
TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Echtzeitsysteme und Robotik

Schedulability Analysis of General Task Model
and Demand Aware Scheduling in

Mixed-Criticality Systems

Biao Hu

Vollständiger Abdruck der von der Fakultät der Informatik der Technischen Universität München

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Hans Michael Gerndt

Pr¨ufer der Dissertation: 1. Prof. Dr.-Ing. habil. Alois Knoll

2. Prof. Dr. Lothar Thiele, ETH Zürich/Schweiz

Die Dissertation wurde am 07.12.2016 bei der Technischen Universität München eingereicht

und durch die Fakultät für Informatik am 25.04.2017 angenommen.

http://www.tum.de
http://www6.in.tum.de
mailto:hub@in.tum.de

Abstract

Nowadays, the embedded systems are undergoing an unprecedented trend towards

integrating components or tasks of different criticality levels onto a common com-

puting platform, as the task integration can reduce the “SWaP” (Size, Weight, and

Power) related costs. Those systems, commonly referred to mixed-criticality sys-

tems, consist of functionalities with two or more distinct criticality levels, e.g. safety

criticality and mission criticality; it is of vital importance for systems to meet tasks’

requirements corresponding to their own criticality levels. To achieve the mixed-

criticality guarantee, less criticality tasks are assumed to be degraded or dropped

once they overrun their given execution budgets, and tasks are commonly consid-

ered being activated sporadically because sporadic activation model is easier to be

analyzed than other complex activation models like sporadic burst model. These

two assumptions are however pessimistic because in fact the system may have some

slacks to allow tasks overrun; and today’s real-time systems are embracing a growing

variety of activation patterns whose activation features may deviate a lot from the

sporadic activation assumption.

In this thesis, we focus on adaptively postponing the mode-switch online by ex-

ploiting the system’s static and runtime slacks; and we address the problem of

schedulability analysis towards a more general task model in mixed-criticality sys-

tems. Specifically, we first propose an on-the-fly fast overrun budgeting mode-switch

scheme to online postpone the mode-switch. Then, we extend the current sporadic

task model to the arbitrary activation task model (arrival curve) in mixed-criticality

systems, based on which we furthermore propose an approach that can adaptively

shape the arriving events of task activation. We also present a case study showing

the application of some basic mixed-criticality scheduling concepts in an autonomous

driving system.

Zusammenfassung

Derzeit gibt es bei der Entwicklung eingebetteter Systeme einen deutlichen Trend

Integration von Komponenten mit unterschiedlichen Kritikalitätsstufen auf einer

gemeinsamen Berechnungsplattform, da dies die sogenannten SWaP-Kosten (Size,

Weight, Power) reduzieren kann. Solche Systeme, die im Allgemeinen als Systeme

mit gemischter Kritikalität bezeichnet werden, stellen Funktionalitäten bereit, die

mindestens zwei Kritikalitätsstufen zuzuordnen sind, z.B. sicherheitskritische oder

missionskritische. Es ist dabei besonders wichtig, dass die Systeme die Anforderun-

gen der Aufgaben gemäß der jeweiligen Kritikalitätsstufe erfüllt. Wir nehmen an,

dass Aufgaben auf weniger kritischen Stufen, die ihre Ausführungszeit überschreiten,

entweder degradiert oder verworfen werden, um die Anforderungen des Gesamt-

systems zu erfüllen. Aufgaben werden dabei sporadisch aktiviert, da dieses Ak-

tivierungsmodell einfacher zu analysieren ist, als z.B. das komplexere sporadische

Burst-Modell. Diese beiden Annahmen sind jedoch pessimistisch, da es zu Leer-

laufzeiten und somit zu vermeidbaren Situationen kommt, in denen Aufgaben ihr

Zeitbudget überschreiten. Zudem werden vermehrt neue Aktivierungstypen entwick-

elt, deren Eigenschaften sich unter Umständen stark von der sporadischen Ak-

tivierung unterscheiden.

In dieser Arbeit konzentrieren wir uns darauf, den
”
Modus-Wechsel“ während der

Ausführung zu verschieben, indem wir die statischen Leerlaufzeiten des Systems

ausnutzen. Hierbei wird ein Analyseverfahren für ein generisches Aufgabenmodell

in Systemen mit gemischter Kritikalität entwickelt und genutzt, um ein Online-

Verfahren zu entwerfen, das kurzfristig zur Laufzeit ein Zeitbudget für Überläufe

nutzt, um so einen Modus-Wechsel zu verschieben. Weiterhin wird das sporadische

Aufgabenmodell erweitert, um willkürlich Aufgaben aktivieren zu können. Dies wird

genutzt, um eine adaptive Methode zu entwerfen, die den Aktivierungsverlauf von

Aufgaben steuern kann.

Außerdem evaluieren wir unseren Ansatz in einer Fallstudie mit gemischter Kri-

tikalität zur Regelung eines autonomen Antriebssystems.

vi

Acknowledgements

First of all, I would like to express my sincere gratitude to Prof. Dr. Alois Knoll

for offering me the opportunity of a PhD study. Without his support, this thesis

would have not been possible. I would like to thank Prof. Dr. Lothar Thiele for his

guidance in his group and being the second supervisor of this thesis.

I would also like to thank: Prof. Dr. Kai Huang for his guidance and inspirations on

the research direction; Dr. Gang Chen for giving me the chance to participant his

research; my colleague Mr. Long Cheng for the research cooperation; Mr. Pengcheng

Huang for the research cooperation and future advice; Dr. Dongkun Han for the

help on writing and research encouragement. Furthermore, I would like to thank

all my former and current colleagues of the whole Robotics and Embedded System

group for their company and support, especially Dr. Hardik Shah and Dr. Martin

Eder for their nice experience sharing. I also want to thank all the students whom

I ever worked with.

Finally, my dearest thanks go to my wife Wenhe Wang for her continuous support,

trust, passion, and encouragement. During the past four years, her love helped me

overcome many difficulties. I am thankful to my parents and brother for their trust

and encouragement on my study.

Contents

List of Figures ix

List of Tables xiii

1 Introduction 1

1.1 Mixed-Criticality Systems . 2

1.2 Motivations . 4

1.2.1 Standard Mixed-Criticality Mode-Switch 5

1.2.2 Standard Task Model . 6

1.2.3 Run-Time Adaptability . 7

1.2.4 Practical Evaluations on Real-Life Systems 7

1.3 Thesis Outline and Contributions . 8

2 On-the-Fly Fast Overrun Budgeting Mechanism 9

2.1 Overview . 9

2.2 Related Work . 12

2.3 Models . 13

2.4 FFOB Mode-Switch Scheme . 15

2.4.1 The Working Flow of FFOB Scheme . 15

2.4.2 Two Relevant Problems . 16

2.4.3 An Example . 17

2.5 FFOB under EDF schedule . 18

2.5.1 EDF-VD Technique . 18

2.5.1.1 DBF in LO and HI modes . 19

2.5.1.2 Schedulability analysis . 19

2.5.2 Initialize and Update Overrun Budget . 20

iii

CONTENTS

2.5.2.1 Schedulability Analysis at Runtime 20

2.5.2.2 Initialize OB . 21

2.5.2.3 Update OB at runtime . 21

2.5.2.4 Setting LO mode deadlines . 23

2.6 FFOB under FP schedule . 24

2.6.1 RTI-FP Algorithm . 24

2.6.1.1 Real-Time Interface Analysis . 25

2.6.1.2 RTI-FP Algorithm . 25

2.6.1.3 Optimal LO Mode Deadline Assignment 27

2.6.2 Initializing/Updating the Overrun Budget 28

2.6.2.1 Initialize OB . 28

2.6.2.2 Updating OB . 28

2.6.2.3 Setting LO mode deadlines . 29

2.7 Correctness of FFOB . 31

2.7.1 All Tasks Meet their LO Mode Deadlines in LO Mode 31

2.7.2 Deadline Guarantees in Border mode . 33

2.7.3 HI-Critical Tasks Meet their Deadlines in any Mode 33

2.7.4 Automatic Schedulability Guarantee. 35

2.8 Experimental Evaluation . 36

2.8.1 Compared Approaches and Evaluation Metrics 36

2.8.2 Random Task Set Generation . 37

2.8.3 Simulation Results . 38

2.8.4 Implementation Results . 40

2.9 Summary . 42

3 Schedulability Analysis on Arbitrarily Activated Tasks 45

3.1 Overview . 46

3.2 Related Work . 48

3.3 System Model and Motivations . 50

3.3.1 Event Model . 50

3.3.2 System Settings . 52

3.3.3 Motivation Example . 52

3.4 Fixed Priority Schedulability Test . 53

3.4.1 Preliminaries . 53

iv

CONTENTS

3.4.1.1 Modular Performance Analysis 53

3.4.1.2 Audsley’s Algorithm . 54

3.4.2 A Necessary Test - NEC . 55

3.4.2.1 Two Necessary Conditions . 55

3.4.2.2 Test by Applying Audsley’s Algorithm 56

3.4.3 Two Sufficient Tests . 58

3.4.3.1 Workload Arrival Curve Analysis - WAC 58

3.4.3.2 Busy-Window Analysis - BW . 60

3.4.3.3 Comparing WAC and BW . 64

3.5 Earliest Deadline First Schedulability Test . 65

3.5.1 Schedulable Conditions . 65

3.5.2 A Hidden Feature . 66

3.5.3 Demand Bound Function of LO mode . 67

3.5.4 Demand Bound Function of HI mode . 69

3.5.5 Demand Bound Function Tuning . 70

3.5.6 Effectiveness . 72

3.6 Schedulability Evaluation . 74

3.6.1 Task Set Generation . 75

3.6.2 Evaluation Results . 76

3.6.2.1 Schedulability Test on Sporadic Task Sets 76

3.6.2.2 Schedulability Test on Arbitrarily Activated Task Sets 78

3.7 Summary . 80

4 Adaptive Workload Management 81

4.1 Overview . 81

4.2 Related Work . 84

4.3 System Settings . 85

4.4 Real-time calculus routines and interface analysis 87

4.4.1 Arrival Curves and Service Demand with Historical Information 87

4.4.1.1 Future Events and their Demand Bound 87

4.4.1.2 Backlogged Events and their Demand Bound 89

4.4.1.3 Carry-On Event and its Demand Bound 89

4.4.2 Schedulability Analysis Based on Real-Time Interface 90

v

CONTENTS

4.4.2.1 Schedulability Analsyis by Considering HI-Critical Tasks as a

Group . 90

4.4.2.2 Schedulability Analysis by Considering HI-Critical Tasks Sepa-

rately . 92

4.5 Motivation . 92

4.6 LO-Critical Workload Management . 94

4.6.1 Priority-Adjustment Policy . 94

4.6.1.1 Decreasing Priority . 95

4.6.1.2 Increasing Priority . 97

4.6.1.3 Runtime Behavior . 97

4.6.2 Workload-Shaping Policy . 98

4.6.2.1 The Release of an Event . 98

4.6.2.2 The Adaptive Shaping Flow . 99

4.7 A Lightweight Method . 99

4.7.1 The Scenario of Setting the LO-Critical Priority as the Highest 100

4.7.1.1 Case for a System with Only Two HI-Critical Tasks 100

4.7.1.2 Closed-Form Equation for the Provided Service 101

4.7.1.3 Leaky Bucket Representation . 103

4.7.1.4 Computing ρ∗(t) . 103

4.7.2 The Lightweight Method in Workload Management Policies 105

4.7.2.1 The Lightweight Method in the Priority-Adjustment Policy . . . 105

4.7.2.2 The Lightweight Method in the Workload-Shaping Policy 106

4.8 Implementation and evaluation . 106

4.8.1 Evaluation Setup . 106

4.8.2 Simulation Results . 109

4.8.2.1 System Utilizations . 109

4.8.2.2 Average Response Time of LO-Critical Tasks 110

4.8.2.3 HI-Critical Task Set Latency Ratio 112

4.8.2.4 Timing Overheads of Decision Making 112

4.9 Summary . 114

vi

CONTENTS

5 A Case Study of Applying Mixed-Criticality Scheduling to an Autonomous

Driving System 115

5.1 Overview . 116

5.2 Hardware/Software Co-Design . 117

5.2.1 Navigation . 118

5.2.1.1 Global Navigation with GPS+IMU 118

5.2.1.2 Local Navigation . 119

5.2.2 Traffic Light Detection . 119

5.2.3 Traffic Sign Recognition . 120

5.2.4 Lane Detection . 120

5.3 Task Scheduling . 121

5.3.1 Task Allocation . 121

5.3.2 Mixed-Criticality Scheduling . 124

5.3.2.1 Task Criticality Classification . 125

5.3.2.2 Time-Triggered Scheduler with Mode Switch 125

5.3.2.3 Event Scheduler . 127

5.4 Implementation Evaluation . 127

5.4.1 Results of TTS-MS Implementation . 128

5.4.2 Results of ETS-MS Implementation . 130

5.5 Summary . 131

6 Conclusions 133

6.1 Main Results . 133

6.2 Future Perspectives . 135

References 137

vii

CONTENTS

viii

List of Figures

1.1 ECUs evolution in modern cars (figure from [1]) 1

1.2 Criticality switch flow . 4

2.1 Overview of FFOB in the MCS . 15

2.2 Illustration of task execution with FFOB . 17

2.3 Initial OB in the motivational example . 22

2.4 Bounding the demand of a task . 23

2.5 Contradiction illustration . 33

2.6 Illustration of the HI mode DBF of a HI-critical task 35

2.7 Boxplot – number of dropped jobs with different overrun probabilities (OP); Top

number of each subfigure show the medians across all approaches; -A, -L in the

right plots represent the approaches RTI-FP-A and RTI-FP-L 38

2.8 Boxplot – HI mode time length with different overrun probabilities (OP). The

label rule is the same as Fig. 2.7 . 39

2.9 Boxplot – number of mode switch times with different overrun probabilities (OP).

The label rule is the same as Fig. 2.7 . 40

2.10 Computation overheads evaluation . 42

3.1 The upper arrival curve of pjd event streams . 51

3.2 The as-early-as-possible event trace of two different models 53

3.3 Modular performance analysis . 54

3.4 A mixed-criticality system with n tasks . 57

3.5 Event trace, absolute deadlines, and effective deadlines of the task τ1 in the

motivation example . 67

ix

LIST OF FIGURES

3.6 The absolute deadlines and effective deadlines corresponding to the as-early-as-

possible event trace . 68

3.7 Bounding the demand of an event . 69

3.8 Bounding the demand of an event trace . 70

3.9 Demand bound functions of motivation example before the tuning 71

3.10 Demand bound functions of motivation example after the tuning 71

3.11 Schedulability results towards the sporadic light task sets (all subfigures share

the same color scheme) . 76

3.12 Schedulability results towards the sporadic mixed task sets (all subfigures share

the same color scheme) . 77

3.13 The effects of parameters (P,X,Y,Z) on the system schedulability towards light

task sets (all subfigures share the same color scheme as the first figure) 78

3.14 The effects of parameters (P,X,Y,Z) on the system schedulability (all subfigures

share the same color scheme as the first figure) 79

4.1 Mixed-criticality systems scheduled by the preemptive FP policy 85

4.2 An example for using dynamic counters to predict the future events 87

4.3 Real-Time Interface analysis . 90

4.4 The flow of backward derivation . 92

4.5 Motivating example . 93

4.6 The flow of priority-adjustment policy . 94

4.7 The diagram showing the verification of system scheduliability by priority-adjustment

policy . 95

4.8 An illustration for the LFII . 98

4.9 The flow of workload-shaping policy . 99

4.10 The scheme for illustrating the schedulability analysis of two tasks 100

4.11 An illustration how to do the comparison . 104

4.12 The program diagram to compute the maximum ρ∗(t) with the constraint of n

inequalities . 105

4.13 The system utilization w.r.t the utilization of LO-critical tasks 109

4.14 The average response time of LO-critical events 110

4.15 The latency ratio of HI-critical events . 111

4.16 Computation expense of the two adaptive workload management policies 113

x

LIST OF FIGURES

5.1 The overview of the model car. Its size is 120 cm×70 cm×35 cm and its weight is

around 20 kg . 116

5.2 System hardware structure . 118

5.3 Illustration that all tentacles may collide with objects. (a) a case that all colliding

tentacles are discarded. (b) a case that the car can choose blue tentacles, where

the black semicircle represents the crash distance to avoid a collision (figure from [2])119

5.4 Task graph of the autonomous driving . 122

5.5 Task scheduling illustration . 123

5.6 HI mode task graph of the autonomous driving 125

5.7 Task scheduling of HI mode task graph . 126

5.8 Job overrun rate and job drop rate in TTS-MS 129

5.9 Scheduling overhead distribution in TTS-MS . 129

5.10 Job overrun rate and job drop rate in ETS-MS 131

5.11 Scheduling overhead distribution in ETS-MS . 131

xi

LIST OF FIGURES

xii

List of Tables

1.1 DO-178B software certification standard . 2

2.1 Results of the compared approaches w.r.t. OP = 0.001, 0.01, 0.1 41

5.1 Task Properties . 121

5.2 Task execution times and allocations . 124

5.3 Task parameters of mixed-criticality scheduling 127

5.4 Timing expense of TTS-MS, where unit is millisecond 129

5.5 Timing expense of ETS-MS, where unit is millisecond 130

xiii

xiv

Chapter 1

Introduction

Timing guarantee is important in many embedded systems, especially in the safety-critical

system like vehicle driving system and airplane flight-control system. Real-time scheduling is

responsible to schedule task executions so that their timing requirements can be met. In the

last few decades, many thousands of research papers have been published on how to perform

the optimal schedule so that the system resource can be ingeniously utilized to meet task timing

requirements. However, with the increasing complexity of an embedded system architecture,

previous scheduling approaches now face more challenges.

Figure 1.1: ECUs evolution in modern cars (figure from [1])

Typically, in the automotive system, it was reported that German premium vehicles have 70

to 100 electrical control units (ECUs) [3] and it is predicted that more ECUs will be mounted

1

1. INTRODUCTION

Level Failure Condition Interpretation

A Catastrophic Failure may cause a crash.

B Hazardous Failure has a large negative impact on safety or perfor-

mance, or reduces the ability of the crew to operate the

plane due to physical distress or a higher workload, or

causes serious or fatal injuries among the passengers.

C Major Failure is significant, but has a lesser impact than Haz-

ardous failure (for example, leads to passenger discomfort

rather than injuries).

D Minor Failure is noticeable, but has a lesser impact than a Major

failure (for example, causing passenger inconvenience a

routine flight plan change).

E No effect Failure has no impact on safety, aircraft operation, or

crew workload.

Table 1.1: DO-178B software certification standard

on the modern car in order to perform more advanced functionalities [1], as shown in Figure 1.1.

The increasing ECUs will impose more weight and costs on the car, and the complex networking

among those ECUs makes it difficult to schedule their uses. To reduce the complexity and the

scheduling difficulty along with increasing ECUs, a powerful centralized ECU is suggested

to replace all ECUs. As a result, different components or tasks of different criticalities are

integrated together to share a same processing unit [1]. A new arising research question under

this integration is how to reconcile the conflicting requirements of partition for safety assurance

and sharing for efficient resource usage in a disciplined way [4]. This type of system that consists

of different criticality tasks is called mixed-criticality systems (MCSs).

1.1 Mixed-Criticality Systems

Many embedded systems, especially safety-critical systems, are subject to certification require-

ments: their functionalities must be guaranteed to a certain level based on some industry

standards. For example, for avionics vehicles, the RTCA DO-178B avionics software standard

divides task criticalities into five assurance levels ranging from level A to level E, as listed in

Table 1.1. In detail, the failure of A-criticality tasks is catastrophic, whereas the failure of E-

criticality tasks has no effect on the airplane safety. Thus, A-criticality tasks need to be given

more stringent certification guarantee at runtime.

2

1.1 Mixed-Criticality Systems

From the real-time perspective, the timing guarantee level of more critical tasks should be

higher than that of less critical tasks. To address this concern, Vestal [5] proposed a multi-

criticality task model that models worst-case execution times (WCETs) on different criticality

levels, with the one on a higher criticality level being more pessimistic; i.e., for the same piece of

code, it will have a higher WCET if it is safety-critical than it would be if it is non-critical. By

allowing multiple level WCETs of one task, the task timeliness guarantee level at runtime then

depends on the level that task executions run into. In particular, the system will guarantee all

tasks meet their deadlines if all tasks run within their lowest level WCETs, and the system

only guarantees the highest-critical tasks if any single task runs over a certain level WCET.

This distinguishing feature that tasks’ WCETs are dependent on the criticality level of

the task makes the conventional optimal scheduling algorithms not optimal in mixed-criticality

systems. It was presented in [5] that the deadline monotonic priority assignment, which is

known to be optimal for implicit tasks (relative deadlines are the same as their periods), is not

optimal for the multi-criticality scheduling problem. Besides, the earliest deadline first (EDF)

schedule, known as the optimal algorithm in dynamic priority assignment system, is also not

optimal for scheduling multi-criticality tasks.

Since Vestal proposed this type of multi-criticality task model [5], there already exists some

good results for scheduling multi-criticality tasks. It was proved in [6] that Audsley algorithm [7]

is optimal to assign task priorities under the multi-criticality scheduling model. Audsley algo-

rithm starts with no task being assigned a priority, then priorities are assigned from the lowest

to the highest in a way that at each step a task with the lowest priority is picked out. This

procedure continues to pick the left tasks until no task is left. Vestal’s model was also improved

to enhance the system schedulability by dropping tasks whose criticalities are lower than the

system current guarantee level [8]. The EDF schedule is also successfully applied to schedule

multi-criticality tasks by applying a technique called earliest deadline first with virtual dead-

lines (EDF-VD) [9]. In addition to the uniprocessor system, Vestal’s model was extended to

multi-core systems. Most scheduling approaches in multi-core systems are based on the global

scheduling model or partition scheduling model by allowing tasks to share the resources simul-

taneously. Shared resources, however, undermine the system predictability because jobs that

run concurrently pay unpredictable performance penalties due to contention in accessing shared

resources. To overcome this problem, a novel scheduling model called isolation scheduling was

proposed that only allows tasks with the same criticality to share the system resource at a time

slot [10].

3

1. INTRODUCTION

The mixed-criticality scheduling approaches were also evaluated by implementing them in

real platforms. Towards the five levels of tasks defined in RTCA DO-178B, in a multi-core

system, a framework called MC2 used a cyclic executive (static schedule) for level-A, partitioned

preemptive EDF for level-B, global preemptive EDF for levels C and D and finally global best-

effort for level-E [11–14]. Besides MC2, other research evaluates the system performance by

implementing some state-of-the-art scheduling approaches in real platforms [15,16]. In addition

to the above listed results, there are other research results in mixed-criticality systems. We

recommend the interested readers to read a comprehensive review report [4] for more details.

1.2 Motivations

LO-criticality mode HI-criticality mode

A HI-critical task overruns

its given LO WCET

An idle tick

Figure 1.2: Criticality switch flow

The concept of scheduling the multi-criticality task in a centralized platform provides enormous

potential to reduce the system “SWaP” (Size, Weight, and Power) related costs. Although a

vast of papers have been published focusing on this goal, there remains a lot of challenges on

how, in a disciplined way, to reconcile the conflicting requirements of partitioning for safety

assurance and sharing for efficient resource usage. One challenge is how to verify the timing

guarantee for multi-criticality tasks. In contrast to the conventional hard real-time system that

needs to guarantee all tasks timing requirements in any case, the timing of multi-criticality

tasks should be guaranteed to their own levels. The definition of timing guarantee to task’s

criticality level is not clear.

The dual-criticality system is a classic mixed-criticality system model that was often adopted

in many research paper (e.g. [17–21]), because an approach that is tested being effective in dual-

criticality system can be easily extended to systems of two more criticality levels. We suppose

a dual-criticality task set τ = {τ1, ..., τn} is given to be scheduled on a uniprocessor. For this

task set, the standard model follows the below scheduling principles:

1. Each task, τi, is supposed to a sporadic task characterized by a minimal inter-arrival time

Ti, relative deadline Di (Di ≤ Ti), WCET Ci and criticality Xi, where Ci = (CLi , C
H
i)

4

1.2 Motivations

and Xi = {LO, HI}. Each LO-critical task only has a LO WCET CLi , and each HI-

critical task has a LO WCET CLi and a HI WCET CHi . For HI-critical tasks, their HI

WCETs are not smaller compared to their LO WCETs, i.e., CLi ≤ CHi ≤ Di.

2. As shown in Fig. 1.2, the system executes in one of two modes. It starts in LO-criticality

mode, where all tasks are assumed to not exceed/overrun their LO WCETs and are

guaranteed to meet their deadlines.

3. If any HI-critical job exceeds its LO WCET, then the system transits immediately to the

HI-criticality mode, where all LO-critical jobs are abandoned or degraded and HI-critical

tasks are guaranteed to meet their deadlines if they do not exceed their HI WCETs.

4. If any LO-critical job executes for its LO WCET without completion, it is immediately

aborted.

5. When the system is in HI-criticality mode, an idle tick will trigger the system to switch

back to the LO-criticality mode.

This standard system model is called mixed-criticality schedulable (i.e. tasks are guaranteed

to their own criticality level) if and only if the following two properties are guaranteed:

• Property 1: All jobs that are released and completed in LO-criticality mode, are guaran-

teed to meet their deadlines.

• Property 2: HI-critical jobs released at any time are guaranteed to meet their deadlines.

Although this standard model provides us a clear verification on how to provide a task the

timing guarantee to its criticality level, it has a lot of problems.

1.2.1 Standard Mixed-Criticality Mode-Switch

In the standard model, whenever a HI-critical task overruns its LO WCET, the system will

immediately switch to HI-criticality mode, in which LO-critical tasks will be dropped or their

services are degraded; and whenever a LO-critical task overruns its LO WCET, it is imme-

diately aborted. Although such a mode-switch scheme is effective in guaranteeing timeliness

of HI-critical tasks, it is abrupt and pessimistic - abrupt in the sense that LO-critical tasks

are suddenly dropped/degraded after a single HI-critical task overruns, and pessimistic in the

sense that the system may naturally have an overrun budget due to free slacks to allow some

tasks to overrun. Such slacks exist either because the system is underloaded (static slacks), or

5

1. INTRODUCTION

because tasks will most likely finish before their WCETs at runtime, giving space for other

tasks to execute (dynamic slacks). This, however, is not fully exploited in existing mode-switch

schemes, to keep the system “away” from the HI-criticality mode where LO-critical tasks are

abandoned or degraded. The question here is:

“How to efficiently utilize the system static and dynamic slack to postpone the mode-switch,

thus improving the quality of service to LO-critical tasks.”

1.2.2 Standard Task Model

To simplify the scheduling problem, tasks in mixed-criticality systems are often modeled as the

sporadic tasks that only define a minimum inter-activation interval (also called period, see the

aforementioned standard model). This sporadic task model can represent many nondetermin-

istic activation patterns by assuming the task be activated in every period and thus helps us

to get some insights on the scheduling property. However, with a growing variety of activation

patterns in today’s embedded systems, some of them capture arbitrary activation patterns, and

the assumed sporadic activation patterns in most previous scheduling approaches have some-

times become inapplicable or ineffective. For instance, a simple approach to deal a periodic

task with a jitter release pattern is to transform it into a new sporadic task with a shorter

period [22]. While this approach is safe, the transformation can lead to overly schedulability

loss. If this shorter period is smaller than the task WCET, it is impossible to schedule this

task by modeling it as a sporadic task, because the sporadic model assumes that the task will

be activated in every shorter period. The real situation is that the task cannot be activated

in every shorter period. This task may be mixed-criticality schedulable, which however will be

tested unschedulable after modelling it as a sporadic task.

The arbitrary activation patterns are not uncommon in real-time systems. Periodic tasks

with jittery releases or tasks with burst activations, often exist in many reactive embedded sys-

tems. The jitter may come from release-delay overheads induced by tick-driven scheduling [23],

execution of interrupt service routines [22], or I/O overheads. The delays by scheduling and data

dependencies may also cause the jitter. In ARINC avionics systems, different tasks schedul-

ing partitions are connected over a switched Ethernet. Due to the network delay, tasks in a

partition are not always released strictly periodically, but with a certain jitter [24]. In the

automotive systems [25], a lot of event streams that are used to activate tasks suggest the use

of more general event stream models than the classical sporadic event model. Hence, this gives

rise to a question:

6

1.2 Motivations

“How to model an arbitrarily activated task. Regarding to this model, how to test its schedu-

lability under the context of mixed-criticality scheduling.”

1.2.3 Run-Time Adaptability

The standard model advocates the conditional guarantee for LO-critical tasks. The condition

is that the executions of LO-critical tasks should never endanger the timing guarantee for

HI-critical tasks. To achieve this goal, based on the offline schedulability test, the workload

of LO-critical tasks are constrained to a certain bound. This offline workload bound (i.e. task

period and WCET), however, is often too pessimistic because it makes a worst-case assumption

on the demand of HI-critical tasks, where their actual demand is often lower than the worst-case

assumption. To improve the system utilization and provide better service to LO-critical tasks,

the actual demand of HI-critical tasks at runtime needs to be considered. This gives rise to

another question:

“How to make use of the run-time demand of HI-critical tasks to adaptively manage the

executions of LO-critical tasks at runtime, meanwhile the timeliness of HI-critical tasks is still

guaranteed.”

1.2.4 Practical Evaluations on Real-Life Systems

Mixed-criticality scheduling makes a lot of assumptions on the task and the system, based on

which many approaches have been proposed [4]. Most of those approaches are only evaluated

from the perspectives of theoretic analysis or simulations. Although there are some implemen-

tation evaluations [11–16], those evaluations are not based on a real-life system. Tasks and

system settings in those implementations are artificially generated to meet the mixed-criticality

scheduling assumptions, in which way scheduling approaches can be successfully deployed. How-

ever, real-life tasks and systems may not meet those assumptions and it is unknown to which

extent that mixed-criticality scheduling can be performed on real-life systems. Besides, the

doubt on the practical value of the mixed-criticality scheduling is rising recently [26, 27], mak-

ing it urgent to evaluate the effectiveness by applying mixed-criticality scheduling to real-life

systems. Then, the question is:

“What kind of real-life system can be used to evaluate the mixed-criticality system. How

to apply the mixed-criticality scheduling concept to this system and how to evaluate its per-

formance. What problems or bottlenecks will the current mixed-criticality scheduling have in

real-life implementations.”

7

1. INTRODUCTION

1.3 Thesis Outline and Contributions

This thesis provides partial answers to the above listed questions. The contributions of this

thesis are in extending the current mixed-criticality task model to a more general task model

and relaxing the scheduling at runtime to be flexible and adaptable, so that the schedulability

test becomes more effective and the system performance is improved. This thesis is subdivided

into 6 chapters to present those contributions.

1. In chapter 2, we propose an on-the-fly fast overrun budgeting (FFOB) scheme for the

mixed-criticality system to online postpone the mode-switch. A feature called automatic

schedulability guarantee is explored that greatly reduces the computation overhead of

FFOB scheme. We evaluate the FFOB scheme by simulations in MATLAB and imple-

mentations in a framework called SF3P [28].

2. In chapter 3, we analyze the schedulability of dual-criticality system with arbitrarily acti-

vated tasks. By using the arrival curve to represent the upper bound of task activations,

we integrate the well-established results from Real-Time Calculus to the mixed-criticality

schedulability analysis. Compared to previous schedulability analysis, our proposed ap-

proaches can handle more general tasks with blocking, jitter, and arbitrary deadlines.

3. In chapter 4, we present an adaptive scheme for managing the workload of low criticality

tasks online. Two online workload management policies, namely priority-adjustment pol-

icy and workload-shaping policy, are investigated. We also propose a lightweight approach

with the complexity of O(n · log(n)) to reduce the online workload management overhead.

4. In chapter 5, we present a case study by applying some basic mixed-criticality scheduling

concepts to an autonomous driving system. All running tasks in this system have spe-

cific functionalities related to autonomously driving. We develop and evaluate the time-

triggered and the event-triggered scheduling approaches, both applying mixed-criticality

scheduling concepts.

5. In chapter 6, we summarize this thesis and discuss about future research directions based

on this thesis.

8

Chapter 2

On-the-Fly Fast Overrun

Budgeting Mechanism

State-of-the-art mixed-criticality scheduling techniques commonly assume to switch system

mode and drop all less critical tasks whenever any single critical task overruns. Despite many

efforts in reducing the pessimism of this approach, postponing the mode-switch to improve

system guarantees by exploring system slacks dynamically online, remains an unsolved prob-

lem for mixed-criticality systems. Such a problem is important as mode-switch procrastination

naturally helps to improve the system performance.

We propose an online mode-switch procrastination technique called on-the-fly fast overrun

budgeting in this chapter for both FP- and EDF-scheduled MCSs. The proposed approach has

a feature of automatic schedulability guarantee that transfers the problem of mixed-criticality

schedulability guarantee online to the counterpart of conventional real-time systems. With a

routinely updated shared resource pool of overrun budgets, the system allows tasks to over-

run, which thus postpones the mode-switch as long as possible. Extensive simulations and

real platform implementations confirm that our proposed technique significantly improves the

system QoS over the state-of-the-art, while at the same time permitting light-weight online

deployments.

2.1 Overview

In mixed-criticality systems (MCSs), it is of vital importance for tasks to meet the requirements

corresponding to their own criticality levels. For example, from the real-time perspective,

the timing of high-criticality tasks should be more rigorously guaranteed than that of less

9

2. ON-THE-FLY FAST OVERRUN BUDGETING MECHANISM

critical tasks. To address this concern, a common assumption of mixed-criticality scheduling

is to guarantee the schedulability of all tasks when no tasks overrun (normal mode) and the

schedulability of only high-criticality tasks when they overrun (critical mode).

Following this assumption, a plethora of scheduling techniques have been proposed in the

literature, see [4] for an excellent survey. Those techniques, e.g. [8, 18, 19, 29–31], all advocate

a mode switched scheduling, where less or no resources are provided to low-criticality tasks

whenever a single high-criticality task overruns its given execution time threshold (i.e. system

enters critical mode); as a result, high-criticality tasks can still be guaranteed even if they

overrun. Such a scheme, although being effective in guaranteeing most critical tasks, can be

abrupt and pessimistic in practice - abrupt in the sense that low-criticality tasks are suddenly

dropped/degraded after a single high-criticality task overruns, and pessimistic in the sense that

the system may naturally have some slack time to accommodate overrunning tasks. Such slack

time arises either because the system is underloaded (static slacks), or because tasks finish earlier

before their worst-case execution times (WCETs) at runtime, giving space for other tasks to

execute (dynamic slacks). Furthermore, due to this pessimism, less critical tasks can receive

no/little resources (i.e. experience degradation) very often, impairing system functionality or

even system safety [32, 33]. Consequently, to reduce pessimism and to improve the Quality-

of-Service (QoS) for low-criticality tasks, the mode-switch should be postponed as long as

possible.

Indeed, several scheduling techniques have already been proposed to keep the system “away”

from the critical mode. However, they can only explore static slacks available offline, while run-

time slacks due to the less loading and task finishing before their WCETs are neglected. In [31],

instead of procrastinating the transition to the critical mode, the authors proposed a bailout

protocol to timely switch the system back to the normal mode. In [34], Santy et al. presented a

method to compute offline the static margins/allowances of high-criticality tasks, using which

they can overrun without triggering the mode-switch. By further adopting sensitivity analy-

sis [35], this method was proposed in [36] to more efficiently explore the statically available

system slacks.

In this chapter, for both earliest-deadline-first (EDF) scheduled and fixed-priority (FP)

scheduled systems, we propose an on-the-fly fast overrun budgeting (FFOB) mode-switch scheme.

FFOB relies on the offline analysis and run-time information of tasks to reclaim available

slacks (both static and dynamic, denoted as the overrun budget), which all tasks can spend on

overrunning without triggering the transition to the critical mode. The design and analysis of

10

2.1 Overview

FFOB mode-switch scheme, however, is nontrivial. The reason is multi-fold. First, the mode-

switch scheme should exploit free run-time slacks as much as possible in order to increase its

efficiency. Second, the procrastination of mode-switch should not hamper dynamic guarantees

in MCSs, i.e. all tasks must be schedulable in normal mode and high criticality tasks must

be schedulable in both modes. Testing the system schedulability with multi-criticality tasks is

already a NP-hard problem [37], and finding the maximal overrun allowance and computing

when to conduct the mode-switch with runtime information makes this problem more compli-

cated. Last, the timing overhead to make the mode-switch decision should be kept a minimum.

Any mode-switch would be useless if its timing overhead is more than the allowance of task

overrun.

To this end, we propose the FFOB mode-switch scheme to address these concerns. The

proposed scheme is inspired by the task procrastination techniques in dynamic power man-

agement [38–40], where the processing of incoming tasks are deliberately postponed such that

the processor can reside in a sleep status to reduce energy consumption. Analogously, task

overrun in this chapter is considered as a procrastination on the system, in the sense that it

delays resources available to tasks that do not overrun. While a lot of effective procrastination

techniques are proposed for conventional real-time systems, none of them can provide dynamic

timing guarantees for MCSs. To solve this problem, a distinguishing feature that makes the

existing procrastination techniques applicable in MCSs is explored. This feature, called auto-

matic schedulability guarantee, can guarantee that if the system is schedulable in both modes

by offline analysis, then the schedulability of normal mode at runtime automatically guarantees

the schedulability of critical mode. This way, the schedulability guarantee of dual-criticality

systems is transformed to the schedulability guarantee of conventional real-time systems. Be-

sides, FFOB only needs to use a timer to manage the overrun budget, which can be efficiently

implemented in many embedded systems. This timer can be renewed once it is depleted, which

can further explore the existing slack in the system to schedule overrun tasks. In detail, the

contributions of this chapter are summarized as follows:

1. We propose an on-the-fly mode-switch scheme for both EDF-scheduled and FP-scheduled

MCSs that can effectively keep the system in normal mode by allowing tasks to overrun.

This scheme is able to make use of the static slack and adaptively reclaim the dynamic

slack at runtime to postpone the mode-switch as long as possible.

11

2. ON-THE-FLY FAST OVERRUN BUDGETING MECHANISM

2. We explore the automatic schedulability guarantee feature, reducing the dual-criticality

schedulability guarantee to the schedulability guarantee of conventional systems. The au-

tomatic schedulability guarantee feature enables us to apply existing task procrastination

techniques of conventional real-time systems to the MCS.

3. We develop several options in implementing the FFOB scheme. Especially for FP-

scheduled MCS, applying FFOB scheme is intrinsically unsuitable by the state-of-the-art

approaches. To overcome this problem, we propose a RTI-FP method that combines the

concept of virtual deadlines and real-time interface analysis [41, 42] to enable the auto-

matic schedulability guarantee feature, thus making FFOB applicable in FP-scheduled

MCS.

4. We present concrete proof showing the correctness of the FFOB scheme. Extensive

simulations and embedded-platform implementation demonstrate the FFOB scheme out-

performs the state-of-the-art approaches in improving the system performance to a large

extent. The implementation also demonstrates that the FFOB scheme is lightweight in

the aspect of computation overhead.

Organizations. The remainder of this chapter is structured as follows. Section 2.2 briefly

reviews relevant work. Section 2.3 presents our system settings. Section 2.4 presents the working

flow of FFOB scheme. Section 2.5 and Section 2.6 provide the use of FFOB in EDF-scheduled

and FP-scheduled system, respectively. Section 2.7 proves the correctness of FFOB scheme.

The evaluation results are presented and discussed in Section 2.8 and Section 2.9 concludes this

chapter.

2.2 Related Work

Mixed-criticality scheduling advocates using limited resources to provide enough guarantee for

a task set of multiple criticality levels. It stems from the seminal paper [5] and is drawing

increasing interest from both the research community [4] and the industry [43]. To date, the

real-time community has mostly focused on providing different timing guarantees on different

criticality levels. We survey the relevant results in single processor systems as this chapter only

studies single processor system; discussions of other results can be found in a comprehensive

review by Burns et al., see [4].

12

2.3 Models

Under EDF schedule, an algorithm named EDF-VD (virtual deadline) was first proposed to

meet the dynamic guarantees on mixed-criticality task sets by fairly shortening the deadline of

high-criticality tasks in normal mode and resuming their deadlines in critical mode [17]. Later

work [9] provided a more strict bound on the schedulability test of EDF-VD. The schedulability

of EDF-VD can be significantly improved if the deadlines can be shortened individually by

taking the task demand into the schedulability test [18,30].

