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Abstract

Functional data analysis (FDA) deals with time series consisting of functional obser-
vations. We estimate a functional moving average process of order 1 by the projection
method and by the iterative method. In addition we test the dependence order of a linear
strictly stationary functional time series by two hypothesis tests, based on the concepts
of the Box-Pierce test and of sample-splitting. The estimation approaches are used for
forecasting and the tests help us choose an appropriate time series model, provided that
the dependence structure is known. Finally we apply the former and the latter to Bavarian
highway traffic data.

Zusammenfassung

In dieser Arbeit geht es um funktionale Datenanalyse (FDA). Der Begriff umfasst den
Umgang mit Zeitreihen, in denen jede Beobachtung eine Funktion ist. Es werden funk-
tionale Moving Average Prozesse der Ordnung 1 mithilfe der Projektionsmethode und der
iterativen Methode geschätzt. Darüber hinaus werden zwei Hypothesentests behandelt,
welche die Abhängigkeitsordnung einer linearen streng stationären funktionalen Zeitreihe
überprüfen. Die Tests beruhen auf dem Box-Pierce Test und auf Sample-Splitting. Mit-
tels der Schätzverfahren können Vorhersagewerte berechnet werden, während die Tests
die Auswahl eines geeigneten Zeitreihenmodells unter der gegebenen Abhängigkeitsstruk-
tur erleichtern. All dies ist schließlich in Anwendung auf Verkehrsdaten einer bayerischen
Autobahn zu sehen.
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Chapter 1

Introduction

This thesis is about functional data analysis (FDA). FDA deals with time series of random
functions in contrast to classical time series analysis (TSA) which deals with time series of
scalar random variables (univariate TSA) or time series of random vectors (multivariate
TSA). We use functional data because we want to model the (e.g. time) progress for each
observation and handle high-dimensionality. There are plenty of application areas: daily
stock prices, daily traffic flow, spatial temperature profile per hour, etc. Some examples
can be found in [Hor, ch. 1].

In this thesis, we focus on two main topics. The first part of the thesis estimates
functional moving average processes of order 1 from given functional data. Two estimation
approaches, based on [Turb1], are derived and applied to simulated data. The second part
is about two hypothesis tests concerning the dependence structure of a functional time
series. We derive and prove the first test thoroughly and briefly explain the second test,
which is a generalization and improvement of the first one.

The estimation approaches establish a time series model and can be used to forecast
functional observations. To ensure that the forecasts are realistic, we have to ensure that
an appropriate model is chosen. The hypothesis tests play a vital role in this matter.
Since they test the dependence order, they indicate which linear and strictly stationary
functional time series model is recommended.

In the following, we briefly survey the literature on FDA. [Rams] discusses numerical
issues in converting multivariate data to functional data by interpolation as well as classical
statistical procedures for FDA. The R package fda, based on [Rams], is used in this
thesis for data analysis. The more probabilistic topics like linear stochastic processes and
estimations including convergence rates are explained in [Bosq]. It focuses on estimating
operators of functional autoregressive processes. In the context of predictions, functional
autoregressive processes are also covered in [Hor], which discusses several aspects of FDA
in Hilbert spaces. The fundamentals of FDA in this thesis are mostly based on [Hor] and
partly on [Bosq].

Functional moving average processes are less researched than functional autoregressive
processes, because the latter are easier to handle. Functional moving average processes are
covered in [Turb1], [Turb2] and [Turb3] and [TurbThese]. The first part of this thesis is
based on [TurbThese], but simulation studies play a bigger role here than in [TurbThese],
which is designed rather theoretically. Beyond the moving average framework, prediction
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2 CHAPTER 1. INTRODUCTION

of functional data is discussed in [BB].
In addition to discussing properties of estimators and forecasting autoregressive data,

[Hor] also discusses an independence test for functional data. Moreover, this is also covered
in [GaKo]. [Moon] focuses on dependence tests for univariate data. Apart from these, there
is not much literature about (in)dependence tests. Thus the second part of this thesis can
be seen as a new way of testing time series. The mathematical background of these tests
mainly consists of Kronecker products from [Steeb] and convergence of random variables
from [Vaart]. The proofs of the tests are inspired largely by [Brck], the fundamental book
about classical, i.e. finite dimensional, time series analysis.

The thesis is organized as follows: Chapter 2 is a brief introduction into FDA. Chapter
3 introduces functional moving average processes including most of the important tools
for the following chapters. Both Chapter 2 and Chapter 3 are essential for understanding
the main topics of the thesis. In Chapter 4, the two estimation approaches mentioned
above are explained. They are analyzed in simulation studies in Chapter 5. Chapter 6
describes the two hypothesis tests and compares them in simulation studies, but the focus
is more on the first test. Finally, in Chapter 7 we discuss a real data example involving
highway traffic volume data and highway traffic speed data from Bavaria in Germany, both
converted to functional datasets. Two clustering algorithms are explained and applied to
the speed dataset. At the end, the main methods of this thesis are used for the speed
dataset.



Chapter 2

Fundamentals of Functional Data
Analysis

This chapter gives a brief introduction to some theoretical aspects. Only a few claims
will be proven, because the following focusses on what will be required in the main part.
The first section deals with some necessary background theory from functional analysis
and probability theory, whereas the second one is about functional principal component
analysis, an approach about projecting functional observations onto a finite dimensional
space in an optimal way.

2.1 Mathematical Background

All the statistical models and claims rely on Hilbert space theory. Therefore a brief sum-
mary of fundamental Hilbert space and operator theory is given. This will be specified on
the space of square-integrable functions L2. Some important terms as covariance operator
and eigenvalues/-vectors are described. The last subsection deals with how to estimate
them. Most of what is written in this chapter is based on [Hor, ch. 2,3 & 13] and on [Bosq].

2.1.1 Separable Hilbert spaces H and Operators on H

A Hilbert space H is a complete unitary vector space. Completeness means that each
Cauchy sequence within that vector space converges. A unitary vector space is defined to
have an inner product 〈·, ·〉. Consequently, H is a normed space, equipped with the norm

‖·‖ : H → K, x 7→
√
〈x, x〉,

where K is the field corresponding to H. H being separable means that there exist a dense
countable subset of H. A Hilbert space H is separable if and only if it contains a countable
orthonormal basis E = {en}n∈N such that the span of E is dense in H. If a real vector
space H is a separable Hilbert space, then the following claims hold:

� If dim(H) = K ∈ N, then H is isomorphic to RK .

� If dim(H) =∞, then H is isomorphic to l2(R) (square-summable sequences).

3



4 CHAPTER 2. BASICS OF FDA

Let L be the space of bounded linear operators on H, i.e. each Ψ ∈ L maps from H to H.
Note that boundedness and continuity are equivalent for linear operators. L is a Banach
space equipped with the operator norm

‖Ψ‖L := sup
‖x‖≤1

‖Ψ(x)‖ .

An operator Ψ ∈ L is defined to be compact (also called completely continuous) if one of
the following (equivalent) conditions holds:

� There exist two orthonormal bases (vj)j∈N and (fj)j∈N as well as a real sequence
(λj)j∈N, lim

j→0
λj = 0, such that Ψ can be represented in the singular value decompo-

sition

Ψ(x) =
∞∑
j=1

λj 〈x, vj〉 fj, ∀x ∈ H. (2.1)

All λj are chosen to be positive because otherwise take −fj instead of fj.

� Ψ maps every bounded set into a compact set.

� (〈y, xn〉
n→∞−→ 〈y, x〉 ∀y ∈ H) implies ‖Ψ(xn)−Ψ(x)‖ n→∞−→ 0.

A compact operator is a Hilbert-Schmidt operator if
∑∞

j=1 λ
2
j < ∞ with λj from (2.1).

Those operators form the Hilbert-Schmidt space S of Hilbert-Schmidt operators. The
Hilbert-Schmidt space is a separable Hilbert space endowed with the inner product

〈Ψ1,Ψ2〉S :=
∞∑
i=1

〈Ψ1(ei),Ψ2(ei)〉 , ∀Ψ1,Ψ2 ∈ S,

where the orthonormal basis (ei)i∈N is arbitrary, because this inner product does not
depend on the exact choice of (ei)i∈N. It turns out that ‖Ψ‖2S =

∑∞
j=1 λ

2
j and ‖Ψ‖L ≤ ‖Ψ‖S .

Ψ ∈ L is symmetric if 〈Ψ(x), y〉 = 〈x,Ψ(y)〉 holds for all x, y ∈ H. It is positive-definitive
if 〈Ψ(x), x〉 ≥ 0 holds for all x ∈ H. Hence, a symmetric positive-definite Hilbert-Schmidt
operator Ψ can be represented as

Ψ(x) =
∞∑
j=1

λj 〈x, vj〉 vj, ∀x ∈ H, (2.2)

with orthonormal eigenfunctions vj, j ∈ N, and eigenvalues λ1 > λ2 > . . . ≥ 0. (vj)j∈N can
be assumed to form a basis (where some λj may be zero), because otherwise a complete
orthogonal system can be added in the othogonal complement of span{vj, j ∈ N}, so that
(vj)j∈N is extended to a basis thereby. Unfortunately in the infinite dimensional case there
is a property of S that we have to cope with later:

Lemma 2.1 If dim(H) =∞, every symmetric positive-definite Hilbert-Schmidt operator
Ψ is not invertible in S.
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Proof: If Ψ were invertible, then Ψ−1 would look like

Ψ−1(x) =
∞∑
j=1

1

λj
〈x, vj〉 vj ∀x ∈ H,

because an inverse function is unique and

Ψ−1 (Ψ(x)) = Ψ
(
Ψ−1(x)

)
=
∞∑
j=1

∞∑
l=1

λj
1

λl
〈x, vl〉 〈vl, vj〉 vj

(vj) orthon.
=

∞∑
j=1

〈x, vj〉 vj
(vj) basis

= x.

However,

Ψ ∈ S ⇒
∞∑
j=1

λ2j <∞ ⇒ λ2j
j→∞−→ 0 ⇒ 1

λ2j

j→∞−→ ∞ ⇒
∞∑
j=1

1

λ2j
=∞.

Hence, Ψ−1 is not well-defined in S. 2

The trace of a positive-definite operator A ∈ L is defined by

tr(A) :=
∞∑
n=1

〈en, A(en)〉

for any choice of the orthonormal basis (en)n∈N. A ∈ L is called trace class or nuclear

if tr[(ATA)
1
2 ] < ∞. T denotes the set of all trace class operators. It is a vector space

endowed with the norm
‖A‖T := tr[(ATA)

1
2 ]. (2.3)

The latter can be expressed as
∑∞

j=1 λj for symmetric positive-definite Hilbert-Schmidt
operators. Therefore, the following relations concerning normed vector spaces of operators
hold, where C denotes the set of compact operators:

L ⊃ C ⊃ S ⊃ T , ‖·‖L ≤ ‖·‖S ≤ ‖·‖T . (2.4)

2.1.2 Random Functions of L2 and Covariance Operator

In the following we will focus on the special case where H = L2([0, 1]), the space of
square-integrable functions (abbr. L2). Its inner product is defined by

〈x, y〉 :=

∫
x(t)y(t)dt :=

1∫
0

x(t)y(t)dt, ∀x, y ∈ L2.

For p ∈ N∪ {∞}, the L2 space is the only Lp space to be endowed with a scalar product.
In general it is difficult to give an explicit closed term for an L2 function because it is
uniquely defined up to null sets. Two L2 functions x, y are said to be equal if

‖x− y‖2 =

∫
[x(t)− y(t)]2dt = 0.
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A (real) kernel is a measurable function ψ : [0, 1]2 → R. An integral operator is a function
Ψ on L2 which possesses a kernel ψ such that

Ψ(x)(·) =

∫
ψ(·, s)x(s)ds, ∀x ∈ L2.

It is an Hilbert-Schmidt operator if and only if∫ ∫
ψ2(t, s)dtds <∞. Then ‖Ψ‖2S =

∫ ∫
ψ2(t, s)dtds.

If ψ(t, s) = ψ(s, t) for all t, s ∈ [0, 1], then Ψ is symmetric; if
∫ ∫

ψ(t, s)x(t)x(s)dtds ≥ 0,
then Ψ is positive-definite. The kernel of a symmetric positive-definite Hilbert-Schmidt
integral operator is of the form

ψ(t, s) =
∞∑
j=1

λjvj(t)vj(s).

Mean, Covariance Operator: Let X = {X(t), t ∈ [0, 1]} be a random element of L2

equipped with the Borel σ-algebra. X is said to be integrable if

E ‖X‖ = E
[( ∫

X2(t)dt
) 1

2

]
<∞.

An integrable random function X has a unique mean µ ∈ L2 that satisfies

E 〈y,X〉 = 〈y, µ〉 , ∀y ∈ L2 (⇒ µ(·) = E[X(·)] a.e.) . (2.5)

The expectation commutes with bounded operators (EΨ(X) = Ψ(EX) for all integrable
X and Ψ ∈ L).

Lemma 2.2 (c.f. [Hor, Lemma 2.1]) If X1, X2 ∈ L2 are independent, square inte-
grable and E[X1] = 0, then E [〈X1, X2〉] = 0.

Definition 2.3 (Covariance Operator, c.f. [Hor, ch. 2.3]) Let X be a square-integrable
(i.e. E

[
‖X‖2

]
<∞) and centered (i.e. EX = 0) random function. The covariance oper-

ator of X is

C(y)(t) := E [〈X, y〉X(t)] =

∫
c(t, s)y(s)ds, ∀y ∈ L2

with the covariance function c(t, s) = E [X(t)X(s)].

The last equality holds because Fubini’s theorem yields the interchangeability of the
expectation and the inner product as two integrals. (The last expression is finite, because
X is square integrable and y ∈ L2, so Cauchy-Schwarz inequality gives the result.) Using
the notation

X ⊗X := 〈X, ·〉X,
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one can write C(·) = E[X ⊗ X]. C is a symmetric positive-definite integral operator.
C ∈ L(L2) is a covariance operator if and only if it is symmetric positive-definite and
its eigenvalues (which are non-negative as a consequence of positive-definiteness of C)

satisfy
∞∑
j=1

λj < ∞. The latter is due to the equalities (where vj denote the orthonormal

eigenvectors of C)

∞∑
j=1

λj =
∞∑
j=1

〈Cvj, vj〉 =
∞∑
j=1

〈E[〈X, vj〉X], vj〉 =
∞∑
j=1

E
[
〈X, vj〉2

]
= E

[
‖X‖2

]
<∞,

where the last equality results from Parseval’s equality

∞∑
j=1

〈X, vj〉2 = ‖X‖2 . (2.6)

Hence, every covariance operator is nuclear and the previous calculation demonstrates

‖C‖T = E
[
‖X‖2

]
. (2.7)

In particular, a covariance operator as a nuclear operator is Hilbert-Schmidt. Symmetry
and positive-definiteness yield the singular value decomposition

C(x) =
∞∑
j=1

λj 〈x, vj〉 vj, ∀x ∈ H.

In the following, (λj)j∈N and (vj)j∈N denote the eigenvalues and -vectors of C.

Lemma 2.4 (Mercer, c.f. [Bosq, Lemma 1.3]) Let c be a covariance function which
is continuous over [0, 1]2. Then there exists a sequence (vi)i∈N of orthonormal continuous
functions

∀i, j ∈ N :

1∫
0

vi(s)vj(s)ds = δi,j :=

{
1 , i = j

0 , i 6= j

and a decreasing sequence (λi)i∈N of positive numbers such that

1∫
0

c(t, s)vi(s)ds = λivi(t), ∀t ∈ [0, 1] ∀i ∈ N.

Moreover c can be written as

c(t, s) =
∞∑
i=1

λivi(t)vi(s), ∀s, t ∈ [0, 1],

where the series converges uniformly on [0, 1]2. Hence,

∞∑
i=1

λi =

1∫
0

c(t, t)dt <∞.
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This lemma implies a very important regularity criterion for continuous-time processes:

Theorem 2.5 (Karhunen-Loève, c.f. [Hsing, Theorem 7.3.5]) Let X be a random
function in L2([0, 1]). Assume E

[
‖X‖2

]
<∞. Let µ(·) = E[X(·)]. Then

(ξi)i∈N := (〈(X − µ), vi〉)i∈N

is an uncorrelated well-defined collection of mean-zero random variables with

Var[ξi] = λi, ∀i ∈ N. (⇒ E[ξiξj] = λiδi,j, ∀i, j ∈ N.)

Furthermore for any basis (ei)i∈N ⊂ L2

E
[∥∥(X − µ)−

K∑
i=1

ξivi
∥∥2] ≤ E

[∥∥(X − µ)−
K∑
i=1

〈(X − µ), ei〉 ei
∥∥2] K→∞−→ 0. (2.8)

Moreover if the integral kernel c of the covariance operator C is continuous, then

sup
t∈[0,1]

E
[∣∣(X(t)− µ(t))−

K∑
i=1

ξivi(t)
∣∣2] K→∞−→ 0.

(To be more precise,

E
[∥∥(X − µ)−

K∑
i=1

ξivi
∥∥2] =

∑
i>K

λi

for all K ∈ N.)

Remark: X is called Gaussian if and only if (ξn)n∈N are Gaussian and independent.

Definition 2.6 (Cross-covariance operator, c.f. [Bosq, ch. 1.5]) Let X, Y be cen-
tered and square integrable random functions. A cross-covariance operator of X and Y is
defined by

CX,Y (x)(t) = E [〈X, x〉Y (t)] =

∫
E[Y (t)X(s)]x(s)ds, ∀x ∈ L2. (2.9)

The order of X and Y matters (X ⊗Y 6= Y ⊗X). As well as the covariance operator, the
cross-covariance operators are nuclear:

‖CX,Y ‖T = ‖CY,X‖T ≤ E [‖X‖ ‖Y ‖] <∞.

Henceforth we go to the more statistical part. In general operators as the covariance
operator are unknown. Imagine that N ∈ N functions X1(·), . . . , XN(·) (functional data)
are given. The goal is to analyze the data. Thus the mean, the covariance operator and
the eigenvalues and -functions have to be estimated empirically.
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2.1.3 Estimation of mean, covariance functions, eigenvalues and
-functions

Let X1, . . . , XN be a sample of N ∈ N random functions of L2. We consider each curve
Xi as a realization of a random function X of L2. Although X1, . . . , XN will not be
independent in the main chapter, we assume independence here. In other words we assume
in this section

X,X1, . . . , XN i.i.d. in L2, X square− integrable. (2.10)

Based on independence we will show that the functional empirical estimators behave
similarly to the finite dimensional empirical ones.

Sample Mean Function: The empirical counterpart of the mean function µ(·) =
E[X(·)] is defined by

µ̂(t) :=
1

N

N∑
i=1

Xi(t).

For this, some versions of the central limit theorem and some versions of the law of large
numbers exist. In addition, consistency holds.

Theorem 2.7 (Central Limit Theorem (CLT), c.f. [Hor, Thm. 2.1]) Suppose (Xi)i∈N
is a sequence of i.i.d. random elements in a separable Hilbert space with E

[
‖X1‖2

]
< ∞

and E[X1] = µ. Then
√
N(µ̂− µ)

D→ Z ∼ N (0, C),

i.e. Z is a Gaussian random element with the covariance operator

C(x) = E [〈Z, x〉Z] = E [〈X1, x〉X1] .

Theorem 2.8 (Strong Law of Large Numbers (SLLN), c.f. [Hor, Thm. 2.2]) Let
(Xi)i∈N be a sequence of i.i.d. random elements in a separable Hilbert space such that

E
[
‖X1‖2

]
<∞. Then

µ̂
a.s.→ µ.

Theorem 2.9 (Consistency of µ̂, c.f. [Hor, Thm. 2.3]) Under (2.10) E[µ̂] = µ and

E
[
‖µ̂− µ‖2

]
= O( 1

N
). (Hence, ‖µ̂− µ‖ P→ 0.)

Concerning estimators for the covariance function and the covariance operator, we will
discuss both simultaneously, because a covariance operator is defined by its integral kernel,
the covariance function.
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Sample Covariance Function/Operator: The intuitive way to define empirical es-
timators for this is to replace the expectation operator by the empirical average and to
center the functional observations by using the empirical mean

ĉ(t, s) :=
1

N

N∑
i=1

(Xi(t)− µ̂(t))(Xi(s)− µ̂(s)), ∀s, t ∈ [0, 1],

Ĉ(x) :=
1

N

N∑
i=1

〈Xi − µ̂, x〉 (Xi − µ̂), ∀x ∈ L2.

They satisfy the integral condition as well as their theoretical counterparts

Ĉ(x)(t) =
1

N

N∑
i=1

∫
(Xi(s)− µ̂(s))x(s)ds(Xi(t)− µ̂(t))

=

∫
1

N

N∑
i=1

(Xi(t)− µ̂(t))(Xi(s)− µ̂(s))x(s)ds

=

∫
ĉ(t, s)x(s)ds, ∀t ∈ [0, 1], ∀x ∈ L2.

However, one can show that they are biased, similarly to the scalar case

E [ĉ(t, s)] =
N

N − 1
c(t, s)

(
in L2([0, 1]2)

)
.

Nevertheless we neglect this bias. Furthermore, we assume mean-zero random functions.
Then

ĉ(t, s) =
1

N

N∑
i=1

Xi(t)Xi(s), Ĉ(x) =
1

N

N∑
i=1

〈Xi, x〉Xi.

The following theorem implies

E
[ ∫ ∫

ĉ2(t, s)dtds
]
<∞.

(
⇒ ĉ(·, ·) ∈ L2([0, 1]2) a.s.

)

Theorem 2.10 (Boundedness of Ĉ, c.f. [Hor, Thm. 2.4]) Assume E
[
‖X‖4

]
<∞,

E[X] = 0 and (2.10). Then

E
[∥∥Ĉ∥∥2S] ≤ E

[
‖X‖4

]
.

Theorem 2.10 even holds for non-i.i.d. data.

Theorem 2.11 (Consistency of Ĉ, c.f. [Hor, Thm. 2.5]) Assume E
[
‖X‖4

]
<∞,

E[X] = 0 and (2.10). Then

E
[∥∥Ĉ − C∥∥2S] ≤ 1

N
E
[
‖X‖4

]
.
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Theorem 2.12 (Central Limit Theorem for ĉ, c.f. [Hor, Thm. 2.9]) Assume
E
[
‖X‖4

]
<∞, E[X] = 0 and (2.10). Then

ZN(t, s) :=
√
N(ĉ(t, s)− c(t, s))

converges weakly in L2([0, 1]2) to a Gaussian process Γ(t, s) with E[Γ(t, s)] = 0 and

E[Γ(t, s)Γ(t′, s′)] = E[X(t)X(s)X(t′)X(s′)]− c(t, s)c(t′, s′).

Empirical Eigenvalues/-functions: Compared to the previous estimators one has to
be more careful with defining appropriate estimators for the eigenvectors and eigenfunc-
tions of C. Here the intuitive method is finding the tuples(

λ̂j, v̂j

)
such that Ĉv̂j = λ̂j v̂j

w.r.t. the sample covariance operator Ĉ. However:

� Since in theory a covariance operator C has infinitely many eigenelements, we only
estimate the p ∈ N largest eigenvalues (and their corresponding eigenfunctions) such
that

λ1 > λ2 > . . . > λp > λp+1 ≥ 0.

� Of course, the empirical eigenfunctions v̂j are designed to be close to the true eigen-
functions vj. Since vj are chosen to be normalized, i.e. ‖vj‖ = 1, the same is intended
to hold for the empirical ones. However, as we do not know the exact eigenfunctions,
we are not sure whether to take v̂j or −v̂j. This is why we have to work with

ŝj := sign (〈v̂j, vj〉)

in order to formulate convergence criteria.

� In practice people often work with discrete functions (i.e. finite dimensional vectors),
which can be smoothed to functional data elements afterwards. For discrete data
the sample covariance operator is a matrix. Therefore it has eigenvectors of finite
length. This aspect is neglected here.

Those remarks give us the assumptions for the following convergence criterion.

Theorem 2.13 (Consistency of Empirical Eigenelements, c.f. [Hor, Thm. 2.7])
Assume E

[
‖X‖4

]
<∞, E[X] = 0, (2.10) and

λ1 > λ2 > . . . > λp > λp+1. (2.11)

Then for each j ∈ {1, . . . , p}

lim sup
N→∞

NE
[
‖ŝj v̂j − vj‖2

]
<∞ and lim sup

N→∞
NE

[∣∣∣λ̂j − λj∣∣∣2] <∞.
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For the proof of this theorem, we need to state two additional lemmata. Both of them
work with singular value decompositions

K1(x) =
∞∑
j=1

λj〈y, vj〉fj, K2(x) =
∞∑
j=1

γj〈x, uj〉gj (2.12)

of two compact operators K1, K2 ∈ L.

Lemma 2.14 (c.f. [Hor, Lemma 2.3]) Suppose K1, K2 ∈ L are two compact opera-
tors. Let K1 be symmetric, i.e. fj = vj in (2.12) and suppose that its eigenvalues satisfy
(2.11). Define

v′j := sjvj, sj := sign (〈uj, vj〉) , α1 := λ1 − λ2,
αj := min{λj−1 − λj, λj − λj+1} ∀j ∈ {2, . . . , p}.

Then, for all j ∈ {1, . . . , p}

‖uj − v′j‖ ≤
2
√

2

αj
‖K2 −K1‖L.

Lemma 2.15 (c.f. [Hor, Lemma 2.2]) Suppose K1, K2 ∈ L are two compact operators
with (2.12). Then, for all n ∈ N, |γj − λj| ≤ ‖K2 −K1‖L.

Proof of Theorem 2.13: Use Lemma 2.14 and Lemma 2.15 by taking K1 = C and K2 = Ĉ,
remember (2.4) (here: ‖·‖L ≤ ‖·‖S) use the expectation operator on all the expressions
and apply Theorem 2.11, i.e.

