
Technische Universität München

Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und

Umwelt

Professur für Populationsgenetik

Neutral and selective processes underlying

genome evolution post-duplication in maize

Saurabh Dilip Pophaly

Vollständiger  Abdruck  der  von  der  Fakultät  Wissenschaftszentrum

Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen

Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

Vorsitzender: Univ.-Prof. Dr. Dimitrij Frischmann

Prüfer der Dissertation: 1. Univ.-Prof. Dr. Aurélien Tellier

2. Hon.-Prof. Dr. Klaus F.X.Mayer

3. Univ.-Prof. Dr. John Parsch

Die  Dissertation  wurde  am 30.11.2016  bei  der  Technischen  Universität

München  eingereicht  und  durch  die  Fakultät  Wissenschaftszentrum

Weihenstephan für Ernährung, Landnutzung und Umwelt am 06.02.2017

angenommen.



Neutral and selective processes underlying genome
evolution post-duplication in maize



Abstract

Maize is an important model organism with a rich legacy of applied and basic research and is also in
the forefront of genomics and modern breeding. The aim of this work was to assay and examine the
role of purifying selection in maize, which is a prevalent force maintaining the integrity of the genome.
I used available genome data for teosinte (wild progenator) and maize as well as gene expression
data to study three aspects involving purifying selection in maize, namely, the recent whole genome
duplication (WGD), transposon (TE) proximity to genes, and maize domestication.

The WGD event was followed by gene erosion which generated two subgenomes, maize1 sub-
genome experiencing fewer deletions than maize2. Differences in purifying selection and gene ex-
pression divergence between WGD retained paralog pairs were studied. The relative gene expression
of paralogs across tissues demonstrated that 98% of duplicate pairs have either subfunctionalized in
a tissuewise manner or have diverged consistently in their expression thereby preventing functional
complementation. Dominant gene expression was found to be a strong determinant of the strength
of purifying selection, explaining the inferred stronger negative selection on maize1 genes. A novel
expression based classification of duplicates was developed which is more robust in explaining ob-
served patterns of polymorphism than the subgenome location. Upstream regions of repressed genes
exhibited an enrichment of TEs indicative of a possible mechanism driving expression divergence.

Factors shaping the TE abundance in the gene vicinity were explored in the context of high TE
content of maize. Gene regulatory complexity assayed by tissue- specificity and gene functional
categories were found to be the dominant factors shaping TE landscape around genes. High upstream
TE abundance was found to be linked with weaker purifying selection on genes while downstream
TEs were found to weakly influence gene expression.

The role of maize domestication bottleneck in reducing the strength of purifying selection was
explored by comparing the polymorphism patterns between maize and teosinte. Both shared and
private polymorphisms displayed this reduction. Recombination being a potent force delinking loci
and increasing selection efficiency was found to be associated with stronger purifying and positive
selection. An increase in linkage disequilibrium post domestication in maize was proposed as a
reason for the decrease in the strength of purifying selection.

The genomic and population genetics analysis conducted were indicative of a potent role of pu-
rifying selection in shaping the maize genome, a force often neglected when studying the genome
evolution of domesticated species.
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Zusammenfassung

Mais ist ein wichtiger Modelorganismus und zudem von zentraler Bedeutung für die Züchtung. Im
Rahmen dieser Arbeit wurde die Rolle negativer Selektion in Mais untersucht, die eine wichtige Kraft
für die Erhaltung der Genomintegrität darstellt. Hierfür nutzte ich verfügbare Genomdaten von Mais
und Teosinte, einem nicht domestizierten Verwandten von Mais, sowie Expressionsdaten, um nega-
tive Selektion im Zusammenhang mit den folgenden drei Faktoren zu analysieren: die Verdopplung
des Maisgenoms (WGD), transposable Elemente (TEs) in unmittelbarer Nähe von Genen und die Do-
mestizierung von Mais. Auf die WGD folgte eine Generosion, die die Etablierung zweier Subgenome
zur Folge hatte, wobei das Mais1 Subgenom im Vergleich zum Mais2 Subgenom eine geringere An-
zahl an Deletionen aufweist. Hier wurden Unterschiede in der Intensität negativer Selektion und die
Divergenz der Genexpression zwischen paralogen Genpaaren, die seit der WGD erhalten blieben, er-
forscht. Die Analyse der relativen Genexpression von Paralogen über verschiedene Gewebe hinweg
zeigte, dass 98% der Genpaare entweder in einer gewebeabhängigen Art subfunktionalisiert vorliegen
oder eine konsistente Divergenz in ihrer Expression aufweisen, so dass keine funktionale Komple-
mentierung mehr möglich ist. Dominante Genexpression war hierbei der bestimmende Faktor in
Bezug auf die Intensität der negativen Selektion und erklärte somit die als stärkere festgestellte neg-
ative Selektion von Mais1-Genen. Überdies wurde eine neue expressionsbasierte Klassifizierung der
Genduplikate entwickelt, die in besserem Einklang mit den beobachteten Polymorphismusmustern
steht im Vergleich zur bisherigen Erklärung, die auf der Subgenomlokalisierung beruht. Genomische
Bereiche, die Genen mit unterdrückter Expression vorgelagert sind, zeigten eine Anreicherung von
TEs, die somit mg̈licherweise an der Divergenz der Genexpression beteiligt sind. Auf Grund des
hohen Anteils von TEs im Maisgenom wurden verschiedene Faktoren untersucht, die die Verteilung
der TEs in unmittelbarer Nähe von Genen beeinflussen. Die Analysen zeigten, dass die Komplexität
der Genregulation, die mittels Gewebespezifität und Genkategorien gemessen wurde, einen maßge-
blichen Einfluss auf die Verteilung der TE-Dichte rund um Gene hat. Gene mit einer hohen Dichte
an vorgelagerten TEs wiesen eine geringere Selektionsintensität auf, wohingegen nachgelagerte TEs
offenkundig Einfluss auf die Expression der Gene hatten. Die Auswirkung der Domestikation von
Mais auf eine Änderung in der Intensität negativer Selektion wurde durch den Vergleich der Poly-
morphismusmuster zwischen Mais und Teosinte abgeschätzt. Sowohl gemeinsame als auch für Mais
oder Teosinte spezifische Polymorphismen zeigten wie erwartet eine verringerte Selektionsintensität.
Rekombination kann die physikalische Verbindung zwischen genomischen Bereichen aufbrechen und
dadurch die Selektionseffizienz deutlich erhöhen. Es konnte gezeigt werden, dass Rekombination mit
stärkerer negativer und positiver Selektion einhergeht. Daher wurde die Hypothese aufgestellt, dass
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das Kopplungsphasenungleichgewicht in Mais nach der Domestikation auf Grund der reduzierten In-
tensität negativer Selektion zunahm. Die genomischen und populationsgenetischen Analysen wiesen
auf eine bedeutende Rolle der negativen Selektion in der Gestaltung des Maisgenoms hin, einer Kraft,
die in Studien zur Genomevolution domestizierter Spezies bislang oft nicht berücksichtigt wurde.
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Organization

This work involved exploration of three areas in maize. Namely-

• The recent Whole genome duplication (WGD).

• Transposons (TEs) proximal to genes.

• Selection post domestication.

Each of these aspects is discussed in the general introduction, first broadly in the context of grasses
and then specifically of maize. Then separate materials and methods, results and discussion are added
for each. Finally, all three areas are assimilated together and discussed in the future perspectives sec-
tion.

The first aspect was published in the following article:

Saurabh D. Pophaly and Aurélien Tellier. Population Level Purifying Selection and Gene Expres-
sion Shape Subgenome Evolution in Maize. Molecular Biology and Evolution, 32(12):3226-3235,
December 2015.

The article is available at the following URL: http://mbe.oxfordjournals.org/content/
32/12/3226

For the second aspect a manuscript is in preparation.

Candidate’s contribution: Conception of work, obtaining raw data, analysis and processing of data,
writing of manuscript, revision of the paper.
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2.1 Introduction: Population genetics and genomics

Population genetics and genomics

Genetic-drift, purifying and positive selection are three dynamic evolutionary forces shaping genomes
of all living species. Their relative magnitude is still debated and forms a three way tug of war. Mech-
anistic process manifesting a phenotype at different levels and natural evolutionary processes like
mutation, recombination, gene/genome duplications and other factors like demography and domesti-
cation influences the balance of these forces and shapes the patterns of polymorphism in a species.
Population genetics theory has a rich heritage of providing a comprehensive set of predictions regard-
ing these patterns in relation to various influencing factors. Due to recent breakthroughs in genomics
data generation, these predictions can now be tested more extensively, comprehensively and thor-
oughly.

A substantial part of population genetics is the study of intra species polymorphism patterns and
of the forces shaping them. Genetics typically involves studying related individuals and inheritance
patterns via crosses, whereas population genetics involves generalizing the outcome of an ensemble
of these crosses over time. Variation is crucial to both these fields as at a technical level it ’marks’ the
inheritance pattern and acts like a tracer. Markers essentially need to be ’polymorphic’ whereby they
display variants and these should be able to be assayed. The variants of a marker are called alleles.
Markers can be phenotypic, for example, the texture of the famed Mendel’s peas with two variants
wrinkled and smooth. But most markers in use are molecular. Earlier studies primarily used markers
like isozymes, RFLPs and microsatellites wherein a change in a DNA sequence is assayed by proxies
like altered enzyme activity or by different sized cleavage fragments in a gel. Sequencing technolo-
gies provide a more direct view by removing the proxies and deciphering the DNA sequence itself.
The advancement of sequencing technologies have made SNPs (Single Nucleotide Polymorphisms)
which is a change in a single basepair of DNA, a dominant choice as a marker for population genetics.
Analysis typically involves marker variants assayed from a sample of individuals from a population.
Although usually markers from a small number of individuals (size n) from the population are ana-
lyzed, and statistics reported, it is generally sufficient to capture the overall polymorphism patterns
and history (time to most recent common ancestor, MRCA) of the whole population. The statistics
used in the current work are explained below.

Allele frequency is the simplest statistic to calculate and is the frequency of a particular variant of
a marker in the sample. A SNP can have more than two alleles but but it is rare and analysis usually
is done on a biallelic SNP and frequencies of both alleles add to one. Single nucleotide insertion and
deletions are also usually excluded. In this work only biallelic SNPs were used. When multiple SNPs
are assayed, the variation is also displayed as a ’allele frequency spectrum’ which is a histogram plot
of allele frequencies. For a biallelic SNP, since the frequency of both alleles add to one, only the in-
formation about frequency of one allele is enough to calculate the frequency of another. The question
arises that which allele’s frequency should be reported. Studies sometimes make a distinction based
on smaller or larger allele frequency and correspondingly report a ’minor allele frequency’ or ’major
allele frequency’. NGS based technologies sequence short fragments of DNA from samples and these
fragments are then ’mapped’ to a reference sequence. Reference is a an independently sequenced and
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2.1 Introduction: Population genetics and genomics

assembled whole genome of usually one individual (but sometimes multiple) of the species involved
in the study. In this case a ’reference allele frequency’ and an ’alternate allele frequency’ is respec-
tively reported based on if a basepair in a sample matches a reference basepair or not. Another way
of reporting is deciphering the historical (or ancestral) direction of mutation which caused a SNP, for
example, if a SNP has two alleles A and G, the mutation could have happened from A→G or G→A.
The older allele is called as the ’ancestral allele’ and the newer one the ’derived allele. Obtaining
this information is called as ’polarizing’ a SNP. It involves assaying the state of the site in a closely
related species and this state is assumed as ancestral. Most calculations are done according to an
’infinite sites model’ where an important assumption made is that there are infinite number of sites
and a mutation can only strike once at a particular site [123].

Humans usually have an intuitive understanding of the concept of ’diversity’ which they qualita-
tively associate with more variants seen for a particular trait. But quantitative measures of diversity
are essential for a rigorous analysis and to test predictions. Diversity for a population sample of SNPs
depends on two variables, first is the number of SNPs and another is the frequency of each SNP. Wat-
terson’s theta (θ w) is a measure of diversity purely on the number of segregating sites (SNPs) [270].
Another measure denoted as Π or θ Π gives a convenient way of capturing both [167] and was used in
this work. Π is estimated as the average of the number of differences seen in two random individuals
from the sample (also called as ’average pairwise difference’). One way of calculating it involves
performing all possible pairwise comparisons of individuals and adding the nucleotide differences
seen for each comparison and then dividing by the total number of comparisons (which is (n(n-1))/2).
Naturally, Π depends positively on the length of the region of the genome sampled, so a normalized
value is usually obtained by dividing the locus length (per basepair value of Π). Per basepair Π can
be calculated over the genome in sliding windows, for a gene/region, or for a particular type of site
for example, for synonymous and non-synonymous sites. In the later case the normalization is done
by dividing by total number of synonymous or non-synonymous sites assayed.

Sewall Wright and Ronald Fisher reconciled Mendelian genetics with Darwinian evolution and
explained how numerous individual crosses affect the allele frequency and intra and interspecies dif-
ferences. The Wright-Fisher model provides a simplistic null model wherein alleles in one generation
are randomly sampled to form another generation. Allele frequencies thereby stochastically vary and
although there is an expectation for the next generation, actual value can only be determined by sam-
pling the next generation akin to the famous urn model of statistics [207]. This random sampling is
also known as ’genetic drift’ and the size of the urn is the ’effective population size (Ne)’ which also
is a measure of the fidelity of allele frequency to remain same between generations. Such models are
crucial to draw inferences and provide a framework to orient oneself in empirical data analysis. But it
is the deviation of the observed data from these models which make the most interesting and sought
after cases. These deviations are generally caused by violation of the assumptions of the model. An
elegant example of quantification of the deviation is a statistic called as Tajima’s D [243] wherein
under the assumptions of the Wright-Fisher (a constant population size) θ w and Π should be equiv-
alent but forces like natural selection and demography upset this balance. Tajima’s D quantifies the
difference between Π and θ w. When an allele has a selective advantage, then sampling is not random
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as it is ’preferentially sampled’ because the individual harboring the allele has a better chance of mak-
ing to the next generation compared to other individuals without the selected allele. Allele frequency
of that variant then rises more rapidly than expected under neutrality and nearby sites also increase
in frequency due to linkage (see below) clearing the area of variation when the preferred allele and
linked variants reach the frequency of one (fixation). This phenomena is also called as ’selective
sweep and hitchhiking’, a term coined by Maynard-Smith and Haig [229]. Mutation then introduces
new variation and initially, new variants have low frequency since increase of frequency by drift needs
generations of sampling. Since Π depends more on allele frequency whereas θ w does not, their values
differ and Tajima’s D becomes negative. In this case natural selection in terms of adaptive evolution is
the force that disturbs the equilibrium and violates the assumptions of the Wright-Fisher model. Many
other statistics/measure/methods exist which detect such deviations, particularly for finding regions
under positive selection (adaptive evolution) and are commonly used for genomic data [261].

When considering several loci (sites), a more common, fundamental and nearly ubiquitous vi-
olation of the assumptions of the Wright- Fisher model is called as linkage disequilibrium (LD). It
violates the assumption of independent sampling of different sites. LD is a measure of non-random as-
sociation of alleles between sites [90], this association, when caused by the physical proximity of the
markers on a chromosome is also called simply as ’linkage’. Specific variants of proximal markers,
due do their location on the same chromosome, are sampled as a block (which is also called as a hap-
lotype) thereby linking their sampling, allele-frequency and fate. Recombination due to cross-overs
exchanges (swaps) homologous regions in the chromosome from a population thereby decreasing
LD. LD typically decreases with the distance between sites in the genome as the likelihood of a re-
combination event increases with this distance. This make sites independent to some degree. LD
measurement needs haplotype data but for SNPs usually only genotypes are available. Deducing hap-
lotype from a genotypes is called as ’phasing’ and there are specialized softwares for it. Sometimes
the samples are inbred by selfing which drastically reduces heterozygous sites and the genotype data
can then be represented as a haplotype and no phasing is needed. This was the case in this work as
the maize samples used were of inbred lines. A ’four gamete test’ [103] is one of the simplest ways
of detecting a recombination event. It uses combination of marker variants seen between two markers
in several individuals to obtain an estimate for the number of recombination events in the history of
the sample. As a simplistic example, if two markers/variants (A/a and B/b) are in physical proximity
and assayed in a population, the possible combinations that can be seen are AB, ab, Ab, aB. If in
four individuals AB, ab, Ab and aB are seen then at-least one recombination can be inferred which
switched the allele variants. It is important to note that the number of recombination events reported
are nearly always an underestimate as the events which are not ’flagged’ by the marker variants can
not be determined. An extreme example would be a sample with no diversity in a population (only
one marker variant is seen for each marker), although the recombination events might have happened,
they can not be determined as the method relies on marker variants.

Purifying or negative selection maintains the ’status quo’ by weeding out variants which nega-
tively affect the fitness of the individual harboring them in the population. They violate the random
sampling assumption by negatively affecting the chance of a variant to be sampled thereby decreasing

5
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its allele frequency. Since this work involved identifying and studying the role of purifying selec-
tion in shaping the maize genome, several measures were used for assaying it. Some of the methods
involve using genome annotation and biological knowledge. An example is a variant which intro-
duces a frame-shift or a premature stop codon which is most likely to affect the protein function.
Non-synonymous variants change the amino acid thereby are more likely to be detrimental than syn-
onymous. Conservation of regions in interspecies comparisons is a strong indicator of function and
purifying selection. The Ka/Ks ratio is a commonly used statistic in molecular evolution [286] based
on conservation and biological knowledge, where the nucleotide changes in each category between
species are normalized by the total number of sites in each category. Πn/Πs measures the ratio of
diversity between non-synonymous and synonymous sites (analogous to Ka/Ks) and indicates the
strength of purifying selection acting on the coding regions on a shorter timescale. DoFE (Distri-
bution of Fitness Effects) [58] is the frequency distribution of mutations in different fitness classes.
It gives the proportion of mutations in various classes of selective effects. DoFE thus gives what
fraction of mutations are neutral, deleterious and very deleterious. This distribution can be obtained
by experiments involving fitness assays. But many population genetics based approaches have been
developed to obtain DoFE from sequence polymorphism data [58]. Like Πn/Πs, population genetics
based methods usually need two classes of sites, one class for which DoFE is obtained (e.g non-
synonymous) and another which is assumed to be neutral (neutral standard) (e.g synonymous sites).
These methods are based on the premise that mutations in sites in the selected class will be few and
kept at a lower frequency by purifying selection and the fraction of mutations in different classes of
selection strength is obtained by comparing the number and frequency of SNPs between two classes
of sites (selected v.s neutral). The Eyre-Walker and Keightley method as implemented in the soft-
ware DoFE was used in this work [59]. As a test example this method was run on classical genes
in maize v.s 15000 randomly chosen maize protein coding genes with cDNA evidence. Classical
genes are genes which are well studied in maize and are more likely to exhibit a mutant phenotype
[215] so purifying selection is expected to be stronger for them. The results are depicted in Figure
2.1 where the strength of selection is represented as a product of selection coefficient (S) and recent
effective population size (Ne). Higher values of -NeS indicates stronger purifying selection. Higher
fraction of mutations in higher -NeS classes shows stronger purifying selection acting on classical
genes compared to a set of random genes. Another observation seen here and in general [101] is that
a large fraction of non-synonymous mutations are very deleterious and purifying selection is thereby
a pervasive force. One common confusion in interpreting DoFE results is that the inferred fraction of
mutations in different classes in the population is reported and not the fraction of SNPs in the data.
The SNP data only helps in inferring the distribution and is not directly represented in the results. For
example, in Figure 2.1 classical genes show a higher inferred fraction of mutations in highly deleteri-
ous class (-Nes>100) and thereby stronger purifying selection on non-synonymous sites, but this does
not represent the fraction of SNPs which belong to that class (-NeS>100). In the DoFE distribution,
the class -Nes>100 also covers mutations which are too deleterious or even lethal to be observed in
the polymorphism data. Also DoFE obtained by this method can not predict the purifying selection
strength on an individual given mutation.
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Figure 2.1: Distribution of Fitness Effects (DoFE) for classical maize genes vs 15000 random genes
with cDNA evidence. Y-axis gives the fraction of mutations and x-axis gives the deleterious effect
of mutations scaled as product of effective population size and selection coefficient (-Nes). Higher
values of -Nes indicate stronger deleterious effect.

The population genetics based methods for assaying strength of purifying selection rely on allele
frequency calculated from the sample. Another method which was used in this work utilizes site
conservation only and provides an independent estimate is SIFT [170]. SIFT measures the inter
species conservation at the site of the SNP to generate a score estimating the deleterious nature of the
SNP [170]. A good agreement was in general seen between the SIFT and other methods in this work
which is further discussed in chapter 2 and 4.

The decade-old and still ongoing advances in Next Generation Sequencing (NGS) and allied tech-
nologies have influenced all areas of biology. The steep decline in costs and the sharp incline in the
data density have even surpassed the famed ’moores law’ meaning that the ’Sequencing revolution’ is
unparalleled to even the ’Semiconductor revolution’ [87]. Unprecedented number of genomes are now
available both within and across species making way for detailed intra and interspecific comparisons
and generation of deep intra-species variation catalogs. NGS based deep expression quantification via
RNA-Seq, genome occupancy assays via Chip-Seq and NGS variants to detect epigenetic DNA mod-
ifications are closing the knowledge gap between genotype and phenotype. Fundamental changes are
also happening in the way biological research is done. The scope of hypothesis testing has expanded
to a system level, and power to test theories, predictions and effects has received a boost. In addition
to testing a hypothesis, the generated data is also aiding human curiosity and intuition in creating
new predictions and linking different levels of biological organization. Needless to say that plant
biology with all its flavors including crop breeding and domestication has seen a massive percolation
by NGS. Population genetics traditionally had a strong theoretical bent and empirical data analysis
and testing of predictions have been limited by the data availability. NGS technologies have lifted
this and genome scale population surveys involving multiple individuals is now common giving rise
to the field of ’population genomics’ which involves fusion of genomics with traditional population
genetics [148, 30].
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2.3 Introduction: The grass family and their genomic circle

The grass family and their genomic circle

The family of grasses is usually in the limelight in the field of plant biology given their single largest
contribution to the global food supply [119]. The very word ’food grain’ implies endosperm of a
grass species. In addition to direct human consumption as food, grasses also are indispensable for
their indirect application as animal feed and biofuel source [176]. The food value has been achieved
by domestication of many individual grass species by humans as far back in time as epipalaeolithic
period [188]. It would not be far-fetched to say that the success of human civilization has been
and still hinges on the continuing molding of grass species to suit our needs. The growing human
population only underlines the need and urgency to better understand grasses and suitably apply the
acquired knowledge for higher yielding and robust grass species [54]. Grasses also form a well suited
study system for a range of applied and basic biological and evolutionary questions. From a pure
evolutionary-genomics perspective, grasses form an excellent test case to study fundamental pro-
cesses shaping genome evolution post domestication as many grass species have been independently
domesticated. They have also colonized a variety of different habitats and encompass a spectrum
of phenotypic variation, and added to this are the phenotypic changes introduced by domestication.
Despite the variability amongst different species in appearance, initial studies indicated that grass
genomes display a marked collinearity. These studies were based on morphological, isozyme and
RFLP markers and formed the basis for a view that grasses are made up of similar linkage blocks.
The information in one linkage block in one species can be transposed to the same linkage block in
another species by a circular cross-species linkage map [161]. There was even the hypothesis of a
single grass pan genome and transposing loci responsible for phenotypes amongst grass species [12].
The transfer of markers from one species to another is still common in grasses [69], but the coarseness
of these markers meant that small deviations from synteny were not detected. Alignments of whole
genome sequences can nowadays give a complete picture. A fine scale and unbiased analysis of syn-
teny is readily possible today by whole genome alignments of different species and web based tools
like SynMap [149]. Contrasting to the collinearity is the genome size variation in grasses which is
extensive, for example wheat has a haploid genome size of∼17Gb whereas for rice the genome size is
around ∼400Mb [53]. Also, the genome size changes can be attained in relatively short evolutionary
timescale, for example, maize and sorghum are closely related (∼12MYA) [241] but the genome size
is double in the former. The major factors which explain this are Whole Genome Duplication (WGD)
and heterogeneity in the abundance of Transposable Elements (TEs).

