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Abstract

Building a 3D human motion perception system in an efficient way remains non-

trivial. The system must not only automatically interpret new modality data with-

out too much human intervention, but it also needs to yield high performance results

in the absence of professional knowledge of the data. The system must not only ex-

plore meaningful information from multiple modalities, but it also need to cope with

the rich and dense representations from then. To achieve the efficiency, advanced

machine learning techniques have been developed that are usually able to generate

and mine useful knowledge from empirical example data.

There are many existing approaches for 2D human motion perception system by

utilizing machine learning techniques. However, their input modality data differ

in many aspects. 2D modality data have its intrinsic limitations, such as sensitive

to illumination changes and lack of 3D structural information. Therefore, directly

extending the solutions of 2D human motion perception system is inefficient for the

new modality.

This work presents two frameworks for the development of 3D human motion per-

ception systems: autonomously feature learning with un-supervision and efficiently

system developing with randomization and discrimination. Un-supervised feature

learning framework serves as a basis for low-level 3D video representation and is able

to leverage the plethora of the unlabeled data and adapt easily to new modality data.

Efficient system developing framework mines the most useful feature and model the

3D human motion in a joint way with randomization and discrimination. It is able

to discover semantically meaningful knowledge over the rich representations that

closely matches the intuition of human vision system.

The major contribution of this thesis is the presentation of three advanced machine

learning techniques, un-supervision, discrimination and randomization, to guaran-

tee the efficiency when developing 3D human motion perception system. With un-



supervision, input modality data allows to be processed automatically without know-

ing the intrinsic properties of the data. With discrimination, meaningful knowledge

is automatically mined from input data. With randomization, the algorithm is able

to cope with rich and dense representation in an efficient way.

Two applications of 3D human action and gesture recognition system are devel-

oped to demonstrate the practicability of the approach. Un-supervision, discrim-

ination and randomization are implemented and realized in this context. Appli-

cations demonstrate the advantages of developed advanced machine learning tech-

niques, achieve comparable performance with state-of-the-art method, and validate

the leading principle of this thesis, the efficiency of 3D human motion perception

system.



Zusammenfassung

Ein Wahrnehmungssystem für menschliche 3D Bewegungen effizient zu entwickeln

ist weiterhin anspruchsvoll. Das System muss nicht nur automatisch neue Daten

unterschiedlicher Art ohne zu viel menschlichen Unterstützung interpretieren, son-

dern es muss auch ohne Expertenwissen über die Daten noch Ergebnisse mit hoher

Zuverlässigkeit liefern. Das System muss nicht nur bedeutsame Informationen in

unterschiedlichartigen Inputdaten finden, es muss auch in der Lage sein, mit infor-

mationsreichen und dichten Darstellungen solcher Inputdaten umzugehen. Um diese

Effizienz zu erreichen, wurden fortschrittliche Machine-Learning-Ansätze entwickelt,

die in der Lage sind, nützliches Wissen aus empirischen Beispieldaten zu erzeugen

und zu extrahieren.

Es gibt zahlreiche existierende Ansätze für Wahrnehmungssysteme menschlicher Be-

wegung in 2D durch die Nutzung von Machine-Learning-Techniken. Jedoch sind die

zahlreichen Arten von Inputdaten in vielen Aspekten verschieden. 2D-Daten ha-

ben inhärente Einschränkungen wie Empfindlichkeit gegen Belichtungsänderungen

und die Abwesenheit von strukturellen 3D-Informationen. Deswegen ist es ineffizi-

ent, die Lösungen für 2D-Wahrnehmungssysteme menschlicher Bewegung für neue

Inputdaten direkt zu erweitern.

Diese Arbeit stellt zwei Frameworks zur Entwicklung von 3D-Wahrnehmungssystemen

menschlicher Bewegungen vor: autonomes Lernen von Features ohne Überwachung

und effiziente Systementwicklung mit Randomisierung und Diskriminierung. Ein

“Unsupervised Feature Learning Framework”dient als Basis für eine low-level 3D-

Video-Darstellung und ist in der Lage, die Vielzahl von Daten ohne Labels auszu-

nutzen und sich leicht an neue, verschiedenartige Daten anzupassen. Ein effizientes

Systementwicklungsframework extrahiert die nützlichsten Features und modelliert

die menschliche 3D-Bewegung zusammen mit Randomisierung und Diskriminierung.

Es ist in der Lage, bedeutungsreiches Wissen semantisch aus informationsreichen



Darstellungen zu gewinnen, die der Intuition des menschlichen visuellen Systems

sehr nahekommen.

Der größte Beitrag dieser Arbeit ist die Vorstellung dreier fortschrittlicher Machine-

Learning-Techniken, Nicht-Supervision, Diskriminierung und Randomisierung, die

drei Schlüsselkomponenten sind, um die Effizienz bei der Entwicklung von Wahrneh-

mungssystemen menschlicher Bewegung in 3D zu gewährleisten. Mit Nicht-Supervision

ist es möglich, verschiedenartige Inputdaten automatisch zu verarbeiten ohne int-

rinsische Eigenschaften dieser Daten zu kennen. Mit Hilfe von Diskriminierung wird

automatisch bedeutungsvolles Wissen aus den Inputdaten gewonnen. Mittels Ran-

domisierung ist der Algorithmus in der Lage mit informationsreichen und dichten

Representationen effizient umzugehen.

Zwei Anwendungen des Erkennungssystems für menschliche 3D-Handlungen und

Gesten wurden entwickelt, um die Anwendbarkeit des Ansatzes unter Beweis zu

stellen. Nicht-Supervision, Diskriminierung und Randomisierung wurden in diesem

Kontext implementiert und umgesetzt. Anwendungen demonstrieren die Vorteile

der entwickelten fortschrittlichen Machine-Learning-Techniken. Diese erzielen Er-

gebnisse, die vergleichbar mit State-of-the-Art Methoden sind und validieren das

Leitprinzip dieser Arbeit, die Effizienz des Wahrnehmungssystems für menschliche

Bewegungen.
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Chapter 1

Introduction

1.1 Thesis Motivation

Machine perception of human motion plays a crucial role in many artificial intelligence systems:

health monitoring system shall recognize activity changes of patients, sign language translation

system supports communication between deaf and hearing persons and human vehicle inter-

action system can perform secondary driving tasks by recognizing driver’s hand gestures. For

all these tasks the ability to autonomously percept the human motions (e.g., actions, gestures,

expressions) by a machine under different environments is the key requirement. This very basic

ability is one of the most important social skills in our everyday life. Human, being highly

social creatures, easily possess these perceptual skills: to perceive what others are doing and to

infer from actions, gesture and expressions what others may be intending to do, but still poses

a lot of questions and open problems for intelligent machines.

The scientific field of computer vision community tackles these issues and has developed

many vision-based techniques and methodologies towards solutions for the past few decades.

The central goal of computer vision scientists is to enable the machine to duplicate the human

vision’s ability to automatically understand the surroundings using vision sensors. The first

study of human motion was provided by Johansson [1]’s pioneering work in the early 1970s,

and this work has been studied for the recognition of human activities in depth by Webb and

Aggarwal [2] in the early 1980s. Since 1999, human activity recognition was in its infancy, as

Aggarwal and Cai [3] pointed out. It was at a stage where more and more experimental systems

were deployed at airports and other public places. A significant amount of progress on human

activity recognition achieved by computer vision researchers, but it is still far from being an
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off-the-shelf technology due to the limited amount of the video data and computing limitations

of smart sensors and devices.

In the 2000s, along with the technological advances of computers in general, video data

become more and more accessible and play an increasingly important role in everyday life.

Even commonly used consumer hardware, such as notebooks, mobile phones, and digital photo

cameras, allow to create videos. For example, the amount of video uploaded to YouTube every

minutes increased from six hours in 2007, 20 hours in 2009 to 500 hours in 20151. During

this stage various approaches have been proposed addressing on recognizing actions and ac-

tivities from 2D video data taken by visible light cameras. However, despite the increasing

importance and amount of video data, the possibilities to analyze it in an automated fashion

are rather limited. The abilities of the state-of-the-art computer vision system are far behind

the capabilities of human vision, and face the great challenge on processing magnanimity data.

One major issue with 2D videos is that capturing articulated human motion from visible-light

cameras results in a considerable loss of information (e.g., lack of 3D structural information of

the environment). This confines the performance of 2D video-based human motion perception

system. Thus, at this stage recognizing human actions from 2D video data is still a challenge

task. For instance, searching video in large-scale video databases is only possible with manual

annotation information. Popular Web search engines mainly rely on textual information, such

as tags or text descriptions, in order to retrieve highly relevant videos. Another example is

surveillance application. According to the report2, the city of London has installed about 1

million CCTV cameras at the cost of approximately 200 million British pounds. However, in

2008, surveillance cameras helped to solve only one crime per 1000 cameras. It has been pointed

out that CCTV leads to massive expense and minimum effectiveness.

After the recent release of low-cost 3D sensing devices in 2010, people consider the task of

human motion perception in 3D video data. In fact, research on 3D video data emerged in

the 1990s [4]. People obtained 3D video data by using marker-based motion capture systems,

stereo cameras or range sensors. However, these systems have several constraints which limit

the spread of applications in human motion perception. For instance, reconstructing depth

from stereo cameras requires expensive computations, and typically introduces substantial,

undesirable artifacts. In contrast, depth cameras use structured light to generate real-time 3D

depth video data rather reliably. The advent of depth cameras at relative inexpensive costs

1http://tubularinsights.com
2www.telegraph.co.uk/
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1.1 Thesis Motivation

and smaller sizes gives researchers easy access to the 3D video data at a higher frame rate

resolution, leading to the rapid growth of research interests on 3D human motion perception.

One obvious example is that the number of popular 2D action datasets developed by computer

vision researchers before 2012 is 28, comparing to 30 3D action datasets after 2010. This thesis

will also focus on human motion perception from 3D video data taken by the depth cameras.

During the past decades, machine perception of 2D human motion received significant atten-

tion of human computing task and achieved great success in the development of the techniques

and methodologies. Researchers in computer vision attempt to tackle 3D human motion per-

ception by using extensions of traditional 2D-based methods. However, we argue that these

approaches are inefficient in 3D human motion perception. Although 2D action recognition has

several inherent connections with 3D action recognition, they differ in many points. First, 2D

video data has intrinsic limitations (e.g., it is sensitive to illumination changes). Second, single

2D sensor (the visible light camera) can not provide 3D structural information of the envi-

ronment, which offers discerning information to recover postures and recognize human actions.

Third, 3D video data reflect pure geometry and shape cues and provide depth information of

the environment. Fourth, 3D sensors (depth sensors) have facilitated a human motion capturing

technique [5] that outputs the 3D joint positions of the human skeleton. The above properties

can be regarded as the advantages of the development of the 3D human motion perception

systems. Of course as a newly emerging thing it has its own problems. First, the 3D video

data provided by the depth cameras has some technical limitations such as spatial and tempo-

ral resolutions. Second, the 3D video data are significantly noisy and the 3D positions of the

tracked joints may be wrong if serious occlusions occur. This increase the intra-class variations

in 3D human actions. Third, depth cameras provide the opportunity to get a rich collections

of features from multiple modalities. However, not all the features offer good discrimination

among the 3D human motion perception. Also rich representations make the computational

requirements more expensive. With these advantages and disadvantages in mind, in 3D human

motion perception there are some challenges to master, which can be summaries as follows and

be addressed in this thesis:

• Advanced sensory technology. The past five years have witnessed great progress in depth

camera technology, which brings huge opportunities for human motion perception field.

The depth video are very different from the conventional 2D video data. Novel visual

representations and machine learning methods need to be developed in order to fully

exploit depth sensors for human motion perceptions. New scientific tasks have to be solved

3
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to enable next generation applications for robotics, surveillance, security, and human-

computer interfaces.

• Multi modalities and massive data. The depth cameras provide multi modalities, such as

skeleton joint data, depth data, gray-scale data, surface normal data. Which modalities

and which part of human skeleton should be combined for realization of robust and ac-

curate human motion perception? Too much information from different channels seems

to be confusing for human. Does this pertain in the machines which are trained by hu-

man? In addition, the popularization of novel 3D sensing techniques leads to richer 3D

human motion dataset. It is however important to note that the ground truth provided

in datasets is limited due to tediously manual annotations.

• Domain-dependent and modality-dependent problem. One drawback of state-of-the-art

human motion perception systems is that they are highly domain-dependent and modality-

dependent. This issue is addressed by Wang et al. [6]. They found that there is no

universally best hand-engineering feature for different dataset. Additionally, it is difficult

and time-consuming to extend the existing hand-engineering feature to a new modality.

An ideal solution should be fully data-driven and can learn sophisticated representations

that capture statistical patterns and relationship in the dataset.

• Redundant knowledge. In many computer vision tasks, dense feature representations are

often used to capture enough information from high-dimensional visual data. This princi-

ple can also be employed in 3D human motion perception. However, rich representations

always introduce significant redundancy among the feature space, and are not discrimina-

tive for distinguishing different human motions. Therefore, some innovative data mining

algorithms need to be developed to cope with the new challenges from 3D human motion

perception.

The remainder of this chapter is composed as follows: the goals of this thesis are summarized

in Section 1.2. Section 1.3 highlights the main contributions of this thesis. Section 1.4 gives the

structure of this thesis. Throughout this thesis we will use a set of terms and abbreviations,

which are explained in this section. In addition, parts of the material discussed in this thesis

are published and presented at peer-reviewed conferences and journals, which will also be listed

in this section.
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1.2 Thesis Goals

After motivating the topic of this thesis in Section 1.1, the main goals are summarized in this

section. As already stated in the title, the leading principle of this thesis is to guarantee the

efficiency when developing 3D human motion perception system. Regarding to the challenges

of 3D human motion perception, we follow a main thread that this thesis will not only bring

the issue of perceiving human motions into 3D space, but giving professional and technical

insights into how to revisit and build the 3D human motion perception system facilitating new

characteristics and new challenges in an efficient way .