E
[∥∥Ĉ − C∥∥2S] ≤ 1

N
E
[
‖X‖4

]
.

Then the result immediately follows. 2

2.2 Functional Principal Component Analysis (FPCA)

Suppose that we are given a dataset (i.e. non-random elements) of N ∈ N observed
functions x1, . . . , xN ∈ L2. The idea of FPCA is to reduce the data dimension by projecting
the data onto a finite dimensional subspace in an optimal way (i.e. by minimizing the loss
of information). Given p < N , how can we find an optimal finite dimensional subspace?
In other words we want to find an orthonormal basis u1, . . . , up that minimizes

Ŝ2 :=
N∑
i=1

∥∥xi − p∑
k=1

〈xi, uk〉uk
∥∥2.

Having determined such an appropriate orthonormal basis to perform an orthogonal pro-
jection, we will be able to work with p-dimensional vectors

xi :=

 〈xi, u1〉...
〈xi, up〉

 (2.13)
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instead of infinite dimensional curves xj. The optimal functions u1, . . . , up are called opti-
mal empirical orthonormal basis or natural orthonormal components. The words ”empiri-
cal” and ”natural” emphasize that they are computed directly from the functional data.
We start with p = 1: Find u ∈ L2 with ‖u‖ = 1 that minimizes

N∑
i=1

‖xi − 〈xi, u〉u‖2 =
N∑
i=1

‖xi‖2−2
N∑
i=1

〈xi, u〉2 +
N∑
i=1

〈xi, u〉2‖u‖2 =
N∑
i=1

‖xi‖2−
N∑
i=1

〈xi, u〉2,

which is equivalent to maximizing

N∑
i=1

〈xi, u〉2 =
〈
Ĉu, u

〉
.

This maximization problem is easy to solve. Recall the singular value decomposition of a
symmetric positive-definite Hilbert-Schmidt operator Ψ (2.2) such that

〈Ψ(z), z〉 =
∞∑
j=1

λj〈z, vj〉2 ∀z ∈ L2. (2.14)

Suppose λ1 > λ2 > . . . and Parseval’s equality (2.6) with normalization ‖z‖2 = 1 as
constraints for this optimization problem. Then the maximal value of 〈Ψ(·), ·〉 is λ1. Thus
take 〈z, v1〉2 = 1 and 〈z, vj〉 = 0 for j > 1. This leads to the choice z = ±v1, but we
prefer to choose the positive sign. Back to our original notation, we found u = v̂1. Here,
we finally used an approach which we already know from linear algebra. Recall:

Theorem 2.16 (Principal Axis Theorem, c.f. [Hor, Thm. 3.1]) Suppose A is a sym-
metric p × p matrix. Then there exists an orthogonal matrix U = [u1, . . . ,up] whose
columns are the eigenvectors of A, i.e.

UTU = I and Auj = λjuj.

Moreover,
UTAU = Λ = diag[λ1, . . . , λp].

This implies A = UΛUT. Again we assume A to be symmetric and positive-definite with
λ1 > . . . > λp. The problem is of the form

Find ẑ = argz max zTAz,

which, by y = UTz, can be transformed to

Find ŷ = argy max yTΛy.

The latter problem has the same structure as (2.14) because of

yTΛy =

p∑
j=1

λjy
2
j .
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Hence the maximal value is λ1 which is attained at

y =


1
0
...
0

 ⇒ z = u1.

Now we continue to minimize Ŝ and deal with p > 1. In light of the case p = 1, we obtain

Ŝ2 =
N∑
i=1

‖xi‖2 −
N∑
i=1

p∑
k=1

〈xi, uk〉2.

Therefore maximize

p∑
k=1

N∑
i=1

〈xi, uk〉2 =

p∑
k=1

〈
Ĉ(uk), uk

〉
=
∞∑
j=1

λ̂j〈u1, v̂j〉2 +
∞∑
j=1

λ̂j〈u2, v̂j〉2 + . . .+
∞∑
j=1

λ̂j〈up, v̂j〉2

w.r.t. u1, . . . , up. Note that u1, . . . , up is intended to become an orthonormal basis. Thus
solve the first term by setting u1 = v̂1 as before. However, solve the second term by using
the additional constraint 〈u2, v̂1〉 = 0 (because we know that (v̂j)j∈N is an orthonormal
basis, too). Thus, the maximal value of the second term is λ2, which is attained at u2 = v̂2.
Inductively for the l-th term with l ≤ p, consider the constraints 〈ul, v̂j〉 = 0 for all
j ∈ {1, . . . , l − 1}, which results in ul = v̂l. All in all the optimal basis for the target
subspace consists of exactly the first p eigenfunctions of the sample covariance operator
Ĉ

u1 = v̂1, u2 = v̂2, . . . , up = v̂p. (2.15)

This derivation proves (2.8) in the Karhunen-Loève Theorem (Theorem 2.5).
The functions in (2.15) are called empirical functional principal components (EFPCs,
abbr. principal components) or harmonics. The functional principal components (FPCs)
are the eigenfunctions of the covariance operator C of a square integrable L2-valued ran-
dom function X, if the functional observations X1, . . . , Xn have the same distribution as
X. Under the assumptions of Theorem 2.13, the EFPCs estimate the FPCss (up to a
sign).
For j ∈ {1, . . . , p}, the inner product 〈xi, uj〉 is called jth score. According to (2.13), the
scores can be interpreted as the weight of the contribution of the FPC v̂j to the curve Xi.
The scores determine the variance of the data in the direction of the principal components:
Remember from the Karhunen-Loève Theorem (Theorem 2.5)

E
[
〈X, vj〉2

]
= Var [〈X, vj〉] = λj, ∀j ∈ N,

for a centered random function X of L2. Modify this formula by replacing all expressions
of the left hand side with the empirical counterparts

1

N

N∑
i=1

〈Xi, v̂j〉2 =

〈
1

N

N∑
i=1

〈Xi, v̂j〉Xi, v̂j

〉
= 〈Ĉv̂j, v̂j〉 = λ̂j, ∀j ∈ {1, . . . , p}.
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Consequently, big (empirical) variances of the scores correspond to big (empirical) eigen-

values, which again correspond to a small projection error Ŝ as deduced before. This
is why we are interested in big variances of the scores. This makes sense, because big
variances imply large variations. The bigger the variance is, the more probable it is to
describe the data observations (even the ones which are farther away from the mean) by
the principal components.
Seeking the biggest empirical eigenvalues gives us a rule of thumb for the choice of the
number of principal components p ∈ N: Calculate the cumulative percentage of total vari-
ance (CPV )

CPV(p) :=

p∑
k=1

λ̂k

N∑
k=1

λ̂k

and choose p0 such that CPV (p0) ≥ 0.85. This requires to calculate the first N eigenele-

ments (λ̂1, v̂1), . . . , (λ̂N , v̂N) and afterwards to select the appropriate p. However, in most
of the cases the first eigenvalues are much bigger than the rest, which in plenty of appli-
cations leads to p < N , typically a single digit number.



Chapter 3

Moving Average Process of order 1

This chapter contains the fundamentals about moving average processes. The reader is
required to possess some knowledge of (univariate) time series analysis. Most of what is
written here refers to [Bosq], [Turb1], [Turb2], [Turb3] and especially [TurbThese].

3.1 Definition and Properties

Recall the definition of the cross-covariance operator in Definition 2.6.

Definition 3.1 (Stationarity, c.f. [Bosq, Def. 2.4]) Let (Xn)n∈Z be a sequence of ran-
dom functions of L2. It is called (weakly) stationary, if

� E [‖Xn‖2] <∞, ∀n ∈ Z,

� E[Xn] = µ, ∀n ∈ Z,

� CXn,Xr = CXn+h,Xr+h , ∀n, r, h ∈ Z.

It is called strictly/strongly stationary if

(Xn1 , . . . , Xnm)
D
= (Xn1+h, . . . , Xnm+h) , ∀n1, . . . , nm, h ∈ Z, ∀m ∈ N.

(Clearly, strict stationarity implies weak stationarity, provided that E [‖Xn‖2] <∞ holds
for all n ∈ Z.)

For a stationary process we denote Ch := CXn,Xn+h for any n ∈ Z.

Definition 3.2 (White Noise, c.f. [Bosq, Def. 3.1]) A sequence (εi)i∈Z of random func-
tions of a separable Hilbert space H is called an H-white noise (WN) if

(i) Cεi := E [εi ⊗ εi] is independent from i ∈ Z and

0 < E
[
‖εi‖2

]
= σ2 <∞, E[εi] = 0, ∀i ∈ Z,

(ii) εi is orthogonal to εj for all i, j ∈ Z, i 6= j, in the sense

E (〈εi, x〉 〈εj, y〉) = 0, ∀x, y ∈ H. (3.1)

16
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If instead of the more general condition (3.1) (εi)i∈Z is a sequence of i.i.d. random func-
tions of H, (εi)i∈Z is said to be an H strong white noise (SWN).

Due to independence from i ∈ Z one denotes Cε := Cεi .

Definition 3.3 (Functional Moving Average Model, c.f. [TurbThese, Def. 2.1.7])
Let (Xn)n∈Z be a stationary sequence of mean zero random functions of H = L2. If (Xn)n∈Z
is not centered, use the shifted process (Xn − µ)n∈Z. Moreover let (εn)n∈Z be an H-white
noise. Given l1, . . . , lq ∈ L, (Xn)n∈Z follows a functional moving average model of order
q (MAH(q)) with q ∈ N if

Xn = εn + l1(εn−1) + . . .+ lq(εn−q), ∀n ∈ Z.

We will only consider MAH(1) processes with l = l1. Here we assume

E [‖l(εn−1)‖] > 0, ∀n ∈ Z, (3.2)

which means that (Xn)n∈Z cannot be a ”simple”H-white noise. Furthermore, ‖l‖ always
denotes ‖l‖L.

Lemma 3.4 (c.f. [Bosq, Lemma 3.1] and [Hor, Lemma 13.1]) For any l ∈ L, the
following two conditions are equivalent:

� ∃j0 ∈ N : ‖lj0‖ < 1

� ∃a > 0, b ∈ (0, 1) : ∀j ∈ N0 : ‖lj‖ ≤ abj

(Note that ‖l‖ < 1 is a special case of ‖lj0‖ < 1 for some j0 ∈ N.)

Proof: ”⇐” |b| < 1 implies that j ∈ N can be chosen such that bj becomes arbitrarily
small. Hence there exists a j0 ∈ N such that bj0 < 1

a
. This implies∥∥lj0∥∥ ≤ abj0 < 1.

”⇒” Let j0 be given. For ‖lj0‖ = 0 there are only finitely many j < j0 such that ‖lj‖ > 0
holds. They can be covered by an exponential function as an envelope function subject
to j that exceeds ‖lj‖ for each j ∈ N (choose a sufficiently big). Therefore we assume
‖lj0‖ > 0. For j < j0 an exponential function as an envelope function can be found by
the same argument as before. Thus take any j > j0. There are some q, r ∈ N, 0 ≤ r < j0,
such that j = j0q + r (euclidean division). Therefore∥∥lj∥∥ =

∥∥lj0qlr∥∥ ≤ ∥∥lj0∥∥q ‖lr‖ .
We know ‖lj0‖ < 1 and q > j

j0
− 1 (by the choice of r). Thus∥∥lj∥∥ ≤ ∥∥lj0∥∥ j
j0
−1 ‖lr‖ ≤

(∥∥lj0∥∥ 1
j0

)j ∥∥lj0∥∥−1 max
0≤r<j0

∥∥lj∥∥
Hence, a = ‖lj0‖−1 max

0≤r<j0
‖lr‖ and b = ‖lj0‖

1
j0 < 1 form the envelope function exceeding

‖lj‖ for j > j0. Finally the maximum of a from j < j0 and from j > j0 and the maximum
of b from j < j0 and from j > j0 yield the result. 2
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Definition 3.5 (m-Dependence, [TurbThese, Def. 2.1.2]) Let (Xn)n∈Z be a strictly
stationary sequence of random functions of L2. Given m ∈ N, it is called m-dependent, if
(Xj)j≤n and (Xj)j≥n+m+1 are independent for all n ∈ Z.

It is easy to see that the MAH(1) process

Xn = εn + l(εn−1) (3.3)

is 1-dependent, if (εn)n∈Z is an H strong white noise.

Proposition 3.6 (cf. [TurbThese, Prop. 2.2.1]) Let (Xn)n∈Z be an MAH(1) process
with operator l and let l∗ be its adjoint operator. Then

C := C0 = Cε + lCεl
∗ 6= 0, (3.4)

D := C1 = lCε 6= 0, (3.5)

Ch ≡ 0, ∀|h| > 1. (3.6)

Proof: Use the bilinearity of ⊗, the white noise property (Definition 3.2) and the definition
of an adjoint operator. Thus

C = E[Xn ⊗Xn] = E[εn ⊗ εn] + E[l(εn−1)⊗ l(εn−1)] + E[l(εn−1)⊗ εn] + E[εn ⊗ l(εn−1)]
= E[εn ⊗ εn] + E[l(εn−1)⊗ l(εn−1)] = Cε + E[〈εn−1, l∗(·)〉l(εn−1)] = Cε + lCεl

∗

and
D = E[Xn ⊗Xn+1] = E[εn ⊗ l(εn)] = l (E[εn ⊗ εn]) = lCε

follow. In contrast to C and D

Ch = E[Xn ⊗Xn+h] = E[εn ⊗ εn+h] + E[l(εn−1)⊗ l(εn+h−1)] + E[l(εn−1)⊗ εn+h] +

E[εn ⊗ l(εn+h−1)]
(3.1)
= 0 + 0 + 0 + 0 = 0

holds. It remains to show that C and D are non-zero operators. As a covariance matrix of
a non-constant stochastic process, ‖C‖ > 0 w.r.t. every operator norm holds. Concerning
D we conclude from

‖lCεl∗‖T = ‖Cl(εn−1)‖T
(2.7)
= E

[
‖l(εn−1)‖2

]
,

that ‖lCεl∗‖T > 0 holds because of (3.2) (use Cauchy-Schwarz inequality). Consequently
‖lCε‖T > 0 holds. 2

Proposition 3.7 (c.f. [TurbThese, Prop. 2.2.2]) If (Xn)n∈Z is a weakly stationary,
regular and mean zero linear process and if

∀|h| > 1 : Ch ≡ 0, and

∃l ∈ L : C1 = lCε 6= 0

hold, then (Xn)n∈Z is an MAH(1) process.
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Proof: See [TurbThese, subsection 2.2.5]. 2

Proposition 3.8 Let (Xn)n∈Z be a linear and strongly stationary process of second order.
Then it is an MAH(m) process with an H strong white noise (εn)n∈Z if and only if it is
m-dependent with m ∈ N such that Xn and Xn+m are dependent for all n ∈ Z.

Proof: ”⇒” Take any n ∈ Z. Since Xn consists of εn, . . . , εn−m and since (εn)n∈Z are
independent, (Xj)j≤n and (Xj)j≥n+m+1 are independent. This is the definition of m-
dependence. Moreover both Xn and Xn+m contain εn as a summand. Thus they are
dependent.

”⇐” Since Xn and Xn+m are dependent for all n ∈ Z and since independence implies
orthogonality,

Cm 6= 0 and

Ch(·)(·)
ind.
= E[〈Xn, ·〉]E[〈Xn+m, ·〉] ≡ 0 ∀|h| > m

hold. By means of Proposition 3.7 one can show that these (in-)equations imply an
MAH(m) process. Now assume that (Xn)n∈Z does not consist of an H strong white
noise (εn)n∈Z. This means that (εn)n∈Z are not identically distributed or not independent.
However, in the former case (Xn)n∈Z would not be strongly stationary and in the latter
one (Xn)n∈Z would not be m-dependent. Hence the equivalence follows. 2

Proposition 3.9 Let (Xn)n∈Z be an MAH(1) process and let K ∈ N. Take any orthonor-
mal functions e1, . . . , eK ∈ L2 which span the set AK = span{e1, . . . , eK}. Let PAK be the
projection operator

PAK (f) :=
K∑
i=1

〈f, ei〉ei ∀f ∈ L2.

Then (PAK (Xn))n∈Z is still an MAH(1) process.

Proof: As a projection operator PAK is symmetric and idempotent. Since PAK is a linear
operator, (PAK (Xn))n∈Z is still a linear mean-zero process. Furthermore due to

CPAK (Xn),PAK (Xn+h) = E [〈PAK (Xn), ·〉PAK (Xn+h)]

= PAK

(
E [〈Xn, PAK (·)〉Xn+h]

)
= PAKChPAK ∀h ∈ Z

the cross-covariance operators of (PAK (Xn))n∈Z only depend on the difference of the in-

dices. Consequently we denote (C
PAK (X)

h )h∈Z as the cross-covariance operators of (PAK (Xn))n∈Z
and (CX

h )h∈Z as the cross-covariance operators of (Xn)n∈Z. Hence

E
[
‖PAK (Xn)‖2

]
(2.7)
= ‖CPAK (X)

0 ‖T = ‖PAKChPAK‖T ≤ ‖PAK‖T ‖Ch‖T ‖PAK‖T

= K‖Ch‖TK
(2.7)
= K2E

[
‖Xn‖2

]
<∞
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holds for all h ∈ Z, because 1 is the only non-zero eigenvalue of PAK which appears K
times. All in all (PAK (Xn))n∈Z is stationary. Thus

C
PAK (X)

h = PAKC
X
h PAK

Lemma 3.6
= PAK0PAK = 0 ∀|h| > 1

C
PAK (X)

1 = PAKC
X
1 PAK

Lemma 3.6
= PAK l Id CεPAK =

(
PAK lPAK

)(
PAKCεPAK

) l,Cε 6=0

6= 0.

Finally by Lemma 3.7 (PAK (Xn))n∈Z is an MAH(1) process with lPAK (X) = PAK lPAK .
2

Theorem 3.10 (Invertibility of an MAH(1) process, c.f. [TurbThese, Lemma 2.2.1])
Let (Xn)n∈Z be an MAH(1) process on L2. Assume that (εn)n∈Z is an H-white noise. If
there exists a j0 ∈ N such that ‖lj0‖ < 1, then the H-white noise (εn)n∈Z can be written
as

εn =
∞∑
j=0

(−1)jlj(Xn−j), ∀n ∈ Z. (3.7)

The series converges in L2, endowed with the inner product E [〈·, ·〉].

Proof: Fix any n ∈ Z.

εn = Xn − l(εn−1), εn−1 = Xn−1 − l(εn−2), . . .

⇒ εn =
k∑
j=0

(−1)jlj(Xn−j) + (−1)k+1lk+1(εn−k−1), ∀k ∈ N.

Use Lemma 3.4 to get

E

∥∥∥∥∥εn −
k∑
j=0

(−1)jlj(Xn−j)

∥∥∥∥∥
2
 = E

[∥∥(−1)k+1lk+1(εn−k−1)
∥∥2]

≤ ‖lk+1‖2E
[
‖εn−k−1‖2

]
≤ a2b2(k+1)σ2 k→∞−→ 0.

This means that the L2-limit is εn. 2

Example 3.11 (Trunc. Ornstein-Uhlenbeck Process, c.f. [TurbThese, Ex. 2.2.2])

Let
(
W

(1)
t

)
t∈R

and
(
W

(2)
t

)
t∈R

two independent standard Wiener processes. Define

Wt = W
(1)
t 1R+(t) +W

(2)
t 1R−(t) ∀t ∈ R.

Then the Langevin stochastic differential equation

dξt = −θξtdt+ σdWt, θ > 0, σ > 0

can be solved by the stationary zero-mean Gaussian process

ξt := σ

t∫
−∞

e−θ(t−s)dWs ∀t ∈ R.
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This process is called an Ornstein-Uhlenbeck (O.U.) process. We work with a modified
(truncated) version

ξt := σ

t∫
{t}−1

e−θ(t−s)dW (s) ∀t ∈ R,

with {t} := min{s ∈ N | s ≥ t− 1}. Now let σ = 1 and define

Xn(t) := ξn+t, ∀t ∈ [0, 1], ∀n ∈ Z.

Therefore (Xn)n∈Z is a random sequence with components in the Hilbert space
L2
(
[0, 1],B[0,1], λ+ δ(1)

)
, where λ denotes the Lebesgue measure and δ(1) the Dirac measure

at 1. (Other choices for a Hilbert spaces are possible too, such that (Xn)n∈N is well-defined.)
Moreover, define the operator

lθ : H → H, lθ(x)(t) := e−θtx(1) ∀t ∈ [0, 1], ∀x ∈ H

and the random functions

εn(t) :=

n+t∫
n

e−θ(n+t−s)dW (s).

For n 6= m, εn and εm are independent, as integrals over disjoint intervals. They are
identically distributed, because the increments of a Brownian motion are shift-invariant.
Therefore, (εn)n∈Z is an H strong white noise. Note

lθ(εn−1)(t) + εn(t) = e−θt
n∫

n−1

e−θ(n−s)dW (s) +

n+t∫
n

e−θ(n+t−s)dW (s)

=

n+t∫
n−1

e−θ(n+t−s)dW (s) = Xn(t).

Thus (Xn)n∈Z is an MAH(1) process. In addition,

‖lθ‖2L =

1∫
0

e−2θtd(λ+ δ(1))(t) =

1∫
0

e−2θtdt+

1∫
0

e−2θdt =
1− e−2θ

2θ
+ e−2θ =: α(θ),

which means that for θ > 1
2

we obtain ‖lθ‖2L < 1, so that (Xn)n∈Z is invertible. For
0 < θ ≤ 1

2
, (Xn)n∈Z being invertible still holds, because one can show

‖ljθ‖
2
L = e−2θ(j−1)α(θ), ∀j ≥ 1.

Hence, choosing j0 > 1 sufficiently large yields invertibility of (Xn)n∈Z.

The next subsection is about estimating the mean function and the covariance function
empirically, which was already discussed in the previous chapter. However, here the inde-
pendence assumption for (Xn)n∈Z does not hold any more.
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3.2 Estimation of Mean and Cross-Covariance Oper-

ator

The formulas for these estimators are still the same as in the case of i.i.d. observations,
but we have to adjust the argumentations when proving the limit theorems, especially
concerning the sample covariance operator.

Mean Estimator: Recall the sample mean function:

µ̂(t) :=
1

N

N∑
i=1

Xi(t) ∀t ∈ [0, 1]

µ̂ is consistent:

Proposition 3.12 (c.f. [TurbThese, Prop. 2.2.4]) Let (Xn)n∈Z an MAH(1) process
and define Cµ̂ := E [µ̂⊗ µ̂]. Then∥∥NCµ̂ − (D + C +D∗)

∥∥
T
N→∞−→ 0.

Consequently

NE
[
‖µ̂− µ‖2

] N→∞−→ ‖D + C +D∗‖T .
Here recall the trace norm from (2.3).

Covariance Estimator: Recall the sample covariance operator:

Ĉ :=
1

N

N∑
i=1

Xi ⊗Xi

Proving consistency of Ĉ is much more tedious than working with µ̂. Since we do not
want to get lost into details of the long proofs, we only consider some sketches. The idea
is to handle (Xn ⊗Xn)n∈Z, which itself turns out to be a moving average process on the
Hilbert Schmidt space S (which itself is a Hilbert space, too), i.e. MAS(1). Then we can
apply the same principle as for µ̂.

Lemma 3.13 (c.f. [TurbThese, Lemma 2.2.2]) Let (Xn)n∈Z be an MAH(1) process
equipped with an H strong white noise (εn)n∈Z. Let j0 ∈ N such that ‖lj0‖ < 1. Assume
E‖X0‖4 < ∞ and the cross-covariance operator CX0⊗X0,X1⊗X1 6= 0. Then (Xn ⊗ Xn)n∈Z
is an MAS(1) process with mean C.

Sketch of proof: One can show that every regular, centered and (weakly) stationary pro-
cess (Yn)n∈Z with

CYn,Yn+h = 0 ∀h > 1 and ∃l ∈ L, H−white noise (Zn)n∈Z : CYn,Yn+1 = lCZ

is an MAH(1) process with an operator l and a white noise (Zn)n∈Z (c.f. [TurbThese,
Proposition 2.2.2]). Furthermore, due to E [‖Xn ⊗Xn‖2S ] = E [‖Xn‖4] < ∞ for all n ∈ Z
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the process (Xn ⊗ Xn − C)n∈Z is of second-order. Some tedious calculations reveal that
(Xn⊗Xn−C)n∈Z is stationary. Therefore, define Γh := CXn⊗Xn,Xn+h⊗Xn+h . One can verify
Γh ≡ 0 for all h > 1. After this, the rest follows from the claim at the beginning of this
sketch of proof. 2

Proposition 3.14 (c.f. [TurbThese, Prop. 2.2.7]) Let (Xn)n∈Z be an MAH(1) pro-
cess equipped with an H strong white noise (εn)n∈Z. Let j0 ∈ N such that ‖lj0‖ < 1.
Assume E‖X0‖4 <∞. Define for all n ∈ Z

Zn := 〈Xn, ·〉Xn − C

(ZN = Ĉ −C) and Γ·,· to be the cross-covariance operator of two random operators of S.
Then ∥∥NΓĈ−C − (ΓZ0,Z−1 + ΓZ0,Z0 + ΓZ0,Z1)

∥∥ N→∞−→ 0

and, analogously to Proposition 3.12,

NE
[
‖Ĉ − C‖2S

]
N→∞−→

∥∥ΓZ0,Z−1 + ΓZ0,Z0 + ΓZ0,Z1

∥∥
T ,

where here T denotes the trace class of operators on S.

Proof: The claim follows directly from Proposition 3.12 and from Lemma 3.13. 2

Cross-covariance Estimator: The general form of a sample cross-covariance operator
looks like

1

N − h

N−h∑
i=1

Xi ⊗Xi+h.

However, we are only interested in the special case h = 1, i.e.

D̂ :=
1

N − 1

N−1∑
i=1

Xi ⊗Xi+1.