Whole genome duplication (WGD)

WGDs are also aptly called as paleopolyploides meaning an ancient event of polyploidy, only whose
remnants can be seen in the genome today. WGD are a common occurrence in plant phylogeny and
seem to be well tolerated compared to animals (Figure 2.2) [14, 136]. All grasses share two rounds of
WGD which happened in the pregrass ancestor ∼70 Mya [180], an additional WGD event happened
in maize lineage as it diverged from Sorghum [73] and seems to be the only well characterized and
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2.3 Introduction: Whole genome duplication (WGD)

studied WGD in grasses post divergence. Although WGD events are uncommon in grasses post
divergence from the MRCA, when compared to other flowering plant lineages, discovering new events
can not be ruled out as more data on different species becomes available. The simplest depiction of a
WGD is a doubling of the chromosome number back in time and its returning to the preduplication
number (2.1). Susumu Ohno not only proposed a WGD in vertebrate ancestor which was supported
by later work but also highlighted the importance or WGDs in evolution [173]. WGD generated
duplicate pairs are also called as homeologs or ohnologs in the honor of Ohno.

2N −→ 4N −→ 2N (2.1)

Figure 2.2: WGD events in Flowering Plant phylogeny. Obtained from www.genomeevolution.org

A WGD not only duplicates every gene but also preserves the intergenic and regulatory interac-
tions. Paralogous pairs (ohnologs) resulting from WGD are thus ’born equal’ but then they diverge in
sequence, expression, and sometimes function. After WGD a process of diploidization ensues, which
is typically accompanied by rapid and massive gene loss, a process called ’fractionation’ [131]. For
example, in maize only approximately 20% of genes are retained as duplicate copies since the maize
specific WGD [217]. Fractionation thus explains why gene numbers in plants are still moderate even
after multiple rounds of WGD [218]. Fractionation is shown to be biased in many studies done in dif-
ferent plant species which means that some genomic regions of the diploidized polyploid shed more
genes (sensitive subgenome) compared with other (dominant subgenome) [249, 164, 35, 65, 28] al-
though WGD events without such a bias also exist [72]. It has been proposed that biased fractionation
is associated with allotetraploidies whereas autotetraploidies are associated with no fractionation bias
[72]. Not only gene deletions but gene expression has also shown to be biased in the favor of the dom-
inant subgenome [35, 65, 83]. In this context an often caused confusion was highlighted by Grover
et.al [83] between ’genome dominance’ and ’homeolog expression bias’. Genome dominance implies
the combined expression is similar to one of the polyploid progenitors whereas homeolog expression
bias references to difference in relative expression of ohnologs [83]. This work involved studying
homeolog expression bias in maize which has been seen in many other plant species [193, 1]. While
analyzing divergent relative expression of duplicate pairs across many tissues two possible patterns
exist. First a unidirectional expression divergence (UED) defined as one member of the pair being
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2.3 Introduction: Whole genome duplication (WGD)

consistently highly expressed (UED-dominant) than its counterpart (UED-repressed). Such a consis-
tent decrease in expression of one member was called as ’regulatory hypofunctionalization’ [52]. The
second scenario is bidirectional expression divergence (BED) for which both genes are alternatively
dominant and repressed in different tissues. The expression difference between ohnolog pairs has
been shown to be quickly established after the formation of the synthetic allopolyploids in the cases of
Cotton [65] and Arabidopsis [263] and for natural allotetraploids of Tragopogon miscellus [19], Bras-

sica rapa [35] and maize [217]. The mechanisms operating behind the initial expression differences
and divergence between ohnologs is not clearly understood. Epigenetic effects like DNA methylation
have been tested but have not been proven. Parkin et al. [179] found subgenome dominance for ex-
pression in Brassica oleracea but methylation profiles did not correlate with dominance for individual
genes. No differences were found in gene body methylation between maize subgenomes [55]. Ini-
tial differences in upstream transposable elements (TEs) caused by allotetrapolidy has been proposed
[217]. Repression of an upstream TE might cause an inadvertent decrease in expression of the nearby
gene but it was shown not to be working in cotton [199].

Sorghum 
Locus

Maize Locus 
Locus (Pre WGD)

WGD

Fractionation
(Gene Loss)

Maize1Maize2

More gene loss Fewer gene loss

Homeologous Loci1 Homeologous Loci 2

Subgenome
Classification

Figure 2.3: Post WGD Fractionation and creation of subgenomes after maize specific WGD

The fate of genes after WGD is generally seen in the light of two hypotheses. First, the gene
dosage balance hypothesis, which predicts that selection acts on maintaining the stoichiometric ratios
of protein amount between interacting gene partners [13]. Thus regulatory genes and genes involved
in multi-protein complexes which typically have many interactions are more likely to be retained after
WGD [8, 200]. Few studies have also indicated absolute gene dosage to be an important determinant
of retention after WGD [2, 27, 199, 156]. This is in stark contrast with the gene retention after tandem
duplication where genes with lower dosage constraints are preferentially retained [200]. This causes
the genome post WGD to get enriched in certain functional categories which include regulation.
Many implications and consequences of this enrichment have been proposed and reported [256] which
include increase in regulatory and organismal complexity [118, 106], diversification [97], speciation
[203], and evolutionary innovation [23].

The second hypothesis implicated in the fate of WGD duplicates is the subfunctionalization and
neofunctionalization hypothesis which states that the fate of the duplicated gene pair broadly follows
two known outcomes, subfunctionalization, where the ancestral function is partitioned between du-
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plicate copies [68], and neofunctionalization where one of the duplicate copy evolves a new function.
Both outcomes can be achieved at the level of gene expression or protein function [64]. Expression-
based subfunctionalization can be readily assayed by analyzing relative expression of duplicates.
Duplicates can be expressed differentially across tissues, developmental stages, or environmental
conditions or one copy can attain a novel expression profile [52, 31, 144, 253]. Generally a sub-
stantial number of WGD duplicates display divergence in expression [52]. 50% of duplicates were
reported to have diverged in expression in a study in soyabeen [204]. A study in Arabidopsis found
that 85% of duplicate genes show evidence of regulatory subfunctionalization and/or neofunctional-
ization [52, 198]. A study in cotton reported a near complete expression divergence between WGD
duplicates [198].

The WGD event shared by grasses is very old (∼70MYA) [180, 269] and its remnants can be seen
in whole genome sequences of individual grass species. This also gives a chance to study the fate
of each ohnolog pair separately in each individual species. Occurrence of paralog pairs in studies
involving analysis of gene expression, annotation, function, gene family and phylogeny is thus com-
mon [268, 265, 281, 160, 185, 114]. WGD paralogs have been implicated in various phenotypes in
grasses including C4 photosynthesis [268] and grain hardness [289]. A study reported preferential
retention of starch synthesis genes post WGD in grasses when compared to arabidopsis [280], this is
particularly important as it indicates that the seeds for domestication of grasses and their food value
were sown ∼70 million years ago by the WGD. The WGD has been implicated in many instances
in domestication induced phenotype change in grasses [181, 254]. The differing changes specific
to each species in WGD duplicate pair which include gene gain by tandem duplication, gene loss
and location or amount of expression can have multiple consequences. These can include conver-
gent evolution where a same phenotype is achieved by different changes in duplicates, interspecific
phenotypic diversity where changes in paralogs result in species specific phenotypic differences and
adaptive evolution. Overall the ancient WGD in the grasses presents an excellent system to study
replicated instances of rewiring of gene interactions and the resulting similar, different or novel out-
comes.

Taming of the grasses

The relationship of humans with grasses can be described as been active and reciprocal. Humans
molded different grass species via domestication and grasses provided a staple and stable food source
thereby changing the hunter gatherer lifestyle to more stable permanent settlements [212]. Domes-
tication traditionally involved artificial selection based on traits and was largely empirical [89]. The
timescales involved in domestication are minuscule compared to the phylogeny of grasses [76], yet
the resulting phenotypic changes are nothing short of the word ’impressive’. For example, in case of
maize, the appearance of the plant was so different (Figure 2.4) that no species was clearly identified
as the ’wild progenator’, purely based on morphology, [46] and finally molecular data resolved this
issue [47]. Independent domestication events have happened for many grass species like rice, wheat,
maize, sorghum etc making grasses an excellent overall system for studying domestication itself.
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The generalized collection of changes induced by domestication has been dubbed as ’domestication
syndrome’ [88]. This convergence of phenotypes can be seen in different aspects of biological orga-
nization including morphology (e.g branching patters and seed shape and size) life history (e.g seed
dormancy) and biochemical composition (e.g altered starch composition and toxicity) [175]. Several
examples of convergent phenotypic evolution have emerged in grasses due to their independent do-
mestication [89, 183], although the molecular mechanisms and genes involved can be different for
each species [78]. Some examples of such changes include non shattering seeds (which is crucial for
harvesting), changes in branching patterns (single branching in maize as shown in Figure 2.4) and
waxy phenotype which increases consistency after cooking and selection for flowering time [175].
Studies have identified different mutations in different genes achieving these phenotypes in individ-
ual species [107, 78].

Figure 2.4: Visual changes introduced by domestication in maize from teosinte [104]

Domestication is a fascinating process to study at a genetic and genomic level as it involves discov-
ering the molecular changes selected by humans mostly unaware of genetics. Application of genetics
is a powerful tool to understand domestication and its implications in the genome and to discover
the variants selected during domestication. In modern days, the phenomena of domestication itself
has been domesticated meaning that we understand it much better and can apply this knowledge to
design and implement changes to a target species at an accelerated pace. This has happened partly
due to the availability of a torrent of molecular information about the phenotypes and the ability to
manipulate genetic information to the point that a new phenomenon called as ’super domestication’
is emerging [257, 92]. For example, a 5 to 10 fold yield increase is common in a short time span of a
few decades due to modern breeding [18] and the so called ’modern’ commercial lines for maize pro-
duced as double haploids by using genomic selection and knowledge based introgression far surpasses
the traditional lines in desirable traits [134]. Traditionally, QTL (quantitative trait loci) mapping has
been central to locate the genetic basis of traits in grasses [78]. The development and advancement
of methods like GWAS (Genome wide association analysis) and NAM (nested association mapping)
with increased availability of dense marker data have accelerated the discovery of implicated loci
[175].

Domestication syndrome also happens at the level of genetic polymorphism wherein it generally
results in a genomewide decrease in diversity of the domesticated population compared to the wind
progenitor. This is due to the fact that few individuals from the wild population become the found-
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ing members of the domesticated population (a term called as bottleneck) [45]. The magnitude of
reduction in diversity differs for different species and depends on several factors including severity
of bottleneck, number of domestication events (single v.s multiple), prevalence of gene flow after
domestication and the mating system (selfing v.s outcrossing) [78, 57]. The diversity loss is typically
uneven across the genome with the loci favored during domestication incurring stronger reduction.
This is because of favored sampling of the desired variant and other linked variants (see introduction)
which then increases in frequency clearing the loci of diversity (selective sweep). This scenario is
of the case when the phenotype altering variant is new or at a low starting frequency (hard sweep).
This may not always be the case if the variant is already at an appreciable frequency in the population
(selection from standing genetic variation), a scenario called as ’soft sweep’ which does not result in
a drastic diversity reduction. Population genetics has been used as a tool to detect loci targeted by
domestication. This bottom-up way is in contrast to the topdown approach of going from a phenotype
to the causal genetic variant by QTL mapping [202]. The bottom-up approach is typically seen in
genome scans for detecting adaptive evolution which are based on the population genetic theory that
states that the targeted loci which are undergoing adaptive evolution leave signatures in polymorphism
patterns like decreased diversity and longer haplotypes [155, 121]. Purely demographic effects like
bottlenecks can also cause such signatures but the effect of demography is usually far less localized
and can be seen over the entire genome. Statistics quantifying these signatures are obtained for win-
dows over the genome and in absence of reliable demographic models which are often cumbersome
to obtain, an outlier approach is used with extreme values assigned as regions undergoing adaptive
evolution. But experimental validation of an adaptive phenotype effect is the only proverbial ”proof
of the pudding”. An augmentation to this approach is to obtain genome scale polymorphism data
for the domesticated and the related wild population, such that regions displaying decreased diversity
only in the domesticated samples are prioritized [104]. In some rare cases causal variants for pheno-
typic changes can be found by only comparing the sequences of a domesticated species with a wild
ancestor, particularly in case of low number of differences. For example, a naked kernel in maize
which makes consumption much easier is caused by only one amino acid substitution between mod-
ern maize and its wild cousin teosinte [262]. The success of population genetic methods heavily relies
on availability of population scale genome data and understanding of the demographic and stochastic
processes involved in domestication. The availability of such datasets is on the rising for different
grass species [26, 20, 36, 102]. Post whole genome sequencing, generation of intraspecific variation
catalog usually follows for domesticated grasses, maize hapmap consortium, for example, provides
whole genome reqsequencing data for about thousand maize lines [20].

Low diversity can adversely affect the species ability to respond to adverse conditions like pathogen
pressure, genetic drift is stronger in such cases and the strength of selection is expected to be reduced
[78, 122]. The strength of selection is also dependent on the recombination which delinks loci and
increases the efficiency of both positive and purifying selection [94, 79]. This was shown elegantly
in drosophila by Campos et.al [22] by making dividing genes in bins based on recombination events
and then assaying positive and purifying selection differences between bins. Strength of both posi-
tive and purifying selection increased with increasing recombination [22]. The decrease in selection
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strength is particularly important for domesticated species due to three factors. First concerns the
nature of selection itself, traits critical for survival in wild may no longer be important in the domes-
ticated variant due to assistance by humans. For example seed shattering in grasses is important for
dispersal in wild but not in domesticated strains [49], conversely fixations of variants for traits under
domestication related positive selection result in fixation of linked deleterious variants. Second is the
decreased diversity and increased drift due to domestication bottleneck. Third is an increase in LD
post domestication which impedes the efficiency of selection [188]. A study in rice reported more
deleterious non-synonymous changes when compared with wild relatives [147]. More studies have
reported this phenomena in grasses [125, 159]. There is often more focus on detection of adaptation
in domesticated species when compared to studying the effect of purifying selection. The availability
of polymorphism catalogs of both wild and the corresponding domesticated species would encourage
more studies in this regard.

In a nutshell domestication is a fast evolutionary process as early recognized by Darwin. Mul-
tiple independent domestication of various grass species makes them a suitable case study of key
population genetic evolutionary processes like adaptation, drift, mutation and purifying selection.

Transposable Elements

The most significant contributor to changes in genome size in plants are Transposable Elements (TEs)
[244]. They also form an explanation for the ”C-value paradox” wherein genome size and organism
complexity are usually uncoupled [184]. TEs were initially called as ’jumping genes’ because of
their ability to change positions in the genome. This ability to hop into and thereby potentially dis-
rupt a gene can sometimes cause prominent phenotype changes even at a somatic level. Eye-catching
examples of such changes include varied colored grains in a corn kernel and patchy or speckled pig-
mentation in flowers and leaves [81, 40]. The later led to their conceptual discovery by Barbara
Mcclinktok. The verification of their molecular existence and unraveling of underlying mechanisms
ensured her a place in scientific history. Since then, numerous types and strains of TEs have been dis-
covered in nearly every species sequenced including plants. Nowadays TEs are largely discovered in
genomes insilico, by sequence similarity searches with a library of TE sequences made for a particular
clade, but specialized signature-based approaches also exist [137]. The MIPS (Munich Information
for Protein Science) provides such TE libraries for many plant clades and as well provides a neat
’internet Protocol (IP) address’ like nested classification of TEs [172]. Detection of TEs only gives
a static picture but the exact molecular mechanisms of transposon jumping can be complicated, vary
between different types of TEs [275]. They fall into two major classes [63], first being the class I TEs
which use a ’Copy-and-paste’ mechanism via an RNA intermediate (also called as retrotransposons).
Second are the type II TEs which transpose using a ’cut-and-paste’ mechanism (DNA transposons).
But several subclassifications and variations exist within these two broad types [275].

Transposons are often called as ’selfish DNA’ or ’genomic parasites’ because of their ability to
actively increase their copy number without contributing positively to fitness of the ensemble [177,
273]. Still they manage to survive, thrive and are an abundant source of genetic variation which can
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affect genes in diverse ways [142]. Their abundance is the single-most potent factor which influences
genome size [244, 34, 84]. For example, genome size of rice is ∼400Mb [187] compared to TE rich
maize which is ∼2300Mb. Also impressive is their ability to change genome size in relatively short
evolutionary timescale. A striking example of this is a 50% increase in genome size of zea luxurians

compared to zea mays (maize) with only a divergence time of ∼140KYA [245]. These TE ’bursts’
can have profound consequences not only at a species level but also higher [10]. Note that the exact
mechanisms governing the abundance of TEs in a particular species is still an area of active research
[242].

The tip of the TE iceberg

Looking at a colored speckled pattern on a leaf or flower or multicolored corn kernel one can imagine
a TE insertion or excision in a pigment producing/regulating gene [61]. This insertion most probably
happened in a stem cell and then transmitted to its progeny cells in the somatic tissue or the germline.
The change being visible to the naked eye makes the detection effortless. Its local nature and com-
monness imply that it might not be drastically deleterious. But a multitude of such changes would be
happening to other genes whose phenotype may not be so obvious. So on a phenotypic level TEs can
cause large effect changes when present in or near genes, so much so that they have been used for
generating artificial mutants and knockouts [126].

This ability to cause large genetic and phenotypic change can occasionally make them agents for
adaptive change. Several adaptive effects of TEs have been documented and as such any striking
and/or adaptive change caused by a TE is usually cherished and highlighted in the literature [260,
142]. Their contribution to gene birth, regulation and evolutionary innovation has also been proposed
[273, 205] and shown in a some cases [11, 142]. But compared to their genomic abundance, known
cases of TEs displaying adaptive effect form a minority and the evidence of their ”general” utility in
the genome is still unclear and actively researched [231, 195].

A strong mutagenic and phenotype altering potential would also imply copious deleterious effects
of, and thereby purifying selection on TE insertions. Insertions resulting in dramatic and deleterious
phenotype alternations such as insertions in coding regions of functional genes would be removed
by natural selection and seldom seen in population genomic data [4, 3]. Nonetheless, the occasional
longterm persistence and high abundance of TEs also imply that they exhibit neutral or nearly neutral
effect and there is a role of life history and population genetic forces in maintaining them in genomes
[242, 146, 16, 48]. The deleterious nature of TEs is in contrast to the nearly-neutral effects explained
in the former section and the location of TE in the genome is crucial for a reconciliation.

Aside from purifying selection genomes have a few tricks up the sleeve to ’pro-actively’ protect
the genes from TE insertions which include methylation, chromatin organization and small interfer-
ing RNAs [214, 82]. These constitute an ’epigenetic immune system’ for protecting against selfish
elements by negatively affecting the ability of TEs to jump (called as ’silencing’ of TEs) [228, 141].
Like mechanisms of TE jumping, the silencing mechanisms are also actively researched [232, 153].
Variants of NGS based technologies have accelerated the pace in this area by providing genome scale
maps of chromatin configurations, methylation and expression levels of small RNAs and genes [9, 74].
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My interest lied in studying the TE distribution in gene vicinity, which is more likely to be shaped
by their deleterious effects via influencing gene expression. This presents a challenge because in
contrast to TE insertion in protein coding regions, the effects of TEs upstream and downstream of
genes are difficult to discern. A major reason is the scarcity of data on the location of promoters and
cis-regulatory sites especially in plants [130]. These regions extend outwards from the transcription
start and end sites and form a ’Grey zone’ of the gene boundary. A second reason is the heterogeneity
in the effects caused by TE insertion, making the outcome dependent on many factors. For exam-
ple, the extent of damage to the cis-regulatory region would depend on the size and location of the
TE insertion in relation to this region. The complexity and functional density of the upstream cis-
regulatory landscape would in turn be the factor influencing the likelihood of a TE insertion. Since
the most likely change an upstream TE insertion can make to a gene function, is to influence its
expression, the resulting phenotypic change would not only depend on the magnitude of expression
change but also gene specific properties like dosage, sensitivity to expression variation and overall
effect on fitness. Studies have pointed to an indirect association between expression divergence and
upstream TE abundance [99, 186]. Altered gene expression due to proximity to TEs was shown in
wheat [117]. Multiple studies have also indicated the potential of TEs themselves to act as promoters
for nearby genes, thereby conferring a new expression profile [166, 236, 37]. Epigenetic management
of TEs via silencing adds an additional layer of complexity as the processes meant to suppress TEs
can inadvertently suppress nearby gene expression thereby creating an indirect link between TEs and
neighbouring gene expression [98, 41]. Methylation, which suppresses TEs has been strongly asso-
ciated with repression of expression when present in the promoter region [41]. TEs were also linked
to intraspecific variation in gene expression in Arabidopsis and the subset of TEs targeted by siRNAs
were specifically found to be more distant from genes, presumably to avoid inadvertent gene silencing
[266]. The cross connection between epigenetic silencing of TEs and gene expression was also shown
in Arabidopsis by Hollister and Gaut, where gene expression was found to be negatively correlated
with the density of nearby methylated TEs only and not non-methylated TEs [98]. An expedited re-
moval of methylated TEs presumably due to their methylation affecting nearby gene expression was
also shown [98]. Additionally a study found rice found that the methylation of downstream regions
can repress transcription, even stronger than upstream regions [140].

