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Abstract

This thesis contributes to the design and optimization of quantum memories, which are crucial
components of many quantum information processing tasks.

In the first part of the thesis, we introduce a generalization of the Pauli stabilizer formalism
(PSF). The PSF is the main tool for constructing quantum error correction codes as well as many
other applications. We show that our generalized formalism includes genuinely different codes
compared to the PSF while maintaining the tractability, i.e. many properties of the codes can be
computed efficiently.

In the second part, we investigate the feasibility of preparing ground states of topological Hamil-
tonians through adiabatic evolutions, which can be considered as a way to initialize topological
quantum memories. Compared to other preparation methods, it requires less control on the mi-
croscopic level, and it is more robust against possible perturbations in the Hamiltonians. Through
a numerical study of systems with a small number of sites, we show that adiabatic evolutions
generally lead to ground states of several different topological models. We also observe that the
prepared states display a certain stability with respect to the change of initial Hamiltonians, which
is then partially explained with the use of perturbation theory.

In the last part, we show that it is possible to use machine learning to optimize dynamical
decoupling sequences for quantum memories. More concretely, we use recurrent neural networks
to model the structure of “good” sequences and then generate possibly better sequences using the
learned structure. By iterating this routine, we are eventually able to find sequences with better
or similar performance compared to those constructed by humans.
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Zusammenfassung

Diese Doktorarbeit leistet einen Beitrag zum Design und zur Optimierung von Quantenspeichern.
Diese sind zentrale Bestandteile vieler Anwendungen in der Quanteninformationstheorie.

Im ersten Teil der Arbeit präsentieren wir eine Verallgemeinerung des Pauli-Stabilisator-Formalismus
(PSF). Mit Hilfe des PSF können unter anderem Quantenfehlerkorrekturcodes konstruiert werden.
Wir zeigen dass unser verallgemeinerter Formalismus grundsätzlich andere Codes im Vergleich
zum PSF hervorbringt und gleichzeitig die Handhabbarkeit aufrecht erhalten wird, d.h. dass viele
Codes effizient berechnet werden können.

Im zweiten Teil untersuchen wir inwiefern es möglich ist Grundzustnde von topologischen
Hamiltonians durch adiabatische Entwicklung zu generieren. Dies kann als Methode zur Initial-
isierung von topologischen Quantenspeichern gesehen werden. Im Vergleich zu anderen Herange-
hensweisen bentigt dies weniger Kontrolle auf dem mikroskopischen Level und ist stabiler im Hin-
blick auf Pertubationen im Hamiltonian. Durch eine numerische Analyse von kleinen Systemen
zeigen wir, dass die adiabatische Entwicklung generell zu Grundzuständen unterschiedlicher topol-
ogischer Modelle führt. Wir beobachten auch, dass die geniererten Zustände eine gewisse Stabilität
im Hinblick auf Änderungen in den Ausgangshamiltonians aufzeigen. Dies beschreiben wir auch
mit Hilfe der Perturbationstheorie.

Im letzten Teil zeigen wir, dass es möglich ist maschinelles Lernen zu nutzen um dynamische
Sequenzen zur Entkoppelung von Quantenspeichern zu optimieren. Genauer gesagt werden peri-
odische neuronale Netze verwendet um die Struktur von guten Sequenzen zu modellieren und um
dann mglicherweise bessere Sequenzen durch die erlernte Struktur zu generieren. Durch Wieder-
holung dieser Routine, findet man schlielich Sequenzen mit besserer oder ähnlicher Leistung wie
solche, die durch Menschen entwickelt wurden.
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Chapter 1

Introduction

Computation and communication devices exist almost as long as human civilizations: they range
from abaci and beacons in the early day to electronic computers and optical fibers in the modern
society. While the media and underlying mechanics have changed a lot, they all process and trans-
mit classical information. This profound observation eventually led to the formulation of classical
computation and communication theory, in particular by Turing [Tur36] and Shannon [Sha48].
One interesting consequence is that, for decades, it was believed that whether a computational
problem can be solved efficiently or not is independent of the underlying computational models
and physical systems (see chapter 4 of [Aar13]).

During the last few decades, it was realized that quantum mechanics could be helpful in many
information processing tasks. Notable examples include Shor’s factoring algorithm [Sho99] and
quantum key distribution [BB84] in the early phase, as well as quantum metrology [GLM06] and
quantum machine learning [LMR13] later. For the first time, researchers broke the above paradigm
by realizing that information can be quantum in a useful way. Besides being a new theory, quantum
information also started to change the way how scientists understand problems in various fields of
physics such as condensed matter and black holes (e.g. [KP06, ADH15]). While the use of quantum
phenomena promises advantages in several areas, an often necessary condition is the ability to keep
the quantum states coherent. For instance, it has been shown in [DiV95, EdMFD11, AGJO+15]
that the existence of noise can nullify the quantum advantages. The need of fault-tolerance is even
more apparent for quantum computing, as a quantum algorithm may require accurate execution
of hundreds of unitary gates.

A quantum memory is designed to achieve the simplest task of fault-tolerance: output the
same state as the initial input state after a delay. While it is easy to store classical information
for centuries, we are still unable to store an unknown qubit (i.e. a 2-dimensional quantum state)
for hours. This is the case partially because it is hard to find a quantum system which can be
controlled but at the same time sufficiently isolated from the environment in order to suppress
decoherence. A storage cycle of a quantum memory usually consists of a subset of three steps:
encoding, maintenance and decoding.

• Encoding: It is natural that the input states are transformed so that they fit better to
the structure of the quantum memory, e.g. when the memory has a decoherence-free sub-
space [LW03]. The encoding step is necessary when using quantum error correction codes
(QECC) [NC00], as the main idea is to encode input states into a larger Hilbert space so
that a small number of errors cannot map one encoded state to another (which is the same
for classical error correction codes). However, encoding is not required for techniques like
dynamical decoupling [VKL99].

• Maintenance: After a possible encoding step, it is often necessary that one maintains an
active control of the system over the storage time. As the majority time of a storage cycle
is the in maintenance phase, it is a deciding factor for the success of a quantum memory. In
the case of QECC, the goal of the maintenance is to prevent errors from accumulating, since
the QECC is only able to correct a limited number of errors. This can be achieved once the
error rate of quantum gates (i.e. unitary operations) is below a certain threshold, which is

13
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still beyond today’s experimental capacities. As a result, there is significant motivation to
search for quantum memories that do not require an active maintenance phase.

• Decoding: Reversing the encoding step so that the output states can be the same as the
inputs.

Currently, using QECC is the most popular way of achieving fault-tolerance. It is done by
encoding a Hilbert space into a subspace of a higher dimensional one. The subspace is chosen in a
way such that if only a few defects happen among the components of the system (e.g. individual
spins of a spin system), then the defects can be detected and corrected. To achieve this task,
one needs a way to specify these subspaces which consist of highly entangled quantum states,
and to study their properties. This is not easy since a general N -particle quantum state requires
exponentially many coefficients for its description.

The Pauli stabilizer formalism (PSF) [Got97] has become the main tool to describe QECC for
2-level systems, since it efficiently deals with the difficulties mentioned above. In more detail, a
subspace is specified as the common eigenspace of a set of commuting operators, where each oper-
ator is a tensor product of Pauli matrices. The properties of such subspaces are well-understood,
in the sense that there are efficient algorithms to compute their dimension, to construct logical
operators supported on them and the quantum circuits for encoding/decoding, to compute entan-
glement properties, etc. In addition, the PSF is also used to build toy models for topologically
ordered systems [Kit03] (and to some degree the AdS/CFT correspondence [PYHP15]), and is
used as the main tool for measurement-based quantum computation [RBB03]. The wide use of
the PSF is mainly due to the fact that it is one of the few versatile Hamiltonian classes (if not
the only) that one can work with pen and paper, rather than relying on numerical tools. From a
physical point of view, it might be argued that the simplicity of the PSF trivially comes from the
commutativity of the individual terms in the Hamiltonians. However, it is known that computing
the ground space of a commuting Hamiltonian is hard [BV05]. Thus, the details in the algebraic
structure of the PSF are important, and it is not straightforward to enlarge the PSF class without
ruining its features.

In the first part of this thesis, we will introduce a generalization of the PSF, while keeping
most of the nice properties mentioned above. We still describe subspaces by tensor products of
matrices, but the matrices are chosen from a larger group that contains the Pauli group. We show
that, under moderate conditions, the tasks mentioned above (constructing a basis for the subspace,
etc) can again be solved efficiently. An interesting aspect of our generalization is the connection
to topological order. It is known that the PSF can only describe the toric code in 2D [BDCP12],
while we show that our formalism includes more models. Thus, it is interesting to analyze how the
slight generalization leads to this change and to use it to construct new models.

Another approach to protect quantum information and doing quantum computation is by uti-
lizing physical systems with topological order [Kit03]. The main idea is that for each low energy
level in these systems, there is a degenerate subspace, where the splitting between them is expo-
nentially small with respect to the system size. Thus, if one suppresses the system-environment
interaction and keeps the quantum states in one of the degenerate subspaces, the quantum informa-
tion can be stored safely, despite possible perturbations in the Hamiltonians. Compared to using
QECC and doing active error correction, this approach aims at very different types of physical
systems. For example, it is reasonable to assume that we will be able to build certain 2D mate-
rials that have anyonic excitations and control them1, while we will not be able to control these
systems on an atomic/molecular level for active QECC. It is then natural to use the topological
approach. While it is very demanding to prevent thermal noise (couplings to the environment)
from corrupting quantum information stored in the topological memory only by increasing the
system size, it is possible that with certain well engineered materials the storage time can be long
enough for all practical purposes. Moreover, it is still an open question whether there is a 3D
topological Hamiltonian which, in the presence of thermal noise, allows a storage time longer than
the logarithm of the system size. Thus, in principle there could exist some materials which protect

1It is widely believed the fractional quantum Hall effect experiments have non-abelian anyonic excitations.
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quantum information on a hardware level and save us from the stringent requirement of active
QECC. However, a necessary step for topological quantum memories and computers is initializing
the system in the ground space (or a subspace corresponding to a certain chosen low energy level).
Several approaches have been studied [DKLP02, DKP14, BBK+13, LMGH15]. Nevertheless, as
we mentioned earlier, the topological approach is mostly suitable for physical systems where we
do not have access to the individual degrees of freedoms or do not have the ability to control the
Hamiltonian precisely. Thus, it is desirable to have a preparation procedure that satisfies these
requirements.

The second part of this thesis is about adiabatic preparation of topological states. More con-
cretely, we start with a product state and the corresponding Hamiltonian, and linearly interpolate
towards the final topological Hamiltonian. This approach was first studied in [HL08] for preparing
toric code ground states. Besides satisfying the requirements mentioned in the previous paragraph
(no need to control the system at a microscopic level), the adiabatic preparation also has the ad-
vantage of being robust to the perturbation of the Hamiltonian during the interpolation. The only
requirement is that the temperature stays low compared to the energy gap, and the total evolution
time is short enough so that the system does not thermalize. In particular, it likely allows one
to prepare states inside the ground space of the final perturbed Hamiltonian, which is crucial for
enabling the topological protection, because the ground space is not robust against perturbations.
On the other hand, although this process seems to be straightforward, several questions still need
to be understood. The first one is that since there is a phase transition between the initial and
final Hamiltonian in the thermodynamic limit, the energy gap above the ground state will close
at the critical point. Thus, the adiabatic theorem cannot be directly applied, and it is unclear
how in general this process could succeed. Another question is what kind of final states will be
prepared by this process. While this is not a question particularly interesting in physics, it matters
a lot for quantum information processing. For example, it is known that the ability to prepare
certain “magic states” would drastically lower the requirement for fault-tolerant quantum compu-
tation [BK05]. In our work, we attempt to address these two questions for systems with small size,
with both numerical simulation and theoretical analysis. We find that the final ground space can
be reached for most initial Hamiltonians, and interestingly the prepared final states concentrate
around a discrete set of states. A perturbation argument is given to explain the mechanism of this
phenomenon.

While it seems that there is agreement on several high level architectures of achieving fault-
tolerance, we still need to apply them to concrete experimental setups. This task can be de-
manding, since there are many parameters to be fine tuned. It is natural to automatize this task
for which many different algorithms have already been invented. However, often the optimiza-
tion has the form of a local search, e.g. gradient descent [MSG+11] or the Nelder-Mead simplex
method [KBC+14]. While local searches are very effective for suitable tasks, it is desirable to
understand the structure of good control parameters and use the learned structure to suggest new
parameters. As we want to automatically solve harder and harder problems, the algorithms need
to exploit the structures that underly these problems. For example, it is extremely hard to believe
that for the factoring problem Shor’s algorithm can be found through a local search. Rather, the
search procedure has to utilize existing knowledge in an organic way. While achieving this kind of
“human” search procedure is still infeasible to date, it does not stop us to find problems with suit-
able complexity and apply algorithms which exploit their structures. This direction is particularly
interesting, since the recent development in machine learning makes it easier to find structure in a
dataset with readily available software.

In the third part of this thesis, we will apply the approach of machine learning to find
good dynamical decoupling (DD) sequences. DD is a relatively mature technique to suppress
errors in a quantum system. Compared to QECC, it has the advantage of being an open-loop
control protocol and does not bring overheads (i.e. every physical qubit is a logical one). As a
result, DD has been demonstrated in several experiments where it increased the coherence time
by orders of magnitude [BUV+09, dLWR+10, SAS11]. While existing DD sequences already show
good performance, it is still important to optimize them, especially if we want to perform the
optimization directly for some specific experimental setups. Another reason we choose to apply
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machine learning to the DD problem is because the structure of DD sequences naturally fits to
some well studied models. In particular, we will use the recurrent neural network for our task,
which is widely used in modeling natural language, handwriting, etc. It is conceivable that the
connection we introduce will bring progress from the field of machine learning to optimal quantum
control.

To sum up, in this thesis, we studied multiple aspects of quantum memory, including a formal-
ism that describes quantum error correction codes, a procedure of initializing topological quantum
memory, and machine learning methods for optimizing the performance.



Chapter 2

A non-commuting stabilizer
formalism

This chapter is based on [NBVdN15].
In this chapter, we propose a generalization of the Pauli stabilizer formalism (PSF)

while keeping its tractability. More concretely, we consider a set of operators which
are tensor products of single-qubit (2-dimensional) matrices, and use them to describe
a subspace that is the common eigenspace of them. The single-qubit matrices belong
to an extension of the Pauli group. We show that under certain mild conditions, we
can efficiently construct a basis for such subspaces and can compute entanglement
properties of the states in that basis. Moreover, we demonstrate that the generalized
formalism is able to describe a larger number of topological models then the PSF,
thus establishing a meaningful distinction between the generalized and the original
formalism.

2.1 Introduction

In this chapter, we will focus on the description of quantum error correcting codes. As mentioned
earlier, often the preliminary of doing quantum error correction is describing the code subspaces.
This is an non-trivial task because a general quantum state of N particles requires exponentially
many parameters to describe. One valid strategy to deal with this problem is to study subclasses
of states that may be described with considerably less parameters, while maintaining a sufficiently
rich structure to allow for nontrivial phenomena. The Pauli stabilizer formalism (PSF) is one such
class and it is a widely used tool throughout the development of quantum information [Got97],
in particular for constructing quantum error correcting codes. In the PSF, a quantum state or
subspace is described in terms of a group of operators that leave the state invariant. Such groups
consist of Pauli operators and are called Pauli stabilizer groups. An n-qubit Pauli operator is
a tensor product g = g(1) ⊗ · · · ⊗ g(n) where each g(i) belongs to the single-qubit Pauli group,
i.e. the group generated by the Pauli matrices X and Z and the diagonal matrix iI. Since every
stabilizer group is fully determined by a small set of generators, the PSF offers an efficient means
to describe a subclass of quantum states and gain insight into their properties. States of interest
include the cluster states [RBB03], GHZ states [GHSZ90] and the toric code [Kit03]; these are
entangled states which appear in the contexts of e.g. measurement based quantum computation
[RBB03] and topological phases. As an illustration, the 3-qubit GHZ state |ψ〉 = |000〉+ |111〉 is
the unique common eigenstate (up to some constants) of

A = {X1 ⊗X2 ⊗X3, Z1 ⊗ Z2, Z2 ⊗ Z3}

with eigenvalue 1, where Xi(Zi) are the corresponding Pauli matrices on the qubit i. Thus, we
say |ψ〉 is a Pauli-stabilizer state which is stabilized by the set A. If we remove the operator
X1 ⊗X2 ⊗X3 from A, the result

A′ = {Z1 ⊗ Z2, Z2 ⊗ Z3}

17
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will stabilize the subspace spanned by {|000〉, |111〉}. It then serves as a very basic error correcting
code that can correct a single X error on one of the three qubits. For example, if an X error
happened on the first qubit, it will cause the eigenvalue of Z1⊗Z2 to flip while leave the eigenvalue
of Z2 ⊗Z3 to stay unchanged. From these information, we can deduce the position of the X error
and apply the correction accordingly. With the quantum error-correction condition [KL97] and
more sophisticated codes, we know that the errors from typical error models can be corrected when
the error rate is low enough.

Considering the importance of the PSF in quantum error correction as well as in other branches
of quantum information theory, it is natural to ask whether we can extend this framework and
describe a larger class of states, while keeping as much as possible both a transparent mathematical
description and computational efficiency. In this chapter, we provide a generalization of the PSF.
In our setting, we allow for stabilizer operators which are tensor product operators g(1)⊗· · ·⊗ g(n)

where each g(i) belongs to the group generated by the matrices X, S :=
√
Z and

√
iI. Our setting

contains the PSF because S2 = Z. Similar to the PSF, we consider states that are invariant under
the action of such generalized stabilizer operators. The resulting stabilizer formalism is called
here the XS-stabilizer formalism. It is a subclass of the monomial stabilizer formalism introduced
recently in [VdN11]. Interestingly, the XS-stabilizer formalism allows for non-Abelian stabilizer
groups, whereas it is well known that stabilizer groups in the PSF must be Abelian.

Even though the definition of the XS-stabilizer formalism is close to that of the original PSF,
these frameworks differ in several ways. In particular, the XS-stabilizer formalism is considerably
richer than the PSF, and we will encounter several manifestations of this. At the same time,
the XS-stabilizer formalism keeps many favorable features of the PSF. For example, XS-stabilizer
groups have a simple structure and are easy to manipulate, and there exists a close relation between
the stabilizer generators of an XS-stabilizer state/code and the associated Hamiltonian. Moreover,
we will show that (under a mild restriction of the XS-stabilizers) many quantities of interest can be
computed efficiently, such as expectation values of local observables, code degeneracy and logical
operators. However, in most cases we found that efficient algorithms could not be obtained by
straightforwardly extending methods from the PSF, and new techniques needed to be developed.

The purpose of this chapter is to introduce the XS-stabilizer formalism, to provide examples
of XS-stabilizer states and codes that are not covered by the PSF and to initiate a systematic
development of the XS-stabilizer framework. In particular, we discuss several properties related
to the structure of XS-stabilizer states and codes, their entanglement, their efficient generation
by means of quantum circuits and their efficient simulation with classical algorithms. A detailed
statement of our results is given in section 2.3. Here we briefly highlight two aspects.

First, we consider the potential of the XS-stabilizer formalism to describe topological phases (a
more detailed introduction to several topological models can be found in the next chapter). This
is motivated by recent works on classifying quantum phases within the PSF [Yos11, BDCP12]
and finding a self-correcting quantum memory. In particular, Haah constructed a novel Pauli
stabilizer code for a 3D lattice in [Haa11] which does not have string like operators. This is
a necessary condition for self-correcting, and also an evidence that the PSF is an useful tool
for constructing new physical models. In the present chapter we show that the XS-stabilizer
formalism can describe 2D topological phases beyond the PSF and, surprisingly, some of these
harbour non-Abelian anyons. Specific examples of models covered by the XS-stabilizer formalism
are the doubled semion model [LW05] and, more generally, the twisted quantum double models for
the groups Zk2 [HWW13, Bue14].

Second, we study entanglement in the XS-stabilizer formalism. Entanglement has always been
the defining feature of quantum information. It says that the correlation between physical particles
can be more complicated than classical probability distributions (with respect to multiple choices
of measurements). It is then realized that the richer structure would allow certain protocols
to only exist in quantum information, such as quantum cryptography. Entanglement is also a
necessary condition for exponential speed-up of a quantum algorithm, as a quantum computation
with no entanglement can be efficiently simulated on a classical computer. Thus, it is interesting to
understand the nature of entanglement for XS-stabilizer states. We note that various entanglement
properties of Pauli stabilizer states have been studied extensively in the past decade [HEB04,
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FCY+04]. While the bipartite entanglement structure is very well understood, less is known about
the multipartite scenario. For example, recently in Ref. [LMRW13] the entropy inequalities for
Pauli stabilizer states were studied. Here we will show that, for any bipartition, we can always map
any XS-stabilizer state into a Pauli stabilizer state locally, which means their bipartite entanglement
is identical. This implies in particular that all reduced density operators of an XS-stabilizer state
are projectors and each single qubit is either fully entangled with the rest of the system or fully
disentangled from it. In contrast, the XS-stabilizer formalism is genuinely richer than the PSF
when viewed through the lens of multipartite entanglement. For example, we will show that there
exist XS-stabilizer states that cannot be mapped onto any Pauli stabilizer state under local unitary
operations. Thus there seems to be a complex and intriguing relation between the entanglement
properties of Pauli and XS-stabilizer states.

We also mention other works that, similar in spirit to the present chapter, aim at extending
the PSF. These include: Ref. [HCDB07] which introduced the family of weighted graph states
as generalizations of graph and stabilizer states; Ref. [KK09] where the family of locally maxi-
mally entanglable (LME) states were considered (which in turn generalize weighted graph states);
Ref. [RHBM13] where hypergraph states were considered. The XS-stabilizer formalism differs
from the aforementioned state families in that its starting point is the representation of states by
their stabilizer operators. We have not yet investigated the potential interrelations between these
classes, but it would be interesting to understand this in more detail.

Outline of the chapter. In section 2.2 we introduce the basic notions of XS-stabilizer states
and codes, while in section 2.3 we give a summary of the results presented in this chapter. The
following sections are dedicated to developing the technical arguments.

2.2 The XS-stabilizer formalism

In this section we introduce the basic notions of XS-stabilizer states and codes and we provide
several examples.

2.2.1 Definition

First we briefly recall the standard Pauli stabilizer formalism. Let X, Y and Z be the standard
Pauli matrices. The single-qubit Pauli group is 〈iI,X,Z〉. For a system consisting of n qubits we
use Xj , Yj and Zj to represent the Pauli matrices on the j-th qubit. An operator g on n qubits is
a Pauli operator if it has the form g = g(1) ⊗ · · · ⊗ g(n) where each g(i) belongs to the single-qubit
Pauli group. Every n-qubit Pauli operator can be written as

g = isXa1Zb1 ⊗ · · · ⊗XanZbn

where s ∈ {0, . . . , 3}, aj ∈ {0, 1} and bj ∈ {0, 1}. We say an n-qubit quantum state |ψ〉 6= 0 is
stabilized by a set of Pauli operators {gj} if

gj |ψ〉 = |ψ〉 for all j.

The operators gj are called stabilizer operators of |ψ〉.
In this chapter, we generalize the Pauli stabilizer formalism by allowing more general stabilizer

operators. Instead of the single-qubit Pauli group, we start from the larger group PS := 〈αI,X, S〉
where α = eiπ/4 and S = diag(1, i). Note that the latter group, which we call the Pauli-S group,
contains the single-qubit Pauli group since S2 = Z. We then consider stabilizer operators g =
g(1) ⊗ · · · ⊗ g(n) where each g(i) is an element of PS . It is easy to show that every such operator
can be written as

g = αsXa1Sb1 ⊗ · · · ⊗XanSbn =: αsX(~a)S(~b) (2.1)

where s ∈ {0, . . . , 7}, aj ∈ {0, 1} and bj ∈ {0, . . . , 3}. Here we also defined X(~a) := Xa1⊗· · ·⊗Xan

for ~a = (a1, . . . , an) and similarly S(~b) and Z(~c ). These are called X-type, S-type and Z-type
operators respectively.
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Figure 2.1: In the doubled semion model, the qubits are on the edges of a honeycomb lattice. The
ground space of the Hamiltonian can be equivalently described by the two types of XS-stabilizers
in the above figure. The left one is associated to each face of the lattice and the right one is
associated to each vertex.

For a set {g1, . . . , gm} of such operators we consider the group G = 〈g1, . . . , gm〉, and we say
a state |ψ〉 6= 0 is stabilized by G if we have g |ψ〉 = |ψ〉 for every g ∈ G. Whenever such a state
exists we call G an XS-stabilizer group. The space LG of all states stabilized by G is referred to
as the XS-stabilizer code associated with G. A state which is uniquely stabilized by G is called an
XS-stabilizer state.

Thus the XS-stabilizer formalism is a generalization of the Pauli stabilizer formalism. Perhaps
the most striking difference is that XS-stabilizer states/codes may have a non-Abelian XS-stabilizer
group G – while Pauli stabilizer groups must always be Abelian. We will see examples of this in
the next section.

2.2.2 Examples

Here we give several examples of XS-stabilizer states and codes and highlight how their properties
differ from the standard Pauli stabilizer formalism.

A first simple example of an XS-stabilizer state is the 6-qubit state |ψ〉 stabilized by the (non-
commuting) operators

g1 = X ⊗ S3 ⊗ S3 ⊗ S ⊗X ⊗X,
g2 = S3 ⊗X ⊗ S3 ⊗X ⊗ S ⊗X,
g3 = S3 ⊗ S3 ⊗X ⊗X ⊗X ⊗ S.

Explicitly, |ψ〉 is given by

|ψ〉 =
1∑

xj=0

(−1)x1x2x3 |x1, x2, x3, x1 ⊕ x2, x2 ⊕ x3, x3 ⊕ x1〉. (2.2)

It is straightforward to show that |ψ〉 is the unique (up to a global phase) state stabilized by
g1, g2 and g3. Note that in this example 3 stabilizer operators suffice to uniquely determine the
6-qubit state |ψ〉. This is different from the Pauli stabilizer formalism, where 6 stabilizers would be
necessary (being equal to the number of qubits). Notice also that |ψ〉 contains amplitudes of the
form (−1)c(x) where c(x) is a cubic polynomial of the bit string x = (x1, x2, x3). This shows that
|ψ〉 cannot be a Pauli stabilizer state, since the latter cannot have such cubic amplitudes [DDM03].
This example thus shows that the XS-stabilizer formalism covers a strictly larger set of states than
the Pauli stabilizer formalism. What is more, we will show (cf. section 2.10.2) that the state |ψ〉 is
not equivalent to any Pauli stabilizer state even if arbitrary local basis changes are allowed. Thus,
|ψ〉 belongs to a different local unitary equivalence class than any Pauli stabilizer state.

A second example is the doubled semion model which belongs to the family of string-net mod-
els [LW05]. It is defined on a honeycomb lattice with one qubit per edge and has two types of
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Pauli Regular XS General XS

Commuting stabilizer operators yes no no

Commuting parent Hamiltonian yes yes yes

Complexity of stabilizer problem P P NP-complete

Non-Abelian anyons in 2D no yes yes

Table 2.1: Summary of the properties

stabilizer operators1 which are shown in Figure 2.1. Let gs and gp be the stabilizer operators corre-
sponding to the vertex s and the face p respectively. Then the ground space of the doubled semion
model consists of all states |ψ〉 satisfying gs |ψ〉 = gp |ψ〉 = |ψ〉 for all s and p. The doubled semion
model is closely related to the toric code which is a Pauli stabilizer code. The Pauli stabilizer oper-
ators of the toric code are obtained from the XS-stabilizer operators of the doubled semion model
by replacing all occurrences of S with I. This is no coincidence since both the doubled semion
model and the toric code are twisted quantum double models for the group Z2 [HWW13, Bue14]. In
spite of this similarity it is known that both models represent different topological phases [LW05].
Thus, the XS-stabilizer formalism allows one to describe states with genuinely different topological
properties compared to any state arising in the Pauli stabilizer formalism [Yos11, BDCP12]. In
fact, we can use XS-stabilizers to describe other, more complex, twisted quantum double models
as well, as we will show in section 2.A. Some of these even support non-Abelian anyons.

The third example is related to magic state distillation. In [BK05] the authors consider a 15
qubit code CSS(Z,L2;XS,L1), where L1 and L2 are punctured Reed-Muller codes of order one
and two, respectively. Roughly speaking, this quantum code is built from two types of generators.
One type has the form Z⊗ · · ·⊗Z acting on some of the qubits, while the other type has the form
XS ⊗ · · · ⊗XS. Surprisingly, this 15 qubit XS-stabilizer code has the same code subspace as the
Pauli stabilizer code CSS(Z,L2;X,L1) which is obtained by replacing every S operator with an
identity matrix. From this example we can see that having S in the stabilizer operators does not
necessarily mean an XS-stabilizer group and a Pauli stabilizer group stabilize different spaces.

2.3 Main results

2.3.1 Commuting parent Hamiltonian

Even though an XS-stabilizer group G = 〈g1, . . . , gm〉 is non-Abelian in general, we will show that
there always exists a Hamiltonian H ′ =

∑
j hj with mutually commuting projectors hj whose

ground state space coincides with the space stabilized by G (section 2.5). If the generators of G
satisfy some locality condition (e.g. they are k-local on some lattice), then the hj will satisfy the
same locality condition (up to a constant factor). This means that general properties of ground
states of commuting Hamiltonians apply to XS-stabilizer states. For example, every state uniquely
stabilized by a set of local XS-stabilizers defined on a D-dimensional lattice satisfies the area law
[WVHC08], and for local XS-stabilizers on a 2D lattice, we can find string like logical operators
[BPT10].

While the ground state spaces of H ′ and the non-commuting Hamiltonian H =
∑m

j=1(gj + g†j)
are identical, the latter may have a completely different spectrum. This may turn out important
for the purpose of quantum error correction.

2.3.2 Computational complexity of finding stabilized states

In the Pauli stabilizer formalism, it is always computationally easy to determine whether, for a
given set of stabilizer operators, there exists a common stabilized state. However, we will prove

1The local single-qubit basis used in [LW05] is different from ours.
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that the same question is NP-complete for XS-stabilizers (see section 2.7). More precisely, we
consider the problem XS-Stabilizer defined as follows: given a set of XS-stabilizer operators
{g1, . . . , gm}, the task is to decide whether there exists a state |ψ〉 6= 0 stabilized by every gj . The
NP-hardness part of the XS-Stabilizer problem is proved via a reduction from the Positive
1-in-3-Sat problem. In order to show that the problem is in NP, we use tools developed for
analyzing monomial stabilizers, as introduced in [VdN11].

The NP-hardness of the XS-Stabilizer problem partially stems from the fact that the group
G = 〈g1, . . . , gm〉 may contain diagonal operators which have one or more S operators in their
tensor product representation (2.1). In order to render the XS-Stabilizer problem tractable, we
impose a (mild) restriction on the group G and demand that every diagonal operator in G can be
written as a tensor product of I and Z, i.e. no diagonal operator in G may contain an S operator.
We call such a group G regular. We will show that, for every regular G, the existence of a state
stabilized by G can then be checked efficiently (section 2.8).

Finally, we will show that in fact every XS-stabilizer state affords a regular stabilizer group
(although finding it may be computationally hard), i.e. the condition of regularity does not restrict
the set of states that can be described by the XS-stabilizer formalism (Section 2.12). In contrast,
the stabilizer group of an XS-stabilizer code cannot always be chosen to be regular.

2.3.3 Entanglement

Given an XS-stabilizer state |ψ〉 with associated XS-stabilizer group G, we show how to compute
the entanglement entropy for any bipartition (A,B) (section 2.10). This is achieved by showing
that |ψ〉 can always be transformed into a Pauli stabilizer state |φA,B〉 (which depends on the
bipartition in question) by applying a unitary UA ⊗ UB, where UA and UB each only act on the
qubits in each party. Since an algorithm to compute the entanglement entropy of Pauli stabilizer
states is known, this yields an algorithm to compute this quantity for the original XS-stabilizer
state |ψ〉 since the unitary UA ⊗ UB does not change the entanglement. Our overall algorithm is
efficient (i.e. runs in polynomial time in the number of qubits) for all regular XS-stabilizer groups
(cf. also section 2.11). It is worth noting that our method of computing the entanglement entropy
uses a very different technique compared to the one typically used for studying the entanglement
entropy of Pauli stabilizer states (for example, the methods in [LMRW13]).

The fact that |ψ〉 = UA ⊗ UB |φA,B〉 for any bipartition (A,B) implies in particular that
any reduced density matrix of |ψ〉 is a projector since this is the case for all Pauli stabilizer
states [HDE+05]. Consequently, all α-Rnyi entanglement entropies of an XS-stabilizer state coin-
cide with the logarithm of the Schmidt rank.

We also formulate the following open problem: for every XS-stabilizer state |ψ〉, does there
exist a single Pauli stabilizer state |φ〉 with the same Schmidt rank as |ψ〉 for every bipartition?
For example, it would be interesting to know whether the inequalities in [LMRW13] hold for
XS-stabilizer states.

As far as multipartite entanglement is concerned, we finally show that the 6-qubit XS-stabilizer
state (2.2) is not equivalent to any Pauli stabilizer state even if arbitrary local basis changes are
allowed.

2.3.4 Efficient algorithms

In section 2.11 we show that several basic tasks can be solved efficiently for an XS-stabilizer
state |ψ〉, provided its regular XS-stabilizer group is known:

1. Compute the entanglement entropy for any bipartition.

2. Compute the expectation value of any local observable.

3. Prepare |ψ〉 on a quantum computer with a poly-size quantum circuit.

4. Compute the function f(x) in the standard basis expansion

|ψ〉 =
∑

x

f(x) |x〉.
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Moreover, we can efficiently construct a basis {|ψ1〉, . . . , |ψd〉} for any XS-stabilizer code with a
regular XS-stabilizer group. In particular, we can efficiently compute the degeneracy d of the code.
For each |ψj〉 we can again solve all the above tasks efficiently. Finally, we can also efficiently
compute logical operators.

The algorithms given in section 2.11 depend heavily on the technical results for XS-stabilizer
states and codes given in section 2.9.2, where we characterize several structural properties of these
states and codes.

2.4 Basic group theory

In this section we introduce some further basic notions, discuss basic manipulations of XS-stabilizer
operators and describe some important subsets and subgroups of XS-stabilizer groups.

2.4.1 Pauli-S group

Let us write

[g, h] := ghg−1h−1

for the commutator of any two group elements g and h. In the following we always assume the
elements of a set {g1, . . . , gm} ⊂ PSn to be given in the standard form

gj = αsjX(~aj)S(~bj). (2.3)

Lemma 2.4.1 (Commutators).

[g1, g2] =
n⊗

k=1

(−1)a1ka2k(b1k+b2k) (iZk)
a1kb2k−a2kb1k .

Proof. It suffices to prove this for PS and αs = 1. So let gj = XajSbj . Then

g2g1 = (−1)a1a2(b1+b2) (iZ)a2b1−a1b2g1g2

where we used SbXa = (−iZ)abXaSb. The claim for the tensor product group PSn follows from
applying the above to each component.

Lemma 2.4.2 (Squares). Let g = αsXaSb ∈ PS. Then

g2 = is+abZ(a+1)b.

Lemma 2.4.3 (Multiplication). There exists ~b′ such that

g1g2 ∝ X(~a1 ⊕ ~a2)S(~b′).

2.4.2 Important subgroups

For any group G ⊂ PSn there are two important subgroups.

Definition 2.4.4. The group

GD := G ∩ 〈αI, S1, . . . , Sn〉 = G ∩
{
αsS(~b)

∣∣ s ∈ {0, . . . , 7},~b ∈ {0, . . . 3}n
}

is called the diagonal subgroup and

GZ := G ∩ 〈αI, Z1, . . . , Zn〉 = G ∩
{
αsZ(~c )

∣∣ s ∈ {0, . . . , 7},~c ∈ {0, 1}n
}

(2.4)

is called the Z-subgroup.
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In other words, the diagonal subgroupGD contains all elements ofG which are diagonal matrices
in the computational basis. These are precisely the elements which do not contain any X operators
in their tensor product representation (2.1). The Z-subgroup GZ consists of all Z-type operators.
In particular, all commutators and squares of elements in G are contained in GZ , as can be seen
from Lemmas 2.4.1 and 2.4.2.

If G is an XS-stabilizer group, then all its elements must have an eigenvalue 1. Clearly, its
Z-subgroup GZ must then be contained in 〈±Z1, . . . ,±Zn〉 \ {−I}, otherwise GZ (and thus G)
may contain elements which lack the eigenvalue 1, as is evident from (2.4). In particular, G cannot
contain −I. This implies that GZ lies in the centre Z(G) of G. Indeed, every Z ∈ GZ either
commutes or anticommutes with all elements of G, however, [Z, g] = −I ∈ G for some g ∈ G
would give a contradiction. Furthermore one can easily see from the above that all elements of GZ
have an order of at most 2, thus we conclude that g4 = I for all g ∈ G since g2 ∈ GZ . We have
just proved

Proposition 2.4.5. Every XS-stabilizer group G satisfies

1. −I 6∈ G,

2. GZ ⊂ 〈±Z1, . . . ,±Zn〉 \ {−I} = {(−1)sZ(~c )} \ {−I},

3. GZ ⊂ Z(G),

4. g4 = I for all g ∈ G.

2.4.3 Admissible generating sets

Typically it is computationally hard to check the above necessary conditions for the entire group G.
Instead, we focus on a small set of generators which fully determine G, like in the Pauli stabilizer
formalism. We are interested in finding necessary conditions for such a set to generate an XS-
stabilizer group.

While we can build arbitrary words from the generators, of course, commutators and squares
of generators will play a distinguished role in this article.

Definition 2.4.6. Let S = {g1, . . . , gm} ⊂ PSn . Then

CS := {[gj , gk] | gj , gk ∈ S ∧ j 6= k},
QS := {g2

j | gj ∈ S}.

Definition 2.4.7. A set S = {g1, . . . , gm} ⊂ PSn is called an admissible generating set if

1. every gj has an eigenvalue 1,

2. every [gj , gk] has an eigenvalue 1,

3. [[gj , gk], gl] = I,

4. [g2
j , gk] = I.

Clearly, if G = 〈S〉 is an XS-stabilizer group, then S must be an admissible generating set by
Proposition 2.4.5 (and the discussion preceding it). The converse is not true: there exist admissible
generating sets S for which 〈S〉 is not an XS-stabilizer group.

Note that the properties in the above definition are independent in the sense that the first
k properties do not imply the next one. It can be checked in poly(n,m) time whether a given
generating set S is admissible.

We then have the following lemma:
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Lemma 2.4.8 (Relative standard form). If S = {g1, . . . , gm} ⊂ PSn is an admissible generating
set, then the elements of G = 〈S〉 are given by

Z g(~x) := Zgx11 · · · gxmm (2.5)

where ~x ∈ Zm2 and Z ∈ 〈CS ∪QS〉 ⊂ GZ .
Furthermore, for two elements h = Z g(~x) and h′ = Z ′g(~x′) we have

hh′ = Z ′′g(~x⊕ ~x′).

Proof. Let h = gβ1gβ2 · · · gβp ∈ G an arbitrary word in the generators S. We will show how
to reduce it to the form (2.5). Suppose βj−1 > βj for some j. Since gβj−1

gβj = Zgβjgβj−1
for

some Z ∈ CS we can reorder the generators locally and move any commutator Z to the left.
(Since S is admissible, Z commutes with all generators.) Repeating this procedure we arrive at
h = Zgx11 · · · gxmm for some Z ∈ 〈CS〉, where the exponents xj may still be arbitrary integers. We
can restrict them to {0, 1} by extracting squares of generators and moving them to the left. We
obtain h = ZZ ′gx11 · · · gxmm for some Z ′ ∈ 〈QS〉 which proves the first claim. The second claim
follows easily from a similar argument.

The diagonal subgroup GD will play an important role in the formalism. Here we give a method
to compute the generators of the diagonal subgroup GD efficiently.

Lemma 2.4.9. If S = {g1, . . . , gm} ⊂ PSn is an admissible generating set and G = 〈S〉, then a
generating set of GD can be found in poly(n,m) time.

Proof. We see from Lemma 2.4.8 that GD is generated by CS , QS and those elements g(~x) which
are diagonal. Hence we only need to find a generating set for the latter. Assume that the generators
of G are given in the standard form (2.3) and define the n×m matrix

A := [~a1 . . . ~am]

whose columns are the bit strings ~aj . It follows from Lemma 2.4.3 that g(~x) ∝ X(A~x)S(~b′) for

some ~b′. This implies that g(~x) is a diagonal operator if and only if A~x = 0 over Z2. Denote a
basis of the solution space of this linear system by {~ui}. Such a basis can be computed efficiently.
Notice that by Lemma 2.4.8 we have g(~ui⊕ ~uj) = Z g(~ui)g(~uj) for any two basis vectors ~ui and ~uj
and some Z ∈ 〈CS ∪QS〉. This implies that all diagonal elements g(~x) can be generated by CS , QS
and {g(~ui)}, and so can GD. Finally we note that the length of this generating set is poly(m,n).

2.5 Commuting parent Hamiltonian

In this section we show that the space stabilized by {gj} can also be described by the ground space
of a set of commuting Hamiltonians. In fact, the Hamiltonians are monomial.

Let G = 〈S〉 be an XS-stabilizer group with the generators S = {g1, . . . , gm} and the corre-
sponding code LG. While it is straightforward to turn each generator into a Hermitian projector
onto its stabilized subspace, these projectors will not commute with each other in general. Perhaps
surprisingly, we can still construct a commuting parent Hamiltonian for LG by judiciously choosing
a subset of G such that a) this subset yields a commuting Hamiltonian with the larger ground
state space L ⊃ LG, and b) all generators mutually commute when restricted to L. We will call L
the gauge-invariant subspace in the following.

We claim that the subset CS ∪ QS ⊂ G precisely fits this strategy. First, let us define Pg :=
(I+g)/2 for arbitrary g ∈ G. It is easy to see that all PZ with Z ∈ CS∪QS are Hermitian projectors
which commute with each other and all elements of G. We may define the gauge-invariant subspace
as the image of the Hermitian projector P :=

∏
Z PZ which commutes with all PZ and all elements

of G by construction. Moreover, note that

PZ = P, (2.6)
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in other words, the gauge-invariant subspace “absorbs” commutators and squares of generators.
Second, it is easy to check that all PPgj with gj ∈ S are Hermitian projectors which mutually
commute. Indeed, they are projectors since (PPgj )

2 = (P 2 + 2P 2gj + P 2g2
j )/4 = PPgj where

we used (2.6). Moreover, they are Hermitian since (Pgj)
† = g3

jP = Pgj where we used Proposi-
tion 2.4.5 and (2.6). Finally, they commute with each other because

PgkPgj = Pgkgj = PZgjgk = Pgjgk = PgjPgk

for some Z ∈ CS which is absorbed by virtue of (2.6).
We can now define the commuting Hamiltonian associated with G (and S) by

HG,S :=
∑

Z
(I − PZ) +

∑

gj∈S
(I − PPgj ).

It remains to show that the space annihilated by HG,S is precisely the XS-stabilizer code LG. It
is easy to see that a state |ψ〉 has zero energy if it is stabilized by G. Conversely, if |ψ〉 has zero
energy then PZ |ψ〉 = |ψ〉 and PPgj |ψ〉 = |ψ〉 follow directly. The former condition actually implies
P |ψ〉 = |ψ〉, hence the latter turns into Pgj |ψ〉 = |ψ〉 from which we deduce gj |ψ〉 = |ψ〉.

Remark 2.5.1 (Locality). It is not hard to see the above construction of a commuting Hamiltonian
can be modified to preserve the locality of gj. Assume gj is local on a d-dimension lattice. Then by
construction, PZ are also local. Thus the only nonlocal terms in the Hamiltonian are PPgj , and
below we show how to make a modification such that they become local. We say gk is a neighbour
of gj if gj and gk act on some common qubits, and we denote that by k ∈ n(j) (we also set j ∈ n(j)
for our purpose). It is easy to check that if we replace the PPgj terms in the Hamiltonian by

( ∏

k∈n(j)

Pjk

)
Pgj ,

the Hamiltonian is still commuting, while it is now local on the lattice.

