of the chirotope at hand. An example of a property that is left
unchanged is the realisability. The following result can for example be found in [Ric89].

Lemma 2.25 (Dualising preserves realisability)
A chirotope is realisable if and only if its dual is realisable.

The goal is to achieve a similarly strong notion of duality for phirotopes.

Dual phirotopes

Starting from a phirotope ϕ, we construct a new map ϕ∗ similar to how we constructed the dual
chirotope. We will then check that this map ϕ∗ is indeed a phirotope and exhibits properties that
we expect a dual to have. Furthermore, we will examine a construction of the vector configuration
of the dual phirotope that is known from chirotope theory and we will show that it also works
for phirotopes.

Definition 2.26 (Dual phirotope)
Given a rank-d phirotope ϕ on E = [n]. Its dual is the rank-(n− d) phirotope ϕ∗ given by

ϕ∗ : En−d −→ S1 ∪ {0}

(x1, . . . , xn−d) 7−→


0, if |{x1, . . . , xn−d}| < n− d,

ϕ(x′1, . . . , x′d) · sign(x1, . . . , xn−d, x
′
1, . . . , x

′
d), else,

where (x′1, . . . , x′d) is a permutation of the elements in E r {x1, . . . , xn−d}.

This definition differs from that given in [AD12] in the sense that the authors there use
ϕ(x′1, . . . , x′d)−1 instead of ϕ(x′1, . . . , x′d) in the above statement. Our definition not only follows
[BB17] and [DW91] but also builds on a different – and in our opinion more natural – under-
standing of “orthogonality”. The dual complex oriented matroid should (as the dual real oriented
matroid does as well) contain those circuits that are perpendicular to the circuits of the primal
phirotope. Anderson and Delucchi use ϕ(·)−1 to be able to use the hermitian product of two
complex vectors to test for orthogonality. In our understanding, orthogonality is a concept that
should stem from Grassmann-Plücker relations, as those are already valid (or in our case not
violated) on an abstract combinatorial level. Thus, we can speak about orthogonality without
referring to (maybe non-existent) realisations. We illustrate our understanding of orthogonality
with an example:

Consider the real rank-3 point configuration given in Figure 2.5. It can be shown that
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1
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56

Figure 2.5.: An example of a real rank-3 point configuration that contains a circuit and a cocircuit
that both contain the elements 3, 4, 5 and 6 in their support.

[4, 5, 6] · 3− [3, 5, 6] · 4 + [3, 4, 6] · 5− [3, 4, 5] · 6 = 0,

(for details see [RG11]) which gives rise to the circuit

C = (0, 0,+[4, 5, 6],−[3, 5, 6],+[3, 4, 6],−[3, 4, 5]).

The line spanned by 1 and 2 gives rise to the cocircuit

D = (0, 0,+[1, 2, 3],+[1, 2, 4],+[1, 2, 5],+[1, 2, 6]).

Cocircuits of the primal chirotope are circuits of the dual chirotope, so C and D should be
orthogonal, and we see that their product is a Grassmann-Plücker relation. With this, the
Grassmann-Plücker relation ensuring the orthogonality of the above circuit and cocircuit is
(1, 2 | 3, 4, 5, 6) = 0. This, of course, holds true for real valued C and D as well as for complex
valued circuits and cocircuits.

This relation between orthogonality and Grassmann-Plücker relations is the reason we do not
want to introduce complex conjugation to dualisation. Thus, we define orthogonality as follows:

Definition 2.27 (Orthogonality)
Two vectors C,D ∈ Cd are called orthogonal, if

〈C,D〉 :=
d∑
i=1

(Ci ·Di) = 0.

Although we use a different notion of orthogonality and, thus, dual phirotopes, the proofs from
[AD12] apply (apart from the complex conjugation even literally) to our framework. In most
cases, dualisation is used twice in the proofs and thus complex conjugation is applied twice as
well and cancels.

Lemma 2.28
The mapping ϕ∗ defined in Definition 2.26 is a phirotope.
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The proof of this lemma is contained in the proof of the Lemma 6.2 in [BB17].

There are further properties that a dualisation should satisfy. One of them is given by the
following lemma:

Lemma 2.29
Let ϕ be a rank d phirotope on [n]. Up to a global multiplication with (−1), dualising twice
will yield the original phirotope:

(ϕ∗)∗ = (−1)(n−d)d · ϕ.

Proof. The only thing that is not obvious from the Definition 2.26 of a dual phirotope is the
correctness of the sign. With the notation of the Definition 2.26 and the abbreviation t = n− d,
we obtain for any (x1, . . . , xd) ∈ [n]d:

(ϕ∗)∗(x1, . . . , xd) = ϕ∗(x′1, . . . , x′t) · sign(x1, . . . , xd, x
′
1, . . . , x

′
t)

= ϕ∗(x′1, . . . , x′t) · (−1)td · sign(x′1, . . . , x′t, x1, . . . , xd)

= ϕ(x1, . . . , xd) · (−1)td · sign(x′1, . . . , x′t, x1, . . . , xd)2

= (−1)(n−d)d · ϕ(x1, . . . , xd)

As with chirotopes, the dual realisation of a phirotope can be constructed from the primal
configuration. The analogue of the following lemma exists for oriented matroids as well. Its proof
in the complex setting can be found in [AD12].

Lemma 2.30
If a phirotope ϕ is realised by a vector configuration that spans the space W , then the dual
phirotope ϕ∗ is realised by a vector configuration that spans the space W⊥.

For the formulation of the next lemma we need the notion of basis of a phirotope.

Definition 2.31 (Basis of a phirotope)
Let ϕ be a rank-d phirotope. Any set {λ1, . . . , λd} ⊆ E such that ϕ(λ1, . . . , λd) 6= 0 is called
basis of ϕ.

The next lemma is an extension of the Theorem 2.2.8 of [Oxl92], where an analogue claim for
matroids is proved. It gives specific instructions on how to calculate the realisation of a dual
phirotope.
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Lemma 2.32 (Construction of dual realisable phirotopes)
Let ϕ : Ed → S1 ∪ {0} be a realisable phirotope on E = [n] such that [d] is a basis of ϕ. Let a
realisation of ϕ be given by the columns of the matrix [Id|D]. A vector configuration of the
dual phirotope ϕ∗ is then given by [−DT |In−d].

As the proof of this lemma is completely analogous to the real setting and the corresponding
statement for (oriented) matroids, we refer the interested reader to [Oxl92] (for matroids) or
[Ric89] (for oriented matroids).
The realisations of most phirotopes cannot be converted to the form [Id|D]. Because of the

Lemma 2.11, we can choose the affine representatives of d points as unit vectors, but their phases
will most likely not all be equal to 1. To achieve that the phases are 1, we need to reorient the
phirotope. Although reorientation changes the phirotope, we know that reorientation preserves
realisability, cf. Lemma 2.14. Therefore, the last Lemma 2.32 together with the Lemmas 2.14
and 2.29 justifies the following corollary.

Corollary 2.33 (Dualising preserves realisability)
A phirotope is realisable, if and only if its dual is realisable.
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3. Reorientation and Chirotopality

We have seen in the course of the Definition 2.2 that every chirotope is a phirotope. However,
the realisability theory for chirotopes and the one of phirotopes that are not chirotopes differ
substantially. For analysing the realisability of phirotopes, we therefore need to be able to speak
about the set of phirotopes that are not chirotopes. The main goal of this chapter is to establish
the notion of “chirotopality”. This is the property of a phirotope being a (possibly reoriented)
chirotope. We analyse this for uniform and not uniform phirotopes separately.

3.1. Uniform Phirotopes

This section is subdivided into the theory for rank-2 phirotopes, which is mainly a review of
what has already been established in [BKR03], and the theory for phirotopes of higher ranks.

Rank 2

We review cross ratio phases as introduced in [BKR03].

Definition 3.1 (Cross ratio phases)
Let ϕ be a rank-2 phirotope on E . Given four elements a, b, c, d ∈ E the value

crϕ (a, b | c, d) := ϕ(a, c)ϕ(b, d)
ϕ(a, d)ϕ(b, c)

is called the cross ratio phase of a, b, c and d.

In the realisable case, the cross ratio phase of four indices is equal to the phase of the cross ratio
of the corresponding points:

crϕ (a, b | c, d) = ω (cr(A,B|C,D)) (3.1)

if the labels a, b, c, and d from E correspond to the points A, B, C, and D in CP1, respectively.

There are some further properties of the cross ratio phase that we will use throughout this
dissertation. Most of them are contained in [BKR03, Lemma 2.4], which is given here:
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Lemma 3.2
Let ϕ be a uniform phirotope in rank 2.

1. For all permutations π ∈ S4(a, b, c, d) is holds true that

crϕ (a, b | c, d) ∈ R ⇔ crϕ (π(A), π(B) |π(C), π(D)) ∈ R.

2. If crϕ (a, b | c, d) 6∈ R, then cr(A,B|C,D) is determined by ϕ for all realisations of ϕ
where A, B, C, and D are the points corresponding to the indices a, b, c, and d,
respectively.

3. All cross ratio phases of ϕ are purely real, if and only if there is a reorientation of ϕ
that is a chirotope, that means all reoriented phirotope values are in {−1,+1}.

4. Out of the set of the cross ratio phases on five indices there is either no real value, one
real value, or they are all real.

5. If it holds true that crϕ (a, b | c, d) 6∈ R, then for each choice of two elements k, l ∈
{a, b, c, d} the alternating function ϕ′ defined as

ϕ′(x, y) =

−ϕ(x, y), if {x, y} = {k, l}

ϕ(x, y), if {x, y} 6= {k, l}

is not a phirotope.

With the notion of cross ratio phase at hand we can characterise the class of phirotopes that
are chirotopes. This definition was also given in [BKR03].

Definition 3.3 (Chirotopality according to [BKR03])
A uniform rank-2 phirotope is called chirotopal, if all cross ratio phases are real. If there
exists at least one non-real cross ratio phase, the phirotope is called non-chirotopal.

Part 3 of the Lemma 3.2 states that chirotopal phirotopes are reoriented chirotopes. We use this
characterisation as the definition in order to generalise the concept of chirotopality to higher
ranks and non-uniform phirotopes. Thus, the definition of chirotopality used in this thesis is the
following:

Definition 3.4 (Chirotopality)
A phirotope ϕ on [n] is called chirotopal, if there exists a reorientation vector % ∈ (S1)n such
that ϕ% is a chirotope. Otherwise it is called non-chirotopal.
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Higher Ranks

In this section, we want to find a characterisation of chirotopality for uniform phirotopes of
arbitrary rank. To this end, we generalise the concept of cross ratio phases to higher ranks. This
will be done with the help of “contractions”. Contraction is a common tool used in (oriented)
matroid theory and has been extended to phirotopes in [AD12]. For the proofs of several lemmas
we will also need to reduce the number of indices of the phirotope at hand and generate a new
phirotope this way. This allows us to execute proofs by induction on the number of indices
in the domain of a phirotope. The tool to do this is called “deletion”. As with contractions,
deletions are widely used in (oriented) matroid theory and have been applied to phirotopes in
[AD12] and [BB17]. Readers familiar with oriented matroid theory can easily skip the next one
and a half pages that are dedicated to deletion and contraction and continue reading with the
Definition 3.11.

For a proper notion of contraction and deletion, the concept of “ϕ-independence” is introduced
as in [AD12]. In this source, one will also find the definitions of contraction and deletion given
below. They are designed in such a way that they apply to non-uniform phirotopes.

Definition 3.5 (ϕ-independence)
Let ϕ be a rank-d phirotope on E . A subset {e1, . . . , ek} ⊂ E is called ϕ-independent, if
there is a sequence λ ∈ Λ(E , d − k) such that ϕ(e1, . . . , ek, λ) 6= 0. Otherwise, it is called
ϕ-dependent.

Note that the bases of a phirotope are the maximal ϕ-independent sets within the index set.

Definition 3.6 (Contraction)
Let ϕ be a rank-d phirotope on E and A ⊂ E a subset of indices. Furthermore, let (a1, . . . , ak) ∈
Λ(A, k) be the ordered sequence containing the elements of a maximal ϕ-independent set of
A. The phirotope

ϕ/A : (E rA)d−k −→ S1 ∪ {0}

λ 7−→ ϕ(a1, . . . , ak, λ)

is called the contraction of ϕ at A.
The phirotope ϕ/A is independent of the choice of (a1, . . . , ak), up to a global multiplication
by a constant c ∈ S1 (see [AD12]).

The proof that the contraction really is a phirotope can also be found in [AD12].
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Definition 3.7 (Deletion)
Let ϕ be a rank-d phirotope on E and A ⊂ E a subset of indices. Choose a minimal subset
{a1, . . . , ak} ⊂ A such that (E rA) ∪ {a1, . . . , ak} contains a basis of ϕ. The phirotope

ϕ\A : (E rA)d−k −→ S1 ∪ {0}

λ 7−→ ϕ(a1, . . . , ak, λ)

is called the deletion of A from ϕ.
The phirotope ϕ\A is independent of the choice of (a1, . . . , ak), up to a global multiplication
by a constant c ∈ S1 (see [AD12]).

Note that the minimal subset {a1, . . . ak} ⊂ A, which needs to be chosen when constructing
the deletion of A, may well be the empty subset. The proof that the deletion really is a phirotope
can also be found in [AD12].

Deletions and contractions lead to new phirotopes. The following definition of “minors” enables
us to talk about the structure that is left after deleting and contracting. In that sense, minors
are exactly what a reader familiar with matroid theory would expect them to be.

Definition 3.8 (Minor)
Let ϕ be a phirotope on E . A phirotope that is obtained from ϕ by a series of deletions and
contractions is called minor of ϕ.

The following lemma, which again is in complete analogy with the concepts of deletion and
contraction of oriented matroids, is also proved in [AD12]:

Lemma 3.9 (Contraction and deletion are dual concepts)
For any phirotope ϕ and all subsets A of indices of this phirotope it holds true that

(ϕ\A)∗ = (ϕ∗)/A.

Lemma 3.10 (Deletion and contraction preserve realisability)
Let ϕ be a realisable phirotope on E and A ⊂ E a subset of indices. Then, ϕ/A and ϕ\A are
realisable.

Proof. If ϕ is realisable, then omit from the realisation of ϕ all points corresponding to indices
in A. This yields a realisation of ϕ\A, hence ϕ\A is realisable. To prove that ϕ/A is realisable as
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well, use Lemma 3.9 and Corollary 2.33:

ϕ is realisable, ⇒ ϕ∗ is realisable,

⇒ (ϕ∗)\A is realisable, ⇒ ((ϕ∗)\A)∗ is realisable,

⇒ ((ϕ∗)∗)/A is realisable, ⇒ ϕ/A is realisable.

With this, we can define cross ratio phases in arbitrary ranks. To this end, we return to
uniform phirotopes.

Definition 3.11 (Cross ratio phase in higher rank for uniform phirotopes)
Let ϕ be a uniform rank-d phirotope on E . Furthermore let a, b, c, d ∈ E be four indices, and
let F ⊂ E be a subset of d− 2 indices of E . The cross ratio phase of a, b, c, and d seen from
F is defined as

crϕ (a, b | c, d)F := ϕ(F, a, c)ϕ(F, b, d)
ϕ(F, a, d)ϕ(F, b, c) ,

where ϕ(F, x, y) := ϕ(f1, . . . fd−2, x, y) with {f1, . . . fd−1} = F .

Corollary 3.12
For a uniform phirotope ϕ on E and four indices a, b, c, d ∈ E the cross ratio phase seen from
a ϕ-independent set F ⊂ E is the same as the cross ratio phase of the four indices a, b, c, d in
the contraction ϕ/F :

crϕ (a, b | c, d)F = crϕ/F
(a, b | c, d)

With all the terms and definitions in place, we can characterise chirotopality for phirotopes of
arbitrary rank.

Lemma 3.13 (Characterisation of chirotopality of uniform phirotopes)
Let ϕ be a uniform rank-d phirotope on E = [n] with d ≥ 2 and n > d+ 1. The phirotope ϕ
is chirotopal, if and only if for all F ⊂ E with |F | = d− 2 it holds true that

crϕ (a, b | c, d)F ∈ R ∀a, b, c, d ∈ E .

Moreover, rank-d phirotopes with n = d or n = d+ 1 always allow such a reorientation and
are also called chirotopal.

The proof of this lemma is going to be rather technical and involved. This is somewhat surprising
as the proof of the corresponding statement in rank 2 does not require more than ten lines
(cf. [BKR03, Lemma 2.4 (3)]). The central point of this proof is to find for each reoriented

29



3. Reorientation and Chirotopality

phirotope value a cross ratio that equals this phirotope value. The cross ratio is real by assumption
and, thus, the reoriented phirotope value is real as well. In rank 2, this is relatively easy. One
chooses the reorientation vector in such a way that applying the reorientation will multiply the
phirotope value with other phirotope values to create a cross ratio. In higher ranks and on
large index sets, however, this amounts to multiplying the phirotope value with large chains of
fractions that will provide not only one but many cross ratios. As the size of the image of a
rank d phirotope on n elements is

(n
d

)
, another difficulty is to check that all of these values are

real after the reorientation.
Before proving the Lemma 3.13, we will provide a formula that comprises the above mentioned
chains of cross ratios.

Lemma 3.14
Let ϕ be a uniform phirotope on E and let α ∈ Λ(E , k), β ∈ Λ(E , l), and γ ∈ Λ(E , l) be three
sequences such that k + l = d− 1 and |{α1, . . . , αk, β1, . . . , βl, γ1, . . . , γl}| = k + 2l. For any
x, y ∈ E r {α1, . . . , αk, β1, . . . , βl, γ1, . . . , γl} the following holds true:

ϕ(α, β, x)
ϕ(α, β, y) ·

ϕ(α, γ, y)
ϕ(α, γ, x) =

l∏
i=1

crϕ (βi, γi |x, y)Fi
(3.2)

with Fi = {α1, . . . , αk, γ1, . . . , γi−1, βi+1, βl}.

In order to spare the reader chasing indices in the proof, we provide an example that demonstrates
how this lemma works.

Example 3.15 Let ϕ be a uniform rank 5 phirotope on E = {1, · · · , 7, x, y}. Furthermore,
let k = 1, l = 3 and α = (1), β = (2, 3, 4), γ = (5, 6, 7). Then, we obtain

ϕ(1, 2, 3, 4, x)
ϕ(1, 2, 3, 4, y) ·

ϕ(1, 5, 6, 7, y)
ϕ(1, 5, 6, 7, x)

= ϕ(1, 2, 3, 4, x)
ϕ(1, 2, 3, 4, y) ·

ϕ(1, 5, 6, 4, y) · ϕ(1, 5, 6, 4, x)
ϕ(1, 5, 6, 4, x) · ϕ(1, 5, 6, 4, y) ·

ϕ(1, 5, 6, 7, y)
ϕ(1, 5, 6, 7, x)

= ϕ(1, 2, 3, 4, x)
ϕ(1, 2, 3, 4, y) ·

ϕ(1, 5, 6, 4, y)
ϕ(1, 5, 6, 4, x) · crϕ (4, 7 |x, y){1,5,6}

= ϕ(1, 2, 3, 4, x)
ϕ(1, 2, 3, 4, y) ·

ϕ(1, 5, 3, 4, y) · ϕ(1, 5, 3, 4, x)
ϕ(1, 5, 3, 4, x) · ϕ(1, 5, 3, 4, y) ·

ϕ(1, 5, 6, 4, y)
ϕ(1, 5, 6, 4, x) · crϕ (4, 7 |x, y){1,5,6}

= ϕ(1, 2, 3, 4, x)
ϕ(1, 2, 3, 4, y) ·

ϕ(1, 5, 3, 4, y)
ϕ(1, 5, 3, 4, x) · crϕ (3, 6 |x, y){1,5,4} · crϕ (4, 7 |x, y){1,5,6}

= crϕ (2, 5 |x, y){1,3,4} · crϕ (3, 6 |x, y){1,5,4} · crϕ (4, 7 |x, y){1,5,6}
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Proof of Lemma 3.14. We expand the fraction by the terms that give the cross ratio phases:

ϕ(α, β, x)
ϕ(α, β, y) ·

ϕ(α, γ, y)
ϕ(α, γ, x)

=ϕ(α, β, x)
ϕ(α, β, y) ·

ϕ(α, γ, y)
ϕ(α, γ, x) ·

ϕ(α, γ1, . . . , γl−1, βl, x)
ϕ(α, γ1, . . . , γl−1, βl, y) ·

ϕ(α, γ1, . . . , γl−1, βl, y)
ϕ(α, γ1, . . . , γl−1, βl, x)

=crϕ (βl, γl |x, y)Fl
· ϕ(α, β, x)
ϕ(α, β, y) ·

ϕ(α, γ1, . . . , γl−1, βl, y)
ϕ(α, γ1, . . . , γl−1, βl, x)

With the same technique we substitute γl−1, γl−2, . . . , γ2 one by one and obtain:

· · · =
l∏

i=2
crϕ (βi, γi |x, y)Fi

· ϕ(α, β, x)
ϕ(α, β, y) ·

ϕ(α, γ1, β2, . . . , βl, y)
ϕ(α, γ1, β2, . . . , βl, x)

=
l∏

i=1
crϕ (βi, γi |x, y)Fi

.

Proof of Lemma 3.13. Firstly, we will show that every rank-d phirotope on d or d+ 1 elements
allows a reorientation % such that ϕ% is a chirotope. In the case of E = [d], there is only one
phirotope value, namely ϕ(1, . . . , d). As phase vector % we can for example choose

% =
(

1
ϕ(1,...,d) , 1, . . . , 1

)
.

With this, it holds true that ϕ%(1, . . . , d) = 1 and thus ϕ% is a chirotope.

In the case of E = [d+ 1], there are d+ 1 different phirotope values: Let λ ∈ Λ(E , d+ 1) be
the ordered sequence of all indices in E . Then the d+ 1 phirotope values are each the image of a
sequence that contains all but one of the indices, namely the values ϕ(λri) for i ∈ [d+ 1]. We
choose our phase vector as follows:

%1 = d

√
ϕ(λ\1)d−1

ϕ(λ\2) · . . . · ϕ(λ\d+1) , and %i = %1 ·
ϕ(λ\i)
ϕ(λ\1) , ∀i ∈ [d+ 1] r 1.

It is easily checked that all phirotope values of ϕ% are equal to 1 and therefore ϕ% is a chirotope.

Now for the main part and the phirotopes on more than d+1 indices. Let ϕ% be a reorientation
of ϕ that is a chirotope. Then all phase values of ϕ% are contained in {−1, 0,+1}. The cross ratio
phase seen from F is invariant under reorientation. Thus, it follows that crϕ (a, b | c, d)F ∈ R for
all a, b, c, d ∈ E and all F ⊂ E , |F | = d− 2.

We will show the other direction using induction on the size of E . A similar proof for rank
d = 3 was done in [Tro13]. We show the claim for arbitrary rank d here. To this end, let all
cross ratio phases seen from any d − 2 subset of E be real. For the base case n = d + 2 let
λ(1, . . . , d+ 1) be the ordered sequence of the first d+ 1 indices in E . We choose the phase vector
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% ∈ (S1)d+2 as follows:

%1 = d

√
ϕ(λ\1)d−1

ϕ(λ\2) · . . . · ϕ(λ\d+1) , (3.3)

%i = %1 ·
ϕ(λ\i)
ϕ(λ\1) , ∀i ∈ [d+ 1]\{1}, (3.4)

%d+2 = %1 ·
ϕ(1, . . . , d)

ϕ(2, . . . , d, d+ 2) . (3.5)

Note that we have chose the first d+ 1 entries of the phase vector as we did in the case with
d+ 1 indices. With this, we already know that

ϕ%(λ) ∈ R ∀λ ∈ Λ([d+ 1], d).

We still have to check all phirotope values that contain the index d+ 2. Exemplarily, we check
ϕ%(1, . . . , d− 1, d+ 2):

ϕ%(1, . . . , d− 1, d+ 2) =

=
(
d−1∏
i=1

%i

)
· %d+2 · ϕ(1, . . . , d− 1, d+ 2)

= %d1 ·
(
d−1∏
i=2

ϕ(λ\i)
ϕ(λ\1)

)
· ϕ(1, . . . , d)
ϕ(2, . . . , d, d+ 2) · ϕ(1, . . . , d− 1, d+ 2)

= ϕ(λ\1)
ϕ(λ\d) · ϕ(λ\d+1) ·

ϕ(1, . . . , d)
ϕ(2, . . . , d, d+ 2) · ϕ(1, . . . , d− 1, d+ 2)

= ϕ(λ\1) · ϕ(1, . . . , d− 1, d+ 2)
ϕ(λ\d) · ϕ(2, . . . , d, d+ 2)

With F = {2, . . . , d− 1} and α = (2, . . . , d− 1) the ordered sequence that contains the elements
of F we continue the calculations above:

ϕ%(1, . . . , d− 1, d+ 2) = ϕ(λ\1) · ϕ(1, . . . , d− 1, d+ 2)
ϕ(λ\d) · ϕ(2, . . . , d, d+ 2)

= ϕ(α, d, d+ 1) · ϕ(1, α, d+ 2)
ϕ(1, α, d+ 1) · ϕ(α, d, d+ 2)

= crϕ (1, d | d+ 2, d+ 1)F ∈ R

This cross ratio phase is real by assumption. All other phirotope values can be checked to be
real by similar calculations. This completes the base case of our induction on n.