Choosing of Maize

Amongst grasses, the foremost worldwide production is of maize. I decided to choose maize as a
model organism for my dissertation as it has experienced all the aspects of grass evolution high-
lighted before. A complete high quality genome sequence with a chromosome level assembly was
available since late 2009 [219] and maize is replete with a lot of functional genomics data like high
throughput expression and genomewide epigenetic datasets (methylation) produced by a community
of researchers. Ample amount of so called ’classical’ data is also available which includes detailed
functional studies of individual genes and a handful of direct genotype to phenotype associations
[132]. The maize community is dynamic, vibrant and very open with regard to advice and data
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sharing. Of particular interest was the availability of a major population resequencing dataset for
maize, the hapmap2 project which not only sequenced modern maize lines but also their wild cousins
(Teosinte), thus providing two contrasting datapoints for studying maize domestication [36].

WGD in maize is ’special’

Post divergence from the MRCA, grass species, in general have not encountered a well characterized
species wide WGD event, except for maize. A maize specific WGD event was suspected early on
by the maize community, but strong evidence based on sequence data was put forward by Gaut and
Doebley [73] in 1997. Since then a substantial body of work was already been done on maize WGD,
including its dating around 11-12 Mya [241]. I was particularly drawn towards WGD in maize as it
is reasonably recent and happened after divergence from sorghum. Sorghum did not undergo a maize
specific WGD thereby making it a perfect outgroup with a high quality genome sequence [182]. Older
WGDs, for example at the root of the grass lineage make a less striking case as ample time has passed
after WGD and most post WGD processes have diminished in strength and signal. Most older WGD
are studied using interspecific measures like synonymous and non-synonymous substitution rates (Ka
and Ks). The recent nature of maize WGD gives a rare opportunity to study post WGD evolution
at a much recent and relevant timescale, particularly using intraspecific comparisons and patterns of
polymorphism.

Whole genome sequence of maize not only reconfirmed the WGD but reported about uneven gene
loss between duplicated regions and a gradual and still ongoing return of the number of genes to pre
WGD level (Fractionation) [219, 272]. This diploidization post-WGD in maize was also associated
with copious chromosomal rearrangements, breakages and inversions [272] when compared to re-
lated species like sorghum and rice (with no recent WGD) thus making them more representative of
the ancestral state of gene order pre-WGD [219, 272]. Using sorghum as an outgroup, and with the
maize WGS it became possible to map ”which gene went where?” from its pre-WGD state. This
catalyzed a string of following studies which explored the post WGD evolution and genome rear-
rangements at a higher resolution. Many immediate questions were addressed -a) How many genes
retain their duplicate copy? b) What is the mechanism of gene loss? Do mutations render one copy
non functional making it a pseudogene?. c) Are some genes more or less likely to loose a duplicate
copy? d) Is gene loss a random process or some regions display a preference? Woodhouse et al.
and schnable et al answered these questions [276, 217] by taking leverage from the availability of
high quality genome sequence of both maize and sorghum. They first aligned duplicated copies in
maize individually to their ortholog in sorghum and then created syntenic blocks of genes by using
the location of gene in Sorghum and maize presuming that the ancestral (pre-WGD) gene arrange-
ment would be similar to that of the sorghum. Approximately 20% of genes retained their duplicate
copy which indicates a rapid and massive gene loss following WGD. This also explains why gene
numbers in maize are still moderate [218]. The major mechanism for gene deletion was found not
to be pseudogenization by mutations, but instead entire gene copies seem to be lost presumably by
improper recombination [218]. Once the deletion removes a part of a duplicated gene, the other intact
copy resists a deletion in it as there is no complementation by the first copy. The first copy is then
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targeted for more progressive deletion events eventually vanishing away from the genome. The exact
mechanism for such deletions is still unknown. These studies also reported a bias or non-randomness
in the deletion process. Some syntenic blocks tend to loose more genes and were called the sensitive
subgenome (maize2 subgenome) and the counterpart called as the dominant subgenome (maize1).
The concept of subgenome at first seems to be counterintuitive and artificial as the very definition of
a dominant subgenome is fewer deletion events. Also the subgenome can not be associated with indi-
vidual progenator genomes which merged during the WGD as the definition does not imply this. But
three lines of evidence imply biological relevance of subgenomes. First, maize1 subgenome genes
were shown to have dominant(higher) expression when compared to their maize2 counterpart [217].
Second that well studied genes which have a known mutant phenotype associated are more likely to
fall on the maize1 subgenome [215]. Thirdly, and most importantly, there is not difference between
inherent ’neutral’ deletion rate between subgenomes as regions in introns and TEs do not display
higher deletion frequencies when present in maize2 [217]. This implies that, as the deletion rates are
similar, a deletion in maize1 subgenome has a stronger effect on phenotype and is thereby selected
against. In other words, differential purifying selection between duplicates can be invoked to explain
the subgenome deletion bias and became the basis of the first part of my thesis work. Differences
in purifying selection were assayed between duplicates and connected with expression differences in
this work.

Gene dosage is well known factor which influences the probability of a gene to be retained post
WGD. A proxy for gene dosage are the number of genetic or protein-protein interactions. The more
interactions a gene has more tightly under selection it’s dosage is. Transcription factors and mul-
tiprotein complexes are two functional categories that tend to have above average interaction part-
ners. Maize WGD was no exception in this case with these functional categories showing higher
post WGD gene retention probabilities [219]. Another study [105] quantified expression profile di-
vergence of duplicates between two different leaf types of maize and analyzed long-term selection
between ohnologs. It was shown that the purifying selection is weaker on one copy when the expres-
sion profile of duplicated pairs remains non-divergent across tissues, whereas, when the expression
profile diverges in tissues, both copies are under strong purifying selection.

Another aspect of duplication lies in achieving mutational robustness via functional complemen-
tation by the duplicate copy. A study in yeast [86] showed that complementation occurs but decreases
with sequence divergence between paralogs and the copy with higher dosage exhibits stronger dele-
terious effect when silenced. Schnable and Freeling [215] reported cases where a mutant phenotype
is catalogued for a maize gene with has a duplicated copy present, thereby in these mutants the dupli-
cate copy fails to complement. One part of this work was to connect purifying selection and dominant
expression with an associated mutant phenotype.

Transposons in maize

Maize is of special historical significance when studying TEs [194]. Around ∼85% of the maize
genome is composed of TEs [219]. This is a substantially large fraction compared to closely related
Sorghum genome (divergence ∼12MYA [241]) [244, 96]. It is now accepted that the increase in
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genome size of maize compared to recently diverged sorghum was primarily due to an explosion of
TEs [128]. Since their discovery in maize an enormous volume of work has been conducted in maize
by identification and characterization of various TE types and unraveling the molecular mechanisms
involved in transposition [287, 143, 211, 129]. Continuing the tradition, even the approach for dat-
ing a retro-transposon insertion by inspecting the divergence between the terminal repeats was first
demonstrated in maize with most TEs inserted ∼3MYA [210]. Maize also has an unusually high
number of intact full length TEs [15], implying more active transposition events. It is common to
find TE based transcripts in transcriptome surveys [258]. More than half of the genes have a TE in
1KB vicinity [219]. TEs also play a role in shaping the intraspecific diversity in maize intergenic
regions [17, 264, 50]. Not only maize nucleotide diversity is on the higher end but also high diver-
sity exists on a coarser scale where large chunks of genome display presence absence polymorphism
(PAVs) [233, 240]. More than 3000 genes have been shown to display these PAVs [240]. The vi-
olation of genetic collinearity is rampant in non-coding regions [71] making whole sections display
no sequence similarity within a population when seen relative to the distance from a gene. Intraspe-
cific differences in transposons seems to be a major reason for this [264]. Increasing afford-ability
of deep and long-read technologies combined with newly developed methods for calling TE insertion
polymorphisms [56] would catalyze studies to detect these ’non-reference’ transposons and catalog
polymorphic transposon insertions in maize. Such studies in maize have just started appearing [271].

Several instances have been reported in maize where TEs have influenced the phenotype in an
adaptive manner [236, 285, 152]. An upstream TE insertion in NAC was shown associated with
drought tolerance by lowering the gene expression [152], this insertion was dated to be post domes-
tication. An upstream TE insertion in the famous tb1 genes acts as an enhancer of gene expression
and is shown to be causal for the increased apical dominance in maize [236]. Another upstream TE
insertion in the ZmCCT gene suppressed gene expression and consequently decreased photoperiod
sensitivity thereby enabling flowering in long daylight conditions and was critical for maize adap-
tation to temperate climates [285]. This insertion has happened post domestication. Another TE
upstream insertion near ZmRap2.7 gene (which is involved in flowering time repression) is known to
influence flowering time by regulating the gene expression [209]. Curiously enough, all these TE in-
sertions are located upstream (sometimes as far as∼70kb), are regulatory in nature and influence gene
expression. Also both repression and enhancement of gene expression has been associated with TEs
in these studies. Contrasting these pinpointed studies, activation of TEs detected by their expression
also has been reported to be associated with conditions related to abiotic stress like salt and drought
in maize [151, 50]. A large scale reprogramming of the transcriptome has also been reported in TE
active lines [226]. High TE abundance and activity in maize would point to pervasive interaction
between TEs and genes. Genes should be under persistent attack and nonfunctional genomic regions
near genes constantly eroded away by transposition. TE free upstream regions of genes would mark
the boundary where further transposition would alter gene expression and/or be deleterious. Thus the
functional genomic regions under purifying selection might leave a ’footprint’ in the background TE
sequences. This footprint can be seen in genomic sequence of maize were genes form islands in the
sea of TEs (Figure 2.5).
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Figure 2.5: Repeats and Transposon track (black) and genes (blue) at two levels of resolution.

A very high fraction of TEs is methylated in maize, especially TEs away from genes [178]. A
study used a clever technique involving filtering out the methylated DNA before sequencing and found
that only around 7 percent of the repetitive DNA in maize is unmethylated [178]. Several genomewide
epigenetic datasets have been generated recently [267, 55, 196, 75, 274]. Methylation was shown to be
negatively correlated with gene expression in maize [55]. Context specific differences in methylation
have been noted in maize wherein TEs proximal to genes have a different methylation (CHH context)
vs (CG and CHG) for distant TEs [75]. These CHH islands were proposed as insulators between
genes and the dense chromatin in maize.

Maize Domestication

Maize was domesticated from teosinte (a grass species) around ∼10000 years ago in present day
Mexico [47, 43]. Maize also in appearance, strikingly different from teosinte [108] which made its
sudden appearance a mystery as no wild cousins look similar to modern day maize, at least to the
naked eye. But the similar chromosome structure and the ability to cross both teosinte and maize
often producing fertile offspring lead George Beadle to promote the ’Teosinte Hypothesis’ in 1930s
http://www.maizegenetics.net/genetics-of-domestication [6]. Maize domestication con-
trasted the prevalent view that evolution is a slow process but maize community was fast acting in
the identification of the type, nature and locations of the genetic changes introduced by domestication
and this still continues today [46]. Earlier studies relied on molecular markers like isozymes and
microsatellites to look for changes during domestication and indicated towards both multi-genic and
single loci implicated in phenotypic differences [44, 44]. In all it turned out to be a mixed bag with
both monogenic and multigenic loci and large and small effect changes involved. Longer linkage
blocks in maize made the ’zooming in’ to the exact gene quite difficult and it still poses a challenge
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today but examples of single identified genetic change for the phenotypic change also exist. An ex-
ample is the famous tb1 gene which was implicated by early QTL studies in difference in branching
patterns (teosinte forming multiple branches whereas maize has a single stem). Auxiliary genomic
data showed maize specific higher expression of tb1 in certain tissues pointing to cis-regulatory ele-
ments for the causal variants. Finally the difference was pinpointed to a transposon insertion in the
cis-regulatory region which acts as an enhancer of gene expression [236].

Parallel to these are the studies investigating the population genetics aspect of the maize do-
mestication and addressing questions like the magnitude of reduction in diversity, extent of post-
differentiation gene flow, selective sweeps, timing of domestication, single v.s multiple domestication
events, soft vs hard sweeps etc. Matusoka et.al provided microsatellite based evidence for a single do-
mestication event and timing of around ∼9000 years [154]. Maize genetic diversity has been pointed
towards being the outlier on the higher end in plant and animal kingdom [246, 282]. This became
evident very early with traditional markers like isozymes and RFLPs [47, 43]. To study maize do-
mestication, genetic diversity is best seen in relation to its undomesticated ancestor (teosinte) because
domestication typically reduces diversity in comparison to the wild progenitor as few individuals are
sampled and are founders to the domesticated population [66]. The loss of diversity is found to be
uneven across the genome and regions conferring adaptive phenotypic changes in domestication ex-
perience a more severe loss due to both bottleneck and stronger selection [109]. The reporting of the
magnitude of diversity reduction in maize due to domestication bottleneck has been heterogeneous
amongst studies with both large and small losses reported [278, 247, 246, 57]. The major reason for
this being the small part of genome surveyed and sample selection. This situation was ameliorated
by the Maize hapmap2 project which involved a genome scale survey of several maize lines [36].
Hapmap2 covered a spectrum of maize evolution by sampling not only 60 modern improved maize
inbred lines but also 23 landraces and 19 wild lines. The WILD samples were composed of teosinte
which still grows in Mexico (a wild cousin of maize). The LANDRACEs are maize lines traditionally
grown by farmers. The modern IMPROVED lines are also called as the ’elite lines’ and are com-
mercially produced. These three groups (WILD, LANDRACE and IMPROVED) contain snapshots
of progression of maize before domestication to modern commercial breeding. The large sample size
and a whole genome coverage helped to obtain a comprehensive estimate of both, the nucleotide di-
versity and the reduction in diversity in maize post domestication. A SNP based nucleotide-diversity
value estimated as average pairwise differences (Π) of 0.0048 was reported for maize and a diver-
sity reduction of about ∼17% when compared to teosinte [104]. This presents a contradiction as the
massive reduction in diversity typically seen from domestication in most species is not seen in maize
[57, 18], yet copious phenotypic changes are evident. This contradiction was noted long before the
hapmap2 project by small scale surveys of polymorphisms. Eyre-Walker et al. [57] tackled the prob-
lem early on using ’coalescent simulations’ and fitting simulated data to polymorphism seen in Adh1

gene in maize. They reported that a diverse ancestral population of teosinte coupled with a bottleneck
of small size and short duration can explain the observed patters. But the study involved a minuscule
fraction of the genome. Two more aspects are relevant in this case, first is the out-crossing nature of
maize with open pollination and ability to form fertile offspring with teosinte which would imply post
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domestication gene flow between teosinte and maize. These were also addressed by Eyre-walker et al.
as the study also predicted a small founder population for modern maize, a pervasive gene flow would
have not resulted in this result. We have consistently thought about another aspect which is the hetero-
geneity of the breeding induced selection in maize wherein breeders have imposed a strong selection
on certain loci but the rest of the genome was under lesser constraint. This aspect is strengthened by
the heterogeneity in the polymorphism data with the nucleotide diversity displaying a high variance
in maize [192]. On one hand there are genes devoid of polymorphism whereas on the other there
are genes even displaying higher diversity than teosinte [278, 282]. A recent paper in maize reported
that maize adaptation is largely shaped by ’softsweeps’ [7] wherein the selected variant comes from
standing genetic variation as opposed to a new mutation ’hardsweep’. This is relevant as the reduction
in diversity is much milder for softsweeps [93].

The population genetics based bottom-up approach also yielded many candidate genes for domes-
tication. For example, the hapmap2 project generated a list of ’domestication’ and ’improvement’
candidates [104] by using approaches involving scanning the genome for regions of strong local re-
duction in diversity (measured by extreme allele frequency distribution) [33]. Many studies have used
these approaches to detect regions involved domestication and adaptive evolution in maize [111, 282].
During my PhD I was also involved in a genome scan based approach to detect loci involved in flow-
ering time in two germplasm pools in maize [255].

Discussion on selection and diversity can not be complete without recombination and Linkage
Disequilibrium (LD). LD is a measure of non-random association of alleles between sites [90], this
association when caused by the proximity of the markers on a chromosome is called simply as ’link-
age’. Recombination is one of the factors influencing LD as it delinks loci and minimizes the effect
an allele on one site in the genome has on the neighboring site. Note that high LD also decreases the
efficiency of selection, because selection at one site is affected by selection on other proximal sites
(called as Hill-Robertson effect [94]). LD typically decreases with the distance between sites in the
genome as the likelihood of a recombination event increases with distance. This rate of ’decay’ of LD
depends on many factors including recombination rate, mating system and demography (bottleneck)
[67]. LD has large implications in shaping patterns of polymorphism by positive and purifying selec-
tion. A selective sweep will affect a large chunk of a genome if LD is high. Concurrently the removal
of diversity by sweep can increase apparent LD in some cases [157]. A high LD can be a signature
of selective sweep and this forms the basis of linkage based methods to detect adaptation [121]. High
LD will also mean that the potentially deleterious alleles (eg non-synonymous) loci will affect nearby
and neutral sites (eg synonymous). The neutral diversity also gets suppressed purely due to linkage
with sites harboring deleterious alleles. This phenomena is called as ’background selection’ [29]. LD
has special significance in maize as domesticated species experience an increased LD because fewer
allelic combinations make it out of bottleneck and domestication associated adaptation causes ’local
bottlenecks’ [67]. In maize both LD and recombination rate is shown to be population dependent
[5, 67]. LD decay in maize has been shown to be rapid [246]. Wright et.al did a polymorphism sur-
vey of 774 genes and reported population recombination parameter (ρ which is inversely proportional
to LD) in maize to be 17% of that in teosinte, thereby suggesting that the increase in LD was more
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drastic compared to decrease in diversity [278]. Maize hapmap2 project also supported the results and
reported a substantial increase in LD when compared to teosinte and an average haplotype in maize
was ∼8Kb longer than in teosinte [104].
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Objectives

The overall objective of this thesis was to understand the effects of purifying selection in shaping the
maize genome. Three aspects were in this framework studied, namely, the recent WGD in maize,
proximity of TEs to genes and domestication induced differences in selection strength.

Polymorphism and gene expression data were first obtained from extensive available whole genome
datasets and used to assay strength of purifying selection and expression divergence between dupli-
cates. In the first part of this thesis, I assess whether maize1 genes are under stronger purifying
selection than maize2 genes. Dominant gene expression was then linked to stronger purifying selec-
tion by developing a new classification scheme for WGD duplicates based on gene expression rather
than subgenomes. The extent of divergence between WGD duplicates was also quantified. The cases
where a duplicate copy fails to complement a mutant phenotype were obtained from other studies,
and this observation was explained in the context of my new classification scheme. Finally, mech-
anisms driving expression divergence were explored by looking at differences in TEs, splicing and
methylation between duplicates.

The second part of this thesis involved identifying the different forces shaping the TE landscape
in the vicinity of genes. The questions asked in this case were as follows: How close can a TE
from a gene? What determines this distance? First, quantification of TEs in the gene vicinity (TEs
upstream and downstream of a gene) was undertaken. Second, the role of purifying selection on the
coding region, gene expression and regulatory complexity in shaping this landscape were explored.
Regulatory complexity was assayed by tissue-specificity, gene ontology and TSS (Transcription start
site) architecture. TE landscape in gene proximity was also obtained for sorghum and compared with
maize to explore the influence of increased genome-wide TE abundance on this landscape.

In the third part of this work, the convenient division of individuals in wild, landrace and improved
groups by the maize hapmap2 project was utilized to study differences in purifying selection likely
to be influenced by domestication in maize. The abundance of shared and private SNPs between
groups were obtained. Then purifying selection was assayed on SNPs by obtaining derived allele
frequency, nature of SNP (synonymous vs non-synonymous), conservation at the site (SIFT score)
and DoFE. Different scenarios were explored to explain the differences in abundance and strength
of purifying selection for shared and private SNPs. Differences in strength of purifying selection
were then inferred for these different groups. Differences in recombination events were also obtained
for three groups, and purifying selection differences were assessed by bins of recombination. This
analysis reveals the role of recombination in increasing the efficiency of selection. The differences
between groups was then explained in the context of increased LD due to the domestication induced
bottleneck.

In the future perspectives section I provide a general discussion of three aspects and suggest new
avenues for future work.
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3.1 Whole Genome Duplication in Maize: Materials and Methods

Materials and Methods

Obtaining SNP data

SNP data was obtained from from the maize hapmap2 project [36] which contains whole genome
SNP data for 19 Teosinte, 23 Landraces and 60 Modern inbred lines. For this part of the thesis the
data shown is from the teosinte lines only as they are the closest approximation to a panmictic pop-
ulation. VCF (Variant call format) file for maize hapmap2 SNPs was downloaded from the url (data.
iplantcollaborative.org/quickshare/e75bc315fc0f9fda/HapMapV2RefgenV220120328.vcf.

gz). The 19 teosinte lines contain 17 lines from subspecies parviglumis and two from subspecies
mexicana. The lines belonging to mexicana where removed because it forms a different subspecies.
Two more lines TIL04-TIP285:TEO and TIL06-TIP496:TEO were removed as they are similar lines
to TIL04-TIP454 and TIL06-TIP260 already present and differing only in the generations of self-
ing. One more line TIL02 was removed due to low coverage. The resulting vcf containing 14
teosinte lines was annotated using the program snpEff [39]. The following snpEff annotations namely
START LOST, STOP GAINED, FRAME SHIFT, STOP LOST were classified as Very Deleterious
mutations (VDMs).

Calculating nucleotide diversity

The VCF file was converted to ’hapmap’ format using a custom perl script. Variscan [259] was used
with runmode 12 to get values for nucleotide diversity (estimated as the average pairwise difference
between (Π)) for each SNP. SNPs with less than 80% of genotypes called were removed from the
calculations. Nucleotide diversity reported was based on average pairwise differences (Π, see intro-
duction). The per SNP diversity was added and the sum divided by the total number of sites for each
category to obtain per basepair value of nucleotide diversity.