Remark 2.5.2 (Quantum error correcting code). We can use XS-stabilizer codes LG for quantum
error correction. Here it is important that error syndromes can be measured simultaneously which
seems impossible if the XS-stabilizer group G is non-Abelian. Yet we can exploit the commuting
stabilizers constructed above and extract the error syndromes in two rounds. First we measure the
syndromes of the mutually commuting stabilizers in the subset CS ∪ QS and correct as necessary.
We are now guaranteed to be in the gauge-invariant subspace where the original generators {gj}
commute. We can thus measure their syndromes simultaneously in the second round.

2.6 Concepts from the monomial matrix formalism

In this subsection we introduce some definitions and theorems from [VdN11] that will be useful
later.

In [VdN11], we consider a group G = 〈U1, . . . , Um〉, where each Uj is a unitary monomial
operator, i.e.

Uj = PjDj

where Pj is a permutation matrix and Dj is a diagonal unitary matrix. Define P to be the
permutation group generated by Pj . The goal of [VdN11] is to study the space of states that
satisfy

Uj |ψ〉 = |ψ〉 for every j = 1, . . . ,m.

Given a computational basis state |x〉, following [VdN11] we define the orbit Ox to be

Ox = {|y〉 | ∃P ∈ P : P |x〉 = |y〉}.

We also define Gx to be the subgroup of all U ∈ G that have |x〉 as an eigenvector. Then we have
the following theorem
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Theorem 2.6.1. Consider a group G = 〈U1, . . . , Um〉 of monomial unitary matrices.

(a) There exists a state |ψ〉 6= 0 stabilized by G if and only if there exists a computational basis
state |x〉 such that

U |x〉 = |x〉 for all U ∈ Gx. (2.7)

(b) For every computational basis state |x〉 satisfying (2.7), there exists a state |ψx〉 stabilized
by G, which is of the form

|ψx〉 =
1√
|Ox|

∑

|y〉∈Ox

f(y) |y〉,

where |f(y)| = 1 for all y ∈ Ox. Moreover, there exists a subset {|x1〉, . . . , |xd〉} (each satisfy-
ing (2.7)) such that

• the orbits Oxi are mutually disjoint;

• the set of all x satisfying (2.7) is precisely Ox1 ∪ · · · ∪ Oxd;

• {|ψx1〉, . . . , |ψxd〉} is a basis of the space stabilized by G. In particular, d is the dimension of
this space.

2.7 Computational complexity of the XS-stabilizer problem

Here we address the computational complexity of determining whether a subgroup G of the Pauli-S
group, specified in terms of a generating set, is an XS-stabilizer group, i.e. whether there exists a
quantum state |ψ〉 6= 0 that is stabilized by G. More precisely, the problem can be formulated as

Problem XS-Stabilizer.

Input A list of sj ∈ {0, . . . , 7}, ~aj ∈ {0, 1}n and ~bj ∈ {0, . . . , 3}n where j = 1, . . . ,m, which
describe a set S = {g1, . . . , gm} ⊂ PSn .

Output If there exists a quantum state |ψ〉 6= 0 such that gj |ψ〉 = |ψ〉 for every j then output
YES; otherwise output NO.

To show an efficient algorithm exists for a computational problem, it suffices to write down the
particular algorithm. However, to show that there is no efficient algorithm for a certain problem is
a much harder task. This is often done by demonstrating that the computational problem belongs
to a hard complexity class, such as NP-hard. Roughly speaking, if one problem in NP-hard has
an efficient algorithm, then we will immediately find efficient algorithms for hundreds of other
hard problems. Given that researchers have spent decades trying without success, it is likely the
problems in NP-hard do not have efficient algorithms.

We will show that the above computational problem related to XS-stabilizer likely does not
have an efficient algorithm by proving the following theorem:

Theorem 2.7.1. The XS-Stabilizer problem is NP-hard.

Proof. We will show this via a reduction from the Positive 1-in-3-Sat problem which is NP-
complete [Sch78]. The Positive 1-in-3-Sat problem is to determine whether a set of logical
clauses in n Boolean variables can be satisfied simultaneously or not. Each clause has three
variables exactly one of which must be satisfied. We may express such a clause Cj as

xwj1 + xwj2 + xwj3 = 1 (2.8)

for variables xwjk ∈ {0, 1} and 1 ≤ wjk ≤ n.

We construct a corresponding instance of the XS-Stabilizer problem by encoding each clause Cj
in a generator

gj = i3Swj1Swj2Swj3 ∈ PSn .
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Since all gj are diagonal this stabilizer problem is equivalent to determining whether there exists
a computational basis state |x1, . . . , xn〉 stabilized by every gj , i.e. whether all equations

i3+xwj1+xwj2+xwj3 = 1 (2.9)

have a common solution. Since (2.8) and (2.9) are equivalent we have shown that the XS-
Stabilizer problem is at least as hard as the Positive 1-in-3-Sat problem.

The NP-hardness of the XS-Stabilizer problem is in sharp contrast with the corresponding
problem in the Pauli stabilizer formalism, which is known to be in P (in other words, there is an
efficient algorithm which has running time scaling polynomially with respect to the size of inputs).

Next we show that the XS-Stabilizer problem is in NP, which means there is an efficient
classical proof allowing to verify whether a group is indeed an XS-stabilizer group. This is in
contrast to many other problems involving quantum mechanics that belongs to the (likely) harder
computational class QMA-hard.

Theorem 2.7.2. The XS-Stabilizer problem is in NP.

Proof. We first determine if S is an admissible generating set, which can be done efficiently. If
it is not, 〈S〉 cannot be an XS-stabilizer group, hence we output NO. If S is found to be an
admissible generating set, we proceed with the group G = 〈S〉 as follows. Given a computational
basis state |x〉, recall the definition of the set Gx in Section 2.6. Note that every XS-operator
αsX(~a)S(~b) maps |x〉 to λ |x ⊕ ~a〉 for some complex phase λ. This implies that Gx = GD for
every x. Then, by Theorem 2.6.1(a), to check whether G is an XS-stabilizer group, we only need
to check whether there is a computational basis state |z〉 stabilized by GD. Note that a generating
set {D1, . . . , Dr} of GD can be computed efficiently owing to Lemma 2.4.9. Furthermore, |z〉 is
stabilized by GD if and only if it is stabilized by every generator Dj . Summarizing, we find that
G is an XS-stabilizer group iff there exists a computational basis state |z〉 satisfying Dj |z〉 = |z〉
for all j. So if G is an XS-stabilizer group, a classical string z satisfying these conditions will
serve as a proof since the equations Dj |z〉 = |z〉 can be verified efficiently. This shows that the
XS-Stabilizer problem is in NP.

2.8 Regular XS-stabilizer groups

The results in section 2.7 imply that working with the XS-stabilizer formalism is computationally
hard in general. In order to recover tractability, we may impose certain restrictions on the type of
stabilizers we can have. In particular, we have the following theorem.

Theorem 2.8.1. Let S = {g1, . . . , gm} ⊂ PSn and G = 〈S〉. If GD = GZ then the XS-Stabilizer
problem is in P. Moreover, this condition can be checked efficiently.

Proof. As in the proof of Theorem 2.7.2, we only need to consider admissible generating sets,
and we need to decide whether there exists a computational basis state stabilized by GD. Since
Lemma 2.4.9 states that GD is generated by {D1, . . . , Dr} = CS ∪QS ∪{g(~ui)} with r = poly(m,n)
we can efficiently check whether {g(~ui)} ⊂ GZ or some g(~ui) contains an S operator, i.e. whether
GD = GZ or not. Now let us assume that GD = GZ . By Proposition 2.4.5 we immediately
deduce that Dj = (−1)sjZ(~cj) for some sj ∈ {0, 1} and ~cj ∈ {0, 1}n. Then a computational basis
state |~z 〉 stabilized by GD is equivalent to a nontrivial common solution of the equations ~cj ·~z = sj .
These are polynomially many linear equations in n variables over Z2 and can hence be solved in
polynomial time. This proves that the restricted XS-Stabilizer problem is indeed in P.

Motivated by this result, we call any XS-stabilizer group G with GD = GZ a regular XS-
stabilizer group.

Remark 2.8.2. We want to mention that diagonal elements containing S operators play a crucial
role in certain examples, which we will discuss in section 2.12. However, as will be proved in
theorem 2.12.1, we can construct a basis of the space stabilized by a general XS-stabilizer group
such that each basis state is described by a regular XS-stabilizer group.
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Here we give a sufficient condition for an XS-stabilizer group to be regular.

Lemma 2.8.3. If an XS-stabilizer group G ⊂ PSn has a generating set S = {g1, . . . , gt, gt+1, . . . , gm}
where

gj =

{
αsjX(~aj)S(~bj) if j ≤ t,
(−1)sjZ(~cj) else

(2.10)

and {~a1, . . . ,~at} are linearly independent over Z2, then it is regular.

Proof. We see from Lemma 2.4.8 that GD is generated by CS , QS and those elements g(~x) =
gx11 · · · gxmm which are diagonal. In order to show that GD = GZ we only need to show that all

diagonal elements g(~x) are Z-type operators. It follows from Lemma 2.4.3 that g(~x) ∝ X(A~x)S(~b′)
for the n×m matrix

A = [~a1 . . . ~at 0 . . . 0]

and some ~b′. This implies that g(~x) is a diagonal operator if and only if A~x = 0 over Z2. Since
the bit strings ~aj are linearly independent this can only be true if xj = 0 for all j ≤ t. Thus every
diagonal element g(~x) = g

xt+1

t+1 · · · gxmm is indeed a Z-type operator.

Theorem 2.8.4 (Normal form). Every XS-stabilizer group G ⊂ PSn has a generating set S =
{g1, . . . , gt, gt+1, . . . , gm} where

gj =

{
αsjX(~ej , ~wj)S(~bj) if j ≤ t,
isjS(~bj) else

for the canonical basis vectors ~ej ∈ Zt2 and some ~wj ∈ Zn−t2 . Furthermore, GD = 〈gt+1, . . . , gm〉.
Any other generating set S ′ = {h1, . . . , hl} of G can be reduced to S in poly(n, l) time and the

length of S is poly(n, l).

Proof. We will prove this by explicitly reducing S ′ = {h1, . . . , hl}. By Lemma 2.4.9 we can effi-
ciently find a generating set {D1, . . . , Dr} of GD from S ′. Next we can extend it to a generating set
of G by adding a minimal subset of S ′ which can be found efficiently. Indeed, suppose we added all
generators hj = αsjX(~aj)S(~bj). If {~a1, . . . ,~al} are linearly dependent over Z2, we may assume that
~al = y1~a1 ⊕ · · · ⊕ yl−1~al−1 for some yj ∈ Z2 without loss of generality. Then Lemma 2.4.3 implies
hy11 · · ·h

yl−1

l−1 = Dhl for some diagonal element D ⊂ PSn . It is not difficult to see that actually D ∈ G
and hence D ∈ GD. This means that the generator hl ∈ 〈D1, . . . , Dr, h1, . . . , hl−1〉 is redundant.
So we can find a minimal subset of S ′ by finding bit strings ~aj which form a basis of the linear
space 〈~a1, . . . ,~al〉. Note that this only involves Gaussian elimination over Z2. Now let {h1, . . . , ht}
be the desired subset of S ′ after relabeling the generators hj , so that G = 〈h1, . . . , ht, D1, . . . , Dr〉.

We can arrange the bit strings ~a1, , ~at in the n× t matrix

A := [~a1 . . . ~at].

Since the ~aj are linearly independent, by Gaussian elimination and suitable permutation of columns,
we can efficiently transform A into

PAR =

[
1t

W

]

for some n × n permutation matrix P , t × t invertible matrix R and (n − t) × t matrix W . By
relabeling the qubits according to the permutation defined by P and by multiplying the generators
h1, , ht according to the transformation R, we obtain an equivalent set of generators {g1, . . . , gt}
such that gj = αs

′
jX(~ej , ~wj)S(~b′j) for some s′j and ~b′j . Here ~wj denotes the j-th column of W .

Finally note that Dj = is
′
jS(~b′j) for some s′j and ~b′j since G is an XS-stabilizer group. We

conclude that S = {g1, . . . , gt, D1, . . . , Dr} is the desired generating set of G.
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Corollary 2.8.5. Every regular XS-stabilizer group G ⊂ PSn has a generating set S = {g1, . . . , gt, gt+1, . . . , gm}
where

gj =

{
αsjX(~ej , ~wj)S(~bj) if j ≤ t,
(−1)sjZ(~cj) else

for the canonical basis vectors ~ej ∈ Zt2 and some ~wj ∈ Zn−t2 . Furthermore, GD = 〈gt+1, . . . , gm〉.

Unless stated otherwise, we will always work with regular XS-stabilizer groups from this point
on.

2.9 Constructing a basis of a regular XS-stabilizer code

The goal of this section is to construct a basis for a regular XS-stabilizer code. For each state of
the basis, we will give an explicit form of its expansion in the computational basis. To achieve this
(in sections 2.9.2, 2.9.3 and 2.9.4), we will first introduce some preliminary material on quadratic
and cubic functions (in section 2.9.1).

2.9.1 Quadratic and cubic functions

In this chapter we will often deal with functions of the form i
∑
xjxk or (−1)

∑
xjxkxl with xj ∈ {0, 1}.

Here we list some properties of such functions that will become useful later. First we have the
following lemma.

Lemma 2.9.1 (Exponentials of parities). Let x1, , xn ∈ {0, 1}. Then

αx1⊕···⊕xn = α
∑
j xj i−

∑
j<k xjxk (−1)

∑
j<k<l xjxkxl

and

ix1⊕···⊕xn = i
∑
j xj (−1)

∑
j<k xjxk .

Proof. The first equation is proved in [BH12]. The second equation follows by similar arguments.

All exponents in this Lemma are homogeneous polynomials of degree at most 3. Below we
will often only be interested in whether a given exponent is a quadratic or cubic polynomial, but
not in its concrete form. We will therefore use l(x), q(x) and c(x) to represent arbitrary linear,
quadratic and cubic polynomials in Z[x1, . . . , xn] respectively. (These polynomials need not be
homogeneous.) Using this notation, the Lemma can be summarized as

αx1⊕···⊕xn = αl(x) iq(x) (−1)c(x),

ix1⊕···⊕xn = il(x) (−1)q(x).

Let F denote the class of all functions f : {0, 1}n → C having the form

f(x) = αl(x) iq(x) (−1)c(x) for all x ∈ {0, 1}n.

Note that F is closed under multiplication, i.e. if f and g belong to this class, then so does fg.

Remark 2.9.2. Linear phases αl(x) are generated by {αxj} via multiplication since αl(x) =
∏n
j=1(αxj )λj

for a linear polynomial l(x) =
∑n

j=1 λjxj. By the same token, {ixj , ixjxk} generate all quadratic

phases iq(x) and {(−1)xj , (−1)xjxk , (−1)xjxkxl} all cubic phases (−1)c(x). This implies

F = 〈αxj , ixjxk , (−1)xjxkxl〉.

Lemma 2.9.3 (Covariance). Let Q be a linear map in the vector space Zn2 = {0, 1}n. If a function f
belongs to F then so does f ◦Q.
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Proof. Let x = (x1, . . . , xn) ∈ Zn2 and y = Q(x), so each yj =
⊕n

k=1Qjkxk is the parity of some
substring of x. By Remark 2.9.2 it is enough to show that the phases αyj , iyjyk and (−1)yjykyl

belong to F since any f(y) equals some product of them.
It is immediate from Lemma 2.9.1 that every αyj ∈ F . Furthermore, Lemma 2.9.1 implies

iyjyk =
(
il(x) (−1)q(x)

)yk = il(x)yk (−1)q(x)yk = (iyk)l(x) (−1)c(x)

for some linear, quadratic and cubic polynomials l, q and c respectively. Invoking Lemma 2.9.1 once
more we see that (iyk)l(x) ∈ F , thus iyjyk ∈ F . Finally, it is easy to check that (−1)yjykyl = (−1)c

′(x)

for some cubic polynomial c′, which shows (−1)yjykyl ∈ F .

2.9.2 Constructing a basis

Consider an n-qubit XS-stabilizer codeHG with regular stabilizer group G = 〈g1, . . . , gm〉. Without
loss of generality, we may assume that the generators gj have the form given in Corollary 2.8.5.
We will construct a basis for this XS-stabilizer code by applying the monomial matrix method
outlined in section 2.6.

Denote the (n− t)× t matrix W := [~c1| · · · |~ct] (as in the proof of Theorem 2.8.4). Define V to
be the linear subspace of Zn2 consisting of all couples (x,Wx) with x ∈ Zt2. A basis of this space is
given by the vectors (~ei,~ci) where ~ei is the i-th canonical basis vector in Zt2. Furthermore consider
the set VD of those n-bit strings z satisfying D|z〉 = |z〉 for all D ∈ GD. This coincides with the set
of all z satisfying gj |z〉 = |z〉 for all j = t+ 1, . . . ,m, since these gj generate the diagonal subgroup

by Corollary 2.8.5. Since each of these gj has the form (−1)sjZ(~bj), VD is the set of all z satisfying
~bTj z = sj for all j = t + 1, . . . ,m. The set VD is thus an affine subspace of Zn2 . A basis of VD can
be computed efficiently.

Note that every Pauli-S operator g = isX(~a)S(~b) is a monomial unitary matrix, where X(~a)
is the corresponding permutation matrix and isS(~b) the corresponding diagonal matrix (recall
subsection 2.6). It follows that the permutation group P associated with G is generated by the
operators XjX(~cj). Recalling the definition of the space V , this implies that P = {X(v) | v ∈ V }.
Furthermore, the orbit of a computational basis state |x〉 is the coset of V containing x i.e. Ox =
x+ V . To see this, note that

{X(v) |x〉 | v ∈ V } = {|x+ v〉 | v ∈ V }.
Applying theorem 2.6.1(b), we conclude that there exist orbits O1, , Od such that

VD = O1 ∪ · · · ∪ Od
and d coincides with the dimension of the XS-stabilizer code. Note that we can efficiently compute
d: each orbit has size |V | and thus d|V | = |VD|; since both |V | and |VD| can be computed efficiently
(as we know bases for both of these spaces), we can efficiently compute d. Note that d is a power
of two, since both |V | and |VD| are powers of two. Finally, a set of strings ~λ1, . . . , ~λd ∈ VD such
that Oi = ~λi + V can be computed in poly(n,m, d) time.

As a corollary of the above discussion, we also note:

Lemma 2.9.4. The XS-stabilizer code HG is one-dimensional, i.e. it is an XS-stabilizer state, iff
|V | = |VD|.

By theorem 2.6.1, for each vector ~λ ∈ VD there exists a state

|ψ〉 =
∑

x∈Zt2

g(x) |x+ ~λ1,Wx+ ~λ2〉. (2.11)

stabilized by G, where g(x) is some function that satisfies |g(x)| = |V |− 1
2 for all x and where we

have partitioned ~λ = (~λ1, ~λ2) with ~λ1 representing the first t components and ~λ2 the last n − t
components of λ. By performing the substitution x 7→ x+ ~λ1 and denoting f(x) := g(x+ ~λ1) and
~µ := ~λ2 +W~λ1, we find

|ψ〉 =
∑

x∈Zt2

f(x) |x,Wx+ ~µ〉. (2.12)
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Lemma 2.9.5. Suppose the state |ψ〉 of the form (2.11) is stabilized by a regular XS-stabilizer group
G. Then based on the generators gj of G and the string ~λ, the following data in equation (2.12)
can be computed efficiently: (i) the matrix W and the string ~µ; (ii) the function f(x). Moreover,
we can efficiently find a complete set of stabilizers that uniquely stabilize |ψ〉.

Proof. That the matrix W and the string ~µ can be computed efficiently was shown in the argument
above the lemma. In order to prove that the function f(x) can be computed efficiently, we note
that gj |ψ〉 = |ψ〉 for all 1 ≤ j ≤ t and thus

gxtt · · · gx11 |ψ〉 = |ψ〉.

Comparing the terms with |x〉 on both sides, we have

gxtt · · · gx11 |0, ~µ〉 = f(x) |x,Wx+ ~µ〉. (2.13)

This shows that f(x) can be computed by computing the phase which appears when computing
gxtt · · · gx11 |0, ~µ〉. Finally, we construct a complete stabilizer of |ψ〉, showing that this state is an
XS-stabilizer state.

We work with the representation (2.11) of |ψ〉, which implies that |ψ〉 has the form

|ψ〉 =
∑

v∈V+~λ

αv|v〉 (2.14)

(for some coefficients αv) where we recall the definition of V ⊂ Zn2 , which is the linear subspace
of all pairs (x,Wx). The orthogonal complement of V is the (n− t)-dimensional space of all pairs
(W T y, y) with y ∈ Zn−t2 . A basis {~z1, . . . , ~zn−t} of the latter space can be computed efficiently. It

follows that any string v ∈ Zn2 belongs to V + ~λ if and only if ~zTj v = ~zTj
~λ. Define operators

Dj := (−1)~zj
T~λZ(~zj) j = 1, . . . , n− t.

Then for any string v ∈ Zn2 , we have

v ∈ V + ~λ ⇔ Dj |v〉 = |v〉 for every j = 1, . . . , n− t.

We now supplement the initial generators {g1, . . . , gm} of G with the operators Dj . Denote the
resulting set by S ′ and let G′ denote the group generated by S ′. Clearly, G′ is regular since we
supplemented the initial group G, which was regular, with Z-type operators. We now claim that G′

has |ψ〉 as its unique stabilized state. First, combining (2.14) with (2.7) shows that |ψ〉 is stabilized
by every operator Dj . This shows that |ψ〉 is stabilized by G′. Second, let G′D be the diagonal
subgroup of G′. Let U be the set of all u ∈ Zn2 satisfying D|u〉 = |u〉 for all D ∈ G′D. According to
the argument above lemma 2.9.4, U is the disjoint union of cosets of V ; the number of such cosets
is the dimension of the code stabilized by G′. We show that in fact U = V + ~λ, implying that this
dimension is one, so that |ψ〉 is the unique stabilized state. Since each Dj belongs to G′D, every

u ∈ U must satisfy Dj |u〉 = |u〉 for all j = 1, . . . , n − t. With (2.7) this shows that U ⊆ V + ~λ.
Furthermore, since D|ψ〉 = |ψ〉 for every D ∈ G′D and since |ψ〉 has the form (2.14), it follows from

that every u ∈ V + ~λ satisfies D|u〉 = |u〉 for all D ∈ G′D. This shows that V + ~λ ⊆ U and thus

V + ~λ = U .

Next we determine the form of the function f in more detail. This will be e.g. useful for
constructing a quantum circuit to generate |ψ〉 (see section 2.11). For simplicity of notation, we
rescale the state |ψ〉 by multiplying it with a suitable constant so that we can assume f(0) = 1.
We will show that then f belongs to the class F introduced in section 2.9.1. We recall the
identity (2.13). To show that f ∈ F , we will compute the left hand side of the equation, and we
will do this by using induction on k. As for the trivial step of the induction, if k = 1, it is easy to
see that f ∈ F . Set x[k] := (x1, . . . , xk, 0, . . . , 0), and assume that

gxkk · · · gx11 |0, ~µ〉 = f(x[k]) |x[k],Wx[k] + ~µ〉
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with f ∈ F . If we apply an S operator to the l-th qubit of |x[k]〉, we simply obtain the phase ixl .
Second, the j-th bit of Wx[k] + ~µ is

Wj1x1 ⊕ · · · ⊕Wjkxk ⊕ µj .

Therefore, if we apply an S operator on the corresponding qubit, we will obtain the phase

iWj1x1⊕···⊕Wjkxk⊕µj = iWj1x1+···+Wjkxk+µj (−1)q(x[k]),

for some quadratic polynomial q(x[k]) (which contains all possible products of Wjlxl and λj , where
we have applied lemma 2.9.1. It is then easy to check that

g
xk+1

k+1 |x[k],Wx[k] + ~µ〉 = αl(x[k+1]) iq(x[k+1]) (−1)c(x[k+1]) |x[k + 1],Wx[k + 1] + ~µ〉,

where l, q and c are linear, quadratic and cubic polynomials in x1, , xk+1 respectively. So we can
conclude that

g
xk+1

t · · · gx11 |0, ~µ〉 = f(x[k + 1]) |x[k + 1],Wx[k + 1] + ~µ〉

for some f ∈ F .
In the argument above, for any j we can also check that in the phase f(x) = αl(x)iq(x)(−1)c(x),

the part that depends on both µj and x is

il(x)µj (−1)q(x)µj (2.15)

This will be useful for finding the logical operators in section 2.9.3.
Summarizing, we have shown:

Theorem 2.9.6. Every regular XS-stabilizer state on n qubits has the form

|ψ〉 =
1√
2t

∑

x∈Zt2

f(x) |x,Wx+ ~µ〉 with f(x) = αl(x) iq(x) (−1)c(x). (2.16)

up to a permutation of the qubits. Moreover, the polynomials l(x), q(x) and c(x) can be computed
efficiently.

Below in theorem 2.12.1 we will show that every XS-stabilizer state affords a regular stabilizer
group, so that the above theorem in fact applies to all XS-stabilizer states.

It is interesting to compare theorem 2.9.6 with a similar result for Pauli stabilizer states
[DDM03]: every Pauli stabilizer state also has the form (2.16), but where

f(x) = il(x) (−1)q(x), (2.17)

i.e. there are no cubic terms (−1)c(x), no quadratic terms iq(x) and no linear terms αl(x). It is also
known that every state (2.16) with f having the form (2.17) is a valid Pauli stabilizer state. A
similar statement does not hold for XS-stabilizer states i.e. not all functions f ∈ F are allowed.
We will revisit this property in section 2.9.4.

2.9.3 Logical operators

Logical operators play a very important role in understanding the Pauli stabilizer formalism and
performing fault tolerant quantum computation. They represent the X and Z operators on the
encoded qubits. Since it is not clear yet how to define logical operators for an XS-stabilizer group,
in this section we will just construct a set of operators that preserve the code space HG (which we
assume to have dimension 2s) and obey the same commutation relations as {Xj , Zj} on s qubits.

We already know there is a set of the basis of a regular XS-stabilizer code HG which has the
form

|ψj〉 =
∑

x∈Zt2

fj(x) |x,Wx+ ~µj〉.
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Note that ~µj can be viewed as elements of the quotient space VD/V (for definition of VD and V
see section 2.9.2), which is an affine subspace. So we know that up to some permutation of qubits,
each ~µj has the form

(y1, . . . , ys,Λy + ~λ).

Here Λ and ~λ can be found by Gaussian elimination, and s is the dimension of the space VD/V .
So for each µj , we can find a corresponding y. Assume we do not need to do permutation of qubits
in the above step, the vector |x,Wx+ ~µj〉 becomes

|x,Wx+ (y,Λy + ~λ)〉.

For simplicity of notation, we will assume ~λ = 0. The case ~λ 6= 0 can be dealt with similarly by
the following procedure. We will show how to find operators Z̄k and X̄k for k = 1, . . . , s, such that
they act on the state |ψ(y)〉 ≡ |ψj〉 by the following

Z̄k |ψ(y)〉 = (−1)yk |ψ(y)〉
X̄k |ψ(y)〉 = |ψ(y + ~ek)〉,

where ~ek is the k-th canonical basis vector. It is then easy to see within the space spanned by
{|ψj〉}, we have X̄jZ̄k = (−1)δ(j,k)Z̄kX̄j , where δ(j, k) is the Kronecker delta function. The Z̄k can
be found straightforwardly. For example, we can construct Z̄k by noticing

(−1)yk = (−1)
∑
lWklxl+yk

∏

l

(−1)Wklxl ,

where Wkl is the matrix element of W . In the r.h.s of the above equation, the term (−1)
∑
lWklxl+yk

can be achieved by applying Z on the k-th qubit in the block |Wx+(y,Λy)〉, and the terms (−1)Wklxl

can be obtained by applying Z on the corresponding qubits in the block |x〉.
The construction of X̄k is more involved and different from the one used in the Pauli stabilizer

formalism. To do the map from |ψ(y)〉 to |ψ(y + ~ek)〉, we need to flip yk and the corresponding
qubits of Λy in the block |Wx+ (y,Λy)〉. This can be done by an X-type operator, which we will
denote as X̄ ′. However, we also need to change the coefficient functions fj(x) correspondingly. By
changing y to y + ~ek, we will change ~µj to ~µj′ = µj + (~ek,Λ~ek). Assume that X̄ ′D achieves the
task

X̄ ′D
∑

x∈Zt2

fj(x) |x,Wx+ ~µj〉 =
∑

x∈Zt2

fj′(x) |x,Wx+ ~µj′〉.

Then D can be found by noticing that fj(x) depends on ~µj by the relation (2.15) (note that in
relation (2.15), µj is the j-th coordinate of ~µ). We can compute straightforwardly that

fj′(x)

fj(x)
= il(x) (−1)q(x)

∏

h

(−1)µjh l(x),

where µjh is the h-th coordinate of ~µj . The terms il(x) (−1)q(x) can be obtained by including S
and CZ on the corresponding qubits in D. The terms (−1)µjh l(x) can also be obtained by Z and
CZ by noticing µjh is the parity of some qubits in |x,Wx+ ~µj〉. Thus we have found X̄ = X̄ ′D.

2.9.4 A stronger characterization

Consider an XS-stabilizer state |ψ〉. We have shown that |ψ〉 has the form given in theorem 2.9.6.
However, not all covariant phases f ∈ F are valid amplitudes. Here we characterize precisely the
subclass of valid amplitudes.

First we note that the group PSn is closed under conjugation by X,
√
S and CZ, hence we can

make two assumptions about the state:

1. We can assume ~µ = 0 in theorem 2.9.6, since we can apply X to the corresponding qubits
and update the stabilizers by conjugation.
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2. We can restrict ourselves to studying covariant phases of the form

f(x) = i
∑
j<k ζjkxjxk (−1)

∑
j<k<l ζjklxjxkxl (2.18)

where ζjk and ζjkl take values in Z2. Indeed, if f is a valid amplitude, then so is

f(x)αl(x) il
′(x) (−1)q(x)

for all linear polynomials l, l′ and quadratic polynomials q. After all, we can always generate
these additional phases by applying suitable combinations of the gates

√
S and CZ to the

state |ψ〉.

We will treat this class of f as a vector space V1 over Z2, with a natural basis given by the functions
ixjxk and (−1)xjxkxl . Similarly, we consider the set of all functions of the form

(−1)
∑
j<k ηjkxjxk

which can also be viewed as a vector space V2 over Z2 with basis functions (−1)xjxk . We define a
set of linear mappings {Fh | h = 1, . . . , t} from V1 to V2 by the rules

Fh (−1)xjxkxl =





(−1)xkxl if h = j,

(−1)xjxl if h = k,

(−1)xjxk if h = l,

1 otherwise,

(2.19)

and

Fh ixjxk =

{
(−1)xjxk if h = j or h = k,

1 otherwise.
(2.20)

Recall the matrix W that appears in equation (2.12). Let ~wj = (wj1, . . . , wjt) denote the j-th
row of W , for every j = 1, . . . , n− t. We define the quadratic functions γj ∈ V2 by

γj(x) = (−1)
∑
k<l wjkwjlxkxl . (2.21)

This definition stems from the fact that when we apply the S gate on the single-qubit standard
basis state described by |wj1x1 ⊕ · · · ⊕ wjtxt〉, we obtain the phase

iwj1x1⊕···⊕wjtxt = i
∑
k wjkxk γj(x), (2.22)

where we have used lemma 2.9.1. Then we set

Γ = span{γj}. (2.23)

We will prove the following theorem

Theorem 2.9.7. Consider any state of the form

|ψ〉 =
1√
2t

∑

x∈Zt2

f(x) |x,Wx〉

with f ∈ V1. If f satisfies

Fh(f) ∈ Γ for all 1 ≤ h ≤ t (2.24)

then |ψ〉 is an XS-stabilizer state.
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Proof. Assuming that f satisfies condition (2.24), we will show how to construct a set of XS-
stabilizers that uniquely stabilize |ψ〉. Consider XS-operators

gj = XjX(~aj)S(~bj), 1 ≤ j ≤ t,

where Xj denotes the Pauli matrix X acting on the j-th qubit, where the X(~aj) are X-type
operators that only act on qubits t+ 1 to n with ~aj the j-th column of the matrix W . The strings
~bj are at the moment unspecified. Furthermore, define

gj = Z(~cj) t+ 1 ≤ j ≤ n

where {~ct+1, . . . ,~cn} ⊆ Zn2 form a basis of the orthogonal complement of the subspace

V = {(x,Wx) | x ∈ Zt2} ⊆ Zn2 .

For every y, z ∈ Zn2 we have

Z(z) |y〉 = (−1)z
T y |y〉.

This implies that gj |ψ〉 = |ψ〉 for every j = t + 1, . . . , n. Next we show that, for a suitable choice

of ~bj , the operator gj stabilizes |ψ〉 for every j = 1, . . . , t. This last condition is equivalent to

XjX(~aj)|ψ〉 = S(~bj)|ψ〉. Note that

XjX(~aj) |ψ〉 =
∑

x

f(x) |x+ ej ,W (x+ ej)〉 =
∑

x

f(x+ ej) |x,Wx〉

since ~aj is the j-th column of W and thus ~aj = Wej . Thus, the condition gj |ψ〉 = |ψ〉 is equivalent
to

f(x+ ej) |x,Wx〉 = S(~bj)f(x) |x,Wx〉.
By using the fact that f has the form (2.24) and by applying the definition of Fj , it is easy to
check that we have

f(x+ ej)

f(x)
= ilj(x) (Fj ◦ f)(x).

for some linear function lj . Summarizing so far, we find that gj |ψ〉 = |ψ〉 if and only if

S(~bj) |x,Wx〉 = ilj(x)Fj(f) |x,Wx〉. (2.25)

Since, by assumption, we have
Fj(f) ∈ Γ,

we can find a vector ~b′j ∈ Zn−t2 , such that

∏

1≤k≤n−t
γ
b′jk
k = Fj(f).

This in turn means that (2.25) is equivalent to

S(~bj) |x,Wx〉 = ilj(x)
∏

1≤k≤n−t
γk(x)b

′
jk |x,Wx〉. (2.26)

We now claim that a string ~bj satisfying this condition exists. To see this, first recall (2.22) and
the surrounding discussion, which implies that

S(~b′j) |Wx〉 = il
′
j(x)

∏

1≤k≤n−t
γk(x)b

′
jk |Wx〉

for some linear function l′j . Second, there exists a string b′′j ∈ {0, 1, 2, 3}t such that S(~b′′j )|x〉 =

ilj(x)−l′j(x)|x〉. This shows that
S(~bj) := S(~b′′j )⊗ S(~b′j)
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satisfies the condition (2.26). We have shown that the operators gj (j = 1, . . . , n) stabilize |ψ〉.
Finally we show that |ψ〉 is uniquely stabilized by these operators. Let G be the group generated

by {g1, . . . , gn}. Since the ~ck form a basis of V ⊥, any string v ∈ Zn2 belongs to V if and only if
~zTj v = 0. Thus we have

v ∈ V ⇔ gj |v〉 = |v〉 for every j = t+ 1, . . . , n. (2.27)

Let GD be the diagonal subgroup of G. Let U be the set of all u ∈ Zn2 satisfying D|u〉 = |u〉 for
all D ∈ GD. According to the argument above lemma 2.9.4, U is the disjoint union of cosets of V ;
the number of such cosets is the dimension of the code stabilized by G. We show that in fact
U = V , implying that this dimension is one, so that |ψ〉 is the unique stabilized state. Since each
gj (j = t + 1, . . . , n) belongs to GD, every u ∈ U must satisfy gj |u〉 = |u〉 for all j = t + 1, . . . , n.
With (2.27) this shows that U ⊆ V . Furthermore, since D|ψ〉 = |ψ〉 for every D ∈ GD and since
|ψ〉 has the form

|ψ〉 =
∑

v∈V
αv|v〉

for some coefficients αv, it follows from that every v ∈ V satisfies D|v〉 = |v〉 for all D ∈ G′D. This
shows that V ⊆ U and thus V = U .

Remark 2.9.8. Since Fh are linear transformations from V1 to V2, and Γ is a linear subspace, the
condition Fh(f) ∈ Γ can be written as linear equations.

Note that there will be multiple ways to write down the same XS-stabilizer state. Let us
consider the following example with five qubits:

|ψ〉 =
∑

x

f(x) |x1, x2, x3, x1 ⊕ x2, x2 ⊕ x3〉.

Equally, we can set (x′1, x
′
2, x
′
3) = (x1, x1 ⊕ x2, x2 ⊕ x3), and the state becomes

|ψ〉 =
∑

x′

f ′(x′) |x′1, x′1 ⊕ x′2, x′1 ⊕ x′2 ⊕ x′3, x′2, x′3〉.

We can define Γ′ in the same way as we defined Γ. We will show that if Fxjf(x) ∈ Γ, then
Fx′jf

′(x′) ∈ Γ′.

More formally, we consider the state |ψ〉 =
∑

x f(x)|x,Wx〉. For an invertible matrix R over
Z2 and x′ = R−1x, we have

|ψ〉 =
∑

x

f(x) |RR−1x,WRR−1x〉

=
∑

x′

f(Rx′) |Rx′,WRx′〉

≡
∑

x′

f ′(x′) |W ′x′〉.

In the above equation, we can change the summation from over x to x′ because R is invertible.
Then we define Γ′ from W ′ in the same way as (2.21) and (2.23). We have the following theorem

Theorem 2.9.9. Let |ψ〉 be an XS-stabilizer state in the form given in theorem 2.9.6. Then f
satisfies the condition (2.24). What is more, for any invertible matrix R over Z2, the function f ′

defined by f ′(x′) := f(Rx′) also satisfies

Fx′jf
′ ∈ Γ′.

Proof. First, we note that we have slightly abused the notation here, since f ′ is in general not
a function in V1 (which is defined in section 2.9.4). However, we can simply ignore the terms
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αl(x
′) (−1)q(x

′) in f ′, again by the reasoning in section 2.9.4. After the transformation x′ = R−1x,
the state can be written as

|ψ〉 =
∑

x′

f ′(x′) |Rx′,WRx′〉.

Note that if we apply g′1 =
∏t
j=1 g

Rj1
j on the component f ′(x′) |Rx′,WRx′〉, we would have

g′1 f
′(x′) |Rx′,WRx′〉 = f ′(x′ + ~e1) |R(x′ + ~e1),WR(x′ + ~e1)〉,

where ~e1 is the first canonical basis vector. By the same reasoning we used in the proof of theorem
2.9.7, we know that

f ′(x′ + ~e1)

f ′(x′)
= il(x

′)Fx′1 [f ′](x′),

while at the same time

g′1 |Rx′,WRx′〉 = il
′(x′)h(x) |R(x′ + ~e1),WR(x′ + ~e1)〉,

where h(x) ∈ Γ′. Thus Fx′1 [f ′] ∈ Γ′. Similarly we can show Fx′j [f
′] ∈ Γ′.

To illustrate how theorem 2.9.7 works, we give two examples here, which demonstrate extreme
cases. First consider the state

|ψ〉 =
∑

x

f(x) |x1, x2, . . . , xn〉.

By definition, Γ is a trivial vector space. It is then straightforward to check that f(x) has to be of
the form f(x) = il(x)(−1)q(x), and thus |ψ〉 is a Pauli stabilizer state. On the other hand, consider
the state

|ψ〉 =
∑

x

f(x) |x1, . . . , xt〉
⊗

j<k≤t
|xj ⊕ xk〉.

It is easy to check Γ is the full vector space V2. Thus the condition (2.24) becomes trivial, which
means f(x) can be an arbitrary function in F .

2.10 Entanglement

2.10.1 Bipartite entanglement

In this section we study the bipartite entanglement in XS-stabilizer states. We consider an n-qubit
XS-stabilizer state |ψ〉 (with regular stabilizer group) in the form given in theorem 2.9.6. Thus we
have

|ψ〉 =
∑

x∈Zt2

f(x) |x,Wx〉 =
∑

x

f(x) |W ′x〉

where we have denoted

W ′ :=

[
1t

W

]

which is an n × t matrix. The function f belongs to F and can be evaluated efficiently owing to
theorem 2.9.6.

Let (A,B) be a bipartition of the qubits. For convenience we call the two parties Alice and
Bob. We will show that there exists a diagonal operation DA ⊗ DB mapping the state |ψ〉 to a
Pauli stabilizer state.

There exist permutation matrices PA and PB acting in A and B, respectively, and an invertible
matrix R of dimension t, such that

[
PA

PB

]
W ′R−1 =




1k 0

M 0

0 1t−k

C1 C2



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for some k and some M , C1 and C2 (and where, in the r.h.s, the upper block refers to the qubits in
A and the lower block refers to the qubits in B). We carry out a change of variables x 7→ x′ = Rx.
Furthermore we denote x′ = (u, v) where u denotes the first k bits of x′. Also, we set f ′(x′) := f(x).
We can then write the state in the form

|ψ〉 =
∑

x′=(u,v)

f ′(x′) |u,Mu〉A ⊗ |v, C1u+ C2v〉B,

where u ranges over Zk2 and v ranges over Zt−k2 . Let r denote the rank of C1. Notice that there
exists a full-rank matrix D1 (its rank being r) and an invertible matrix T such that C1 = [D1 | 0]T
where 0 is the zero matrix of appropriate dimensions. This means there is a further change of
variables from u to w = Tu such that only the first r bits of w appear on Bob’s side. In a more
explicit way, we can rewrite the computational basis states appearing on Bob’s side as

|v,D1(w1, . . . , wr) + C2v〉. (2.28)

And it is easy to see that the form of the state on Alice’s side still does not involve v, since it can
be written as:

|Tw,MTw〉.
We write x′′ = (w, v) and f ′′(x′′) := f ′(x′). Note that the function f ′′ is related to the function f by
a linear change of variables. Hence, owing to theorem 2.9.9, f ′′ must also satisfy condition (2.24).
We will use this condition to gain insight in the form of f ′′. We will only consider the non-trivial
part h(x′′) of f ′′(x′′), as defined in (2.18). The reason we only focus on h is because we can obtain
all linear terms αl(x

′′) by acting locally in each party, and we can simply ignore (−1)q(x
′′) because

these terms are all allowed for a Pauli stabilizer state (recall that our goal is to map |ψ〉 to a Pauli
stabilizer state by means of an operation DA ⊗ DB). We claim h only depends on w1, , wr and
v. We prove this fact by contradiction. For example, assume that h contains a term (−1)wr+1vavb .
Then by equations (2.19) and (2.20), we know

(Fa ◦ h)(w, v) = (−1)wr+1vb+q(w,v),

where q(w, v) is a quadratic function that does not contain the term wr+1vb. By theorem 2.9.7,
we know that

Fa(h) ∈ Γ.

However, by observing (2.28), we notice that none of the functions γj (which are defined in (2.21))
can contain (−1)wr+1vb . This implies that

Fa(f
′′) 6∈ Γ,

which leads to the contradiction. Similarly we can show that there are no iwjvb terms in h for
j ≥ r + 1.

We have shown that the function h only depends on w1, , wr and v. This implies that, by acting
with a suitable diagonal unitary operation within Bob’s side, we can remove the corresponding
phase in the state |ψ〉; the resulting state is a Pauli stabilizer state. To see how these phases can
be removed locally, we argue as follows. The standard basis kets on Bob’s side have the form
(2.28) with D1 full rank. Thus there exists a (full rank) matrix E such that ED1w = w for every
w = (w1, . . . , wr). Let U1 be the unitary operation which implements E

U1 : |v,D1(w1, . . . , wr) + C2v〉 7→ |v, (w1, . . . , wr) + EC2v〉

After applying U1, we apply the operation U2 defined by

U2 : |v, (w1, . . . , wr) + EC2v〉 7→ |v, (w1, . . . , wr)〉

Note that both U1 and U2 can be realized as circuits of CNOT gates. Then we apply the diagonal
operation D defined by

D : |v, (w1, . . . , wr)〉 7→ h(w1, . . . , wr, v)−1|v, (w1, . . . , wr)〉.
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Since h can be evaluated efficiently (this follows from the fact that f can be evaluated efficiently),

the operation D can be implemented efficiently. Finally, we apply U †2 followed by U †1 , yielding

h(w1, . . . , wr, v) |D1(w1, . . . , wr) + C2v〉.

