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Abstract

River water-level time series at fixed geographical locations, so-called virtual stations, have been

computed from single altimeter crossings for many years. Their temporal resolution is limited by the

repeat cycle of the individual altimetry missions. The combination of all altimetry measurements

along a river enables computing a water-level time series with improved temporal and spatial

resolutions. This study uses the geostatistical method of spatio-temporal ordinary kriging to link

multi-mission altimetry data along the Mekong River. The required covariance models reflecting

the water flow are estimated based on empirical covariance values between altimetry observations

at various locations. In this study, two covariance models are developed and tested in the case of the

Mekong River: a stationary and a non-stationary covariance model. The proposed approach predicts

water-level time series at different locations along the Mekong River with a temporal resolution of

five days. Validation is performed against in situ data from four gauging stations, yielding RMS

differences between 0.82 and 1.29 m and squared correlation coefficients between 0.89 and 0.94.

Both models produce comparable results when used for combining data from Envisat, Jason-1,

and SARAL for the time period between 2002 and 2015. The quality of the predicted time series

turns out to be robust against a possibly decreasing availability of altimetry mission data. This

demonstrates that our method is able to close the data gap between the end of the Envisat and

the launch of the SARAL mission with interpolated time series.

Keywords: Spatio-temporal ordinary kriging; Inland altimetry; Mekong River; Stochastic space-time

processes; Covariance models along river; Non-stationary covariance models

∗Deutsches Geodätisches Forschungsinstitut, Technische Universität München, Arcisstr. 21, D-80333 Munich, email:
eva.boergens@tum.de
†Center for Mathematical Sciences, Technische Universität München, Boltzmannstr. 3, D-85748 Garching, email:

sven.buhl@tum.de

1



1 Introduction

Describing and modelling the global water cycle relies on the knowledge of water levels of inland water

bodies such as rivers, lakes and wetlands. To detect long-term changes in surface water storage, a dense

(in space and time) network of monitoring stations is required. However, the number of global in situ

measurements of gauges has been declining since the 1980s [Global Runoff Data Center (GRDC),

2013].

In the last two decades, many studies have shown the great potential of satellite altimetry for

measuring water-level time series of larger inland water bodies worldwide to close the data gap of in

situ observations [e.g. Birkett, 1995, 1998, Berry, 2006, De Oliveira Campos et al., 2001, Schwatke

et al., 2015b]. Especially in the last few years, the accuracy of inland altimetryobservations and their

availability for even smaller targets have improved [e.g. Maillard et al., 2015, Boergens et al., 2016]. The

accuracy has reached a few centimetres for lakes and a few dozens of centimetres for rivers [Schwatke

et al., 2015b]. The onset of SAR altimetry on Cryosat-2 has proven valuable for the observation of

small lakes and rivers with high accuracy [Nielsen et al., 2015, Villadsen et al., 2015].

Today, many inland altimetry time series are publicly available through five operational databases:

the Database for Hydrological Time Series over Inland Water (DAHITI), developed by the Deutsches

Geodaetisches Forschungsinstitut der Technischen Universitaet Muenchen (DGFI-TUM) [Schwatke

et al., 2015b]; Hydroweb, developed by the Laboratoire d’Etudes en Geophysique et Oceanographie

Spatiales (LEGOS) [Crétaux et al., 2011]; the River and Lake database, provided by the European

Space Agency (ESA) [Berry et al., 1997]; the Global Reservoir and Lake Monitor (GRLM), maintained

by the Foreign Agricultural Service of the United States Department of Agriculture (USDA) [Birkett

et al., 2011] and the Altimetry for Inland Water (AltWater) by the Technical University of Denmark

[Nielsen et al., 2015], which incorporates only Cryosat-2 data so far.

Over lakes and reservoirs, it is often possible to link different altimeter missions and passes into

one multi-mission multi-pass time series [e.g. Schwatke et al., 2015b, Calmant et al., 2008]. This is

possible based on the assumption that the water level of a lake above the geoid remains constant in

space. This is true because the water surface forms an equipotential surface if no other effects such

as winds or currents are present. By combining different altimetry passes and missions, the temporal

resolution of the water-level time series is increased, depending on the number of passes over the water

body. Without multi-mission and multi-pass altimetry, the temporal resolution is restricted to 35 days

for ERS-1 and 2, Envisat and SARAL measurements, and 10 days for Topex/Poseidon and Jason
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missions.

Combining altimetry measurements along rivers cannot follow the same approach as that over

lakes, as the water surface is not equipotential along the course of the river. The slope of the river, as

well as the water flow along the river, hinders the combination of different observations. Besides, slope

and flow velocity might change rapidly over the course of the river. Along rivers, an additional problem

is spatial resolution. The locations with available altimetry data do not cover the river consistently due

to the meanders of the river; some reaches are measured densely, whereas others are not measured at

all. Tourian et al. [2016] attempted to combine such measurements by estimating flow times between

different time series along the Po River. For the estimation of flow velocity or flow time, additional

information on the river dynamics is required, since flow velocity is not only changing over the course

of the river but also over time, depending on the water level. A different approach for data combination

is to assimilate altimetry-derived water levels into hydrological river models [Michailovsky et al., 2013].

In this study, we propose another way of linking altimetry measurements along rivers in order to

estimate multi-mission time series for any location of the river with a temporal resolution of a few

days. The river flow is described by spatial and temporal statistical dependencies using covariances

in spatio-temporal ordinary kriging. The key element of the methodology is the modelling of the

dependencies in space and time. We test two spatio-temporal covariance models on the Mekong River:

a separable stationary spatio-temporal product covariance model and a non-stationary spatio-temporal

covariance model. The estimated covariances are then input in an ordinary spatio-temporal kriging

algorithm, which combines the different altimetric measurements along the Mekong River. The main

advantage of spatio-temporal kriging for combining multi-mission altimetry data is that it can be used

to interpolate water-level time series at any given point in space and time. Another advantage is its

stability against erroneous measurements.

Ordinary kriging was originally developed in a spatial context by Krige [1952]. It is an interpolation

method based on the covariances between the measurement locations and the location to predict.