Calculating sequencing depth for genes

Since the calculations for nucleotide diversity can be influenced by the read coverage, it was cal-
culated the for each retained gene. Hapmap2 BAM (binary alignment map) files for each line used
in the analysis were downloaded from mirrors.iplantcollaborative.org/download/iplant/

home/shared/panzea/hapmap2/bam/. Bedtools [189] was used to get the read depth at each po-
sition of genes. Since coverage varies at each position for different members of sequenced lines a
’mean coverage fraction’ was calculated which is the sum of the fraction of individuals at each site
which at least has one read aligned normalized by the length of the gene. Mean coverage fraction
for UED-dominant genes was 0.70 vs 0.67 for BED-repressed, which indicates slightly low coverage
for repressed genes. This might be caused by higher divergence or higher content of repeats or trans-
posable elements. Since UED-repressed genes were reported in this study to have higher nucleotide
diversity, the computation is an underestimate as we might miss SNPs in those genes due to the low
coverage. Thus read coverage does not alter the direction of results, on the contrary makes them more
conservative.
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3.1 Whole Genome Duplication in Maize: Materials and Methods

Calculating DoFE

DoFE was calculated separately for maize1 and maize2 retained genes. The Eyre-Walker and Keight-
ley method as implemented in the software DoFE was used [59]. The software was downloaded from
Adam Eyre-Walker’s lab (http://www.lifesci.susx.ac.uk/home/Adam_Eyre-Walker/Website/
Software.html). Non-synonymous SNPs were used as the deleterious class and the synonymous
SNPs the neutral. The nature of the SNP (non-synonymous v.s synonymous) was obtained from
snpEff output.

Obtaining Ka and Ks

The list of genes belonging to each subgenome with their Sorghum ortholog was downloaded from
James Schnable’s webpage (skraelingmountain.com/datasets.php). For each gene the splice
variant with the longest protein coding sequence was chosen for further analysis. Ka and Ks values
for maize-sorghum orthologs were obtained from ensemble biomart website (plants.ensembl.org/
biomart/martview/) [124]. Ka and Ks values < 0 and > 0.5 were excluded from the analysis.

Obtaining SIFT scores

SIFT is an algorithm for predicting the deleterious effect of non-synonymous polymorphisms [170].
It is based on site conservation and nature of amino acid change caused by the SNP. It gives a score
between 0 and 1, with 0 being intolerant and 1 being neutral. Typically a score between 0 and 0.05
is considered to be deleterious [223]. Sift scores for maize were downloaded from the sift4g website
(siftdb.org).

Expression data

Expression data for maize inbred line B73 in the form of FPKM (Fragments per kilobase per million
mapped reads) values for diverse tissues was downloaded from the qteller website (qteller.com/
qteller3/). The qteller website gives expression for maize genes combining data from various stud-
ies. The tissues with expression data under peculiar local conditions (e.g. drought) were removed
from analysis. Relative expression of ohnolog pairs was calculated and a two fold expression differ-
ence was used as a threshold to define dominance in expression. If both paralogs have expression <

0.5 FPKM in a particular tissue that comparison was discarded. Combining of the data from different
studies might cause some differences in expression to be due to differences in studies gathering the
expression data. We would like to stand by this decision due to three reasons. Firstly and impor-
tantly only relative expression between two duplicate copies was compared and no comparison of
expression values of genes across tissues was made. Secondly, it is important to sample many tissues
to obtain accurate assignment of BED genes which is only possible by using expression data from
different studies. Thirdly, FPKM is a normalized measure of expression which takes into account the
sequencing depth. Note that a similar protocol is used for aligning reads and obtaining the FPKM
values in the qteller website.
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3.1 Whole Genome Duplication in Maize: Materials and Methods

Gene ontology analysis

Gene ontology analysis was done using AgriGo tool [51]. ”Single Enrichment Analysis” option
of AgriGo was used with all maize genes with syntenic orthologs as background. This list was
obtained from James Schnable’s website (skraelingmountain.com/datasets/grass_syntenic_
orthologs.csv.zip) [216]. A false Discovery Rate of < 0.05 was used for a given enrichment to
be significant.

Upstream transposable elements

Information about the annotated repeats in maize AGPV2 assembly were obtained from (ftp.maizesequence.
org/release-5b/repeats/). Most repeats were annotated as transposable elements. These files
were combined and converted to a BED (browser extensible data) format. Bedtools [189] ’coverage’
command was run to obtain fraction of 2kb upstream regions covered by repeats/transposable ele-
ments. The Bedtools ’closest’ command was used to obtain the distance from the transcription start
site to the nearest transposable element.

Obtaining methylation Data

Methylation data for maize line B73 was obtained from Eichten et al. [55]. They determined array
based methylation states for non-repeat regions in the maize genome. This information was down-
loaded using the Genomaize website [62] as a bigwig format file which converted to bedGraph format
using bigWigToBedGraph utility [120]. Methylation values for upstream regions of genes were ob-
tained by using bedtools ’intersect’ command.

Obtaining splicing data

The geneome wide data for known and novel splice variants for maize line B73 was obtained from
Thatcher et.al [248].

Statistical analysis

All statistical analyses were done using R (http://www.R-project.org). Since most parameters used in
the study follow a non normal distribution, nonparametric tests were used for significance and medi-
ans reported instead of means. R package ’boot’ (cran.r-project.org/web/packages/boot/index.html)
was used to calculate confidence intervals for statistics but they were found to be very small and were
not plotted. A visual inspection of the data for extreme values was done to ensure that statistical
significance was not caused due to them.
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3.2 Whole Genome Duplication in Maize: Results

Results

Nucleotide diversity between duplicates is correlated

Nucleotide diversity (estimated as per site average pairwise difference Π) was found to be correlated
between duplicate gene pairs, (particularly strongly for introns) (Table 3.1, Figure 3.1). In addition,
both non-synonymous (Ka) and synonymous divergence (Ks) calculated with respect to sorghum
orthologs were also correlated (Spearmans rho 0.71 P<2.2e-16 and 0.73 P<2.2e-16 respectively). In-
terestingly, the diversity in upstream regions (2kb) was not correlated indicating a decoupled upstream
evolution of the duplicates.

(a) Introns (b) Upstream 2KB

Figure 3.1: (a) Correlation plot of logarithm of nucleotide diversity for introns for maize1 and maize2
gene pairs. (b) Correlation plot for nucleotide diversity of upstream (2KB) regions of duplicated pairs

Table 3.1: Nucleotide diversity between duplicate pairs is correlated for introns, synonymous and
non-synonymous sites but not for upstream regions (*) P < 2.2e-16.

Region Correlation R value for nucleotide diversity
Intron 0.56*

Synonymous 0.24*
Non-Synonymous 0.19*

gene 0.21*
Upstream -0.01 (Not-significant)
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Maize1 subgenome genes are under stronger purifying selection

Different measures of purifying selection indicated a consistent stronger purifying selection on the
maize1 subgenome genes. The median Ka for maize1 retained copy was 0.039 vs 0.043 for maize2
retained copy (P=9e-6 Wilcoxon rank sum test). The median Ks was 0.195 vs 0.193 respectively
(P=0.3). Occurrence of Very Deleterious Mutations (VDMs) between subgenomes was then looked
into. Definition of VDMs include frame shift, stop-gained and stop lost. Out of 3228 retained gene
pairs, 1003 in maize1 had a VDM in at least one sampled accession vs 1140 for maize2 subgenome
(Chi Square P<0.0003). The per site nucleotide diversity for non-synonymous sites was found to
be higher for maize2 genes compared to maize1 genes (0.0017 vs 0.0020 P=1E-6 Wilcoxon rank
sum test), but the difference in synonymous diversity was not found to be significant, (0.0088 vs
0.0087 P=0.8 Wilcoxon rank sum test) indicating no inherent difference in mutation rate between
subgenomes. SIFT scores [170] were further used which quantify the deleterious nature of a SNP
based on the conservation at the site of the SNP. SIFT score < 0.01 was considered to be deleterious
in nature. A gene with more than one SNP with score less than 0.01 was considered to be harboring
deleterious mutations. Significantly more genes harboring deleterious mutations were found to be
located in the maize2 subgenome ( Table 3.2, Chi-Square P=5.5e-6). Distribution of Fitness Effects
(DoFE) were then obtained for both maize subgenomes and are depicted in Figure 3.2. A higher
fraction of mutations in highly deleterious class (−NeS > 100) for maize1 subgenome indicated of
stronger purifying selection acting on it (Figure 3.2).

NeS(0-1) NeS(1-10) NeS(10-100) NeS(>100)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Maize1

Maize2

Figure 3.2: Distribution of fitness effects (DoFE) for WGD retained genes of two subgenomes.

Table 3.2: Number of genes classified as harboring deleterious (gene with > 1 SNP with a SIFT score
< 0.01 ) and non-deleterious SNPs based on SIFT scores.

Genes with > 1 deleterious mutations Genes harboring < 2 deleterious mutations
Maize1 773 2185
Maize2 944 2056
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3.2 Whole Genome Duplication in Maize: Results

Retained genes in maize show expected patterns of expression and Gene ontol-
ogy (GO) enrichments

Studies have indicated that highly expressed genes tend to be preferentially retained as duplicates
after WGD [27, 199, 2]. To test this in maize specific WGD, differences in the amount of gene
expression (absolute dosage) between single genes vs 3228 gene pairs retained after WGD across 22
tissues were obtained (Figure 3.3). Retained genes showed consistently higher median expression in
all tissues tested.
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Figure 3.3: Median expression values (FPKM) for retained vs single copy genes for 22 tissues used in
this analysis. Retained genes show consistent higher expression across all tissues compared to single
copy genes. All comparisons are significant at P < 10e-14 (Wilcoxon rank test) except for Mature
Leaf which is significant at P=7e-5. All comparisons were also significant assuming a bonferroni
correction.

In addition to absolute dosage, genes whose loss creates more dosage imbalance in regulatory and
protein interaction networks and multi-protein complexes are more likely to be retained after WGD
[279, 8, 13, 150]. Similar results were found in the gene ontology analysis of single copy vs WGD
retained genes in maize. GO terms pertaining to regulation, transcription factors and macromolecular
complexes were enriched in retained genes (Figures 3.4 and 3.5). For single genes only catalytic
activity was enriched (Figure 3.6)
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3.2 Whole Genome Duplication in Maize: Results

Figure 3.4: Significantly enriched top level Gene Ontology categories for WGD retained genes (FDR
< 0.05). Background is maize genes with syntenic orthologs in other grass genomes.

Figure 3.5: Significantly enriched second level Gene Ontology categories for WGD retained genes
(FDR < 0.05). The background is composed of maize genes with syntenic orthologs in other grass
genomes.

*

Figure 3.6: Gene Ontology categories for single copy genes (*)FDR<0.05. Only catalytic activity
was found to be enriched in single genes. Background is composed of maize genes with syntenic
orthologs in other grass genomes.
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Classification of expression divergence between duplicates

The relative expression of duplicate pairs in various maize tissues was used to classify the expression
divergence as unidirectional or bidirectional. Gene pairs with at least twofold difference were con-
sidered to be diverged in expression. Of 3228 retained gene pairs, 1641 pairs showed a unidirectional
expression divergence (UED) where one member of the pair has a consistently higher expression in
all tissues with a twofold difference (UED-dominant) compared to the counterpart (UED-repressed).
1517 pairs showed a bidirectional expression divergence (BED) where one copy displayed higher ex-
pression in one tissue and the other copy in another tissue. Thus close to 98% of the retained gene
pairs seem to have diverged in expression or have divergent expression pattern across tissues. Given
the recent nature of maize WGD the divergence in expression seems to have happened in a relatively
short evolutionary timescale.

UED and BED genes form distinct subsets in GO enrichment

Separate GO enrichment analysis of UED and BED genes was done. Transcriptional regulation was
found to be enriched for BED genes (Figure 3.7) and macromolecular complexes and structural
molecule genes to be enriched for UED genes (Figure 3.8). A complete cross comparison of gene
ontologies between these two datasets is available in the table 3.4. Comparing the gene expression of
dominantly expressed UED and BED genes in each tissue revealed that UED-dominant genes have
higher higher than the dominantly expressed BED gene in all except one tissue (Figure 3.9). Thus the
overall expression of UED-dominant genes is higher than BED genes. Gene ontology enrichment of
UED-Dominant/UED-repressed genes can be explained in the light of gene balance hypothesis where
the maintenance of stoichiometric ratios between interacting partners is under strong selection [13]
and is achieved by repression of one copy. For the transcription factors and regulators it is achieved
by tissuewise subfunctionalization of duplicate genes. complexes.

Figure 3.7: Significantly enriched top level Gene Ontology categories for BED genes (FDR < 0.05).
The background is composed of maize genes with syntenic orthologs in other grass genomes.
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3.2 Whole Genome Duplication in Maize: Results

Figure 3.8: Significantly enriched top level Gene Ontology categories for UED genes (FDR < 0.05).
The background is composed of maize genes with syntenic orthologs in other grass genomes. The
”cellular process” and ”cell part” include categories of proteosome, ribonucleoprotein complex, cy-
toskeleton organization, macromolecule localization (list not exhaustive).
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Figure 3.9: Gene expression (median FPKM) per tissue for dominantly expressed BED genes (blue)
vs UED (red). UED genes have higher gene dosage compared to dominantly expressed BED genes.
All comparisons significant at P<0.0005 except for Pollen which was not found to be significant. All
comparisons except pollen were also significant assuming a bonferroni correction.

Increase in purifying selection from repressed to dominantly expressed genes

The ratio of non-synonymous to synonymous nucleotide diversity (Πn/Πs) progressively increases
from UED-dominant to BED to UED-repressed genes (Figure 3.10) indicating gene dosage to be a
strong determinant of purifying selection. Maize1 genes also exhibit lower ratio of non-synonymous
to synonymous diversity than maize2 genes, but the effect is not as strong as for UED-dominant vs
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3.2 Whole Genome Duplication in Maize: Results

UED-repressed genes (Figure 3.10). As nucleotide diversity data from teosinte lines was used in this
work, while the expression data is from modern maize line B73, this analysis was repeated using
nucleotide diversity data from modern inbred lines (of which B73 is a member) and qualitatively
similar results were found (Figure 3.11).
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Figure 3.10: Median of ratio of non-synonymous to synonymous diversity Πn/Πs compared between
different datasets. Increase in strength of purifying selection from UED-repressed to tissuewise sub-
functionalized (BED) to UED-dominant genes. P-values were calculated using Wilcoxon rank sum
test (****)P<2.2e-16;(***)P=1.9E-15 ;(**)P=2e-6;(*)P=3e-4
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Figure 3.11: Median of ratio of non-synonymous to synonymous diversity Πn/Πs for 60 inbred lines
compared between different datasets. Increase in purifying selection from UED-repressed to tissue-
wise subfunctionalized (BED) to UED-dominant genes. P-values were calculated using Wilcoxon
rank sum test (****)P<2e-16;(***)P=2e-14;(**)P=2e-7;(*)P=5e-5

Stronger purifying selection on maize1 subgenome only exists for BED genes

The existance of subgenome dominance (maize1 genes having stronger purifying selection) was tested
for expression based gene classes (UED-dominant, UED-repressed and BED). Increased purifying se-
lection (measured by Πn/Πs) was not found in maize1 UED-dominant genes compared to maize2
UED-dominant genes and for maize1 UED-repressed genes compared to maize2 UED-repressed
genes (Figure 3.12). Subgenome dominance in purifying selection thus largely originates from the
dominant expression of UED-dominant genes compared to UED-repressed genes as there are more
maize1 UED-dominant genes than maize2 (948 UED-dominant genes are maize1 compared to the
expected value of 820 (1641/2)). Expression thus seems to be a dominant determinant of purifying

35



3.2 Whole Genome Duplication in Maize: Results

selection overriding the subgenome dominance for UED genes. The presence of subgenome dom-
inance in purifying selection for BED genes is intriguing as shown by maize1 BED genes having
significantly low ratio of non-synonymous to synonymous diversity (Figure 3.12). To dissect this
further, the number of tissues in which maize1 and maize2 BED genes dominate in expression was
calculated. Maize1 BED genes dominate the maize2 BED genes in expression in a larger number of
tissues (Figure 3.13). The median number of tissues in which maize1 BED gene dominates in expres-
sion is 6 compared to 4 for a maize2 BED gene (P=1.836e-12 Wilcoxon rank sum test). Overall this
suggests that dominant expression either consistently or in a larger number of tissues is a determinant
for stronger purifying selection rather than subgenome location.
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Figure 3.12: Ratio of nonsynonymous to synonymous nucleotide diversity (Πn/Πs) for maize
subgenome 1 and 2 genes for different expression classifications. UED-Dominant (UED-D) and
UED-repressed (UED-R). P-values were calculated using Wilcoxon rank sum test (*)P = 2.9e-4, (ns)
not significant
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Figure 3.13: Number of maize1 and maize2 BED genes dominantly expressed in each tissue.

Upstream regions of repressed genes are enriched in TEs

Upstream transposable elements (TEs) have been proposed as a mechanism for generating differences
in expression between paralogs [70]. To test this hypothesis in maize, the fraction of upstream 2kb
region covered by annotated repeats and TEs was calculated. The mean(median) coverage for UED-
repressed genes was 0.33(0.27) compared to the coverage of UED-dominant genes being 0.26(0.19)
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3.2 Whole Genome Duplication in Maize: Results

(P=9.2e-13 Wilcoxon rank sum test) and BED genes 0.27(0.20) (P=2.9e-10). However the cover-
age difference between maize1 and maize2 was not found to be significant (0.28(0.2) vs 0.29(0.23))
(P=0.02) at P<0.01. Also, the nearest upstream distance between the annotated transcription start
site and the upstream annotated TE was compared between different classes. The mean(median) up-
stream distance of an UED-repressed gene from an annotated repeat or TE was 908(480) base pairs
(bp) compared to UED-dominant genes 1102(610)bp (P=1.3e-8 Wilcoxon rank sum test) and BED
genes 1019(597)bp (P=4.8e-8) (Figure 3.14). The distribution of this distance was not found to be sig-
nificantly different between UED-dominant and BED genes (P=0.24). Interestingly, this distance was
also not found to be significant between maize1 and maize2 retained genes 1039(587) bp vs 975(564)
bp (P=0.06 Wilcoxon rank sum test). Thus the repressed genes (UED-repressed) not only have higher
fraction of upstream regions covered by TEs but also have the nearest distance to an upstream TE.
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*
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ns
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Figure 3.14: Median of the nearest upstream distance to a transposable element (TE) for different
expression categories. (*)P<1e-7 Wilcoxon rank sum test;(ns) not significant

Genes displaying mutant phenotype are broadly expressed and are under puri-
fying selection

Number of tissues with dominant expression and strength of purifying selection (Πn/Πs ratio) where
obtained for cases where one copy of the WGD paralogous pair displays a mutant phenotype while
the other copy has no visible mutant phenotype associated (thus the duplicate copy fails to comple-
ment). In all except two out of 15 such cases found, the member displaying the mutant phenotype
is dominant in more tissues and has lower ratio of nonsynonymous to synonymous diversity (Table
3.3). This indicates that paralog displaying mutant phenotype is under stronger purifying selection
than its counterpart and this is intertwined with the dominant expression of the copy displaying the
phenotype.
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3.2 Whole Genome Duplication in Maize: Results

Table 3.3: Table compares expression and ratio of non-synonymous to synonymous diversity for
15 paralogous gene pairs where only one paralog displays a mutant phenotype. The gene of the
paralogous pair which displays a mutant phenotype generally shows dominant expression in larger
number of tissues and has lower ratio of non-synonymous to synonymous diversity (barring two
cases). (NA) Not available are the cases where no non-synonymous SNP was found in the gene
making Π n/Π s zero.

Paralog Mutant Phenotype Transcript id Subgenome No of tis-
sues with
dominant
expression

Π n/Π s

Paralog1 yes GRMZM2G377215 T01 Maize1 21 0.108
Paralog2 no GRMZM2G006830 T01 Maize2 0 0.548
Paralog1 yes GRMZM2G060216 T02 Maize1 5 0.118
Paralog2 no AC232238.2 FGT004 Maize2 3 0.271
Paralog1 yes GRMZM2G307119 T01 Maize1 5 NA
Paralog2 no GRMZM2G458437 T01 Maize2 0 0.354
Paralog1 yes AC205703.4 FGT006 Maize1 4 0.158
Paralog2 no GRMZM2G087323 T01 Maize2 3 0.11
Paralog1 yes GRMZM2G042992 T01 Maize1 21 NA
Paralog2 no GRMZM2G124115 T01 Maize2 0 0.647
Paralog1 yes GRMZM2G160565 T02 Maize1 9 0.021
Paralog2 no GRMZM2G003514 T01 Maize2 1 0.352
Paralog1 yes GRMZM2G092542 T01 Maize1 2 0.132
Paralog2 no AC149818.2 FGT009 Maize2 0 0.581
Paralog1 yes AC233950.1 FGT002 Maize1 7 0.089
Paralog2 no AC190734.2 FGT003 Maize2 0 0.663
Paralog1 yes GRMZM2G036297 T01 Maize1 8 0.186
Paralog2 no GRMZM2G058588 T01 Maize2 0 0.440
Paralog1 yes GRMZM2G455809 T01 Maize1 8 0.049
Paralog2 no GRMZM2G308351 T01 Maize2 1 0.141
Paralog1 yes GRMZM2G104843 T01 Maize1 16 0.058
Paralog2 no GRMZM2G070092 T01 Maize2 1 0.105
Paralog1 yes GRMZM2G098813 T03 Maize2 6 NA
Paralog2 no GRMZM2G180190 T01 Maize1 4 0.131
Paralog1 yes GRMZM2G109987 T01 Maize2 3 0.036
Paralog2 no GRMZM2G042250 T01 Maize1 0 0.008
Paralog1 yes GRMZM2G039155 T05 Maize2 22 0.098
Paralog2 no AC194174.3 FGT003 Maize1 0 1.47
Paralog1 yes GRMZM2G307906 T01 Maize2 0 0.195
Paralog2 no GRMZM2G100620 T02 Maize1 12 NA
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3.2 Whole Genome Duplication in Maize: Results

UED-repressed genes have fewer splice variants

Thatcher et al. [248] used RNA-Seq libraries from multiple tissues of Mo17 and B73 and validated
many known splice variants and discovered many new ones expanding the diversity of maize tran-
scriptome. The number of splice variants (known+novel) was calculated for genes in each category
(UED-dominant, UED-repressed and BED). UED-repressed genes had significantly fewer number
of known and novel splice variants. The mean number of splice variants for UED-Dominant genes
was 3.5 whereas for UED-repressed was 2.86 (Figure 3.15, P<2.2e-16 Wilcoxon rank test). How-
ever differences in number of splice variants between maize1 and maize2 genes was not found to be
significant.
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Figure 3.15: Boxplot of distribution of number of splice variants (known+novel) per gene for UED-
repressed,UED-dominant and BED genes. Consistently repressed (UED-repressed) genes produce
fewer splice variants.

