Extracting general task structures to accelerate the learning of new
tasks*

Ilya Dianov, Karinne Ramirez-Amaro, Pablo Lanillos, Emmanuel Dean-Leon,
Florian Bergner and Gordon Cheng

Abstract— Teaching a robot new tasks through kinesthetic
demonstrations can be a long and complicated process. For
example, a human has to demonstrate a new “pick and place”
task each time the object or the target location has changed.
However, obtaining the abstract representation of such task can
significantly reduce the learning time as the human only has
to teach the necessary parameters required for the successful
execution, e.g. the location of an object. In this work, we
present a framework which allows to extract general task
structures which together with the obtained knowledge can
improve and accelerate the teaching of new tasks. Additionally,
our framework exploits the semantic similarities between task
parameters in order to infer the possible structure of unknown
tasks. Our proposed method utilises symbolic representations
of tasks combined with an ontology which makes it applicable
to different environments in various domains. We analysed
our framework in an orange sorting scenario and a cleaning
scenario to demonstrate that it allows reducing the time
required for teaching from 136.3 to 53 seconds (61.12%) and
from 48.7 to 21 seconds (56.87%) respectively compared to
learning only by Kinesthetic demonstrations.

I. INTRODUCTION

There are several mechanisms which allow robot to exe-
cute different tasks: each step of the task can be manually
programmed by the human [1]; a planning algorithm can
be used to generate tasks from a library of actions with
known preconditions and effects [2]; or a learning from
demonstrations can be used to acquire optimal task execution
models [3]. However, with increasing complexity of the
robot environment the acquisition of the new tasks can be
a very time consuming process as a robot has to obtain a
new task every time its environment changes. In order to
improve and accelerate task acquisition, the robot should be
able to extract abstract representations of tasks which are
applicable in different scenarios and adaptable to changes in
the environment.

For example, assume that a human is teaching a robot the
task of picking an orange and placing it into the box. Such
task consists of the following steps: Reach an orange, Take
the orange, Put the orange into a box and Release the orange.
Assume that the person wants the robot to execute the pick
and place task, but instead of placing the orange in the box,
he needs to place it in the trash, which is a different location

*This work has received funding from the European Community’s
Seventh Framework Program (FP7/2007-2013) under grant agreement no.
609206

Faculty of Electrical Engineering, Institute for
tive Systems, Technical University of Munich,
{ilya .dianov, karinne.ramirez, dean,
p.lanillos, florian.bergner, gordon}@tum.de

Cogni-
Germany

Object: Orange
Location: Trash

f X Task Pick and Place:
Object: O
Locjgtcion' \ Reach(Object)
: Take(Object)
Put(Object,Location)

Release(Object)

Object: Sponge
Location: Plate

i

Fig. 1: Example of a common structure in different tasks.

than the box. Therefore, the human is required to teach the
new steps: Reach an orange, Take the orange, Put the orange
into the trash and Release the orange. However, during the
second demonstration the human repeats the same steps from
the previous task, which makes it very redundant. Then, to
improve the teaching process, the robot should extract the
general structure of the pick and place task from the first
demonstration (Fig. 1) and use it to learn the seconds task,
where the human has only to specify a new location for
the Put activity. Additionally, the obtained structure can be
reused to accelerate the learning process of other tasks such
as plate cleaning which consists of picking a sponge, placing
it on top of the plate and then Wiping the plate. The human
should only demonstrate the new task of Wiping the plate,
and the robot can utilise its reasoning to infer the rest of
the steps using knowledge from the previous pick and place
tasks.

The main contribution of this paper is a new method to
teach robots new tasks in a fast and efficient manner by
extracting key structures from the demonstrated tasks and
utilising contextual knowledge! from previous experience.
The extracted structure is represented as a directed graph,
which allows to capture important relationships between
task components and simplifies the search of known tasks.
Additionally, we connect the obtained task graph with an
ontology to enhance the generalization of our method to
make it applicable across different domains.

'In this work, an ontology representation encodes contextual knowledge.