Under FP schedule, Baruah et al. [8] proposed the adaptive mixed-criticality scheme to

provide heterogeneous timing guarantees for tasks of two different criticality levels. They pre-

sented two response-time analyzing approaches called AMCrtb and AMCmax, to analyze the

system schedulability. Experimental results demonstrated that AMCmax is slightly tighter

than AMCrtb in testing the system schedulability. Based on AMCrtb analysis, the strict-

ness for scheduling a mixed-criticality task set was relaxed by increasing task execution time

thresholds [34], exceeding which the mode-switch will be triggered. As a result, the critical

system mode will be more unlikely due to the relaxation. Further improvements on relaxing

the mixed-criticality scheduling can be achieved by integrating the Audsley’s priority assign-

ment scheme [7,36]. On top of AMCrtb and the relaxing approach, a bailout protocol [31] was

proposed, which can further utilize the offline slack to timely switch the system back to the

normal mode. Once again, all aforementioned works are based on the offline analysis, which is

different from this chapter that utilizes the runtime slack to improve system performances.

2.3 Models

In this section, we formally introduce the mixed-criticality system and task models.

System Model. We adopt the classic dual-criticality system model [4,8,18,19,29–31]. A

dual-criticality task set τ = {τ1, ..., τn} is to be deployed on a uniprocessor under fixed-priority

scheduling. All tasks are independent. Each task, τi, is characterized by a minimal inter-arrival

time Ti, a relative deadline Di, a WCET Ci and a criticality Xi, where Ci = (CLi , C
H
i) and

Di = Ti. A task can either have high (HI) or low (LO) criticality. Each LO-critical task only

has a LO level WCET CLi , and each HI-critical task has a LO level WCET CLi and a HI level

WCET CHi . For HI-critical tasks, their HI level WCETs are not smaller than their LO level

WCETs, i.e., CLi ≤ CHi ≤ Di. The rationale behind is that the execution time estimation on

a higher criticality level is more conservative. At runtime, since CLi is less conservative, some

13

2. ON-THE-FLY FAST OVERRUN BUDGETING MECHANISM

tasks (including LO-critical tasks) may overrun their LO level WCETs. However, we assume

no HI-critical tasks can overrun their given HI level WCETs.

Based on the above assumptions, a standard mode-switch scheme [4,8,18,19,29,30] exists to

schedule the system, as presented in Section 1.2. Besides, a system is defined as mixed-criticality

schedulable if the two properties presented in Section 1.2 hold.

Task Workload Model. The task release pattern can be modeled as an arrival func-

tion [44] that specifies the maximum number of released jobs within any time interval of a

length ∆. For a sporadic task τi with a minimum release distance Ti, the arrival function is

α(τi,∆) =

⌊
∆ + Ti
Ti

⌋
, ∀ ∆ > 0, (2.1)

with α(τi, 0) = 0.

The workload bound function (WBF) models the number of execution time units requested

by a task over any interval of length ∆. Suppose the WCET of τi is Ci, then the WBF of τi

is given by:

wbf(τi,∆) =

⌊
∆ + Ti
Ti

⌋
·Ci, ∀ ∆ > 0, (2.2)

with wbf(τi, 0) = 0.

Task Demand Model. Analogous to WBF, the minimum execution time units over any

interval of a length ∆ that must be provided to a set of tasks to ensure their schedulability, is

modeled by the demand bound function (DBF). For a single task τi with relative deadline Di,

the demand bound function is [45]

dbf(τi,∆) =

⌊
∆ + Ti −Di

Ti

⌋
·Ci, ∀ ∆ ≥ 0. (2.3)

Task Resource Model. The resource that the system provides is modeled by the supply

bound function (SBF), denoting the minimum number of execution time units available over

any time interval of fixed length. In this thesis, the total system resource is simply a dedicated

uniprocessor with a unit-speed. We can further model the resource provided to a task or a task

set over any interval of fixed length. For example, for a task set τ , the SBF provided to τ in

any interval of length ∆ is represented by the following function:

sbf(τ,∆) = ∆, ∀ ∆ ≥ 0. (2.4)

Short Notations. For ease of expression in the sequel, we adopt some short notations. We

denote the subset of all LO-critical tasks and all HI-critical tasks in τ as τL = {τi ∈ τ |Xi = LO}
and τH = {τi ∈ τ |Xi = HI}, respectively. Furthermore, we use JaKb to represent max(a, b) and

JaKc to denote min(a, c).

14

2.4 FFOB Mode-Switch Scheme

LO mode

Border
mode

HI mode

initial OB

HI

LO

t⊥

t⊤

OB timer elapses

OB == 0?

Update OB

Jr ∈ τH?

Stop OB timer

Drop Jr
N

Y

LO

HI

Jr stops
running

Y

N

time out

t⊥

Figure 2.1: Overview of FFOB in the MCS

2.4 FFOB Mode-Switch Scheme

In this section, we present the FFOB mode-switch scheme and two relevant key problems. We

then provide an example to further explain this scheme.

2.4.1 The Working Flow of FFOB Scheme

In the standard model, LO-critical jobs are not allowed to exceed their LO WCET and a

HI-critical job’s overrun of its LO WCET immediately triggers the mode-switch. However, in

FFOB, by relying on an overrun budget, all jobs are allowed to run over their LO WCETs,

without being dropped or triggering the mode-switch. To denote the system state that a job

overruns while not being in HI mode, the Border mode is introduced. In detail, the FFOB

scheme maintains a common resource pool at runtime (the overrun budget), with which the

system allows tasks to overrun by residing in Border mode.

An overview of FFOB is presented in Fig. 2.1. With an initial assignment of the overrun

budget (represented as the OB timer), online updating of OB goes through different system

modes as follows.

LO mode: The system starts with an initial overrun budget, which intuitively represents

the static slack in the system and always exists as long as the system is underloaded. In

particular, our online scheme performs the following.

15

2. ON-THE-FLY FAST OVERRUN BUDGETING MECHANISM

(i) The online scheduler holds the initial overrun budget OB at the beginning.

(ii) While all jobs do not execute over their LO level WCETs, the system remains in LO

mode.

(iii) If any job executes beyond its LO WCET (at time instant t⊥), the system enters the

Border mode.

Border mode: In this mode, we allow all tasks to overrun and delay entering to HI mode

by using the overrun budget; we replenish online OB by exploring dynamic slacks, which arise

as jobs take less than their WCETs to finish. Detailed designs of our Border mode scheme are

as follows.

(iv) Whenever any job (denoted as Jr) overruns, the OB timer is decremented by the same

amount as its overrun time.

(v) If Jr finishes before OB is depleted, the OB timer stops decrementing and the system

goes back to LO mode.

(vi) Once OB is depleted, the scheduler calls an update procedure, in which the overrun

budget is replenished based on the current state of task executions. If the updated OB is

nonzero, further job overrun is allowed and the OB timer will decrement accordingly. If the

updated OB is zero, another decision procedure is called – when the overrun job is LO-critical,

it is dropped and the system goes back to LO mode; otherwise, the system transits to HI mode.

HI mode: The FFOB scheme acts as follows.

(vii) Only the timing requirements of HI-critical tasks are guaranteed in the system.

(viii) An idle tick (at time instant t>) will reset the OB timer to its initial value and trigger

the switching back to LO mode.

Note that, in all modes, an idle tick will reset the system mode (to LO mode) and the OB

timer (to the initial value).

2.4.2 Two Relevant Problems

The system behavior in Border mode demonstrates that the Border mode can be considered

as an “extended” LO mode as all pending tasks are kept and the system schedule and task

parameters are the same as LO mode. Therefore, to prove a system with FFOB scheme

schedulable, we need to guarantee the two properties presented in Section 2.3 and further

guarantee that all jobs that are completed in Border mode will not miss their deadlines. If OB

is always zero, the Border mode then does not exist and the system is a standard model. The

FFOB scheme will not have any advantage compared to previous approaches in this case. The

16

2.4 FFOB Mode-Switch Scheme

t

t

t

t

τ3

x3

0 10 20 30 40 50 60 70 80 90 100

τ2

x2

τ1

x1
job release

update OB
LO mode deadline

OB

10

overrun

overrun

overrun idle

Figure 2.2: Illustration of task execution with FFOB

system will be different from the standard model only when OB is nonzero. Since OB can be

changed only by the setting of initial OB and the updating procedure, to guarantee the system

mixed-criticality schedulable, the two key problems are how to find an feasible initial OB and

how to update the OB at runtime. In the following, we will present the solutions for these two

problems in both EDF-scheduled and FP-scheduled systems.

2.4.3 An Example

The following example illustrates how the FFOB mode-switch scheme works in EDF-scheduled

system. Note that, in order to apply EDF algorithm to schedule mixed-criticality tasks, a

technique called EDF-VD is used that artificially shortens the HI-critical task deadlines in LO

and Border modes and resume their original deadlines in HI mode. More details about it are

presented in Section 2.5.

Example 1. In a uniprocessor system, three tasks are scheduled by the EDF-VD algorithm.

Task properties are shown as follows.

τi Xi CLi CHi DL
i Di Ti

τ1 LO 20 - 70 70 70

τ2 HI 10 20 40 70 70

τ3 HI 20 40 30 80 80

Fig. 2.5 illustrates the system runtime behavior under FFOB. Before the system runs, the

OB timer is initialized to 10. Suppose that the first jobs of all tasks are released at time zero.

Task τ3 will run first. Once τ3 overruns at t = 20, the OB timer starts to elapse. When τ3

17

2. ON-THE-FLY FAST OVERRUN BUDGETING MECHANISM

finishes, the OB timer will hold its current value and stop elapsing. τ2 starts to execute. After

τ2 executes over 10, it overruns and triggers the OB timer to elapse. Similarly, the OB timer

will stop when τ2 finishes. Then τ1 runs and further overruns to the extent that OB timer

elapses to 0. The OB updating procedure is called and OB is updated to 10 by the approach in

Section 2.5.2.3. After that, τ1 runs until it finishes. After τ1 finishes, the system returns to LO

mode as there is an idle tick; in the meantime OB is reset.

The FFOB mode-switch scheme outperforms the other known methods that fairly increase

the allowance of task overrun offline in two aspects. First, OB can be flexibly used by all

tasks. In the static method, the overrun allowance is assigned to each individual task, and the

mode-switch is triggered once a task exceeds its own overrun allowance. Such a scheme is not

flexible as it cannot use the remaining allowances of other tasks. Second, OB is updated at

runtime in FFOB, which can often replenish the overrun allowances and postpone the mode-

switch by exploring dynamic slacks. Such slacks naturally exist as tasks will most likely take

less than their WCETs to finish. The updated OB is able to collect those slacks to postpone

the mode-switch. Furthermore, since the remaining OB is still valid with the time going on

and OB will be automatically replenished to the initial value whenever an idle tick emerges,

FFOB does not need to use a complex way to update OB every time a task overruns.

2.5 FFOB under EDF schedule

In this section, we present how to integrate the FFOB scheme into EDF-scheduled system.

We first introduce the EDF-VD technique, on top of which we present how to initialize and

update the overrun budget.

2.5.1 EDF-VD Technique

Earliest-Deadline-First Virtual-Deadlines (EDF-VD) [9,18] is a scheduling technique that makes

the conventional EDF applicable in the MCS. In this chapter, the proposed FFOB mode-switch

scheme relies on the EDF-VD algorithm.

A key feature of EDF-VD is to artificially shorten the deadlines of HI-critical tasks when the

system is in LO mode. In this way, HI-critical tasks will finish earlier so that there is enough

time slack for them to catch their actual deadlines after switching to the HI mode.

18

2.5 FFOB under EDF schedule

2.5.1.1 DBF in LO and HI modes

In order to schedule HI-critical tasks in MCSs, the relative deadline Di of a HI-critical task is

artificially shortened in LO mode and returns to Di after the system switches to the HI mode.

We name the deadline in LO mode as the LO mode deadline, and denote it as DL
i . Note that,

for LO-critical tasks, their deadlines do not need to be shortened, thus DL
i = Di, ∀τi ∈ τL.

When the system is in LO mode, each task τi behaves as a normal sporadic task with

parameters CLi ,DL
i and Ti. A DBF of such a task is known [45]:

dbfLO(τi,∆) =

⌊
∆ + Ti −DL

i

Ti

⌋
CLi . (2.5)

When the system is in HI mode, LO-critical tasks are abandoned, thus only the demands

of HI-critical tasks need to be considered. The DBF of a HI-critical task τi in HI mode is

that [18]:

dbfHI(τi,∆) =

⌊
∆ + Ti − (Di −DL

i)

Ti

⌋
CHi − done(τi,∆),

done(τi,∆) =

{
JCLi − l +Di −DL

i K0, ifDi > l ≥ Di −DL
i

0, otherwise,
,

(2.6)

where l = ∆ mod Ti.

In EDF-scheduled MCS, the DBF of a system is the sum of DBFs of all tasks in this

system [18]. That is,

dbfLO(τ,∆) =
∑
∀τi∈τ

dbfLO(τi,∆),

dbfHI(τ
H,∆) =

∑
∀τi∈τH

dbfHI(τi,∆).
(2.7)

2.5.1.2 Schedulability analysis

The following proposition presents the sufficient conditions that can guarantee all tasks to meet

their deadlines in LO mode and all HI-critical tasks to meet their deadlines in both LO and HI

modes.

Proposition 1. [From [18]]: In MCSs, the taskset is schedulable if the DBFs of LO and HI

modes are not greater than the SBFs of this system, i.e., ∀∆ ≥ 0,

EDF-LO : dbfLO(τ,∆) ≤ sbf(τ,∆) = ∆, (2.8a)

EDF-HI : dbfHI(τ
H,∆) ≤ sbf(τH ,∆) = ∆. (2.8b)

19

2. ON-THE-FLY FAST OVERRUN BUDGETING MECHANISM

2.5.2 Initialize and Update Overrun Budget

Based on the EDF-VD technique, we present how to initialize the overrun budget and update

it at runtime. We first present the schedulability conditions with task procrastination online,

based on which the initialization and updating of an overrun budget are presented.

2.5.2.1 Schedulability Analysis at Runtime

At runtime, the task information may be different with the offline worst-case assumption.

To denote the task information at runtime, we extend our notations and say that, from any

time t online and onward, the actual demand and supply bound functions are dbf(τi,∆, t) and

sbf(τi,∆, t), respectively. In fact, the offline analysis is equivalent to analyze the system schedu-

lability at the beginning, i.e., we have dbf(τi,∆) = dbf(τi,∆, 0) and sbf(τi,∆) = sbf(τi,∆, 0).

We use the subscript LO and HI in the following to represent the corresponding bound functions

in LO and HI modes.

Task Procrastination. Suppose at a time t when the MCS is in LO mode, all tasks in τ are

delayed for a time length ρ(t) to be executed, then the SBF of τ after t is that [46]

sbfLO(τ,∆, t) = J∆− ρ(t)K0. (2.9)

Denote tms as the time instant of a mode-switch and sbfHI(τ
H ,∆, tms) as the SBF of τH

in HI mode after tms. Straightforwardly extended from Proposition 1, we have the following

schedulability conditions.

Proposition 2. The schedulability conditions of LO and HI modes at runtime are that, ∀ t, tms, ∆ ≥
0,

EDF-LO-t : dbfLO(τ,∆, t) ≤ sbfLO(τ,∆, t), (2.10a)

EDF-HI-t : dbfHI(τ
H ,∆, tms) ≤ sbfHI(τ

H ,∆, tms). (2.10b)

where dbfLO(τ,∆, t) gives the upper bound on the maximum possible execution demand of a task

set τ over any time interval of length ∆ from time t in LO mode. Similarly, dbfHI(τ
H,∆, tms)

gives the upper bound on the maximum possible execution demand of tasks τH over any time

interval of length ∆ from time tms in HI mode.

The two conditions correspond to the two properties of being mixed-criticality schedulable

in Section 2.3, where the condition EDF-LO-t corresponds to Property 1, and the conditions

EDF-LO-t and EDF-HI-t together correspond to Property 2. In addition, condition EDF-LO-t

can further guarantee the property that completed tasks in Border mode can also meet their

LO mode deadlines. This property will be proved in Section 2.7.

20

2.5 FFOB under EDF schedule

Intuition. In the conventional hard real-time system, task executions can be delayed for a

certain time length without missing any deadlines. To get a feasible time length, we have the

following lemma.

Lemma 1. [From [47]] Suppose dbf(τ,∆, t) denote the DBF of a task set τ from time t. If

there is a ρ (ρ > 0) that satisfies

∀∆ > 0 : dbf(τ,∆, t) ≤ J∆− ρK0, (2.11)

then the executions of all tasks can be immediately delayed for ρ and there will be no deadline

misses after t.

The FFOB scheme is inspired by Lemma 1 that all tasks are allowed to overrun within

an overrun budget, by ensuring that this overrun budget is not greater than the feasible task

procrastination time length (a time length that task executions are delayed). In the following,

we introduce how to apply Lemma 1 to initialize OB and update OB at runtime.

2.5.2.2 Initialize OB

In order to get the initial OB, we compute the largest procrastination interval that the system at

the beginning can accept. Suppose there is a initial procrastination interval ρ on the processor

when the system starts. Then, the service bound function becomes J∆ − ρK0. The longest

procrastination interval is defined as follows [39].

Definition 1 (Longest Procrastination Interval). The longest procrastination interval ρ∗ with

respect to a given DBF dbfLO(τ,∆) is

ρ∗ = max
{
ρ : J∆− ρK0 ≥ dbfLO(τ,∆), ∀∆ ≥ 0

}
. (2.12)

Therefore, OB is initialized to the longest procrastination interval with respect to dbfLO(τ,∆).

This longest procrastination interval is denoted as ρ∗(t0). For the task set in the motivational

example, the initial OB is set to 10 based on Eq. 2.12, as shown in Fig. 2.3.

2.5.2.3 Update OB at runtime

While tasks are overrunning, OB may elapse to 0. The system may still be able to postpone

the mode-switch, because the actual overrun allowance at this moment may be greater than 0

based on the current tasks’ execution state, i.e., dynamic slacks are available. We now derive

the actual DBF of a task τi at any time t.

21

2. ON-THE-FLY FAST OVERRUN BUDGETING MECHANISM

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

∆

de
m

an
d

dbfLO(τ1,∆)

dbfLO(τ2,∆)

dbfLO(τ3,∆)

dbfLO(τ,∆)

max(0,∆− ρ
∗(t0))

ρ
∗(t0)

Figure 2.3: Initial OB in the motivational example

Lemma 2. At any time t, for a task τi that has no backlogged job at t, its LO mode DBF is

dbfLO(τi,∆, t) = dbfLO(τi,∆). (2.13)

For a task τi that has one backlogged job at t, its LO mode DBF is

dbfLO(τi,∆, t) = max
(
dbfLO(τi,∆), Dmdbk(τi,∆, t)

)
, (2.14)

where Dmdbk(τi,∆, t) is derived as follows

Dmdbk(τi,∆, t) =

t⌊
∆

ri(t) +DL
i − t

⌋|1

·
q
CLi − ei(t)

y
0

+

t⌊
∆ + min

(
Ti, t− ri(t)

)
−DL

i

Ti

⌋|
0

CLi ,

(2.15)

and ri(t), ei(t) are the release time and the already execution time of the latest released job of

τi at the moment t, respectively.

Proof. Since the DBF for a task τi must upper-bound the maximum execution demand of

jobs from τi within any scheduling interval after time t, the DBF will include the demand

from jobs that are backlogged and the future jobs. As shown in Fig. 2.4, the release time of

the latest released job is ri(t), and at time t, the released job may have finished or may not.

Therefore, a task may have backlogged job or may not. We consider the demand of the two

cases, respectively.

First, we consider that the released job has been finished. Since the released job has been

finished, there is no demand from this job in future. The DBF will only bound the demand

of future jobs. We assume future jobs are released as early as possible. At time ri(t) + Ti, the

jobs’ release pattern is the same as the offline assumption. Then, the maximum demand within

an interval will be the same as the DBF within the same interval in the offline analysis, as

the demand within the interval ∆′ seen in Fig. 2.4. Therefore, we prove that dbfLO(τi,∆, t) =

dbfLO(τi,∆).

22

2.5 FFOB under EDF schedule

ri(t)
t

∆′DL
i

∆

Ti Ti

Figure 2.4: Bounding the demand of a task

Second, we consider that there is a backlogged job. The demand of task τi within an

interval may include the demand of the backlogged job, or may not include this demand. If the

demand of the backlogged job is not included, the upper bound of such a demand is the same

as dbfLO(τi,∆). Therefore, dbfLO(τi,∆, t) ≥ dbfLO(τi,∆). Now we consider the upper bound

on the demand that includes the demand of the backlogged job. To include the demand of this

backlogged job, an interval ∆ should start from t and end at t + ∆. We use Dmdbk(τi,∆, t)

to denote the upper bound of the demand that includes the backlogged job. The backlogged

job may overrun or may not overrun. If the backlogged job does not overrun, it will demand

CLi − ei(t). Otherwise, its demand is 0, because instead of contributing to the system demand,

overrun in our technique is considered as the processing procrastination. In short, we use

JCLi −ei(t)K0 to denote the demand of the backlogged job. This backlogged job should be given

JCLi − ei(t)K0 before ri(t) + DL
i . Future jobs are assumed to be released as early as possible

in order to maximize its demand. The request demand of every future job is CLi . Within

∆, the maximum number of arrival events is b
(
∆ + min

(
Ti, t − ri(t)

))
/Tic, and those jobs

should be given their requested demand no later than their LO mode deadlines. In summary,

Dmdbk(τi,∆, t) is represented by Eq. 2.15, where its first part is the demand of the backlogged

job and its second part is the demand of its future jobs.

Since dbfLO(τi,∆, t) ≥ dbfLO(τi,∆) and dbfLO(τi,∆, t) ≥ Dmdbk(τi,∆, t), Eq. 2.14 holds.

With Eqs. 2.14 and 2.14, we can get the dbfLO(τ,∆, t) at runtime. By applying the following

equation (similar to Eq. 2.12)

ρ∗(t) = max
{
ρ : J∆− ρK0 ≥ dbfLO(τ,∆, t), ∀∆ ≥ 0

}
, (2.16)

where dbfLO(τ,∆, t) =
∑
τi∈τ

dbfLO(τi,∆, t), we get ρ∗(t). This ρ∗(t) is used to renew the overrun

budget OB at runtime whenever it elapses to zero.

2.5.2.4 Setting LO mode deadlines

From Eqs. 2.12 and 2.16, we can see that the initial OB and the updated OB depend on the

task offline and online demand bound functions, hence depend on their LO mode deadlines.

We proceed how to optimize OB by configuring tasks LO mode deadlines.

23

2. ON-THE-FLY FAST OVERRUN BUDGETING MECHANISM

There can be a lot of options in setting DL
i for every HI-critical task. Different options

may have different runtime effects. To illustrate this problem, we consider the task set in the

Example 1. There are two options of DL
i , as shown in the following.

• Option 1: DL
2 = 40 and DL

3 = 30, which is the same as the example.

• Option 2: DL
2 = 60 and DL

3 = 40, which is different with the example.

In both options, the schedulability of this system in the offline analysis is guaranteed. How-

ever, the second option can initialize OB to 20, while the first option can only initialize OB to

10. Option 2 is expected to have a better performance because the initial OB is greater and

DL
2 ,DL

3 of option 2 are greater than those of option 1. When we update an OB, the ρ∗(t) of

using option 2 must be equal to or greater than that of using option 1.

Motivated by this example, we set the target to maximize the initial overrun budget by

choosing DL
i for every HI-critical task so that OB will be replenished the most in every update,

i.e.,

Constraint : Eqs. 2.19a, 2.19b,

Target : maximize ρ∗.

where Eqs. 2.19a, 2.19b (Section 2.5.1) guarantee the schedulability of the system in both

modes.

2.6 FFOB under FP schedule

In this section, we present how to integrate the FFOB scheme into FP-scheduled system. In

order to achieve this goal, we propose an algorithm named RTI-FP that acts a similar role

as EDF-VD in EDF-scheduled system. RTI-FP algorithm is based on the real-time interface

analysis [41,42], which is a part of the framework of Real-Time Calculus [44,48]. In the following,

we first present RTI-FP algorithm, then present how to initialize and update an overrun budget

based on RTI-FP algorithm.

2.6.1 RTI-FP Algorithm

In this section, we introduce the RTI-FP algorithm that extends the standard fixed-priority

based mixed-criticality scheduling technique; we further present the corresponding schedulabil-

ity analysis and how to configure RTI-FP.

24

2.6 FFOB under FP schedule

2.6.1.1 Real-Time Interface Analysis

For fixed-priority scheduled systems, we rely on the real-time interface analysis [41] to derive the

supply bound function and demand bound function of a task (or a task set), and to analyze the

system schedulability. The principle of real-time interface analysis is to test the schedulability

by comparing the remaining system resource (SBF) with the task demand (DBF) of a task on

every priority level. According to the real-time calculus [48], the SBF for lower priority tasks

models the resources left over after processing all higher-priority tasks. Suppose task priorities

are ordered in a descending order, i.e., τi has a higher priority than τj when i < j. Then, we

have
sbf(τi+1,∆) = RT(sbf(τ,∆),wbf(τ i1,∆))

= sup
0≤λ≤∆

{sbf(τ, λ)− wbf(τ i1, λ)}, ∀i ∈ {1..n− 1}. (2.17)

where

sbf(τ,∆) = ∆, wbf(τ i1,∆) =

i∑
j=1

wbf(τj ,∆).

To guarantee the schedulability of every task, its SBF must be equal to or greater than its

DBF, i.e.,

sbf(τi,∆) ≥ dbf(τi,∆), ∀∆, ∀i ∈ {1..n}. (2.18)

2.6.1.2 RTI-FP Algorithm

In order to facilitate runtime overrun budgeting, we would need more explicit control of task

behaviors under fixed-priority scheduling. Inspired by the use of virtual deadlines in EDF-

scheduled system where a task can be modeled in LO and HI modes individually, we also

introduce virtual deadlines to HI-critical tasks in FP-scheduled systems. The use of virtual

deadlines allows us to apply the real-time interface to analyze the two modes schedulability

respectively, which further enables the feature of automatic schedulability guarantee.

Let us still denote the LO mode deadline as DL
i ,∀τi ∈ τH . Based on the above real-time

interface analysis, for each task, once its LO mode deadline is determined, we can derive the

task workloads and demands in LO and HI modes, i.e., for LO mode we have wbfLO(τi,∆)

and dbfLO(τi,∆), and for HI mode we have wbfHI(τi,∆) and dbfHI(τi,∆). Then, based on the

real-time interface analysis, we have the following result.

Proposition 3. A mixed-criticality task set is schedulable by fixed priority on a platform with

SBF sbfLO(τ,∆) = sbfHI(τ
H ,∆) = ∆ if both of the following conditions hold:

FP-LO : ∀∆ ≥ 0, τi ∈ τ : dbfLO(τi,∆) ≤ sbfLO(τi,∆), (2.19a)

FP-HI : ∀∆ ≥ 0, τi ∈ τH : dbfHI(τi,∆) ≤ sbfHI(τi,∆). (2.19b)

25

2. ON-THE-FLY FAST OVERRUN BUDGETING MECHANISM

Proposition 3 provides a schedulability test for LO (FP-LO) and HI (FP-HI) modes indi-

vidually. We proceed to show how to derive the workload and demand bound functions for all

tasks, first for LO mode and then for HI mode.

LO Mode Schedulability

The runtime behavior of a mixed-criticality system in LO mode is the same as that of a

conventional real-time system, assuming LO mode task parameters. To apply condition FP-LO

of Eq. 2.19a to test LO mode schedulability, we compute the workloads and demand bounds of

tasks as follows (see the definitions in Section 2.3).

wbfLO(τi,∆) =

⌊
∆ + Ti
Ti

⌋
·CLi , ∀ ∆ ≥ 0,

dbfLO(τi,∆) =

⌊
∆ + Ti −DL

i

Ti

⌋
·CLi , ∀ ∆ ≥ 0

. (2.20)

With wbfLO(τi,∆) and dbfLO(τi,∆), the system schedulability can be analyzed by the real-time

interface analysis.

HI Mode Schedulability

Suppose all tasks can meet their corresponding deadlines in LO mode, we can now derive

wbfHI(τi,∆) and dbfHI(τi,∆). A tight dbfHI(τi,∆) is already presented in Eq. 2.6. The WBF

of a HI-critical task τi must upper-bound the maximum workload arriving within any interval

of length ∆ in HI mode. We derive wbfHI(τi,∆) by relying on the fact that any task τi is

deemed to finish CLi before its LO mode deadline as τi is schedulable in LO mode.

Lemma 3. If a HI-critical task τi with a shortened deadline DL
i is schedulable in LO mode,

its WBF in HI mode is

wbfHI(τi,∆) =

⌊
∆ +DL

i + Ti
Ti

⌋
CHi − done(τi,∆),

done(τi,∆) =

{
JCLi − l +Di −DL

i K0, ifDi > l ≥ Di −DL
i

0, otherwise,
,

(2.21)

where ∆ > 0 and wbfHI(τi, 0) = 0 and l = ∆ mod Ti.

Proof. To derive the workload bound function in HI mode, we need to rely on the condition

that any HI-critical task will not miss its LO mode deadline before the system switches to HI

mode. Then, to denote the workload of a task after the mode-switch, we need to introduce the

carry-over job. The carry-over job is a job from a HI-critical task that is active (released, but

not finished) at the time of the switch to HI mode [18].

There is a fact (lemma III.3 of [18]).

Fact 1: If a job can definitely meet its LO mode deadline DL
i before system switching to

HI mode and this job has l time units left until its HI deadline DH
i at the moment of system

26

2.6 FFOB under FP schedule

switching to HI mode, then (1): this job has finished if l < DH
i −DL

i . (2): this job has finished

at least JCLi −
(
l − (DH

i −DL
i)
)
K0 if l ≥ DH

i −DL
i .

Since any HI-critical task will not miss its LO mode deadline before the system switching to

HI mode, there must be at least a slack of Ti−DL
i to release the next job after the mode-switch.

Thus, suppose the workload of the carry-over job is CHi whenever a mode-switch happens, we

can bound the workload as follows.

Wrdfull
HI (τi,∆) =

⌊
∆ +DL

i + Ti
Ti

⌋
CHi , ∀∆ ≥ 0. (2.22)

However, to make the workload bound function tighter, we need to consider the fact 1, i.e.,

the carry-over job may have finished some part of its execution before the mode-switch. Now,

we derive how to accommodate such finished part within an interval of δ in Wrdfull
HI .

Based on the fact 1, we can derive the lower bound of the finished execution time within an

interval of δ in Wrdfull
HI as follows.

done(τi,∆) =

{
JCLi − l +Di −DL

i K0, ifDi > l ≥ Di −DL
i

0, otherwise,
,

Therefore, a tight workload bound function is Eq. 2.6.

With dbfHI(τi,∆) and wbfHI(τi,∆), the system HI mode schedulability can be determined

by applying the real-time interface to test the condition FP-HI.

2.6.1.3 Optimal LO Mode Deadline Assignment

We have shown our schedulability analysis by constructing the workload and demand bound

functions in all modes. Since wbfHI(τi,∆) and dbfHI(τi,∆) are functions related to LO mode

deadlines, the HI mode system schedulability depends on LO mode deadlines. Therefore, choos-

ing appropriate LO mode deadlines is critical for passing the RTI-FP test. To ensure LO mode

schedulability, we know that DL
i ≥ RLi (RLi being the response time of τi in LO mode and can

be computed by using the standard response time analysis [49]). Furthermore, according to

Eqs. 2.6, 2.21, decreasing DL
i makes both dbfHI(τi,∆) and wbfHI(τi,∆) smaller. As a result,

the system remains schedulable in HI mode as there are less workloads/demands. Therefore,

for HI-critical tasks, it is optimal to set their LO mode deadlines as small as possible, as long

as they are schedulable in LO mode, i.e., DL
i = RLi ,∀τi ∈ τH . We summarize this into the

following theorem.

Theorem 1. For our schedulability test as presented in Proposition 3, an optimal assignment

of the LO mode deadline for a HI-critical task τi is that DL
i = RLi . In other words, if the

system is tested unschedulable by setting DL
i = RLi , it will be tested unschedulable whatever DL

i

is.

Proof. This directly follows from our discussions above.

27

2. ON-THE-FLY FAST OVERRUN BUDGETING MECHANISM

2.6.2 Initializing/Updating the Overrun Budget

We have presented the RTI-FP algorithm that acts a similar role as EDF-VD in EDF-scheduled

system. Under the RTI-FP algorithm, we can follow a similar procedure of Section 2.5.2 on

how to initialize and update the overrun budget.

2.6.2.1 Initialize OB

The initial budget denotes the overrun allowance that can be already identified offline. Recall

that we view task overrun as a delay of resources provided to “normal” executions of tasks.

Thus, analogous to our offline test, we can update the resource model as sbfLO(τ,∆) = J∆ −
ρK0 (ρ > 0), which means that the resource supply for LO mode is delayed not longer than ρ.

Consequently, the real-time interface based schedulability test can be directly applied to find

the maximum ρ while permitting system schedulability, as shown below (proof is in Section 2.7).

Lemma 4. In a FP-scheduled system, the overrun budget can be initialized to ρ∗ for a task set

τ at the beginning and every idle tick:

ρ∗ = max
{
ρ : sbfLO(τ, ∆) = J∆− ρK0, ∀∆ ≥ 0

}
, (2.23)

such that under the real-time interface analysis, sbfLO(τ, ∆) guarantees that the condition FP-

LO of Eq. 2.19a is satisfied.

2.6.2.2 Updating OB

At runtime, the system can generate dynamic slacks when tasks do not use their full WCETs;

thus, we can update OB based on those runtime slacks. To achieve that, we first need the

actual workload and demand bound functions at runtime. We still use wbfLO(τi,∆, t) and

dbfLO(τi,∆, t) to denote the actual workload and demand bound functions from any time t

online and onward. Note that we use the LO mode subscript since from the analysis point

of view, the Border mode is just an extended LO mode. Now, we can formally introduce the

runtime overrun budget (proof is in Section 2.7).

Lemma 5. In FP-scheduled systems, the overrun budget can be renewed to ρ(t) with the task

runtime model wbfLO(τi, ∆, t) and dbfLO(τi, ∆, t)

ρ(t) = max
{
ρ(t) : sbfLO(τ, ∆, t) = J∆− ρ(t)K0, ∀∆ ≥ 0

}
, (2.24)

such that under the real-time interface based analysis, the above sbfLO(τ, ∆, t) guarantees

∀∆ ≥ 0, τi ∈ τ : dbfLO(τi,∆, t) ≤ sbfLO(τi,∆, t).

28

2.6 FFOB under FP schedule

To get ρ(t), we need to know both dbfLO(τi,∆, t) and wbfLO(τi,∆, t). dbfLO(τi,∆, t) has

been derived in Lemma 2. In a similar way, wbfLO(τi,∆, t) can be derived as follows.

Lemma 6. At any time t, for a task τi that has no backlogged job at t, we can derive

wbfLO(τi,∆, t) = wbfLO(τi,∆). (2.25)

For a task τi that has one backlogged job at t, we have

wbfLO(τi,∆, t) = max
(
wbfLO(τi,∆), Wrdbk(τi,∆, t)

)
, (2.26)

where Wrdbk(τi,∆, t) is defined as

Wrdbk(τi,∆, t) =

t⌊
∆

ri(t) + Ti − t

⌋|1

·
q
CLi − ei(t)

y
0

+

t⌊
∆ + min

(
Ti, t− ri(t)

)
− Ti

Ti

⌋|
0

CLi ,

(2.27)

and ri(t) and ei(t) are the release time and the already execution time of the latest released job

of τi at the moment t.

The proof of wbfLO(τi,∆, t) follows a similar procedure as the proof of dbfLO(τi,∆, t). It is

easy to verify and thus is omitted.

2.6.2.3 Setting LO mode deadlines

In order to postpone the transition to HI mode as long as possible, we need to maximize the

initial overrun budget, i.e., we need to search LO mode deadlines so that they can help a task

set τ to pass the schedulability test of proposition 3 and also make ρ∗ of Eq. 2.23 the largest.

We now present a method that can effectively find the maximum ρ∗. This method works in

two steps: first it narrows down the search space of feasible LO mode deadlines and the initial

overrun budget; it then applies binary search to find the maximum initial OB .

The feasible LO mode deadlines should meet two requirements: the task LO mode deadline

should not be smaller than its worst-case response time because of the schedulability guarantee

in LO mode, i.e., DL
i ≥ RLi ; the task LO mode deadline should not be greater than Di− (CHi −

CLi) in order to leave space to accommodate its overrun (CHi −CLi) before its real deadline. In

summary, the feasible domain of DL
i is constrained within the following range:

RLi ≤ DL
i ≤ Di − (CHi − CLi), ∀τi ∈ τH . (2.28)

Regarding the feasible domain of the longest procrastination interval ρ∗, we have

0 ≤ ρ∗ ≤ min(Di − Cxi), ∀ τi ∈ τ, (2.29)

29

2. ON-THE-FLY FAST OVERRUN BUDGETING MECHANISM

Algorithm 1 Find the maximal ρ∗

Input: ParaSet = {Ti, Di, C
L
i , C

H
i , Xi}

Output: ρ∗

1: ρl = 0, ρr = min(Di − Cxi), ∀ τi ∈ τ
2: while ρr − ρl > ε do

3: ρ∗ = (ρr + ρl)/2

4: DL
i =FindMinimalLODeadline(ParaSet, ρ∗)

5: if any one of Eqs. 2.19a, 2.19b, 2.28 fails then

6: ρr = ρ∗

7: else

8: ρl = ρ∗

9: end if

10: end while

11: function FindMinimalLODeadline(ParaSet, ρ∗)

12: Compute sbfLO(τi,∆), ∀τi ∈ τ B forward analysis

13: Search the minimal DL
i that satisfies sbfLO(τi,∆) ≥ dbfLO(τi,∆), ∀τi ∈ τH B apply

binary search

14: end function

where x = L if τi ∈ τL and x = H if τi ∈ τH . This is because any task should receive

enough execution before its deadline. Now, a complete formulation of the initial overrun budget

maximization problem is as follows:

maximize ρ∗ of Eq. 2.12,

s.t. Eqs. 2.19a, 2.19b, 2.28.
(2.30)

With the gathered overrun budget and the delayed system resource, sbfLO(τ, ∆) = J∆−ρK0,

the smallest feasible LO mode deadline DL
i corresponding to the delayed resource must not be

smaller than RLi to make the system feasible. Actually, if ρ1 > ρ2, the smallest feasible LO

mode deadlines corresponding to ρ1 must not be smaller than those corresponding to ρ2, as in

the former case we have less resources available. Such a monotonic relationship leads us to a

binary search based algorithm to maximize the initial overrun budget.

We now continue to explain Algorithm 1. In this algorithm, once we pick up a possible ρ∗,

we can derive sbfLO(τi,∆) for every task τi by using the real-time interface analysis. Based on

sbfLO(τi,∆), we can get the minimal feasible DL
i . Then, the computed DL

i will be used to test

whether it satisfies the schedulability constraints.

30

2.7 Correctness of FFOB

2.7 Correctness of FFOB

This section proves the correctness of the FFOB mode-switch scheme, i.e., the two properties

presented in Section 2.3 are guaranteed, and the completed jobs in Border mode also meet their

LO mode deadlines. The following proof is based on a system resource abstraction that is the

same for EDF- and FP-scheduled systems. Therefore, this proof is valid for both of them.

First of all, we need to clarify some denotations on SBF. sbfLO(τ,∆, t) and sbfHI(τ,∆, t)

define the system SBF for the task set τ in LO mode and in HI mode from time t and onward,

respectively. The system SBF for the task set τ across all modes is denoted as sbf(τ,∆), and

sbf(τ,∆) = ∆ because the processor constantly provides full processing service.

2.7.1 All Tasks Meet their LO Mode Deadlines in LO Mode

We prove the property that all tasks meet their deadlines in LO mode by dividing the time

interval into the busy interval and the idle interval. The busy interval is an interval during which

the system is executing jobs. The idle interval is an interval in which no jobs are executed.

In the idle interval, no jobs will miss their deadlines as no jobs exist under a work-conserving

scheduler, i.e., EDF or FP. Hence, we need to guarantee this property only for all busy intervals.

In the following, we first prove that FFOB guarantees this property in the first busy interval

by Lemma 7. We then show that the system behavior in other busy intervals is similar to the

first busy interval by Lemma 8 and Theorem 2.