The idea to prove consistency of D̂ is very similar to the arguments concerning Ĉ. In fact,
we consider the random operators

Wi := 〈Xi, ·〉Xi+1 −D

for i ∈ {1, . . . , N−1}, given MAH(1) realizations X1, . . . , XN . In contrast to (Xn⊗Xn)n∈Z
(which is 1-dependent), (Xn ⊗Xn+1)n∈Z is 2-dependent. So is (Wi)i∈Z. Anyway the same

limit theorems that were used for µ̂ and for Ĉ can be applied here to gain the convergence
behavior

E
[
‖D̂ −D‖2S

]
= O

(
1

N

)
.

This part is skipped here.



Chapter 4

Estimation of the Coefficient
Operator l

From now on we consider an MAH(1) process (Xn)n∈Z equipped with an H strong white
noise (εn)n∈Z. Again we denote ‖ · ‖ := ‖ · ‖L. Recall the equations (3.4) and (3.5). They
indicate how to eliminate Cε, which is intended because in practice (εn)n∈Z is observed in
contrast to (Xn)n∈Z. From

lC
(3.4)
= lCε + l2Cεl

∗ (3.5)
= D + l2D∗

we get

l2D∗ − lC +D = 0. (4.1)

It is an equation for l depending on C and D (which can be estimated from the data). Un-
fortunately it is quadratic, which makes it hard to solve. In [TurbThese] two approaches
are introduced to estimate l: The first one is based on projecting onto a subspace gen-
erated by the eigenvectors of C and deals with solving that quadratic equation for the
eigenvalues. The second one relies on regarding (4.1) as a fixed-point equation and there-
fore establishing a fixed-point iteration. Both of them require certain assumptions, which
are explained at the beginning.

4.1 Assumptions

Recall Proposition 3.14. It guarantees consistency of the sample covariance matrix pro-
vided that there exists a j0 ∈ N such that ‖lj0‖ < 1 holds and provided that E‖X0‖4 <∞
holds. The former implies in addition that (Xn)n∈Z is invertible according to Theorem

3.10 and the latter implies in addition that Ĉ is a Hilbert-Schmidt operator according to
Theorem 2.10. Beyond those conditions we will elaborate another three.

� Note that (4.1) contains both D and D∗, which makes it hard to solve. Thus we
intend to simplify (4.1) by assuming that D is self-adjoint. The property that l and
Cε commute leads to this.

24
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Lemma 4.1 (c.f. [TurbThese, ch. 2.2.4]) Suppose all eigenspaces of Cε are of
dimension 1. Then, if l and Cε commute, l and D are symmetric operators. More-
over, Cε, the eigenvectors of C, D and l coincide.

Proof: As a covariance operator, Cε is symmetric and can be denoted by

Cε =
∞∑
j=1

γjvj ⊗ vj.

Since Cε and l commute, for each j ∈ N l(vj) is an eigenvector of Cε with eigenvalue
γj

Cε[l(vj)] = l[Cε(vj)] = l(γjvj) = γjl(vj).

Since all eigenspaces of Cε are one-dimensional, we obtain

l(vj) = ±‖l(vj)‖vj,

i.e. the eigenvectors of Cε are collinear to their images w.r.t. l and therefore are
eigenvectors of l too. All the other eigenvectors of l can be expressed by a (possibly
infinite) linear combination of (vj)j∈N. Thus the eigenvectors of l and Cε coincide.
Consequently

l(x) = l

(
∞∑
j=1

〈x, vj〉vj

)
=
∞∑
j=1

〈x, vj〉l(vj) =
∞∑
j=1

±‖l(vj)‖〈x, vj〉vj

follows for all x ∈ H. Since the right hand side describes a symmetric operator, l
is symmetric. (3.5) yields that, as a combination of symmetric operators with the
same eigenvectors, D is symmetric and has the same eigenvectors. Due to (3.4) the
same holds for C. 2

� Recall Lemma 2.1. This states that in our case C is not invertible. However, we can
make C invertible by restricting its domain to its image C(H). We will prove

Lemma 4.2 If the eigenvalues of C are strictly positive, then

C(H) =

{
y ∈ H :

∞∑
j=1

〈y, vj〉2

c2j
<∞

}
=: B.

Proof: ”⊆” Let y ∈ C(H). Then, there exists an x ∈ H such that C(x) = y. Then

y =
∞∑
j=1

cj〈x, vj〉vj.

Plugging this into fraction on the right hand side of (4.2) yields

∞∑
j=1

〈y, vj〉2

c2j
=
∞∑
j=1

〈x, vj〉2 = ‖x‖2 <∞,
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which proves C(H) ⊆ B.

”⊇” Let y ∈ B. Then define x =
∞∑
j=1

〈y,vj〉
cj

vj. Since C maps x to y

C(x) =
∞∑
j=1

〈y, vj〉vj = y

and x ∈ H holds because of

‖x‖2 =
∞∑
j=1

〈y, vj〉2

c2j
<∞ (⇒ x ∈ H) ,

C(H) ⊇ B holds and thus the result follows. 2

This lemma motivates us to enforce C possessing strictly positive eigenvalues in
order to get an intuition for C(H) according to (4.2). Due to the relation

cj = 〈C(vj), vj〉 = E
[
〈X0, vj〉2

]
for all j ∈ N, we can ensure cj > 0 by

P(〈X0, vj〉 = 0) = 0

for all j ∈ N.

� Recall the autocorrelation function of a univariate moving average process with
parameter θ such that |θ| < 1 and white noise variance σ2

ε

ρ(h) =


1 , h = 0,
θ

1 + θ2
, |h| = 1,

0 , |h| > 1.

Due to
1± 2θ + θ2 = (1± θ)2 > 0

we get
2|θ| < 1 + θ2.

This is equivalent to |ρ(±1)| < 0.5 and thus |ρ(h)| < 0.5 for all h ∈ Z\{0} as
a necessary condition. Since (1 + θ2)σ2

ε corresponds to (3.4) and θσ2 to (3.4), we
analogously require ‖ρ‖ < 0.5 for ρ := DC−1 in the MAH(1) case.

All in all we investigated the assumptions

∃j0 ≥ 1 :
∥∥lj0∥∥ < 1 (H1)

E‖X0‖4 <∞ (H2)

lCε = Cεl (H3)

∀j ∈ N : P(〈X0, vj〉 = 0) = 0 (H4)

‖ρ‖ < 1

2
. (H5)
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Those assumptions allow us to apply the two estimation approaches for l onto quadratic
equation

l2D − lC +D = 0, (4.2)

simplified by Lemma 4.1.

4.2 Projection method

The idea is to determine the eigenvalues of l and thus to construct an approximation for
l. For this we need the eigenfunctions (vj)j∈N of C (and thus of D, Cε and l). Here we
assume that they are known.

4.2.1 Methodology

Due to (H3), we are allowed to denote

C =
∞∑
j=1

cjvj ⊗ vj, D =
∞∑
j=1

djvj ⊗ vj, l =
∞∑
j=1

λjvj ⊗ vj.

Therefore for each k ∈ N, plugging an orthogonal basis element vk into each operator in
(4.2) leads to

λ2kdk − λkck + dk = 0, ∀k ∈ N. (4.3)

Thus we transform the operational equation (4.2) to infinitely many scalar quadratic
equations. Since the eigenfunctions of l are assumed to be known, all the λk determine l
uniquely. Solving an equation of the form (4.3) leads to

λk =
ck ±

√
c2k − 4d2k

2dk
, ∀k ∈ N. (4.4)

The discriminant is always positive because of (H5): Consider that the operator

ρ := DC−1 =
∞∑
j=1

dj
cj
vj ⊗ vj

is well defined on C(H) according to (H4). Since here the L-norm ‖ · ‖ takes the absolute
maximal eigenvalue (because its corresponding eigenfunction maximizes the expression
which defines ‖ · ‖) we obtain

|dk|
ck
≤ max

j∈N

|dj|
cj

= ‖ρ‖
(H5)
<

1

2
(4.5)

for all k ∈ N, which states that the disciminant is always positive.
Now recall (H1). It only holds if sup

j∈N
|λj0j | < 1 for some j0 ∈ N and hence sup

j∈N
|λj| < 1. In
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other words, we require |λk| < 1 for all k ∈ N. By contrast ck
2|dk|

> 1 holds for all k ∈ N
because of (4.5). Hence we need to force the numerator of (4.4) to become a difference

λk =
ck −

√
c2k − 4d2k

2dk
, ∀k ∈ N.

This suffices |λk| ∈ (0; 1) for all k ∈ N: One can show that (H4) implies dk 6= 0. Therefore
ck −

√
c2k − 4d2k > 0 and |λk| > 0. The rest follows from

(4.5) ⇔ 2 <
ck
|dk|

⇔ − ck
|dk|

+ 1 < −1 ⇔ c2k
4d2k
− ck
|dk|

+ 1 <
c2k

4d2k
− 1

⇔
( ck

2|dk|
− 1
)2
<
c2k − 4d2k

4d2k
⇔ ck

2|dk|
− 1 <

√
c2k − 4d2k
2|dk|

⇔
ck −

√
c2k − 4d2k

2|dk|
< 1

⇔ |λk| < 1 (because ck −
√
c2k − 4d2k > 0).

In this section we assumed that the eigenfunctions (vj)j∈N are known, but not the eigen-
values of C and D. Therefore we need to estimate them in order to estimate the ones of
l. Given n ∈ N and functional observations X1, . . . , Xn in L2, the intuitive estimators are

ckn =
1

n

n∑
i=1

〈Xi, vk〉2, dkn =
1

n− 1

n−1∑
i=1

〈Xi, vk〉〈Xi+1, vk〉,

gained by replacing the expectation operator by the empirical average. Then (ckn)k∈N and
(dkn)k∈N satisfy the condition of nuclear operators

∞∑
k=1

|ckn| =
1

n

n∑
i=1

‖Xi‖2 <∞,
∞∑
k=1

|dkn| ≤
1

n− 1

n−1∑
i=1

‖Xi‖‖Xi+1‖ <∞.

However, we do not know if, for all k ∈ N, ckn > 2|dkn| > 0 holds according to (4.5).
Therefore we define δ > 0 sufficienty small and adapt (ckn)k∈N to

c′kn = max (ckn, (2 + δ)|dkn|) .
Then λkn is defined to be the absolute lower solution of

λ2kndkn − λknc′kn + dkn = 0

for all k ∈ N. Finally choose an appropriate pn ∈ N (e.g. the optimal number of principal
components when using PCA) and estimate l by

ln,pn :=

pn∑
k=1

λknvk ⊗ vk.

This is the estimator by projection. The mean squared error of ln,pn can be expressed by
the eigenvalues:

E
[
‖ln,pn − l‖

2
S
]

= E

[
∞∑
i=1

〈ln,pn(vi)− l(vi), ln,pn(vi)− l(vi)〉

]

=

pn∑
i=1

E
[
(λkn − λk)2

]
+

∞∑
i=pn+1

λ2k.
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Remark: We require the eigenvectors to be known and the interchangeability of l and
Cε to hold, which unfortunately is unlikely for real data and therefore a hard restriction.
Nevertheless the projection approach gives an intuitive and comprehensive attempt to
estimate l directly.

4.2.2 Convergence Criteria

We will prove that (ckn)n∈N and (dkn)n∈N converge to ck and respectively dk. Consequently
(c′kn)n∈N and (λkn)n∈N are consistent too under certain assumptions. Eventually this will
yield the consistence of the estimator by projection ln,pn .

Lemma 4.3 (c.f. [TurbThese, Lemma 3.2.1]) Suppose (H1)-(H5). Then

E
[
sup
k∈N
|ckn − ck|2

]
= O

(
1

n

)
and sup

k∈N
|ckn − ck|

a.s.→ 0.

Lemma 4.4 (c.f. [TurbThese, Lemma 3.2.2]) Suppose (H1)-(H5). Then

E
[
sup
k∈N
|dkn − dk|2

]
= O

(
1

n

)
and sup

k∈N
|dkn − dk|

a.s.→ 0.

Lemma 4.5 (c.f. [TurbThese, Lemma 3.2.5], slightly modified) Suppose that (H1)-
(H5) hold. Then,

E
[
(c′kn − ck)2

]
≤ 2E

[
(ckn − ck)2

]
+O

(
1

n

)
.

Sketch of proof: For any a, b ∈ R consider the fact

a2 − 2ab+ b2 = (a− b)2 ≥ 0 ⇒ 2ab ≤ a2 + b2 ⇒ (a+ b)2 ≤ 2a2 + 2b2− (4.6)

From the equation (as a direct consequence of the definition of c′kn)

c′kn − ck = ((2 + δ)|dkn| − ck)1ckn≤(2+δ)|dkn| + (ckn − ck)1ckn≤2dkn

it follows from Cauchy-Schwarz inequality and (4.6) that

E
[
(c′kn − ck)2

]
≤ 2E

[
(ckn − ck)2

]
+ 2E

[
((2 + δ)|dkn| − ck)21ckn≤(2+δ)|dkn|

]
≤ 2E

[
(ckn − ck)2

]
+ 2
√

E [((2 + δ)|dkn| − ck)4]
√
P(ckn ≤ (2 + δ)|dkn|)

holds. Lemma 4.3 guarantees the convergence of the first summand. Thus we only consider
the second one. Due to (H5) we know (2|dk|−ck) < 0. Hence ((2+δ)|dk|−ck) < 0 follows,
because δ > 0 is supposed to be chosen sufficiently small. Consequently

(2 + δ)|dkn| − ck = (2 + δ)(|dkn| − |dk|) + ((2 + δ)|dk| − ck) < (2 + δ)(|dkn| − |dk|)
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follows as well as

((2 + δ)|dkn| − ck)4 < (2 + δ)4(|dkn| − |dk|)4 ≤ (2 + δ)4(dkn − dk)4.

All in all it remains to handle
√

E [(dkn − dk)4] and
√

P(ckn ≤ (2 + δ)|dkn|). One can show

E
[
(dkn − dk)4

]
= O

(
1

n2

)
.

Some arguments from probability theory yield that
√
P(ckn ≤ (2 + δ)|d′kn|) has an upper

bound consisting of E [(ckn − ck)2] and E [(dkn − dk)2], so that√
E [(d′kn − dk)4]

√
P(ckn ≤ (2 + δ)|d′kn|) = O

(
1

n

)
gives the result. 2

Lemma 4.6 (c.f. [TurbThese, Lemma 3.2.6]) Suppose (H1)-(H5). Then,

E
[
(λkn − λk)2

]
= O

(
1

n

)
∀k ∈ N.

Sketch of proof: The idea is to calculate

E
[
(λkn − λk)2

]
<

(
λk

1− λk

)2

E

[(
c′kn
dkn
− ck
dk

)2
]
.

The latter term can be estimated by second and fourth moments of (ckn−ck) and (dkn−dk).
The calculations are skipped because they are very tedious (see [TurbThese, ch. 3.4]). It
remains to check that the fourth moment of (ckn − ck) is of O

(
1
n2

)
too. Then the result

follows. 2

Proposition 4.7 (c.f. [TurbThese, Proposition 3.3.1]) Suppose (H1)-(H5). Let pn ∈
N such that αn ≤ dpn

2
. Then,

E
[
‖ln,pn − l‖

2
S
]
≤ 1

n

pn∑
k=1

2

d2k
+
∑
k>pn

d2k
c2k

holds as an as an asymptotical (not exact) inequality.

Sketch of proof: We already showed

E
[
‖ln,pn − l‖

2
S
]

=

pn∑
i=1

E
[
(λkn − λk)2

]
+

∞∑
i=pn+1

λ2k.

One result of the tedious calculations which were mentioned in the proof of Lemma 4.6 is

pn∑
i=1

E
[
(λkn − λk)2

]
≤ 1

n

pn∑
i=1

(
λ2k
d2k

+
λ2kc

2
k

d4k

)
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as an asymptotic inequality. Furthermore the equation λ2kdk − λkck + dk = 0 is equivalent
to

λkck =
(
λ2k + 1

)
dk.

Since λk ∈ (0; 1), we obtain (if dk > 0)

dk <
(
λ2k + 1

)
dk < 2dk.

Altogether this leads to the inequalities

dk
ck
< λk < 2

dk
ck
,

which states the asymptotic equivalence λk ' dk
ck

. The other case dk < 0 results in

2
dk
ck
< λk <

dk
ck
,

so that asymptotic equivalence does not change. Hence

E
[
‖ln,pn − l‖

2
S
]
≤ 1

n

pn∑
i=1

(
1

c2k
+

1

d2k

)
+

∞∑
i=pn+1

d2k
c2k

follows. Since ck > 2|dk| holds, the inequality

1

c2k
+

1

d2k
<

2

d2k

holds and thus gives the result. 2

Theorem 4.8 (c.f. [TurbThese, Theorem 3.3.2]) Suppose (H1)-(H5). Moreover as-
sume that there exists some numbers r, r′ with 0 < r′ < r < 1 such that for all k ∈ N

ck = rk, dk = r′k (4.7)

holds. Furthermore define b = (2 log(r)− 4 log(r′))−1 and choose pn = b log(n). Then

E
[
‖ln,pn − l‖

2
S
]

= O
(

1√
n

)
Sketch of proof: Combining (4.7) and Proposition 4.7 yields the asymptotic inequality

E
[
‖ln,pn − l‖

2
S
]
≤ 2

n

pn∑
k=1

(
1

r′

)2k

+
∑
k>pn

(
r′

r

)2k

.

On the one hand we have

2

n

pn∑
k=1

(
1

r′

)2k

≤ pn
n

(
1

r′

)2pn

,



32 CHAPTER 4. ESTIMATION OF THE COEFFICIENT OPERATOR L

which leads to
2

n

pn∑
k=1

(
1

r′

)2k
n big
' 1

n

(
1

r′

)2pn

.

On the other hand we have ∑
k>pn

(
r′

r

)2k

'
(
r′

r

)2pn

.

Equating the first asymptotical result with the second one

1

n

(
1

r′

)2pn

=

(
r′

r

)2pn

in order to get one single expression for the asymptotic behavior of both sums results in

n =

(
r2

r′4

)pn
and thus in

pn = b log n with b =
1

2 log r − 4 log r′
.

This is the reason for that specific choice of pn. Furthermore define γ := log r′

log r
. The result(

r′

r

)2pn

= exp

(
2(log r′ − log r)

2 log r − 4 log r′
log n

)
= n−

1−γ
1−2γ

γ→∞−→ 1√
n

follows, because due to 0 < r′ < r < 1 we have γ →∞. 2

4.3 Iterative method

The idea is to solve (4.2) as a fixed-point equation, c.f. [Turb2]. It is based on a recursion
that was designed to output the square root of a symmetric positive definite operator.
According to [Turb1] it even solves (4.1), but we keep on working with (4.2) for simplicity.

4.3.1 Inspiration by Riesz-Nagy

Suppose we want to find a symmetric operator A such that

A2 − 2A+R = 0 (4.8)

holds. Here R is assumed to be a positive definite and symmetric operator such that
〈x,Rx〉 ≤ ‖x‖2 for all x ∈ H. Rewrite (4.8) as

A =
1

2
(R + A2),

such that the recursive formulas

A0 := 0, Ar+1 :=
1

2
(R + A2

r), ∀r ≥ 0,

can be established.
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Lemma 4.9 (Riesz-Nagy, c.f. [Riesz-Nagy, ch. 104]) If R is as above, this recur-
sion converges to the unique solution of (4.8).

This claim was stated and proven in order to show the existence and uniqueness of a
square root X for any positive-definite symmetric operator B. Defining A and R such
that X = Id− A and B = Id−R hold implies

X2 = B ⇐⇒ A2 − 2A+R = 0.

Since this recursion is not the main focus of this thesis, we skip the proof of Lemma 4.9,
although it is not too hard and long. It is based on the next theorem. Here monotonicity of
a sequence of operators (Ak)k∈N means that all increments Ak−Ak−1 are positive definite
for k ∈ N0.

Theorem 4.10 (Vigier, c.f. [Vigier]) Every monotone bounded (w.r.t. ‖ ·‖L) sequence
(Ak)k∈N of symmetric operators converges strongly to a symmetric operator A, i.e.

‖Akh− Ah‖
k→∞−→ 0, ∀h ∈ E,

where E is a linear subspace out of the Hilbert space H.

In light of Riesz-Nagy and according to (4.2) we want to derive a solution of

A2R− A+R = 0 (4.9)

with a positive-definite symmetric operator R such that ‖R‖ < 1
2

by recursion:

A0 := 0, Ar+1 := A2
rR +R, ∀r ≥ 0.

It is easy to see that ‖Ar‖ < 1 for all r ∈ N0 follows from ‖R‖ < 1
2
: Trivially, this holds

for r ∈ {0, 1}. The rest follows by induction by seeing that

‖Ar+1‖ = ‖A2
rR +R‖ ≤ ‖A2

r + Id‖ · ‖R‖ ≤ 1

2
(‖A2

r‖+ 1) < 1.

The next proposition states that this sequence converges.

Proposition 4.11 (c.f. [TurbThese, Prop. 4.2.1]) Let (Ar)r∈N0 and R as above. Then
there is a symmetric operator A that suffices (4.9) and

‖Ar − A‖ ≤ (2‖R‖)r r→∞−→ 0.

Proof: The idea is to apply Vigier’s Theorem. Therefore, it suffices to show

� Ar is symmetric for all r ∈ N0

� (Ar)r∈N0 is monotonically increasing, i.e. 〈h,A1h〉 ≤ 〈h,A1h〉 ≤ . . . for all h ∈ H

analogously to the Riesz-Nagy recursion.
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(i) Ar symmetric for all r ∈ N0: Note that the combination of two commutative sym-
metric operators M ,P is symmetric, too:

〈MPx, y〉 = 〈Px,My〉 = 〈x, PMy〉 = 〈x,MPy〉 ∀x, y ∈ H

Therefore, it suffices to show that Ar and R commute for all r ∈ N0. Obviously
this holds for r = 0, 1. Assume it holds for some r. Then it trivially holds for r + 1
because of

Ar+1R = (A2
rR +R)R = A2

rR
2 +R2 = ArRArR +R2 = RA2

rR +R2 = RAr+1.

Commutativity and symmetry of R lead to symmetry of Ar for all r ∈ N0, which
again can be shown by induction: Clearly A0 and A1 are symmetric. Under the
assumption that Ar is symmetric up to some r > 0 we have for all x, y ∈ H

〈Ar+1x, y〉 = 〈A2
rRx, y〉+ 〈Rx, y〉 = 〈x,RA2

ry〉+ 〈x,Ry〉 = 〈x,Ar+1y〉.

Hence all Ar are symmetric.

(ii) (Ar)r∈N0 monotonically increasing: As a polynomial of the positive-definite operator
R, Ar is positive definite for each r ∈ N. The same holds for the increments: Clearly,
A1 − A0 = R is positive definite. Given r > 0,

Ar+1 − Ar = (A2
r − A2

r−1)R =
(
Ar(Ar − Ar−1) + (Ar − Ar−1)Ar−1

)
R

states by induction that all increments are positive definite. Hence (Ar)r∈N0 is mono-
tonically increasing.

Furthermore recall that ‖Ar‖ < 1 for all r ∈ N0 because of ‖R‖ < 1
2
. Hence Vigier’s

theorem can be applied on (Ar)r∈N0 , which means that there exists a symmetric operator
A such that

A = lim
r→∞

Ar+1 = lim
r→∞

A2
rR +R = A2R +R.

Since ‖Ar‖ < 1 for all r ∈ N, ‖A‖ ≤ 1 follows. Given that limit, we can conclude

‖Ar+1 − A‖ ≤ ‖R‖‖A2
r − A2‖ ≤ ‖R‖

(
‖Ar‖+ ‖A‖

)
‖Ar − A‖

≤ 2‖R‖‖Ar − A‖ ≤
(
2‖R‖

)2‖Ar−1 − A‖ ≤ . . . ≤
(
2‖R‖

)r+1
2

This proposition indicates how to calculate the solution of

l2ρ− l + ρ = 0 (4.10)

with ρ := DC−1. (4.10) is equivalent to (4.2) under (H4). Since ρ is not known, we need
to estimate ρ.
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4.3.2 Estimation of ρ

If the eigenfunctions v1, v2, . . . of C are known, we can work analogously to the derivation
of the projection method. Due to (H3) and Lemma 4.1, we can restrict our calculations
on the eigenvalues of D and C. Therefore for a fixed n ∈ N we define the estimator

ρ̂n,pn(x) :=

pn∑
j=1

djn
cjn
〈x, vj〉vj, ∀x ∈ H a.e., (4.11)

for some pn ∈ {1, . . . , n} where (djn)j∈N and (cjn)j∈N again denote the estimated eigen-
values of D and respectively C

ckn =
1

n

n∑
i=1

〈Xi, vk〉2, dkn =
1

n− 1

n−1∑
i=1

〈Xi, vk〉〈Xi+1, vk〉.

Lemma 4.12 (Consistency of ρ̂n,pn, c.f. [Bosq, Prop. 4.3.1]) Given an MAH(1) pro-
cess (Xn)n∈Z, suppose that ρ is a Hilbert-Schmidt operator. Then under (H1)-(H5) ‖ρ̂n,pn−
ρ‖ converges to 0 almost surely, provided that

lim inf
n→∞

nc8pn
log(n)α

> 0

holds for all α > 2.

Sketch of proof: The idea is to verify that a term containing ‖Ĉ −C‖ and ‖D̂ −D‖ con-
verges to 0 almost surely and is an upper bound for ‖ρ̂n,pn − ρ‖ (see [Bosq, Sec. 4.4]). 2

According to [Bosq, ch. 8.3] a generalization of (4.11) for the case that the eigenfunc-
tions of C are not known or that (H3) does not hold is

ρ̂gen.n,pn(x) :=
1

n− 1

n−1∑
i=1

pn∑
l=1

pn∑
j=1

1

cjn
〈x, v̂j〉〈Xi, v̂j〉〈Xi+1, v̂l〉v̂l

with some estimators v̂1, v̂2, . . . for the theoretical eigenfunctions of C (for example by
principal component analysis in R).