This total procedure DB := U †1U
†
2DU2U1 thus allows us to multiply each ket (2.28) with the inverse

of h(w1, . . . , wr, v), thereby “canceling out” the function h. Note that DB is a diagonal operation,
since D is diagonal and since U2U1 is a permutation of the standard basis.

We have shown:

Theorem 2.10.1. Let |ψ〉 be an XS-stabilizer state and (A,B) a bipartition of its qubits. Then
there exists a Pauli stabilizer state |φA,B〉 and diagonal operators DA and DB such that

|ψ〉 = DA ⊗DB |φA,B〉.

A description of |φA,B〉 can be computed efficiently.

Corollary 2.10.2. The von Neumann entanglement entropy of |ψ〉 w.r.t. (A,B) can be computed
efficiently.

Corollary 2.10.3. Let ρA be the reduced density operator of |ψ〉 for the qubits in A. Then ρA is
proportional to a projector i.e. all nonzero eigenvalues of ρA coincide.

The first corollary holds since the entanglement entropy of Pauli stabilizer states can be com-
puted efficiently [FCY+04]. The second corollary holds since reduced density operators of Pauli
stabilizer states are proportional to projectors [HDE+05].

The state |φA,B〉 generally depends on the bipartition (A,B). It would be interesting to un-
derstand whether Theorem 2.10.1 can be made independent of that:

Problem. For every XS-stabilizer state |ψ〉, does there exist a single Pauli stabilizer state |φ〉 such
that for every bipartition (A,B) we have

|ψ〉 = UA ⊗ UB |φ〉

for some local unitaries UA and UB?

2.10.2 LU-inequivalence of XS- and Pauli stabilizer states

Here we show that the XS-stabilizer state (2.2) is not LU-equivalent to any Pauli stabilizer state,
i.e. there does not exist any Pauli stabilizer state |φ〉 satisfying |ψ〉 = U |φ〉 for any U := U1⊗· · ·⊗
U6 ∈ U(2)⊗6. This result demonstrates that there exist XS-stabilizer states whose multipartite
entanglement (w.r.t LU-equivalence) is genuinely different from that of any Pauli stabilizer state.

In order to prove the claim, we consider the classification of 6-qubit stabilizer (graph) states
under LU-equivalence as given in Fig. 4 and Table II of Ref. [HEB04]. In the latter figure, 11
distinct LU-equivalence classes are shown to exist for fully entangled 6-qubit stabilizer states; the
classes are labeled from 9 to 19. A representative of each class is given in Fig 4. Furthermore each
class is uniquely characterized by its list of Schmidt ranks, i.e. the Schmidt ranks for all possible
bipartitions of the system. In table II it is shown that, for any of the classes 9–17, there is at least
one bipartition of the form (two qubits – rest) for which the state is not maximally entangled. This
shows that the XS-stabilizer state |ψ〉 cannot be LU-equivalent to any of the states in the classes
9–17, since |ψ〉 is maximally entangled for all such bipartitions. Furthermore, for class 19, the
entanglement is maximal for all bipartitions of the form (3 qubits – rest); since this is not the case
for |ψ〉, the latter cannot be LU-equivalent to any state in class 19. This leaves class 18. Consider
the state

|φ〉 =
1∑

xj=0

|x1, x2, x3, x1 ⊕ x2, x2 ⊕ x3, x3 ⊕ x1〉



2.11. EFFICIENT ALGORITHMS 41

which is a Pauli stabilizer state. By direct computation of all Schmidt ranks, one verifies that this
state belongs to class 18. We prove by contradiction that |ψ〉 is not LU-equivalent to |φ〉. First,
it is straightforward to show that for both |φ〉 and |ψ〉, the 3-qubit reduced density matrix of the
1st, 2nd and 4th qubits is

ρ124 =
1

4
(|000〉〈000|+ |011〉〈011|+ |101〉〈101|+ |110〉〈110|)

=
1

8
(I + Z1 ⊗ Z2 ⊗ Z4).

If there is a local unitary transformation U from |φ〉 to |ψ〉, then U1 ⊗ U2 ⊗ U4 must leave ρ124

unchanged. This implies that U1⊗U2⊗U4 must leave Z1⊗Z2⊗Z4 unchanged, so that U1Z1U
†
1 ∝ Z1

and similarly for U2 and U4. This implies that U1, U2 and U4 must have the form Dj or DjX for
some diagonal matrix Dj . Analogously, we can show that the same holds for all other j. Thus
U = DX(~a) for some diagonal operator D := D1 ⊗ · · · ⊗ D6 and some ~a ∈ Z6

2. Note that |ψ〉
and |φ〉 have the form

|φ〉 =
∑

v∈V
|v〉 and |ψ〉 =

∑

v∈V
αv |v〉,

for some linear subspace V ⊆ Z6
2 and real coefficients αv. Then

DX(~a) |φ〉 =
∑

v∈V
βv |v + ~a〉

for some coefficients βv. Thus U |φ〉 = |ψ〉 implies that V = V + ~a. This shows that ~a ∈ V . But
then X(~a) |φ〉 = |φ〉. The identity U |φ〉 = |ψ〉 thus implies that D |φ〉 = |ψ〉. It is straightforward
to verify that this cannot be true. We have thus shown that |ψ〉 and |φ〉 are not LU-equivalent. In
conclusion, |ψ〉 does not belong to any LU-equivalence class of Pauli stabilizer states.

2.11 Efficient algorithms

In this section we will give a list of problems that can be solved with efficient classical algorithms
for regular XS-stabilizer states (codes). We consider an arbitrary n-qubit regular XS-stabilizer
stabilizer code HG specified in terms of a generating set of m stabilizers in the standard form given
in Corollary 2.8.5. Then the following holds:

1. The degeneracy d of the code can be computed in poly(n,m) time (recall section 2.9.2).

2. An efficient algorithm exists to determine d basis states |ψ1〉, , |ψd〉, each of which is an
XS-stabilizer state with regular stabilizer group and each state having the form

|ψi〉 =
∑

x∈Zt2

fi(x) |x,Wx+ ~µi〉 with fi ∈ F .

The matrix W (which is the same for all |ψi〉) can be computed in poly(n,m) time. The list
{~µ1, , ~µd} can be computed in poly(n,m, d) time. Given a specific ~µi, a complete generating
set of stabilizer operators having |ψi〉 as unique stabilized state can be computed in poly(n,m)
time. Furthermore, given ~µi, the function x 7→ fi(x) can be computed in poly(n,m) time as
well. See section 2.9.2.

3. The logical operators of HG can be computed in poly(n,m, d) time. See section 2.9.3.

4. The commuting Hamiltonian described in section 2.5 can be computed in poly(n,m)
time.

On input of ~µi the following holds in addition:



42 CHAPTER 2. A NON-COMMUTING STABILIZER FORMALISM

5. The von Neumann entanglement entropy of any |ψi〉 with regular stabilizer group can be
computed, for any bipartition, in poly(n,m) time. This claim holds since we have shown in
section 2.10 how to efficiently compute the description of a Pauli stabilizer state with the
same entanglement as |ψi〉; furthermore an efficient algorithm to compute the von Neumann
entanglement entropy of Pauli stabilizer states is known [FCY+04].

6. A poly(n) size quantum circuit to generate any |ψi〉 can be computed for in poly(n,m)
time. This circuit can always be chosen to be a Clifford circuit followed by a circuit composed
of the diagonal gates CCZ (controlled-CZ), CS := diag(1, 1, 1, i) (controlled-S) and T . To
see this, we recall theorem 2.9.6. This implies that the state |ψi〉 can be prepared as follows:

• Using a Clifford circuit C1, prepare the state
∑ |x,Wx+ ~µi〉. In fact, this can be done

using a circuit composed of Hadamard, X and CNOT gates.

• Since the function fi belongs to the class F , it has the form

αl(x) iq(x) (−1)c(x).

Note that the we have the following gate actions on the standard basis:

T : |x〉 7→ αx |x〉,
S : |x〉 7→ ix |x〉,

CS : |x, y〉 7→ ixy |x〉,
CZ : |x, y〉 7→ (−1)xy |x, y〉,

CCZ : |x, y, z〉 7→ (−1)xyz |x, y, z〉.

Therefore, the phase fi(x) can be generated by first applying a suitable circuit C2 of
Clifford gates CZ and S to generate the quadratic part of c(x) and the linear part of
q(x), and by subsequently applying a suitable circuit U composed of the (non-Clifford)
gates T , CS and CCZ to generate l(x), the quadratic part of q(x) and the cubic part
of c(x), respectively. Since the function fi can be computed efficiently, the descriptions
of C2 and U can be computed efficiently. The overall circuit is UC2C1.

7. Given any |ψi〉 and Pauli operator P , we can compute the expectation value 〈ψi|P |ψi〉
in poly(n,m) time. This implies in particular that the expectation of any local observable
(i.e. an observable acting on a subset of qubits of constant size) can be computed efficiently
as well, since every such observable can be written as a sum of poly(n) Pauli observables.
To see that 〈ψi|P |ψi〉 can be computed efficiently, recall from point 6 above that |ψi〉 can be
decomposed as |ψi〉 = U|ψ′i〉 where U is a circuit composed of T , CS and CCZ, and where
|ψ′i〉 = C2C1|0〉 is a Pauli stabilizer state. Then

〈ψi|P |ψi〉 = 〈ψ′i|U†PU|ψ′i〉.

Its is easily verified that U†PU =: C′′ is a Clifford operation, for every circuit U composed of
T , CS and CCZ (for example TXT ∝ S). Thus we have

〈ψi|P |ψi〉 = 〈ψ′i|C′′|ψ′i〉.

Recall that |ψ′i〉 = C2C1|ψi〉, we know that

〈ψi|P |ψi〉 = 〈0|C′′′|0〉,

where C′′′ = C†1C†2CC2C1. Note that 〈0|C′′′|0〉 is simply the coefficient of the basis |0〉 in the
Pauli stabilizer state C′′′|0〉, which can be computed efficiently according to [VDN10].
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2.12 Non-regular XS-stabilizer groups

Though we have tried to avoid non-regular XS-stabilizer groups due to the computational hardness,
there are situations where they appear naturally. For example, let us look at (2.31) through (2.32)
in the appendix. They describe a code space HG that is equivalent to the ground space of the
twisted quantum double model Dω(Z2×Z2×Z2) by a local unitary circuit (as defined in [CGW10]).
These stabilizer operators have an interesting property: if they are on an infinite lattice or a lattice
with open boundary, then they generate a regular XS-stabilizer group. On the other hand, for
example, if they are on a torus, the group they generated will not be regular. This is related to the
fact that this model has a ground state degeneracy of 22 when it is on a torus, which cannot be
the degeneracy of a regular XS-stabilizer code. It is also known that this twisted quantum double
model support non-Abelian anyons, which has shown to be impossible for Pauli stabilizer codes on
2D.

Given the existence of interesting non-regular XS-stabilizer groups, we want to make a few
comments about which results in this chapter still hold for non-regular groups. First, we have the
following theorem:

Theorem 2.12.1. Every XS-stabilizer state has a regular XS-stabilizer group which uniquely sta-
bilizes it.

Proof. Let G be the initial (generally non-regular) stabilizer group of |ψ〉. We show that G can be
replaced with a regular stabilizer group. Let {D1, . . . , Dr} be generators of the diagonal subgroup
of G. Extend this set to a generating set of G, say S = {D1, . . . , Dr, g1, . . . , gk}. Here each gj has

the form gj = isjX(~aj)S(~bj). We can assume gj is non-diagonal, and ~aj are linearly independent
of each other. Since if this is not the case, we can use the procedure in Theorem 2.8.4 to transform
gj to satisfy this condition. Notice that gj are all monomial unitary matrix. It follows that the
permutation group P associated with G is generated by the operators X(~aj). Let V ⊆ Zn2 (where n
denotes the number of qubits) be the linear span of the ~aj . Then P = {X(v) | v ∈ V }. Furthermore,
the orbit of a computational basis state |x〉 is the coset of V containing x i.e. Ox = x+ V .

Consider the set VD of those n-bit strings z satisfying D|z〉 = |z〉 for all D ∈ GD. Furthermore,
recall from the proof of theorem 2.7.2 that Gx = GD for every x. Applying theorem 2.6.1(b) and
using that the dimension of the space stabilized by G is 1 (since |ψ〉 is an XS-stabilizer state) we
conclude that VD = x+ V for some x, and that |ψ〉 must have the form

|ψ〉 =
∑

v∈V
f(v) |v + x〉.

Now define Z-type operators hk of the form hk(−1)skZ(~bk) (k = 1, . . . , q), where sk and ~bk are
chosen such that VD coincides with the set of all z satisfying ~bTk z = sk for all k. This means
hk|z〉 = |z〉 for all z ∈ x + V and in turn hk|ψ〉 = |ψ〉. It follows that |ψ〉 is stabilized by
S ′ := {h1, . . . , hq, g1, . . . , gk}. Finally, by lemma 2.8.3, we know the group G′ is regular, and by
the argument in lemma 2.9.5, we know |ψ〉 is uniquely stabilized by G′.

Now consider the procedure in lemma 2.9.5. It is easy to see even if the group G is non-regular,
as long as we have a ~λj ∈ VD, we can still find the |ψj〉 corresponds to ~λj . By theorem 2.6.1, there

is a set of {~λj} such that the corresponding |ψj〉 form a basis for the space stabilized by G. Again
by the procedure in lemma 2.9.5, we know G can be expanded to uniquely stabilize each |ψj〉.
Thus by theorem 2.12.1 we know |ψj〉 is a regular XS-stabilizer state. This means although it is

(computationally) hard to find ~λj , the basis |ψj〉 for the code space still satisfies all the properties
we proved, including the form of the phases f(x) and the bipartite entanglement. The construction
of commuting Hamiltonian also does not require the stabilizer group to be regular.

On the other hand, for non-regular stabilizer groups, there is no general formula for the degen-
eracy. We also cannot find logical operators that have a similar form as the ones in section 2.9.3,
since the degeneracy of HG is not necessarily 2k.
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2.13 Open questions

In this section we will summarize a few interesting questions about the XS-stabilizer formalism,
some of which have already been mentioned in the text.

The group structure While the tractability of XS-stabilizer states |ψj〉 is closely related to the
fact that each XS-stabilizer group G is a rather particular finite group, the properties of |ψj〉
are not. It would be interesting to establish some direct link between the group G and the
states |ψj〉 (e.g. a relation between the reduced density matrix ρ and G).

Properties of entanglement As we mentioned in section 2.10, it is not known whether for any
XS-stabilizer state |ψ〉 there exists a single Pauli stabilizer state |ϕ〉 that has the same von
Neumann entropy across all bipartitions. It would also be interesting to know to what extent
the inequalities described in [LMRW13] hold for XS-stabilizer states.

Logical operators and transversal gates We have shown how to construct Z̄j and X̄j opera-
tors in section 2.9.3. The Z̄j are transversal gates by definition. While we showed that the
X̄j operators include X, S, and CZ in general, it is possible that for many codes the X̄j only
contain X and S. In particular, S and CZ are interchangeable in some cases. For example,
consider the state

|ψ〉 =
∑

x1,x2

|x1, x2, x1 ⊕ x2〉.

It is easy to check that
CZ12 |ψ〉 = S3

1S
3
2S3 |ψ〉.

Thus it would be interesting to know when a certain XS-stabilizer code has transversal X̄j

operators, and possibly some other transversal gates.

Quantum phases Understanding topological phases is an extremely important but also very hard
task. Compared to general local Hamiltonians, the Hamiltonians generated by local Pauli
stabilizer codes are much easier to analyze. Thus the Pauli stabilizer formalism has proved
a gateway both to studying the behaviour of topological phases and to constructing new
models. It is then natural to ask whether we can classify all topological phases described by
XS-stabilizer codes or whether we can construct new models in 2D and 3D.

Non-regular XS-stabilizer As we have shown in this chapter, it is in general computationally
hard to study the states stabilized by non-regular XS-stabilizer groups. Restricting to regular
groups is sufficient to circumvent this problem, but not necessary. It is thus desirable to find
the necessary conditions under which the XS-stabilizer problem will become efficient. For
example, it is not clear whether the XS-stabilizer problem is still hard if the number of S-type
operators in the generators of the diagonal subgroup is constant.



Appendix

2.A Twisted quantum double models

We study the twisted quantum double models Dω(Zn2 ) with the groups Zn2 and twists ω ∈ H3
(
Zn2 , U(1)

)

on a triangular lattice. Although every such group is Abelian, for certain n and ω the twisted quan-
tum double model Dω(Zn2 ) will harbour non-Abelian anyons as excitations.

Without loss of generality we choose the branching structure shown in Figure 2.A.1 for the
triangular lattice. Each lattice edge i carries a Hilbert space with basis {|xi〉 | xi ∈ Zn2}. By abuse
of notation |xi〉 is either the state of an actual qubit if n = 1 or the state of a qudit if n > 1. In
the latter case we write elements t = (t1, . . . , tn) ∈ Zn2 as binary strings over the alphabet {0, 1}
and accordingly expand the qudit state |xi〉 = |xi,1, . . . , xi,n〉 in terms of qubit states |xi,σ〉 where i
denotes the position on the lattice and σ the “layer”. Furthermore we write group multiplication
in Zn2 additively.

The Hamiltonian is given as a sum of commuting projectors:

H = −
∑

s

Aω(s)−
∑

p

B(p).

Each operator B(p) is associated with a triangle p of the lattice and reads

B(p) = δ(xi + xj + xk) |xi, xj , xk〉〈xi, xj , xk|

where i, j and k denote the edges of p. It enforces a flat connection on the triangle p in the ground
state subspace. The operator Aω(s) associated with a vertex s is defined by

Aω(s) =
1

2n

∑

t∈Zn2

Aωt (s).

If s is the central vertex of Figure 2.A.1 the individual terms are given by

Aωt (s) =
∑

xi∈Zn2

fωt (x) |x1 + t, . . . , x6 + t〉〈x1, . . . , x6| ⊗ |x7, . . . , x12〉〈x7, . . . , x12|

Figure 2.A.1: A branching structure on the triangular lattice. White circles denote qudits |xi〉,
grey circles denote possible ancilla qudits |yp〉.
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with the phases2

fωt (x) =
ω(t, x4, x10)ω(x3 + t, t, x4)ω(x8, x3 + t, t)

ω(t, x6, x11)ω(x1 + t, t, x6)ω(x7, x1 + t, t)
= ±1.

Note that each ω couples two distinct qudit variables xi and xj which always belong to some
triangle. Also, these phases enjoy the property

fωtt′(x) = fωt (x1 + t′, . . . , x6 + t′, x7, . . . , x12)fωt′ (x)

which implies Aωt (s)Aωt′(s) = Aωtt′(s). The phases arising from a product of 3-cocycles ω and ω′

factorize as
fωω

′
t (x) = fωt (x)fω

′
t (x) (2.29)

because (ωω′)(a, b, c) = ω(a, b, c)ω′(a, b, c) is the multiplication of 3-cocycles.
Since xi+xj +xk = 0 in Zn2 is equivalent to xi,σ⊕xj,σ⊕xk,σ = 0 for all layers σ we can describe

the common +1 eigenspace of all triangle operators B(p) as the subspace stabilized by

Zi,σZj,σZk,σ

for all edges i, j and k forming a triangle and all layers σ. This subspace is exactly the gauge-
invariant subspace of Section 2.5. In order to describe the ground state subspace of the complete
Hamiltonian it suffices to add the stabilizers Aωt (s) for all vertices s and all generators t of Zn2 .
While a vertex operator Aωt (s) itself may not belong to the Pauli-S group we will find an equivalent
stabilizer Aωt (s) ∈ PS which coincides with Aωt (s) on the gauge-invariant subspace.

2.A.1 Z2

The third cohomology group H3
(
Z2, U(1)

)
' Z2 is generated by

ω(a, b, c) = (−1)abc.

It is well known that all twisted quantum double models for the group Z2 support Abelian anyons
only.

For this ω we obtain the phases

fω1 (x) = (−1)x1x6+x1x7+x3x4+x3x8+x4x10+x6x11 (−1)x4+x6+x7+x8 .

The phases with linear exponent can always be generated by applying Z. On the gauge-invariant
subspace we can also generate all quadratic phases (−1)xixj by applying suitable powers of S
because the edges i and j always belong to some triangle. Denoting the third edge of the triangle
by k we can indeed get (−1)xixj from S3

i S
3
jSk because ixk = ixi⊕xj = ixi+xj (−1)xixj holds by

Lemma 2.9.1. Hence the operator

X1 · · ·X6Z1Z2Z3Z5S7S8S9S
†
10S
†
11S12

coincides with Aω1 (s) on the gauge-invariant subspace. We can recover a more symmetric expression
by multiplying with Z-type stabilizers and obtain

Aω1 (s) = X1 · · ·X6Z1 · · ·Z6S7 · · ·S12.

This is the same stabilizer as the one in the doubled semion model [LW05] up to conjugation by
S1 · · ·S6. The subspace stabilized by all Aω1 (s) and Z-type stabilizers is thus equivalent to the
ground state subspace of the doubled semion model up to local unitaries.

Now for a given lattice, we can define gj with j ≤ t to be Aω1 (s) on each vertex s, and the rest
of gj to be the operator B(p). One thing needs to be taken care of is when the lattice periodic

2Note that these phases do not explicitly depend on the values x2, x5, x9 and x12. This may change if one fixes
a different branching structure on the triangular lattice.
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boundary condition (e.g. torus), gj will no long be in the standard form as we defined in (2.10),
since we have ∏

j≤t
X(~aj) = I.

To check that in this case the stabilizer group is still regular, we only need to check the product
∏

j≤t
gj (2.30)

is a Z-type operator. We notice that by lemma (2.4.1), we can exchange X and S in the prod-
uct (2.30) with the only price being introducing new Z operators into the product. Thus as long
as for each j, the Sj operator (S on the jth qubit) appears even number of times in the prod-
uct, we know the product will be a Z-type operator. And this can be readily checked. With a
straightforward but more involved calculation, we can show that the product (2.30) is satisfied by
the gauge-invariant subspace, or in other words, the product can be generated by {B(p)}.

2.A.2 Z2 × Z2

The third cohomology group H3
(
Z2 × Z2, U(1)

)
' Z3

2 is generated by

ω1(a, b, c) = (−1)a1b1c1 ,

ω2(a, b, c) = (−1)a2b2c2 ,

ω3(a, b, c) = (−1)a1b2c2 .

It is known that all twisted quantum double models for the group Z2×Z2 support Abelian anyons
only.

It is not difficult to see that the 3-cocycles ω1 and ω2 do not lead to anything qualitatively new
compared to the case Z2.3

The 3-cocycle ω3 is much more interesting. We obtain the phases

fω3

(1,0)(x) = (−1)x4,2x10,2+x6,2x11,2 ,

fω3

(0,1)(x) = (−1)x1,1x6,2+x3,1x4,2+x1,2x7,1+x3,2x8,1 (−1)x7,1+x8,1 .

Clearly, the phases associated with (1, 0) are confined to layer 2 and we can apply the methods
of 2.A.1. This results in

Aω3

(1,0)(s) = X1,1 · · ·X6,1S
3
4,2Z5,2S

3
6,2S

3
10,2S

3
11,2.

However, the quadratic phases (−1)xi,1xj,2 arising from (0, 1) are of a different kind. Although
all pairs of edges i and j continue to belong to some triangle we can no longer exploit the flat
connection since the qubits reside on different layers. Instead we introduce the ancilla qubits

|yp〉 = |xi,1 ⊕ xj,2〉

for (p, i, j) ∈ {(1, 7, 1), (2, 8, 3), (3, 3, 4), (4, 4, 10), (5, 6, 11), (6, 1, 6)} and these may be associated
with the triangles of the lattice as shown in Figure 2.A.1. Clearly, the above coupling can be
enforced by additional Z-type stabilizers. We will write Õp for an operator O acting on the ancilla
qubit yp in the triangle p. On the gauge-invariant subspace coupled to the ancilla layer we then
have

Aω3

(0,1)(s) = X1,2 · · ·X6,2S
3
1,1S

3
1,2S

3
3,1S

3
3,2S

3
4,2S

3
6,2S7,1S8,1S̃1S̃2S̃3S̃6.

Similar to 2.A.1, we can also compute the additional diagonal operators when we have a lattice
with periodic boundary condition. Notice that Aω3

(1,0)(s) (Aω3

(0,1)(s)) commute with each other for

any two vertices. It is then straightforward to check the multiplication of all Aω3

(1,0)(s) is identity,

and Aω3

(0,1)(s) can be generated by B(p).

3Indeed, for ω1 the phases fω1
(1,0) are confined to layer 1 where we can apply the methods of 2.A.1. In contrast,

the other generator (0, 1) yields trivial phases only so that Aω1
(0,1) = Aω1

(0,1) is an X-type element confined to layer 2.
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2.A.3 Z2 × Z2 × Z2

The third cohomology group H3
(
Z2 × Z2 × Z2, U(1)

)
' Z7

2 is generated by

ω1(a, b, c) = (−1)a1b1c1 ,

ω2(a, b, c) = (−1)a2b2c2 ,

ω3(a, b, c) = (−1)a3b3c3 ,

ω4(a, b, c) = (−1)a1b2c2 ,

ω5(a, b, c) = (−1)a1b3c3 ,

ω6(a, b, c) = (−1)a2b3c3 ,

ω7(a, b, c) = (−1)a1b2c3 .

It turns out that the twisted quantum double models Dω(Z3
2) support non-Abelian anyons if and

only if the twist ω contains ω7 [dWP97].

Again, the 3-cocycles ω1, , ω6 lead to situations which qualitatively resemble the cases Z2

and Z2 × Z2.

Now the 3-cocycle ω7 leads to truly interesting results. We obtain the phases

fω7

(1,0,0)(x) = (−1)x4,2x10,3+x6,2x11,3 ,

fω7

(0,1,0)(x) = (−1)x1,1x6,3+x3,1x4,3 ,

fω7

(0,0,1)(x) = (−1)x1,2x7,1+x3,2x8,1 .

Let us introduce the ancilla qubits

|yp,1〉 = |xi,1 ⊕ xj,2〉,
|yp,2〉 = |xi,1 ⊕ xj,3〉,
|yp,3〉 = |xi,2 ⊕ xj,3〉

for positions (p, i, j) ∈ {(1, 7, 1), (2, 8, 3), (3, 3, 4), (4, 4, 10), (5, 6, 11), (6, 1, 6)}. This coupling can
again be enforced by additional Z-type stabilizers. We can then write

Aω7

(1,0,0)(s) = X1,1 · · ·X6,1S
3
4,2S

3
10,3S

3
6,2S

3
11,3S̃4,3S̃5,3, (2.31)

Aω7

(0,1,0)(s) = X1,2 · · ·X6,2S
3
1,1S

3
3,1S

3
4,3S

3
6,3S̃3,2S̃6,2,

Aω7

(0,0,1)(s) = X1,3 · · ·X6,3S
3
1,2S

3
3,2S

3
7,1S

3
8,1S̃1,1S̃2,1. (2.32)

For a given (j, k, l) ∈ {(0, 0, 1), (0, 1, 0), (0, 0, 1)}, again Aω7

(j,k,l)(s) commute with each other

for different s. Thus it is easy to compute the product
∏
sAω7

(j,k,l)(s) for a lattice with periodic
boundary condition. However, in this case, the product would be some tensor product that contains
S operators. Thus the stabilizer group G for this model on a torus is not a regular XS-stabilizer
group, which is different from the previous two models that are based on Z2 and Z2×Z2. However,
on a 2D lattice with suitable boundary the stabilizer group G is regular and the unique ground
state continues to support non-Abelian anyons since these excitations can be created locally.

2.A.4 Zn2
In general, the third cohomology group H3

(
Zn2 , U(1)

)
is generated by the following types of gen-

erators [dWP97]:

ωi(a, b, c) = (−1)aibici ,

ωij(a, b, c) = (−1)aibjcj ,

ωijk(a, b, c) = (−1)aibjck .
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Here i, j and k denote distinct factors (layers) of the direct product group Zn2 . We have shown
above how the phases fωt for each such generator ω can be expressed within the XS-stabilizer
formalism by coupling ancilla qubits to the original ones as necessary.

This clearly extends to arbitrary elements of the third cohomology group. Suppose we want to
obtain the phases associated with the 3-cocycle ωω′ where ω and ω′ are any of the above generators.
From (2.29) we see that we can construct these phases independently for ω and ω′. This shows that
we can describe the ground state subspaces of arbitrary twisted quantum double models Dω(Zn2 )
with our XS-stabilizer formalism.
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Chapter 3

Adiabatic preparation of topological
states

This Chapter is based on [NPYK16].

In this chapter we study the preparation of topologically ordered states by inter-
polating between an initial Hamiltonian with a unique product ground state and a
Hamiltonian with a topologically degenerate ground state space. It can be used to
initialize a topological quantum memory/computer. This approach of initialization
can be done without access to individual degrees of freedom, and without knowing
the form of perturbation in the final Hamiltonian. Thus, it may be the preferred
initialization method for certain physical systems. By numerically simulating the
dynamics mentioned above for small systems, we observe a certain stability of the
prepared state as a function of the initial Hamiltonian, which is interesting in the
context of fault-tolerant quantum computation, as certain “magic states” can reduce
the requirement of achieving fault-tolerance. For small systems or long interpolation
times, we argue that the resulting state can be identified by computing suitable effec-
tive Hamiltonians. For effective anyon models, this analysis singles out the relevant
physical processes and extends the study of the splitting of the topological degener-
acy by Bonderson [Bon09]. We illustrate our findings using Kitaevs Majorana chain,
effective anyon chains, the toric code and Levin-Wen string-net models.

3.1 Introduction

In this chapter, we are going to explore a very different approach to quantum error correction,
which is by making a connection to the topologically ordered phases of matter. This approach was
first explored in the seminal work of Kitaev [Kit03]. One of their most attractive features is their
ground space degeneracy: it provides a natural quantum error-correcting code for encoding and
manipulating information. Remarkably, the ground space degeneracy is approximately preserved
in the presence of weak static Hamiltonian perturbations [BHM10, BH11, MZ13]. This feature
suppresses the uncontrolled accumulation of relative phases between code states, and thus helps
to overcome decoherence. The initial hope was that topological codes such as the toric code
can passively protect the quantum information stored in it, once we can realize the toric code
Hamiltonian in a material. However, it is realized later that the toric code cannot prevent the
transition between code states at non-zero temperature passively. Many ideas have been proposed
to make 2D topological codes self-correcting1, but they all have certain shortcomings. Therefore,
a realistic expectation is that if we can make the coupling between a topological quantum memory
and its environment low enough, we can possibly store the information there for a decent amount
of time, albeit not forever (i.e. storage time scales exponentially with respect to system size).

To use topologically ordered systems as quantum memories and for fault-tolerant quantum

1There is no clear definition of “self-correcting”. However, it is expected that a self-correcting memory should be
able to store information with time T ∼ Lα at low temperature, where L is the system size.
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computation, concrete procedures for the preparation of specific ground states are required. Such
mechanisms depend on the model Hamiltonian which is being realized as well as on the par-
ticular experimental realization. Early work [DKLP02] discussed the use of explicit unitary en-
coding circuits for the toric code. This consideration is natural for systems where we have full
access to unitary gates over the underlying degrees of freedom. We may call this the bottom-up
approach to quantum computing: here one proceeds by building and characterizing individual
components before assembling them into larger structures. An example are arrays of supercon-
ducting qubits [BKM+14a, CGM+14, CMS+15]. Other proposed procedures for state preparation
in this approach involve engineered dissipation [DKP14, BBK+13], measurement-based prepara-
tion [LMGH15] or the PEPS preparing algorithm in [STV+13]. However, achieving the control
requirements for experimentally performing such procedures is quite challenging. They require ei-
ther a) independently applying complex sequences of gates on each of the elementary constituents
b) precisely engineering a dissipative evolution, or c) performing an extensive set of local mea-
surements and associated non-local classical data processing to determine and execute a suitable
unitary correction operation. Imperfections in the implementation of such protocols pose a severe
problem, especially in cases where the preparation time is extensive [BHV06, KP14].

In fact, these procedures achieve more than is strictly necessary for quantum computation:
any ground state can be prepared in this fashion. That is, they constitute encoders, realizing an
isometry from a number of unencoded logical qubits to the ground space of the target Hamiltonian.
We may ask if the task of preparing topologically ordered state becomes easier if the goal is
to prepare specific states instead of encoding arbitrary states. In particular, we may ask this
question in the top-down approach to quantum computing, where the quantum information is
encoded in the ground space of a given condensed matter Hamiltonian. An example are Majorana
wires [MZF+12, NPDL+14] or fractional quantum Hall substrates [VYPW11]. Indeed, a fairly
standard approach to preparing ground states of a Hamiltonian is to cool the system by weakly
coupling it with a thermal bath at a temperature significantly lower than the Hamiltonian gap.
Under appropriate ergodicity conditions, this leads to convergence to a state mainly supported
on the ground space. Unfortunately, when using natural equilibration processes, convergence
may be slow, and the resulting prepared state is generally a (logical) mixed state unsuitable for
computation.

A natural alternative method for preparing ground states of a given Hamiltonian is adiabatic
evolution: here one initializes the system in an easy-to-prepare state (e.g., a product state), which
is the unique ground state of a certain initial Hamiltonian (e.g., describing a uniform field). Subse-
quently, the Hamiltonian of the system is gradually changed (by tuning external control parameters
in a time-dependent fashion) until the target Hamiltonian is reached. If this time-dependent change
of the Hamiltonian is “slow enough”, i.e., satisfies a certain adiabaticity condition (see Section 3.2),
the state of the system will closely follow the trajectory of instantaneous ground states. The result-
ing state then is guaranteed to be mainly supported on the ground space of the target Hamiltonian,
as desired.

Adiabatic preparation has some distinct advantages compared to e.g., encoding using a unitary
circuit. For example, in contrast to the latter, adiabatic evolution guarantees that the final state is
indeed a ground state of the actual Hamiltonian describing the system, independently of potential
imperfections in the realization of the ideal Hamiltonians. In contrast, a unitary encoding circuit
is designed to encode into the ground space of an ideal model Hamiltonian, and will therefore
generally not prepare exact ground states of the actual physical system (which only approximate
the model Hamiltonian). Such an encoding into the ideal ground space may lead to a negligible
quantum memory time in the presence of an unknown perturbation [PKSC10]; this is because ideal
and non-ideal (perturbed) ground states may differ significantly (this phenomenon is referred to as
Anderson’s orthogonality catastrophe [And67]). Adiabatic evolution, on the other hand, elegantly
sidesteps these issues.

The fact that adiabatic evolution can follow the actual ground state of a system Hamilto-
nian makes it a natural candidate for achieving the task of topological code state preparation.
An additional attractive feature is that its experimental requirements are rather modest: while
some time-dependent control is required, this can be local, and additionally translation-invariant.
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Namely, the number of external control parameters required does not scale with the system size
or code distance.

Summary and outlook

Motivated by these observations, we consider the general problem of preparing topologically ordered
states by what we refer to as Hamiltonian interpolation. We will use this terminology instead of
“adiabatic evolution” since in some cases, it makes sense to consider scenarios where adiabaticity
guarantees cannot be given. For concreteness, we consider a time-dependent Hamiltonian H(t)
which monotonically sweeps over the path

H(t) = (1− t/T ) ·Htriv + t/T ·Htop t ∈ [0, T ] , (3.1)

i.e., we assume that the interpolation is linear in time and takes overall time2 T . Guided by exper-
imental considerations, we focus on the translation-invariant case: here the Hamiltonians H(t) are
translation-invariant throughout the evolution. More precisely, we consider the process of interpo-
lating between a Hamiltonian Htriv with unique ground state Ψ(0) = ϕ⊗L and a Hamiltonian Htop

with topologically degenerate ground space (which is separated from the remainder of the spectrum
by a constant gap): the state Ψ(t) of the system at time t ∈ [0, T ] satisfies the equation of motion

∂Ψ(t)

∂t
= −iH(t)Ψ(t) , Ψ(0) = ϕ⊗L . (3.2)

Generally, we consider families of Hamiltonians (or models) parametrized by a system size L;
throughout, we will assume that L is the number of single particles, e.g., the number of qubits (or
sites) in a lattice with Hilbert space H = (C2)⊗L. The dimension of the ground space of Htop will
be assumed to be independent of the system size.

Our goal is to characterize the set of states which are preparable by such Hamiltonian interpo-
lations starting from various product states, i.e., by choosing different initial Hamiltonians Htriv.
To each choice Ψ(0) = ϕ⊗L of product state we associate a normalized initial trivial Hamilto-

nian Htriv := −∑j P
(j)
ϕ which fully specifies the interpolating path of Eq. (3.1), with P

(j)
ϕ = |ϕ〉〈ϕ|

being the single particle projector onto the state ϕ at site j.

In the limit T → ∞, one may think of this procedure as associating an encoded (logical)
state ι(ϕ) to any single-particle state ϕ. However, some caveats are in order: first, the global phase
of the state ι(ϕ) cannot be defined in a consistent manner in the limit T → ∞, and is therefore
not fixed. Second, the final state in the evolution (3.2) does not need to be supported entirely
on the ground space of Htop because of non-adiaticity errors, i.e., it is not a logical (encoded)
state itself. To obtain a logical state, we should think of ι(ϕ) as the final state projected onto
the ground space of Htop. Up to these caveats, our goal is essentially to characterize the image
of the association ι : ϕ 7→ ι(ϕ), as well as its continuity properties. We will also define an
analogous map ιT associated to fixed evolution time T and study it numerically by simulating the
corresponding Schrödinger equation (3.2) on a classical computer.

While there is a priori no obvious relationship between the final states ιT (ϕ), ιT (ϕ′) result-
ing from different initial (product) states ϕ⊗L, ϕ′⊗L, we numerically find that the image of ιT is
concentrated around a particular discrete family of encoded states. In particular, we observe for
small system sizes that the preparation enjoys a certain stability property: variations in the initial
Hamiltonian do not significantly affect the final state. We support this through analytic arguments,
computing effective Hamiltonians associated to perturbations around Htop which address the large
T limit. This also allows us to provide a partial prediction of which states ι(ϕ) may be obtained
through such a preparation process. We find that under certain general conditions, ι(ϕ) belongs
to a certain finite family of preferred states which depend on the final Hamiltonian Htop. As we
will argue, there is a natural relation between the corresponding states ι(ϕ) for different system

2 We remark that in some cases, using a non-linear monotone ‘schedule’ ϑ : [0, T ]→ [0, 1] with ϑ(0) = 0, ϑ(T ) = 1
and smooth derivatives may be advantageous (see Discussion in Section 3.2). However, for most of our considerations,
the simple linear interpolation (3.1) is sufficient.
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sizes: they encode the same logical state if corresponding logical operators are chosen (amounting
to a choice of basis of the ground space).

Characterizing the set {ι(ϕ)}ϕ of states preparable using this kind of Hamiltonian interpola-
tion is important for quantum computation because certain encoded states (referred to as “magic
states”) can be used as a resource for universal computation [BK05]. This chapter provides insight
into this question for ‘small’ systems, which we deem experimentally relevant. Indeed, there is
a promising degree of robustness for the Hamiltonian interpolation to prepare certain (stabilizer)
states. However, a similar preparation of magic states seems to require imposing additional sym-
metries which will in general not be robust. We exemplify our considerations using various concrete
models, including Kitaev’s Majorana chain [Kit01] (for which we can provide an exact solution),
effective anyon chains (related to the so-called golden chain [FTL+07] and the description used
by Bonderson [Bon09]), as well as the toric code [Kit03] and Levin-Wen string-net models [LW05]
(for which we simulate the time-evolution for small systems, for both the doubled semion and the
doubled Fibonacci model).

Prior work

The problem of preparing topologically ordered states by adiabatic interpolation has been consid-
ered before by Hamma and Lidar [HL08]. Indeed, their contribution is one of the main motivations
for our study. They study an adiabatic evolution where a Hamiltonian having a trivial product
ground state is interpolated into a toric code Hamiltonian having a four-fold degenerate ground
state space. They found that while the gap for such an evolution must forcibly close, this may
happen through second order phase transitions. Correspondingly, the closing of the gap is only
polynomial in the system size. This allows an efficient polynomial-time Hamiltonian interpolation
to succeed at accurately preparing certain ground states. We revisit this case in Section 3.2.1 and
give further examples of this phenomenon. The authors of [HZHL08] also observed the stability of
the encoded states with respect to perturbations in the preparation process.

Bonderson [Bon09] considered the problem of characterizing the lowest order degeneracy split-
ting in topologically ordered models. Degeneracy lifting can be associated to tunneling of anyonic
charges, part of which may be predicted by the universal algebraic structure of the anyon model.
Our conclusions associated to Sections 3.5 and 3.6 can be seen as supporting this perspective.

Beyond small systems

In general, the case of larger systems (i.e., the thermodynamic limit) requires a detailed understand-
ing of the quantum phase transitions [Sac11] occurring when interpolating between Htriv and Htop.
Taking the thermodynamic limit while making T scale as a polynomial of the system size raises a
number of subtle points. A major technical difficulty is that existing adiabatic theorems do not
apply, since at the phase transition gaps associated to either of the relevant phases close. This
is alleviated by scaling the interpolation time T with the system size and splitting the adiabatic
evolution into two regimes, the second of which can be treated using degenerate adiabatic pertur-
bation theory [RO10, RO12, RO14]. However, such a methodology still does not yield complete
information about the dynamical effects of crossing a phase boundary.

More generally, it is natural to conjecture that interpolation between different phases yields only
a discrete number of distinct states corresponding to a discrete set of continuous phase transitions
in the thermodynamic limit. Such a conjecture links the problem of Hamiltonian interpolation to
that of classifying phase transitions between topological phases. It can be motivated by the fact
that only a discrete set of possible condensate-induced continuous phase transitions is predicted
to exist in the thermodynamic limit [BS09, BSS11].

3.2 Adiabaticity and ground states

The first basic question arising in this context is whether the evolution (3.2) yields a state Ψ(T )
close to the ground space of Htop. The adiabatic theorem in its multiple forms (see e.g., [Teu03])
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provides sufficient conditions for this to hold: These theorems guarantee that given a Hamiltonian
path {H(t)}0≤t≤T satisfying certain smoothness and gap assumptions, initial eigenstates evolve into
approximate instantaneous eigenstates under an evolution of the form (3.2). The latter assumptions
are usually of the following kind:

(i) Uniform gap: There is a uniform lower bound ∆(t) ≥ ∆ > 0 on the spectral gap of H(t)
for all t ∈ [0, T ]. The relevant spectral gap ∆(t) is the energy difference between the ground
space P0(t)H of the instantaneous Hamiltonian H(t) and the rest of its spectrum. Here and
below, we denote by P0(t) the spectral projection onto the ground space 3 of H(t).

(ii) Smoothness: There are constants c1, . . . , cM such that the M first derivatives of H(t) are
uniformly bounded in operator norm, i.e., for all j = 1, . . . ,M , we have

∥∥ d
j

dtj
H(t)

∥∥ ≤ cj for all t ∈ [0, T ] . (3.3)

The simplest version of such a theorem is:

Theorem 3.2.1. Given a state Ψ(0) such that P0(0)Ψ(0) = Ψ(0) and a uniformly gapped Hamil-
tonian path H(t) for t ∈ [0, T ] given by Eq. (3.1), the state Ψ(T ) resulting from the evolution (3.2)
satisfies

‖Ψ(T )− P0(T )Ψ(T )‖ = O(1/T ) .

In other words, in the adiabatic limit of large times T , the state Ψ(T ) belongs to the instantaneous
eigenspace P0(T )H and its distance from the eigenspace is O(1/T ).

This version is sufficient to support our analytical conclusions qualitatively. For a quantitative
analysis of non-adiabaticity errors, we perform numerical simulations. Improved versions of the
adiabatic theorem (see [GMC15, LRH09]) provide tighter analytical error estimates for general in-
terpolation schedules at the cost of involving higher order derivatives of the Hamiltonian path H(t)
(see Eq.‘(3.3)), but do not change our main conclusions.

Several facts prevent us from directly applying such an adiabatic theorem to our evolution (3.1)
under consideration.