This thesis is to come up with a two-stage process by consisting of a 3D video representation

phase and a system developing phase. Both phases take the efficiency as primary consideration.

We view our leading principle, the efficiency, from three sides: an algorithm gets more efficient if

it processes data automatically without human intervention while giving the high performance

results, an algorithm gives better results within an optimized combination of multiple input

modalities, and an algorithm achieves meaningful results by discovering the useful knowledge

from a richer representation. Efficiency should be realized in different forms by developing

advanced machine learning techniques. Advanced machine learning techniques refer to the

process of generating and mining knowledge from empirical example data, collected by observing

a process or system of interest. Here, advanced machine learning techniques will be mainly

explored to cope with the noisy and ambiguous data provided by the depth cameras. In order

to guarantee the efficiency, we expect that the developed advanced machine learning techniques

can be used to learn the feature representation automatically from unlabeled RGBD video

data. This will leverage the plethora of the unlabeled data and adapt easily to new modality

data, such as depth video data. We expect that these techniques can be helpful to discover

meaningful knowledge over the rich collections of spatial-temporal features, and could learn a

more robust, effective and discriminative feature representation of the 3D human motions. All

the techniques should be integrated into the 3D human motion perception system developed in

this thesis. The system should demonstrate the advantages of the developed advanced machine

learning techniques as well as achieve comparable performance with state-of-the art method

although the accuracy of the system is not our primary goal in this thesis.
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1.3 Thesis Contributions

The result of this thesis is the development of advanced machine learning techniques for 3D

human motion perception. The main contributions of this thesis are summarized below:

• The major contribution of this thesis is the presentation of three advanced machine learn-

ing techniques, un-supervision, discrimination and randomization, that are three key com-

ponents to guarantee the efficiency when developing 3D human motion perception system.

Building a 3D human motion perception system in an efficient way is a complex task. The

system must not only automatically interpret new modality data without too much hu-

man intervention, but it also need to give the high performance results in the absence

of professional knowledge of the data. The system must not only discover meaningfully

information from multiple input modalities, but it also need to cope with the rich and

dense representations from multiple input modalities. With un-supervision, input modal-

ity data allows to be processed automatically without knowing the intrinsic properties of

the data. With discrimination, meaningful knowledge is automatically mined from input

data. With randomization, the algorithm is able to cope with rich and dense representa-

tion in an efficient way.

• We extensively explore the bio-inspired deep learning and feature learning methods for

3D video data analysis. Previous work on 3D human motion perception has focused on

using hand-designed features, either from 3D videos or 2D video. We are the first attempt

to extend the independent analysis algorithm to learn spatio-temporal features from the

raw signal of multi-modality video data (e.g., pixels of depth video data, surface normal

video data, gradient magnitude video data), and further use the ISA algorithm for the

depth video data and human skeleton data together. The benefits include: we provide an

efficient and powerful spatio-temporal feature representation framework for the 3D video

data. Our approach is rather generic and unsupervised, and may therefore be adapted to

a wider range of problems with unlabeled sensor data.

• We present a novel ensemble learning approach for 3D human action recognition, by

combining unsupervised feature learning and discriminative feature mining algorithms.

The basic idea of the approach is that a certain action classes are usually only associated

with a subset of kinematic joints of the articulated human body. We therefore formulate

the 3D action recognition task as a multiple kernel learning problem. Actions are then
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represented as a linear combination of joints, where each joint associated with a weight.

The benefits include: Our weighted-joint model is robust to the errors in the features, and

it can better characterize the intra-class variations. We find that a small subset of joints

(1-6 joints) is sufficient to perform action recognition if action classes are targeted. This

observation is important for making on-line decisions and the improvements in efficiency

in the action recognition task.

• We present a novel data mining algorithm for sub-ordinate human motion perception

tasks, named multimodal gesture detection and recognition with randonmization and dis-

crimination, which discover video blocks with arbitrary shapes, sizes or spatio-temporal

localtions that carry discriminative video statistics. This approach utilizes the discrim-

inative decision trees under the random forest framework. Unlike traditional decision

trees, this approach uses strong classifiers (e.g.,support vector machines) at each node to

effectively mine a very dense sampling spatio-temporal space. The randomization is used

to explore the dense sampling spatio-temporal space efficiently. The benefits include: We

built a multi-modality gesture detection and recognition system, which can serve as a

standard framework for human motion perception task. The evaluation is performed on

the largest 3D human gesture dataset in the literature: the Chalearn Gesture dataset.

The result shows that the system is to able to identify semantically meaningful spatio-

temporal contents that closely match human intuition. The system is generic and can

even directly apply to 2D human motion perception or other sensor based human motion

perception.

1.4 Thesis Structure, Terms and Abbreviations

1.4.1 Thesis Structure

This thesis is structured as in Fig. 1.1. There are six chapters. At the beginning, Chapter 1

has already summarized the goals and highlighted the main contributions of this thesis.

Following the introduction chapter of this thesis, Chapter 2 provides an in-depth study of

the recent advances in 3D human motion perception. As human motion perception constitutes

an active research field due to its various applications in the field of robotics, automotive in-

dustry, video surveillance and human-machine interaction, there is an wide range of emerging

applications based on 3D human motion perceptions. We investigate the state-of-the-art ap-

proaches in this field to facilitate the comparison of different methods and give insight into the

7
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Chapter 4 
Efficient 3D Human Action 

Recognition 

Chapter 5  
Multi-Modality Gesture 

Detection and Recognition 

Chapter 2 Background and Related Work 

Chapter 6 Conclusion, Appendix, References 

Chapter 3 
Unsupervised Feature Learning 
Framework With RGBD Data 

Chapter 1 Introduction 

Discrimination 

Randomization 

Un-supervision 

Figure 1.1: The structure of this thesis. There are six chapters. The outline also shows the lead-

ing principle of this PhD thesis: efficient 3D human motion perception through machine learning

techniques un-supervision, discrimination and randomization, and the relationship between these

three techniques and different chapters.

abilities of the different methods. We address the limitations of the state-of-the-art and point

out the challenges and promising directions of future research.

In Chapter 3, we present our unsupervised feature representation framework with RGBD

video and skeleton data. We will firstly discuss the state-of-art techniques employed for 3D

video representations from depth sensors. We divide state-of-the-art 3D video representation

methods into three categories: extended 2D-based representations, depth-based representations,

skeleton-based representations. Different types of approaches address the typical characteristics

for the corresponding modalities (e.g depth video data, skeleton data). We keep the advantages

and disadvantages of those approaches in mind, and propose our approach for automatically

learning 3D spatial-temperal feature from unlabeled RGBD video data and 3.D spatial-temperal

feature from unlabeled RGBD video and skeleton data in an unsupervised way. As a general

framework, it can be used by any discriminative and generative classifiers in human motion

perception tasks.

Chapter 4 presents an efficient way for 3D human action recognition by combining unsuper-

vised feature learning with discriminative feature mining. Unsupervised feature learning allows

us to extract spatio-temporal features from unlabeled video ddata. With this, we can avoid
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the cumbersome process of manually designed feature extraction. We propose an ensemble

approach using a discriminative learning algorithm, where each base learner is a discrimina-

tive multi-kernel-learning classifier. Our evaluation includes a comparison to state-of-the-art

methods on the MSRAction 3D dataset, where our method, abbreviated EnMkl, outperforms

earlier methods. Furthermore, we analyze the efficiency of our approach in a 3D human action

recognition system.

Chapter 5 describes a novel data mining algorithm for fine-grained human motion perception

tasks. The main idea is to identify semantically meaningful spatio-temporal blocks that closely

match human intuition. A multi-modality gesture detection and recognition system is built.

The leading three concepts of this thesis, un-supervision, randomization and discrimination are

validated in the chapter. The proposed system participated in the 2014 Chalearn Looking at

People Challenge, which provides the world’s largest 3D human gesture dataset. Our approach

achieves good classification performance in this machine learning challenge. Furthermore, the

system is generic and can serve as a standard framework for both 2D and 3D human motion

perception.

Finally, Chapter 6 concludes this thesis with a summary of the main results of this thesis.

It also gives an outlook on future research directions of 3D human motion perception.

1.4.2 Terms and Abbreviations

Throughout this thesis we will use a set of terms, which are explained in this section.

• Modalities. We call each source that provides information about the surrounding envi-

ronment by sensors modalities. A modality can be a category of input data for human

motion perception task. For instance, the RGB camera can provide the RGB video data

and the gray-scale video data. The depth camera can provide the depth video data, the

gray-scale video data, and the skeleton joint data.

• 2D video data and 3D video data. We call the video data provided by the RGB camera

as 2D video data, and the video data provided by the depth camera as 3D video data.

• Human motion, human action and human gesture. We focus on the human motion that

involves both full-body movements and partial-body movements. We call the full-body

movements human actions., and the partial-body movements human gestures.
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Table 1.1: Abbreviations used in this thesis.

SVM Support Vector Machine

RF Random Forest

SPM Spatial Pyramid Matching

NN Nearest Neighbor Classifiers

kNN k-Nearest Neighbor Classifiers

BOW Bag of Words

DTM Dynamic Time Warping

ROI Region of Interest

MRF Markov Random Field

HMM Hidden Markov Model

HOG Histogram of Gradient

STIP Space-time Interest Points

RBM Restricted Boltzmann Machine

ISA Independent Subspace Analysis

ICA Independent Component Analysis

PCA Principal Component Analysis

VQ Vector Quantization

MKL Multi Kernel Learning

• 3D Human motion perception. We consider the task of detecting and recognizing 3D video

data containing human motion with action or gesture classes. An automated detection

and recognition of human actions or gestures is called human motion perception.

The abbreviations that we used in the text are list in Table 1.1:

1.4.3 Publications

Parts of the material discussed in this thesis were published and presented at peer-reviewed

conferences and journals.

• Guang Chen, Daniel Clarke, Manuel Giuliani, Andre Gaschler, and Alois Knoll. Com-

bining unsupervised learning and discrimination for 3d action recognition. In Signal

Processing, Elsevier, 2015

• Guang Chen, Daniel Clarke, David Weikersdorfer, Manuel Giuliani, Andre Gaschler, and

Alois Knoll. Multi-modality gesture detection and recognition with un-supervision, ran-
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domization and discrimination. In ChaLearn Looking at People Workshop, European

Conference on Computer Vision (ECCV 2014)

• Guang Chen, Manuel Giuliani, Daniel Clarke, Andre Gaschler, and Alois Knoll. Ac-

tion recognition using ensemble weighted multi-instance learning. In IEEE International

Conference on Robotics and Automation (ICRA 2014)

• Guang Chen, Feihu Zhang, Daniel Clarke, and Alois Knoll. Learning weighted joint-based

features for action recognition using depth camera. In The 9th International Conference

on Computer Vision Theory and Applications(VISAPP 2014)

• Guang Chen, Feihu Zhang, Manuel Giuliani, Christian Buckl, and Alois Knoll. Unsuper-

vised learning spatio-temporal features for human activity recognition from rgb-d video

data. In Proceedings of the International Conference on Social Robotics (ICSR 2013)
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Chapter 2

Background and Related Work

In this chapter, we introduce the background of this thesis. In Section 2.1, we briefly compare 2D

human motion perception to 3D human motion perception. We simply discuss the differences

between each other. After that, In Section 2.2 we investigate the state-of-the-art approaches in

the field of 3D human motion perception to facilitate the comparison of different methods and

give insight into the development of the 3D human motion perception system in this thesis.

2.1 Human Motion Perception: from 2D to 3D

During the past decades, machine recognition of 2D human actions received significant attention

of human computing tasks [7], as human actions are the most natural means for humans to

regulate interactions with the environment and other subjects. Research has mainly focused

on recognizing actions from 2D video data taken by visible light cameras (e.g., [8, 9, 10]).

Numerous 2D vision datasets (e.g., [11, 12, 13, 14, 15]) are created to promote the development

of human action recognition. There are a bunch of approached developed in the area of 2D

action recognition [7, 9, 16, 17, 18, 19]. The interest in the human motion perception is further

promoted by the increasing popularity of novel 3D sensing devices. In addition, new techniques

allow the easy and affordable acquisation of 3D video data. For example, many 3D sensors

(depth sensors) now facilitate a human motion capturing technique [5] that outputs the 3D joint

positions of the human skeleton.Moreover, more and more 3D datasets dedicated to human

motion perception have been created. As a result, many researchers have transfered their

attentions from 2D human motion perception to 3D human motion perception. Although 2D

action recognition has several inherent connections with 3D action recognition, they differ in

many points. First, 2D video data has intrinsic limitations (e.g., it is sensitive to illumination
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changes). Second, single 2D sensor (the visible light camera) can not provide 3D structural

information of the environment, which offers discerning information to recover postures and

recognize human actions. Alternatively, 3D video data reflect pure geometry and shape cues

and provide depth information of the environment. In order to exploit the benefits of new

multiple modalities video data, new methodologies are developed which differ greatly from the

methodologies of 2D human motion perception. The remaining of this Chapter will provide a

comprehensive study of state-of-the-art 3D human motion analysis methodologies. We focus

on recent work in machine recognition of human motions based on 3D datasets (3D video data

recorded by depth sensors), which is also the research topic in the following chapters of this

thesis.

2.2 3D Human Motion Perception

In this section, we discuss state-of-the-art approaches for 3D human motion perception. In

section 2.2.1, we firstly introduce data mining approaches used in 3D action recognition. Data

mining as a common step before the actual classification is springing up in recently developed

approaches for 3D action recognition. It is used to cope with the new challenges (e.g., noisy

data, rich collection of features) from the new 3D modalities. In section 2.2.2, we discuss

approaches that classify 3D video representations into action classes without explicitly modelling

temporal variations. In section 2.2.3, we discuss temporal state-space approaches that model

such variations of 3D actions. In Section 2.2.4, we describe general approaches for 3D action

detection (e.g., detecting past actions) and 3D action anticipation (e.g., anticipating future

action).