Lemma 4.13 (Consistency of ρ̂gen.n,pn, c.f. [Bosq, Thm. 8.7] and [Turb1, Section 3])
Given an MAH(1) process (Xn)n∈Z, suppose that the eigenvalues (cn)n∈N of the theoretical
covariance operator C suffice

c1 > c2 > . . . > 0

and the eigenvalues cpnn of the empirical covariance operator Ĉ (depending on n) suffice

cpnn > 0, ∀n ∈ N (a.s.).

Furthermore define the sequence (bn)n∈N such that

b1 = 2
√

2(c1 − c2)−1, bj = 2
√

2 max
[
(cj−1 − cj)−1, (cj − cj+1)

−1] ∀j ≥ 2.
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If there exists a number β > 1 such that

cpn
−1

pn∑
j=1

bj = O(n
1
4 (log n)−β),

then
∥∥ρ̂gen.n,pn − ρ

∥∥ converges to zero almost surely.

Sketch of proof: The idea is to use consistency of Ĉ and D̂ (see [Bosq, Section 8.6]). 2

Remark: The following analogy is useful for practical implementation: Suppose we
work in a finite dimensional space Rn instead of H. Denote Ṽ ∈ Rn×pn the matrix with
v̂1, . . . , v̂pn in the columns. Furthermore, define D̃n to be the matrix with

(D̃n)l,j =
1

n− 1

n−1∑
i=1

〈Xi, v̂j〉〈Xi+1, v̂l〉

and still C̃−1n = diag( 1
c1n
, . . . , 1

cpnn
). Then the pn × pn matrix ρ̂gen.n,pn can be written as

ρ̂gen.n,pn = Ṽ D̃nC̃
−1
n Ṽ T ,

which is a useful notation for programming.

4.3.3 Recursive Approach

At the end we are ready to establish the iterative method for l. As written in [Turb1,
Section 3], (H3) is not necessary for this approach. This means that the iterative method
finds a solution even for the generalized problem (4.1), where D is not symmetric. In that
case we have to use ρ̂gen.n,pn . However, those claims are not proven here. We will argue the
convergence of the iterative method given ρ̂n,pn in (4.11). Moreover in addition to those
five assumptions, which were already required for the projection method, we need

〈x, ρx〉 ≥ 0, ∀x ∈ C(H), (H6)

for convergence of the recursion according to Proposition 4.11.
For the next Proposition we need the set

Ω0 :=

{
ω0 | ∃N(ω0) : ∀n ≥ N(ω0) : ‖ρ̂n,pn‖ <

1

2

}
.

Due to (H5) and due to consistency of ρ̂n,pn this set suffices P(Ω0) = 1.

Proposition 4.14 (c.f. [TurbThese, Prop. 4.3.2]) Fix n ∈ N and pn ∈ {1, . . . , n}.
Under (H1) – (H6) the sequence

l̂0,n,pn ≡ 0, l̂r+1,n,pn = l̂2r,n,pn ρ̂n,pn + ρ̂n,pn , ∀r ∈ N,
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defined for all ω0 ∈ Ω0 and for all n ≥ N(ω0), converges to the solution l̂n,pn of

l̂2n,pn ρ̂n,pn − l̂n,pn + ρ̂n,pn = 0 (4.12)

for r →∞ with ‖l̂n,pn‖ < 1 and with convergence rate∥∥∥l̂r,n,pn − l̂n,pn∥∥∥ ≤ (2 ‖ρ̂n,pn‖)r+1.

This immediately follows from Proposition 4.11.

Theorem 4.15 (c.f. [TurbThese, Thm. 4.3.1]) If ρ is a Hilbert-Schmidt operator, then
under (H1) – (H6) ∥∥∥l̂r,n,pn − l∥∥∥ r,n→∞−→ 0 a.s.

(first r →∞, then n→∞) follows, provided lim inf
n→∞

nc8pn
log(n)α

> 0 for all α > 2.

Proof: Proposition 4.14 yields l̂r,n,pn
r→∞−→ l̂n,pn . Thus it remains to show l̂n,pn

n→∞−→ l:∥∥∥l̂n,pn − l∥∥∥ =
∥∥∥l̂2n,pn ρ̂n,pn + ρ̂n,pn − l2ρ− ρ

∥∥∥
≤

∥∥∥l̂2n,pn ρ̂n,pn − l2ρ∥∥∥+ ‖ρ̂n,pn − ρ‖

≤
∥∥∥l̂2n,pn (ρ̂n,pn − ρ) +

(
l̂2n,pn − l

2
)
ρ
∥∥∥+ ‖ρ̂n,pn − ρ‖

≤
∥∥∥l̂2n,pn∥∥∥ ‖ρ̂n,pn − ρ‖+

∥∥∥l̂2n,pn − l2∥∥∥ ‖ρ‖+ ‖ρ̂n,pn − ρ‖

≤
(∥∥∥l̂2n,pn∥∥∥+ 1

)
‖ρ̂n,pn − ρ‖+

(∥∥∥l̂n,pn∥∥∥+ ‖l‖
)∥∥∥l̂n,pn − l∥∥∥ ‖ρ‖

Consequently,
∥∥∥l̂n,pn − l∥∥∥ depends on ‖ρ̂n,pn − ρ‖, because

∥∥∥l̂n,pn∥∥∥ < 1 according to Propo-

sition 4.14 and hence ‖l‖ ≤ 1

∥∥∥l̂n,pn − l∥∥∥ ≤
∥∥∥l̂2n,pn∥∥∥+ 1

1−
(∥∥∥l̂n,pn∥∥∥+ ‖l‖

)
‖ρ‖
‖ρ̂n,pn − ρ‖ ≤

2

1− 2 ‖ρ‖
‖ρ̂n,pn − ρ‖ .

The rest follows from Proposition 4.12. 2



Chapter 5

Implementation of the Estimation
Approaches

This chapter is the link from theory to practice. Here we apply the estimation approaches
derived in the previous chapter on simulated data and compare them with two other
estimation methods. At first, the structure of the implementation is described. Then
several examples are discussed.

5.1 Structure of the implementation

The following describes how to simulate MAH(1) data and how to implement the esti-
mation errors. It does not go into details of coding in R, but gives some useful hints and
remarks.

(i) We simulate a MAH(1) process in the multivariate way with vector length m.
This can be converted in functional data by using the fda package in R. Then, we
apply the estimation procedures either on the multivariate or on the functional data.
We generate an multivariate strong white noise matrix E ∈ R(b+n+1)×m, where the
i-th row denotes the (discrete) white noise element εi. Depending on l and the
white noise, we simulate our process X ∈ R(n+b)×m according to the moving average
formula. (Apparently, we need one white noise observation more than the wished
number of moving average elements.) Since a simulation needs a warm-up period to
approximately follow the given model formula, the initial observations of X might
be bad estimates for an MA process. Thus, we delete the first b observations, i.e.
the number of observations of our simulated moving average process X is actually n.
It is hard to determine an appropriate white noise. There are plenty of possibilities,
e.g. i.i.d. multivariate normally distributed vectors with mean vector 0 and covari-
ance matrix Σ, Brownian motion/bridge and trigonometric linear combination with
i.i.d. standard normally distributed random variables. The choice of the white noise
affects the estimators decisively!
Having determined the white noise, we know the theoretical covariance matrix Cε.
Consequently, we are able to calculate D = lCε and C = lCεl

∗ + Cε. Then we can
check whether ‖DC−1‖ < 1

2
holds.

38
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If m is big, it makes sense to convert our simulated multivariate process to a func-
tional one. Note that the formula for the functional MAH(1) process is of the form

Xn+1(t) =

1∫
0

l(s, t)εn(s)ds+ εn+1(t) ≈
1

m

m∑
j=0

l(sj, t)εn(sj) + εn+1(t),

which means that for the functional process we have to divide the matrix-vector mul-
tiplication by m before transforming into functional data. We use B ≈ 51 B-Spline
basis functions on [0, 1] and choose t ∈ Rm as argument values for the functional
data. However, only the first n−1 observations are converted. It is because we will ap-
ply our estimation procedures only on the first n−1 observations. Having estimated
l, we will calculate a one-step predictor estimate and compare it with the remaining
observation that will not have been used for the estimation approaches (i.e. we will
analyze prediction errors). This holds for the multivariate implementation too. The
following is implemented both for the multivariate and for the functional case in the
same way.

(ii) We perform the projection method for each simulation. Firstly, we perform princi-
pal component analysis on the simulated process in order to gain the eigenelements of
the sample covariance matrix. Given some kn ∈ N, the eigenvalues are the estimates
(ckn)k∈{1,...,kn} and the eigenvectors/-functions are (v̂kn)k∈{1,...,kn}; the latter will be
needed for backtransformation from singular value representation to the ”original”
one. By looking at CPV(·) and comparing it with the threshold 85% (see the end of
subsection 2.2), we can determine the optimal number pn of principal components.
Depending on the situation we will either use min{kn,m, pn} or min{kn,m} as the
number of principal components, again denoted as kn. For small m (e.g. 3) using
the optimal number of principal components does not make sense, because reducing
the dimension is not necessary and leads to loss of information. However, for big
m using pn principal components is strongly recommended in order to decrease the
computation duration.
PCA in R yields the scores

(
〈Xi, vj〉

)
i∈[n],j∈[m]

. Thus we can calculate (dkn)k∈{1,...,kn}

directly. Another option is to compute the matrix D̃n (see subsection about the
iterative method) given by

(D̃n)kj :=
1

n− 1

n−1∑
i=1

〈v̂k, Xi+1〉〈Xi, v̂j〉, ∀k, j ∈ {1, . . . , kn},

which we will need in the iterative approach, and to take its diagonal entries. After
this we calculate

c′kn = max (ckn, (2 + δ)|dkn|) , ∀k ∈ {1, . . . , kn}.

The result of the projection procedure is the vector (λkn)k∈{1,...,kn}. After converting
it into a diagonal matrix, it is backtransformed via V ΛV T = Lpr by using the first
kn principal components in the columns of V ∈ Rn×kn .
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(iii) We perform the iterative method for each simulation. For this we need the esti-

mates (ckn)k∈{1,...,kn}, (v̂kn)k∈{1,...,kn} and D̃n from the projection approach. We will

use the matrix ρ̃n,kn = D̃nC̃
−1
n ∈ Rkn×kn for the iterations – without the principal

components (as columns of the matrix V ) in contrast to the theory. It is because it
does not matter whether we use the transformation Q 7→ V QV T before or after the
recursions.
In the projection approach we worked with modified eigenvalues (c′kn)k∈{1,...,kn} to

ensure dkn
c′kn

< 1
2
. Analogously here we have to make sure ‖ρ̃n,kn‖ < 1

2
specifically.

If ‖ρ̃n,kn‖ ≥ 1
2

holds, then we determine a ”modifier” dmod := 0.5−δ
‖ρ̃n,kn‖

and redefine

ρ̃n,kn = dmodD̃nC̃
−1
n with some small δ > 0 such that ‖ρ̃n,kn‖ < 1

2
is made sure. If we

did not ensure that, the iterative method would output a matrix containing Inf or
NA values provided that ‖ρ̃n,kn‖ ≥ 1

2
holds.

Now we apply the iterative procedure by iterating M = 100 times and gain a matrix
It that has to be backtransformed via V (It)V T = Lit (or 1

dmod
V (It)V T = Lit if ρ̃n,kn

has been modified) as well as in the projection procedure. Then Lit can be compared
with the original matrix l.

(iv) We compare the results of the projection and iterative approach with other esti-
mation procedures: the R-function VMA based on ”using the conditional multivariate
Gaussian likelihood function” (see R documentation) and the innovation algorithm.
The former (Vector Moving Average) is computationally much heavier than the
other methods, which results in long computation duration. Note that the MTS pack-
age (which contains VMA) assumes the (multivariate) moving average formula to be

Xn = εn −
q∑
j=1

ljεn−j

for q ∈ N, so the result of the VMA estimation has to be multiplied by −1 so that we
obtain the right estimate.
The basic idea of the innovation algorithm is to compute appropriate estimates θnj
with n ∈ N and j ∈ {1, . . . , n} such that

∀n ∈ N : X̂n+1 :=
n∑
j=1

θnj(Xn+1−j − X̂n+1−j), X̂0 ≡ 0

for a multivariate time series holds. Unfortunately there is no functional innovation
algorithm, but if we work with functional data, we can restrict ourselves to the
finite dimensional case by using PCA. That is why we are fine with the multivariate
innovation algorithm. We omit the details of it. (One can show that the innovation
algorithm and the likelihood-based routine are equivalent.) For the multivariate
MA(1) process with matrix l it turns out that the innovation algorithm reduces to

V0 := C, ∀n ∈ N : θn1 = DV −1n−1, θnj ≡ 0 ∀j ∈ {2, . . . , n}, Vn := C −DV −1n−1D
T

and that θn1
n→∞−→ l holds. In the functional case one can prove θknn1

n→∞−→ l, where one
has to analyze this convergence for the number of observations n and the number
of principal components kn simultaneously.
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The whole implementation will be applied throughout the next examples – from multi-
variate to functional moving average processes. In the following section we start with a
very simple MA(1) process and then analyze some requirements of the procedures.

5.2 Multivariate Time Series Examples

Actually we are interested in functional time series, but for simplicity we start with mul-
tivariate examples in order to get an idea of what is happening in the simulations. We
here consider the three-dimensional MA(1) process

Xi+1 = lεi + εi+1, l ∈ R3×3, εi ∼ N3(0,Σ) i.i.d., Σ =

 0.5 0 0
0 0.3 0
0 0 0.1

 (5.1)

for i ∈ Z and analyze the estimation procedures depending on the choice of l. Due to the
low dimension neither the fda package nor the optimal number of principal components
are used in this section.

5.2.1 Multiple Simulation Study with Diagonal Matrix

We vary the number of observations n ∈ {100, 500, 1000, 5000, 10000} and generate S =
100 multivariate time series for each n. Having sampled from the multivariate normal
distribution N3(0,Σ) (with Σ as above) to obtain a strong white noise for each simulation,
the MA(1) process is calculated according to (5.1) with

l =

 0.3 0 0
0 0.2 0
0 0 0.1

 . (5.2)

The components of l were intended to suffice (H1)-(H5). Let ‖·‖sp denote the spectral norm
of a matrix (i.e. maximal eigenvalue w.r.t. its absolute value), which is the multivariate
equivalent of ‖ · ‖L. (H1) holds because of ‖l‖sp = 0.3 < 1, (H3) holds because l and Σ
are diagonal matrices and (H5) holds because of

‖ρ‖sp = ‖ (lΣ) (Σ + lΣl))−1 ‖sp ≈ 0.275 < 0.5.

Now the goal is to evaluate the errors of the 100 simulations for each n. We calculate
estimation errors as well as forecasts and their relative prediction errors for
each simulation. For determination of estimation errors we compute ‖l̂ − l‖sp, where the
estimates from the projection method, from the iterative method, from VMA and from
the innovation algorithm are plugged in for l̂. Thus we obtain one single error value per
method and per simulation. Finally we take the average over all simulations for each
method and for each observation number. The results can be seen in the Table 5.1. The
VMA routine is run only for n ∈ {100, 500} due to computation duration.
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Projection method Iterative method VMA Innovation algorithm
n = 100 0.1518 0.3729 0.3648 0.3731
n = 500 0.0712 0.1624 0.1480 0.1609
n = 1000 0.0452 0.1064 - 0.1056
n = 5000 0.0209 0.0471 - 0.0469
n = 10000 0.0152 0.0330 - 0.0329

Table 5.1: Average of absolute estimation errors over 100 simulations for l as in (5.2).

Forecasting turns out to be quite tedious. The moving average formula requires apply-
ing l on the white noise, but we wish to use the data (in our case X up to the (n − 1)-st

observation) for forecasting. Suppose we wish to predict X̂n. At first we approximate the
(n− 1)-st white noise εn−1 according to (3.7) by the approximated inverse formula

ε̂n−1 =

min{z,n−2}∑
j=0

(−1)j l̂jXn−1−j (5.3)

with some threshold z ∈ N. This means that we get one specific white noise estimate for
each estimation method!
As a problem, it turns out that calculating ε̂n−1 would take very long, if we do not design
the summands of the inverse formula for εn−1 to be limited by z (e.g. z = 20). This is the
reason for the minimum expression. Afterwards we set

X̂n := l̂ε̂n−1,

i.e. we perform forecasts for each estimator. Those are compared with the true vectors Xn

according to the formula ∥∥∥Xn − X̂n − εn
∥∥∥

‖Xn‖
.

Here, we use the euclidean norm. Since we wish to assess the prediction errors with respect
to the data values (otherwise it is hard to say if an absolute error is good or bad), all
of those mean squared errors are divided by the euclidean norm of the respective true
vector. Thus we obtain one relative mean squared error for each observation number, for
each approach and for each simulation. Table 5.2 shows the averages over the simulations.
Recall that the VMA routine is run only for n ∈ {100, 500} due to computation duration.

Projection method Iterative method VMA Innovation algorithm
n = 100 0.0252 0.1205 0.1801 0.1160
n = 500 0.0112 0.0281 0.0174 0.0254
n = 1000 0.0035 0.0109 - 0.0107
n = 5000 0.0015 0.0025 - 0.0025
n = 10000 0.0007 0.0023 - 0.0022

Table 5.2: Average of relative forecast errors over 100 simulations for l as in (5.2).
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As expected both the absolute estimation errors and the relative forecast errors de-
crease for n increasing. The iterative method and the innovation algorithm seem to perform
similarly (because both are fixed-point algorithms). Surprisingly the projection method is
the best for this example – even better than the computationally heavy VMA routine.

5.2.2 Close-Up: One Simulation with (almost) Diagonal Matri-
ces

We are analyzing one single simulation result for n = 100, but we estimate l with the
whole data (i.e. the last observation is included) because now we are not interested in
predictions. Having run one simulation, we obtain the estimation errors

‖l− l̂proj.‖sp = 0.1151, ‖l− l̂iter.‖sp = 0.4137, ‖l− l̂VMA‖sp = 0.4396, ‖l− l̂innov.‖sp = 0.4168.

The estimations errors do not reveal that the estimates are far from the true matrix in
fact.

l̂proj. =

 0.1852 −0.0030 −0.0002
−0.0030 0.1193 0.0031
−0.0002 0.0031 0.1672

 , l̂iter. =

 0.2321 −0.1875 −0.3591
−0.0546 0.1287 0.0286
0.0167 −0.0534 0.1778

 ,

l̂VMA =

 0.2289 −0.2418 −0.3596
−0.0568 0.1892 0.0047
0.0211 −0.0525 0.1523

 , l̂innov. =

 0.1803 −0.1833 −0.3502
−0.0432 0.1279 0.0247
0.0218 −0.0541 0.1804

 .

The reason for those outputs is the low number of observations n = 100. In this case, the
simulated white noise process is not sampled well enough because it has too big non-zero-
lags, although they are supposed to be around zero. Consequently the simulated MA(1)
process possesses k-lags, k ≥ 2, of similar size as the 1-lag, but in theory the 1-lag of a
MA(1) process is supposed to be much higher than the others. They are illustrated in
Figure 5.1. The y-axis denotes the spectral norm of the lag k sample cross-correlation
matrix, k ∈ {0, 1, 2, 3, 4}.



44 CHAPTER 5. IMPLEMENTATION OF THE ESTIMATION APPROACHES

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.1: Lags for n = 100 for MA(1) series (left) and white noise (right).

Since the estimation procedures require clear MA(1) processes, which does not hold here,
the estimates are not very good. Therefore we need to increase the number of obser-
vations.We set n = 1000. Since maximizing the Gaussian likelihood is computationally
tedious in general, but even more for a large number of observations, the VMA routine is
not applied from now on. For the other methods, the errors have decreased decisively:

l̂proj. =

 0.2629 −0.0028 0.0016
−0.0028 0.1997 0.0011
0.0016 0.0011 0.1270

 , ‖l − l̂proj.‖sp = 0.0373,

l̂iter. =

 0.2680 −0.0057 0.1216
0.0087 0.1996 0.0426
−0.0014 −0.0175 0.1287

 , ‖l − l̂iter.‖sp = 0.1352,

l̂innov. =

 0.2628 −0.0066 0.1203
0.0072 0.1992 0.0409
−0.0031 −0.0180 0.1289

 , ‖l − l̂innov.‖sp = 0.1348.

After rounding the matrices by using one digit, the estimates and the original matrix l
coincide. This improvement makes sense, because the sample lags of the simulated MA(1)
process and of the simulated white noise rather correspond to the theoretical values, which
we expected. See Figure 5.2. Again the y-axis denotes the spectral norm of the lag k sample
cross-correlation matrix, k ∈ {0, 1, 2, 3, 4}.
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Figure 5.2: Lags for n = 1000 for MA(1) series (left) and white noise (right).

We will procede in the same way by working with one simulation and n = 1000, but l is
modified to

l =

 0.3 0 0
0.25 0.2 0

0 0 0.1

 , (5.4)

i.e. l is not a diagonal matrix any more. The resulting estimates are:

l̂proj. =

 0.2646 0.0008 0.0046
0.0008 0.2275 0.0052
0.0046 0.0052 0.1060

 , ‖l − l̂proj.‖sp = 0.2533,

l̂iter. =

 0.2589 −0.0274 0.0781
0.2245 0.2557 0.0425
−0.0108 0.0098 0.1092

 , ‖l − l̂iter.‖sp = 0.1022,

l̂innov. =

 0.2572 −0.0223 0.0722
0.2237 0.2670 0.0322
−0.0115 0.0093 0.1094

 , ‖l − l̂innov.‖sp = 0.0959.

Those outputs completely make sense: The iterative method and the innovation algorithm
are proven to converge even for non-symmetric operators. By contrast, the projection
method only returns symmetric matrices and requires (H3) to hold, which is violated
here. This is why the projection method is very good in the simple example before, but
is not recommended to be applied in practice where (H3) cannot be made sure.
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5.2.3 One Simulation with Orthogonal Matrices

The same proceeding as before is demonstrated with n = 1000 for

l =

 −0.0479 −0.3660 −0.1540
−0.3660 0.1008 −0.1259
−0.1540 −0.1259 0.3470

 ,

which was generated by 0.4·rortho(3). The R function rortho(k) from the package
pracma creates a symmetric orthogonal matrix of size k. We chose this because firstly its
spectral norm equals 1, which means that we can control the spectral norm by scaling,
and secondly it contains only non-zero elements so that it is a more concrete non-diagonal
example. It is scaled by 0.4 because then due to

‖ρ‖sp ≈ 0.3804 < 0.5

(H5) holds. As before since (H3) is not satisfied, the estimate of the projection method
is inappropriate in contrast to the other ones, where the innovation algorithm performs
better then the iterative method:

l̂proj. =

 0.0371 −0.0021 −0.0102
−0.0021 0.0208 −0.0085
−0.0102 −0.0085 0.3593

 , ‖l − l̂proj.‖sp = 0.4537,

l̂iter. =

 −0.0371 −0.3303 −0.0100
−0.3056 0.1255 −0.0654
−0.1490 −0.1137 0.3553

 , ‖l − l̂iter.‖sp = 0.1662,

l̂innov. =

 −0.0401 −0.3436 −0.0564
−0.2937 0.1262 −0.0789
−0.1519 −0.1079 0.3651

 , ‖l − l̂innov.‖sp = 0.1239.

However, if we generate another orthogonal matrix and scale it by 0.8 so that we obtain

l =

 −0.7101 −0.2755 −0.2447
−0.2755 0.7497 −0.0447
−0.2447 −0.0447 0.7603

 ,

the innovation algorithm still performs well, but both the projection and the iterative
method output bad estimates because (H5) is not satisfied according to ‖ρ‖sp ≈ 0.5470 >
0.5.

l̂proj. =

 −0.7942 −0.1002 −0.1918
−0.1002 0.7232 −0.0115
−0.1918 −0.0115 0.6713

 , ‖l − l̂proj.‖sp = 0.2356,

l̂iter. =

 −0.5830 −0.2660 0.0197
−0.1907 0.5594 −0.0406
−0.1827 −0.0368 0.5542

 , ‖l − l̂iter.‖sp = 0.3428,

l̂innov. =

 −0.9176 −0.3812 −0.3246
−0.2627 0.7549 −0.0889
0.2713 −0.0384 0.6379

 , ‖l − l̂innov.‖sp = 0.255.

Again the projection method performs better than the iterative method as in the beginning
examples.
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5.2.4 Evaluation from Several Simulations

To make sure that there is no equivalence between the iterative method and the innovation
algorithm, we simulate 100 MA(1) time series – again with l as in (5.4), as a random
orthogonal matrix multiplied by 0.4 and as a random orthogonal matrix multiplied by
0.8. The problem that occurs in all three examples is that some estimates l̂ are of spectral
norm greater than (or equal) 1, so that the estimated MAH(1) process is not invertible
and so that (5.3) returns very large estimates ε̂n−1. (We did not have this issue in the
case where l is diagonal.) Thus we display three tables for each example. The first table
indicates the number of simulations where the outcome is sufficiently small for inversion,
i.e. ‖l̂‖sp. < 1. The second table indicates the average estimation errors of the simulations

where ‖l̂‖sp. < 1 holds and the third table indicates the average relative forecast errors of

the simulations where ‖l̂‖sp. < 1 holds.

Projection method Iterative method VMA Innovation algorithm
n = 100 100 100 100 99
n = 500 100 100 100 100
n = 1000 100 100 - 100
n = 5000 100 100 - 100
n = 10000 100 100 - 100

Table 5.3: Number of simulations where ‖l̂‖sp. < 1 for l as in (5.4).