II. RELATED WORK

One set of approaches to learn a task structure from
demonstrations is based on the analysis of the low-level tra-
jectory information [4]. For example, Lee et.al. [5] represent
a task as a set of motion primitives and utilise the Gaussian
Mixture Models (GMM) to extract task models which can be
later combined with Dynamic Motion Primitives (DMP) to
improve model generalisation [6]. Other methods manually
segment the motion sequences and model them as a finite
state machine [7] or DMP [6]. On the other hand, several
approaches are using Hidden Markov Models (HMM) to
recognise repeated structures at several levels of abstraction
in the demonstration data which are segmented into separate
tasks [8]. While such methods are robust to small changes
in the task environment (for example, the position of the
target for the pick and place task), they do not capture
task semantics which makes it complicated to reuse the
obtained models in different domains (for example, reuse
pick and place task in plate cleaning task). Additionally,
bootstrapping can be used to extract both semantic and
sensory-motor information from the demonstrations which
can significantly improve the acquisition of the task models
[9], though the high complexity of the task structure do not
allow the reusability of the obtained knowledge to accelerate
task learning.

On the other hand, the symbolic representation can provide
better flexibility in building complex task structures applica-
ble to different domains. Hierarchical Task Networks (HTN)
is a common example of such abstract task representation
which utilises symbolic actions with environmental precon-
ditions and effects [10]. HTN can be manually specified
[11], generated using predefined heuristic rules [12], or
autonomously constructed through causality analysis and
subgoal discovery [13]. Another way of obtaining symbolic
specifications is through natural language interaction with a
demonstrator where the task structure can be encoded as a
Petri net [14] or a graph [15]. The obtained specifications can
be then used to perform autocompletion of the new learned
tasks and reduce the number of steps required for demonstra-
tions [16]. However, the presented methods do not provide
any mechanism to modify and relearn a single component of
known tasks, or reuse the obtained task structures to speed
up learning.

Similar to the above approaches, we propose a technique
capable of extracting abstract symbolic task specifications
from human demonstrations. The main advantage of our
method is that it allows to accelerate teaching process by
using knowledge about learned tasks and utilising similarity
between different task parameters. Additionally, our tech-
nique allows to extract general representations of the task
structures which are applicable to different domains.

III. FRAMEWORK OVERVIEW

In this section, we will define the main components of our
system, describe connections between them and provide an
overview of the proposed learning algorithm.

Robot Human
Sensory User
Data interaction
(Activity/Propertb
Detector GUI
Activities and Task A
Properties structurew
Task Module
Task Graph -—> Ontology

Fig. 2: Diagram of the main framework components.

A. Framework design

Our framework is shown in Fig. 2, it consists of activ-
ity/property detector module, task module and GUI. First,
activities and properties are detected from the robot sensory
data using the Inferring Semantic Human Activities Reasoner
ISHAR method [17]. This method extracts semantics of the
human activities using decision tree, and discretize contin-
uous environment into hand motion and object properties.
The activities are semantic descriptions of high-level human
actions and have symbolic representations (e.g. Reach, Take,
Release, Wipe etc.)?>. The properties can either represent
relations between an abstract object and the environment
(for example, the property IsInHand(Fruit) defines that any
object which belongs to the class Fruit is located in the robot
hand) or describe a specific state of the object using a data
value (for example, the property HasPosition(Sponge, [1 1
1]) defines that the object Sponge has a Cartesian position
[1,1,1]). The detected activities and properties are utilised to
generate a task graph, which represents the key structure of
the learned tasks, using the method described in Section III-
B. To extract an abstract and domain independent structure of
the tasks we enhance our framework with an ontology. The
ontology contains the contextual information of extracted
task structures and allows to reuse it for teaching similar
tasks using backtracking and siblings analysis techniques.
The example of the ontology is shown in Fig. 3b. Our
ontology is represented through the Web Ontology Language
(OWL) [18] and generated as a knowledge base in Knowrob
[19]. Additionally, the demonstrator can use a graphical
interface (GUI) in order to request the system to infer the
structure of the desired task, and also select specific values
for this task (for example, selecting the location for the pick
and place task).

B. Problem formalization

We introduce a task graph which is a directed graph
G(V,E,P;). Vertices V represent activities {ai,...,an} €
A, where V C A, as described in the previous section.
Edges E represent transitions between the activities and
Py = {p1,...,px} represents the graph properties which is
a list of properties for all the activities in V. An example
of the generated task graph is shown in Fig. 3a, where
A ={ay,az,a3,a4,as} is the list of activities in the graph,

2In this work, we do not consider parametrization of the low-level motor
primitives or motion trajectories.

hing>

{P2. P7. 05, W1°}
{Pa, Py 02, 03, Wy}, 2o

4
htrinsicStateChangeEvent

{Pa, Ps, 04, Wi'F

(a)

TemporalThing

{P. P7, 05 W1°}

Ps, 05, W;°}

{Ps, Ps, 04 wf)

Fig. 3: Example of the task graph learning, where (a) represents an abstract graph, (b) represents the ontology and (c)
represents graph (a) where {a;,a,,a3,a4,as} were replaced by actual detected activities.