We will show that the phase vector % ∈ (S1)n whose first d + 1 entries are given by the
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assignments (3.3) and (3.4) and whose j-th entry is given by

%j = %1 ·
ϕ(1, . . . , d)
ϕ(2, . . . , d, j)

for all j ∈ {d+ 2, . . . , n} will yield a phirotope when used to reorient ϕ.
For the induction step, we consider the deletion ϕ\{n}. From the induction hypothesis we know

that for this phirotope we find a phase vector %̃ ∈ (S1)n−1 such that
(
ϕ\{n}

)%̃
is a chirotope. Let

% be the phase vector given by

%i = %̃, ∀i ∈ [n− 1],

%n = %1 ·
ϕ(1, . . . , d)
ϕ(2, . . . , d, n) .

This yields
ϕ%(λ) ∈ R, ∀λ ∈ Λ(E r {n}, d).

Consider the phirotope values of the form ϕ%(λ, n) where λ ∈ Λ(E r {n}, d− 1). We split λ
into parts smaller and larger than d, so let r ∈ {0, . . . , d− 1} such that

λi ∈ [d] ∀i ∈ [r],

λi ≥ d+ 1 ∀i ∈ {r + 1, . . . , d− 1}.

Let µ ∈ Λ([d], d− r) be the ordered sequence such that

{λ1, . . . , λr, µ1, . . . , µd−r} = [d].

Note that the index 1, which plays a special role here as %1 has a different form than all other
entries of the reorientation vector, is either contained in λ or µ and depending on that, w.l.o.g.,
we set λ1 = 1 or µ1 = 1. We now want to find some index m not contained in λ. This index m
will be used to substitute %n by phases that we already know.

Start with the case in which there is an index m ∈ {d+ 1, . . . , n− 1}r {λ1, . . . , λd−1}. For
this index it holds true that

%n = %1 ·
ϕ(1, . . . , d)
ϕ(2, . . . , d, n)

= %1 ·
ϕ(1, . . . , d)
ϕ(2, . . . , d, n) ·

ϕ(2, . . . , d,m)
ϕ(2, . . . , d,m)

= %m ·
ϕ(2, . . . , d,m)
ϕ(2, . . . , d, n) (3.6)

Before examining the phirotope values of indices containing n, we first provide a notational

33



3. Reorientation and Chirotopality

shorthand that will make the remainder of the proof more readable.

By ?R we denote any real number (so for example ?R · (−5) = ?R, as multiplying
any real number by (−5) will again yield a real number).

Then:

ϕ%(λ, n) = %λ1 · . . . · %λd−1 · %n · ϕ(λ, n)

= %λ1 · . . . · %λd−1 · %m ·
ϕ(2, . . . , d,m)
ϕ(2, . . . , d, n) · ϕ(λ, n)

= %λ1 · . . . · %λd−1 · %m ·
ϕ(2, . . . , d,m)
ϕ(2, . . . , d, n) · ϕ(λ, n) · ϕ(λ,m)

ϕ(λ,m)

= ?R ·
ϕ(2, . . . , d,m)
ϕ(2, . . . , d, n) ·

ϕ(λ, n)
ϕ(λ,m)

In the last line we used the induction hypothesis. We further rewrite this in terms of λ and µ:

= ?R ·
ϕ(1, λ2, . . . , λr, µ2, . . . , µd−r,m)
ϕ(1, λ2, . . . , λr, µ2, . . . , µd−r, n) ·

ϕ(λ, n)
ϕ(λ,m)

With the Lemma 3.14 we conclude that this is indeed real.
In the case where {d+ 1, . . . , n− 1}r {λ1, . . . , λd−1} = ∅, we choose m ∈ [d] r {λ1, . . . , λr}.

For this index we have

%n = %1 ·
ϕ(1, . . . , d)
ϕ(2, . . . , d, n)

= %1 ·
ϕ(1, . . . , d)
ϕ(2, . . . , d, n) ·

ϕ(1, . . . , m̂, . . . , d+ 1)
ϕ(1, . . . , m̂, . . . , d+ 1) ·

ϕ(2, . . . , d+ 1)
ϕ(2, . . . , d+ 1)

= %m ·
ϕ(1, . . . , d)
ϕ(2, . . . , d, n) ·

ϕ(2, . . . , d+ 1)
ϕ(1, . . . , m̂, . . . , d+ 1) (3.7)

We use (3.7) and the induction hypothesis to examine ϕ%(λ, n):

ϕ%(λ, n) = %λ1 · . . . · %λd−1 · %n · ϕ(λ, n)

= ?R ·
ϕ(1, . . . , d)
ϕ(2, . . . , d, n) ·

ϕ(2, . . . , d+ 1)
ϕ(1, . . . , m̂, . . . , d+ 1) ·

ϕ(λ, n)
ϕ(λ,m)

With F = {2, . . . , m̂, . . . , d} we obtain:

. . . = ?R ·
ϕ(λ, n)
ϕ(λ,m) ·

ϕ(2, . . . , d+ 1)
ϕ(2, . . . , m̂, . . . , d+ 1, n) ·

ϕ(1, . . . , d) · ϕ(2, . . . , m̂, . . . , d+ 1, n)
ϕ(1, . . . , m̂, . . . , d+ 1) · ϕ(2, . . . , d, n)

= ?R ·
ϕ(λ, n)
ϕ(λ,m) ·

ϕ(2, . . . , d+ 1)
ϕ(2, . . . , m̂, . . . , d+ 1, n) · crϕ (1, n |m, d+ 1)F

= ?R ·
ϕ(λ, n)
ϕ(λ,m) ·

ϕ(2, . . . , d+ 1)
ϕ(2, . . . , m̂, . . . , d+ 1, n)
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Finally, we use the Lemma 3.14 again to show that the term is real.

The next two Lemmas 3.16 and 3.17 will help in the subsequent proofs. The Lemma 3.16 is an
extension of the Lemma 3.2, part 2, to higher ranks.

Lemma 3.16 (Cross ratios are determined by cross ratio phases)
Let ϕ be a uniform rank-d phirotope on E and F ⊂ E , |F | = d − 2. If crϕ (a, b | c, d)F 6∈ R,
then cr(A,B|C,D)G is determined by ϕ for all realisations of ϕ, where a, b, c, d are realised
by A, B, C, and D, respectively and the indices in F are realised by the points of a set
G ⊂ Cd.

Proof. From phirotope axiom (ϕ2), we know that there are r1, r2, r3 ∈ R+ such that

r1 · ϕ(F, a, b)ϕ(F, c, d)− r2 · ϕ(F, a, c)ϕ(F, b, d) + r3 · ϕ(F, a, d)ϕ(F, b, c) = 0

As ϕ is uniform, dividing by r3 · ϕ(F, a, d)ϕ(F, b, c) and setting r̃1 = r1
r3

and r̃2 = r2
r3

yields

−r̃1crϕ (a, c | b, d)F − r̃2crϕ (a, b | c, d)F + 1 = 0 (3.8)

Thus, from crϕ (a, c | b, d)F 6∈ R+ it follows that crϕ (a, b | c, d)F 6∈ R+. With this, the real and
imaginary part of Equation (3.8) each give rise to one real equation determining constraints on
the r̃1, r̃2. The equations are independent and, thus, they have a unique solution. As it holds
true that the phases of cross ratios are the cross ratios of phases, we know that

crϕ (a, c | b, d)F =
cr(A,C|B,D)G
|cr(A,C|B,D)G|

and (3.9)

crϕ (a, b | c, d)F =
cr(A,B|C,D)G
|cr(A,B|C,D)G|

. (3.10)

Thus, r̃1 = |cr(A,C|B,D)| and r̃2 = |cr(A,B|C,D)| is the solution to Equation (3.8). With the
help of (3.10), we can now reconstruct cr(A,B|C,D)G.

We will carry out the reconstruction of the cross ratio in detail in the Section 5.1. A useful
property of chirotopality is given by the next lemma.
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Lemma 3.17 (Duality preserves chirotopality)
A phirotope is chirotopal if and only if its dual is chirotopal.

Proof. Let ϕ be a rank-d phirotope on E = [n]. Its dual is the rank-(n − d) phirotope ϕ∗ on
E . Let a, b, c, d ∈ E and F ⊂ E r {a, b, c, d}, |F | = (n − d) − 2. Furthermore, let F ∗ be the
(d− 2)-element subset of E given by F ∗ := E r (F ∪ {a, b, c, d}). Consider the cross ratio phase

crϕ∗ (a, b | c, d)F = ϕ∗(a, c, F ) · ϕ∗(b, d, F )
ϕ∗(a, d, F ) · ϕ∗(b, c, F ) = ϕ(b, d, F ∗) · ϕ(a, c, F ∗)

ϕ(b, c, F ∗) · ϕ(a, d, F ∗) = crϕ (a, b | c, d)F ∗ .

As each cross ratio phase of ϕ∗ translates to a cross ratio phase of ϕ and vice versa, the claim is
proven.

3.2. Phirotopes with zeros

The term “non-uniform” sometimes refers to the general case in which no assumptions are made
on the uniformity of a phirotope. This especially includes the uniform case. As we have already
dealt with the uniform case, we want to examine phirotopes with at least one zero in their images.
We will then talk about phirotopes that are “not uniform” and make it very clear at every one of
those points that we mean phirotopes with at least one zero in their images.
This is the first time that we encounter phirotopes with zeros in their images. Therefore, we

start by explaining some basic properties and definitions.

Fundamentals

Depending on the constellation of the zeros in the image of the phirotope, there are different
implications for the realisation.

Example 3.18 Consider the phirotope ϕ : {a, b, c}2 → S1 ∪ {0} with

ϕ(a, b) = 0, ϕ(b, c) = 0, ϕ(a, c) = i.

If there were vectors A, B, C realising ϕ, then the affine representatives of A and B would
have to be linearly dependent, due to ϕ(a, b) = 0. This means that the affine representatives
are either the same or one of them is the zero vector. The same holds true for the affine
representatives of B and C. But ϕ(a, c) 6= 0 and therefore the affine representatives of A and
C must not be equal. The only way this can be realised is by setting B =

(
0, 0

)T
.

In this example, the index b is called a “loop”, a term that is borrowed from matroid theory,
where it refers to the same thing.
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3.2. Phirotopes with zeros

Definition 3.19 (Loop)
Let ϕ be a rank-d phirotope on E . An index ` ∈ E is called loop, if for all λ ∈ Λ(E , d− 1) it
holds true that

ϕ(λ, `) = 0.

A loop is an element ` such that its realisation P` is linearly dependent. Thus, P` has to be the
zero vector. This leads to the following corollary:

Corollary 3.20 (Loops prohibit realisability in projective space)
If a phirotope contains a loop, it has no realisation in projective space.

In Section 2.1, we stated that the realisation of a uniform rank-d phirotope is a subset of the
complex oriented projective space (Cd r {0})/R+. The reason was that multiplying an element
with a positive real scalar does not change the phirotope. This is still true for elements of uniform
phirotopes. Nevertheless, loops have to be realised as the zero vector. Thus, we will understand
the realisations of non-uniform rank-d phirotopes to lie in the space Cd/R+, which is the natural
extension of the Definition 2.16 to higher dimensions. This is no projective space. But working
over this space makes loops easy to handle:

Lemma 3.21
Let ϕ be a phirotope on E and let ` ∈ E be a loop of ϕ. Then ϕ is realisable, if and only if
ϕ\{`} is realisable.

Proof. Let ϕ be realisable. Then Lemma 3.10 guarantees that ϕ\{`} is also realisable.
Let ϕ\{`} be realisable and (P1, . . . , P|E|−1) be a realisation of ϕ\{`}. Then, the vector configuration
(0, P1, . . . , P|E|−1) is a realisation of ϕ, where the zero vector realises the index `.

There are other constellations of zeros in the images of non-uniform phirotopes.

Example 3.22 Consider the phirotope ϕ : {a, b, c}2 → S1 ∪ {0} with

ϕ(a, b) = 0, ϕ(b, c) = 1, ϕ(a, c) = i.

There is no loop in this phirotope and thus the affine representatives of A and B realising a
and b, respectively, have to be the same.

The consequence that the affine representatives of A and B in Example 3.22 need to be equal
arises from them forming something that is referred to as a “parallel element”. This term is also
borrowed from matroid theory.
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Definition 3.23 (Parallel element)
Let ϕ be a rank-d phirotope on E . A pair of indices {a, b} ⊂ E is called parallel element, if
neither a nor b is a loop and for all λ ∈ Λ(E r {a, b}, d− 2) it holds true that

ϕ(a, b, λ) = 0.

If the phirotope at hand is realisable, parallel elements of this phirotope will be realised with the
same affine representatives. The only other possibility of realising them would be to have them
lie on a common subspace of rank less than d with every other (d− 2)-element subset of points.
But this would mean that there was a subspace of rank less than d that contained all points
and thus ϕ ≡ 0. Also, note that in rank 2 the sequence λ is the empty sequence and any pair of
indices mapped to zero forms a parallel element.
Loops, parallel elements, and non-bases in general make the realisations of phirotopes even

more rigid. While in the uniform case we were able to choose the first d + 1 points of the
realisation of a realisable phirotope freely (cf. Lemma 2.11), this is no longer true for phirotopes
containing parallel elements. The following example will illustrate this.

Example 3.24 Consider a rank-3 phirotope on {a, b, c, d} where a and b form a parallel
pair. W.l.o.g., the affine representatives pA, pB, pC , pD of the points of a realisation of the
phirotope have coordinates

pA =


1
0
0

 , pB =


1
0
0

 , pC =


0
1
0

 , pD =


0
0
1


Choosing the affine representatives for all four points in general position will not yield a
realisation of the phirotope, as pA and pB need to be the same.

In most of our theorems regarding the realisability of phirotopes that contain zeros in their
images, we will exclude configurations that are “too degenerate”, like the one in Example 3.24.
To this end, we will postulate an analogon of the axiom for projective spaces that requires that in
every projective space of rank d there have to be at least d+ 1 points in general position (cf. for
example [RG11, Definition 2.1]). The term “near-pencil” is again borrowed from matroid theory.

Definition 3.25 (Near-pencil)
A rank-d point configuration of n distinct points is called a near-pencil, if all but one point lie
on a common hyperplane.
A rank-d phirotope is called a near-pencil, if every minor on d + 1 indices is not uniform
(contains at least one zero in its image).
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3.2. Phirotopes with zeros

Excluding near-pencils, we can reformulate the Lemma 2.11, which allowed us to choose the first
d+ 1 affine representatives of a realisation freely, as follows.

Lemma 3.26 (Freedom of choice of the first d+ 1 affine representatives in a non-uniform
setting)
Let ϕ be a realisable rank-d phirotope on [n], n > d, that is not a near-pencil. Let the
restriction ϕ|[d+1] be uniform. For any choice of affine representatives p1, . . . , pd+1 ∈ Cd−1 in
general position there is a realisation V = (P1, . . . Pd+1, Pd+2, . . . , Pn) of ϕ such that

Pk = rkωk

pk
1


where rk ∈ R+ and ωk ∈ S1 for all k ∈ [d+ 1] .

Proof of Lemma 3.26. Let (Q1, . . . , Qn) be a realisation of ϕ. As in the proof of [BKR03, Lemma
2.3], we will construct a projective transformationM that leaves ϕ invariant and maps Q1, . . . Qd+1

to P1, . . . , Pd+1. The systemMQk = Pk for all k ∈ [d+1] gives rise to d·(d+1) linear equations in
the d2 entries of the matrixM and the d+1 unknowns (rk ·ωk) ∈ C. The points Q1, . . . , Qd are in
general position, thus the linear equations are linearly independent and det(M) 6= 0. A complex
projective transformation in rank d is fixed by d + 1 pairs of points and their corresponding
images. It is also possible to choose the matrix for the transformation out of SL(d,C). This
choice will leave the phirotope unchanged.

Note that in rank 2, a phirotope is a near-pencil, if and only if in all realisations every point
coincides with one of two points. This case is relatively straightforward. In higher ranks, however,
the situation becomes more complicated and excluding near-pencils in theorems guarantees that
there is a projective basis that can be used as the starting point for constructing realisations.
These constructions are often done by carefully moving from one basis to the next one. Basis
graphs are a tool that assists in determining which basis should be considered next.
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Basis Graphs

For a uniform rank-d phirotope, any d-tuple of indices that does not contain an index twice is a
basis. If the phirotope is not uniform, however, this is not the case. The following sections are
therefore dedicated to the study of bases in general and to “basis graphs”. A definition of basis
graphs can for example be found in the work of Maurer, who has worked extensively on matroid
basis graphs (cf. [Mau73a] and [Mau73b]).

Definition 3.27 (Basis graphs of phirotopes)
The basis graph G of a phirotope ϕ is the graph whose vertices are the bases of ϕ and in
which two vertices are adjacent, if and only if the bases of these vertices differ on exactly one
index.

Example 3.28 Consider the rank-2 phirotope on E = {a, b, c, d, e} in which a is a loop and
b and c are parallel elements. Apart from these exceptions, all pairs shall be mapped to a
non-zero value. Thus, the basis graph of the phirotope looks as follows:

ϕ(b, d)

ϕ(b, e)

ϕ(c, d) ϕ(c, e)

ϕ(d, e)

Note that as a is a loop, the index does not occur in any base and thus in no vertex of the
basis graph.

We will mostly use basis graphs to keep track of our bases at hand and to find quadruples
of phirotope values that form cross ratio phases. For further information on basis graphs of
matroids we refer the reader to the work of Holzmann and Harary (who showed that for every
edge in a basis graph there is one Hamiltonian path containing the edge and one Hamiltonian
path not containing the edge [HH72]), Holzmann et al. (who proved that two matroids are
equivalent, if and only if their basis graphs are isomorphic [HNT73]), and Liu (who gave bounds
for the connectivity of basis graphs [Liu88]) to name just a few.

If the induced subgraph of four vertices in a graph is a cycle containing all four
points, we will call this an empty quadrilateral.
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3.2. Phirotopes with zeros

F ∪ {a, c} F ∪ {b, c}

F ∪ {a, d} F ∪ {c, d}

Figure 3.1.: The subgraph of the basis graph that corresponds to a cross ratio phase is an empty
quadrilateral.

Lemma 3.29 (Cross ratio phases correspond to empty quadrilaterals)
Consider the basis graph of a phirotope ϕ. The induced subgraph of four vertices in the basis
graph is an empty quadrilateral, if and only if the phirotope values corresponding to the
vertices form a cross ratio phase of bases.

Proof. Let ϕ be a rank-d phirotope on E . The structure of cross ratio phases makes it clear that
every cross ratio phase of bases of ϕ corresponds to an empty quadrilateral in the basis graph.
Now, consider an empty quadrilateral in the basis graph. W.l.o.g., let two of its adjacent

vertices be labelled with the bases F ∪ {a, c} and F ∪ {b, c}, where F ⊂ E , |F | = d − 2. The
second vertex adjacent to F ∪ {a, c} is not adjacent to F ∪ {b, c} and, thus, it is w.l.o.g. labelled
with F ∪ {a, d}. The last vertex in the quadrilateral is adjacent to both F ∪ {a, d} and F ∪ {b, c}
and may therefore carry one of the following labels:

F ∪ {a, b}, F ∪ {a, c}, F ∪ {c, d}, F ∪ {b, d}.

As the first three would also be adjacent to F ∪{a, c} or even coincide with it, the label necessarily
is F ∪ {b, d}. This completes the cross ratio phase crϕ (a, c | b, c)F . The Figure 3.1 illustrates
this.

The next lemma, which we adapted to phirotopes, was devised and proved by Brualdi [Bru69,
Theorem 2].

Lemma 3.30 (Exchange of elements in bases)
If B1 and B2 are bases of a phirotope and e ∈ B1 r B2, then there is an f ∈ B2 r B1 such
that both

(B1 r {e}) ∪ {f} and (B2 r {f}) ∪ {e}

are bases of this phirotope.

The proof in which we are going to use basis graphs is the one of the following lemma,
which characterises chirotopality for phirotopes that are not uniform. This characterisation of
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chirotopality will be crucial in the analysis of realisability of phirotopes that contain zeros in
their images.

Theorem 3.31 (Chirotopality of not uniform phirotopes in rank d)
Let ϕ be a rank-d phirotope on E = [n] with d ≥ 2 and n ≥ d+ 2 that is not a near-pencil and
has at least one zero in its image. Let M be the set of all quintuples (F, a, b, c, d) with F ⊂ E
and a, b, c, d ∈ E such that |F | = d− 2 and none of the following phirotope values is zero:

ϕ(a, c, F ), ϕ(a, d, F ), ϕ(b, c, F ), ϕ(b, d, F ).

There is a phase vector % ∈ (S1)n such that the reorientation ϕ% is a chirotope, if and only if
it holds true that

crϕ (a, b | c, d)F ∈ R ∀(F, a, b, c, d) ∈M.

Moreover, rank-d phirotopes with n = d or n = d+ 1 always allow such a reorientation.

The proof of the corresponding Lemma 3.13 in the uniform case was already quite technical. If
the phirotope may now have zeros in its image, the situation becomes even more complicated and,
thus, the next proof will be even more involved. In the proof of the Lemma 3.13 the reorientation
vector provides fractions of phirotope values that yield chains of cross ratios. The main difficulty
we have to overcome here is that these fractions might contain zeros. Therefore, we need to find
a way to move step by step and without encountering zeros from one cross ratio to the next.
This is done with the help of basis graphs.

To simplify the proof, we provide the following definition:

Definition 3.32 (Hyperplane)
Let ϕ be a rank-d phirotope on E . A set of indices F ⊂ E is called a hyperplane, if the maximal
ϕ-independent subset of F contains exactly d− 1 elements.

Proof of Theorem 3.31. If the phirotope contains a loop, the corresponding element of the
reorientation vector can be arbitrary. It does not have consequences for the chirotopality of the
phirotope. We will therefore assume that the phirotope does not contain loops.

The “only if” part of the proof is trivial for any rank. The other direction will be carried out
in more detail.

Firstly, note that phirotopes on d indices are always uniform and chirotopal according to the
Lemma 3.13.
In the case of E = [d+ 1], there is at least one d-tuple that is not mapped to zero. W.l.o.g., let
ϕ(λ\1) 6= 0 with λ = (1, . . . , d + 1). Let ϑ be the product of all non-zero phirotope values in
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3.2. Phirotopes with zeros

ϕ(λ\1) ϕ(λ\2)

ϕ(λ\3)

ϕ(λ\4)

ϕ(λ\d+1)

Figure 3.2.: Here, λ = (1, . . . , d+1). As ϕ|[d+1] is uniform, the basis graph of ϕ|[d+1] is a complete
graph.

{ϕ(λ\2), . . . , ϕ(λ\d+1)}:

ϑ :=
∏

i∈{2,...,d+1}:
ϕ(λ\i)6=0

ϕ(λ\i).

As straightforward calculations show, using the reorientation vector % given as follows will yield
a chirotope ϕ%:

%1 = d

√
ϕ(λ\1)d−1

ϑ
,

%i =


%1 ·

ϕ(λ\i)
ϕ(λ\1) , if ϕ(λ\i) 6= 0,

%1 ·
1

ϕ(λ\1) , else,
for all i ∈ [d+ 1] r {1}.

Proving the claim for |E| ≥ d+2 works by induction on |E|. Start with the base case |E| = d+2.
As we required that the phirotope is not a near-pencil, there is a minor on d+ 1 indices that
is uniform. This minor will serve as a projective basis throughout the rest of this proof. Let
the indices of the minor be named 1, . . . , d+ 1. The basis graph of the minor is depicted in
Figure 3.2. All cross ratio phases are real by assumption and, thus, the minor ϕ|{1,...,d+1} is
chirotopal. From now on, we assume that the phirotope is reoriented in a way that all phirotope
values of ϕ|{1,...,d+1} are real. Thus, assume that %1 = . . . = %d+1 = 1. This saves us from
carrying the reorientations of these indices through all calculations to come.

The reorientation of the next index (d+ 2) is determined by one basis of the phirotope that
contains d+ 2. Such a basis exists because d+ 2 is not a loop. W.l.o.g., let this basis be given by
{1, . . . , d− 1, d+ 2}. In Figure 3.3, the vertex {1, . . . , d− 1, d+ 2} is added to the basis graph.
The reorientation %d+2 of d+ 2 is then given by

%d+2 = ± 1
ϕ(1, . . . , d− 1, d+ 2)
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Ba

sis
graph

of ϕ|[d+1]

ϕ/A(d− 1, d+ 2)

ϕ/A(d− 1, d+ 1)
ϕ/A(d− 1, d)

Figure 3.3.: In this figure (and in the proof) A = {1, . . . , d − 2}. The first basis that is not
contained in the basis graph of ϕ|[d+1] is connected with some nodes of this basis
graph.

because
ϕ%(1, . . . , d− 1, d+ 2) = %d+2 · ϕ(1, . . . , d− 1, d+ 2) = ±1.

Choosing a minus over a plus (or the other way around) only changes the sign of the value 1 but
has no effect on the chirotopality.

We need to show that all other values of the reoriented phirotope that contain the index d+ 2
are also real. To make the remainder of this proof more readable, from here on we refer to the
reoriented phirotope ϕ% by ϕ.

Firstly, consider any basis {λ, d+2} of ϕ with λ ∈ Λ([d+1], d−1) such that the bases {λ, d+2}
and {1, . . . , d − 1, d + 2} differ by one element. W.l.o.g., let {1, . . . , d − 2, d, d + 2} be such a
basis. To see that ϕ(1, . . . , d− 2, d, d+ 2) is real, we consider the cross ratio phase

crϕ (d− 1, d | d+ 2, d+ 1)A =
ϕ/A(d− 1, d+ 2) · ϕ/A(d, d+ 1)
ϕ/A(d− 1, d+ 1) · ϕ/A(d, d+ 2)

where A = {1, . . . , d − 2}. Note that reorientation does not change the value of the cross
ratio phase, which real by assumption. As ϕ/A(d − 1, d + 2) ∈ Rr0, ϕ/A(d, d + 1) ∈ Rr0, and
ϕ/A(d− 1, d+ 1) ∈ Rr0, it follows that ϕ/A(d, d+ 2) ∈ Rr0. The situation in the basis graph is
depicted in Figure 3.4.