2.2.1 Data Mining Approaches

The recently developed depth sensors present some unique challenges. First, the depth maps are

significantly noisy and the 3D positions of the tracked joints may be wrong if serious occlusions

occur. This increases the intra-class variations in 3D actions. Second, depth sensors provide

the opportunity to get a rich collection of features from multiple modalities. However, not all

the features offer good discrimination among different actions. Also rich representations makes

the computational requirements more expensive. It is expected that a more robust, effective

and discriminative feature representation can be obtained using data mining approaches over

rich collections.
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For the action of a complex articulated structure, the motion of the individual parts are

correlated. Wang et al. [20] propose a data mining solution to discover the discriminative

conjunction rules. The idea is inspired by the successful applications of AND/OR graph learning

in [21, 22]. An actionlet is defined as an AND structure within the base representation. A

mining algorithm is developed in [20] to mine a set of discriminative actionlets. Chen et al.

[23, 24] develop a mining approach to discover the key joints for 3D actions, which aims to

capture the intra-class variance. They employ a multiple kernel learning algorithm [25] to learn

the combinations of discriminative joints for each action class.

The above methods mine the discriminative information from high-level representations

(e.g., joints, body parts), which does not guarantee good discrimination for the base represen-

tations (e.g., histogram-based descriptors). Not all prototypes in a histogram give the same

level of discrimination among different action. Xia and Aggarwal [26] address this issue and

mine discriminative feature sets from the feature pool based on F-score. They rank the proto-

types by their F-scores and select features with high F-score. Oreifej and Liu [27] pay attention

to the quantization methods to build histogram-based descriptors. The bins of the histogram

are voted by using only the videos corresponding to the weighted set of support vectors from

Support Vector Machines (SVM) classifiers.

2.2.2 Direct Modeling Approaches

Approaches that we discuss in this section do not take special attention of the temporal domain.

They describe all frames of an observed sequence into a single representation or perform action

recognition for each frame individually. In this case, the temporal variations of the actions are

ignored. In Section 2.2.2.1, we discuss the discriminative classifiers which learn a function that

discriminates between two or more classes by directly operating on the video representation. In

Section 2.2.2.2, we discuss random forest (RF) method. RF is also considered as a combined

method for fusion of features and action classification together. In Section 2.2.2.3, we discuss

nearest neighbor classification where an observed sequence is compared to labeled sequences or

action class prototypes.

2.2.2.1 Discriminative Classifiers

Discriminative classifiers, widely used for 2D action recognition, have also been employed to

3D data. Discriminative classification methods focus on separating two or more classes. One

of the main methods of classification is SVM. SVM learn a hyperplane in feature space that is
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described by a weighted combination of support vectors. SVM have been used in combination

with fixed-length representations, such as bag of words features.

Recent discriminative classifiers for 3D action recognition have seen a growth trend in us-

ing Mutiple Kernel Learning SVM (MklSVM). It is expected that representations extracted

from one modality complement the drawbacks of the representations extracted from other

modalities, and combining several modalities increases the classification performance. MklSVM

is considered as an ensemble method to compute the optimal linear combination of multi-

modality/multi-type representations for the task of 3D action recognition. Wang et al. [20]

employ MklSVM to learn a representation ensemble structure that combines the discriminative

representations in the data mining step, where each kernel corresponds to a discriminative rep-

resentation. Ofli et al. [28] learn a classifier by combining various modalities (e.g., RGB video,

depth video, audio, accelerometer data) through MklSVMs, where each kernel corresponds to

a representation extracted from one modality. Chen et al. [24] learn a linear combination of

joint-based representations using Mkl, where each kernel corresponds to a joint-based represen-

tation.

2.2.2.2 Random Forest

Random forest (RF) is considered as a discriminative classifier using tree predictors in which

each tree splits the data depending on the randomly selected features. RF chooses the most

popular class label which obtains the most votes over all trees. They are widely used as multi-

class classifiers [29, 5], especially in 2D action recognition due to several nice properties of RF

(e.g., robustness to noise and efficiency for classification). These properties are also admired by

the 3D action recognition task.

As a RF [30, 31] is an ensemble of weak learners which are decision trees, several authors

[32, 33, 34] have used RF as classifiers in combination with feature selections and feature fusion.

Rehmani et al. [33] employ RF for feature selection and 3D action classification together. RF is

first trained using the set of all proposed features in [33] and then all the features whose scores

are below a specified threshold are deleted. The new compact feature vectors are then selected

to train a new RF to be used for classifications. As discussed earlier, Zhu et al. [34] use RF for

fusion of distinct features and action classification together.

16



2.2 3D Human Motion Perception

2.2.2.3 Nearest Neighbor Classification

Nearest neighbor classifiers (NN) compute the distance between the video representation of

the observed sequence and those in the training set. The effectiveness of NN for 3D action

classification largely depends on the computation method of the distance. One of the widely

used methods is k-Nearest Neighbor classifiers (kNN). kNN compute the distance between the

observed sequence and each video in the training set [35]. The most common label among k

closet training videos is chosen as the classification result. Ballin et al. [36] use the 1-Nearest

neighbor classifiers for 3D action recognition. The label related to the 3D video representation

that has the shortest distance to the test video is chosen as predicted class. For a large training

set, such comparisons are computationally expensive. Recent work by Boiman et al. [37] observe

that computing image-to-class distance, which depends on the distribution of the representation

over the entire class, provides a better generalization capability than image-to-image distance.

They develop the Naive-Bayes-Nearest-Neighbor (NBNN) as classifiers for image classification.

Inspired by [37], Yang and Tian [38] extend these concepts of NBNN-based image classification

to NBNN-based 3D action recognition. They directly use single frame representations without

quantization, and compute video-to-class distance rather than video-to-video distance. Sei-

denari et al. [39] follow this method, and use NBNN classifier to score the similarity of a query

3D action video and predefined action class.

2.2.3 Temporal State-based Approaches

So far, the majority of works in 3D action recognition have not considered temporal modeling

as a final stage in the classification process. This is due to the fact that existing approaches

mainly employ static methods, or encode the temporal dimension into the video representation.

However, several temporal models are used in 2D action recognition in order to model the

dynamics as part of the classification process. This has been followed in a number of recent

works in 3D action recognition.

Temporal approaches classify a human action by a temporal model composed of a set of

states. These states are connected by edges, which model probabilities between states, and

between states and observations. Each state describes the action performance at a certain

moment in time. An observation corresponds to the representations at a given time. The

temporal model is learned so that it corresponds to the 3D video representations belonging to

its action class. As temporal approaches used by recent methods for 3D action recognition are
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generally similar to those used for the 2D case, we briefly present these methods. In Section

2.2.3.1, we discuss Dynamic time warping (DTW), which is a distance measure between two 3D

videos with different lengths. In Section 2.2.3.2, we discuss Hidden Markov Models (HMM) for

temporal modeling, where learn a joint distribution over both, observations and action labels.

In Section 2.2.3.3, we discuss the action graph classifier, which is regarded as a generative model

and is able to perform on-line 3D action recognition.

2.2.3.1 Temporal Warping Approaches

Temporal warping approaches learn to align two action sequences and measure their match-

ing scores. They simultaneously take into account a pair-wise distance between corresponding

frames and the sequence alignment cost [40, 41]. The key points of temporal warping ap-

proaches are the accuracy and robustness of action recognition under temporal misalignment

and duration variation in video actions. Dynamic time warping is a distance measure between

two sequences with different lengths. It is widely used in 2D action recognition, and dynamic

programming is often used to calculate the optimal alignment [40, 41]. In [42, 43], they propose

a 3D action recognition system based on DTW and bag of key poses. An equivalent sequence of

key poses is obtained for the test video. DTW is used to find the most similar training sequence

considering a temporal alignment of the involved key poses. Reyes et al. [44] present a 3D ges-

ture recognition approach based on DTW framework. Depth features from human joints are

compared through video sequences using DTW, and weights are assigned to features based on

inter-intra class gesture variability. Similarly, [45, 46] use DTW to tackle the temporal length

variability of 3D gesture. Bautista et al. [46] develop a probability-based DTW for 3D gesture

recognition. Different samples of the same gesture pattern are used to build a Gaussian-based

probabilistic model. The cost of DTW is adapted to the model. Wang and Wu [47] develop a

discriminative learning-based temporal alignment method, maximum margin temporal warping

(MMTW), to align two action videos and measure their matching scores.

2.2.3.2 Hidden Markov Models

Hidden markov models (HMM) are regarded as a generative approach which learn a joint

distribution over both observations and action labels. HMM use hidden states that correspond

to different phases in the representation of an action. They model state transition probabilities

and observation probabilities. HMM have been used in 2D recognition tasks in a large number

of works [48, 49, 50], due to their suitability for modeling pattern recognition problems that
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exhibit an inherent temporality [51]. Gaschler et al. [52, 53] train HMM model using human

body posture and head pose estimation from depth cameras to recognize human social behaviors.

Xia et al. [54] recognize 3D human actions by the discrete HMM [51]. They encode each action

sequence as a vector of posture vocabularies, and learn the HMM model to predict the class

label of the test video. Dubois and Charpillet [55] create HMM with eight states corresponding

to eight action classes. The same approach has also been taken by [56, 57].

2.2.3.3 Action Graphs

Instead of performing off-line recognition, the action graph classifier which is proposed by Li

et al. [58] has the advantage that it can perform classification without having to wait until an

action is finished. An action graph is a system composed of a set of trained action classes, a set

of key poses, an observation model, and a set of matrices to model the transition probability

between key poses. Given a test 3D video represented by a sequence of short-temporal fea-

tures, the probability of occurrence of the sequence with respect to each trained action class is

computed. Similar to HMM, the action graph model is flexible in handling performance speed

variations, and takes into account the temporal dependency. Compared to HMM, action graph

models have the advantage that they require less training data and allow different actions to

share states [59]. Vieira et al. [59] and Kurakin et al. [60] extend the action graph classifier

from 2D video recognition to 3D cases. They employ the action graph to 3D action recognition

and 3D dynamic hand gesture recognition, respectively.

2.2.4 3D Action Detection and Anticipation

Action detection and anticipation techniques are aiming at detecting the past and anticipating

future actions, respectively. Approaches do not explicitly model the video representation of the

actions, nor do they model the action dynamics. They correlate an observed sequence to labeled

video sequences. These works have several dissimilarities to those previously discussed (e.g.,

3D action classification in Section 2.2.2 and Section 2.2.3). The methods used for 3D action

classification only address recognition over small periods of time, where temporal segmentation

is not a big problem (e.g., temporal segmentation has been done apriori). While action detection

and anticipation consider joint segmentation and classification by defining dynamical models

[61, 62, 63]. We discuss 3D action detection and anticipation in Section 2.2.4.1 and Section

2.2.4.2, respectively.
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2.2.4.1 Action Detection

Action detection requires the system to not only recognize but also localize certain actions of

interest in a video sequence spatially and temporally. Action detection is a difficult problem

due to the individual variations of people in posture, changes in view angle, and the complex

and cluttered background. As the depth information provided by 3D video induces three

dimensional contextual information for modeling interactions, it promotes recent methods to

tackle this problem.

Vieira et al. [59] develop an on-line 3D action recognition system based on action graph

[58] and an SVM pose classifier. The SVM pose classifier is trained using the short-temporal

features in oder to address temporal segmentation. The action graph performs the 3D action

recognition. In the work of [64, 65, 66] present a privacy preserving automatic fall detection

method to facilitate the independence of older adults. More recently, in [67, 68], they performed

detection and recognition of unstructured human action in unstructured environments. The

method is based on a hierarchical maximum entropy Markov model [69]. Ni et al. [70, 71]

propose a complex action recognition and localization approach. A latent structural support

vector machine model [72, 73] is developed to fuse the information from multiple levels of 3D

video processing and form a discriminative 3D action detection framework.

2.2.4.2 Action Anticipation

Action anticipation considers the problem of anticipating which actions will happen in the

future and how. Action anticipation is interrelated with action detection, and can improve the

performance of the detection accuracy of past actions [74]. It has gained attention only recently

[75, 76, 74, 77] (see Fig 2.1). Koppula et al. [75] provide a method to learn human actions by

modeling the sub-actions and affordances of the objects. They define a Markov random fild

(MRF) which is built with each spatio-temporal segment being a node. The model is learnt

using a latent structural support vector machine [72, 73] approach. Koppula and Saxena [74]

address the problem of anticipating human actions at a fine-grained level of how humans interact

with objects in more complex actions. They represent the distribution of the possible futures

with a set of particles that are obtained by augmenting the MRF structure of [75] with sampled

future nodes. The above methods focus on performing learning and inference given the spatio-

temporal structure of the model (e.g., a given conditional random field structure in [75]), which

is quite challenging to estimate. Because of the ambiguity in the temporal segmentation, a

single graph structure is not enough to explain the action well. This issue is addressed by [76],
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(a) Affordance Heatmaps

(b) Anticipated Trajectory Heatmaps

(c) Robot Anticipatory Response

Figure 2.1: Action anticipation: (a) The first two images show the reachability affordance

heatmaps and the last two show the drinkability affordance heatmap, (b) The heatmap of antici-

pated trajectories for the action and how the trajectories evolve with time, (c) Robot anticipatory

response for refilling water task [75](best viewed in color).

who propose a method to obtain potential graph structures that are close to the ground-truth

ones.
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Chapter 3

Unsupervised Feature Learning

Framework with RGBD Data

In this chapter, we will present our unsupervised feature learning framework with RGBD video

and skeleton data. We will firstly discuss the state-of-art techniques employed for 3D video rep-

resentations from RGBD sensors. Ideal representations should generalize over small variations

in background, viewpoint and action execution. At the same time, the representation should

be sufficiently rich for 3D human motion perception tasks.