Spatial and spatio-temporal ordinary kriging have been widely applied in recent years [e.g. Cressie

and Wikle, 2011, Gräler et al., 2011]. Various authors use spatio-temporal kriging for different sets of

observations, for example, to predict soil moisture in Heuvelink et al. [1997] or Snepvangers et al. [2003],

as well as top-kriging for river flow [Skøien and Blöschl, 2007]. Yoon et al. [2013] used spatio-temporal

kriging to interpolate synthetic SWOT data along the Tennessee River.

In order to apply the kriging method, it is necessary to know the statistical dependencies between
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the measurements; the dependencies are modelled with covariances. There are various models for

describing spatio-temporal covariances, which have been published with different objectives and ap-

plications suitable for different data [e.g. De Iaco et al., 2001, De Cesare et al., 2001, Heuvelink et al.,

1997, Snepvangers et al., 2003, Gräler et al., 2011]. Rouhani and Myers [1990] has already investigated

the problems of modelling spatio-temporal covariances of geohydrological data. Moreover, Cressie and

Wikle [2011] summarised a wide variety of spatio-temporal covariance models, including the product

model, which separates space and time.

In all the aforementioned covariance models, the spatial locations are points on a 2D plane and the

covariance function depends on the Euclidean distance between two points. However, in order to model

covariances along river networks appropriately, it is important to incorporate both the river distance

and the Euclidean distance. Due to river meandering, two river locations can be close in terms of their

Euclidean distance, but be far apart along the river; thus, the hydrological conditions would differ.

Ver Hoef et al. [2006] and Ver Hoef and Peterson [2010] introduced non-stationary covariance models

for rivers based on the river distance. However, completely disposing of the Euclidean distance can

lead to a loss of information. Asadi et al. [2015] tackled this problem with a mixed covariance model

of river and Euclidean distances. Nevertheless, the temporal component was not taken into account

in all the above-mentioned studies.

In this study, we demonstrate, through a case study along the Mekong River, the great potential of

spatio-temporal kriging for combining multi-mission altimetry data along a river. By linking different

altimetry water-level time series, both the spatial and temporal resolutions are enhanced. Each time

series itself has a temporal resolution of 10 to 35 days, but all time series together can have a temporal

resolution of up to a few days. The most important part of the methodology is modelling the spatio-

temporal dependencies of the river flow using covariances. Appropriate covariance models are the

essential part of linking multi-mission altimetry data along a river. The method described in this

study allows for both high temporal and spatial resolutions of the combined time series, which can be

interpolated at any given location along the river at any given time point.

The rest of the paper is structured as follows. In Section 2, the ordinary spatio-temporal kriging

method used in this study is presented. Section 3 introduces the study area and Section 4 the altimetry

and in situ data applied in this study. Our spatio-temporal covariance models for altimetry measure-

ments along the Mekong River are described in detail in Section 5. Section 6 presents the results of

kriging based on the different models and validates them against in situ gauge measurements. The
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influence of the different missions on the results is investigated in the same section, and a comparison

with previous studies is presented.

2 Spatio-temporal ordinary kriging with uncertain data

Ordinary kriging (hereafter referred to as kriging) is a geostatistical interpolation method, which was

originally developed for spatial data by Krige [1952]. In this study, altimeter measurements along the

Mekong River, scattered in space and time (see more on the data distribution in Subsection 4.1), are

used to predict the water level at any given location along the river and at any given point in time.

Kriging produces a statistically unbiased estimator that is optimal with respect to the mean-

squared prediction error. The predictor is a weighted average of the observed values, where the weights

depend on the spatial or spatio-temporal dependence between the observed locations and the predicted

location. The dependency is expressed by the covariance C((s1, t1), (s2, t2)) between the water levels at

two space-time points (s1, t1) and (s2, t2). Spatio-temporal kriging includes one dimension more than

spatial kriging. In addition, the spatial and temporal domains have to be treated differently. Time has

clear and irreversible ordering, which does not hold for space directly. The difference between space

and time is treated in more detail in Section 5. Detailed introductions to spatial and spatio-temporal

kriging can be found in Cressie [1993] and Cressie and Wikle [2011], respectively. In the following, we

only present the basic formulas.

The kriging predictor p(s0, t0) (i. e. the prediction of the water-level) at some unobserved loca-

tion (s0, t0) along the river is the weighted average of all available altimetry measurements Z :=

{Z(s1, t1), . . . , Z(sn, tn)}:

p(s0, t0) =
n∑

i=1

λiZ(si, ti), (1)

where the weights λi should add up to 1 to guarantee an unbiased estimation. Note that there might

be several altimetry measurements for the same location or the same time point; i.e. si = sj or tk = t`

for i 6= j or k 6= ` is possible. Unlike the classical computation of kriging weights [e.g. Cressie, 1993,

Chap. 3.2], where all input data are assigned the same accuracy, we assign different accuracy values

for the data according to De Marsily [1986, Chap. 11.4.8]. The weights are then given by
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λ = (λ1, . . . , λn) = (c+ 1
(1− 1>Σ−1c)

1>Σ−11
)> (Σ + Σalti)

−1 , (2)

where 1 = (1, . . . , 1)>, c = (C((s0, t0), (s1, t1)), . . . , C((s0, t0), (sn, tn))> and Σ = (C((si, ti), (sj , tj)))i,j=1...n.

Σalti denotes the diagonal matrix of the accuracies σ2i , which are assumed constant for each altime-

try mission and are estimated through variance component analysis [Koch, 1999, chap. 3.6]. These

variances are not absolute accuracies, but relative accuracies between the observations of the different

missions. In particular, the jth diagonal entry of Σalti is σ2i if the observation (sj , tj) recorded by the

ith altimetry mission.

It is obvious from Equation (2) that the setup of the covariance function C((s1, t1), (s2, t2)) is of

particular importance. The estimation of an appropriate covariance function for altimetry data along

the Mekong River is discussed in Section 5.

3 Study area

This study focuses on the Lower Mekong River in South East Asia, south of the Chinese border, up

to the confluence with the Tonle Sap River. North of the Chinese border, the river is not measurable

by satellite altimetry due to the small and steep river channel; south of the confluence with the Tonle

Sap River, in Phnom Penh, the delta is subject to tidal influence, which needs special handling of the

altimetry data. Tributaries are not directly considered in this study, but have an indirect influence on

the dependence modelling; the Subsection 5.2. Figure 1 shows the layout of the study area.