Basis graph of ϕ|[d+1]

ϕ/A(d− 1, d+ 2)

ϕ/A(d, d+ 1)

ϕ/A(d− 1, d+ 1)

ϕ/A(d, d+ 2)

Figure 3.4.: The empty quadrilateral corresponds to crϕ (d− 1, d | d+ 2, d+ 1)A. The vertex
ϕ/A(d− 1, d+ 2) that was used to determine the reorientation of the index d+ 2 is
highlighted.

44



3.2. Phirotopes with zeros

Basis graph of ϕ|[d+1]

ϕ/B(d− 2, d+ 2)

ϕ/B(d+ 1, d+ 2)

ϕ/B(d− 1, d+ 1)
ϕ/B(d− 2, d− 1)

Figure 3.5.: In this figure (and in the proof) B = {1, . . . , d− 3, d}. Consider the two cross ratio
phases crϕ (d+ 1, d− 2 | d+ 2, d− 1)B and crϕ (d+ 1, d− 1 | d+ 2, d− 2)B. Both of
them correspond to the empty quadrilateral.

Basis graph of ϕ|[d+1]

ϕ/A(d− 1, d+ 2)

ϕ/A(d, d+ 1)

ϕ/A(d− 1, d+ 1)

ϕ/A(d, d + 2) =
ϕ/B(d− 2, d+ 2)

ϕ/B(d+ 1, d+ 2)

ϕ/B(d− 1, d+ 1)
ϕ/B(d− 2, d− 1)

Figure 3.6.: Part of the basis graph of ϕ. The two black empty quadrilaterals correspond to the
cross ratio phases used in the proof. Note that the vertex ϕ/A(d, d+ 2) is used in
both cross ratio phases.

Secondly, consider any basis {λ, d + 2} of ϕ with λ ∈ Λ([d + 1], d − 1) such that the bases
{λ, d+2} and {1, . . . , d−1, d+2} differ by two elements. W.l.o.g., let {1, . . . , d−3, d, d+1, d+2}
be such a basis. By applying the Lemma 3.30 to the two bases {1, . . . , d−1, d+2} and {1, . . . , d−
3, d, d+ 1, d+ 2} to exchange the index d+ 1, we obtain that either {1, . . . , d−3, d−2, d, d+ 2} or
{1, . . . , d− 3, d− 1, d, d+ 2} is a basis. Both of them have real values in the reoriented phirotope
because they differ from {1, . . . , d− 1, d+ 2} by only one element. Then, the cross ratio phase
crϕ (d+ 1, d− 2 | d+ 2, d− 1)B or the cross ratio phase crϕ (d+ 1, d− 1 | d+ 2, d− 2)B (both
with B = {1, . . . , d− 3, d}) will yield the conclusion. This is depicted in the Figure 3.5 and in
the Figure 3.6 the complete subgraph induced by all vertices used in the proof is shown.

The induction step works similarly. Again, we look for empty quadrilaterals in the basis graph
that share a vertex:

Assume that we are given a phirotope ϕ and a reorientation vector % such that ϕ%|[k] is a
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chirotope. For the sake of convenience, we again consider ϕ to be the reoriented phirotope. Thus,
%1 = · · · = %k = 1. W.l.o.g., let again ϕ|[d+1] be uniform. The reorientation of the next index
(w.l.o.g. k + 2) is determined by one basis of the phirotope that only contains k + 2 and indices
in [d+ 1]. Such a basis exists because k + 2 is not a loop and, thus, there is a basis containing
k+ 2. According to the Lemma 3.30 we can then find a basis containing only the index k+ 2 and
elements from [d+ 1]. W.l.o.g., let this basis be given by {1, . . . , d− 1, k + 2}. The reorientation
%k+2 of k + 2 is then given by

%k+2 = ± 1
ϕ(1, . . . , d− 1, k + 2) .

It is left to show that all other phirotope values containing the index k+2 are now also real. We
will do this with the help of an induction on the number of indices by which the bases containing
k + 2 differ from the basis {1, . . . , d− 1, k + 2}. For the base case, consider any basis that differs
from {1, . . . , d − 1, k + 2} on one index. W.l.o.g., let {1, . . . , d − 2, x, k + 2} be such a basis.
Consider the contraction ϕ/A with A = {1, . . . , d− 2}. Note that (ϕ/A)|[d+1] is a uniform rank-2
phirotope on the indices d − 1, d, d + 1 and, thus, it is no near-pencil. Furthermore, it holds
true that ϕ(1, . . . , d− 1, k + 2) 6= 0 and, thus, ϕ/A(d− 1, k + 2) 6= 0. We need to find some index
y ∈ {d, d+ 1} such that both {1, . . . , d− 1, y} and {1, . . . , d− 2, x, y} are bases of ϕ. In different
words, we are looking for an index y such that ϕ/A(d− 1, y) 6= 0 and ϕ/A(x, y) 6= 0. As ϕ/A is no
near-pencil, there are at least two hyperplanes containing all points. In this situation, the index
k + 2 lies on one hyperplane and the index d − 1 and x on the other one. As k + 2 6∈ [d + 1],
there is an index y ∈ {d, d+ 1} on the same hyperplane as k + 2. With this index y, we obtain
ϕ/A(d− 1, y) 6= 0 and ϕ/A(x, y) 6= 0. Then,

ϕ%/A(d− 1, k + 2) · ϕ%/A(x, y)
ϕ%/A(d− 1, y) · ϕ%/A(x, k + 2) ,

which is real by assumption, apart from ϕ%/A(x, k + 2) contains only real values and, thus,
ϕ%/A(x, k + 2) is real as well.

For the induction step, assume that all bases of ϕ that contain the index d+ 2 and differ from
{1, . . . , d− 1, k + 2} by m indices yield a real value in the reoriented phirotope. For every basis
containing d + 2 and differing from {1, . . . , d − 1, k + 2} by m + 1 indices, we need to find a
cross ratio phase that guarantees that the reoriented phirotope is real on this basis. W.l.o.g.,
consider the basis {1, . . . , d−m− 2, z1, . . . , zm+1, k + 2} with zi 6∈ [d+ 1]. This especially means
that the set {1, . . . , d −m − 2, z1, . . . , zm+1} is ϕ-independent. Applying the Lemma 3.30 to
{1, . . . , d − m − 2, z1, . . . , zm+1, k + 2} and {1, . . . , d} on the index zm+1 provides us with an
index a ∈ {d −m − 1, . . . , d} such that {1, . . . , d −m − 2, a, z1, . . . , zm, k + 2} is a basis of the
phirotope. By induction hypothesis, the value of the reoriented phirotope on this basis is real.
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For B = {1, . . . , d −m − 2, z1, . . . zm} consider the contraction ϕ/B. We want to find a cross
ratio phase (not containing a zero) that contains ϕ/B(zm+1, k + 2) and ϕ/B(a, k + 2). For this,
we need an index y ∈ {d−m− 1, . . . , d+ 1} such that ϕ/B(zm+1, y) 6= 0 and ϕ/B(a, y) 6= 0.

Since both {1, . . . , d − m − 2, z1, . . . , zm+1} and [d + 1] are ϕ-independent, the number of
possible assignments for the index y is at least

|{d−m− 1, . . . , d+ 1}| − |{z1, . . . , zm}| = 3.

The cross ratio phase crϕ% (zm+1, a | k + 2, y)B is real by assumption and this guarantees that
ϕ%/B(zm+1, k + 2) is real as well. This concludes the induction on m as well as the induction on
k.

Note that if the phirotope is uniform, the characterisation of chirotopality given in the
Theorem 3.31 reduces to the one of the uniform case given in the Lemma 3.13.

Now that we have established the notion of chirotopality for uniform and non-uniform phirotopes
of arbitrary rank, we can use the characterisations in our analysis of the realisability problem.
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In general, deciding the realisability of real oriented matroids is NP-hard. The proof of this
statement relies on Mnëv’s Universality Theorem (cf. [Mnë88] as well as [RG95]). The proof of
the Universality Theorem provides a polynomial reduction of the realisability problem of oriented
matroids to the existential theory of the reals (cf. [BLSWZ93, Chapter 8.6] for the result and a
sketch of the proof). The NP-hardness is also shown directly in [Sho91]. However, for chirotopes
with relatively few elements there are some general results regarding realisability. The following
lemma is an only slightly modified version of the Corollary 8.3.3 from [BLSWZ93].

Lemma 4.1 (Realisability of chirotopes)
All chirotopes χ of rank d on E are realisable, if and only if

• d ≤ 2,

• d = 3, and |E| ≤ 8,

• d = 4, and |E| ≤ 7,

• d = 5, and |E| ≤ 8, or

• d ≥ 6, and |E| ≤ d+ 2.

In all other cases, there exist non-realisable uniform chirotopes.

The situation for non-chirotopal phirotopes is substantially different. We will start this chapter
by analysing the realisability problem for uniform phirotopes and later turn to the more technical
non-uniform case.

4.1. Uniform Phirotopes

Realisability for complex matroids has been studied in [BKR03] and in [Tro13]. In [BKR03],
only uniform rank-2 phirotopes where examined. In [Tro13], the realisability of uniform rank-3
phirotopes was analysed. The following subsection basically reviews what is already known for
the realisability of complex matroids in rank 2. It also introduces some basic concepts. The
subsequent sections will then extend the realisability to higher ranks and non-uniform phirotopes.

49



4. Realisability and Rigidity

Rank 2

The following results (summed up in the Lemmas 4.2 and 4.3) regarding the realisability of
non-chirotopal phirotopes were published and proven in [BKR03].

Lemma 4.2 (Realisability and rigidity of small uniform rank-2 phirotopes)
Uniform rank-2 phirotopes on three or four points are always realisable.
Moreover, if the realisation of the first three points of a realisable, non-chirotopal phirotope is
known, then the fourth point is determined as well.

We adapt and extend the notation of [BKR03] for squared phases

JλK := ϕ(λ)2

JλK/A :=
(
ϕ/A(λ)

)2
Lemma 4.3 (Realisability of large uniform rank-2 phirotopes)
Let ϕ be a non-chirotopal uniform rank-2 phirotope on E = [n] with n ≥ 5. It is realisable, if
and only if for each subset {a, b, c, d, e} ⊂ E the following is true:

∑
π∈S4(a,b,c,d)
π(a)<π(d)

sign(π)Jπ(a), π(b)KJπ(b), π(c)KJπ(c), π(d)KJπ(d), eKJe, π(a)K = 0.

This algebraic relation is called the five-point condition in rank 2. The realisation is then
unique up to Möbius transformations with real determinant.

Note that according to the Lemma 4.1, all rank-2 chirotopes are realisable. They trivially satisfy
the five-point condition (all squared chirotopes values are equal to 1). But their realisations are
not unique. In contrast, the realisations of non-chirotopal phirotopes are rigid and it is easy to
decide whether they exist. This is in stark contrast to chirotopes where each point of a realisation
can be moved within the cell bounded by the lines spanned respectively by two other points of
the realisation. This movement will not alter the chirotope. Also, as said before, deciding the
realisability of chirotopes is NP-hard.
Examples of realisable uniform phirotopes can easily be constructed by starting with a

realisation and then computing the corresponding phirotope. An example of a non-realisable
phirotope is given in the Appendix A.
The five-point condition gives cause to several investigations. Its structure, for example, is

worth a closer inspection. In the way it is depicted in the Lemma 4.3, the five-point condition
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Figure 4.1.: All Hamilton cycles that correspond to the permutations considered in the five-point
condition. The sign of the permutation is −1, if and only if the number of crossings
in the Hamilton cycle is odd.

contains twelve summands, each of which consists of five squared phirotope values:

+ Ja, bKJb, cKJc, dKJd, eKJe, aK− Ja, bKJb, dKJd, cKJc, eKJe, aK

− Ja, cKJc, bKJb, dKJd, eKJe, aK + Ja, cKJc, dKJd, bKJb, eKJe, aK

+ Ja, dKJd, bKJb, cKJc, eKJe, aK− Ja, dKJd, cKJc, bKJb, eKJe, aK

− Jb, aKJa, cKJc, dKJd, eKJe, bK + Jb, aKJa, dKJd, cKJc, eKJe, bK

+ Jb, cKJc, aKJa, dKJd, eKJe, bK + Jc, aKJa, bKJb, dKJd, eKJe, cK

− Jc, aKJa, dKJd, bKJb, eKJe, cK− Jc, bKJb, aKJa, dKJd, eKJe, cK = 0. (4.1)

This is an already condensed version of the five-point condition. The statement of the
Lemma 4.3 still holds true, if we sum over all permutations (not only those where π(a) < π(d))
and permute the index e as well. Thus, we can also sum over all permutations in S5(a, b, c, d, e).
However, there will then be several terms that cancel or are identical.

As suggested by Richter-Gebert, the structure of the five-point condition can be illustrated by
a Hamilton cycle in the complete graph on five vertices K5 [RG14]. Each permutation stands for
another Hamilton cycle. The order in which the indices appear in the summands of the five-point
condition determines the cycle. The restrictions made on the permutations (not permuting the
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4. Realisability and Rigidity

index e and having π(a) < π(d)) correspond to fixing one point as the starting point of the
Hamilton cycle and considering only one of the two directions of traversing the cycle. The latter
allows us to consider only undirected cycles. In the Figure 4.1, all Hamilton cycles corresponding
to summands of the condensed five-point condition are illustrated. The parity of the number of
crossings in these cycles indicates the sign of the permutation.1

Some further examinations of the structure of the five-point condition are carried out in the
Section 4.3. For a rank-2 phirotope on n elements, we have

(n
5
)
sums of which we have to check

if they are equal to zero. We will show that there are redundancies and we do not have to check
all of them.
In the Section 4.2, we will see how the five-point condition can be extended to non-uniform

phirotopes. And in the following section, we will examine what this formula looks like for uniform
phirotopes in higher ranks.

Higher Ranks

The last subsection gave a method for checking the realisability of uniform rank-2 phirotopes.
Often, we are dealing with phirotopes of higher rank. Their realisability will be examined in this
section.
A first result regarding realisability follows from the Lemma 2.11, which states that the first

d+ 1 points of a realisation of a phirotope can be chosen freely.

Corollary 4.4 (Realisability of small uniform rank-d phirotopes)
Every uniform rank-d phirotope on d or d+ 1 indices is realisable.

After the first d+ 1 points are chosen in general position, however, the rest of the realisation is
determined. This rigidity is already known from the rank-2 case.

Lemma 4.5
Let ϕ be a uniform rank-d phirotope on E and F ⊂ E , |F | = d − 2. For five indices a,
b, c, d, e ∈ E r F , consider the set of cross ratio phases {crϕ (a, b | c, d)F , crϕ (a, b | c, e)F ,
crϕ (a, b | d, e)F , crϕ (a, c | d, e)F , crϕ (b, c | d, e)F }. It either contains no real value, one real
value, or only real values.

1One can easily check that the sign of the permutations can be read off the number of crossings. We were,
however, unable to find a theorem that would guarantee a similar statement for permutations of the Sn and
Hamilton cycles on Kn for further values of n. We know that the statement can only be true for n ≡ 1 mod 4:
If n is even, then cyclic permutations can lead to a change of sign (but the number of crossings in the Hamilton
path will not change) and if n ≡ 3 mod 4, then reversing the string in the second row in Cauchy’s two line
notation will also change the sign (but the cycles will only be traversed in the other direction which does not
have any effect on the number of crossings).
Conjecture. For n ≡ 1 mod 4, the parity of the number of crossings in the graphs generate as described
above equals the parity of the corresponding permutations in the Sn.
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Proof. To show this, assume that two cross ratio phases are real, w.l.o.g. crϕ (a, b | c, d)F ∈ R
and crϕ (a, b | c, e)F ∈ R. Then also crϕ (a, b | d, e)F ∈ R, as

crϕ (a, b | d, e)F = crϕ (a, b | c, e)F
crϕ (a, b | c, d)F

.

Let F = {f1, . . . , fd−2}. Then, from the non-violation of the Grassmann-Plücker relation
(a, f1, . . . , fd−2 | c, b, d, f1, . . . , fd−2) it follows that

crϕ (a, b | c, d)F ∈ R ⇔ crϕ (a, c | b, d)F ∈ R.

By multiplying cross ratio phases obtained in this way, one can show that all cross ratio phases
on the indices a, b, c, d, and e seen from F are real.

Lemma 4.6 (Rigidity of realisations of phirotopes)
Let ϕ be a realisable non-chirotopal uniform rank-d phirotope on [n] and let the first d+ 1
indices be realised by the points P1, . . . , Pd+1 ∈ (Cd r {0})/R+. This determines the position
and phase of the all further points of the realisation.

Proof. As ϕ is non-chirotopal, there are at least d+2 indices such that their cross ratio phase is not
real. Also, there is a non-real cross ratio phase containing the first d+1 indices because otherwise
we could conclude with the Lemma 4.5 that ϕ is chirotopal. W.l.o.g., let this be the cross ratio
phase crϕ (d− 1, d | d+ 1, d+ 2)[d−1] 6∈ R. We want to determine the affine representative and
the phase of the point P ∈ (Cd r {0})/R+ that realises the index d+ 2. Let G = {P1, . . . , Pd−2}
be the set of the first d− 2 points of the realisation of ϕ. According to the Lemma 3.16, the cross
ratio γ = cr(Pd−1, Pd|Pd+1, P )G is then determined by ϕ. As the realisations Pd−1, Pd, and Pd+1

of the indices d− 1, d, and d+ 1 are known, then because of

[
[Pd−1, Pd+1, G] · Pd − γ · [Pd, Pd+1, G] · Pd−1, P,G

]
= 0

the realisation of P is known up to its phase. The phase of P can then be determined by any
phirotope value of ϕ|[d+2] that contains the index d+ 2.
As crϕ (d− 1, d | d+ 1, d+ 2)[d−1] 6∈ R, according to the Lemma 4.5, w.l.o.g. we obtain that

crϕ (d− 1, d | d+ 1, k)[d−1] 6∈ R for k ∈ {d+ 2, . . . , n}. Thus, all other points K of the realisation
are fixed by the same argument that we used on P .

Theorem 4.7 (Realisability of uniform rank-d phirotopes)
Let ϕ be a uniform non-chirotopal rank-d phirotope on E = [n] with d > 2 and n ≥ d+ 2. It is
realisable, if and only if for all (d+ 2)-element subsets F ⊂ E the restriction ϕ|F is realisable.
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4. Realisability and Rigidity

Proof. It is clear that if ϕ is realisable, then all restrictions are realisable: Use the realisation of
ϕ and omit all points but those corresponding to the indices in F .

The other direction is shown by induction on |E|. To this end, let n = d+ 2. Then F = E and
the statement is trivial. This concludes the base case.

For the induction step, consider ϕ\{n} and any (d+ 2)-element subset F ⊂ E such that n 6∈ F .
It holds true that

(
ϕ\{n}

)
|F is realisable as

(
ϕ\{n}

)
|F = ϕ|F is realisable by assumption. With

the induction hypothesis, it follows that ϕ\{n} is realisable. For the realisation of ϕ\{n} we choose
the first d+ 1 points P1, . . . , Pd+1 freely according to the Lemma 2.11. Their phases are then
determined and the remaining points are fixed according to the Lemma 4.6 to Pd+2, . . . , Pn−1, as
ϕ is non-chirotopal and uniform. As n ≥ d+ 3, we at least fixed one point and especially we fixed
the point Pn−1 that corresponds to the index n− 1. We now examine ϕ\{n−1}. It is realisable
with the same argument we used for the realisability of ϕ\{n}. We choose the phases and affine
representatives of the points corresponding to the first d+ 1 indices exactly as we chose them for
ϕ\{n}, namely P1, . . . , Pd+1. This places all points that were fixed before to the same points as
before, namely to Pd+2, . . . , Pn−2 and additionally fixes Pn, the point corresponding to index n.

The claim is that (P1, . . . , Pn) is a realisation of ϕ. Clearly, we have

• ∀(λ1, . . . , λd) ∈ Λ(E r {n− 1, n}, d):

ϕ(λ1, . . . , λd) = ω (det(Pλ1 , . . . , Pλd
))

• ∀(λ1, . . . , λd−1) ∈ Λ(E r {n− 1, n}, d− 1)

ϕ(λ1, . . . , λd−1, n− 1) = ω
(
det(Pλ1 , . . . , Pλd−1 , Pn−1)

)
• ∀(λ1, . . . , λd−1) ∈ Λ(E r {n− 1, n}, d− 1):

ϕ(λ1, . . . , λd−1, n) = ω
(
det(Pλ1 , . . . , Pλd−1 , Pn)

)
It remains to examine the phirotope values ϕ(λ, n−1, n) for all sequences λ ∈ Λ(Er{n−1, n}, d−2).
To this end, consider the index m1 ∈ E r {n − 1, n}. In the realisation of the deletion ϕ\{m1}

we choose d+ 1 points as they where chosen before and obtain by this the vector configuration
(P1, . . . , P̂m1 , . . . , Pn−1, Pn). This additionally guarantees

• ∀(λ1, . . . , λd−2) ∈ Λ(E r {n− 1, n,m1}, d− 2):

ϕ(λ1, . . . , λd−2, n− 1, n) = ω
(
det(Pλ1 , . . . , Pλd−2 , Pn−1, Pn)

)
.

To examine index sequences containing n− 1, n, and m1, we need to study a further deletion
ϕ\{m2} with m2 6∈ {m,n, n− 1}. And yet another deletion is needed to examine index sequences
containing n− 1, n, m1, m2. In the end, we consider d+ 1 deletions to cover all index sequences.
This concludes the proof.

In the subsequent sections, we will work on an analogon of the five-point condition in rank d.
For this, we will need the following lemma.
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Lemma 4.8 (Realisability of phirotopes on d+ 2 indices)
For d ≥ 3 let ϕ be a non-chirotopal uniform rank-d phirotope on E = [d+ 2]. It is realisable,
if and only if for all a, b, c, d, e ∈ E , |{a, b, c, d, e}| = 5, and with A = E r {a, b, c, d, e} it holds
true that

∑
π∈S4(a,b,c,d)
π(a)<π(d)

(
sign(π) · Jπ(a), π(b), π(c)K/A · Jπ(b), π(c), π(d)K/A·

Jπ(c), π(d), eK/A · Jπ(d), e, π(a)K/A · Je, π(a), π(b)K/A
)

= 0.

This algebraic relation is called the five-point condition in rank d.

Proof. The phirotope ϕ is realisable, if and only if its dual ϕ∗ is realisable, cf. Corollary 2.33.
The phirotope ϕ∗ is a uniform non-chirotopal rank-2 phirotope, cf. Lemma 3.17. Thus, according
to the Lemma 4.3, it is realisable, if and only if for all a, b, c, d, e ∈ E it holds true that

∑
π∈S4(a,b,c,d)
π(a)<π(d)

(
sign(π)·ϕ∗(π(a), π(b))2 · ϕ∗(π(b), π(c))2·

ϕ∗(π(c), π(d))2 · ϕ∗(π(d), e)2 · ϕ∗(e, π(a))2
)

= 0

Exemplarily, we examine one of the terms. Let α ∈ Λ(A, d− 3) be the ordered sequence of all
indices in E r {a, b, c, d, e}.

ϕ∗(π(a), π(b))2 =
(
ϕ(α, π(c), π(d), e) · sign(π(a), π(b), α, π(c), π(d), e)

)2
= ϕ/A(π(c), π(d), e)2

Translating all other terms analogously will yield the claim.

Corollary 4.9 (Five-point condition in rank d)
For d ≥ 3 let ϕ be a non-chirotopal uniform rank-d phirotope on E = [n], n ≥ d + 2. It is
realisable, if and only if for every n− d− 2 element subset F ⊂ E the deletion ϕ\F satisfies
the five-point condition in rank d.

Proof. The corollary is a direct consequence of the Theorem 4.7 and the Lemma 4.8.
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Another formulation of the Corollary 4.9 is given in the following corollary.

Corollary 4.10
For d ≥ 3 let ϕ be a non-chirotopal uniform rank-d phirotope on E = [n], n ≥ d + 2. It is
realisable, if and only if for each d− 3 element subset A ⊂ E and all a, b, c, d, e ∈ E it holds
true that

∑
π∈S4(a,b,c,d)
π(a)<π(d)

(
sign(π) · Jπ(a), π(b), π(c)K/A · Jπ(b), π(c), π(d)K/A·

Jπ(c), π(d), eK/A · Jπ(d), e, π(a)K/A · Je, π(a), π(b)K/A
)

= 0.

Proof. In this corollary, the same sums are considered as in the Corollary 4.9.

So the Corollary 4.9 and the Corollary 4.10 are basically the same. The creation of five-point
conditions, however, might be more convenient according to the formulation of the Corollary 4.10,
as the Corollary 4.10 supersedes the consideration of deletions. Another formulation that is
substantially different from these two is obtained by considering the duals of the phirotopes at
hand. It reads as follows:

Corollary 4.11
For d ≥ 3 let ϕ be a non-chirotopal uniform rank-d phirotope on E = [n], n ≥ d + 3. It is
realisable, if and only if for each (d− 2)-element subset A ⊂ E and all a, b, c, d, e ∈ E it holds
true that

∑
π∈S4(a,b,c,d)
π(a)<π(d)

(
sign(π)·Jπ(a), π(b)K/A · Jπ(b), π(c)K/A·

Jπ(c), π(d)K/A · Jπ(d), eK/A · Je, π(a)K/A
)

= 0.