Topological ground space degeneracy. Most notably, the gap assumption (i) is not satisfied
if we study ground spaces: we generally consider the case where H(0) = Htriv has a unique ground
state, whereas the final Hamiltonian H(T ) = Htop is topologically ordered and has a degenerate
ground space (in fact, this degeneracy is exact and independent of the system size for the models
we consider). This means that if P0(t) is the projection onto the ground space of H(t), there is no
uniform lower bound on the gap ∆(t).

We will address this issue by restricting our attention to times t ∈ [0, κT ], where κ ≈ 1 is
chosen such that H(κT ) has a non-vanishing gap but still is “inside the topological phase”. We
will illustrate in specific examples how Ψ(T ) can indeed be recovered by taking the limit κ→ 1.

We emphasize that the expression “inside the phase” is physically not well-defined at this point
since we are considering a Hamiltonian of a fixed size. Computationally, we take it to mean that
the Hamiltonian can be analyzed by a convergent perturbation theory expansion starting from the
unperturbed Hamiltonian Htop. The resulting lifting of the ground space degeneracy of Htop will
be discussed in more detail in Section 3.3.

Dependence on the system size. A second potential obstacle for the use of the adiabatic
theorem is the dependence on the system size L (where e.g., L is the number of qubits). This
dependence enters in the operator norms (3.3), which are extensive in L – this would lead to
polynomial dependence of T on L even if e.g., the gap were constant (uniformly bounded).

3More generally, P0(t) may be the sum of the spectral projections of H(t) with eigenvalues in a given interval,
which is separated by a gap ∆(t) from the rest of the spectrum.
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More importantly, the system size enters in the gap ∆(t): in the topological phase, the gap
(i.e., the splitting of the topological degeneracy of Htop) is exponentially small in L for constant-
strength local perturbations to Htop, as shown for the models considered here by Bravyi, Hastings
and Michalakis [BHM10]. Thus a näıve application of the adiabatic theorem only yields a guarantee
on the ground space overlap of the final state if the evolution time is exponentially large in L. This
is clearly undesirable for large systems; one may try to prepare systems faster (i.e., more efficiently)
but would need alternate arguments to ensure that the final state indeed belongs to the ground
space of Htop.

For these reasons, we restrict our attention to the following two special cases of the Hamiltonian
interpolation (3.1):

• Symmetry-protected preparation: if there is a set of observables commuting with both Htriv

and Htop, these will represent conserved quantities throughout the Hamiltonian interpolation.
If the initial state is an eigenstate of such observables, one may restrict the Hilbert space
to the relevant eigenvalue, possibly resolving the topological degeneracy and guaranteeing a
uniform gap. This observation was first used in [HL08] in the context of the toric code: for this
model, such a restriction allows mapping the problem to a transverse field Ising model, where
the gap closes polynomialy with the system size. We identify important cases satisfying this
condition. While this provides the most robust preparation scheme, the resulting encoded
states are somewhat restricted (see Section 3.2.1).

• Small systems: For systems of relatively small (constant) size L , the adiabatic theorem
can be applied as all involved quantities are essentially constant. In other words, although
‘long’ interpolation times are needed to reach ground states of Htop (indeed, these may depend
exponentially on L), these may still be reasonable experimentally. The consideration of small
system is motivated by current experimental efforts to realize surface codes [KBF+15]: they
are usually restricted to a small number of qubits, and this is the scenario we are considering
here (see Section 3.2.2).

Obtaining a detailed understanding of the general large L limiting behaviour (i.e., the thermody-
namic limit) of the interpolation process (3.1) is beyond the scope of this thesis.

3.2.1 Symmetry-protected preparation

Under particular circumstances, the existence of conserved quantities permits applying the adi-
abatic theorem while evading the technical obstacle posed by a vanishing gap in the context of
topological order. Such a case was considered by Hamma and Lidar [HL08], who showed that
certain ground states of the toric code can be prepared efficiently. We can formalize sufficient
conditions in the following general way (which then is applicable to a variety of models, as we
discuss below).

Observation 3.2.2. Consider the interpolation process (3.1) in a Hilbert space H. Let P0(T ) be
the projection onto the ground space P0(T )H of H(T ) = Htop. Suppose that Q = Q2 is a projection
such that

(i) Q is a conserved quantity: [Q,Htop] = [Q,Htriv] = 0.

(ii) The initial state Ψ(0) is the ground state of Htriv, i.e., P0(0)Ψ(0) = Ψ(0) and satisfies
QΨ(0) = Ψ(0).

(iii) The final ground space has support on QP0(T )H 6= 0

(iv) The restriction QH(t) of H(t) to QH has gap ∆(t) which is bounded by a constant ∆ uni-
formly in t, i.e., ∆(t) ≥ ∆ for all t ∈ [0, T ].

Then QΨ(t) = Ψ(t), and the adiabatic theorem can be applied with lower bound ∆ on the gap,
yielding ‖Ψ(T )− P0(T )Ψ(T )‖ ≤ O(1/T ).
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The proof of this statement is a straightforward application of the adiabatic theorem (Theo-
rem 3.2.1) to the Hamiltonians QHtriv and QHtop in the restricted subspace QH. In the following
sections, we will apply Observation 3.2.2 to various systems. It not only guarantees that the ground
space is reached, but also gives us information about the specific state prepared in a degenerate
ground space.

As an example of the situation discussed in Observation 3.2.2, we discuss the case of fermionic
parity conservation in Section 3.4. This symmetry is naturally present in fermionic systems. We
expect our arguments to extend to more general topologically ordered Hamiltonians with additional
symmetries. It is well-known that imposing global symmetries on top of topological Hamiltonians
provides interesting classes of systems. Such symmetries can exchange anyonic excitations, and
their classification as well as the construction of associated defect lines in topological Hamilto-
nians is a topic of ongoing research [BSW11, KK12, BJQ13]. The latter problem is intimately
related to the realization (see e.g., [BMD09, Bom15]) of transversal logical gates, which leads to
similar classification problems [BK13, BBK+14, Yos15b, Yos15a]. Thus we expect that there is a
close connection between adiabatically preparable states and transversally implementable logical
gates. Indeed, a starting point for establishing such a connection could be the consideration of
interpolation processes respecting symmetries realized by transversal logical gates.

For later reference, we also briefly discuss a situation involving conserved quantities which – in
contrast to Observation 3.2.2 – project onto excited states of the final Hamiltonian. In this case,
starting with certain eigenstates of the corresponding symmetry operator Q, the ground space
cannot be reached:

Observation 3.2.3. Assume that Q,Htriv, Htop,Ψ(0) obey properties (i),(ii) and (iv) of Obser-
vation 3.2.2. If the ground space P0(T )H of Htop satisfies QP0(T )H = 0 (i.e., is orthogonal to
the image of Q), then the Hamiltonian interpolation cannot reach the ground space of Htop, i.e.,
〈Ψ(T ), P0(T )Ψ(T )〉 = Ω(1).

The proof of this observation is trivial since Q is a conserved quantity of the Schrödinger
evolution. Physically, the assumptions imply the occurrence of a level-crossing where the energy
gap exactly vanishes and eigenvalue of Q restricted to the ground space changes. We will encounter
this scenario in the case of the toric code on a honeycomb lattice, see Section 3.7.3.

3.2.2 Small-system case

In a more general scenario, there may not be a conserved quantity as in Observation 3.2.2. Even
assuming that the ground space is reached by the interpolation process (3.1), it is a priori unclear
which of the ground states is prepared. Here we address this question.

As remarked earlier, we focus on systems of a constant size L, and assume that the preparation
time T is large compared to L. Generically, the Hamiltonians H(t) are then non-degenerate (except
at the endpoint, t ≈ T , where H(t) approaches Htop). Without fine tuning, we may expect that
there are no exact level crossings in the spectrum of H(t) along the path t 7→ H(t) (say for some
times t ∈ [0, κT ], κ ≈ 1). For sufficiently large overall evolution times T , we may apply the
adiabatic theorem to conclude that the state of the system follows the (unique) instantaneous
ground state (up to a constant error). Since our focus is on small systems, we will henceforth
assume that this is indeed the case, and summarily refer to this as the adiabaticity assumption.
Again, we emphasize that this is a priori only reasonable for small systems.

Under the adiabaticity assumption, we can conclude that the prepared state Ψ(T ) roughly
coincides with the state obtained by computing the (unique) ground state ψκ of H(κT ), and
taking the limit κ → 1. In what follows, we adopt this computational prescription for identifying
prepared states. Indeed, this approach yields states that match our numerical simulation, and
provides the correct answer for certain exactly solvable cases. Furthermore, the computation of
the states ψκ (in the limit κ→ 1) also clarifies the physical mechanisms responsible for the observed
stability property of preparation: we can relate the prepared states to certain linear combination of
string-operators (Wilson-loops), whose coefficients depend on the geometry (length) of these loops,
as well as the amplitudes of certain local particle creation/annihilation and tunneling processes.
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Since H(κT ) for κ ≈ 1 is close to the topologically ordered Hamiltonian Htop, it is natural to
use ground states (or logical operators) of the latter as a reference to express the instantaneous
states ψκ. Indeed, the problem essentially reduces to a system described by Htop, with an additional
perturbation given by a scalar multiple of Htriv. Such a local perturbation generically splits the
topological degeneracy of the ground space. The basic mechanism responsible for this splitting
for topologically ordered systems has been investigated by Bonderson [Bon09], who quantified the
degeneracy splitting in terms of local anyon-processes. We seek to identify low-energy ground
states: this amounts to considering the effective low-energy dynamics (see Section 3.3). This will
provide valuable information concerning the set {ι(ϕ)}.

3.3 Effective Hamiltonians

As discussed in Section 3.2.2, for small systems (and sufficiently large times T ), the state Ψ(κT ) in
the interpolation process (3.1) should coincide with the ground state of the instantaneous Hamil-
tonian H(κT ). For κ ≈ 1, the latter is a perturbed version of the Hamiltonian Htop, where the
perturbation is a scalar multiple of Htriv. That is, up to rescaling by an overall constant, we are
concerned with a Hamiltonian of the form

H0 + εV (3.4)

where H0 = Htop is the target Hamitonian and V = Htriv is the perturbation. To compute the
ground state of a Hamiltonian of the form (3.4), we use effective Hamiltonians. These provide a
description of the system in terms of effective low-energy degrees of freedom.

3.3.1 Low-energy degrees of freedom

Let us denote by P0 the projection onto the degenerate ground space of H0. Since H0 is as-
sumed to have a constant gap, a perturbation of the form (3.4) effectively preserves the low-energy
subspace P0H for small ε > 0, and generates a dynamics on this subspace according to an ef-
fective Hamiltonian Heff(ε). We will discuss natural definitions of this effective Hamiltonian in
Section 3.3.3. For the purpose of this section, it suffices to mention that it is entirely supported
on the ground space of H0, i.e., Heff(ε) = P0Heff(ε)P0. As such, it has spectral decomposition

Heff(ε) =
K−1∑

k=0

Eeff
k (ε)Πeff

k (ε) , (3.5)

where Eeff
0 < Eeff

1 < . . ., and where Πeff
k (ε) = Πeff

k (ε)P0 are commuting projections onto subspaces
of the ground space P0H of H0. (Generally, we expect Heff(ε) to be non-degenerate such that K =
dimP0H.) In particular, the effective Hamiltonian (3.5) gives rise to an orthogonal decomposition
of the ground space P0H by projections {Πeff

k (ε)}K−1
k=0 . States in Πeff

0 (ε)H are distinguished by
having minimal energy. We can take the limiting projections as the perturbation strength goes
to 0, setting

Πeff
k (0) = lim

ε→0
Πeff
k (ε) for k = 0, . . . ,K − 1 .

In particular, the effective Hamiltonian Heff(ε) has ground space Πeff
0 (0)H in the limit ε → 0.

Studying Heff(ε), and, in particular, the space Πeff
0 (0)H appears to be of independent interest,

as it determines how perturbations affect the topologically ordered ground space beyond spectral
considerations as in [Bon09].

3.3.2 Hamiltonian interpolation and effective Hamiltonians

The connection to the interpolation process (3.1) is then given by the following conjecture. It is
motivated by the discussion in Section 3.2.2 and deals with the case where there are no conserved
quantities (unlike, e.g., in the case of the Majorana chain, as discussed in Section 3.4).
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Conjecture 1. Under suitable adiabaticity assumptions (see Section 3.2.2) the projection of the
final state Ψ(T ) onto the ground space of Htop belongs to Πeff

0 (0)H (up to negligible errors4), i.e.,
it is a ground state of the effective Hamiltonian Heff(ε) in the limit ε→ 0.

In addition to the arguments in Section 3.2.2, we provide evidence for this conjecture by explicit
examples, where we illustrate how Πeff

0 (0)H can be computed analytically. We also verify that
Conjecture 1 correctly determines the final states by numerically studying the evolution (3.1).

We remark that the statement of Conjecture 1 severly constrains the states that can be pre-
pared by Hamiltonian interpolation in the large T limit: we will argue that the space Πeff

0 (0)H
has a certain robustness with respect to the choice of the initial Hamiltonian Htriv. In fact, the
space Πeff

0 (0)H is typically 1-dimensional and spanned by a single vector ϕ0. Furthermore, this
vector ϕ0 typically belongs to a finite family A ⊂ P0H of states defined solely by Htop. In partic-
ular, under Conjecture 1, the dependence of the final state Ψ(T ) on the Hamiltonian Htriv is very
limited: the choice of Htriv only determines which of the states in A is prepared. We numerically
verify that the resulting target states Ψ(T ) indeed belong to the finite family A of states obtained
analytically.

3.3.3 Perturbative effective Hamiltonians

As discussed in Section 3.3.2, we obtain distinguished final ground states by computation of suitable
effective Hamiltonians Heff(ε), approximating the action of H0+εV on the ground space P0H of H0.
In many cases of interest, computing this effective Hamiltonian (whose definition for the Schrieffer-
Wolff-case we present in Appendix 3.A.1) exactly is infeasible (The effective Hamiltonian for the
Majorana chain (see Section 3.4) is an exception.).

Instead, we seek a perturbative expansion

H
(n)
eff =

∞∑

n=0

εnXn

in terms of powers of the perturbation strength ε. This is particularly natural as we are interested
in the limit ε → 0 anyway (see Conjecture 1). Furthermore, it turns out that such perturbative
expansions provide insight into the physical mechanisms underlying the ‘selection’ of particular
ground states.

We remark that there are several different methods for obtaining low-energy effective Hamil-
tonians. The Schrieffer-Wolff method [SW66, BDL11] provides a unitary U such that Heff =
U(H0 +εV )U † preserves P0H and can be regarded as an effective Hamiltonian. One systematically
obtains a series expansion

S =
∞∑

n=1

εnSn where S†n = −Sn

for the anti-Hermitian generator S of U = eS ; this then naturally gives rise to an order-by-order
expansion

H
(n)
eff = H0P0 + εP0V P0 +

n∑

q=2

εqHeff,q . (3.6)

of the effective Hamiltonian, where P0 is the projection onto the ground space P0H of H0 (explicit
expressions are given in Appendix 3.A.2).

Using the Schrieffer-Wolff method has several distinct advantages, including the fact that

(i) the resulting effective Hamiltonian Heff, as well as the terms H
(n)
eff are Hermitian, and hence

have a clear physical interpretation. This is not the case e.g., for the Bloch expansion [Blo58].

4By negligible, we mean that the errors can be made to approach zero as T is increased.
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(ii) There is no need to address certain self-consistency conditions arising e.g., when using the
Dyson equation and corresponding self-energy methods [ABD75, FW03]

We point out that the series resulting by taking the limit n→∞ in (3.6) has the usual convergence
issues encountered in many-body physics: convergence is guaranteed only if ‖εV ‖ ≤ ∆, where ∆
is the gap of H0. For a many-body system with extensive Hilbert space (e.g., L spins), the norm
‖V ‖ = Ω(L) is extensive while the gap ∆ = O(1) is constant, leading to convergence only in a
regime where ε = O(1/L). In this respect, the Schrieffer-Wolff method does not provide direct
advantages compared to other methods. As we are considering the limit ε→ 0, this is not an issue
(also, for small systems as those considered in our numerics, we do not have such issues either).

We point out, however, that the results obtained by Bravyi et al. [BDL11] suggest that con-
sidering partial sums of the form (3.6) is meaningful even in cases in which the usual convergence
guarantees are not given: indeed, [BDL11, Theorem 3] shows that the ground state energies of

H
(n)
eff and H0 + εV are approximately equal for suitable choices of ε and n. Another key feature

of the Schrieffer-Wolff method is the fact that the effective Hamiltonians H
(n)
eff are essentially local

(for low orders n) when the method is applied to certain many-body systems, see [BDL11]. We
will not need the corresponding results here, however.

Unfortunately, computing the Schrieffer-Wolff Hamiltonian H
(n)
eff generally involves a large

amount of combinatorics (see [BDL11] for a diagrammatic formalism for this purpose). In this
respect, other methods may appear to be somewhat more accessible. Let us mention in particular
the method involving the Dyson equation (and the so-called ‘self-energy’ operator), which was used
e.g., in [Kit06, Section 5.1] to compute 4-th order effective Hamiltonians. This leads to remarkably
simple expressions of the form

P0(V G)n−1V P0 (3.7)

for the n-th order term effective Hamiltonian, where G = G(E0) is the resolvent operator

G(z) = (I − P0)(zI −H0)−1(I − P0) (3.8)

evaluated at the ground state energy E0 of H0. In general, though, the expression (3.7) only
coincides with the Schrieffer-Wolff-method (that is, (3.6)) up to the lowest non-trivial order.

3.3.4 Perturbative effective Hamiltonians for topological order

Here we identify simple conditions under which the Schrieffer-Wolff Hamiltonian of lowest non-
trivial order has the simple structure (3.7). We will see that these conditions are satisfied for
the systems we are interested in. In other words, for our purposes, the self-energy methods and
the Schrieffer-Wolff method are equivalent. While establishing this statement (see Theorem 3.3.2
below) requires some work, this result vastly simplifies the subsequent analysis of concrete systems.

The condition we need is closely related to quantum error correction [KL97]. In fact, this
condition has been identified as one of the requirements for topological quantum order (TQO-
1) in Ref. [BHM10]. To motivate it, consider the case where P0H is an error-correcting code
of distance L. Then all operators T acting on less than L particles5 have trivial action on the
code space, i.e., for such T , the operator P0TP0 is proportional to P0 (which we will write as
P0TP0 ∈ CP0). In particular, this means that if V is a Hermitian linear combination of single-
particle operators, then P0V

nP0 ∈ CP0 for all n < L. The condition we need is a refinement of
this error-correction criterion that incorporates energies (using the resolvent):

Definition 3.3.1. We say that the pair (H0, V ) satisfies the topological order condition with
parameter L if L is the smallest interger such that for all n < L, we have

P0V Z1V Z2 · · ·Zn−1V P0 ∈ CP0 (3.9)

for all Zj ∈ {P0, Q0} ∪ {Gm | m ∈ N}. Here P0 is the ground space projection of H0, Q0 = I − P0

is the projection onto the orthogonal complement, and G = G(E0) is the resolvent (3.8) (supported
on Q0H).

5By particle we mean a physical constituent qubit or qudit degree of freedom.
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We remark that this definition is easily verified in the systems we consider: if excitations in
the system are local, the resolvent operators and projection in a product of the form (3.9) can be
replaced by local operators, and condition (3.9) essentially reduces to a standard error correction
condition for operators with local support.

Assuming this definition, we then have the following result:

Theorem 3.3.2. Suppose that (H0, V ) satisfies the topological order condition with parameter L.
Then the n-th order Schrieffer-Wolff effective Hamiltonian satisfies

H
(n)
eff ∈ CP0 for all n < L ,

i.e., the effective Hamiltonian is trivial for these orders, and

H
(L)
eff = P0(V G)L−1V P0 + CP0 .

We give the proof of this statement in Appendix 3.A.

3.4 The Majorana chain

In this section, we apply our general results to Kitaev’s Majorana chain. We describe the model
in Section 3.4.1. In Section 3.4.2, we argue that the interpolation process (3.2) is an instance
of symmetry-protected preparation; this allows us to identify the resulting final state. We also
observe that the effective Hamiltonian is essentially given by a ‘string’-operator F , which happens
to be the fermionic parity operator in this case. That is, up to a global energy shift, we have

Heff ≈ f · F

for a certain constant f depending on the choice of perturbation.

3.4.1 The model

Here we consider the case where Htop is Kitaev’s Majorana chain [Kit01], a system of spinless
electrons confined to a line of L sites. In terms of 2L Majorana operators {cp}2Lp=1 satisfying the
anticommutation relations

{cp, cq} = 2δp,q · I

as well as c2
p = I, c†p = cp, the Hamiltonian has the form

Htop =
i

2

L−1∑

j=1

c2jc2j+1 . (3.10)

Without loss of generality, we have chosen the normalization such that elementary excitations have
unit energy. The Hamiltonian has a two-fold degenerate ground space. The Majorana operators
c1 and c2L correspond to a complex boundary mode, and combine to form a Dirac fermion

a =
1

2
(c1 + ic2L) (3.11)

which commutes with the Hamiltonian. The operator a†a hence provides a natural occupation
number basis {|gσ〉}σ∈{0,1} for the ground space P0H defined (up to arbitrary phases) by

a†a|gσ〉 = σ|gσ〉 for σ ∈ {0, 1} .

As a side remark, note that the states |g0〉 and |g1〉 cannot be used directly to encode a qubit.
This is because they have even and odd fermionic parity, respectively, and thus belong to different
superselection sectors. In other words, coherent superposition between different parity sectors
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are nonphysical. This issue can be circumvented by using another fermion or a second chain,
see [BK12]. Since the conclusions of the following discussion will be unchanged, we will neglect
this detail for simplicity.

We remark that the Hamiltonian Htop of Eq. (3.10) belongs to a one-parameter family of
extensively studied and well-understood quantum spin Hamiltonians. Indeed, the Jordan-Wigner
transform of the Hamiltonian (with g ∈ R an arbitrary parameter)

HI,g =
i

2

L−1∑

j=1

c2jc2j+1 −
gi

2

L∑

j=1

c2j−1c2j . (3.12)

is the transverse field Ising model

H ′I,g = −1

2

L−1∑

j=1

XjXj+1 +
g

2

L∑

j=1

Zj

where Xj and Zj are the spin 1/2 Pauli matrices acting on qubit j, j = 1, . . . , L. This transfor-
mation allows analytically calculating the complete spectrum of the translation invariant chain for
both periodic and open boundary conditions [Pfe70].

The Hamiltonian H ′I,g has a quantum phase transition at g = 1, for which the lowest energy
modes in the periodic chain have an energy scaling as 1/L. The open boundary case has been
popularized by Kitaev as the Majorana chain and has a unique low energy mode a (see Eq. (3.11))
which has zero energy for g = 0 and for finite 0 < g < 1, becomes a dressed mode with exponentially
small energy (in L) and which is exponentially localized at the boundaries.

3.4.2 State preparation by interpolation

The second term in (3.12) may be taken to be the initial Hamiltonian Htriv for the interpola-
tion process. More generally, to prepare ground states of Htop, we may assume that our initial
Hamiltonian is a quadratic Hamiltonian with a unique ground state. That is, Htriv is of the form

Htriv =
i

4

2L∑

p,q=1

Vp,qcpcq ,

where V is a real antisymmetric 2L × 2L matrix. We will assume that it is bounded and local
(with range r) in the sense that

‖V‖ ≤ 1 and Vp,q = 0 if |p− q| > r ,

where ‖·‖ denotes the operator norm. As shown in [BK12, Theorem 1], the HamiltonianHtop+εHtriv

has two lowest energy states with exponentially small energy difference, and this lowest-energy
space remains separated from the rest of the spectrum by a constant gap for a fixed (constant)
perturbation strength ε > 0. Estimates on the gap along the complete path H(t) are, to the best
of our knowledge, not known in this more general situation.

Let us assume that Ψ(0) is the unique ground state of Htriv and consider the linear interpola-
tion (3.2). The corresponding process is an instance of the symmetry-protected preparation, i.e.,
Observation 3.2.2 applies in this case. Indeed, the fermionic parity operator

F =
L∏

j=1

(−i)c2j−1c2j , (3.13)

commutes with both Htriv and Htop. Therefore, the initial ground state Ψ(0) lies either in the
even-parity sector, i.e., FΨ(0) = Ψ(0), or in the odd-parity sector (FΨ(0) = −Ψ(0)). (Even parity
is usually assumed by convention, since the fermionic normal modes used to describe the system
are chosen to have positive energy.) In any case, the ±1 eigenvalue of the initial ground state with
respect to F will persist throughout the full interpolation. This fixes the final state:
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Lemma 3.4.1. Under suitable adiabaticity assumptions (see Observation 3.2.2), the resulting state
in the evolution (3.2) is (up to a phase) given by the ground state |g0〉 or |g1〉, depending on whether
the initial ground state Ψ(0) lies in the even- or odd-parity sector.

In particular, if Htriv = −gi
2

∑L
j=1 c2j−1c2j is given by the second term in (3.12), we can apply

the results of [Pfe70]: the gap at the phase transition is associated with the lowest energy mode
(which is not protected by symmetry) and is given by λ2(H ′I,g=1) = 2 sin [π/(2L+ 1)]. In other
words, it is linearly decreasing in the system size L. Therefore, the total evolution time T only
needs to grow polynomially in the system size L for Hamiltonian interpolation to accurately follow
the ground state space at the phase transition. We conclude that translation-invariant Hamiltonian
interpolation allows preparing the state |g0〉 in a time T polynomial in the system size L and the
desired approximation accuracy.

To achieve efficient preparation through Hamiltonian interpolation, one issue that must be
taken into account is the effect of disorder (possibly in the form of a random site-dependent
chemical potential). In the case where the system is already in the topologically ordered phase,
a small amount of Hamiltonian disorder can enhance the zero temperature memory time of the
Majorana chain Hamiltonian [BK12]. This 1D Anderson localization effect [And58], while boost-
ing memory times, was also found to hinder the convergence to the topological ground space
through Hamiltonian interpolation. Indeed, in [CFS07] it was found that the residual energy
density [Eres(T )/L]av ∝ 1/ ln3.4(T ) averaged over disorder realizations decreases only polylogarith-
mically with the Hamiltonian interpolation time. Such a slow convergence of the energy density
indicates that in the presence of disorder, the time T required to accurately reach the ground
space scales exponentially with the system size L. For this reason, translation-invariance (i.e., no
disorder) is required for an efficient preparation, and this may be challenging in practice.

We emphasize that according to Lemma 3.4.1, the prepared state is largely independent of
the choice of the initial Hamiltonian Htriv (amounting to a different choice of V): we do not
obtain a continuum of final states. As we will see below, this stability property appears in a
similar form in other models. The parity operator (3.13), which should be thought of as a string-
operator connecting the two ends of the wire, plays a particular role – it is essentially the effective
Hamiltonian which determines the prepared ground state.

Indeed, the Schrieffer-Wolff-effective Hamiltonian can be computed exactly in this case, yielding

Heff(ε) =
E0(ε)

2
I − ∆(ε)

2
F , (3.14)

where E0(ε) is the ground state energy of Htop + εHtriv, and ∆(ε) = E1(ε) − E0(ε) is the gap.
Expression (3.14) can be computed based on the variational expression (3.55) for the Schrieffer-
Wolff transformation, using the fact that the ground space is two-dimensional and spanned by two
states belonging to the even- and odd-parity sector, respectively. Note that the form (3.14) can
also be deduced (without the exact constants) from the easily verified fact (see e.g., Eq. (3.54))
that the Schrieffer-Wolff unitary U commutes with the fermionic parity operator F , and thus the
same is true for Heff(ε). This expression illustrates that Conjecture 1 does not directly apply in
the context of preserved quantities, as explained in Section 3.3.2: rather, it is necessary to know
the parity of the initial state Ψ(0) to identify the resulting final state Ψ(T ) in the interpolation
process.

3.5 General anyon chains

In this section, we generalize the considerations related to the Majorana chain to more general
anyonic systems. Specifically, we consider a 1-dimensional lattice of anyons with periodic boundary
conditions. This choice retains many features from the Majorana chain such as locally conserved
charges and topological degeneracy yet further elucidates some of the general properties involved
in the perturbative lifting of the topological degeneracy.

In Section 3.5.1, we review the description of effective models for topologically ordered systems.
A key feature of these models is the existence of a family {Fa}a of string-operators indexed by parti-
cle labels. Physically, the operators Fa correspond to the process of creating a particle-antiparticle
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pair (a, ā), tunneling along the 1-dimensional (periodic) lattice, and subsequent fusion of the pair to
the vacuum (see Section 3.5.1). These operators play a fundamental role in distinguishing different
ground states.

In Section 3.5.2, we derive our main result concerning these models. We consider local translation-
invariant perturbations to the Hamiltonian of such a model, and show that the effective Hamiltonian
is a linear combination of string-operators, i.e.,

Heff ≈
∑

a

faFa (3.15)

up to an irrelevant global energy shift. The coefficients {fa}a are determined by the perturbation.
They can be expressed in terms of a certain sum of diagrams, as we explain below. While not
essential for our argument, translation-invariance allows us to simplify the parameter dependence
when expressing the coefficients fa and may also be important for avoiding the proliferation of
small gaps.

We emphasize that the effective Hamiltonian has the form (3.15) independently of the choice
of perturbation. The operators {Fa}a are mutually commuting, and thus have a distinguished
simultaneous eigenbasis (we give explicit expressions for the latter in Section 3.5.1). The effective
Hamiltonian (3.15) is therefore diagonal in a fixed basis irrespective of the considered perturbation.
Together with the general reasoning for Conjecture 1, this suggests that Hamiltonian interpolation
can only prepare a discrete family of different ground states in these anyonic systems.

In Section 3.6, we consider two-dimensional topologically ordered systems and find effective
Hamiltonians analogous to (3.15). We will also show numerically that Hamiltonian interpolation
indeed prepares corresponding ground states.

3.5.1 Background on anyon chains

The models we consider here describe effective degrees of freedom of a topologically ordered system.
Concretely, we consider one-dimensional chains with periodic boundary conditions, where anyonic
excitations may be created/destroyed on L sites, and may hop between neighboring sites. Topo-
logically (that is, the language of topological quantum field theory), the system can be thought
of as a torus with L punctures aligned along one fundamental cycle. Physically, this means that
excitations are confined to move exclusively along this cycle (we will consider more general models
in section 3.6). A well-known example of such a model is the Fibonacci golden chain [FTL+07].
Variational methods for their study were developed in [PCB+10, KB10], which also provide a de-
tailed introduction to the necessary formalism. In this section, we establish notation for anyon
models and review minimal background to make the rest of the paper self-contained.

Algebraic data of anyon models: modular tensor categories

Let us briefly describe the algebraic data defining an anyon model. The underlying mathematical
object is a tensor category. This specifies among other things:

(i) A finite set of particle labels A = {1, a, . . .} together with an involution a 7→ ā (called particle-
anti-particle exchange/charge conjugation). There is a distinguished particle 1 = 1̄ called the
trivial or vacuum particle.

(ii) A collection of integers N c
ab indexed by particle labels, specifying the so-called fusion multi-

plicities (as well as the fusion rules). For simplicity, we will only consider the multiplicity-free
case, where N c

ab ∈ {0, 1} (this captures many models of interest). In this case, we will
write N c

ab = δabc̄.

(iii) A 6-index tensor F : A6 → C (indexed by particle labels) F abecdf which is unitary with respect
to the rightmost two indices (e, f) and can be interpreted as a change of basis for fusion trees.

(iv) A positive scalar da for every particle label a, called the quantum dimension.

(v) A unitary, symmetric matrix Sij indexed by particle labels such that Sīj = Sij .
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(vi) A topological phase eiθj , θj ∈ R, associated with each particle j. We usually collect these into
a diagonal matrix T = diag({eiθj}j); the latter describes the action of a twist in the mapping
class group representation associated with the torus (see Section 3.6.2).

A list of the algebraic equations satisfied by these objects can be found e.g., in [LW05] (also
see [NSS+08, LW05, Kit06, Wan10] for more details). Explicit examples of such tensor categories
can also be found in [LW05], some of which we discuss in Section 3.6.3.

Here we mention just a few which will be important in what follows: the fusion rules δijk are
symmetric under permutations of (i, j, k). They satisfy

∑

m

δijm̄δmk ¯̀ =
∑

m

δjkm̄δim¯̀

which expresses the fact that fusion (as explained below) is associative, as well as

δij̄1 = δij =

{
1 if i = j

0 otherwise .
(3.16)

Some of the entries of the tensor F are determined by the fusion rules and the quantum dimensions,
that is,

F īi1j̄jk =

√
dk
didj

δijk . (3.17)

Another important property is the Verlinde formula

δbcd̄ = Nd
bc =

∑

a

SbaScaSd̄a
S1a

, (3.18)

which is often summarized by stating that S “diagonalizes the fusion rules”.

The Hilbert space

The Hilbert space of a one-dimensional periodic chain of L anyons is the space associated by a
TQFT to a torus with punctures. It has the form

H ∼=
⊕

a1,...,aL
b0,...,bL

V a1b1
b0
⊗ V a2b2

b1
⊗ · · · ⊗ V aLbL

bL−1
,

where the indices aj , bk are particle labels, V ab
c are the associated finite-dimensional fusion spaces

and we identify b0 = bL. The latter have dimension dimV ab
c = N c

ab. Again, we will focus on
the multiplicity-free case where N c

ab = δabc̄ ∈ {0, 1}. In this case, we can give an orthonormal

basis {|~a,~b〉}
(~a,~b)

of H in terms of ‘fusion-tree’ diagrams, i.e,

bL b1 b2 bL-1 bL

a1 a2 aL-1 aL

|~a,~bi =
1

(
Q

j daj
)1/4

h~a,~b| =
1

(
Q

j daj
)1/4

ā1 ā2 āL�1 āL

b̄L b̄1 b̄2 b̄L�1 b̄L

(3.19)

where ~a = (a1, . . . , aL) and ~b = (b1, . . . , bL) have to satisfy the fusion rules at each vertex, i.e.,

dimV
ajbj
bj−1

= δajbj b̄j−1
= 1 for all j = 1, . . . , L.

The prefactor in the definition of the state (3.19) involves the quantum dimensions of the
particles, and is chosen in such a way that {|~a,~b〉} is an orthonormal basis with respect to the
inner product defined in terms of the isotopy-invariant calculus of diagrams: the adjoint of |~a,~b〉
is represented as

bL b1 b2 bL-1 bL

a1 a2 aL-1 aL

|~a,~bi =
1

(
Q

j daj
)1/4

h~a,~b| =
1

(
Q

j daj
)1/4

ā1 ā2 āL�1 āL

b̄L b̄1 b̄2 b̄L�1 b̄L

.
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Inner products and diagramatic reduction rules

Inner products are evaluated by composing diagrams and then reducing, i.e.,

b̄0
Lb̄0

1 b̄0
2 b̄0

L�1

bL�1bL b1 b2

b̄0
L

bL

a1 a2 aL�1 aL

vac
h~a0,~b0|~a,~bi = (

Y

j

daj )
�1/2

LY

j=1

�aj ,a0
j

(3.20)

where [·]vac is the coefficient of the empty diagram when reducing. Reduction is defined in terms
of certain local moves. These include

(i) reversal of arrows (together particle-antiparticle involution a 7→ ā)

r s
g

e f

V̂ =
X

e,f,g
r,s

↵rs
efg

a =
ā .

(ii) (arbitrary) insertions/removals of lines labeled by the trivial particle 1. Since 1̄ = 1, such
lines are not directed, and will often be represented by dotted lines or omitted altogether,

r s
g

e f

V̂ =
X

e,f,g
r,s

↵rs
efg

a =
ā

1 = 1 =
.

(iii) application of the F -matrix in the form

d e a

c b

ad

c b

f=
X

f

F abe
cdf

(3.21)

which leads to a formal linear combination of diagrams where subgraphs are replaced locally
by the figure on the rhs.

(iv) removal of “bubbles” by the substitution rule

a b

cʹ

c

c= �cc0

r
dadb

dc

aH =
X

a

✏a

. (3.22)

These reduction moves can be applied iteratively in arbitrary order to yield superpositions of
diagrams. An important example of this computation is the following:

d

b

d

b

d

b

k
=
X

k

F d̄d1
bb̄k

=
X

k

r
dk

dbdd
�dbk̄

d

b

d

b

k

=
X

k

r
dk

dbdd
�dbk̄

r
dbdd

dk

k

=
X

k

�dbk̄
k

d

b

d

b

d

b

k
=
X

k

F d̄d1
bb̄k

=
X

k

r
dk

dbdd
�dbk̄

d

b

d

b

k

=
X

k

r
dk

dbdd
�dbk̄

r
dbdd

dk

k

=
X

k

�dbk̄
k

d

b

d

b

d

b

k
=
X

k

F d̄d1
bb̄k

=
X

k

r
dk

dbdd
�dbk̄

d

b

d

b

k

=
X

k

r
dk

dbdd
�dbk̄

r
dbdd

dk

k

=
X

k

�dbk̄
k

d

b

d

b

d

b

k
=
X

k

F d̄d1
bb̄k

=
X

k

r
dk

dbdd
�dbk̄

d

b

d

b

k

=
X

k

r
dk

dbdd
�dbk̄

r
dbdd

dk

k

=
X

k

�dbk̄
k

d

b

d

b

d

b

k
=
X

k

F d̄d1
bb̄k

=
X

k

r
dk

dbdd
�dbk̄

d

b

d

b

k

=
X

k

r
dk

dbdd
�dbk̄

r
dbdd

dk

k

=
X

k

�dbk̄
k

. (3.23)

The series of steps first makes use of an F -move (3.21), followed by Eq. (3.17) as well as (3.22).
Together with property (3.16) and evaluation of the inner product (3.20), this particular calculation
shows that the flux-eigenstates (3.27) are mutually orthogonal. We refer to [LW05] for more details.
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Local operators

Operators are also defined by diagrams, and are applied to vectors/multiplied by stacking (attach-
ing) diagrams on top of the latter. Expressions vanish unless all attachment points have identical
direction and labels. Here we concentrate on 1- and 2-local operators, although the generalization
is straightforward (see [KB10, Bon09]).

A single-site operator Ĥ is determined by coefficients {εa}a and represented at

a b

cʹ

c
c= �cc0

r
dadb

dc

aĤ =
X

a

✏a
.

It acts diagonally in the fusion tree basis, i.e., writing Hj for the operator Ĥ applied to site j, we
have

Hj |~a,~b〉 = εaj |~a,~b〉 .

A two-site operator V̂ acting on two neighboring sites is determined by a tensor {αrsefg}r,s,e,f,g
(where the labels have to satisfy appropriate fusion rules) via the linear combinations of diagrams

r s
g

e f

V̂ =
X

e,f,g
r,s

↵rs
efg

a =
ā

. (3.24)

When applied to sites j and j + 1 it acts as

a1 a2 aL�1 aL

bL�1bL b1 b2 bL

r s
ge f

bj�1 bj bj+1

Vj,j+1|~a,~bi =
X

e,f,g
r,s

↵rs
efg�e,aj

�f,aj+1

,

where the rhs. specifies a vector in H in terms of the reduction rules. It will be convenient in the
following to distinguish between linear combinations of the form (3.24) and operators which are
scalar multiplies of a single diagram (i.e., with only one non-zero coefficient αrsefg). We call the
latter kind of two-site operator elementary.

We can classify the terms appearing in (3.24) according to the different physical processes they
represent: in particular, we have pair creation- and annihilation operators

a
+�̄a

a

ā

V̂pair =
X

a

�a

V̂ C(a) = V̂ A(a) = (V̂ C(a))† =and

a
+�̄a

a

ā

V̂pair =
X

a

�a

V̂ C(a) = V̂ A(a) = (V̂ C(a))† = ,

simultaneous annihilation- and creation operators

V̂ CA(a, b) = V̂ C(a)V̂ A(b)

left- and right-moving ‘propagation’ terms

Vhp =
X

a

⌧a +⌧̄a

a

ā

V̂ R(a) = (V̂ L(a))† =

V̂ L(a) =

a b

b a
g

a b

and

Vhp =
X

a

⌧a +⌧̄a

a

ā

V̂ R(a) = (V̂ L(a))† =

V̂ L(a) =

a b

b a
g

a b

as well as more general fusion operators such as e.g.,

ā b̄

c̄

+�̄c
ab,R

c

ba

+�c
ab,R

c

ba

ā b̄

c̄

+�̄c
ab,L

V̂a,b,c =
X

a,b,c

�c
ab,L

,
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(We are intentionally writing down a linear combination here.) Note that a general operator of

the form (3.24) also involves braiding processes since

Vhp =
X

a

⌧a +⌧̄a

a

ā

V̂ R(a) = (V̂ L(a))† =

V̂ L(a) =

a b

b a
g

a b

can be resolved to diagrams of the

form
Vhp =

X

a

⌧a +⌧̄a

a

ā

V̂ R(a) = (V̂ L(a))† =

V̂ L(a) =

a b

b a
g

a b
using the R-matrix (another object specified by the tensor category). We will consider

composite processes composed of such two-local operators in Section 3.5.1.

Ground states of anyonic chains

We will consider translation-invariant Hamiltonians H0 =
∑

j Ĥj with local terms of the form

a b

cʹ

c
c= �cc0

r
dadb

dc

aĤ =
X

a

✏a with εa > 0 for a 6= 1 and ε1 = 0 . (3.25)

Such a Hamiltonian H0 corresponds to an on-site potential for anyonic excitations, where a particle
of type a has associated energy εa independently of the site j. We denote the projection onto the
ground space of this Hamiltonian by P0. This is the space

P0H = span{|~1, b ·~1〉 | b particle label} (3.26)

where ~1 = (1, . . . , 1) and b · ~1 = (b, . . . , b). In other words, the ground space of H0 is degenerate,
with degeneracy equal to the number of particle labels.

It will be convenient to use the basis {|b〉}b of the ground space consisting of the ‘flux’ eigenstates

|b〉 = |~1, b ·~1〉 . (3.27)

In addition, we can define a dual basis {|b′〉}b of the ground space using the S-matrix. The two
bases are related by

|a′〉 =
∑

b

Sba|b〉 (3.28)

for all particle labels a, b.
As we discuss in Section 3.6.3, in the case of two-dimensional systems, the dual basis (3.28) is

simply the basis of flux eigenstates with respect to a ‘conjugate’ cycle. While this interpretation
does not directly apply in this 1-dimensional context, the basis {|a′〉}a is nevertheless well-defined
and important (see Eq. (3.30)).

Non-local string-operators

In the following, certain non-local operators, so-called string-operators, will play a special role.
Strictly speaking, these are only defined on the subspace (3.26). However, we will see in Sec-
tion 3.5.2 that they arise naturally from certain non-local operators.

The string-operators {Fa}a are indexed by particle labels a. In terms of the basis (3.27) of the
ground space P0H of H0, the action of Fa is given in terms of the fusion rules as

Fa|b〉 =
∑

c

N c
ab|c〉 =

∑

c

δabc̄|c〉 . (3.29)

6 The operator Fa has the interpretation of creating a particle-antiparticle pair (a, ā), moving one
around the torus, and then fusing to vacuum. For later reference, we show that every string-
operator Fa is diagonal in the dual basis {|a′〉}. Explicitly, we have

FbP0 =
∑

a

Sba
S1a
|a′〉〈a′| . (3.30)

6In fact, the operators {Fa}a form a representation of the Verlinde algebra, although we will not use this fact
here.
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Proof. We first expand P0 into its span and Fb according to eq. (3.29), followed by an expansion
of Nd

bc through the Verlinde formula (3.18). Finally, we use the unitarity and symmetry of S to
transform bra and ket factors into the dual basis given by Eq. (3.28)

FbP0 =
∑

c,d

Nd
bc|d〉〈c| =

∑

a

Sba
S1a

∑

c,d

ScaSd̄a|d〉〈c| =
∑

a

Sba
S1a
|a′〉〈a′| .

Products of local operators and their logical action

Operators preserving the ground space P0H (cf. (3.27)) are called logical operators. As discussed
in Section 3.5.1, string-operators {Fa} are an example of such logical operators. Clearly, because
they can simultaneously be diagonalized (cf. (3.30)), they do not generate the full algebra of logical
operators. Nevertheless, they span the set of logical operators that are generated by geometrically
local physical processes preserving the space P0H.