The Mekong River is dominated by two hydrological regimes: the precipitation and snow melt on

the Tibetan Plateau, the so-called Yunnan Component, and the yearly south-eastern monsoon [Mekong

River Commission (MRC), 2005]. The upper part of the Lower Mekong basin is mostly governed by

the Yunnan Component, whereas the lower part is under the influence of the monsoon. The change in

the water level between the seasons can be as high as 10 m [e.g. Boergens et al., 2016].
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Figure 1: Map of the study area
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4 Data

4.1 Water levels from altimetry

In this study, we employ altimetry data recorded by three different satellite missions with repeat

orbits: Envisat, SARAL and Jason-2. For Envisat, we use both the repeat orbit phase between 2002

and 2010 and the extended mission from 2010 until 2011 (hereafter Envisat EM). The SARAL mission

succeeded the Envisat mission on the same orbit, but commenced in 2013. Jason-2 data are available

from 2008 until the present. The repeat time is 35 days for Envisat and SARAL, 30 days for Envisat

EM and 10 days for Jason-2. These missions yield data for virtual stations (VSs) at the crossing points

with the river, which are processed with the DAHITI database methodology [Schwatke et al., 2015b].

The first step of this method is the pre-processing, i.e. retracking the altimeter measurements and

outlier detection. In the second step, a Kalman filter is applied to these heights in order to derive time

series of the water-level changes. A correction for the Hooking Effect is included in the pre-processing

for the upstream regions [Boergens et al., 2016].

We use 22 VSs of Envisat, 17 of SARAL, 12 of Envisat EM and 3 of Jason-2. We have fewer VSs

from SARAL than Envisat because we decide to exclude five VSs that give too few data points in the

time series. Missing data points appear mostly in the rainy season and are probably caused by the

higher sensitivity of SARAL towards atmospheric water [Schwatke et al., 2015a]. Jason-2 has overall

five crossings with the Mekong River in our study area, but in two out of those, it is impossible to

derive reliable time series. The locations of all VSs are displayed in Figure 1. The temporal and spatial

distributions of the data along the river are shown in Figure 2. The longest time series with the densest

spatial pattern is provided by Envisat. The Envisat and SARAL missions share the same orbit; i. e.

they have VSs at the same points. However, two years of data are missing in-between the missions.

This gap is only sparsely covered by Envisat EM and Jason-2 data. Figures of the time series used in

this study can be found in the supplementary data.

4.2 Preprocessing of water level time series

In order to apply kriging to the altimetry data described in Subsection 4.1, a pre-processing step is

necessary to make the data roughly satisfy the assumption required for the ordinary kriging method,

i.e. a constant mean [Cressie, 1993, p. 120]. In addition, we remove all trends and seasonality in each of

the time series according to Brockwell and Davis [2002, Section 1.5.2]. The seasonality is not modelled
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Figure 2: Spatio-temporal data distribution

with a trigonometric function; instead, we compute and remove the monthly seasonal coefficients for

each time series. For the Envisat EM data, with only one year of data, we interpolated the seasonal

coefficients from the neighbouring time series. The seasonal coefficients method allows reducing the

seasonal signals that do not follow a sinusoidal function Figure 3.

We use the transformed observations as residuals and apply kriging to them. The predictions are

then back-transformed, so that they yield interpretable information.

4.3 In-situ data

For validation purposes, we use in situ data from gauging stations. The gauging stations are maintained

along the main river and tributaries by the Mekong River Commission (MRC, http://ffw.mrcmekong.org/).

Nine stations are available for this study, but the records reach only until the end of 2012. The gauging

stations appear alongside the virtual stations in Figure 1.

4.4 Auxiliary data

During the study, some auxiliary data are required. In Subsection 5.1, we use the width and slope of

the Mekong River provided by Gupta and Liew [2007] to estimate the flow velocity of the river. In

Subsection 5.2, we use the Global Precipitation Climatology Centre (GPCC) data of monthly mean

precipitation placed on a 0.5° grid [Schneider et al., 2011]. A flow direction map from the HydroSHEDS

data is used to determine the sub-catchment of each VS in the same section [Lehner et al., 2006]. The
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Figure 3: Example of a time series with reduced seasonal signal. The lower panel shows the residuals
used for all further computations.

sub-catchments are in turn used to calculate weights and hydrological locations for the non-stationary

covariance model in Subsection 5.2.

5 Spatio-temporal covariance models

A prerequisite for the kriging method (see Section 2), which is used in this study to combine the

multi-mission altimetry data, is an appropriate covariance modelling. The covariances have to reflect

the changing flow of the river along its course, and can be modelled based on knowledge about the river

system or by using empirical covariances obtained from the data. This section introduces the covariance

models used for the Mekong River and how they are estimated based on empirical covariances.

We assume that the residuals of the altimetry data (see Subsection 4.2) are a realization of the

mean-zero random process {Z(s, t) : s ∈ S, t ∈ T } for S × T ⊂ R2 × [0,∞). The value Z(s, t) can be

interpreted as the deviation from the mean seasonal river level at a space-time location (s, t), where

s is a location along the Mekong River and t is some time point (a day between 2002 and 2015).

We follow the ideas presented by De Cesare et al. [2001, Section 2] and define a valid spatio-temporal

covariance model C as the mixture of sums and products of valid spatial and temporal models. For

the space-time locations (s1, t1) and (s2, t2), we define a spatio-temporal covariance model CST as

CST ((s1, t1), (s2, t2)) = k1CS(s1, s2)CT (t1, t2) + k2CS(s1, s2) + k3CT (t1, t2), (3)
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where k1 > 0, k2, k3 ≥ 0 and CS and CT are valid spatial and temporal covariance models,

respectively. We require Z(s, t) to be (second-order) stationary in time; that is, CT (t1, t2) = CT (hT )

can be written only in terms of the temporal lag hT = |t1− t2|. Computing empirical variances of the

altimetry data and the correspondent confidence intervals of the estimators, we find that the variance

does not vary significantly across the different locations, with most confidence intervals overlapping.