Proof. For the proof, we translate the condition given in the Corollary 4.11 to the five-point
condition for the dual phirotope. Exemplarily, for A ⊂ E , |A| = d − 2 and a, b, c, d, e ∈ E r A

consider B = E r (A ∪ {a, b, c, d, e}). Then |B| = n− d− 3 and

ϕ/A(d, e) = (ϕ∗)/B(a, b, c)

and thus – with similar translations of the other terms –

ϕ/A(d, e)2 · ϕ/A(a, e)2 · ϕ/A(a, b)2 · ϕ/A(b, c)2 · ϕ/A(c, d)2 = 0 (4.2)

⇔ (ϕ∗)/B(a, b, c)2 · (ϕ∗)/B(b, c, d)2 · (ϕ∗)/B(c, d, e)2· (4.3)

(ϕ∗)/B(d, e, a)2 · (ϕ∗)/B(e, a, b)2 = 0. (4.4)
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All other summands translate similarly to summands of the five-point condition of the dual
phirotope. Choosing different subsets A and choosing five indices a, b, c, d, e (not in A) will in
total yield (

n

d− 2

)
·
(
n− d− 2

5

)

equations of the five-point condition that are not trivially true (as would be the case if the indices
are also allowed to be elements in A). A short calculation shows that this equals the number
of equations of the five-point condition for the dual phirotope that are not trivially true. This
number is given by (

n

n− d− 3

)
·
(
n− d

5

)
.

As the translation in the Equation (4.4) is one-to-one, the five-point condition for the dual
phirotope is satisfied if and only if the primal phirotope satisfies the formula given in the
Corollary 4.11.

4.2. Phirotopes with zeros

In this chapter, we will examine the realisability of phirotopes that contain at least one zero in
their images. Furthermore, we will analyse the rigidity of the realisations. We will also examine
realisations of not uniform phirotopes of arbitrary rank. We start our investigations of the
realisability of not uniform phirotopes by considering rank-2 phirotopes.

Rank 2

Firstly, we will take care of the “small” phirotopes. For clarity’s sake, we will treat the cases of
three, four and five indices separately.

Lemma 4.12 (Realisability of not uniform rank-2 phirotopes on three indices)
A rank-2 phirotope on three indices which is not uniform (i.e. contains at least one zero in its
image) is always realisable.

Proof. According to the Theorem 3.31, a rank-2 phirotope on three indices is chirotopal. All
rank-2 chirotopes are realisable (cf. Lemma 4.1).

To simplify the proofs for phirotopes on four and five elements, we characterise the realisability
of them with the help of the following lemma.
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Lemma 4.13 (Characterisation of the realisability of not uniform rank-2 phirotopes on four
or five indices)
Let E = [n] be an index set with 4 ≤ n ≤ 5. A rank-2 phirotope ϕ on E with

ϕ(x, y) = 0⇔ {x, y} = {a, b}

is realisable, if and only if it holds true that

ϕ(a, x)
ϕ(b, x) =

ϕ(a, y)
ϕ(b, y). (4.5)

for all x, y ∈ E r {a, b}.

This lemma states that the elements a and b forming a parallel element should behave similarly.
More precisely, assume that there is a realisation in which a is realised by A and b by B. Then the
quotients of the form ϕ(a,x)

ϕ(b,x) all need to have the same value, namely ωA
ωB

. One way of expressing
this is to say that the relative positions of the other points seen from A and B are the same,
except that they both measure comparatively to their own phase ωA and ωB, respectively.

Proof of Lemma 4.13. Firstly, we show that the Condition (4.5) is necessary for the realisability
of ϕ. For this, let ϕ be realised by V ⊂ C2/R+. Assume, w.l.o.g., ϕ(a, b) = 0 and a and b are to
be realised by A ∈ V and B ∈ V , respectively. Then, the affine representatives pA and pB of A
and B are the same. Additionally,

ϕ(a, x) = ωA · ωX · ω(pA − pX)

ϕ(b, x) = ωB · ωX · ω(pB − pX)

for all x ∈ E with corresponding realisation X ∈ V , affine representative pX ∈ C, and phase ωX .
It follows that

ϕ(a, x)
ϕ(b, x) =

ωA

ωB
∀x ∈ E r {a, b},

which implies the claim.

For the sufficiency of condition (4.5), consider ϕ\{b} and let A,P3, . . . , Pn be the realisations of
a, and 3, . . . , n, respectively. These can be found according to the Lemma 4.2. Let B be given by

pB = pA, and ωB = ωA ·
ϕ(b, 3)
ϕ(a, 3),

where pA and pB are the affine representatives of A and B, respectively. Then, the vector
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4.2. Phirotopes with zeros

configuration (A,B, P3, . . . , Pn) realises ϕ. To verify this, consider the following calculations.

ω ([A,B]) = ωA · ωB · ω(pA − pB) = 0 = ϕ(a, b),

ω ([B,P3]) = ωB · ω3 · ω(pB − p3)

= ωA ·
ϕ(b, 3)
ϕ(a, 3) · ω3 · ω(pA − p3)

= ωA ·
ϕ(b, 3)
ϕ(a, 3) · ω3 ·

ϕ(a, 3)
ωA · ω3

= ϕ(b, 3)

In the second to last line, we used that a and 3 are realised by A and P3, and thus ϕ(a, 3) =
ωA · ω3 · ω(pA − p3). Verifying ω ([B,P4]) = ϕ(b, 4) (and ω ([B,P5]) = ϕ(b, 5), if |E| = 5) works

analogously by using condition (4.5) in order to replace ωB by ωA ·
ϕ(b, 4)
ϕ(a, 4) (and ωA ·

ϕ(b, 5)
ϕ(a, 5),

respectively).

The following lemma illustrates a consequence of having zeros on the Grassmann-Plücker
relations. As we will use it in rank 2 and 3 later, we will formulate it for both ranks right away.

Lemma 4.14
Let ϕ be a rank-2 phirotope on [n]. If for some a, b ∈ E it holds true that ϕ(a, b) = 0, then

ϕ(a, c)ϕ(b, d) = ϕ(a, d)ϕ(b, c)

for all c, d ∈ E .

Let ϕ be a rank-3 phirotope on [n]. If for some a, b, c ∈ E it holds true that ϕ(a, b, c) = 0,
then

ϕ(a, b, d)ϕ(a, c, e) = ϕ(a, b, e)ϕ(a, c, d)

for all d, e ∈ E .

Proof. According to axiom (ϕ2), the Grassmann-Plücker relation (a | b, c, d) must not be obviously
violated: As ϕ(a, b) = 0, there are r1, r2 ∈ R+ such that

r1 · ϕ(a, c) · ϕ(b, d)− r2 · ϕ(a, d) · ϕ(b, c) = 0.

As the phirotope values are contained in S1, we obtain that

r1 = r2 = 1.

With this, the claim follows for rank 2. The rank-3 case works analogously.
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Lemma 4.15 (Realisability of not uniform rank-2 phirotopes on four indices)
A rank-2 phirotope on E = {a, b, c, d} which is not uniform (i.e. contains at least one zero in
its image) is always realisable.

Proof. If ϕ contains a loop (w.l.o.g. index d), realise ϕ\{d} according to the Lemma 4.12. This
realisation is complemented by the zero vector, which is to realise d, to form a realisation of ϕ.
Now assume that ϕ does not contain a loop. We split the proof into parts, according to the

number of zeros in the image of ϕ.
Exactly one zero. W.l.o.g., let ϕ(a, b) = 0. With the Lemma 4.14, it follows that

ϕ(a, c)
ϕ(b, c) =

ϕ(a, d)
ϕ(b, d),

which is the Condition (4.5).
Exactly two zeros. There is no loop. As ϕ(a, b) = 0 and ϕ(a, c) = 0 would imply that

ϕ(a, d) = 0 or ϕ(b, c) = 0 (the Grassmann-Plücker relation (a | b, c, d) must not be violated), the
only possibility of having two zeros in the image of ϕ is up to renaming of the elements:

ϕ(a, b) = 0, ϕ(c, d) = 0.

All other pairs are mapped to non-zero values. Choosing the affine representatives according to
pA = pB and pC = pD but otherwise arbitrarily, we have four variables ωA, ωB, ωC , ωD left that
we can choose in a way that the following four equations are satisfied:

ϕ(a, c) = ωA · ωC · ω(pA − pC),

ϕ(a, d) = ωA · ωD · ω(pA − pD),

ϕ(b, c) = ωB · ωC · ω(pB − pC),

ϕ(b, d) = ωB · ωD · ω(pB − pD).

Exactly three zeros. For this case, let ϕ(a, b) = ϕ(a, c) = ϕ(b, c) = 0. We choose the affine
representatives pA and pD arbitrarily, and pB = pC = pA. With this, we have four variables ωA,
ωB, ωC , ωD left that we can choose in a way that the following three equations are satisfied:

ϕ(a, d) = ωA · ωD · ω(pA − pD),

ϕ(b, d) = ωB · ωD · ω(pB − pD),

ϕ(c, d) = ωC · ωD · ω(pC − pD).

More than three zeros are not possible, as in this case the absence of loops would demand that
ϕ ≡ 0.
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Lemma 4.16
A rank-2 phirotope on E = {a, b, c, d, e} that is not uniform (i.e. contains at least one zero in
its image) is always realisable.

Proof. If ϕ contains a loop (w.l.o.g. index e), realise ϕ\{e} according to Lemma 4.15. This
realisation is complemented by the zero vector, which is to realise e, to form a realisation of ϕ.

Now, assume that ϕ has no loop. Again, we split the proof into parts according to the number
of zeros in the image of ϕ.
Exactly one zero. Let ϕ be a rank-2 phirotope on E = {a, b, c, d, e}, where, w.l.o.g., ϕ(a, b) = 0.

Due to the Lemma 4.14, it holds true that

ϕ(a, c)
ϕ(b, c) =

ϕ(a, d)
ϕ(b, d) =

ϕ(a, e)
ϕ(b, e),

which is exactly the Condition (4.5) for ϕ.
More than one zero. Let ϕ be a rank-2 phirotope on E = {a, b, c, d, e} with at least two zeros

in its image. W.l.o.g., let ϕ(a, b) = 0 be one of the phirotope values that is mapped to zero.
Consider ϕ\{a}. It is realisable due to the Lemma 4.15. Let the realisation be given by B, C, D,
E ∈ C2/R+. As ϕ does not contain a loop, there is an index i ∈ {c, d, e} such that ϕ(a, i) 6= 0
and ϕ(b, i) 6= 0:
Assume there is no index i ∈ {c, d, e} such that ϕ(a, i) 6= 0 and ϕ(b, i) 6= 0. W.l.o.g., the phirotope
has the following non-bases: ϕ(a, e) = 0, ϕ(a, d) = 0, and ϕ(b, c) = 0. As a must not be a loop,
the non-violation of the Grassmann-Plücker relation (a | b, e, c) yields that ϕ(b, c) = 0. Then, the
non-violation of (b | c, e, d) yields a contradiction to the requirement that b and e must not be
loops either. Thus, let i ∈ {c, d, e} be an index such that ϕ(a, i) 6= 0 and ϕ(b, i) 6= 0.
Let A ∈ C2/R+ be given via its affine representative pA = pB that equals the affine represen-

tative of B and the phase
ωA = ωB ·

ϕ(a, i)
ϕ(b, i) . (4.6)

If there is another index j ∈ {b, c, d, e}, j 6= i, such that ϕ(a, j) 6= 0, then due to the non-violation
of the Grassmann-Plücker relations we have

ϕ(a, i)
ϕ(b, i) =

ϕ(a, j)
ϕ(b, j).

With this substitution for the last term of (4.6), checking that (A,B,C,D,E) is a realisation of
ϕ is a straightforward calculation.
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Lemma 4.17 (Necessity of the five-point condition)
The five-point condition is necessary for the realisability of rank-2 phirotopes.

Proof. As the uniform case was dealt with in Lemma 4.3, we will here focus on the case that the
image of ϕ contains at least one zero.

If a phirotope is realisable, then every minor on five indices is realisable. Therefore, it suffices
to show that each equation of the five-point condition is necessary for the realisability of such a
minor.
With ϕ we denote a realisable phirotope on E = {a, b, c, d, e}. Let a realisation of ϕ be given

by V = (A,B,C,D,E) ⊂ C2/R+. Furthermore, let ϕ be not uniform, that means there is at
least one pair of indices mapped to zero.
We start with exactly one value being zero. W.l.o.g., let ϕ(a, b) = 0. This reduces the five-point
condition to

− Ja, cKJc, bKJb, dKJd, eKJe, aK + Jb, cKJc, aKJa, dKJd, eKJe, bK

− Jc, aKJa, dKJd, bKJb, eKJe, cK + Ja, dKJd, bKJb, cKJc, eKJe, aK

− Ja, dKJd, cKJc, bKJb, eKJe, aK + Ja, cKJc, dKJd, bKJb, eKJe, aK = 0.

As Jx, yK = Jy, xK for all x, y, this can be factorized as follows:

Ja, cKJb, cKJd, eK · (Ja, dKJb, eK− Ja, eKJb, dK)

+Ja, dKJb, dKJc, eK · (Ja, eKJb, cK− Ja, cKJb, eK)

+Ja, eKJb, eKJc, dK · (Ja, cKJb, dK− Ja, dKJb, cK) = 0 (4.7)

With the Lemma 4.14, we see that all the terms in parentheses vanish. Thus, the five-point
condition always holds true for not uniform minors. Note that this is in line with the Lemma 4.16
which states that a rank-2 phirotopes on five indices that contains at least one zero in its image
is always realisable.

Theorem 4.18 (Realisability for non-uniform rank-2 phirotopes)
A rank-2 phirotope on E = [n] with n ≥ 6 is realisable, if and only if it satisfies the five-point
condition.

Proof. Remember that rank-2 chirotopes are always realisable and always satisfy the five-point
condition.
The necessity of the five-point condition is shown in the Lemma 4.17. Furthermore, the

sufficiency in the uniform case is shown in Lemma 4.3. We still have to show that the realisations
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4.2. Phirotopes with zeros

of all uniform minors fit together and that the elements that are part of a non-basis of ϕ fit into
the realisation. Again, this will be a rather technical proof.

Consider phirotopes having at least one zero in their image. Let {`1, . . . , `s} be the set of loops
of ϕ. Firstly, we will realise ϕ\{`1,...,`s} and then insert the loops to complete the realisation of ϕ
afterwards. To simplify the notation, we use the shorthand:

ψ := ϕ\{`1,...,`s} and F := E r {`1, . . . , `s}.

Choose any m1 ∈ F such that there is an x ∈ F r {m1} such that

ψ(m1, x) = 0

If ψ\{m1} is not uniform, choose m2 ∈ F r {m1} such that there is an x ∈ F r {m1,m2} such
that

ψ\{m1}(m2, x) = 0.

We iterate this until ψ\{m1,...,mk} is either a uniform phirotope or a non-uniform phirotope on
five indices. In both bases ψ\{m1,...,mk} is realisable, see Lemmas 4.3 and 4.16. Let this realisation
be given by (P1, . . . , Pn−k−s). Step by step, we are going to extend this realisation to a realisation
of the phirotopes ψ\{m1,...,mk−1}, . . . , ψ\{m1}, and ψ, respectively.

For each mi ∈ {m1, . . . ,mk} choose an m̃i ∈ F r {m1, . . . ,mk} such that it holds true that
ϕ(mi, m̃i) = 0. These exist because ψ does not contain a loop: In general, if there are no loops,
then from ϕ(a, b) = 0 and ϕ(a, c) = 0 and with the non-violation of the Grassmann-Plücker
relations (a | b, c, x) for all remaining indices x, it follows that ϕ(b, c) = 0. Note that it might
be the case that |{m̃1, . . . , m̃k}| < k. It is not possible that there is one index i such that
ψ(i, x) = 0 for all x ∈ F as ψ does not contain loops. Thus, for the element mk there is an
index ek ∈ F r {m1, . . . ,mk−1} such that ψ(mk, ek) 6= 0. The absence of loops also guarantees
that ψ(m̃k, ek) 6= 0. Let Qk be the point whose affine representative qk is the same as the affine
representative pk of Pm̃k

and whose phase is given by

ωQk
= ωk ·

ψ(mk, ek)
ψ(m̃k, ek)

,

where ωk is the phase of Pm̃k
.

Then, (P1, . . . , Pn−k−s, Qk) realises the phirotope ψ\{m1,...,mk−1} on Fk = F r {m1, . . . ,mk−1}.
To see this, check that ω(det(Qk, Pj)) = ψ(mk, j) for all j ∈ Fk:
Firstly, consider an arbitrary index j ∈ Fk such that ψ(mk, j) 6= 0. Let its realisation Pj have
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phase ωj and affine representative pj . Then,

ω(det(Qk, Pj)) = ωj · ωQk
· ω(qk − pj)

= ωj · ωk ·
ψ(mk, ek)
ψ(m̃k, ek)

· ω(qk − pj).

With the Lemma 4.14 and ψ(mk, m̃k) = 0 it holds true that

ψ(mk, j) · ψ(m̃k, ek) = ψ(mk, ek) · ψ(m̃k, j).

Thus,

ω(det(Qk, Pj)) = ωj · ωk ·
ψ(mk, j)
ψ(m̃k, j)

· ω(qk − pj)

= ωj · ωk ·
ψ(mk, j)
ψ(m̃k, j)

· ω(pk − pj)

= ψ(mk, j).

For all indices j ∈ Fk such that ψ(mk, j) = 0 it holds true that ψ(m̃k, j) = 0 as ψ does not
contain loops and thus the affine representatives qk, pk and pj are all the same. Thus,

ω(det(Qk, Pj)) = 0 = ψ(mk, j).

Adding the points Q1, . . . , Qk−1 to realise the indices m1, . . . ,mk−1 works analogously. It remains
to check that for any two Qi, Qj ∈ {Q1, . . . , Qk} it holds true that ω(det(Qi, Qj)) = ψ(mi,mj).
Firstly, consider the case in which ψ(mi,mj) 6= 0:

ω(det(Qi, Qj)) = ωi · ωj ·
ψ(mi, ei)
ψ(m̃i, ei)

· ψ(mj , ej)
ψ(m̃j , ej)

· ω(pi − pj)

The non-violation of the Grassmann-Plücker relations yields

ψ(mi, ei)
ψ(m̃i, ei)

= ψ(mi,mj)
ψ(m̃i,mj)

,
ψ(mj , ej)
ψ(m̃j , ej)

= ψ(mj ,mi)
ψ(m̃j ,mi)

.

Hence,
ω(det(Qi, Qj)) = ωi · ωj ·

ψ(mi,mj)
ψ(m̃i,mj)

· ψ(mj ,mi)
ψ(m̃j ,mi)

· ω(pi − pj).

Again, axiom (ϕ2) yields

ψ(m̃i,mj) · ψ(m̃j ,mi) = ψ(m̃i, m̃j) · ψ(mj ,mi),
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which leads to

ω(det(Qi, Qj)) = ωi · ωj ·
ψ(mi,mj) · ψ(mj ,mi)
ψ(m̃i, m̃j) · ψ(mj ,mi)

· ω(pi − pj)

= ωi · ωj ·
ψ(mi,mj)
ψ(m̃i, m̃j)

· ω(pi − pj)

= ψ(mi,mj)

If, however, ψ(mi,mj) = 0, then (due to the construction of mi and mj) there is an index
m ∈ F r {m1, . . . ,mk} such that ψ(mi,m) = 0 and ψ(mj ,m) = 0. The index m is realised by a
point Pm̃ with affine representative pm that equals both the affine representative of Qi and Qj .
With this, ψ is realised on F .

A realisation of ϕ on E is obtained by realising all indices `1, . . . , `s by the zero vector and
choosing arbitrary phases. This concludes the proof.

Higher Ranks

The rank-2 case provides a basis for the examination of the realisability of not uniform phirotopes
of arbitrary rank. The first result regards phirotopes on relatively small index sets.

Lemma 4.19
Every rank-d phirotope on d or d+ 1 indices is realisable.

Proof. Due to the phirotope axiom (ϕ0), every phirotope contains at least one basis. Thus, a
phirotope on d indices is uniform and realisable due to the Lemma 4.4.

Consider a phirotope ϕ on d+ 1 indices. If it is not a near-pencil, it is realisable due to the
Lemma 4.4. The following proof includes the near-pencil case.

W.l.o.g., let {1, . . . , d} be a basis of ϕ. Choose a realisation of ϕ|{1,...,d} according to the
Lemma 2.11. As {1, . . . , d} is a basis of ϕ, the corresponding affine representatives linearly span
Cd. Therefore, the affine representative pd+1 ∈ Cd of the last point is a linear combination of the
d affine representatives p1, . . . , pd:

pd+1 =
d∑
i=1

αi · pi.

This yields d + 1 unknowns: all parameters αi and the phase ωd+1. The phirotope values
containing the index d + 1 yield d equations in these unknowns. Thus, we can find an affine
representative pd+1 and a phase ωd+1 such that all conditions are met.
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Lemma 4.20 (Rigidity in the non-uniform case)
Let ϕ be a realisable non-chirotopal rank-d phirotope that is not a near-pencil. If the
coordinates of d+ 1 points in general position of the realisation are fixed, then the positions
and phases of all other points are fixed as well.

Proof. The phirotope is not a near-pencil. Thus, w.l.o.g., ϕ|{1,...d+1} is uniform. W.l.o.g., the

first d+ 1 points are realised by the unit vectors and the vector
(
1, . . . , 1

)T
, otherwise apply

a reorientation and a projective transformation. We show that the position and phase of the
next point, that is the one realising the index d+ 2, are determined. Consider its coordinates(
x1, . . . , xd−1, 1

)T
. According to Lemma 2.32, the dual phirotope (ϕ|[d+2])∗ is realised by the

columns of  −1 . . . −1 −1 1 0
−x1 . . . −xd−1 −1 0 1



Thus, we prove that if three points in rank 2 are fixed to A =

1
0

, B =

0
1

, and C =

1
1

,
then the coordinates of the fourth point D are determined:
If among the indices a, b, c, and d corresponding to the four points there is no ϕ-dependent
pair, then D is determined according to the Lemma 4.6, as the minor ϕ|{a,b,c,d} is uniform and
non-chirotopal. If there exists one index z ∈ {a, b, c} such that ϕ(z, d) = 0, then the coordinates
of D are the same as that of the point corresponding to z. If there are two indices z, y ∈ {a, b, c, d},

z 6= y, such that ϕ(z, d) = 0 = ϕ(y, d), then either D =

0
0

 or the affine representatives of the

points corresponding to z and y are the same – which is a contradiction to them being in general
position.
In all cases, the position of D is determined. Thus, all values x1, . . . , xd−1 are determined and,
hence, the affine representative of the point corresponding to the index d + 2 in the primal
phirotope are determined. The phase is then determined, for example, by ϕ(1, . . . , d− 1, d+ 2).

With this technique, we can find coordinates for each point of the realisation. As we assumed
that the phirotope is realisable, there can be no contradictions within the newly added points.
This is guaranteed by the five-point condition.
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Theorem 4.21 (Five-point condition for phirotopes on d+ 2 elements)
Let ϕ be a rank-d phirotope on [d+ 2] that is not a near-pencil. It is realisable, if and only if
it satisfies the five-point condition in rank d.

Proof. Note that rank-d chirotopes on d+ 2 indices are always realisable (cf. Lemma 4.1) and
always satisfy the five-point condition.

The Corollary 2.33 states that ϕ is realisable, if and only if its dual ϕ∗ is realisable. The dual
ϕ∗ is a non-chirotopal rank-2 phirotope. According to the Theorem 4.18, ϕ∗ is realisable, if and
only if it satisfies the five-point condition. In the proof of the Lemma 4.8, we have already seen
how the five-point condition for the dual translates to a five-point condition in rank d for the
primal phirotope.

Theorem 4.22 (Realisability of rank-d phirotopes)
Let ϕ be a non-chirotopal rank-d phirotope on E = [n] with n ≥ d+ 2 that is not a near-pencil.
It is realisable, if and only if for all d+2 element subsets F ⊂ E the restriction ϕ|F is realisable.

Proof. It is clear that if ϕ is realisable, then all deletions are realisable as deletion preserves
realisability, cf. Lemma 3.10.

The other direction is shown by induction on n. To this end, let n = d+ 2. Then F = E and
the statement is trivial.
For the induction step, consider a non-chirotopal rank-d phirotope on E = [n] that is not a

near-pencil. There are indices a, b, c, d ∈ E and a set A ⊂ E , |A| = d− 2 such that

ϕ(a, c, A) 6= 0, ϕ(b, d,A) 6= 0, ϕ(a, d,A) 6= 0, ϕ(b, c, A) 6= 0,

and crϕ (ab | c, d)A 6∈ R.

Choose an index x not in {a, b, c, d}∪A and consider ϕ\{x}. This phirotope is also non-chirotopal
and not a near-pencil. For every d + 2 element subset F ⊂ E with x 6∈ F , it holds true that
ϕ|F is realisable and, thus, the restriction

(
ϕ\{x}

)
|F is realisable. By induction hypothesis, it

follows that ϕ\{x} is realisable. W.l.o.g., let [d+ 1] be a basis of ϕ and let a realisation of this
basis be given by P1, . . . , Pd+1 ∈ Cd/R+. According to the Lemma 4.20, the realisations of all
other points are fixed, as the phirotope is non-chirotopal. Also, the realisation of the index x is
determined by the restriction ϕ|{1,...,d+1,x}.