Difference in methylation between repressed and dominant genes

A genomewide study of methylation in maize reported finding no differences in gene body methy-
lation between maize1 and maize2 subgenomes [55]. Methylation values were obtained for the up-
stream regions of genes in out study. As expected, no significant differences in methylation was found
between maize1 and maize2 genes (P=0.1447; Wilcoxon rank sum test). But interestingly, methy-
lation differences were significant between expression categories with the UED-repressed genes dis-
playing higher upstream methylation compared to UED-dominant with a median of -0.602 v.s -0.950
(P=3E-3; Wilcoxon rank sum test).
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3.3 Whole Genome Duplication in Maize: Discussion

Discussion

The recent nature of WGD in maize and the availability of a comprehensive polymorphism dataset
gives an unique opportunity to investigate subgenomes and evolution of duplicate genes at a popu-
lation level. Genome scale correlations in nucleotide divergence and diversity were found between
duplicate gene pairs (Table 3.1 and Figure 3.1) but no correlation for upstream (2KB) regions indi-
cating that promoter evolution between duplicates is uncoupled. These correlations mean a general
similarity in mutabilities, mutation rates and at least a component of protein structural and functional
constraints to be similar amongst duplicates. Moreover both subgenomes share the same demogra-
phy. These correlations are particularly striking given the∼5-12 million years of post WGD divergent
evolution and the volatile nature of maize genome with copious genome rearrangements and abundant
transposon activity [219]. Differing recombination rates, intensities of positive and purifying selec-
tion would weaken these correlations. The retained genes in both subgenomes could be used as two
identical samples for demographic analysis and extreme differences in nucleotide diversity between
them can be distilled into a test for positive selection.

Studies have predicted maize1 genes to be under stronger purifying selection because of the dom-
inant expression [217] and higher tendency of genes displaying mutant phenotypes to be located in
maize1 subgenome [215]. This study shows that this difference is also reflected in the patterns of
polymorphism. Maize1 genes exhibit less non-synonymous divergence and diversity compared to
synonymous divergence and diversity. DoFE analysis shows an excess of large effect mutation class
(−NeS > 100) in maize1 subgenome (Figure 3.2). Furthermore SIFT predictions show a significantly
higher number of genes harboring deleterious polymorphisms in the maize2 subgenome (Table 3.2).
The later part of the study shows that this effect largely arises from dominant expression of the maize1
gene copies.

Absolute gene dosage was shown to be a major determinant for gene retention after WGD in
maize. Genes retained after WGD in maize exhibit a higher median expression than single genes
across many tissues (Figure 3.3). This is consistent with studies from diverse organisms [2, 32, 27].
In addition to dosage, typically networked proteins like transcription factors and macromolecular
complexes are more likely to be retained after a WGD [150, 279, 8]. We find similar trends in gene
ontology analysis of retained genes (Figure 3.4 and 3.5) indicating that established features behind
gene retention after WGD are also working in maize.

There exist two major mechanisms for ohnolog retention. First the dosage balance model in which
relative dosage of interacting genes is under purifying selection and deletion of one member of the
pair creates stoichiometric imbalance in the interaction network. The second is the subfunctionaliza-
tion model where ancestral function is subdivided between both members. Relative dosage between
paralogous pairs in various tissues was used to partition the genes in two major categories consistent
with both models. The UED (unidirectional expression divergence) gene category where one paralog
has consistently dominant expression (UED-dominant) across all tissues with divergent expression
compared to the other paralog (UED-repressed). The second category being bidirectional expression
divergence (BED) for which both paralogs have alternatively dominant and repressed expression but
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in different tissues. The UED genes comply with the dosage balance model where dosage of one
member is consistently reduced ameliorating the dosage constraints and making the repressed gene
dispensable. The BED genes comply with the tissuewise subfunctionalization model where both par-
alogs perform the function albeit in different tissues. Around ∼98% of the duplicate pairs could be
classified indicating that sorting of duplicate genes by expression is almost complete and most of
the duplicate gene pairs have either diverged in expression consistently or in a tissuewise manner.
Such rapid divergence in gene expression between duplicates has been observed for yeast and hu-
mans [85, 91] and can even be established in a few generations after the formation of an allotetraploid
[65]. These classifications also show strikingly different gene ontology enrichments (Table 3.4). UED
genes tend to be part of macromolecular complexes and structural molecules (Figure 3.8) whereas,
BED genes are more likely to be involved in transcription regulation (Figure 3.7). These results indi-
cate that tissuewise subfunctionalization seems to largely influence the regulatory network while con-
sistent repression influences the protein-protein interaction network. The agreement between UED
genes and relative dosage model could be further be tested by overlaying the protein-protein inter-
action network on UED genes and checking if members of the duplicated pathways divide equally
between UED-repressed and UED-dominant. The differences indicate that tissue specific subfunc-
tionalization is a major mechanism for retention of regulatory genes and suppressing the expression
of one copy across many tissues is the mechanism for retention of genes involved in macromolecular
complexes.

The UED-dominant genes show the most purifying selection followed by BED genes and then
the UED-repressed genes (Figure 3.10), indicating that absolute gene dosage is positively correlated
with the strength of purifying selection. Since the strength of purifying selection for tissuewise sub-
functionalized (BED) genes seem to be intermediate between UED-dominant and UED-repressed we
checked if the dosage of dominantly expressed BED genes in a particular tissue is less than dosage of
the UED-dominant genes. This was found to be true. Dominantly expressed BED genes have lower
expression than BED-dominant genes in all tissues assayed except pollen (Figure 3.9). Overall, genes
with higher dosage appear to suppress one copy consistently whereas, genes with lesser gene dosage
evolve tissue specific regulatory patterns.

The subgenome dominance in purifying selection is not significant for UED genes and only exists
for BED genes (Figure 3.12). In other words, when the genes are classified as UED-dominant and
UED-repressed the strength of purifying selection does not appear to be different between maize1
and maize2 genes in these categories. Thus the purifying selection results from the dominant ex-
pression and maize1 genes appear statistically to be under stronger purifying selection because there
are more UED-dominant maize1 genes. The tissuewise subfunctionalized genes (BED) genes still
show a difference in purifying selection between maize1 and maize2 genes (Figure 3.12). However,
for BED genes a maize1 BED gene is more likely to be dominantly expressed in larger number of
tissues compared to its maize2 counterpart (Figure 3.13). Thus the factors determining the strength
of purifying selection are not only the dominant expression but also the number of tissues in which
the gene is dominant and expression dominance overrides the subgenome dominance. It could be
possible that the broadly expressed copy retains the original expression pattern whereas other copy
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gains a new tissuewise expression profile or loses some part of the ancestral expression profile. It is
hard to distinguish between such subfunctionalization and neofunctionalization unless the ancestral
state of expression is known.

The WGD paralog genes pairs of which one member is associated with a mutant phenotype
present an enigmatic case wherein the duplicated copy does not seem to complement the function.
However this work shows that the gene of the pair with a mutant phenotype is generally dominant
in a larger number of tissues and has lower ratio of non-synonymous to synonymous diversity (Table
3.3) indicative of stronger purifying selection acting on it. It can be suggested that the distribution of
function amongst paralogs is asymmetric with one paralog handling larger component of the function.
This explains why the duplicate copy fails to complement.

Nevertheless the mechanism behind the subgenome dominance is still not understood. Dominant
expression can explain that the deletion of a nondominantly expressed ohnolog incurs a lower fitness
cost due to relaxed dosage constraints. However the reason why maize1 subgenome has more dom-
inantly expressed genes is yet to be answered. Epigenetic effects like chromatin modification and
DNA methylation have been proposed as underlying mechanisms but have not been proven. Reduced
expression of genes caused by upstream transposable elements (TEs) can cause a subgenome domi-
nance if the two progenitor genomes in an allotetraploid have differing number of TEs at start [70]. A
part of this hypothesis was tested by associating upstream TEs with the different expression categories
and an enrichment of TEs in upstream regions of repressed genes (UED-repressed) was found (Figure
3.14). Repression of these TEs could inadvertently cause the repression of nearby genes. Note though
that a causality can not be established from this analysis and upstream transposon abundance can as
well be a consequence of low expression and reduced purifying selection. A recent study reported an
unexpected correlation between expression of nearby genes which extends to more than 100Kb [77],
which points to mechanism generating subgenomes.

The study also reports significantly higher number of splice variants for UED-dominant genes
when compared to UED-repressed genes indicating that repression in expression might be partly
caused by loss of one or more splice variants. Loss of splice variants soon after duplication has been
documented in humans [237] and it could be a part of subfunctionalization process. Divergence in
splicing has also been shown for Arabidopsis ohnologs [288].

Overall, this part of the thesis concludes that majority of ohnolog pairs from the maize WGD have
diverged in expression either consistently or in a tissuewise manner. This divergence seems to prevent
functional complementation by the duplicate copy. Relative and absolute gene dosage and the number
of tissues in which a gene is dominant is an important determinant of purifying selection. Transcrip-
tion regulators are more likely to develop tissue wise subfunctionalization while macromolecular
complexes tend to suppress one duplicate copy consistently. An expression based classification of
duplicates is found to be more biologically relevant than subgenomes. Finally, upstream divergence
and TEs form a possible mechanism for the expression divergence.
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Appendix

Table 3.4: Cross comparison of gene ontologies for BED and UED genes. First entry is is for BED
genes and second for UED. The table was generated using Agri-Go cross comparison of gene ontol-
goies (SEACOMPARE option). Please see the next page for the table. First entry in comparison is
BED (ID:458762418) and second entry is UED (ID:133289173).
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Job ID:  

[ Suppress this table   ] 

GO Information CM   ID:458762418
  

  ID:133289173  

No GO Term Onto Description 1 2 FDR  Num FDR  Num 

1   GO:0009889  P regulation of biosynthetic process       2.5e-14 283 0.04 231

2   GO:0010556  P regulation of macromolecule biosynthetic process       2.5e-14 283 0.04 231

3   GO:0031326  P regulation of cellular biosynthetic process       2.5e-14 283 0.04 231

4   GO:0045449  P regulation of transcription       2.5e-14 283 --- ---

5   GO:0010468  P regulation of gene expression       2.5e-14 283 --- ---

6   GO:0019219  P regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process       2.5e-14 283 0.04 231

7   GO:0051171  P regulation of nitrogen compound metabolic process       2.5e-14 283 0.04 231

8   GO:0080090  P regulation of primary metabolic process       5.1e-14 290 0.0031 252

9   GO:0031323  P regulation of cellular metabolic process       7.4e-14 283 --- ---

10   GO:0060255  P regulation of macromolecule metabolic process       9.3e-14 290 0.0034 253

11   GO:0019222  P regulation of metabolic process       2.7e-13 290 0.0041 254

12   GO:0006350  P transcription       6.9e-13 287 --- ---

13   GO:0050794  P regulation of cellular process       1.9e-10 321 0.037 287

14   GO:0050789  P regulation of biological process       5.9e-10 329 0.0039 309

15   GO:0065007  P biological regulation       9.9e-09 433 --- ---

16   GO:0006355  P regulation of transcription, DNA-dependent       1.9e-08 180 0.04 158

17   GO:0051252  P regulation of RNA metabolic process       2e-08 180 0.04 158

18   GO:0006351  P transcription, DNA-dependent       1.2e-07 182 0.035 165

19   GO:0032774  P RNA biosynthetic process       1.2e-07 182 0.036 165

20   GO:0034645  P cellular macromolecule biosynthetic process       1.3e-06 360 0.00013 380

21   GO:0009059  P macromolecule biosynthetic process       1.4e-06 360 0.00013 380

22   GO:0044249  P cellular biosynthetic process       1.9e-06 441 0.0015 456

23   GO:0009058  P biosynthetic process       2.1e-06 462 0.0045 471

24   GO:0010467  P gene expression       6e-05 341 0.00012 378

25   GO:0006139  P nucleobase, nucleoside, nucleotide and nucleic acid metabolic process       9.8e-05 334 0.036 339

26   GO:0006807  P nitrogen compound metabolic process       0.00025 379 --- ---

27   GO:0009628  P response to abiotic stimulus       0.0015 137 --- ---

28   GO:0042592  P homeostatic process       0.0016 149 --- ---

29   GO:0009266  P response to temperature stimulus       0.002 130 --- ---

30   GO:0009409  P response to cold       0.0024 129 --- ---

31   GO:0048871  P multicellular organismal homeostasis       0.0024 129 --- ---

32   GO:0050826  P response to freezing       0.0024 129 --- ---

33   GO:0042309  P homoiothermy       0.0024 129 --- ---

34   GO:0016070  P RNA metabolic process       0.0024 190 0.015 202

35   GO:0001659  P temperature homeostasis       0.0024 129 --- ---

36   GO:0065008  P regulation of biological quality       0.003 152 --- ---

37   GO:0044260  P cellular macromolecule metabolic process       0.022 569 0.00044 656

38   GO:0032501  P multicellular organismal process       0.046 134 --- ---

39   GO:0044237  P cellular metabolic process       0.046 705 0.01 791

40   GO:0030528  F transcription regulator activity       9e-07 179 --- ---

41   GO:0003677  F DNA binding       6.8e-05 292 0.00072 310

42   GO:0003700  F transcription factor activity       7.7e-05 120 --- ---

43   GO:0050825  F ice binding       0.011 129 --- ---

44   GO:0050824  F water binding       0.011 129 --- ---

45   GO:0043565  F sequence-specific DNA binding       0.015 79 --- ---

46   GO:0060089  F molecular transducer activity       0.015 92 --- ---

47   GO:0004871  F signal transducer activity       0.015 92 --- ---

48   GO:0004879  F ligand-dependent nuclear receptor activity       0.015 41 --- ---

49   GO:0008270  F zinc ion binding       0.017 197 --- ---

50   GO:0004872  F receptor activity       0.026 70 --- ---

51   GO:0005634  C nucleus       3.5e-05 232 1.1e-05 249

52   GO:0043231  C intracellular membrane-bounded organelle       0.0014 264 4.6e-06 301
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53   GO:0043227  C membrane-bounded organelle       0.0014 264 3.1e-06 304

54   GO:0043229  C intracellular organelle       0.0081 347 1e-11 451

55   GO:0043226  C organelle       0.0081 347 1e-11 451

56   GO:0006412  P translation       --- --- 6.8e-05 119

57   GO:0046907  P intracellular transport       --- --- 0.00012 57

58   GO:0006886  P intracellular protein transport       --- --- 0.00013 49

59   GO:0034613  P cellular protein localization       --- --- 0.00013 49

60   GO:0070727  P cellular macromolecule localization       --- --- 0.00013 49

61   GO:0051641  P cellular localization       --- --- 0.00013 67

62   GO:0006996  P organelle organization       --- --- 0.00013 55

63   GO:0051649  P establishment of localization in cell       --- --- 0.00014 65

64   GO:0009987  P cellular process       --- --- 0.00022 990

65   GO:0051246  P regulation of protein metabolic process       --- --- 0.00044 21

66   GO:0044267  P cellular protein metabolic process       --- --- 0.00046 354

67   GO:0006325  P chromatin organization       --- --- 0.00076 36

68   GO:0008104  P protein localization       --- --- 0.0017 64

69   GO:0051276  P chromosome organization       --- --- 0.0018 36

70   GO:0045184  P establishment of protein localization       --- --- 0.0019 62

71   GO:0015031  P protein transport       --- --- 0.0019 62

72   GO:0043170  P macromolecule metabolic process       --- --- 0.0045 710

73   GO:0006333  P chromatin assembly or disassembly       --- --- 0.0092 29

74   GO:0019538  P protein metabolic process       --- --- 0.011 403

75   GO:0016043  P cellular component organization       --- --- 0.016 78

76   GO:0033036  P macromolecule localization       --- --- 0.021 67

77   GO:0033365  P protein localization in organelle       --- --- 0.029 12

78   GO:0034728  P nucleosome organization       --- --- 0.04 25

79   GO:0006270  P DNA replication initiation       --- --- 0.04 8

80   GO:0006275  P regulation of DNA replication       --- --- 0.04 5

81   GO:0065004  P protein-DNA complex assembly       --- --- 0.04 25

82   GO:0031497  P chromatin assembly       --- --- 0.04 25

83   GO:0017038  P protein import       --- --- 0.04 8

84   GO:0006334  P nucleosome assembly       --- --- 0.04 25

85   GO:0034622  P cellular macromolecular complex assembly       --- --- 0.04 36

86   GO:0034621  P cellular macromolecular complex subunit organization       --- --- 0.043 38

87   GO:0006323  P DNA packaging       --- --- 0.045 25

88   GO:0003735  F structural constituent of ribosome       --- --- 9e-08 103

89   GO:0005198  F structural molecule activity       --- --- 9e-08 143

90   GO:0003676  F nucleic acid binding       --- --- 0.00072 423

91   GO:0004365  F glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) activity       --- --- 0.031 5

92   GO:0008943  F glyceraldehyde-3-phosphate dehydrogenase activity       --- --- 0.031 5

93   GO:0042803  F protein homodimerization activity       --- --- 0.031 7

94   GO:0019787  F small conjugating protein ligase activity       --- --- 0.031 31

95   GO:0016881  F acid-amino acid ligase activity       --- --- 0.049 33

96   GO:0032991  C macromolecular complex       --- --- 1e-11 260

97   GO:0044424  C intracellular part       --- --- 3e-11 540

98   GO:0005622  C intracellular       --- --- 4.9e-11 631

99   GO:0043232  C intracellular non-membrane-bounded organelle       --- --- 3.3e-10 183

100   GO:0043228  C non-membrane-bounded organelle       --- --- 3.3e-10 183

101   GO:0030529  C ribonucleoprotein complex       --- --- 1.8e-08 111

102   GO:0005840  C ribosome       --- --- 1.8e-08 103

103   GO:0044444  C cytoplasmic part       --- --- 7.6e-07 175

104   GO:0044422  C organelle part       --- --- 1e-06 128

105   GO:0044446  C intracellular organelle part       --- --- 1e-06 128

106   GO:0044464  C cell part       --- --- 1e-06 872

107   GO:0005623  C cell       --- --- 1e-06 872

108   GO:0005737  C cytoplasm       --- --- 1.7e-05 211

109   GO:0031967  C organelle envelope       --- --- 0.00053 34

110   GO:0043234  C protein complex       --- --- 0.00071 127

111   GO:0031975  C envelope       --- --- 0.00081 37

112   GO:0031968  C organelle outer membrane       --- --- 0.0032 9

113   GO:0015934  C large ribosomal subunit       --- --- 0.0065 9

114   GO:0019867  C outer membrane       --- --- 0.0067 10

115   GO:0033279  C ribosomal subunit       --- --- 0.0091 15

116   GO:0031090  C organelle membrane       --- --- 0.012 37



117   GO:0031966  C mitochondrial membrane       --- --- 0.012 24

118   GO:0044425  C membrane part       --- --- 0.013 185

119   GO:0009538  C photosystem I reaction center       --- --- 0.015 5

120   GO:0000502  C proteasome complex       --- --- 0.022 11

121   GO:0005740  C mitochondrial envelope       --- --- 0.023 26

122   GO:0000786  C nucleosome       --- --- 0.024 24

123   GO:0000785  C chromatin       --- --- 0.026 31

124   GO:0005741  C mitochondrial outer membrane       --- --- 0.027 7

125   GO:0032993  C protein-DNA complex       --- --- 0.027 24

126   GO:0044428  C nuclear part       --- --- 0.028 21
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4.1 Transposable Elements near genes: Material and Methods

Material and Methods

Getting TE information

The information about repeats and TEs in maize genome version AGPv2 [219] was obtained in
’gff’ format from http://ftp.maizesequence.org/release-5b/repeats/. The ’gff’ files were
converted to a ’BED’ format file. Entries with completely overlapping coordinates were merged
with bedtools and entries with length <20bp were removed. For sorghum TE information was ob-
tained from ’PGSB PlantsDB’ website [172] by the URL ftp://ftpmips.helmholtz-muenchen.

de/plants/sorghum/repeats/MIPS_Sb_repeat_annotation_July08.gff3.gz. The ’gff’ files
were converted to a ’BED’ format file. Entries with completely overlapping coordinates were merged
with bedtools and entries with length <20bp were removed in this case as well.

Selection of Genes

The information about maize genes was obtained in ’gff’ format from ftp.maizesequence.org/

release-5b/ZmB73_5b_FGS_info.txt. Two datasets of genes are available, a ’working gene set
(WGS)’ which comprises of all gene predictions including computationally predicted genes and its
subset called ’filtered gene set (FGS)’ which excludes low confidence predictions [219]. Only genes
in the FGS were chosen for analysis. Out of several transcripts for a gene, the one marked as ’canon-
ical’ was chosen which was also found typically to be the largest for maize. Additionally, genes
annotated as ’transposable elements’ and without cDNA evidence were excluded. The information
about sorghum genes was obtained by installing ’integrated genome browser’ [171] and download-
ing the BED file for sorghum genes from the installation. For sorghum the longest protein coding
transcript was chosen. Genes classified as ’transposable element’ and genes falling in plastid and
mitochondria were removed.

BED files with interval of 1kb upstream and downstream from the annotated TSS and TES of
the chosen genes were prepared. Entries in these BED files which overlapped with any other gene
in the WGS were removed. The rationale for this was to exclude any possible genic overlap, even
with a low confidence gene. After this 25239 genes remained for upstream and 28239 genes for
downstream. This list of genes for maize also formed the background (All genes) for all gene ontology
(GO) enrichment analysis in this work. The list of syntenic orthologs for maize and sorghum were
obtained from James Schanable’s website www.skraelingmountain.com/datasets.php [216]. TE
coverage (the number of basepairs in 1KB region annotated as a TE) was calculated by using bedtools
”coverage” command [190].

Coordinate Conversion

All analysis in the study was done on Maize genome version 2 (AGPv2). The coordinates of data
when available in version 3 were ported to AGPv2 using CrossMap [290]. The files needed for
Crossmap to work for maize were downloaded from the ftp://ftp.ensemblgenomes.org/pub/

plants/release-30/assembly_chain/zea_mays/.

48

http://ftp.maizesequence.org/release-5b/repeats/
ftp://ftpmips.helmholtz-muenchen.de/plants/sorghum/repeats/MIPS_Sb_repeat_annotation_July08.gff3.gz
ftp://ftpmips.helmholtz-muenchen.de/plants/sorghum/repeats/MIPS_Sb_repeat_annotation_July08.gff3.gz
ftp.maizesequence.org/release-5b/ZmB73_5b_FGS_info.txt
ftp.maizesequence.org/release-5b/ZmB73_5b_FGS_info.txt
www.skraelingmountain.com/datasets.php
ftp://ftp.ensemblgenomes.org/pub/plants/release-30/assembly_chain/zea_mays/
ftp://ftp.ensemblgenomes.org/pub/plants/release-30/assembly_chain/zea_mays/


4.1 Transposable Elements near genes: Material and Methods

Obtaining Ka and Ks

Ka and Ks values were obtained from the Ensemble Biomart website for maize-sorghum orthologs
(plants.ensembl.org/biomart/martview/). A static file is available at ftp.ensemblgenomes.
org/pub/plants/release-27/mysql/plants_mart_27/zmays_eg_gene_homolog_sbicolor_eg_

dm.txt.gz. Ka and Ks values < 0 and > 0.5 and Ka/Ks > 1 were excluded from analysis.