For ease of the proof, we provide some denotations on time instants. Denote t0 as the

starting time of the system. Denote [tsn, ten) as the n-th busy interval where tsn and ten are

the starting and ending times of a busy interval, respectively. We have ts1 = t0. In any busy

interval, the system will be switched to HI mode at most once because otherwise there must be

an idle tick to switch the system from HI to the LO mode. If the system switches to HI mode,

we denote tms,n as the time instant within [tsn, ten) that the system switches to the HI mode.

If the system does not switch to HI mode, we set tms,n = ten for completeness.

We prove that Property 1 holds in the first busy interval. The proof of other busy intervals

are similar. During the first busy interval, OB is initialized to ρ∗(t0) at ts1 and the system will

be in LO mode only within [t0, tms,1].

Lemma 7. No tasks in LO mode will miss their LO mode deadlines during [t0, tms,1].

Proof. According to FFOB mechanism in Fig. 2.1, LO mode is sometimes interfered by Border

mode, while such interference is constrained by OB. Based on OB, we consider the following

cases that may happen during [t0, tms,1].

31

2. ON-THE-FLY FAST OVERRUN BUDGETING MECHANISM

• Case 1: OB does not elapse to 0.

If OB does not elapse to 0, the maximum accumulated time of the system in Border mode

within [t0, tms,1] is less than ρ∗(t0), which means that the lower bound of resources available

within this interval for LO mode is greater than J∆− ρ∗(t0)K0. Since

dbfLO(τ,∆) ≤ J∆− ρ∗(t0)K0, ∀∆ ≥ 0, (2.31)

we conclude that the lower bound of provided resources to the task set τ within [t0, tms,1] is

greater than its demand, thus no tasks in τ will miss their deadlines in this case.

• Case 2: OB first elapses to 0 at a time tc1,1. At the time tc1,1, OB is updated to a new

value OB(tc1,1).

According to the analysis of case 1, we know that no tasks will miss their deadlines from

time t0 to time tc1,1. At the time tc1,1, OB = OB(tc1,1) that satisfies

dbfLO(τ,∆, tc1,1) ≤ J∆−OB(tc1,1)K0, ∀∆ > 0. (2.32)

Analogously, from time tc1,1 to the next time that OB elapses to 0 or the system is idled,

the maximum accumulated time in Border mode is not greater than OB(tc1,1). Thus, the lower

bound of resources available for the task set τ in LO mode is greater than its LO mode DBF.

This way, tasks will not miss their LO mode deadlines.

Other cases just repeat case 1 and case 2.

Therefore, all LO mode deadlines can be met in LO mode during the interval [t0, tms,1].

All LO mode deadlines have been proved to be met in LO mode in the first busy interval.

From the case 2 in the above proof, we find that the OB updating procedure in FFOB is

sufficient to guarantee LO mode deadlines. In other busy intervals, the FFOB can have an

impact on the system only by resetting OB to ρ∗(t0) at the starting time of every busy interval

and the OB updating procedure during the busy interval. Therefore, we only need to prove

that this reset is sufficient to guarantee that LO mode deadlines can be met in other busy

intervals. We prove this by considering the system demand bound functions.

Lemma 8. The DBF and WBF of a task τi in LO mode at time tsn, n ∈ N+ are the same as

its DBF and WBF in LO mode at time ts1.

Proof. At time tsn, there are no backlogged jobs. According to Lemma 2 and Lemma 6, the

LO mode DBF and WBF at time tsn are the same as those at at time ts1.

Theorem 2. At any time tsn, n ∈ N+, OB can be reset to a value ρ∗(t0) that guarantees all

tasks can meet their LO mode deadlines in LO mode.

Proof. Since the LO mode DBF and WBF at time tsn are the same as those at at time ts1

and the system can keep schedulable in LO mode during [t0, tms,1] by setting OB to ρ∗(t0),

the system can also keep schedulable in LO mode during [tsn, tms,n] by setting OB to ρ∗(t0)

at time tsn.

32

2.7 Correctness of FFOB

ǫ
violation

violation

tsv1 tev1 tsvi tevi tsvm tevm tsv1 tev1 tsvi tevi tsvm tevm

ǫǫ

LO mode

interference

before shift after shift

Figure 2.5: Contradiction illustration

2.7.2 Deadline Guarantees in Border mode

An important property in Border mode is that the overrun job in Border mode can also meet

its LO mode deadline. Such property will be used in proving Property 2 in the following.

Theorem 3. Any job finished in Border mode meets its LO mode deadline.

Proof. Its proof relies on a useful fact.

Fact 1: Suppose sbfLO(τ, ∆, t) = J∆− ρ(t)K0, ∀∆ ≥ 0 at time t guarantees that

∀∆ ≥ 0 : dbfLO(τ,∆, t) ≤ sbfLO(τ,∆, t),

or ∀∆ ≥ 0, τi ∈ τ : dbfLO(τi,∆, t) ≤ sbfLO(τi,∆, t).

Then from time t, no matter when the interference occurs, LO mode can be kept schedulable

until the accumulated interference is greater than ρ(t). This fact directly comes from the

definition of supply bound function.

Now we prove this property by contradiction. Suppose at time tv, a job Jvi from task τi

violates its LO mode deadline in Border mode. This job must have executed beyond its LO

WCET CLi at tv. We denote the time instant that the execution time of Jvi reaches to CLi
as tCi

. As shown in Fig. 2.5, we further denote a time interval [tsvi, t
e
vi], i ∈ N+ as the time

interval that Jvi runs before its timing violation, where tsv1 = tCi
, tevm = tv

1. The interval of

[tsvi, t
e
vi], i ∈ N+ is the interference on LO mode. Now, we make an assumption on the interval

of [tsvi, t
e
vi], i ∈ N+. Assume [tsvi, t

e
vi], i ∈ N+ as slacks that do not run Jvi or any other jobs.

We shift a slack of length ε from [tevm − ε, tevm] to [tCi
− ε, tCi

]. Then, the system will be in LO

mode within a interval of [tevm − ε, tevm]. The LO mode deadline of Jvi will be violated in this

way, which is contradicted with the fact 1 that the LO mode can be schedulable whenever the

interference occurs.

2.7.3 HI-Critical Tasks Meet their Deadlines in any Mode

We have already proved that all HI-critical tasks meet their LO mode deadlines2 in LO and

Border modes. Based on this property, we now prove that HI-critical tasks can also meet their

1tsv1 may not be equal to tCi
in reality, but it does not change the proof later on.

2LO mode deadline is smaller than the original deadline

33

2. ON-THE-FLY FAST OVERRUN BUDGETING MECHANISM

deadlines in HI mode.

In Section 2.5.2.4 and Section 2.6.2.3, the LO mode deadlines have been chosen to guarantee

that the system is schedulable in HI mode if FFOB is not applied. To be specific, the LO

mode deadlines guarantee that ∀∆ ≥ 0 : dbfHI(τ
H ,∆) ≤ ∆ in EDF system and ∀∆ ≥ 0, τi ∈

τH : dbfHI(τi,∆) ≤ sbfHI(τi,∆) in FP system. In the following, we show that the demand

bound function of a task in the system with FFOB will be smaller than dbfHI(τ
H ,∆). Besides,

the HI mode supply bound function of a system with FFOB is still ∆ because the system HI

mode is not interfered by any other modes. Based on these analysis, we prove that HI-critical

tasks can meet their deadlines under the FFOB scheme.

Theorem 4. FFOB guarantees that dbfHI(τi,∆, tms) ≤ dbfHI(τi,∆) and wbfHI(τi,∆, tms) ≤
wbfHI(τi,∆), where τi ∈ τH .

Proof. In this proof, we need to introduce the carry-over job again. A carry-over job is a job

from a HI-critical task that is active (released, but not finished) at the instant that the system

switches to HI mode [18].

The smallest time interval that a carry-over job’s demand must be met is DH
i −DL

i as any

HI-critical task will not miss its LO mode deadline before the system switches to the HI mode.

Except the carry-over jobs, other jobs in HI mode have a time length DH
i (DH

i = Ti) to meet

their deadlines. It indicates that the smallest time interval in which the demand of k jobs must

be met is (k−1) ·Ti+DH
i −DL

i . Then, for any HI-critical task τi, its HI mode DBF is bounded

by

Dmdfull
HI =

⌊
∆ + Ti − (Di −DL

i)

Ti

⌋
CHi , ∀∆ ≥ 0. (2.33)

The carry-over job may have been executed for some time before the system switched to HI

mode. To get its least execution time, we rely on the following fact.

• Fact 1: If a job meets its LO mode deadline DL
i before the system switches to the HI

mode and this job has n time units left until its HI mode deadline DH
i at the moment of

the mode-switch, then (1): this job has finished if l < DH
i −DL

i ; (2): this job has finished

at least JCLi −
(
l − (DH

i −DL
i)
)
K0 if l ≥ DH

i −DL
i .

This fact comes from Lemma III.3 of [18]; it is proposed for the carry-over job that does not

overrun its LO WCET. For a carry-over job that has overrun its LO WCET, however, its

execution time before the mode-switch to HI mode is more than the execution time in Fact 1.

Thus, this fact also holds for the FFOB mode-switched system.

Now, we analyze how to get such l in Fact 1. As shown in Fig. 2.6, for a time interval ∆, time

units left for the carry-over job are at most l = ∆ mod Ti (0 ≤ l < DH
i = Ti). If l < DH

i −DL
i ,

this carry-over job must have finished. Otherwise, it has finished Jε+CLi −
(
l− (DH

i −DL
i)
)
K0,

where ε is the time length that a job overruns. The lower bound of finished execution time

34

2.7 Correctness of FFOB

tms

Switch to
HI mode

Release of
Carry-Over

Job

DL
i

DH
i

∆

Ti Til

Figure 2.6: Illustration of the HI mode DBF of a HI-critical task

units in ∆ is then,

Extdone
HI =

{
Jε+ CLi − l +Di −DL

i K0, if Di > l ≥ Di −DL
i

0, otherwise,
, (2.34)

where ε ≥ 0 and l = ∆ mod Ti.

Therefore, the HI mode DBF of a task τi from time tms is

dbfHI(τi,∆, tms) = Dmdfull
HI − Extdone

HI . (2.35)

Compared to dbfHI(τi,∆) in Eq. 2.6, we know for any HI-critical task τi, dbfHI(τi,∆) ≥
dbfHI(τi,∆, tms) because ε ≥ 0. Therefore, for a set of HI-critical tasks, we have dbfHI(τ

H ,∆, tms) ≤
dbfHI(τ

H ,∆).

In a similar procedure, we can prove that wbfHI(τi,∆, tms) ≤ wbfHI(τi,∆).

Theorem 5. In EDF system with FFOB, if LO mode deadlines make Eqs. 2.19a, 2.19b hold,

HI-critical tasks can be guaranteed to meet their deadlines by guaranteeing HI-critical tasks to

meet their LO mode deadlines in LO and Border modes. Analogously, in FP system, if LO

mode deadlines make Eqs. 2.19a, 2.19b hold, HI-critical tasks can also be guaranteed to meet

their deadlines by guaranteeing HI-critical tasks to meet their LO mode deadlines in LO and

Border modes.

Proof. Since the system HI mode cannot be interfered by LO or Border mode, we have sbfHI(τ
H,∆, tms) =

sbfHI(τ
H,∆) = ∆.

If the system LO mode is schedulable online, according to Theorem 4, we have dbfHI(τi,∆, tms) ≤
dbfHI(τi,∆) and wbfHI(τi,∆, tms) ≤ wbfHI(τi,∆), where τi ∈ τH . Thus, as sbfHI(τ

H,∆) = ∆

guarantees that the system modeled by dbfHI(τi,∆) and dbfHI(τi,∆) ∀ τi ∈ τH is schedulable,

sbfHI(τ
H,∆, tms) = ∆ also guarantees that the system HI mode online is schedulable.

2.7.4 Automatic Schedulability Guarantee.

From the above we conclude that, if the schedulability of HI mode needs to be guaranteed,

we need to, first choose appropriate LO mode deadlines offline that can make conditions EDF

(FP)-LO and EDF (FP)-HI hold, and second keep the system being schedulable in LO mode

35

2. ON-THE-FLY FAST OVERRUN BUDGETING MECHANISM

at runtime because its schedulability in HI mode can be automatically guaranteed according to

Theorem 5.

2.8 Experimental Evaluation

In this section, we compare the performance of our proposed techniques with state-of-the-art

scheduling techniques by extensive simulations and implementations in an embedded platform.

2.8.1 Compared Approaches and Evaluation Metrics

We have proposed the FFOB mechanism for EDF and FP systems respectively. For each

system, from the perspective of practical implementations and the control of the runtime over-

heads, we could have some different options. For example, we may use the FFOB mechanism

to only exploit the static slack by removing its updating OB step, thus making its runtime

complexity O(1). In particular, our proposed approaches can be implemented in following

ways:

• EDF-S (S means simple): The EDF scheduling with a simple FFOB mode-switch scheme

that resets OB to its initial value whenever there is an idle tick. This approach does not

update OB at runtime when OB is depleted to 0, in order to have O(1) online complexity.

• EDF-A (A means advanced): The EDF scheduling with an advanced FFOB mode-switch

scheme that updates OB at runtime when OB is depleted to 0 and resets to its initial

value whenever an idle tick emerges.

• RTI-FP-S: Similar to EDF-S, this approach is a simple implementation of FFOB in the

FP scheduling that only resets OB to its initial value when there is an idle tick. Its online

complexity is also O(1).

• RTI-FP-A: Similar to EDF-A, this approach is implemented in a FP-scheduled system

that resets its OB when an idle tick emerges and updates its OB when the OB is depleted

to 0.

• RTI-FP-L (L means lightweight): The RTI-FP-A approach uses an exact real-time inter-

face analysis to update OB, which is complex and may prohibit its use online. To reduce

the computation overheads, we introduce a lightweight approach RTI-FP-L that uses an

approximation method to fast update OB. Details of this approach are in Section 4.7.

36

2.8 Experimental Evaluation

In order to evaluate the performances of our proposed approaches, we introduce three state-

of-the-art scheduling techniques in mixed-criticality systems.

• EDF-VD: The basic EDF-VD scheduling that forces the mode-switch whenever a HI-

critical task overruns.

• AMCmax: The basic fixed-priority scheduling with the AMCmax schedulability test.

Details of this test can be seen in [8].

• Bailout: The purpose of this protocol is to timely switch the system from HI mode back

to LO mode, instead of waiting for an idle tick. Details of this approach are in [31].

The following metrics are used to evaluate the performance of the listed approaches above.

• Dropped Jobs of LO-Critical Tasks: This metric represents the number of dropped jobs

of LO-critical tasks in an interval. Note that, no HI-critical jobs will be dropped in all

compared approaches.

• Timing Length of HI-mode: This metric represents the time length that the system stays

in HI mode during an interval. The smaller this metric is, the better overall system QoS

is.

• Number of Mode-Switch: This metric represents the number of mode-switches in an

interval.

2.8.2 Random Task Set Generation

We use synthetic task sets for our experiments. In particular, we generate random sporadic

task sets similar to [8], at each system utilization point (U). Any generated task set consists of

20 tasks, with task parameters chosen as follows.

• Period and Deadline - The period of each task is set as 25 ·w, with w being a random

integer within [1, 40]. Its timing unit is millisecond (ms). Each task’s deadline equals its

period. These periods are consistent with the periods typically found in automotive and

avionics systems [31,50].

• Criticality - A task is HI-critical with a probability 0.5.

37

2. ON-THE-FLY FAST OVERRUN BUDGETING MECHANISM

 0
 25
 50
 75

 100

EDF-VD AMCmax Bailout EDF-S EDF-A RTI-FP-S -A -L

D
ro

pp
ed

 J
ob

s median
Existing Approaches

12 11 8
FFOB under EDF

0 0
FFOB under FP

1 0 0

(a) OP = 10−5

 0

 200

 400

 600

EDF-VD AMCmax Bailout EDF-S EDF-A RTI-FP-S -A -L

D
ro

pp
ed

 J
ob

s median
Existing Approaches

123 130 86
FFOB under EDF

3 1
FFOB under FP

26 8 13

(b) OP = 10−4

Figure 2.7: Boxplot – number of dropped jobs with different overrun probabilities (OP); Top

number of each subfigure show the medians across all approaches; -A, -L in the right plots represent

the approaches RTI-FP-A and RTI-FP-L

• Worst-Case Execution Times in LO and HI modes - The LO level WCETs are determined

according to the UUniFast algorithm [51], which ensures that utilizations are distributed

to tasks without bias. For a task τi, with utilization Ui generated, its LO level WCET is

simply CLi = Ui ·Ti. If this task is HI-critical, its HI level WCET is then CHi = 2 ·CLi .

The system utilization in LO mode is chosen as 0.7, in which way the system utilization in

the case that all tasks run their highest WCETs will exceed 1 and will need a mode-switch

scheme to make this system be mixed-criticality schedulable.

2.8.3 Simulation Results

We now simulate all the above approaches on randomly generated task sets. The simulator

is implemented in Matlab on a host with Intel Q9300 processor and 5GB RAM. During our

simulations, every job has a probability OP to overrun its LO level WCET. If a task does not

overrun, its actual execution time is randomly set within [0.6 ·CLi , CLi]. If a task overruns, its

actual execution time is randomly drawn in (CLi , 3 ·CLi]. We choose OP to 10−5 or 10−4, and

simulate each task set for 107 ms. Our results are summarized in Figs. 2.7, 2.8 and 2.9.

We first compare the number of dropped jobs among those approaches. The numbers of

dropped jobs under different overrun probabilities (OP) are presented in Figure 2.7. Here,

38

2.8 Experimental Evaluation

 0
 250
 500
 750

 1000

EDF-VD AMCmax Bailout EDF-S EDF-A RTI-FP-S -A -L

H
I T

im
e(

m
s)

median
Existing Approaches

69 277 47
FFOB under EDF

0 0
FFOB under FP

3 0 4

(a) OP = 10−5

 0
 2500
 5000
 7500

 10000

EDF-VD AMCmax Bailout EDF-S EDF-A RTI-FP-S -A -L

H
I T

im
e(

m
s)

median
Existing Approaches

818 2921 655
FFOB under EDF

21 5
FFOB under FP

132 42 97

(b) OP = 10−4

Figure 2.8: Boxplot – HI mode time length with different overrun probabilities (OP). The label

rule is the same as Fig. 2.7

we use boxplot to show the distribution of the number of dropped jobs for 500 different task

sets. The left plots show the number of dropped jobs of existing approaches, i.e., EDF-VD,

AMCmax, Bailout; the middle plots show the result of our proposed FFOB approaches in EDF

schedule, i.e., EDF-S and EDF-A; the right plots show the result of FFOB in FP schedule,

i.e., RTI-FP-S, RTI-FP-A and RTI-FP-L. Overall, the results confirm a significant reduction of

dropped jobs by using the FFOB mode-switch scheme. The FFOB approaches achieve 5-10

folds reductions compared to the existing approaches. The most two effective approaches are

EDF-A and EDF-S whose medians are close to 0 for OP = 10−5/10−4. In FP schedules, the

most effective approach is RTI-FP-A whose median is two-thirds of RTI-FP-L and one-third of

RTI-FP-S when OP = 10−4. EDF-S and RTI-FP-S are less effective than EDF-A and RTI-FP-

A because EDF-S and RTI-FP-S only exploit the system static slack. However, both simple

implementations still outperform AMCmax and Bailout protocol to a large extent, which is a

significant result considering their O(1) online complexity. RTI-FP-L is less effective than RTI-

FP-L but more effective than RTI-FP-S because RTI-FP-L uses an approximation approach to

reclaim the dynamic slack. However, as we will show later, RTI-FP-L indeed incurs less runtime

overheads due to adopting this approximation.

We proceed to present the time length of HI mode during 107 ms simulations in Figure 2.8.

The left plots show that, compared to AMCmax, both EDF-VD and Bailout are effective in

39

2. ON-THE-FLY FAST OVERRUN BUDGETING MECHANISM

 0
 4
 8

 12
 16

EDF-VD AMCmax Bailout EDF-S EDF-A RTI-FP-S -A -L

M
od

e
S

w
itc

hs

median
Existing Approaches

3 3 3
FFOB under EDF

0 0
FFOB under FP

0 0 0

(a) OP = 10−5

 0

 40

 80

 120

EDF-VD AMCmax Bailout EDF-S EDF-A RTI-FP-S -A -L

M
od

e
S

w
itc

hs

median
Existing Approaches

32 33 29
FFOB under EDF

1 1
FFOB under FP

4 2 3

(b) OP = 10−4

Figure 2.9: Boxplot – number of mode switch times with different overrun probabilities (OP).

The label rule is the same as Fig. 2.7

reducing such time length in HI mode. However, all of them are worse than FFOB approaches.

Specifically, the medians of HI mode time length of EDF-S and EDF-A are 40 and 164 folds

smaller than those of EDF-VD; 31 and 131 folds smaller than Bailout, for OP = 10−4. The

right plots also confirm that the performances for the different RTI-FP options are significantly

improved. The order from the best to the lowest performance is RTI-FP-A, RTI-FP-L and

RTI-FP-S. Our results here demonstrate that, even with a simple implementation of FFOB

(e.g. EDF-S, RTI-FP-S or RTI-FP-L), it can still greatly improve the QoS of LO-critical tasks.

The above conclusions also fit for the number of mode-switch. As confirmed in Fig. 2.9, the

FFOB mode-switch scheme, in both simple and complex implementations, reduces many folds

of mode-switch times compared to the existing approaches.

2.8.4 Implementation Results

In addition to extensive simulations, we implement all the compared approaches on top of a well

designed framework called SF3P [28]. All implementations are tested on a host of Raspberry

Pi 3 board with a 1.2 GHz ARMv8 CPU [52].

A total of 40 task sets were simulated and each task was simulated for 15 minutes. In order

to have a distinguishing result among all compared approaches in a short time (15 minutes), we

have to artificially set the overrun probability high enough. We set OP to one of 0.001, 0.01, 0.1.

40

2.8 Experimental Evaluation

Table 2.1: Results of the compared approaches w.r.t. OP = 0.001, 0.01, 0.1

OP = 0.001 EDF-VD AMCmax Bailout EDF-S

Dropped Jobs 436 451 337 15

HI Mode Time (ms) 1759 6157 1539 47

Mode-Switches 109 117 103 3

OP = 0.001 EDF-A RTI-FP-S RTI-FP-A RTI-FP-L

Dropped Jobs 4 156 13 41

HI Mode Time (ms) 14 1386 139 398

Mode-Switches 1 31 4 9

OP = 0.01 EDF-VD AMCmax Bailout EDF-S

Dropped Jobs 2079 2184 1767 63

HI Mode Time (ms) 10046 34136 8285 246

Mode-Switches 577 625 561 17

OP = 0.01 EDF-A RTI-FP-S RTI-FP-A RTI-FP-L

Dropped Jobs 17 693 69 136

HI Mode Time (ms) 58 6450 849 1672

Mode-Switches 5 138 15 32

OP = 0.1 EDF-VD AMCmax Bailout EDF-S

Dropped Jobs 8834 9456 8126 296

HI Mode Time (ms) 39468 142083 36432 1196

Mode-Switches 2025 2152 1977 73

OP = 0.1 EDF-A RTI-FP-S RTI-FP-A RTI-FP-L

Dropped Jobs 73 4308 608 1136

HI Mode Time (ms) 262 42003 11057 14166

Mode-Switches 16 829 133 199

The results are shown in Table 2.1, where each cell number represents the median value of the

measured metric on all task sets. We observe that the most effective two approaches are

still EDF-S and EDF-A that outperform the EDF-VD to many folds in reducing all provided

metrics. The RTI-FP-A is still the best approach among the three FFOB implementations

in FP-scheduled system. Another point to mention is, that the numbers compared between

the different overrun probabilities are decreasing by about the factor 0.2, whereas the OP

decreases by the factor 0.1. One possibility could be, the smaller OP is, the less jobs will

overrun. Furthermore it can be assumed that if less jobs overrun, the count of resets of the

overrun budget will be more, because an idle tick occurred is larger and therefore the QoS

increases.

We present the computation overheads of our overrun budgeting schemes on a logarithmic

scale in Fig. 2.10. Since simple implementations of FFOB, i.e., EDF-S and RTI-FP-S have O(1)

41

2. ON-THE-FLY FAST OVERRUN BUDGETING MECHANISM

10-1

100

101

 5 10 15 20 25 30

C
om

pu
ta

tio
n

E
xp

en
se

s
[m

s]

Task Set Size

EDF-A
RTI-FP-A
RTI-FP-L

Figure 2.10: Computation overheads evaluation

online complexity, we do not need to measure their computation overheads. We plot the average

computation overheads of every update as a function of the task set size for the EDF-A, RTI-

FP-F and RTI-FP-A where each task set size was measured 200 times. As one can observe, the

timing overhead of RTI-FP-F is the largest, which can be 2 orders of magnitude higher than

that of RTI-FP-L. This result confirms that RTI-FP-L is very effective in reducing the runtime

overhead; the exact real-time interface analysis needs a longer time in updating and is thus hard

to be implemented online. Besides, we observe that EDF-A has less computation expense than

RTI-FP-L when the task set size is small, but bears up to 3 times more computation expense

compared to RTI-FP-L when the task set size is large. However, both of them are lightweight

because their computation expenses are only about 0.4 and 1.2 ms even when the task set size

is 30.

2.9 Summary

State-of-the-art mixed-criticality scheduling techniques commonly assume to switch system

mode and drop all less critical tasks whenever any critical task overruns. Despite many efforts in

reducing the pessimism of this approach, postponing the mode-switch to improve system guar-

antees by exploring system slacks dynamically online, remains unsolved for mixed-criticality

systems. Such a problem is important as mode-switch procrastination naturally helps to im-

prove the system performance.

We propose an online mode-switch procrastination technique called on-the-fly fast overrun

budgeting in this chapter for both FP- and EDF-scheduled MCSs. The proposed approach has

a feature of automatic schedulability guarantee that transfers the problem of mixed-criticality

schedulability guarantee online to the counterpart of conventional real-time systems. With a

42

2.9 Summary

routinely updated shared resource pool of overrun budgets, the system allows tasks to over-

run, which thus postpones the mode-switch as long as possible. Extensive simulations and

real platform implementations confirm that our proposed technique significantly improves the

system’s QoS over state-of-the-art schedulers, while at the same time permitting light-weight

online deployments.

43

2. ON-THE-FLY FAST OVERRUN BUDGETING MECHANISM

44

Chapter 3

Schedulability Analysis on

Arbitrarily Activated Tasks

In an embedded system, tasks are often referred to some specific-purpose programs that can

be repeatedly activated. The task activation can be categorized into two types: time-triggered

and event-triggered. Time-triggered tasks are usually periodically activated tasks whose ac-

tivation periods have been decided at the system-design stage. Periodic executions are often

found in some deterministic or static systems, while can also be seen in systems where periodic

polling is used to obtain deterministic behavior. For periodically activated tasks, the opti-

mal scheduling algorithm is the deadline-monotonic scheduling in static priority system (task

priorities cannot be changed at runtime) and the earliest-deadline-first scheduling in dynamic

priority system (task priorities can be changed at runtime). The event-triggered tasks are not

activated by a timer event, but usually be activated upon a signal reception from other sources.

For example, the interrupt routine service task can be activated only by an interrupt signal

or a communication driver can be activated only by the reception of a protocol frame from

an external bus. Event-triggered tasks are often modeled as sporadic tasks (often called asyn-

chronous periodic) whose successive activations are separated by a known minimum time gap,

also called its period. It has been proven that the deadline-monotonic scheduling algorithm and

earliest-deadline-first scheduling algorithm are also optimal for sporadic tasks. In addition to

the periodic and sporadic tasks, two other popular activation models are periodic activations

with jitter and sporadically periodic events (also called “sporadic bursts”) [53].

The schedulability analysis on the aforementioned task activation models has been discussed

in a vast amount of paper in past decades. Most of their results are subject to some specific task

45

3. SCHEDULABILITY ANALYSIS ON ARBITRARILY ACTIVATED TASKS

models. Analogously, in mixed-criticality scheduling, a lot of approaches have been presented on

how to perform the effective schedule to address the problem of providing the timing guarantee

to each task’s criticality level, while none of them can be applied to analyze tasks that can be

activated arbitrarily. Recent development of system performance analysis frameworks [53–55]

that are applicable to any kind of task activations provide us some inspirations on how to make

the scheduling analysis applicable to more general task activation patterns. That is, there may

be a solution of using some results or some approaches from the system performance analysis

to analyze the system schedulability of multi-criticality tasks that are activated arbitrarily.

3.1 Overview

Multi-criticality tasks are often modeled as sporadic tasks. Based on this model, a lot of

scheduling approaches [6, 8] have been proposed to verify the schedulability of a task set in

MCSs. Although the sporadic task model can represent many nondeterministic activation

patterns by assuming that the task can be activated in every period, such representation may

not be effective in practice. For instance, a simple approach to dealing a periodic task with a

jittery release is to transform it into a new sporadic task with a shorter period [56]. While this

approach is safe, the transformation can lead to overly pessimistic schedulability analysis results.

In particular, if this shorter period is smaller than the worst-case execution time (WCET) of

this task, it is impossible to schedule this task by modeling it as a sporadic task, because the

deadlines deem to be missed in the case that the sporadic task is activated in every shorter

period. The real situation is that the task cannot be activated in every shorter period. This

task may be schedulable in MCSs, which however will be tested unschedulable by modelling it

as a sporadic task.

The periodic task with a jittery release or the task with burst activations, often exists in

many reactive embedded systems. The jitter may come from release-delay overheads induced

by tick-driven scheduling [57], execution of interrupt service routines [56], or I/O overheads.

The delays by scheduling and data dependencies may also cause the jitter. In ARINC avionics

systems, different tasks scheduling partitions are connected over a switched Ethernet. Due to

the network delay, tasks in a partition are not always released strictly periodically, but with

a certain jitter [58]. In the automotive systems [25], a lot of event streams that are used to

activate tasks suggest the use of more general event stream models than the classical sporadic

model. In the traditional real-time systems, complex activation patterns are often modeled as

46

3.1 Overview

the arrival curve or the minimum distance function to compute the system throughput and

delay by applying the Modular Performance Analysis [55] (under the framework of Real-Time

Calculus [44, 48]) or the Compositional Performance Analysis [54]. In contrast with certifying

the system throughput and delay on one level, the throughput and delay need to be certified

based on the criticality of tasks in MCSs, which complicates the analysis.

In this chapter, the schedulability of dual-criticality system with arbitrarily activated tasks is

analyzed. The schedulability analysis towards the arbitrarily activated tasks in MCSs, however,

is nontrivial. In contrast with that at most one carry-over job (released but not finished) exists

at the time of system mode switch for each sporadic task, there may be several carry-over jobs

at once for every arbitrarily activated task. The exact number of carry-over jobs is difficult

to obtain because the carry-over jobs depend on the specific activation patterns of this task

and all higher priority tasks. This complicates the derivation of a tight bound of the worst-

case response time (WCRT) of a task. Furthermore, in a FP-scheduled system, a given task

set need to be assigned their priorities and the exhaustive searching over all possibilities is

time-consuming. Hence, a more effective approach should be used to assign priorities.

Being aware of the above, we propose a new schedulability test to extend the classical

sporadic task model to the arbitrarily activated task model in FP-scheduled and EDF-scheduled

MCSs, respectively. The detailed contributions are as follows:

• In FP-scheduled systems, we extend the classic sporadic task model to the arbitrarily

activated task model by presenting a necessary and two sufficient schedulability tests. We

also show that Audsley’s algorithm is applicable in those tests. Besides, the schedlability

test on arbitrarily activated tasks is also extended to the EDF-scheduled systems.

• By using the arrival curve to present the upper bound of task activations, we integrate

the well-established results from Real-Time Calculus to analyze the schedulability of ar-

bitrarily activated tasks in MCSs.

• By using the minimum distance function to model task activations and using the busy-

window analysis to compute the WCRT of tasks, we present a tighter sufficient schedu-

lability test than the schedulability test of using Real-Time Calculus framework.

• It is demonstrated that, for the sporadic tasks, our proposed tests can achieve the same

schedulability as the two state-of-the-art approaches: AMC-max in FP schedule [8] and

EDF-VD in EDF schedule. However, compared with them, our tests can handle the

47

3. SCHEDULABILITY ANALYSIS ON ARBITRARILY ACTIVATED TASKS

tasks with blocking, jitter, and arbitrary deadlines. Besides, experimental results show

that the increase of jitter decreases the system schedulability, while the increase of relative

deadlines increases the system schedulability.

The remainder of this chapter is structured as follows. Next section reviews related work.

Section 3.3 presents the system model, settings and a motivation example. Section 3.4 and

Section 3.5 present the schedulability analysis on FP-scheduled and EDF-scheduled MCSs,

respectively. Section 3.6 provides the experimental results and the last section concludes this

chapter.

3.2 Related Work

Since the first paper on the verification of a proposed MCS in 2007 [5], the response time and

the schedulability analysis on MCSs have ranged from the uniprocessor to the multiprocessor,

and the scheduling policies mainly focused on the fixed-job-priority, fixed-task-priority, and

earliest-deadline-first. In the following, we only review the related work in uniprocessor system.

In [5], Vestal proposed to use Audsley’s algorithm [7] to assign the priorities in MCSs with

fixed-priority policy. Audsley’s algorithm was proven in [6] to be optimal for assigning priorities

to sporadic tasks with different criticality levels. In Vestal’s approach, the priorities of tasks

with different criticalities are allowed to be interleaved, leading all tasks to be evaluated as if

they were of the highest criticality. By implementing the MCS in Ada, it was reported in [59]

that higher resource usage can be achieved by monitoring task execution time and preventing

execution time overruns. With such a platform that can monitor how long individual jobs

have been executed, two new schemes called AMC-rtb and AMC-max that dominate Vestal’s

approach were proposed in [8, 29]. The AMC-max can schedule more tasks by discarding the

low-criticality tasks when a high-criticality task overruns.

All the aforementioned work is based on the task model that is activated sporadically and the

assumption that its WCRT is less than the minimum activation interval. With this assumption,

there is at most one carry-over job (released, but not finished) when the system mode switch

is invoked. The computation of WCRT and the derivation of demand bound function are

often based on this carry-over job [8, 18, 29]. Without this assumption, the previous methods

of computing WCRT and deriving demand bound function thus cannot be used. Therefore, in

this chapter, new scheduling analysis is proposed for the arbitrarily activated tasks.

48

3.2 Related Work

The sporadic task model was extended to include the release jitter in [6], based on which

the sensitivity analysis was presented. However, there are fundamental differences between this

analysis and the one in this chapter. First, the analysis in [6] does not consider the prevention

of execution time over-runs. Second, although with a jitter, it still assumes that tasks are

activated periodically, which is not enough to represent the arbitrarily activated tasks. Third,

it assumes that tasks have constrained-deadlines that relative deadlines are not greater than

their periods, while our schedulability tests do not need such assumption. Furthermore, the

detailed influence of jitter on the system schedulability is not evaluated in [6].

Except the scheduling analysis in FP systems, there is also a lot of work in analyzing the

schedulability in EDF systems. In [9,17], an approach called EDF-VD was proposed to schedule

the implicit-deadline mixed-criticality sporadic tasks. By using smaller virtual deadlines, the

system schedulability keeps unchanged across the system mode switch. In [18], based on the

assumption that the system is schedulable in normal mode, the demand bound function towards

the individual task was derived. Thus, a new approach called the Greedy Tuning was proposed

to shape the demand bound function to comply with the supply of the computing platform by

reducing virtual deadlines. This approach can schedule more tasks than the EDF-VD as clearly

demonstrated in [60]. In [30], a new demand-based schedulability test and a new deadline

tightening strategy were proposed by collectively bounding the demands of multiple tasks. In

this chapter, to reduce the complexity, we focus on bounding the demands towards the individual

task with arbitrary activations.

Despite of the unchanged period of sporadic tasks that are often modeled in MCSs, a task

model in which the period differs among different criticality modes, instead of the WCET,

was introduced in [9]. While this setting allows the period transformation, the sporadic task

model is not changed in every mode. In [61, 62], by prioritizing all low-criticality tasks over

high-criticality tasks in MCSs, two new monitoring approaches were proposed to monitor the

workload of low-criticality tasks at runtime. Although the proposed monitoring approaches

consider the arbitrarily activated tasks, there is no mode switch in their MCSs. Thus, it is still

not clear how to monitor the workload in MCSs if a mode switch exists. In [63], a method was

proposed for the scheduling analysis of adaptive multi-mode systems that supports any event

stream model. By deriving the workload arrival curve of individual task over all modes, this

method can only verify the schedulability of the task set whose priorities are already assigned.

For the task set whose priorities are to be decided, the verification of schedulability is different.

49

3. SCHEDULABILITY ANALYSIS ON ARBITRARILY ACTIVATED TASKS

3.3 System Model and Motivations

In this section, we present the task activation event model, our system settings, and a motivation

example to show the inadequacy of the existing approaches.

3.3.1 Event Model

In the framework of system performance analysis [53–55], task activation is modeled by events,

regardless whether time-triggered or event-triggered, periodic or sporadic. This way, task acti-

vations can be expressed as an event stream. A trace of such an event stream is described by

means of an arrival function R[s, t) that denotes the sum of events arrived in the time interval

[s, t), with R[s, s) = 0, ∀s, t ∈ R. While any R always describes one concrete trace, a 2-tuple

α(∆) = [αu(∆), αl(∆)] of upper and lower arrival curve provides an abstract event stream

model that represents the maximum and minimum number of events that are seen in a time

interval.

Definition 2 (Arrival Curve [55]). Denote R[s, t) as the number of events that arrive on an

event stream in the time interval [s, t). Then, R, αu and αl represents the upper and lower

bound on the number of event in any interval t− s, that is,

αl(t− s) ≤ R[s, t) ≤ αu(t− s),∀t ≥ s ≥ 0,

with αl(∆) ≥ 0, αu(∆) ≥ 0 for ∀∆ ∈ R≥0.

A similar concept corresponding to the upper arrival curve is the minimum distance func-

tion [54].

Definition 3 (Minimum Distance Function [54]). The minimum distance function δ(q) is a

pseudo super-additive1 function, which returns a lower bound on the time interval between the

first and the last event of any sequence of q + 1 event occurrences.

The minimum distance function is an inverse description of upper arrival curve. For example,

δ(k) = ∆k denotes that, the first and the last event of any sequence of k + 1 events is at least

∆k time units apart, i.e., α(δ(k)) = k + 1.

The concept of arrival curve or minimum distance function substationally generalizes con-

ventional event stream models, such as sporadic, periodic, periodic with jitter, and arbitrary

event streams. For instance, for the arbitrary events modeled with the period p, the jitter j,

1For pseudo super-additive we denote the property of a function δ that ∀a, b ∈ N+ : δ(a+ b) ≥ δ(a) + δ(b).

It corresponds to the property of “good” arrival functions in [46].

50

3.3 System Model and Motivations

0 100 200 300 400 500
0

2

4

6

8

10

12

∆

E

ve
nt

s

 (p,j,d)=(100,0,0)
(p,j,d)=(100,200,0)
(p,j,d)=(100,400,0)

(a) with varying j

0 100 200 300 400 500
0

2

4

6

8

10

12

14

∆

E

ve
nt

s

(p,j,d)=(100,500,30)
(p,j,d)=(100,500,60)
(p,j,d)=(100,500,90)

(b) with varying d

Figure 3.1: The upper arrival curve of pjd event streams

and the minimum inter arrival distance d between successive two events, its upper arrival curve

is

αu(∆) = min{d∆ + j

p
e, d∆

d
e}. (3.1)

This arrival pattern is called pjd pattern that is often used as a type of the complex arrival

pattern in many previous works [55, 64]. Some properties of pjd are shown in Fig. 3.2, from

which we find that: when the jitter j increases, the initial burst increases; when d increases,

the arrival interval between any two events increases; when d = p, the event arrival pattern is

sporadic.

Analogous to the arrival curve that provides an abstract event stream model, a tuple β(∆) =

[βu(∆), βl(∆)] of upper and lower service curve provides an abstract resource model.

Definition 4 (Service Curve [55]). Denote C[s, t) as the available resource in the time interval

[s, t). Then, C, βu and βl represents the upper and lower bound on the resource available in

any interval t− s, that is,

βl(t− s) ≤ C[s, t) ≤ βu(t− s),∀t ≥ s ≥ 0,

with βl(∆) ≥ 0, βu(∆) ≥ 0 for ∀∆ ∈ R≥0.

As an arrival curve αi specifies the event and a service curve β specifies the available

processing time, the event arrival curve αi(∆) has to be transformed to the workload arrival

curve αi to indicate the amount of computation time required for the arrived events in any

time interval ∆. Suppose that the WCET of an event stream is ci. Then, the transformation

can be done by αui = ciα
u
i , αli = ciα

l
i and back by αui = αui /ci, α

l
i = αli/ci.