What is left to show is that the realisation X of the index x conforms with the whole realisation.
All phirotope values of the form ϕ(λ, x, a) where λ ∈ Λ([d+ 1], d− 2) and a ∈ E r ([d+ 1] ∪ {x})
conform with the realisation, as ϕ|{λ1,...,λd−2,x,a} is a realisable rank-2 phirotope and, thus, satisfies
the five-point condition: The phirotope of the vector configuration given by the realisation also
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satisfies the five-point condition. Thus, the two five-point conditions agree on all but one terms
and hence

ϕ(λ, x, a) = ω
(

det(Pλ1 , . . . , Pλd−2 , X,A)
)
,

where A is the realisation of a. We iterate this to show that for any index b ∈ Er ([d+ 1]∪{x, y})
realised by B we have

ϕ(λ, x, a, b) = ω
(

det(Pλ1 , . . . , Pλd−3 , X,A,B)
)

for all λ ∈ Λ([d+ 1], d− 3). This is the case because for every λ the term ϕ(λ, x, a, b) is the only
term on which the five-point condition of ϕ|{λ1,...,λd+3,x,a,b} and that of the vector configuration
(Pλ1 , . . . , Pλd−3 , X,A,B) do not already agree. We repeat this pattern to iteratively guarantee
that all remaining phirotope values conform with the realisation.

Next, we want to analyse the effects of having zeros in the images of a rank-3 phirotope
on the corresponding five-point conditions. To this end, consider a rank-3 phirotope ϕ on
E = {a, b, c, d, e}. If ϕ(a, b, c) = 0, the five-point condition reads as follows:

0 = + Ja, b, cKJb, c, dKJc, d, eKJd, e, aKJe, a, bK− Ja, b, dKJb, d, cKJd, c, eKJc, e, aKJe, a, bK

− Ja, c, bKJc, b, dKJb, d, eKJd, e, aKJe, a, cK + Ja, c, dKJc, d, bKJd, b, eKJb, e, aKJe, a, cK

+ Ja, d, bKJd, b, cKJb, c, eKJc, e, aKJe, a, dK− Ja, d, cKJd, c, bKJc, b, eKJb, e, aKJe, a, dK

− Jb, a, cKJa, c, dKJc, d, eKJd, e, bKJe, b, aK + Jb, a, dKJa, d, cKJd, c, eKJc, e, bKJe, b, aK

+ Jb, c, aKJc, a, dKJa, d, eKJd, e, bKJe, b, cK + Jc, a, bKJa, b, dKJb, d, eKJd, e, cKJe, c, aK

− Jc, a, dKJa, d, bKJd, b, eKJb, e, cKJe, c, aK− Jc, b, aKJb, a, dKJa, d, eKJd, e, cKJe, c, bK

=− Ja, b, dKJb, d, cKJd, c, eKJc, e, aKJe, a, bK + Ja, c, dKJc, d, bKJd, b, eKJb, e, aKJe, a, cK

+ Ja, d, bKJd, b, cKJb, c, eKJc, e, aKJe, a, dK− Ja, d, cKJd, c, bKJc, b, eKJb, e, aKJe, a, dK

+ Jb, a, dKJa, d, cKJd, c, eKJc, e, bKJe, b, aK− Jc, a, dKJa, d, bKJd, b, eKJb, e, cKJe, c, aK

This factorises as follows:

0 = + Ja, b, dKJc, d, eKJe, a, bK · (Ja, d, cKJc, e, bK− Jb, d, cKJc, e, aK)

+ Ja, c, dKJd, b, eKJe, a, cK · (Ja, d, bKJb, e, aK− Ja, d, bKJb, e, cK)

+ Jd, b, cKJb, c, eKJe, a, dK · (Ja, d, bKJc, e, aK− Ja, d, cKJb, e, aK) (4.8)
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4.2. Phirotopes with zeros

The terms in parentheses yield zeros as they stem from the Grassmann-Plücker relations
(c, a | c, b, d, e), (b, c | b, a, d, e), and (a, b | a, c, d, e), respectively: With the Lemma 4.14 and
ϕ(a, b, c) = 0 it holds true that

(c, a | c, b, d, e) ⇒ ϕ(c, a, d)ϕ(c, b, e) = ϕ(c, a, e)ϕ(c, b, d),

(b, c | b, a, d, e) ⇒ ϕ(b, c, d)ϕ(b, a, e) = ϕ(b, c, e)ϕ(b, a, d),

(a, b | a, c, d, e) ⇒ ϕ(a, b, d)ϕ(a, c, e) = ϕ(a, b, e)ϕ(a, c, d).

Rearranging indices and squaring both sides of each equation shows that the Equation 4.8 holds
true trivially. In fact, this statement can be generalised to higher ranks, which leads to the
following theorem:

Theorem 4.23 (Realisability of non-uniform phirotopes)
A non-chirotopal rank-d phirotope is realisable, if and only if all its uniform rank-d minors
are realisable.

Proof. Let ϕ be a non-chirotopal uniform rank-d phirotope on [n]. It is realisable, if and only if
for all (d− 3)-element subsets A ⊂ [n] and all a, b, c, d, e ∈ E , |{a, b, c, d, e}| = 5 it holds true that

∑
π∈S4(a,b,c,d)
π(a)<π(d)

(
sign(π) · Jπ(a), π(b), π(c)K/A · Jπ(b), π(c), π(d)K/A·

Jπ(c), π(d), eK/A · Jπ(d), e, π(a)K/A · Je, π(a), π(b)K/A
)

= 0.

W.l.o.g., let a, b, c, and A such that ϕ/A(a, b, c) = 0. Then, the five-point condition reads as
follows:

0 = + Ja, b, dK/AJc, d, eK/AJe, a, bK/A ·
(
Ja, d, cK/AJc, e, bK/A − Jb, d, cK/AJc, e, aK/A

)
+ Ja, c, dK/AJd, b, eK/AJe, a, cK/A ·

(
Ja, d, bK/AJb, e, aK/A − Ja, d, bK/AJb, e, cK/A

)
+ Jd, b, cK/AJb, c, eK/AJe, a, dK/A ·

(
Ja, d, bK/AJc, e, aK/A − Ja, d, cK/AJb, e, aK/A

)
. (4.9)

The Grassmann-Plücker relations that will yield that the terms in parenthesis are zero are
(A, c, a |A, c, b, d, e), (A, b, c |A, b, a, d, e), and (A, a, b |A, a, c, d, e), where when we write A we
actually mean the sequence of all elements of A. The rest works analogously to the explanations
above.
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4. Realisability and Rigidity

4.3. On the structure of the five-point condition

The five-point condition has an interesting structure that is worth a closer examination. We
have already seen some of its properties in the Section 4.1 where we highlighted the possibility
of illustrating the structure of the five-point condition with the help of Hamilton cycles. In
the following, we will see that there are redundancies in the five-point condition and how the
five-point condition in rank 2 can be written with the help of determinants. We have already
learned that zeros in the image of the phirotope cause the five-point condition to automatically
evaluate to zero. Therefore, we will examine uniform phirotopes in this section.

Consider a uniform rank-2 phirotope ϕ on six elements E = {1, . . . , 6}. According to the
Lemma 4.3, it is realisable, if and only if for each five-element subset the five-point condition
holds true. There are six of such five-element subsets and each of them contains all but one
indices. In the following, we denote by Υk the five-point condition that does not contain the
index k. With Υ6 = 0 we can realise ϕ|[5]. For this we choose the points P1, P2, and P3 that
realise the indices 1, 2, and 3 in general position. The position of the points P4 and P5 that
realise 4 and 5 are then determined. In the same way, Υ5 yields the position of (again) P4 and
P6, if we choose the same P1, P2, and P3 to realise 1, 2, and 3. Now the only thing that might
still forbid the realisability of the whole phirotope is the value of ϕ(5, 6). The corresponding
points are already determined and for the phirotope to be realisable, ϕ(5, 6) = ω(det(P5, P6))
has to hold true. This is for example ensured by Υ4 = 0.

Note that the realisability of ϕ was decided using only the five-point conditions Υ4, Υ5, and
Υ6. Thus, Υ1 = 0, Υ2 = 0, and Υ3 = 0 have to follow from Υ4 = 0, Υ5 = 0, and Υ6 = 0. This
can be proven as follows.

Consider Υ4, Υ5, and Υ6. The term J4, 5K is only contained in formula Υ6, J4, 6K only in Υ5,
and J5, 6K only in Υ4. We write

Υ6 = A · J4, 5K−B,

Υ5 = C · J4, 6K−D,

Υ4 = E · J5, 6K− F,

where A, . . . , F stand for polynomials of squared phirotope values that complete the five-point
conditions and do not contain J4, 5K, J4, 6K, or J5, 6K. The terms can also be depicted as (parts
of) Hamilton paths as introduced in the Chapter 4.1. Recall that an edge between the vertices
labelled with a and b corresponds to Ja, bK. This means that A and B are graphs on the vertices
in {1, 2, 3, 4, 5}. B corresponds to all Hamilton cycles not containing the edge (4, 5), while A
contains all (undirected) Hamilton paths from 5 to 4 or of length four, cf. Figures 4.2 and 4.3.

The five-point condition Υ3 contains all three terms J4, 5K, J4, 6K, and J5, 6K. Each summand
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Figure 4.2.: The Hamilton paths that correspond to the term A.
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Figure 4.3.: The Hamilton cycles that correspond to the term B.

of Υ3 contains either one or two of the terms J4, 5K, J4, 6K, and J5, 6K and thus, we can write it as

Υ3 = + U · J4, 5K + V · J4, 6K +W · J5, 6K

+X · J4, 5K · J4, 6K + Y · J4, 5K · J5, 6K + Z · J4, 6K · J5, 6K, (4.10)

where U, . . . , Z are the polynomials in squared phases that complete Υ3 and do not contain J4, 5K,
J4, 6K, or J5, 6K. To prove that Υ3 = 0 follows from Υ4 = 0, Υ5 = 0, and Υ6 = 0, we find factors
α, . . . , η such that

0 = α ·Υ4 + β ·Υ5 + γ ·Υ6

+ δ ·Υ4 ·Υ5 + ε ·Υ4 ·Υ6 + ζ ·Υ5 ·Υ6

+ η ·Υ3. (4.11)
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4. Realisability and Rigidity

One possible solution is given by

α = ACW +BCY +ADZ,

β = AEV +BEX +AFZ,

γ = CEU +DEX + FCY,

δ = AZ,

ε = CY,

ζ = EX,

η = −ACE.

With this, all terms containing J4, 5K, J4, 6K, and J5, 6K cancel:

α ·Υ4 + β ·Υ5 + γ ·Υ6

+ δ ·Υ4 ·Υ5 + ε ·Υ4 ·Υ6 + ζ ·Υ5 ·Υ6

+ η ·Υ3

=−ACFW −ADEV −ADFZ −BDEX −BCEU −BCFY

= 0. (4.12)

The last line can be checked with the help of a computer algebra system, cf. Appendix B.

Another way of showing the dependence of the five-point conditions is transposing Υ4 = 0,
Υ5 = 0, and Υ6 = 0 as follows

J4, 5K = B

A
, J4, 6K = D

C
, J5, 6K = F

E
, (4.13)

which can be done as ϕ was assumed to be uniform. Inserting these into Υ1, Υ2, and Υ3 will
each yield zero (cf. Appendix C).

All in all, this finding fits the theoretical contemplation at the beginning of this section. If
three five-point conditions evaluate to zero, this is indeed sufficient for the realisability of a
uniform, non-chirotopal rank-2 phirotope on five indices.

The result can be generalised to phirotopes with larger index sets. Consider a uniform, non-
chirotopal rank-2 phirotope on [n]. Here, we have

(n
5
)
five-point conditions, so the number of

five-point conditions is of quintic order in n. For three elements a, b, c ∈ [n], we choose their
affine representatives to be the projective basis that determines the position of all other points.
Then, according to the considerations above, each pair of indices x, y ∈ [n] r {a, b, c} has to be
part of at least one five-point condition. Thus, we only need

(n−3
2
)
five-point conditions, namely

those on {a, b, c, x, y}. This number is of quadratic order in n.
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4.3. On the structure of the five-point condition

Note that the argument we have used can only be applied to rank 2. In rank 2 the five-point
condition is a formula on five elements and thus has two elements more than a projective basis,
which consists of three elements. So in rank 2, the phirotope value of every pair of indices appears
in a five-point condition together with the indices of the chosen projective basis. In arbitrary
rank d, the five-point conditions are formulae on d+ 2 elements. This number differs from the
number of elements in a projective basis, which contains d+ 1 points, by only one element.

Another interesting structural property of the five-point condition is that it can be written in
terms of determinants. To see this, consider a five-point condition in which again one bracket is
factored out. For example, consider again Υ6 = A · J4, 5K−B. It holds true that

A = + J1, 2KJ2, 3KJ3, 4KJ5, 1K− J1, 3KJ3, 2KJ2, 4KJ5, 1K− J2, 1KJ1, 3KJ3, 4KJ5, 2K

+ J2, 3KJ3, 1KJ1, 4KJ5, 2K + J3, 1KJ1, 2KJ2, 4KJ5, 3K− J3, 2KJ2, 1KJ1, 4KJ5, 3K

= det


J1, 2KJ1, 3K J1, 4K J1, 5K

J2, 1KJ2, 3K J2, 4K J2, 5K

J3, 1KJ3, 2K J3, 4K J3, 5K

 ,

and

B =− J1, 2KJ2, 4KJ4, 3KJ3, 5KJ5, 1K + J1, 3KJ3, 4KJ4, 2KJ2, 5KJ5, 1K

+ J1, 4KJ4, 2KJ2, 3KJ3, 5KJ5, 1K− J1, 4KJ4, 3KJ3, 2KJ2, 5KJ5, 1K

+ J2, 1KJ1, 4KJ4, 3KJ3, 5KJ5, 2K− J3, 1KJ1, 4KJ4, 2KJ2, 5KJ5, 3K

= det


J1, 2K J1, 4KJ2, 4K J1, 5KJ2, 5K

J1, 3K J1, 4KJ3, 4K J1, 5KJ3, 5K

J2, 3K J2, 4KJ3, 4K J2, 5KJ3, 5K

 .

We want to identify in which cases the value of the term ϕ(4, 5) is irrelevant for the realisability
of the phirotope. This can only be the case, if the phirotope contains a zero in its image or
is chirotopal. Otherwise, the value of the term ϕ(4, 5) cannot be irrelevant. Changing it will
also change the value of the five-point condition. We want to assume that the phirotope ϕ|[5] is
uniform because the Theorem 4.23 guarantees that the five-point condition Υ6 holds true, if the
phirotope contains a zero in its image. Thus, we deal with the chirotopal cases:

• ϕ is chirotopal.
We will show that in this case the last column of the determinant of the term A is a multiple
of the second one. By assumption, none of the phirotope values equals zero, thus

crϕ (1, 2 | 4, 5) = ±1 ⇒ J1, 4K · J2, 5K = J1, 5K · J2, 4K,
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4. Realisability and Rigidity

crϕ (1, 3 | 4, 5) = ±1 ⇒ J1, 4K · J3, 5K = J1, 5K · J3, 4K,

crϕ (2, 3 | 4, 5) = ±1 ⇒ J2, 4K · J3, 5K = J2, 5K · J3, 4K.

By applying Laplace expansion to A we obtain A = 0.

Note that, as we are dealing with rank-2 phirotopes, chirotopality implies that the phirotope
is realisable. And indeed, if all cross ratios are real, the last two columns of the matrix in
B will also be equal. Thus, B = 0 and the five-point condition is satisfied.

• ϕ|{1,2,3,4} is chirotopal.
For symmetry reasons, this case is analogous to the case in which ϕ|{1,2,3,5} is chirotopal.
If the minor ϕ|{1,2,3,4} is chirotopal, then the cross ratio phase crϕ (1, 2 | 3, 4) and the cross
ratio phases of all permutations of the four indices are real. As none of the involved terms
equals zero by assumption, this yields:

J1, 3KJ2, 4K = J2, 3KJ1, 4K

J1, 2KJ3, 4K = J2, 3KJ1, 4K

J1, 2KJ3, 4K = J1, 3KJ2, 4K

By multiplying the first equation with J1, 2K, the second with J1, 3K and the third with
J2, 3K, we obtain that all 2-by-2-subdeterminants that consist of entries of the first two
columns vanish: ∣∣∣∣∣∣ J1, 2KJ1, 3K J1, 4K

J1, 2KJ2, 3K J2, 4K

∣∣∣∣∣∣ = 0,

∣∣∣∣∣∣ J1, 2KJ1, 3K J1, 4K

J1, 3KJ2, 3K J3, 4K

∣∣∣∣∣∣ = 0,

∣∣∣∣∣∣ J1, 2KJ2, 3K J2, 4K

J1, 3KJ2, 3K J3, 4K

∣∣∣∣∣∣ = 0.

Thus, A = 0. Note that the same calculations apply to B, meaning that if ϕ|{1,2,3,4} is
chirotopal, the subdeterminants of the first two columns of B also vanish. This implies that
if ϕ|{1,2,3,4} is chirotopal, ϕ is always realisable, regardless of the values ϕ(1, 5), ϕ(2, 5),
ϕ(3, 5), and ϕ(4, 5).

So, we have seen that chirotopality – even of only a minor – will result in the vanishing of the
terms A and B.
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5. Towards Euclidean Geometry

Consider a realisable non-chirotopal rank-d phirotope. Up to choosing a projective basis (that is
choosing d+ 1 points in general position freely), its realisation is rigid (cf. Lemma 4.20). This
means that we can understand the phirotope values as some kind of novel coordinates of the
point configuration of its realisation. In this chapter, we are going to examine the possibilities of
carrying out Euclidean geometry in the plane in these new coordinates.

Firstly, we need to find the right subclass of phirotopes that can be understood as coordinates
of a Euclidean point configuration. To this end, remember that in order to carry out Euclidean
geometry in RP2, the points

I =


−i
1
0

 and J =


i
1
0


are added to RP2. With this, properties like the co-circularity of four points can be expressed
and angles can be measured. For details, see [RG11] or [RGO09]. We want to characterise the
appearance of phirotopes that stem from rank-3 vector configurations which, apart from I and J,
only contain real points. We will see that this can be done with the help of cross ratios.
In the following, we will make use of characterisations of Euclidean concepts by means of

bracket polynomials. These characterisations are explained in detail in [RG11] and [RGO09].

5.1. Euclidean phirotopes

Consider a vector configuration V = (P1, . . . , Pn, I, J), with P1, . . . , Pn ∈ RP2. This yields a
phirotope ϕ on the index set E = {1, . . . , n, i, j}, where index k corresponds to the point Pk for
k ∈ [n], and i and j correspond to I and J, respectively. Phirotopes that can be realised by real
points together with I and J are the main focus of this chapter.

Definition 5.1 (Euclidean phirotope)
A realisable non-chirotopal rank-3 phirotope ϕ is called Euclidean, if it is a reorientation
of a phirotope that can be realised by a vector configuration V = (P1, . . . , Pn, I, J), where
P1, . . . , Pn ∈ RP2.
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5. Towards Euclidean Geometry

We chose the term “Euclidean phirotopes”, as it reflects the fact that these phirotopes describe
a Euclidean situation. Up until now, however, it is still an open question if our concept of
Euclideaness coincides with that of Edmonds and Mandel, who introduced Euclideaness for (real)
oriented matroids (cf. [EM82]).

To examine the cross ratio phases that can occur when dealing with Euclidean phirotopes, we
introduce new notation:

κ := 0
0 and

∞ := c

0 for all c ∈ Cr {0}.

The cross ratio phase of indices that correspond to real points in the realisation is either real
number or, if the denominator contains a term that equals zero, ∞ or κ:

crϕ (a, b | c, d)e ∈ R ∪ {∞,κ} ∀a, b, c, d, e ∈ E r {i, j}. (5.1)

Furthermore, I = J implies

crϕ (a, b | c, d)i = crϕ (a, b | c, d)j ∀a, b, c, d ∈ E r {i, j}. (5.2)

The Equations (5.1) and (5.2) provide us with a tool for checking whether or not a phirotope is
Euclidean.

Theorem 5.2 (Characterisation of Euclidean phirotopes)
A realisable non-chirotopal rank-3 phirotope ϕ on the index set E , |E| ≥ 7 is Euclidean, if
there are two indices i, j ∈ E such that ϕ\{i,j} is not a near-pencil and

crϕ (a, b | c, d)e ∈ R ∪ {∞,κ} ∀a, b, c, d, e ∈ E r {i, j} and (5.3)

crϕ (a, b | c, d)i = crϕ (a, b | c, d)j ∀a, b, c, d ∈ E r {i, j}. (5.4)

The indices i and j are called the special indices, all other indices are called the ordinary
indices.

Proof. Let ϕ be a realisable rank-3 phirotope on E = {1, 2, . . . , n+ 2}, n ≥ 5, that yields at least
one non-real cross ratio phase. The condition (5.3) implies that there are two elements i, j ∈ E ,
such that the deletion ϕ\{i,j} is chirotopal. It follows that there is a reorientation % ∈ (S1)n of
ϕ\{i,j} such that (ϕ\{i,j})% is a chirotope. W.l.o.g., set i = n+ 1 and j = n+ 2. We define a new
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5.1. Euclidean phirotopes

reorientation vector %̃ ∈ (S1)n+2 via

%̃k =

%k, if k ∈ [n],

1, else.

Consider the reoriented phirotope ϕ%̃. As its deletion (ϕ%̃)\{i,j} is a chirotope, it holds true that

ϕ%̃(a, b, c) ∈ R ∀a, b, c ∈ E r {i, j}. (5.5)

W.l.o.g., ϕ|[4] is uniform as ϕ\{n+1,n+2} is not a near-pencil. We choose the first four vectors
of a realisation P1, . . . , P4 to be four distinct points in RP2 corresponding to the indices 1 to
4, respectively. All loops of the phirotope will be realised by the zero vector. For every other
index k ∈ [n] there exists at least one ordered triple that is mapped to a non-zero number and
contains k and two indices from [4]. With the Equation (5.5) we conclude that the point Pk
of the realisation has to have real coordinates as well. So we have seen that the reoriented
phirotope ϕ%̃ can be realised as a vector configuration V = (P1, P2, . . . , Pn, Pi, Pj) with n real
vectors P1, P2, . . . , Pn ∈ RP2. The points Pi and Pj necessarily have complex coordinates, as ϕ
is non-chirotopal by assumption.

As a next step, we will show that Pi and Pj have to be complex conjugates. This will enable
us to find a transformation that leaves all real points real and maps Pi to I and Pj to J. To show
that Pi = Pj , we consider condition (5.4), with which for all Pa, Pb, Pc, Pd ∈ V r (Pi, Pj) it holds
true that

ω
(
cr(Pa, Pb|Pc, Pd)Pi

)
= ω

(
cr(Pa, Pb|Pc, Pd)Pj

)
.

For fixed Pi, one solution to this is certainly given by Pj ∼ Pi. We have seen in the Lemma 4.20
that realisations of phirotopes are rigid. Thus, Pj ∼ Pi is the unique solution.

It remains to be show that Pi and Pj can be mapped to I and J, respectively, by a projective
transformation that leaves the coordinates of all other points real. This can be done via a
transformation that is given by a matrix

T =


t1 t2 t3

t4 t5 t6

t7 t8 t9

 ∈ R3×3.

We require T · Pi = I. This yields six real equations in nine real variables: With the complex
coordinates of Pi =

(
p1, p2, p3

)T
split into real and imaginary parts pk = rk + i · ik, the first
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column reads as follows:

t1r1 + t2r2 + t3r3 = 0 ∧ t1i1 + t2i2 + t3i3 = −1.

We can choose any of the solutions to these two real equations in the three real variables t1, t2, t3.
Similarly, the second and third column of T can be determined. With this, we have found a
transformation that maps Pi to I but leaves all real points real.
The requirement T · Pj = J is automatically met as

T · Pj = T · Pi = T · Pj = I = J.

All in all, we have seen that conditions (5.3) and (5.4) are enough to guarantee that a realisable
non-chirotopal phirotope permits a realisation in which two points are I and J and all other
points have real coordinates.

Whenever a phirotope exhibits a structure similar to that described by Equations (5.1) and (5.2)
we call the phirotope “Euclidean” – regardless of whether or not it is realisable. We use the
characterisation given in the Theorem 5.2 as definition:

Definition 5.3 (Euclidean phirotope)
A non-chirotopal rank-3 phirotope ϕ on E , |E| ≥ 7, is called Euclidean, if and only if there are
two indices i, j ∈ E such that ϕ\{i,j} is not a near-pencil and the Equations (5.3) and (5.4)
are satisfied.

In the following sections, we will look at some Euclidean concepts and theorems that can
be expressed using phirotopes. These theorems are then already valid at the abstract level of
phirotopes and do not require a realisation.

In part 2 of the Lemma 3.2 we have seen that for rank-2 phirotopes the cross ratio of four
points can be reconstructed from the cross ratio phase of the corresponding indices, if the latter
is not a real number. As this reconstruction is needed for the Euclidean theorems on the level of
phirotopes, we will see how the reconstruction works in rank 2 and then seek to extend it to
rank 3.