Thus, it is reasonable to assume that the spatial variance along the Mekong River is constant; that

is, CS(s, s) = CS(s′, s′) for all s, s′ ∈ S. Hence, the spatio-temporal variance CST ((s, t), (s, t)) is also

constant over S × T . Note that this assumption does not necessarily hold for other river systems.

This assumption is weaker than the one used by De Cesare et al. [2001], which requires stationarity

in space as well. Validity, i. e. positive definiteness, of the covariance model (3) follows by validity of

models CS and CT and the requirement of k1 > 0, k2, k3 ≥ 0, see De Iaco et al. [2011, Section 4].

There are various valid models for spatial or temporal covariance functions (see for instance Cressie

[1993, Section 2.3.1]). As outlined by Ver Hoef, Peterson, and Theobald [2006, Section 1], covariance

models that are valid when relying on the Euclidean distance need not yield a valid model of a river

network if the Euclidean distance is simply replaced by the river distance.

In Subsection 5.1 and Subsection 5.2, we present two models for the spatial covariance function

CS , which are valid for river networks. In Subsection 5.1, we focus on a spatially stationary model

applied to observations transformed with respect to flow velocity, whereas Subsection 5.2 deals with

a non-stationary approach applied to the original observations.

5.1 Stationary covariance model

In this section, we assume the process Z(s, t) to be second-order stationary in not only time but also

space; i. e. we slightly change the notation and write CS(s1, s2) = CS(hS), where hS = |s1 − s2|riv is

the spatial lag, which is the distance along the river between the two points, expressed as the norm

| · |riv. Under this condition, the spatio-temporal covariance model CST in (3) can be written only in

terms of hS and hT .

The original altimetry measurements do not fulfil the spatial stationarity assumption in the first

place. To make this assumption more feasible, we perform an additional data pre-processing step. We

aim for the flow volume between two observed locations on the river within a particular time to be

approximately equal whenever the locations are separated by the same river distance. To this end, we

transform the observed spatial domain with respect to the estimated flow velocity of the river.
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The flow velocity v can be estimated from the slope of the river, its width and the water-level with

the Gaukler-Manning-Strickler equation [Jirka, 2007, Chap. 10.3.2]; i. e.

v = kstR
2/3
h S1/2. (4)

In this equation, S is the slope of the river, which is approximately known for the reaches of the

river from Gupta and Liew [2007]. By Rh, we denote the so-called hydraulic radius, which is the

proportion between the cross-sectional area and the wetted perimeter. For this hydraulic radius, we

assume a constant depth of a river with a rectangular cross-section. The width varies in river reaches,

as defined in Gupta and Liew [2007], between 500 and 1500 m. The Strickler coefficient kst measures

the roughness of the river channel. Due to missing information on this coefficient for the Mekong

River, a constant literature value for large rivers is applied (kst = 35m1/3

s ) [Jirka, 2007, Chap. 10.3.2,

Tab. 10.2]. The transformed distance for each point is then

|s− 0|newriv =

∫ |s−0|riv
0

dx

v(x)
, (5)

where |s−0|riv is the original river distance for the river mouth to the considered point, |s− 0|newriv

is the new river distance and v(x) is the flow velocity at the given point s along the river. In our

study, the flow velocity is assumed constant over river reaches, and therefore, the above integral can

be transformed to a sum of all reaches downstream of the point. Of course, this representation of the

flow velocity is only an approximation. For an exact transformation of water levels along the river, a

more sophisticated approach would be necessary, taking for instance time variable slopes into account.

However, at this point, the transformation is carried out to make the assumption of stationarity in

space and the use of a stationary spatial covariance model more plausible.

The spatio-temporal covariance is modelled as the product of a valid spatial model CS and a valid

temporal model CT ; i. e. we consider the model

CST (hS , hT ) = CS(hS)CT (hT ) (6)

for spatial and temporal lags hS and hT . This corresponds to the special case of (3) obtained for

k1 = 1 and k2 = k3 = 0. This model is a separable model. In particular, it implicitly assumes that

there is no interaction between the spatial and temporal parts. The temporal dependence structure
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is supposed to be location-invariant, and the spatial dependence structure is in turn assumed not to

change with time. Spatial invariance of the temporal dependence structure holds approximately for

the Mekong River Adamson et al. [2009]. Temporal invariance of the spatial dependence structure

would imply that the course of the river does not change with time. This does not hold for the entire

river, especially for the delta, but the part of the river investigated in this study is not exposed to

major shifting banks or similar effects.

A first step in fitting the spatio-temporal covariance model CST is to obtain an empirical estimate.

To this end, we define, for fixed (hS , hT ),

N(hS , hT ) :={(s1, t1, s2, t2) ∈ (S × T )2 : Z(s1, t1) ∈ Z, Z(s2, t2) ∈ Z, |s1 − s2|riv = hS , |t1 − t2| = hT },

where Z denotes again the set of all observations, which in this study are the residuals of the observed

altimetry time series without mean water level and seasonal signal.

Under the stationarity assumption, the covariance function C can be estimated by the empirical

covariance, which is given by

Ĉ(hS , hT ) =
1

|N(hS , hT )|
∑

(s1,t1,s2,t2)
∈N(hS ,hT )

Z(s1, t1)Z(s2, t2), (7)

where |N(hS , hT )| is the cardinality of N(hS , hT ). Since the data are unevenly distributed in space

and time, we cluster lags within different tolerance intervals to achieve a reliable estimation of Ĉ. The

cluster sizes are one month for the temporal and 50 km for the spatial lags. The size of the clusters is

a trade-off between the temporal or spatial resolution of the empirical covariance and the reliability

of the estimate; the smaller the clusters are, the more variable the estimate becomes. We modify the

cluster size only for the estimation of the cluster with lag 0. For the estimation of temporal covariance

with lag 0, we only take measurements that are recorded the same day. We take a tolerance of 5 km for

lag 0 of the spatial covariance estimation due to the slightly shifting orbit of the altimeter satellite. All

covariance estimates are tested for a significant difference from zero with a t-test. Empirical covariances

failing the test are set equal to zero.

The separability of model (6) allows us to fit a spatial covariance model CS and a temporal model
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Table 1: Parameter estimates for the stationary product covariance model described in Subsection 5.1
fitted to the altimetry data

aexp bexp alin blin

0.4078 5.4942 0.4300 0.0008

CT separately.