TSS type for maize genes

The TSS (transcription start site) type classification data (sharp v.s broad) were obtained by a personal
request from Mejia-guerra et.al [158].

Expression data

Microarray based expression data for maize was obtained by study from Sekhon et.al [221] via PlexDb
[42] (experiment identifier ZM37) which also ported the data to AGPv2. Tissue specificity index (tau)
was calculated from this data with a custom script using method described here [283]. RNA-Seq based
expression data was obtained from the qteller website qteller.com.

Gene ontology analysis

Gene ontology analysis was done using AgriGo tool [51]. ”Single Enrichment Analysis” option of
AgriGo was used with the background ”All genes” (see ’selection of genes’ above). A false Discovery
Rate of < 0.05 was used for a given enrichment to be significant. Transcription factor genes in maize
were downloaded from PlantTFDB [112].

49

plants.ensembl.org/biomart/martview/
ftp.ensemblgenomes.org/pub/plants/release-27/mysql/plants_mart_27/zmays_eg_ gene_homolog_sbicolor_eg_dm.txt.gz
ftp.ensemblgenomes.org/pub/plants/release-27/mysql/plants_mart_27/zmays_eg_ gene_homolog_sbicolor_eg_dm.txt.gz
ftp.ensemblgenomes.org/pub/plants/release-27/mysql/plants_mart_27/zmays_eg_ gene_homolog_sbicolor_eg_dm.txt.gz
qteller.com


4.2 Transposable Elements near genes: Results

Results

TE abundance patterns in upstream and downstream of genes

The genes in the maize ’filtered gene set’ which had no overlap with any other gene in the 1KB up-
stream and downstream region were chosen for analysis (See methods). This was done as any overlap
with another gene might leave fewer room for TEs to jump in and the TE distribution around genes
will get biased for fewer TEs. 28239 genes had a ’clear’ 1KB upstream region with no other gene
overlapping compared to 25888 genes downstream. Fewer number of gene to gene overlaps in up-
stream regions could be due to presence of regulatory elements in upstream of genes. TE coverage
was defined as the fraction of 1Kb region covered by TEs. 1KB distance was chosen because a study
in maize showed the influence of TEs on nearby gene expression diminishes strongly beyond 1kB
[151]. The mean(median) coverage of TEs in upstream 1Kb of a gene was 0.350(0.297). The cover-
age for downstream 1Kb was found to be 0.396(0.339). This difference was found to be significant (P
< 2E-16; Wilcoxon rank sum test), thus on an average there are∼45 more TE annotated base pairs in
downstream 1Kb as compared to upstream. Both these are very low compared to genome wide mean
TE coverage of∼0.850. The histogram plot showing distribution of upstream and downstream cover-
age shows majority of genes are in low coverage ranges (Figure 4.1). The upstream and downstream
TE coverages were weekly correlated (Spearman’s rho 0.14 P<2E-16) (Figure 4.2).
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Figure 4.1: Histogram of percentage of genes in given upstream 1KB TE coverage range
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Figure 4.2: Boxplot of upstream TE coverage in corresponding downstream TE coverage bin. Corre-
lation was calculated using non binned data.

TE coverage with distance from genes

Upstream TEs are expected to be rare in the immediate proximity of the genes due to presence of core
promoter elements which are typically∼100bp flanking the transcription start site (TSS) and function
as transcription initiation elements [158, 115]. As coverage gives an average value of TE basepairs
over 1KB and does not factor in completely the distance of TE from the gene start, the percentage
of genes with TEs was plotted in relation to increasing upstream and downstream distance from the
gene (Figure 4.3). For upstream the annotated ’transcription start site’ (TSS) was used as a starting
point and for downstream ’transcription end site’ (TES) was used. TE abundance increases with
increasing upstream and downstream distance from the TSS/TES (Figure 4.3). Upstream regions
show a consistent depletion of TEs compared to the downstream but the difference decreases with
increasing distance (Figure 4.3). To check distance from the gene at which the TE coverage reaches
the genomic background (∼80-85% sites have a TE) and the upstream and downstream coverage are
similar, a 5Kb upstream and downstream distance was used (Figure 4.4). It takes approximately∼5kb
to reach the genomewide TE coverage of ∼80-85% (Figure 4.4).
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Figure 4.3: Percentage of genes with Upstream/Downstream (Grey/Black) TE basepair shown in
relation to increasing upstream(-)/downstream(+) distance from the gene. Upstream distance was
calculated from the TSS (transcription start site) and downstream from the TES (transcription end
site).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

-5000 -4500 -4000 -3500 -3000 -2500 -2000 -1500 -1000 -500  0

%
 o

f 
g

e
n
e
s 

w
it

h
 T

E
 a

n
n
o
ta

te
d

 b
p

 a
t 

th
a
t 

si
te

Upstream/downstream distance (bp) from TSS/TES

upstream
downstream

Figure 4.4: Percentage of genes with Upstream/Downstream (Grey/Black) TE basepair shown in
relation to increasing upstream(-)/downstream(+) distance from the gene. A distance of 5kb upstream
and downstream from the gene is shown.

TE coverage and purifying selection on genes

The median(mean) Ka/Ks for genes in first quartile (Q1) of upstream TE coverage was 0.192(0.233)
compared to the fourth quartile (Q4) which was 0.297(0.260) (P=4E-11;Wilcoxon rank sum test).
The values for downstream coverage were (Q1) 0.192(0.241) vs (Q4) 0.206(0.252) (P=0.006, Wilcoxon
rank sum test). Purifying selection as measured by Ka/Ks was thus slightly weaker at higher ranges
of upstream coverage. However the evidence for a consistent decrease in Ka/Ks with increased TE
coverage was found to be weak for upstream regions (Figure 4.5) and non-existent for downstream
regions.
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Figure 4.5: Boxplots of Ka/Ks ratio in different TE coverage bins

TE coverage and gene expression

Boxplots of gene expression (measured as FPKM) were made for each upstream and downstream TE
coverage bin for six tissues namely Bundle Sheath, Leaf, Pollen, Silk, Tassel and Ear, represented in
Figures 4.6, 4.7, 4.8, 4.9, 4.10 and 4.11 respectively. Please note that only genes with FPKM>=1
were included in this analysis. Although no strong effect of expression on TE coverage could be seen,
at low TE coverage, gene expression was found to increase with TE coverage in some of the tissues
analyzed (for silk, tassel and ears in case of upstream TE coverage and for Bundle Sheath, Mature
Leaf, Silk, Tassel and Ears for downstream TE coverage ). The patterns tend to reverse at high TE
coverages (>0.6) where expression showed a decrease with increasing TE coverage for upstream and
downstream. Surprisingly this non-monotonic relation seemed to be stronger for downstream TE
coverage ranges.
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Figure 4.6: Boxplots for expression values for genes binned by TE coverage for tissue bundle sheath
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Figure 4.7: Boxplots for expression values for genes binned by TE coverage for tissue mature leaf.
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Figure 4.8: Boxplots for expression values for genes binned by TE coverage for tissue Pollen.
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Figure 4.9: Boxplots for expression values for genes binned by TE coverage for tissue Silk.
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Figure 4.10: Boxplots for expression values for genes binned by TE coverage for tissue Tassel.
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Figure 4.11: Boxplots for expression values for genes binned by TE coverage for tissue Ear.

55



4.2 Transposable Elements near genes: Results

Gene Ontology (GO) Enrichment

Biological regulation was significantly enriched in genes (FDR<0.05) in low TE coverage category
(upstream TE coverage <0.1 and downstream TE coverage <0.1) for both upstream and downstream
TE coverages (Figure 4.12 and 4.13), though downstream regions showed a much weaker enrich-
ment. Since gene ontology gives a broader view of the function, TE coverage of transcription factors
(TFs) was specifically compared against background group of genes (see methods). Transcription
factor genes were chosen because they are strongly associated with regulation and are comprehen-
sively annotated in maize [112]. TF genes had significantly lower (P<2E-16;Wilcoxon rank sum
test) TE coverage for both upstream and downstream compared to all genes with mean(median) of
0.236(0.152) and 0.273(0.179) for upstream and downstream (Figure 4.14). The percentage of genes
with a TE annotated basepair at each site with increasing outward distance from the gene measured
from TSS/TES for both upstream and downstream regions is shown in Figure 4.15 where two classes
of genes are compared namely TFs and all genes. TFs have fewer TEs even at larger distances from
the gene (Figure 4.15).

Figure 4.12: GO categories displaying significant (FDR<0.05) enrichment for genes with low up-
stream TE coverage. The percentage of genes in the input (blue) and (background) is given in y-axis
with x-axis giving the name of the GO category.
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Figure 4.13: GO categories displaying significant (FDR<0.05) enrichment for genes with low down-
stream TE coverage. The percentage of genes in the input (blue) and (background) is given in y-axis
with x-axis giving the name of the GO category.
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Figure 4.14: Fraction of genes in each TE coverage bin is shown for two sets of genes namely tran-
scription factors (dark Grey) and all genes (light Grey)(see methods). (a) Upstream TE coverage (b)
Downstream TE coverage.
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Figure 4.15: Percentage of genes which contain a TE annotated basepair at a given distance from
the gene. The distances are in basepairs and were measured from TSS/TES of genes for Up-
stream/Downstream (negative/positive) regions. Distances are shown for two classes of genes namely
transcriptions factors (TF genes) and all genes.

TE coverage and expression breadth

The TE coverage of Tissue-specific (TS) genes was compared against Broadly Expressed (BE) genes.
Genes were classified as tissue-specific (TS) or broadly expressed (BE) based on the tissue specificity
index (tau) (See methods). The mean(median) upstream TE coverage for TS genes was 0.293(0.235)
vs 0.373(0.328) for BE genes (P<2E-16; Wilcoxon rank sum test). The downstream coverage how-
ever displayed a reversed pattern 0.393(0.345) vs 0.374(0.320) for TS and HS respectively although
at a much lower significance (P=0.01; Wilcoxon rank sum test) (Figure 4.16).
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Figure 4.16: (a) Percentage of genes in each upstream TE coverage bin for Broadly expressed
(BE) vs Tissue specific (TS) genes. The difference between two categories significant (P<2E-16;
Wilcoxon rank sum test) for both plots. (b) Percentage of genes with a TE basepair at a given up-
stream/downstream (-/+) distance from gene start/end for two categories.
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TEs and TSS Type

Genes often have multiple Transcription Start Sites (TSS) which constitute a TSS cluster and each
TSS is linked to a separate promoter [158]. TSS are usually determined by CAGE(Cap Analysis of
Gene Expression) studies [222] which take advantage of the fact that 5’ end of a mature mRNA has
a chemical cap. Special library is made from transcript fragments which contain the chemical cap
(called as tags). The tags are then mapped to the genome and the start of the tag in the alignment with
respect to the gene marks the TSS. The TSS clusters are categorized into broad and sharp based on
the density of TSS sites in a cluster [158]. Sharp TSS genes were found to have lower TE coverage
in upstream regions with mean(median) of 0.296(0.237) compared to 0.329(0.281) for broad genes
(P<1E-5; Wilcoxon rank sum test). However, TE coverage difference between downstream regions
was not found to be significant between sharp and broad genes with mean(median) of 0.291(0.206)
and 0.285(0.213)(P=0.9; Wilcoxon rank sum test). The percentage of genes with TE basepair plotted
with respect to increasing upstream/downstream distance for broad and sharp TSS genes is given in
Figure 4.17.
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Figure 4.17: Percentage of genes with a TE basepair at a given upstream/downstream (-/+) distance
from gene start/end for two categories (broad (Grey) and sharp (black)).

Comparing TEs in Maize and Sorghum

TE content of sorghum genome is fewer than that of maize, even though the split is relatively re-
cent (∼11MYA) [241]. To see if genome wide TE content influences the cis-TE content for genes,
upstream TE coverage was compared between maize and sorghum ortholog pairs. Since most tran-
scripts in sorghum do not have an annotated TSS (Transcription start site) assigned, TE coverage was
calculated for 1KB upstream and downstream regions from the CDSS (CDS start site). CDSS was
chosen as it can be relatively reliably assigned in genome annotation. TE coverage for maize was
slightly but significantly higher than sorghum with mean(median) of 0.213(0.139) vs 0.193(0.128)
(P<2E-16; Wilcoxon rank sum test). TE coverage between maize and sorghum in upstream regions
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was also correlated (Spearmans rho 0.18 ;P<2E-16).
In order to check for differences between maize and sorghum for TE coverage with increasing

distance from the gene, the upstream TE coverage for 1,2,3 and 5KB for a gene in maize was sub-
tracted from the corresponding TE coverage of syntenic ortholog in sorghum. A histogram plot for the
difference is depicted in Figure 4.18, The x-axis gives the difference in the number of TE basepairs
between maize and sorghum. Negative values mean that maize has less TE basepairs than sorghum
and positive values the contrary. The distribution is centered on zero for 1KB TE coverage, indicating
that a majority of genes have not experienced drastic differences in TE content between maize and
sorghum in the upstream 1KB region. But with increasing distance from the gene a maize gene has
more likely to be near a TE. No significant gene ontology enrichment were found for genes in extreme
ends of the distributions.

Difference in No. of Upstream TE basepairs between Maize and Sorghum 

Figure 4.18: Histogram plot for the difference in number of TE basepairs between maize and sorghum.
Negative values imply that maize has less TE basepairs than sorghum and positive values the contrary.
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Discussion

Maize is particularly suited for studying factors shaping the TE abundance proximal to genes due to
ample available genomic data and a very high TE content. Here different factors were tested for their
role in shaping this landscape.

For studying upstream/downstream TEs unhindered by the overlaps between genes, only genes
with other gene overlapping in 1Kb upstream and downstream region were chosen. Fewer gene to
gene overlaps in upstream of genes (28239 genes had no other gene overlapping in upstream 1KB
compared to 25888 genes for downstream) compared to downstream indicates that the cis-regulatory
upstream DNA has a role in shaping the distribution of distance between genes. A study reported
results along these lines in Caenorhabditis elegans and Drosophila melanogaster wherein intergenic
distance was shown to be non-random and positively correlated with the regulatory complexity of the
gene [169]. They proposed that this influence is much stronger for compact genomes with high DNA
deletion rates. The genes in these genomes get closer to one another by erosion of non-functional
non-coding DNA. The functional noncoding DNA resists deletion and then becomes a major factor
shaping the boundary between genes. The genes with more functional non-coding DNA then show
longer intergenic distance with other genes. Although maize genome is far less compact but genic
regions form islands in a vast sea of TEs and hetrochromatin [139, 201], so a similar effect is thereby
expected. The TEs will jump into non-functional non-noncoding DNA and the functional non-coding
DNA will then mark the boundary between TEs and genes. Gene density has also been shown to
be negatively correlated with TE abundance in Arabidopsis [277] indicating that purifying selection
against TE insertion in functional DNA shapes the TE abundance in and near genes.

We report a lower TE coverage for 1KB upstream genic regions than downstream (mean 350bp
v.s 396 TE basepairs in 1KB upstream/downstream) (Figure 4.1). This is expected as the canonical
biological knowledge states the regulatory DNA to be upstream of a gene which would lead to fewer
TE insertions in that region. Upstream and downstream TE coverage was also found to be correlated
(Figure 4.2). A region specific rate of TE insertion could explain this. For example, a high recom-
bination rate in a region would increase the efficiency of selection against TE insertions. A study in
soybean found fewer LTR insertions in regions with higher recombination rate [252], but this was not
found to be the case in arabidopsis [277]. Since upstream/downstream 1KB TE coverage only gives
an average TE content and not the variation in TE content with the distance from the gene, TE cover-
age was plotted with increasing outward distance from upstream/downstream of genes (Figure 4.3).
Very few genes (<5%) have TEs in the immediate vicinity in upstream regions and the percentage
of TE associated basepairs increases with distance from genes, for both upstream and downstream
regions (Figure 4.3). As the core promoter usually flanks the TSS (transcription start site) where a TE
insertion could have more deleterious effect thereby fewer TE insertions are seen in immediate vicin-
ity of the gene. Also the difference between upstream and downstream regions gets progressively
smaller with distance but it takes ∼5KB to reach the genomic background of ∼85% TE coverage.
One reason for this could point to regulatory elements located far away from the genes where a TE
insertion would be deleterious. An extreme example in maize is of the Vgt1 locus associated with the
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flowering time which is 70kb upstream from the effected gene [209]. But for downstream regions the
reasons are not clear.

The relation between strength of purifying selection on a gene (measured by Ka/Ks ratio) and
upstream TE coverage was found to be weakly negative (Figure 4.5). Although a study in maize
linked reduced purifying selection in one of the post WGD duplicate copy with higher upstream TE
abundance but on a shorter evolutionary timescale [186]. A study in humans reported a negative
relation between rate of evolution (Ka/Ks ratio) and TE insertions inside genes, but only for tissue
specific genes [113]. However, the effect seen in maize is weak and upstream TEs do not seem to be
a major determinant of rate of protein evolution in maize.

The relation between TE coverage (upstream and downstream) and absolute gene expression
(FPKM) was weak, although in some tissues a non-monotonic relation was seen wherein expres-
sion is low initially at zero TE coverage, then increases and then starts to decrease at higher ranges
of coverage and finally at very high TE coverage is the lowest (Figure 4.6, 4.7, 4.8, 4.9 and 4.10).
A universal non-monotonic relation between gene expression and compactness (measured by gene
length) has been reported [24] where gene length first increases with gene expression, peaks and then
decreases for highly expressed genes. The initial increase in length with expression was proposed to
be associated with gain of regulatory elements to increase expression, and the selection for efficient
expression was then proposed for smaller lengths of highly expressed genes [24]. One reason for ex-
pression not being strongly dependent on TE coverage could be the lack of methylation status for the
TEs. Methylation of TEs could negatively affect the nearby gene expression (see introduction) and
Hollister and Gaut showed that gene expression in arabidopsis was negatively correlated with methy-
lated upstream TEs but not with the unmethylated ones [98]. Chromatin state and methylation status
are crucial variables to explore further. Chromatin states tend to be different for actively transcribed
genes and TEs [213, 96]. The open chromatin associated with active transcription is a preferred lo-
cation for some class of TEs to jump [96]. This could generate a positive correlation with increasing
neighboring TEs with gene expression. At very high TE coverages however, TEs are more likely to
influence the core promoter regions and TE suppression by methylation would reduce the proximal
gene expression. The non-monotonic nature of this relation would weaken the Ka/Ks v.s TE coverage
association, as the rate of protein evolution in plants (Ka/Ks) is negatively correlated with absolute
expression [197, 284].

The GO analysis pointed a strong tendency of genes involved in regulation to be depleted in TEs
for both upstream and downstream regions. This observation was reported in mammals for full length
TEs [162]. The transposon free regions which maintained this status in vertebrate evolution were
also associated with regulation [224]. Our study shown that the negative relation between TEs and
regulatory genes is also true in maize, and one reason explaining the observation is higher content
of functional cis-regulatory elements reflected by higher conservation of upstream regions of genes
with complex regulation [135]. This would make TE insertions in these regions deleterious and thus
selected against. The extension of the analysis to transcription factors (TFs) showed a strong depletion
of TEs in upstream and downstream regions of TFs supporting the conclusion as TFs have been shown
to display higher conservation of upstream regions [110]. Note that the TEs inside genes are also not
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favored for regulators and transcription factors in mammals [225] and this observation can easily be
tested in maize.

The results from the GO analysis prompted analysis of TE coverage in relation to expression
breadth; tissue specificity (TS) v.s broader expression (BE). This is because TS genes display a higher
cis-conservation compared to housekeeping genes in mammals [60]. This may come as surprising at
first, but in order to coordinate the expression across tissues a given gene has to be under regulation
and thereby enriched in regulatory elements. Another observation in mammals reported housekeeping
genes to be enriched in simple sequence repeats (SSR) in the 5’UTR regions when compared to tissue
specific genes [133]. Tissue-specific (TS) genes displayed a significantly lower TE coverage in the
upstream region (Figure 4.16) adding weight to purifying selection against insertion in cis regulatory
elements to be a dominant force shaping TE abundance patterns upstream of genes.

A recent study generated a genomewide catalog of transcription start site (TSS) locations for
maize genes [158]. Genes typically have multiple TSS sites which make a TSS cluster and the corre-
sponding promoters make a promoter cluster [291]. TSS detection is important for getting accurate
gene start coordinate and promoter identification [158]. TSS clusters have been classified as broad
and sharp depending on the length of the region covered by CAGE tags and number of CAGE tags
by statistics measuring the spread of the TSS cluster [191]. The broad and sharp classification has
been shown to be biologically relevant with sharp promoters enriched in regulatory and developmen-
tal genes whereas broad promoters enriched in housekeeping genes [25, 100]. Maize was reported to
have predominance of sharp TSS clusters when compared to arabidopsis (66 to 80% v.s 36%)[158]. It
was hypothesized that sharp TSS clusters could be a result of more TE content in the genome where
the transcription initiation is under selection to be more pinpointed and accurate [158]. This prompted
to study the TE coverage in broad v.s sharp TSS cluster genes. Upstream TE coverage was found to
be significantly lower in sharp TSS cluster genes when compared to broad (Figure 4.17) but no sig-
nificant difference was found for downstream TE coverage. Since TS genes have been shown to be
enriched in sharp TSS clusters [158] disentanglement of determinants of TE coverage would need
more analysis. TE coordinates in the genome would be needed to looked in relation to TSS clusters
to gain more insights into the reason for this observation. TSS cluster data information in Sorghum
would be invaluable to test the influence of high TE content on TSS cluster shapes.