That is, if O =
∑

j

∏
k Vj,k is a linear combinations of products of local operators Vj,k, then its

restriction to the ground space is of the form

P0OP0 =
∑

a

oaFa , (3.31)

i.e., it is a linear combination of string operators (with some coefficients oa). Eq. (3.31) can be
interpreted as an emergent superselection rule for topological charge, which can be seen as the
generalization of the parity superselection observed for the Majorana chain. It follows directly
from the diagrammatic formalism for local operators.

To illustrate this point (and motivate the following computation), let us consider three examples
of such operators, shown in Figures 3.1a, 3.1c and 3.1b.

O1 = V̂ A
j−1,j(a)V̂ L

j+1,j+2(a)V̂ R
j+1,j+2(a)V̂ C(a)j,j+1: This processes has trivial action on the ground

space: it is entirely local. It has action P0O1P0 = daP0, where the proportionality constant da
results from Eq. (3.22).

O2 = V̂ L
j−1,j(ā)V̂ R

j,j+1(a)V̂ C
j,j+1(a): This process creates a particles anti-particle pair (a, ā) and fur-

ther separates these particles. Since the operator maps ground states to excited states, we
have P0O3P0 = 0.

O3 = V̂ A(ā)N,1V̂
R(a)N−1,N . . . V̂

R(a)3,4V̂
R(a)2,3V̂

C(a)1,2: This process involves the creation of a
pair of particles (a, ā), with subsequent propagation and annihilation. Its logical action is
P0O2P0 = Fa is given by the string-operator Fa, by a computation similar to that of (3.23).

3.5.2 Perturbation theory for an effective anyon model

In this section, we consider a 1-dimensional translation-invariant system of anyons described by
the Hamiltonian H0 introduced in (3.25). We further consider a translation-invariant two-local
perturbation V =

∑
j V̂j,j+1 with local terms V̂j,j+1 of the form (3.24) given by

V̂ =
∑

a

(
γaV

C(a) + γaV
A(a)

)
+
∑

a

(
τaV

L(a) + τaV
R(a)

)
+ VR , (3.32)

where VR collects all other two-anyon processes (it will turn out that in lowest order perturbation
theory, only creation and propagation are relevant). The choice of complex conjugate pairs of
parameters ensures that the perturbation is self-adjoint. We may think of γa as the ‘creation
ampitude’, τa as the ‘propagation amplitude’, and εa as the energy of particle a.

We now compute the form of the effective Schrieffer-Wolff-Hamiltonian. Our main result is the
following:
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a

a

a

a

a

V̂ C
j,j+1(a)

V̂ A
j,j+1(a)

V̂ R
j+1,j+2(a)

V̂ L
j+1,j+2(a)

j j + 1 j + 2

(a) The operator O1 =
V̂ A
j,j+1(a)V̂ L

j+1,j+2(a)V̂ R
j+1,j+2(a)V̂ C(a)j,j+1

corresponds to a process where a particle pair
(a, ā) is created, there is some propagation, and
the particles fuse subsequently. This has trivial
action on the ground space, i.e., P0OP0 = daP0

is proportional to the identity.

a

a

V̂ C
j,j+1(a)

V̂ R
j+1,j+2(a)ā

ā a V̂ L
j�1,j(ā)

j j + 1 j + 2j � 1

(b) The process described by the operator O2 =
V̂ L
j−1,j(ā)V̂ R

j,j+1(a)V̂ C
j,j+1(a) leaves behind excita-

tions, hence P0O3P0 = 0.

a

21 3 4

ā

ā aa

ā

V̂ C
1,2(a)

V̂ R
2,3(a)

V̂ R
3,4(a)

V̂ R
N�1,N (a)

V̂ A
N,1(ā)

N N � 1 N

(c) The operator O3 = V A(ā)N,1 · · ·V R(a)N−1,N ....V
R(a)3,4V

R(a)2,3V
C(a)1,2 corre-

sponds to a process where a pair (a, ā) of particles is created, and they propagate all
the way around the chain before annihilating. Its action on the ground space is given
by the string-operator P0O2P0 = Fa.

Figure 3.1: This figure illustrates different processes in the diagrammatic formalism. Each process
corresponds to an operator and is a product of elementary processes (diagrams). Ground space
matrix elements vanish if the process leaves behind excitations (corresponding to endpoints of open
strings).
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Lemma 3.5.1 (Effective Hamiltonians for 1-dimensional anyon chains). Consider H0 + εV , with
the perturbation V as described. Let P0 be the projection onto the ground space of H0. Then the
L-th order effective Hamiltonian has the form

H
(L)
eff (ε) =

∑

a

fL(εa, γa, τa)Fa + cP0 , (3.33)

for some constant c ∈ R, and some function fL which is independent of the particle label a and is
a homogeneous polynomial of degree L in γa and τa.

Clearly, the form Eq. (3.33) of the effective Hamiltonian is consistent with the topological
superselection rule (3.31). However, Eq. (3.33) provides additional information: for example,
the coefficient of the string-operator Fa only depends on the energy εa of anyon a, as well as its
creation/annihilation (γa respectively γa) and propagation (τa) amplitudes. There is no dependence
on particles distinct from a (and corresponding braiding processes). Such terms only enter in higher
orders of the perturbative series. This can be thought of as a rigorous derivation of the tunneling
amplitude for a particle in the weak perturbation limit. We note that due to fL being homogeneous
of degree L, the dominant tunneling process will be highly sensitive to the perturbation strengths
associated to different anyon labels a for large system sizes L. In the absence of a symmetry or
fine tuning, it should be possible to order the terms fL(εa, γa, τa) by absolute value, with different
orders of magnitude being expected for each term (see Section 3.6.1 for further discussion).

Proof. It is easy to check that the conditions of Theorem 3.3.2 are satisfied with L equal to the
length of the chain. Indeed, (L−1)-local terms have trivial action on the ground space as discussed
in Section 3.5.1. It thus suffices to consider expressions of the form

P0(V G)L−1V P0

involving L factors of V . Inserting the definition (3.32) of V , and diagrammatically expanding
each term as in Section 3.5.1, we are left with a linear combination of terms of the form

P0Vα1GVα2GVα3 · · ·GVαLP0 ,

where Vαj is a local operator given by an elementary (two-anyon) diagram (not a linear combina-
tion). Since such operators Vαj map eigenstates of H0 to eigenstates, and the energies of excited
states reached from the ground space by applying such operators is independent of the ground
state considered, each operator G merely adds a scalar, i.e., we have

P0Vα1GVα2GVα3 · · ·GVαLP0 = θ(Vα1 , . . . , VαL) · P0Vα1Vα2Vα3 · · ·VαLP0

for some constant θ depending on the perturbations {Vαj}. But the rhs. of this equation is a
product of local operators as considered in Section 3.5.1. According to the expression (3.31), this
is a linear combination of string-operators, i.e.,

P0Vα1Vα2Vα3 · · ·VαLP0 =
∑

a

oaFa .

Furthermore, since each Vαj is an elementary two-local operator, and we consider only products of
length L, the only terms P0Vα1Vα2Vα3 · · ·VαLP0 that have non-trivial action on the ground space
are those associated with processes where a single particle (say of type a) winds around the whole
chain. We will call such a process topologically non-trivial. Its action on the ground space is given
by a single string-operator Fa.

In summary (rearranging the sum), we conclude that the L-th order effective Hamiltonian has
the form (3.33), where the coefficient fL(εa, γa, τa) has the form

fL(εa, γa, τa) =
∑

(Vα1 ,...,VαL )∈Θa

θ(Vα1 , . . . , VαL)ν(Vα1 , . . . , VαL) ,
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and where the sum is over the set

Θa = {(Vα1 , . . . , VαL) | P0Vα1 · · ·VαLP0 ∈ CP0}

of all length-L-topologically non-trivial processes (consisting of elementary terms) involving par-
ticle a. The coefficient ν(Vα1 , . . . , VαL) is defined by P0Vα1 · · ·VαLP0 = ν(Vα1 , . . . , VαL)Fa. Fur-
thermore, ν(Vα1 , . . . , VαL) can only be non-zero when all L operators Vαj are either pair cre-
ation/anihilation or hopping terms involving the particle a. This implies the claim.

3.6 2D topological quantum field theories

As discussed in Section 3.4, adding a local perturbation to a Majorana chain leads to an effective
Hamiltonian given by the parity (string)-operator. Similarly, in the case of a general anyon chain
(discussed in Section 3.5), the effective Hamiltonian is a linear combination of string-operators Fa,
associated with different particle labels a. Here we generalize these considerations to arbitrary
systems described by a 2-dimensional topological quantum field theory (TQFT) and subsequently
specialize to microscopic models, including the toric code and the Levin-Wen string-net mod-
els [LW05].

Briefly, a TQFT associates a “ground space” HΣ to a two-dimensional surface Σ – this is
e.g., the ground space of a microscopic model of spins embedded in Σ with geometrically local
interactions given by some Hamiltonian H0 (see Section 3.6.3). In other words, HΣ ⊂ Hphys,Σ
is generally a subspace of a certain space Hphys,Σ of physical degrees of freedom embedded in Σ.
The system has localized excitations (anyons) with (generally) non-abelian exchange statistics. In
particular, there are well-defined physical processes involving creation, propagation, braiding and
annihilation of anyons, with associated operators as in the case of 1-dimensional anyon chains (see
Section 3.5). Contrary to the latter, however, the particles are not constrained to move along a
1-dimensional chain only, but may move arbitrarily on the surface Σ. Nevertheless, the description
of these processes is analogous to the case of spin chains, except for the addition of an extra
spatial dimension. For example, this means that local operators acting on a region R ⊂ Σ are now
represented by a linear combination of string-nets (directed trivalent graphs with labels satisfying
the fusion rules) embedded in R × [0, 1]. We refer to e.g., [FKLW03] for more examples of this
representation.

As before, there are distinguished ground-space-to-ground-space (or “vacuum-to-vacuum”) pro-
cesses which play a fundamental role. These are processes where a particle-anti-particle pair (a, ā)
is created, and the particles fuse after some propagation (tunneling), i.e., after tracing out a closed
loop C on Σ. Non-trivial logical operators must necessarily include topologically non-trivial loops
C on Σ in their support (the spatial region in which they are physically realized). In particular, for
any such loop C, there is a collection {Fa(C)}a of string-operators associated with different particle
labels. More precisely, a loop is a map C : [0, 1]→ Σ satisfying C(0) = C(1). Reversing direction
of the loop gives a new loop C̄(t) := C(1− t), and this is equivalent to interchanging particle- and
antiparticle labels: we have the identity Fa(C) = Fā(C̄). In Section 3.6.2, we state some general
properties of the string-operators {Fa(C)}a, and, in particular, explain how to express them in
suitable bases of the ground space.

3.6.1 Perturbation theory for Hamiltonians corresponding to a TQFT

In general, the anyon model associated with a TQFT is emergent from a microscopic spin Hamil-
tonian H0. The anyon notion of site, as discussed in Section 3.5, does not necessarily coincide with
the spin notion of site associated with the microscopic spin model. Nevertheless, the following
statements are true:

(i) any non-trivial logical operator must include at least one non-contractible loop in its support.

(ii) given a perturbation V consisting of geometrically local operators, there exists some minimum
integer L such that H0, V satisfy the topologically ordered condition with parameter L.
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In general, the value of L will depend on the length of the shortest non-contractible loop(s), and
the resulting effective Hamiltonian will be of the form

H
(L)
eff (ε) = εL

∑

a,C:|C|=L

fL(a,C)Fa(C) + c(ε)P0 , (3.34)

where the dependence on H0 and the coefficients in V has been left implicit. The sum is over all
non-trivial loops C of length L (where length is defined in terms of the spin model), as well as all
particle labels a.

Computing the coefficients {fL(a,C)} may be challenging in general. Here we discuss a special
case, where anyon processes associated with a single particle a (respectively its antiparticle ā) are
dominant (compared to processes involving other particles). That is, let us assume that we have
a translation-invariant perturbation V of the form

V =
∑

(j,j′)

(
V̂

(1)
j,j′ + ηV

(2)
j,j′

)
,

where the sum is over all pairs (j, j′) of nearest-neighbor (anyonic) sites, and V̂
(1)
j,j′ = V̂ (1) and

V̂
(2)
j,j′ = V̂ (2) are both 1- and 2-local operators on the same anyon site lattice – this is a straightfor-

ward generalization of anyon chains to 2D. Our specialization consists in the assumption that all

local creation, propagation and annihilation processes constituting the operator V̂
(1)
j,j′ = V̂ (1) only

correspond to a single anyon type a (and ā), and that these processes are dominant in the sense
that the remaining terms satisfy ‖ηV̂ (2)‖ � ‖V̂ (1)‖. In the limit η → 0, perturbation theory in
this model only involves the particles (a, ā).

Assuming that the shortest non-contractible loops have length L in this anyonic lattice, we
claim that

H
(L)
eff (ε) = εL


 ∑

C:|C|=L

fL(a,C)Fa(C) + ηLG
(L)
eff


+ c(ε)P0 , (3.35)

where G
(L)
eff is an effective Hamiltonian with the same form as H

(L)
eff (ε), but only contains string

operators Fb(C) with b 6= a. The reason is that in order to generate a string operator Fb(C) in L
steps (i.e., at L-th order in perturbation theory), we need to apply local operators corresponding
to anyon b L times, as discussed in Lemma 3.5.1. Such local operators can only be found in ηV2,

therefore we obtain the coefficient ηL of G
(L)
eff . Thus if we fix the system size and slowly increase η

from 0, the (relative) change of the total effective Hamiltonian is exponentially small with respect
to L. This implies that the ground state of the effective Hamiltonian is stable when η is in a
neighbourhood of 0. We will see in Section 3.7 that the final states of Hamiltonian interpolation
are indeed stable in some regions of initial Hamiltonians. The above discussion can be viewed as
a partial explanation7 for this phenomenon.

3.6.2 String-operators, flux bases and the mapping class group

In the following, we explain how to compute effective Hamiltonians of the form (3.35) in the case
where the perturbation is isotropic, resulting in identical coefficients fL(a,C) = fL(a,C ′) for all
loops C of identical length. This will be guaranteed by symmetries. We give explicit examples in
Section 3.7.

For this purpose, we need a more detailed description of the action of string-operators on the
ground space. Consider a fixed (directed) loop C : [0, 1] → Σ embedded in the surface Σ. The
process of creating a particle-anti-particle pair (a, ā), then propagating a along C, and subsequently
fusing with ā defines an operator Fa(C) which preserves the ground space HΣ. The family of
operators {Fa(C)}a is mutually commuting and defines a representation of the Verlinde algebra. It

7Note that in the cases we consider in Section 3.7, V̂ (1) and V̂ (2) often do not live on the same anyon site lattice.
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is sometimes convenient to consider the associated (images of the) idempotents, which are explicitly
given by (as a consequence of the Verlinde formula (3.18))

Pa(C) = S1a

∑

b

SbaFb(C) .

The operators Pa(C) are mutually orthogonal projections Pa(C)Pb(C) = δabPa(C). The inverse
relationship (using the unitarity of S) reads

Fb(C) =
∑

a

Sba
S1a

Pa(C) (3.36)

and is the generalization of (3.30): indeed, specializing to the case where Σ is the torus (this will
be our main example of interest), and C is a fundamental loop, the operators Pa(C) are rank-one
projections (when restricted to the ground space), and determine (up to phases) an orthonormal
basis of BC = {|aC〉}a of HΣ by Pa(C) = |aC〉〈aC |. In physics language, the state |aC〉 has
“flux a” through the loop C. (More generally, one may define “fusion-tree” basis for higher-
genus surfaces Σ by considering certain collections of loops and the associated idempotents, see
e.g., [KKR10]. However, we will focus on the torus for simplicity.)

Consider now a pair of distinct loops C and C ′. Both families {Fa(C)}a and {Fa(C ′)}a of
operators act on the ground space, and it is natural to ask how they are related. There is a simple
relationship between these operators if C ′ = ϑ(C) is the image of C under an element ϑ : Σ → Σ
of the mapping class group MCGΣ of Σ (i.e., the group of orientation-preserving diffeomorphisms
of the surface): The TQFT defines a projective unitary representation V : MCGΣ → U(HΣ) of this
group on HΣ, and we have

Fa(C
′) = V (ϑ)Fa(C)V (ϑ)† for all a if C ′ = ϑ(C) .

In general, while the topology of the manifold is invariant under the mapping class group, the
specific lattice realization may not be. For this reason, if we desire to lift the representation V
to the full Hilbert space HΣ ⊃ Hphys,Σ, such that the resulting projective unitary representation
preserves the microscopic Hamiltonian H0 under conjugation, we may need to restrict to a finite
subgroup of the mapping class group MCGΣ. If the lattice has sufficient symmetry, such as for
translation-invariant square or rhombic lattices, one may exploit these symmetries to make further
conclusions about the resulting effective Hamiltonians.

String-operators and the mapping class group for the torus

For the torus, the mapping class group MCGΣ is the group SL(2,Z). To specify how a group
element maps the torus to itself, it is convenient to parametrize the latter as follows: we fix
complex numbers (e1, e2) and identify points z in the complex plane according to

z ≡ z + n1e1 + n2e2 for n1, n2 ∈ Z .

In other words, (e1, e2) defines a lattice in C, whose unit cell is the torus (with opposite sides

identified). A group element A =

(
a b

c d

)
∈ SL(2,Z) then defines parameters (e′1, e

′
2) by

e′1 = ae1 + be2

e′2 = ce1 + de2 ,

which a priori appear to be associated with a new torus. However, the constraint that A ∈ SL(2,Z)
ensures that (e′1, e

′
2) and (e1, e2) both define the same lattice, and this therefore defines a map from

the torus to itself: The action of A is given by αe1 +βe2 7→ αe′1 +βe′2 for α, β ∈ R, i.e., it is simply
a linear map determined by A.
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e1

e2 C2

C1

Figure 3.1: Minimal loops on the square torus

The group SL(2,Z) = 〈t, s〉 is generated by the two elements

t = Dehn twist

(
1 1

0 1

)
and π/2 rotation s =

(
0 1

−1 0

)
(3.37)

which are equivalent to the Möbius transformations τ 7→ τ + 1 and τ 7→ −1/τ . Clearly, t fixes e1

and hence the loop C : t 7→ C(t) = te1, t ∈ [0, 1] on the torus (this loop is one of the fundamental
cycles). The matrices representing the unitaries V (t) and V (s) in the basis BC = {|aC〉}a of HΣ

(where |aC〉 is an eigenstate of Pa(C) = |aC〉〈aC |) are denoted T and S, respectively. These
matrices are given by the modular tensor category: T is a diagonal matrix with Taa = eiθa (where
θa is the topological phase of particle a), whereas S is the usual S-matrix. This defines the mapping
class group representation on the Hilbert space HΣ associated with the torus Σ.

In the following, we compute explicit relationships between string-operators of minimal length.
We consider two cases: a square torus and a rhombic torus. This allows us to express terms such
as those appearing in Eq. (3.34) in a fixed basis.

Square torus. Here we have

e1 = 1 and e2 = i .

There are (up to translations) two loops of minimal length,

C1(t) = te1

C2(t) = (1− t)e2,

which may be traversed in either of two directions namely for t ∈ [0, 1], see Fig. 3.1. Since se1 = −e2

and se2 = e1, we conclude that

C2(t) = s(C1(t)) C1(t) = s2(C1(t)) C2(t) = s3(C1(t)) C1(t) = s4(C1(t))

In particular, expressed in the basis BC1 , we have

∑

j=1,2

(
Fa(Cj) + Fa(Cj)

)
=

3∑

j=0

SjFa(C1)S−j . (3.38)

Thus, when the lattice and Hamiltonian H0 obey a π/2 rotation symmetry, the effective pertur-
bation Hamiltonian will be proportional to (3.38). This is the case for the toric code on a square
lattice.

Rhombic torus. We set

e1 = 1 and e2 = cos(2π/6) + i sin(2π/6) .

Minimal loops of interest are shown in Fig. 3.2 and can be defined as

C1(t) = te1

C2(t) = e1 + t(e2 − e1)

C3(t) = (1− t)e2 .
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e1

e2

C1

C2C3

Figure 3.2: Minimal loops on the rhombic torus

for t ∈ [0, 1]. Observe that these can be related by a π/3 rotation u (if we use the periodicity of
the lattice), i.e.,

C3(t) = u(C1(t)) C2(t) = u2(C1(t)) C1(t) = u3(C1(t))

C3(t) = u3(C1(t)) C2(t) = u5(C1(t)) C1(t) = u6(C1(t)).

Since such a rotation u maps e1, e2 to

e′1 = e2

e′2 = e2 − e1 ,

it is realized by the element u =

(
0 1

−1 1

)
∈ SL(2,Z), which decomposes into the generators (3.37)

as u = ts3ts. We conclude that, expressed in the basis BC1 , we have

3∑

j=1

(
Fa(Cj) + Fa(Cj)

)
=

5∑

j=0

U jFa(C1)U−j where U = TS3TS. (3.39)

Again, if the lattice and Hamiltonian H0 are invariant under a π/3 rotation, we may conclude
that the effective perturbation Hamiltonian will have the form (3.39). This is the case for the
Levin-Wen model on a honeycomb lattice embedded in a rhombic torus (see also Section 3.7.2).

3.6.3 Microscopic models

The purpose of this section is two-fold: First, we briefly review the construction of the microscopic
models we use in our numerical experiments in Section 3.7: these include the toric code (see
Section 3.6.3) as well as the doubled semion and the doubled Fibonacci model, both instantiations
of the Levin-Wen construction (see Section 3.6.3). Second, we define single-qubit operators in
these models and discuss their action on quasi-particle excitations (i.e., anyons). This translation
of local terms in the microscopic spin Hamiltonian into operators in the effective anyon models
is necessary to apply the perturbative arguments presented in Section 3.6.1. We will use these
local terms to define translation-invariant perturbations (respectively trivial initial Hamiltonians)
in Section 3.7).

The toric code

Kitaev’s toric code [Kit03] is arguably the simplest exactly solvable model which supports anyons.
It can be defined on a variety of lattices, including square and honeycomb lattices. Here we will
introduce the Hamiltonian corresponding to honeycomb lattice. On each edge of the lattice resides
a qubit. The Hamiltonian consists of two parts and takes the form

Htop = −
∑

v

Av −
∑

p

Bp , (3.40)
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where Bp = X⊗6 is the tensor product of Pauli-X operators on the six edges of the plaquette p,
and Av = Z⊗3 is the tensor product of Pauli-Z operators on the three edges connected to the
vertex v.

Note that in terms of its anyonic content, the toric code is described by the double of Z2; hence
a model with the same type of topological order could be obtained following the prescription given
by Levin and Wen (see Section 3.6.3). Here we are not following this route, but instead exploit
that this has the structure of a quantum double (see [Kit03]). The resulting construction, given
by (3.40), results in a simpler plaquette term Bp as opposed to the Levin-Wen construction.

The anyonic excitations supported by the toric code are labeled by {1, e,m, ε}. The e anyon or
electric excitation corresponds to vertex term excitations. The m anyon or magnetic excitations
correspond to plaquete term excitations. Finally, the ε anyon corresponds to an excitation on
both plaquete and vertex and has the exchange statistics of a fermion. We can write down the
string operators Fa(C) for a closed loop C on the lattice explicitly (see [Kit03]). Without loss of
generality, we can set Fe(C) = P0

⊗
i∈C XiP0 and Fm(C) = P0

⊗
i∈D ZiP0, where D is a closed

loop on the dual lattice corresponding to C. Finally, the operator Fε(C) = Fe(C)×Fm(C) can be
written as a product of Fe(C) and Fm(C), since e and m always fuse to ε. With respect to the
ordering (1, e,m, ε) of the anyons, the S- and T -matrices described in Section 3.5.1 are given by

T = diag(1, 1, 1,−1) S = 1/2




1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1




(3.41)

for the toric code.

Local spin operators. A natural basis of (Hermitian) operators on a single qubit is given by
the Pauli operators. For the toric code, each of these operators has a natural interpretation in
terms of the underlying anyon model.

Consider for example a single-qubit Z-operator. The “anyonic lattice” associated with m-
anyons is the dual lattice (i.e., these anyons ‘live’ on plaquettes), and a single-qubit Z-operator
acts by either creating or annihilating a (m, m̄) = (m,m) on the neighboring plaquettes, or prop-
agating an existing m from one plaquette to the other. That is, in the terminology of Section 3.5.1,
a Z-operator acts as a local term

Z ←→ V̂ C(m) + V̂ A(m) + V̂ L(m) + V̂ R(m) (3.42)

in the effective anyon model. An analogous identity holds for X, which is associated with e-
anyons: the latter live on vertices of the spin lattice. Finally, Y -operators act on ε-anyons in
the same manner; these anyons live on ‘supersites’, consisting of a plaquette and and an adjacent
vertex.

Short introduction to the Levin-Wen model

Levin and Wen [LW05] define a family of frustration-free commuting Hamiltonian with topologically
ordered ground space and localized anyonic excitations. Their construction is based on interpreting
the state of spins residing on the edges of a trivalent lattice (such as a honeycomb lattice) as
configurations of string-nets.

To specify a string-net model, we need algebraic data associated with an anyon model as
described in Section 3.5.1. This specifies, in particular, a set of anyon labels F = {ai}, associated
fusion rules, as well as S- and F -matrices. The Levin-Wen model then associates a qudit to each
edge of the lattice, where the local dimension of each spin corresponds to the number of anyon
labels in F . One chooses an orthonormal basis {|a〉}a∈F ⊂ C|F| indexed by anyon labels; in the
following, we usually simply write a instead of |a〉 to specify a state of a spin in the microscopic
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model. The Levin-Wen spin Hamiltonian can be divided into two parts,

Htop = −
∑

v

Av −
∑

p

Bp , (3.43)

where each Bp is a projector acting on the 12 edges around a plaquette p, and each Av is a projector
acting on the 3 edges around a vertex v. In particular, we can construct the spin Hamiltonian
for the doubled semion and the doubled Fibonacci models in this way by choosing different initial
data.

As long as all the particles in the underlying model F are their own antiparticles (i.e., the
involution a 7→ ā is the identity), it is not necessary to assign an orientation to each edge of
the lattice. This affords us an important simplification, which is justified for the models under
consideration: these only have a single non-trivial anyon label, which is itself its own antiparticle
(recall that the trivial label satisfies 1̄ = 1). With this simplification, which we will use throughout
the remainder of this paper, the vertex operator Av can be written as

a b

c

a b

c

Av = �abc

where δabc = 1 if a and b can fuse to c and δabc = 0 otherwise. The plaquette operator Bp is more
complicated compared to Av. We will give its form without further explanation

a
b

c

d

e

fg

h
i j

k
l

a
b

c

d

e

f
=

X

s,g0,h0

i0,j0,k0,l0

ds

D2
F agl

sl0g0F
bhg
sg0h0F

cih
sh0i0F

dji
si0j0F

ekj
sj0k0F

flk
sk0l0

g0 l0

k0

j0i0

h0Bp

,

where ds is the quantum dimension of the anyon label s, and D =
√∑

j d
2
j is the total quantum

dimension.

Having specified the spin Hamiltonian, we stress that the anyon labels F used in this con-
struction should not be confused with the anyon labels D(F) describing the local excitations in
the resulting Hamiltonian (3.43). The latter can be described as ‘pairs’ of anyons from F , i.e.,
D(F) = {(ai, aj)}ai,aj∈F . Their fusion, twist and braiding properties are described by the double
of the original theory. The SD(F)- and FD(F)- matrices of D(F) can be obtained from the S- and
T -matrix associated with F (see [LW05]). String operators Fai,aj (C) acting on the spin lattice
have also been explicitly constructed in [LW05]

Below, we present some of the specifics of two models constructed in this way: the doubled
semion and doubled Fibonacci model. In addition to Kitaev’s toric codes D(Z2), these are the only
models defined on two labels (i.e., with microscopic qubit degrees of freedom).

The doubled semion model

The underlying string-net model of the doubled semion model only consists of one non-trivial label
s and the trivial label 1. To specify the spin Hamiltonian, we have ds = 1, and δabc = 1 if and
only if an even number of a, b, c are s. The F -matrix is given by F ss1ss1 = −1 and otherwise F abcdef is
0 or 1 depending on whether (a, b, c, d, e, f) is a legal configuration (see [Kit06] for more detailed
explanation). As we explained above, to construct a spin Hamiltonian, we put a qubit on each edge
of the lattice with orthonormal basis |1〉, |s〉. The spin Hamiltonian obtained this way is similar
to the toric code and it also supports Abelian anyons. The excitations of the spin model can be
labeled by D(F) = {(1,1), (1, s), (s,1), (s, s)}, which is the quantum double of F = {1, s}. With
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respect to the given ordering of anyons, the S- and T -matrices of these excitations are given by

S = 1/2




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




T = diag(1, i,−i, 1) (3.44)

Local operators. Identifying |1〉 with the standard basis state |0〉 and |s〉 with |1〉, we can again
use Pauli operators to parametrize single-spin Hamiltonian terms.

Here we will discuss the effect of single qubit operators X and Z on the ground states of the
resulting topologically ordered Hamiltonian. The goal is to interpret single spin operators in terms
of effective anyon creation, annihilation and hopping operators.

When Z-operator is applied to an edge of the system in a ground state, only the neighboring
plaquete projectors Bp will become excited. More specifically, a pair of (s, s) anyons are created
if none were present. Since (s, s) is an abelian anyon, in fact a boson, and is the anti-particle of
itself, a Z operator could also move an (s, s) anyon or annihilate two such particles if they are
already present. Thus we conclude that single-qubit Z-operators have a similar action as in the
toric code (cf. (3.42)), with s playing the role of the anyon m.

When an X operator is applied on edge of the system in a ground state, it excites the two
neighboring vertex terms Av (in the sense that the state is no longer a +1-eigenstate any longer).
Since the plaquete terms Bp are only defined within the subspace stabilized by Av, the four pla-
quette terms Bp terms around the edge also become excited. It is unclear how to provide a full
interpretation of X operators in terms of an effective anyon language. In order to provide this, a
full interpretation of the spin Hilbert space and its operators in the effective anyonic language is
required; such a description is currently not known.

In summary, this situation is quite different from the case of the toric code, where X and Z
are dual to each other.

The doubled Fibonacci

Again, the underlying string-net model of doubled Fibonacci contains only one non-trivial label τ ,

with quantum dimension dτ = ϕ, where ϕ = 1+
√

5
2 . The fusion rules are given by δabc = 0 if only

one of the a, b, c is τ , and otherwise δabc = 1. Non-trivial values of F are

F ττ1ττ1 = ϕ−1, F ττ1τττ = ϕ−1/2

F τττττ1 = ϕ−1/2, F ττττττ = −ϕ−1,

and otherwise F abcdef is either 0 or 1 depending on whether (a, b, c, d, e, f) is a legal configuration.

Many aspects of the doubled Fibonacci spin Hamiltonian are similar to the doubled semion
model:

• There is one qubit on each edge, with orthonormal basis states associated with the anyon
labels F = {1, τ}.

• The anyons supported by the spin Hamiltonian carry labels D(F) = {(1,1), (1, τ ), (τ ,1), (τ , τ )}.

With respect to the given ordering of anyons, the S- and T -matrices are given by

S =




1 ϕ ϕ ϕ2

ϕ −1 ϕ2 −ϕ
ϕ ϕ2 −1 −ϕ
ϕ2 −ϕ −ϕ 1



/(1 + ϕ2) T = diag(1, e−4π/5, e4π/5, 1) . (3.45)
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Figure 3.1: The 12-qubit-torus we use for numerical simulation (qubits are numbered 1 to 12. It is
a rhombic torus and we can identify three minimal loops {1, 2}, {5, 7}, {9, 11} (and their inverses)
which are related by π/3 rotations.

A substantial difference to the doubled semion model is that the non-trivial anyons supported
by the model are non-abelian. One manifestation of this fact we encounter concerns the (τ , τ )-
anyon:

• While (τ , τ ) is its own anti-particle, it is not an abelian particle so in general two (τ , τ )
particles will not necessarily annihilate with each other. In other words, the dimension of the
subspace carrying two localized (τ , τ ) charges is larger than the dimension of the charge-free
subspace.

• Two intersecting string operators F(τ ,τ )(C1) and F(τ ,τ )(C2) corresponding to the (τ , τ ) par-
ticle do not commute with each other.

Neither of these properties holds for the (s, s)-anyon in the case of the doubled semion model.

Local operators. Similarly, as before, we identify |1〉 with the standard basis state |0〉 and |τ 〉
with |1〉, enabling us to express single-qubit operators in terms of the standard Pauli operators.

Again, we want to consider the effect of single qubit operators in terms of anyons. This is
generally rather tricky, but for single-qubit Z-operators, we can obtain partial information from
an analysis presented in appendix 3.B: Let |ψ〉 be a ground state. Then Z|ψ〉 = 1√

5
|ψ〉 + 4

5 |ϕ〉,
where |ϕ〉 is a ψ-dependent excited state with a pair of (τ , τ ) on the plaquettes next to the edge Z
acts on. Thus the resulting state after application of a single Z operator has support both on
the excited and as well as the ground subspace. Again, this is in contrast to the doubled semion
model, where a single-qubit Z operator applied to the ground space always results in an excited
eigenstate of the Hamiltonian.

3.7 Numerics

In this section, we present results obtained by numerically simulating Hamiltonian interpolation
for small systems. Specifically, we consider three topologically ordered systems on the 12-qubit
honeycomb lattice of Fig 3.1: the toric code, the doubled semion and the doubled Fibonacci
Levin-Wen models. That is, the target Hamiltonian Htop is given either by (3.40) (with stabilizer
plaquette- and vertex-operators Av and Bp) in the toric code case, and expression (3.43) specified
in Section 3.6.3 (with projection operators Av and Bp) for the doubled semion and the doubled
Fibonacci case. As initial Hamiltonian Htriv, we choose certain translation-invariant Hamiltonians
consisting of single-qubit Pauli-X, Pauli-Y and Pauli-Z operators (see Sections 3.6.3 and 3.6.3 for
their definition and a discussion of the effect of these operators in the two Levin-Wen models.) For
concreteness and ease of visualization, we will consider the following families of such Hamiltonians:
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the one-parameter family

Htriv(θ) = cos θ
∑

j

Zj + sin θ
∑

j

Xj (3.46)

where θ ∈ [0, 2π[, and two two-parameter families of the form

H±triv(a, b) = a
∑

j

Xj + b
∑

j

Yj ± (1− a2 − b2)1/2
∑

j

Zj , (3.47)

where (a, b) ∈ R2 belongs to the unit disc, a2 + b2 ≤ 1. (In some instances, we will permute the
roles of X, Y and Z, and use an additional superscript to indicate this.)

For different parameter choices θ respectively (a, b), we study Hamiltonian interpolation (i.e.,
the evolution (3.2)) along the linear interpolation path H(t) (cf. (3.1)) with a total evolution
time T . In order to numerically simulate the evolution under the time-dependent Schrödinger
equation, we perform a time-dependent Trotter expansion using the approximation

T exp

(
i

∫ t

0
H(s)ds

)
≈
bT/∆tc∏

j=1

eiH(j·∆T )∆t and eiH(t)∆t ≈ ei
(T−t)
T

Htriv∆tei
t
T
Htop∆t . (3.48)

Unless otherwise specified, the time discretization is taken to be ∆t = 0.1.

3.7.1 Quantities of interest and summary of observations

Recall that our initial state Ψ(0) = ϕ⊗12 is the unique 12-qubit ground state of the chosen trivial
Hamiltonian Htriv. We are interested in the states Ψ(t) along the evolution, and, in particular,
the final state Ψ(T ) for a total evolution time T . For notational convenience, we will write Ψθ(t),
respectively Ψ±a,b(t) to indicate which of the initial Hamiltonians Htriv is considered (cf. (3.46)
and (3.47)). We consider the following two aspects:

(Non)-adiabaticity: We investigate whether the state Ψ(t) follows the instantanenous ground
space along the evolution (3.2). We quantify this using the adiabaticity error, which we define
(for a fixed total evolution time T , which we suppress in the notation) as

εadia(t) := 1− |〈Ψ(t)|P0(t)|Ψ(t)〉|2 for 0 ≤ t ≤ T , (3.49)

where P0(t) is the projection onto the ground space of H(t) (note that except for t = T ,
where P0(T ) projects onto the degenerate ground space of Htop, this is generally a rank-one
projection). The function t 7→ εadia(t) quantifies the overlap with the instantaneous ground
state of H(t) along the Hamiltonian interpolation t 7→ H(t), and hence directly reflects
adiabaticity.

Ultimately, we are interested in whether the evolution reaches a ground state of Htop. This
is measured by the expression εadia(T ), which quantifies the deviation of the final state Ψ(T )
from the ground space of Htop. Clearly, the quantity εadia(T ) depends on the choice of initial
Hamiltonian Htriv (i.e., the parameters θ respectively (a, b)) and the total evolution time T .
For sufficiently large choices of the latter, we expect the adiabaticity assumption underlying
Conjecture 1 to be satisfied, and this is directly quantifiable by means of the adiabaticity
error. We will also discuss situations where, as discussed in Observation 3.2.3, symmetries
prevent reaching the ground space of Htop as reflected in a value of εadia(T ) close to 1.

Logical state: assuming the ground space of Htop is reached (as quantified by εadia(T )), we will
identify the logical state Ψ(T ) and investigate its stability under perturbations of the the
initial Hamiltonian Htriv (i.e., changes of the parameters θ respectively (a, b)). For this
purpose, we employ the following measures:
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• We argue (see Section 3.7.2) that symmetries constrain the projection of the resulting
state Ψ(T ) onto the ground space of Htop to a two-dimensional subspace (see Sec-
tion 3.7.2). For the toric code, the state is then fully determined by the expectation
values 〈X̄〉Ψ(T ), 〈Z̄〉Ψ(T ) of two logical operators X̄ and Z̄. To investigate stability prop-
erties of the prepared state, we can therefore consider (〈X̄〉Ψ(T ), 〈Z̄〉Ψ(T )) as a function
of parameters of the initial Hamiltonian.

• for the Levin-Wen models, we proceed as follows: we pick a suitable reference state |ψR〉 ∈
(C2)⊗12 in the ground space of Htop, and then study how the overlap |〈Ψ±a,b(T )|ψR〉|2
changes as the parameters (a, b) of the initial Hamiltonian are varied. In particular, if we
fix a pair (a0, b0) and choose |ψR〉 as the normalized projection of the state |Ψ±a0,b0(T )〉
onto the ground space of Htop, this allows us to study the stability of the prepared
state |Ψ±a,b(T )〉 as a function of the Hamiltonian parameters (a, b) in the neighborhood
of (a0, b0).

According to the reasoning in Section 3.3.2 (see Conjecture 1), the specific target
state |ψref

a0,b0
〉 chosen in this way should correspond to the ground state of Htop +

εH±(a0, b0) in the limit ε→ 0 of infinitesimally small perturbations (or, more precisely,
the corresponding effective Hamiltonian). Furthermore, according to the reasoning in
Section 3.6.1, the family of effective Hamiltonians associated with Htop + εH±(a, b) has
a very specific form. This should give rise to a certain stability of the ground space as
a function of the parameters (a, b).

To support this reasoning, we numerically compute the (exact) ground state |ψpert
a,b 〉

of Htop + εH±(a, b) for the choice ε = 0.001 (as a proxy for the effective Hamiltonian),
and study the overlap |〈ψpert

a,b |ψref
a0,b0
〉|2 as a function of the parameters (a, b) in the

neighborhood of (a0, b0).

The results of our numerical experiments support the following two observations:

• Hamiltonian interpolation is generically able to prepare approximate ground states of these
topological models for sufficiently long total evolution times T .

• Specific final state(s) show a certain degree of stability with respect to changes in the initial
Hamiltonian. The theoretical reasoning based on perturbation theory presented in Section 3.6
provides a partial explanation of this phenomenon.

3.7.2 A symmetry of the 12-qubit rhombic torus

As discussed in Section 3.6.3, the ground space of Htop on a torus is 4-dimensional for the toric
code, the doubled semion- and the Fibonacci model. In this section, we argue that adiabatic
interpolation starting from a translation-invariant Hamiltonian (as considered here) yields states
belonging to a two-dimensional subspace of this ground space, thus providing a simplification.

Consider again the 12-qubit rhombic torus illustrated in Fig. 3.1. A π/3 rotation permuting
the physical qubits according to

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) 7→ (5, 7, 8, 6, 9, 12, 11, 10, 2, 4, 1, 3)

defines a unitary Uπ/3 on C⊗12. Because of translation-invariance, this is a symmetry of the trivial

Hamiltonian, Uπ/3HtrivU
†
π/3 = Htriv, and it can easily be verified that for the models considered

here, the unitary Uπ/3 also commutes with Htop. Because of the product form of the initial
state Ψ(0), it thus follows that Uπ/3Ψ(t) = Ψ(t) along the whole trajectory t 7→ Ψ(t) of adiabatic
interpolation. In particular, the projection of the final state Ψ(T ) onto the ground space of Htop

is supported on the +1-eigenspaces space of Uπ/3.
As discussed in Section 3.6.2, a π/3-rotation of the rhombic torus corresponds to the modular

transformation ts3ts. Since Uπ/3 realizes this transformations, its restriction to the ground space
of Htop can be computed from the T and S-matrices. That is, expressed in the flux bases discussed
in Section 3.6.3, the action of Uπ/3 on the ground space is given by the matrix TS3TS, where
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(S, T ) are given by (3.41) for the toric code, as well as (3.44) and (3.45) for the doubled semion and
Fibonacci models, respectively. The specific form of TS3TS or its eigenvectors is not particularly
elucidating, but may be computed explicitly.

Importantly, the +1 eigenspace of TS3TS is two-dimensional for the toric code, the doubled
semion and the Fibonacci models. (In the case of the toric code, it can be verified that this
eigenspace is contained in the logical symmetric subspace. The latter is the subspace invariant
under swapping the two logical qubits in the standard computational basis.) As a result, the
projection of the state Ψ(T ) onto the ground space of Htop belongs to a known two-dimensional
subspace which can be explicitly computed. This means that we may characterize the resulting
state in terms of a restricted reduced set of logical observables, a fact we will exploit in Section 3.7.3.

3.7.3 The toric code

As discussed in Section 3.6.3, for the toric code on the honeycomb lattice (see Fig. 3.1), the
Hamiltonian of the model is Htop = −(

∑
pBp +

∑
v Av), where Bp = X⊗6 is a tensor product

of Pauli-X operators on the six edges of the plaquette p, and Av = Z⊗3 is a tensor product of
Pauli-Z operators on the three edges incident on the vertex v. We point out that the toric code on
a honeycomb lattice has several differences compared to a toric code on a square lattice (which is
often considered in the literature). Assuming that both lattices are defined with periodic boundary
conditions,

(i) there are twice as many vertices compared to plaquettes on a honeycomb lattice (as opposed
to the same number on a square lattice)

(ii) the vertex terms Av = Z⊗3 of the Hamiltonian have odd weights (as opposed to even weight
for the square lattice)

(iii) the weight of a logical minimal X̄-string operator (i.e. the number of spins it acts on) is
roughly twice as large compared to the corresponding minimal Z̄-string operator on the dual
lattice (as opposed to the square lattice, where both operators have the same weight). For the
12-qubit code of Fig. 3.1, an example of such a pair (X̄, Z̄) of lowest-weight logical operators
is given below in Eq. (3.51).

Properties (i) and (ii) imply that the usual symmetries X ↔ Z and Z ↔ −Z of the toric code
on the square lattice are not present in this case. The absence of these symmetries is reflected in
our simulations. Property (iii) also directly affects the final state, as can be seen by the pertur-
bative reasoning of Section 3.6.1: Z̄-string operators appear in lower order in perturbation theory
compared to X̄-string operators.

(Non)-adiabaticity. We first present the adiabaticity error εadia(T ) for the Hamiltonian Htriv(θ)
given by (3.46) (for different values of θ) as a function of the total evolution time T . Fig. 3.2
illlustrates the result. It shows that for sufficiently long total evolution times T , the Hamiltonian
interpolation reaches the ground space of the toric code when the initial Hamiltonian is Htriv(θ =
π) = −∑i Zi; this is also the case for θ ∈ {π/4, π/2, 3π/4}.