For the temporal covariance function, we choose an exponential model with nugget effect nexp; i. e.

CT (hT ) =


aexp + nexp if hT = 0

aexp exp(−bexphT ) if hT 6= 0

(8)

and the parameters that need to be estimated are aexp > 0, bexp > 0 and nexp ≥ 0. The nugget effect

accounts for measurement errors and arises because the estimation is based on lags hT , which are not

arbitrarily close to zero. The nugget occurs as a jump or discontinuity in the fitted covariance model

at zero.

The spatial covariance is modelled using a linear tent model [c.f Cressie, 1993] with nugget nlin;

that is,

CS(hS) =


alin + nlin if hS = 0

max{alin − blin hS , 0} if hS 6= 0.

(9)

and the parameters to be estimated are alin > 0, blin > 0 and nlin ≥ 0.

For computational reasons, we fit the correlation function instead of the correspondent covariance

model, so that aexp + nexp = alin + nlin = 1. This reduces the number of parameters to be estimated

in both models by one. Figure 4 compares the respective empirical and fitted correlation functions.

The approximately exponential and linear decays of the temporal and spatial dependence are visible.

Table 1 shows the correspondent model parameter estimates. The nugget effect already accounts for

60% of the covariance decay. After two months, the temporal covariance drops by another 50%. As to

the spatial domain, the covariance reaches the 25% level at a lag of 250 km.

An extension of this model would be to divide the river into hydrological reaches and assume

stationarity only within each reach, i. e. relax the spatial stationarity constrain. The application of
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Figure 4: Empirical and fitted temporal and spatial covariance functions

this approach to the Mekong River does not improve the prediction results. When the river is divided

into reaches, only data inside each reach can be used for fitting the respective covariance and for the

kriging prediction. This reduction of data leads to inferior results, which is why we do not pursue the

approach further.

5.2 Non-stationary covariance model

The main drawback of the stationary covariance model described above is the implicit assumption of

spatial stationarity. Despite working with data transformed with respect to flow velocity, this might

lead to predictions with reduced accuracy. In what follows, we propose a new non-stationary covariance

model allowing for a changing spatial dependence structure.

We follow Ver Hoef et al. [2006] with an “upstream” construction on river networks. A covariance

model that is valid for river networks can be defined for s1, s2 ∈ S, where s1 is located downstream

of s2, by
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Criv(s1, s2) =



0, if s1 = s2,

C̃1(0), if s1 = s2,

∏
s∈Bs1,s2

√
wsC̃1(|s1 − s2|riv),

if s1 ↔ s2

and s1 6= s2.

(10)

Here, the symbols↔ and = stand for flow-connectedness and flow-un-connectedness, respectively.

The set Bs1,s2 contains the observed measurement locations s between s1 and s2, but excluding

s1, and C̃1(·) is a stationary covariance model valid in one dimension. We obtain convincing results

choosing for C̃1(·) again a linear tent model with variance and slope parameters ariv > 0 and briv > 0,

respectively, cf. (9). The factors ws are weights based on the proportion of flow volume contributed

by a measurement location s to its next location downstream. This proportion is approximated by

integrating the mean monthly precipitation over the sub-catchments of both s and the subsequent

location, and then, computing the quotient. The term sub-catchment denotes here the watershed of

a location along the river. It consists of all points of the river that drain into this point. Figure 5

shows two examples of sub-catchments in shaded colours corresponding to their VSs (squares). The

mean monthly precipitation is obtained using the GPCC data described in Subsection 4.4. Note that

incorporating evapotranspiration in our computations is negligible, since this yields nearly identical

weights for the Mekong River basin.

The flow volume and the weights themselves in Figure 6 reflect the geomorphology of the river with

inflowing tributaries. The flow volume is normalized to the value corresponding to the location most

downstream. If a major tributary joins the Mekong River between two stations, the flow volume shows

a distinct step between the two stations. The same is even better visible in the weights. A smaller

weight at some location indicates that, between this location and the next location downstream, a

relatively high inflow occurs. In Figure 6, we add the names of the inflowing tributaries to the distinct

data points. The most striking peak is caused by two rivers, Mun and Banghiang. One inflow, Nam

Ou, is visible well in the weights chart but worse in the flow volume chart. From Equation (10), it is

obvious that a higher inflow between two locations along the river naturally reduces the covariance

between them, as they carry less information about each other. Figure 7 shows how the variability

in the weights is reflected in the fitted covariance model Criv in comparison with C̃1, in an example

of two locations located downstream and upstream of the confluence of tributary Nam Ngum. Since
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Figure 5: Hydrological locations for two VSs in their sub-catchment. The squares are the locations
of the two VSs. The shaded areas indicate the corresponding sub-catchments, and the stars are the
hydrological locations. The background is the GPCC precipitation map (c. f. Subsection 4.4) used for
the hydrological locations.
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visible. The names of prominent inflowing rivers are indicated.

C̃1 is a stationary model, the graphs in the left panel overlap. Obvious in the fitted function Criv is

the drop in the dependence at the confluence, which shows non-stationarity of the spatial dependence

structure.

The difference between model (10) and the “upstream” construction introduced by Ver Hoef et al.

[2006] is that, in our case, the weights ws are associated with the respective measurement locations s

instead of river segments that lie between two locations. This is due to the lack of available observations

on all segments of the Mekong River network.

One drawback of model (10) is that it only accounts for isolated river networks. In real data

analysis, the Euclidean distance of two measurement locations often plays an important role, since

environmental parameters such as precipitation tend to be similar at nearby locations. In the particular

case of a river network, it is appropriate not to take into account the Euclidean distance of the

measurement locations themselves, but rather the distance of their hydrological locations [Asadi et al.,

2015, Section 3.3], which we define as the sub-catchments’ mass centres of the monthly precipitation.

In Figure 5, we indicate the position of the hydrological location in the sub-catchment for two VSs

with a star.