Py = {p1,p2,p4,P5,po} is a list of task graph properties. A
transition is identified by a set of objects O; involved in this
transition, the properties P, which are a subset of the graph
properties B, C P, and a weight wf‘l ,i = 1..n which indicates
a number of transition occurrences between activities a;_|
and a; from the previous demonstrations, and the weight will
later be used for the task inference. For example, in Fig. 3a
we observe that the nodes a; and a, are connected, creating
a transition (aj,a;) with weight wé, objects O; = {02,03}
and properties P, = {pa,po}.

Algorithm 1 Task graph learning algorithm.
1: Input: {ai,...,a,}
2: Output: G(V,E,P,)
3: for i< 2,ndo
4: if a; ¢ G then G.append(a;)

5: Pi=1 « get_properties_from_sensors(a;_1)

6: P get _properties_from_sensors(a;)

7: O, < get _ob jects_from_sensors

8: for j< 1,m do > m=sizeof(P')
9: if pi- ¢ P, then > pj» € P! is a property of g
10: Pg.append(p';)

11: for j«+ 1,k do > k=sizeof(FP,)

12: if p;*] #* pj then

13: P,.append(pjfl,p;)

14: for j < 1,k do

15: if subclass(pj., UserDe finedProperty) then

16: p’j « Var

17: if (ai_1,a;) ¢ E then > E are edges of current G
18: Wﬁil +—1

19: E.append((a,',l7ai),w;*1,F},0,)

20: else > update edges
21: wih w41

22: P! + current edge properties

23: O, + current edge objects

24: for j < 1,k do

25: if p; ¢ P/ then

26: Pl'.append(p;)

27: for j« 1,/ do

28 if 0 # o then 0'; <~ common_class(0;,0;)

C. Task graph learning

Using activities and properties detected from the robot
sensory data (Fig. 2) the framework records the activity
sequence {aj,...,a,} corresponding to the demonstrated
task. Next, this sequence is used as an input for Al-
gorithm 1. For example, in order to generate the graph
shown in Fig. 3a we use two sequences of activities
{a1,a2,a3,as,a1} {asz,as,a;}. The algorithm first initialise
the graph G(V,E,P,) as an empty graph and selects the first
pair (aj,a;) from the input sequence. Then, the algorithm
generates two vertices aj,a; in the graph, detects properties
(P',P?), and the objects O, involved in the transition (aj,a>)
are obtained from the property detector module (Fig. 2).
Next, the algorithm detects that the only properties which
are changing during the transition are {p4,p9}. After that,
the algorithm detects that the transition (aj,a;) does not
exist in the set of graph edges and adds it to E using the
following format: {p4, p9,02,03,wé}, where w% is set to 1
(first transition). Next, the algorithm select a new pair from
the input set of activities and repeats the process until the
graph shown in Fig. 3a is obtained.

Additionally, the algorithm checks using the ontology
whether an activity property belongs to the class of UserDe-
finedProperty and replaces its value with a variable (see
Algorithm 1 line 20) in order to indicate that during task
inference the user has to specify the value of this property.
For example, activities {aj,as,as,as,as} from the Fig. 3a
are replaced by the actual detected activities (see Fig. 3c).
Additionally, p4 is a HasDestination property which defines
the destination of the PutSomethingSomewhere activity. The
current value of p4 is the Box. Using our ontology the
framework will infer (Fig. 3b) that HasDestination is a
subclass of UserDefinedProperty and replace its value Box
with the variable. When the system infers the generic task
structure (e.g. pick and place) the value of this variable
should be defined by the user (for example, the user can
select value Trash in order to generate a specific task pick
Fruit and place in Trash).

D. Task inference

In the previous section, we described how to extract
knowledge about different tasks. In order to reuse this
knowledge to accelerate the learning process, the human

requests the framework about the structure of the task he
wants to teach the robot. The framework will infer the most
similar structure of the requested task and output it to the
human using a GUI (Fig. 2).