Consider a realisable non-chirotopal phirotope ϕ on E and four indices a, b, c, d ∈ E such
that crϕ (a, b | c, d) 6∈ R. Our goal is to reconstruct the exact value of cr(A,B|C,D), where
A,B,C,D ∈ C2/R+ are the points of a realisation of ϕ that correspond to a, b, c, d, respectively.
To this end, consider the involved cross ratio phases, which are the phases of the cross ratios
(see Equation 3.1). The cross ratio phases are all given by the values of the phirotope. Setting
λ := cr(A,B|C,D), we obtain:
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5.1. Euclidean phirotopes

crϕ (a, b | c, d) =
λ

|λ|
(5.6) crϕ (a, b | d, c) =

|λ|

λ
(5.7)

crϕ (a, c | b, d) =
1− λ

|1− λ|
(5.8) crϕ (a, c | d, b) =

|1− λ|

1− λ
(5.9)

crϕ (a, d | b, c) =
1−

1
λ∣∣∣∣∣∣1−
1
λ

∣∣∣∣∣∣
(5.10) crϕ (a, d | c, b) =

λ

λ− 1∣∣∣∣∣∣
λ

λ− 1

∣∣∣∣∣∣
(5.11)

Note that λ 6∈ R (as λ ∈ R would violate crϕ (a, b | c, d) 6∈ R, as can be seen in the Equation (5.6)).
Some pairs of these equations determine λ, while others do not. The Equations (5.6) and (5.7),
for example, essentially contain the same information as they are just the reciprocal of one
another. The same holds true for (5.8) and (5.9) as well as for (5.10) and (5.11). All other pairs
determine λ. We take a closer look at the exemplary calculation for one pair, for example for
(5.6) and (5.8):

(5.6) : crϕ (a, b | c, d) =
λ

|λ|
=

λ√
(λ · λ)

⇒ λ =
λ

crϕ (a, b | c, d)2

This will be inserted into equation (5.8) and then we solve for λ which yields:

λ =

(
1− crϕ (a, c | b, d)2

)
· crϕ (a, b | c, d)2

crϕ (a, b | c, d)2 − crϕ (a, c | b, d)2
(5.12)

The second solution for λ of this equation is not feasible, as it is λ = 1 ∈ R. The Table E.1 in
the appendix lists the remaining depictions of λ that are obtained by similar calculations.

Although we have carried out the calculations in rank 2 to keep the formulae small, the
same calculations allow us to construct cr(A,B|C,D)E from crϕ (a, b | c, d){e} for some rank-3
phirotope ϕ on an index set containing a, b, c, d, and e. So, we have seen that we can reconstruct
the value of cross ratios whenever the corresponding cross ratio phase is non-real. Thus, we can
express every Euclidean property that can be verified using complex cross ratios in terms of
phirotopes. Before we list some examples, we state a lemma that helps to make the following
calculations clearer.
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5. Towards Euclidean Geometry

Lemma 5.4
Let ϕ be a Euclidean rank-3 phirotope on E and let i, j ∈ E be the special indices. If A, B,
C, D, E, A′, B′, C ′, D′, and E′ are the points of a realisation of ϕ and correspond to the
indices a, b, c, d, e, a′, b′, c′, d′, and e′, respectively, then

∃r ∈ R : cr(A,B|C,D)E = r · crϕ (a, b | c, d){e} .

and

cr(A,B|C,D)E = r · cr
(
A′, B′|C ′, D′

)
E′ for some r ∈ R

⇐⇒ crϕ (a, b | c, d){e} = crϕ
(
a′, b′ | c′, d′

)
{e′} .

Proof. The first part of the lemma follows from Equation (3.1) which says crϕ (a, b | c, d){e} =
ω (cr(A,B|C,D)E) .
Applying the phase function on both sides of the second part implies “⇒”. The other direction
follows with Equation (3.1) as well.

5.2. Euclidean properties and theorems

Definition 5.5 (Comparison of angles)
Let ϕ be a Euclidean phirotope on E with the special indices i, j ∈ E . Furthermore, let
a, b, c, x, y, z ∈ E r {i, j}. If and only if

crϕ (b, c | i, j){a} = crϕ (y, z | i, j){x} 6∈ {0,∞,κ},

we say that the angles ^a(b, c) and ^x(y, z) are equal.

As the phirotope at hand might not be realisable, the concept of angles (and later also that of
lines) introduced here is completely abstract.

Lemma 5.6 (Comparison of angles)
If the phirotope in the Definition 5.5 is realisable and A, B, C, X, Y , Z, I and J are the
points of the realisation that correspond to the indices mentioned in that definition, then

^A(B,C) = ^X(Y,Z).
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5.2. Euclidean properties and theorems

Proof. From projective geometry we know that

^A(B,C) = ^X(Y,Z) ⇔ cr(B,C|I, J)A = cr(Y, Z|I, J)X .

With the Lemma 5.4 the claim follows.

In fact, we cannot only compare angles but we can measure them.

Definition 5.7 (Measurement of angles)
Let ϕ be a Euclidean phirotope on E with the special indices i, j ∈ E . The angle ^a(b, c)
between the lines ab and ac (modulo π) is defined as

^a(b, c) := 1
2i ln

(
crϕ (b, c | i, j){a}

)
,

whenever crϕ (b, c | i, j){a} 6∈ {0,∞,κ}.

Lemma 5.8 (Measurement of angles)
If the phirotope in the Definition 5.7 is realisable and A, B, C, I, and J are the points of the
realisation that correspond to the indices mentioned in that definition, then

^A(B,C) = ^a(b, c).

Proof. From projective geometry we know that

^A(B,D) mod π = 1
2i ln (cr(B,C|I, J)A) .

As crϕ (b, c | i, j){a} 6∈ {0,∞,κ}, we obtain:

crϕ (b, c | i, j){a} = ϕ(a, b, i) · ϕ(a, c, j)
ϕ(a, b, j) · ϕ(a, c, i)

= [A,B, I][A,C, J]
[A,B, J][A,C, I] ·

∣∣∣∣ [A,B, J][A,C, I]
[A,B, I][A,C, J]

∣∣∣∣
= cr(B,C|I, J)A

The last line follows from I ∼ J and A,B,C ∈ R3 because this implies that the absolute value of
the cross ratio is 1. It follows that ln

(
crϕ (b, c | i, j){a}

)
= ln (cr(B,C|I, J)A).
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5. Towards Euclidean Geometry

Corollary 5.9 (Perpendicularity)
Let ϕ be a Euclidean phirotope on E with the special indices i, j ∈ E . Let a, b, c ∈ E r {i, j}.
The angle ^a(b, c) is a right angle, if and only if

crϕ (b, c | i, j){a} = −1.

We also say that the lines ab and ac are perpendicular.

Definition 5.10 (Co-circularity)
Let ϕ be a Euclidean phirotope on E with the special indices i, j ∈ E . Let a, b, c, d ∈ E r {i, j}.
If and only if

crϕ (a, c | b, d){j} = crϕ (a, c | b, d){i} 6∈ {0,∞,κ},

we say that a, b, c, and d are co-circular.

Lemma 5.11 (Co-circularity)
If the phirotope in the Definition 5.10 is realisable and A, B, C, D, I and J are the points of
the realisation that correspond to the indices mentioned in that definition, then A, B, C and
D are co-circular.

Proof. The four points A, B, C, and D are co-circular, if and only if cr(A,C|B,D)J =
cr(A,C|B,D)I. With the Lemma 5.4 the claim follows.

Definition 5.12 (Comparison of lengths)
Let ϕ be a Euclidean phirotope on E with the special indices i, j ∈ E . Let a, b, c ∈ E r {i, j}
such that ϕ(a, b, c) 6= 0. If and only if

crϕ (a, c | i, j){b} = crϕ (b, a | i, j){c} 6∈ {0,∞,κ},

we say that the lengths |a, b| and |a, c| are equal.

Lemma 5.13 (Comparison of lengths)
If the phirotope in the Definition 5.12 is realisable and A, B, C, I and J are the points of the
realisation that correspond to the indices mentioned in that definition, then

|A,B| = |A,C| .
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5.2. Euclidean properties and theorems

Proof. It holds true that |A,B| = |A,C|, if and only if cr(A,C|I, J)B = cr(B,A|I, J)C . (This
corresponds to the angles ^B(A,C) and ^C(B,A) being equal, cf. Lemma 5.6. Thus, A, B, and
C form an isosceles triangle.) The Lemma 5.4 yields the claim.

Definition 5.14 (Parallelism)
Let ϕ be a Euclidean phirotope on E with the special indices i, j ∈ E . Let a, b, x, y ∈ Er{i, j}.
If and only if

ϕ(a, b, i) · ϕ(x, y, j) = ϕ(a, b, j) · ϕ(x, y, i) 6= 0,

we say that the lines ab and xy are parallel.

Lemma 5.15 (Parallelism)
If the phirotope in the Definition 5.14 is realisable and A, B, X, Y , I and J are the points of
the realisation that correspond to the indices mentioned in that definition, then the lines AB
and XY are parallel.

Proof. In RP2, the three lines spanned by A and B, X and Y , and I and J, respectively, are
concurrent, if and only if

[A,B, I][X,Y, J] = [A,B, J][X,Y, I].

Multiplying this with [B,X,J]
[B,X,I] and rearranging terms, this is equivalent to

cr(A,X|I, J)B = cr(Y,B|I, J)X .

Applying the Lemma 5.4 yields the claim.

With this list of properties, we can state and prove some theorems of Euclidean geometry.
Below, Krummeck, and Richter-Gebert already proved Miquel’s theorem in terms of phirotopes
(cf. [BKR03]) – although they did not use Euclidean phirotopes for this. The theorem of Miquel
holds true for all phirotopes, not only for Euclidean ones. They also showed that the circular
Pappus’ theorem does not hold true for phirotopes.
For theorems on Euclidean phirotopes, we start by proving a simple theorem:
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5. Towards Euclidean Geometry

a b

cd

θ

Figure 5.1.: Schematic representation of the Lemma 5.16. The angle θ is also a right angle, as
the proof shows.

Lemma 5.16
Let ϕ be a Euclidean phirotope on E with the special indices i, j ∈ E . If for some indices
a, b, c, d ∈ E r {i, j} it holds true that the following pairs of lines are perpendicular:

ab ⊥ bc, bc ⊥ cd, cd ⊥ ad,

then also the two lines cd and ad are perpendicular.

Proof. As ϕ is Euclidean, we can express the perpendicularities as follows:

ab ⊥ bc : ϕ(b, a, i) · ϕ(b, c, j) = −ϕ(b, a, j) · ϕ(b, c, i),

bc ⊥ cd : ϕ(c, b, i) · ϕ(c, d, j) = −ϕ(c, b, j) · ϕ(c, d, i),

cd ⊥ ad : ϕ(d, c, i) · ϕ(d, a, j) = −ϕ(d, c, j) · ϕ(d, a, i).

Multiplying all equations and cancelling terms that appear on both sides yields

ϕ(b, a, i) · ϕ(d, a, j) = −ϕ(b, a, j) · ϕ(d, a, i)

⇐⇒ ϕ(a, b, i) · ϕ(a, d, j) = −ϕ(a, b, j) · ϕ(a, d, i)

crϕ (b, d | i, j){a} = −1.

Thus, the lines ab and ad are also perpendicular.

Similarly, we can transfer real binomial proofs as for example listed in [CRG95] to phirotopes.
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5.2. Euclidean properties and theorems

A

C

D

B

Figure 5.2.: Schematic representation of the Theorem of Thales, see Lemma 5.17

Lemma 5.17 (Theorem of Thales)
Let ϕ be a Euclidean phirotope on E with the special indices i, j ∈ E . If for some indices
a, b, c, d ∈ E r {i, j} it holds true that ac ⊥ ad and bc ⊥ bd, then a, b, c, and d are co-circular.

A schematic representation of the Theorem of Thales can be found in the Figure 5.2.

Proof. From the perpendicularity requirements we obtain:

ac ⊥ ad : ϕ(a, c, i) · ϕ(a, d, j) =− ϕ(a, c, j) · ϕ(a, d, i),

bd ⊥ bc : ϕ(b, c, j) · ϕ(b, d, i) =− ϕ(b, c, i) · ϕ(b, d, j).

Multiplying both equations and rearranging the terms yields:

crϕ (a, b | c, d){i} = crϕ (a, b | c, d){j} .

Thus, a, b, c, and d are co-circular.

The fact that we can measure angles allows us to prove theorems about angles much like we
are used to.

Lemma 5.18 (Sum of angles of a triangle)
Let ϕ be a Euclidean phirotope on E with the special indices i, j ∈ E . For every triple of
indices a, b, c ∈ E r {i, j}, it holds true that

^a(b, c) + ^b(c, a) + ^c(a, b) ≡ 0 mod π.

Proof.
(^a(b, c) + ^b(c, a) + ^c(a, b)) mod π

= 1
2i
(
ln
(
crϕ (b, c | i, j){a}

)
+ ln

(
crϕ (c, a | i, j){b}

)
+ ln

(
crϕ (a, b | i, j){c}

))
mod π

= 1
2i ln (1) mod π

= 0 mod π.
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5. Towards Euclidean Geometry

Figure 5.3.: The theorem of 24 wine bottles in a box.

The next theorem that we want to prove using Euclidean phirotopes is best understood by
considering the construction given in the Figure 5.3. We stack wine bottles of equal radii into
a box such that in the lowermost row there are three bottles, on top of that four, then again
three and so on. After having inserted 24 bottles into the box, we notice that onto the top three
bottles we can put a plank that rests on all three bottles. Mathematically, we formulate this as
follows:

Theorem 5.19 (Bottles theorem)
Consider the configuration given in the Figure 5.3. It consists of 13 rhombi that all have
the same side length ς and 8 isosceles triangles whose legs also have length ς. If the points
A,B,C and D,M, T and G,P,W are collinear respectively, then so are the points X,Y, Z.

Proof. We will prove this theorem using phirotopes. Consider the Euclidean phirotope ϕ on
E = {a, b, . . . , z, i, j} with special indices i, and j. Each index corresponds to the vertex with the
same but upper case label.
The assumptions of the theorem are the following: There are 8 isosceles triangles. This

implies that certain angles are the same. Exemplarily, consider the isosceles triangle A,B,E
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with base A,B. It holds true that ^A(B,E) = ^B(E,A). For the phirotope, this means that
crϕ (b, e | i, j){a} = crϕ (e, a | i, j){b}. The isosceles triangles are

triangle 4ABE 4BCF 4GPL 4PWS 4ZY V 4Y XU 4TMQ 4MDH

base A,B B,C G,P P,W Z, Y Y,X T,M M,D

Furthermore, there are 13 rhombi. They also imply that certain angles are equal. For example
the rhombus ♦AEHD implies that ^A(ED) = ^H(DE), ^D(AH) = ^E(HA), and that
^A(DE) + ^D(HA) = 180◦. Thus,

crϕ (e, d | i, j){a} = crϕ (d, e | i, j){h}
crϕ (a, h | i, j){d} = crϕ (h, a | i, j){e}
crϕ (e, d | i, j){a} · crϕ (a, d | i, j){d} = 1

As can also read off the Figure 5.3, the rhombi of the configuration are

♦QUXT ♦RV Y U ♦SWZV

♦NRUQ ♦OSV R

♦HMNQ ♦KORN ♦LPSO

♦EKNH ♦FLOK

♦AEHD ♦BFKE ♦CGLF

And finally, there are three collinearities: (A,B,C), (D,M, T ), and (G,P,W ), which gives
ϕ(a, b, c) = 0, ϕ(d,m, t) = 0, and ϕ(g, p, w) = 0. Our goal is to deduce that also ϕ(x, y, z) = 0.

To simplify the calculations, we assign names to some cross ratios:

α := crϕ (e, d | i, j){a} , β := crϕ (b, e | i, j){a} , γ := crϕ (g, f | i, j){c} ,

δ := crϕ (f, e | i, j){b} , ε := crϕ (h,m | i, j){d} , η := crϕ (p, l | i, j){g} .

The sum of angles in a triangle is 180◦. Thus,

4ABE ⇒ crϕ (e, a | i, j){b} = β and crϕ (a, b | i, j){e} = β−2,

4MDH ⇒ crϕ (d, h | i, j){m} = ε and crϕ (m, d | i, j){h} = ε−2,

4GPL ⇒ crϕ (l, g | i, j){p} = η and crϕ (g, p | i, j){l} = η−2.

From ϕ(a, b, c) = 0 and with the Grassmann-Plücker relation (b, a | b, c, i, j) it follows that
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crϕ (a, c | i, j)b = 1. Thus,

crϕ (e, a | i, j)b · crϕ (f, e | i, j)b · crϕ (c, f | i, j)b = 1,

⇒ crϕ (c, f | i, j){b} = β−1δ−1.

In the isosceles triangle 4BCF we obtain:

4BCF ⇒ crϕ (f, b | i, j){c} = β−1δ−1 and crϕ (b, c | i, j){f} = β2δ2.

The relationship of angles in a rhombus gives:

♦AEHD :

⇒ crϕ (d, e | i, j){h} = α, crϕ (a, h | i, j){d} = α−1, and crϕ (h, a | i, j){e} = α−1.

♦BFKE

⇒ crϕ (e, f | i, j){k} = δ, crϕ (b, k | i, j){e} = δ−1, and crϕ (k, b | i, j){f} = δ−1.

♦CGLF

⇒ crϕ (f, g | i, j){l} = γ, crϕ (c, l | i, j){f} = γ−1, and crϕ (l, c | i, j){g} = γ−1.

Around one vertex, the angles add up to 360◦ which can be seen in terms of phirotopes by the
fact that all cross ratios cancel. As an example, we show this for vertex E:

crϕ (a, b | i, j){e} · crϕ (b, k | i, j){e} · crϕ (k, h | i, j){e} · crϕ (h, a | i, j){e} = 1

Thus,
crϕ (k, h | i, j){e} = αβ2δ.

The same argument applied to F gives crϕ (l, k | i, j){f} = β−2γδ−1.
By applying the same arguments to every rhombus, triangle or angles around one vertex, we

propagate the information through the configuration. Finally, we arrive at

crϕ (x, u | i, j){y} = β−1ε−1η−1,

crϕ (u, v | i, j){y} = δ−1ε2η2,

crϕ (v, z | i, j){y} = βδε−1η−1.

By multiplying all these, we obtain

crϕ (x, z | i, j){y} = crϕ (x, u | i, j){y} · crϕ (u, v | i, j){y} · crϕ (v, z | i, j){y} = 1.
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Thus, in the Grassmann-Plücker relation (y, x | y, z, i, j), we obtain

ϕ(x, y, z) · ϕ(y, i, j) ∈ {−1, 0,+1}. (5.13)

As ϕ is a Euclidean phirotope, it can be reoriented such that ϕ\{i,j} is a chirotope and ϕ(x, y, z) is
real. Cross ratios – and thus all our calculations so far – are invariant under reorientation. Thus,
(5.13) has to hold true for all reorientations, and as ϕ(y, i, j) 6= 0 it follows that ϕ(x, y, z) = 0.

5.3. Open problem: Extending chirotopes to Euclidean
phirotopes

The following question is still open: Which rank-3 chirotopes can be extended to Euclidean
phirotopes? The question is trivial, of course, for realisable chirotopes. By adding the points I

and J to the realisation and then determining the phirotope of the extended configuration, the
chirotope has been extended to a (realisable) Euclidean phirotope.

If all Euclidean phirotopes were realisable, then only realisable chirotopes were extendible to
Euclidean phirotopes. There are, however, non-realisable Euclidean phirotopes. The following
Example 5.20 constructs such a phirotope.

Example 5.20 To construct a non-realisable Euclidean phirotope, we start by considering
the rank-3 vector configuration V = (A,B,C,D,E, I, J) ⊂ RP2 with

A =


0
0
1

 , B =


1
0
1

 , C =


0
2
1

 , D =


1
1
1

 , E =


4
3
1

 .

The phirotope ϕV of this configuration is Euclidean. Its image consists of
(7

3
)

= 35 values. Its
domain is {a, b, c, d, e, i, j}3, where we assume that the index a corresponds to the point A
and so on. We obtain a non-realisable phirotope ϕ′ by perturbing ϕV as follows:

ϕ′(λ) =


ω(det(A,E, I) + 0.1), if λ = (a, e, i),

ω(det(A,E, J) + 0.1), if λ = (a, e, j),

ϕV (λ), else.

We check the non-violation of the 5 ·
(7

5
)

= 105 Grassmann-Plücker relations with the help of
the Cinderella program depicted in the Appendix D. The perturbation yields a Euclidean
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phirotope, as

ϕ(a, e, j) = ω(det(A,E, J) + 0.1) = ω(det(A,E, I) + 0.1) = ϕ(a, e, i).

Furthermore, ϕ′ is not realisable, as every five-point condition that contains exactly one of the
terms ϕ(a, e, i) or ϕ(a, e, j) does not yield zero: If in the five-point condition all but one terms
are fixed, then also the last one is fixed. Thus, the perturbation of ϕ(a, e, i) and ϕ(a, e, j)
results in the five-point condition not being satisfied any more.

The perturbation in the above example is chosen relatively small in order not to violate the
phirotope axiom (ϕ2), that is, in order not to obviously violate the Grassmann-Plücker relations.
A bigger perturbation – although not violating the non-realisability and the Euclideaness, if
applied symmetrically to ϕ(a, e, i) and ϕ(a, e, j) – might yield a structure that is no longer a
phirotope.

So far we have only encountered chirotopes that can be extended to Euclidean phirotopes. The
question whether all chirotopes can be extended to Euclidean phirotopes has yet to be answered.
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1 2 3

4 5 6

9 8 7

Figure 6.1.: The theorem of Pappus.

The theorem of Pappus (cf. Figure 6.1) gives rise to the smallest non-realisable uniform oriented
matroid in rank 3. The non-realisable arrangement is obtained by perturbing all collinearities. It
was found by Ringel (cf. [Rin56]), and Grünbaum conjectured in [Grü72] that it is indeed the
smallest instance. Later, Goodmann and Pollack proved this conjecture (cf. [GP80]).

The theorem of Pappus is a good starting point for producing non-realisable oriented matroids.
Perturbing one collinearity is already enough to obtain a (not uniform) non-realisable oriented
matroid.

When dealing with non-chirotopal complex oriented matroids, the realisability can be decided
using the five-point condition. Thus, exactly one of the two following cases has to be true: Either,
the theorem of Pappus can be proven using the five-point condition, as the theorem of Pappus
holds true for all realisable phirotopes, or, the theorem of Pappus holds true for all non-chirotopal
phirotopes irrespective of their realisability. This would mean that already the phirotope axioms
and the non-chirotopality force the theorem of Pappus to hold true. In fact, the second case is
true: the theorem of Pappus holds true for all non-chirotopal phirotopes and it is impossible to
prove the theorem of Pappus using the five-point condition.
In the course of this chapter we will see that neither the theorem of Pappus nor that of

Desargues can be used to construct non-realisable non-chirotopal phirotopes. Both of them
always hold true for non-chirotopal phirotopes – regardless of realisability. The absence of
configurations that stem from a perturbed theorem of Pappus is the reason for this chapter’s
name, which is to be taken with a pinch of salt.
For the proofs in this chapter, we will use bi-quadratic final polynomials. Final polynomials

91



6. Why Phirotopes are Boring

were introduced in [BG87], [BS87], and [BRS90]. Dress, Sturmfels, and Whiteley independently
pointed out that every non-realisable (real) oriented matroid has a final polynomial that proves its
non-realisability (cf. [BS89] and [Whi91]). Much effort was made to construct final polynomials
algorithmically and in that course, Bokowski and Richter-Gebert in [BR90] introduced bi-
quadratic final polynomials, a class of final polynomials that can be computed very efficiently
(cf. [RG92b], [RG93], [FMNRG09]).

We start the chapter by extending the Lemma 4.5 to non-uniform phirotopes:

Lemma 6.1
Let ϕ be a rank-3 phirotope on E with a, b, c, d, e, f ∈ E . If crϕ (a, b | c, d){f} = ±1 and
crϕ (a, b | c, e){f} = ±1, then all cross ratio phases on the indices a, b, c, d, and e seen from
{f} are real, 0, or ∞.

Proof. Let crϕ (a, b | c, d){f} = ±1. Thus, it holds true that

ϕ(f, a, c)ϕ(f, b, d) = ±ϕ(f, a, d)ϕ(f, b, c). (6.1)

Consider the Grassmann-Plücker relation (f, a | f, b, c, d) for which there are r1, r2, r3 ∈ R+ such
that

r1 · ϕ(f, a, b)ϕ(f, c, d)− r2 · ϕ(f, a, c)ϕ(f, b, d) + r3 · ϕ(f, a, d)ϕ(f, b, c) = 0.

The Equation 6.1 yields that for this to hold true, the first term ϕ(f, a, b)ϕ(f, c, d) has to be
zero, or equal to ±ϕ(f, a, c)ϕ(f, b, d) (and ±ϕ(f, a, d)ϕ(f, b, c)). Thus, it holds true that

crϕ (π(a), π(b) |π(c), π(d)){f} ∈ {−1, 0,+1,∞} ∀π ∈ S4.

The same holds true for all crϕ (π(a), π(b) |π(c), π(e)){f} which is also equal to ±1 according to
the assumption of the lemma. By dividing

±1 = crϕ (a, b | c, d){f} : crϕ (a, b | c, e){f} = crϕ (a, b | e, d){f}

we furthermore obtain that

crϕ (π(a), π(b) |π(d), π(e)){f} ∈ {−1, 0,+1,∞} ∀π ∈ S4.

With this, we are ready to state the main theorem of this chapter.
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Theorem 6.2
There is no non-chirotopal non-Pappus phirotope.

The proof of this theorem has the following structure: We will prove that if exactly eight of the
nine collinearities of the theorem of Pappus are present in a phirotope, then it is chirotopal. (If
all nine collinearities are present, then the phirotope can be non-chirotopal. For an example of
concrete coordinates see Appendix F.)
To prove this, we will use bi-quadratic final polynomials to deduce from the given eight

collinearities equations that contain the term that in a realisable setting would be the ninth
collinearity.
Then we will see how this already forces many cross ratio phases to be real. In the last step,

we will show that indeed all cross ratio phases are real (or contain a term which is zero) and,
thus, the phirotope is chirotopal. This is done by an exhaustive enumeration of all cross ratio
phases in Mathematica.