3D video representations in human motion perception can be roughly separated into three

categories: extended 2D-based representation, depth-based and representation, and skeleton-

based representation. These classes are introduced to address the typical characteristics for

the corresponding modalities (e.g depth video data, skeleton data). In Section 3.1, we discuss

extended 2D-based representations which extend the features based on the 2D video data (e.g.,

hand-designed features like STIP [78]) to the depth video data. In Section 3.2, we discuss

depth-based representations which represent actions utilizing depth information directly. In

Section 3.2.3, we discuss skeleton-based representations, where human actions are represented

by skeleton informations. All these sections that describe the 3D video representation methods

contain discussions about their respective advantages and disadvantages.

We will finally present our unsupervised feature representation framework with RGBD video

and skeleton data in Section 3.3. Unsupervised learning of features captures discriminative

and hierarchical data information by learning multiple layers of representations via artificial

intelligent models. Nowadays, there is a growing interest in unsupervised feature learning

methods such as Deep Belief Nets [79, 80, 81], Sparse Coding [82, 83], Convolutional Neural
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Networks [84], Independent Component Analysis (ICA) and Independent Subspace Analysis

(ISA) [85]. These biologically-inspired learning algorithms show promise in the domain of

computer vision and autonomous driving, such as object recognition with RGB-D images [86],

action recognition with RGB video data [84], speech recognition [87], and end to end learning

of driving behavior in autonomous driving [88]. Although many of work exist for learning

features from RGB image or RGB video data, none has yet been investigated for depth video

and skeleton data. In this section, we provide an unsupervised feature learning framework with

RGBD video and skeleton data inspired by [6, 85]. We describe our approach for learning 3D

spatio-temporal feature from RGBD video data and 3.5D spatio-temporal feature from RGBD

video and skeleton data in Section 3.3.2 and Section 3.3.3 respectively. As a general framework,

it can be used by any discriminative and generative classifiers in human motion perception

tasks.

3.1 Extended 2D-based Representations

Extended 2D-based representations are extracted from the 3D video data, using extensions of

traditional 2D-based methods. These methods are widely used in action recognition from 2D

videos and provide a compact representation of 2D video data by describing the appearance,

geometry, and motion of local parts of the video data.

To exploit the additional information (e.g., structure information) in the depth data, a few

extended algorithms based on the existing 2D-based methods [89, 90, 91, 92, 93] were recently

proposed. The majority of these algorithms focus on local representation of 3D video data.

Local representations describe the human actions as a collection of independent descriptors.

The calculation of local representations proceeds in a bottom-up fashion: interest point extrac-

tion, feature description and final representations. We discuss the interest point detection and

description in Section 3.1.1 and Section 3.1.2 respectively. A small number of works report the

use of global representations for 3D action recognition. Global representations are obtained in a

top-down fashion: background subtraction, subject localization, and image description. First,

subject regions are obtained through background subtraction or tracking. Then, the subject

regions are encoded as a whole, which result in the final representations. We discuss these

briefly in Section 3.1.3.
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3.1.1 Spatio-temporal Interest Point Detection

Spatio-temporal interest points are the locations in space and time where interesting motions

occur in the video. It is assumed that these points are the most informative for the recognition

of human actions.

The simplest way to calculate spatio-temporal interest points is by directly applying the

spatio-temporal detectors (e.g., 3D Harris detector [89] ) to the depth video data. Hernandez-

Vela et al. [45] apply the Harris detector separately on the RGB and depth video data. One

drawback of this method is that it treats the depth video as gray-scale video data without

using the spatial information along the depth direction. These issues are addressed by Oreifej

and Liu [27], who conducted an experiment applying local interest point detectors [89] on the

MSRDaily3D dataset [20]. It is not superising that the detected interest points are fired on

locations irrelevant to the action of interest. To address this, several approaches are proposed.

The most straightforward way is to utilize the depth information to perform the feature pooling

by dividing the entire scene into different depth layers. Ni et al. [94] use the depth value of

each detected interest point to divide the entire depth range into a set of depth layers.

In contrast to the above approach, where depth information is ignored during interest point

extraction, recent work by Hadfield and Bowden [95] incorporate the depth information while

detecting the spatio-temporal interest points. They extend the 3D Harris detectors [89] and

the 3D Hessian detectors [90] to 4D cases by exploiting the relationship between the spatio-

temporal gradients of the depth stream and those of the appearance stream. In part, the 3D

Harris detectors are motivated by the idea that object boundary points are highly salient. As

depth data directly provide boundary information, rendering the estimation of the intensity

gradient along depth direction is somewhat redundant. Hadfield and Bowden [95] extend

the Separable Filters [91], Harris and Hessian detectors to 3.5D by exploiting complimentary

information between the appearance and depth streams.

3.1.2 Feature Descriptors

Feature descriptors summarize an image or video patch in a representation that is ideally

invariant to background clutter, appearance and occlusions, and possibly to rotation and scale.

The spatial and temporal size of a patch is usually determined by the scale of the spatio-temporal

interest point.

Similar to spatio-temporal interest point detection, one straightforward way is applying

the common feature descriptors (e.g., HOG [92]) on the depth video data. Zhao et al.
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[96] and Ni et al. [94] use the HOG [92] and HOF [93] features to describe the interest

points on the depth video data. Instead of appearance, motion and saliency be used in above

descriptors, depth information can be utilized. Hadfield and Bowden [95] extend the HOG and

HOF to 4D descriptors (HODG), which encapsulate local structural information, in addition

to local appearance and motion. Hadfield and Bowden [95] extend the RMD (Relative Motion

Descriptor) [97] to 4D (RMD-4D). RMD-4D make use of saliency information within a 4D

integral hyper-volume during interest point detection.

3.1.3 Global Feature Representations

Global feature representations encode the region of interest (ROI) of a subject as a whole. The

ROI is usually obtained through background subtraction or subject tracking. Common global

representations are derived from silhouettes, edges or optical flow.

One widely used global feature representation method for 2D action recognition is motion

history images (MHI) developed by Bobick and Davis [98]. MHI are capable of encoding

the dynamics of sequences of moving human silhouettes. A MHI is constructed where each

pixel intensity is a function of the motion recency at that location. However, due to using

2D cameras, MHI can only encode the history of motion induced by the lateral component

of the scene motion parallel to the image plane. With the depth information, Ni et al. [94]

develop 3D-MHI which encode the motion history along the depth changing directions. 3D-MHI

consist of three images: fDMHI, bDMHI, MHI. fDMHI encode the forward motion history of

moving human silhouettes while bDMHI encode the backward motion history of moving human

silhouettes. Yang et al. [99] encode the motion history from front, side and top views to make

use of the additional body shape and motion information from depth maps.

3.2 Depth-based and Skeleton-based Representations

Depth-based representations describe the observation using features extracted from depth video

data. Although depth data have existed for several decades, depth-based representations have

stayed at the level of describing static scenes or objects for a long time [100, 101, 102, 103].

Existing features aim at object recognition, place recognition or 3D registration. Compared to

2D video data, depth video data provide geometry and shape cues. These advantages as well

as the recent advent of low-cost depth sensors motivate researchers to seek new representations

based on depth video data.
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The fundamental difference between extended 2D-based representations and depth-based

representation is that the latter designs features to characterize the unique properties of the

depth video data directly, instead of extending existing algorithms based on 2D video data. Sim-

ilar to extended 2D-based representations in Section 3.1, we divide depth-based representations

into two categories: local depth-based representation and global depth-based representation,

which are discussed in Section 3.2.1 and Section 3.2.2, respectively.

3.2.1 Local Depth-based Representations

Local depth-based representations describe human actions as a collection of local descriptors

extracted from depth video data. As depth video data capture the 3D spatial structure of

subjects, the local depth-based representation is designed to explore the embedded structural

relations for action analysis.

Hernandez-Vela et al. [45] extend the VFH feature [102] from pose estimation domain to

3D human action recognition domain. As the VFH feature is invariant to the rotation about the

roll axis of the camera, [45] encode the roll axis information by creating a camera roll histogram

(CRH). The final feature is the concatenation of VFH histogram and CRH histogram. Cheng

et al. [104] design the comparative coding descriptor (CCD) to capture the spatial geometrical

relations and related variations over time. The CCD feature uses the comparative description

idea in Local Binary Patterns [105]. Inspired by the CCD and LBP features, Zhao et al.

[96] develop the local depth pattern feature (LDP). A local region is partitioned into spatial

cells. The average depth value is computed for each cell. The difference of average depth values

between every cell pair form the LDP feature.

Wang et al. [106] treat depth videos as a 4D volume. They employ four dimensional random

occupancy patterns to construct the features (ROP). The ROP features capture the occupancy

pattern of a 4D subvolume. The self-similarity based feature has been proven to work well at

object detection and action detection on RGB video data [107]. Xia and Aggarwal [26] adopt

the idea of [107] and build a depth cuboid similarity feature (DCSF) to describe the local

3D depth cuboid around the interest points with an adaptable supporting size. This feature

captures characteristic shapes and motion.

3.2.2 Global Depth-based Representations

Instead of using local features to represent the depth video data, global depth-based representa-

tions are obtained from the entire depth video data. They are robust against noise, occlusions
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Figure 3.1: The process of computing the histogram of oriented 4D surface normals (HON4D)

[27].

and variations from which local methods suffer.

By partitioning the ROI into a fixed dimensional grid, small variations due to noise, partial

occlusions and changes in viewpoint are partially overcome. These grid-based representations

are employed by RGB action recognition [108, 109, 110, 111, 112]. Several global depth-based

representations proceed along this direction. Vieira et al. [59] develop the space-time occupancy

patterns (STOP) as a global depth-based representation from depth video data. The space and

time axes are divided into multiple segments to define a 4D grid for each depth video. This

preserves spatial and temporal contextual information between space-time cells while being

flexible enough to accommodate intra-action variations.

As discussed in Section 3.1.3, shape, edges, and motion information are commonly used in

global 2D-based representations. Because the depth maps provide natural surfaces to capture

the geometrical features of the observed scene, Oreifej and Liu [27] use the normal vectors in

global depth-based representations instead of the gradients in global 2D-based representations.

They describe the depth video data using a histogram of oriented 4D surface normals (HON4D)

(see Fig. 3.1). HON4D is analogous to the histograms of gradients in RGB sequences [92, 113],

and extends the histogram of normals in static depth images [114].

3.2.3 Skeleton-based Representations

Skeleton-based representations describe actions in depth video data by modeling the spatio-

temporal structures of the human skeleton. It is first introduced by Johansson [115, 116].

This paradigm has been further studied in [117, 118, 119, 120, 121]. Compared to extended

2D-based representation and depth-based representation, skeleton-based representations model

temporal dynamics and spatial structures explicitly. The skeleton has a natural correspondence
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across time. It is non-trivial to quickly and reliably extract and track accurate skeletons from

2D videos. Motion capture systems provide clean skeleton data but they are rarely used due

to the high cost of the systems [122, 123, 124]. Multi-view RGB image capture systems

produce stable skeleton estimations but it is limited to only laboratory environments due to

its complex settings [125, 126, 127]. A recently developed human skeleton capturing system

by Shotton et al. [5] is able to recover 3D position of skeleton joints in real time and with

reasonable accuracy [128, 129, 130]. It has motivated recent research work to investigate 3D

action recognition using the skeleton information [38, 131].

In this section, we focus on skeleton-based representations using skeleton joints extracted

from depth video data. We divide skeleton-based representations into two categories: short-

term posture-based representations and long-term trajectory-based representations, and discuss

these two in Section 3.2.3.1 and Section 3.2.3.2, respectively.

3.2.3.1 Short-term Posture-based Representations

Short-term posture-based representations represent the posture and motion features using only

skeleton joints which encode the spatial and temporal structures in single frame or consecutive

frames.

Yang and Tian [38, 132] develop the EigenJoints features based on differences of skeleton

joints. EigenJoint is able to characterize action information including static posture features,

consecutive motion features and offset features in each frame. Bloom et al. [133] use pose-

based features such as position difference, position velocity, position velocity magnitude, angle

velocity and joint angles. Yun et al. [134] introduce six types of relational body-pose features

(the joint distance feature, the joint motion feature, the plane feature, the normal plane feature,

the velocity feature, and the normal velocity feature) which are also used in [135, 136]. The

relational body-pose features describe geometric relations between specific joints in a single

pose or a short sequence of poses (e.g., 2-3 frames).

Xia et al. [54] develop the histogram of 3D joints (HOJ3D), a viewpoint invariant represen-

tation of postures based on 3D skeleton joint locations. They compute HOJ3D from 12 of 20

joints to the exclusion of redundant informations. Inspired by recent findings from neuroscience

in the work of [137, 138], Chaudhry et al. [139] develop the dynamic medial-axis features. They

use a spatio-temporal hierarchy of skeleton configurations instead of modeling the entire human

skeleton using a single feature representation.
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(a) Skeleton (b) Dictionary (c) Part Sets (d) Action

Figure 3.2: The framework for action representations: (a) Skeleton data, (b) Dictionaries of part

poses, (c) Temporal-part-sets and spatial-part-sets, (d) Action response in [141](best viewed in

color).

Several works have explored the feature learning strategy of combining frequently co-occurring

primitive features into larger compound features (e.g., [140, 20]). The low-level features such

as optical flows are commonly used instead of high-level features [140]. Wang et al. [141] use

the pose-based features for action recognition. They apply data mining techniques [142] to

obtain sets of distinctive co-occurring spatial and temporal configurations of body parts (see

Fig. 3.2).