For l as in (5.4) there is only one replicate such that ‖l̂‖sp. ≥ 1, see Table 5.3. We
ignore this simulation in Table 5.4 and Table 5.5; otherwise the forecast error for n = 100
for the innovation algorithm would be much bigger.

Projection method Iterative method VMA Innovation algorithm
n = 100 0.2809 0.4032 0.3597 0.4119
n = 500 0.2377 0.1542 0.1361 0.1545
n = 1000 0.2315 0.1108 - 0.1118
n = 5000 0.2297 0.0517 - 0.0484
n = 10000 0.2276 0.0392 - 0.0353

Table 5.4: Average of absolute estimation errors over 100 simulations for l as in (5.4).
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Projection method Iterative method VMA Innovation algorithm
n = 100 0.1852 0.2015 0.2034 0.2663
n = 500 0.0647 0.0121 0.0097 0.0124
n = 1000 0.0690 0.0146 - 0.0138
n = 5000 0.0486 0.0028 - 0.0021
n = 10000 0.0815 0.0020 - 0.0013

Table 5.5: Average of relative forecast errors over 100 simulations for l as in (5.4).

For some orthogonal matrix multiplied by 0.4

l =

 −0.0215 −0.3674 −0.1568
−0.3674 0.0798 −0.1367
−0.1568 −0.1367 0.3417

 (5.5)

again all but some outcomes from the innovation algorithm for n = 100 are of ‖l̂‖sp. < 1.

Projection method Iterative method VMA Innovation algorithm
n = 100 100 100 100 83
n = 500 100 100 100 100
n = 1000 100 100 - 100
n = 5000 100 100 - 100
n = 10000 100 100 - 100

Table 5.6: Number of simulations where ‖l̂‖sp. < 1 for l as in (5.5).

However, for n = 100 for the innovation algorithm we have more outcomes such that
‖l̂‖sp. ≥ 1 holds than before.

Projection method Iterative method VMA Innovation algorithm
n = 100 0.4260 0.3987 0.3342 0.3972
n = 500 0.4271 0.1820 0.1299 0.1784
n = 1000 0.4283 0.1344 - 0.1145
n = 5000 0.4329 0.0909 - 0.0552
n = 10000 0.4336 0.0801 - 0.0389

Table 5.7: Average of absolute estimation errors over 100 simulations for l as in (5.5).

Since the averave errors of the iterative method and the ones of the innovation algo-
rithm are different for large n, we conclude that those two estimation approaches are not
equivalent.
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Projection method Iterative method VMA Innovation algorithm
n = 100 0.2612 0.1427 0.0822 0.1147
n = 500 0.2349 0.0233 0.0137 0.0210
n = 1000 0.2613 0.0118 - 0.0092
n = 5000 0.2381 0.0029 - 0.0016
n = 10000 0.3059 0.0036 - 0.0017

Table 5.8: Average of relative forecast errors over 100 simulations for l as in (5.5).

For some orthogonal matrix multiplied by 0.8

l =

 −0.5413 −0.5717 −0.1420
−0.5717 0.5564 −0.0605
−0.1420 −0.0605 0.7850

 (5.6)

we obtain much more outcomes l̂ with ‖l̂‖sp. ≥ 1, which have to be excluded.

Projection method Iterative method VMA Innovation algorithm
n = 100 100 90 59 35
n = 500 100 100 100 52
n = 1000 100 100 - 54
n = 5000 100 100 - 70
n = 10000 100 100 - 91

Table 5.9: Number of simulations where ‖l̂‖sp. < 1 for l as in (5.6).

Remember the modifier dmod of the iterative method as already described in Section
5.1. dmod makes sure that the iterative method is able to run, even if in fact ‖ρ̂n,pn‖ ≥ 1

2

holds. Therefore the iterative method is less likely to produce outcomes l̂ with ‖l̂‖sp. ≥ 1
than the innovation algorithm, see Table 5.9.

Projection method Iterative method VMA Innovation algorithm
n = 100 0.4904 0.4808 0.2236 0.6128
n = 500 0.3072 0.3421 0.0874 0.3406
n = 1000 0.2919 0.2997 - 0.2834
n = 5000 0.2379 0.2832 - 0.1382
n = 10000 0.2211 0.2761 - 0.1016

Table 5.10: Average of absolute estimation errors over 100 simulations for l as in (5.6).

However, when dmod is needed, the estimate l̂iter. does not converge to l, because it
solves the fixed-point equation (4.12) approximately for ρ̂n,pn modified. Therefore the
iterative method produces the largest estimation errors for large n.
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Projection method Iterative method VMA Innovation algorithm
n = 100 0.7552 0.1964 0.0810 0.5340
n = 500 0.2354 0.1097 0.0102 0.1288
n = 1000 0.3631 0.1161 - 0.1317
n = 5000 0.1198 0.0573 - 0.0524
n = 10000 0.1290 0.1257 - 0.0476

Table 5.11: Average of relative forecast errors over 100 simulations for l as in (5.6).

5.3 Functional Time Series Examples

Finally, we look at some functional data examples. The optimal number of principal
components plays a very big role in contrast to what we saw before. Again we work with
only one simulation. We consider the MAH(1) process of the form

Xi+1 = l(εi) + εi+1 where l(x)(t) =

∫
ϕ(s, t)x(s)ds.

The reason for taking an integral operator is that in this case it suffices to consider only the
integral kernel ϕ(·, ·). We assume all functional data elements to map from [0, 1], discretize
the input argument t = (0, 1

m−1 ,
2

m−1 , . . . , 1) ∈ Rm and take m = 100. Consequently ϕ is
implemented as a m × m matrix ϕ̃. Here visualizing the matrices in a 3D plot is more
useful than displaying the matrix numbers, what we did before.

Furthermore the relation ‖l‖L ≈
‖ϕ̃‖sp
m

holds. The reason is the integral approximation

l(x)(ti) =

∫
ϕ(ti, s)x(s)ds ≈ 1

m

m∑
j=1

ϕ̃i,jx(tj)

for i ∈ {1, . . . ,m}. Therefore the eigenvalues of Φ (here e.g. cfunc.) equal the ones of ϕ̃

(here e.g. cMV) divided by 1
m

, which leads to ‖ϕ̃‖sp
m

cfunc.v = l(v) ≈ 1

m
ϕ̃v =

1

m
cMVv.

In addition, let Θ and Ω be to two integral operators with kernels θ and ω as well as with
matrix equivalents θ̃ and ω̃. Then due to

(Θ ◦ Ω)(x)(ti) =

∫
θ(ti, u)

∫
ω(u, s)x(s)dsdu

≈ 1

m

m∑
j=1

θ̃i,j
1

m

m∑
k=1

ω̃j,kx(tk) =
1

m

m∑
k=1

( 1

m

m∑
j=1

θ̃i,jω̃j,k

)
x(tk)

the computational counterpart of Θ ◦ Ω is 1
m
θ̃ω̃.

The iterative method and the innovation algorithm will be assessed by applying them
on two different integral kernels. Since in the previous section it turned out that a high
number of observations is necessary even for the low-dimensional case m = 3, choosing
n = 1000 here is reasonable.
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5.3.1 Exponential Integral Kernel

Let the integral kernel be

ϕ(s, t) = α exp

(
−s

2 + t2

2

)
, ∀s, t ∈ [0, 1]

and choose α = 0.5. We already know that (H3) is certainly not satisfied, therefore per-
forming the projection method is not recommended. Neither is the VMA routine (although
we could apply it to the PC scores) because of n = 1000. ϕ looks as in Figure 5.3.
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Figure 5.3: 3D-plot of ϕ(s, t) = α exp
(
− s2+t2

2

)
restricted to [0, 1].

Before simulating the time series we have to select a certain white noise process. We
choose each white noise observation to be a Brownian bridge on [0, 1]

εt := Bt − tB1, ∀t ∈ [0, 1],

where (Bt)t≥0 denotes the standard Brownian motion. Note that in R we simulate a Brow-
nian bridge of length m+ 1 and remove the last component which equals zero. Otherwise
we would obtain a matrix that represents the white noise process and whose last column
only consists of zeros. This would result in a bad sample covariance matrix of the MAH(1)
simulation. Having simulated the white noise process we calculate the MAH(1) process
and transform it into a functional time series via the fda package. It turns out that the
optimal number of principal components is 3:
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p 1 2 3 4 5
CPV(p) 0.6048 0.7650 0.8422 0.8778 0.9022

Table 5.12: CPV for Brownian bridge based MAH(1) process with exponential integral
kernel.

Having set kn = 3 we are able to compute ρ̃n,kn for the iterative method as well as

C̃n and D̃n for the innovation algorithm. Note that in fact (H5) does not hold because
of ‖ρ‖L ≈ 0.5301. Nevertheless we can apply the iterative method due to dimension
reduction to kn = 3. The recursions work well because of ‖ρ̃n,kn‖sp = 0.2863 < 0.5. Here,
the innovation algorithm gives a slightly better result than the iterative method

τϕ(ϕ̂) :=
‖ϕ− ϕ̂‖sp
‖ϕ‖sp

, τϕ(ϕ̂iter.) = 0.4240, τϕ(ϕ̂innov.) = 0.4063.

Those errors look quite big, but in fact it is hard to compare large matrices (which can
be imagined as surfaces) with each other. Both estimates can be seen in Figure 5.4.
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Figure 5.4: Iterative method estimate (left) and innovation algorithm estimate (right)
with Brownian bridge.

After running 100 simulations and taking the mean of τϕ(ϕ̂iter.) and of τϕ(ϕ̂innov.) as well
as their forecast errors (see first multivariate example) over the number of simulations
Table 5.13 shows that the innovation algorithm tends to perform better.
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Iterative method Innovation algorithm
Mean of τϕ(ϕ̂) 0.4608 0.4257

Mean of relative forecast errors 0.1678 0.1686

Table 5.13: Average errors for the Brownian bridge based MAH(1) process with expo-
nential integral kernel over 100 replications.

As already discussed in the multivariate examples the k-lags of theMAH(1) simulation
tend to zero for k ≥ 2, whereas the 0-lag is the biggest and the 1-lag is clearly bigger than
zero. The height of the 1-lag column depends on the spectral norm of ϕ. If we had chosen
α to be small, the 1-lag would attain a small number too. If we had chosen α to be bigger
than 1, the 1-lag would still be bigger than zero below the 0-lag, but all the values would
be scaled in a different way. This is why α was chosen to be out of [0.2, 0.8], here 0.5. For
the white noise process, only the 0-lag does not equal zero. This is illustrated in Figure
5.5. Here the y-axis denotes the spectral norm of the lag k sample cross-covariance matrix
divided by the spectral norm of the sample covariance matrix.
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Figure 5.5: Lags for MAH(1) series (left) and white noise (right).

This pattern is what we already know. However, we projected the data onto the finite
dimensional linear space spanned by the most influential empirical principal components
v̂1, v̂2 and v̂3. How do the processes

(
〈Xi, v̂j〉

)
i∈Z look like for j ∈ {1, 2, 3}? We create

some barplots for them too. Note that they are univariate time series. Hence we obtain a
single number for each series after calculating their correlation coefficients, which means
that we do not need to take any matrix norm. Figure 5.6 shows that it is surprisingly only
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(
〈Xi, v̂1〉

)
i∈Z whose 1-lag does not tend to zero. All the others have a similar dependence

structure to the white noise. This means that all the information about the MAH(1)
structure is carried only on the first principal component. In fact the lags of

(
〈Xi, v̂1〉

)
i∈Z

seem to have the same proportions as the lags of (Xi)i∈Z.
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Figure 5.6: Lags for
(
〈Xi, v̂1〉

)
i∈Z (left)

(
〈Xi, v̂2〉

)
i∈Z (middle) and

(
〈Xi, v̂3〉

)
i∈Z (right).

Now the role of the white noise is explained. Suppose for every i ∈ Z the random function
εi is a Brownian motion instead of a Brownian bridge. In theory the convergence of the
estimates does not depend on the choice of the white noise. By contrast when it comes
to implementation, the data and hence the estimates depend on the choice of the white
noise decisively. As before one simulation and afterwards the two estimation procedures
are run for n = 1000 again. The optimal number of principal components is only 1:

p 1 2 3 4 5
CPV(p) 0.8138 0.9066 0.9377 0.9545 0.9646

Table 5.14: CPV for Brownian motion based MAH(1) process with exponential integral
kernel.

The reason for this is that the discretized covariance operator of this specific white noise
has one eigenvalue which is much bigger than the others. Consequently both approaches
are performed on scalars. Figure 5.7 shows that they do not perform well.
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Figure 5.7: Iterative method estimate (left) and innovation algorithm estimate (right)
with Brownian motion.

Both surfaces ascend to the wrong direction and this is because of v̂1, which alone deter-
mines the shape of the estimates’ surfaces. v̂1 is supposed to contain most of the informa-
tion of the data. Since v̂1 depends on C tremendously, whose structure itself depends on
the one of Cε, we analyze the integral kernels of Cε for the white noise based on Brownian
bridge and for the one based on Brownian motion. Figure 5.8 reveals that for the Brow-
nian bridge the integral kernel of Cε possesses the shape of a hill. It is very flexible in
the sense that it can adjust to another surface more easily than the shape of the second
integral kernel. The latter is just a straight plane ascending from the origin and hence
cannot be deformed easily.
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Figure 5.8: Estimated integral kernel of Cε based on Brownian bridge (left) and Brownian
motion (right).

Using the Brownian motion is appropriate only if ϕ looks like that (which Table 5.15
containing the average errors over 100 Brownian motion based simulations shows as well)
and this does not make sense in practice. Given some real data there is no white noise
generation and no hint for the structure of the moving average operator.

Iterative method Innovation algorithm
Mean of τϕ(ϕ̂) 0.5966 0.5966

Mean of relative forecast errors 0.1257 0.1257

Table 5.15: Average errors for the Brownian motion based MAH(1) process with expo-
nential integral kernel over 100 replications.

The same what is done in this subsection will be analyzed for the following integral
kernel: Visualizing the true kernel as well as its estimates, investigating the lags and
examining the choice of the white noise.

5.3.2 Bilinear Integral Kernel

We select the iterative method and the innovation algorithm again to approximate the
integral kernel

ϕ(s, t) = αst, ∀s, t ∈ [0, 1]
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with α = 0.5, illustrated in Figure 5.9. The choice of α is because of the same reason
as before: a tiny α would cause a small 1-lag of the MAH(1) series and hence make the
estimates inappropriate, whereas a large α would make the MAH(1) series unsuitable.
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Figure 5.9: 3D-plot of ϕ(s, t) = αst restricted to [0, 1].

As before let n = 1000 and m = 100. Again we take the Brownian bridge in order to
simulate the white noise. Having generated the MAH(1) process according to ϕ and
having applied FPCA, the optimal number of principal components kn is 3 again:

p 1 2 3 4 5
CPV(p) 0.6134 0.7643 0.8371 0.8762 0.9006

Table 5.16: CPV for Brownian bridge based MAH(1) process with bilinear integral kernel.

Here (H5) is satisfied thanks to ‖ρ‖L ≈ 0.1324 < 0.5. Compared to the exponen-
tial kernel, we obtain worse relative estimation errors, but this is again the problem of
comparing surfaces.

τϕ(ϕ̂iter.) = 0.4999, τϕ(ϕ̂innov.) = 0.4993.

Here the innovation algorithm performs slightly better. Having run 100 simulations and
calculated the mean of τϕ(ϕ̂iter.) and of τϕ(ϕ̂innov.) and the mean of the relative forecast
errors over the number of simulations, we get very good forecast results, as Table 5.17
shows:
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Iterative method Innovation algorithm
Mean of τϕ(ϕ̂) 0.8605 0.8678

Mean of relative forecast errors 0.0239 0.0238

Table 5.17: Average errors for the Brownian bridge based MAH(1) process with bilinear
integral kernel over 100 replications.

Back to one simulation: In spite of the relative estimation error values, the estimates
ϕ̂iter. and ϕ̂innov. look close to ϕ according to Figure 5.10. Here we can see that the hills
caused by the Brownian bridge adjust to the shape of ϕ.
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Figure 5.10: Iterative method estimate (left) and innovation algorithm estimate (right)
with Brownian bridge.

When we have a look at the lags of this MAH(1) process and the ones of its respective
white noise in Figure 5.11, we realize that the 1-lag of the MAH(1) process is lower than
the one in the previous example. This is because of the choice of ϕ. Nevertheless the
barplots of the lags of the MAH(1) process look typical for a moving average process
of order 1. As already expected, the non-zero-lags of the white noise are approximately
0. Again the heights of the bars correspond to the spectral norm of the respective cross-
covariance matrix divided by the spectral norm of the covariance matrix.
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Figure 5.11: Lags for MAH(1) series (left) and white noise (right).

When we consider the projections of the time series onto the principal components, again
it is

(
〈Xi, v̂1〉

)
i∈Z which rather possesses the MA(1) structure. Figure 5.12 shows that the

MA(1) structure of the univariate time series
(
〈Xi, v̂j〉

)
i∈Z tends to vanish for j increasing.
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Figure 5.12: Lags for
(
〈Xi, v̂1〉

)
i∈Z (left)

(
〈Xi, v̂2〉

)
i∈Z (middle) and

(
〈Xi, v̂3〉

)
i∈Z (right).
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At the end we change the choice of the white noise. Comparing Figure 5.8 and Figure
5.9 we might reckon that the white noise based on Brownian motion is appropriate for
this bilinear kernel. As already mentioned, this cannot be investigated in practice because
there is no white noise to simulate and ϕ is not known at all. Anyway we conclude from
the 3D-plots that sampling the Brownian motion might improve our estimation results.
Indeed it does! As in the previous section the optimal number of principal components
equals 1 (because of the structure of Cε):

p 1 2 3 4 5
CPV(p) 0.8235 0.9108 0.9410 0.9554 0.9649

Table 5.18: CPV for Brownian motion based MAH(1) process with bilinear integral
kernel.

This means that the scalar iterative method and the scalar innovation algorithm are
performed. Figure 5.13 shows that they give a very good approximation. In fact they lead
to the same estimates! Due to lack of variability with only one principal component we
get

‖ϕ̂iter. − ϕ̂innov.‖sp = 0.

Compared to the previous relative estimation errors,

τϕ(ϕ̂iter.) = 0.1462 = τϕ(ϕ̂innov.)

is quite low. Nevertheless the Brownian motion is not recommended in general because of
the surface of the covariance function cε.
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Figure 5.13: Iterative method estimate (left) and innovation algorithm estimate (right)
with Brownian motion.

All those one-simulation-results might be suggestive of some equivalence between the
iterative method and the innovation algorithm. However, we saw in Subsection 5.2.4 that
this is not true.

5.3.3 Evaluation from Several Simulations

Tables 5.19-5.22 show the average errors of the four previous functional examples over 100
simulations. The errors of the iterative method and the ones of the innovation algorithm
coincide for Brownian motion based MAH(1) processes, because the optimal number
of PCs is 1 and thus there is less variability for both approaches. For both approaches
the results from the Brownian bridge based MAH(1) processes are still similar, but the
innovation algorithm performs better.

τϕ(ϕ̂iter.) τϕ(ϕ̂innov.) F.cast. iter. F.cast. innov.
n = 100 0.8908 0.9299 0.1614 0.1568
n = 500 0.5149 0.5030 0.1277 0.1231
n = 1000 0.4799 0.4361 0.1588 0.1560
n = 5000 0.3800 0.2991 0.1064 0.1089
n = 10000 0.3613 0.2783 0.1175 0.1177

Table 5.19: Average errors for the Brownian bridge based MAH(1) process with expo-
nential integral kernel over 100 simulations for various observation numbers.
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τϕ(ϕ̂iter.) τϕ(ϕ̂innov.) F.cast. iter. F.cast. innov.
n = 100 0.6614 0.6614 0.1430 0.1430
n = 500 0.5979 0.5979 0.1606 0.1606
n = 1000 0.5887 0.5887 0.1311 0.1311
n = 5000 0.5896 0.5896 0.1523 0.1523
n = 10000 0.5873 0.5873 0.2696 0.2696

Table 5.20: Average errors for the Brownian motion based MAH(1) process with expo-
nential integral kernel over 100 simulations for various observation numbers.

τϕ(ϕ̂iter.) τϕ(ϕ̂innov.) F.cast. iter. F.cast. innov.
n = 100 2.1233 2.1560 0.0760 0.0750
n = 500 0.9911 1.0022 0.0283 0.0280
n = 1000 0.8031 0.8052 0.0290 0.0289
n = 5000 0.5256 0.5224 0.0229 0.0229
n = 10000 0.4734 0.4693 0.0172 0.0172

Table 5.21: Average errors for the Brownian bridge based MAH(1) process with bilinear
integral kernel over 100 simulations for various observation numbers.

τϕ(ϕ̂iter.) τϕ(ϕ̂innov.) F.cast. iter. F.cast. innov.
n = 100 0.5627 0.5627 0.0983 0.0983
n = 500 0.2767 0.2767 0.0993 0.0993
n = 1000 0.2564 0.2564 0.0899 0.0899
n = 5000 0.1603 0.1603 0.0874 0.0874
n = 10000 0.1533 0.1533 0.0460 0.0460

Table 5.22: Average errors for the Brownian motion based MAH(1) process with bilinear
integral kernel over 100 simulations for various observation numbers.

Here the first main part of the thesis ends. These approaches will be applied in a
similar way in Chapter 7.



Chapter 6

Testing m-Dependence of Functional
Data

The previous chapters deal with moving average processes of order 1. In general we at
first do not know which time series model to select and, if moving average, which order to
choose. Thus the idea here is to develop a hypothesis test for the order of a moving average
process. By Proposition 3.8 this is equivalent to testing the dependence order (recall
Definition 3.5), if we assume the functional time series to be linear and strictly stationary.
In the light of this fact we will develop two asymptotical m-dependence hypothesis tests
for m ∈ N0. The first one is based on the ideas of [Moon] (which is about m-dependence
of univariate data) and [GaKo] (which is concerned with independence of functional data)
and generalizes their results. It is proven thouroughly at the end of this chapter. The
second test is an improvement of the first one in the statistical power. Since many ideas
are the same, some details in the derivation are omitted.

6.1 First Hypothesis Test

The idea is to construct an asymptotical χ2 test, where under the null hypothesis a random
vector R̃ ∈ Rv is approximately N (0,Ξ) distributed, such that

NR̃T Ξ̃−1R̃
D→ χ2

v

follows. Actually we could derive an asymptotical multivariate normal test, but there is
a big choice for confidence regions, which makes it hard to assess when to reject the null
hypothesis. Hence we aim at establishing a univariate test, which leads to the χ2 distri-
bution.
Let N ∈ N and Y1, . . . , YN ∈ L2([0, 1]) be some functional observations of an MAH(m)
process with finite fourth moments. It suffices to work with the scores of the empirical
principal components (see Section 2.2), because by means of Proposition 3.9 an MAH(m)
process projected onto the finite dimensional space spanned by the PCs is still a moving
average process of order m (which leads to m-dependence of the projected process accord-
ing to Proposition 3.8). Furthermore as a symmetric positive-definite Hilbert-Schmidt

63
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operator the sample covariance operator

Ĉ(·) =
1

N

N∑
n=1

〈Yi, ·〉Yi

possesses orthonormal eigenfunctions v̂1, v̂2, . . . according to (2.2). This means that we do
multivariate statistics although this chapter is about testing functional data. Hence let
p ∈ {1, . . . , N} be the number of principal components and let X1, . . . ,XN ∈ Rp be the
PC projections, i.e. Xn = (Xn,1, . . . ,Xn,p)

T with Xn,i := 〈Yn, v̂i〉 for all n ∈ {1, . . . , N}
and i ∈ {1, . . . , p}. In the following the tilde ·̃ denotes a multivariate estimator.
We will need the sample and theoretical cross-covariance matrices of (Xn)n∈{1,...,N} for
h ∈ {1, . . . , N − 1}

C̃h :=
1

N

N−h∑
n=1

Xn+hX
T
n , Ch := E

[
X1+hX

T
1

]
. (6.1)

Since (Xn)n∈{1,...,N} are m-dependent, we can divide the whole sample into k := m +
1 subsamples such that each subsample consists of independent observations. Here we
assume that N is a multiple of k. This procedure is called sample splitting and looks as
follows:

subsample 1 . . . k
X1 . . . Xk

Xk+1 . . . X2k
...

...
XN−k+1 . . . XN

For every a ∈ {1, . . . , k} and t ∈ {1, . . . , N
k
} we denote

X
(a)
t := X(t−1)k+a (6.2)

the t-th observation of the a-th subsample. If the dependence order was smaller than
(k − 1), but we still split (Xn)n∈{1,...,N} into k subsamples, each subsample would still
consist of independent elements. This would not hold, if the dependence order was greater
than (k − 1).
Let H ∈ {1, . . . , N

k
− 1} be the number of non-zero lags that we want to work with. For

each a ∈ {1, . . . , k} and h ∈ {1, . . . , H} let C̃
(a)
h denote the h-th sample cross-covariance

matrix (which corresponds to the h-lag) of the a-th subsample, i.e.

C̃
(a)
h :=

k

N

N
k
−h∑

t=1

X
(a)
t+h

(
X

(a)
t

)T
, (6.3)

which is supposed to be endowed with small entries. Furthermore, we need the sample
covariance matrix C̃0 which can be computed from the entire sample. By means of Propo-
sition 3.14 it converges to the theoretical covariance matrix C0 ∈ Rp×p of (Xn)n∈{1,...,N} in
probability (because Lp convergence implies convergence in probability). Define

R̃
(a)
h := C̃−10 C̃

(a)
h (6.4)
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for every a ∈ {1, . . . , k} and h ∈ {1, . . . , H}, which corresponds to the h-th sample cross-
correlation matrix of the a-th subsample. Then we take the averages over the subsamples

R̃h :=
1

k

k∑
a=1

R̃
(a)
h . (6.5)

Now we aim at deriving the asymptotic behavior of the random vector

R̃ := (vec(R̃1)
T , . . . , vec(R̃H)T )T

of length Hp2 in order to establish the asymptotical hypothesis test. We will show

Lemma 6.1 R̃h = C̃−10 C̃hk for all h ∈ {1, . . . , H}.