To infer a task T represented as a directed subgraph of
G, the demonstrator has to formulate a request using the
GUI (Fig. 2). This request is defined as a pair (akey, dsrop)s
where ay,, indicates the key activity of the desired task,
and ay,p defines the final state of the task. The framework
uses Algorithm 2 to find the most similar structure of the
requested task.

Algorithm 2 Task inference algorithm.
Input: {agey,asop}
Output: T
init(T)
P, < get_current_properties_from_sensors
Agtar < get_activity_from_properties(Py)
if asqr ¢ V then

return 7

Qyey <— arg max Sim(a, ayey)
acV .
Agrop — arg max Sim(a, agop)

> inferred task

acV
G,‘(’;;’ " < find_shortest_path_with_max_weight (Qgqr: , gey)

fo,’,’,, < find_shortest_path_with_max_weight (akey, asiop)
T+ Gl UGy,

For example, the demonstrator wants to infer the cleaning
task, in which a robot should wipe a plate, using the learned
graph shown in Fig. 3c. The demonstrator selects Wipe as a
key activity of the task and Release as a final state, and the
framework (Fig. 2) executes Algorithm 2 to infer the desired
task. The algorithm uses sensory data to infer the current
values from the task graph properties P,, identify the activity
corresponding to these properties and mark it as starting
activity daggy. In our example, Take is the starting activity.
Next, the algorithm finds in the task graph the semantically
closest activities for ai., and ay,p using Wu and Plamer
concept similarity measure [20]. We define a;; as a common
activity class in the ontology for activities a; and a; and
evaluate the similarity measure as follows:

2 xDij(aij)
Di(a;)+Dj(aj) +2 x Djj(aij)

Sim(a;,a;) = (1)
where D;(a;) is a distance from a; to a;; (which is a number
of nodes on the path in the ontology tree), D;(a;) is a
distance from a; to a;; and D;j(a;;) is a distance from the
a;j to the root class.

For example, we evaluate Wipe against the activities Sweep
and Unwrap from the graph in Fig. 3c. Using the ontology
shown in Fig. 3b the algorithm identifies that Clean is a
common class for Wipe and Sweep, and RemoveSomething
is a common class for Wipe and Unwrap. Next, the algorithm
evaluates similarity measures using Eq. (1):

Sim(Sweep,Wipe) = 0.67

Sim(Unwrap,Wipe) = 0.4

The algorithm repeats the process for the remaining activities
in the graph and detects that the most similar activity for
Wipe is the activity Sweep with a similarity measure of 0.67
and the most similar activity for Take is Take with a similarity
measure of 1. Those activities will be selected as a new pair
(akeya Astop)-

Next, the algorithm finds the shortest path from agg; to
arey and from age, t0 agp using Dijkstra algorithm [21].
After that, the system uses the maximum weight to select the
best path. Then, the algorithm saves the obtained subgraphs
as Gl = {a1,a2} and G]S‘fgp = {ay,a3,as} respectively.
Next, the algorithm merges the obtained subgraphs using the
key activity aj., as a link in order to obtain the requested
task T = {a1,a;,a3,as}.

IV. RESULTS

In order to test the generalization of our method, we first
trained our framework described in Section III using human
demonstrations from a sandwich making scenario. Then, we
applied the obtained graph to a different problem, where we
were teaching a mobile robot an orange sorting scenario.
The results will demonstrate that our method can extract the
abstract structures of the tasks for the trained domain, and
then successfully reuse them to accelerate the teaching of
new tasks in a different domain.

A. Task graph learning

In order to show the advantages of having symbolic
representation, we use the proposed framework to learn the
task graph (Fig. 2) from the image domain and then applied
it to the real robot. For training, we select sandwich making
datasets ® which contain 10335 image recordings obtained
from 5 cameras synchronised at 60Hz. We select 3 random
participants, where each participant has 3 trials, which results
in total 9 training datasets [22]. We manually label the data
and identify 14 different activities (e.g. Reach, Take, Unwrap,
etc.). To obtain the task graph we use the Algorithm 1
described in Section III-B and the resulting graph is shown
following the video example: http://www.youtube.
com/watch?v=g0P6annwiTg.