51

3. SCHEDULABILITY ANALYSIS ON ARBITRARILY ACTIVATED TASKS

3.3.2 System Settings

Except the setting for task activations, our system settings are the same as the system settings

assumed in Chapter 2. Instead of the simply periodic or sporadic event stream, the task

activations in this chapter are modeled as an arbitrary event stream. The event arrival curve

is used to model the upper bound of the arbitrary event stream.

In general, in our settings, a dual-criticality task set τ = {τ1, ..., τn} is given to be scheduled

on a uniprocessor. All tasks are independent. Each task, τi, is defined by its upper event

arrival curve αui , relative deadline Di, WCET Ci and criticality Xi, where Ci = (CLi , C
H
i).

The meaning of denotations and system behavior in LO and HI modes are the same as the

descriptions in Chapter 2.

In this paper, two classic scheduling policies, i.e., the preemptive fixed-priority schedule and

the earliest-deadline-first schedule, are studied in MCSs with the aforementioned settings. For

the ease of expression in the sequel, we provide some short notations. In FP-scheduled systems,

hp(i) denotes the subset of all tasks with priorities higher than that of the task τi. hpH(i)

denotes the subset of HI-critical tasks with priorities higher than that of the task τi. hpL(i)

denotes the subset of LO-critical tasks with priorities higher than that of the task τi. In EDF-

scheduled systems, we denote the subset of all LO-critical tasks in τ as τL = {τi ∈ τ |Xi = LO},
and the subset of all HI-critical tasks in τ as τH = {τi ∈ τ |Xi = HI}.

3.3.3 Motivation Example

An arbitrary task activation pattern that is modeled as the arrival curve can also be represented

by the sporadic pattern. Since the sporadic pattern defines a minimum inter-activation interval,

an arbitrary activation pattern can be represented by the sporadic pattern by defining a min-

imum inter-activation interval. However, this representation is pessimistic because it admits

more events than the maximum number of events that will actually arrive.

Example 2. In a uniprocessor system, there are three tasks, as shown in the following (task

activations are set as pjd patterns, whose upper arrival curve αui is presented in Eq. 3.1):

τi Li CLi CHi Di αui (p, j, d)

τ1 LO 3 - 7 (10, 30, 2)

τ2 HI 5 10 35 (30, 50, 10)

τ3 HI 20 40 300 (100,220,5)

The as-early-as-possible event trace of αui is shown in Fig. 3.2(a). In order to apply the

existing approaches to schedule this task set in MCSs, those event traces should be modeled as

52

3.4 Fixed Priority Schedulability Test

τ1
0 2 4 6 10 20

τ2
0 10 20 40 70 100

τ3
0 5 10 80 180

(a) arrival curve model

τ1
0 2 4 6 8 10 1612 14 2018

τ2
0 10 20 30 40 50 6070 80 10090

τ3
0 5 10 15 20 25 3035 40 4550

(b) sporadic model

Figure 3.2: The as-early-as-possible event trace of two different models

the sporadic tasks. Since sporadic model only defines a period, the minimum distance between

two activations of a task is used as the period. The as-early-as-possible event traces of sporadic

model is shown in Fig. 3.2(b). It is impossible to schedule this task set if events arrive as

the assumption of sporadic model because the LO WCET of τ1 is larger than the period of

its sporadic model. However, in real situations, the events will not arrive as frequently as

the sporadic model assumes. By the sufficient busy-window schedulability test presented in

Section 3.4.3.2, we find this task set is actually schedulable.

3.4 Fixed Priority Schedulability Test

In this section, we present how to test the system schedulability with multi-criticality arbitrarily

activated tasks in FP-scheduled systems.

3.4.1 Preliminaries

In this section, we introduce the well-established Modular Performance Analysis under the

framework of Real-Time Calculus [44, 48] and the known Audsley’s algorithm, which are the

basis of the necessary and sufficient tests for verifying the schedulability of a given task set.

3.4.1.1 Modular Performance Analysis

In the framework of Real-Time Calculus, the task processing is often modeled by abstract

performance component that acts as curve transformer in the domain of arrival and service

curve, where the transferring function depends on the modeled processing semantics. The

Greedy Processing Component (GPC) models a task that is triggered by the events which are

queued up in the FIFO (first-in-first-out) buffer. A typical case is shown in Fig. 3.3(a), where

[αui , α
l
i] and [βui , β

l
i] are respectively the workload arrival curve and resource service curve. The

processing of two tasks in a preemptive fixed-priority scheduling system is abstracted as two

53

3. SCHEDULABILITY ANALYSIS ON ARBITRARILY ACTIVATED TASKS

GPC

GPC
[αu

2 , α
l
2]

[αu
1 , α

l
1]

[βu
1 , β

l
1]

[βu
2 , β

l
2]

(a) System abstraction of

two tasks

workload arrival curve αu

service curve βlDel(αu, βl)

Buf(αu, βl)

∆ [ms]

#workload [ms]

(b) Computing Del(αu, βl) and Buf(αu, βl)

Figure 3.3: Modular performance analysis

GPCs. The lower service for the lower-priority task is the processing service left over after

processing the higher-priority task:

βl2(∆)
def
= sup

0≤λ≤∆
{βl1(λ)− αu1 (λ)}. (3.2)

As shown in Fig. 3.3(b), with the provided lower service βl and upper arrival workload αu, the

WCRT and the maximum workload of backlogged events for an event stream processed at a

GPC can be computed as follows [55]:

Del(αu, βl)
def
= sup
λ≥0

{
inf{τ ≥ 0 : αu(λ) ≤ βl(λ+ τ)}

}
, (3.3a)

Buf(αu, βl)
def
= sup
λ≥0
{αu(λ)− βl(λ)}. (3.3b)

Note that, by applying Eqs. 3.3a, 3.3b, we get an upper bound of the WCRT, and the maximum

backlogged workload. Then, to get the maximum number nmax of backlogged events, the

WCET c of this task should be considered, i.e., nmax = dBuf(αu, βl)/ce.
Regarding the system of two tasks as shown in Fig. 3.3(a), assume the deadlines for the

two tasks are D1 and D2, this task set can be schedulable if and only if Del(αu1 , β
l
1) ≤ D1 and

Del(αu2 , β
l
2) ≤ D2.

3.4.1.2 Audsley’s Algorithm

Audsley’s approach was proven by Dorin et al. in [6] as an optimal algorithm to assign the task

priorities in MCSs. Audsley’s algorithm starts with no task being assigned a priority. Priorities

are assigned from the lowest to the highest, so that, at each step, a task that can be assigned

with the lowest priority is selected out. Once a task is selected out, it is removed from the

unassigned priority tasks, and Audsley’s algorithm continues to assign the priority to the next

54

3.4 Fixed Priority Schedulability Test

task. Audsley’s algorithm fails if there is no task that can be assigned with the lowest priority.

The condition of using Audsley’s algorithm to assign priorities [65] is that: the WCRT for a

task τi can be determined by knowing which subset of tasks has higher priority than τi but

without otherwise knowing what their specific priority assignments are.

Audsley’s algorithm delivers an optimum priority assignment in a maximum of n(n+ 1)/2

steps. If Audsley’s algorithm is not applicable, i.e., the above condition is not satisfied, the

worst case for assigning priorities is to search over all n! possible priority orderings.

3.4.2 A Necessary Test - NEC

This section presents the necessary test for verifying the schedulability of MCS scheduled by

fixed priority. The necessary test is based on the fact that a schedulable system should be

able to schedule any event traces that comply with the arrival curves. Hence, we set up two

necessary conditions that should hold for the system being schedulable. Audsley’s algorithm is

applied to search the priority assignment that makes the two conditions hold.

3.4.2.1 Two Necessary Conditions

Suppose that there are n tasks in an MCS, as shown in Fig. 3.4(a). We suppose two special

situations, and the system should be schedulable under the following two situations.

• Condition A: Suppose when the system is in LO mode, event traces might occur in the

worst-case patterns.

• Condition B: Suppose the HI-critical event that appears the earliest runs over its LO

WCET, at this time the system is switched to HI mode where LO-critical tasks are

aborted; after the system enters into HI mode, HI-critical event traces might occur in the

worst-case patterns.

When the MCS is in LO mode, no event will be dropped and the estimate of execution time

will not change. The MCS in LO mode behaves as a non-MCS. Therefore, the Modular Perfor-

mance Analysis in Section 3.4.1.1 can be used to verify the Condition A. For the Condition B,

since the first HI-critical event triggers the mode-switch, there will be no backlogged HI-critical

events when the system enters into HI mode. In this situation, the MCS in HI mode can also

be considered as a non-MCS on which only HI-critical tasks run. The Modular Performance

Analysis is also used for verifying the condition B.

55

3. SCHEDULABILITY ANALYSIS ON ARBITRARILY ACTIVATED TASKS

3.4.2.2 Test by Applying Audsley’s Algorithm

In many previous works [48,55,64], the Modular Performance Analyis is only used for analyzing

the system with specific priority order. However, in order to apply Audsley’s algorithm, the

priority order of other tasks should have no effect on the WCRT of the lowest-priority task.

Theorem 6 guarantees that the priority order has no effect on computing the WCRT of the

lowest priority task, thus making Audsley’s algorithm and the Modular Performance Analysis

compatible for verifying the two necessary conditions.

In a system, suppose there are n tasks whose priorities need to be assigned so that all tasks

can be schedulable, as shown in Fig. 3.4(a). For this system, we have the following theorem.

Theorem 6. If the task τn is assigned the lowest priority without knowing the priority ordering

of other tasks, the system can be abstracted as Fig. 3.4(b), where βl1 is the lower service curve

of the processor and other terms are the same as Section 3.3.2. When the system stays in LO

mode, the lower service βlLOn for the task τn is bounded by

βlLOn (∆)
def
= sup

0≤λ≤∆

{
βl1(λ)−

∑
j∈hp(n)

αuj (λ) ·CLj
}
. (3.4)

When the system is in HI mode, with solely HI-critical tasks executing CHi and no backlogged

HI-critical events, the lower service βlHIn for the task τn is bounded by:

βlHIn (∆)
def
= sup

0≤λ≤∆

{
βl1(λ)−

∑
j∈hpH(n)

αuj (λ) ·CHj
}
. (3.5)

Proof. Without the loss of generality, the priority for the task τi is ordered in a descending

order, i.e., the priority of τi is greater than the priority of τj if i < j.

When the system is in LO mode, by iteratively using Eq. 3.2, we have

βli+1(∆) = sup
0≤λ≤∆

{βli(λ)− αui (λ) ·CLi }, ∀ i ≤ n− 1,

where βli is the lower service provided to the task τi. As

βli(∆) = sup
0≤λ≤∆

{βli−1(λ)− αui−1(λ) ·CLi−1}, ∀ i ≤ n− 1,

we have

βli+1(∆) = sup
0≤λ≤∆

{βli(λ)− αui (λ) ·CLi } = sup
0≤λ≤∆

{
sup

0≤λ′≤λ
{βli−1(λ′)− αui−1(λ′) ·CLi−1} − αui (λ) ·CLi

}
.

As αui (λ) ≥ αui (λ′), we have

βli+1(∆) ≤ sup
0≤λ≤∆

{
sup

0≤λ′≤λ
{βli−1(λ′)− αui−1(λ′) ·CLi−1} − αui (λ′) ·CLi

}
= sup

0≤λ≤∆

{
sup

0≤λ′≤λ

{
βli−1(λ′)−

i∑
j=i−1

αuj (λ′) ·CLj
}}

= sup
0≤λ≤∆

{
βli−1(λ)−

i∑
j=i−1

αuj (λ) ·CLj
}
, ∀ i ≤ n− 1.

56

3.4 Fixed Priority Schedulability Test

τ1

τ2

τn−1

τn

CPU

(a) System model

αu
1

αu
2

αu
n−1

αu
n

C1

C2

Cn−1

Cn

βl
1

βl
n

GPC

GPC

(b) System abstraction

Figure 3.4: A mixed-criticality system with n tasks

Besides, as sup
0≤λ′≤λ

{f(λ′)} ≥ f(λ), we have

βli+1(∆) ≥ sup
0≤λ≤∆

{
βli−1(λ)− αui−1(λ) ·CLi−1 − αui (λ) ·CLi

}
= sup

0≤λ≤∆

{
βli−1(λ)−

i∑
j=i−1

αuj (λ) ·CLj
}
,∀ i ≤ n− 1.

Therefore, we have

βli+1(∆) = sup
0≤λ≤∆

{
βli−1(λ)−

i∑
j=i−1

αuj (λ) ·CLj
}
. (3.6)

Similarly, the index i in Eq. 3.6 can be extended from n− 1 to 1, thus

βlLOn (∆)
def
= sup

0≤λ≤∆

{
βl1(λ)−

∑
j∈hp(n)

αuj (λ) ·CLj
}
. (3.7)

For the other priority settings, the lower service curve of Eq. 3.7 is unchanged, as long as the

task τn is set with the lowest priority. Thus, the theorem holds.

Eq. 3.5 can also be proved in the same steps as proving Eq. 3.4.

With βlLOn and βlHIn , Condition A and Condition B can be verified by checking

Del(αun(LO), βlLOn) ≤ Dn (3.8a)

Del(αun(HI), βlHIn) ≤ Dn, (3.8b)

where αun(LO) = αun ·CLn and αun(HI) = αun ·CHn . If the task that is assigned the lowest priority

is a LO-critical task, only Eq. 3.8a needs to be verified because the WCRT of this task does

not need to be certified in HI mode. For the HI-critical task, Eqs. 3.8a, 3.8b need to be verified.

Audsley’s algorithm searches the available task that can be assigned the lowest priority

by checking Eqs. 3.8a, 3.8b. If Eqs. 3.8a, 3.8b hold, this task is selected out with the assigned

priority and Audsley’s algorithm continues to assign priorities to the left tasks. If not, Audsley’s

algorithm will check Eqs. 3.8a, 3.8b by assigning the lowest priority to another task. If no task

can be assigned the lowest priority, the necessary test fails and this task set is not schedulable.

57

3. SCHEDULABILITY ANALYSIS ON ARBITRARILY ACTIVATED TASKS

Example 3. Returning to our motivation example, by using the necessary test, the task τ1 can

only be assigned with the highest priority. Its WCRT is 6. The task τ2 can only be assigned

with the second priority. Its WCRT is 20 in LO mode and 10 in HI mode. The task τ3 is

assigned with the lowest priority. Its WCRT is 139 in LO mode and 200 in HI mode. This

task set passes the necessary test.

3.4.3 Two Sufficient Tests

The necessary test can only guarantee that a task set is not schedulable if the necessary test

fails, and cannot guarantee that a task set is schedulable if the necessary test does not fail. In

this section, we present two sufficient tests towards the arbitrary activated tasks. The task set

that succeeds with the sufficient test is schedulable.

The idea of sufficient tests is to verify whether the upper bound of a task response time is

smaller than this task’s relative deadline. If so, this task is deemed schedulable. The task is

classified to be the LO-critical task or the HI-critical task. Since the LO-critical task only runs

in LO mode and the MCS in LO mode can be considered as a non-MCS, the response time is

bounded by Del(αun, β
lLO
n) in Eq. 3.8a. Hence, the Eq. 3.8a is also the sufficient verification for

LO-critical tasks. For the HI-critical task, however, computing the upper bound of response

time is not so straightforward.

In the following, we present two approaches to compute the upper bound of response time of

HI-critical tasks. The first approach is called the workload arrival curve approach. Suppose a

task is set with the lowest priority. By deriving the workload arrival curve of all higher-priority

tasks in both LO and HI modes, the lower bound of provided service to the lowest-priority task

is derived. Then, the response time of the lowest-priority task can be bounded by applying the

Modular Performance Analysis. The second approach is to apply the busy-window analysis to

compute the upper bound of response time. In non-MCS systems, the busy-window analysis

allows to calculate an upper bound on the time interval the processor is busy processing a task

τi and its interferences hp(i). We extend the busy-window analysis to MCSs to analyze the

upper bound of response time of a HI-critical task.

3.4.3.1 Workload Arrival Curve Analysis - WAC

The idea of this approach is to derive a workload arrival curve αuhp(i) that upper bounds the

workload of all tasks with higher priorities than the HI-critical task τi in both modes, including

a mode switch. Hence, the remaining service for the task τi can be safely bounded by using

Eq. 3.2, and the WCRT can be computed by using Eq. 3.3a.

58

3.4 Fixed Priority Schedulability Test

The system starts in LO mode. Before the mode switch, the WCETs of all tasks are

assumed to be CLj . Then, the workload arrival curve of tasks with higher priorities than τi is

that

αLOhp(i)
def
=

∑
j∈hp(i)

αuj ·CLj .

Assume for the task τj , there are Buf j events that are backlogged when the mode switch is

triggered. Then, in HI mode, as the LO-critical tasks are not executed and the WCETs for

HI-critical tasks are assumed to be CHj , we have

αHIhp(i)
def
=

∑
j∈hpH(i)

(αuj + Bufj) ·CHj . (3.9)

To safely bound αHIhp(i), the maximum number of events Bufmax
j that can be backlogged in LO

mode is used. The computation of Bufmax
j indicates the case that the task τj receives the

interference from all the other tasks in hp(i), i.e., the task τj is set with the lowest priority

in hp(i). For each task in hp(i), by setting its priority as the lowest in hp(i), Bufmax
j can be

computed by using Eqs. 3.3b, 3.4, i.e.,

Bufmax
j =

⌈
Buf

(
αuj (LO), βlLOj

)
CLj

⌉
. (3.10)

Since Bufmax
j is rounded up, the released but not finished event at the mode switch is also

included in Bufmax
j . As the backlogged events cannot be over Bufmax

j and the released workload

in HI mode cannot be over αuj ·CHj , αHIhp(i) in Eq. 3.9 is an upper bound of the workload in HI

mode.

To get a workload arrival curve that upper bounds the workload of hp(i) in both modes,

the following theorem can be used.

Theorem 7. For an MCS with a setting described in Section 3.3.2. The workload arrival

curve that upper bounds the workload of hp(i) in both modes can be computed by the following

equation:

αuhp(i)(∆)
def
= sup

0≤λ≤∆

{ ∑
j∈hp(i)

αuj (∆− λ) ·CLj +
∑

j∈hpH(i)

(αuj (λ) + Bufmax
j) ·CHj

}
. (3.11)

Proof. We consider a time interval [s, t) with t− s = ∆, and set tc as the time of mode switch.

There are three possibilities, i.e.,

1. t ≤ tc, the system stays in LO mode.

2. s ≥ tc, the system stays in HI mode.

3. s < tc < t, the system travels from LO mode to HI mode.

59

3. SCHEDULABILITY ANALYSIS ON ARBITRARILY ACTIVATED TASKS

Since αLOhp(i) ≤ αuhp(i) and αHIhp(i) ≤ αuhp(i), Eq. 3.11 holds for the case 1 and the case 2.

For the case 3, we set aw[s, t) the arrival workload in the interval of [s, t). We have

aw[s, t) = aw[s, tc) + aw[tc, t)

Subst. λ = t− tc
= aw[s, s+ ∆− λ) + aw[s+ ∆− λ, s+ ∆)

≤ αLOhp(i)(∆− λ) + αHIhp(i)(λ)

≤ αuhp(i)(∆)

Hence, the bound computed by Eq. 3.11 safely bounds the workload arrival curve in both

modes.

With the αuhp(i), the lower bound of remaining service for the HI-critical task τi can be

computed with Eq. 3.2, i.e.,

βli(∆)
def
= sup

0≤λ≤∆

{
βl1(λ)− αuhp(i)(λ)

}
.

Then, to compute the WCRT of τi, every job of the HI-critical task τi is assumed to be

executed with the CHi . This assumption sufficiently bounds the workload of this task. Thus,

the workload arrival curve of τi is αui = αui ·CHi . This HI-critical task τi can be scheduled if

Del(αui , β
l
i) ≤ Di.

Since there is no assumption in the priority ordering of the task set hp(i) in this approach,

the condition of applying Audsley’s algorithm is satisfied. Audsley’s algorithm is applicable for

this approach.

Example 4. Returning to the motivation example, by deriving the workload arrival curve of

hp(3) of applying Eq. 3.11, the WCRT of τ3 is 338. By deriving the workload arrival curve of

hp(1), which is α1 ·CL1 , the WCRT of τ2 is 37. This task set cannot be scheduled.

3.4.3.2 Busy-Window Analysis - BW

In the non-MCS, the busy-window analysis allows to calculate an upper bound on the time

interval that the processor is busy processing a task τi and its interferences from hp(i) [66,67].

Based on the busy-window, one can calculate an upper bound on a task’s WCRT. In this

section, we present a method that can sufficiently bound the response time of a HI-critical task

in the MCS by applying the busy-window analysis. It first computes the maximum time to

process any q HI-critical events of a task, based on which the upper bound of this task’s WCRT

is calculated.

Similar to the busy-window formulation of equation 3 in [67], the multi-event busy-window

Bi(q, δi)
1 is defined.

1δi is the minimum distance function of the HI-critical task τi

60

3.4 Fixed Priority Schedulability Test

Definition 5 (Multi-Event Busy-Window). Assuming the processor is initially idle, the multi-

event busy-window Bi(q, δi) describes an upper bound on the amount of time that a resource

requires to serve q activations of the HI-critical task τi in MCSs.

During processing q activations of the HI-critical task τi, there can be two cases:

• case 1: the MCS always stays in LO mode.

• case 2: the MCS transits from LO mode to HI mode, or completely stays in HI mode.

For the case 1, the multi-event busy-window is denoted as BLOi (q, δi), which can be obtained

by calculating the following formula until convergence [67,68].

BLOi (q, δi)
def
= q ·CLi +

∑
j∈hp(i)

αj(B
LO
i (q, δi)) ·CLj . (3.12)

For the case 2, we define s as the time that the mode switch is triggered. s is restricted

in the interval [0, BLOi (q, δi)), because all q events would have been finished before the mode

switch if s ≥ BLOi (q, δi). If s = 0, it means that the MCS completely stays in HI mode. Denote

Bsi (q, δi) as the multi-event busy-window that the mode switch is triggered at s. Compared

with BLOi (q, δi) in Eq. 3.12, the computation of Bsi (q, δi) should separately consider LO-critical

tasks and HI-critical tasks because LO-critical tasks can interfere τi only in LO mode. Hence,

we formulate Bsi (q, δi) as follows:

Bsi (q, δi)
def
= q ·CHi + IL(s) + IH

(
s,Bsi (q, δi)

)
, (3.13)

where IL(s) refers to the maximum interference from hpL(i) in the interval [0, s), and IH(s,Bsi (q, δi))

refers to the maximum interference from hpH(i) in the interval [0, Bsi (q, δi)).

As LO-critical tasks are prevented from executing after s, the maximum interference from

hpL(i) is bounded by:

IL(s)
def
=

∑
j∈hpL(i)

αj(s) ·CLj . (3.14)

Regarding to the computation of IH(s,Bsi (q, δi)), we first compute the maximum inter-

ference of every task in hpH(i), and accumulate them together. Consider a specific task

τk ∈ hpH(i) and use Ik(s, t) to denote the maximum interference of this task. The maxi-

mum number of events within [0, t) is αk(t). Suppose CHk is the workload due to the release of

m events in [s, t) and αk(t)−m events are executed by CLk . Hence,

Ik(s, t) = m ·CHk + (αk(t)−m) ·CLk .

To maximize Ik(s, t), m should be as large as possible because CHk ≥ CLk . There are two

constraints on m. First, m should be less than the maximum number of arrival events during

61

3. SCHEDULABILITY ANALYSIS ON ARBITRARILY ACTIVATED TASKS

[0, t), i.e., m ≤ αk(t). Second, m should be also less than the sum of backlogged events at time

s and arrival events during [s, t), i.e., m ≤ αk(t− s) + Bufk(s), where Bufk(s) is the maximum

backlogged events at time s. We use Xk(s, t) to denote the maximum m and Yk(s, t) to denote

the number of events that are executed by CLk . Therefore,

Xk(s, t)
def
= min

{
Bufk(s) + αk(t− s), αk(t)

}
, (3.15a)

Yk(s, t)
def
= αk(t)−Xk(s, t). (3.15b)

Exactly computing the Bufk(s) is difficult as Bufk(s) depends on the specific event arrivals of

τk and hp(k). Here, we provide an upper bound, i.e.,

Bufk(s)
def
= min{αk(s),Bufmaxk }, (3.16)

where Bufmax
k is computed with Eqs. 3.3b, 3.4 by setting τk with the lowest priority in hp(i),

which is the same as the Eq. 3.10 in deriving the workload arrival curve. Note that Xk(s, t)

is a valid upper bound on the events executed in [s, t), but Yk(s, t) is neither an upper bound

nor a lower bound. Nevertheless, the computed Ik(s, t) with Xk(s, t) and Yk(s, t) is an upper

bound. Then, the maximum interference IH(s, t) is

IH(s, t)
def
=

∑
k∈hpH(i)

{
Xk(s, t) ·CHk + Yk(s, t) ·CLk

}
. (3.17)

With IL(s) and IH(s,Bsi (q, δi)), B
s
i (q, δi) can be computed by iteration. Then, the Bi(q, δi) is

the maximum Bsi (q, δi) over all possible s, i.e.,

Bi(q, δi)
def
= max(Bsi (q, δi))∀s, s ∈ [0, BLOi (q, δi)).

To compute Bi(q, δi), s should be scanned. But it is not necessary to scan every s within

[0, BLOi (q, δi)). After an examination over IL(s) and IH(s, t), we find that only the points at

which αj(s), ∀j ∈ hp(i) changes need to be checked.

Proposition 4. Bsi (q, δi) can only increase at the points where αj(s) changes ∀j ∈ hp(i).

Proof. Suppose s1 and s2 are two successive points that αj(s) changes ∀j ∈ hp(i), and s1 < s2.

Since αj(s) does not change within (s1, s2), IL(s) will not change within (s1, s2). When s

increases from s1 to s2, from Eqs. 3.15a, 3.16, it can be known that Xk(s, t) may decrease.

Hence, Ik(s, t) may also decrease, which leads to the decrease of IH(s, t). Therefore, Bsi (q, δi)

will also decrease when s increases from s1 to s2. We have Bsi (q, δi) ≤ Bs1i (q, δi), ∀ s ∈ (s1, s2).

This means that Bsi (q, δi) can only increase at the points where αj(s) changes ∀j ∈ hp(i).

Since within any two successive points, Bsi (q, δi) will become smaller. To get Bi(q, δi), only

the points at which αj(s), ∀j ∈ hp(i) changes need to be checked. 1

1If hp(i) is empty, i.e., task τi is set as the highest priority, s should be 0. This is because the WCRT will

be the largest if every event of this task is executed with a large WCET estimation.

62

3.4 Fixed Priority Schedulability Test

With Bi(q, δi), we know the WCRT Ri(q) of the q-th job is bounded by

Ri(q)
def
= Bi(q, δi)− δi(q − 1), (3.18)

where δi(0) is set to be 0.

The computation of multi-event busy-windowBi(q, δi) assumes that all q events arrive earlier

than the completion of their prior jobs (the (q − 1)-event busy-time), i.e.,

δi(q − 1) ≤ Bi(q − 1, δi).

We denote the maximum number of events that can be in a multi-event busy-window as Qi,

where Qi is the last event that arrives earlier than the completion of its prior job, i.e.,

Qi
def
= max

(
n : ∀q ∈ N+, q ≤ n : δi(q) ≤ Bi(q, δi)

)
.

Then, the WCRT Ri of the task τi can be found among the Qi events, i.e.,

Ri
def
= max
q∈[1,Qi]

(Ri(q)).

The task τi can be scheduled if and only if Ri ≤ Di. As Ri can be determined by knowing

hp(i) and without knowing their specific priority assignments, Audsley’s algorithm can be used

to check the schedulability of a task set by this approach.

Example 5. We now use the task set in the motivation example as a running example to

explain the procedures of using busy-window analysis. It can be observed that only τ3 is possible

to be assigned with the lowest priority. Suppose τ3 is set with the lowest priority, the other

higher priority and HI-critical task is τ2. By Eq. 3.10, we get that the maximum number of

backlogged events of τ2 in LO mode is 2, i.e., Bufmax2 = 2. The WCRT of τ3 is computed by

applying the following rounds.

In the first round, only one event of τ3 is considered, i.e., q = 1. We first compute the

busy-window B3(1, δ3) in LO mode. By Eq. 3.12, B3(1, δ3) = 78. According to Proposition 4,

only the points in [0, 78) where αui , i ∈ 1, 2 change need to be checked. We use s∗ to denote

those points. Then, for every s∗, IL(s∗) of Eq. 3.14 is computed. With Bufmax2 = 2 and

by successively applying Eqs. 3.16, 3.15a, 3.15b, 3.17, 3.13, Bs
∗

3 (1, δ3) can be computed. The

maximum Bs
∗

3 (1, δ3) among all s∗ is picked out. We get that Bs3(1, δ3) = max(Bs
∗

3 (1, δ3)) = 140.

Since δ3(0) = 0, the WCRT R3(1) of one event is 140.

In the second round, two events of of τ3 are considered, i.e., q = 2. By the same computing

steps as the first round, we get that Bs3(2, δ3) = 207. As δ3(1) = 5, the WCRT R3(2) is that

R3(2) = Bs3(2, δ3)− δ3(1) = 202.

We continue to increase q by one in every round and compute R3(q) in every round, until

we find that δi(q − 1) > Bi(q − 1, δi). In the motivation example, we find that, when q = 10,

Bs3(10, δ3) = 747. The earliest arrival time of the 11-th event is 780, which is greater than 747.

It indicates that, the workload of first 10 events has no effect on the WCRT of 11-th event.

63

3. SCHEDULABILITY ANALYSIS ON ARBITRARILY ACTIVATED TASKS

The 11-th event can be reconsidered as q = 1. Therefore, the maximum R3(q) where q ≤ 10

represents the WCRT of the task τ3. In the motivation example, the WCRT of τ3 is 261.

Therefore, we testify that τ3 is schedulable by setting τ3 with the lowest priority.

The task τ3 with the lowest priority can now be removed from this taskset. We continue

to assign priorities to τ1 and τ2. For the HI-critical task τ2, we follow the same computation

procedures as computing the WCRT of τ3 to obtain the WCRT of τ2. For the LO-critical task,

we only need to apply Eq. 3.8a to get its WCRT because LO-critical tasks are not processed in

HI mode. Overall, we find that, τ1 with the highest priority and τ2 with the second priority are

schedulable.

3.4.3.3 Comparing WAC and BW

Complexity The computational overhead related to our schedulability tests can be attributed

to two parts, i.e., the expense for searching feasible priority assignment, and the expense for

verifying the schedulability of the task being assigned the lowest priority. Since WAC and BW

apply Audsley’s algorithm to search the feasible priority assignment, the overhead of the first

part is the same for both approaches.

The computational overhead mainly depends on the second part, i.e., verifying whether a

task can be assigned the lowest priority. If this task is a LO-critical task, WAC and BW use the

same method as verifying Condition A of the necessary test. If this task is a HI-critical task,

the complexities of WAC and BW are different. There are four steps of applying WAC, which

are, computing the maximum backlogged events Bufmax
j for every task in hp(i), computing the

workload arrival curve αuhp(i) that upper bounds the workload of hp(i), computing the lower

bound of provided service βli, and computing the WCRT by Del(αui , β
l
i). For applying BW,

there are two steps, which are, computing Bufmax
j of every task in hp(i), and computing the

response time of every event within a maximum busy-window. Both WAC and BW are the

same in first step, but are different in other steps.

Among the different steps, the computational expense of WAC mainly depends on the

operations of curves, for instance, the max-convolution used in deriving the αuhp(i). If the two

curves are periodic, the computation expense depends on the least common multiple of the two

periods. If they are aperiodic, the computational expense depends on the number of aperiodic

segments. The computational expense of BW mainly depends on computing the WCRT of

every event within a busy-window. Specifically, it depends on how large a busy-window is, how

many events could be in the busy-window, and how many changes are there of αj(s), ∀j ∈ hp(i).
In our simulations, the WAC, with the support of RTC/S tool [69], is often faster than the

BW.

64

3.5 Earliest Deadline First Schedulability Test

Tightness Comparing with WAC, BW sets more constraints in deriving the interference

from hp(i), which results in that BW is tighter than WAC on the schedulability test.

In BW, Xk of Eq. 3.15a and Yk of Eq. 3.15b set a constraint that the maximum events within

[0, t) cannot exceed αk(t). Bufk in Eq. 3.16 sets a constraint that the maximum backlogged

events cannot exceed the arrival events before the mode switch and the worst-case backlogged

events. Since s is constrained by Eq. 3.12, the interference from LO-critical tasks is also

constrained. While for WAC, in order to integrate the framework of Real-Time Calculus to do

the sufficient test, it does not explore so much constraints in deriving αuhp(i)(∆).

3.5 Earliest Deadline First Schedulability Test

In the EDF scheduling analysis, the demand bound function (DBF) is used to determine

whether current platform is able to schedule the taskset. By artificially shortening the rel-

ative LO mode deadlines, the DBFs in two modes can be tuned to comply with the provided

supply function. In the following, we first provide the schedulable conditions. Second, a hidden

feature is presented, based on which we present the derivation of the DBF. Then, we show

how to search feasible deadlines for a given taskset. At last, the effectiveness of our approach

is proven to be more applicable than the state-of-the-art demand-based scheduling approach

in [18].

3.5.1 Schedulable Conditions

In Chapter 2, we have presented the task demand model, based on which the schedulability

analysis is presented. Analogously, we rely on the task demand to analyze the schedulability

of a system scheduled by EDF algorithm. Once again, the demand bound function dbf(τi,∆)

gives an upper bound on the maximum possible execution demand of the task τi in any time

interval of length ∆, where demand is calculated as the total amount of required execution time

of events with their whole scheduling windows within the time interval [18].

As presented in Proposition 1 of Section 2.5.1.2, in mixed-criticality systems, the taskset is

schedulable if the DBFs in LO and HI modes are smaller than the lower bound of the provided

65

3. SCHEDULABILITY ANALYSIS ON ARBITRARILY ACTIVATED TASKS

service of this platform [18], i.e.,

Condition EDF − LO : ∀∆ ≥ 0 :
∑
τi∈τ

dbfLO(τi,∆) ≤ ∆,

Condition EDF −HI : ∀∆ ≥ 0 :
∑

τi∈HI(τ)

dbfHI(τi,∆) ≤ ∆.

Therefore, to check whether a taskset is scheduable, one only needs to derive the DBFs in both

modes.

3.5.2 A Hidden Feature

The timing constraints require that the finishing time of any event must not exceed its absolute

deadline.

Definition 6 (Absolute Deadline). The absolute deadline of an event is the time point that is

the sum of its arrival time and its relative deadline.

For some event traces, the finishing times of some events must be smaller than their absolute

deadlines in order to leave enough processing slack for the following events. The effective

deadline is defined to show this timing constraint.

Definition 7 (Effective Deadline). The effective deadline of an event is referred to its allowable

largest finishing time that guarantees other events of this task meet their absolute deadlines.

We use AD(e) and ED(e) to respectively denote the absolute deadline and the effective

deadline of an event e.

Theorem 8. For a schedulable task, the finishing times of all its events cannot exceed their

effective deadlines, and the minimum distance between any two successive effective deadlines

should not be smaller than its WCET.

Proof. Based on the definition of effective deadlines, for a schedulable task, the finishing times

cannot exceed the effective deadlines. If a task is guaranteed to be schedulable, any its event

should be sufficiently given at least a processing interval of its WCET. Therefore, the minimum

distance between any two effective deadlines should not be smaller than its WCET. Otherwise,

some events may miss their absolute deadlines.

The task τ1 in the motivation example is used to show the difference between absolute

deadlines and effective deadlines. The as-early-as-possible events are shown in Fig. 3.5. The

absolute deadlines of e1, e2, e3, e4 are 7, 9, 11, 13. The effective deadlines of them are 4, 7, 10, 13,

as every released event should be given 3 processing time units. e1, e2, e3 must be finished no

66

3.5 Earliest Deadline First Schedulability Test

0 2 4 6 7 9 10 11 13 17
t

e1 e2 e3 e4 e5
AD(e1) AD(e2) AD(e3) AD(e4) AD(e5)

ED(e1) ED(e2) ED(e3) ED(e4) ED(e5)

Figure 3.5: Event trace, absolute deadlines, and effective deadlines of the task τ1 in the motiva-

tion example

later than ED(e1),ED(e2),ED(e3). Otherwise, e4 would have no enough time to be finished

before AD(e4).

Theorem 8 presents a very important hidden feature in deriving the DBF because finishing

times of events are constrained by the effective deadlines, instead of absolute deadlines. In the

following, we respectively derive the DBFs of LO and HI modes.

3.5.3 Demand Bound Function of LO mode

If the system is in LO mode, system starts from an idle state and every task behaves as

a normal task with parameters (δi(q), C
L
i , D

L
i). The derivation of DBF needs to know the

maximum number of events that can be released and must be finished within an interval of ∆.

If there are at most n such events in this interval, the DBF is n folds of WCET. In order to

obtain this maximum number, the as-early-as-possible activations are assumed. The effective

deadlines corresponding to the as-early-as-possible activations are derived as follows.

First, the minimum distance function (MDF) of event trace can be generally categorized to

be two types. One type fulfils that CLi ≤ δi(1), which means that the WCET is not greater

than the minimum inter-activation interval. The effective deadlines are the same as the absolute

deadlines for this type. The other type fulfils that CLi > δi(1), which means that the WCET

is greater than the minimum inter-activation interval. The effective deadlines will be different

with absolute deadlines for this type. The MDF of event trace is generalized as follows

h
def
= min{q|δi(q + 1)− δi(q) > CLi }. (3.20)

where δi(0) = 0, q ∈ N. If h = 0, this is the type of CLi > δi(1). Otherwise, it is the type of

CLi ≤ δi(1).

The absolute deadlines corresponding to the as-early-as-possible events are shown in Fig. 3.6.

We denote ej as the j-th arrival event. If the arrival time of the first event e1 is s, the earliest

arrival time of the event ej+1 is s + δi(j), and its absolute deadline is s + δi(j) + DL
i . We

67

3. SCHEDULABILITY ANALYSIS ON ARBITRARILY ACTIVATED TASKS

e1

s

DL
i

δi(1) CL
i

δi(h− 2)

δi(h− 1)

δi(h)

δi(h+ 1)

∆

CL
i CL

i CL
i

δ′i(1)

δ′i(h)

δ′i(h+ 1)

ED(e1)

Absolute
Deadline

Effective
Deadline

Figure 3.6: The absolute deadlines and effective deadlines corresponding to the as-early-as-

possible event trace

consider the event eh+1 and the event eh+2. Their absolute deadlines are s + δi(h) + DL
i and

s + δi(h + 1) + DL
i . As δi(h + 1) − δi(h) > CLi , their effective deadlines are the same as

their absolute deadlines. For the event eh, its absolute deadline is s + δi(h − 1) + DL
i . As

δi(h) − δi(h − 1) ≤ CLi , its effective deadline is s + δi(h) + DL
i − CLi , which is smaller than

its absolute deadline. As every event should be given at least CLi , the minimum distance

between two effective deadlines is CLi . Therefore, for the event eh−1, its effective deadline is

s+ δi(h) +DL
i − 2CLi . For the event eh−j+1, its effective deadline is s+ δi(h) +DL

i − j ·CLi .

In Fig. 3.6, δ′i(k) represents the MDF of effective deadlines. Since the effective deadlines of

first h events are separated by CLi and the effective deadlines of later events are the same as

the absolute deadlines, the δ′i(k) can be generalized as follows:

δ′i(k)
def
=

{
k ·CLi , k ≤ h
h ·CLi + δi(k)− δi(h), k > h,

(3.21)

where δi(h+ 1)− δi(h) > CLi , k ∈ N+.

Then, within an interval of ∆ in Fig. 3.6, the maximum number of events that are released

and finished is known. The demand bound function of LO mode is thus concluded as that:

dbfLO(τi,∆)
def
=

{
0, ∆ < ED(e1)

q ·CLi , δ′i(q − 1) ≤ ∆− ED(e1) < δ′i(q),
(3.22)

where ED(e1) = DL
i + δi(h)− δ′i(h). Note that, if ED(e1) < 0, it is impossible to schedule this

task.