Consequently it suffices to analyze the asymptotic behavior of the random vector

(vec(C̃k)
T , vec(C̃2k)

T , . . . , vec(C̃Hk)
T )T

of length Hp2 consisting of the overall cross-covariance matrices with multiple lags of k.
For h1, h2 ∈ {1, . . . , H} define the asymptotical covariance matrices

Ψh1,h2 := lim
N→∞

Ncov
(
C̃h1k, C̃h2k

)
∈ Rp2×p2

and assemble them to the block matrix Ψ ∈ RHp2×Hp2

Ψ :=

 Ψ1,1 · · · Ψ1,H
...

. . .
...

ΨH,1 · · · ΨH,H

 ,

which is supposed to equal the asymptotical covariance matrix of
√
N(vec(C̃k)

T , . . . , vec(C̃Hk)
T )T

by construction.

Lemma 6.2 (Shape of the Covariance Matrix) Under strong stationarity and m-
dependence

Ψh1,h2 =



k−1∑
ν=1

CT
ν ⊗ Ck−ν , h2 = h1 + 1

k−1∑
ν=1

Cν ⊗ CT
k−ν , h1 = h2 + 1

k−1∑
ν=1

CT
ν ⊗ CT

ν +
k−1∑
ν=0

Cν ⊗ Cν , h1 = h2 > 1

1

k

∑
a<b

(
∆(a,b)
α +

(
∆(a,b)
α

)T
+ ∆

(a,b)
β +

(
∆

(a,b)
β

)T)
+ C0 ⊗ C0, h1 = h2 = 1

0, else
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with fourth moments

∆(a,b)
α := E

[(
X

(a)
2 (X

(b)
2 )T

)
⊗
(
X

(a)
1 (X

(b)
1 )T

)]
, (6.6)

∆
(a,b)
β := E

[(
X

(a)
3 (X

(b)
2 )T

)
⊗
(
X

(a)
2 (X

(b)
1 )T

)]
. (6.7)

This implies that Ψ is a block band matrix with block band width 1.

This determines the asymptotical distribution of
√
N(vec(C̃k)

T , vec(C̃2k)
T , . . . , vec(C̃Hk)

T )T .

Lemma 6.3 (Asymptotical Normality) Under strong stationarity and m-dependence

√
N(vec(C̃k)

T , vec(C̃2k)
T , . . . , vec(C̃Hk)

T )T
D→ NHp2(0,Ψ)

holds for N →∞.

Finally we are ready to derive the asymptotical hypothesis test. From a functional moving
average process via multivariate statistics we reach the asymptotical distribution of the
test statistic Q̃N (see below), which consequently is likely to attain small values. Con-
versely if the test statistic attains large values, the asymptotical distribution and thus the
moving average assumption is likely not to hold. Note that – as usual in statistical test
theory – a small value of the test statistics does not imply the null hypothesis.
All the arguments hold as well if we have an m-dependent (functional) stationary time
series, which is not a moving average process. It is because the ”dependence [of a func-
tional time series] is captured by only a few most important PCs” (c.f. [GaKo, Section
4]), which can be seen in Figure 5.6 (although it is an example of an MAH(1) process).
Since we derive the test with the most important PCs, the entire framework still holds.

Theorem 6.4 (m-Dependence Hypothesis Test) Suppose strong stationarity and

H0 : Data m−dependent; H1 : Data at least (m+ 1)−dependent.

Then under H0

Q̃N := NR̃T Ξ̃−1R̃
D→ χ2

p2H , (6.8)

where the empirical covariance matrix Ξ̃ is a block band matrix

Ξ̃ :=


M̃0 M̃1 0

(M̃1)
T M̃2

. . .
. . . . . . M̃1

0 (M̃1)
T M̃2

 (6.9)
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with

M̃0 :=
1

k

∑
a<b

(
Ω̃(a,b)
α +

(
Ω̃(a,b)
α

)T
+ Ω̃

(a,b)
β +

(
Ω̃

(a,b)
β

)T)
+ C̃−10 ⊗ C̃0,

Ω̃(a,b)
α :=

(
C̃−10 ⊗ Idp

)( k

N

N
k
−1∑

u=1

(
X

(a)
u+1(X

(b)
u+1)

T
)
⊗
(
X(a)
u (X(b)

u )T
))(

C̃−10 ⊗ Idp
)
,

Ω̃
(a,b)
β :=

(
C̃−10 ⊗ Idp

)( k

N

N
k
−2∑

u=1

(
X

(a)
u+2(X

(b)
u+1)

T
)
⊗
(
X

(a)
u+1(X

(b)
u )T

))(
C̃−10 ⊗ Idp

)
,

M̃1 :=
k−1∑
ν=1

(
C̃−10 C̃T

ν C̃
−1
0

)
⊗ C̃k−ν ,

M̃2 :=
k−1∑
ν=1

(
C̃−10 C̃T

ν C̃
−1
0

)
⊗ C̃T

ν +
k−1∑
ν=0

(
C̃−10 C̃νC̃

−1
0

)
⊗ C̃ν .

Hence, reject H0 at significance level α ∈ (0; 1) if and only if Q > χ2
p2H,1−α.

In theory we are able to construct a hypothesis test without sample splitting. In this case
we could calculate the overall cross-correlation matrices C̃−10 C̃h for all h ∈ {1, . . . , H}.
However, under (k − 1)-dependence the sample cross-covariance matrices C̃h converge to
some non-zero matrices in probability for all h ∈ {1, . . . , k − 1}. We would need to know
the latter (and to adjust Ξ) to construct some test statistics of the form

N(R̃− µR)T Ξ̃−1(R̃− µR).

However, in practice we do not have any idea about µR. Sample splitting makes us avoid
this problem, because all subsample cross-covariances have expectation zero.

6.1.1 Proofs for the First Test

We will prove Lemmata 6.1, 6.2 and 6.3 (implied by 6.2 in the same way as [Brck, Theorem
7.3.1] implies [Brck, Theorem 7.3.2]) successively, which imply the claim of Theorem 6.4.
The proof of Lemma 6.2 is the longest, because many tedious calculations concerning
Kronecker products are involved.
The idea of this subsection is to express the subvectors of R̃ by expressions of the form
C̃hk, h ∈ {1, . . . , H}, to determine the joint asymptotical covariance matrix of the latter,
to conclude their asymptotical distribution and finally to derive the hypothesis test.
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Proof of Lemma 6.1

Take any h ∈ {1, . . . , H}. We plug in the definitions

R̃h
(6.5)
=

1

k

k∑
a=1

R̃
(a)
h

(6.4)
=

1

k
C̃−10

k∑
a=1

C̃
(a)
h

(6.3)
=

1

k
C̃−10

k∑
a=1

k

N

N
k
−h∑

t=1

X
(a)
t+h

(
X

(a)
t

)T
(6.2)
=

1

N
C̃−10

k∑
a=1

N
k
−h∑

t=1

X(t+h−1)k+aX
T
(t−1)k+a

=
1

N
C̃−10

k∑
a=1

N
k
−h∑

t=1

X(t−1)k+a+hkX
T
(t−1)k+a.

We obtain two sums, where the indices a ∈ {1, . . . , k} and t ∈ {1, . . . , N
k
− h} appear in

the expression (t−1)k+a. This is the the notation of some number u ∈ {1, . . . , N−hk} in
the modulo representation with respect to k. Thus each a and t determine u = (t−1)k+a
uniquely. Therefore we are allowed to replace the two sums by one sum

(1

k

k∑
a=1

C̃
(a)
h =

) 1

N

k∑
a=1

N
k
−h∑

t=1

X(t−1)k+a+hkX
T
(t−1)k+a =

1

N

N−hk∑
u=1

Xu+hkX
T
u

(6.1)
= C̃hk. (6.10)

Hence it turns out that R̃h depends on the cross-covariance matrix C̃hk

R̃h = C̃−10 C̃hk.

Since h was chosen arbitrarily, the claim follows. 2

Proof of Lemma 6.2

Choose any h1, h2 ∈ {1, . . . , H}.

lim
N→∞

Ncov
(
C̃h1k, C̃h2k

) (6.10)
= lim

N→∞
Ncov

(1

k

k∑
a=1

C̃
(a)
h1
,

1

k

k∑
b=1

C̃
(b)
h2

)
Def. 6.5

= lim
N→∞

N

k2

k∑
a=1

k∑
b=1

E
[
vec
(
C̃

(a)
h1

)
vec
(
C̃

(b)
h2

)T]
(6.3)
=

k∑
a=1

k∑
b=1

lim
N→∞

N

k2

( k
N

)2 N1
k
−h1∑
t=1

N2
k
−h2∑

u=1

E
[
vec
(
X

(a)
t+h1

(X
(a)
t )T

)
vec
(
X

(b)
u+h2

(X(b)
u )T

)T]
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Fix any a, b ∈ {1, . . . , k} and define Γ̃
(a,b)
h1,h2

as the elements of the sum above over a and b
before taking the limit

Γ̃
(a,b)
h1,h2

:=
N

k2
E
[
vec
(
C̃

(a)
h1

)
vec
(
C̃

(b)
h2

)T]
=

1

N

N
k
−h1∑
t=1

N
k
−h2∑
u=1

E
[
vec
(
X

(a)
t+h1

(X
(a)
t )T

)
vec
(
X

(b)
u+h2

(X(b)
u )T

)T]
(6.15)
=

1

N

N
k
−h1∑
t=1

N
k
−h2∑
u=1

E
[(

X
(a)
t+h1
⊗X

(a)
t

)(
X

(b)
u+h2
⊗X(b)

u

)T]
Lemma 6.11

=
1

N

N
k
−h1∑
t=1

N
k
−h2∑
u=1

E
[(

X
(a)
t+h1
⊗X

(a)
t

)(
(X

(b)
u+h2

)T ⊗ (X(b)
u )T

)]
Lemma 6.12

=
1

N

N
k
−h1∑
t=1

N
k
−h2∑
u=1

E
[(

X
(a)
t+h1

(X
(b)
u+h2

)T
)
⊗
(
X

(a)
t (X(b)

u )T
)]
.

Now the goal is to analyze the cases where Γ̃
(a,b)
h1,h2

does not become 0. At first we consider

a < b. Then there are three possible choices for h1 and h2 such that Γ̃
(a,b)
h1,h2

does not equal
zero.

� Consider h1+1 = h2 and denote h = h2. Then there is only one possible combination
for t and u such that Γ̃

(a,b)
h,h+1 does not vanish:

subsample . . . a . . . b . . .
...

...

. . .
... . . . X(b)

u . . .

. . . X
(a)
u+1 . . .

... . . .
...

...

. . . X
(a)
u+1+h . . . X

(b)
u+h+1 . . .

...
...

This implies t = u+ 1. Hence the double sum in Γ̃
(a,b)
h1,h2

can be reduced to one single
sum. Furthermore we can use stationarity of (Xn)n∈{1,...,N} and use the fact that
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X
(a)
2+h(X

(b)
2+h)

T and X
(a)
2 (X

(b)
1 )T are independent

Γ̃
(a,b)
h,h+1 =

1

N

N
k
−h∑

t=1

N
k
−(h+1)∑
u=1

E
[(

X
(a)
t+h(X

(b)
u+h+1)

T
)
⊗
(
X

(a)
t (X(b)

u )T
)]

=
1

N

N
k
−(h+1)∑
u=1

E
[(

X
(a)
u+1+h(X

(b)
u+h+1)

T
)
⊗
(
X

(a)
u+1(X

(b)
u )T

)]

=
1

N

N
k
−(h+1)∑
u=1

E
[(

X
(a)
2+h(X

(b)
2+h)

T
)
⊗
(
X

(a)
2 (X

(b)
1 )T

)]
=

1

N

(N
k
− (h+ 1)

)
E
[(

X
(a)
2+h(X

(b)
2+h)

T
)
⊗
(
X

(a)
2 (X

(b)
1 )T

)]
=

1

N

(N
k
− (h+ 1)

)(
E
[
X

(a)
2+h(X

(b)
2+h)

T
])
⊗
(
E
[
X

(a)
2 (X

(b)
1 )T

])
(6.2)
=

1

N

(N
k
− (h+ 1)

)(
E
[
X(1+h)k+a(X(1+h)k+b)

T
])
⊗
(
E
[
Xk+a(Xb)

T
])

(6.1)
=

1

N

(N
k
− (h+ 1)

)
CT
b−a ⊗ Ck−(b−a)

N→∞−→ 1

k
CT
b−a ⊗ Ck−(b−a).

The next cases are argued in a very similar way.

� Consider h1 = h2+1 and denote h = h1. Again there is only one possible combination
for t and u such that Γ̃

(a,b)
h+1,h does not vanish:

subsample . . . a . . . b . . .
...

...

. . . X(a)
u . . . X(b)

u . . .
...

...

. . .
... . . . X

(b)
u+h . . .

. . . X
(a)
u+h+1 . . .

... . . .
...

...

This implies t = u. Since the calculations become similar to the previous case, some
steps are skipped.

Γ̃
(a,b)
h+1,h =

1

N

N
k
−(h+1)∑
u=1

E
[(

X
(a)
u+1+h(X

(b)
u+h)

T
)
⊗
(
X(a)
u (X(b)

u )T
)]

=
1

N

(N
k
− (h+ 1)

)(
E
[
X

(a)
2+h(X

(b)
1+h)

T
])
⊗
(
E
[
X

(a)
1 (X

(b)
1 )T

])
(6.2)
=

1

N

(N
k
− (h+ 1)

)(
E
[
X(1+h)k+a(Xhk+b)

T
])
⊗
(
E
[
Xa(Xb)

T
])

(6.1)
=

1

N

(N
k
− (h+ 1)

)
Ck−(b−a) ⊗ CT

b−a
N→∞−→ 1

k
Ck−(b−a) ⊗ CT

b−a.
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� Consider h1 = h2 =: h. This is the most complicated case, because there are two
possible combinations for t and u such that Γ̃

(a,b)
h,h does not vanish:

subsample . . . a . . . b . . .
...

...

. . . X(a)
u . . . X(b)

u . . .
...

...

. . . X
(a)
u+h . . . X

(b)
u+h . . .

...
...

and

subsample . . . a . . . b . . .
...

...

. . .
... . . . X(b)

u . . .

. . . X
(a)
u+1 . . .

... . . .
...

...

. . .
... . . . X

(b)
u+h . . .

. . . X
(a)
u+h+1 . . .

... . . .
...

...

Therefore merging the double sum results in two separate sums

Γ̃
(a,b)
h,h =

1

N

( N
k
−h∑

u=1

E
[(

X
(a)
u+h(X

(b)
u+h)

T
)
⊗
(
X(a)
u (X(b)

u )T
)]

+

N
k
−(h+1)∑
u=1

E
[(

X
(a)
u+1+h(X

(b)
u+h)

T
)
⊗
(
X

(a)
u+1(X

(b)
u )T

)])
=

1

N

((N
k
− h
)
E
[(

X
(a)
1+h(X

(b)
1+h)

T
)
⊗
(
X

(a)
1 (X

(b)
1 )T

)]
+
(N
k
− (h+ 1)

)
E
[(

X
(a)
2+h(X

(b)
1+h)

T
)
⊗
(
X

(a)
2 (X

(b)
1 )T

)])
.

In contrast to the previous cases the factors of the Kronecker products are indepen-
dent only if h > 1. For h = 1 we define

∆
(a,b)
< := E

[(
X

(a)
2 (X

(b)
2 )T

)
⊗
(
X

(a)
1 (X

(b)
1 )T

)]
+ E

[(
X

(a)
3 (X

(b)
2 )T

)
⊗
(
X

(a)
2 (X

(b)
1 )T

)]
.

(6.11)
Consequently

Γ̃
(a,b)
1,1

N→∞−→ 1

k
∆

(a,b)
< .
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For h > 1 we obtain

Γ̃
(a,b)
h,h =

1

N

((N
k
− h
)(

E
[
X

(a)
1+h(X

(b)
1+h)

T
]
⊗ E

[
X

(a)
1 (X

(b)
1 )T

])
+
(N
k
− (h+ 1)

)(
E
[
X

(a)
2+h(X

(b)
1+h)

T
]
⊗ E

[
X

(a)
2 (X

(b)
1 )T

]))
=

1

N

((N
k
− h
)(
CT
b−a ⊗ CT

b−a

)
+
(N
k
− (h+ 1)

)(
Ck−(b−a) ⊗ Ck−(b−a)

))
N→∞−→ 1

k
CT
b−a ⊗ CT

b−a +
1

k
Ck−(b−a) ⊗ Ck−(b−a).

The same procedure has to be done for a > b. We will skip the arguments and show only
the results. As before, there are three cases where Γ̃

(a,b)
h1,h2

does not vanish:

� For h1 + 1 = h2 =: h we obtain

Γ̃
(a,b)
h,h+1 =

1

N

(N
k
− (h+ 1)

)
CT
k−(a−b) ⊗ Ca−b,

which corresponds to
(
Γ̃
(a,b)
h+1,h

)T
for b > a.

� For h := h1 = h2 + 1 we obtain

Γ̃
(a,b)
h+1,h =

1

N

(N
k
− (h+ 1)

)
Ca−b ⊗ CT

k−(a−b),

which corresponds to
(
Γ̃
(a,b)
h,h+1

)T
for b > a.

� For h1 = h2 =: h we again obtain two subcases, i.e. h = 1 and h > 1. It turns out

Γ̃
(a,b)
1,1 =

1

N

((N
k
− h
)
E
[(

X
(a)
2 (X

(b)
2 )T

)
⊗
(
X

(a)
1 (X

(b)
1 )T

)]
+
(N
k
− (h+ 1)

)
E
[(

X
(a)
2 (X

(b)
3 )T

)
⊗
(
X

(a)
1 (X

(b)
2 )T

)])
and

Γ̃
(a,b)
h,h =

1

N

((N
k
− h
)(
Ca−b ⊗ Ca−b

)
+
(N
k
− (h+ 1)

)(
CT
k−(a−b) ⊗ CT

k−(a−b)

))
for h > 1. The former satisfies

Γ̃
(a,b)
1,1

N→∞−→ 1

k

(
E
[(

X
(a)
2 (X

(b)
2 )T

)
⊗
(
X

(a)
1 (X

(b)
1 )T

)]
+E
[(

X
(a)
2 (X

(b)
3 )T

)
⊗
(
X

(a)
1 (X

(b)
2 )T

)])
=:

1

k
∆

(a,b)
> (6.12)

The latter coresponds to
(
Γ̃
(a,b)
h,h

)T
for b > a.
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By contrast a = b is much simpler, because we consider observations of the same subsample
which was designed to consist of independent elements. The only possibility for h1 and h2
such that Γ̃

(a,a)
h1,h2

does not equal zero is h1 = h2 =: h, which implies

Γ̃
(a,a)
h,h =

1

N

N
k
−h∑

u=1

E
[(

X
(a)
u+h(X

(a)
u+h)

T
)
⊗
(
X

(a)
t (X(a)

u )T
)]

=
1

N

(N
k
− h
)(

E
[
X

(a)
1+h(X

(a)
1+h)

T
]
⊗ E

[
X

(a)
1 (X

(a)
1 )T

])
=

1

N

(N
k
− h
)
C0 ⊗ C0

N→∞−→ 1

k
C0 ⊗ C0

Back to the asymptotical covariance of C̃h1k and C̃h2k: By using Γ̃
(a,b)
h1,h2

we obtain five cases
all in all:

� For h2 = h1 + 1 we get with h := h1

Ψh,h+1 =
∑
a<b

lim
N→∞

Γ̃
(a,b)
h,h+1 +

∑
a>b

lim
N→∞

Γ̃
(a,b)
h,h+1

=
k−1∑
ν=1

k − ν
k

CT
ν ⊗ Ck−ν +

k−1∑
ν=1

k − ν
k

CT
k−ν ⊗ Cν

τ :=k−ν
=

k−1∑
ν=1

(
1− ν

k

)
CT
ν ⊗ Ck−ν +

k−1∑
τ=1

τ

k
CT
τ ⊗ Ck−τ

=
k−1∑
ν=1

CT
ν ⊗ Ck−ν .

The transformation from the double sum
∑
b>a

(·) to
k−1∑
ν=1

(k − ν)(·) results from the

fact that the indices a and b actually occur only in the difference b − a. Instead of
counting the possible values of a and b we can count the possible values of the whole
difference, which makes the double sum merge to one single sum. This justifies the
second step.

� For h1 = h2 + 1 we get with h := h2

Ψh+1,h =
∑
a<b

lim
N→∞

Γ̃
(a,b)
h+1,h +

∑
a>b

lim
N→∞

Γ̃
(a,b)
h+1,h

=
k−1∑
ν=1

k − ν
k

Ck−ν ⊗ CT
ν +

k−1∑
ν=1

k − ν
k

Cν ⊗ CT
k−ν

τ :=k−ν
=

k−1∑
ν=1

(
1− ν

k

)
Ck−ν ⊗ CT

ν +
k−1∑
τ=1

τ

k
Ck−τ ⊗ CT

τ

=
k−1∑
ν=1

Ck−ν ⊗ CT
ν =

k−1∑
ν=1

Cν ⊗ CT
k−ν .
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� For h > 1 we get

Ψh,h =
∑
a<b

lim
N→∞

Γ̃
(a,b)
h,h +

∑
a>b

lim
N→∞

Γ̃
(a,b)
h,h +

k∑
a=1

lim
N→∞

Γ̃
(a,a)
h,h

=
k−1∑
ν=1

k − ν
k

(
CT
ν ⊗ CT

ν + Ck−ν ⊗ Ck−ν
)

+
k−1∑
ν=1

k − ν
k

(
Cν ⊗ Cν + CT

k−ν ⊗ CT
k−ν
)

+
k

k
C0 ⊗ C0

τ :=k−ν
=

k−1∑
ν=1

(
1− ν

k

)(
CT
ν ⊗ CT

ν + Ck−ν ⊗ Ck−ν
)

+
k−1∑
τ=1

τ

k

(
Ck−τ ⊗ Ck−τ + CT

τ ⊗ CT
τ

)
+ C0 ⊗ C0

=
k−1∑
ν=1

(
CT
ν ⊗ CT

ν + Ck−ν ⊗ Ck−ν
)

+ C0 ⊗ C0

=
k−1∑
ν=1

CT
ν ⊗ CT

ν +
k−1∑
ν=0

Cν ⊗ Cν .

� For h = 1 we get

Ψ1,1 =
∑
a<b

lim
N→∞

Γ̃
(a,b)
1,1 +

∑
a>b

lim
N→∞

Γ̃
(a,b)
1,1 +

k∑
a=1

lim
N→∞

Γ̃
(a,a)
1,1

=
∑
a<b

∆
(a,b)
< +

∑
a>b

∆
(a,b)
> + C0 ⊗ C0

(6.11),(6.12)
=

1

k

∑
a<b

(
E
[(

X
(a)
2 (X

(b)
2 )T

)
⊗
(
X

(a)
1 (X

(b)
1 )T

)]
+E
[(

X
(a)
3 (X

(b)
2 )T

)
⊗
(
X

(a)
2 (X

(b)
1 )T

)]
+E
[(

X
(b)
2 (X

(a)
2 )T

)
⊗
(
X

(b)
1 (X

(a)
1 )T

)]
+E
[(

X
(b)
2 (X

(a)
3 )T

)
⊗
(
X

(b)
1 (X

(a)
2 )T

)])
+ C0 ⊗ C0

=
1

k

∑
a<b

(
∆(a,b)
α +

(
∆(a,b)
α

)T
+ ∆

(a,b)
β +

(
∆

(a,b)
β

)T)
+ C0 ⊗ C0

with ∆
(a,b)
α and ∆

(a,b)
β as defined in (6.6) and (6.7).

� In all other cases we get lim
N→∞

Ncov
(
C̃h1k, C̃h2k

)
= 0.

At the end all the possible cases were analyzed and the claim follows. 2
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Proof of Lemma 6.3

The goal is to apply central limit theorem in order to gain asymptotical normality. One
can show that for any h ∈ {1, . . . , N − 1} the estimators

C̃∗h :=
1

N

N∑
n=1

Xn+hX
T
n . (6.13)

have the same asymptotic behavior as C̃h, because

√
N
(
C̃∗h − C̃h

) P→ 0.

Thus we will show the result by using C̃∗hk instead of C̃hk for all h ∈ {1, . . . , H}. We
therefore consider

vec(C̃∗k)

vec(C̃∗2k)
...

vec(C̃∗Hk)

 Lemma 6.7
=

1

N




vec
(
X1+kX

T
1

)
vec
(
X1+2kX

T
1

)
...

vec
(
X1+HkX

T
1

)
+ · · ·+


vec
(
Xn+kX

T
n

)
vec
(
Xn+2kX

T
n

)
...

vec
(
Xn+HkX

T
n

)



=:
1

N

N∑
n=1

Zn.