However, if the initial Hamiltonian is Htriv(θ = 0) =
∑

i Zi, then the final state Ψ(T ) is far from
the ground space of the toric code Hamiltonian Htop. This phenomenon has a simple explanation
along the lines of Observation 3.2.3. Indeed, if θ = 0, then every vertex terms Av = Z⊗3 commutes
with both Htriv as well as Htop (and thus all intermediate Hamiltonians H(t)). In particular, the
expectation value of the vertex terms remains constant throughout the whole evolution, and this
leads to an adiabaticity error εadia(T ) of 1 in the case of Htriv(θ = 0) =

∑
i Zi.

In Figs. 3.3a, 3.3b, we consider neighborhoods of Hamiltonians of the form (cf. (3.47))

H+
triv(a, b) around H+

triv(0, 0) = Htriv(θ = 0) =
∑

j

Zj and

H−triv(a, b) around H−triv(0, 0) = Htriv(θ = π) = −
∑

j

Zj .
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Figure 3.2: This figure gives the adiabaticity error εadia(T ) = 1− 〈Ψ(T )|P0(T )|Ψ(T )〉 (cf. (3.49))
as a function of the total evolution time T and the initial Hamiltonian chosen. For the latter,
we consider the one-parameter family Htriv(θ) given by (3.46). For θ = 0, the adiabatic evolution
is not able to reach the final ground space because initially 〈Av〉 = −1 for every vertex operator
Av = Z⊗3, and this quantity is conserved during the evolution. This is a feature of the honeycomb
lattice because the vertex terms Av have odd weights. For other values of θ, the ground space is
reached for sufficiently large total evolution times T .

The initial Hamiltonians Htriv(θ = 0) and Htriv(θ = π) correspond to the center points in Fig. 3.3a
and 3.3b, respectively.

• In the first case (Fig. 3.3a), we observe that for all initial Hamiltonians of the form H+
triv(a, b)

in a small neighborhood of H+
triv(0, 0), the adiabaticity error εadia(T ) is also large, but drops

off quickly outside that neighborhood. This is consistent with the relevant level crossing(s)
being avoided by introducing generic perturbations to the initial Hamiltonian.

• In contrast, almost all initial Hamiltonians in the family H−triv(a, b) (around the initial Hamil-
tonian H−triv(0, 0)) lead to a small adiabaticity error εadia(T ) (Fig. 3.3b), demonstrating the
stability of the adiabatic preparation.

In a similar vein, Fig. 3.3c illustrates the non-adiabaticity for the family of Hamiltonian

H−Xtriv (a, b) = −(1− a2 − b2)1/2
∑

j

Xj + b
∑

j

Yj + a
∑

j

Zj . (3.50)

The family H+X
triv (a, b) (defined with a positive square root) would behave exactly the same due to

the symmetry +X ↔ −X.

Logical state. For the 12-qubit rhombic toric code (Fig. 3.1), logical observables associated with
the two encoded logical qubits can be chosen as

X̄1 = X7X8X11X12

Z̄1 = Z10Z12

and
X̄2 = X4X0X2X12

Z̄2 = Z1Z2

.

Because of the symmetry (3.7.2), however, these are not independent for a state Ψ(T ) (or more
precisely, its projection P0(T )Ψ(T )) prepared by Hamiltonian interpolation from a product state:
their expectation values satisfy the identities

〈Z̄1〉 = 〈Z̄2〉 and 〈X̄1〉 = 〈X̄2〉 .

We will hence use the two (commuting) logical operators

X̄ = X̄1 = X7X8X11X12 and Z̄ = Z̄2 = Z1Z2 (3.51)
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(a) The adiabaticity error εadia(T ) in
the neighborhood around H+

triv(0, 0) =∑
i Zi for different Hamiltonians H+

triv(a, b).
As explained, the evolution cannot reach
the ground space of the toric code
around (a, b) = (0, 0) because the expecta-
tion values of plaquette-operators are pre-
served.
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(b) The logarithm ln εadia(T ) of the
adiabaticity error in the neighborhood
around H−

triv(0, 0) = −∑i Zi for different
Hamiltonians H−

triv(a, b). Here we use a
log-scale because the variation in values is
small. The ground space of the toric code
Hamiltonian Htop is reached for almost the
entire parameter region.
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(c) The logarithm of adiabaticity error ln εadia(T ) in the neighborhood around
H−X

triv (0, 0) = −∑j Xj for different Hamiltonians H−X
triv (a, b). Note that the resulting

figure would look identical for the Hamiltonians H+X
triv (a, b) because of the −X ↔ +X

symmetry.

Figure 3.3: The adiabaticity error εadia(T ) = 1 − 〈Ψ(T )|P0(T )|Ψ(T )〉, measuring how well the
final state Ψ(T ) overlaps with the ground space of the toric code. All three figures are for a total
evolution time T = 120. In Fig. 3.3a, we consider the family of initial Hamiltonians H+

triv(a, b) in
the neighborhood of H+

triv(0, 0) = Htriv(θ = 0) =
∑

j Zj . In contrast, Fig. 3.3b illustrates different

choices of initial Hamiltonians H−triv(a, b) around H−triv(0, 0) = Htriv(θ = π) = −∑j Zj . The values

(a, b) ⊂ R2 are restricted to the unit disc a2+b2 ≤ 1; the center points of the two figures correspond
respectively to θ = 0 and θ = π in Fig. 3.2. Finally, Fig. 3.3c gives the non-adiabaticity error for
initial Hamiltonians of the form H−Xtriv (a, b) (as defined in Eq. (3.50)).



86 CHAPTER 3. ADIABATIC PREPARATION OF TOPOLOGICAL STATES

to describe the obtained logical state.
In Fig. 3.4, we plot the expectation values of Z̄ and X̄ in the final state Ψ(T ) for initial

Hamiltonians of the form (cf. (3.47) and (3.50))

H−triv(a, b) around H−triv(0, 0) = −
∑

j

Zj

H−Xtriv (a, b) around H−Xtriv (0, 0) = −
∑

j

Xj

We again discuss the center points in more detail. It is worth noting that the single-qubit {Zi}
operators correspond to the local creation, hopping and annihilation of m anyons situated on
plaquettes, whereas the operators {Xi} are associated with creation, hopping and annihilation of e
anyons situated on vertices. In particular, this means that the initial Hamiltonians associated with
the center points in the two figures each generate processes involving only either type of anyon.

• For H−triv(0, 0) = −∑i Zi, we know that 〈Z̄〉 = 1 during the entire evolution because Z̄ com-
mutes with the Hamiltonians H(t), and the initial ground state Ψ(0) is a +1 eigenstate of Z̄.
In Figs. 3.4a and 3.4b, we can see that there is a large region of initial Hamiltonians H−triv(a, b)
around H−triv(0, 0) = −∑i Zi which lead to approximately the same final state.

• On the other hand, as shown in Figs. 3.4c and 3.4d, the stable region of HamiltoniansH−Xtriv (a, b)
around the initial Hamiltonian H−Xtriv (0, 0) = −∑iXi is much smaller. This is due to the
fact that the operator X̄ appears in higher order perturbation expansion compared to Z̄,
and the evolution time T is taken to be quite long. Given sufficiently large total evolution
time T , in the neighborhood of H−Xtriv (0, 0) = −∑iXi, the lower order term Z̄ in the effective
Hamiltonian will dominate the term X̄ associated with V = −∑iXi.

However, in both cases considered in Fig. 3.4, we observe that one of two specific logical states
is prepared with great precision within a significant fraction of the initial Hamiltonian parameter
space.
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(a) The expectation value 〈X̄〉 of the final state Ψ(T ),
for initial Hamiltonians H−

triv(a, b) in the neighborhood
of H−

triv(0, 0) = −∑j Zj . Note that, as illustrated in
Fig. 3.3b, the ground space of the toric code is reached
for the whole parameter range; hence these values, to-
gether with the expectation values shown in Fig. 3.4b
uniquely determine the state Ψ(T ).
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(b) The quantity ln(1 − 〈Z̄〉) for initial Hamiltoni-
ans H−

triv(a, b) (we plot the logarithm because the vari-
ation is small) as in Fig. 3.4a.
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(c) The quantity ln(1 − 〈X̄〉) for initial Hamiltoni-
ans H−X

triv (a, b) in the neighborhood of H−X
triv (0, 0) =

−∑j Xj . The corresponding adiabaticity error is
shown in Fig. 3.3c.
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(d) The quantity 〈Z̄〉 for initial Hamiltoni-
ans H−X

triv (a, b) as in Fig. 3.4c.

Figure 3.4: These figures illustrate the expectation values 〈X̄〉 and 〈Z̄〉 of string-operators
(cf. (3.51)) of the final state Ψ(T ), for different choices of the initial Hamiltonian. The total
evolution time is T = 120.
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Figure 3.5: The adiabaticity error εadia(T ) for the doubled semion model as a function of the total
evolution time T . Initial Hamiltonians Htriv(θ) with θ ∈ {π/3, 2π/3, π} are considered.

3.7.4 The doubled semion model

In this section, we present our numerical results for Hamiltonian interpolation in the case of the
doubled semion model (see Section 3.6.3).

(Non)-adiabaticity. We first consider the total evolution time T necessary to reach the final
ground space of Htop, for different initial Hamiltonians Htriv. Specifically, Fig. 3.5 shows the
adiabaticity error εadia(T ) (cf. (3.49)) as a function of the total evolution time T for the three
initial Hamiltonians Htriv(θ), θ ∈ {π, π/3, 2π/3} (cf. (3.46)). The case of θ = 0, corresponding to
the initial Hamiltonian Htriv(0) =

∑
j Zj is not shown in Fig. 3.5 since the situation is the same as

in the toric code: No overlap with the ground space of Htop is achieved because the vertex-operators
Av = Z⊗3 are conserved quantities with 〈Av〉 = −1.

In Fig. 3.6a, we plot the adiabaticity error εadia(T ) with initial Hamiltonian among the family
of Hamiltonians H+

triv(a, b) in the vicinity of H+
triv(0, 0) =

∑
i Zi. Similarly, Fig. 3.6b provides the

adiabaticity error for initial Hamiltonians H−triv(a, b) in the vicinity of H−triv(0, 0) = −∑i Zi.

Logical state. To explore the stability of the resulting final state, we consider the family of initial
Hamiltonians H±triv(a, b) and compute the overlap |〈Ψ±a,b(T )|ψR〉|2 of the resulting final state Ψ±a,b(T )
with a suitably chosen reference state ψR. We choose the latter as follows: ψR is the result
of projecting the final state Ψ−0,0(T ) of the Hamiltonian interpolation, starting from the initial

Hamiltonian H−triv(0, 0) = −∑i Zi onto the ground space of the doubled semion model Htop and
normalizing, i.e.,

ψR =
P0Ψ−0,0(T )

‖P0Ψ−0,0(T )‖ . (3.52)

We briefly remark that the state ψR is uniquely determined (up to a phase) as the unique simul-
taneous +1-eigenvector of TS3TS (see Section 3.7.2) and the string operator Z̄ = Z1Z2 (which is
the string-operator F(s,s)(C) for the associated loop C when acting on the ground space of Htop):

indeed, the latter operator commutes with both H−triv(0, 0) and Htop. We also point out that,
similarly to the toric code, the local Zi-operators correspond to a combination of pair creation,
hopping and pair annihilation of (s, s) anyons.

The preparation stability of the reference state ψR with respect to the initial Hamiltoni-
ans H±triv(a, b) with negative and positive Z field component is illustrated in Fig. 3.7. For neg-
ative Z field (Fig. 3.7b) the resulting state Ψ−a,b(T ) has large overlap with the reference state ψR
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(a) The adiabaticity error εadia(T ) for dif-
ferent Hamiltonians H+

triv(a, b) in the vicin-
ity of H+

triv(0, 0) =
∑

j Zj . The adiabatic-
ity error is maximal for the latter because
of conserved quantities; however, it decays
rapidly outside this center region. This sit-
uation is analogous to Fig. 3.3a for the toric
code.
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(b) The logarithmic adiabatic-
ity error ln εadia(T ) among the
family of Hamiltonians H−

triv(a, b)
around H−

triv(0, 0) = −∑j Zj .

Figure 3.6: The adiabaticity error εadia(T ) for different initial Hamiltonians Htriv and the doubled
semion model as Htop. In both cases, the total evolution time is T = 120.

for almost the entire parameter range. Even when starting from initial Hamiltonians with posi-
tive Z field component (Fig. 3.7a), where the final state does not have a large overlap with the
topological ground space (see Fig. 3.6a), the ground space contribution comes almost exclusively
from the reference state. Thus, for doubled semion model, we identify a single stable final state ψR
corresponding to the initial Hamiltonian Htriv = −∑i Zi.

3.7.5 The doubled Fibonacci model

As our last case study of Hamiltonian interpolation, we consider the doubled Fibonacci model
described in Section 3.6.3.

(Non)-adiabaticity. Fig. 3.8 shows the adiabaticity error εadia(T ) as a function of the total
evolution time T for the initial Hamiltonians H±triv = ±∑j Zj . Note that to achieve the same
error, the total evolution time T needs to be much longer compared to the toric code and the
doubled semion models. It also illustrates that an error of around εadia(T ) ≈ 10−3 is obtained
for T = 320: the final state Ψ(T ) overlaps well with the ground space of Htop.

In Fig. 3.9, we consider the non-adiabaticity t 7→ εadia(t) along the evolution, again for the
initial Hamiltonians H±triv = ±∑j Zj . In particular, Fig. 3.9a, which is for a total evolution time of
T = 320, we see that the deviation of the state Ψ(t) from the instantaneous ground state of H(t)
can be much larger (compared to the non-adiabaticity εadia(T )) along the evolution, even when
approaching the end of Hamiltonian interpolation: we have εadia(t) & 10−2 for t ≈ 280. The
fact that the ground space of the final Hamiltonian Htop is reached nevertheless at time t ≈ T is
essentially due to the exact degeneracy in the final Hamiltonian Htop: In fact, the system is in
a state which has a large overlap with the subspace of ‘low energy’ (corresponding to the 4-fold
degenerate subspace ofHtop) along the trajectory, but not necessarily with the unique instantaneous
ground state of H(t) for t < T . For t = T , the state has a large overlap with the ground space
of Htop since the latter is higher-dimensional.

This illustrates that the adiabaticity error t 7→ εadia(t) along the evolution (i.e., for t < T ) does
not provide sufficient information to conclude that the ground space of Htop is reached at the end
of the evolution. Due to the small energy splitting within the topological “phase” it is more fruitful
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(a) The overlap |〈Ψ+
a,b(T )|ψR〉|2 for

initial Hamiltonians H+
triv(a, b) around

H+
triv(0, 0) =

∑
i Zi. We observe that out-

side the center region (where the ground
space of Htop is not reached, see Fig. 3.6a),
the prepared state Ψ+

a,b(T ) is not too far
from the reference state ψR. Note that
definition of the latter does not correspond
to any Hamiltonian in this plot, but rather
the centerpoint of Fig. 3.7b.
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(b) The quantity ln(1 − |〈Ψ−
a,b(T )|ψR〉|2)

for initial Hamiltonians H−
triv(a, b) around

H−
triv(0, 0) = −∑i Zi. We plot the log-

arithm of this quantity because the vari-
ation is small. As illustrated, the result-
ing state is close to the reference state ψR

throughout most of the parameter region.
Observe that, while ψR corresponds to the
center point in this figure, it still devi-
ates from Ψ−

a,b since the latter has sup-
port outside the ground space of Htop (cf.
Fig. 3.6b).

Figure 3.7: The overlaps |〈Ψ±a,b(T )|ψR〉|2 between the final states Ψ±a,b(T ) of Hamiltonian interpo-
lation and the reference state ψR (cf. (3.52)). Observe that the same reference state is used in
both figures even though ψR is naturally associated with the centerpoint in Fig. 3.7b. The total
evolution time is T = 120 in both cases. Comparing with Figs. 3.6a and 3.6b, we conclude that
throughout the region where the ground space of Htop is reached, approximately same state is
prepared.
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Figure 3.8: The adiabaticity error εadia(T ) with respect to different total evolution times T for the
Fibonacci model. The initial HamiltonianHtriv is eitherH+

triv(0, 0) =
∑

i Zi orH−triv(0, 0) = −∑i Zi.
Note that for this choice of initial Hamiltonians, the vertex terms Av are conserved quantities (as
for example in the toric code). Since both |1〉⊗3 and |τ〉⊗3 are in the ground space of Av, both
signs of the pure Z field lead to a Hamiltonian interpolation which invariantly remains in the
ground space of Av. In other words, the adiabaticity error stems from the plaquette terms. Other
fields are computationally more costly, since they lift the block decomposition of the interpolating
Hamiltonians H(t) induced by the conserved vertex terms, reducing the sparsity of the unitary
evolution.

to view the part of the interpolation close to t ≈ T in terms of degenerate adiabatic perturbation
theory [RO14] instead of the traditional adiabatic theorem.

Fig. 3.9a also shows that for T = 320, changing the Trotter time steps ∆t (cf. (3.48)) from
∆t = 0.1 to ∆t = 0.01 does not significantly change the behavior, particularly for the initial
Hamiltonian

∑
i Zi. On the other hand, by increasing the Hamiltonian interpolation time for

Htriv =
∑

i Zi to T = 1280, as in Fig. 3.9b, we see the evolution closely follows the instantaneous
ground state. The discrepancy can be seen as a “lag” or delay of the evolved state and the
instantaneous ground state and is largest at the “phase transition”, H(t) ≈ 1/4Htop + 3/4

∑
i Zi,

where the gap closes.

Logical state. Fig. 3.10 provides information about the final state Ψ±a,b(T ) of Hamiltonian

interpolation, for the family of initial Hamiltonians H±triv(a, b) (cf. (3.50)). Again, the figure gives
the overlap with a single reference state ψR. Similarly as before, we choose the latter as the final
state of Hamiltonian interpolation, starting with initial Hamiltonian H−triv(0, 0) = −∑i Zi, and
subsequently projected into the ground space and normalized (cf. (3.52)).

We observe significant overlap of the final state with the reference state ψR for the whole
parameter range for the initial Hamiltonians H−triv(a, b) (Fig. 3.10b). In contrast, for the ini-
tial Hamiltonians H+

triv(a, b), the final state depends strongly on the choice of parameters (a, b)
(Fig. 3.10a).

To relate this to the discussion in Section 3.6 (respectively Conjecture 1), let us first consider the
centerpoint of Fig. 3.10b associated with the initial HamiltonianH−triv(0, 0) = −∑j Zj . These terms
correspond to a combination of local pair creation, hopping and pair annihilation of (τ , τ ) anyons,
as explained in Appendix 3.B. The effective Hamiltonian can be computed at this point based on
expression (3.35) and the S- and T -matrices given in Eq. (3.45). The result is given numerically
in Eq. (3.100) in the appendix. Computing the ground state ψeff of this effective Hamiltonian, we
observe that with respect to the projections {P1,1, Pτ,τ , P1,τ , Pτ,1}, the expectation values of the
reference state ψR and ψeff are similar,
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∆t = 0.01 does not significantly change the
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(b) For the initial Hamiltonian Htriv =∑
i Zi and a total evolution time T = 1280,

the system closely follows the instantaneous
ground state of H(t).

Figure 3.9: The overlap of the state Ψ(t) at time t with the instantaneous ground space of H(t),
as expressed by the adiabaticity error t 7→ εadia(t) along the evolution. The initial Hamiltonian is
either H+

triv(0, 0) =
∑

i Zi or H−triv(0, 0) = −∑i Zi, and the final Hamiltonian Htop is the doubled
Fibonacci model.

P1,1 Pτ,τ P1,τ Pτ,1

ψR 0.5096 0.4838 0.0033 0.0033

ψeff 0.5125 0.4804 0.0036 0.0036

Moving away from the center point in Fig. 3.10b, we compute the overlaps of the reference
state ψR with the ground states ψ±pert(a, b) of perturbed Hamiltonians of the form H±pert(a, b) =
Htop ± 0.001H±triv(a, b), as illustrated in Fig. 3.11 (the latter providing an approximate notion of
effective Hamiltonians). The figure illustrates that these perturbed states have, as expected, a
certain degree of stability with respect to the parameters (a, b). Comparison with Fig. 3.10 thus
points to a certain discrepancy between the behavior of perturbed states and states obtained by
Hamiltonian interpolation: Fig. 3.10a shows high sensitivity of the final state to initial parame-
ters (a, b) (which is absent in the perturbative prediction), whereas Fig. 3.10b shows that the final
state is close to the reference state ψR throughout (as opposed to the perturbative prediction,
where this is not the case along the boundary). To rule out that this discrepancy stems from an
insufficiently large choice of the total evolution time T , we also show that different choices of the
total evolution time T do not significantly affect the overlap with the reference state along the
line b = 0, see Fig. 3.12.

In summary, we conclude that while for a large parameter range of initial parameters the
reference state ψR is indeed reached, the stability property is less pronounced than for the toric
code and the doubled semion models. In addition, a näıve comparison with ground states of
perturbed Hamiltonians suggests that the description via effective Hamiltonians does not capture
all relevant features. We conjecture that higher orders in perturbation theory are needed to provide
more information in the case of the Fibonacci model: the state may be “locked” in eigenstates of
such higher-order Hamiltonians before the lowest order effective Hamiltonian dominates.
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(a) The quantity ln(1−|〈Ψ+
a,b(T )|ψR〉|2) for

initial Hamiltonian of the form H+
triv(a, b)

around H+
triv(0, 0) =

∑
j Zj . For the whole

range of parameters (a, b), the adiabatic-
ity error is small, εadia(T ) ≤ 10−4. The
reference state ψR corresponds to the cen-
ter of Fig. 3.10b (up to projection onto
the ground space of Htop and normaliza-
tion). The figure illlustrates that the final
state Ψ+

a,b(T ) has non-trivial overlap with
the reference state in the region a > 0, but
is very sensitive to the choice of parame-
ters (a, b), especially around (a, b) = (0, 0).
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(b) The quantity ln(1 − |〈Ψ−
a,b(T )|ψR〉|2),

for initial Hamiltonians H−
triv(a, b) around

H−(0, 0) = −∑j Zj . For the whole range
of parameters (a, b), the adiabaticity error
is small, εadia(T ) ≤ 0.005 apart from the
point on the boundary of the plot. The
Hamiltonian interpolation reaches the ref-
erence state ψR essentially for the full pa-
rameter range.

Figure 3.10: These figures show the overlap between the final states Ψ±a,b of Hamiltonian interpo-

lation and the reference state ψR. This is for the family H±triv(a, b) of initial Hamiltonians and the
double Fibonacci model Htop as the final Hamiltonian. The reference state ψR is chosen in both
figures as in (3.52) (corresponding to the center point in Fig. 3.10b). The total evolution time is
T = 320 in both cases.
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pert(a, b).
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(b) The quantity ln(1 − |〈ψ−
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for Hamiltonians H−
pert(a, b). The reference

state ψR has overlap |〈ψ−
pert(0, 0)|ψR〉|2 ≈

0.9976 with the ground state of the per-
turbed Hamiltonian H−

pert(0, 0) = Htop −
0.001

∑
j Zj .

Figure 3.11: To compare with the perturbative prediction, these figures give the overlap between
the reference state ψR and the ground state ψpert(a, b) of the perturbed Hamiltonians H±pert(a, b) =
Htop ± 0.001H+

triv(a, b).

3

0 :/2 : 3:/2 2:

O
ve

rla
p

0.2

0.4

0.6

0.8

1

T=160
T=640
T=960
Perturbed
ground state

Figure 3.12: This figure shows the overlap |〈Ψpert(θ)|ψR〉|2 for initial Hamiltonians Htriv(θ) =∑
j cos θZj + sin θXj along the line of the horizontal axis in Fig. 3.11a, for different values of the

total evolution time T . We only compute T = 960 on the rightmost region to show that increasing
the total evolution time do not significantly change the final states. It also gives the corresponding
overlap |〈Ψpert(θ)|ψR〉|2 between the ground state of Hpert(θ) and the reference state. The figure
illustrates that increasing the evolution time T does not significantly alter the overlap with the
reference state.



Appendix

3.A Equivalence of the self-energy- and Schrieffer-Wolff methods
for topological order

As discussed in Section 3.3.4, here we show that at lowest non-trivial order, the expressions obtained
from the self-energy-method and the Schrieffer-Wolff method coincide if the Hamiltonian and
perturbation satisfies a certain topological order condition.

We begin with a review of the exact Schrieffer-Wolff transformation (Section 3.A.1), as well
as the expressions resulting from the Schrieffer-Wolff perturbative expansion (Section 3.A.2). In
Section 3.A.3, we present some preliminary computations. In Section 3.A.4, we introduce the
topological order constraint and establish our main result.

3.A.1 Exact-Schrieffer-Wolff transformation

As mentioned in Section 3.3, the Schrieffer-Wolff method provides a unitary U such that

Heff = U(H0 + εV )U † (3.53)

preserves the ground space P0H of H0, and can be considered as an effective Hamiltonian. The
definition of the unitary is as follows: let P be the projection onto the ground space of the perturbed
Hamiltonian H0 + εV . Defining the reflections

RP0 = 2P0 − I
RP = 2P − I

the (exact) Schrieffer-Wolff transformation is defined by the “direct rotation”

U =
√
RP0RP , (3.54)

where the square root is defined with a branch cut along the negative real axis. The effective
Hamiltonian is then given by

Heff(ε) = P0U(H0 + εV )U †P0 .

A variational characterization (see [BDL11]) of the unitary U (instead of (3.54)) is often more useful
(e.g., for computing the effective Hamiltonian in the case of a two-dimensional ground space, such
as for the Majorana chain): we have

U = arg min
{
‖I − U‖2

∣∣ U unitary and UPU † = P0

}
, (3.55)

where ‖A‖2 =
√

tr(A†A) is the Frobenius norm.

3.A.2 The perturbative SW expansion

Since the transforming unitary (3.54), as well as expression (3.53), are difficult to compute in
general, a standard approach is to derive systematic series in the parameter ε (the perturbation
strength). In this section, we summarize the expressions for this explicit perturbative expansion

95
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of the Schrieffer-Wolff effective Hamiltonian obtained in [BDL11]. The perturbation is split into
diagonal and off-diagonal parts according to

Vd = P0V P0 +Q0V Q0 =: D(V ) (3.56)

Vod = P0V Q0 +Q0V P0 =: O(V ) . (3.57)

where P0 is the projection onto the ground space of H0, and Q0 = I − P0 the projection onto the
orthogonal complement. Assuming that {|i〉}i is the eigenbasis of H0 with energies H|i〉 = Ei|i〉,
one introduces the superoperator

L(X) =
∑

i,j

〈i|O(X)|j〉
Ei − Ej

|i〉〈j| .

Then the operators Sj are defined recursively as

S1 = L(Vod)

S2 = −L(AdVd(S1))

Sn = −L(AdVd(Sn−1)) +
∑

j≥1

a2jL(Ŝ2j(Vod)n−1) , (3.58)

where

Ŝk(Vod)m =
∑

n1,...,nk≥1∑k
r=1 nr=m

AdSn1 · · ·AdSnk (Vod) , (3.59)

and where AdS(X) = [S,X]. The constants are am = 2mβm
m! , where βm is the m-th Bernoulli

number. Observe that

Ŝk(Vod)m = 0 for k > m .

The q-th order term in the expansion (3.6) is

Heff,q =
∑

1≤j≤bq/2c

b2j−1P0Ŝ
2j−1(Vod)q−1P0 , (3.60)

where b2n−1 = 2(2n−1)β2n
(2n)! .

Since our main goal is to apply the perturbation theory to topologically ordered (spin) systems,
we can try to utilize their properties. In particular, one defining property of such systems is that, if
an operator is supported on a topological trivial region, then it acts trivially inside the ground space.
A common non-trivial operation in the ground space corresponds to the virtual process of tunneling
an anyon around the torus. This property will allow us to simplify the computation when we want
to compute the lowest order effective Hamiltonian. In the following subsections, we will show that
although Sn is defined recursively based on S1, . . . , Sn−1, only the first term −L(AdVd(Sn−1)) on
the rhs of (3.58) would contribute to the lowest order effective Hamiltonian. The intuition behind
this claim is that the other term

∑
j≥1 a2jL(Ŝ2j(Vod)n−1) corresponds to virtual processes which

go through the ground space → excited space → ground space cycle multiple times (larger than
one). It is intuitive that such virtual processes would not happen when we want to consider the
lowest order perturbation.

3.A.3 Some preparatory definitions and properties

Let

G(z) = (zI −H0)−1
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be the resolvent of the unperturbed Hamiltonian H0. Let E0 be the ground space energy of H0.
We set

G = G(E0) = G(E0)Q0 = Q0G(E0)Q0 ,

i.e., the inverse is taken on the image of Q0. Then L can be written as

L(X) = P0XG−GXP0 . (3.61)

To organize the terms appearing in the perturbative Schrieffer-Wolff expansion, it will be
convenient to introduce the following subspaces of operators.

Definition 3.A.1. For each n ∈ N, let Γ(n) be the linear span of operators of the form

Z0V Z1V Z2 · · ·Zn−1V Zn , (3.62)

where for each j = 0, . . . , n, the operator Zj is either one of the projections P0 or Q0, or a positive
power of G, i.e., Zj ∈ {P0, Q0} ∪ {Gm |m ∈ N}.

Let Γ?(n) ⊂ Γ(n) the span of operators of the form (3.62) which additionally satisfy the condi-
tion

Z0Zn = ZnZ0 = 0 ,

i.e., Z0 and Zn are orthogonal.

For later reference, we remark that operators in Γ?(n) a linear combinations of certain terms
which are off-diagonal with respect the ground space of H0 (and its orthogonal complement). In
particular, any product of an even number of these operators is diagonal.

The first observation is that the summands the effective Hamiltonian (3.60) have this particular
form.

Lemma 3.A.2. We have

Vod ∈ Γ?(1) (3.63)

and

Sn ∈ Γ?(n) for every n ∈ N (3.64)

Furthermore,

Ŝk(Vod)m ∈ Γ(m+ 1) (3.65)

for all k,m.

Proof. The definition of Γ(n) immediately implies that

XY ∈ Γ(n1 + n2) for X ∈ Γ(n1) and Y ∈ Γ(n2) . (3.66)

Thus

AdX(Y ) ∈ Γ(n1 + n2) for X ∈ Γ(n1) and Y ∈ Γ(n2) .

Furthermore, inspecting the Definitions (3.57) and (3.56), we immediately verify that

Vod ∈ Γ(1) and Vd ∈ Γ(1) (3.67)

Similarly, (3.63) follows directly from the definitions.
We first argue that

S1 ∈ Γ(1) and S2 ∈ Γ(2) . (3.68)
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Inserting the definition of Vod and L (that is, (3.61)), we have

S1 = L(P0V Q0 +Q0V P0)

= P0(P0V Q0 +Q0V P0)G−G(P0V Q0 +Q0V P0)P0

= P0V G−GV P0 , (3.69)

where we used the fact GQ0 = Q0G = G and that Q0, P0 are orthogonal projections. This proves
the claim (3.64) for n = 1 and, in particular, shows that S1 ∈ Γ(1).

Similarly, for n = 2, using the definition of Vd, a straightforward calculation (using (3.69)) gives

AdVd(S1) = (P0V P0V G−Q0V GV P0) + h.c.

(where h.c. denotes the Hermitian conjugate of the previous expression) and thus with (3.61)

S2 = (P0V P0V G
2 +GV GV P0)− h.c. .

We conclude that (3.64) holds n = 2 and, in particular, S2 ∈ Γ(2), as claimed (Eq. (3.68)).
With (3.67) and (3.68), we can use the composition law (3.66) to show inductively that

Sn ∈ Γ(n) for all n ∈ N . (3.70)

Indeed, (3.70) holds for n = 1, 2. Furthermore, assuming Sm ∈ Γ(m) for all m ≤ n − 1, we can
apply (3.66) and (3.67) to the Definition (3.59) of Ŝ2j(Vod)n−1, obtaining

Ŝ2j(Vod)n−1 ∈ Γ(n) and AdVd(Sn−1) ∈ Γ(n) .

Thus (3.70) follows by definition (3.58) of Sn, the easily verified fact (cf. (3.61)) that L(Γ(n)) ⊂
Γ(n), and linearity.

Finally, observe that (3.61) also implies

L(Γ(n)) ⊂ Γ?(n) , (3.71)

hence (3.64) follows with (3.70).
The claim (3.65) is then immediate from the composition law (3.66), as well as (3.70) and (3.67).

3.A.4 Topological-order constraint

In the following, we will assume that

P0Γ(n)P0 ⊂ CP0 for all n < L .(3.80)

which amounts to saying that (H0, V ) satisfies the topological order condition with parameter L
(see Definition 3.3.1). In Section 3.A.4, we argue that this implies that the effective Hamiltonian
is trivial (i.e., proportional to P0) for all orders n < L. In Section 3.A.4, we then compute the
non-trivial contribution of lowest order.

Triviality of effective Hamiltonian at orders n < L

A simple consequence of Definition 3.A.1 then is the following.

Lemma 3.A.3. Suppose that P0Γ(n)P0 ⊂ CP0 for all n < L. Then for any 2k-tuple of integers
n1, . . . , n2k ∈ N with

2k∑

j=1

nj < L ,

and all Tnj ∈ Γ?(nj), j = 1, . . . , 2k, we have

Tn1 · · ·Tn2k
P0 ∈ CP0

P0Tn1 · · ·Tn2k
∈ CP0 .
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Proof. It is easy to check that because of property (3.66), the expression Tn1 · · ·Tn2k
P0 is contained

in P0Γ(n)P0, where n =
∑2k

j=1 nj . The claim follows immediately. The argument for P0Tn1 · · ·Tn2k

is identical.

Lemma 3.A.4. Assume that P0Γ(n)P0 ⊂ CP0 for all n < L. Then

P0Ŝ
2j−1(Vod)n−1P0 ∈ CP0 for all j and all n < L . (3.72)

P0Ŝ
2j−1(Vod)L−1P0 ∈ CP0 for all j > 1 .

Lemma (3.A.4) suffices to show that the n-th order effective Hamiltonian H
(n)
eff is trivial (i.e.,

proportional to P0) for any order n < L (see Theorem 3.3.2 below).

Proof. The claim (3.72) is an immediate consequence of the assumption since Ŝ2j−1(Vod)n−1 ∈ Γ(n)
according to (3.65) of Lemma 3.A.2.

For j > 1, we use the definition

Ŝ2j−1(Vod)L−1 =
∑

n1,...,n2j−1≥1∑2j−1
r=1 nr=L−1

AdSn1 · · ·AdSn2j−1
(Vod) .

First summing over n1 (using the linearity of AdSn1 ), we obtain

Ŝ2j−1(Vod)n−1 =
∑

n1≥1

AdSn1 (Yn1) where

Yn1 =
∑

n2,...,n2j−1≥1∑2j−1
r=2 nr=L−1−n1

AdSn2 · · ·AdSn2j−1
(Vod)

Observe that Yn1 is a linear combination of products T1 · · ·T2j−1 of an odd number 2j − 1 of

elements {Tr}2j−1
r=1 , where (T1, . . . , T2j−1) is a permutation of (Sn2 , . . . , Sn2j−1 , Vod). By linearity, it

suffices to show that P0AdSn1 (T1 · · ·T2j−1)P0 ∈ CP0 for such a product.

We will argue that

T1 · · ·T2j−1P0 = TP0 for some T ∈ Γ(m) with m < L− n1 and (3.73)

P0T1 · · ·T2j−1 = P0T
′ for some T ′ ∈ Γ(m′) with m′ < L− n1 . (3.74)

This implies the claim since

P0AdSn1 (T1 · · ·T2j−1)P0 = P0Sn1T1 · · ·T2j−1P0 − P0T1 · · ·T2j−1Sn1P0

= P0Sn1TP0 − P0T
′Sn1P0

∈ CP0

where we used that Sn1T ∈ Γ(n1 +m) and T ′Sn1 ∈ Γ(n1 +m′), n1 +m < L, n1 +m′ < L and our
assumption in the last step.

To prove (3.73) (the proof of (3.74) is analogous and omitted here), we use that Snj ∈ Γ?(nj)
and Vod ∈ Γ?(1) according to Lemma 3.A.2. In other words, there are numbers m1, . . . ,m2j−1 ≥ 1

with
∑2j−1

r=1 mr = 1 +
∑2j−1

r=2 nr = L − n1 < L such that Tr ∈ Γ?(mr) for r = 1, . . . , 2j − 1. In
particular, with Lemma 3.A.3, we conclude that

T1 · · ·T2j−1P0 = T1(T2 · · ·T2j−1)P0

∈ CT1P0 .

Since m1 = L− n1 −
∑2j−1

r=2 mr < L− n1, the claim (3.73) follows.
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Computation of the first non-trivial contribution

Lemma (3.A.4) also implies that the first (potentially) non-trivial term is of order L, and given
by P0Ŝ

1(Vod)L−1P0. Computing this term requires some effort.

Let us define the superoperator Vd = −L ◦ AdVd , that is,

Vd(X) = L(XVd − VdX)

For later reference, we note that this operator satisfies

Vd(Γ?(n)) ⊂ Γ?(n+ 1) . (3.75)

as an immediate consequence of (3.71).

We also define the operators

Bn =
∑

j≥1

ajL(Ŝ2j(Vod)n−1) (3.76)

Then we can rewrite the recursive definition (3.58) of the operators Sn as

S1 = L(Vod)

Sn = Vd(Sn−1) +Bn = An +Bn for n ≥ 2 ,

where we also introduced

An = Vd(Sn−1) for n ≥ 2 . (3.77)

Similarly to Lemma 3.A.4, we can show the following:

Lemma 3.A.5. Suppose that P0Γ(n)P0 ⊂ CP0 for all n < L. Then for any

Y =

{
Z0VdZ1VdZ2 · · ·Zm−1VdZm for m > 0

Z0 for m = 0

where Zj ∈ {P0, Q0} ∪ {Gk |k ∈ N}, we have

P0B`Y VodP0 ∈ CP0 and P0VodY B`P0 ∈ CP0 (3.78)

for all `,m satisfying `+m− 1 < L.

Proof. By definition (3.76), B` is a linear combination of terms of the form L(Ŝ2j(Vod)`−1) with
j ≥ 1, which in turn (cf. (3.59)) is a linear combination of expressions of the form

L
(
AdSn1 · · ·AdSn2j (Vod)

)
where

2j∑

r=1

nr = `− 1 .

It hence suffices to show that

P0L
(
AdSn1 · · ·AdSn2j (Vod)

)
Y VodP0 ∈ CP0 . (3.79)

(The proof of the second statement in (3.78) is identical and omitted here.)

By definition of L, the claim is true if Z0 = P0, since in this case the lhs. vanishes as P0VodP0 =
0. Furthermore, for general Z0 ∈ {Q0}∪{Gk | k ∈ N}, the claim (3.79) follows if we can show that

P0(AdSn1 · · ·AdSn2j (Vod))Y VodP0 ∈ CP0 ,

i.e., we can omit L from these considerations. This follows by inserting the expression (3.61) for L.
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Observe that AdSn1 · · ·AdSn2j (Vod) is a linear combination of products T1 · · ·T2j+1 of 2j +

1 operators {Tr}2j+1
r=1 , where (T1, . . . , T2j+1) is a permutation of (Sn1 , . . . , Sn2j , Vod). That is, it

suffices to show that for each such 2j + 1-tuple of elements {Tr}2j+1
r=1 , we have

P0T1 · · ·T2jT2j+1Y VodP0 ∈ CP0 . (3.80)

By Lemma 3.A.2, Tr ∈ Γ∗(mr) for some integers mr ≥ 1 satisfying
∑2j+1

r=1 mr = 1 +
∑2r

r=1 nr =
1 + `− 1. This implies (by our assumption `+m− 1 < L) that

2j∑

r=1

mr = `− 1 < L , (3.81)

and thus P0T1 · · ·T2j ∈ CP0 according to Lemma 3.A.3. We conclude that

P0T1 · · ·T2jT2j+1Y VodP0 ∈ CP0T2j+1Y VodP0

∈ CP0Γ(m2j+1 +m+ 1)P0 .

But by (3.81) and the because j ≥ 1, we have

m2j+1 + (m+ 1) = (`− 1−
2j∑

r=1

mr) + (m+ 1)

≤ (`− 1− 2j) + (m+ 1) ≤ `+m− 2 < L

by assumption on `,m and L, hence (3.80) follows from the assumption (3.80).

Lemma 3.A.6. Suppose that P0Γ(n)P0 ⊂ CP0 for all n < L. Then for any `,m satisfying
`+m− 1 < L, we have

P0V◦md (B`)VodP0 ∈ CP0 and P0VodV◦md (B`)P0 ∈ CP0 (3.82)

In particular, for every q < L, we have

P0AdV◦k+1
d (Bq−k)(Vod)P0 ∈ CP0 (3.83)

for all k = 0, . . . , q − 2. Furthermore,

P0AdB`(Vod)P0 ∈ CP0 for all ` ≤ L . (3.84)

Proof. By definition of Vd, the expression V◦md (B`) is a linear combination of terms of the form

ALB`A
R where

AL = Z0VdZ1 · · ·Zr−1VdZr

AR = Zr+1VdZr+2 · · ·ZmVdZm+1

and each Zj ∈ {P0, Q0}∪{Gm |m ∈ N}. Since AL only involves diagonal operators and the number
of factors Vd is equal to r < L, we have P0A

L = P0A
LP0 ∈ P0Γ(r)P0 ∈ CP0. In particular,

P0(ALB`A
R)VodP0 ∈ CP0B`A

RVodP0 .

But

P0B`A
RVodP0 ∈ CP0 ,

where we applied Lemma 3.A.5 with Y = AR (note that AR involves m − r factors Vd, and
`+ (m− r)− 1 < L by assumption). We conclude that

P0(ALB`A
R)VodP0 ∈ CP0 ,
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and since P0V◦md (B`)VodP0 is a linear combination of such terms, the first identity in (3.82) follows.
The second identity is shown in an analogous manner.

The claim (3.83) follows by setting m = k+1 and ` = q−k, and observing that `+m−1 = q < L.

Finally, consider the claim (3.84). We have

P0B`VodP0 = P0B`Q0VodP0 ∈ CP0

P0VodB`P0 = P0VodQ0B`P0

for all ` with `− 1 < L by Lemma 3.A.5, hence the claim follows.

Lemma 3.A.7. Suppose that P0Γ(n)P0 ⊂ CP0 for all n < L. Then

P0AdVd(Aq)(Vod)P0 ∈ P0AdV◦qd (L(Vod))(Vod)P0 + CP0 .

for all q < L.

Proof. We will show that for k = 1, . . . , q − 2, we have the identity

P0AdV◦kd (Aq+1−k)(Vod)P0 ∈ P0AdV◦k+1
d (Aq−k)(Vod)P0 + CP0 . (3.85)

(Notice that the expression on the rhs. is obtained from the lhs by substituting k + 1 for k.)
Iteratively applying this implies

P0AdVd(Aq)(Vod)P0 ∈ P0AdV◦q−1
d (A2)

(Vod)P0 + CP0 ,

from which the claim follows since A2 = Vd(L(Vod)).

To prove (3.85), observe that by definition (3.77) of An, we have by linearity of Vd

V◦kd (Aq+1−k) = V◦k+1
d (Sq−k) = V◦k+1

d (Aq−k) + V◦k+1
d (Bq−k) .

By linearity of the map X 7→ P0AdX(Vod)P0, it thus suffices to show that

P0AdV◦k+1
d (Bq−k)(Vod)P0 ∈ CP0

for all k = 1, . . . , q − 2. This follows from (3.83) of Lemma 3.A.6.

Lemma 3.A.8. Suppose that P0Γ(n)P0 ⊂ CP0 for all n < L. Then

P0Ŝ
1(Vod)n−1P0 = P0AdV◦n−2

d (L(Vod))(Vod)P0 + CP0 for all n < L+ 2 . (3.86)

Proof. By definition (3.59) and the linearity of Ad·, we have

Ŝ1(Vod)n−1 = AdSn−1(Vod) = AdAn−1(Vod) + AdBn−1(Vod) .