68

3.5 Earliest Deadline First Schedulability Test

s s+Di
t

CL
i

∆1

∆2

event: e

mode switch

Figure 3.7: Bounding the demand of an event

3.5.4 Demand Bound Function of HI mode

The idea of deriving the DBF is based on the condition that the taskset can be schedulable in

LO mode (i.e., Condition 1 holds). When we derive the DBF of HI mode, we therefore assume

that all effective deadlines are met in LO mode.

We first consider the demand of a single event. In particular, suppose an event e of the

task τi arrives at time s. As shown in Fig. 3.7, its absolute deadline AD(e) is s+Di. Assume

its effective deadline ED(e) = AD(e). If the mode switch is invoked at the time s+Di −∆1,

the execution time length of this event before the mode switch is at least CLi − ∆1 because

the deadline is met in LO mode. Hence, dbfHI(e,∆1) = CHi − (CLi −∆1), where dbfHI(e,∆1)

denotes the DBF of the event e within ∆1 in HI mode. If the mode switch is invoked at the

time s+Di−∆2, as ∆2 > CLi , this event may not be executed before the mode switch. Hence,

dbfHI(e,∆2) = CH
i . In general, we have

dbfHI(e,∆)
def
= CHi − JCLi −∆K0,

where JAKk = max(A, k).

Since events are finished before their effective deadlines in LO mode, such information should

be used in deriving the DBF of HI mode, as shown in the following example.

Example 6. Consider an event trace with δi(1) < CLi < δi(2) − δi(1). As shown in Fig. 3.8,

the first three as-early-as-possible events are e1, e2, e3. Denote the arrival time of e1 is s. We

assume, when the system stays in LO mode, those events can be schedulable, i.e., their effective

deadlines are met. In this case, the effective deadline ED(e1) of e1 is s + DL
i + δi(1) − CLi .

Similarly, for the event e2 and the event e3, their effective deadlines are the same as their

absolute deadlines because δi(2)− δi(1) > CLi .

From the definition of the effective deadline, we deduce that, if the mode switch is invoked

at the time s+DL
i +δi(2)−∆ as shown in Fig. 3.8, the remaining time for the event e1 to meet

its effective deadline is RM(e1) = ED(e1) −
(
s + DL

i + δi(2) − ∆
)
. Therefore, the execution

time length of the event e1 before the mode switch is CLi − RM(e1). In Fig. 3.8, as there

are at most 3 effective deadlines within ∆, the DBF is at most 3 ·CHi . Since the execution

69

3. SCHEDULABILITY ANALYSIS ON ARBITRARILY ACTIVATED TASKS

e1 e2 e3

s t

mode switch

DL
i

∆

δi(1)

δi(2)

δi(1)

δi(2)

CL
i

CL
i

CL
i

ED(e1)

Figure 3.8: Bounding the demand of an event trace

time of the event e1 before the mode switch is at least
q
CLi − RM(e1)

y
0
, the tight DBF is

dbfHI(τi,∆) = 3 ·CHi −
q
CLi −RM(e1)

y
0
.

The maximum number of effective deadlines within an interval of ∆ depends on the MDF

δ′i(k) of effective deadlines. We set DH
i = DL

i to keep the relative deadlines unchanged after the

mode switch. Hence, the effective deadlines are also not changed after mode switch. As shown

in Fig. 3.8, within an interval ∆ that δ′i(k) ≤ ∆ < δ′i(k+1), the DBF is at most (k+1) ·CLi . In

this interval, there might be an event that has already been executed before the mode switch.

Lemma 9. In the interval of ∆ that is δ′i(k) ≤ ∆ < δ′i(k+1) in HI mode, if the system needs to

schedule k + 1 events, the execution time of these events before the mode switch is not smaller

than JCLi − (∆− δ′i(k))K0.

Proof. For the time interval of length ∆, there are at most x = ∆− δ′i(k) time units left for the

“first” event (the first event in HI mode) if the system schedules k + 1 events in HI mode. If

x ≥ CLi , the “first” event may be not executed before the mode switch because there is enough

interval for scheduling the “first” event. If 0 ≤ x < CLi , the execution time of the “first” event

is at least CLi − x because the “first” event is supposed to meet its effective deadline in LO

mode. In general, JCLi − (∆− δ′i(k))K0 represents the least execution time.

According to Lem. 9, the DBF of HI mode is concluded as follows:

dbfHI(τi,∆)
def
= (k + 1) ·CHi − JCLi − (∆− δ′i(k))K0,

where δ′i(k) ≤ ∆ < δ′i(k + 1) and δ′i(0) = 0.

3.5.5 Demand Bound Function Tuning

In the above analysis, we set DH
i = DL

i . If DL
i is decreased, i.e., DL

i < DH
i , the DBF of HI

mode is different as the deadline is postponed DH
i −DL

i after the mode switch. If the system

70

3.5 Earliest Deadline First Schedulability Test

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

Time interval ∆

D
em

a
n
d

 dbfLO(τ1,∆)

dbfLO(τ2,∆)

dbfLO(τ3,∆)
∑

dbfLO

dbfHI(τ2,∆)

dbfHI(τ3,∆)
∑

dbfHI

Figure 3.9: Demand bound functions of motivation example before the tuning

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

Time interval ∆

D
em

a
n
d

dbfLO(τ1,∆)

dbfLO(τ2,∆)

dbfLO(τ3,∆)
∑

dbfLO

dbfHI(τ2,∆)

dbfHI(τ3,∆)
∑

dbfHI

Figure 3.10: Demand bound functions of motivation example after the tuning

71

3. SCHEDULABILITY ANALYSIS ON ARBITRARILY ACTIVATED TASKS

is schedulable in LO mode with the relative deadline of DL
i , there will be extra DH

i −DL
i time

units for events to meet their absolute deadlines after the mode switch.

Theorem 9. If a HI-critical task τi is schedulable in LO mode, its DBF of HI mode is that:

dbfHI(τi,∆)
def
=


0, if 0 ≤ ∆ < DH

i −DL
i

(k + 1) ·CHi − JCLi − xK0,

where x = ∆− δ′i(k)−
(
DH
i −DL

i

)
and δ′i(k) ≤ x+ δ′i(k) < δ′i(k + 1).

(3.23)

Proof. After the mode switch, there is at least an interval of DH
i −DL

i within which there is no

deadline. Hence, if 0 ≤ ∆ < DH
i −DL

i , dbfHI(τi,∆) = 0. If ∆ ≥ DH
i −DL

i , within an interval

of ∆ that δ′i(k) ≤ ∆ −
(
DH
i − DL

i

)
< δ′i(k + 1), there are at most k + 1 effective deadlines.

Hence, dbfHI(τi,∆) ≤ (k + 1) ·CH
i . If the system needs to schedule k + 1 events during this

interval, the “first” event will probably have been executed before the mode switch. According

to Lem. 9, the execution time is no smaller than JCLi −(∆−δi(k))K0 in the case that DH
i = DL

i .

In the case that DL
i < DH

i , x = ∆ − δ′i(k) −
(
DH
i − DL

i

)
is the time interval for scheduling

the “first” event to meet the DL
i . As DL

i is met, the execution time is JCLi − xK0. Hence,

dbfHI(τi,∆) = (k + 1) ·CH
i − JCL

i − xK0 where δ′i(k) ≤ x+ δ′i(k) < δ′i(k + 1).

Based on Them. 9, dbfHI(τi,∆) can be tuned by changing the DL
i . In order to make this

dual-criticality system schedulable, conditions 1, 2 should hold. A heuristic approach is shown

in Algo. 2 to search the feasible DL
i . First, all HI-critical tasks are the candidates whose relative

deadlines can be used to tune the DBFs, as shown in line 1. In the while loop, the DL
i gradually

decreases from DH
i to CLi until conditions 1, 2 are met (lines 6-14). If no candidate is left to tune

the DBFs after the exhaustive search, this algorithm fails to find the feasible DL
i (lines 3-5).

Note that, ∆max in line 7 is the maximum busy interval that the system starts processing tasks

and backs to the idle state. This interval can be computed by using the method of computing

busy interval size bound in [70].

Example 7. Returning to the motivation example, suppose the three tasks are scheduled by

EDF. If the LO deadlines are not reduced, their demand bound functions are shown in Fig. 3.9.

It is not schedulable as the
∑

dbfHI is greater than the provided lower service. After the LO

deadlines are reduced to that DL
2 = 20 and DL

3 = 150, their demand bound functions are tuned

by Algorihtm 2, as shown in Fig. 3.10. After the tuning, this task set are schedulable.

3.5.6 Effectiveness

In [18], the demand-based approach is demonstrated by extensive experiments to have greater

schedulability over other existing scheduling approaches. The approach proposed in this paper

is more applicable than the approach in [18] in that, any taskset that is tested schedulable by

72

3.5 Earliest Deadline First Schedulability Test

Algorithm 2 Heuristic of searching feasible DL
i

1: candidates← {i|τi ∈ HI(τ)}
2: while true do

3: if candidates = ∅ then
4: return failure

5: end if

6: for DL
i = DH

i to CLi do

7: for ∆ = 0 to ∆max do

8: if
∑
τi∈τ

dbfLO(τi,∆) > βl(∆) then

9: remove τi from candidates; break

10: else if
∑

τi∈HI(τ)

dbfHI(τi,∆) < βl(∆) then

11: return success

12: end if

13: end for

14: end for

15: end while

the approach in [18] can also be tested schedulable by ours, even some tasksets that are tested

not schedulable by the one in [18] may also be tested schedulable by ours.

Lemma 10. For a sporadic task τi defined in [18], the dbfLO(τi,∆) and dbfHI(τi,∆) derived

by the approach in this paper are the same as DBF derived by the approach in [18].

Proof. In [18], the sporadic task is defined by a tuple
(
CLi , C

H
i , D

L
i , D

H
i , Ti

)
, where Ti is the

minimum inter-activation interval, and for the other notations, please recall them from this

paper. The relationship among them is that CLi ≤ DL
i ≤ DH

i ≤ Ti.
Since CLi ≤ Ti, the effective deadlines are the same as the absolute deadlines. The MDF

of effective deadlines is that δ′i(k) = k ·Ti, and ED(e1) = DL
i . Therefore, the dbfLO(τi,∆) of

Eq. 3.22 can be transformed to be as follows:

dbfLO(τi,∆)
def
= J(b(∆−DL

i)/Tic+ 1) ·CLi K0,

which is the same as DBF of LO mode in [18].

In a similar way, if τi is a HI-critical task, the dbfHI(τi,∆) of Eq. 3.23 can also be transformed

to be the same as HI mode DBF in [18].

This lemma shows that, our approach can achieve the same schedulability as the approach

in [18] if a task is modeled as the sporadic task. However, the sporadic task model is often a

pessimistic representation.

Corollary 1. For a task τi with MDF δi(k), denote dbfLO(τi,∆) and dbfHI(τi,∆) as its DBF of

LO and HI modes, and denote dbfsLO(τi,∆) and dbfsHI(τi,∆) as the DBF of its pessimistic rep-

resentation. It can be deduced that dbfLO(τi,∆) ≤ dbfsLO(τi,∆) and dbfHI(τi,∆) ≤ dbfsHI(τi,∆).

73

3. SCHEDULABILITY ANALYSIS ON ARBITRARILY ACTIVATED TASKS

Proof. If the task τi is represented by its pessimistic representation, the MDF of its pessimistic

representation is that δsi (k) = k · δi(1). Since δsi (k) = k · δi(1) ≤ δi(k), we have dbfLO(τi,∆) ≤
dbfsLO(τi,∆) and dbfHI(τi,∆) ≤ dbfsHI(τi,∆).

This corollary shows that, if the pessimistic representation of a task is tested schedulable

by the approach in [18], it must also be tested schedulable via our approach by modeling it as

MDF because
dbfs

LO(τi,∆) ≤ βl(∆, t)

dbfs
HI(τi,∆) ≤ βl(∆, t)

=⇒
dbfLO(τi,∆) ≤ βl(∆, t)

dbfHI(τi,∆) ≤ βl(∆, t)
(3.24)

However, if a taskset is tested schedulable by our approach, it may not be tested schedulable

by the approach in [18].

3.6 Schedulability Evaluation

In this section, towards the arbitrary event streams, we present the schedulability evaluation

on our proposed analyzing approaches. In specific, the proposed approaches are:

• NEC: The necessary test in Section 3.4.2, showing the necessary conditions that tasks

should meet in order to be scheduled by fixed priority. NEC provides an upper bound for

the sufficient tests, because task sets that are tested schedulable by any sufficient test are

deemed to pass this test.

• WAC: The sufficient test by deriving the workload arrival curve in Section 3.4.3.1.

• BW: The sufficient test by the busy-window analysis in Section 3.4.3.2.

• Tuning: In EDF-scheduled systems, LO deadlines of HI-critical tasks are tuned to conform

the demand bound function to below the provided supply bound.

Besides, for the sporadic tasks, an existing approach is used to compare with our proposed

approaches.

• AMC-max: The sufficient test by the most powerful response-time calculation for fixed-

priority scheduling from [8]. This method is only valid for sporadic tasks whose relative

deadlines are smaller than periods.

The RTC/S tool is used to the NEC and WAC test. It is also used to compute the maximum

number of backlogged events in Eq. 3.10 for BW test. All the results are obtained from a

simulation host with Intel i7-4770 processor and 16GB RAM.

74

3.6 Schedulability Evaluation

3.6.1 Task Set Generation

The task set is generated in the same way as [19]. A random task set is generated by starting

with an empty task set τ = ∅, where random tasks are successively added. Although the four

approaches can handle the task with any activation pattern, for the easiness, the task is set as

pjd pattern in our simulations. By artificially varying the parameters, the effects of jitter and

burst on the system schedulability are evaluated.

The random task set is generated as follows:

• The task utilization is a value of (x+ 0.5)/30, where x ∈ {0, 1, ..., 29}.

• The probability of a random task being a HI-critical task is P.

• Ci(LO) is drawn from the uniform distribution over {1, 2, ..., Cmax
L }. There are two set-

tings for Cmax
L . The first setting is to set Cmax

L = 10, in order to make the generated tasks

mostly be light tasks (low utilization). The second setting is to set Cmax
L = 40, in order

to produce a task set mixed with light and heavy tasks.

• Ci(HI) is drawn from the uniform distribution over {Ci(LO), Ci(LO) + 1, ..., 4 ·Ci(LO)}
if Li = HI.

• The period pi is drawn from the uniform distribution over {Ci(Li), Ci(Li) + 1, ..., 200}.

• The jitter ji is set as X · pi, where X ∈ [0, 5).

• The minimum inter distance di is set as Y · pi, where Y ∈ [0, 1)

• The relative deadline is set as that Di(LO) = Di(HI) = Z · pi, where Z ∈ [0, 5).

We introduce that

ULO(τ)
def
=
∑
τi∈τ

(
Ci(LO)/pi

)
, UHI(τ)

def
=
∑
τi∈τH

(
Ci(HI)/pi

)
, (3.25)

where τH is the set of all HI-critical tasks in task set τ . The task set utilization is defined as

U(τ)
def
= (UHI + ULO)/2. For every task set generation, the utilization is allowed to be located

in [U∗ − 0.005, U∗ + 0.005], where U∗ is a targeted utilization. If the generated utilization is

smaller than U∗ − 0.005, a new random task is added. If the generated utilization is greater

than U∗+ 0.005, this task set is discarded, and a new empty task set is started, until a task set

with the allowed utilization is found.

75

3. SCHEDULABILITY ANALYSIS ON ARBITRARILY ACTIVATED TASKS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Task set utilization

S
ch

ed
ul

ab
le

 ta
sk

 s
et

 r
at

io

NEC
WAC
BW
AMC−max
Tuning

(a) (P,X,Y,Z) = (0.5, 0, 0, 1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

PW
ei

gh
te

d
sc

he
du

la
bi

lit
y

ra
tio

(b) (X,Y,Z) = (0, 0, 1)

Figure 3.11: Schedulability results towards the sporadic light task sets (all subfigures share the

same color scheme)

3.6.2 Evaluation Results

In our experiments, for each target utilization, 1000 task sets were generated, and the schedu-

lability of those task sets was determined by the four analyzing approaches. The graphs are

best viewed online in colour.

3.6.2.1 Schedulability Test on Sporadic Task Sets

First, we evaluate the four schedulability test approaches towards the sporadic task sets with

implicit deadlines.

Fig. 3.11(a) and Fig. 3.12(a) show the percentage of light and mixed task sets that are tested

schedulable. By setting (P,X,Y,Z) = (0.5, 0, 0, 1), tasks are generated as implicit-deadline

sporadic tasks with 50% being HI-critial. In both figures, we observe that BW achieves exactly

the same schedulable percentage as AMC-max, while outperforms the WAC by a large margin.

This is expected as BW explores the same constraints as AMC-max to compute the WCRT.

WAC pessimistically derives the workload arrival curve of higher-priority tasks, thus resulting

in an overestimate of WCRT. Besides, we also observe that, the schedulable percentages of

BW and AMC-max are slightly less than the limit illustrated by NEC upper bound, which

indicates that schedulability tests of BW and AMC-max are very tight. Regarding to the

Tuning approach, we find that it is the best among all approaches as this approach is applied

in the EDF schedule.

76

3.6 Schedulability Evaluation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Task set utilization

S
ch

ed
ul

ab
le

 ta
sk

 s
et

 r
at

io

NEC
WAC
BW
AMC−max
Tuning

(a) (P,X,Y,Z) = (0.5, 0, 0, 1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

PW
ei

gh
te

d
sc

he
du

la
bi

lit
y

ra
tio

(b) (X,Y,Z) = (0, 0, 1)

Figure 3.12: Schedulability results towards the sporadic mixed task sets (all subfigures share

the same color scheme)

Next, we study the effects of the parameters (P,X,Y,Z) on the system schedulability by our

proposed tests. To evaluate those parameters, the weighted schedulability ratio W (P,X,Y,Z) [71]

is used, which is defined as follows:

W (P,X,Y,Z)
def
=
(∑
∀τ

U(τ) ·S(τ,P,X,Y,Z)
)
/
∑
∀τ

U(τ),

where S(τ,P,X,Y,Z) is the schedulability ratio of the task set whose utilization and parameters

are U(τ) and (P, X, Y, Z).

In order to generate implicit-deadline sporadic tasks, (X, Y, Z) must be (0, 0, 1). Hence,

only P can be investigated. The weighted schedulability ratio w.r.t., P is shown in Fig. 3.11(b)

and Fig. 3.12(b). It shows that the achieved weighted schedulability ratios of BW and AMC-

max are exactly the same and are slightly lower than the upper bound of NEC. The performance

gap between BW and NEC is small when P is small and becomes large when P increases. This

is because, when P is small, most tasks are LO-critical. Since the schedulability test towards

the LO-critical tasks are the same in the four approaches, i.e., Eq. 3.8a is used as the sufficient

and necessary test, the schedulability ratio of the four approaches are expected to be close if

P is small. From the four figures, it is observed that the superiority of BW/AMC-max over

WAC is greater in scheduling light task sets than in scheduling mixed task sets and the Tuning

approach in EDF schedule is always the best.

77

3. SCHEDULABILITY ANALYSIS ON ARBITRARILY ACTIVATED TASKS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

PW
ei

gh
te

d
sc

he
du

la
bi

lit
y

ra
tio

NEC
WAC
BW
AMC−max
Tuning

(a) (X,Y,Z) = (3, 0.2, 1)

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

XW
ei

gh
te

d
sc

he
du

la
bi

lit
y

ra
tio

(b) (P,Y,Z) = (0.5, 0.2, 1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

YW
ei

gh
te

d
sc

he
du

la
bi

lit
y

ra
tio

(c) (P,X,Z) = (0.5, 3, 1)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ZW
ei

gh
te

d
sc

he
du

la
bi

lit
y

ra
tio

(d) (P,X,Y) = (0.5, 3, 0.2)

Figure 3.13: The effects of parameters (P,X,Y,Z) on the system schedulability towards light

task sets (all subfigures share the same color scheme as the first figure)

3.6.2.2 Schedulability Test on Arbitrarily Activated Task Sets

Except the schedulability evaluations on arbitrarily activated task sets, we also evaluate how

the results are changed towards the arbitrarily activated task sets by varying the parameters

(P,X,Y,Z) (one parameter each time), whose meanings have been presented in Section 3.6.1.

Since the activation patterns of tested tasks are not sporadic and the relative deadlines

are arbitrary, AMC-max cannot be directly used in testing the schedulability of those tasks.

However, in a pessimistic way, sporadic model with implicit deadlines can still be used to model

the tasks with arbitrary activations and arbitrary relative deadlines. Suppose for a task τi, the

minimum interval between any two task activations is Ti and its relative deadline is Di. This

78

3.6 Schedulability Evaluation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

PW
ei

gh
te

d
sc

he
du

la
bi

lit
y

ra
tio

NEC
WAC
BW
AMC−max
Tuning

(a) (X,Y,Z) = (3, 0.2, 1)

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

XW
ei

gh
te

d
sc

he
du

la
bi

lit
y

ra
tio

(b) (P,Y,Z) = (0.5, 0.2, 1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

YW
ei

gh
te

d
sc

he
du

la
bi

lit
y

ra
tio

(c) (P,X,Z) = (0.5, 3, 1)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ZW
ei

gh
te

d
sc

he
du

la
bi

lit
y

ra
tio

(d) (P,X,Y) = (0.5, 3, 0.2)

Figure 3.14: The effects of parameters (P,X,Y,Z) on the system schedulability (all subfigures

share the same color scheme as the first figure)

task can be modeled as a sporadic task whose minimum inter distance and relative deadline is

min(Ti, Di). In this way, AMC-max can be used to test the schedulability of those tasks1.

Fig. 3.13 and Fig. 3.14 show the effects of (P,X,Y,Z) on the system schedulability, respec-

tively. From those figures, we can conclude that,

• Fig. 3.13(a) shows that, for the light task set, it is good to improve the system schedu-

lability with the same portion of LO-critical and HI-critical tasks. Fig. 3.14(a) shows

that, for the mixed task set, the system schedulability is better with a higher portion of

HI-critical tasks.

1If there are burst events for activating a task, i.e., Ti = 0, this task is unschedulabled by AMC-max test.

79

3. SCHEDULABILITY ANALYSIS ON ARBITRARILY ACTIVATED TASKS

• Fig. 3.13(b) and Fig. 3.14(b) show that, the increase of jitter decreases the system schedu-

lability. This is expected as the increase of jitter will also increase the number of task

activations within a certain interval.

• Fig. 3.13(c) and Fig. 3.14(c) show the increase of minimum inter-arrival distance between

two events improves the system schedulability, because this parameter decreases the num-

ber of task activations within a certain interval. When Y = 1, BW and AMC-max perform

the same. This is expected because tasks become sporadic tasks with implicit deadlines

when Y = 1.

• Fig. 3.13(d) and Fig. 3.14(d) show that, the increase of relative deadline is helpful to

increase the system schedulability. In addition, it also shows that the superiority of

Tuning increases with the increase of relative deadline.

Overall, in all those figures, we observe that: the BW constantly outperforms the WAC, and

keeps close results to NEC. This shows that BW is a very effective approach of analyzing the

system schedulability towards the arbitrary activated tasks. Besides, from the performance of

AMC-max, it can be observed that using sporadic task model to model arbitrary activated

tasks leads to very pessimistic schedulability test results. Furthermore, the Tuning approach is

shown to be the best on all figures, which confirms that the Tuning approach in EDF schedule

is a very effective approach to increase the system schedulability.

3.7 Summary

In this chapter, we proposed to use the arrival curve and minimum distance function to more

accurately represent the upper bound of task activations; based on this representation, the

schedulability test of FP and EDF algorithms are proposed. From the experimental results,

we found that, the decrease of the jitter, the increase of minimum interval between any two

task activations, and the increase of the relative deadlines will increase the system schedula-

bility. Using sporadic tasks to model arbitrary tasks with arbitrary deadlines will result in

very pessimistic schedulability test results, especially for scheduling tasks whose minimum task

activation interval and relative deadlines are small.

80

Chapter 4

Adaptive Workload Management

We have presented how to adaptively postpone the mode-switch by making use of the system

static and runtime slacks in Chapter 2, where LO-critical tasks are only guaranteed in LO and

Border modes. Indeed, the dual-criticality system can also be interpreted as a system mixed

with soft and hard tasks, where deadlines of hard tasks must be guaranteed and soft tasks are

then given the best possible service. This interpretation is important in the case that the worst-

case activation patterns or WCETs of soft tasks are unknown because it is then impossible to

guarantee LO-critical tasks scheduability in LO mode. In this chapter, we treat the soft task

as the LO-critical task and the hard task as the HI-critical task and address the problem of

how to give the best service to soft tasks while sufficiently guarantee the timing requirements

of HI-critical tasks.

4.1 Overview

In Chapter 3, we have presented the mixed-criticality schedulability analysis towards the ar-

bitrarily activated tasks. The interpretation of mixed-criticality system in Chapter 3 is that

LO-critical tasks have deadlines and their deadlines should be met under the condition that

HI-critical tasks will not overrun their LO WCETs. However, in reality, there also exists some

cases that LO-critical tasks may not have strict response time requirement. In those cases their

response times should be as small as possible to guarantee the system good performance. This

brings a new question that how the response time of LO-critical tasks can be minimized.

To address this concern, a recent design in fixed-priority system is to set LO-critical tasks as

a group sharing the highest priority because in this way LO-critical tasks can always be served

81

4. ADAPTIVE WORKLOAD MANAGEMENT

in the first place. But to guarantee the timing requirements of the HI-critical tasks, the exe-

cution of high-priority LO-critical tasks should be constrained within a certain bound [72–74].

When their execution demand exceeds this bound, either their execution is delayed by a regu-

lator [72] or the execution priorities are exchanged with the HI-critical tasks [74]. Nevertheless,

computing such a bound for the LO-critical tasks is nontrivial as the bound on the one hand

should be sufficient to guarantee the execution of the HI-critical tasks and on the other hand

should not be too pessimistic to improve the QoS of LO-critical tasks.

There is related work in the literature to offline compute a workload bound by which the

coming workload of the low-criticality is shaped at runtime. Wandeler et al. [41, 72] proposed

to use the real-time interface to obtain the shaping bound and suggested to delay the non-real-

time events when they exceed the pre-computed bound. With the computed shaping bound,

the work in [61, 75] discussed in more details on how to monitor the LO-critical events by

switching the workload bound distribution among LO-critical tasks, or by using the workload

arrival curve to monitor the whole group of LO-critical events. Tobuschat et al. [74] presented

a scheme that exploits the throughput and latency slack of critical applications, by prioritizing

non-critical accesses over critical accesses and exchanging the priorities when the non-critical

workload exceeds the pre-computed bound.

The feasible bounding parameters in the aforementioned related work are however obtained

offline, i.e., the bound used to shape the workload of the LO-critical tasks is computed offline

and unchanged during the runtime. This bound is computed based on the assumptions of the

worst-case event arrival patterns of all HI-critical tasks. While using the worst-case assumption

during the runtime can sufficiently guarantee the safeness of the workload bound, it also makes

the offline bound pessimistic due to the differences between the actual demand and the assumed

worst-case demand of the HI-critical tasks. Such pessimism will significantly hamper the QoS

of LO-critical tasks and reduce the overall system utilization. To reduce the pessimism, the

shaping bound should be adaptively computed at runtime based on the actual demand from

the HI-critical tasks. Such online adaption is however not so easy. On the one hand, the actual

demand should be a valid upper bound that guarantees no HI-critical tasks miss their deadlines.

On the other hand, the adaption decisions should be lightweight. While most of the previous

work relies on the heavy numerical computation, to the best of our knowledge, no work so far

has considered adaptively refining the feasible workload bound at runtime.

Being aware of this, in this chapter we propose to adaptively refine the bound of constraining

the LO-critical tasks at runtime. Inspired by the online task procrastination technique in

82

4.1 Overview

dynamic energy management [47], the feasible bound for the LO-critical tasks is dynamically

refined according to historical knowledge of the arrival workload in the past. Based on the

refined bound, the priority-adjustment policy and workload-shaping policy are proposed to

manage the LO-critical workload in order to provide the service for LO-critical tasks as much

as possible, while guaranteeing sufficient service for meeting the hard real-time constraints of

HI-critical tasks. The detail contributions of this chapter are as follows:

• We present an adaptive scheme for the online bound refinement in MCSs. By monitoring

the arrival events of HI-critical tasks, the actual demand is adaptively computed to shape

the workload of the LO-critical tasks at runtime. The computed actual demand can

guarantee that the HI-critical tasks meet all their deadlines, while at the same time

increase the QoS of LO-critical tasks.

• Two online workload management policies, namely, priority-adjustment policy and workload-

shaping policy, are investigated. The priority-adjustment policy reduces the interference

on HI-critical tasks through decreasing the priority of LO-critical tasks when the LO-

critical workload exceeds the refined workload bound. The workload-shaping policy shapes

the incoming LO-critical workload to comply with the refined bound by keeping the pri-

ority of LO-critical tasks always the highest.

• To update the refined bound for LO-critical tasks, real-time interface is traditionally

used [41,72] online to compute the provided service and demand bound functions for lower

priority tasks. To eliminate the complex real-time interface computation that requires

intensive numerical calculation, a lightweight computation method with the complexity

of O(n · log(n)) is developed, making the online adaptations applicable at runtime.

• Extensive experiments are presented to show the efficiency and effectiveness of our two

proposed workload management policies. The adaptive shaping approaches are demon-

strated to significantly improve the system utilization and QoS of LO-critical tasks. Com-

paring with the method that applies the exact real-time interface computation, the timing

overhead of our proposed lightweight method is one and two orders of magnitude lower

in the priority-adjustment policy and in the workload-shaping policy, respectively. The

workload management effect of using the lightweight method has minor difference with

that of using the exact Real-Time Interface method.

83

4. ADAPTIVE WORKLOAD MANAGEMENT

The rest of this chapter is organized as follows: Section 4.2 reviews related work. Section 4.3

provides our system model and settings. Section 4.4 presents the schedulability analysis by

applying the real-time interface and the future workload bound by applying dynamic coun-

ters. Section 4.6 presents the priority-adjustment policy and workload-shaping policy to do

the LO-critical workload management. Section 4.7 proposes a lightweight method for refining

the runtime workload bound. Simulation results are presented in Section 4.8 and Section 4.9

concludes this chapter.

4.2 Related Work

In the related work section of Chapter 2 and Chapter 3, we have reviewed the relevant works

based on the standard mixed-criticality model. In contrast with this standard model, the task

model in this chapter is assumed to be without mode-switch at runtime. This model has been

studied in recent work, such as [61, 62, 74]. In the following, we review the existing workload

management approaches under this task model.

In the network calculus [46], the greedy shapers were proposed to strictly conform the

overloaded packets to the arrival constraints. An important property of the greedy shaper is

“greedy shaper comes for free” [46], which means that the shaping does not increase delay or

buffer requirements. The use of greedy shaper was introduced to schedule the real-time events

in [72], and it was found that the property of “greedy shaper comes for free” is also applicable

for shaping real-time events. In [76], an admission server was proposed to enforce arbitrary

real-time demand-curve interfaces. However, its implementation overhead is not low. In [77],

by implementing a dual-bucket mechanism (similar to dynamic counters [64]) into FPGA, the

runtime inputs are conformed to the designed arrival constraints. The implementation showed

that the resource and timing overheads of this shaping scheme are very low in FPGA. Another

monitoring method based on the minimum distance functions (i.e., an inverse representation of

arrival curves) was proposed to do the event model verification [75]. This method is able to

monitor the periodic burst events. Its runtime overhead can be reduced by using an l-repetitive

function to represent the minimum distance function. The monitoring difference between using

the dynamic counters and l-repetitive function was explored in [78,79]. Although both dynamic

counters and l-repetitive functions are effective in monitoring some certain-pattern event traces,

only dynamic counters approach was presented how to use the past monitoring results to predict

the future event traces [64].

84

4.3 System Settings

P
ri
or
it
y
C
on

tr
ol
le
r

M
on

it
or

L
m
on

it
or

1
m
on

it
or

n

Sl
1

Sl
m

Sh
1

Sh
n

τ l1

τ lm

τh1

τhn

uniprocessor

(a) System setup for priority-adjustment

policy

sh
a
pe
r

m
on

it
or

1
m
on

it
or

n

Sl
1

Sl
m

Sh
1

Sh
n

τ l1

τ lm

τh1

τhn

uniprocessor

(b) System setup for workload-

shaping policy

Figure 4.1: Mixed-criticality systems scheduled by the preemptive FP policy

The multi-mode monitoring and workload monitoring were proposed in [61] to monitor the

LO-critical workload by switching the workload bound distribution of specific LO-critical tasks.

A similar approach is to monitor the LO-critical events as a group [62] by using workload arrival

curve, in which way the system utilization increases while the timing constraints of HI-critical

tasks are met. By monitoring the runtime workload, a scheme named workload-aware shaping

was proposed to improve the resource utilization by prioritizing the LO-critical accesses over

HI-critical accesses, and exchange the priorities among them only when the coming LO-critical

workload exceeds the designed bound [74]. Phan et al. [73] introduced another technique to use

an optimal greedy shaper for shaping periodic tasks with jitter to improve the schedulability of

real-time systems.

None of the preceding monitoring or shaping scheme allows to refine the shaping bound.

Thus, their shaping schemes are pessimistic because of the differences between the actual de-

mand and the worst-case demand. In this chapter, we aim to fill this gap by providing an

adaptive bound refinement scheme.

4.3 System Settings

In this chapter, we consider a uniprocessor scheduled by the preemptive fixed-priority (FP)

scheduling policy. Towards the two workload management polices, there are two system settings,

respectively as shown in Fig. 4.1. In the two systems, there are a set of LO-critical tasks

τ l = {τ l1, τ l2, ..., τ lm} and a set of HI-critical tasks τh = {τh1 , τh2 , ..., τhn}. Every task is activated

85

4. ADAPTIVE WORKLOAD MANAGEMENT

by an event stream and the corresponding event streams for those tasks are denoted as Sl =

{Sl1, Sl2, ..., Slm} and Sh = {Sh1 , Sh2 , ..., Shn}. For every HI-critical event stream, a monitor is

applied to monitor its arrival events. For the HI-critical tasks, in order to strictly meet their

deadlines, their activation patterns are often fixed and its upper bound can be represented by

an arrival curve. For LO-critical tasks, such as multi-media tasks in a car, their workload may

sometimes be overloaded. Hence, their workload needs to be regulated, in order to constrain

their interferences on HI-critical tasks. Note that, recent works of [61, 62, 74] have the same

assumptions on system as ours.

In the system for priority-adjustment policy, as shown in Fig. 4.1(a), a priority controller is

applied in the system to dynamically assign priorities to the arriving events. The LO-critical

events are grouped together sharing the same priority, and are monitored by the Monitor L

during the runtime. The priority of all LO-critical tasks is named LO-critical priority in the

following. The priorities order among HI-critical tasks is fixed and unchanged during the

runtime, while the LO-critical priority can be changed to lower level or higher level, subjected

to the actual demand of HI-critical tasks. This means that the priority controller can only

change the priority of τ l from 1 to n+ 1. Without the loss of generality, the tasks τh1 , ..., τ
h
n in

τh are prioritized in a descending order, that is, the priority of the task τhi is higher than that

of the task τhj when i < j.

In the system for workload-shaping policy, as shown in Fig. 4.1(b), a shaper is used to

manage the inflowing workload from LO-critical event streams. In this case, the priorities of

all tasks cannot be changed during the runtime. The priorities for HI-critical tasks τh1 , ..., τ
h
n

are also set as a descending order. All LO-critical tasks are grouped together to share the

highest priority among all tasks, with the aim of maximizing the service for LO-critical tasks.

In contrast to the priority controller in priority-adjustment policy, the shaper is only responsible

for the release of LO-critical events. The principle of releasing an event is that, the released

event should not result in a deadline miss of any HI-critical task.

In all monitors or shapers, buffers are used to store the backlogged events for every event

stream, because there may be some events that have arrived but not released. The buffer obeys

the principle of first-come-first-serve. The size of the buffer is assumed to be large enough. Note

that, although the WCET of every event can be different, the LO-critical events can be simply

considered from one stream whose workload is bounded by a workload arrival curve, which is

similar to the workload bound of a group tasks in [62].

86

4.4 Real-time calculus routines and interface analysis

1

2

3

4

5

6

7

20 40 60 80 100 120 140 160 180 200 220 240

#event

∆

time
Ract

t1 t2t0
trace

αu
1 = 1 + ⌊∆

20⌋

αu
2 = 4 + ⌊ ∆

100⌋
αu = min{αu

1 , α
u
2} DC1(t0) = 1, DC2(t0) = 4

DC1(t1) = 1, DC2(t1) = 2

DC1(t2) = 1, DC2(t2) = 0

1

Figure 4.2: An example for using dynamic counters to predict the future events

4.4 Real-time calculus routines and interface analysis

In this section, we present the basic routines to construct the actual arrival curve and demand

bound function at runtime, on top of which we present the interface analysis to guarantee no

deadline misses for HI-critical tasks.

4.4.1 Arrival Curves and Service Demand with Historical Information

Before presenting the schedulability analysis, we first introduce how to derive the actual arrival

curve and demand bound functions with historical information. The actual arrival curve consists

of the workload of future events, the backlogged events, and the carry-on event (active and not

finished), while the demand bound function also consists of the demand of the future events,

the backlogged events, and the carry-on event.

4.4.1.1 Future Events and their Demand Bound

The arrival pattern of future events can be predicted by using the past information. We adopt

the dynamic counters approach to monitor the runtime events as this approach was presented

how to fast obtain a tight bound on the number of future events.

In principle, any (discrete) complex arrival pattern can be bounded by a set of upper and

lower staircase functions [80]. Therefore, suppose the arrival curve αu(τi,∆) of task τi is

composed of n′ staircase functions, i.e.,

∀∆ ∈ R≥0 : αu(τi,∆) ≤ min
j=1..n′

{Nu
j + b∆

δuj
c},

where Nu
j is the initial value of a staircase function and δuj is the stair length.

87

4. ADAPTIVE WORKLOAD MANAGEMENT

Algorithm 3 Implement a dynamic counter to track a staircase function

Input: signal s, .tuple < DCj , CLKj >;

1: if s = eventArrival then

2: if DCj = Nu
j then

3: reset timer(CLKj , δ
u
j)

4: kj = 0

5: end if

6: DCj ← DCj − 1

7: end if

8: if s = CLKjT imeout then

9: DCj ← min(DCj+1,Nu
j)

10: reset timer(CLKj , δ
u
j)

11: kj = kj + 1

12: end if

13: if DCj < 0 then

14: report exception

15: end if

A dynamic counter (DCj) can be used to track a single upper staircase function (αuj) and

predict its future workload. The detailed tracking algorithm can be seen in Algo. 3 [64]. DCj

tracks the potential burst capacity, and the auxiliary variable kj in Algo. 3 tracks the offset

between the current time t and the last δuj . Below shows an example of using dynamic counters

for event prediction.

Example 8. As shown in Fig. 4.2, for the PJD task with (P, J, D)=(100, 300, 20), two staircase

functions, α1 and α2, are used to approximate the arrival curve of this PJD task. Every staircase

function is tracked by a counter. Assume the real arrival event trace is shown in the event trace

Ract. By applying Algo. 3, DC1 tracks the arrival event trace based on α1, and DC2 tracks the

arrival event trace based on α2. The minimum of DC1(t) and DC2(t) is the potential activations

of this task at time t.

As shown in Fig. 4.2, the bold line shows the worst-case arrival pattern at the beginning,

DC1(t0) = Nu
1 = 1, DC2(t0) = Nu

2 = 4. At time t1, two events have been recorded, and

dynamic counters are updated to that DC1(t1) = 1, DC2(t1) = 2. The future event prediction

is shown in the dotted line, which is less than the worst-case assumption. At time t2, dynamic

counters are updated to that DC1(t2) = 1, DC2(t2) = 0 since five events arrived during [t0, t2].

The prediction shown in the solid line is further less than the one at time t1.

The potential burst capacity DCj(t), together with staircase function, yields the following

future events prediction [64]:

Uj(τi,∆, t) = DCj(t) +

 b
∆+(t−kjδuj)

δuj
c if DCj(t) < Nu

j

b ∆
δuj
c if DCj(t) = Nu

j

(4.1)

The above function bounds future event arrivals at time t. By using the monitor to track the

event trace for tasks, DCj and kj are known during the runtime. Therefore, Uj is also known.