Thus consider the sequence (Zn)n∈N. It is strictly stationary because of strict stationarity
of (Xn)n∈N. Moreover since Ch > 0 for all h ≥ k holds, all Zn have expectation zero.
(Zn)n∈N is ((H + 1)k)-dependent, because (Xn)n∈N is (k − 1)-dependent and each Zn

contains Xn+Hk as the latest observation. Strict stationarity, expectation zero and ((H +
1)k)-dependence hold for the univariate process (λTZn)n∈N with any arbitrary λ ∈ RHp2

as well. Due to

lim
N→∞

Var
(√N
N

N∑
n=1

λTZn

)
= lim

N→∞
NλTVar

( 1

N

N∑
n=1

Zn

)
λ

= λT
(

lim
N→∞

NVar
(
(vec(C̃∗k)T , . . . , vec(C̃∗Hk)

T )T
))
λ

Lemma 6.2
= λTΨλ > 0

for all λ ∈ RHp2 such that λTΨλ > 0 Lemma 6.17 yields

0 < lim
N→∞

NVar
( 1

N

N∑
n=1

λTZn

)
Lemma 6.17

= lim
N→∞

∑
|h|<N

(
1− |h|

N

)
γ(h)

((H+1)k)−dep.
= lim

N→∞

∑
|h|<(H+1)k

(
1− |h|

N

)
γ(h) =

∑
|h|<(H+1)k

γ(h)

with γ(·) as the autocovariance function for (λTZn)n∈N. All in all we are allowed to apply
the Central limit theorem for ((H + 1)k)-dependent data (Lemma 6.18). It states the
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convergence

1√
N

N∑
n=1

λTZn
D→ N (0, λTΨλ)

for all λ ∈ RHp2 such that λTΨλ > 0. For λ ∈ RHp2 such that λTΨλ = 0 we verify that

1√
N

N∑
n=1

λTZn = 0
D→ 0,

where 0 as a constant is normally distributed with mean 0 and variance 0. All in all due
to arbitrariness of λ ∈ RHp2 Cramér-Wold device (Lemma 6.19) yields

√
N(vec(C̃∗k)T , . . . , vec(C̃∗Hk)

T )T
)

=
1√
N

N∑
n=1

Zn
D→ N (0,Ψ).

Hence the result follows. 2

Proof of Theorem 6.4

Note

R̃ =

 vec(R̃1)
...

vec(R̃H)

 Lemma 6.1
=

 vec(C̃−10 C̃k)
...

vec(C̃−10 C̃Hk)

 =

 vec(C̃−10 C̃kIdp)
...

vec(C̃−10 C̃HkIdp)


(6.14)
=


(
C̃−10 ⊗ Idp

)
vec(C̃k)

...(
C̃−10 ⊗ Idp

)
vec(C̃Hk)

 =

 C̃−10 ⊗ Idp 0
. . .

0 C̃−10 ⊗ Idp


 vec(C̃k)

...

vec(C̃Hk)


Now note that continuous mapping theorem (Lemma 6.15) holds for random matrices as
well, because they can be vectorized. Thus C̃−10 ⊗ Idp 0

. . .

0 C̃−10 ⊗ Idp

 P→

 C−10 ⊗ Idp 0
. . .

0 C−10 ⊗ Idp

 .

Furthermore Lemma 6.3 states

√
N(vec(C̃k)

T , . . . , vec(C̃Hk)
T )T

D→ NHp2(0,Ψ).

Now remember the formula the formula Var(AW ) = AVar(W )AT for any random vector
W and any real matrix A with suitable dimensions. Altogether we gain by Slutsky’s
theorem (Lemma 6.16) and by Lemma 6.10

√
NR̃

D→ NHp2(0,Ξ)
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with the Hp2 ×Hp2 covariance matrix

Ξ :=

 C−10 ⊗ Idp 0
. . .

0 C−10 ⊗ Idp

Ψ

 C−10 ⊗ Idp 0
. . .

0 C−10 ⊗ Idp

 .

Analogously to what we did for Ψ we analyze all blocks of Ξ, which are called

Ξh1,h2 =
(
C−10 ⊗ Idp

)
Ψh1,h2

(
C−10 ⊗ Idp

)
for h1, h2 ∈ {1, . . . , H}.

� For h2 = h1 + 1 we get for h := h1

Ξh,h+1
Lemma 6.12

=
k−1∑
ν=1

(
C−10 CT

ν C
−1
0

)
⊗ Ck−ν .

� For h1 = h2 + 1 we get for h := h2

Ξh+1,h
Lemma 6.12

=
k−1∑
ν=1

(
C−10 CνC

−1
0

)
⊗ CT

k−ν = ΞT
h,h+1.

� For h := h1 = h2 > 1 we get

Ξh,h
Lemma 6.12

=
k−1∑
ν=1

(
C−10 CT

ν C
−1
0

)
⊗ CT

ν +
k−1∑
ν=0

(
C−10 CνC

−1
0

)
⊗ Cν .

� For h1 = h2 = 1 we get

Ξ1,1
Lemma 6.12

=
1

k

∑
a<b

(
E
[(
C−10 X

(a)
2 (X

(b)
2 )TC−10

)
⊗
(
X

(a)
1 (X

(b)
1 )T

)]
+E
[(
C−10 X

(b)
2 (X

(a)
2 )TC−10

)
⊗
(
X

(b)
1 (X

(a)
1 )T

)]
+E
[(
C−10 X

(a)
3 (X

(b)
2 )TC−10

)
⊗
(
X

(a)
2 (X

(b)
1 )T

)]
+E
[(
C−10 X

(b)
2 (X

(a)
3 )TC−10

)
⊗
(
X

(b)
1 (X

(a)
2 )T

)])
+
(
C−10 C0C

−1
0

)
⊗ C0

=
1

k

∑
a<b

(
Ω(a,b)
α +

(
Ω(a,b)
α

)T
+ Ω

(a,b)
β +

(
Ω

(a,b)
β

)T)
+ C−10 ⊗ C0

with

Ω(a,b)
α := E

[(
C−10 X

(a)
2 (X

(b)
2 )TC−10

)
⊗
(
X

(a)
1 (X

(b)
1 )T

)]
,

Ω
(a,b)
β := E

[(
C−10 X

(a)
3 (X

(b)
2 )TC−10

)
⊗
(
X

(a)
2 (X

(b)
1 )T

)]
.
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� In all other cases we trivially obtain Ξh1,h2 = 0, because Ψh1,h2 = 0.

The estimator Ξ̃ given in (6.9) consists of sample (cross-)covariance matrices C̃h, h ∈
{0, . . . ,m}, C̃−10 and the empirical fourth moments. All of them are consistent. Thus
they converge to their empirical counterparts Ch, h ∈ {0, . . . ,m} in probability. Moreover
Lemma 6.14 also holds for random matrices, because they can be vectorized. By applying
Lemma 6.14 and the continuous mapping theorem (Lemma 6.15) several times it turns
out

Ξ̃
P→ Ξ.

Since both Ξ̃ and Ξ are symmetric and positive definite, they possess real positive definite
square roots Ξ̃

1
2 and Ξ

1
2 by the spectral theorem with the property

Ξ̃
1
2

P→ Ξ
1
2 .

Consequently Slutsky’s Theorem implies

Q̃N =
√
N Ξ̃−

1
2 R̃

D→ Np2H(0, Idp2H)
D
=: Z,

Since the squared euclidean norm g(x) = ‖x‖22 is continuous, continuous mapping theorem
(Lemma 6.15) implies

NR̃T Ξ̃−1R̃ = (
√
N Ξ̃−

1
2 R̃)T

√
N Ξ̃−

1
2 R̃ = g

(√
N Ξ̃−

1
2 R̃
) D→ g(Z)

D
= χ2

p2H .

The last part follows by definition of the χ2 distribution and by the fact that independence
and uncorrelatedness are equivalent for normally distributed random variables. 2

Remark: We consider two special cases:

� Suppose p = 1. Then QN
D→ χ2

H holds under H0 with R̃ ∈ RH and Ξ̃ ∈ RH×H . This
is exactly what Lemma 2.9 of [Moon] is about.

� Suppose we want to test independence, which means k = 1. Then one can show that
(C̃h)h≥0 are independent. Consequently so are (Zh)h≥0 and (Rh)h≥0 (c.f. [GaKo]).
Furthermore it turns out that the asymptotical covariance matrix of Rh equals
C−10 ⊗ C0 ∈ Rp2×p2 for all h ∈ {1, . . . , H}. Hence it suffices to consider any h ∈
{1, . . . , H} and to take the sum over h at the end, because here Ξ looks like C−10 ⊗ C0 0

. . .

0 C−10 ⊗ C0

 .

Therefore use Lemma 6.10 and Lemma 6.13 to obtain

vec(C−10 Zh)
T (C0 ⊗ C−10 )vec(C−10 Zh) = vec(C−10 Zh)

Tvec((C−10 ZT
h )T )

= vec(C−10 Zh)
Tvec(ZhC

−1
0 ).

This is exactly the limit of vec(C̃−10 C̃h)
Tvec(C̃hC̃

−1
0 ). All in all we get

QN = N
H∑
h=1

vec(C̃−10 C̃h)
Tvec(C̃hC̃

−1
0 ),

which equals the test statistics in [GaKo].
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6.1.2 Appendix

Matrix and vector distributions, the Kronecker product with some properties and conver-
gence of random variables are needed for the proofs.

Definition 6.5 (Covariance matrix of random vectors) Let X and Y be two ran-
dom vectors in Rp and Rq respectively. Then we define

cov(X, Y ) := E
[
(X − E[X])(Y − E[Y ])T

]
= E[XY T ]− E[X]E[Y ]T ∈ Rp×q

as the covariance matrix of them. The variance of a random vector X in Rp is defined
intuitively Var(X) := cov(X,X) ∈ Rp×p.

In this chapter the row and column indices of matrices are written in brackets.

Definition 6.6 (Rowwise vectorizer, c.f. [GaKo, App. B]) For any matrix A ∈ Rn1×n2

the function vec applied on A denotes vectorizing A row by row

vec(A) = (A(1, 1), . . . , A(1, n2), A(2, 1), . . . , A(n1, 1), . . . , A(n1, n2))
T ∈ Rn1n2

as a column vector of length n1 · n2. Thus vec counts the last index before the first one.

Lemma 6.7 (Linearity of vec) For any λ ∈ R and for any A,B ∈ Rn1×n2

vec(λA) = λvec(A), vec(A+B) = vec(A) + vec(B).

Thus vec is linear.

Proof:

vec(λA) = (λA(1, 1), . . . , λA(1, n2), λA(2, 1), . . . , λA(n1, 1), . . . , λA(n1, n2))
T

= λ(A(1, 1), . . . , A(1, n2), A(2, 1), . . . , A(n1, 1), . . . , A(n1, n2))
T = λvec(A)

and

vec(A+B) = (A(1, 1) +B(1, 1), . . . , A(1, n2) +B(1, n2), A(2, 1) +B(2, 1), . . . ,

A(n1, 1) +B(n1, 1), . . . , A(n1, n2) +B(n1, n2))
T

= (A(1, 1), . . . , A(1, n2), A(2, 1), . . . , A(n1, 1), . . . , A(n1, n2))
T

+(B(1, 1), . . . , B(1, n2), B(2, 1), . . . , B(n1, 1), . . . , B(n1, n2))
T

= vec(A) + vec(B).

Hence linearity is proven. 2

Definition 6.8 (Matrix normal distribution) An n1 × n2 random matrix X is said
to be normally distributed if vec(X) ∼ Nn1·n2(η,Ψ) holds with η = E[vec(X)] and Ψ =
Var(vec(X)). We then write

X ∼ Nn1×n2(M,Ψ)

with M = E[X] and Ψ as before.
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Definition 6.9 (Kronecker product, c.f. [Steeb, Sec. 1.1]) For two matrices A ∈
Rn1×n2 and B ∈ Rn3×n4 the symbol ⊗ denotes the Kronecker product

A⊗B :=

 A(1, 1)B . . . A(1, n2)B
...

. . .
...

A(n1, 1)B . . . A(n1, n2)B

 ∈ R(n1n3)×(n2n4).

Thus the Kronecker product can be indexed by double indices: For any i ∈ {1, . . . , n1},
j ∈ {1, . . . , n2}, w ∈ {1, . . . , n3} and l ∈ {1, . . . , n4} we write

(A⊗B)((i, w), (j, l)) := A(i, j)B(w, l),

such that the indices of B are counted before the indices of A.

We will need some properties of the Kronecker product.

Lemma 6.10 (Inverse of the Kronecker product, c.f. [Steeb, Sec. 1.3]) (A⊗ B)
is invertible

(A⊗B)−1 = A−1 ⊗B−1

for all invertible squared matrices A,B ∈ Rv×v.

Proof: See [Steeb, Sec. 1.3]. 2

Lemma 6.11 (Transpose of the Kronecker product, c.f. [Steeb, Sec. 1.2]) Transposing
a Kronecker product equals transposing its factors

(A⊗B)T = AT ⊗BT

for all matrices A ∈ Rn1×n2 and B ∈ Rn3×n4.

Proof: See [Steeb, Sec. 1.2]. 2

Lemma 6.12 (Product of Kronecker products, c.f. [Steeb, Sec. 1.3]) Let A ∈ Rn1×n2,
B ∈ Rn3×n4, C ∈ Rn5×n6 and D ∈ Rn7×n8 be any given matrices. Then

(A⊗B)(C ⊗D) = (AB)⊗ (CD),

which means that the matrix product of two Kronecker products equals the Kronecker
product of the matrix products of the individual factors.

Proof: See [Steeb, Sec. 1.3]. 2

Lemma 6.13 (Kronecker product and vec, c.f. [Steeb, Sec. 1.12]) Let A ∈ Rn1×n2,
X ∈ Rn2×n3 and B ∈ Rn3×n4. Then

AXB = M ⇐⇒ (BT ⊗ A)vec(XT ) = vec(MT ). (6.14)

A consequence of this is

vec(W1W
T
2 ) = vec

(
(W2 · 1 ·W T

1 )T
) (6.14)

= (W1 ⊗W2)vec(1) = (W1 ⊗W2) (6.15)

for any vectors W1 ∈ Rn1 and W2 ∈ Rn2.
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Proof: We will prove the claim elementwise. Thus let i ∈ {1, . . . , n1} and j ∈ {1, . . . , n4}.
Recall that transposing of any matrix is defined by interchanging its indices. Thus the
calculation

(AXB)(i, j) =

n2∑
w=1

n3∑
l=1

A(i, w)X(w, l)B(l, j) =

n2∑
w=1

n3∑
l=1

(BT )(j, l)A(i, w)(XT )(l, w)

Def. 6.9
=

n2∑
w=1

n3∑
l=1

(BT ⊗ A)((j, i), (l, w))vec(XT )(l, w)

=
(
(BT ⊗ A)vec(XT )

)
(j, i) =

((
(BT ⊗ A)vec(XT )

)T)
(i, j)

gives us the equivalence. 2

Lemma 6.14 (c.f. [Vaart, Thm. 2.7 (vi)]) Let (Xn)n∈N and (Yn)n∈N be sequences of
real random column vectors in Rn1 and respectively Rn2 converging to random vectors X
and respectively Y in probability. Then

(XT
n , Y

T
n )T

P→ (XT , Y T )T ,

for n→∞.

Proof: See [Vaart, Thm. 2.7 (vi)]. 2

Lemma 6.15 (Continuous mapping theorem, c.f. [Vaart, Thm. 2.3]) Let n1, n2 ∈
N, (Xn)n∈N be a sequence of random vectors in Rn1, X be a random vector in Rn1 and
g : Rn1 → Rn2 a function that is continuous at every point of a set S ⊂ Rn1 such that
P(X ∈ S) = 1 holds. Then

(i) if Xn
D→ X, then g(Xn)

D→ g(X);

(ii) if Xn
P→ X, then g(Xn)

P→ g(X) and

(iii) if Xn
a.s.→ X, then g(Xn)

a.s.→ g(X).

Proof: See [Vaart, Thm. 2.3]. 2

Lemma 6.16 (Slutsky-Theorem, c.f. [Vaart, Lemma 2.8]) Let (Xn)n∈N be a sequence
of random vectors in Rp, p ∈ N, converging to some random vector X in Rp in distribution.
Furthermore let (Σn)n∈N be a sequence of invertible random matrices in Rp×p converging

to some invertible non-random matrix Σ ∈ Rp×p in probability. Then Σ−1n Xn
D→ Σ−1X

holds for n→∞.

Proof: See [Vaart, Thm. 2.3 & Thm. 2.7 (v)]. 2

Lemma 6.17 (c.f. [Brck, Theorem 7.1.1]) Let (Zt)t∈Z be a strictly stationary sequence
of scalar random variables with mean 0 and autocovariance function γ. Then

nVar(Zn) =
∑
|h|<n

(
1− |h|

n

)
γ(h)

with Zn := 1
n

n∑
i=1

Zi.
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Proof: We plug in the definition of Zn. Note that for univariate time series γ(h) = γ(−h)
holds for all h ∈ Z. Then

nVar
( 1

n

n∑
i=1

Zi

)
=

1

n

n∑
i,j=1

cov(Zi, Zj) =
1

n

n∑
i,j=1

γ(i− j)

h:=i−j
=

1

n

∑
|h|<n

(n− |h|)γ(h) =
∑
|h|<n

(
1− |h|

n

)
γ(h)

holds by counting the differences instead of the single indices i and j. 2

Lemma 6.18 (Central limit theorem for m-dependent data, c.f. [Brck, Theorem 6.4.2])
Let (Zt)t∈Z be a strictly stationary m-dependent sequence of scalar random variables with
mean 0 and autocovariance function γ. If vm =

∑
|h|<m γ(h) 6= 0, then

(i) lim
n→∞

nVar(Zn) = vm and

(ii)
√
nZn

D→ N (0, vm) for n→∞

hold.

Lemma 6.19 (Cramér-Wold device, c.f. [Brck, Theorem 6.3.1]) Let (Zn)n∈N be a
sequence of random vectors in Rv. Then we have

Zn
D→ Z ⇔ λTZn

D→ λTZ ∀λT = (λ1, . . . , λv) ∈ Rv

for some random vector Z in Rv.

6.2 Second Hypothesis Test

Theorem 6.4 in combination with Lemma 6.1 states that it suffices to consider all cross-
covariance matrices with multiple lags of k. Indeed, if Q is too large, then H0 cannot be
assumed. However, the power (i.e. one minus the type II error) of this test is too low, as
in Subsection 6.3.2 shows for an MAH(3) process (Yn)n∈Z of the form

Yn = εn + lεn−3, ∀n ∈ Z.

Its cross-covariance matrices with lags 1 and 2 equal zero, but not the one with lag 3.
Imagine we wish to test 1-dependence. Therefore the test in Theorem 6.4 considers only
the cross-covariance matrices with even lags, which in this case equal zero altogether.
Hence the null hypothesis H0 of 1-dependence cannot be rejected, although this process
is 3-dependent actually, which means that the alternative hypothesis H1 holds.

This example illustrates that for testing m-dependence it is worth taking all the remaining
covariance matrices with lags greater than m into account in addition to the ones with
multiple lags of m+ 1 = k. However, if we consider

(vec(C̃k)
T , vec(C̃k+1)

T , . . .)T ,
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then the covariance matrix of this vector becomes very tedious to evaluate. The benefit of
working with multiple lags of k is the block band matrix structure of Ξ. Thus a compromise
of augmenting the number of lags in order to increase the statistical power and of keeping
the covariance matrix as simple as possible is derived in this section. The idea is to take
all the random vectors

vec(C̃k)

vec(C̃2k)
...

vec(C̃Hk)

 ,


vec(C̃k+1)

vec(C̃2k+1)
...

vec(C̃Hk+1)

 , . . . ,


vec(C̃2k−1)

vec(C̃3k−1)
...

vec(C̃(H+1)k−1)

 (6.16)

into account. All of them contain cross-covariance matrices C̃h with h such that +k is
added. Therefore covariance matrices of these vectors are block band matrices with block
band width 1, such that the bands only consist of

k−1∑
ν=1

CT
ν ⊗ Ck−ν and

k−1∑
ν=1

Cν ⊗ CT
k−ν

respectively analogously to Lemma 6.2. These formulas can be derived in a similar way
as in Subsection 6.1.1 – by imagining the possible combinations of matchings, but on a
horizontal line and not between subsamples. The reason for the independence of C̃h and
C̃h+wk with w ∈ {2, 3, . . .} for all h ∈ Z is that for an expression of the form

E[vec(Xi+h+wkX
T
i )vec(Xj+hX

T
j )T ]

it is impossible for any fixed i ∈ {1, . . . , N − h + wk} to choose j ∈ {1, . . . , N − h} such
that all of those four X(·) depend on another X(·), i.e. in each case there is a vector X(·)
left which is independent from the others, so that the whole expectation becomes zero.
In light of 6.3 all the k random vectors in (6.16) are multivariate normally distributed
with mean zero and with block band matrices as covariance matrices. Now the idea is to
construct k test statistics of the same form as in (6.8). For this it remains to find out the
diagonal blocks of their covariance matrices. It turns out that they do not change from
one specific lag on.

Lemma 6.20 Under strong stationarity and m-dependence

lim
N→∞

NVar(C̃h) =
k−1∑

ν=−(k−1)

Cν ⊗ Cν

for all h ≥ 2m+ 1(= 2k − 1) analogously to Lemma 6.2.

Sketch of proof: Choose any h ≥ 2m + 1 and consider the expectation on the right hand
side of

NVar(C̃h) =
1

N

N−h∑
i=1

N−h∑
j=1

E[vec(Xi+hX
T
i )vec(Xj+hX

T
j )T ]. (6.17)
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Fix any i ∈ {1, . . . , N − h}. Due to m-dependence and due to the choice of h Xi and
Xi+h are so far away that they cannot depend on any common X(·), which is illus-
trated in Figure 6.1. Consequently for all choices of j ∈ {1, . . . , N − h} the expression
E[vec(Xi+hX

T
i )vec(Xj+hX

T
j )T ] becomes either zero or the Kronecker product Ci−j⊗Ci−j.

Thus the limit of the right hand side of (6.17) leads to the claim and does not depend on
h ≥ 2m+ 1. 2

�௜+ℎ �௜  
Radius m Radius m 

Distance h 

Figure 6.1: Univariate illustration of the time series with Xi and Xi+h.

Now it remains to compute the asymptotical covariance matrices of each of the estimators
C̃k, . . . , C̃2k−2. In other words we are interested in

NVar(C̃k+q) =
1

N

N−k−q∑
i=1

N−k−q∑
j=1

E[vec(Xi+k+qX
T
i )vec(Xj+k+qX

T
j )T ]

for all q ∈ {0, . . . , k− 2}. Here Figure 6.2 demonstrates the existence of an index interval
where the corresponding random vectors X(·) can depend both on Xi and Xi+k+q.
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�௜+௞+� �௜  
Radius m Radius m 

Distance k+q 

Figure 6.2: Univariate illustration of the time series with Xi and Xi+k+q.

As in the sketch of proof of Lemma 6.20 we consider the expressions of the form

E[vec(Xi+k+qX
T
i )vec(Xj+k+qX

T
j )T ],

fix any i ∈ {1, . . . , N − k − q} and check j ∈ {1, . . . , N − k − q}. There are three cases,
where this expectation does not equal zero: if Xj+k+q is in that intersection area (so that
Xj is located within the left circle), if Xj is in that intersection area (so that Xj+k+q is
located within the right circle) and if Xj and Xj+k+q are within the union of the two
circles excluding their intersection. This results in three double sums

NVar(C̃k+q) =
1

N

N−k−q∑
i=k

E
[ i−q−1∑
j=i−k+1

(Xi+k+qX
T
j+k+q)⊗ (XiX

T
j )T
]

+
1

N

N−2k−q+1∑
i=1

E
[ i+k−1∑
j=i+q+1

(Xi+k+qX
T
j+k+q)⊗ (XiX

T
j )T
]

+
1

N

N−k−q∑
i=1

i+q∑
j=i−q

Ci−j ⊗ Ci−j.
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Taking the limit on both sides makes the outer sum of the fourth moments vanish such
that

lim
N→∞

NVar(C̃k+q) = E
[ i1−q−1∑
j=i1−k+1

(Xi1+k+qX
T
j+k+q)⊗ (Xi1X

T
j )T
]

+E
[ i2+k−1∑
j=i2+q+1

(Xi2+k+qX
T
j+k+q)⊗ (Xi2X

T
j )T
]

+

q∑
ν=−q

Cν ⊗ Cν

holds for all i1 ∈ {k, . . . , N−k−q} and for all i2 ∈ {1, . . . , N−2k−q+1}. Note that this
expression is a generalization of the special cases Lemma 6.20 for q > k − 2 and Ψ1,1 in
Lemma 6.2, where that fourth moment expression with the sum over a < b is equivalent to
the upper expression. Note that C−ν = CT

ν holds as well for their empirical counterparts

C̃−ν = C̃T
ν . This asymptotical covariance matrix lim

N→∞
NVar(C̃k+q) can be estimated by

means of replacing the expectation operators by empirical averages

Ψ̃
(q+1)
1,1 =

1

N

N−k−q∑
i=k

i−q−1∑
j=i−k+1

(Xi+k+qX
T
j+k+q)⊗ (XiX

T
j )T

+
1

N

N−2k−q+1∑
i=1

i+k−1∑
j=i+q+1

(Xi+k+qX
T
j+k+q)⊗ (XiX

T
j )T +

q∑
ν=−q

C̃ν ⊗ C̃ν . (6.18)

Eventually we are ready to establish an improved version of the hypothesis test in Theorem
6.4. The random vectors in (6.16) multiplied by the Hp2 ×Hp2-matrix C̃−10 ⊗ Id 0

. . .

0 C̃−10 ⊗ Id


imply k test statistics Q̃

(1)
N , . . . , Q̃

(k)
N (in the same way as Theorem 6.4 describes), which al-

together are asymptotically χ2
Hp2 distributed under strong stationarity and m-dependence.

Consequently if at least one of those test statistics is not asymptotically χ2
Hp2 distributed,

m-dependence cannot hold. Now consider the overall significance level. As usual we wish
the type I error not to be larger than α ∈ (0; 1). However, if we set the significance level
of each subtest to be α

k
, the calculation

type I error = P(Reject H0|H0) = P(∃τ ∈ {1, . . . , k} : Q̃
(τ)
N > χ2

Hp2,1−α
k
|H0)

= P(
k⋃
τ=1

Q̃
(τ)
N > χ2

Hp2,1−α
k
|H0) ≤

k∑
τ=1

P(Q̃
(τ)
N > χ2

Hp2,1−α
k
|H0) ≈

k∑
τ=1

α

k
= α

reveals that the overall significance level becomes α. This consideration is called Bonferroni
criterion.