3.2.3.2 Long-term Trajectory-based Representations

Long-term trajectory-based representations interpret an action as a set of space-time trajecto-

ries. In long-term trajectory-based representations, a person is generally represented as a set of

local features (e.g., joint angles) corresponding to the time-series 3D joint positions. The early

work done by Johansson [115] suggested that the tracking of joint positions is itself sufficient for

humans to distinguish actions [7]. The skeleton tracker [5] allows people to know exactly the

correspondences between the joints on any two skeletons. This natural characteristic stimulates

the research in the domain of trajectory-based approaches.

Raptis et al. [143] design an angular representation of the skeleton. They fit the full torso

with a single frame of reference, and use this frame to parameterize the orientation estimates

of both the first and second degree limb joints. Seidenari et al. [39] propose a skeletal based

representation based on the work of [143]. Differently, Seidenari et al. [39] represent the

coordinates of the first degree joints in Cartesian coordinates while Raptis et al. [143] represent

them in polar coordinates.
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Gowayyed et al. [144] propose a 2D trajectory descriptor, histogram of oriented displacement

(HOD). Given a sequence of joints locations, they describe the 3D trajectory of each individual

joint. Unlike the common representations representing the evolution of the time series of all

joints, Ofli et al. [145] consider sequences of the most informative joints as a new feature

representation. The final representations represent a sequence by encoding set of the most

informative joints at a specific time instant as well as the temporal evolution of the set of the

most informative joints through out the trajectory.

The covariance descriptor was introduced by Tuzel et al. [146], and was applied successfully

on object detection and texture classification [146, 147]. Sanin et al. [148] first apply this

idea to 2D action recognition by considering the feature of pixels in a spatio-temporal patch.

Inspired by the finding of [148, 136], Hussein et al. [149] use body joint locations, sampled

over time, as the variables on which covariance descriptors are computed.

3.3 Efficiency with Unsupervised Feature Learning Frame-

work

3.3.1 Unsupervised Feature Learning vs. Supervised Feature Crafting

RGBD cameras provide rich modalities, such as skeleton joint data, depth data, gray-scale data,

surface normal data. A key question arises when using RGBD camera: how can we represent rich

data in an efficient way? State-of-the-art techniques represent video data by extracting hand

crafted features, which we call supervised feature crafting. Hand-crafted features like STIP [89],

or use the local features like HOD [144] or HOG [92] are designed by professional experts

to represent the interesting spatio-temporal patterns of the video data. Despite their good

performance for 3D human motion recognition, these methods suffer from several problems.

Firstly, the heavy workload of designing features by hand is inefficient. People need to have

enough professional knowledge about the internal properties of the modality to design new

features. The only way to design a good feature is by trial and error manually. Another

drawback of state-of-the-art hand-designed features is that they are highly problem-dependent.

This issue is addressed by Wang et al. [6]. They found that there is no universally best hand-

engineered feature for different datasets. Also, data dependent is another issue: the depth

modality provides useful extra information to the complex problem of activity recognition since

depth information is invariant to lighting and color variations. However, because there is

no texture in the depth data,the extending hand-designed features from RGB data to depth
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Figure 3.3: Unsupervised feature learning vs. supervised feature crafting.

modality are not discriminative enough for classifications. In addition, the depth video data is

full of noises. There are large shadows or holes in the depth data. Lastly, it’s the new modality

issue: skeleton joint data is a new type data provided by RGBD cameras. Different with the

traditional dense video data by capturing sequence of 2D frames with RGB or depth channels,

sparse skeleton data have natural correspondences over time, which model temporal dynamics

and spatial structures explicitly. Spatial structure is important to many computer vision tasks,

e.g, spatial pyramid match for image recognition. Together with other data modalities (e.g.

depth video data), skeleton data may improve the performance on 3D action recognition. All

these issues make the RGBD feature development of the state-of-the-art techniques inefficient.

Actually, these issues are also very common in other computer vision tasks. A well-know

technique in image and 2D video recognition to tackle these issues is called unsupervised feature

learning. The major advantage of unsupervised learning models is that it leverage the plethora

of unlabeled data and adapt easily to new modalities. Fig. 3.3 is a comparison of unsupervised

feature learning and supervised feature crafting. Unsupervised learning models [150, 85] are

a class of machines that automatically build high-level representations of unlabeled input from

low-level ones (e.g., pixels) without pre-processing steps. To understand the contribution of

unsupervised learning approaches, Le et al. [85] follow experimental protocols of [6] by using
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their standard processing pipeline and only replacing the first stage of feature extraction with

deep learning method. Le et al. [85] use an extension of the independent subspace analysis

algorithm to learn invariant spatio-temporal features from unlabeled video data. Their method

performed consistently better than a wide variety of combinations of methods. Ji et al. [84]

extend the convolutional neural network to the 2D video data and achieve good performance

on human action recognition task. Based on the convolutional Restricted Boltzmann machine

(CRBM) [79, 80, 151], Chen et al. [81] build a hierarchical, distributed model for unsupervised

learning of invariant spatio-temporal features from video. Their model, called the Space-Time

Deep Belief Network (ST-DBN), alternates the aggregation of spatial and temporal information

so that higher layers capture longer range statistical dependencies in both space and time. The

ST-DBN has superior feature invariance properties and is able to integrate information from

both space and time to fill in missing data in video.

3.3.2 3D Spatio-temporal Feature Learning from RGBD Video Data

We firstly provide an unsupervised learning method to learn 3D representations from RGBD

video. At the heart of our method is the application of Independent Subspace Analysis (ISA).

The ISA algorithm is a well-known algorithm in the field of natural image statics [152]. Ex-

perimental studies have shown that this algorithm can learn very discriminative features from

static images or color-based sequences. A main advantage of ISA is that it learns features

that are robust to local translation, while being selective to rotation and velocity. We extend

the original ISA algorithm for the use of four different channels of video data independently,

namely grayscale modality data, gradient modality data, depth modality data and surface nor-

mal modality data. Fig. 3.4 outlines our approach.

ISA is an unsupervised learning algorithm that learns features from unlabeled subvolumes.

First, we extract random subvolumes from different modality types of video data. We then

normalize and whiten the set of subvolumes. We feed the pre-processed subvolumes to ISA

networks as input units. An ISA network [152] is described as a two-layer neural network, with

square and square-root nonlinearities in the first and second layers respectively.

We start with any input unit xt ∈ Rn for each random sampled subvolume. We split each

subvolume into a sequence of image patches and flatten them into a vector xt with the dimension

n. The activation of each second layer unit is

pi(x
t;W,V )=

√∑m
k=1 Vik(

∑n
j=1Wkjxtj)

2 (3.1)
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Figure 3.4: An overview of our extended ISA model: we randomly sample subvolumes from

different modality types of video. These subvolumes are given as input of the two-layers ISA

network. Our ISA model learns four types of features: Gradient ISA feature, Grayscale ISA

feature, Depth ISA feature, and Surface Normal ISA feature (best viewed in color).

ISA learns parameters W through finding sparse feature representations in the second layer

by solving

min
W

∑T
t=1

∑m
i=1 pi(x

t;W,V )

s.t.WWT = I
(3.2)

Here, W ∈ Rk×n is the weight connecting the input units to the first layer units. V ∈ Rm×k

is the weight connecting the first layer units to the second layer units; n, k,m are the input

dimension number of the first layer units and second layer units respectively. The orthonormal

constraint ensures feature diversity.

As is common in neural networks, we stack another ISA layer with PCA on top of the bottom

ISA. We use PCA to whiten the data and reduce the dimensions of the input unit. The model is

trained greedily layerwise in the same manner as other algorithms described in [150, 85]. The

model so far has been unsupervised. The bottom ISA model learns spatio-temporal features

that detect a moving edge in time as shown in Fig. 3.5. We learn spatio-temporal features up

to four channels of RGB-D video data: grayscale, gradient, depth, and surface normal (z-axis).

These features are interesting to look at and share some similarities. For example, the learned

feature (each row in Fig. 3.5) is able to assign similar features in a group thereby achieving

spatial invariance. The features have sharper edges like Gabor filters.
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(a) Grayscale (b) Depth (c) Grayscale (d) Surface Normal

Figure 3.5: Visualization of randomly selected spatio-temporal features learned from four chan-

nels of the RGB-D video data - from left to right, grayscale, depth, gradient magnitude, Z surface

normal component.Each row of the figure indicates a spatio-temporal feature

3.3.3 3.5D Spatio-temporal Feature Learning from RGBD Video and

Skeleton Data

A disadvantage of ISA is that it can be rather inefficient to train with high dimensionality

data. Here we extend our work of Section 3.3.2 by integrating the skeleton joint date into

the feature learning process. Instead of training the model with the entire video, we apply

the ISA algorithm to local regions of joints to improve the training efficiency. We name it

Joint-ISA model (See Fig. 3.6). Based on the video data and the estimated 3D joint positions,

we develop two types of spatio-temporal features: Global ISA features (GISA) and Local ISA

features (LISA). We define GISA features as the global spatio-temporal features learned by the

stacked Joint-ISA model. Given a global subvolume (e.g., a sequence of depth patches), the

depth patches of the subvolume have the same spatial positions under the image coordinate of

the depth video across time. Similarly, LISA features are learned by the stacked ISA model

with input: the local depth subvolumes. The different depth patches of the local subvolumees

have the natural correspondences. It is able to track the depth patch one by one across time.

These spatio-temporal features can be treated as the resulting descriptors of spatio-temporal

interest points. Intereset points are densely sampled from the surrounding regions of the joints.

We call GISA and LISA 3.5D spatio-temporal features referring to combined information of

spatio-temporal features and the skeleton data (3D joint positions).

35



3. UNSUPERVISED FEATURE LEARNING FRAMEWORK WITH RGBD
DATA

St 

Depth Video Clip with Skeleton Data 

St 

Sy 

Sx 

Sx 
Sy 

St 

Sy 

Sy 

Sx 

Sx 

St 

St 

Global Depth Subvolume 

Local Depth Subvolume 

(a) Generate global and local subvolumes

Random Local 
Subvolume 

Random Local 
Subvolume 

Bottom ISA Bottom ISA 

Learning LISA  Learning GISA  Random Global 
Subvolume 

Random Global 
Subvolume 

Bottom ISA Bottom ISA 

(b) Learn two types of ISA features

Figure 3.6: Overview of our Joint-ISA model: (a) We randomly sample global depth subvolumes

and local depth subvolumes from the surrounding regions of each joint. (b) these two types of

subvolumes are given as inputs to the two-layer ISA network. Our ISA model learns two types of

features: Global ISA feature (GISA) and Local ISA feature (LISA) (best viewed in color).

3.4 Discussion

RGBD cameras are very different from traditional visible light cameras. This has in turn

led to the requirement to revisit problems such as object detection and action recognition

using RGB-D video data, especially depth video data and skeleton data. RGBD sensors have

several advantages. For example, depth images provide 3D structural information of a scene,

which can often be more discriminative than color and texture in many applications including

detection, segmentation and action recognition. Moreover, the depth information is invariant to

lighting and color variations. These advantages have facilitated a rather powerful human motion

capturing technique [5] that generates 3D joint positions of the human skeleton. All these new

modality data require novel video representations to be developed in order to fully exploit

the useful and powerful information. Traditional ways of creating video representation have
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problem when they are directly applied to new modality data. People need expert knowledge

of the new modality data. The way of creating a new type of video representation is also

time-consuming and expensive. In contract, our method interpret the raw data (e.g., the pixels

of the video data) automatically and directly without human intervention. This indeed avoids

the laborious process of hand-crafting features. Besides, our method shares the same learning

architecture with different input modalities, which makes the adaptation to new sensor data

much easier. The major advantage of unsupervised learning framework is its suitability for big

data, especially when the labels of the dataset are not available or annotating the huge data is

not practical. For example, there is a huge dataset which only provides a small part of ground

truth information due to tediously manual annotation. In this case, our method is perfect as

the feature learning does not require any label of the training data. However, when the dataset

is really huge, the learned filters need to be complete in order to capture enough information

and achieve satisfied performance. This will make the feature set bigger, training time longer

and the computation more expensive. We tackled this problem by integrating skeleton joint

data into the feature learning process. In human motions, skeleton joint data can be treated

as useful and discriminative information comparing to the entire video data. This makes the

feature training efficient without loss of discrimination.

Apart from the advantages of unsupervised learning, there are disadvantages. Unsupervised

learning cannot make use of additional data in an efficient way which makes the training te-

dious whenever there are new data coming. Because unsupervised learning are unguided, the

interesting patterns discovered by itself may be completely uninteresting. This is also part of

the reason that high-level recognition tasks often deploy supervised learning approach.
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Chapter 4

3D Human Action Recognition

With Un-supervision and

Ensemble Learning

In 3D human motion perception, two significant questions arise when using depth cameras.

First, how can we represent depth video data efficiently? State-of-the-art techniques represent

depth video data by extracting manually designed features, either directly from depth video

data, or extending hand-designed features from color-based video data [89, 92]. We addressed

this problem with the help of our unsupervised learning framework in Chapter 3. Second, how

can we deal with noisy human skeleton data and improve the robustness of 3D action recognition

systems? Skeleton data have natural correspondences over time, which model temporal dynam-

ics and spatial structures explicitly. Together with other modalities (e.g. depth video data),

skeleton data may improve the performance of 3D action recognition. However, when skeleton

data contain irrelevant or redundant information, performance may be adversely affected. In

order to tackle the problem of tracking errors in skeleton data and to handle intra-class varia-

tions more robustly, we propose an ensemble learning approach with discriminative multi-kernel

learning (EnMkl) for 3D action recognition. The general framework of our proposed approach

is show in Fig. 4.1. In our implementation, we formulate the 3D action recognition task with

depth video as a multiple-kernel learning problem. MKL is able to discover discriminative fea-

tures for vision tasks automatically. The underlying idea for employing the MKL approach is

that a certain action class is usually only associated with a subset of kinematic joints of the

articulated human body. In our case, 3D actions are represented as a linear combination of
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joints, where each joint is associated with a weight. This weighted joint model is more robust

to noisy features, and it can better characterize intra-class variations. In addition, we inte-

grate ensemble learning with discriminative MKL classifiers. Training and combining multiple

classifiers, ensemble methods [153] are state-of-the-art techniques with strong generalization

abilities.