B. Experimental Setup

Next, we validate our obtained task graph on the different
scenario of orange sorting. The experimental setup is shown
in Fig. 4. We use a robotic platform called Tactile Omni-
directional Mobile Manipulator (TOMM) which consists of
two industrial robot arms (UR-5) covered with artificial skin
[23], two Lacquey grippers also covered with our artificial
skin and one Asus Xtion Pro, which is a color image and
depth sensor. We implemented the framework described in
Section IIT (Fig. 2) using ROS* middleware and a visual
attention system [24].

3http://www.ics.ei.tum.de/ics-data-sets/cooking-data-set/
“http://www.ros.org/

Fig. 4: Experimental setup for orange scenario teaching.

C. Testing scenarios

In order to demonstrate that our method can successfully
accelerate the task learning process, we select two different
scenarios. In the first one, we evaluate the teaching accel-
eration when the structures of the learned tasks are known
to the framework. In the second scenario, we evaluate how
our framework can improve the teaching of unknown tasks
using similarity of task structures.

We select the orange sorting as a first scenario, which
was originally implemented in [25]. In this scenario, the
demonstrator shows the robot how to identify good oranges
(the one with rigid texture) and bad oranges (the one with soft
texture). Then, the demonstrator shows that good oranges
should be put into the box and bad oranges should be
thrown into the trash. The following tasks are defined by
the demonstrator:

1) Put orange into the squeezing area (the special area on

the table to check the orange quality).

2) Put good orange into the box.

3) Put bad orange into the trash.

4) Identify good orange.

5) Identify bad orange.

However, the tasks 1-3 are just variants of the pick and place
task with different destinations and tasks 4-5 are different
by a parameter which identifies good/bad orange. Instead of
conducting redundant demonstrations the robot can utilise its
knowledge to infer the known structure of the desired tasks.

Found Task consisting of following activities:
PutSomethingSomewhere Key Activity] idle
Reach

Release Stop Take
PutSomethingSomewhere
Release

Find Task Demonstrate New Task

select task replace activity

(@) (b)
Fig. 5: GUI for robot task teaching.

Moreover, the demonstrator can interact with the robot
through a GUI (see Fig. 5a). In order to request the knowl-
edge about the pick and place task structure, the demon-
strator selects PutSomethingSomewhere as a key activity and
Release as a final state (see Section III-C). The framework
will infer the task structure shown in Fig. 5b. Then, the
user selects the obtained task structure, and the framework
notifies him that he has to specify the desired destination
of PutSomethingSomewhere activity. The framework assists

humans by providing a list of possible destinations (Box,
Trash and Squeeze Area) for the PutSomethingSomewhere
activity using the data from the visual sensors. The human
can select a destination from the list suggested by the
framework, or use the kinesthetic teaching to demonstrate
it. Similar to this, the human teaches the robot tasks 2 and
3.

The task 4 is unknown to the system, and the human
has to use kinesthetic teaching to demonstrate this task. The
framework will insert a new branch in the task graph, which
represents the structure of task 4. Then the demonstrator can
reuse the obtained knowledge to teach task 5, where he need
to demonstrate only values of a bad orange.

We define the cleaning task as a second scenario, to
evaluate the robustness of our system against tasks with the
similar structure. In this scenario, the demonstrator teaches
the robot to clean a plate with a sponge. The demonstration
consist of the following steps: reach a sponge; take the
sponge; move the sponge above the plate; wipe the plate
with the sponge; move the sponge to the original location;
release the sponge.

The demonstrator generates a request to the knowledge
base using Wipe as a key activity. The task graph does not
contain any information about tasks involving this activity,
however, it will find a similar task of unwrapping cheese
with similarity measure 0.35. The retrieved sequence of
steps is: reach the wrapped cheese; take the wrapped cheese;
move the wrapped cheese to the cutting board; unwrap the
cheese; move the wrap to the trash, release the wrap. If the
demonstrator wants to reuse this structure, he selects UnWrap
activity in the GUI and selects “replace” button (Fig. 5b).
Then, through the GUI and kinesthetic teaching, the human
demonstrates the new activity Wipe to the framework, which
will use it to modify the task structure shown Fig. 5b and
update the existing task graph.

In order to evaluate our framework, we measure the
time required to teach each scenario using our method and
compare the results with the time required to teach the
same scenarios using only kinesthetic demonstrations. We
conducted 5 experimental trials, and the results are shown
in Fig. 6a. The blue bar indicates time measurements for
the whole task demonstration, the green bar shows time
measurements for our framework, where kinesthetic teaching
was used to demonstrate the missing information, and the
yellow bar indicates time measurements when the data from
the visual sensors was used to specify locations of pick and
place tasks.