Regarding to bound the number of future event arrivals w.r.t. a complex activations pattern of

task τi, one can simply take the minimum over all the Uj [64]:

αu(τi,∆, t) = min
j=1..n′

(Uj(τi,∆, t)). (4.2)

88

4.4 Real-time calculus routines and interface analysis

Definition 8 (Deadline Service Demand [39]). Suppose the arrival curve of future events of a

task τi at time t is αu(τi,∆, t). To satisfy the required relative deadline, the minimum service

demand is

dbfF(τi,∆, t) = αu(τi,∆−Di, t) · ci, (4.3)

where Di and ci are the relative deadline and WCET of task τi.

4.4.1.2 Backlogged Events and their Demand Bound

During the runtime, if events arrive more frequently than the rate that they can be processed,

some events may be backlogged. We denote the set of unfinished events of τi in the backlog

at time t as E(τi, t). Then, the number of backlogged events can be denoted as |E(τi, t)|. For

each event ei,j ∈ E(τi, t), we use Di,j to denote its absolute deadline.

Definition 9 (Backlogged Demand [39]). Suppose the set of unfinished events of a task τi in

the buffer at time t are denoted as E(τi, t). Let Di,j denote the absolute deadline for event

ei,j ∈ E(τi, t). A backlogged demand for this task is defined as

dbfB(τi,∆, t) = ci ·

{
(j − 1), Di,j − t < ∆ < Di,j+1 − t,
|E(τi, t)|, ∆ ≥ Di,|E(τi,t)| − t,

in which, ci is the WCET, and Di,0 is defined as t for brevity.

4.4.1.3 Carry-On Event and its Demand Bound

Suppose at time t, an event of task τi has been released but its execution is not finished. This

event is called a carry-on event. Similar to the demand of backlogged events, the demand of

carry-on event is defined as follows.

Definition 10 (Carry-On Demand). Suppose C(τi, t) is used to denote the left time for fin-

ishing a carry-on event of τi at time t, and the demand for the carry-on event is that

dbfC(τi,∆, t) = ci ·

{
0, ∆ < Dc − t,
C(τi, t), ∆ ≥ Dc − t,

where Dc is the absolute deadline of this carry-on event.

With the event arrival bound and demand bound of future, backlogged and carry-on events,

we can derive the task online workload and demand bound function (see Section 2.3 for their

definitions).

Lemma 11. The workload arrival curve α(τi,∆, t) and demand bound function dbf(τi,∆, t) of

task τi are that,

α(τi,∆, t) = max
(
ci ·αu(τi,∆), ci ·αu(τi,∆, t) + ci · |E(τi, t)|+ C(τi, t)

)
,

dbf(τi,∆, t) = max
(
ci ·αu(τi,∆−Di), dbfF(τi,∆, t) + dbfB(τi,∆, t) + dbfC(τi,∆, t)

)
,

(4.4)

where the denotations of the right hand side are shown in above definitions.

89

4. ADAPTIVE WORKLOAD MANAGEMENT

Proof. This proof follows the same procedure as proving Lemma 2. We omit it as it is easy to

verify.

Note that the workload arrival curve is the same as the workload bound function defined in

Section 3.3. The aim of using workload arrival curve α(τi,∆, t) in this chapter is to keep the

consistency with the default denotations in the framework of Real-Time Calculus.

4.4.2 Schedulability Analysis Based on Real-Time Interface

To sufficiently guarantee that the task τi can meet its deadline from time t, the provided lower

service should be greater than its demand bound function, i.e.,

βl(τi,∆, t) ≥ dbf(τi,∆, t). (4.5)

βl(τ l + τh,∆, t)

GPC

GPC

βl(τh,∆, t) dbf(τh,∆, t)

αu(τ l1,∆, t)

αu(τ lm,∆, t)

αu(τh1 ,∆, t)

αu(τhn ,∆, t)

cl1

clm

ch1

chn

αu(τ l,∆, t)

Figure 4.3: Real-Time Interface analysis

In the following, two approaches are presented to analyze the system schedulability. One

is to derive the whole demand bound function of all HI-critical tasks, and guarantee that the

provided lower service is greater than the whole demand bound function. This approach is

often used in deriving the bound offline [61,62,72,74]. The other approach is to guarantee the

task schedulability individually, in which there are n inequalities to be guaranteed.

4.4.2.1 Schedulability Analsyis by Considering HI-Critical Tasks as a Group

In the initial setting, as the priority of LO-critical tasks is set as the highest, the system can

be abstracted as Fig. 4.3, where

• αu(τ l,∆, t) denotes the workload arrival curve of the set of all LO-critical tasks,

• βl(τ l + τh,∆, t) denotes the provided lower service curve for all tasks,

90

4.4 Real-time calculus routines and interface analysis

• βl(τh,∆, t) denotes the provided service for the set of all HI-critical tasks,

• and dbf(τh,∆, t) denotes the demand bound function to meet deadlines of all HI-critical

tasks.

Furthermore, for the easiness of the analysis in the following, we denote that

• τh,ni represents the set of HI-critical tasks of τhi , τhi+1, ..., τhn . Then, we have τh,n1 = τh. By

this way, βl(τh,ni ,∆, t) and dbf(τh,ni ,∆, t) respectively represent the lower service curve

and the demand bound function for HI-critical tasks from τhi to τhn .

Theorem 10. In order to guarantee that all HI-critical tasks are schedulable, the maximum

feasible αu(τ l,∆, t) is that,

αu(τ l,∆, t) = RT−α
(

dbf(τh,∆, t), βl(τ l + τh,∆, t)
)

1. (4.6)

Proof. To sufficiently guarantee that all HI-critical tasks can be scheduled, the provided service

for the set of HI-critical tasks should be greater than their demand bound function, i.e.,

βl(τh,∆, t) ≥ dbf(τh,∆, t). (4.7)

According to the processing model of fixed-priority, we have

βl(τh,∆, t) = RT
(
βl(τ l + τh,∆, t), αu(τ l,∆, t)

)
. (4.8)

By inverting Eq. 4.8, we can get that,

αu(τ l,∆, t) = RT−α
(
βl(τh,∆, t), βl(τ l + τh,∆, t)

)
.

Since βl(τh,∆, t) ≥ dbf(τh,∆, t), the maximum feasible αu(τ l,∆, t) is obtained by using

dbf(τh,∆, t) to replace βl(τh,∆, t). Hence, Eq. 4.6 holds.

In Eq. 4.6, βl(τ l+τh,∆, t) is also the full processing ability of the platform. As the platform

is assumed to be a uniprocessor with constant processing ability, βl(τ l + τh,∆, t) = ∆ during

the runtime. Then, to get αu(τ l,∆, t), one has to know dbf(τh,∆, t). Based on the Real-

Time Interface, dbf(τh,∆, t) can be known by the backward derivation [41,42]. The backward

derivation step to get dbf(τh,∆, t) is briefly introduced as follows.

As shown in Fig. 4.4, for achieving the schedulability of tasks from τhi to τhn , dbf(τh,ni ,∆, t)

should be greater than the demand bound function of task τhi , and the provided service for

tasks from τhi+1 to τhn should be greater than dbf(τh,ni+1,∆, t), i.e.,

1RT−α(β′, β)(∆) = β(∆ +λ)−β′(∆ +λ) for λ = sup{τ : β′(∆ + τ) = β′(∆)}, from the real-time interface

in [41].

91

4. ADAPTIVE WORKLOAD MANAGEMENT

τhn τh2 τh1

αu(τhn ,∆, t) αu(τh2 ,∆, t) αu(τh1 ,∆, t)

dbf(τh,nn ,∆, t) dbf(τh,n3 ,∆, t) dbf(τh,n2 ,∆, t) dbf(τh,n1 ,∆, t)

Figure 4.4: The flow of backward derivation

dbf(τh,ni ,∆, t) ≥ dbf(τhi ,∆, t),

RT
(

dbf(τh,ni ,∆, t), αu(τhi ,∆, t)
)

= β(τh,ni+1 ,∆, t) ≥ dbf(τh,ni+1 ,∆, t).
(4.9)

Therefore, by inverting Eq. 4.9, we can get that

dbf(τh,ni ,∆, t) = max
{

dbf(τhi ,∆, t),RT−β
(

dbf(τh,ni+1 ,∆, t), α
u(τhi ,∆, t)

)}
1. (4.10)

By applying Eq. 4.10 for i = n − 1, n − 2, ..., 1, the demand bound function dbf(τh,n1 ,∆, t)

for the set of all HI-critical tasks is derived. Then, by applying Eq. 4.6, the maximum workload

arrival curve αu(τ l,∆, t) for LO-critical tasks can be computed.

4.4.2.2 Schedulability Analysis by Considering HI-Critical Tasks Separately

By considering the schedulability of each HI-critical task, we have the following theorem.

Theorem 11. All HI-critical tasks are schedulable if and only if

βl(τhi ,∆, t) ≥ dbf(τhi ,∆, t), ∀ i ∈ [1..n]. (4.11)

Proof. This theorem directly stems from the schedulable condition of Eq. 4.5.

4.5 Motivation

In this section, we derive the offline bound for constraining the LO-critical workload, based on

which we present an example to explain the problem.

For HI-critical tasks, as their event trace patterns are known, their workload arrival curves

and demand bound functions are thus known. Then, by applying the backward derivation

method, the demand bound function for the set of HI-critical tasks is thus derived. Suppose

dbf(τh,∆) is the offline demand bound function for scheduling the set of HI-critical tasks, and

βl(∆) is the provided service of the platform. The offline bound αu(τ l,∆) of LO-critical tasks

is that

αu(τ l,∆) = RT−α
(
βl(∆),dbf(τh,∆)

)
. (4.12)

92

4.5 Motivation

0 204060 100 200 300 400
t [ms]

Initial Burst

∆2

∆1

1

(a) Event arrival time frame

0 100 200 300 400 500
0

50

100

150

200

∆ 1[ms]

W
or

kl
oa

d

dbf(τh1 ,∆1)

α
u(τ l1,∆1)

60

(b) Initial time

0 100 200 300
0

100

200

300

∆2 [ms]

W
or

kl
oa

d

dbf(τh1 ,∆2, 100)

βbd(∆2, ρ
∗, 100)

ρ∗ = 75

(c) After the initial burst

Figure 4.5: Motivating example

The problem of constraining the LO-critical workload by αu(τ l,∆) is that, the bound is

independent with the actual executions of HI-critical tasks, thus the constrained bound is

sometimes too pessimistic as it ignores the fact that the actual demand of HI-critical tasks may

deviate from the offline demand. We use a simple example to illustrate this problem.

Example 9. In a mixed-criticality system, a LO-critical task τ l1 with a high priority and a HI-

critical task τh1 with a low priority are scheduled in a uniprocessor. The HI-critical task is a pjd

model, which is characterized with a period p = 100ms, a jitter j = 300ms, and a minimum

distance d = 20ms. The WCET is 25ms. As shown in Fig. 4.5(a), for the HI-critical task,

the worst-case activation pattern is an initial burst during the first 100ms, and after that, the

task is activated every 100ms.

Following the steps of the aforementioned analysis, the offline workload bound αu(τ l1,∆) can

be computed by applying backward derivation. The demand bound function dbf(τh1 ,∆) of the

HI-critical task τh and workload arrival curve αu(τ l1,∆) of the LO-critical task τ l (bold line) are

shown in Fig. 4.5(b). It can be seen that within an interval of 150ms, only 60ms LO-critical

workload is allowed. Now, we consider another case. We assume that the initial burst of the

HI-critical task happens within 100ms, and there is no LO-critical workload within this 100ms.

If dynamic counters are used to predict its future events, we know the actual demand of HI-

critical task at time t = 100ms is bounded by dbf(τh1 ,∆2, t), as shown in Fig. 4.5(c). Suppose

a bounded delay function βbd(∆2, ρ
∗, 100) at t = 100ms is used to serve this HI-critical task,

where ρ∗ denotes the delayed interval. There will be no deadline miss as long as βbd(∆2, ρ
∗, 100)

93

4. ADAPTIVE WORKLOAD MANAGEMENT

Keeping Priority

lowCriticalEventArrival

lowCriticalEventFinish

Decrease Priority by
Applying Algo. 2

Applying Algo. 3
Increase Priority by

Figure 4.6: The flow of priority-adjustment policy

is greater than dbf(τh1 ,∆2, t). The largest delay is 75ms, which indicates that the service for

HI-critical task can be delayed for 75ms. It also means that, within this delay interval, the

LO-critical task can be processed. Therefore, the largest LO-critical workload at t = 100ms

can be 75ms, instead of bounded by 60ms.

As this example illustrates, if the workload of LO-critical task is constrained based on the

offline bound, the QoS for LO-critical tasks is not as high as the bound based on the largest

delay of a bounded delay function at runtime. The approach using the largest delay to manage

the LO-critical workload is similar to the energy management in [39], where the longest sleeping

interval that the processor can have is updated to manage the power mode to save static energy

while guaranteeing no tasks miss their deadlines. In this chapter, based on the schedulability

analysis, we propose to update the actual demand bound function and workload arrival curve

to manage the LO-critical workload.

4.6 LO-Critical Workload Management

By constantly updating the upper bound of constraint on LO-critical tasks, one can prevent the

LO-critical interferences on HI-critical tasks either by decreasing their execution priorities or

by using a shaper to shape the overloaded workload when the LO-critical workload violates the

bound. In this section, we present how to apply the priority-adjustment policy and workload-

shaping policy in managing the LO-critical workload at runtime.

4.6.1 Priority-Adjustment Policy

For the priority-adjustment policy, since the relative priority order of HI-critical tasks is fixed,

we have to decide when to decrease or increase the priority of LO-critical tasks. All LO-critical

tasks share one priority, which indicates that they are scheduled as a group. In the initial

setting, the priority of LO-critical tasks is set as the highest. During the runtime, their priority

is dynamically adjusted based on the actual demand bound functions of HI-critical tasks. The

workflow of the priority-adjustment policy is illustrated in Fig. 4.6. Whenever a LO-critical

94

4.6 LO-Critical Workload Management

≥
τhk τ l τhk+1

αu(τhk ,∆, t) W (t) αu(τhk+1,∆, t)

βl(τh,nk+1 + τ l,∆, t) βl(τh,nk+1,∆, t) dbf(τh,nk+1,∆, t)

Figure 4.7: The diagram showing the verification of system scheduliability by priority-adjustment

policy

event arrives or a LO-critical event is finished, the LO-critical priority will be decreased or

increased, in order to not miss any deadline of HI-critical tasks.

4.6.1.1 Decreasing Priority

For the decrease of the priority of all LO-critical tasks, we have to verify whether current

LO-critical workload has already violated the bound. Since the LO-critical workload is unpre-

dictable, its future bound is unknown. Such verification only relies on the LO-critical workload

that has already arrived. Therefore, every time when a new LO-critical event arrives, the

schedulability verification should be done to guarantee that all HI-critical tasks can be sched-

uled. If the new arrival event results in other HI-critical tasks missing their deadlines, the

LO-critical priority should be decreased to avoid the deadline miss. Now we formulate a gen-

eral statement for the problem of how to find a feasible priority for LO-critical tasks.

Problem. Let P (τ l) denote the priority of the set of LO-critical tasks and P (τhi) denote the

priority of the HI-critical task τhi . Suppose before time t, all HI-critical tasks are schedualable

with the priorities order that P (τh1) > ... > P (τhk) > P (τ l) > P (τhk+1) > ... > P (τhn). If a new

LO-critical event arrives at time t, how to assign the priorities so that all HI-critical tasks can

still keep schedulable.

The principle for reassigning the priorities is that, the schedulability of HI-critical tasks

should be guaranteed. The schedulability verification diagram is shown in Fig. 4.7. Suppose

the LO-critical workload becomes W (t) with the arrival of a new event. Then, by using the

backward derivation, the demand bound function dbf(τh,nk+1,∆, t) for serving tasks from τhk+1 to

τhn is derived. In order to meet the deadlines of tasks τh,nk+1, the provided service βl(τh,nk+1,∆, t)

for them should be greater than their demand bound function, that is,

βl(τh,nk+1,∆, t) ≥ dbf(τh,nk+1,∆, t). (4.13)

95

4. ADAPTIVE WORKLOAD MANAGEMENT

Algorithm 4 Procedure of priority reassignment with a new arrival LO-critical event

1: for k[= k + 1→ n do

2: Compute βl(τh,n
k[+1

,∆, t) and dbf(τh,n
k[+1

,∆, t) by Eqs. 4.10, 4.14, 4.15;

3: if βl(τh,n
k[+1

,∆, t) ≥ dbf(τh,n
k[+1

,∆, t) then

4: Change the priorities order to be that P (τh1) > ... > P (τh
k[

) > P (τ l) > P (τh
k[+1

) > ... >

P (τhn);

5: break;

6: end if

7: end for

By applying the forward computation of RT, we get the provided service for tasks τh,nk+1 and

τ l, which is,

βl(τh,ni + τ l,∆, t) = RT
(
βl(τh,ni−1 + τ l,∆, t), αu(τhi−1,∆, t)

)
, (4.14)

by applying i = 2, ..., k + 1 and βl(τh + τ l,∆, t) = ∆. To get βl(τh,nk+1,∆, t), the LO-critical

workload should also be considered because the priority of LO-critical tasks is greater than

tasks τh,nk+1. That is,

βl(τh,nk+1,∆, t) = βl(τh,nk+1 + τ l,∆, t)−W (t). (4.15)

If Eq. 4.13 does not hold, the LO-critical priority has to be decreased. In general, the

Algo. 4 can be applied to find the highest feasible priority for LO-critical tasks. The procedure

is that, every priority that is equal to or lower than the original LO-critical priority is a possible

priority for LO-critical tasks. Therefore, Algo. 4 checks every possible priority from high to

low until a feasible priority is found out. This algorithm leads to the following theorem.

Theorem 12. Algo. 4 can always find a schedule, i.e., a priority assigned to LO-critical tasks,

to sufficient guarantee all HI-critical tasks schedulable.

Proof. Denote t− as the time instant just before the arrival of new event, and denote t+ as the

time instant just after the arrival of new event. The demand bound functions of all HI-critical

tasks are the same at t− and at t+. Since all HI-critical tasks are schedulable at time t−, we

have
βl(τhi ,∆, t

−) ≥ dbf(τhi ,∆, t
−) = dbf(τhi ,∆, t

+), ∀ i ∈ [1..k],

βl(τh,nk+1,∆, t
−) ≥ dbf(τh,nk+1,∆, t

−) = dbf(τh,nk+1,∆, t
+).

(4.16)

Since the priorities of tasks from τh1 to τhk is greater than that of τ l, the services for tasks

from τh1 to τhk are not changed by the arrival of new LO-critical event, i.e., βl(τhi ,∆, t
−) =

βl(τhi ,∆, t
+), ∀ i ∈ [1..k]. Hence, tasks from τh1 to τhk are still schedulable.

With the new arrival of LO-critical event, the LO-critical workload changes from W (t−) to

be W (t+). The worst case of applying Algo. 4 is to assign the lowest priority to LO-critical

tasks. We now prove that the lowest priority is always a feasible priority.

Suppose the priority of LO-critical tasks is the lowest at t+, then the processing resource

βl(τh,nk+1 + τ l,∆, t+) will be fully provided to the task set τh,nk+1, and only the remaining service

96

4.6 LO-Critical Workload Management

after processing τh,nk+1 can be provided to LO-critical tasks. Therefore, we have

βl(τh,nk+1,∆, t
+) = βl(τh,nk+1 + τ l,∆, t+) = βl(τh,nk+1 + τ l,∆, t−).

Because βl(τh,nk+1,∆, t
−) = βl(τh,nk+1 + τ l,∆, t−)−W (t−), we have

βl(τh,nk+1,∆, t
+) = βl(τh,nk+1 + τ l,∆, t−) ≥ βl(τh,nk+1 + τ l,∆, t−)−W (t−) = βl(τh,nk+1,∆, t

−)

Because of Eq. 4.16, we can get that βl(τh,nk+1,∆, t
+) ≥ dbf(τh,nk+1,∆, t

+). Hence, we have proved

that the lowest priority is always a feasible priority to be assigned to LO-critical tasks and all

tasks in τh,nk+1 are also schedulable.

4.6.1.2 Increasing Priority

In our policy, we suppose that the LO-critical priority can be increased when the LO-critical

workload is decreased. It indicates that, whenever a LO-critical event has been finished, the LO-

critical priority can be increased. This is because, the interference imposed on HI-critical tasks

with priorities lower than the LO-critical priority also decreases. The algorithm of increasing

the LO-critical priority is similar to the algorithm of decreasing the LO-critical priority. As

shown in Algo. 5, Eq. 4.13 is used to guarantee that the increased priority will not result in

a deadline miss of all lower-priority tasks. The chosen priority gradually increases until an

infeasible priority is found out. The reason for gradually increasing the chosen priority in

Algo. 5 or gradually decreasing the chosen priority in Algo. 4, instead of searching the priority

from the highest to the lowest in Algo. 5, or the lowest to the highest in Algo. 4, is that the LO-

critical priority is supposed to keep unchanged with the finish or the arrival of the LO-critical

event.

Theorem 13. Algo. 5 can always find a schedule, i.e., a priority assigned to LO-critical tasks,

to sufficient guarantee all HI-critical tasks schedulable.

We omit the proof due to the similarity to theorem 12. The worst case of applying Algo. 5

is to keep the LO-critical priority unchanged.

4.6.1.3 Runtime Behavior

The monitors in this system setting are only used to monitor the arrival events without any

interference on their releases. The priority controller is only responsible for reassigning the

priorities. All events are scheduled based on their assigned priorities. We assume, for every

priorities reassignment, there is an instant interrupt to force the processor to process events

based on the new priorities order. As there are multiple streams of LO-critical events and all

of them share one priority, they are served based on the principle of first-come-first-serve.

97

4. ADAPTIVE WORKLOAD MANAGEMENT

Algorithm 5 Procedure of priority reassignment after finishing a LO-critical event

1: for k[= k → 1 do

2: Compute βl(τh,n
k[

,∆, t) and dbf(τh,n
k[

,∆, t) by Eqs. 4.10, 4.14, 4.15;

3: if βl(τh,n
k[

,∆, t) < dbf(τh,n
k[

,∆, t) then

4: Change the priorities order to be that P (τh1) > ... > P (τh
k[+1

) > P (τ l) > P (τh
k[

) > ... >

P (τhn);

5: break;

6: end if

7: end for

dbf(τh,∆, t)

βbd(∆, ρ∗, t)

∆

ρ∗

b

b b

b b

b b

b b

Figure 4.8: An illustration for the LFII

4.6.2 Workload-Shaping Policy

In contrast to the workload management by changing the execution priorities, the workload-

shaping policy manages the LO-critical workload by using a shaper to regulate the inflow of

LO-critical events. The priority of LO-critical tasks is constantly set as the highest.

4.6.2.1 The Release of an Event

To ensure that the released event should keep the schedulability of all HI-critical tasks, the

WCET of a released event should not be larger than the longest feasible interference inter-

val (LFII).

Definition 11 (Longest Feasible Interference Interval). The longest feasible interference inter-

val ρ∗(t) with respect to a given demand bound function dbf(τh,∆, t) is defined as:

ρ∗(t) = max{ρ∗ : βbd(∆, ρ∗, t) ≥ dbf(τh,∆, t), ∀∆ ≥ 0}. (4.17)

where βbd(∆, ρ∗, t) is a bounded-delay service curve that βbd(∆, ρ∗, t) = max{0, (∆−ρ∗)}, ∀∆ ≥
0.

The LFII is illustrated in Fig. 4.8, where dbf(τh,∆, t) can be computed by using the back-

ward derivation. βbd(∆, ρ∗, t) means that the processing service is delayed for ρ∗. In this

case, if the WCET of released event is smaller than the LFII, all HI-critical tasks can still

98

4.7 A Lightweight Method

buffer > 0?

buffer checking

Y Wt < ρ∗?

Lfii updating

Y Release

Event

action

eventFinish?

eventFinish checking

Y

Figure 4.9: The flow of workload-shaping policy

be schedulable as the provided service for them is larger than βbd(∆, ρ∗, t). Therefore, during

the runtime, by constantly computing the LFII, the shaper decides how to release the arrival

LO-critical events. For every update of the LFII, the backward derivation has to be applied

in deriving the dbf(τh,∆, t), then the binary searching is used to search the maximum feasible

LFII.

4.6.2.2 The Adaptive Shaping Flow

The flow of workload-shaping policy is seen in Fig. 4.9. The shaper has three states and one

action, which are states of buffer checking, LFII updating, eventFinish checking, and

the action of release event.

At the beginning, the shaper stays in buffer checking, in which the shaper constantly

checks the emergence of an event in the buffer. Whenever there is an event in the buffer, the

shaper transits to the LFII updating, in which the shaper updates the LFII, and compares it

with the WCET of the event that is to be released. Once the LFII is greater than the WCET,

this event is released, and the shaper transits to the eventFinish checking. The shaper stays

in this state until the released event is finished, then the shaper transits back to the buffer

checking.

When the shaper is in the LFII updating, the time for updating the LFII is based on the

execution of HI-critical events. The shaper is designed to update the LFII at the time when a

HI-critical event is finished. If the updated LFII is still less than the WCET of the event to

be released, the LFII will be updated again when the next HI-critical event is finished. The

time setting for updating LFII is based on the fact that the demand of HI-critical tasks will

decrease if any HI-critical event is finished, thus making the LFII greater.

4.7 A Lightweight Method

Both of schedulability analyzing approaches in Section 4.4 rely on the heavy computation, which

prohibits their applications in the online cases. The computational overhead originates from

99

4. ADAPTIVE WORKLOAD MANAGEMENT

ρ∗

βbd(∆, ρ∗, t)

lb(τh1 ,∆, t)

αu(τh1 ,∆, t)
dbf(τh1 ,∆, t)

βl(τh2 ,∆, t)

dbf(τh2 ,∆, t)

b

b b

b b

b b

b b

b b

b b

b b

b b

b b

b

b b

b b

b b

b

Figure 4.10: The scheme for illustrating the schedulability analysis of two tasks

three parts, i.e., RT computation, backward derivation, and the binary search for the LFII. To

eliminate the heavy computation, a lightweight method is proposed in this section.

4.7.1 The Scenario of Setting the LO-Critical Priority as the Highest

Our mixed-criticality settings include a set of LO-critical tasks and a set of HI-critical tasks.

To simplify the problem, we discuss how to compute a bound of LO-critical workload in the

scenario where the LO-critical priority is higher than the priorities of all HI-critical tasks.

Suppose such a bound is ρ∗. A feasible ρ∗ should guarantee that all HI-critical tasks can be

scheduled. Hence, the problem of obtaining the maximum ρ∗ is that,

maximize ρ∗(t),

s.t. βl(τhi ,∆, t) ≥ dbf(τhi ,∆, t), ∀ i ∈ [1..n], (4.18)

or s.t. βl(τh,∆, t) ≥ dbf(τh,∆, t). (4.19)

This is a maximization problem with the constraint Eq. 4.18 or the constraint Eq. 4.19.

The constraint Eq. 4.18 relies on solving n inequalities with forward RT computations, and

the constraint Eq. 4.19 relies on backward deriving the group demand bound function. Both

methods need to compute the complex (de-)convolution many times. To eliminate such complex

computations, a leaky bucket [46] is proposed to represent the workload arrival curve and a

closed-form equation is derived for representing the provided service. In the following, we

introduce the closed-form equation by analyzing a system with only two HI-critical tasks.

4.7.1.1 Case for a System with Only Two HI-Critical Tasks

Given two HI-critical tasks τh1 and τh2 in a uniprocessor. Supposing at time t, their work-

load arrival curves are αu(τh1 ,∆, t) and αu(τh2 ,∆, t), and their demand bound functions are

100

4.7 A Lightweight Method

dbf(τh1 ,∆, t) and dbf(τh2 ,∆, t). Suppose the provided service is a bounded delay function

βbd(∆, ρ∗, t) = max{0,∆ − ρ∗}. As shown in Fig. 4.10, to meet the deadlines of the tasks

τh1 and τh2 , the following inequalities should hold:

βl(τh1 ,∆, t) ≥ dbf(τh1 ,∆, t), βl(τh2 ,∆, t) ≥ dbf(τh2 ,∆, t).

where

βl(τh1 ,∆, t) = βbd(∆, ρ∗, t), βl(τh2 ,∆, t) = RT
(
βl(τh1 ,∆, t), α

u(τh1 ,∆, t)
)
.

If a leaky bucket lb(τh1 ,∆, t) = b1(t)+r1(t) ·∆ is used to represent its workload arrival curve

αu(τh1 ,∆, t), then,

βl(τh2 ,∆, t) = RT
(
βl(τh1 ,∆, t), lb(τh1 ,∆, t)

)
= sup

0≤λ≤∆

{
max{0, λ− ρ∗} − b1(t)− r1(t) ·λ

}
.

As βl(τh2 ,∆, t) ≥ 0, we abbreviate βl(τh2 ,∆, t) as follows

βl(τh2 ,∆, t) = max
{

0, (1− r1(t)) ·∆− ρ∗ − b1(t)
}
.

Then, to keep the schedulability of both tasks, one only needs to guarantee the following two

inequalities be true,

max{0,∆− ρ∗} ≥ dbf(τh1 ,∆, t), max
{

0, (1− r1(t)) ·∆− ρ∗ − b1(t)
}
≥ dbf(τh2 ,∆, t).

In this case, by using the leaky bucket to represent the original workload arrival curve, both

βl(τh1 ,∆, t) and βl(τh2 ,∆, t) are derived to be rate-latency functions [46]. The rates w.r.t. τh1

and τh2 are 1 and 1−r1(t), and the latencies w.r.t. τh1 and τh2 are ρ∗ and (ρ∗+b1(t))/(1−r1(t)).

Actually, for a system with more than two HI-critical tasks, if all workload arrival curves are

represented by leaky buckets, the provided service for every HI-critical task can be derived to

be a closed-form equation. This closed-form euqation is also a rate-latency function.

4.7.1.2 Closed-Form Equation for the Provided Service

Analogous to the schedulability analysis with only two HI-critical tasks, a similar procedure

can be taken for analyzing a system with more than two HI-critical tasks. As analyzed in

Section 4.4, the following inequality sufficiently guarantees that all HI-critical tasks can meet

their deadlines.

βl(τhi ,∆, t) ≥ dbf(τhi ,∆, t), ∀ i ∈ [1..n].

To get βl(τhi ,∆, t), a step-by-step forward RT computation should be used, which would block

the computation speed. To remove this step-by-step computation, a closed-form equation is

derived to represent the βl(τhi ,∆, t).

101

4. ADAPTIVE WORKLOAD MANAGEMENT

Theorem 14. In a system with n HI-critical tasks, the demand bound function dbf(τhi ,∆, t)

and workload arrival curve αu(τhi ,∆, t) are known at runtime. If a leaky bucket with the form of

lb(τhi ,∆, t) = ri(t) ·∆+bi(t) is used to conservatively represent αu(τhi ,∆, t) , i.e., lb(τhi ,∆, t) ≥
αu(τhi ,∆, t), the provided service βl(τhi ,∆, t) for each task is as follows:

βl(τhi ,∆, t) = max{0, (1−Ri(t)) ·∆− ρ∗ −Bi(t)}, (4.20)

where Ri(t) =
i−1∑
j=1

rj(t), Bi(t) =
i−1∑
j=1

bj(t), and r0(t) = 0, b0(t) = 0 for brevity.

Proof. We prove this by induction.

If n = 1,

βl(τh1 ,∆, t) = max{0, (1−R1(t)) ·∆− ρ∗ −B1(t)} = max{0,∆− ρ∗} = βbd(∆, ρ∗),

which is true.

We assume that Eq. 4.20 is true for the task τhn (n 6= 1). Then, for the task τhn+1, by using

the Real-Time Interface analysis,

βl(τhn+1,∆, t) = sup
0≤λ≤∆

{
max{0, (1−Rn(t)) ·∆− ρ∗ −Bn(t)} − bn(t)− rn(t) ·λ

}
.

As βl(τhn+1,∆, t) ≥ 0, βl(τhn+1,∆, t) can be rewritten as follows for brevity,

βl(τhn+1,∆, t) = max
{

0, (1−Rn+1(t)) ·∆− ρ∗ −Bn+1(t)
}

Corollary 2. By using the conservative representation lb(τhi ,∆, t) ≥ αu(τhi ,∆, t) to compute

βl(τhi ,∆, t), under the constraint of Eq. 4.18, all HI-critical tasks can meet their deadlines.

Proof. Let βACT (τhi ,∆, t) denote the actual provided service for task τhi . As βl(τhi ,∆, t) ≥
dbf(τhi ,∆, t) is true for all HI-critical tasks, one only needs to prove that the actual service

βACT (τhi ,∆, t) is equal to or greater than βl(τhi ,∆, t). We prove this also by induction.

When n = 1,

βACT (τh1 ,∆, t) = βbd(τh1 ,∆, t) = βl(τh1 ,∆, t).

We assume βACT (τhi ,∆, t) ≥ βl(τhi ,∆, t) is true for the task τhn (n 6= 1). Then, for the task

τhn+1, we have

βACT (τhn+1,∆, t) = RT
(
βACT (τhn ,∆, t), α

u(τhn ,∆, t)
)

= sup
0≤λ≤∆

{
βACT (τhn , λ, t)− αu(τhn , λ, t)

}
.

As βACT (τhn , λ, t) ≥ βl(τhn , λ, t) and lb(τhn , λ, t) ≥ αu(τhn , λ, t), we have

βACT (τhn+1,∆, t) ≥ sup
0≤λ≤∆

{
βl(τhn , λ, t)− lb(τhn , λ, t)

}
= βl(τhn+1,∆, t).

Therefore, as βACT (τhi ,∆, t) ≥ βl(τhi ,∆, t) ≥ dbf(τhi ,∆, t) is true for all tasks, all deadlines

can be met.

102

4.7 A Lightweight Method

4.7.1.3 Leaky Bucket Representation

From the Eqs. 4.4,4.1,4.2, we know the composition of αu(τhi ,∆, t) is the minimum of a set of

staircase functions, and every staircase function is tracked by a dynamic counter. In principle,

any leaky bucket can be used as long as this leaky bucket is equal to or greater than αu(τhi ,∆, t).

But, in order to make our computation more tight, the leaky bucket should be as close to

αu(τhi ,∆, t) as possible. Since the leaky bucket corresponding to the staircase function with

the largest stair length in U(τhi ,∆, t) is close to αu(τhi ,∆, t) in the long term, the staircase

function with the largest stair length is thus used to compose a leaky bucket to represent the

workload arrival curve.

Since the largest stair length in a workload arrival curve and the WCET of each task is

known offline and unchanged during the runtime. Therefore, the leaky rate ri(t) is fixed to be

ci/δ
#
i , where δ#i is the largest stair length. Hence, 1 − Ri(t) in Eq. 4.20 is also known offline

and fixed during the runtime. Then, to get βl(τhi ,∆, t), one only needs to know the bucket size

bi(t). Suppose for the task τhi , DC#
i is the counter for tracking the chosen staircase function

in Algo. 3. At time t, it can be derived from Eqs. 4.4, 4.1, 4.2 that

bi(t) = C(τi, t) + ci · |E(τi, t)|+ ci ·

 DC]i +
t−k]i · δ#i

δ
#
i

if DC]i < N]u
i

DC]i if DC]i = N]u
i

(4.21)

where k]i is the auxiliary variable corresponding with DC]i in Algo. 3. Then, bi(t) is easy to get

by just applying Eq. 4.21. βl(τhi ,∆, t) can also be conveniently obtained as Ri(t) is fixed and

Bi(t) is easy to obtain with the support of Eq. 4.21.

4.7.1.4 Computing ρ∗(t)

To solve the maximization problem with the constraint of Eq. 4.18, the first step is to use

current parameters in monitors to update βl(τhi ,∆, t) and dbf(τhi ,∆, t). In this comparison,

only a limited segment of ∆ needs to be compared. If βl(τhi ,∆, t) ≥ dbf(τhi ,∆, t) in this limited

segment, βl(τhi ,∆, t) ≥ dbf(τhi ,∆, t) in any interval ∆.

In a schedulable system, suppose for a HI-critical task τhi , at time t, there are |E(τi, t)| events

that are backlogged in the buffer, and the absolute deadline trace is Di,j , where j indicates the

j-th event, as shown in Fig. 4.11. ci is the WCET for this HI-critical task τhi .

Lemma 12. If Di,x+1 − Di,x = δmaxi , where δmaxi is the maximum stair length and x >

|E(τi, t)|, then for the absolute deadline of k-th event (k ≥ x), we have

Di,k+1 −Di,k = δmaxi . (4.22)

103

4. ADAPTIVE WORKLOAD MANAGEMENT

b

b b

b b

b b

b b

b bb

b b

⋆
⋆

⋆
⋆

⋆◦
⋆◦Comparison End Deadline

Comparison Deadline ⋆

Di,1Di,2Di,3 Di,4 Di,5 Di,6

dbf(τhi ,∆, t)

δmax
i δmax

i

Binary Search

βl(τhi ,∆, t)

Figure 4.11: An illustration how to do the comparison

Proof. From Eqs. 4.4, 4.2, we know the deadline trace is decided by min
j=1..n′

(Uj(τ
h
i ,∆, t)) and

B(τhi ,∆, t). As x > |E(τi, t)|, the absolute deadline for the x-th event only depends on

min
j=1..n′

(Uj(τ
h
i ,∆, t)). min

j=1..n′
(Uj(τ

h
i ,∆, t)) is convex and is the minimum over all staircase func-

tions. For the x-th and (x+1)-th events, ifDi,x+1−Di,x = δmaxi , it indicates that min
j=1..n′

(Uj(τ
h
i ,∆, t))

only depends on the staircase function with the largest stair length. For the k-th event (k ≥ x),

min
j=1..n′

(Uj(τ
h
i ,∆, t)) also depends on the staircase function with the largest stair length. Hence,

Di,k+1 −Di,k = δmaxi .

Theorem 15. Suppose the task τhi is schedulable with a rate-latency function βl(τhi ,∆, t).

For the x-th and k-th event in lemma 12, if βl(τhi , Di,x, t) ≥ dbf(τhi , Di,x, t) ≥ 0, we have

βl(τhi , Di,k, t) ≥ dbf(τhi , Di,k, t).

Proof. Assume βl(τhi ,∆, t) = max{0, r ·∆ + b}, as βl(τhi , Di,x, t) ≥ dbf(τhi , Di,x, t) ≥ 0, that is,

r ·Di,x + b ≥ dbf(τhi , Di,x, t),

r ·Di,x + b+ (k − x) · ci ≥ dbf(τhi , Di,x, t) + (k − x) · ci.

From lemma 12, as Di,k+1 −Di,k = δmaxi , dbf(τhi , Di,k+1, t)− dbf(τhi , Di,k, t) = ci. We have

dbf(τhi , Di,k, t) = dbf(τhi , Di,x, t) + (k − x) · ci.

As r > ci
δmax
i

for a schedulable system, we have

r ·Di,x + b+ (k − x) · ci ≤ r ·Di,x + b+ r · (k − x) · δmaxi ≤ r ·Di,k + b

Therefore, βl(τhi , Di,k, t) = r ·Di,k + b ≥ dbf(τhi , Di,k, t).

Theorem 15 indicates that, if a rate-latency function βl(τhi ,∆, t) ≥ dbf(τhi ,∆, t) within an

interval of [0, Di,x], βl(τhi ,∆, t) will be greater than dbf(τhi ,∆, t) in any interval. In this paper,

we define the earliest deadline that satisfies Eq. 4.22 as the comparison end deadline, as shown

in Fig. 4.11. With the theorem 15, to do the comparison of Eq. 4.18, one only needs to compare

βl(τhi ,∆, t) with dbf(τhi ,∆, t) before the comparison end deadline. For example, as shown in

104

4.7 A Lightweight Method

i = 1 i = n βl(τhi ,∆, t) ≥ dbf(τhi ,∆, t)
Compute
new ρ∗(t)

Output
ρ∗(t)

i = i+ 1

N N

Y

Y

Figure 4.12: The program diagram to compute the maximum ρ∗(t) with the constraint of n

inequalities

Fig. 4.11, there are only 5 deadlines before the comparison end deadline. If βl(τhi , Di,j , t) is

greater than dbf(τhi , Di,j , t) in these 5 deadlines, this rate-latency function in other deadlines

is also greater than the dbf(τhi , Di,j , t). As 0 ≤ ρ∗(t) ≤ Di,1, we use the binary search to get

the maximum ρ∗(t). The computing complexity for one HI-critical task is O(log(n)).