TE content is lower in sorghum compared to maize (60% vs 85%) [174]. This enrichment is also
seen in TE content near genes and is distance dependent (Figure 4.18). TE abundance was calculated
for 1KB to 5KB upstream for both maize and sorghum gene ortholog pairs and for higher distances the
distribution of difference in TE coverage between maize and sorghum (maize TE coverage - sorghum
TE coverage) is skewed towards positive values (Figure 4.18) indicating to an increase in TE content
in the maize gene when compared to the sorghum ortholog. This points to more interactions between
TEs and the regulatory apparatus of genes in maize. The correlation of upstream TE coverage between
maize and sorghum orthologs indicates a long term persistence of factors influencing the upstream
TE landscape, although no significant gene ontology terms were identified in genes with extreme
differences in TE coverage.
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We propose purifying selection on cis regulatory elements as a dominant factor shaping the up-
stream TE landscape in maize. The amount of cis regulatory DNA was measured by indirect proxies
like gene ontology, tissue specificity and the TSS architecture. The proposed hypothesis of detection
of cis-regulatory DNA by its transposon free ’footprint’ does work on a coarse level with genes with
higher conservation or amount of cis-regulatory displaying a depletion of TEs in upstream region. Al-
though, fine scale discovery of functional elements seem not to be possible by TE based footprinting.
It is interesting to note that most relevant studies in this regard were done in mammals. Earlier access
to genomes and datasets could be one reason. But studies have shown plants to have fewer noncoding
sites under selection lowering the amount of cis-regulatory noncoding DNA [145, 101]. We show
that purifying selection against TE insertions makes these elements visible in the genome. This study
included only the reference maize genome (B73) but increasing number of studies are now exploring
the intraspecific landscape of TEs or so called ’Non Reference TEs’ [252, 271]. A preference of
insertions in or near genes is indicated [271] presumably due to TE specific insertion preferences or
chromatin states. Our study predicts fewer such insertions near regulatory and tissuespecifc genes.
Alternatively any such insertion could be given a preferential scrutiny for phenotype altering effects.

Genes involved in regulation also displayed lower TE coverage in downstream regions and the
relation of TE coverage and gene expression was stronger in downstream regions. We hypothesize
that read-through transcription could be a factor influencing purifying selection on TE insertions
in downstream regions. In other words, if gene transcription does not end at the designated stop
site (TES) and then downstream TEs could get transcribed. A study in mammals utilized differing
tendencies of TEs to get transcribed and and reported that TEs more prone to transcription are less
likely to be seen near genes [163]. Given the availability of deep RNA-seq datasets in maize, events
of readthrough transcription can be detected including the proximal TEs which get transcribed. Also
downstream epigenetic state needs a closer scrutiny in relation to TEs. A study in rice reported
a strong influence of downstream methylation in repression of gene expression which would make
downstream TE insertions deleterious [140]. TE insertions in 3’UTR regions have been implicated in
loss of epigenetic silencing in arabidopsis [116].

It would also be worthwhile to compare TE content inside genes in relation to TEs near genes.
Since selection is stronger in housekeeping genes [101], a TE insertion inside them would be delete-
rious. Conversely, since these genes have smaller cis regulatory DNA, TE insertions would be more
commonly accepted in nearby regions. We find selection against insertion in cis-regulatory regions as
a dominant factor shaping the TE landscape upstream of genes. We recommend that studies involv-
ing TEs and their interaction with epigenetic mechanisms (methylation and chromatin states) should
consider regulatory complexity of the gene as one factor. The effect of downstream TEs need more
studies and closer scrutiny to explore their effects, particularly on gene expression.
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Materials and Methods

Obtaining SNP data

SNP data was obtained from from the maize hapmap2 project [36] which contains whole genome SNP
data for 19 Teosinte(wild lines), 23 Landraces and 60 Modern inbred lines. VCF (Variant call format)
file for maize hapmap2 SNPs was downloaded from the url data.iplantcollaborative.org/
quickshare/e75bc315fc0f9fda/HapMapV2RefgenV220120328.vcf.gz. The 19 teosinte lines
contain 17 lines from subspecies parviglumis and 2 from subspecies mexicana. The lines belong-
ing to mexicana where removed because it forms a different subspecies. Two more lines TIL04-
TIP285:TEO and TIL06-TIP496:TEO were removed as they are similar lines to TIL04-TIP454 and
TIL06-TIP260 already present and differing only in the generations of selfing. One more line TIL02
was removed due to low coverage.

Calculating population genetics statistics

The VCF file was converted to ”hapmap” format using a custom perl script. Variscan [259] was used
with runmode 12 to get values for nucleotide diversity (estimated as the average pairwise difference
between (Π)) for each SNP. SNPs with less than 50% of genotypes called were removed from the
calculations by setting the ’NumNuc’ parameter of variscan to the number of individuals sampled.
The per SNP diversity was added separately for each non-synonymous and synonymous SNP and the
sum divided by the total number of sites for that category. The total number of synonymous and non-
synonymous sites were obtained by modifying the Bioperl [234] module Bio::Align:DNAStatistics.
For genic statistics, variscan was run with a ’block data file’ listing the coordinates of the gene to get
the per base pair Π and Tajima’D values for each gene. For sliding window based statistics, variscan
was run in sliding window mode ’SlidingWindow=1’. For display in the genome browser a sliding
window of 100Kb with a 10Kb slide was chosen. The genomewide statistics reported were for 10kb
window with no slide.

Obtaining Derived allele state

The list maize syntenic orthologs with sorghum was downloaded from James Schnable’s website url:
http://skraelingmountain.com/datasets/grass_syntenic_orthologs.csv.zip [216]. For
each gene, the splice variant annotated as ’canonical’ was chosen for further analysis. The sorghum-
Maize ortholog protein pairs were aligned using clustalw [250] and the amino acids of in the alignment
were replaced by corresponding codons using software pal2nal [239]. These alignments were parsed
using a custom perl script and the sorghum nucleotide extracted for SNP coordinates. The allele of
the SNP which matched the sorghum was assumed to be the ancestral allele.
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Calculating recombination events

As the sequenced maize/teosinte lines in hapmap2 project were inbred and contained few heterozy-
gous SNPs, the genotypes along a chromosome for each sample essentially represented a chromosome-
long haplotype. Thereby no phasing was required and recombination events could be identified using
a ’four gamete test’ [103], this number, also called as ’Rm’ is an underestimate of the recombination
rate, as recombination events not marked by SNPs can not be detected. The software ’RecMin’ [165]
was used, which calculates a variant of ’Rm’ called as ’Rh’. The values of ’Rh’ were found in our
case to be positively correlated with sample size as also shown by Meyers and Griffiths [165]. As
the number of samples differed between three groups (WILD, LANDRACE, IMPROVED), a same
number of samples (N=16) were randomly chosen from each of the groups. This sampling was done
three times and the results were found to be consistent across all three random samples, so the results
from one sample are only shown here. RecMin needs a haplotype for each sample for the region ana-
lyzed. For this first a genome sequence was created for each sample by using the reference sequence
(B73) and replacing the reference nucleotide with the alternate allele for each SNP. For example, if
the reference contained an A at a particular site and genotype at the site in sample was G/G then the
A was replaced by a G to create the sample specific genome fasta file. The genic regions in each of
these fasta files were extracted and formed the haplotypes used as RecMin input. RecMin was then
run with default parameters.

Calculating DoFE

Eyre-Walker and Keightley’s method for calculating DoFE as implemented in software DoFE [59]
was used. Software was downloaded from Adam Eyre-Walker’s lab http://www.lifesci.susx.

ac.uk/home/Adam_Eyre-Walker/Website/Software.html. DoFE needs a frequency spectrum
for two categories which in the case were non-synonymous and synonymous SNPs and total number
of sites in each category. Since the sample size varies for the SNPs due to missing calls 13, 18 and
48 alleles were sampled randomly for each SNP for WILD, LANDRACE and IMPROVED groups.
SNPs with less than the set number of alleles were ignored. Also required are the number of fixed
differences and sites in each category which were calculated by maize sorghum alignment of orthologs
using bioperl [234] module Bio::Align:DNAStatistics. These numbers were reaffirmed by similar
computation with DNAsp software [206] for randomly chosen genes.

Obtaining SIFT scores

SIFT is an algorithm for predicting the deleterious effect of non-synonymous polymorphisms [170].
It is based on site conservation and nature of amino acid change caused by the SNP. It gives a score
between 0 and 1, with 0 being intolerant and 1 being neutral. Typically a score between 0 and 0.05
is considered to be deleterious [223]. Sift scores for maize were downloaded from the sift4g website
(siftdb.org).
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Results

Installation and configuration of Genome Browser

The torrential downpour of data created by population scale sequencing projects needs tools to for
analysis and visualization, specially in the context of existing genome annotation. UCSC genome
browser is a popular and time tested tool used primarily by the animal research community [120]. The
official version of this browser does not support plant genomes. As a first part of my work I installed
a configured clone of UCSC genome browser with common plant genomes like maize, sorghum and
tomato (Figure 5.1). The scattered gene annotation information for these plant genomes were obtained
from various sources and compiled for display in the browser. Figure 5.1 displays chromosome 1
of maize and values of TajimasD [243] for wild(teosinte), landrace and improved maize lines. As
expected (see introduction), modern improved lines display higher number of genomic regions with
negative values. Other custom genomes being sequenced in the lab were also added. This tool became
not only became an integral part of my work but is also used by collaborators and colleagues.

Figure 5.1: Locally installed version of UCSC genome browser configured for maize genome. Dis-
playing TajimasD over entire maize chromosome 1 for teosinte, landraces and modern inbred lines.
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Figure 5.2: Zoomed in region of chromosome 10 displaying a massive selective sweep first reported
by Tian et al. [251]. Also seen in bottom are the genes falling in this sweep, further information about
the genome including its GO categories can be seen by clicking on the gene id.

Genomewide diversity in maize line groups

Median of genomewide persite nucleotide diversity (Π) and Tajima’s D were calculated for 10kb
non-overlapping windows and are given for the groups are given in Table 5.1. A consistent decrease
in both is seen from wild to landrace to improved lines. Progressive decrease in Tajima’s D can
also be seen in the browser graphic (Figure 5.1). Qualitatively similar trends were also reported
by the hapmap2 project [104] and are expected following the history of maize domestication and
improvement (see introduction). Persite diversity for genes and TajimasD are shown in Table 5.2.
The non-synonymous and synonymous diversity and the ratio of them are displayed in table 5.3.
Πn/Πs increases from wild to landrace to improved although only two comparisons were significant
namely, WILD v.s IMPROVED (P<2E-9; Wilcoxon rank sum test) and LANDRACE v.s IMPROVED
(P<1E-8; Wilcoxon rank sum test).

Table 5.1: Median of Nucleotide Diversity (Π) and Tajima’s D calculated for 10Kb windows over the
genome for different groups.

Statistic Wild Landrace Improved
Median Π(persite) 0.0018 0.0017 0.0015
Median Tajima’sD 0.12 -0.14 -0.58

Table 5.2: Median(mean) genic diversity and Tajima’sD.

median(mean) Wild Landrace Improved
Π 0.00545(0.00602) 0.00455(0.00519) 0.00452(0.00516)

Tajima’sD 0.37(0.36) 0.47(0.37) 0.46(0.32)
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Table 5.3: Median(mean) Πn, Πs and Πn/Πs

Median(mean) Wild Landrace Improved
Non-Synonymous(Πn) 0.0016(0.0022) 0.0013(0.0019) 0.0015(0.0021)

Synonymous (Πs) 0.008(0.0092) 0.0063(0.0077) 0.0071(0.0083)
(Πn/Πs) 0.207(0.323) 0.209(0.353) 0.223(0.412)

Shared polymorphisms in different populations

Polymorphisms were defined as shared when a SNP segregates (Allele frequency >0 and <1) in
atleast two groups. As there were three groups (WILD, LANDRACE and IMPROVED), the sharing
status was represented as a 3 digit code ([0,1][0,1][0,1]) for the three groups respectively with a 1
indicating segregating and 0 indicating non-segregating for the three populations. For example, 110
would mean that the SNP segregates in both WILD and LANDRACE groups but not in IMPROVED.
The number/percentage of SNPs shared between different groups over the entire genome is displayed
in Figure 5.3. SNPs with a code of ’111’ (i.e segregating in all 3 groups) form the largest category
with 36% of total SNPs (Figure 5.3).

111 110 011 101 010 100 001

36%

16%

04%

17%

11% 11%

05%

Figure 5.3: Number of SNPs segregating in different groups. X-axis also gives the status of SNP en-
coded as Segregating (1) and Non-Segregating(0) in Wild, Landraces and Improved lines respectively.
For example 111 means that the SNP is segregating in all three populations.

Derived allele frequencies

Derived allele frequency (DAF) gives an indication of the age of the SNP and the selection acting
on it [227]. DAF was obtained for coding SNPs and is divided into two categories (synonymous
and non-synonymous). The boxplots of derived allele frequencies in different groups and for differ-
ent classes of SNPs (according to their sharing status) are displayed in Figure 5.4, Figure 5.5 and
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Figure 5.6 for WILD, LANDRACE and IMPROVED groups respectively. Boxplots were made for
non-synonymous and synonymous SNPs separately. Synonymous SNPs display a higher DAF when
compared to corresponding DAF for non-synonymous SNPs. The 111 category displays highest me-
dian DAF in all three groups. Just to display this more clearly the DAF of 111 SNPs in all three
groups is separately plotted in Figure 5.7.
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Figure 5.4: Boxplots of derived allele frequency for classes of shared polymorphisms in WILD group.
Non-synonymous SNPs in red and synonymous in blue.
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Figure 5.5: Boxplots of derived allele frequency for classes of shared polymorphisms in LANDRACE
group. Non-synonymous SNPs in red and synonymous in blue.
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Figure 5.6: Boxplots of derived allele frequency for classes of shared polymorphisms in IMPROVED
group. Non-synonymous SNPs in red and synonymous in blue.
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Figure 5.7: Boxplots for derived allele frequency for class ’111’ (Shared in all three groups).
syn(Synonymous,blue), non-syn(Non-Synonymous,red)

Shared polymorphisms and Purifying selection

The percentage of coding SNPs for both categories in displayed in Figure 5.8a. The category ’111’
shows the most difference between synonymous and non-synonymous SNPs. Since the total number
of non-synonymous sites in the genome are more than the synonymous sites, the number of SNPs were
divided by the total number of non-synonymous and synonymous sites. This gives the abundance of
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SNPs in proportion to the number of potential sites in the genome and is displayed in Figure 5.8b.
In order to further examine the proportion of shared SNPs with respect to the deleterious nature of
the SNP, SIFT scores were obtained for non-synonymous SNPs (See Methods). Non-synonymous
SNPs were classified as deleterious (SIFT <0.01) and benign (SIFT >0.01). The percentage of SIFT-
deleterious and SIFT-benign SNPs in each category of sharing is displayed in Figure 5.9.

111 110 101 011 010 100 001
0

5

10

15

20

25

30

35

40

45

Synonymous

Non-Synonymous

P
er

ce
nt

ag
e 

of
 S

N
P

s

Landrace
Wild

Modern

(a)

111 110 101 011 010 100 001
0

0.005

0.01

0.015

0.02

0.025

Synonymous

Non-Synonymous

N
o 

of
 S

N
Ps

/(T
ot

al
 N

o 
of

 S
ite

s)

Landrace
Wild

Modern

(b)

Figure 5.8: (a)Fraction of synonymous and Non-Synonymous coding SNPs segregating in different
groups. (b)Fraction of synonymous and non-synonymous coding SNPs divided by the total number
of sites in different groups.
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Figure 5.9: Percentage of Non-synonymous SNPs divided in two categories benign and deleteri-
ous according to SIFT score. X-axis gives the status of SNP encoded as Segregating (1) and Non-
Segregating(0) in Wild, Landraces and Improved lines respectively. For example 111 means the SNP
is segregating in all three populations.

Differences between purifying selection between groups

The strength of purifying selection was measured by DoFE between three groups. A progressive
decrease in fraction of mutations in highly deleterious class (Ns>100) can be seen for WILD, LAN-
DRACE and IMPROVED lines (Figure 5.10). Also displayed is α which is the fraction of sites under
positive selection.
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Figure 5.10: Distribution of fitness effects (DoFE) for three groups.

Differences in Number of Recombination Events

The number of recombination events in the history of the sample (Rh) were calculated for canonical
splice variants for the three groups separately. Only genes with a minimum 10 SNPs were only used
in the analysis. The Rh per gene was normalized by dividing by the number of segregating sites in
a gene giving a normalized value (Rh-norm). The mean(median) for WILD, LANDRACE, and IM-
PROVED was 0.0026(0.0032), 0.0019(0.0014) and 0.0017(0.0012). All three pairwise comparisons
were significant (P<2E-16;Wilcoxon rank sum test). The density plots for all three groups are repre-
sented in Figure 5.11. As could be expected, WILD lines displayed a higher number of recombination
events.

Improved
Landrace
Wild

Figure 5.11: Density plots for recombination events per base pair (Rh-norm) for three sample groups.
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Recombination and Purifying selection

In order to explore the link between recombination and purifying selection in each group, the Rh-
norm values for each group were binned according to quartile value in 5 bins (0-5) with bin zero genes
having no recombination event (Rh-norm is 0) and bin five with genes in fourth quartile of Rh-norm
values. Purifying selection was measured by the ratio of non-synonymous to synonymous diversity
(Πn/Πs). Boxplots for Πn/Πs, Πn and Πs values in each recombination bin are displayed in Figure
5.12. Πn/Πs decrease with increasing Rh-norm but the trend levels off at higher recombination bins.
Both Πn and Πs increase with Rh-norm Figure 5.12. These results are consistent with results shown
in drosophila by Campos et.al [22], outlining the role of recombination in increasing the efficiency of
purifying selection.

Figure 5.12: Boxplots for Πn/Πs,Πn and Πs in relation to bins (zero to four) based on increasing
number of recombination events. Data is displayed for three groups WILD, LANDRACE and IM-
PROVED.

Recombination and DoFE

The DoFE and α was obtained for genes in each of the recombination bins for the three groups
and is displayed in Figure 5.13a, 5.13b and 5.13c. Strength of purifying selection increases with
recombination as displayed by progressively larger fraction of genes in higher -NeS class in all three
groups. The fraction of sites under positive selection α also increases with increasing recombination.
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Figure 5.13: Distribution of fitness effects in different recombination bins in three groups. (a)WILD
(b)LANDRACE (c)IMPROVED
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Discussion

A large fraction of polymorphism is shared between maize and teosinte (Figure 5.3) and a striking
36% of polymorphisms are seen segregating in all three groups over the whole genome. Given the
high nucleotide diversity in maize [246, 282] and a very mild reduction [36] when compared to the
wild progenitor population (see introduction) this is expected. The nature of domestication induced
bottleneck (strong but short) and high diversity in the progenitor have been indicated as the possible
reasons [57]. Post domestication geneflow from teosinte specially into landraces due to outcrossing
nature and viable offsprings with teosinte also could have contributed to the high diversity and in-
creased the number of shared SNPs. These processes could have prevented the diversity loss even
if a single domestication event for maize is the general consensus. The selection of the individuals
should make a difference, particularly in the case of LANDRACE and IMPROVED lines as the de-
viation from the ’panmictic’ behavior would mean individual subgroups within samples and uneven
sampling of diversity (especially for SNPs in low frequencies). A newer version of hapmap2, which
recently became available (hapmap3 [21]) which includes a staggering 916 lines should ameliorate
the sampling issue to an extent. One of the unexpected observations in Figure 5.3 is that the ’110’
category has less than half the number of SNPs compared to ’101’ category. More gene-flow between
WILD and LANDRACE groups is expected compared to WILD and IMPROVED, so more number
of SNPs should be seen in ’110’ category vs ’101’ category. This is due to the physical proximity of
teosinte to sampled landraces (in terms of geographical location) and open pollination [104]. Adding
to this trend is the number of unique SNPs in WILD, LANDRACE and IMPROVED lines (100, 010
and 001) with 17, 4 and 11 percent of the total SNPs respectively (Figure 5.3). More unique SNPs
in WILD sample is expected due to high diversity and a panmictic population. One technical aspect
to note is that the reference genome used for mapping and SNP calling was of the maize line B73, a
modern inbred line and a member of the IMPROVED group. Thereby a ’reference bias’ [230] exists
whereby comparatively fewer sequencing reads map with the increasing distance of the sample from
the reference due to divergence. Reference bias can lead to an underestimation of the number of SNPs
in distant samples. This does not seem to be case as WILD samples should be more affected due to
much higher divergence to IMPROVED when compared to LANDRACES, but 100 has the highest
number of SNPs amongst category of private SNPs. Also qualitatively similar fractions of SNPs were
obtained when only coding SNPs gathered from maize genes with syntenic orthologs in Sorghum
were used (Figure 5.8a). A frequent introgression from WILD to IMPROVED lines could explain a
higher fraction of ’101’ SNPs compared to ’110’ but it is unlikely because the origin of IMPROVED
lines is very recent (in the order of decades) and is much controlled and documented.

The expected age of an allele is strongly related to its frequency [227]. Shared SNPs represent
pre-domestication polymorphism which is still segregating, thereby at-least 9K years old [154] as the
likelihood of a mutation striking at a site independently in two groups is supposed to be negligible.
Bottlenecks and selection influence the allele frequency and so shared SNPs represent a good case
where these effects can be studied by looking at their allele frequency in two groups (WILD and
IMPROVED). Polarizing the SNP infers the direction of the mutation which led to the SNP and
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identifies the new (derived) and the old allele (ancestral). The boxplots for derived allele frequency
(DAF) in three groups are presented in Figure 5.4, 5.5 and 5.6 for non-synonymous and synonymous
SNPs. The subset ’111’ displays the highest DAF in all cases. This is expected given the ’111’ class
predominantly represents old pre-domestication SNPs. Although, an old pre-domestication SNP can
sometimes not be categorized as ’111 due to fixation of the SNP in one or more of the groups. Also the
variance of the ’111’ SNPs frequency is increasing after domestication showing the expected effect
of bottleneck (Figure 5.7). In all comparisons non-synonymous SNPs have a lower median frequency
than synonymous indicating the effects of purifying selection throttling the allele frequency ascent.
SNPs unique to each group are likely to be caused by young mutations reflected in their lower average
DAF. The ’110’ and ’101’ SNPs have a lower median DAF than ’111’ SNPs in the WILD group
(Figure 5.4). The reason for this is not clear as their DAF was expected by us to be close to ’111’
in WILD group because they also represent shared polymorphism and thereby expected to be old.
Also the DAF for ’101’ and ’110’ in LANDRACE and IMPROVED is closer to unique SNPs (’100’,
’010’ and ’001’) (Figures 5.5 and 5.6). A relatively recent gene flow by introgression could explain
this but more investigation is needed including identifying the distribution of these SNPs along the
genome. The DAF for ’011’ category is higher than the unique SNPs (’010’ and ’001’) which is
consistent with their origin in the LANDRACE and then passing on to IMPROVED lines. Although,
it should be noted that the unique SNPs (’100’, ’010’ and ’001’) could be caused by new mutations
or by fixation/removal of a shared SNP in all but one groups. For unique SNPs, the difference in
synonymous and non-synonymous SNPs is striking. For example, the category ’001’ should not
segregate in the WILD which can be seen in Figure 5.4. Most non-synonymous SNPs in this case
have DAF of zero in WILD but for synonymous SNPs fixation seems to have occurred in many cases,
which makes DAF 1 and thereby the width of the barplot for synonymous SNPs covers range from
zero to one.