Our contribution is therefore an original approach by combining unsupervised feature learn-

ing and discriminative feature mining to recognize 3D human actions. In summary, the novelty

of our approach is four-fold. 1) Our algorithm is unsupervised and rather generic, and may

therefore be applicable to a wider range of problems with unlabeled sensor data. To the best of

our knowledge, this approach is the first attempt to learn spatio-temporal features from depth

video data and skeleton data in an unsupervised way. 2) We propose an ensemble learning

approach with discriminative multi-kernel learning classifiers, which allows for a better charac-

terization of inter-class variations in the presence of noisy or erroneous skeleton data. 3) We

improve our performance in terms of the recognition accuracy on MSRAction3D dataset [154]

(see Table 4.4), and show an accuracy superior to the state-of-the-art. 4) We further investi-

gate our model and analyze the efficiency of a 3D action recognition system. We find that a

small subset of joints (1 − 6 joints) is sufficient to perform action recognition if action classes

are targeted. This observation is important to allow online decisions and improvements to the

efficiency of action recognition tasks.

The remainder of this chapter is organized as follows: Section 4.1 gives details of learning the

3.5D Representation for depth video data. Section 4.2 presents the ensemble learning approach

with discriminative MKL classifiers. Section 4.3 provides the evaluation results as well as a

detailed analysis of our approach. Section 4.4 discussed the key contributions of our method.

4.1 3.5D Depth Video Representation

We employ the unsupervised feature learning framework in Chapter 3 for the low-level spatio-

temporal feature extractions. We develop a new representation of human action, namely 3.5D

Depth Video Representation, based on the LISA and GISA features. It corresponds to the

outcome of reconstructing 3.5D information from spatio-temporal features (LISA and GISA

features) and the skeleton data (3D joint positions).

Compared to interest point-based methods, which describe parts of interest in the scene,

LISA and GISA features are used to describe general parts of the scene as they do not need
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4.1 3.5D Depth Video Representation

Figure 4.1: The general framework of our proposed approach. Our framework consists of two

main parts: unsupervised feature learning and discriminative feature mining. We develop two

types of spatio-temporal features from depth video data using independent subspace analysis, and

apply an ensemble approach with discriminative multi-kernel-learning classifiers (best viewed in

color).
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Figure 4.2: Naming of the human joints tracked by the skeleton tracker.

apply interest point detection. This approach may save the time of interest point detection

process, however it can be potentially time-consuming when the dimension of the input data

is large. It is generally agreed that knowing the 3D joint position of human subject is helpful

for action recognition. We therefore develop a 3.5D depth video representation to combine

the 3D configuration of human skeletons and spatio-temporal features of each joint. In our

implementation, we utilize LISA and GISA features as spatio-temporal features.

We borrow the term, 3.5D representation, from stereoscopic vision [155], in which they use

a 2.5 representation to describe actions in static imagery. A 3.5D representation GX describing

a depth video X consists of V nodes connected by E edges. The nodes correspond to a set of

key points (joints) of the human body. A node v is represented by the 3D position of this node

pv and the histogram feature fXv extracted in a image region surrounding this node in time.

Adjacent nodes v and v’ are connected by edge e. Finally, the 3.5D representation of a depth

video is written as GX = {fXv1 , f
X
v2 ...f

X
vk
}, where k denotes the number of the joints.

For a human subject in a depth video X, the skeleton tracker tracks 20 joint positions

[5] (see Fig. 4.2), which correspond to 20 nodes of a 3.5D representation GX. For each joint

i at frame t, its surrounding region Sit is of size (vx, vy) pixels. Let T denote the temporal

dimension of the depth video X. The depth video X is represented as the set of joint volumes

{JV1, JV2...JV20}. Each joint volume can be considered as a sequence of depth image patches

JVi = {Si1, Si2...Sit}. The size of JVi is vx × vy × T (see Fig. 4.3). Finally, GX is rewritten as
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4.1 3.5D Depth Video Representation

Table 4.1: Implementation details of six types of histogram features used in 3.5D depth video

representations

Video Data Spatio-temporal Feature Joint/Joint Pair Histogram Operation Histogram Feature

Depth + Skeleton

GISA feature
Joint

N/A

Joint GISA

Joint Pair Joint GISAp

LISA feature
Joint Joint LISA

Joint Pair Joint LISAp

GISA+LISA feature
Joint

Concatenation
Joint GL ISA

Joint Pair Joint GL ISAp

GX = {F(JV1),F(JV2)...F(JVk)}, where k = 1, ..., 20; fXvk = F(JVk); F ( · ) is a function where

the input joint volume JVk is converted into a histogram feature fXvk .

As the surrounding region of each joint is small compared to the whole image, we reduce

the dimensionality and greatly improve efficiency. Additionally, it is possible to dense sample

the local region of a joint to capture more discriminative information. Moreover, the features

are discriminative enough to characterize variations in different joints. Based on the above

stacked ISA model, we compute the spatio-temporal features directly from JVi for each joint.

We treat the spatio-temporal features as the resulting descriptors of the spatio-temporal in-

terest points. Each interest point is represented by a subvolume, which consists of st depth

image patches of size sx × sy (see Fig. 4.3). The spatio-temporal interest points of GISA fea-

tures and LISA features are global depth subvolumes and local depth subvolumes, respectively.

We dense sample the interest points from JVi. Then, we perform a vector quantization by

clustering the spatio-temporal feature from the 20 joints, which result in a bag-of-word his-

togram feature of each joint. With two types of spatio-temporal features (LISA and GISA

features), we obtain two histogram features at each joint, named Joint GISAi, Joint LISAi

(see Fig. 4.3 and Table 4.1). For each joint, we apply histogram operations (e.g. concatena-

tion) to the histograms Joint GISAi, Joint LISAi, which results in a new histogram feature

Joint GL ISAi = [Joint GISAi, Joint LISAi]. The concatenation operation fuses two types

of histogram features to provide robustness to classification problems, a technique which has

proven useful in the image classification domain [156]. As different features present human ac-

tions from different perspectives, concatenation can further be enhanced by introducing broader

characteristics. For this, each 3D joint is associated with two histogram features Joint GISAi,

Joint LISAi and their concatenation Joint GL ISAi. Each of these correspond to the feature

fXv of a node v in GX. In the following, we will refer to these three as joint-based features.

Inspired by the Spatial Pyramid approach [156], we group adjacent joints together as a
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Figure 4.3: The processing steps of learning Joint GISA features and Joint LISA features (best

viewed in color).
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joint pair, seeking to capture the hierarchical structure of the skeleton. In our human skele-

ton model, there are 19 joint pairs. Each joint pair is represented by three histogram features

Joint GISApij=[Joint GISAi, Joint GISAj ], Joint LISApij = [Joint LISAi, Joint LISAj ],

and their concatenation Joint GL ISApij = [Joint GL ISApi, Joint GL ISApj ]. We call

them joint-pair-based features. In total, we have defined six types of 3.5D representations

GX for depth video X (see Table 4.1). For each type of representation, the features fXv are

given by Joint GISAi, Joint LISAi, Joint GL ISAi, Joint GISApij , Joint LISApij , and

Joint GL ISApij , respectively. To clarify further explanations, we will omit the subscript

from the above six features in the rest of this chapter.

4.2 Ensemble Learning with Discriminative MKL Classi-

fiers

In order to model intra-class variations better and provide more robustness against errors of

the skeleton tracker [5], we propose an ensemble learning approach for action recognition using

depth videos. The aim of our method is to learn a discriminative subset of joints for each

action class. To achieve this, we combine two concepts: (1) Discriminative training to explore

the 3.5D representation effectively; (2) Ensemble learning to learn a stronger classifier at a

high efficiency. Specifically, we develop an ensemble multi-kernel learning framework (EnMkl)

where each component classifier is a discriminative MKL classifier that is trained on a subset of

training samples. In our setting, the discriminative training and ensemble learning can benefit

from each other. The MKL framework allows us to consider a subset of joints at a time,

which allows us to explore the 3.5 representation efficiently, and in a systematic way. Ensemble

learning selects a subset of training samples to explore the diversity of the sample data and

therefore it can balance the distribution of the dataset (especially for a small size dataset) and

reduce redundancy in the feature set.

An overview of the EnMkl approach we use is shown in Algorithm 1. We first describe the

framework of our algorithm. Next, we give more details of the kernel design of the component

classifiers.

4.2.1 Multi-kernel Learning

Joint-based features provide useful, characteristic data to allow action recognition. However,

redundant or irrelevant information may complicate classification; typically, joint data may be
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Algorithm 1 EnMkl

Input:

For the training set of each action class, select all positive samples P, and all negative samples N, |P| < |N|,
yi ∈ {+1,−1} are their class labels. Define T as the number of iterations to train an AdaBoost ensemble C.

Weights initialization for each sample: riτ = 1/(|P|+ |N|), i = 1, ..., |P|+ |N|, τ = 1, mode = top

while τ ≤ T do

Weights normalization:
r̄iτ =

riτ∑
ir
j
τ

, ∀i (4.1)

if mode == top then

Select top weighted samples: a subset Nτ from N

end if

Train an MKLSVM component classifier, Fτ on P and Nτ

Compute the performance of Fτ over P and N:

pτ =
∑

i
riτg

i
τ (1− abs(sgn(Fiτ )− yi)) (4.2)

where giτ = ((1− sgn(Fiτ ))/2 + pro(Fiτ )sgn(Fiτ ))

pro() denotes the probability output of Fiτ
Choose ατ = − 1

2
log( 1−pτ

pτ
)

if ατ > θ then
mode = top; τ = τ + 1
Update the weights:

ri+1
τ = r̄iτ e

(−2|giτ |+ατ )(1−abs(sgn(F
i
τ )−y

i)) ∀i (4.3)

else
mode = random; Select a random subset Nτ from N

continue

end if

end while

Output:

C =

∑T
τ=1ατpro(Fτ )∑T

τ=1ατ
(4.4)
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very noisy when occlusions occur, hindering the classifier from isolating relevant information.

When dealing specifically with skeletal data obtained by skeleton tracker [5] from an RGBD

camera, it can be seen that some joints are more important than others with respect to action

recognition. Therefore, taking this observation into account, we investigate discriminative joint

subsets for human actions by the MKL algorithm. MKL is used to learn an optimal combination

of joint-based (or joint pair-based) features {fXv1 , f
X
v2 ...f

X
vk
}. With each kernel corresponding to

each feature, different weights are learned for each joint. Weights can therefore highlight more

discriminative joints for an action and ignore irrelevant or unnecessary joints by setting their

weight to zero.

4.2.2 Ensemble Learning with MKL Classifiers

The properties of training datasets such as size, distribution and number of attributes signifi-

cantly contribute to the generalization error of a learning machine. In action recognition tasks,

class imbalances or unevenly distributed sample data is rather common. Because of the large

effort of acquiring video data and manually annotating these data, the size of the training data

for action recognition is typically smaller than in other computer vision tasks. In addition, dif-

ferent subjects perform actions with considerable variation. These complications may—without

precautions being taken—lead to models that suffer from over-fitting.

To deal with these problems, randomization with under-sampling is an effective method.

This technique uses a subset of majority class samples to train a classifier. Although the training

set becomes balanced and the training process becomes faster, standard under-sampling often

suffers from the loss of helpful information concealed in the ignored majority class samples.

Inspired by [157], our method considers the distributions of different samples in the training

dataset. Rather than randomly sampling subsets of the majority class, we try to balance

randomization and discrimination during the training phase of the stronger classifier. For this,

we define a threshold θ to evaluate component classifiers in the ensemble learning framework.

This way, our algorithm can use random or discriminative sampling subsets of training samples

to train a component classifier according to the performance of the component classifier in

the previous iteration. (In a control experiment, we limit this ability by using only randomly

sampling subsets, observing the recognition rate to drop by 0.7%.) Similar to other ensemble

learning approaches, the AdaBoost algorithm [158] is used in our method to train a number of

weighted component classifiers. An ensemble of all component classifiers together creates the

final classifier. Here, for each class, a multiple kernel learning (MKL) classifier is used as the
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base learner of an ensemble. MKL is able to mine the dominating sets of joints and learn a

linear combination of these discriminative joint-based features, details of which we present in

the following section.

4.2.3 Kernel Design of Component Classifiers

Our objective is to learn a component classifier that, rather than using pre-specified kernels,

use kernels that are linear combinations of given base kernels. Suppose that the bags of the

depth video X are represented as:

fX = {f1, f2, ..., ft−1, ft} (4.5)

where t is the number of the features for each depth video. The classifier defines a function

F(fX) that is used to rank the depth video X by the likelihood of containing an action of

interest.

The function F is learned, along with the optimal combination of histogram features fX,

by using the Multiple Kernel Learning techniques proposed in [159]. The function F(fX) is the

discriminant function of a Support Vector Machine, and is expressed as

F(fX) =

M∑
i=1

yiαiK(fx, f i) + b (4.6)

Here, f i, i = 1, ...,M denote the feature histograms of M training depth video data sets, which

are selected as representative by the SVM. yi ∈ {+1,−1} are their class labels, and K is a

positive definite kernel, obtained as a linear combination of base kernels

K(fX, f i) =
∑
j

wjK(fXj , f
i
j) (4.7)

MKL learns both the coefficient αi and the kernel combination weights wj . For a multi-

class problem, a different set of weights {wj} is learned for each class. We choose a one-vs.-rest

strategy to decompose the multi-class problems.