The second scenario was evaluated similarly to the pre-
vious one. We measured the time required to teach the
entire cleaning task using the whole task demonstration
and compared it with our system, where the similarity
between structures of different tasks was used to accelerate
the teaching process. The results are shown in Fig. 6a.
The advantage of our method compared to manual task
specification [26] is that the user is required to demonstrate
only missing information, instead of generating a complete
description every time he teaches a new task. The time

H
o
S

70

Il Framework using visual assistance
[Framework using kinesthetic teaching

H
B
S

[l Whole task demonstration
[Framework using kinesthetic teaching
= 50

Framework using visual assistance

| Bas -

H
N
S

w

S

H
°
S

IS

S

w
=)

Time (seconds)
o o
& 3

Time reduction %
N
S

IS
S

N

5]
i
15}

o

Sorting Cleaning Sorting Cleaning

Scenarios Scenarios
(a) (b)

Fig. 6: Experiment results: (a) is time measurements for task
teaching using the whole demonstration and our framework,
(b) is time reduction for task teaching provided by our
framework compared to the whole demonstration.

reduction provided by our method compared to the whole
task demonstration is shown in Fig. 6b. Our framework
allows to reduce the time required for teaching the orange
sorting scenario from 136.3 to 53 seconds (61.12%) and time
required for teaching the cleaning scenario from 48.7 to 21
seconds (56.87%).

V. CONCLUSIONS

In this work we introduce a technique which allows to
extract key structures of different tasks from human demon-
strations and reuse the obtained knowledge and past expe-
rience to accelerate the teaching process. First, we generate
the task knowledge from a dataset of the sandwich making
scenario. Then, we validate the obtained task graph in our
robot TOMM by teaching it two different scenarios of orange
sorting and plate cleaning. The results show that by reusing
the learned task structure, our framework can accelerate the
teaching process time from 136.3 to 53 seconds (61.12%)
for sorting oranges scenario and from 48.7 to 21 seconds
(56.87%) for cleaning scenario. Additionally, our framework
was trained in one domain (cooking scenario) and then
reused the obtained knowledge in different domains (sorting
and cleaning).

Our future work will evaluate the framework robustness
towards complex tasks demonstrated by multiple non-expert
users. Additionally, we will explore in more detail the
similarity between different task structures to find suitable
methods for autonomous extraction of new properties and
activities.

REFERENCES

[1] M. Stenmark, J. Malec, and A. Stolt, “From high-level task descrip-
tions to executable robot code,” in Intelligent Systems’ 2014. Springer,
2015, pp. 189-202.

M. Hanheide, M. Gobelbecker, G. S. Horn, A. Pronobis, K. Sjo0,
A. Aydemir, P. Jensfelt, C. Gretton, R. Dearden, M. Janicek et al.,
“Robot task planning and explanation in open and uncertain worlds,”
Artificial Intelligence, 2015.

0. Kroemer, C. Daniel, G. Neumann, H. Van Hoof, and J. Peters,
“Towards learning hierarchical skills for multi-phase manipulation
tasks,” in 2015 IEEE ICRA. 1EEE, 2015, pp. 1503-1510.

B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous
systems, vol. 57, no. 5, pp. 469483, 2009.

[2]

[5]

[6]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

S. H. Lee, 1. H. Suh, S. Calinon, and R. Johansson, “Autonomous
framework for segmenting robot trajectories of manipulation task,”
Autonomous Robots, vol. 38, no. 2, pp. 107-141, 2015.

A. M. Ghalamzan, C. Paxton, G. D. Hager, and L. Bascetta, “An
incremental approach to learning generalizable robot tasks from human
demonstration,” in 2015 IEEE ICRA, May 2015, pp. 5616-5621.

A. Murali, S. Sen, B. Kehoe, A. Garg, S. McFarland, S. Patil, W. D.
Boyd, S. Lim, P. Abbeel, and K. Goldberg, “Learning by observation
for surgical subtasks: Multilateral cutting of 3d viscoelastic and 2d
orthotropic tissue phantoms,” in 2015 IEEE ICRA, May 2015, pp.
1202-1209.