A covariance model based on Euclidean distances is given by
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Ceuc(s1, s2) = C̃2(A(L(s1)−L(s2))), (11)

where L(s) is the hydrological location of s. The function C̃2 is a covariance function valid in R2 and

the matrix

A =

 cosα − sinα

a sinα a cosα

 , a > 0, α ∈
[
0,
π

2

]
,

allows for spatially anisotropic effects through rotation and dilation. As a model C̃2 valid in two

dimensions, we choose the spherical model [c.f. Cressie, 1993, Section 2.3.1], which is given by

C̃2(h) =


aeuc

[
1− 3

2beuc‖h‖+ 1
2

(
beuc‖h‖

)3]
if 0 ≤ ‖h‖ ≤ 1

beuc

0 if 1
beuc
≤ ‖h‖,

(12)

where aeuc > 0 and beuc > 0 denote the variance and range parameters, respectively. By ‖ · ‖, we

denote the Euclidean norm.

In the following, we consider an overall spatial covariance model as a weighted sum of (10) and

(11); i. e. for s1, s2 ∈ S,

CS(s1, s2) =


πrivCriv(s1, s1) + πeucCeuc(s1, s1) + nS , if s1 = s2,

πrivCriv(s1, s2) + πeucCeuc(s1, s2), otherwise

, (13)

with non-negative weights πriv and πeuc. The parameter nS ≥ 0 accounts for an additional nugget

effect at the origin. Model (13) is non-stationary; indeed, even the notion of stationarity is not clear,

since the model is not defined on a Euclidean space [see Asadi et al., 2015, Section 3.4]. Note, however,

that only one of the parameters πriv and ariv (and likewise πeuc and aeuc) is statistically identified, since

they both appear as a product in (13). Thus, we transform these parameter pairs to single parameters,

which we denote again by πriv and πeuc. Concerning the temporal covariance model CT , we use, as in

Subsection 5.1, a stationary exponential model with variance, scale and nugget parameters aT > 0,

bT > 0 and nT ≥ 0, see (8).
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As an overall spatio-temporal covariance model CST , we use model (3), i. e.

CST ((s1, t1), (s2, t2)) = k1CS(s1, s2)CT (|t1 − t2|) + k2CS(s1, s2) + k3CT (|t1 − t2|),

for s1, s2 ∈ S, t1, t2 ∈ T . Recall that the coefficients k1, k2, k3 need to satisfy k1 > 0 and k2, k3 ≥ 0 for

model (3) to be valid.

Fitting the full model CST involves estimating the 13 parameters

{πriv, πeuc, briv, beuc, α, a, nS , aT , bT , nT , k1, k2, k3}.

As opposed to Subsection 5.1, we cannot compute the empirical covariance function as done in (7),

since, due to non-stationarity, the true covariance function C((s1, t1), (s2, t2)) does not depend only on

the spatio-temporal lag (|s1−s2|riv, |t1−t2|) but on the space-time locations (s1, t1), (s2, t2) themselves.

However, for each pair of space-time locations (s1, t1) and (s2, t2), we only have at most one observation

to base the estimation on. We, therefore, subdivide the observed temporal domain into K smaller

groups, which can be considered approximately independent. Each time group comprises 35 subsequent

days 0, . . . , 34 ; the first time group contains the first 35 days, the second group the next 35 days, and

so on. Choosing 35 days makes the temporal independence assumption more realistic, since 35 days

is the return time of the Envisat satellite. Additionally, water needs up to four weeks to flow through

our study area according to our flow-velocity estimation (cf. Subsection 5.1). In this way, we obtain

for each observed pair of space-time locations (s1, t1), (s2, t2), where t1 and t2 each correspond to one

(possibly the same) of the 35 days, several associated realizations of Z(s1, t1) and Z(s2, t2) (roughly

one per time group, exceptions are due to missing values). We enumerate the pairs as

{(s1, t1)(1), (s2, t2)(1), . . . , (s1, t1)(K), (s2, t2)
(K)}

and compute the empirical covariance as

Ĉ((s1, t1), (s2, t2)) =
1

K

K∑
j=1

Z((s1, t1)
(j))Z((s2, t2)

(j)).

Model CST is then fitted using least squares estimation.

Since the number of parameters in the fully general model is large (13 parameters), we additionally
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Table 2: Parameter estimates of the simplified non-stationary covariance model described in Subsec-
tion 5.2 fitted to the altimetry data

πriv πeuc briv beuc aT bT nT

0.536 0.471 0.007 1/2145.247 1.047 5.494 1.168

perform the procedure with k1 = 1 and k2 = k3 = 0, which again yields the simpler separable space-

time product model

CST (s1, s2, t1, t2) = CS(s1, s2)CT (|t1 − t2|).

Additionally, we find that incorporating the spatial nugget effect nS and the anisotropy parameters

α and a downgrades the model fit. Therefore, we fix their values to nS = 0, a = 1 and α = 0. In this

case, there are only seven parameters left for estimation, given by

{πriv, πeuc, briv, beuc, aT , bT , nT }.

Due the separability property, it is possible to compute the empirical spatial and temporal covari-

ances separately, similarly as in Subsection 5.1. In our subsequent analyses, kriging with the full (13

parameters) and the simplified model (7 parameters) yield qualitatively comparable results. Hence,

for computational reasons, we focus on the latter.

Table 2 shows the least squares parameter estimates for the simplified non-stationary spatio-

temporal covariance model. Figure 8 visualizes the latter for two reference locations. Animated versions

of the two figures can be found in the supplementary material. They provide an improved three

dimensional impression of the content. Sometimes, jumps are visible along the y-axis, i.e. the spatial

covariance function of the reference location with the other locations. The jumps appear if a location

is further apart from the reference location than the previous one in terms of river length, but the

hydrological location is closer to that of the reference location in terms of Euclidean distance. This

shows the influence of the Euclidean covariance part. Recall that by construction the fit of the spatio-

temporal covariance function is based on all empirical values, whereof the black dots only constitute

a subset. Hence for some fixed reference locations the fitted function seems to give a better fit than

for others.
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Figure 8: Fitted non-stationary spatio-temporal covariance functions CST (s, ·, 0, ·) (coloured planes)
for two reference locations s in comparison with the correspondent empirical counterparts (black
points). The reference locations (visible as green peaks) are 429 km (top) and 729 km (bottom).