Because of linearity, Eq. 4.6 can be rewritten as

F(fX) =
∑
j

wjF(fXj ) (4.8)

where

F(fXj ) =

M∑
i=1

yiαiK(fxj , f
i
j) + b (4.9)
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Table 4.2: Partitioning of the MSRAction3D dataset into three subsets as used in our evaluation

Cross Subset 1 (CS1) Cross Subset 2 (CS2) Cross Subset 3 (CS3)

Tennis Serve (TSr) High Wave (HiW) High Throw (HT)

Horizontal Wave (HoW) Hand Catch (HC) Forward Kick (FK)

Forward Punch (FP) Draw X (DX) Side Kick (SK)

High Throw (HT) Draw Tick (DT) Jogging (JG)

Hand Cap (HCp) Draw Circle (DC) Tennis Swing (TSw)

Bend (BD) Hands Wave (HW) Tennis Serve (TSr)

Hammer (HM) Forward Kick (FK) Golf Swing (GS)

Pickup Throw (PT) Side Boxing (SB) Pickup Throw (PT)

With each kernel corresponding to each feature, there are 20 weights wj to be learned for the

linear combination of the joint-based features, and 19 weights wj to be learned for the joint

pair-based features. These weights represent how discriminative a joint is for an action; we can

even ignore less discriminative joints by setting wj to zero.

As MKL cannot give a posterior class probability P (y = 1|X), we propose an approximation

of the posteriors by a sigmoid function

Pm(y = 1|X) ≈ pro(FX
τ ) ≡ 1

1 + exp(AmFX
τ +Bm)

(4.10)

We follow Platt’s method to learn Am and Bm [160]. For each MKL model m, we then learn a

sigmoid function pro(Fτ ).

4.3 Evaluation

In this section, we first compare our algorithm quantitatively against current state-of-the-art 3D

action recognition algorithms, measuring recognition accuracies on the MSRAction3D dataset.

After that, we further analyze the efficiency of our approach in a 3D action recognition system.

In addition, we study the general advantages of discriminative MKL classifiers in the field of

action recognition. In a more specific evaluation, we discuss the discriminative joint subset for

each action class, and we study how many joints in a depth video are sufficient to perform

certain action detection and recognition tasks in our framework.
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Table 4.3: Recognition accuracy of our method on each of the three subsets. CS1, CS2 CS3 are

the abbreviations of Cross Subset 1, Cross Subset 2, Cross Subset3 (see Table 4.2).

Method CS1 CS2 CS3

EnMkl-s +Joint GL ISAp 0.882 0.898 0.951

EnMkl + Joint GL ISAp 0.881 0.927 0.959

4.3.1 Experimental Setup

The MSRAction3D dataset [154] is a public dataset that provides sequences of depth maps and

skeletons captured by a Kinect RGBD camera. It includes 20 actions performed by 10 subjects

facing the camera during performance. Each subject performs each action two or three times.

As shown in Fig. 4.4, actions in this dataset reasonably capture a variety of motions related

to arms, legs, torso, and their combinations. In order to facilitate a fair comparison, we follow

the same experimental settings as [161, 162, 26] to split 20 actions into three subsets as listed

in Table 4.2, each having 8 action classes. In each subset, half of the subjects are selected as

training data and the other half for testing; we perform a two-fold cross validation.

4.3.2 Sensitively Analysis

We analysis the effect of several parameters of our model: the size of the input unit of ISA

model, dense sampling stride, codebook size, kernel type. We show the results across different

parameter setting for LISA and GISA features by using a three-fold cross-validation on training

data: Cross Subset 1 (See Table 4.3).

We first evaluate the effect of the size of the input units. The input units to the bottom

layer of ISA model are of size sx× sy× st. We report results of our model with different spatial

size sx (sx = sy) and different temporal size st of the input units. Fig. 4.5 shows the average

classification accuracies using cross-validation. Increasing the spatial and temporal size of the

input units improves the performance up to sx = 12. This is probably due to the fact that

input units need to have a minimum size to dense sample enough interest points. We observe

the best result with the size of the input unit of 12 pixels ×12 pixels ×10 frames.

With respect to the dense sampling stride, Fig. 4.6 presents the results for 1 pixel to 4

pixels. The performance increases with a higher sampling density. This is also consistent with

dense sampling at regular position where more features in general improve the results [6]. A
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(a) Golf Swing

(b) Hand Clap

(c) Draw X

(d) Draw Tick

(e) High Throw

(f) Jogging

Figure 4.4: The sequences of depth maps and skeleton for different action classes. Each depth

image includes 20 joints (marked as red points).
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(a) Classficiation results with GISA features
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(b) Classification results with LISA features

Figure 4.5: Effect of spatial and temporal size of the input units with GISA feature (a) and

LISA feature (b) on classification accuracy using cross-validation.
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Figure 4.6: Effect of the dense sampling stride with GISA feature and LISA feature on classifi-

cation accuracy using cross-validation.

sampling stride of 1 pixels samples every pixel which increase the computational complexity.

We set the dense sampling stride as 2 pixels offers a good trade-off between speed and accuracy.

Fig. 4.7 shows the classification performance for different combinations of kernels and

codebook sizes. The χ2 kernel outperform the intersection kernel. Larger codebook sizes have

been reported to improve the classification performance. For both kernels, the performance

saturates at codebook size = 700 or codebook size = 900.

4.3.3 Model Details

We use the found optimal parameters of sensitively analysis to train our models and test our

method. We train the ISA model on the MSRAction3D training sets. The input units to the

bottom layer of ISA model are of size 12× 12× 10, which are the dimensions of the spatial and

temporal size of the subvolumes. The size is the same for global depth subvolumes (for learning

GISA features) and local depth subvolumes (for learning LISA features). The subvolumes of

the top layer of the ISA model are of the same size as those of the bottom layer.

We perform vector quantization by k-means on the learned spatio-temporal features for

each joint. For the distance parameter in the dense sampling step for the local regions of each
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Figure 4.7: Effect of the codebook size and kernel type with GISA feature and LISA feature on

classification accuracy using cross-validation.
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joint, we choose a region of 2 pixels. The codebook size k is 700 for both Joint GISA fea-

ture and Joint LISA feature. Therefore, each depth video is represented by 20 histogram fea-

tures for Joint GISA, Joint LISA, Joint GL ISA or 19 histogram features for Joint GISAp,

Joint LISAp, and Joint GL ISAp. We choose χ2 as the histogram kernel for the multi-class

SVM classifier. For EnMkl, we set the number of subsets |Nτ | = 3|P|, and the rounds of the

AdaBoost T = 20. The threshold for a good component classifier is set to 1.45. Across the

three subsets, all parameters are set to the same values. Note that when we set the number of

the samples in subsets |Nτ | = |N| , and the rounds of the AdaBoost T = 1, EnMkl becomes

equivalent to a multi-kernel learning problem; we call this special case EnMkl-s.

4.3.4 Experimental Results

We compare our algorithm with several recent methods including: (1) Li et al. [161], where

bags of 3D points are sampled from depth maps and an action graph is employed to model the

dynamics of the actions; (2) Yang and Tian [38], who design a new type of feature set based

on position differences of joints; (3) Wang et al. [106], where the depth sequence is randomly

sampled and the most discriminative samples are selected and described using LOP descriptors;

(4) Wang et al. [20], where local occupancy pattern features are used over the skeleton joints;

(5) Oreifej and Liu [162], who describe the depth sequence using a histogram that captures the

distribution of surface normal orientations in 4D space; (6) Xia and Aggarwal [26], who employ

a filtering method to extract STIPs from depth videos; (7) Wang et al. [141], where observations

are represented by histograms of activating spatial and temporal part-sets; (8) Gowayyed et al.

[144], who design a 2D trajectory descriptor, the histogram of oriented displacements (HOD).

A comparison of our method against the best published results for the MSRAction3D dataset

is reported in Table 4.4. Because we test six types of 3.5D representations GX for two models

EnMkl and EnMkl-s, Table 4.4 shows 12 results in total. As can be seen from the table, our

approach outperforms a wide range of methods. There is a clear increase in performance of our

method EnMkl (with Joint GL ISAp feature) (92.3%) compared to the closest competitive

method (91.3%). Note that the absolute performance is very good, considering that failures in

the skeleton tracker are quite frequent and tracked joint positions are rather noisy. The obtained

accuracy of EnMkl-s (with Joint GL ISAp features), a special case of EnMkl without using

ensembles, is 91.2%. These encouraging results illustrate the effectiveness of our unsupervised

learning features.
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Table 4.4: Comparison of recognition accuracy between previous methods and our proposed

approach on MSRAction3D dataset

Method Accuracy

Action Graph On Bag of 3D Points [154] 0.747

EigenJoints [38] 0.823

Random Occupancy Pattern [106] 0.865

Mining Actionlet Ensemble [20] 0.882

Histogram of Oriented 4D Normals [162] 0.889

Spatio-Temporal Depth Cuboid Similarity Feature [26] 0.893

Pose-based Action Recognition [141] 0.902

Histogram of Oriented Displacements [144] 0.913

EnMkl-s + Joint GISA 0.879

EnMkl-s + Joint GISAp 0.896

EnMkl-s + Joint LISA 0.895

EnMkl-s + Joint LISAp 0.912

EnMkl-s + Joint GL ISA 0.894

EnMkl-s + Joint GL ISAp 0.914

EnMkl + Joint GISA 0.887

EnMkl + Joint GISAp 0.901

EnMkl + Joint LISA 0.903

EnMkl + Joint LISAp 0.920

EnMkl + Joint GL ISA 0.903

EnMkl + Joint GL ISAp 0.923
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Compared to EnMkl-s, the improvement of EnMkl is about 1%. This indicates that the

ensemble learning approach can better capture intra-class variations and is more robust against

noise and errors in depth maps and joint positions. This observation is consistent with [20], who

report that accuracy decreases when the ensemble approach is disabled in their experiments. It

is also important to note that in our methods, accuracies obtained using LISA features (91.2%

for EnMkl-s with Joint LISAp) are better than using GISA features (89.6% for EnMkl-s with

Joint GISAp). This is probably because the skeletons have a natural correspondence over

time, and LISA features can model spatial structures more explicitly than GISA features. To

further investigate the relationship between LISA features and GISA features, we study the most

important joints discovered by Joint LISA and Joint GISA features with EnMkl-s method.

For each action class, the top-weighted joint is selected as the most important joint. Here,

we define the top-weighted joint as the joint with the highest maximum. With Joint LISA

features, right hand, right wrist, and left wrist joints (the top three) receive the most votes

in 20 action classes in MSRAction3D dataset. With Joint GISA features, right hand, right

shoulder, and left elbow joints receive the most votes (the top three). The results indicate that

LISA and GISA features have some qualities in common, as both of them select right hand as

the highest weighted joint. Our results are consistent with [144], who conducted an experiment

using features from only one joint to perform action recognition. Their results show that using

the right hand joint outperforms all other joints on MSRAction3D dataset. Additionally, it is

interesting to note that in our methods, accuracy obtained using Joint GISAp/Joint LISAp

features is 90.1%/92% (EnMkl), which is better than using Joint GISA/Joint LISA features

88.7%/90.3% (EnMkl). These results show a clear advantage of the spatial pyramid approach,

even though we simply group adjacent joints together as joint pairs and capture the hierarchical

structure of human skeleton.

In Table 4.3, we report average accuracies of all three test sets (Cross Subset 1 (CS1),

Cross Subset 2 (CS2), Cross Subset 3 (CS3)), and show the best performance results of the

two methods, EnMkl-s and EnMkl. In Fig. 4.8, we illustrate the average accuracies of all action

class. While the performance in CS2 and CS3 is promising, the accuracy in CS1 is relatively

low. This is probably because actions in CS1 are performed with rather similar movements. For

example, in CS1 Hammer tends to be confused with Forward Punch and Horizontal Wave, and

Pickup Throw consists of Bend and High Throw. Although our method reaches an accuracy

of 100% in 12 out of 20 actions, the accuracy of the Hammer in CS1 is only 37.7%. This is
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Figure 4.8: Recognition accuracies for the 20 action classes of the MSRAction3D dataset. We

compare EnMkl to EnMkl-s using Joint GL ISAp features. All abbreviations of action classes are

defined in Table 4.2 (best viewed in color).

probably due to the significant variations of the action Hammer performed by different subjects;

recognition performance could be improved by adding more subjects to the training set.

4.4 Discussion

We present a novel ensemble learning approach, named EnMkl, which combines unsupervised

feature learning and discriminative feature mining. For this, we develop two types of spatio-

temporal features, applying independent subspace analysis to depth video data. Our approach

is rather generic and unsupervised, and may therefore be applied to a wider range of problems

with unlabeled sensor data. To the best of our knowledge, EnMkl is the first attempt to learn

the spatio-temporal features from depth video data in an unsupervised way. Furthermore,

we propose an ensemble learning approach with discriminative multi-kernel-learning classifiers,

which allows for a better characterization of inter-class variations in the presence of noisy or

erroneous skeleton data. In our evaluation, we analyze the efficiency of our 3D action recognition

approach. In more detailed discussions (at the bottom), we investigate which joint subsets are

discriminative for different types of actions, and we study which of these joints are sufficient to

recognize these actions. Our experimental results of the EnMkl approach show a performance

superior to existing techniques. Results also suggest that learning spatio-temporal features

directly from depth video data may be a promising direction for future research, as combining

these features with ensemble learning may further increase performance.
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Advantages of Multi-kernel Learning It is generally agreed that, although the human

body has a large number of kinematic joints, a certain action is usually only associated with a

subset of them. Additionally, feature extraction in action recognition is usually computationally

expensive. A reduced feature subset leads to lower computational costs. This encourages us to

investigate the following two questions: Do more joints allow for better for action recognition?

Do joints contribute equally to recognizing an action?

We address the first question by setting the following control experiment: we conduct two

tests, where the first test uses 20 joint features with equal weights for action recognition and

the second test uses a subset (the subset is obtained by EnMkl method) of joint features with

equal weights (manually setting wj to 1). We perform both tests on MSRAction 3D dataset.