In short, for our proposed lightweight scheme, n inequalities need to be solved. As we

only need to get the maximum ρ∗(t) that makes all inequalities hold, it is not necessary to

compute ρ∗(t) for every inequality. The bubble sorting with one iteration can be used to pick

out the maximum ρ∗(t). It works like this, as shown in Fig. 4.12, we start the searching with a

very large ρ∗(t). As this large ρ∗(t) will make βl(τh1 ,∆, t) < dbf(τh1 ,∆, t), a new ρ∗(t) will be

computed by solving βl(τh1 ,∆, t) ≥ dbf(τh1 ,∆, t). This ρ∗(t) is used in the second inequality.

If the rate-latency function βl(τh2 ,∆, t) with ρ∗(t) is greater than dbf(τh2 ,∆, t), this ρ∗(t) is

used in the third inequality. If not, we compute a new ρ∗(t) of the second inequality, and use

this new ρ∗(t) in the third inequality. ρ∗(t) is computed in this way until the last inequality.

The computed ρ∗(t) is the maximum LFII that satisfies all inequalities. The whole computing

complexity is O(n · log(n)).

4.7.2 The Lightweight Method in Workload Management Policies

We have introduced a lightweight method to compute the LO-critical workload bound in the

scenario where the priority of LO-critical tasks is set as the highest. In this section, we analyze

how to apply such lightweight method to our two proposed workload management policies.

4.7.2.1 The Lightweight Method in the Priority-Adjustment Policy

The problem of priority-adjustment policy is how to search a feasible priority for LO-critical

tasks, that is, to verify the system schedulability for every possible priorities assignment. Sup-

pose the priorities assignment is that P (τh1) > ... > P (τhk) > P (τ l) > P (τhk+1) > ... > P (τhn).

105

4. ADAPTIVE WORKLOAD MANAGEMENT

Under this setting, we present how the proposed lightweight method can be used to verify the

system schedulability.

Based on this priorities assignment, it can be derived that, by using the leaky bucket to

represent the workload arrival curve for every task, the provided services for HI-critical tasks

are that,

βl(τhi ,∆, t) =

{
max{0, (1−Ri(t)) ·∆−Bi(t)} if i ≤ k
max{0, (1−Ri(t)) ·∆−Bi(t)−W (t)} if i > k

, (4.23)

where Ri(t), Bi(t) are the same as Eq. 4.20, and W (t) is the workload of LO-critical tasks at

time t. Except the priorities setting, the derivation of Eq. 4.23 is the same as Eq. 4.20. For

tasks τhi where i ≤ k, there is no interference from LO-critical tasks, thus ρ∗ = 0. For tasks τhi

where i > k, there is the interference of W (t) from LO-critical tasks. Such interference W (t)

can be considered as a leaky bucket lb(τ l,∆, t) = W (t) + 0 ·∆. Therefore, the closed-form

equation is still applicable.

With βl(τhi ,∆, t) of Eq. 4.23, if βl(τhi ,∆, t) ≥ dbf(τhi ,∆, t), ∀ i ∈ [1..n] does not hold, the

HI-critical tasks are not schedulable, and the LO-critical priority should be decreased, until

βl(τhi ,∆, t) ≥ dbf(τhi ,∆, t), ∀ i ∈ [1..n] holds.

4.7.2.2 The Lightweight Method in the Workload-Shaping Policy

The priorities setting in the workload-shaping policy is the same as the scenario in Section 4.7.1.

Since the maximum ρ∗(t) can be computed with a low overhead in the scenario, such ρ∗(t) is

used in managing the LO-critical workload by the shaper.

4.8 Implementation and evaluation

In this section, we evaluate the two proposed adaptive workload management policies and

compare their performances with the offline approaches. The simulator is implemented in

MATLAB by applying MPA and RTC/S tools [69] on a simulation host with Intel i7-4770

processor and 16 GB RAM.

4.8.1 Evaluation Setup

We use the system shown in Fig. 4.1 for our experiments. The model contains a set of LO-

critical tasks and a set of HI-critical tasks, where each task set contains 5 independent tasks.

The activation pattern of HI-critical tasks is a pjd model whose event arrival curve is shown

in Eq. 3.1. For any HI-critical task τhi , the period pi is a random integer from [100, 300]ms.

106

4.8 Implementation and evaluation

The jitter ji is set to be equal to period. The distance di is set to be an random integer from

[0, p]ms. The relative deadline Di is set to be equal to the period pi. Each task utilization

U(τhi) and a task set utilization U(τh) are defined as U(τhi) = ci/pi, U(τh) =
n∑
i=1

ci/pi, where

ci is the task WCET and n is the task number in a task set. Task utilizations are generated

using the UUnifast [51], giving an unbiased distribution of utilization values. The WCET is

set based on the utilization and selected period, i.e., ci = pi ·U(τhi). The priorities assignment

among HI-critical tasks follows the principle of ensuring no HI-critical task misses in the case

that no LO-critical interference exists. The Audsley’s algorithm [7] is applied to assign feasible

priorities to all HI-critical tasks. In the case that no feasible priorities assignment is found for

a task set, this task set is dropped and a new task set is generated until a feasible priorities

assignment is found. In the simulation, there are four types of HI-critical task set. The first

type is named Type 1 whose utilization is 0.2. Successively, the second type is Type 2 with

utilization 0.3, the third type is Type 3 with utilization 0.4, and the fourth type is Type 4 with

utilization 0.5.

The LO-critical tasks are activated sporadically, while their mean inter-arrival rates were

chosen such that together they impose an additional utilization. Their mean inter-arrival in-

tervals are in the interval [50, 100]. Denote the U(τ l) as the utilization of the LO-critical

task set. All LO-critical events follow the principle of first-come-first-service, so there is no

individual priority for the LO-critical task. We don’t set the deadlines for LO-critical events,

and don’t drop any LO-critical events at runtime. For a uniprocessor system, the utilization

cannot exceed 1. Since the utilizations of the four HI-critical task sets are 0.2, 0.3, 0.4, 0.5,

the ranges of LO-critical utilization U(τ l) w.r.t. Type 1, Type 2, Type 3, Type 4 are set to be

[0.1, 0.8], [0.1, 0.7], [0.1, 0.6], [0.1, 0.5], in order to constrain the utilization of all tasks within 1.

In this work, six workload management approaches are evaluated, as shown in the following:

• Poffline: By setting the LO-critical priority as the lowest, there is no interference on

HI-critical tasks. In this approach, the priority controller or shaper is not necessary.

• Soffline: By setting the LO-critical priority as the highest, the LO-critical workload is

shaped to comply with the bound that is computed offline.

• Pexact: Applying the priority-adjustment policy proposed in Section 4.6.1 to manage the

LO-critical workload. For searching the feasible priorities assignment in this policy, the

exact RT and backward computation are applied.

107

4. ADAPTIVE WORKLOAD MANAGEMENT

• Sexact: By setting the LO-critical priority as the highest, the shaping policy proposed in

Section 4.6.2 is used to adaptively shape the LO-critical workload so that no HI-critical

tasks will miss their deadlines. The shaping bound is updated by applying the exact

backward computation.

• Plight: In contrast to the Pexact method by applying the exact RT and backward com-

putation, the lightweight method proposed in Section 4.7 is used to do the priority ad-

justment in this approach.

• Slight: In contrast to the Sexact method that applies the exact backward computation,

the lightweight method proposed in Section 4.7 is used to update the shaping bound in

this approach.

For every simulation, we simulate HI-critical event traces with a 10 sec time span. In order

to evaluate the performance of different workload management approaches, the following four

metrics are used.

• System Utilization Us: Suppose tu is the cpu time within 10 sec that is used to process

tasks. System utilization Us is referred to tu/10. Us represents how much extent that the

system processing capacity can be exploited.

• Average Response Time of LO-Critical Tasks RL: This metric is referred to the average

time span between the time that a LO-critical event arrives and the time that this event

is finished. RL reflects the QoS of LO-critical tasks.

• Latency Ratio of HI-Critical Task Set LH : Suppose Di is the relative deadline of a HI-

critical task and Ri is its average response time, then the task set latency ratio is referred

to be
n∑
i=1

(
Ri/Di

)
/n, where n is the task number in this task set. LH reflects the influence

of workload management approaches on the latency of HI-critical tasks.

• Timing Overhead of Decision Making To: For both the exact and the lightweight methods,

To is referred to the computation time needed to update the priority assignments or to

release a LO-critical event.

Note that Us may not be equal to U(τh) +U(τ l) because LO-critical tasks may not be fully

served.

108

4.8 Implementation and evaluation

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
ys

te
m

 U
til

iz
at

io
n

Utilization of LO-Critical Tasks

Poffline
Soffline
Pexact
Sexact

Plight
Slight

(a) Type 1

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

S
ys

te
m

 U
til

iz
at

io
n

Utilization of LO-Critical Tasks

(b) Type 2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6

S
ys

te
m

 U
til

iz
at

io
n

Utilization of LO-Critical Tasks

(c) Type 3

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5

S
ys

te
m

 U
til

iz
at

io
n

Utilization of LO-Critical Tasks

(d) Type 4

Figure 4.13: The system utilization w.r.t the utilization of LO-critical tasks

4.8.2 Simulation Results

In the following, we report simulation results for the listed four types, and the computation

expenses by applying the exact computation and by applying the lightweight method in our

proposed workload management policies. Under every specific setting of U(τh) and U(τ l),

1000 test cases are generated to evaluate the performance of different workload management

approaches. All the result figures are best seen in color online.

4.8.2.1 System Utilizations

The system utilizations of different workload management approaches working in the four types

are shown in Fig. 4.13. From it, we find that, except Soffline, the system utilizations of using

other approaches increase linearly with the utilization of LO-critical tasks, and the highest

system utilizations can almost reach 1. This shows that, all approaches except the Soffline,

109

4. ADAPTIVE WORKLOAD MANAGEMENT

100

101

102

103

104

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Utilization of LO-Critical Tasks

Poffline
Soffline
Pexact
Sexact

Plight
Slight

(a) Type 1

100

101

102

103

104

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Utilization of LO-Critical Tasks

(b) Type 2

100

101

102

103

104

 0.1 0.2 0.3 0.4 0.5 0.6

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Utilization of LO-Critical Tasks

(c) Type 3

100

101

102

103

104

 0.1 0.2 0.3 0.4 0.5

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Utilization of LO-Critical Tasks

(d) Type 4

Figure 4.14: The average response time of LO-critical events

can fully make use of the system resources to process LO-critical and HI-critical tasks. The

reason for the low system utilization of using Soffline is that the offline shaping bound is quite

pessimistic, which results in a lot waste of processing resource.

4.8.2.2 Average Response Time of LO-Critical Tasks

The average response times of LO-critical tasks w.r.t. four types of HI-critical task sets are

seen in Fig. 4.14. In general, we make three main observations.

• First, the shaping offline performs the worst among the six approaches. Fig. 4.14 shows

that the average response time of using Soffline can be hundred times larger than that

of using other methods. This is because the offline shaping bound is very pessimistic. If

the utilization of LO-critical events exceeds this bound, many LO-critical events will be

delayed for a long time.

110

4.8 Implementation and evaluation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

La
te

nc
y

R
at

io

Utilization of LO-Critical Tasks

Poffline
Soffline
Pexact
Sexact

Plight
Slight

(a) Type 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

La
te

nc
y

R
at

io

Utilization of LO-Critical Tasks

(b) Type 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.1 0.2 0.3 0.4 0.5 0.6

La
te

nc
y

R
at

io

Utilization of LO-Critical Tasks

(c) Type 3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.1 0.2 0.3 0.4 0.5

La
te

nc
y

R
at

io

Utilization of LO-Critical Tasks

(d) Type 4

Figure 4.15: The latency ratio of HI-critical events

• Second, the average response times of using Poffline are larger than those of using four

online methods with the exception that Slight performs worse than Poffline when utiliza-

tion of LO-critical tasks is large in Types 3, 4. By setting the priority of all LO-critical

tasks as the lowest, LO-critical events cannot be processed ahead of HI-critical events,

so the service that LO-critical tasks receive is lower than that of applying the priority-

adjustment policy. By using the online shaping, the LO-critical event can be processed

ahead of the HI-critical event only when the WCET of LO-critical event is smaller than

the computed LFII. In the four types, the WCET of LO-critical event is smaller than

the computed LFII in most cases, except the case of applying Slight when both U(τ l)

and U(τh) are greater than 0.3.

• Third, Sexact, Pexact, and Plight achieve almost the same average response time in the

four types, while Slight performs badly in Type 3 and Type 4. This demonstrates that

111

4. ADAPTIVE WORKLOAD MANAGEMENT

the lightweight computing method achieves the same results as using the exact comput-

ing methods by priority-adjustment policy. The lightweight method of workload-shaping

policy is the same as the exact method only when U(τh) is small.

4.8.2.3 HI-Critical Task Set Latency Ratio

The HI-critical task set latency ratio w.r.t. four types of sets are seen in Fig. 4.15. In general,

we make three main observations.

• Poffline has the lowest latency ratio, because the HI-critical tasks are served without the

interference from LO-critical tasks.

• In the four types, the latency ratio of Soffline first increases, then keeps constant. The la-

tency ratio increases because the LO-critical interference increases. However, the Soffline

imposes a threshold on the LO-critical interference. Once the LO-critical interference

exceeds this threshold, LO-critical interference will be throttled, and the latency ratio of

HI-critical tasks will not increase. Besides, from Type 1 to Type 4 of Fig. 4.15, it can be

seen that this threshold decreases with the increase of U(τh).

• With the increasing of U(τ l), the latency ratios of Ponline and Plight first increase and

then decrease. In the priority-adjustment policy, the latency ratio will be increased if HI-

critical tasks receive an increasing LO-critical interference. However, as U(τ l) increases,

the LO-critical workload also increases, which will result in that priorities of HI-critical

tasks will be set higher than LO-critical priority after LO-critical workload exceeds a

certain threshold.

From Fig. 4.15, we also observe that the offline approaches have smaller latency ratio than

the online approaches. This indicates that the online approaches sacrifice some QoS for HI-

critical tasks to improve the QoS of LO-critical tasks. However, since the timing requirements

of all HI-critical tasks are sufficiently met, such sacrifice is worthwhile to improve the QoS of

LO-critical tasks.

4.8.2.4 Timing Overheads of Decision Making

For the priority-adjustment policy, the LO-critical priority has to be adjusted when a LO-

critical event arrives or the execution of a LO-critical event finishes, by using the Algo. 4 or

Algo. 5 to decrease or increase the LO-critical priority. We report the computation expenses

112

4.8 Implementation and evaluation

10-2

10-1

100

101

102

 1 2 3 4 5 6 7 8 9 10

C
om

pu
ta

tio
n

E
xp

en
se

s
[m

s]

Streams

Pexact
Plight

(a) Priority-adjustment policy

10-2

10-1

100

101

102

 1 2 3 4 5 6 7 8 9 10

C
om

pu
ta

tio
n

E
xp

en
se

s
[m

s]

Streams

Sexact
Slight

(b) Workload-shaping policy

Figure 4.16: Computation expense of the two adaptive workload management policies

of applying Algos. 4, 5 to adjust the priority. Fig. 4.16(a) shows the worst, best and average

case computational expenses of using the exact and lightweight methods w.r.t. the number of

HI-critical event streams. In Fig. 4.16(a), the average computational expense of one stream

is 0.83ms by using the exact method, and 0.034ms by using the lightweight method. From

Algos. 4, 5, we know the complexity of searching feasible priority increases with the increase

of the streams, which can be found that the computational expense increases with the increase

of streams in this figure. In general, the computational expense of lightweight method is one

order of magnitude lower than that of the exact method by priority-adjustment policy.

The workload-management policy depends on the LFII to shape the LO-critical workload.

The LFII is updated when the shaper is in LFII updating state and a HI-critical event

is finished. Fig. 4.16(b) shows the worst, best, and average case computational expenses of

updating the LFII w.r.t. the number of HI-critical event streams. The average computa-

tional expense of one stream is 3.15ms by using the exact method, and 0.031ms by using

the lightweight method. For the ten streams, the average computational expenses of the two

methods are 18.5ms and 0.14ms. In general, the computational expense of lightweight method

is two orders of magnitude lower than that of the exact method.

From the above results, we find that the workload-shaping policy is effective when LO-

critical events have low WCETs but may become ineffective when their WCETs are high.

The workload-shaping policy is generally effective in regulating different kinds of events, while

suffering the problem of frequent priority changes that will incur some extra runtime overheads.

Therefore, from the perspective of implementations in a real platform, combining the two poli-

cies could be a possible solution that can overcome their own drawbacks and thus become more

113

4. ADAPTIVE WORKLOAD MANAGEMENT

effective than using the two policies individually. In this chapter, since we focus on the evalu-

ations of proof-of-concept simulations and the effectiveness of such practical implementations

rely on the specific hardware platforms, the combination of the two approaches is thus not

discussed.

4.9 Summary

In this chapter, we develop the adaptive workload management in MCSs to improve the QoS

of LO-critical tasks, while sufficiently guaranteeing the hard real-time constraints of HI-critical

tasks. The priority-adjustment policy and the workload-shaping policy have been presented.

In order to make the two polices applicable in the online cases, the lightweight method was

proposed to replace the complex RT computation and backward derivation in the schedulability

verification during the runtime. Simulation results demonstrate the effectiveness of the two

adaptive workload management policies, and show the low timing overhead of the lightweight

method.

114

Chapter 5

A Case Study of Applying

Mixed-Criticality Scheduling to

an Autonomous Driving System

System functionalities are often abstracted as independent tasks with specific parameters, based

on which a lot of scheduling algorithms were proposed [4]. Although most of the proposed

algorithms were presented to be effective in the theoretic analysis or by simulations, their

performances need to be evaluated more from the perspective of practical implementation due

to the following reasons. First, the abstractions on many functionalities are sometimes over

simplified as in this way the scheduling analysis on them will become much easier. This however

ignores many important functionality features like precedence constraints that will directly

result in the failure of some scheduling algorithms. Second, most scheduling algorithms are

based on the ideal assumptions that the implementation will not incur any overhead. Indeed,

in many cases the implementation overhead has a large impact that should not be ignored in

the evaluation of scheduling algorithm effectiveness [16]. Last, to the best of our knowledge,

all previous systems are either simulated or artificially generated, which omits many potential

difficulties for real-life use. Those potential difficulties need to be discovered and analyzed as

soon as possible because they may help to divert the research to a more correct direction.

An autonomous driving system is claimed to be a typical mixed-criticality system because

the functionalities in this system have different importance or criticalities. In this chapter, we

present a case study of applying some basic mixed-criticality system concepts to schedule a real-

life autonomous driving system. We investigate the authenticity of the current mixed-criticality

115

5. A CASE STUDY OF APPLYING MIXED-CRITICALITY SCHEDULING
TO AN AUTONOMOUS DRIVING SYSTEM

Figure 5.1: The overview of the model car. Its size is 120 cm×70 cm×35 cm and its weight is

around 20 kg

model and the scheduling overhead of using mixed-criticality scheduling theory to schedule a

real-life system.

5.1 Overview

Within the past decade, the autonomous driving has become a hot issue in the intelligent vehicle

research domain. Many large companies such as Tesla and BMW are now devoting increasing

efforts to develop the autonomous driving car [81,82]. However, constructing and designing an

autonomous driving car need a tremendous of investment that often blocks many small research

groups involving in the autonomous driving research.

In this chapter, instead of constructing a real car, we designed an autonomous driving

‘model’ car, an overview of which is shown in Fig. 5.1. This car was originally a customized

remote controlled car of the type SY-BLS5 equipped with additional metal bars on top. The

motor is powered by a 11.7 V Li Battery that can drive the car to reach more than 80 km/h.

In contrast with the real car, this model car is smaller but its movement is as flexible as the

real car. Therefore, testing its autonomous driving is cheaper and testing results provide us

some insights on how to achieve the autonomous driving on a real car. After some efforts, we

successfully implemented some functionalities such as navigation and lane detection on this car.

Those functionalities need a scheduler to manage their executions.

The mixed-criticality scheduling theory is based on the assumption that more and more

components with different levels of criticality are integrated onto a common hardware platform,

116

5.2 Hardware/Software Co-Design

where high criticality tasks need to be given more timing guarantee than low criticality tasks.

The standard mixed-criticality scheduling also has some assumptions that tasks are independent

and low criticality tasks can be aborted whenever a high criticality task overruns. Those

assumptions are now receiving more and more doubts because they go against a lot of practical

facts and industry standards [26, 27]. To sweep those doubts and establish the fundamental

principles for designing a practical mixed-criticality scheduler, a real-life system should be used

to examine the authenticity of those assumptions and evaluate the practical effectiveness of

scheduling algorithms.

The autonomous driving system is a typical mixed-criticality system because this system

contains at least two criticality levels, i.e., some safety-critical tasks (high criticality) and some

mission-critical tasks (low criticality). In this chapter, we develop an autonomous driving sys-

tem, based on which we develop two scheduling algorithms that are implemented in the Rasp-

berry Pi 3 board. The detail contributions of this chapter are as follows:

• We present a hardware/software co-design on developing an autonomous driving car.

• We develop a task graph to present the precedence constraints among tasks. Tasks are

classified into two levels – LO criticality and HI criticality. We develop the multi-core

mixed-criticality scheduling algorithms called “TTS-MS” and “ETS-MS” to support the

precedence-constrained task set of this autonomous driving system.

• We implement the two proposed scheduling approaches with the hierarchical scheduling

framework in a Raspberry Pi board system and evaluate the overhead and effectiveness

of the presented schedulers.

The rest of this chapter is organized as follows. Section 5.2 briefly presents the hard-

ware/sofware co-design on developing the autonomous driving functionalities. Section 5.3 pro-

vides the specific task scheduling analysis and present two mixed-criticality scheduling ap-

proaches. Section 5.4 evaluates the two developed scheduling approaches and last section

presents the conclusion and discussion.

5.2 Hardware/Software Co-Design

In order to achieve the autonomous driving, we designed a hardware structure as shown in

Fig. 5.2. In the designed autonomous driving system a four-core hardware platform Raspberry

117

5. A CASE STUDY OF APPLYING MIXED-CRITICALITY SCHEDULING
TO AN AUTONOMOUS DRIVING SYSTEM

Figure 5.2: System hardware structure

Pi 3 was used as a main processor. A global positioning system (GPS) and an inertial measure-

ment unit (IMU) were used for navigation. One stereo camera and one webcam were used for

local navigation. An Atmega 328 micro-controller and an encoder sensor were used to control

the motor movement. A wifi adapter was used to receive the wifi signal so that we can remotely

log in the linux system in the Raspberry Pi board. Based on those components, we develop the

corresponding navigation applications and some traffic signs recognition applications on this

car, as shown below.

5.2.1 Navigation

For the car global navigation, we relied on the GPS and the IMU. The limitations of GPS

and IMU are that they cannot recognize the obstacles and traffic signs in front of the car. To

allow the car to recognize objects such as pedestrians, we introduced the stereo cameras. In

the following, we briefly describe our navigating approaches of using GPS+IMU and stereo

cameras.

5.2.1.1 Global Navigation with GPS+IMU

NEO-6M GPS module and GY-85 IMU were chosen because they were commonly used in some

similar projects. They also have a variety of documentation and examples for their usage. For

the function development, we chose the Graphhopper service [83] that provides web API and

generates the route in JSON. All functions are recast to support the web API requests. Some

of them are completely rewritten.

118

5.2 Hardware/Software Co-Design

(a) All tentacles should be discarded (b) Safe tentacles can be selected

Figure 5.3: Illustration that all tentacles may collide with objects. (a) a case that all colliding

tentacles are discarded. (b) a case that the car can choose blue tentacles, where the black semicircle

represents the crash distance to avoid a collision (figure from [2])

5.2.1.2 Local Navigation

For local navigation it was planned to implement a tentacles driving algorithm derived from [2].

This approach is to precompute a number of possible paths the vehicle can take, depending on

the speed of the car, as shown in Fig. 5.3. This has advantages if computational resources are

limited. Creating the precomputed paths (tentacles) has to be done only once. The path which

comes closest to the desired target can be selected and executed. This target can be the point

at which the global navigation gives the next instruction. As the paths are evaluated several

times per second, the car never fully executes a path.

To avoid the obstacle, the tentacles algorithm only requires the car to check each collision

path it has detected by its sensors. An array is often used to store the feasible tentacles so that

the search on a feasible tentacle will be fast. In addition, we can also compute a crash distance

for each tentacle, the distance within which the collision with an obstacle might occur. The

crash distance allows the car to drive on a narrow road with another vehicle in front of it and

avoid the collision with it by selecting the tentacle with the longest crash distance. It should

be noted that this crash distance should be longer than a certain extent below which the car

would be unable to stop, as shown in Fig. 5.3.

5.2.2 Traffic Light Detection

Since the size of our car is small, the front cameras may miss elevated signs or traffic lights. So

we added another webcam on top of the car, pointing slightly upwards. To detect traffic lights

119

5. A CASE STUDY OF APPLYING MIXED-CRITICALITY SCHEDULING
TO AN AUTONOMOUS DRIVING SYSTEM

a number of simple image processing steps were run on the image. First, it was converted to

HSV color space, in which hue was a separate value and the image can be filtered by color. This

allowed to distinguish traffic light colors. Morphologic and blur operations closed holes created

by noise in the image. A circle detection algorithm was run and the results were verified in

regard to their circular shape and continuous color to obtain the final results. To exclude tail

lights from leading vehicles and similar candidates for false positives outside of a Region Of

Interest (ROI) were discarded.

5.2.3 Traffic Sign Recognition

Traffic sign recognition was implemented by using a similar approach to traffic light detection.

The image was first converted to HSV color space. After filtering by color and applying Canny

Edge Detection [84], shapes were detected via a function of OpenCV and possible signs were

selected by checking them for certain characteristics regarding shape and color. In case of a

speed sign the algorithm attempted to match the number against stored template images to

determine the number inside the sign. Only the speed that limits up to the car’s maximum

speed of 80 km/h were recognized. While detection of some signs, like STOP or yield signs,

also worked very good. Differentiation of the speed signs was currently unreliable. This may

be improvable by using an optical character recognition library [85] or by utilizing a better

template matching algorithm.

5.2.4 Lane Detection

The processing steps of lane detection were kept as simple as possible to increase throughput.

One camera of the stereo camera setup was used as input because it had the ground in view.

The ROI was restricted to areas below the horizon. At first the image was converted into

grayscale and Canny Edge Detection [84] was run. The integrated algorithm to find contours

in OpenCV was called, returning edges which were connected. Results were passed to the

Ramer-Douglas-Peucker algorithm [86]. This simplified detected contours and allowed to filter

out small lines, reducing noise. The remaining lines were compared against lines from the last

iterations in a verification step and returned if they matched.

120

5.3 Task Scheduling

5.3 Task Scheduling

In the above section we list some functionalities that can help the car to achieve autonomously

driving. Those functionalities are not completely independent. For example, the lane detection

relies on the video stream from the stereo camera, while the stereo camera is also used for

local navigation by tentacles algorithm. In order to present such relationship among those

tasks, every functionality is divided into some tasks and a task graph is developed to show their

dependencies as Fig. 5.4. This task graph is a directed acyclic graph (DAG) with 10 nodes,

where each node represents a task. The task functionality is described in Tab. 5.1.

Table 5.1: Task Properties

No. Name Description

T1 Capture2 Get a frame from the top camera

T2 SignsProc Detect traffic signs in a frame

T3 LightsProc detect traffic lights in the frame

T4 Capture0 Get the left frame of the stereo camera

T5 Capture1 Get the right frame of the stereo camera

T6 LanesProc Detect lanes and implement steering

T7 DepthMapProc Generate Depth map and implement collision avoidance

T8 GPSProc Get location from GPS and IMU

T9 SensorFusionSpeed Sensor fusion of different sensors and send proper speed

T10 SensorFusionSteering Sensor fusion of different sensors and send proper steering

Our processing platform is a four-core ARM cpu that is able to simultaneously run 4 tasks.

By allocating tasks to each core, the parallel execution will help the platform to minimize the

processing expense on running this task graph. In the following, we present a concrete task

allocation approach, based on which we present a mixed-criticality scheduling approach to this

task graph.

5.3.1 Task Allocation

Before we present the mixed-criticality scheduling approach, we first discuss how to allocate

tasks for a system only with the same criticality tasks. The discussed results will be used to

decide the allocated core for a task in the system with different criticality tasks.

A task can be allocated to a core by the global scheduling or by the partitioned scheduling.

The global scheduling allocates the task dynamically at runtime, where a task can be allocated to

any core. By allocating tasks dynamically, the global scheduling has the advantage of balancing

121

5. A CASE STUDY OF APPLYING MIXED-CRITICALITY SCHEDULING
TO AN AUTONOMOUS DRIVING SYSTEM

T1
Capture 2

T3
LightsProc

T2
SignsProc

T7
DepthProc

T5
Capture 1

T6
LanesProc

T8
GPSProc

T4
Capture 0

T9
SensorFusion

Speed

T10
SensorFusion
Steering

Figure 5.4: Task graph of the autonomous driving

the load automatically, lowering the average response time and increasing the efficiency of

reclaiming the available time slack. However, it has the disadvantage of the high task migrations,

high implementation difficulty, and low system reliability. Compared to the global scheduling,

the partitioned scheduling allocates tasks to cores statically, which means that a task will be

attached to a core permanently after the system starts. Thus there is no task migration in the

partitioned scheduling. The advantages of partitioned scheduling are high system reliability.

The automotive industry prefers partitioned scheduling because partitioned scheduling is more

reliable and much easier than the global scheduling to be implemented. In this thesis, we only

present the partitioned scheduling analysis.

In partitioned scheduling, each task in the task graph needs to be allocated to a core at the

beginning. Suppose the task is time-triggered, then the triggering time of each task also needs

to be decided. The principle of allocating tasks and setting triggering time is to minimize the

makespan within which every task in this task graph can be completed, because in this way the

execution of this task graph will be more frequent so that the car can react to the environment

much faster.

The makespan minimization under the constraint of a task graph has been studied in a lot

of paper [87–90]. It has been proved that the makespan minimization on a multi-core system

is an NP-hard problem [87], which means an optimal solution is not able to be obtained in

polynomial time and the solution also cannot be verified in polynomial time, either. However,

heuristic approaches such as list scheduling or polynomial time approximation scheme can be

applied to obtain a suboptimal solution.

A matlab toolbox named Torsche (Time Optimization of Resources, Scheduling) [91] offers

122

5.3 Task Scheduling

0 20 40 60 80 100 120

Processor4

Processor3

Processor2

Processor1

t

T1

T2

T3

T4

T5 T6

T7

T8

T9

T10

Figure 5.5: Task scheduling illustration

a number of solutions for various off-line and online scheduling problems. This toolbox also

fits for the task allocation problem in our case. First, a matrix P is used to represent the task

precedences. We define that P (i, j) represents the dependency between task τi and task τj ,

where P (i, j) = 1 implies that τj cannot be started before τi and P (i, j) = 0 implies that there

is no constraint between τi and τj . Then, based on the task graph of Fig. 5.4, the precedence

matrix is that

P =



0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


.

Second, in order to sufficiently isolate task execution, the worst-case execution time (WCET)

should be obtained. The real-time system developer often adopts two approaches [92–94] to

obtain the WCET of a task, which are

• dynamic timing analysis: Most parts of industry estimate the execution time bounds by

measuring the end-to-end execution time of a task for a subset of the possible executions.

This determines the minimal and maximal observed execution time.

123

5. A CASE STUDY OF APPLYING MIXED-CRITICALITY SCHEDULING
TO AN AUTONOMOUS DRIVING SYSTEM

• static timing analysis: The static methods do not rely on executing code on a simulator

or on a real hardware. They analyze the possible control paths in the task and combine it

with other abstract models of hardware architecture, to obtain the execution time bounds.

In our platform, we rely on the dynamic timing analysis because the unpredictable interference

in our multi-core design makes it impossible to apply the static timing analysis. The maximal

execution time in 2 hours test is used as a task WCET. The average and maximum execution

times are listed in Tab. 5.2. With the task precedence matrix P and task WCET, Torsche

toobox can be applied to allocate tasks and determine the triggering time for each task, also

as shown in Tab. 5.2. The task schedule plot is presented in Fig. 5.5, where the makespan is

116 ms. Then the period of this task graph can be set as 116 ms.

Table 5.2: Task execution times and allocations

No. Name AverExecu (ms) WCET (ms) Core Index Triggering Time

T1 Capture2 3 9 2 0

T2 SignsProc 54 70 2 9

T3 LightsProc 43 76 4 9

T4 Capture0 5 9 3 0

T5 Capture1 6 9 4 0

T6 LanesProc 4 10 3 81

T7 DepthMapProc 50 72 1 9

T8 GPSProc 67 106 1 0

T9 SensorFusionSpeed 3 10 1 85

T10 SensorFusionSteering 4 10 2 106

In the above scheduling the WCET is our measured maximum execution time in experi-

ments. This measured WCET in general underestimates the WCET and is not safe for hard

real-time systems. In order to make the WCET safer, the measured WCET can be multiplied

by a coefficient λ (λ > 1) and its product can be considered as a safer WCET. Although a large

λ increases the system safety, it will result in a lot available processing time being wasted be-

cause the real execution time will be much less likely to reach our assumed WCET. Therefore,

in order to keep the system high utilization and also keep its high safety, we propose to apply

the mixed-criticality scheduling to the system.

5.3.2 Mixed-Criticality Scheduling

The mixed-criticality scheduling adopts the mode-switch to guarantee all tasks’ functionalities

in normal mode and HI-critical tasks’ functionalities in critical mode. In normal mode, tasks’

124

5.3 Task Scheduling

T5
Capture 1

T7
DepthProc

T6
LanesProc

T4
Capture 0

T9
SensorFusion

Speed

T10
SensorFusion
Steering

Figure 5.6: HI mode task graph of the autonomous driving

execution times are assumed to be within a measured WCET. If a HI-critical task overruns its

measured WCET, the system switches to critical mode in which LO-critical tasks are aborted

in order to provide larger execution time budget to HI-critical tasks.

In the following, we first divide our tasks to LO- and HI-critical tasks. Then we present a

scheduler named time-triggered scheduler with mode switch (TTS-MS) and a scheduler named

event-triggered scheduler with mode switch (ETS-MS) to provide the timing guarantee in LO

and HI modes.

5.3.2.1 Task Criticality Classification

Since the system is divided into LO and HI modes, the task is also categorized into two classes,

LO criticality and HI criticality. The HI-critical tasks are often referred to the safety-critical

tasks. We assume the safety-critical tasks are path tracking, collision avoidance, steering and

speed control. The remaining tasks are set as LO-critical tasks. As a result, the task graph in

LO mode is the same as Fig. 5.4 and the task graph in HI mode will be like Fig. 5.6.

5.3.2.2 Time-Triggered Scheduler with Mode Switch

The system mode now has been divided into LO mode with a LO mode task graph and HI

mode with a HI mode task graph. The system should be in LO mode in most of the time

because aborting some tasks in HI mode makes the autonomous car become unstable. To

achieve this, we on the one hand should avoid the mode switch from LO to HI as much as we

125

5. A CASE STUDY OF APPLYING MIXED-CRITICALITY SCHEDULING
TO AN AUTONOMOUS DRIVING SYSTEM

0 50 100 150 200

Processor2

Processor1

t

T4

T5 T6

T7 T9

T10

Figure 5.7: Task scheduling of HI mode task graph

can, and on the other hand should switch the system back to LO mode as soon as possible

when the system is already in HI mode.

Since the LO mode is triggered to HI mode by a HI-critical task overrunning its LO WCET,

the LO WCET should be set high enough. We thus set the task measured maximum execution

time as its LO WCET. For LO-critical tasks, their executions will be stopped immediately

after they overrun their LO WCETs. To guarantee that the LO-critical tasks can be finished,

their LO WCETs are also set as the measured maximum execution times. When the system is

switched to HI mode, only HI-critical tasks will remain. The HI WCET should be an upper

bound on the execution times. Since this upper bound is not able to be obtained by the static

timing analysis, the HI WCET can only be given an artificially pessimistic value. We set the

HI WCET of a HI-critical task as twice of its LO WCET. The LO and HI WCET of a task

Ti is still denoted as CLi and CHi . We thus have CHi = 2 ·CLi . In addition, when the system is

in HI mode, an effective scheme is to switch the system mode back to LO mode immediately

after completing all remaining HI-critical tasks.

As the LO WCET is the same as the measured maximum execution time, the system

schedule in LO mode can be the same as Fig. 5.5. For the task graph of Fig. 5.6 in HI mode,

if this task graph is independently scheduled without any connection to its LO mode schedule,

the Torsche toolbox can also be applied and the scheduling result will be like Fig. 5.7. We know

that only two cores are needed for this task graph. Since the partitioned scheduling is applied

to schedule this task graph, task is not allowed to migrate at runtime, which means that the

schedule of Fig. 5.7 is in fact not possible because HI-critical tasks are distributed to four cores

in LO mode.

Although the task allocation in HI mode cannot be the same as Fig. 5.7, Fig. 5.7 provides us

the reference time for setting the task triggering time in HI mode. For example, the triggering

126

5.4 Implementation Evaluation

time of task T10 in Fig. 5.7 is 162 (ms). This release time can be used as the HI mode release

time because all predecessors of T10 must have been completed before 162 (ms). Denote this

release time as rHi . For other HI-critical tasks, their released times of Fig. 5.7 also guarantee

that all their predecessors can be completed before those released times. Hence, in HI mode

we keep the allocated core of a task unchanged and its triggering time is set as rHi . Note that,

this approach of determining the triggering time is not a general approach, which may not be

applicable for other task graphes.

Based on the above approach, the specific mixed-criticality scheduling result is shown in

Tab. 5.3, where ‘−’ represents that there is no value.

Table 5.3: Task parameters of mixed-criticality scheduling

No. Name Criticality Core Index WCET (CLi , C
H
i) Triggering (rLi , r

H
i)

T1 Capture2 LO 2 (9,-) (0,-)

T2 SignsProc LO 4 (70,-) (10,-)

T3 LightsProc LO 2 (76,-) (10,-)

T4 Capture0 HI 3 (9,18) (0,0)

T5 Capture1 HI 4 (9,18) (0,0)

T6 LanesProc HI 4 (10,80) (79,18)

T7 DepthMapProc HI 3 (72,80) (9,18)

T8 GPSProc LO 1 (106,-) (0,-)

T9 SensorFusionSpeed HI 2 (10,20) (85,162)

T10 SensorFusionSteering HI 1 (10,20) (106,162)

5.3.2.3 Event Scheduler

Another effective scheduling approach is to rely on the event to trigger a task. Suppose a task

will release an event once this task has been finished. This event can be used as a signal to

trigger the following task, in this way the task dependency constraints are maintained. For

the event scheduler, the task allocations in LO mode still rely on the Torsche toolbox. LO-

critical tasks that overrun their LO WCETs will be directly aborted. This scheduler is called

event-triggered scheduler with mode switch, abbreviated as ETS-MS.

5.4 Implementation Evaluation

We developed the time-triggered scheduler with mode switch (TTS-MS) and event-triggered

scheduler with mode-switch (ETS-MS) by extending a framework called hierarchical scheduling

framework (HSF) [95]. The TTS-MS and ETS-MS were implemented in Raspberry Pi 3 model

127

5. A CASE STUDY OF APPLYING MIXED-CRITICALITY SCHEDULING
TO AN AUTONOMOUS DRIVING SYSTEM

B with a 1.2 GHz 64-bit quad-core ARMv8CPU and the operating system was raspbian 4.4.13

linux.

We mainly investigated the runtime overhead of our developed scheduler. The timing ex-

penses of the following actions can be used to evaluate the scheduler runtime overhead. The

larger those timing expenses are, the worse the runtime scheduling performance is.

• Job handling: When a job arrives or finishes, the scheduler should spend some time in

signaling and registering in a bitmap data structure. When a job finishes, the scheduler

also needs to deregister it from a bitmap.

• Overrun handling: When a LO-critical task overruns, it is immediately aborted. When

a HI-critical task overruns, the system mode will be immediately switched to HI mode,

where all LO-critical tasks are aborted.

• Overrun checking: A monitor is used to constantly check the task execution. This enables

the system to detect the task overrunning whenever it happens.

• Others: There are some other scheduling expenses like task execution preemption han-

dling, reactivating LO-critical tasks once the system is switched to LO mode from HI

mode.

In addition to the above metrics, we also investigate the job overrun ratio and job drop

ratio. The job overrun ratio is the ratio that jobs overrun their given LO WCETs among all

released jobs and the job drop ratio is the ratio that jobs are dropped among all released jobs.

5.4.1 Results of TTS-MS Implementation

The scheduler was run for one hour and there was no deadline miss of HI-critical tasks. We

record the above timing expenses, task overrun rate and task drop rate.