But by definition of An−1, we have if n− 2 < L

P0AdAn−1(Vod)P0 = P0AdVd(Sn−2)(Vod)P0

= P0AdVd(An−2)(Vod)P0 + P0AdVd(Bn−2)(Vod)P0

∈ P0AdV◦n−2
d (L(Vod))(Vod)P0 + CP0

where we again used the linearity of the involved operations in the second step and Lemma 3.A.6
and Lemma 3.A.7 in the last step (with k = 0 and q = n− 2).

Similarly, we have (again by Lemma 3.A.6) if n− 2 < L.

P0AdBn−1(Vod)P0 = CP0 .

The claim (3.86) follows.
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Lemma 3.A.9. Suppose that P0Γ(n)P0 ⊂ CP0 for all n < L. Then

P0Ŝ
1(Vod)L−1P0 = 2P0V GV G · · ·GV P0 ,

where there are L factors V on the rhs.

Proof. We will first show inductively for k = 1, . . . , n− 2 that

V◦kd (L(Vod)) = −((GV )k+1P0 − h.c.) + Tk for some Tk ∈ Γ?(k) . (3.87)

By straightforward computation, we have

L(Vod) = P0VodG− h.c.
[L(Vod), Vd] = −GVodP0Vd + VdGVodP0 + h.c.

Vd(L(Vod)) = −(GVdGVodP0 − h.c.) + T1,

where T1 = G2VodP0VdP0 − h.c.. By assumption, P0VdP0 = P0VdP0 ∈ CP0. Thus T1 ∈ Γ∗(1), and
the claim (3.87) is verified for k = 1 (since GVdGVodP0 = GV GV P0).

Now assume that (3.87) holds for some k ≤ n − 1. We will show that it is also valid for k
replaced by k + 1. With the assumption, we have

V◦k+1
d (L(Vod)) = Vd

(
V◦kd (L(Vod))

)

= −Vd
(

(GV )k+1P0 − h.c.
)

+ Vd(Tk)

But

Vd((GV )k+1P0) = L((GV )k+1P0Vd − Vd(GV )k+1P0)

= −G(GV )k+1P0VdP0 +GVd(GV )k+1P0

= −G(GV )k+1P0V P0 + (GV )k+2P0

and by doing a similar computation for the Hermitian conjugate we find

V◦k+1
d (L(Vod)) = −

(
(GV )k+2P0 − h.c.

)
+ Tk+1 where

Tk+1 =
(
G(GV )k+1P0V P0 − h.c.

)
+ Vd(Tk) .

We claim that Tk+1 ∈ Γ?(k+ 1). Indeed, by assumption we have P0V P0 ∈ P0Γ(1)P0 ⊂ CP0, hence
G(GV )k+1P0V P0 ∈ CG(GV )k+1P0 ⊂ Γ?(k + 1) and the same reasoning applies to the Hermitian
conjugate. Furthermore, for Tk ∈ Γ?(k), we have Vd(Tk) ∈ Γ?(k + 1) by (3.75).

This concludes the proof of (3.87), which we now apply with k = L− 2 to get

P0AdV◦L−2
d (L(Vod))(Vod)P0 = P0V◦L−2

d (L(Vod))VodP0 − P0VodV◦L−2
d (L(Vod))P0

= P0(V G)L−1VodP0 + P0Vod(GV )L−1P0

+ P0TL−2VodP0 − P0VodTL−2P0

Since P0TL−2VodP0 and P0VodTL−2P0 are elements of P0Γ(L− 1)P0, we conclude that

P0AdV◦L−2
d (L(Vod))(Vod)P0 = P0V◦L−2

d (L(Vod))VodP0 − P0VodV◦L−2
d (L(Vod))P0

= P0((V G)L−1V + V (GV )L−1)P0 + CP

Finally, with the expression obtained by Lemma 3.A.8 (with n = L), we get

P0Ŝ
1(Vod)L−1P0 = P0AdV◦L−2

d (L(Vod))(Vod)P0

= 2P0(V G)L−1V P0 + CP ,

as claimed.
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Equivalence of self-energy method and Schrieffer-Wolff transformation

With Lemma 3.A.6, Lemma 3.A.7 and Lemma 3.A.9, we now have the expressions necessary to
obtain effective Hamiltonians.

Theorem 3.A.10 (Theorem 3.3.2 in the main text). Suppose that P0Γ(n)P0 ⊂ CP0 for all n < L.
Then the n-th order Schrieffer-Wolff effective Hamiltonian satisfies

H
(n)
eff ∈ CP0 for all n < L , (3.88)

i.e., the effective Hamiltonian is trivial for these orders, and

H
(L)
eff = 2b1P0(V G)L−1V P0 + CP0 , (3.89)

and where there are L factors V involved.

Proof. Consider the definition (3.60) of the n-th order term Heff,n in the expansion (3.6): we have

Heff,n =
∑

1≤j≤bn/2c

b2j−1P0Ŝ
2j−1(Vod)n−1P0 .

For n < L, each term P0Ŝ
2j−1(Vod)n−1P0 is proportional to P0 (see (3.72) of Lemma 3.A.4), hence

the claim (3.88) follows.
On the other hand, for n = L, we have

P0Ŝ
2j−1(Vod)L−1P0

{
∈ CP0 if j > 1

P0V GV GV · · ·GV P0 if j = 1

according to Lemma 3.A.4 and Lemma 3.A.9, hence (3.89) follows.

3.B On a class of single-qudit operators in the Levin-Wen model

In this appendix, we consider the action of certain single-qudit operators and discuss how they
affect states in the Levin-Wen model. For simplicity, we will restrict our attention to models where
each particle satisfies ā = a, i.e., is its own antiparticle. Similar local operators were previously
considered (for example, in [BSS11]). We introduce the operators in Section 3.B.1 and compute
the associated effective Hamiltonians in Section 3.B.2

3.B.1 Definition and algebraic properties of certain local operators

Recall that for each qudit in the Levin-Wen model, there is an orthonormal basis {|a〉}a∈F in-
dexed by particle labels. For each particle a ∈ F , we define an operator acting diagonally in the
orthonormal basis as

Oa|b〉 =
Sab
S1b
|b〉 for all b ∈ F . (3.90)

As an example, consider the Pauli-Z operator defined in Section 3.6.3 for the doubled semion
model. Because the S-matrix of the semion model is given by (see e.g., [Sch13, Section 2.4])

S =
1√
2

[
1 1

1 −1

]

with respect to the (ordered) basis {|1〉, |s〉}, the operator Os takes the form

Os = diag(1,−1) = Z (3.91)

according to (3.90).
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As another example, we can use the fact that the Fibonacci model has S-matrix (with respect
to the basis {|1〉, |τ 〉})

S =
1√

1 + ϕ2

[
1 ϕ

ϕ −1

]

to obtain

Oτ = diag(ϕ,−1/ϕ) .

Therefore, the Pauli-Z-operator in the doubled Fibonacci model takes the form

Z =
ϕ

ϕ+ 2
(−I + 2Oτ ) , (3.92)

where I is the identity matrix.

We will write O
(e)
a = Oa for the operator Oa applied to the qudit on the edge e of the lattice. To

analyze the action of such an operator O
(e)
a on ground states of the Levin-Wen model, we used the

“fattened honeycomb” description of (superpositions) of string-nets: this gives a compact represen-
tation of the action of certain operators (see the appendix of [LW05]), as well as a representation
of ground states (see [KKR10]). In this picture, states of the many-spin system are expressed
as superpositions of string-nets (ribbon-graphs) embedded in a surface where each plaquette is
punctured. Coefficients in the computational basis of the qudits can be obtained by a process of
“reduction to the lattice”, i.e., the application of F -moves, removal of bubbles etc. similar to the
discussion in Section 3.5. Importantly, the order of reduction does not play a role in obtaining
these coefficients as a result of MacLane’s theorem (see the appendix of [Kit06]). Note, however,
that this diagrammatic formalism only makes sense in the subspace

Hvalid ={|ψ〉 | Av|ψ〉 = |ψ〉 for all vertices v}

spanned by valid string-net configurations, since otherwise reduction is not well-defined.
This provides a significant simplification for certain computations. For example, application of

a plaquette operator Bp corresponds – in this terminology – to the insertion of a “vacuum loop”
times a factor 1/D. The latter is itself a superposition of strings, where each string of particle

type j carries a coefficient
dj
D . We will represent such vacuum strings by dotted lines below:

=
1

D

X

j

dj j

j j=

=D = D�j,1 j
j

Crucial properties of this superposition are (see [KKR10, Lemma A.1])

=
1

D

X

j

dj j

j j=

=D = D�j,1 j
j

=
1

D

X

j

dj j

j j=

=D = D�j,1 j
j

and the pulling-through rule

=
1

D

X

j

dj j

j j=

=D = D�j,1 j
j
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Similarly, a single-qudit operator O
(e)
a of the form (3.90) can be expressed in this language, and

takes the form of adding a “ring” around a line: we have

O(e)
a |b〉 =

=
1

D

X

j

dj j

j j=

=D = D�j,1 j
j

ab
.

(The color is only used to emphasize the application of the operator, but is otherwise of no signif-
icance.)

Lemma 3.B.1. Let a 6= 1, and let O
(e)
a be an operator of the form (3.90) acting an an edge e

of the qudit lattice. Let p, p′ be the two plaquettes adjacent to the edge e, and let Bp, Bp′ be the
associated operators. Then for any |ψ〉 ∈ Hvalid, we have

Bp|ψ〉 = |ψ〉 ⇒ Bp(O
(e)
a |ψ〉) = 0

Bp′ |ψ〉 = |ψ〉 ⇒ Bp′(O
(e)
a |ψ〉) = 0

For example, for any ground state |ψ〉 of the Levin-Wen model Htop, O
(e)
a |ψ〉 is an eigenstate

of Htop with energy 2. Furthermore, for any ground state |ψ〉, and any edges e1, . . . , en which

(pairwise) do not belong to the same plaquette, the state O
(e1)
a · · ·O(en)

a |ψ〉 is an eigenstate (with
energy 2n) of Htop. The case where the edges belong to the same plaquette will be discussed below
in Lemma 3.B.2.

Proof. For concreteness, consider the plaquette operator Bp “on the left” of the edge (the argument
for the other operator is identical). Because |ψ〉 is a ground state, we have Bp|ψ〉 = |ψ〉. Using the
graphical calculus (assuming that the state |ψ〉 is expressed as a string-net embedded in the gray
lattice), we obtain

BpO
(e)
a Bp|ψ〉 =

1

D2
a

a

=
1

D2

a
a

=
1

D
δa,1

a
a

= δa,1|ψ〉

Lemma 3.B.2. Let e1 6= e2 be two edges lying on the same plaquette p, and let us assume that
they lie on opposite sides of the plaquette p (this assumption is for concreteness only and can be

dropped). Let O
(e1)
a and O

(e2)
a be the associated single-qudit operators (with a 6= 1). Then for all

|ψ〉 ∈ Hvalid, we have

BpO
(e1)
a O(e2)

a Bp|ψ〉 =
da
D
BpO

(e1e2)
a Bp|ψ〉 ,

where the operator O
(e1e2)
a is defined by

O(e1e2)
a |ψ〉 =

a
k

a

a
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in the diagrammatic formalism. In other words, O
(e1e2)
a adds a single loop of type a around the

edges e1, e2.

Proof. Let |ψ〉 ∈ Hvalid. Then we have by a similar computation as before

Bp(O
(e1)
a O(e2)

a )Bp|ψ〉 = Bp
1

D

a
k

a
k

aa

= Bp
1

D

∑

k

F aa1
aak

a
k

a
k

=
1

D2

∑

k

F aa1
aak

a
k

a
k

=
1

D2

∑

k

F aa1
aak

a
k

a

a

=
1

D2

∑

k

F aa1
aakDδk1

a
k

a

= Bp
1

da

a
k

a

a

=
1

da
BpO

(e1e2)
a Bp|ψ〉 ,

as claimed.

Clearly, the reasoning of Lemma 3.B.2 can be applied inductively to longer sequences of prod-

ucts O
(e1)
a O

(e2)
a · · ·O(ek)

a if the edges {e1, . . . , ek} correspond to a path on the dual lattice, giving

rise to certain operators O
(e1···ek)
a with a nice graphical representation: we have for example

P0O
(e1)
a O(e2)

a · · ·O(ek)
a P0 = c · P0O

(e1···ek)
a P0

for some constant c, where P0 is the projection onto the ground space of the Levin-Wen model and

where O
(e1···ek)
a is the operator given in the diagrammatic formalism as

O(e1···ek)
a |ψ〉 =

a…
e1 e2 ek

(3.93)

Using this fact, we can relate certain products of operators to the string-operator F(a,a)(C)
associated with the (doubled) anyon (a, a). That is, assume that the edges {e1, . . . , eL} cover a
topologically non-trivial loop C on the (dual) lattice (e.g., {10, 12} in the 12-qudit torus of Fig. 3.1).
Then we have

P0(O(e1)
a O(e2)

a · · ·O(eL)
a )P0 = c · Fa,a(C) (3.94)

for some constant c. This follows by comparing (3.93) with the graphical representation of the
string-operators of the doubled model as discussed in [LW05], see Fig. 3.B.1. Note also that by the

topological order condition, operators of the form P0O
(e1)
a O

(e2)
a · · ·O(ek)

a P0 are proportional to P0

if k < L.
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a a
(a) F(a,a)(C)

a

a

(b) F(1,a)(C)

a

a
(c) F(a,1)(C)

Figure 3.B.1: The graphical representation of certain anyonic string-operators in the doubled
model. The dashed line is inside the torus.

3.B.2 Effective Hamiltonians for translation-invariant perturbation

According to (3.91) and (3.92), a translation-invariant perturbation of the form V =
∑

j Zj for the
doubled semion or Fibonacci models (as considered in Section 3.7) is, up to a global energy shift
and a proportionality constant, equivalent to a perturbation of the form

V =
∑

e

O(e)
a , (3.95)

where a 6= 1 and the sum is over all edges e of the lattice (Here a = s in the doubled semion model
and a = τ in the Fibonacci model). We show the following:

Lemma 3.B.3. For the perturbation (3.95) to the Levin-Wen model H0, the L-th order effective
Hamiltonian is given by

H
(L)
eff = c1

(∑

C

F(a,a)(C)

)
+ c2P0 , (3.96)

where c1 and c2 are constants, and the sum is over all topologically non-trivial loops C of length L.

Proof. According to Theorem 3.3.2, the L-th order effective Hamiltonian is proportional to

P0(V G)L−1V P0 =
∑

e1,...,eL

P0O
(e1)
a GO(e2)

a G · · ·GO(eL)
a P0

up to an energy shift. By the topological order constraint, the only summands on the rhs. which
can have a non-trivial action on the ground space are those associated with edges {e1, . . . , eL}
constituting a non-trivial loop C on the (dual) lattice. Note that for such a collection of edges,
every plaquette p has at most two edges ej , ek ∈ {e1, . . . , eL} as its sides, a fact we will use below.
Our claim follows if we show that for any such collection of edges, we have

P0O
(e1)
a GO(e2)

a G · · ·GO(eL)
a P0 = cF(a,a)(C) (3.97)

for some constant c.
We show (3.97) by showing that the resolvent operators G only contribute a global factor;

the claim then follows from (3.94). The reason is that the local operators O
(e`)
a create localized

excitations, and these cannot be removed unless operators acting on the edges of neighboring
plaquettes are applied. Thus a process as the one on the lhs. (3.94) is equivalent to one which goes
through a sequence of eigenstates of the unperturbed Hamiltonian H0.

The proof of this statement is a bit more involved since operators O
(e`)
a can also create super-

positions of excited and ground states. We proceed inductively. Let us set

Λ1 = P0 Γ1 = O
(e1)
a GO

(e2)
a GO

(e3)
a G · · ·GO(eL)

a P0

Λ2 = P0O
(e1)
a G Γ2 = O

(e2)
a GO

(e3)
a G · · ·GO(eL)

a P0

Λk = P0O
(e1)
a GO

(e2)
a · · ·O(ek−1)

a G Γk = O
(ek)
a GO

(ek+1)
a G · · ·GO(eL)

a P0 for k = 3, . . . , L− 1

ΛL = P0O
(e1)
a GO

(e2)
a · · ·O(eL−1)

a G ΓL = O
(eL)
a P0 .
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such that

P0O
(e1)
a GO(e2)

a G · · ·GO(eL)
a P0 = ΛkΓk for k = 1, . . . , L− 1 . (3.98)

Let |ψ〉 be a ground state of the Levin-Wen model H0. We claim that for every k = 1, . . . , L− 1,
there is a set of plaquettes Pk and a constant ck (independent of the chosen ground state) such
that

(i) ΛkΓk|ψ〉 = ck · Λk
(∏

p∈Pk Bp

)
O

(ek)
a · · ·O(eL)

a |ψ〉.

(ii) The (unnormalized) state
(∏

p∈Pk Bp

)
O

(ek)
a · · ·O(eL)

a |ψ〉 is an eigenstate of H0. Its energy εk

is independent of the state |ψ〉.

(iii) The set Pk only contains plaquettes which have two edges in common with {ek, . . . , eL}.

Note that for k = 1, this implies P0O
(e1)
a GO

(e2)
a G · · ·GO(eL)

a P0 = c1 · P0O
(e1)
a O

(e2)
a · · ·O(eL)

a P0

because P0Bp = P0, and the claim (3.97) follows with (3.94)

Properties (i), (ii) hold for k = L, with PL = ∅ and εL = 2: we have for any ground state |ψ〉

ΓL|ψ〉 = O(eL)
a |ψ〉

and this is an eigenstate of H0 with energy 2 according to Lemma 3.B.1.

Assume now that (i), (ii) hold for some k ∈ {2, L}. Then we have according to (3.98)

Λk−1Γk−1|ψ〉 = ΛkΓk|ψ〉

= ckΛk


∏

p∈Pk

Bp


O(ek)

a · · ·O(eL)
a |ψ〉

= ck(Λk−1O
(ek−1)
a G)


∏

p∈Pk

Bp


O(ek)

a · · ·O(eL)
a |ψ〉

= ck−1 · Λk−1O
(ek−1)
a


∏

p∈Pk

Bp


O(ek)

a · · ·O(eL)
a |ψ〉 ,

where

ck−1 =

{
ck

E0−εk if εk > E0

0 otherwise

It hence suffices to show that for some choice of plaquettes Pk−1, we have

(a) Λk−1O
(ek−1)
a

(∏
p∈Pk Bp

)
O

(ek)
a · · ·O(eL)

a |ψ〉 = Λk−1

(∏
p∈Pk−1

Bp

)
O

(ek−1)
a · · ·O(eL)

a |ψ〉

(b)
(∏

p∈Pk−1
Bp

)
O

(ek−1)
a · · ·O(eL)

a |ψ〉 is an eigenstate of H0 with energy εk−1 (independent of |ψ〉).

(c) that the set Pk−1 only contains plaquettes sharing two edges with {ek−1, . . . , eL}.

By assumption (iii) and the particular choice of {e1, . . . , eL}, none of the plaquettes p ∈ Pk contains

the edge ek−1. Therefore, we can commute the operator O
(ek−1)
a through, getting

O
(ek−1)
a


∏

p∈Pk

Bp


O(ek)

a · · ·O(eL)
a |ψ〉 =


∏

p∈Pk

Bp


O

(ek−1)
a O(ek)

a · · ·O(eL)
a |ψ〉 (3.99)

We then consider two cases:
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• If ek−1 does not lie on the same plaquette as any of the edges {ek, . . . , eL}, then application

of O
(ek−1)
a creates a pair of excitations according to Lemma 3.B.1 and the state (3.99) is

an eigenstate of H0 with energy εk−1 = εk + 2 > E0. In particular, setting Pk−1 = Pk,
properties (a)–(c) follow.

• If there is an edge e`, ` ≥ k such that ek−1 and e` belong to the same plaquette p̃, then the
state (3.99) is a superposition of states with Bp̃ excited/not excited, that is, we have

|ϕ〉 =


∏

p∈Pk

Bp


O

(ek−1)
a O(ek)

a · · ·O(eL)
a |ψ〉 = (I −Bp̃)|ϕ〉+Bp̃|ϕ〉 .

However, an excitation at p̃ cannot disappear by applying the operators O
(e1)
a , . . . , O

(ek−2)
a

since these do not share an edge with p̃, hence Λk−1(I−Bp̃)|ϕ〉 = 0 (recall that Λk−1 = P0Λk−1

includes a projection onto the ground space). Thus setting Pk−1 = Pk ∪ {p̃}, we can verify
that (a)–(c) indeed are satisfied. (The case where there are two such plaquettes p̃ can be
treated analogously.)

Let us compute the effective Hamiltonian (3.96) for the case of the rhombic torus, or more
specifically, the lattice we use in the numerical simulation, Fig. 3.1. It has three inequivalent
weight-2 loops: {10, 12}, {1, 2}, {5, 7}. Follow the recipe in Section 3.6.2, respectively Section 3.7.2,
these three loops are related by a 120◦ rotation. The corresponding unitary transformation for this
rotation is given by the product of matrices A = TS when expressed in the flux basis discussed
in Section 3.6.2 (for the doubled Fibonacci model, the latter two matrices are given by (3.45)).
Similarly, we can express the action of F(a,a)(C) in this basis using (3.36), getting a matrix F .
By (3.39), the effective Hamiltonian for the perturbation −ε∑j Zj is then proportional to (when
expressed in the same basis)

Heff ∼ −(F +A−1FA+A−2FA2).

Note that the overall sign of the effective Hamiltonian is not specified in (3.34), but can be de-
termined to be negative here by explicit calculation. For example, substituting in the S matrix
(Eq. (3.45)) of the doubled Fibonacci model, we have F = diag(ϕ + 1,−1,−1, ϕ + 1) for the
Fibonacci model. It is then straightforward to obtain the ground state of Heff, which is

0.715|(1, 1)〉+ (0.019− 0.057i)|(τ, 1)〉+ (0.019 + 0.057i)|(1, τ)〉+ 0.693|(τ, τ)〉 , (3.100)

where |(a, b)〉 is a flux basis vector, i.e., the image of P(a,b)(C) (see Section 3.6.2) up to some phase.



Chapter 4

Optimizing dynamical decoupling
with RNN

This Chapter is based on [AN16].

In this chapter, we study the possibility of using tools from machine learning to
improve the performance of quantum memories. In particular, we utilize generative
models which are based on recurrent neural networks to optimize dynamical decou-
pling (DD) sequences. DD is a less demanding technique (compared to QECC) to
suppress the errors of certain noise models, and has already demonstrated in multi-
ple experiments that it can indeed prolong the coherence time. With the numerical
simulation of a spin interacting with its environment as a toy quantum memory, we
show that neural networks are able to learn the structure of the good sequences from
an initially random database and use it to guess potential new ones. By repeatedly
updating the database, eventually the neural networks output DD sequences with per-
formance better than that of the well-known DD families (for a specific noise model).
Since our algorithm does not rely on knowing the noise model or the concrete experi-
mental setup a priori, it is likely able to adapt to different settings and find optimized
sequences specifically for them.

4.1 Introduction

As mentioned multiple times in this thesis, a major challenge of quantum information processing
(e.g. quantum computation and communication) is to preserve the coherence of quantum states.
While in principle we can build a fault-tolerant quantum memory or universal quantum computer
once the error rate of the device is below a certain threshold, it is still beyond nowadays experimen-
tal capacity to build a decent size one. A less explored area is the optimization of implementing the
fault-tolerant protocol on a concrete experimental setting. This is often a tedious problem, due to
the amount of details in the real devices, and the fact that the architectures of both experimental
devices and theoretical protocols are still rapidly changing. Thus, an attractive approach is to
automatize this optimization task. Apart from convenience, it is conceivable that given enough
time, the experimental devices together with classical computers can explore a larger parameter
region compared to the often small number of possibilities considered by human.

While we are talking about the optimization of experimental devices, it might be worthwhile
to look at the recent progress of machine learning. For example, in the work [MKS+13] it is shown
that the computer can learn to play many relatively simple games at a human or even super-
human level. On the other hand, controlling a quantum memory is not that different from playing
a game. In general, it can be abstracted as inputting a (time-dependent) series of parameters to
the devices, and at the mean time possibly getting a (time-dependent) series of output from them,
with a final score usually being the fidelity of the stored state. However, the recent progress of
machine learning is to a large degree about the ability to processing visual information, which
is not an element of the above “quantum memory” game. But rather, the increasingly versatile
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machine learning computer libraries and fast computer hardware allow us to utilize a larger amount
of data compared to before, as well as trying more approaches to solve the same problem. One
particularly popular machine learning model at this moment is the artificial neural network (ANN),
mostly because it is the state of art model to handle visual related data. Nevertheless, the key
idea of ANNs is to be a family of functions/programs that are continous with respect to some
parameters, which makes it applicable to the optimization problems we have in mind.

Automatically optimizing parameters in real (or numerical simulations of) experiments is not
a new idea. For example, it has been applied to optimizing the pulse shape of a laser, the parame-
ters of Hamiltonians to achieve certain unitary operations or parameters of dynamical decoupling
and cold atom experiments. Most works that attempt to obtain optimal parameters use genetic
algorithms [JR92, HARSS15, GCM+13, PS16] (and to some degree [KMF+16]) or local searches
such as gradient descent [CWW13, DCQ+14, PS16, BPB15, MSG+11] and the Nelder-Mead sim-
plex method [BUV+09, DCM11, KBC+14]. It is argued that by using these optimization methods
directly on the experiments, we can avoid the hardness of modelling the imperfect control and the
system-environment interaction. However, one possible weakness of these optimization methods is
that they generate new trials only by looking at a fixed number of previous ones, and often they
need to restart once they reach a local minimum. Thus, in the long run, they do not fully utilize
all the data generated by the experiments, especially for those experiments that operates on a very
short time scale.

In this chapter, we propose an orthogonal approach, where we try to mimic the structure
of good parameters by building a model that approximates the probability distribution of these
parameters. After an initial optimization, this model can then be used to efficiently generate new
possible trials and can be continuously updated based on new data. In particular, we choose this
model to be a variant of the recurrent neural network (RNN), which makes our approach very
similar to the way in which natural languages or handwriting are currently modelled. This ansatz
enables us to exploit the models and insights developed by the machine learning community and
possibly translate further progress there into the field of quantum control. Possible advantages
include the ability to utilize large amount of data with complex RNNs, as well as the easiness
of training them due to mature computer libraries. It is worth pointing out that the machine
learning part of this chapter is purely classical; only the (classical) data are related to quantum
time evolution. Among the previous work, the approach in [WEvdH+15] is the most similar to
ours, as they attempt to build a model from the data and utilize the model to perform optimization.
(Classical) machine learning is also used in [CFC+14, OTB15, TGB15] to characterize the error
models in quantum error correction and to react accordingly.

To demonstrate the feasibility of using our method to help optimizing quantum memory, we
consider the problem of automatically learning and optimizing dynamical decoupling sequences
(almost) without using any prior knowledge. Dynamical decoupling (DD) [VKL99] is a tech-
nique which combats certain noise by applying a sequence of unitary operations on the system
(see [SAS11, QL13] for a review). It has a less stringent requirement compared to general error cor-
rection protocols, which allows it to be demonstrated in experiments [BUV+09, dLWR+10, SAS11]
in contrast to other methods. Moreover, DD-sequences have a relatively simple structure, and
therefore it is conceivable that a learning algorithm could eventually sample them without the
need of using heavy mathematics. This is an important point, as machine learning is still not
generally applicable to solve problems that need large amount of prior knowledge. In order to
solve a problem where heavy mathematics is needed, such algorithms need either to

• develop all necessary mathematical theorems from the scratch, or

• translate the needed knowledge from mathematics books into formal languages that comput-
ers can recognize.

Both approaches are not achievable nowadays.
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4.2 Background

4.2.1 Dynamical decoupling

The majority of dynamical decoupling schemes are designed for error models where the system-
environment interaction can be described by a Hamiltonian. We will use HS and HB to denote
the Hilbert space of the system and environment (often called bath), respectively. The difference
between system and environment is that the former represents the part of the Hilbert space we can
apply the Hamiltonian on and in which we store quantum information. The total noise Hamiltonian
is

H0 = HS ⊗ IB + IS ⊗HB +HSB.

Without intervention, in general H0 would eventually destroy the quantum states we store on HS .
To suppress this noise, we could apply a time dependent Hamiltonian HC(t) to the system, which
makes the total Hamiltonian H(t) = H0 + HC(t). In the ideal case, we can control the HC(t)
perfectly and reach very high strength (i.e. norm of the Hamiltonian), which allows the ideal pulse

V (t) = Oδ(t− t0).

It applies a unitary operator e−iO to the system for an infinitely small duration (we set ~ = 1 in
this work). A very simple DD-scheme for a qubit (a two level system S) is the XY4 sequence: it
applies pulses of the Pauli-matrices X and Y alternatingly with equal time interval τd in between.
A complete cycle consists of four pulses XYXY , thus the total time period of a cycle is Tc = 4τd.
In the limit of τd → 0, the qubit can be stored for an arbitrarily long time. The intuition behind
DD-sequences is the average Hamiltonian theory. Let UC(t) = T exp{−i

∫ t
0 dt

′HC(t′)} be the total
unitary applied by HC(t′) up to time t. In the interaction picture defined by UC(t), the dynamics

is governed by the Hamiltonian H̃(t) = U †C(t)H0UC(t). If the time interval τd between pulses is
much smaller than the time scale defined by the norm of ‖H0‖, it is reasonable to consider the
average of H̃(t) within a cycle. The zeroth-order average Hamiltonian in Tc (with respect to τd) is

H̄(0) =
1

Tc

∫ Tc

0
dt′U †C(t)H0UC(t) .

For the XY4 sequences introduced above, it is easy to compute H̄(0) = 1
4

∑
σ∈{I,X,Y,Z} σH0σ. Since

the mapping O →∑
σ∈{I,X,Y,Z} σOσ maps any 2× 2 matrix to 0, by linearity we know H̄(0) = 0.

Here we are going to list several classes of DD-sequences. We will first explain how to con-
catenate two sequences, as most long DD-sequences are constructed in this manner. Given two
DD-sequences A = P1 · · ·Pm and B = Q1 · · ·Qn, the concatenated sequence A[B] is

A[B] = (P1Q1)Q2 · · ·Qn(P2Q1)Q2 · · ·Qn · · · (PmQ1)Q2 · · ·Qn

As an example, when we concatenate the length-2 and length-4 sequences XX and XYXY , we
obtain IY XY IY XY .

We will use Pi to represent any Pauli matrix X, Y or Z, and for i 6= j, Pi 6= Pj . The families
of DD-sequences can then be listed as the following:

DD4 are length-4 sequences P1P2P1P2.

DD8 are length-8 sequences IP2P1P2IP2P1P2.

EDD8 are length-8 sequences P1P2P1P2P2P1P2P1

CDD16 are length-16 concatenated sequences DD4[DD4]

CDD32 are length-32 concatenated sequences DD4[DD8] and DD8[DD4]

CDD64 are length-64 concatenated sequences DD4[CDD16] and DD8[DD8]



114 CHAPTER 4. OPTIMIZING DYNAMICAL DECOUPLING WITH RNN

Longer DD-sequences can again be obtained by the concatenation of the ones listed above, and
in the ideal situation they provide better and better protection against the noise. However, with
realistic experimental capability, the performance usually saturates at a certain concatenation-level.
Since at this moment we are only optimizing short DD-sequences, the listed ones are sufficient to
provide a baseline for our purpose. One important family we did not include here is the “Knill
DD” (KDD) [RHC10], because it requires the use of non-Pauli gates.

However, we cannot expect these requirements to be met in all real world experiments. The
two major imperfections that are often studied are the flip-angle errors and the finite duration of
the pulses. Flip-angle errors arise from not being able to control the strength and time duration
of HC(t) perfectly, thus the intended pulse V (t) = Oδ(t) becomes V (t) = (1± ε)Oδ(t). And since
zero-width pulses Oδ(t) are experimentally impossible, we must consider finite-width pulses which
approximate the ideal ones. In this paper, we will only consider the imperfection of finite-width
pulses. However, it is straightforward to apply our algorithm to pulses with flip-angle errors.

4.2.2 Measure of performance

There are multiple ways to quantify the performance of DD-sequences. In practice, we choose
different measures to suit the intended applications. Here we use the same measure as in [QL13],
which has the advantage of being (initial) state-independent and having a closed formula for
numerical simulation:

D(U, I) =

√
1− 1

dSdB
‖TrS(U)‖Tr

where U represents the full evolution operator generated by H(t), dS and dB are the dimensions
of the system and environment Hilbert space HS and HB, respectively. ‖X‖Tr = Tr(

√
X†X) is the

trace-norm, and TrS(·) is the partial trace over HS . The smaller D(U, I) is, the better the system
preserved its quantum state after the time evolution. For example, the ideal evolution U = IS⊗UB
has the corresponding D(U, I) = 0.

In experiments, it is very hard to evaluate D(U, I), as we often do not have access to the bath’s
degree of freedom. Instead, the performance of DD-sequences is often gauged by doing process
tomography for the whole time duration where DD is applied [dLWR+10, SÁS12b]. Although it is
a different measure compared to our choice above, the optimization procedure can still be applied
as it does not rely on the concrete form of the measure. Moreover, for solid state implementations
such as superconducting qubits or quantum dots, a typical run of initialization, applying DD-
sequences and measurements can be done on the time scale of 1 ms or much faster. Thus, it is
realistic that on the time scale of days we can gather a large dataset of DD-sequences and their
performance, which is needed for our algorithm.

4.2.3 Recurrent Neural Networks

Sequential models are widely used in machine learning for problems with a natural sequential
structure, e.g. speech and handwriting recognition, protein secondary structure prediction, etc.
For dynamical decoupling, not only do we apply the gates sequentially in the time domain, but
also the longer DD sequences are often formed by repetition or concatenation of the short ones.
Moreover, once the quantum information of the system is completely mixed into the environment,
it is hard to retrieve it again by DD. Thus, an educated guess is that the performance of a DD-
sequence largely depends on the short subsequences of it, which can be modelled well by the
sequential models.

Since our goal is not simply to approximate the distribution of good dynamical decoupling
sequences by learning their structure but to sample from the learned distribution to efficiently
generate new good sequences, we will further restrict ourselves to the class of generative sequential
models. Overall, these models try to solve the following problem: given {xi}i<t, approximate the
conditional probability p(xt|xt−1, . . . , x1). As a simple example, we can estimate the conditional
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Algorithm 1: Optimization Algorithm

Input : Number of initial models to train: n, Number of models to keep: k, Percentage of
data to keep: p, Set of possible topologies: M, Size of data: d

1 D ← generateRandomData(d) ;
2 D, 〈ςs〉 ← keepBestData(D,p) ;
3 M ← trainRandomModels(n, D, M) ;
4 M ← keepBestKModels(M,k) ;
5 while 〈ςs〉 not converged do
6 M ← trainBestModels(D) ;
7 D ← generateDataFromModels(M, d) ;
8 D, 〈ςs〉 ← keepBestData(D,p) ;

9 end
Output: 〈ςs〉, D,M

probability p(xt|xt−1) from a certain data set, and use it to generate new sequences1. For more
sophisticated problems (e.g. natural language or handwriting), it is not enough to only consider
the nearest neighbour correlations as simple models like Markov-chains of order one do.

The long short-term memory (LSTM) network, a variation of the recurrent neural network
(RNN), is a state-of-the-art technique for modelling longer correlations [Gra13] and is comparably
easy to train. The core idea of RNNs is that the network maintains an internal state in which
it encodes information from previous time steps. This allows the model to, at least theoretically,
incorporate all previous time steps into the output for a given time. Some RNNs have even
been shown to be Turing-complete [Pol87]. In practice, however, RNNs often can only model
relatively short sequences correctly due to an inherently unstable optimization process. This is
where LSTMs improve over normal RNNs, as they allow for training of much longer sequences in
a stable manner. Furthermore, LSTMs, like all ANNs, are based on matrix multiplication and the
element-wise application of simple non-linear functions. This makes them especially efficient to
evaluate.

From the machine learning perspective, we treat the problem at hand as a supervised learning
problem where we provide the model with examples that it is to reproduce according to some
error measure. We do not use the framework of reinforcement learning since the performance of a
DD-sequence could only be measured after the whole sequence is applied. In fact, to some degree,
our approach is to some degree similar to reinforcement learning, while the use of RNNs and
provide supervised answers in the middle of the sequences allow us to handle this high dimension
optimization problem effectively. Similarly, playing the board game Go can be easily formulated
as a pure reinforcement learning problem, yet it is only solved efficiently with the help of human
playing data and supervised learning. A short introduction to machine learning, LSTMs and their
terminology can be found in the appendix and in [Nie15] while a more exhaustive discussion can
be found in [GSK+15, GBC16].

4.3 Algorithm

The algorithm presented in this section is designed with the goal in mind to encode little prior
knowledge about the problem into it, in order to make it generally applicable to different im-
perfections in the experiment. Following this idea, the method is agnostic towards the nature of
the considered gates, the noise model and the measure of performance. To implement this, the
algorithm assumes that

• the individual gates are represented by a unique integer number such that every sequence
s ∈ G⊗Ls with G denoting the set of the unique identifiers and Ls being the length of s.

1This idea can be at least dated back to Shannon [Sha48], where this model generated “English sentences” like
“ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE AT....”
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• it is provided with a function f(s) to compute the score ςs of a given sequence s, taking into
account the noise model.

The optimization problem we want to solve is

min
s
f(s) = min

s
ςs.

By assumption, we have no information about f but can efficiently evaluate it. We do furthermore
assume the set of good sequences to exhibit common structural properties that can be learned well
by a machine learning model. So, we propose to solve it indirectly by training a generative model
m ∈ M to approximate the distribution of good sequences, M being the set of possible models.
That means we assume st ∼ pm(st−1, . . . , s1) with st being the gate at time t and pm denoting the
distribution learned by m. Then, we want to find an optimal m that ideally learns a meaningful
representation of the structure of good sequences. As explained in the background section, we
choose the type of model to be the LSTM. We now tackle this surrogate problem by alternatingly
solving

max
m∈M

L(m|T ),

where L denotes the likelihood and T the training data, and then sampling sequences from the
model m to generate a new T consisting of better solutions. The algorithm hence consists of two
nested optimization loops, where the inner loop fits a number of LSTMs to the current data while
the outer loop uses the output of the inner loop to generate new training data. This scheme of
alternatingly fixing the data to optimize the models and consecutively fixing the models to optimize
the data resembles the probabilistic model building genetic algorithm [PGL02] and to some extent
the expectation-maximization algorithm [DLR77]. The method is shown in Algorithm 1. Partial
justification of this heuristic algorithm is given in the appendix 4.C. However, it is easy to see
that the algorithm will not always find the global optimum. For example, it is conceivable that
for certain problems the second to the 100-th best solutions share no common structure with the
first one. In that case, it would be unlikely for the machine learning approach to find the optimal
one. There is however likely no universal method to bypass this obstruction, as unless we know
the best sequences already, it is impossible to verify that they exhibit some structure similar to the
training sets. This obstruction seems natural since many optimization problems are believed to be
computationally hard. Thus, we should not assume be able to solve them by the above routine.

We will now explain the most important aspects of the algorithm in more detail:

Choice of LSTMs The data we want to generate in our application is of sequential nature. This
makes employing LSTMs an obvious choice as they pose one of the most powerful models available
today for sequential data. Furthermore, the known well-performing families of DD sequences are
constructed by nested concatenations of shorter sequences and hence show strong local correlations
as well as global structure. LSTMs and especially models consisting of multiple layers of LSTMs
are known to perform very well on such data and should therefore be able to learn and reproduce
this multi-scale structure better than simpler and shallow models.

Generation of the initial training data The size d and the quality, i.e. the percentage p of
the initial data to be kept, are the parameters which we can specify. The data are then generated
by sampling a gate from the uniform distribution over all gates for each time-step. The average
score of the initial data can then be used as a baseline to compare against in case no other reference
value is available. We would like to point out that in the application considered here, an alternative
way to generate the initial data might be to use the models trained on shorter sequences. This
approach could lead to an initial data set with much higher average score, but at the price of
introducing the bias from the previously trained RNNs.
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Training of the LSTMs To reduce the chance of ending up in a bad local optimum, for each
training set several different architectures of LSTMs are trained (see 4.D.2 for detailed description
of LSTMs). These models are independently sampled M. More precisely, for the first generation
of models, we sample a larger set of n models from M and train them. We then select the best
k models and reuse them for all following generations. While it might introduce some bias to the
optimization, this measure drastically reduces the number of models that need to be trained in
total. The training problem is defined by assuming a multinoulli distribution over the gates of each
time step and minimizing the corresponding negative log-likelihood −∑t δst,i log pm,i(st−1, . . . , s1),
where i is the index of the correct next gate, pm,i is its predicted probability computed by the
LSTM m and δst,i = 1 iff st = i. This error measure is also known as the cross-entropy. To
avoid overfitting, we use a version of early stopping where we monitor the average score 〈ςs〉pm of
sequences generated by m and stop training when 〈ςs〉pm stops improving. We employ the optimizer
Adam [KB15] for robust stochastic optimization.

Selecting the best models As we employ early stop based on the average score 〈ςs〉pm , we
also rank every trained model m according to this measure. One could argue that ranking the
models with respect to their best scores would be a more natural choice. This however might
favour models that actually produce bad sequences but have generated a few good sequences only
by chance. Using 〈ςs〉pm is hence a more robust criterion. It would of course be possible to also
consider other modes of the pm, like the variance or the skewness. These properties could be used
to assess the ability of a model to generate diverse and good sequences. We find however that the
models in our experiments are able to generate new and diverse sequences, thus we only use the
average score as benchmark for selecting models.

Generation of the new training data The selected models are used to generate d new training
data by sampling from pm. This is done by sampling st from pi(st−1, . . . , s1) beginning with
a random initialization for t = 1 and then using st−1 as input for time step t. We combine the
generated sequences with the previous training sets, remove any duplicates, and order the sequences
by their scores. We then choose the best p percent for the next iteration of the optimization. This
procedure ensures a monotonic improvement of the training data. Note that all selected models
contribute equally many data to strengthen the diversity of the new training data. A possible
extension would be to apply weighting of the models according to some properties of their learned
distributions. Note though that ordering the generated sequences by their score is already a form
of implicit weighting of the models.

4.4 Numerical Results

4.4.1 Noise model and the control Hamiltonian

Throughout the paper, we will use the same noise model as in [QL13]. We consider a 1-qubit system
and a 4-qubit bath, namely dim(HS) = 2 and dim(HB) = 16. The small dimension of the bath is
for faster numerical simulation, and there is no reason for us to think that our algorithm would only
work for a small bath as the size of the bath enters the algorithm only via the score-computation
function. The total noise Hamiltonian consists of (at most) 3-body interactions between the system
and bath-qubits with random strength:

H0 =
∑

µ∈{I,X,Y,Z}

σµ ⊗Bµ , (4.1)

where σµ is summed over Pauli-matrices on the system-qubit. And Bµ is given by

Bµ =
∑

i 6=j

∑

α,β

cµαβ

(
σαi ⊗ σβj

)
,
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where i, j is summed over indices of the bath qubits, and σ
α(β)
i is the Pauli-matrix on qubit i of the

bath. We consider the scenario where the system-bath interaction is much stronger than the pure
bath terms. More precisely, we set cµαβ ≈ 1000cIαβ for µ ∈ {X,Y, Z}. Apart from this constraint,

the absolute values |cµαβ| are chosen randomly from a range [a, b], where we set b ≈ 3a to avoid too
many terms vanishing in (4.1). The result Hamiltonian has a 2-norm ‖H0‖ = 20.4.

For the control Hamiltonian, we consider the less explored scenario where the pulse shape have
finite width but no switch time between them (100% duty cycle). In other words, the control
Hamiltonian is piecewise constant

HC(t) = Hk , for kτd ≤ t < (k + 1)τd ,

where τd is a small time period with respect to the norm of H0, and e−iHkτd ∈ {I,X, Y, Z}. This
is a good toy model for experimental settings whose DD-performance is mainly limited by the
strength of the control Hamiltonian, but not the speed of shifting between Hamiltonians. Since
this regime is less explored in theoretical studies, it is an interesting scenario to explore via machine
learning. Another restriction we put on HC(t) is

HC(t) = −HC(T − t) ,

where T is the total evolution time. This condition ensures UC(T ) = T exp{−i
∫ T

0 dt′HC(t′)} = I,
and it allows us to apply the same code on the setting where the system has more than one qubit.
It is known that this family of symmetric Hamiltonians can remove the first order terms of τd in
the average Hamiltonian[VKL99, SÁS12a]. So strictly speaking, this should be counted as prior
knowledge. However, when we compare the known DD-sequences with the numerically found ones,
we also use the symmetric version of the known DD-sequences. Thus, we perform the comparison
on equal terms.