S. Niekum, S. Osentoski, G. Konidaris, S. Chitta, B. Marthi, and
A. G. Barto, “Learning grounded finite-state representations from
unstructured demonstrations,” The International Journal of Robotics
Research, vol. 34, no. 2, pp. 131-157, 2015.

F. Worgotter, C. Geib, M. Tamosiunaite, E. E. Aksoy, J. Piater,
H. Xiong, A. Ude, B. Nemec, D. Kraft, N. Kriiger et al., “Struc-
tural bootstrappinga novel, generative mechanism for faster and more
efficient acquisition of action-knowledge,” IEEE Transactions on Au-
tonomous Mental Development, vol. 7, no. 2, pp. 140-154, 2015.

A. Tate, “Generating project networks,” in Proceedings of the 5Sth
international joint conference on Artificial intelligence-Volume 2.
Morgan Kaufmann Publishers Inc., 1977, pp. 888-893.

N. Nejati, P. Langley, and T. Konik, “Learning hierarchical task
networks by observation,” in The 23rd ICML. ACM, 2006, pp. 665—
672.

A. Mohseni-Kabir, C. Rich, S. Chernova, C. L. Sidner, and D. Miller,
“Interactive hierarchical task learning from a single demonstration,”
in The Tenth ACM/IEEE HRI. ACM, 2015, pp. 205-212.

B. Hayes and B. Scassellati, “Autonomously constructing hierarchical
task networks for planning and human-robot collaboration,” in 2016
IEEE ICRA. 1IEEE, 2016, pp. 5469-5476.

G. Gemignani, E. Bastianelli, and D. Nardi, “Teaching robots
parametrized executable plans through spoken interaction,” in Pro-
ceedings of the 2015 International Conference on Autonomous Agents
and Multiagent Systems. IFAAMAS, 2015, pp. 851-859.

C. Mericli, S. D. Klee, J. Paparian, and M. Veloso, “An interactive
approach for situated task specification through verbal instructions,”
in Proceedings of the 2014 international conference on Autonomous
agents and multi-agent systems. IFAAMAS, 2014, pp. 1069-1076.
G. Gemignani, S. D. Klee, M. Veloso, and D. Nardi, “On task recog-
nition and generalization in long-term robot teaching,” in Proceedings
of the 2015 International Conference on Autonomous Agents and
Multiagent Systems. IFAAMAS, 2015, pp. 1879-1880.

K. Ramirez-Amaro, M. Beetz, and G. Cheng, “Transferring skills to
humanoid robots by extracting semantic representations from obser-
vations of human activities,” Artificial Intelligence, 2015.

M. Dean, G. Schreiber, S. Bechhofer, F. van Harmelen, J. Hendler,
1. Horrocks, D. L. McGuinness, P. F. Patel-Schneider, and L. A.
Stein, “Owl web ontology language reference,” W3C Recommendation
February, vol. 10, 2004.

M. Tenorth and M. Beetz, “Knowrob: A knowledge processing infras-
tructure for cognition-enabled robots,” The International Journal of
Robotics Research, vol. 32, no. 5, pp. 566-590, 2013.

Z. Wu and M. Palmer, “Verbs semantics and lexical selection,” in Pro-
ceedings of the 32nd annual meeting on Association for Computational
Linguistics, 1994, pp. 133-138.

E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269-271, 1959.

K. Ramirez-Amaro, M. Beetz, and G. Cheng, “Understanding the
intention of human activities through semantic perception: observa-
tion, understanding and execution on a humanoid robot,” Advanced
Robotics, vol. 29, no. 5, pp. 345-362, 2015.

P. Mittendorfer and G. Cheng, “Humanoid multimodal tactile-sensing
modules,” IEEE Transactions on robotics, vol. 27, no. 3, pp. 401-410,
2011.

P. Lanillos, J. F. Ferreira, and J. Dias, “Designing an artificial attention
system for social robots,” in 2015 IEEE/RSJ IROS. IEEE, 2015, pp.
4171-4178.

E. Dean, K. Ramirez-Amaro, F. Bergner, 1. Dianov, P. Lanillos, and
G. Cheng, “Robotic technologies for fast deployment of industrial
robot systems,” in 42nd IEEE IECON. IEEE, October 2016.

K. R. Guerin, C. Lea, C. Paxton, and G. D. Hager, “A framework for
end-user instruction of a robot assistant for manufacturing,” in 2015
IEEE ICRA. IEEE, 2015, pp. 6167-6174.