Proof of Theorem 6.2. Consider the non-chirotopal phirotope ϕ on E = [9] that has the same
combinatorics as the point configuration given in Figure 6.1, but assume that it does not have
the non-base {7, 8, 9}: We collect all non-bases in the set K,

K =
{

(1, 2, 3), (1, 5, 9), (1, 6, 8), (2, 4, 9), (2, 6, 7), (3, 4, 8), (3, 5, 7), (4, 5, 6)
}
,

and assume

ϕ(λ) = 0 ⇔ λ ∈ K.

The first part of the proof will be to show that all cross ratio phases that contain the three
indices 7, 8, and 9 and are viewed from one of the indices 7, 8, or 9 are real valued or contain
a zero term. The eight given collinearities cause Grassmann-Plücker relations to contract. For
example, as ϕ(1, 2, 3) = 0, according to the Lemma 4.14 it holds true that

ϕ(1, 2, 4)ϕ(1, 3, 7) = ϕ(1, 2, 7)ϕ(1, 3, 4). (6.2)

This means that the cross ratio phase crϕ (2, 3 | 4, 7){1} is real valued and non-zero. In fact, with
the same argument we obtain that

crϕ (b, c |x, y){a} ∈ Rr {0} (6.3)

for all pairwise different a, b, c, x, y ∈ [9] such that ϕ(a, b, c) = 0. Note that interchanging two
indices that form a pair (for example b and c) will yield the reciprocal of the cross ratio phase.
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6. Why Phirotopes are Boring

This is real if and only if the cross ratio phase we started with was real. Up to such interchanges
there are

8 · 3 ·
(

6
2

)
− 3 · 6− 3 = 339

different cross ratio phases: 8 is the number of collinearities (a, b, c) that we have postulated, 3 is
the number of possibilities for choosing the index that appears in every index triple,

(6
2
)
is the

number of pairs of the remaining 6 indices that can be chosen for x and y. However, we double
counted some cross ratio phases: in the Grassmann-Plücker relation the first term might consist
of two collinearities. For example, in the Grassmann-Plücker relation

ϕ(1, 2, 3)ϕ(1, 6, 8)− ϕ(1, 2, 6)ϕ(1, 3, 8) + ϕ(1, 2, 8)ϕ(1, 3, 6)

both ϕ(1, 2, 3) and ϕ(1, 6, 8) equal zero. Each of the indices in [6] is involved in 3 collinearities
(thus we have to subtract 6 · 3), each of the indices in {7, 8, 9} is involved in two collinearities
(thus we further subtract 3).

We now use bi-quadratic final polynomials to derive cross ratio phases containing ϕ(7, 8, 9).
Note that all non-bases yield equalities, similar to the Equation 6.2:

ϕ(1, 2, 3) = 0 ⇒ ϕ(1, 2, 7)ϕ(1, 3, 4) = ϕ(1, 2, 4)ϕ(1, 3, 7),

ϕ(1, 5, 9) = 0 ⇒ ϕ(1, 5, 7)ϕ(1, 9, 4) = ϕ(1, 4, 5)ϕ(1, 7, 9),

ϕ(1, 6, 8) = 0 ⇒ ϕ(1, 4, 6)ϕ(1, 7, 8) = ϕ(1, 6, 7)ϕ(1, 8, 4),

ϕ(2, 4, 9) = 0 ⇒ ϕ(1, 2, 4)ϕ(4, 7, 9) = ϕ(1, 9, 4)ϕ(2, 4, 7),

ϕ(2, 6, 7) = 0 ⇒ ϕ(1, 6, 7)ϕ(2, 4, 7) = ϕ(1, 2, 7)ϕ(6, 4, 7),

ϕ(3, 4, 8) = 0 ⇒ ϕ(1, 4, 8)ϕ(3, 4, 7) = ϕ(1, 3, 4)ϕ(8, 4, 7),

ϕ(3, 5, 7) = 0 ⇒ ϕ(1, 3, 7)ϕ(5, 4, 7) = ϕ(1, 5, 7)ϕ(3, 4, 7),

ϕ(4, 5, 6) = 0 ⇒ ϕ(1, 4, 5)ϕ(6, 4, 7) = ϕ(1, 4, 6)ϕ(5, 4, 7).

These Grassmann-Plücker relations were generated by the indices 1, 4, and 7 and that of the
respective collinearity. Multiplying all left sides and all right sides and cancelling out terms that
appear on both sides yields:

ϕ(1, 7, 8)ϕ(4, 7, 9) = ϕ(1, 7, 9)ϕ(4, 8, 7) (6.4)

Thus, also the cross ratio phase crϕ (1, 4 | 8, 9){7} is real valued.

With the same method we can in principle deduce all cross ratio phases of the forms
crϕ (x, y | 8, 9){7}, crϕ (x, y | 9, 7){8}, and crϕ (x, y | 7, 8){9}. The total number of cross ratio phases
of the these forms is 3 · 13 = 39, as for each index 7, 8, and 9, all but two pairs of indices from [6]
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Figure 6.2.: The generators of the automorphism group of the examined configuration that leave
the index 7 invariant.

can be chosen as x and y (two pairs each form a collinearity with the respective index 7, 8, or 9).
To shorten the proof, we exploit the symmetry of the theorem of Pappus: The theorem of Pappus
is completely symmetrical in the indices 7, 8, and 9. Thus, it suffices to find bi-quadratic final
polynomials viewed from 7. There are automorphisms of the configuration that leave the position
of the index 7 invariant, see Figure 6.2. Note that the second generator of the automorphism
group of the theorem of Pappus that leaves the index 7 invariant interchanges the indices 8 and
9. Interchanging indices within a pair in the cross ratio phase can be neglected as it yields the
reciprocal but does not have any influence on the imaginary part of the value of the cross ratio
phase. Then, the following pairs of indices have bi-quadratic final polynomials that are equivalent
with respect to the symmetry:

(1, 2) ∼ (1, 3) ∼ (4, 5) ∼ (4, 6), (1, 5) ∼ (1, 6) ∼ (2, 4) ∼ (3, 4),

(2, 3) ∼ (5, 6), (2, 5) ∼ (3, 6),

(1, 4), (2, 6) ∼ (3, 5).

Thus, it suffices to find bi-quadratic final polynomials for only one of each of these six equivalence
classes to guarantee that all bi-quadratic final polynomials can be found. We have listed six such
bi-quadratic final polynomials in the Appendix G.

In the second step of the proof, we use the cross ratio phases that were proven to be real with
bi-quadratic final polynomials to argue that further cross ratio phases have to be real:
If we consider the Grassmann-Plücker relation (1, 7 | 4, 7, 8, 9), we know that there are r1, r2,
r3 ∈ R+ such that

r1 · ϕ(1, 7, 4, )ϕ(7, 8, 9) + r2 · ϕ(1, 7, 8)ϕ(4, 7, 9)− r3 · ϕ(1, 7, 9)ϕ(4, 7, 8) = 0.

Applying the Equation 6.4 we know that the last two terms have opposing phases. We have
assumed that we do not have more than eight zeros in the image of the phirotope. Therefore, the
phase of the term ϕ(1, 7, 4, )ϕ(7, 8, 9) has to be one of the two phases in order not to obviously
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6. Why Phirotopes are Boring

violate the Grassmann-Plücker relation. Hence, it holds true that

ϕ(7, 8, 9) = ±ϕ(1, 7, 8)ϕ(4, 7, 9)
ϕ(1, 4, 7) (6.5)

and, thus, the cross ratio phase crϕ (1, 9 | 8, 4){7} is real valued and non-zero. Note that while
multiplying degenerate Grassmann-Plücker relations in order to obtain new ones is a linear
operation, the deduction that gave the Equation 6.5 is not.
The third step was done by an exhaustive search in Mathematica (cf. Appendix H or https:

//www-m10.ma.tum.de/users/schaar/No_Non-Pappus_Phirotope.nb): From the cross ratio
phases that are now known to be real, we can deduce all remaining cross ratio phases that do not
contain a zero with a bi-quadratic final polynomial. This is a contradiction to the assumption
that ϕ is chirotopal and, thus, the set {7, 8, 9} cannot be a basis.

1

2

3

0

45

6
7

8

9

Figure 6.3.: The theorem of Desargues.

Theorem 6.3
There is no non-chirotopal non-Desargues phirotope.

Proof. A perturbation of the theorem of Desargues (cf. Figure 6.3) is only possible if the phirotope
is chirotopal. The proof works similarly to the proof of the Theorem 6.2:
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Firstly, we collect all cross ratios that are known to be real as they stem from Grassmann-
Plücker relations that consist of only two terms (the last one contains a collinearity).
Secondly, we generate further cross ratios that are known to be real by linearly combining cross
ratios of the first step.
Thirdly, we examine those cross ratios from the second step whose numerators and denominators
are two terms of a Grassmann-Plücker relation that does not contain a zero. Up to a minus, the
last term of this Grassmann-Plücker relation then has to have the same phase as the numerator
or denominator and, thus, we obtain two new cross ratios both of which are real.
Fourthly, we linearly combine all cross ratios that are now known to be real and obtain a larger
set of real cross ratios.

While the proof for the theorem of Pappus was already complete at this step as all cross ratios
have been proven to be real, the theorem of Desargues needs another iteration of the process:
An exhaustive search in Mathematica shows that not all cross ratios can be generated by a
linear combination yet. So we again perform the third step and obtain new cross ratios that are
known to be real due to the interaction of a cross ratio that is already known to be real and a
Grassmann-Plücker relation that contains the numerator and denominator of this cross ratio but
no zero.
Finally, another exhaustive search in Mathematica proves that now all cross ratios are real as
the remaining ones can be generated by a linear combination of real cross ratios.

The Mathematica code corresponding to this proof can be found in the Appendix H or down-
loaded here: https://www-m10.ma.tum.de/users/schaar/No_Non-Pappus_Phirotope.nb.

Note that while the Theorems 6.2 and 6.3 make a statement about non-bases that have to
be present in a phirotope, it might still be the case that a phirotope exhibits all non-bases of
the theorem of Pappus but is not realisable. This happens, if in a uniform minor the five-point
condition is violated. The structure that is only concerned with the bases and non-bases of a
phirotope is the “underlying matroid”.

Definition 6.4 (Underlying matroid)
Let ϕ be a rank-d phirotope on E . The functionMϕ : Ed → {0, 1}

Mϕ(λ) =

0, if ϕ(λ) = 0,

1, else.

defines a matroid on E which is called the underlying matroid of ϕ.

The Theorems 6.2 and 6.3 showed that we are facing major obstacles when trying to perturb
incidence theorems. With the help of bi-quadratic final polynomial, we have proven that the
phirotopes of at least two incidence theorems cannot be perturbed in such a way that the
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6. Why Phirotopes are Boring

result is still a phirotope. However, incidence theorems are the main source of non-realisable
configurations. This leads us to the following conjecture.

Conjecture
If a (non-realisable) matroid admits a bi-quadratic final polynomial, then this matroid cannot
be the underlying matroid of a non-chirotopal phirotope.

The next step would be to examine the matroid Ω−14 from [RG96], a non-realisable matroid that
does not admit a bi-quadratic final polynomial. We speculate that one would nevertheless be
able to find a non-chirotopal phirotope that has Ω−14 as underlying matroid. Thus, our stronger
conjecture is the following.

Conjecture
The underlying matroids of non-chirotopal phirotopes are realisable.
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7.1. Pseudolines

Figure 7.1.: The pseudoline arrangement used in the logo of the Chair of Geometry and Visuali-
sation at the Technical University of Munich.

In (real) oriented matroid theory, pseudolines play an important role. With the help of
pseudolines, it is possible to visualise even non-realisable oriented matroids of rank 3. For
example, the logo of the chair at which this thesis is created is a pseudoline arrangement, see
Figure 7.1. It depicts the smallest non-realisable rank-3 oriented matroid, namely the perturbed
configuration of the theorem of Pappus.

Up until now, we have lacked a similar way of visualising (non-realisable) phirotopes. The
main reason for that is – yet again – the non-discrete range of phirotopes. The range of
chirotopes, {−1, 0,+1}, can (roughly speaking) be transferred to “left” and “right” relations in
pseudoline arrangements. For phirotopes, a similar arrangement would furthermore need to carry
information about the phases. Furthermore, a pseudoline arrangement is stretchable, if and only
if the corresponding chirotope is realisable. It would be desirable if the equivalent of pseudoline
arrangements for phirotopes also exhibited this property.
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7.2. Geometric interpretation of the five-point condition

The five-point condition is a sum over products of phirotope values. In the realisable case,
the phirotope values are the phases of determinants of points with complex coordinates. In
rank 2, consider the phase of the determinant of two arbitrary points A,B ∈ CP1. W.l.o.g., let
A =

(
a, 1

)T
and B =

(
b, 1

)T
with a, b ∈ C. Then, it holds true that

ω(det(A,B)) = a− b
|a− b|

,

which can be thought of as the direction from the complex point a to the complex point b. We
understand that multiplying two complex numbers corresponds to adding their phases. So the
products of phirotope values might be interpreted as the sum of all angles of the directions of
the vectors pointing from one complex point to the next. Furthermore, we visualise adding or
subtracting two complex numbers as concatenating the vectors that represent these numbers.

Up until now, however, we have not been able to fit all these interpretations into one general
picture. Thus, we are still looking for a geometric interpretation of the five-point condition.

7.3. Singularities in the space of phirotopes

It is an open problem to further investigate the relationship between chirotopal phirotopes and
non-chirotopal phirotopes. We have seen that chirotopes are phirotopes. In fact, chirotopes can
be considered singularities in the space of phirotopes. It is a common effect that in singular
situations structures become ambiguous. The intersection of two lines, for example, is exactly
one point – except for the case in which the two lines coincide. Likewise, the realisations of
non-chirotopal phirotopes are rigid while the realisations of chirotopal phirotopes are not.

Often, the relation of the singularity and the ambient space is worth a close examination. An
example of this is given by quadrilateral sets. Six points on a common line form a quadrilateral
set, if they are the projection of the six intersections of four lines, see Figure 7.2. A limit process

Figure 7.2.: A quadrilateral set obtained by parallelly projecting the six points of intersection of
four lines onto another line.
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in which we let the four lines converge will yield one line on which there are six points. A

Figure 7.3.: If the four generating lines of a quadrilateral set are almost the same, we are close
to a singular situation.

natural question to ask is the following: Consider six points on a line. Is there a limit process as
described above such that these six points are the limit? This question is old and for details
the reader is referred to [RG11]. The answer can also be found in said reference: Six points
A,B,C,D,E, F ∈ RP1 form a quadrilateral set, if their coordinates satisfy

[A,E][B,F ][C,D] = [A,F ][B,D][C,E].

The questions that concern us in the context of phirotopes are the following:

• Is there a limit process that transforms phirotopes into chirotopes?

• Is there a characterisation of chirotopes that are the limit of this process?

• Which properties are invariant under taking the limit in this sense? Can we use phirotopes
and limit processes to further investigate chirotopes?

7.4. More on incidence theorems on phirotopes and on the
five-point condition

Since the findings in the Chapter 6 were intriguing, we would like to acquire a deeper under-
standing of the subject matter. Rather than having an exhaustive enumeration programmed in
Mathematica, we would prefer a readable proof that would help us gain further insights. The
most important questions here are:

• Why is it not possible to bend the lines that are subject of the theorems of Pappus and
Desargues?

• Are there incidence theorems that do not always hold true on the level of phirotopes? Do
configurations exist that contain all collinearities that are the requirements of an incidence
theorem but lack the one that corresponds to the conclusion? Or are all incidence theorems
on phirotopes always true?
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• The five-point condition guarantees realisability of non-chirotopal phirotopes. With the
results from Chapter 6 it seems that the phirotope axioms themselves already exclude a lot
of configurations that might have been non-realisable. Loosely speaking, after violating the
Grassmann-Plücker relations, violating an incidence theorem is the next naive thing one
could try to construct a non-realisable phirotope. This calls for further investigations of
the five-point condition. Why is it able to filter out the non-realisable phirotopes of the
“not naively non-realisable” (that is to say: all) phirotopes?

• With the help of an answer to the last point: can we (further) reduce and simplify the
five-point condition?

Of course, we would also be very interested in proofs or counterexamples for the two conjectures
that were already presented in the Chapter 6:

Conjecture
If a (non-realisable) matroid admits a bi-quadratic final polynomial, then this matroid cannot
be the underlying matroid of a non-chirotopal phirotope.

Conjecture
The underlying matroids of non-chirotopal phirotopes are realisable.
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A. Example of a Non-Realisable Uniform Rank-2 Phirotope

A. Example of a Non-Realisable Uniform Rank-2 Phirotope

A B

C

D

E

Re

Im

0 1 2 3 4

2

1

3

Figure A.4.: The configuration that is used as a starting point to construct a non-realisable
phirotope.

As a starting point, we use the configuration given in the Figure A.4. This yields the following
phirotope:

ϕ(a, b) = −1,

ϕ(a, c) = −i, ϕ(b, c) = 1√
5

(1− 2i),

ϕ(a, d) = 1√
2

(−1− i), ϕ(b, d) = −i,

ϕ(a, e) = 1
5(−4− 3i), ϕ(b, e) = 1√

2
(−1− i),

ϕ(c, d) = 1√
2

(−1 + i),

ϕ(c, e) = 1√
17

(−4− i), ϕ(d, e) = 1√
13

(−3− 2i).

We perturb this sightly to obtain a new phirotope ϕ′ on {a, b, c, d, e} which is

ϕ′(x, y) =


1
5(−4− 3i), if (x, y) = (d, e)

ϕ(x, y), else.

To see that this is still a phirotope, consider all Grassmann-Plücker relations, in which ϕ′(d, e)
occurs:

105



(a | b, d, e):

15 ·
(
ϕ(a, b) · ϕ′(d, e)

)
− 25 · (ϕ(a, d) · ϕ(b, e)) + 20 · (ϕ(a, e) · ϕ(b, d)) = 0,

(a | c, d, e):

19
√

2 ·
(
ϕ(a, c) · ϕ′(d, e)

)
− 5
√

17 · (ϕ(a, d) · ϕ(c, e))

+27 · (ϕ(a, e) · ϕ(c, d)) = 0,

(b | c, d, e):

4
√

5 ·
(
ϕ(b, c) · ϕ′(d, e)

)
−
√

17 · (ϕ(b, d) · ϕ(c, e)) + 7 · (ϕ(b, e) · ϕ(c, d)) = 0.

As all factors are positive, the phirotope axiom (ϕ2) is satisfied. The five-point condition, however,
will not yield zero (but approximately 0.11− 0.04i).

106



In [1]: from sympy import *

In [2]: ab, ac, ad, ae, af, bc, bd, be, bf, cd, ce, cf = symbols('ab ac ad ae af 
bc bd be bf cd ce cf')

In [3]: t= Matrix([ac*bc,ab*bc,ab*ac])
s= Matrix([cf,bf,af])
f= Matrix([ce,be,ae])
v= Matrix([cd,bd,ad])

In [4]: a= t.row_join(f).row_join(v)
c= t.row_join(s).row_join(v)
e= t.row_join(s).row_join(f)
A= a.det()
C= c.det()
E= e.det()

In [5]: b= Matrix([cd*ce*ab,bd*be*ac,ad*ae*bc]).row_join(f). row_join(v)
B= b.det()
d= Matrix([cd*cf*ab,bd*bf*ac,ad*af*bc]).row_join(s). row_join(v)
D= d.det()
f= Matrix([ce*cf*ab,be*bf*ac,ae*af*bc]).row_join(s). row_join(f)
F= f.det()

In [6]: B = -B
D = -D
F = -F

In [7]: U= ad*be*bf*af-ae*bd*bf*af
V= ae*be*bd*af-ad*ae*be*bf
W= bd*ad*ae*bf-ad*bd*be*af

In [8]: X= ab*ae*bf-ab*be*af
Y= ab*bd*af-ab*ad*bf 
Z= ad*ab*be-bd*ab*ae

In [9]: factor(-A*C*F*W-A*D*E*V- A*D*F*Z-B*D*E*X-B*C*E*U-B*C *F*Y)

Out[9]: 0

B. Verifying Dependencies in the Five-Point Condition with Python (Equation 4.12)

B. Verifying Dependencies in the Five-Point Condition with
Python (Equation 4.12)
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In [1]: from sympy import *

In [2]: ab, ac, ad, ae, af, bc, bd, be, bf, cd, ce, cf = symbols('ab ac ad ae af 
bc bd be bf cd ce cf')

In [3]: t= Matrix([ac*bc,ab*bc,ab*ac])
s= Matrix([cf,bf,af])
f= Matrix([ce,be,ae])
v= Matrix([cd,bd,ad])

In [4]: a= t.row_join(f).row_join(v)
c= t.row_join(s).row_join(v)
e= t.row_join(s).row_join(f)
A= a.det()
C= c.det()
E= e.det()

In [5]: b= Matrix([cd*ce*ab,bd*be*ac,ad*ae*bc]).row_join(f). row_join(v)
B= b.det()
d= Matrix([cd*cf*ab,bd*bf*ac,ad*af*bc]).row_join(s). row_join(v)
D= d.det()
f= Matrix([ce*cf*ab,be*bf*ac,ae*af*bc]).row_join(s). row_join(f)
F= f.det()

In [6]: B = -B
D = -D
F = -F

In [7]: de=B/A
df=D/C
ef=F/E

In [8]: U= ad*be*bf*af-ae*bd*bf*af
V= ae*be*bd*af-ad*ae*be*bf
W= bd*ad*ae*bf-ad*bd*be*af

In [9]: X= ab*ae*bf-ab*be*af
Y= ab*bd*af-ab*ad*bf 
Z= ad*ab*be-bd*ab*ae

In [10]: factor(U*de+V*df+W*ef+X*de*df+Y*de*ef+Z*df*ef)

Out[10]: 0

C. Verifying Dependencies in the Five-Point Condition with
Python (Equation 4.13)
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D. Example of a Non-Realisable Euclidean Phirotope

D. Example of a Non-Realisable Euclidean Phirotope

The following CindyScript code generates a non-realisable Euclidean phirotope and checks that
all requirements are fulfilled. The program was written in Cinderella.2 (version 2.8). Syntax
highlighting was done with CindyScriptPygments by von Gagern (cf. [vG16]).