Purifying selection tends to suppress deleterious variants. As the shared SNPs comprise largely
of older polymorphisms purifying selection must have acted longer on them and the surviving SNPs
must be enriched in benign variants. This was already reflected in the DAF plots (discussed earlier)
with non-synonymous SNPs having a lower average DAF. To explore this further, first the fraction
of non-synonymous and synonymous SNPs was examined. The ’111’ SNPs show an enrichment
of synonymous SNPs (Figure 5.8a and 5.8b) indicating that purifying selection has removed non-
synonymous disproportionately more from this class. The ’100’ SNPs which are new SNPs in WILD
also show an ever slight enrichment of synonymous SNPs contrasting with ’001’ which shows an
enrichment of non-synonymous SNPs. When non-synonymous SNPs were classified as benign and
deleterious, all categories of shared SNPs showed a higher fraction of deleterious non-synonymous
SNPs except ’111’ which is enriched in the benign category (Figure 5.9). In addition strength of pu-
rifying selection between different groups was assayed using DoFE (see introduction) (Figure 5.10).
LANDRACE and IMPROVED groups show a fewer fraction of SNPs in the highly deleterious cate-
gory indicating of weaker purifying selection. These differences consistently point towards purifying
selection to be stronger in the WILD. Although a recent report indicates a stronger purifying in maize
on young alleles and a ∼3 fold increase in the population size compared to ancestral teosinte before

78



5.3 Selection Post Domestication: Discussion

domestication [7]. Thereby more analysis is needed to conclusively prove that domestication has
lowered the strength of purifying selection in modern maize.

The strong increase in LD post domestication in maize [278, 104] is bound to make selected and
neutral sites less independent of one another. This effect would be seen for both purifying and posi-
tive selection via background selection and hitchhiking respectively (see introduction). Campos et.al
[22] studied the relation between recombination and diversity comprehensively in Drosophila. They
binned genes w.r.t number of recombination events and assayed for differences in purifying selection
between bins. They showed that recombination is positively correlated with for the strength of pu-
rifying selection. An increase in α (which is the fraction of sites under positive selection) was also
observed in higher recombination bins. Maize presented a fitting case to test these predictions. A
strong difference in the number of recombination events between groups is depicted in Figure 5.11.
This difference provides a contrast to test the effects of linked selection. An increase in strength of
selection as measured by a decreasing ratio of non-synonymous to synonymous diversity (Πn/Πs)
is depicted in Figure 5.12. Recombination has also shown to be positively correlated with diversity
and although both Πn and Πs increase with number of recombination events (Figure 5.11), a direct
relation could not be assumed due to the way in which recombination events were calculated. As
detecting recombination itself depends on diversity and availability of markers a positive relation be-
tween recombination and diversity is technical. Independent measurements of recombination rate
from experimental work or studying regions in the genome which are known to have differing recom-
bination (e.g centromeres vs telomeres) would be needed to test the prediction in maize. Nevertheless
the biological effect of recombination on increasing diversity has been documented in Drosophila and
humans. Stronger purifying selection in high recombination bins was also supported by DoFE (Figure
5.13a, 5.13b, 5.13c for WILD, LANDRACE and IMPROVED).

Recombination also influences adaptation in a positive way by delinking the adaptive variant
with proximal deleterious variants. An increase in α (which is the fraction of sites under positive
selection) can be seen with increasing recombination in all three groups (Figure 5.13a, b and c). Also
α is slightly higher for the WILD group (Figure 5.10), implying a higher fraction of sites under
positive selection in WILD group. This seems confusing as higher α is intuitively expected in the
LANDRACES and IMPROVED lines due to selective breeding for enhancements of selected traits.
We have three explanations, first is that the divergence data was taken from Sorghum so α measured
in the maize lineage is the result of adaptation post maize-sorghum divergence (∼11MYA) and not
just post domestication (∼9KYA). Secondly, the divergence was calculated using the reference maize
genome (B73) (which is in the group IMPROVED) and more analysis is needed to see the effect it has
on the determination of α . Hapmap2 also sequenced gamma grass genome (Tripsacum) which can
be used to obtain divergence (divergence from maize around∼45KYA [95]). Thirdly, adaptive events
must have occurred in teosinte lineage after the maize domestication event but studies are highly
biased towards detecting adaptation in maize. Also higher recombination in teosinte would mean a
faster dilution of the sweep signal.
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Purifying selection plays an important role in shaping the genome of a species, Although adaptive
evolution often in the focus, especially for domesticated species, purifying selection is a pervasive
force [168, 58]. Maize is a classical study organism with a legacy of many important discoveries in
the field of genetics. In parallel, maize is equally important for applied research and its implications.
In terms of data throughput there is ample and growing amount of genomewide datasets which include
a high quality genome, polymorphism surveys, gene expression in varying conditions and tissues and
epigenetic, proteomic and metabolic studies. Although maize is well studied, ceaseless surprises are
thrown and many inviting and unanswered questions remain. The very origin of maize was a mystery
(see introduction). Heterosis is an aspect of maize with has received a lot of applied and empirical
scrutiny but the details of mechanisms still evade us. In the current era of high-throughput genomics,
maize has continued the tradition of expecting the unexpected. An example is the massive presence
absence variations (PAVs) where two maize lines can differ often in thousands of genes [240]. Also
intergenic regions are often found to be nonhomologus between two maize lines due to transposon
activity [50, 264]. But maize still maintains integrity as a species despite the stormy nature of the
genome. Three aspects of maize became interesting to me to explore the role of purifying selection
in maize.

Maize is the only species of the grass family with a recent and well studied WGD event. Subgenomes
are an important aspect of WGDs in order to classify genomic regions post WGD and have also been
identified in maize, although exact mechanism of their origin are unknown. The first part of this
work showed differences in purifying selection between subgenomes, and the dominant subgenome
(maize1) was shown to be under stronger purifying selection. Dominant gene expression was then
shown to be main reason behind it. An expression based classification of WGD duplicates was devel-
oped which better explained the observed differences. This also agrees with the general observation
of purifying selection to be expression dependent in plants. Subgenome based classification can be
difficult to grasp and first and may sometimes seem circular. Significant differences have been shown
between subgenomes in expression, phenotype and selection, but in general the effects have been
weak. Follow up studies have failed to report any differences in transposon content, methylation and
interaction networks between subgenomes [186, 55, 138]. The expression based classification de-
veloped in this work has shown promises in this regard. For example the TE content, methylation
and splicing were found to be significantly different between expression categories. A recent study
found no subgenome bias in co-expression networks [138]. Such an analysis could be conducted on
the expression based classification to check if dominant expression is related to more interactions.
Since the post WGD gene deletion in maize still continues as seen in modern inbred lines, expres-
sion based classification can be used to check if deleted genes have a preference for repression in
expression. Expression based classification can be overlayed with protein interaction and metabolic
network available for maize [208] to check if the dominance/repression in expression is coordinated
along pathways. This work also revealed repression of expression to explain the lack of complementa-
tion of phenotype by the duplicate copy. Dominant expression can be used for screening/modification
of phenotypes. A study of genomewide trait prediction in maize reported a higher predictive ability in
maize1 subgenome regions [220]. Dominant expression of genes can be tested as a factor in the trait
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prediction. As adaptive evolution was not covered in this work, the relation between expression clas-
sification of duplicates and positive selection still has not been explored. Dominant expression of a
gene was associated with a visible phenotype when mutated indicating that the dominantly expressed
duplicate copy performs a larger component of function. It is likely that dominantly expressed dupli-
cates were more likely modified in maize domestication and improvement. Expression based classi-
fication can also be used to explore the mechanisms behind subgenome formation. One approach in
this regard would be look at the proximity of genes with dominant expression along the genome. This
would help to identify if there is a clustering of dominantly expressed genes. Regions with high num-
ber of dominantly expressed genes could then be assayed for possible mechanisms like chromatin and
methylation states. A study in humans reported clustering of gene expression changes which could
even be observed in regions exceeding 100KB [77]. Expression data from Sorghum could be used to
’polarize’ gene expression to obtain ancestral expression state and the direction of expression change
between duplicates determined. The work also reported strong correlations in divergence and diver-
sity between WGD duplicates which are unexplained. These correlations were stronger for introns
indicative of neutral processes involved. Population genetics simulations involving duplicate genes
under various scenarios could be one way to explore the forces acting on the duplicates. Since dupli-
cates have similar lengths and ’functional density’ (proportion of sites contributing to function) they
present a good study-set for assessing the effect of these factors on diversity. The two subgenomes
also share same demography so they can be utilized as two replicates in demographic studies. The
outliers from the correlations can be used to assay the factors like adaptive evolution or neofunction-
alization and differences in breeding induced selection between duplicates.

A substantial (∼85%) portion of maize genome are transposons (TEs). Maize experienced a lin-
eage specific increase in TE content post divergence from sorghum (∼11MYA). TE insertions often
cause non coding regions to display no homology when compared between two maize lines. This
work reported significantly more upstream TE content in post WGD duplicates displaying repression
in expression. I suggest to build alignment of upstream regions of post WGD duplicates to identify
cis-regulatory regions. TE insertions in the cis regions could be one way to look for the influence
of TEs in repression of expression. Available whole genome methylation datasets could identify if
repression of TEs causes repression of the duplicate copy with higher TE content. The work identi-
fied the amount of cis-regulatory upstream regions as a dominant factor shaping the TE abundance
upstream of genes. Tissue-specificity was used as a proxy for selection on cis-regulatory elements.
This is because being tissue specific involves complex regulation in order to keep the different ex-
pression states across tissues. Although only one measure of tissue-specificity was used (tau), but
several measures exist [127] and can be tested to identify the measure which better captures the reg-
ulatory complexity in maize. Differences in expression across time points has been used to develop a
new measure of regulatory complexity [238] which as been associated with conservation of upstream
region. The measure could be modified for tissues instead of timepoints and the conservation of up-
stream regions be replaced with TE abundance measures. Simple measures like fraction 1KB region
covered by TEs were used to quantify TE abundance. Since the effect of a TE insertion also depends
on the distance of TE in relation to the gene, a new measure which combines both the length of TEs
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and the distance of the TE would be more sensitive to study the effect and responsible factors for TE
abundance. Type (family) and orientation of TE in relation to direction of transcription were ignored
in this study but could be additional factors to be tested. DNA methylation status of TEs is a crucial
factor when studying their effect on gene expression. Although multiple genomewide methylation
datasets have been published for maize, the data available is usually raw sequencing reads and gener-
ally methylation calls are not provided. One reason might be the lack of popular and standardized file
formats for representing methylation data. Development and general acceptance of VCF like format
for methylation data is important for efficient use and reuse of these datasets. Cis-regulatory regions
of genes are generally not included when studying plant TEs. This work highlighted their importance
in shaping the TE landscape. An approach which combines cis-regulation, TEs, gene expression and
methylation status will give a comprehensive view of TE effects on gene expression. TE insertions
upstream of genes with robust and shorter cis-regulatory elements like housekeeping genes or genes
involved in catalytic activity would be expected to be neutral and display higher methylation levels.
In contrast, TE insertions upstream of genes with more comprehensive regulation and elaborate cis
elements would be deleterious and with low methylation levels. An extension to more functional
aspects of methylation like imprinting could also be made in an attempt to approach the question of
why some genes are regulated by methylation. In this case methylation can act on the cis elements to
provide an additional layer of regulation. If true then imprinted genes are expected to display longer
cis-regulatory regions. Downstream TEs need more scrutiny as isolated cases of them influencing
gene expression have been reported [140, 116]. This work reported their effect on gene expression
and their abundance, which is although higher than upstream regions is still much smaller than over
the whole genome. Deep paired end RNA sequencing datasets could be used to test the existence
and prevalence of readthrough transcription where these TEs get inadvertently transcribed. The ex-
tent of readthrough transcription can then be tested for correlation with gene expression and DNA
methylation in downstream regions.

Maize diversity is on the higher end in plants, this is particularly striking because domestica-
tion has not caused the strong diversity reduction usually seen in other species (see introduction).
The third part of this work quantifies differences in purifying selection between teosinte and mod-
ern maize. The first approach was to test the differences between shared and private SNPs between
groups (WILD, LANDRACE and IMPROVED). Shared SNPs were shown to be older and under re-
duced purifying selection. The distribution and age of shared SNPs along a genome could be used to
detect recent introgression. The work also showed shared SNPs to be depleted in deleterious variants
which could make them good neutral markers. Since a large fraction of SNPs is shared, an outlier
based for detecting genomic regions with reduction/fixation in the number of shared SNPs could be
used to detect maize specific adaptive evolution or differing strength of purifying selection. Next,
recombination bins were used to test the strength of purifying selection as a function of recombina-
tion. Both purifying and positive selection was shown to be positively correlated with the number of
recombination events. This is in agreement with the theoretical predictions. WGD duplicated genes
but with differing number of recombination events in groups can to used to check for differences in
purifying selection as it controls for gene length and functional density. Combining of shared poly-
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morphisms and recombination bins could be used to test for the prediction of a diversity increase
due to recombination. Gene ontology analysis of genes in extreme recombination bins in different
populations could provide new biological insights specially if the enriched functional categories vary
between different groups (WILD, LANDRACE and IMPROVED). For example, pathogen resistance
genes are predicted to be recombination hotspots [38]. A recent study reported strong purifying selec-
tion in maize and an effective population size ∼3 times larger than ancestral teostine [7]. Since this
work reports a decrease in the strength of purifying selection in modern maize, more analysis with a
larger number of samples is needed. Hapmap3 with more than 900 maize lines now provides a more
comprehensive dataset [21]. The value of α (fraction of sites under positive selection) was found
to be much higher than reported for plants [80, 101]. This needs further scrutiny as older studies in
maize were conducted involved fewer loci. A study in sunflower did report higher values of α but
it was positively correlated with effective population size [235]. A key question for further studies
in teosinte and modern maize is then to investigate if positive selection (α) in modern maize is dat-
ing from teosinte or reflects selection by humans for domestication. Overall a recalculation of α in
different plant species is also needed given the increased availability of genomewide polymorphism
coverage datasets.
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cel, Béatrice Ségurens, Vincent Daubin, Véronique Anthouard, Nathalie Aiach, Olivier Arnaiz,
Alain Billaut, Janine Beisson, Isabelle Blanc, Khaled Bouhouche, Francisco Câmara, San-
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keeping genes tend to show reduced upstream sequence conservation. Genome Biology,
8:R140, 2007.

[61] Nina V. Fedoroff. The Discovery of Transposition. In Nina V. Fedoroff, editor, Plant Trans-

posons and Genome Dynamics in Evolution, pages 3–13. Wiley-Blackwell, 2013.

92



6.0 Bibliography: BIBLIOGRAPHY

[62] Justin A. Fincher, Daniel L. Vera, Diana D. Hughes, Karen M. McGinnis, Jonathan H. Dennis,
and Hank W. Bass. Genome-Wide Prediction of Nucleosome Occupancy in Maize Reveals
Plant Chromatin Structural Features at Genes and Other Elements at Multiple Scales. Plant

Physiology, 162(2):1127–1141, June 2013.

[63] David J. Finnegan. Eukaryotic transposable elements and genome evolution. Trends in Genet-

ics, 5:103–107, January 1989.

[64] Lex E. Flagel and Jonathan F. Wendel. Gene duplication and evolutionary novelty in plants.
New Phytologist, 183(3):557–564, August 2009.

[65] Lex E. Flagel and Jonathan F. Wendel. Evolutionary rate variation, genomic dominance and
duplicate gene expression evolution during allotetraploid cotton speciation. New Phytologist,
186(1):184–193, 2010.

[66] Sherry A. Flint-Garcia. Genetics and Consequences of Crop Domestication. Journal of Agri-

cultural and Food Chemistry, 61(35):8267–8276, September 2013.

[67] Sherry A. Flint-Garcia, Jeffry M. Thornsberry, Edward S, and and Buckler IV. Structure of
Linkage Disequilibrium in Plants. Annual Review of Plant Biology, 54(1):357–374, 2003.

[68] Allan Force, Michael Lynch, F. Bryan Pickett, Angel Amores, Yi-lin Yan, and John Postleth-
wait. Preservation of Duplicate Genes by Complementary, Degenerative Mutations. Genetics,
151(4):1531–1545, April 1999.

[69] Jakob Fredslund, Lene H. Madsen, Birgit K. Hougaard, Niels Sandal, Jens Stougaard, David
Bertioli, and Leif Schauser. GeMprospector—online design of cross-species genetic marker
candidates in legumes and grasses. Nucleic Acids Research, 34(Web Server issue):W670–
W675, July 2006.

[70] Michael Freeling, Margaret R Woodhouse, Shabarinath Subramaniam, Gina Turco, Damon
Lisch, and James C Schnable. Fractionation mutagenesis and similar consequences of mecha-
nisms removing dispensable or less-expressed DNA in plants. Current Opinion in Plant Biol-

ogy, 15(2):131–139, April 2012.

[71] Huihua Fu and Hugo K. Dooner. Intraspecific violation of genetic colinearity and its impli-
cations in maize. Proceedings of the National Academy of Sciences, 99(14):9573–9578, July
2002.

[72] Olivier Garsmeur, James C. Schnable, Ana Almeida, Cyril Jourda, Angélique D’Hont, and
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Aurélien Tellier, Eva Bauer, and Chris-Carolin Schön. A comprehensive study of the genomic
differentiation between temperate Dent and Flint maize. Genome Biology, 17:137, 2016.

[256] Kevin Vanneste, Steven Maere, and Yves Van de Peer. Tangled up in two: a burst of genome
duplications at the end of the Cretaceous and the consequences for plant evolution. Phil. Trans.

R. Soc. B, 369(1648):20130353, August 2014.

[257] D. A. Vaughan, E. Balázs, and J. S. Heslop-Harrison. From Crop Domestication to Super-
domestication. Annals of Botany, 100(5):893–901, October 2007.

[258] Carlos M. Vicient. Transcriptional activity of transposable elements in maize. BMC Genomics,
11:601, 2010.

[259] Albert J. Vilella, Angel Blanco-Garcia, Stephan Hutter, and Julio Rozas. VariScan: Analysis
of evolutionary patterns from large-scale DNA sequence polymorphism data. Bioinformatics,
21(11):2791–2793, June 2005.

[260] Clémentine Vitte, Margaux-Alison Fustier, Karine Alix, and Maud I. Tenaillon. The bright
side of transposons in crop evolution. Briefings in Functional Genomics, page elu002, March
2014.

[261] Joseph J. Vitti, Sharon R. Grossman, and Pardis C. Sabeti. Detecting Natural Selection in
Genomic Data. Annual Review of Genetics, 47(1):97–120, 2013.

[262] Huai Wang, Anthony J. Studer, Qiong Zhao, Robert Meeley, and John F. Doebley. Evidence
That the Origin of Naked Kernels During Maize Domestication Was Caused by a Single Amino
Acid Substitution in tga1. Genetics, 200(3):965–974, July 2015.

110



6.0 Bibliography: BIBLIOGRAPHY

[263] Jianlin Wang, Lu Tian, Hyeon-Se Lee, Ning E. Wei, Hongmei Jiang, Brian Watson, Andreas
Madlung, Thomas C. Osborn, R. W. Doerge, Luca Comai, and Z. Jeffrey Chen. Genomewide
Nonadditive Gene Regulation in Arabidopsis Allotetraploids. Genetics, 172(1):507–517, Jan-
uary 2006.

[264] Qinghua Wang and Hugo K. Dooner. Remarkable variation in maize genome structure inferred
from haplotype diversity at the bz locus. Proceedings of the National Academy of Sciences,
103(47):17644–17649, November 2006.

[265] SuiKang Wang, YouHuang Bai, ChenJia Shen, YunRong Wu, SaiNa Zhang, DeAn Jiang,
Tom J. Guilfoyle, Ming Chen, and YanHua Qi. Auxin-related gene families in abiotic stress
response in Sorghum bicolor. Functional & Integrative Genomics, 10(4):533–546, November
2010.

[266] Xi Wang, Detlef Weigel, and Lisa M. Smith. Transposon Variants and Their Effects on Gene
Expression in Arabidopsis. PLOS Genet, 9(2):e1003255, February 2013.

[267] Xiangfeng Wang, Axel A. Elling, Xueyong Li, Ning Li, Zhiyu Peng, Guangming He, Hui Sun,
Yijun Qi, X. Shirley Liu, and Xing Wang Deng. Genome-Wide and Organ-Specific Landscapes
of Epigenetic Modifications and Their Relationships to mRNA and Small RNA Transcriptomes
in Maize. The Plant Cell, 21(4):1053–1069, April 2009.

[268] Xiyin Wang, Udo Gowik, Haibao Tang, John E. Bowers, Peter Westhoff, and Andrew H. Pa-
terson. Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses.
Genome Biology, 10:R68, 2009.

[269] Xiyin Wang, Haibao Tang, and Andrew H. Paterson. Seventy Million Years of Concerted
Evolution of a Homoeologous Chromosome Pair, in Parallel, in Major Poaceae Lineages. The

Plant Cell, 23(1):27–37, January 2011.

[270] G. A. Watterson. On the number of segregating sites in genetical models without recombina-
tion. Theoretical Population Biology, 7(2):256–276, April 1975.

[271] Bin Wei, Hanmei Liu, Xin Liu, Qianlin Xiao, Yongbin Wang, Junjie Zhang, Yufeng Hu,
Yinghong Liu, Guowu Yu, and Yubi Huang. Genome-wide characterization of non-reference
transposons in crops suggests non-random insertion. BMC Genomics, 17:536, 2016.

[272] Fusheng Wei, Ed Coe, William Nelson, Arvind K. Bharti, Fred Engler, Ed Butler, HyeRan
Kim, Jose Luis Goicoechea, Mingsheng Chen, Seunghee Lee, Galina Fuks, Hector Sanchez-
Villeda, Steven Schroeder, Zhiwei Fang, Michael McMullen, Georgia Davis, John E. Bowers,
Andrew H. Paterson, Mary Schaeffer, Jack Gardiner, Karen Cone, Joachim Messing, Carol
Soderlund, and Rod A. Wing. Physical and Genetic Structure of the Maize Genome Reflects
Its Complex Evolutionary History. PLOS Genet, 3(7):e123, July 2007.

[273] John H. Werren. Selfish genetic elements, genetic conflict, and evolutionary innovation. Pro-

ceedings of the National Academy of Sciences, 108(Supplement 2):10863–10870, June 2011.

111



6.0 Bibliography: BIBLIOGRAPHY

[274] Patrick T. West, Qing Li, Lexiang Ji, Steven R. Eichten, Jawon Song, Matthew W. Vaughn,
Robert J. Schmitz, and Nathan M. Springer. Genomic Distribution of H3k9me2 and DNA
Methylation in a Maize Genome. PLOS ONE, 9(8):e105267, August 2014.
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