Theorem 6.21 (Improved m-Dependence Hypothesis Test) Suppose strong station-
arity and

H0 : Data m−dependent; H1 : Data at least (m+ 1)−dependent.
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Then under H0 the test statistics Q̃
(1)
N , . . . , Q̃

(k)
N , derived from (6.16) in the same manner

as in Theorem 6.4, are asymptotically χ2
Hp2 distributed. Therefore reject H0 at significance

level α ∈ (0; 1) if and only if there exists a τ ∈ {1, . . . , k} such that Q̃
(τ)
N > χ2

Hp2,1−α
k

.

Sketch of proof: See above.

6.3 Simulation results

This section deals with examples of test applications. The principle is to simulate a func-
tional ARMA process, discretized onto n ∈ {100, 1000, 10000} knots and based on a
Brownian bridge as a white noise, 1000 times and then to apply the hypothesis tests
while varying H ∈ {3, 5}, p ∈ {3, 4, 5} and α ∈ {0.01, 0.05, 0.1} according to [GaKo]. For
all 1000 simulations we count how often the test statistic exceed the quantile χ2

Hp2,1−α
or respectively χ2

Hp2,1−α
k

and divide that by 1000 to get an average. Those numbers are

displayed in tables showing the empirical size or the empirical power.

Definition 6.22 (Size and Power) Suppose an hypothesis test wit null hypothesis H0

and alternative hypothesis H1 = ¬H0. Then

� the size of the test is defined as P(Reject H0|H0) (type I error) and

� the power of the test is defined as P(Reject H0|H1) (1− type II error).

Both take the rejection of H0 into account.

At first we will analyze the results only of the test in Theorem 6.4. We will test 1-
dependence for an ARH(1) process and for a strong white noise as well as 3-dependence
for an MAH(m) process with m ∈ {1, . . . , 5}. Afterwards we will compare this test with
its improvement in Theorem 6.21.

6.3.1 Results for the test in Theorem 6.4

Before discussing the simulation results here is one remark about how to estimate the test
statistic Q̃N : All the blocks and subvectors of R̃ and Ξ̃ can be estimated straightforwardly
– except the fourth moments in the first block of Ξ̃. There is no routine that calculates
multivariate fourth moments in contrast to second moments, where the R-function cov

returns sample (cross-)covariance matrices. In Theorem 6.4, one fourth moment estimator

is suggested before left- and right-multiplication by C̃−10 ⊗ Id . For ease of coding in R, we
transform this formula to the representation

Ψ̃1,1 =
1

N

N−k∑
i=k

i−1∑
j=i−k+1

(Xi+kX
T
j+k)⊗ (XiX

T
j )T

+
1

N

N−2k+1∑
i=1

i+k−1∑
j=i+1

(Xi+kX
T
j+k)⊗ (XiX

T
j )T + C̃0 ⊗ C̃0
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from (6.18) with q = 0. Both formulas are equivalent, but the latter does not use sample-
splitting for the implementation. (In fact, sample-splitting only gave an idea of how to
derive the test.) Consequently, the top left block of Ξ can be estimated by

Ξ̃1,1 =
(
C̃−10 ⊗ Idp

)
Ψ̃1,1

(
C̃−10 ⊗ Idp

)
.

Now we go into testing 1-dependence. We approximate the size of the test by a strong white
noise (which is 0-dependent and thus 1-dependent) where each observation is a Brownian
bridge and where the observations are independent. We use B-splines for interpolation here
and in the remainder. For the strong white noise the values converge to α for N →∞,
see Table 6.1. This makes sense because they are empirical estimates of the test size and
by the strong law of large numbers (which holds because the replicates are i.i.d.) they are
converge to their expectation, the theoretical test size. In other words let

Q̃N,1, Q̃N,2, . . . , Q̃N,S

be the S ∈ R (here S = 1000) replicates of Q̃N (and thus identically distributed). Since
they arise from S different simulations, they are independent. Hence the strong law of
large numbers holds

1

S

S∑
s=1

1Q̃N,s>χ
2
Hp2,1−α

S→∞−→ E
[
1Q̃N,1>χ

2
Hp2,1−α

]
= P(Q̃N > χ2

Hp2,1−α)
N→∞−→ α a.e.

The number of PCs p does not seem to cause any tendency that the results get better or
worse. The same holds for H. Since the test is based on the central limit theorem, the
”results are likely to be worse for non-normal data” according to [GaKo, Section 3], which
is not analyzed in this thesis either.

WNH p = 3 p = 4 p = 5
α : 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

N = 100
H = 3 0.078 0.034 0.009 0.136 0.093 0.052 0.113 0.086 0.054
H = 5 0.051 0.030 0.006 0.104 0.071 0.036 0.081 0.057 0.040

N = 1000
H = 3 0.084 0.040 0.008 0.095 0.045 0.005 0.079 0.039 0.012
H = 5 0.086 0.039 0.008 0.094 0.048 0.009 0.082 0.039 0.009

N = 10000
H = 3 0.106 0.050 0.006 0.109 0.054 0.012 0.111 0.054 0.014
H = 5 0.118 0.066 0.014 0.109 0.057 0.012 0.110 0.052 0.012

Table 6.1: Average rejections for H0: ”1-dependence” over 1000 replications of a strong
white noise with the test in Theorem 6.4.

The power of the test is approximated by the ARH(1) process (Yn)n∈Z such that

Yn = lYn−1 + εn, ∀n ∈ Z.
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Its integral operator l ∈ L is uniquely defined by the integral kernel

0.5 exp

(
−s

2 + t2

2

)
,∀s, t ∈ [0, 1]. (6.19)

The results can be found in Table 6.2. In contrast to the strong white noise for the ARH(1)
process the empirical type II error becomes zero rapidly for large N . For increasing H
the empirical power decreases, because the quantiles, depending on Hp2, grow faster than
the test statistics according to [GaKo, Section 3] and because we take more estimates
into account, which makes the test statistics more imprecise. We can see that this test
is not very good for low N , which is reasonable too, because we estimate large matrices
containing fourth moments, which requires a large number of observations.

ARH(1) p = 3 p = 4 p = 5
α : 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

N = 100
H = 3 0.105 0.052 0.014 0.140 0.094 0.062 0.140 0.101 0.077
H = 5 0.070 0.037 0.007 0.102 0.074 0.043 0.108 0.088 0.056

N = 1000
H = 3 0.784 0.659 0.382 0.625 0.491 0.241 0.657 0.521 0.244
H = 5 0.650 0.506 0.243 0.500 0.379 0.149 0.517 0.365 0.159

N = 10000
H = 3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
H = 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 6.2: Average rejections for H0: ”1-dependence” over 1000 replications of an ARH(1)
process with the test in Theorem 6.4.

For 3-dependence we consider MAH(m) processes (Yn)n∈Z such that

Yn = εn + l

m∑
ν=1

εn−ν , ∀n ∈ Z,

with m ∈ {1, . . . , 5} and with l as above. Consequently the test results for m ≤ 3 in Table
6.3 up to Table 6.5 display the empirical size, whereas the test results for m > 3 in Table
6.6 and Table 6.7 display the empirical power. Here we can conclude the same as in the
1-dependence example, concerning behavior of the empirical sizes and the empirical power
for N increasing. The values for N = 1000 are even better than in the previous example,
because the moving average lag structure is clearer for a lower number of observations
than the autoregressive lag structure. As it can be seen in Table 6.2 as well, there are
less rejections for H = 5 than for H = 3 in the empirical power tables and the power
estimates for low N are low.
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MAH(1) p = 3 p = 4 p = 5
α : 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

N = 100
H = 3 0.096 0.070 0.038 0.067 0.054 0.042 0.043 0.037 0.031
H = 5 0.056 0.039 0.024 0.049 0.042 0.028 0.031 0.028 0.024

N = 1000
H = 3 0.095 0.043 0.005 0.086 0.039 0.004 0.067 0.029 0.006
H = 5 0.095 0.042 0.012 0.081 0.034 0.011 0.075 0.034 0.006

N = 10000
H = 3 0.085 0.047 0.009 0.088 0.040 0.005 0.082 0.048 0.009
H = 5 0.095 0.047 0.007 0.081 0.048 0.008 0.083 0.047 0.010

Table 6.3: Average rejections for H0: ”3-dependence”over 1000 replications of an MAH(1)
process with the test in Theorem 6.4.

MAH(2) p = 3 p = 4 p = 5
α : 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

N = 100
H = 3 0.091 0.068 0.052 0.069 0.057 0.043 0.044 0.034 0.026
H = 5 0.068 0.056 0.040 0.051 0.043 0.033 0.026 0.021 0.016

N = 1000
H = 3 0.081 0.048 0.010 0.078 0.044 0.013 0.083 0.046 0.010
H = 5 0.088 0.047 0.009 0.081 0.042 0.009 0.071 0.030 0.007

N = 10000
H = 3 0.104 0.056 0.012 0.106 0.047 0.009 0.096 0.046 0.007
H = 5 0.087 0.040 0.009 0.088 0.047 0.011 0.097 0.047 0.005

Table 6.4: Average rejections for H0: ”3-dependence”over 1000 replications of an MAH(2)
process with the test in Theorem 6.4.

MAH(3) p = 3 p = 4 p = 5
α : 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

N = 100
H = 3 0.100 0.080 0.040 0.077 0.065 0.048 0.063 0.049 0.041
H = 5 0.075 0.056 0.030 0.059 0.048 0.039 0.057 0.052 0.037

N = 1000
H = 3 0.106 0.053 0.013 0.101 0.055 0.008 0.098 0.045 0.013
H = 5 0.101 0.048 0.009 0.099 0.051 0.016 0.090 0.048 0.013

N = 10000
H = 3 0.102 0.051 0.008 0.103 0.050 0.009 0.098 0.049 0.011
H = 5 0.100 0.048 0.009 0.091 0.038 0.008 0.088 0.045 0.011

Table 6.5: Average rejections for H0: ”3-dependence”over 1000 replications of an MAH(3)
process with the test in Theorem 6.4.
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MAH(4) p = 3 p = 4 p = 5
α : 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

N = 100
H = 3 0.133 0.102 0.059 0.082 0.064 0.048 0.043 0.031 0.022
H = 5 0.090 0.066 0.040 0.060 0.044 0.034 0.044 0.034 0.026

N = 1000
H = 3 1.000 0.999 0.986 0.996 0.979 0.879 0.989 0.973 0.873
H = 5 0.995 0.977 0.875 0.949 0.874 0.621 0.925 0.849 0.586

N = 10000
H = 3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
H = 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 6.6: Average rejections for H0: ”3-dependence”over 1000 replications of an MAH(4)
process with the test in Theorem 6.4.

MAH(5) p = 3 p = 4 p = 5
α : 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

N = 100
H = 3 0.122 0.088 0.054 0.089 0.070 0.050 0.064 0.053 0.041
H = 5 0.089 0.065 0.043 0.072 0.056 0.047 0.055 0.048 0.039

N = 1000
H = 3 1.000 0.998 0.986 0.993 0.974 0.857 0.972 0.926 0.704
H = 5 0.994 0.982 0.874 0.926 0.856 0.582 0.845 0.720 0.426

N = 10000
H = 3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
H = 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 6.7: Average rejections for H0: ”3-dependence”over 1000 replications of an MAH(5)
process with the test in Theorem 6.4.

6.3.2 Comparison between Theorem 6.4 and Theorem 6.21

Given l ∈ L as in (6.19) we here consider an MAH(3) process (Yn)n∈Z such that

Yn = εn + lεn−3, ∀n ∈ Z, (6.20)

holds, as already mentioned in Section 6.2. When testing 1-dependence, we know that
H1 holds, because (Yn)n∈Z suffices C3 6= 0. Nevertheless according to Table 6.8 the test
in Theorem 6.4 treats (Yn)n∈Z as if it was 1-dependent, because Ch ≡ 0 holds for all
h ∈ N\{3}. Hence the empirical power converges to the significance level. By contrast,
the test in Theorem 6.21 takes C3 into account, so that H0 is mostly rejected. The power
of the latter test grows tremendously fast, which can be seen in Table 6.9.
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First Test p = 3 p = 4 p = 5
α : 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

N = 100
H = 3 0.093 0.044 0.013 0.162 0.118 0.063 0.118 0.092 0.065
H = 5 0.069 0.031 0.012 0.121 0.081 0.045 0.097 0.081 0.056

N = 1000
H = 3 0.113 0.058 0.011 0.098 0.051 0.009 0.095 0.048 0.006
H = 5 0.121 0.059 0.011 0.097 0.052 0.009 0.088 0.041 0.007

N = 10000
H = 3 0.118 0.059 0.013 0.116 0.058 0.011 0.120 0.055 0.010
H = 5 0.121 0.065 0.016 0.118 0.063 0.013 0.123 0.068 0.014

Table 6.8: Average rejections for H0: ”1-dependence”over 1000 replications of the MAH(3)
process in (6.20) with the test in Theorem 6.4.

Second Test p = 3 p = 4 p = 5
α : 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

N = 100
H = 3 0.411 0.274 0.113 0.343 0.234 0.097 0.314 0.225 0.105
H = 5 0.263 0.174 0.065 0.201 0.133 0.060 0.185 0.112 0.061

N = 1000
H = 3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
H = 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

N = 10000
H = 3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
H = 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 6.9: Average rejections for H0: ”1-dependence”over 1000 replications of the MAH(3)
process in (6.20) with the test in Theorem 6.21.



Chapter 7

Real Data Study

The theory and methods described in the previous chapters is going to be applied here.
We will work with highway traffic data. Having explained the properties of the datasets,
we will deal with clustering methods in order to gain some kind of homogeneity. Finally
we will use the moving average hypothesis test and compute some forecasts.

7.1 Data Description

We are provided some traffic volume data and some traffic speed data by Autobahndirek-
tion Südbayern. Both concern one specific location of Autobahn A92 and contain mea-
surements per minute from January 1st, 2014 to June 30ths, 2014. The number of cars
can be found in the volume dataset and the average speed in the speed dataset. Both
datasets are preprocessed in the same way as in [Wei], i.e. merging from three lanes to
one lane, constructing weighted speed data and aggregating the latter from one second
to five seconds. We aggregate the volume data too by summing up for each five seconds
interval. As well as in [Wei] we exclude the days January 20th, March 3rd and May 7th
due to lack of information. Thus the number of observations equals N = 178. Afterwards
we convert the two resulting datasets into functional data via the package fda. The obser-
vations were interpolated by linear combinations of some fourier basis functions mapping
from [0, 1] as recommended in [Wei]. Since the dates are known, the weekdays and hol-
idays can be determined for each observation. We expect some sort of homogeneity for
each weekday. For example some characteristics for all Mondays might be assumed which
differentiate from the traffic behavior on Sundays. Therefore we classify the observations
into their weekdays. However, we set Tuesday, Wednesday and Friday as one group and
all non-weekend holidays as another one. Figure 7.1 shows the traffic volume and Figure
7.2 the traffic speed, both colored according to the weekdays. Note that the functional
observations describe the behavior from 12 am to 12 am. The x-axis denotes the interval
[0, 1] because of the choice of the functional basis. In contrast to what we imagined, the
groups by weekdays (and holidays) do not seem to be homogeneous. It is especially the
speed dataset which has much variety in the weekdays.
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Figure 7.1: Functional volume data, colored by weekdays.

The curves make sense because of the rush hours (traffic jam, thus there are many cars
and most of them have to drive slowly) in the morning and especially in the evening on
working days, where people tend to go home earlier on Fridays. Furthermore less cars
occur on non-working days, which drive faster than on working days.
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Figure 7.2: Functional speed data, colored by weekdays.
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The plots also show that some kind of grouping the observations is recommended for
predictions. The overall variety is too high to assume an MAH(1) model. If the dates and
consequently the weekdays had not been available, we would have to cluster the data. In
this case the goal of clustering is to obtain an appropriate group of observations which
can be described by an MAH(1) process fairly and which hence yields good predictions.
However, it turns out that this does not work here, because the clustering methods will
look for similar curves, which might be from different weekdays. Consequently the day
intervals from observation to observation within each cluster might differ tremendously.
Moreover, since the curves within one cluster are too similar, they are highly correlated –
even with respect to higher order lags, so that an MAH(1) model is not recommended.
Nevertheless we will discuss some clustering algorithms and analyze their results.

7.2 Data Clustering

Clustering means grouping the data into k clusters, where k ∈ N is chosen arbitrarily
before. We work only with the speed dataset. The same can be applied on the volume
dataset as well. In this section we visualize the functional observations as points by pro-
jecting onto the first three functional principal components and by plotting the scores.
Figure 7.3 shows the functional observations of the speed dataset as points colored by
their weekdays. It demonstrates that the data can be clustered more appropriately.
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Figure 7.3: Speed data classified by weekdays.
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There are many kinds of cluster algorithms. We will focus on k-means algorithm and
complete linkage. Both methods require the number of clusters k ∈ N to be chosen before
performing. We take k = 6. They are applied onto the PC scores of the speed data with
p = 7 as the number of PCs. Moreover recall the number of observations N = 178.

7.2.1 k-means Algorithm

Let µ1, . . . , µk ∈ Rp the initial cluster centers. The idea of k-means is

(i) to put each observations xi, i ∈ {1, . . . , N}, into cluster g ∈ {1, . . . , k} according to
the smallest distance to the given cluster centers

min
g∈{1,...,k}

‖xi − µg‖

(classification) and

(ii) to update the cluster centers (with the number of observations per cluster Ng)

µg =
1

Ng

∑
i: xi in cluster g

xi

for all clusters g ∈ {1, . . . , k} (adjustment)

both iteratively until the observations are clustered in an appropriate way. R suggests the
maximal number of iterations for the command kmeans to be ten. Here the kmeans routine
terminates after four iterations and gives the result visualized in Figure 7.4 and in Figure
7.5.
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Figure 7.4: First three PC scores of speed data clustered by kmeans algorithm.
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Both figures show that k-means separates the data better than the clustering by weekdays.
Nevertheless the blue and green clusters overlap. Those observations can be separated
more clearly.
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Figure 7.5: Speed data clustered by kmeans algorithm.

In general k-means algorithm is a good standard clustering procedure, but it does not
perform well in some cases. The reason is that its concept (classifying the data and
updating the centers iteratively) is quite limited for certain data, e.g. for a two-dimensional
dataset consisting of one cluster as a circle and another one as a ring surrounding the circle.
For those problems hierarchical clustering is often a better solution.

7.2.2 Complete Linkage

The basic idea of hierarchical clustering is either to consider each single observation as
one cluster and to merge two clusters in each iteration step until we obtain k clusters
(agglomerative) or to consider the entire dataset as one cluster and to exclude one obser-
vation in each iteration step until we obtain k clusters (divisive).
The complete linkage clustering is an agglomerative approach. Take any iteration step
and any two clusters A and B. Complete linkage measures the farthest distance between
them, i.e. it compares all distances between one element of A and one of B and takes
the farthest distance. Those cluster distances are computed for all clusters. The two clus-
ters with the minimal cluster distance are merged to one cluster and the next iteration
step starts. This procedure can be visualized in a schedule called dendrogram, see Figure
7.6. It is only the vertical and not the horizontal position of the observations that plays
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a role. On the bottom all observations are one-element-clusters, whereas on the top all
observations form one cluster.
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Figure 7.6: Dendogram of complete linkage on PC scores of speed data.

The R-user has to determine the clusters manually. Since we wish to get k = 6 groups, we
choose the clusters along the red line. On the one hand the cluster sizes differ tremendously,
but on the other hand the observations within each cluster are more homogeneous, which
Figure 7.7 and Figure 7.8 reveal.
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Figure 7.7: PC scores of speed data clustered by complete linkage.

The clusters resulting from complete linkage can be distinguished better than the ones
resulting from k-means.
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Figure 7.8: Speed data clustered by complete linkage.



100 CHAPTER 7. REAL DATA STUDY

Both plots show that the blue observation is an outlier. It is Wednesday, May 28th.

7.3 Data Prediction

We attempted to gain some suitable groups via clustering in order to apply the estima-
tion approaches for MAH(1) processes and to obtain some appropriate forecasts. Unfor-
tunately it is only the classification by weekdays which allows us to assume the data to
come from an MAH(1) process, when we set all working days (119 days) as one group.
Before estimating the covariance kernel function on the working days we need to center
the data in order to get rather stationary mean zero data. Therefore we determine the
means of the three clusters Monday, Tuesday-Thursday and Friday and subtract the work-
ing day observations by their corresponding means. For this centered dataset Figure 7.9
shows that the lags for this group suggest possessing an MAH(1) structure, which does
not hold for any other clustering groups.
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Figure 7.9: Lags of the centered speed data (left) and of the projection onto the first four
PCs (right).

The MAH(1) structure is confirmed by the hypothesis test in Theorem 6.4: We test 1-
dependence, which means k = 2, by considering H = 5 lags. Moreover we eliminate the
last observation out of the dataset, so that N = 118 divided by k is a natural number.
Furthermore it turns out that p = 4 is the optimal number of PC when using Fourier
basis functions as stated in [Wei]. Thus we obtain

Q̃N = 86.3912 < 101.8795 = χ2
5·42,0.95.
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Hence ”H0: data 1-dependent” cannot be rejected at significance level α = 0.05. The same
holds for the test in Theorem 6.21 (where by definition, Q̃

(1)
N equals Q̃N from before)

Q̃
(1)
N = 86.3912 < 106.6286 = χ2

5·42,0.975, Q̃
(2)
N = 89.6041 < 106.6286 = χ2

5·42,0.975.

(In fact the reason for neglecting the traffic volume dataset is its structure of lags, which
rather suggests possessing an ARH(1) structure, even if we work with clusters.)

After that we apply the iterative method and the innovation algorithm on this centered
speed dataset of working days, but we compute the fitted values X̂n−9, . . . , X̂n for the last

ten observations (with X̂i = l̂iter/inε̂
iter/in
i ). Therefore concerning estimation of the integral

kernel we exclude one observation out of the dataset recursively until we removed ten
observations. At the end, we take the mean

1

10

9∑
i=0

Xn−i

of the functional observations, of the observations projected onto the PCs (here with opti-
mal number 4) and of the fitted values. The reason for predicting the last ten observations
is to stabilize the results by taking the average. Figure 7.10 shows that the estimates are
close to the mean of observations. We obtain 0.6333 as the relative forecast error for the
iterative method and 0.5784 for the innovation algorithm. Hence it is again the latter
which tends to perform better.
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Figure 7.10: Time-averaged forecasts for speed data.
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Figure 7.11 shows the means of the ten integral kernel estimates, calculated by the iterative
method and by the innovation algorithm. It is hard to draw any conclusions for the traffic
flow from the shape of the estimates. The integral kernels are slightly diagonal dominant.

Figure 7.11: Average of ten estimated integral kernels for the speed dataset, calculated by
the iterative method (left) and by the innovation algorithm (right).

Since we draw the plots of Figure 7.11 over 288×288 knots, the grids, which were used in
all previous 3D-plots, would make the illustrations dark. Therefore we use the R-function
persp3d from the package rgl instead of the R-function persp from the package graphics
as before.



Chapter 8

Conclusions

This thesis consists of estimating MAH(1) processes and of testing the dependence struc-
ture of a functional time series. The motivation of the tests is to choose a suitable func-
tional time series model, provided that the dependence order is known. Having chosen
1-dependence, the estimation approaches set an appropriate model (fitted to the observa-
tions), under which we are able to forecast future observations.

Two estimation approaches for l as in (3.3) have been discussed in Chapter 4. The
projection method solves quadratic equations for the eigenvalues of the occurent operators.
The iterative method is a fixed-point algorithm for those operators. As long as the number
of observations is sufficiently large and all their conditions are satisfied, these approaches
provide good estimates for l as discussed in Chapter 5. However, when it comes to real
data, the number of observations is mostly low and some of the theoretical assumptions
do not hold. The simulation results show that the projection method performs better than
the iterative method, but it requires more assumptions. When it comes to simulations,
the choice for the white noise, which does not seem to be important in theory, plays a
vital role for the results of the implementation. As an outlook, one could try to extend the
estimation approaches to functional moving average processes of higher order. However,
it might be very hard to solve the equations for the model operators.

The first hypothesis test from Theorem 6.4 was motivated by independence tests and
sample-splitting. Its empirical size corresponds to the theory, but it has a low empirical
power in some cases (see Subsection 6.3.2). Therefore, we improved the first test in Section
6.2 and derived a multiple test involving Bonferroni criterion. It is a compromise between
considering all lags of greater order than the dependence order and summing them up
to as few test statistics as possible. Concerning future work, one could compare the two
hypothesis tests in more details. One could even establish a test that analyzes every lag
successively and assess its goodness in comparison with the previous two tests.

For the highway traffic speed dataset, both the hypothesis test results and the averages
of the predicted observations look reasonable, although the number of observations is low.
By contrast, the results of the clustering routines do not correspond to the weekdays
and holidays. However, this is a problem of the speed dataset and not of the clustering
algorithms. One could go into details of traffic science and try to find out the reasons
for heterogeneity within the weekdays. Based on this knowledge, one could develop some
clustering methods detecting the weekdays and holidays from the traffic observations.
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stationary functional time series, Journal of the American Statistical Association,
110:509, 378-392, 2015

[BB] Denis Bosq, Delphine Blanke, Inference and Prediction in Large Dimensions, Wiley,
Chicheser, 2007

[Bosq] Denis Bosq, Linear Processes in Function Spaces, Theory and Applications,
Springer, New York, 2000

[Brck] Peter J. Brockwell, Richard A. Davis, Time Series: Theory and Methods, Second
Edition, Springer, New York, 1991

[GaKo] Robertas Gabrys, Piotr Kokoszka, Portmanteau Test of Independence for Func-
tional Observations, Journal of the American Statistical Association, Vol. 102, pp.
1338-1348, 2007
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