In the following, we present the results of a number of experiments we have conducted to
evaluate the performance of our method. We consider sequences consisting of 32, 64 and 128 gates
for varying values of τd. This translates to having to optimize the distribution of the first 16, 32 and
64 gates respectively. To compute ςs, we use the figure of merit D as defined in Section 4.2.1. Thus,
a lower score is better. ForM, we consider models with two or three stacked LSTM-layers followed
by a final softmax layer. The layers comprise 20 to 200 units where layers closer to the input have a
higher number of units. We allow for peephole connections and linear projections of the output of
every LSTM-layer to a lower number dimensions [GSK+15]. The optimization parameters are also
randomly sampled from sets of reasonable values. We choose the step rate to be in {10−1, 10−2} and
the batch size to take values in {200, 500, 1000}. The parameters specific to the Adam optimizer
β1, β2 and ε, we sample from {0.2, 0.7, 0.9}, {0.9, 0.99, 0.999} and {10−8, 10−5} respectively. We
perform a truncation of the gradients to 32 time steps in order to counter instabilities in the
optimization (see 4.D.3). As we have stated above, we also employ early stopping in the sense
that, for every optimization of a model, we keep the parameters that generate the sequences with
the best average score. The algorithm was run until either the best known score was beat or the
scores converged, depending on the goal of the respective experiment. We will now briefly list the
concrete experiment settings and discuss the results.

Exp. E1: Length 32 In this first experiment, we considered sequences of 32 gates with τd =
0.002. We let the algorithm train n = 30 models initially and set the number of models to be kept
k to 5. We combined the data generated by the LSTMs with the previous training set after each
generation, and chose the best 10% as the new training data, consisting of 10,000 sequences for
each generation. We let every model train for 100 epochs.

Exp. E2: Length 64 In our next experiment, we tackled a more difficult scenario with 64 gates
and a larger τd = 0.004. We set n = 50 and k = 5. Again, we used the best 10% of both generated
and previous data as new training data which consists in total 10,000 sequences for each training
set.
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Table 4.1: A comparison of the results obtained in experiments E1, E2, E3 and E4 to the best
theoretically derived DD families. For each experiment, the average and best score of the last
training data and the average score of the best model of the last generation are shown. They are
compared to random sequences and the two DD classes that yield the best average and overall best
score respectively. The best results are printed bold.

(a) Experiment E2

Sequences 〈ςs〉 min ςs

EDD8 0.002398 0.002112

CDD32 0.053250 0.000803

Last training set E2 0.000712 0.000381

Best model E2 0.016692 -

Random 0.341667 -

(b) Experiment E3

Sequences 〈ςs〉 min ςs

EDD8 0.004793 0.004222

CDD64 0.031547 0.001514

Last training set E3 0.000827 0.000798

Best model E3 0.029341 -

Random 0.44918 -

(c) Experiments E1 and E4

Sequences 〈ςs〉 min ςs

EDD8 0.000151 0.000133

CDD16 0.010699 0.000074

Last training set E1 0.000112 0.000070

Last training set E4 0.007178 0.000082

Best model E1 0.003089 -

Random 0.125371 -
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0 2 4 6 8 10 12 14 16
Generation

10-5

10-4

10-3

10-2

10-1

S
co

re

〈
ςs
〉
E1〈

ςs
〉
E4

min ςs,E1

min ςs,E4

min ςs,DD
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Figure 4.1: Two figures showing the convergence of the algorithm a) in E3 compared to the case
where LSTMs are replaced by 5/6-gram models and b) in E1 comparted to E4 as both consider
the same problem setting. In a) it is clearly visible that LSTMs outperform the n-gram models
while b) reflects the physical knowledge that the Pauli unitaries are a better choice than random
gates. As a reference, we show the score of the best DD sequence obtained from the known DD
classes.
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Exp. E3: Length 128 In the third experiment we tried our method on even longer sequences
of 128 gates with τd again being 0.004. Due to the very large sequence space, we set the size of the
training sets to 20,000, again using the best 10% of sequences generated by the selected models
and the previous training set. The number of epochs was increased to 200. We set n = 30 and
k = 5. Here, we let the algorithm run until both average and best score converged to examine its
behaviour in long runs.

Exp. E4: Length 32 with Random Gates Finally, we tested the performance of Algorithm 1
in the case where we replaced the Pauli gates {I,X, Y, Z} with ten randomly chosen gates. More
precisely, we chose each gate gj to be a randomly generated single two-dimensional unitary operator

with eigenvalues 1 and −1, i.e. gj = U †jXUj , where Uj is a random unitary. All other parameters
were kept as in experiment E1.

In the Tables 4.1b, 4.1a and 4.1c, we compare the last training data and the best model of the
last generation of E1-E4 against the two DD families that achieve the best average and minimal
scores for the given experiment respectively. We also plot the convergence of the training data of
E3 and E1 with E4 in the Figures 4.1a and 4.1b respectively. In general, the results for E1, E2
and E3 clearly show that our method outperforms DD, achieving a better minimal score of the
generated data in a moderate number of iterations and with a relatively small set of models. The
results of E4 will be discussed below. These findings indicate that our method converges to good
local optima and that the models are able to learn a meaningful internal representation of the
sequences that allows for efficient sampling of good sequences. There is however a noticeable gap
between the scores of the training data and the models. A possible remedy for this could be an
increase of the training data size or an adjustment of the model parameters in later stages of the
optimization to account for the change in the structure of the data.

To assess the importance of LSTMs for the performance of our algorithm, in experiment E3,
we also ran a different version of our method where we replaced the LSTMs by simple 5/6-gram
models, which only model and generate sequences based on local correlations (see Appendix 4.A.2
for the definition). The convergence plots in Figure 4.1a show that LSTMs are indeed superior to
the simpler models. They are able to improve the average and best scores faster and ultimately
let the algorithm converge to a better local optimum. This advantage most likely results from the
fact that the LSTM-models are able to leverage information about longer range correlations in
the data. These results hence justify our choice of LSTMs as machine learning model to optimize
DD-sequences.

We also compared the results of experiments E1 and E4 to examine the importance of using
the Pauli group as the gate set. Figure 4.1b shows that while for E1 the average score quickly
becomes very good and the best score exceeds the best known result after a few generations, in E4
the average score of the data improves much slower and remains significantly worst than that of
E1. Although the best score exhibits a much stronger improvement, it eventually converges to a
value slightly worse than that of the best theoretical DD-sequence and the one found in E1. This
is expected since with the Pauli group we can achieve first-order decoupling with DD sequences of
length 4, which is the shortest. On the other hand, with random unitaries, in general it will take
much longer sequences to have approximate first-order decoupling, during which the system and
environment can become fairly entangled.

Another interesting aspect to note is the rather strong improvement of the average scores
occurring in E3 and E1 between generations 8 to 10 and 2 to 3, respectively. These jumps can
be explained by the known existence of several strictly separate regimes in sequence space that
differ strongly in their performance. The results indicate that our algorithm is able to iteratively
improve the learned distributions to eventually capture the regime of very good sequences.

In order to verify that sampling the initial training data from the distributions learned for
shorter sequences is a viable alternative to uniform sampling, we let the best model obtained in E2
generate an initial data set for the problem setting of E3. The obtained data was found to have an
average score of 0.037175, which is about one order of magnitude better than the average of the
initial training data generated by uniform sampling.
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4.5 Conclusion

We have introduced a novel method for optimizing dynamical decoupling sequences, which differs
from previous work by the ability to utilize much larger datasets generated during the optimization.
Its ability to efficiently generate large sets of good sequences could be used along with other
optimization methods to cover their weaknesses or to perform statistical analysis of these sequences.
We show that for certain imperfect control Hamiltonians, our method is able to outperform (almost
all) known DD-sequences. The little prior knowledge about DD we use is (1) choosing Pauli
operators as pulses in the sequences (see experiment E4 and its discussion), (2) choosing specific
lengths for the DD-sequences and (3) enforcing the reversal symmetry, as discussed in section 4.4.1.
However, we do not need to initialize the dataset in a specific way as in the Appendix C.5.a
of [QL13], which actually contains a certain amount of prior knowledge of DD. Also, our method
does not fundamentally rely on the prior knowledge stated above. It is conceivable that the use of
this prior knowledge can be lifted, at the price of a possibly much slower optimization procedure.
For example, as mentioned in [SAS11] , the KDD scheme helps to further increase the performance
of CDD-sequences in some experiments. Thus, an interesting question is when given the freedom
of applying non-Pauli gates and choosing variable lengths of the sequences, whether our algorithm
could discover a similar strategy. Thus, a possible direction of future research is to see how we can
minimize the slow-down when not incorporating any prior knowledge and whether we can obtain
good DD-sequences with non-Pauli pulses.

While we have applied the algorithm to the case of quantum memory and compared it to
dynamical decoupling, it is of general nature. It can in principle be applied to every problem
where the optimization of a sequence of gates with respect to some well-defined figure of merit
is desired and where it is feasible to evaluate this performance measure for larger numbers of
sequences. However, due to the nature of the underlying machine learning model, good results will
likely only be obtained for problems whose solution depends strongly on local correlations in the
sequences.
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Appendix

4.A Analysis

4.A.1 Local correlations of DD sequences

As we suggested earlier, the reason we use RNNs as the probabilistic model is that the performance
of dynamical decoupling sequences heavily depends on their local correlations. To illustrate this
fact, we can count the frequency of length-2 (3) subsequences from the training set of the 30th
generation in Experiment 3. We can then compare these statistics to the ones of the sequences
generated by the LSTM, which is trained based on the training set. We can see indeed the
percentages match very well. To get more detail about local correlations, we could also count the
frequency of length-3 subsequences (see table 4.A.2). Note that since the table is based on the
datasets in the late stage of the optimization, the distribution of the subsequences are already
very polarized. However, we observe the same behavior (the percentages matches well) in other
experiments at different stages of the optimization as well.

However, RNNs do not only take into account local correlations, as we show in Figure 4.1
that they perform better compared to the n-gram models, which we will introduce in the next
subsection.

4.A.2 n-gram models

n-grams are the simplest sequential models that treat the sequences as stationary Markov chains
with order n− 1. Operationally, given a set of sequences, we first estimate the conditional proba-
bility distribution

pxn,xn−1···x1 = Pr(Xt = xn|Xt−1 = xn−1, . . . Xt−n+1 = x1).

Note that we assume the conditional probability is independent of t (hence stationary Markov
chain). The estimation is done by counting over the whole set of sequences. The generation of new
sequences based on the conditional probability pxn,xn−1···x1 is straightforward, as we can repeatedly
sample from it based on the previous n−1 items. This behavior is different compared to the RNNs’,
which have memory units that can store information for arbitrary long time in theory.

Previous

Next gate
I X Y Z

I 0.00% (0.00%) 0.04% (0.08%) 0.15% (0.68%) 0.02% (0.08%)

X 0.05% (0.22%) 5.38% (5.04%) 30.53% (30.47%) 1.39% (1.26%)

Y 0.07% (0.20%) 30.17% (30.47%) 18.40% (18.61%) 5.84% (5.50%)

Z 0.01% (0.02%) 1.90% (1.68%) 5.75% (5.42%) 0.30% (0.27%)

Table 4.A.1: The frequency of length-2 subsequences, from the training set and the set generated
by the trained LSTM (given in parentheses) at the generation 30 of Experiment 3. The total
number of subsequences is around 1.2 million

123



124 CHAPTER 4. OPTIMIZING DYNAMICAL DECOUPLING WITH RNN

Second

Last gate
I X Y Z

I 0.00% (0.00%) 0.02% (0.05%) 0.12% (0.55%) 0.00% (0.01%)

X 0.00% (0.00%) 1.40% (1.22%) 11.99% (11.52%) 0.32% (0.32%)

Y 0.15% (0.47%) 44.79% (45.09%) 33.39% (33.54%) 4.11% (3.85%)

Z 0.01% (0.01%) 2.38% (2.14%) 1.05% (0.98%) 0.28% (0.26%)

Table 4.A.2: The frequency of length-3 subsequences started with the gate X, from the training
set and the set generated by the trained LSTM (given in parentheses) at the generation 30 of
Experiment 3. The total numbers of the subsequences started with X are around 450 thousands.
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Figure 4.A.1: Experiment 3 and 5/6-gram without data reusage. Otherwise, the experiments are
done in the same way as in Figure 4.1a.

4.A.3 Optimization without reusing data from previous training sets

During the optimization processes in the main text, we always reuse the data from previous training
sets, in the sense that we first add the new sequences generated by the models to the training sets
and then delete the worst sequences. An interesting question is what will happen if we generate
new training sets completely from the trained models. In Figure 4.A.1, we plot the counterpart of
Figure 4.1a with this modification (as well as not deleting duplicated sequences from the training
set). We can see that for the LSTMs experiment, the final minimum score gets slightly worse,
which is 0.000874. However, the 5/6-gram experiments actually performs better when not reusing
data. While it seems counterintuitive, this can be possibly explained by the fact that in the case
of reused data with unique sequences the higher diversity of the data might make it harder for
the models to find local correlations which then in turn slows down the optimization. There is
other interesting information contained in the plot. For example, we can see the minimum scores
almost always decrease, which implies that the LSTMs are able to learn new information about
good sequences in most generations.

4.A.4 Performance of the obtained sequences with a larger heat bath

In the main text, all the numerical simulations are done on a randomly generated noise Hamiltonian
with the dimension of the bath being dim(HB) = 16. The small dimension of the bath is used in
order to have a fast simulation. Here, we test the performance of some obtained sequences from
the experiment 2, in the presence of a larger bath with dim(HB) = 128. Apart from the change of
dimension, the Hamiltonian H0 is again randomly generated according to the description in 4.4.1,
which has a 2-norm ‖H0‖ = 24.0. We then computed the scores of the top 500 DD sequences
in the last generation of Experiment 2. The results are shown in Table 4.A.3. While the best
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Sequences 〈ς〉 min ς

EDD8 0.002781 0.002203

CDD32 0.053753 0.000432

Top 500 sequences 0.001081 0.000626

Table 4.A.3: A comparison between the scores of the top 500 DD sequences in the last generation
of Experiment 2 and some DD families for the larger bath dim(HB) = 128. The best score of
the 500 sequences is worse than best score of CDD32. However, it is clear that on average, the
obtained sequences still work fairly well.

score of the obtained sequences is worse than best score of CDD32, it is clear that on average,
the obtained sequences still work fairly well. This also suggests that our algorithm is potentially
capable of adapting to the particular noise Hamiltonian, as the learned sequences outperform
known DD-families in Experiment 2.

4.B Best Sequences

We list here the best sequences we found in Experiment 1,2 and 3 from the numerical results
section. We denote the identity by I, X,Y, Z refer to the respective Pauli-matrices. Note that we
show only the first half of the complete sequence as the second one is just the first half reversed.
Experiment 1 X, Y, X, Z, X, Y, X, Z, Z, X, Y, X, Z, X, Y, X
Experiment 2 Z, Z, X, Z, Z, Z, X, Z, Z, X, Z, X, X, X, Z, X, X, X, Z, X, X, Z, X, X, X, Z, X, Z,
Z, X, Z, Z
Experiment 3 Z, X, Z, Z, Y, X, Y, Z, Y, X, Y, X, Y, Y, X, Y, Y, Y, Y, X, Y, Y, Y, X, Y, Y, X,
Y, X, Y, X, Y, Y, Z, X, Z, Y, Z, X, Z, Y, X, Y, X, X, Y, X, Y, X, Y, X, Y, Y, X, Y, Y, Y, X, Y,
X, X, Y, X, X

4.C Comparison of optimization algorithms

In this section, we will give a comparison between several optimization algorithms applied to black-
box problems. In other words, the algorithm needs to optimize (minimize) the objective function
f only by looking at the values of f(x) (without knowing the concrete formula of it). We are going
to look at the following types of algorithms:

• Gradient-based algorithms (when we can access the gradient of f), e.g. Newton’s method,
variants of gradient descent.

• Metropolis-Hasting algorithms and its variants, e.g. simulated annealing

• Genetic algorithm and its variants, e.g. probabilistic model building genetic algorithm (PM-
BGA).

The performance of an optimization algorithm depends heavily on the class of the problems it is
applied to. (This fact is remotely related to the “no free lunch theorem for optimization”). Thus
in the following, we will use different objective functions to illustrate the strong and weak points
of those algorithms.

4.C.1 Gradient based algorithms

To understand the idea of these algorithms, it is enough to consider f : R → R defined on
a single variable. The simplest gradient descent for finding the minimum of f is the following
iterative algorithm: starting from a random number x0 and successively computing xn+1 = xn −
αf ′(xn). Gradient based algorithms perform well on functions with non-vanishing gradients almost
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Figure 4.C.1: The plot of function (4.2).

everywhere and very few local minima, and likely have a poor performance otherwise. For example,
the above algorithm would perform very well on a simple function f(x) = x2, but much worse on
the following fast oscillating function

f(x) = sin(8x) + 0.5 sin(4x) + 0.3 sin(2x) + 0.1 sin(x) (4.2)

We plot the above function in Figure 4.C.1. It is easy to see we can construct f(x) =
∑N

i=1 ai sin(2ix)
such that the chance of finding the global minimum is arbitrarily small.

4.C.2 Simulated annealing

Simulated annealing (SA) and its variants stem from the Metropolis-Hastings algorithm. The main
idea is constructing a family of probability distribution p(x, T ) based on the values of the objective
function f(x), with the requirement p(x, 0) > 0 only when x is a global minimum of f . Then we
repeatedly sample from p(x, T ) while slowly decreasing T . In practice, simulated annealing is also
an iterative algorithm, i.e. it chooses xn+1 based on xn. Since SA uses the Metropolis-Hastings
algorithm as a subroutine, there is a non-zero chance to choose xn+1 such that f(xn+1) > f(xn).
So in principle, SA could escape from local minima, which is an advantage compared to gradient
descent. SA also works for functions with discrete variables. As a trade-off, it is likely to be slower
compared to gradient descent when f has very few local minima. Moreover, while SA has the
mechanism to escape from local minima, in practice it could work poorly on functions with many
local minima and high barriers between them, e.g. the Function (4.2).

4.C.3 Genetic algorithms and beyond

In this subsection we will assume f has the form f : RN → R. A common feature in all versions
of genetic algorithms (GA) is that they maintain a population of solutions {~xi, 1 ≤ i ≤ M},
where ~xi = (xi1, . . . , xiN ). For the first generation, a number of M ′ > M solutions is randomly
generated, then we pick the ~xi with the M smallest f(~xi) as the population. To generate new
potential solutions for new generations, several different operations are introduced. In the original
genetic algorithm, the two such operations are crossover and mutation. The effect of the mutation
operation on a solution ~x is

(x1, . . . , xj , . . . , xN )→ (x1, . . . , x
′
j , . . . , xN ) ,

where x′j is a random number. The crossover operation acts on two solutions ~x and ~y

(~x, ~y)→ (x1, . . . , xj , yj+1, . . . , yN ) ,
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A

(a) Correct hypothesis allows us to sample
from a smaller region. (Red points corre-
spond to smaller f(x, y))

S0

S1

S2

S3

(b) Concatenating the operation performed
in Figure (a) allows us to sample from sets
Si with better and better solutions.

Figure 4.C.2: These two figures can be viewed as an outline of our algorithm. Figure (a) demon-
strates that if we can model the distribution correctly, then we will be able to sample from good
solutions more efficiently. Figure (b) illustrates the idea of concatenating the step performed in
Figure (a) in order to achieve an exponential speedup compared to random search.

where the position j is picked randomly. Then we can use these two operations to generate M ′′

new test solutions from the first generation, combine them with the M old solutions and pick the
top M solutions as the population of the second generation. Later generations can be obtained by
repeating these steps.

To illustrate the advantage of the (original) genetic algorithm, we can consider the following
objective function f

f(~x) =
∑

j

fj(xj) .

In this case, if f(~x) is (relatively) small, then either
∑k

j=1 fj(xj) or
∑N

j=k+1 fj(xj) is (relatively)
small. Thus the crossover operations serve as non-local jumps, while the mutation operations help
to find local minimum. However, in general, it is not clear for what kind of function f the inclusion
of the crossover operations could provide an advantage. It is easy to construct counter-examples
such that the crossover operations deteriorate the performance, such as

f(~x) = f(~xa, ~xb) = ‖~xa − ~xb‖ ,

where ~xa, ~xb has equal dimension, and ‖ · ‖ is the Euclidean norm. Clearly, in most cases, the
crossover of two good solutions will only produce inferior new solutions.

It turns out that the most important feature of genetic algorithms is the use of a population.
In comparison, other optimization methods we mentioned previously only keep track of the last
test solution. If we are willing to believe that good solutions of the function f have a certain
structure (thus partially dropping the black-box requirement of f), it is possible that we can
identify this structure from the solutions in the population, and then generate new test solutions.
This idea has led to the so-called probabilistic model building genetic algorithm (PMBGA) and
its variants [PGL02, Pel05]. The optimization algorithm we introduced in the main text is also
closely related to this idea.

Instead of going through the details of these algorithms, we will explain the idea using a simple
example, as illustrated in Fig 4.C.2. Suppose that we want to minimize a function f(x, y) with
two variables which defined on a finite region of R2, and prior knowledge of f allows us to make
the hypothesis h that all points {(x, y)} with values f(x, y) < M live in a certain region A (e.g.
the rectangular in Fig 4.C.2a). By sampling random points from the domain of the function, we
can verify or refute the hypothesis h. For simplicity, we assume h is satisfied for all sampled points



128 CHAPTER 4. OPTIMIZING DYNAMICAL DECOUPLING WITH RNN

and N of them is inside the region, then the opposite hypothesis “an α fraction of points {(x, y)}
with values f(x, y) < M live outside the region A” will give the observed data a likelihood of
(1− α)N . Thus, we can just optimize f over the region A by ignoring a very small fraction of the
good solutions. It is easy to see that we can iterate this process, as long as we can formulate a
small number of hypothesis such that one of them will describe the good solutions correctly. Our
algorithm in the main text resembles this toy example. However, for functions in high dimension
and sophisticated generative models such as RNNs, it is hard to give a mathematical justification
like in the above example.

It is natural to concatenate the above process (see Figure 4.C.2b). Let S0 be the domain of f ,
and S1 be the points in region A. By sampling enough points from S1, we might be able to build
a model and sample from a even smaller set S2 with the good solutions (e.g. find a region B ⊂ A).
This way we will introduce a series of sets {Si}i≤K that we can sample from. Assuming the order
of these subsets satisfies |Si+1| < 1

2 |Si|, then in the ideal scenario the above iterative algorithm
would provide an exponential speedup with respect to K. However, it is worth pointing out that
automatically building a model from a data set is, in general, a difficult task (if possible at all).

As another concrete example, we can consider the objective function (4.2) and a routine which
looks for the periodicity of the data and then generates new test solutions accordingly. After we go
through multiple generations, it is likely that the population would converge to the correct periodic
subset that has the minimum f(x).

4.C.4 Summary

As seen in the discussion above, each of these optimization methods has its strong and weak
points. Thus different methods are chosen depending on the prior knowledge we have on the
concrete problems. It should be emphasized that we should not consider these methods as in a pure
competition; instead, they can be used in complement with each other. For example, stochastic
gradient Langevin dynamics (SGLD) [WT11] can be viewed as a combination of gradient descent
and annealing, and in [PH06], it is mentioned that inclusion of the deterministic hill climber
(discrete version of gradient descent) can lead to a substantial speedup in the PMBGA.

4.D Machine Learning

This section will give a brief overview over the subfield of machine learning known as supervised
learning and introduce a model for time-series data, known as Recurrent Neural Networks (RNN).
Furthermore, some aspects of the optimization of this class of models will be elaborated on.

4.D.1 Supervised Learning

The field of machine learning can be divided into three main subfields: supervised learning, unsu-
pervised learning and reinforcement learning. These branches differ from each other by the way in
which the respective models obtain information about the utility of their generated outputs.

In the case of supervised learning, it is assumed that for every input that a model shall be
trained on, a ”supervisor” provides a target, corresponding to the desired output of the model for
the given input. These pairs of inputs and desired outputs are then used to make the model learn
the general mapping between input and output.

More formally and from a Bayesian perspective, one assumes to have a dataset D of size N ,
consisting of several tuples of i.i.d. observations x ∈ Cl and corresponding targets y ∈ Ck, such
that

D = {(xi, yi)|Ni=1}
where xi and yi are instances of two random variables X and Y respectively. These random
variables are assumed to be distributed according to some unknown probability distribution pGen,
the so-called data-generating distribution,

X,Y ∼ pGen(X,Y ).
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The goal of any supervised learning method now is to approximate the conditional distribution
pGen(Y |X) in a way that allows for evaluation in some new observation x∗ /∈ {xi}|Ni=1. Since pGen
is not available, one resorts to fitting the empirical distribution pEmp given by D as surrogate
problem.

A typical way of deriving a concrete optimization-problem from this is to make an assumption
regarding the form of pGen and treating the model at hand as a distribution pM (Y |X,Θ) of this
kind, parametrized by the parameters of the model Θ that are also often called the weights of
the model. Now, the fitting of the model can be perceived as a maximum-likelihood problem and
hence the supervised learning problem can be formulated as

max
Θ
L(Θ|D) = max

Θ

∏

i

pM (yi|xi,Θ),

making use of the i.i.d.-assumption. A commonly employed trick to obtain a more benign opti-
mization problem is to instead optimize the negative log-likelihood. As the logarithm is a monotonic
function, this transformation does not change the location of the optimum in the error landscape,
but turns the product of probabilities into a sum over the tuples in D. This step then yields a
minimization problem, given by

min
Θ
− 1

N

∑

i

log pM (yi|xi,Θ)

which is called empirical risk minimization (ERM). These statements of the problem can now be
tackled with the optimization methods appropriate for the given model. In the case of the RNN,
gradient-based optimization is the state-of-the-art approach and will be explained in Section 4.D.3.

While it is obvious that fitting a model with respect to pEmp is identical to fitting it to pGen
as long as every tuple in D is only considered once, this is not necessarily true anymore when
considering each tuple multiple times. This however is needed by many models in order to fit their
parameters to a satisfying degree. In order to prevent the model from learning characteristics of
the empirical distribution that are not present in the data-generating distribution, a phenomenon
commonly known as over-fitting, often some form of regularization is applied. This may be done
by punishing too large parameter values, stopping the training after performance starts to decrease
on some hold-out data set or by averaging over multiple models. Note that in the Bayesian picture
some penalty-terms can be perceived as the logarithm of a prior distribution over Θ, hence turning
the optimization problem into finding the maximum a-posteriori parameters.

4.D.2 Recurrent Neural Networks

In this section, the Recurrent Neural Network model will be introduced. We will start with an
introduction of the standard version of the model and based upon this, explain the advanced
version of the model employed in this work in a second step.

The Standard RNN Model

In many areas of application, the data can be perceived as, often non-Markovian, discrete time-
series data, such that an observation xt ∈ Rl at some time t depends on the previous observations
xt−1, . . . , x1 or with respect to the framework introduced above,

Xt ∼ p(Xt|Xt−1, . . . , X1).

While Markov Chains have been the state-of-the-art approach for this kind of data during the last
decades, with the recent rise of artificial neural networks, RNNs [WZ89, Wer90] have also gained
momentum and are now generally considered to be the most potent method.

A RNN is defined by the two non-linear maps st : Rl → Rh and ot : Rh → Ro given by

st = fs(Uxt +Wst−1 + bs)

ot = fo(V st + bo),



130 CHAPTER 4. OPTIMIZING DYNAMICAL DECOUPLING WITH RNN

U

V
W

x

s

o

W W W W

V V V

U U U

ot�1 ot ot+1

st+1st�1 st

xtxt�1 xt+1

unfold

Figure 4.D.1: The standard model of a Recurrent Neural Network shown for three time-steps.
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Figure 4.D.2: An illustration of an RNN with 3 hidden layers.

where U ∈ Rh×l, W ∈ Rh×h, V ∈ Ro×h, bs ∈ R1×h, bo ∈ R1×o and the trainable parameters of the
models are constituted by Θ = {U, V,W, bs, bo}. The non-linear function fs is often chosen to be
tanh, the rectifier-function given by

rect(x) = max(0, x)

or the sigmoid-function given by

sigm(x) =
1

1 + e−x
.

The function fo must be chosen according to the distribution that is to be approximated by the
model. For the case of a multinoulli-distribution as assumed in this work, the corresponding
function would be the softmax, defined as

softmax(x)j =
exj∑
k e

xk
,

the superscripts in this case denoting the single elements of the vector x.
The intuition behind this simple model is that it combines its information about the input at

a given time step with a memory of the previous inputs, referred to as state of the network. The
precise nature of this combination and the state depends on the weight matrices U and V and the
bias-vector bs. The combined information is then used as input of the chosen non-linear function
fh to generate the next state. From this state, the output ot is then computed as defined by W ,
bo and fo. The effect of an RNN acting on the sequence {xt} is illustrated in Figure 4.D.1.

From the above explanation, it is clear that the power of the model depends strongly on the
size of the hidden state h. It should however also be noted that another effective way of increasing
the expressive power of an RNN is to construct a composition of multiple functions of the form
of st, see Figure 4.D.2. In the machine learning terminology, the respective functions are called
the layers of an artificial neural network and the number of composed functions is referred to as
the depth of a network. The layers between the input and the output are referred to as hidden
layers. The common intuitive reasoning behind stacking multiple layers is that it will allow the
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network to learn a hierarchy of concepts, called features, from the initial input data. Thereby, the
features are assumed to be of increasing complexity with every layer, as they are based on a linear
combination of the features learned by the layer below. Apart from this intuitive reasoning, also
more rigorous work on the benefits of using at least one hidden layer between input and output
can be found in the literature[BL07, HSW89, Hor91]. This ansatz of increasing the power of neural
network models via deepening their architecture is publicly known as Deep Learning and has led to
a drastic increase in success of machine learning methods during the last decade. However, having
a composition of many state-computing functions of similar size can slow down the optimization
process. This is why, when forming such a composition, each pair of functions is often connected
via a simple linear projection from the space of the state of the earlier function onto some lower-
dimensional space that is then used by the following function. Note that while all the above claims
seem natural and lead to a good enough performance for our paper, more benchmarking is needed
to really confirm them.

Now, in the case of supervised learning, one assumes to be in possession of a set of time-series
x1, . . . , xn that shall be used to let the RNN learn to predict series of this kind. The natural way
of doing this is to define the pairs (xi, yi) := (xt, xt+1). While in principle the model is capable of
taking into account all previous time steps, in practice it shows that optimization is only feasible
for a relatively short number of steps. This is mainly due to the fact that the gradients that are
needed to optimize the parameters of an RNN tend to grow to infinity or zero for higher numbers
of steps. This will be discussed more in-depth below.

Long Short-Term Memory Networks

In order to improve upon the standard RNN, Hochreiter et. al. introduced the Long Short-Term
Memory network (LSTM) [HS97], which provides a different way of computing the state of an
RNN. Hence the following set of equations can be perceived as a replacement for st from the
previous section. The main advantage of the approach is that it drastically mitigates the problem
of unstable gradients by construction. It is defined by the following set of equations,

it = sigm(U ixt +W ist−1 + bi)

ft = sigm(Ufxt +W fst−1 + bf )

ot = sigm(Uoxt +W ost−1 + bo)

c̃t = tanh(U c̃xt +W c̃st−1 + bc̃)

ct = ct−1 ∗ ft + c̃t ∗ it
st = tanh(ct) ∗ ot

(4.3)

where again xt is the input at time step t, st−1 is the previous state of the network and ct is the
state of the cell. U i, Uf , Uo, U c̃ ∈ Rh×l, while W i,W f ,W o,W c̃ ∈ Rh×h, bi, bf , bo, bc̃ ∈ R1×h and ∗
denotes the element-wise multiplication.

As it can be seen from the equations, the way in which an LSTM computes the state is a bit
more involved. If needed, it may however just be treated as a black box and can be stacked just
in the same manner as it was described for the plain RNN model. The general idea of an LSTM is
to give the model a higher degree of control over the information that is propagated from one time
step to the next. This is achieved by making use of so-called gates that control the information
flow to and from the network and cell state. These gates, by taking into account the previous state
and the new input, output vectors of values in [0, 1] that determine how much information they
let through. In the equations given above, it is called the input gate, ft is referred to as the forget
gate and ot denotes the output gate. Now, the mechanism works as follows:

• For a given time step t, the new input and previous network state are processed by c̃t like
for the standard RNN and the output values are squashed to the interval [−1, 1] to yield
candidate values for the next cell state.

• The input gate it determines how to manipulate the information flow from the candidate cell
state. Likewise, the forget gate ft determines how to affect the information flow form the old
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Figure 4.D.3: The Long Short-Term Memory model illustrated in a schematic way. In addition to
the diagram above, the input gate i, the forget gate f and the output gate o all depend on the
current input xt and previous state of the network st−1, as described in (4.3).

cell state. The gated previous cell state and the gated input are then added to form the new
cell state ct.

• Finally, the output gate ot determines what to output from the new cell state. The new
cell state is then also projected onto the interval [−1, 1] and put through the output gate to
become the network state.

The whole process is shown in Figure 4.D.3.

Naturally, there exists a plethora of possibilities to adapt the normal LSTM as explained
above. One important enhancement is commonly referred to as peepholes, which allows the gates
to incorporate the cell state via an extra term in the sum, in addition to the input and the network
state. One other popular possibility introduced in [SSB14] is the use of projection layers between
different time steps of LSTM. In this case, we replace st−1 by rt−1 in the equations for it, ft, ot and
c̃t and add the simple equation

rt = W pst

where W p ∈ Rk×h is the projection matrix. In this work, we have made use of both of these
extensions of the normal LSTM. For an exhaustive overview over the known variants of the LSTM,
we refer the interested reader to [GSK+15].

4.D.3 Optimization of RNNs

As the optimization problem described in the beginning of this section can not be solved analytically
for the models considered in this work, gradient-based approaches have established themselves as
the state of the art. However, in the case of fitting the parameters of neural network models, three
main restrictions need to be accounted for:

1. The number of parameters for neural network models easily exceeds 100,000 and can for
larger architectures go up to several tens or even hundreds of millions. Hence, computing
the Hessian (or its inverse) explicitly is not tractable and so, one is limited to first-order or
approximative second-order methods.

2. As the error function that is minimized is only a surrogate error function, its global optimum
is not necessarily the optimum of the error function one actually wants to minimize.

3. For many real-world data sets, computing the gradient of the complete sum of the error
function over all samples is not feasible. Hence, the sum is normally split up into smaller
parts called mini batches and these batches are looped over. A complete loop over D is then
called an epoch.
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These restrictions have led to the rise of an own subfield of machine learning that is concerned with
the parallelization of gradient computations in the mini batch case, the approximation of second-
order information and the formal justification for the splitting up of the error function. All of the
currently available methods are nevertheless extensions of the simplest method for gradient-based
optimization known as steepest gradient descent : At iteration i in the loop over the batches, the
parameters Θ are updated according to

Θi+1 = Θi − γ
∂E
∂Θi

where E(D,Θ) is the respective error function and γ is called the step rate. The most straight
forward natural adaption is to make γ depend on the iteration and slowly decrease it over time,
following the intuition that smaller steps are beneficial the closer one gets to the respective opti-
mum. In addition to that, many methods employ some kind of momentum term [SMDH13] or try
to approximate second order information and scale the gradient accordingly [TH12, KB15].

Besides this, the size of the batches also has an influence on the performance of the respec-
tive optimization method. In the extreme case where each batch only consists of one sample, the
gradient descent method is known to converge almost surely to an optimum under certain con-
straints [Saa09]. As picking individual samples for optimization can be perceived as sampling from
the empirical distribution to approximate the overall gradient, this method is called stochastic
gradient descent (SGD). Using single data points however is computationally inefficient and by
definition leads to heavily oscillating optimization, so it is common practice to resort to larger
batches. Following the ERM-interpretation, batches B consisting of SB samples are often used to
compute an approximation of the mean gradient over D given by

〈 ∂E
∂Θi
〉D ≈ 〈

∂E
∂Θi
〉B =

1

SB

∑

(x,y)∈B

∂E(x,y)

∂Θi

where obviously

lim
|B|→|D|

〈 ∂E
∂Θi
〉B = 〈 ∂E

∂Θi
〉D.

This interpretation is used, e. g. by the recently proposed algorithm Adam which has been shown
to yield very good local optima while being very robust with respect to noisy gradients and needing
comparatively little adjustment of its parameters. We have employed Adam for fitting the models
used in this work.

While the approach to optimizing artificial neural networks is well established, this does not
change the fact that the optimization problems posed by them are inherently difficult. It is well
known that the error landscape becomes less smooth the more layers one adds to a network. This
results in error surfaces with large planes where ∂E

∂Θ ≈ 0 that are followed by short but very steep
cliffs. If the step rate is not adapted correctly, the optimization procedure is very likely to get
stuck in one these planes or saddle points and to jump away from an optimum in the vicinity of
Θ if evaluated on one of the cliffs. The phenomena of the frequent occurrence of very large or
very small gradients are referred to in the literature as the exploding gradient or vanishing gradient
problem respectively. To get a better understanding of why these problems exist, it is instructive
to examine how the gradients for a given model are obtained.

As has been explained above, multi-layer neural network models are a composition of non-linear
functions Rik → Rok : xk+1 = fk(Wkxk + bk), where Wk is the weight-matrix, bk the bias-vector,
x0 the input data and xK the final output of the network. From this definition it is clear that
ok = ik+1. For convenience, we define yk ≡Wkxk+bk. In order to obtain the gradient for a specific
Wk or bk one must obviously make use of the chain rule, such that

∂E
∂Wk

=
∂E

∂xk+1

∂xk+1

∂yk

∂yk
∂Wk

=
∂E
∂xK




K−1∏

j=k+1

∂xj+1

∂xj


 ∂xk+1

∂yk

∂yk
∂Wk
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and

∂E
∂bk

=
∂E

∂xk+1

∂xk+1

∂yk

∂yk
∂bk

=
∂E
∂xK




K−1∏

j=k+1

∂xj+1

∂xj


 ∂xk+1

∂yk

∂yk
∂bk

where ∂
∂Wk

is the shortcut of doing the derivative element-wise:

[
∂

∂Wk

]

ab

=
∂

∂[Wk]ab

The same convention applies to ∂
∂bk

. As ∂
∂Wk

and ∂
∂bk

depend on all the gradients of the later
layers, this formulation yields an efficient method of computing the gradients for all layers by
starting with the uppermost layer and then descending in the network, always reusing the gradients
already computed. Together with the fact that many of the commonly used non-linearities have
an easy closed-form expression of the first derivative, this allows for fully automatic computation
of the gradients as it is done in every major deep learning framework. This dynamic programming
method of computing the gradients is known in the literature as Back-Propagation. The vanishing
(exploding) gradient problem arises because of the product

∏K−1
j=k+1

∂xj+1

∂xj
in the above equations.

For example, if one of the
∂xj+1

∂xj
≈ 0 in the product, then likely we have ∂E

∂Wk
≈ 0, which leads to

an ineffective gradient descent. Similarly, if many of the terms
∂xj+1

∂xj
have large norms, then there

is a possibility that ∂E
∂Wk

becomes too large, which often causes the optimization method to jump
out of a local optimum.

In the case of an RNN as defined in Section 4.D.2, the above generic equations for the derivative
become a little more involved, as in addition to the term for possibly multiple stacked layers, a term
accounting for states of previous times has to be added. Nevertheless, at the heart of the problem,
it is still about computing derivatives of composite functions. This slightly more involved back-
propagation method is known as Back-Propagation through Time and can also be fully automatized.
Similar to the multi-layer neural network models mentioned above, the gradient computation of
RNNs also has these instability issues. As can be seen from Figure 4.D.1, the same matrix W is
used in all time step of an RNN. Thus, a tiny change of W could affect the output ot drastically
when the time step t gets big. In other words, the derivative of the error function E with respect
to W could again become very large or very small in certain situations. To deal with this issue,
we could truncate the number of time steps during the computation, as described in Figure 4.D.4.
More discussion on this topic can be found in Section 3.2 of [Gra13].

4.E Technical Aspects

For the implementation of this work, we have made use of Python with the numerical libraries
NumPy, SciPy and TensorFlow [VDWCV11, JOP14, AAB+15]. All experiments were run on
single workstations with up to 8 threads. The runtime of the experiments varied, depending on
the optimization parameters, from a few hours to several days.
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Figure 4.D.4: An illustration of how we truncate the gradient computation for long sequences.
Here we divide the sequences into two halves. As the first step, we compute the gradient of the
error function E(~x1, ~o1) with respect to the parameters U, V,W , while ignoring the other half of the
network. In the second step, we compute the gradient of E(~x2, ~o2), while treating the final state of
the network st of the first half as a constant. The final gradients are approximated by the sums
of these two constituents. Thus, we are able to avoid the instability of computing gradients, but
still capture the correlation between two halves, since we feed the final network state st into the
second half.
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Chapter 5

Outlook

In this last chapter, we will briefly discuss the future direction of quantum memories and how the
works presented in this thesis can help the progress.

At the moment, a large amount of experimental effort is spent on solid-state implementation
of the 2D surface code with active control. Apart from a relatively low fidelity threshold of the
surface code, this approach is favored also because the technology of putting many qubits on a 2D
chip can be very useful later for building a quantum computer. As the theory of the surface code
is well-studied, the difficulty lies in how to scale up the number of qubits without decreasing the
fidelity of the gates. For example, when we put many qubits on a chip, some unwanted coupling
between them can arise (aka crosstalk) [BKM+14b]. As the coupling is of unitary nature, dynamical
decoupling can suppress it when we want to preserve quantum states or implement gates [KV09].
It is conceivable that our machine learning methods can find good DD sequences for this scenario.

It is possible that in the near future, the surface code with more than 50 qubits can be im-
plemented that can store qubits for long duration. However, this will not immediately lead to a
working quantum computer. The first problem is that certain logical gates are hard to implement
for the surface code. The recently developed 2D gauge color code [BC15] has solved this problem
but at the cost of introducing more qubits and more coupling between them. This brings on the
second problem, which is that too many (physical) qubits are needed to have a non-trivial quantum
computer. It is reasonable to assume that a logical qubit requires around 30 physical qubits (for
surface code), and then we need at least 30 logical qubits to do a computation which cannot be
simulated easily on a classical computer. Thus, it is still a long way until this goal is achieved, and
unforeseeable obstacles can emerge during the progress. With this borne in mind, it is important
that we keep researching alternative error correction codes or different approaches to quantum
computing such as topological quantum computers.

The generalized stabilizer formalism proposed by us certainly enlarges the class of error cor-
rection codes that can be studied. For example, we can try to study subsystem codes within our
formalism, as subsystem codes are proven useful at having more protected local gates and reducing
the number of interactions needed between qubits. Another possible use of our formalism is to
construct and study topologically ordered systems in three or higher dimensions. Although 2D
topologically ordered systems are well-understood and all constructed examples support anyons
which can be moved via string operators, less is known for higher dimensions. Intuitively, the
generalization of string operators to 3D are membrane operators, and thus the excitations in 3D
correspond to string and membrane operators. However, it has been shown in [Haa11] that certain
3D models cannot be understood this way, which suggests more studies need to be done. Due to
the difficulty of classifying all phases, it is natural that we restrict ourselves to a subclass of all
possible Hamiltonians, for which our generalized formalism is a good choice.

Another alternative approach to quantum computing is topological quantum computing. Our
work on preparing ground states of topological Hamiltonians can be viewed as a way to initialize
these computers. A natural question to study in this direction is generalizing our result to systems
of larger size. To achieve this, we need a better understanding on how the gap at the critical
point scales with system size for different models, which is also of interest for the study of phase
transitions. The perturbation method we use needs to be updated to handle larger system size as
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well.
In summary, the work presented in this thesis is relevant for the future research and development

of quantum memories and thus quantum computing in general.
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