6 Results

In this section, we present the results of the spatio-temporal kriging prediction. We use the term

prediction to denote interpolation, which is common with kriging. As the first step, the results based

on both the stationary product covariance model described in Subsection 5.1 and the (simplified)

non-stationary model explained in Subsection 5.2 are presented and compared to in situ gauging

data and to each other. Afterwards, the influence of the available altimeter missions on the results is

investigated. Finally, the results are compared with a previous study on the combination of altimetry

data along river networks.

6.1 Validation of the different covariance models against in situ measurements

For validation purposes and in order to verify the goodness of the estimates obtained in Section 5,

we use kriging with the two aforementioned covariance models to predict time series with a temporal

resolution of five days between 2002 and 2015 at the locations of four gauging stations: Luang Prabang,

Nakhon Phanom, Pakse and Kratie (see Figure 1 for the locations). We then compare the predictions

with the available in situ measurements. We choose to predict the time series with a five-day resolution

based on data availability. In the central part of our study area, between river distance 1000 and
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2300 km (see Figure 2), every two or three days, an altimeter measures the water level at some

location. Although, in principle, every temporal resolution of the predicted time series is possible with

our approach, any higher resolution than these two or three days is useless. Moreover, we reduce

the temporal resolution to five days as a compromise, because it is also appropriate for the more

upstream or downstream reaches. To predict water levels at a particular location, for the stationary

product covariance model, only observations that are recorded either upstream and earlier in time

or downstream and later in time are used, in order to take into account the river flow. The non-

stationary model described in Subsection 5.2 does not have this limitation, since it is partly based on

the Euclidean distance.

The comparison is performed through the root-mean-square error (RMS), the relative RMS (rRMS),

the coefficient of determination R2 and the Nash-Sutcliff efficiency coefficient (NSE). The RMS is a

measure for the point-wise absolute difference between the predicted time series and the observed

gauge time series. The rRMS relates the RMS to the mean water level variation. If the water level

variations are larger, then a higher RMS can be acceptable because the variation is still depicted well.

The value of R2, which is the squared correlation coefficient between the two time series, is sensitive

to the phase shift of the returning periodic signal between the two time series. The NSE measures the

power or quality of the kriging predictions. It is given at a location s ∈ S by [Nash and Sutcliffe, 1970]

NSE(s) = 1−
∑T

t=1 (Zg(s, t)− p(s, t))2∑T
t=1

(
Zg(s, t)− Zg(s)

)2 . (14)

Zg(s, t) is the height measured at time t at a gauging location s with a correspondent mean value

Zg(s), and p(s, t) is the predicted height at the same time and location. The NSE ranges from −∞ to

1, where 1 is the optimal value and allocated to perfect predictions. A value of 0 indicates a prediction

that is as good as just taking the observed mean value of the time series; values less than 0 indicate

even worse predictions.

The results are summarised in Table 3, and the in situ and predicted time series at Luang Prabang

are shown in Figure Figure 9. Plots of the time series corresponding to the remaining three stations

are provided together with those shown here in the supplementary material. The hydrological profile

of the Mekong River exhibits an almost uniform annual signal. Therefore, the mean annual signal is

already a good approximation of the true signal. The prediction quality of the mean annual signal is

shown along with the results of the kriging predictions in Table 3. The comparison of each gauge with
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Table 3: Comparison of the results using the different covariance models and the time series of gauging
stations at four locations. The panel ‘annual signal’ presents the results if a mean annual signal is
simply used as a predictor. The panel ‘Closest VS’ shows the results when the values of the closest
VSs are used for the prediction; the respective missions are mentioned.

RMS [m] rRMS [%] R2 NSE

stationary product covariance Model

Luang Prabang 1.02 11 0.91 0.90
Nakhon Phanom 0.82 10 0.94 0.94
Pakse 0.92 11 0.92 0.92
Kratie 1.29 10 0.92 0.92

Non-Stationary Covariance Model

Luang Prabang 1.11 12 0.89 0.91
Nakhon Phanom 0.89 10 0.93 0.94
Pakse 0.88 10 0.93 0.93
Kratie 1.15 9 0.94 0.94

Annual Signal

Luang Prabang 1.50 17 0.81 0.83
Nakhon Phanom 1.25 14 0.85 0.86
Pakse 1.20 14 0.86 0.87
Kratie 1.69 13 0.87 0.88

Closest VS

Luang Prabang (E+S) 1.70 19 0.90 0.87
Nakhon Phanom (E+S) 0.39 4 0.96 0.98
Pakse (J2) 1.18 14 0.88 0.89
Kratie (E+S) 2.04 16 0.83 0.85
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its nearest VS is shown in the last panel of Table 3.

The stationary product covariance model applied to observations transformed with respect to flow

velocity yields, at all four stations, satisfying results with RMS values between 0.82 and 1.29 m. The

coefficients of determination are similar for all stations and above 0.90; the same holds for the NSE.

The non-stationary covariance model and the stationary product covariance model provide similar

predictions. The RMS lies between 0.88 and 1.15 m. Concerning the coefficient of determination R2

(0.89–0.94) and NSE (0.91–0.94), the results are not better than those obtained with the stationary

covariance model, but equally good. The two downstream stations, Pakse and Kratie, are predicted

better with the non-stationary covariance model, whereas the product model performs better for the

two upstream stations. In addition, the two stations near the border of our study area, Luang Prabang

and Kratie, with less neighbouring data, show inferior results than the other two stations. Nevertheless,

we do not have enough results to judge if these differences are random or reflect some difference in

the covariance models.

When comparing the kriging results with the measurements at the closest VS, we observe that

kriging yields clearly superior results, except for Nakhon Phanom. However, the VS near Nakhon

Phanom is one of the best, if not the best, of the VSs used in this study, both in terms of the

proximity to a gauge (ca. 15 km distance) and completeness of the time series (no missing data).

The time series of Luang Prabang, as seen in Figure Figure 9, reveals the differences in the two

covariance models. For 2007, the rise of the water level is predicted too early with the non-stationary

covariance model. On the other hand, the prediction with the non-stationary covariance models shows

more small-term variations. It seems that kriging with the non-stationary covariance model results

in less smoothing of the result than the stationary product model does. For late 2007, it seems that

the correct short-term variation is predicted. However, for 2013, the variations in the low water seem

rather unlikely, as in all other years, such variations are not present during low water. Unfortunately,

we do not have gauge data for 2013 that could be used to validate this point.