Slot “Initialization”:

//generation of all quintuples used in GPRs

n=7;

list=[];

apply(1..n,aa,

rest=(1..n--[aa]);

apply(1..(n-4),bb,

apply((bb+1)..(n-3),cc,

apply((cc+1)..(n-1),dd,

apply((dd+1)..(n-1),ee,

list=list++[[aa,rest_bb,rest_cc,rest_dd,rest_ee]];

);

);

);

);

);

Permut=[[1,2,3,4],[1,2,4,3],[1,3,2,4],[1,3,4,2],[1,4,2,3], [1,4,3,2],

[2,1,3,4],[2,1,4,3],[2,3,1,4],[3,1,2,4], [3,1,4,2],[3,2,1,4]];

Slot “Draw”:

//functions used to determine the signum of a permtation

sgn(s):=if(s~=0,0,if(s<0,-1,1));

mom=apply(1..n,(1,#,#^2));

sig(a,b,c):=sgn(det(mom_a,mom_b,mom_c));

//function to draw the terms of GPRs

ph(v):=if(v~=0,0,v/|v|)*.3;

//start configuration, the points k and l are I and J,

//respectively.

a=(0,0,1);
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b=(1,0,1);

c=(0,2,1);

d=(1,1,1);

e=(4,3,1);

k=(-i,1,0);

l=(i,1,0);

pts=(a,b,c,d,e,k,l);

//perturbation of the phirotope values [1,5,6] and [1,5,7]

ind=triples(1..n);

pert=[];

apply(ind,pert:#=0);

pert:[1,5,6]=0.1;

pert:[1,5,7]=0.1;

//function that evaluates all phirotope values

phval(i,j,k):=ph(pert:(sort([i,j,k]))+det(pts_(sort([i,j,k]))))*sig(i,j,k);

//the routine good determines whether all GPRs are not violated

good(a,b,c):=(

s=sort([a,b,c],|#|);

erg=false;

a=s_1/s_3;

b=s_2/s_3;

c=1;

if(a~=0,

if(b/|b|~=-c/|c|,erg=true),

if((im(a)~!=0) % (im(b)~!=0),

det=det((gauss(a)++[1],gauss(b)++[1],gauss(c)++[1]));

dd1=det((gauss(a),gauss(b)));

dd2=det((gauss(b),gauss(c)));

dd3=det((gauss(c),gauss(a)));

if(dd1*det~>0 & dd2*det~>0 & dd3*det~>0 ,erg=true),

if((re(a)<0)%(re(b)<0),erg=true)

);

);

if(erg==false,println("no phirotope"));
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D. Example of a Non-Realisable Euclidean Phirotope

erg

);

//functions that draws the terms of the GPRs on the canvas

drawgp(a,b,c,d,e):=(

l1=phval(a,b,c)*phval(a,d,e);

l2=-phval(a,b,d)*phval(a,c,e);

l3=phval(a,b,e)*phval(a,c,d);

col=if(good(l1,l2,l3),(0,1,0),(1,0,0));

draw((0,0),gauss(ph(l1)));

draw((0,0),gauss(ph(l2)));

draw((0,0),gauss(ph(l3)));

draw(gauss(ph(l1)),size->2,color->col);

draw(gauss(ph(l2)),size->2,color->col);

draw(gauss(ph(l3)),size->2,color->col);

drawtext((-.4,-.7),a+":"+""+b+""+c+""+d+""+e,size->7);

);

drawgp(l):=drawgp(l_1,l_2,l_3,l_4,l_5);

break=sqrt(length(list))*1.4;

scale(1/break*20);

x=0;

y=0;

apply(list,

translate((x,y));

drawgp(#);

translate((-x,-y));

x=x+1;

if(x>break,

x=0;y=y+1.2

);

);

//generation of the terms of the five-point formula

xi(a,b,c,d,e):=(

phval(a,b,c)^2* phval(b,c,d)^2* phval(c,d,e)^2* phval(d,e,a)^2* phval(e,a,b)^2;

);
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Quint=[];

forall(pairs(1..7),p,

Quint=append(Quint,1..7--p);

);

real=0;

pf=0;

E=[[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]];

//check if the five-point formula yields zero

forall(Quint,L,

repeat(length(Permut),i,

per=Permut_i;

s=det([E_(per_1),E_(per_2),E_(per_3),E_(per_4),E_5]);

pf=pf+ s* xi(L_(per_1),L_(per_2),L_(per_3),L_(per_4),L_5);

);

if(pf~!=0,real=real+1);

);

if(real==0,println("realisable"),println("non-realisable"));

//check if the phirotope is still chirotopal

chiro=0;

forall((2,3,4),p,

forall((2,3,4),q,

d1=phval(1,5,6)*phval(p,q,6)/(phval(1,q,6)*phval(p,5,6));

d2=phval(1,5,7)*phval(p,q,7)/(phval(1,q,7)*phval(p,5,7));

if(d1!=conjugate(d2),chiro=chiro+1);

);

);

if(chiro==0,println("chirotopal"),println("non-chirotopal"));
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E. Reconstruction of the Cross Ratio from Cross Ratio Phases

Table E.1.: Different ways to construct the cross ratio values out of the phirotope values
Used formulae Result for cr(A,B|C,D)

(5.6) & (5.8)

(
1− crϕ (a, c | b, d)2

)
· crϕ (a, b | c, d)2

crϕ (a, b | c, d)2 − crϕ (a, c | b, d)2

(5.6) & (5.9)
crϕ (a, b | c, d)2 ·

(
crϕ (a, c | d, b)2 − 1

)
crϕ (a, b | c, d)2 · crϕ (a, c | d, b)2 − 1

(5.6) & (5.10)
crϕ (a, b | c, d)2 · crϕ (a, d | b, c)2 − 1

crϕ (a, d | b, c)2 − 1

(5.6) & (5.11)
crϕ (a, d | c, b)2 − crϕ (a, b | c, d)2

crϕ (a, d | c, b)2 − 1

(5.7) & (5.8)
crϕ (a, c | b, d)2 − 1

crϕ (a, b | d, c)2 · crϕ (a, c | b, d)2 − 1

(5.7) & (5.9)
− crϕ (a, c | d, b)2 + 1

crϕ (a, b | d, c)2 − crϕ (a, c | d, b)2

(5.7) & (5.10)
crϕ (a, d | b, c)2 − crϕ (a, b | d, c)2

crϕ (a, b | d, c)2 ·
(
crϕ (a, d | b, c)2 − 1

)

(5.7) & (5.11)
crϕ (a, b | d, c)2 · crϕ (a, d | c, b)2 − 1

crϕ (a, b | d, c)2 ·
(
crϕ (a, d | c, b)2 − 1

)

(5.8) & (5.10)
crϕ (a, c | b, d)2 − 1
crϕ (a, d | b, c)2 − 1

(5.8) & (5.11)
crϕ (a, d | c, b)2 ·

(
−crϕ (a, c | b, d)2 + 1

)
crϕ (a, d | c, b)2 − 1

(5.9) & (5.10)
− crϕ (a, c | d, b)2 + 1

crϕ (a, c | d, b)2 ·
(
crϕ (a, d | b, c)2 − 1

)

(5.9) & (5.11)
crϕ (a, d | c, b)2 ·

(
crϕ (a, c | d, b)2 − 1

)
crϕ (a, c | d, b)2 ·

(
crϕ (a, d | c, b)2 − 1

)
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F. Example of a Non-Chirotopal Pappus’ Configuration

A
B

C

D E F

T S R

Figure F.5.: The theorem of Pappus.

A non-chirotopal Pappos’ configuration is, for example, given by the following coordinates:

A =


1
0
0

 , B =


i
2
0

 , C =


0
1
0

 ,

D =


1
1
1

 , E =


i
i
1

 , F =


0
0
1

 ,

R =


i

2
1

 , S =


1
0
1

 , T =


−1 + i
−2i
−2

 .

The combinatorics of this configuration can also be read off Figure F.5. The configuration is
clearly non-chirotopal. For example, the phase of the cross ratio

ω (cr(C, S|E,F )A) = −i

is not real.
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G. Bi-Quadratic Final Polynomials for the Theorem of Pappus

G. Bi-Quadratic Final Polynomials for the Theorem of Pappus

Bi-quadratic final polynomial for crϕ (8, 9 | 1, 2){7}

ϕ(1, 2, 3) = 0 ⇒ ϕ(1, 2, 5)ϕ(1, 3, 4) = ϕ(1, 2, 4)ϕ(1, 3, 5)

ϕ(2, 4, 9) = 0 ⇒ −ϕ(9, 2, 7)ϕ(4, 1, 2) = ϕ(9, 1, 2)ϕ(4, 7, 2)

ϕ(1, 5, 9) = 0 ⇒ −ϕ(1, 2, 9)ϕ(1, 5, 7) = ϕ(1, 2, 5)ϕ(1, 7, 9)

ϕ(3, 4, 8) = 0 ⇒ −ϕ(4, 6, 3)ϕ(4, 8, 1) = ϕ(4, 1, 3)ϕ(4, 6, 8)

ϕ(3, 5, 7) = 0 ⇒ −ϕ(5, 1, 3)ϕ(5, 6, 7) = ϕ(5, 6, 3)ϕ(5, 7, 1)

ϕ(1, 6, 8) = 0 ⇒ −ϕ(8, 1, 7)ϕ(8, 4, 6) = ϕ(8, 1, 4)ϕ(8, 6, 7)

ϕ(2, 6, 7) = 0 ⇒ −ϕ(7, 2, 4)ϕ(7, 8, 6) = ϕ(7, 4, 6)ϕ(7, 8, 2)

ϕ(4, 5, 6) = 0 ⇒ ϕ(6, 3, 5)ϕ(6, 7, 4) = ϕ(6, 3, 4)ϕ(6, 7, 5)

⇒ ϕ(7, 8, 1)ϕ(7, 9, 2) = ϕ(7, 8, 2)ϕ(7, 9, 1)

Bi-quadratic final polynomial for crϕ (8, 9 | 2, 3){7}

ϕ(1, 2, 3) = 0 ⇒ ϕ(1, 2, 5)ϕ(1, 3, 8) = ϕ(1, 2, 8)ϕ(1, 3, 5)

ϕ(1, 5, 9) = 0 ⇒ ϕ(9, 2, 5)ϕ(1, 5, 7) = ϕ(1, 2, 5)ϕ(9, 5, 7)

ϕ(2, 6, 7) = 0 ⇒ −ϕ(1, 2, 8)ϕ(1, 6, 7) = ϕ(1, 2, 6)ϕ(1, 7, 8)

ϕ(2, 6, 7) = 0 ⇒ −ϕ(6, 1, 2)ϕ(6, 7, 4) = ϕ(6, 2, 4)ϕ(6, 7, 1)

ϕ(2, 6, 7) = 0 ⇒ −ϕ(7, 2, 4)ϕ(7, 8, 6) = ϕ(7, 4, 6)ϕ(7, 8, 2)

ϕ(3, 5, 7) = 0 ⇒ −ϕ(5, 1, 3)ϕ(5, 7, 4) = ϕ(5, 3, 4)ϕ(5, 7, 1)

ϕ(3, 4, 8) = 0 ⇒ ϕ(8, 1, 4)ϕ(8, 3, 7) = ϕ(8, 1, 3)ϕ(8, 4, 7)

ϕ(1, 6, 8) = 0 ⇒ −ϕ(8, 1, 7)ϕ(8, 4, 6) = ϕ(8, 1, 4)ϕ(8, 6, 7)

ϕ(4, 5, 6) = 0 ⇒ ϕ(5, 3, 4)ϕ(6, 2, 4) = ϕ(5, 2, 4)ϕ(6, 3, 4)

ϕ(2, 4, 9) = 0 ⇒ ϕ(9, 2, 7)ϕ(4, 5, 2) = ϕ(9, 2, 5)ϕ(4, 7, 2)

ϕ(3, 5, 7) = 0 ⇒ −ϕ(7, 3, 4)ϕ(7, 9, 5) = ϕ(7, 4, 5)ϕ(7, 9, 3)

ϕ(3, 4, 8) = 0 ⇒ ϕ(4, 6, 3)ϕ(4, 7, 8) = ϕ(4, 6, 8)ϕ(4, 7, 3)

⇒ ϕ(7, 8, 2)ϕ(7, 9, 3) = ϕ(7, 8, 3)ϕ(7, 9, 2)
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Bi-quadratic final polynomial for crϕ (8, 9 | 1, 4){7}

ϕ(1, 2, 3) = 0 ⇒ ϕ(1, 2, 7)ϕ(1, 3, 4) = ϕ(1, 2, 4)ϕ(1, 3, 7)

ϕ(2, 6, 7) = 0 ⇒ −ϕ(7, 1, 6)ϕ(7, 2, 4) = ϕ(7, 1, 2)ϕ(7, 4, 6)

ϕ(2, 4, 9) = 0 ⇒ −ϕ(4, 1, 2)ϕ(4, 7, 9) = ϕ(4, 7, 2)ϕ(4, 9, 1)

ϕ(3, 5, 7) = 0 ⇒ −ϕ(7, 1, 3)ϕ(7, 4, 5) = ϕ(7, 1, 5)ϕ(7, 3, 4)

ϕ(3, 4, 8) = 0 ⇒ −ϕ(4, 7, 3)ϕ(4, 8, 1) = ϕ(4, 1, 3)ϕ(4, 7, 8)

ϕ(4, 5, 6) = 0 ⇒ ϕ(6, 1, 5)ϕ(6, 7, 4) = ϕ(6, 1, 4)ϕ(6, 7, 5)

ϕ(1, 5, 9) = 0 ⇒ −ϕ(1, 4, 9)ϕ(1, 5, 7) = ϕ(1, 4, 5)ϕ(1, 7, 9)

ϕ(1, 6, 8) = 0 ⇒ −ϕ(1, 4, 6)ϕ(1, 7, 8) = ϕ(1, 4, 8)ϕ(1, 6, 7)

ϕ(4, 5, 6) = 0 ⇒ ϕ(5, 6, 7)ϕ(5, 1, 4) = ϕ(5, 7, 4)ϕ(5, 6, 1)

⇒ ϕ(7, 8, 1)ϕ(7, 9, 4) = ϕ(7, 8, 4)ϕ(7, 9, 1)

Bi-quadratic final polynomial for crϕ (8, 9 | 1, 5){7}:

ϕ(1, 2, 3) = 0 ⇒ ϕ(1, 2, 8)ϕ(1, 3, 4) = ϕ(1, 2, 4)ϕ(1, 3, 8)

ϕ(2, 4, 9) = 0 ⇒ −ϕ(9, 2, 5)ϕ(4, 1, 2) = ϕ(9, 1, 2)ϕ(4, 5, 2)

ϕ(2, 6, 7) = 0 ⇒ −ϕ(6, 2, 5)ϕ(6, 7, 1) = ϕ(6, 1, 2)ϕ(6, 7, 5)

ϕ(1, 5, 9) = 0 ⇒ −ϕ(9, 1, 2)ϕ(9, 5, 7) = ϕ(9, 1, 7)ϕ(9, 2, 5)

ϕ(2, 6, 7) = 0 ⇒ −ϕ(1, 2, 6)ϕ(1, 7, 8) = ϕ(1, 2, 8)ϕ(1, 6, 7)

ϕ(3, 4, 8) = 0 ⇒ ϕ(8, 1, 3)ϕ(8, 4, 7) = ϕ(8, 1, 4)ϕ(8, 3, 7)

ϕ(3, 4, 8) = 0 ⇒ −ϕ(4, 7, 3)ϕ(4, 8, 1) = ϕ(4, 1, 3)ϕ(4, 7, 8)

ϕ(4, 5, 6) = 0 ⇒ ϕ(5, 2, 4)ϕ(5, 6, 7) = ϕ(5, 6, 2)ϕ(5, 7, 4)

ϕ(3, 5, 7) = 0 ⇒ −ϕ(7, 4, 5)ϕ(7, 8, 3) = ϕ(7, 3, 4)ϕ(7, 8, 5)

⇒ ϕ(7, 8, 1)ϕ(7, 9, 5) = ϕ(7, 8, 5)ϕ(7, 9, 1)
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Bi-quadratic final polynomial for crϕ (8, 9 | 2, 5){7}:

ϕ(1, 2, 3) = 0 ⇒ ϕ(1, 2, 8)ϕ(1, 3, 5) = ϕ(1, 2, 5)ϕ(1, 3, 8)

ϕ(2, 6, 7) = 0 ⇒ −ϕ(6, 2, 4)ϕ(6, 7, 1) = ϕ(6, 1, 2)ϕ(6, 7, 4)

ϕ(1, 6, 8) = 0 ⇒ −ϕ(1, 2, 6)ϕ(1, 7, 8) = ϕ(1, 2, 8)ϕ(1, 6, 7)

ϕ(1, 6, 8) = 0 ⇒ −ϕ(8, 1, 4)ϕ(8, 6, 7) = ϕ(8, 1, 7)ϕ(8, 4, 6)

ϕ(1, 5, 9) = 0 ⇒ ϕ(1, 2, 5)ϕ(9, 5, 7) = ϕ(1, 5, 7)ϕ(9, 2, 5)

ϕ(3, 5, 7) = 0 ⇒ −ϕ(5, 3, 4)ϕ(5, 7, 1) = ϕ(5, 1, 3)ϕ(5, 7, 4)

ϕ(3, 4, 8) = 0 ⇒ ϕ(8, 1, 3)ϕ(8, 4, 7) = ϕ(8, 1, 4)ϕ(8, 3, 7)

ϕ(3, 4, 8) = 0 ⇒ ϕ(4, 6, 8)ϕ(4, 7, 3) = ϕ(4, 6, 3)ϕ(4, 7, 8)

ϕ(4, 5, 6) = 0 ⇒ ϕ(5, 2, 4)ϕ(6, 3, 4) = ϕ(5, 3, 4)ϕ(6, 2, 4)

ϕ(2, 4, 9) = 0 ⇒ ϕ(9, 2, 5)ϕ(9, 4, 7) = ϕ(9, 2, 7)ϕ(9, 4, 5)

ϕ(2, 4, 9) = 0 ⇒ ϕ(4, 5, 9)ϕ(4, 7, 2) = ϕ(4, 5, 2)ϕ(4, 7, 9)

ϕ(2, 6, 7) = 0 ⇒ −ϕ(7, 4, 6)ϕ(7, 8, 2) = ϕ(7, 2, 4)ϕ(7, 8, 6)

ϕ(3, 5, 7) = 0 ⇒ −ϕ(7, 4, 5)ϕ(7, 8, 3) = ϕ(7, 3, 4)ϕ(7, 8, 5)

⇒ ϕ(7, 8, 2)ϕ(7, 9, 5) = ϕ(7, 8, 5)ϕ(7, 9, 2)

Bi-quadratic final polynomial for crϕ (8, 9 | 2, 6){7}:

ϕ(2, 6, 7) = 0 ⇒ ϕ(7, 1, 6)ϕ(7, 8, 2) = ϕ(7, 1, 2)ϕ(7, 8, 6)

ϕ(2, 6, 7) = 0 ⇒ ϕ(7, 1, 2)ϕ(7, 9, 6) = ϕ(7, 1, 6)ϕ(7, 9, 2)

⇒ ϕ(7, 8, 2)ϕ(7, 9, 6) = ϕ(7, 8, 6)ϕ(7, 9, 2)
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H. Proofs of the Theorems of Pappus and Desargues

This Mathematica program can also be downloaded here: https://www-m10.ma.tum.de/users/

schaar/No_Non-Pappus_Phirotope.nb.

(* This program proves that the theorems of Pappus and Desargues are always

true for phirotopes.

This is done by showing that if some cross ratios are real, one can deduce

that the rest of the cross ratios are also real.

The cross ratios that are known to be real at the beginning are the ones

that can be deduced from a Grassmann-Plücker relation (G PR ) which contains

a zero term.

Sets of five elements are stored to keep track of the cross ratios

that are already known to be real. Each set corresponds to one cross

ratio (a nd one GPR ) which is generated from the set by the function CR

(o r pl, for the GPR ) . *)

(* Input Cell *)

Clear[Coll, n, Conclusion];

n = 10; (* number of points of incidence theorem *)

(* insert collinearities of prerequisite of incidence theorem into Coll.

The points must be numbered 1,...,n *)

(* for Pappus use n=9 and

Coll = Map[Sort,{{1,2,3}, {1,8,6}, {1,9,5}, {2,9,4}, {2,7,6}, {3,8,4},

{3,7,5}, {4,5,6}}]; *)

(* for Desargues use n=10 and *)

Coll = Map[Sort, {{1,2,7}, {1,3,8}, {1,4,10}, {2,9,3}, {2,5,10},

{3,6,10}, {4,7,5}, {4,8,6}, {5,6,9}}];

(* insert collinearity of conclusion here *)

Conclusion = Sort[{7, 8, 9}];

(* gerenation of the set of all bases *)
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H. Proofs of the Theorems of Pappus and Desargues

Clear[Bases, pl, inQ, gpSets, setsForRows];

Bases = Complement[Subsets[Range[n], {3}], Coll];

(* the function pl[{x_,a_,b_,c_,d_}] generates the sets that are part

of the GPR (x ,a|x,b,c,d ) *)

pl[{x_ , a_ , b_ , c_ , d_ }] := {{x, a, b}, {x, c, d}, {x, a, c}, {x, b, d},

{x, a, d}, {x, b, c}};

(* gerenation of the list setsForRows that contains all sets of five

points that have a GPR (a ccording to pl ) , which contains at least one

zero term. Those correspond to real cross ratios. *)

inQ[l_ ] := (Length[Intersection[Map[Sort, pl[l]], Coll]] >= 1);

gpSets = Join @@ (Map[Table[RotateRight[# , k], {k, 0, 4}] &,

Subsets[Range[n], {5}]]);

setsForRows = Cases[gpSets, _?inQ];

Clear[collPos, fuse, signList, entrySign];

(* position of collinearity in g-p-realtion *)

collPos[p_ ] := FirstPosition[Map[Sort, p], Intersection[Coll,

Map[Sort, p]][[1]]][[1]];

fuse[{a_ , b_ , c_ , d_ , e_ , 0}] := {1, 1, -1, -1, 0, 0};

fuse[{a_ , b_ , c_ , d_ , 0, f_ }] := {1, 1, -1, -1, 0, 0};

fuse[{a_ , b_ , c_ , 0, e_ , f_ }] := {-1, -1, 0, 0, 1, 1};

fuse[{a_ , b_ , 0, d_ , e_ , f_ }] := {-1, -1, 0, 0, 1, 1};

fuse[{a_ , 0, c_ , d_ , e_ , f_ }] := {0, 0, 1, 1, -1, -1};

fuse[{0, b_ , c_ , d_ , e_ , f_ }] := {0, 0, 1, 1, -1, -1};

(* signList generates a list that contains the signs of the logarithm

of the terms in the GPR *)

signList[p_ ] := fuse[ReplacePart[Map[Signature, p], collPos[p] -> 0]];

(* entrySign generates a vector of length Length[Bases] that assigns

to each basis its sign the logarithm of the GPR p_ *)

entrySign[p_ , b_ ] :=If[FirstPosition[Map[Sort, # ], b][[1]] == "NotFound",

0, signList[# ][[FirstPosition[Map[Sort, # ], b][[1]]]]] &[pl[p]];
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(* the matrix M contains the logarithmic representation of all GPRs

with one zero term *)

Clear[M];

M = Table[entrySign[setsForRows[[k]], Bases[[l]]],

{k, 1, Length[setsForRows]}, {l, 1, Length[Bases]}];

Clear[collPos2, signList2, entrySign2];

(* collPos2 position of the collinearity including ’Conclusion’ in the GPR *)

collPos2[p_ ] := FirstPosition[Map[Sort, p],

Intersection[Join[Coll, {Conclusion}], Map[Sort, p]][[1]]][[1]];

signList2[p_ ] := fuse[ReplacePart[Map[Signature, p], collPos2[p] -> 0]];

(* entrySign2 generates vectors of the signs of logarithms for GPRs

that also contain the sequence ’Conclusion’ *)

entrySign2[p_ , b_ ] := If[FirstPosition[Map[Sort, # ], b][[1]] == "NotFound",

0, signList2[# ][[FirstPosition[Map[Sort, # ], b][[1]]]]] &[pl[p]];

(* tests is the set of all GPRs on the set Join[Conlusion,{x,y}] for all

x,y in the indexset. *)

Clear[tests];

tests = Join @@ Table[Map[Join[RotateRight[Conclusion, k], # ] &,

Subsets[Complement[Range[n], Conclusion], {2}]], {k, 1, 3}];

(* in NewGPR all GPRs that can be obtained by a linear combination of GPRs

in ’setsForRows’ are stored. If Length[NewGPR][Equal]Length[tests],

then all are can be obtained by a linear combination and are thus real.

Then the proof is complete already at this step *)

(* If the theorem of Pappus is examined, this will complete the proof.

The theorem of Desargues needs another iteration of linearly combining

cross ratios and applying non-linear arugmentation steps *)

Clear[isinSpan, NewGPR];

isinSpan[p_ , M_ ] := (MatrixRank[M] == MatrixRank[Append[M,

Table[entrySign2[p, Bases[[k]]], {k, 1, Length[Bases]}]]]);

NewGPR = Cases[tests, _?(isinSpan[# , M] &)];
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H. Proofs of the Theorems of Pappus and Desargues

Length[NewGPR] == Length[tests]

Out[]= False

(* To all GPRs in NewGPR, we apply the non-linear argumentation step (l ast

term has to point in one of the directions of the previous two ) .

We build a new, bigger matrix Nonl that contains the signs of the

logarithms of the cross ratios that are now known to be real. The

function CR is designed in a way such that it contains exactly the

cross ratio obtained by the non-linear argument *)

Clear[CR, fuseCr, entrySignCr, Nonl];

CR[p_ ] := {{p[[1]], p[[2]], p[[3]]}, {p[[1]], p[[4]], p[[5]]},

{p[[1]], p[[2]], p[[5]]}, {p[[1]], p[[3]], p[[4]]}};

fuseCr[p_ ] := {+1, +1, -1, -1};

entrySignCr[p_ , b_ ] := If[FirstPosition[Map[Sort, # ], b][[1]] == "NotFound",

0, fuseCr[# ][[FirstPosition[Map[Sort, # ], b][[1]]]]] &[CR[p]];

Nonl = Join[M, Table[entrySignCr[k, Bases[[l]]], {k, NewGPR},

{l, 1, Length[Bases]}]];

(* now we generate ALL possible cross ratios, that do not contain a 0, and

their corresponding logarithmic rows *)

Clear[noColl, AllCR, testCr];

(* test whether some term of the cross ratio of the input is zero *)

noColl[l_ ] := (Length[Intersection[Map[Sort, CR[l]], Coll]] == 0);

(* AllCR generates the list of the sets whose cross ratio (C R[.] ) contain

the same elements as the input but for which we have to check

separately if they are real. If the cross ratios of all three sets are

real, then all cross ratios on these elements are real. *)

AllCR[{a_ , b_ , c_ , d_ , e_ }] := {{a, b, c, d, e}, {a, b, c, e, d},

{a, b, d, c, e}};

(* testCr contains cross ratios of which one has to test whether or not

they are real/in the span of ’Nonl’. *)

testCr = Cases[Join @@ Table[AllCR[k], {k, gpSets}], _?noColl];

(* search all the cross ratios that are still not in the Span of Nonl.
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If WhatIsLeft is empty [Rule] all are in the Span *)

(* As this iterates over all cross ratios that might still be real or

non-real, the evaluation of this cell might take a while *)

Clear[WhatIsLeft];

isinSpan[p_ , Nonl] := (MatrixRank[Nonl] == MatrixRank[Append[Nonl,

Table[entrySignCr[p, Bases[[k]]], {k, 1, Length[Bases]}]]]);

WhatIsLeft = DeleteCases[testCr, _?(isinSpan[# , Nonl] &)];

(* Test whether there is one non-linear argumentation step such that the

cross ratios in WhatIsLeft can be deduced *)

Clear[NonlinearStepReach, Reachable, nonReachable];

NonlinearStepReach[x_ ] := (isinSpan[AllCR[x][[2]], Nonl] ||

isinSpan[AllCR[x][[3]], Nonl]);

Reachable = Cases[WhatIsLeft, _?NonlinearStepReach];

nonReachable = Complement[WhatIsLeft, Reachable];

(* now append the logarithms of the signs of all the cross ratios that

are reachable by one nonlinear argumentation step (a nd which are thus

real ) to the matrix *)

Clear[Nonl2];

Nonl2 = Join[Nonl, Table[entrySignCr[k, Bases[[l]]], {k, Reachable},

{l, 1, Length[Bases]}]];

(* Test if now all still remaining cross ratios can also be deduced

and are thus real. If only ’True’ is obtained [Rule] they do. *)

DeleteDuplicates[Table[MatrixRank[Nonl2] == MatrixRank[ Append[Nonl2,

Table[entrySignCr[l, Bases[[k]]], {k, 1, Length[Bases]}]]],

{l, nonReachable}]]

Out[]= {True}
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