Tab. 5.4 shows our recorded timing expenses in the one hour running. Note that the absolute

overhead is the sum of all scheduling timing expenses of each core and the relative overhead is

its time ratio of those timing expenses in the one hour. The total timing overhead only accounts

for 0.27%, which demonstrates that our scheduler is very lightweight.

The job overrun ratio and job drop ratio are shown in Fig. 5.8. The job overrun ratio of

each core is around 1% to 2%. This confirms that the measured maximum WCET is not an

upper bound on the execution time, but it is very close to this upper bound. Compared to

the job overrun ratio, there is a significant difference of job drop ratio among the four cores.

128

5.4 Implementation Evaluation

Table 5.4: Timing expense of TTS-MS, where unit is millisecond

Metrics Core 1 Core 2 Core 3 Core 4 sum

Job handling 338.328 510.768 356.076 498.6 1703.722

Overrun handling 224.628 253.932 200.844 305.82 985.224

Overrun checking 887.424 1200.036 970.188 1303.296 4360.944

Others 538.128 783.864 530.532 781.116 2633.64

Absolute overhead 1988.508 2748.6 2057.64 2888.832 9683.58

Relative overhead 0.055% 0.076% 0.057% 0.08% 0.27%

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

core1 core2 core3 core4Jo
b

O
ve

rr
un

 a
nd

 D
ro

p
R

at
io

overrun

drop

Figure 5.8: Job overrun rate and job drop rate in TTS-MS

The job drop ratio on core 1 is more than 5%, while there is no job dropped in core 3. The

difference comes from the task allocation. In core 1, the LO-critical task “GPSProc” has the

longest execution time. This increases the probability of dropping job “GPSProc” because the

overrun of any HI-critical task during the execution of “GPSProc” will make “GPSProc” be

immediately dropped. While in core 3, there is only HI-critical task. Since any HI-critical task

is not allowed to be dropped, the core 3 has no dropped job.

0.0000 %

0.0200 %

0.0400 %

0.0600 %

0.0800 %

0.1000 %

core1 core2 core3 core4T
im

in
g

E
xp

en
se

 P
er

ce
nt

ag
e

Job_handling

Overrun_handling_

Overrun_checking_

Others

Figure 5.9: Scheduling overhead distribution in TTS-MS

129

5. A CASE STUDY OF APPLYING MIXED-CRITICALITY SCHEDULING
TO AN AUTONOMOUS DRIVING SYSTEM

Table 5.5: Timing expense of ETS-MS, where unit is millisecond

Metrics Core 1 Core 2 Core 3 Core 4 sum

Job handling 208.216 289.183 211.644 424.35 1133.394

Overrun handling 270.6117 314.53 135.845 232.293 1773.5

Overrun checking 790.167 1320.409 690.171 1139.203 3939.951

Others 486.954 644.88 369.862 764.452 2266.125

Absolute overhead 1755.924 2569.005 1407.527 2560.302 8292.758

Relative overhead 0.049% 0.071% 0.039% 0.071% 0.23%

The distribution of scheduling timing expenses on each core is shown in Fig. 5.9, which shows

that the timing expense proportion among the four cores are roughly 2:3:2:3. This proportion

just fits the allocated task number on each core, which implies that the scheduling overhead

depends on the allocated task number. Besides, the timing expense of the overrun checking

is the most among the four metrics. The execution of every task is monitored by an overrun

checking thread. The checking towards task execution has to be very frequent because otherwise

the task overrun is not able to be detected in time. The higher the overrun checking frequency

is, the larger the timing overhead will be. The timing expense of job handling also occupies

a large portion in the scheduling expense. The job handling includes the job arrival handling

and job finish handling. Since jobs arrive and finish frequently, the job handling will also be

frequent and thus needs a lot time. Compared to job handling, the overrun handling takes less

time because tasks have relatively high LO WCETs and are not likely to overrun them. Thus

the overrun handling is not frequently activated and its timing expense is relatively small.

5.4.2 Results of ETS-MS Implementation

This scheduler was also run for one hour and there was also no HI-critical task deadline miss.

The timing expenses of the four metrics are listed in Tab. 5.5. The total scheduling expense

only accounts for 0.23% of whole processing time, which demonstrates that ETS-MS is a very

lightweight scheduler. The ETS-MS has less scheduling overhead than TTS-MS whose total

scheduling expense accounts for 0.27% of whole processing time. One reason for the better

performance of ETS-MS is that only one event dispatcher is needed in ETS-MS, while every

task needs one event dispatcher in TTS-MS.

The job overrun ratio and job drop ratio are presented in Fig. 5.10. From this figure we find

that core 1 has the highest job drop ratio and core 3 has no dropped job, which is the same as

130

5.5 Summary

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

core1 core2 core3 core4Jo
b

O
ve

rr
un

 a
nd

 D
ro

p
R

at
io

overrun

drop

Figure 5.10: Job overrun rate and job drop rate in ETS-MS

TTS-MS. Besides, the distributions of the two ratios are also similar to those of TTS-MS. This

is because both TTS-MS and ETS-MS have the same task allocations on each core.

The distributions of four scheduling overhead metrics are shown in Fig. 5.11, where observa-

tions similar to TTS-MS are made. The scheduling overhead proportion among the four cores

is consistent with the number of allocated tasks on each core and the overrun checking still

occupies a large portion on the whole scheduling overhead. Reasons for them are the same as

our analysis to TTS-MS.

0.0000 %

0.0200 %

0.0400 %

0.0600 %

0.0800 %

0.1000 %

core1 core2 core3 core4T
im

in
g

E
xp

en
se

 P
er

ce
nt

ag
e

Job_handling

Overrun_handling_

Overrun_checking_

Others

Figure 5.11: Scheduling overhead distribution in ETS-MS

5.5 Summary

In this chapter, we have presented a case study of applying the mixed-criticality scheduling

concept to schedule a real autonomous driving system. We first present the hardware/software

co-design and introduce the developed applications that are used to achieve autonomous driving.

Since the applications are not independent from each other, a task graph is developed to denote

the dependencies among those applications.

131

5. A CASE STUDY OF APPLYING MIXED-CRITICALITY SCHEDULING
TO AN AUTONOMOUS DRIVING SYSTEM

In order to apply the mixed-criticality scheduling approach, the task and the system are

modeled based on the assumptions in mixed-criticality scheduling. Specifically, the system

is divided into two modes and tasks are categorized into two categories, i.e., LO criticality

and HI criticality. To address the different timing requirements of the two criticalities, the

system is divided into two modes, i.e., LO mode and HI mode. The system starts from LO

mode and will switch to HI mode once a HI-critical task overruns our given execution time

budget (LO WCET). The time-triggered scheduler and event-triggered scheduler, both with

mode switch, are developed and implemented. Evaluation results demonstrate that the overhead

of mixed-criticality scheduling can be very small.

This chapter also implies some challenges on the mixed-criticality scheduling. First, in a

real-life system, tasks may not be independent. This fact is ignored by most of the state-of-

the-art mixed-criticality scheduling research, which makes many research results difficult to be

applicable for a system whose tasks are constrained by a task graph. Second, the WCETs

are assumed to be known by most research, which however is not true in a real case. The

integration of tasks and components makes the system’s behaviors unpredictable. The exact

WCETs are indeed very difficult to be obtained in a multi-core system full of unpredictable

behaviors. Based on these two points, the scheduling approaches proposed in the previous

chapters are also not applicable to this autonomous driving system because those approaches

are built on the assumptions of independent tasks and known WCETs,

132

Chapter 6

Conclusions

6.1 Main Results

The aim of this thesis is to address problems intrinsically existing in the current mixed-criticality

scheduling theory. The problems are categorized into a few aspects and the corresponding

solutions are presented. Our results enrich the mixed-criticality scheduling theory and provide

some foresight for its practical implementation. The main contributions are summarized as

follows:

• Regarding to the problem that the standard mode-switch scheme in mixed-criticality

scheduling is abrupt and pessimistic, we propose an on-the-fly overrun budgeting (FFOB)

scheme. This scheme is able to make use of the system static and dynamic slacks to

postpone the mode-switch for both FP- and EDF-scheduled systems. Thus, the system

can stay in LO mode as long as possible, where LO- and HI-critical tasks are guar-

anteed. A feature called automatic schedulability guarantee is explored to transfer the

dual-criticality guarantee to the conventional system schedulability guarantee, thus re-

ducing the online computation overhead. Results of simulations and implementations in

a real embedded system demonstrate that, compared to the state-of-the-art scheduling

approaches, the proposed FFOB scheme significantly improves the QoS of LO-critical

tasks, while maintaining the same guarantee to HI-critical tasks.

• Regarding to the problem that the sporadic task model is quite limited in representing the

complex task activations, we extend the sporadic task model to the arbitrarily activated

task model. Specifically, by using the arrival curve to represent the upper bound of task

activations, we integrate the well-established results from Real-Time Calculus to analyze

133

6. CONCLUSIONS

the schedulability of a mixed-criticality system composed of arbitrarily activated tasks.

Schedulability evaluations demonstrate that, towards the sporadic tasks, our proposed

test can achieve the same effectiveness as two state-of-the-art approaches, AMC-max in

FP system and EDF-VD in EDF system. However, towards some tasks whose activation

events can be blocked or whose deadlines can be arbitrary, our tests have much better

performance.

• Regarding to the problem that the system is not adaptive in providing the service to

LO-critical tasks, we propose two online adaptive workload management policies, i.e.,

priority-adjustment policy and workload-shaping policy, to improve the system runtime

adaptability. By using monitors to monitor the arrival events, the demand of HI-critical

tasks can be updated online, based on which a safe service bound for the LO-critical tasks

is computed to regulate the coming LO-critical workload. The runtime computation of

this safe service bound is heavy. To eliminate this complex computation, a lightweight

method with the complexity of O(n · log(n)) is developed, making the online adaptations

applicable at runtime. Experimental results confirm that the two adaptive workload

management approaches significantly improve the system utilization and shortening the

response time of LO-critical tasks. The timing overhead of the proposed lightweight

method is demonstrated to be one and two orders of magnitude lower in the two workload

management policies, respectively.

• Regarding to the problem that there is no real-life system that is ever scheduled by

the mixed-criticality approach, we develop an autonomous driving system and apply the

mixed-criticality scheduling to it. In detail, we present a hardware/software co-design on

developing an autonomous driving car, based on which a task graph is plotted to represent

the task precedence constraint. We model the autonomous driving system as a dual-

criticality system and classify tasks into LO-critical and HI-critical tasks. We develop

the time-triggered and event-triggered schedules, both with mode-switch, to schedule this

system. Scheduling performance in terms of the overhead and dropped jobs is evaluated.

The results show that the scheduling is lightweight and the ratio of dropped jobs is low.

Our implementation also implies some challenges that need to be addressed for applying

mixed-criticality scheduling to a real-life system.

134

6.2 Future Perspectives

6.2 Future Perspectives

The contributions presented in this thesis provide partial solutions for a few problems in

the mixed-criticality scheduling. There remains a lot of challenges in developing the mixed-

criticality scheduling theory and applying it into real-life systems. A few important future

perspectives are listed in the following:

• The motivation of developing mixed-criticality scheduling is to reduce the system size,

weight, and power by integrating different criticality tasks into a same platform. The

real-time system community models this system from the timing perspective, with the

ignorance on the system predictability and reliability. Indeed, task integration will incur

more system unpredictable behaviors, which makes it more difficult to obtain a reliable

worst-case execution time and thus makes the timing analysis unreliable. To overcome

this problem, the hardware architecture has to be involved into the consideration when

designing a mixed-criticality system. For example, we may apply the cache partition or

deterministic bus access to avoid task execution interferences, as in this way the system

predictability will be improved.

• The industry standards that classify tasks to several criticality levels are often used as

arguments to justify the mixed-criticality scheduling research. However, a common as-

sumption in the mixed-criticality system model that low criticality tasks can be dropped

actually goes against many industry standards. Recent research also shows the increas-

ing concern that the current mixed-criticality system model deviates a lot from real-life

industry systems and thus has no practical value. To overcome this problem, developing

a more representative system model is necessary to guide the mixed-criticality system

research to a correct direction.

• Towards a specific task graph, we present a specific scheduling solution in this thesis. But

towards a general task graph, there is still neither an optimal solution nor a heuristic

solution of mixed-criticality scheduling.

• The experiments and tests of applying mixed-criticality scheduling to real-life systems are

still few. Such work is significant because hidden problems or challenges will be exposed

and our misunderstandings towards the mixed-criticality scheduling will also be corrected.

135

6. CONCLUSIONS

136

References

[1] C. Buckl, A. Camek, G. Kainz, and C. Simon. The software car: Building ICT

architectures for future electric vehicles. In Electric Vehicle Conference (EVC), pages

1–8, 2012. ix, 1, 2

[2] Felix Von Hundelshausen, Michael Himmelsbach, Falk Hecker, Andre

Mueller, and Hans-Joachim Wuensche. Driving with tentacles: Integral struc-

tures for sensing and motion. Journal of Field Robotics, 25(9):640–673, 2008. xi,

119

[3] Manfred Broy, Ingolf H Kruger, Alexander Pretschner, and Christian

Salzmann. Engineering Automotive Software. Proceedings of the IEEE, 95(2):356–

373, 2007. 1

[4] Alan Burns and Rob Davis. Mixed criticality systems: A review. Technical

report, Department of Computer Science, University of York, 2015. 2, 4, 7, 10, 12, 13, 14,

115

[5] Steve Vestal. Preemptive scheduling of multi-criticality systems with varying

degrees of execution time assurance. In Real-Time Systems Symposium (RTSS),

pages 239–243, 2007. 3, 12, 48

[6] François Dorin, Pascal Richard, Michaël Richard, and Joël Goossens.

Schedulability and sensitivity analysis of multiple criticality tasks with fixed-

priorities. Real-Time Systems, 46(3):305–331, 2010. 3, 46, 48, 49, 54

[7] Neil C Audsley. On priority assignment in fixed priority scheduling. Information

Processing Letters, 79(1):39–44, 2001. 3, 13, 48, 107

137

REFERENCES

[8] Sanjoy K Baruah, Alan Burns, and Robert I Davis. Response-time analysis

for mixed criticality systems. In Real-Time Systems Symposium (RTSS), pages 34–43,

2011. 3, 10, 13, 14, 37, 46, 47, 48, 74

[9] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Haohan Li, Al-

berto Marchetti-Spaccamela, Suzanne Van Der Ster, and Leen Stougie. The

preemptive uniprocessor scheduling of mixed-criticality implicit-deadline spo-

radic task systems. In Euromicro Conference on Real-Time Systems (ECRTS), pages

145–154, 2012. 3, 13, 18, 49

[10] Pengcheng Huang, Georgia Giannopoulou, Rehan Ahmed, Davide B Bar-

tolini, and Lothar Thiele. An Isolation Scheduling Model for Multicores.

In Real-Time Systems Symposium (RTSS), pages 141–152, 2015. 3

[11] James H. Anderson, Sanjoy K. Baruah, and B. Brandenburg. Multicore

Operating-System Support for Mixed Criticality. In Proceedings of the Workshop

on Mixed Criticality: Roadmap to Evolving UAV Certification, 2009. 4, 7

[12] M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and J. A.

Scoredos. Mixed-Criticality Real-Time Scheduling for Multicore Systems. In

Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 1864–

1871, 2010. 4, 7

[13] J. L. Herman, C. J. Kenna, M. S. Mollison, J. H. Anderson, and D. M. John-

son. RTOS Support for Multicore Mixed-Criticality Systems. In Real-Time and

Embedded Technology and Applications Symposium (RTAS), pages 197–208, 2012. 4, 7

[14] Micaiah Chisholm, Bryan C. Ward, Namhoon Kim, and James H. Anderson.

Cache Sharing and Isolation Tradeoffs in Multicore Mixed-Criticality Systems.

In IEEE Real-time Systems Symposium (RTSS), pages 305–316, 2015. 4, 7

[15] Huang Ming Huang, Christopher Gill, and Chenyang Lu. Implementation and

Evaluation of Mixed-Criticality Scheduling Approaches for Periodic Tasks. In

Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 23–32,

2012. 4, 7

138

REFERENCES

[16] Lukas. Sigrist, Georgia. Giannopoulou, Pengcheng Huang, and

Lothar Thiele Gomez, Andres. Mixed-criticality runtime mechanisms and

evaluation on multicores. In Real-Time and Embedded Technology and Applications

Symposium, pages 194–206, 2015. 4, 7, 115

[17] Sanjoy K Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Alberto

Marchetti-Spaccamela, Suzanne Van Der Ster, and Leen Stougie. Mixed-

criticality scheduling of sporadic task systems. In Algorithms–ESA 2011, pages

555–566. Springer, 2011. 4, 13, 49

[18] Pontus Ekberg and Wang Yi. Outstanding paper award: Bounding and shaping

the demand of mixed-criticality sporadic tasks. In Euromicro Conference on Real-

Time Systems (ECRTS), pages 135–144, 2012. 4, 10, 13, 14, 18, 19, 26, 34, 48, 49, 65, 66,

72, 73, 74

[19] Pontus Ekberg and Wang Yi. Bounding and shaping the demand of generalized

mixed-criticality sporadic task systems. Real-time systems, 50(1):48–86, 2014. 4, 10,

13, 14, 75

[20] Nan Guan, Pontus Ekberg, Martin Stigge, and Wang Yi. Effective and efficient

scheduling of certifiable mixed-criticality sporadic task systems. In Real-Time

Systems Symposium (RTSS), pages 13–23, 2011. 4

[21] Pengcheng Huang, Pratyush Kumar, Georgia Giannopoulou, and Lothar

Thiele. Energy efficient dvfs scheduling for mixed-criticality systems. In Con-

ference on Embedded Software (EMSOFT), pages 1–10, 2014. 4

[22] Bjorn B Brandenburg, Hennadiy Leontyev, and James H Anderson. An

overview of interrupt accounting techniques for multiprocessor real-time sys-

tems. Journal of Systems Architecture, 57(6):638–654, 2011. 6

[23] Ken Tindell, Alan Burns, and Andy Wellings. An extendible approach for

analyzing fixed priority hard real-time tasks. Real-time Systems, 1994. 6

[24] Sergio Santos, Jose Rufino, Tobias Schoofs, Cassia Tatibana, and James

Windsor. A portable ARINC 653 standard interface. In 2008 IEEE/AIAA 27th

Digital Avionics Systems Conference, pages 1–E, 2008. 6

139

REFERENCES

[25] Traub Matthias. Durchgängige timing-bewertung von vernetzungsarchitekturen und

gateway-systemen im kraftfahrzeug. PhD thesis, Karlsruher Institut für Technologie (KIT),

2010. 6, 46

[26] Alexandre Esper, Geoffrey Nelissen, Vincent Nélis, and Eduardo Tovar.

How realistic is the mixed-criticality real-time system model? In Proceedings

of the 23rd International Conference on Real Time and Networks Systems (RTNS), pages

139–148, 2015. 7, 117

[27] Rolf Ernst and Marco Di Natale. Mixed Criticality Systems - A History of

Misconceptions? In IEEE Design Test, 2016. 7, 117

[28] Ariel Gomez, Lars Schor, Pranaw Kumar, and Lothar Thiele. SF3P: a frame-

work to explore and prototype hierarchical compositions of real-time sched-

ulers. In Rapid System Prototyping (RSP), pages 2–8, 2014. 8, 40

[29] Alan Burns and Sanjoy Baruah. Timing faults and mixed criticality systems, 6875.

Springer Berlin Heidelberg, 2011. 10, 13, 14, 48

[30] Arvind Easwaran. Demand-based scheduling of mixed-criticality sporadic tasks

on one processor. In Real-Time Systems Symposium (RTSS), pages 78–87, 2013. 10, 13,

14, 49

[31] I. Bate, A. Burns, and R. I. Davis. A Bailout Protocol for Mixed Criticality

Systems. In Real-Time Systems (RTSS), pages 259–268, 2015. 10, 13, 37

[32] Hang Su and Dakai Zhu. An elastic mixed-criticality task model and its schedul-

ing algorithm. In Conference on Design, Automation and Test in Europe (DATE), pages

147–152, 2013. 10

[33] Pengcheng Huang, Georgia Giannopoulou, Nikolay Stoimenov, and Lothar

Thiele. Service adaptions for mixed-criticality systems. In Asia and South Pacific

Design Automation Conference (ASP-DAC), pages 125–130, 2014. 10

[34] Francois Santy, Laurent George, Philippe Thierry, and Joël Goossens. Re-

laxing mixed-criticality scheduling strictness for task sets scheduled with FP.

In Euromicro Conference on Real-Time Systems (ECRTS), pages 155–165, 2012. 10, 13

140

REFERENCES

[35] Enrico Bini, Marco Di Natale, and Giorgio Buttazzo. Sensitivity analysis for

fixed-priority real-time systems. Real-Time Systems, 39(1-3):5–30, 2008. 10

[36] Alan Burns and Sanjoy Baruah. Towards a more practical model for mixed

criticality systems. Real-Time Systems Symposium (RTSS), pages 1–6, 2013. 10, 13

[37] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo Dangelo, Haohan Li, Al-

berto Marchettispaccamela, Nicole Megow, and Leen Stougie. Scheduling

Real-Time Mixed-Criticality Jobs. IEEE Transactions on Computers, 61(8):1140–

1152, 2012. 11

[38] Yann-Hang Lee, Krishna P Reddy, and C Mani Krishna. Scheduling techniques

for reducing leakage power in hard real-time systems. In Euromicro Conference

on Real-Time Systems (ECRTS), pages 105–105, 2003. 11

[39] Kai Huang, Luca Santinelli, Jian-Jia Chen, Lothar Thiele, and Giorgio C

Buttazzo. Applying real-time interface and calculus for dynamic power man-

agement in hard real-time systems. Real-Time Systems, 47(2):163–193, 2011. 11, 21,

89, 94

[40] Muhammad Ali Awan and Stefan M Petters. Enhanced race-to-halt: A

leakage-aware energy management approach for dynamic priority systems. In

Real-Time Systems (ECRTS), pages 92–101, 2011. 11

[41] Ernesto Wandeler and Lothar Thiele. Real-time interfaces for interface-based

design of real-time systems with fixed priority scheduling. In Conference on

Embedded Software (EMSOFT), pages 80–89, 2005. 12, 24, 25, 82, 83, 91

[42] Lothar Thiele, Ernesto Wandeler, and Nikolay Stoimenov. Real-time in-

terfaces for composing real-time systems. In Conference on Embedded Software

(EMSOFT), pages 34–43, 2006. 12, 24, 91

[43] James Barhorst, Todd Belote, Pam Binns, Jon Hoffman, James Paunicka,

Prakash Sarathy, John Scoredos, Peter Stanfill, Douglas Stuart, and Rus-

sell Urzi. A research agenda for mixed-criticality systems. Cyber-Physical Systems

Week, 2009. 12

141

REFERENCES

[44] Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-time cal-

culus for scheduling hard real-time systems. In International Symposium on Circuits

and Systems (ISCAS), pages 101–104, 2000. 14, 24, 47, 53

[45] Sanjoy K Baruah, Aloysius K Mok, and Louis E Rosier. Preemptively schedul-

ing hard-real-time sporadic tasks on one processor. In Real-Time Systems Sympo-

sium (RTSS), pages 182–190, 1990. 14, 19

[46] Jean-Yves Le Boudec and Patrick Thiran. Network calculus: a theory of determin-

istic queuing systems for the internet. Springer, 2001. 20, 50, 84, 100, 101

[47] Kai Huang, Luca Santinelli, Jian-Jia Chen, Lothar Thiele, and Giorgio C

Buttazzo. Adaptive dynamic power management for hard real-time systems.

In Real-Time Systems Symposium (RTSS), pages 23–32, 2009. 21, 83

[48] Samarjit Chakraborty, Simon Künzli, and Lothar Thiele. A General Frame-

work for Analysing System Properties in Platform-Based Embedded System

Designs. In Conference on Design, Automation and Test in Europe (DATE), pages 190–

195, 2003. 24, 25, 47, 53, 56

[49] Neil Audsley, Alan Burns, Mike Richardson, Ken Tindell, and Andy J

Wellings. Applying new scheduling theory to static priority pre-emptive

scheduling. Software Engineering Journal, 8(5):284–292, 1993. 27

[50] Iain Bate and Alan Burns. An integrated approach to scheduling in safety-

critical embedded control systems. Real-Time Systems, 25(1):5–37, 2003. 37

[51] Enrico Bini and Giorgio C Buttazzo. Measuring the performance of schedu-

lability tests. Real-Time Systems, 30(1-2):129–154, 2005. 38, 107

[52] Raspberry Pi 3 Board. https://www.raspberrypi.org/products/

\raspberry-pi-3-model-b/. Accessed: 2016-07-20. 40

[53] Marek Jersak. Compositional scheduling analysis using standard event models. PhD

thesis, University of Braunschweig-Institute of Technology, 2005. 45, 46, 50

[54] Rafik Henia, Arne Hamann, Marek Jersak, Razvan Racu, Kai Richter, and

Rolf Ernst. System level performance analysis–the SymTA/S approach. IEE

Proceedings-Computers and Digital Techniques, 152(2):148–166, 2005. 46, 47, 50

142

https://www.raspberrypi.org/products/\raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/\raspberry-pi-3-model-b/

REFERENCES

[55] Ernesto Wandeler. Modular performance analysis and interface-based design for em-

bedded real-time systems. PhD thesis, ETH Zurich, 2006. 46, 47, 50, 51, 54, 56

[56] Björn B Brandenburg, Hennadiy Leontyev, and James H Anderson. An

overview of interrupt accounting techniques for multiprocessor real-time sys-

tems. Journal of Systems Architecture, 57(6):638–654, 2011. 46

[57] Ken W Tindell, Alan Burns, and Andy J. Wellings. An extendible approach

for analyzing fixed priority hard real-time tasks. Real-Time Systems, 6(2):133–151,

1994. 46

[58] ARINC Specification. 653-2: Avionics Application Software Standard Inter-

face: Part 1-Required Services. Technical report, Avionics Electronic Engineering

Committee, 2006. 46

[59] Sanjoy Baruah and Alan Burns. Implementing mixed criticality systems in

Ada. In Reliable Software Technologies-Ada-Europe 2011, pages 174–188. Springer, 2011.

48

[60] Nan Guan, Pontus Ekberg, Martin Stigge, and Wang Yi. Improving the

scheduling of certifiable mixed-criticality sporadic task systems. Technical re-

port, Department of Information Technology, Uppsala University, 2013. 49

[61] Moritz Neukirchner, Kai Lampka, Sophie Quinton, and Rolf Ernst. Multi-

mode monitoring for mixed-criticality real-time systems. In Conference on Hard-

ware/Software Codesign and System Synthesis (CODES+ISSS), pages 1–10, 2013. 49, 82,

84, 85, 86, 90

[62] Moritz Neukirchner, Philip Axer, Tobias Michaels, and Rolf Ernst. Moni-

toring of workload arrival functions for mixed-criticality systems. In Real-Time

Systems Symposium (RTSS), pages 88–96, 2013. 49, 84, 85, 86, 90

[63] Nikolay Nikolaev Stoimenov. Compositional Design and Analysis of Distributed,

Cyclic, and Adaptive Embedded Real-Time Systems. PhD thesis, The University of Ade-

laide, Australia, 2011. 49

[64] Kai Lampka, Kai Huang, and Jian-Jia Chen. Dynamic counters and the efficient

and effective online power management of embedded real-time systems. In

143

REFERENCES

Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pages

267–276, 2011. 51, 56, 84, 88

[65] Neil C Audsley. Optimal priority assignment and feasibility of static priority tasks with

arbitrary start times. Citeseer, 1991. 55

[66] John P Lehoczky. Fixed Priority Scheduling of Periodic Task Sets with Ar-

bitrary Deadlines. In Real-Time Systems Symposium (RTSS), pages 201–209, 1990.

60

[67] Simon Schliecker, Jonas Rox, Matthias Ivers, and Rolf Ernst. Providing ac-

curate event models for the analysis of heterogeneous multiprocessor systems.

In Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS),

pages 185–190, 2008. 60, 61

[68] Moritz Neukirchner, Sophie Quinton, Tobias Michaels, Philip Axer, and

Rolf Ernst. Sensitivity analysis for arbitrary activation patterns in real-time

systems. In Conference on Design, Automation and Test in Europe (DATE), pages 135–

140, 2013. 61

[69] Ernesto Wandeler and Lothar Thiele. Real-Time Calculus (RTC) Toolbox.

http://www.mpa.ethz.ch/Rtctoolbox, 2006. 64, 106

[70] Haohan Li and Sanjoy Baruah. An algorithm for scheduling certifiable mixed-

criticality sporadic task systems. In Real-Time Systems Symposium (RTSS), pages

183–192, 2010. 72

[71] Andrea Bastoni, Björn Brandenburg, and James Anderson. Cache-related

preemption and migration delays: Empirical approximation and impact on

schedulability. Proceedings of Operating Systems Platforms for Embedded Real-Time

(OSPERT), 2010. 77

[72] Ernesto Wandeler, Alexander Maxiaguine, and Lothar Thiele. On the use

of greedy shapers in real-time embedded systems. ACM Trans. Embed. Comput.

Syst., 11(1):1–22, 2012. 82, 83, 84, 90

[73] Linh TX Phan and Insup Lee. Improving schedulability of fixed-priority real-

time systems using shapers. In Real-Time and Embedded Technology and Applications

Symposium (RTAS), pages 217–226, 2013. 82, 85

144

http://www.mpa.ethz.ch/Rtctoolbox

REFERENCES

[74] Sebastian Tobuschat, Moritz Neukirchner, Leonardo Ecco, and Rolf

Ernst. Workload-aware shaping of shared resource accesses in mixed-

criticality systems. In Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS), pages 1–10, 2014. 82, 84, 85, 86, 90

[75] Moritz Neukirchner, Tobias Michaels, Philip Axer, Sophie Quinton, and

Rolf Ernst. Monitoring arbitrary activation patterns in real-time systems.

In Real-Time Systems Symposium (RTSS), pages 293–302, 2012. 82, 84

[76] Farhana Dewan and Nathan Fisher. Efficient admission control for enforc-

ing arbitrary real-time demand-curve interfaces. In Real-Time Systems Symposium

(RTSS), pages 127–136, 2012. 84

[77] Kai Huang, Gang Chen, Christian Buckl, and Alois Knoll. Conforming the

runtime inputs for hard real-time embedded systems. In Design Automation Con-

ference (DAC), pages 430–436, 2012. 84

[78] Biao Hu, Kai Huang, Gang Chen, and Alois Knoll. Evaluation of runtime

monitoring methods for real-time event streams. In Design Automation Conference

(ASP-DAC), pages 582–587, 2015. 84

[79] Biao Hu, Kai Huang, Gang Chen, Long Cheng, and Alois Knoll. Evalua-

tion and Improvements of Runtime Monitoring Methods for Real-Time Event

Streams. ACM Transactions on Embedded Computing Systems, 15(3):1–26, 2016. 84

[80] Kai Lampka, Simon Perathoner, and Lothar Thiele. Analytic real-time anal-

ysis and timed automata: a hybrid method for analyzing embedded real-time

systems. In Conference on Embedded Software (EMSOFT), pages 107–116, 2009. 87

[81] Model S Software Version 7.0. https://www.tesla.com/presskit/autopilot. Ac-

cessed: 2016-09-07. 116

[82] BMW autonomous car plan. http://www.bmwblog.com/tag/bmw-autonomous-car/.

Accessed: 2016-09-07. 116

[83] Graphhopper. https://graphhopper.com/. Accessed: 2016-09-07. 118

[84] John Canny. A computational approach to edge detection. IEEE Transactions

on pattern analysis and machine intelligence, (6):679–698, 1986. 120

145

https://www.tesla.com/presskit/autopilot
http://www.bmwblog.com/tag/bmw-autonomous-car/
https://graphhopper.com/

REFERENCES

[85] Optical character recognition. https://en.wikipedia.org/wiki/Comparison_of_

optical_character_recognition_software. Accessed: 2016-09-07. 120

[86] David H Douglas and Thomas K Peucker. Algorithms for the reduction of the

number of points required to represent a digitized line or its caricature. Car-

tographica: The International Journal for Geographic Information and Geovisualization,

10(2):112–122, 1973. 120

[87] Ronald L Graham. Bounds for certain multiprocessing anomalies. Bell System

Technical Journal, 45(9):1563–1581, 1966. 122

[88] Lai Tsung-Chyan, Yu N Sotskov, N Yu Sotskova, and F Werner. Optimal

makespan scheduling with given bounds of processing times. Mathematical and

Computer Modelling, 26(3):67–86, 1997. 122

[89] Sergey V Sevastianov and Gerhard J Woeginger. Makespan minimization in

open shops: A polynomial time approximation scheme. Mathematical Program-

ming, 82(1-2):191–198, 1998. 122

[90] Johnny C Ho and Johnny S Wong. Makespan minimization for m parallel

identical processors. Naval Research Logistics (NRL), 42(6):935–948, 1995. 122

[91] Premysl Sucha, Michal Kutil, Michal Sojka, and Zdenek Hanzálek. Torsche

scheduling toolbox for matlab. In Computer Aided Control System Design (CACSD),

pages 1181–1186, 2006. 122

[92] Guillem Bernat, Antoine Colin, and Stefan M Petters. WCET analysis of

probabilistic hard real-time systems. In Real-Time Systems Symposium (RTSS).

IEEE, 2002. 123

[93] Reinhold Heckmann and Christian Ferdinand. Worst-case execution time pre-

diction by static program analysis. In Parallel and Distributed Processing Symposium

(PDPS), 2004. 123

[94] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,

Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,

Reinhold Heckmann, Tulika Mitra, et al. The worst-case execution-time

problem-overview of methods and survey of tools. ACM Transactions on Embedded

Computing Systems (TECS), 7(3):36, 2008. 123

146

https://en.wikipedia.org/wiki/Comparison_of_optical_character_recognition_software
https://en.wikipedia.org/wiki/Comparison_of_optical_character_recognition_software

REFERENCES

[95] Lukas Sigrist, Georgia Giannopoulou, Pengcheng Huang, Andres Gomez, and

Lothar Thiele. Mixed-criticality runtime mechanisms and evaluation on mul-

ticores. In Real-Time and Embedded Technology and Applications Symposium (RTAS),

pages 194–206, 2015. 127

147

	List of Figures
	List of Tables
	1 Introduction
	1.1 Mixed-Criticality Systems
	1.2 Motivations
	1.2.1 Standard Mixed-Criticality Mode-Switch
	1.2.2 Standard Task Model
	1.2.3 Run-Time Adaptability
	1.2.4 Practical Evaluations on Real-Life Systems

	1.3 Thesis Outline and Contributions

	2 On-the-Fly Fast Overrun Budgeting Mechanism
	2.1 Overview
	2.2 Related Work
	2.3 Models
	2.4 FFOB Mode-Switch Scheme
	2.4.1 The Working Flow of FFOB Scheme
	2.4.2 Two Relevant Problems
	2.4.3 An Example

	2.5 FFOB under EDF schedule
	2.5.1 EDF-VD Technique
	2.5.1.1 DBF in LO and HI modes
	2.5.1.2 Schedulability analysis

	2.5.2 Initialize and Update Overrun Budget
	2.5.2.1 Schedulability Analysis at Runtime
	2.5.2.2 Initialize OB
	2.5.2.3 Update OB at runtime
	2.5.2.4 Setting LO mode deadlines

	2.6 FFOB under FP schedule
	2.6.1 RTI-FP Algorithm
	2.6.1.1 Real-Time Interface Analysis
	2.6.1.2 RTI-FP Algorithm
	2.6.1.3 Optimal LO Mode Deadline Assignment

	2.6.2 Initializing/Updating the Overrun Budget
	2.6.2.1 Initialize OB
	2.6.2.2 Updating OB
	2.6.2.3 Setting LO mode deadlines

	2.7 Correctness of FFOB
	2.7.1 All Tasks Meet their LO Mode Deadlines in LO Mode
	2.7.2 Deadline Guarantees in Border mode
	2.7.3 HI-Critical Tasks Meet their Deadlines in any Mode
	2.7.4 Automatic Schedulability Guarantee.

	2.8 Experimental Evaluation
	2.8.1 Compared Approaches and Evaluation Metrics
	2.8.2 Random Task Set Generation
	2.8.3 Simulation Results
	2.8.4 Implementation Results

	2.9 Summary

	3 Schedulability Analysis on Arbitrarily Activated Tasks
	3.1 Overview
	3.2 Related Work
	3.3 System Model and Motivations
	3.3.1 Event Model
	3.3.2 System Settings
	3.3.3 Motivation Example

	3.4 Fixed Priority Schedulability Test
	3.4.1 Preliminaries
	3.4.1.1 Modular Performance Analysis
	3.4.1.2 Audsley's Algorithm

	3.4.2 A Necessary Test - NEC
	3.4.2.1 Two Necessary Conditions
	3.4.2.2 Test by Applying Audsley's Algorithm

	3.4.3 Two Sufficient Tests
	3.4.3.1 Workload Arrival Curve Analysis - WAC
	3.4.3.2 Busy-Window Analysis - BW
	3.4.3.3 Comparing WAC and BW

	3.5 Earliest Deadline First Schedulability Test
	3.5.1 Schedulable Conditions
	3.5.2 A Hidden Feature
	3.5.3 Demand Bound Function of LO mode
	3.5.4 Demand Bound Function of HI mode
	3.5.5 Demand Bound Function Tuning
	3.5.6 Effectiveness

	3.6 Schedulability Evaluation
	3.6.1 Task Set Generation
	3.6.2 Evaluation Results
	3.6.2.1 Schedulability Test on Sporadic Task Sets
	3.6.2.2 Schedulability Test on Arbitrarily Activated Task Sets

	3.7 Summary

	4 Adaptive Workload Management
	4.1 Overview
	4.2 Related Work
	4.3 System Settings
	4.4 Real-time calculus routines and interface analysis
	4.4.1 Arrival Curves and Service Demand with Historical Information
	4.4.1.1 Future Events and their Demand Bound
	4.4.1.2 Backlogged Events and their Demand Bound
	4.4.1.3 Carry-On Event and its Demand Bound

	4.4.2 Schedulability Analysis Based on Real-Time Interface
	4.4.2.1 Schedulability Analsyis by Considering HI-Critical Tasks as a Group
	4.4.2.2 Schedulability Analysis by Considering HI-Critical Tasks Separately

	4.5 Motivation
	4.6 LO-Critical Workload Management
	4.6.1 Priority-Adjustment Policy
	4.6.1.1 Decreasing Priority
	4.6.1.2 Increasing Priority
	4.6.1.3 Runtime Behavior

	4.6.2 Workload-Shaping Policy
	4.6.2.1 The Release of an Event
	4.6.2.2 The Adaptive Shaping Flow

	4.7 A Lightweight Method
	4.7.1 The Scenario of Setting the LO-Critical Priority as the Highest
	4.7.1.1 Case for a System with Only Two HI-Critical Tasks
	4.7.1.2 Closed-Form Equation for the Provided Service
	4.7.1.3 Leaky Bucket Representation
	4.7.1.4 Computing *(t)

	4.7.2 The Lightweight Method in Workload Management Policies
	4.7.2.1 The Lightweight Method in the Priority-Adjustment Policy
	4.7.2.2 The Lightweight Method in the Workload-Shaping Policy

	4.8 Implementation and evaluation
	4.8.1 Evaluation Setup
	4.8.2 Simulation Results
	4.8.2.1 System Utilizations
	4.8.2.2 Average Response Time of LO-Critical Tasks
	4.8.2.3 HI-Critical Task Set Latency Ratio
	4.8.2.4 Timing Overheads of Decision Making

	4.9 Summary

	5 A Case Study of Applying Mixed-Criticality Scheduling to an Autonomous Driving System
	5.1 Overview
	5.2 Hardware/Software Co-Design
	5.2.1 Navigation
	5.2.1.1 Global Navigation with GPS+IMU
	5.2.1.2 Local Navigation

	5.2.2 Traffic Light Detection
	5.2.3 Traffic Sign Recognition
	5.2.4 Lane Detection

	5.3 Task Scheduling
	5.3.1 Task Allocation
	5.3.2 Mixed-Criticality Scheduling
	5.3.2.1 Task Criticality Classification
	5.3.2.2 Time-Triggered Scheduler with Mode Switch
	5.3.2.3 Event Scheduler

	5.4 Implementation Evaluation
	5.4.1 Results of TTS-MS Implementation
	5.4.2 Results of ETS-MS Implementation

	5.5 Summary

	6 Conclusions
	6.1 Main Results
	6.2 Future Perspectives

	References