Overall, many short-term variations cannot be detected with satellite altimetry at all. A small peak

in water level can occur only locally for a short time frame. If no satellite measures this reach of the

river at exactly that time, we cannot gain any information about the variation. Moreover, even if one

altimeter measures such a small peak, the kriging tends to even it out, especially with the stationary

product covariance model. On the other hand, the kriging method is also robust against outliers in

the data and evens them out up to a certain degree.
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6.2 Influence of the altimeter data availability

Between 2011 and 2013, there is a gap in the data due to the end of the Envisat mission. In this

time span, only three Jason-2 and (at least partly) a few Envisat EM data points are available (see

Figure 2). The Envisat observations are the backbone of our model. For this reason, we are particularly

interested in how well the kriging method can handle the change in data availability between the end

of 2010 and the beginning of 2013. In the time series in Figure Figure 9, no deterioration during these

years is visible. For this reason, we examine the RMS values over the time.

Using kriging, we predict time series of water levels at a 5-day resolution at all available gauging

stations in the observation area. To compare the predicted with the observed time series and detect

possible changes in the quality of the predictions, we compute the RMS in yearly moving windows.

The results are shown in Figure Figure 10 (colour coding is according to their location along the river).

The RMS value is chosen for this comparison because, among the analysed coefficients, it shows the

largest differences in Table 3. To obtain a clear overview, we present this investigation solely for the

stationary product covariance model; the findings are similar for the non-stationary covariance model.

The mission lifetimes are indicated at the top of Figure Figure 10. We cannot quantify the influence

of the SARAL data, as the gauge time series are only available until the end of 2012.

It is not possible to find any correspondence between the data availability and the variation in

the RMS over time. In particular, the RMS does not improve with the start of the Jason-2 mission in

2008, and does not deteriorate in 2012 with the end of Envisat EM. The only pattern visible is the

overall smaller RMS in the years 2006 and 2007. We do not have any explanation for this pattern.

Still gauging stations at closer distance tend to show more similarity in the RMS over time than those

further apart.

6.3 Comparison to other published results

To our knowledge, the only other study combining altimetry data over rivers, so far, has been published

by Tourian et al. [2016]. They conducted their study along the Po, Mississippi, Congo and Danube

rivers with a focus on the Po River in Northern Italy. Data from the satellite altimetry missions

of Topex/Poseidon, the Topex/Poseidon extended mission, Jason-2, Envisat, the Envisat extended

mission, SARAL and Cryosat-2 were used. Their method was based on estimating the flow time

between the different VSs with which the stations could be linked.

Despite the differences between the Mekong and the Po River systems, their results can be com-
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Figure 10: Moving yearly RMS values at all gauging stations along the Mekong River. The colour
indicates the location along the river. Thus, VSs close in space have similar colours.

pared to ours under some limitations. The main limitation is that the annual signal of the Po River

is not as strong and regular as that of the Mekong River, which suggests that our prediction is more

accurate. Comparing the NSE, in our results, the value is never below 0.89 and ranges up to 0.94,

whereas, in the Po River study, this value ranged between 0.2 and 0.6. In addition, there was a larger

variance between the different gauging stations than that in our study.

In the Po River study, there were three possible merging processes for the altimetry data: all

measurements were treated equally, disregarding the distance between the measurement locations and

the predicted location; a three-point moving average with weighting according to their errors; and

a three-point moving average with weighting according to the distance between measurement and

prediction location. In our study, the observations are weighted according to their distance in space

and time from the location to be predicted, which might explain the differences in the results.

7 Conclusion

In this study, we demonstrate the potential of spatio-temporal kriging, together with appropriate co-

variance modelling, to combine measurements of multi-mission altimetry along rivers over space and

time. The essential part of the presented approach is the modelling of the spatial and temporal depen-

dencies in the data with appropriate covariance models for predicting the river flow. Two covariance

models are tested: a simple stationary spatio-temporal stationary product covariance model based on

the river distance between locations, but applied to observations transformed with respect to flow

velocity, and a non-stationary model, which is designed for river networks and additionally incorpo-

rates the Euclidean distance between the centres of the sub-catchments of the locations. These two
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covariance models are used in the kriging approach to obtain multi-mission time series with a temporal

resolution of 5 days. These time series are validated against in situ gauge data. Both models perform

equally well, with RMS values between 0.82 and 1.29 m and coefficients of determination above 0.89.

A main advantage of the kriging approach for combining multi-mission altimetry over rivers is

its flexibility in both temporal and spatial resolutions. The method can theoretically predict a time

series of any given temporal resolution at any point along the river. However, a meaningful result

cannot be expected if the temporal resolution of the prediction is higher than that of the altimetry

data. Considering measurements and the possibly larger distance between two altimeter measurements

closest in time, the temporal resolution should be even lower than the resolution of the altimetry data.

Although the non-stationary model does not yield better results, in this case study along the

Mekong River, its advantage is its flexibility to approach more complex river systems and to include

measurements along tributaries in the river system. However, this requires further investigation for the

Mekong River system. The downside of the non-stationary model is its complexity and the need for ad-

ditional data such as sub-catchment information. Therefore, the simple stationary product covariance

model is sufficient for the rather non-complex main stream of the Mekong River if a spatial transfor-

mation according to the flow velocity is used. This transformation is not needed for the non-stationary

model, which is again one of its advantages.

We show in this study that using the kriging method, it is not only possible to combine data

from different altimeter measurements, but we are also able to bridge data gaps where only a few

measurements are available. Particularly, the time between the end of the Envisat mission and the

start of the SARAL mission with only three Jason-2 time series was bridged without any apparent

decline in the quality of the predictions.

The next steps of this study involve incorporating the data of the long-repeat mission Cryosat-2

(launched 2010), which will densify the observations, especially in the gap between the Envisat and

SARAL missions, as well as improve the temporal resolution of the available data. Additionally, the

data of the newly launched missions Jason-3 and Sentinel-3 will be incorporated. Furthermore, data

along the tributaries of the Mekong River will be included. We will use real-time processed altimetry

data with the kriging method to do short-term predictions into the future. The transferability of the

multi-mission approach introduced in this study to other river networks will be tested in a future work

as well.
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