It is not surprising that the first test performs worse than the second, with a decline of 4.5%

in accuracy on the MSRAction 3D dataset. This indicates that a subset of characteristic data

may lead to a more successful recognition and a full set of data with irrelevant information may

complicate the classification.

To answer the second question whether joints contribute equally to an action, we re-run

the experiment with the same settings as in Section 4.3.3 and manually set wj to 1. The

results of this test show substantially worse accuracies than those of the previous experiments.

More precisely, setting the weight to 1, accuracy drops by a significant amount of 5% for the

MSRAction3D dataset. This confirms that the weights learned from MKL are indeed very

relevant for successful action recognition.

Mining Discriminative Joint Subsets In our EnMkl-s method, each action is represented

as a linear combination of joint-based features. We learn their weights in a multiple kernel

learning method to obtain discriminative joint subsets.

Fig. 4.9 illustrates the skeleton with joints weights obtained by our EnMkl-s method. Here,

we only show the results of the Joint LISA features as an example; the other five feature sets

would show to very similar results. The Joint LISA features with weights > 0 are marked as

thick, red lines. The average number of Joint LISA features for 20 actions in the MSRAction3D

dataset is four. Three of 20 action classes have only one discriminative Joint LISA feature.

This result is rather interesting: Imagining we want to recognize or detect a specific action

class; we only need to extract features from one joint rather than the entire video data. This

can be implemented and executed at a high efficiency.

EnwMi-s is also able to deal with tracking errors in the skeleton data and can better capture

intra-class variation. Fig. 4.9(t) shows that Golf Swing is represented by the combination of
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(a) Tennis Serve   (b)  Horizontal Wave  (c) Forward Punch   (d) High Throw      (e) Hand Cap  

    (f) Bend               (g)  Hammer         (h) Pickup Throw    (i) High Wave      (g) Hand Catch  

    (k) Draw X         (l)  Draw Tick       (m) Draw Circle     (n) Hands Wave      (o) Forward Kick 

   (p) Side Boxing      (q)  Side Kick         (r) Jogging          (s) Tennis Swing        (t) Golf Swing 

Figure 4.9: The joint subsets used to recognize the 20 action classes in the MSRAction3D dataset.

Our method can learn discriminative joint subsets for each action class. The weight associated

with each joint describes how discriminative a joint is for that action. Joints with weights >0

are highlighted as thick, red lines (best viewed in color). All abbreviations of action classes are

defined in Table 4.2.
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the joints head, neck, right hand, right wrist, left hand, left wrist and left elbow (see Fig. 4.2

for the definition of the joint labels). Fig. 4.9(a) shows that Tennis Serve is represented by

the combination of the joints left elbow, left wrist, right hand, right wrist, torso, and waist. It

is obvious that different action classes have different discriminative joint subsets. Fig. 4.9(r)

shows that Jogging is represented by the combination of the joints left elbow, left shoulder, left

hip, waist, torso, neck and right shoulder. Normally, one would expect Jogging to be related to

the left and right feet or ankles. However, in the MSRAction3D dataset, the tracked positions

of the joints right/left foot, and right/left ankle are very noisy (see Fig. 4.4). Therefore, these

joints are not discriminative for the action class Jogging, which is consistent with Fig. 4.4(f).

This shows that our method is rather robust against tracking errors in the skeleton data.

Computational Complexity The training phase of neural networks (e.g. unsupervised

feature learning) is usually computationally expensive and requires much tuning. The ISA

algorithm, however, does not need the tweaking with the learning rate or the convergence

criterion. For the training stage, the ISA algorithm takes 3-4 hours to learn the stacked ISA

model using the setting in Section 4.3.3.

To analyze the computational comoplexity of the feature extraction, we extract features with

dense sampling on 20 video clips from the MSRAction3D dataset. The run-time is obtained

on a notebook with a 2.3 GHz double-core CPU and 8GB RAM. The implementation is in

unoptimized and un-parallelized MATLAB. Feature extraction using our method runs 1 frame

per second with the entire video and 6 frames per second with specific portions of the video

(the surrounding regions of the joints of the subject which performs the action in the video).

As the extraction time relies heavily on matrix vector products, it can be implemented and

executed much more efficiently on a GPU.
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Chapter 5

Multimodal Gesture Detection

and Recognition With

Randomization and

Discrimination

In this chapter, We describe a novel human motion perception system called multimodal gesture

detection and recognition system with randomization and discrimination. Our system is built on

the unsupervised feature learning framework developed in Chapter 3. Unlike most traditional

approaches that rely on the construction of complex handcrafted features, we are able to learn

and extract spatio-temporal features from four modalities (grayscale, depth, gradient, surface

normal) of RGB-D video data. In addition, we proposed to build the gesture recognizer under

the random forest framework by combining two ideas, discrimination and randomization. The

benefit is that the feature selection and classifier training are done in one step which is different

with most existing approaches. State-of-the-art approach separate the feature mining and

classifier training into two steps. Our approach is able to identify semantically meaningful

spatio-temporal contents that closely match human intuition.

5.1 Introduction

During the past decades, approaches of gesture recognition were controller-based, in which

users had to wear human motion capture systems. The interfaces of users and devices are

traditional command line and graphic user interfaces. With the development of input devices,
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multi-modality data have become available, which directly leads to the rise of multi-modality

gesture recognition. Recently, vision-based gesture recognition has become the mainstream of

the research due to the good abilities that enable the controller-free and natural user interac-

tions (NUI). Natural user interactions are based on natural interaction (e.g., gestures, speech,

actions) that people use to communicate with the smart objects (e.g., computer, smartphones).

Therefore, NUI have good usability and provide better user experience compared to traditional

graphic user interface. Kinect, the motion sensing input device developed by Microsoft corpo-

ration, features an RGB camera, a depth sensor and a multi-array microphone. With all these

features, Kinect serves as an ideal experimental platform for developing new NUI systems of

multi-modality gesture detection and recognition.

Gesture detection and recognition refers to detecting and classifying meaningful motions

executed by human hands. It has promising application prospects in human-computer and

human-robot interaction. Compared to human actions recognition which human actions are

performed by full human body, hand gestures recognition can be considered as subordinate-level

categorization. Psychologists have shown that early-stage human vision system performs well on

basic-level visual categorization tasks (e.g, cats vs. trees; humans vs cars) than subordinate-level

visual tasks (e.g., Bulldog vs. Beagle; Exotic Shorthair vs. Persian).It is also very interesting to

see that computer vision community follows a very similar path. Basic-level vision categoriza-

tion task has seen great advance while subordinate-level vision task has received few studies.

Therefore, developing an automated visual perception system for subordinate-level categoriz-

tion tasks is an active demand in many applications such as human-robot and human-computer

interaction system.

In this chapter, gesture recognition is regarded as a sub-ordinate level categorization prob-

lem. Unlike traditional human action recognition problems where different types of actions

can be separated by human skeleton parts (e.g, hands vs. legs), more detailed and semantic

visual informations need to be mined for sub-ordinate categorization. The red bounding boxs

in Figure 5.1 demarcate the distinctive characteristics for different gesture classes. Here we

only capture one frame of each gesture video for the demonstration. Example of human hand

gestures in Figure 5.1 are coming from Chalearn Gesture dataset which will be introduced in

Section 5.5.1. Figure 5.1a and Figure 5.1b show two different gesture classes OK and Non

ce nepiu, which differ mainly in hand poses but not in other human body parts. Figure 5.1c

and Figure 5.1d show another two different gesture classes E un furbo and Buonissimo, which

differ mainly in relative position of fingers and eyes. Besides the differences coming from the
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(a) OK (b) Non ce nepiu (c) E un furbo (d) Buonissimo

(e) Perfetto (f) Perfetto (g) Daccordo (h) Daccordo

Figure 5.1: Figure 5.1a and Figure 5.1b show two different gesture classes OK and Non ce

nepiu, which differ mainly in hand poses but not in other human body parts. Figure 5.1c and

Figure 5.1d show another two different gesture classes E un furbo and Buonissimo, which differ

mainly in relative position of fingers and eyes. Besides the differences coming from the spatial

space, gestures recognition has another challenges which are the gesture execution speed and scale

occurring in time. Figure 5.1e and Figure 5.1f show the same gesture Perfetto. Figure 5.1g and

Figure 5.1h show the same gesture Daccordo. They differ primarily in the hand movement scale

(hands above the shoulder in Figure 5.1e vs. hands parallel to the shoulder in Figure 5.1f, hands

in front of the heart in Figure 5.1g vs. hands in front of the shoulder in Figure 5.1h) (best viewed

in color).
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spatial space, gestures recognition has another challenges which are the gesture execution speed

and scale occurring in time. Figure 5.1e and Figure 5.1f show the same gesture Perfetto, which

differ primarily in the hand movement scale (hands above the shoulder vs. hands parallel to the

shoulder). Methods and algorithms developed for basic-level visual categorization tasks (e.g.,

action recognition) are often not ready to detect such subtle differences among the sub-ordinate

vision classes (e.g, hand gesture recognition). We tackle this problem from the perspective of

discovering a large number of meaningfully semantic video blocks with arbitrary sizes, shapes,

and locations in space and time, as well as pairs of video blocks that carry discriminative video

data statistic. However, a big challenge comes from this approach: as video data is high di-

mensional, a short video will be able to generate billions of video blocks. Consider all the

dimensions in the time and space, the amount of the candidate video blocks increase exponen-

tially. Furthermore, these video blocks overlap significantly in the time and space. This means

that many video blocks are highly correlated.

To solve these problems, we introduce the concept of randomization which is often used in

machine learning algorithms. Randomization means we select a subset of video features ran-

domly for each time. We keep the main goal efficiency of developing human gesture recognition

system in mind, and propose a discriminative random forest for the gesture recognition. Unlike

traditional random forest, discriminative random forest is built by discriminative decision trees.

The purpose of using discriminative decision trees is to explore meaningful video blocks and

pairs of video blocks that are highly discriminative for sub-ordinate level of gesture recognition.

Our approach is able to efficiently mine a very dense sampling 3D space by using strong classi-

fiers at each node and combining information along the different depth of the tree. Comparing

to the weak classifier in classical random forest, strong classifiers significantly enhances the

power of the decision trees. We integrate our gesture recognition system into a gesture detec-

tion approach. We finally develop a novel human motion perception system called multimodal

gesture detection and recognition system with randomization and discrimination. We evaluate

our system on Chalearn Gesture dataset, which is the largest gesture dataset in the literature.

The primary objective of Chalearn Gesture dataset is to evaluate the performance of computa-

tional methods on gesture recognition. The emphasis is on multi-modality automatic learning

of a set of 20 gestures performed by several different users, with the aim of performing user

independent continuous gesture spotting. Specifically, this dataset aims at the recognition of

continuous, natural human gestures with the multi-modality nature of the visual cues, as well

as technical limitations such as spatial and temporal resolution and unreliable depth cues. We
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show that our system achieves state-of-the-art performance on Chalearn Gesture dataset. More

importantly, our approach is able to discover meaningfully semantic video blocks that performs

very closely to human vision system. As semantic video blocks are intuitively discriminative

information of the sub-ordinate categorization, our approach automatically discover such kind

of information which indicates the efficiency of our system.

Figure 5.2 shows the architecture of the proposed multi-modality gesture detection and

recognition system. The system utilize un-supervision (unsupervised learning of spatio-temporal

features from four channels of RGB-D video data), randomization (exploring the spatio-temporal

dense sampling space efficiently) and discrimination (discriminative training to extract the in-

formation in the video data effectively) to learn a multi-modality gesture recognizer. In Section

5.2, we describe the overall architecture of the proposed system. In Section 5.3 and 5.4, we

provide the details of the individual modules that constitute our gesture recognition system. In

Section 5.5, we discuss the results achieved by our system. Finally, we present a few conclusions

in Section 5.6.

5.2 System Architecture

The complete architecture of the proposed multi-modality gesture detection and recognition

system is shown in Fig. 5.2. It contains three main building blocks, namely unsupervised

feature learning, gesture segmentation, and gesture classification. Each input sample in the

Chalearn Gesture dataset contains a sequence of gestures performed by a subject and these

gestures are typically separated by pauses in between. However, some of the gestures in the

input sample are consecutive. Some of input samples include unrecognized gestures except

for the gestures corresponding to one of the 20 gestures in the pre-defined gesture vocabulary

(such as ok or perfetto). The first task of our approach is to detect the candidate gestures

and temporally segment them by identifying their start and end frames. We use the skeletal

joint data for gesture detection and segmentation. We assign each frame of the input sample a

label: gesture or non-gesture. We extract features of each labeled frame from the skeletal joint

of a 13-frame-long slide window where the labeled frame is at the center of the slide window.

We train a Support Vector Machine model for each input sample. To label the frames of a

test sample, our approach output the predict labels for the test sample with likelihood scores

fusing the prediction confidence of the SVM models (all the models are trained on the training
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Figure 5.2: The work-flow of the proposed multi-modality gesture detection and recognition

system. Our system utilize un-supervision (unsupervised learning of spatio-temporal features

from four channels of RGB-D video data), randomization (exploring the spatio-temporal dense

sampling space efficiently) and discrimination (discriminative training to extract the information

in the video data effectively) to learn a multi-modality gesture recognizer.

samples). According with the predict labels of the test sample, we segment the sample into

several candidate gestures.

Once the given input sample is broken down into candidate gesture segments, the next task

is to provide a suitable representation of the candidate gesture contained within each segment.

We utilize spatio-temporal features extracted from the RGB-D video data to represent the

gesture. In contrast to previous work, we extracted the spatio-temporal features using an

unsupervised learning approach. At the heart of unsupervised learning approach is the extension

of Independent Subspace Analysis algorithm [85] for the use of RGB-D video data. To effectively

model the motion patterns of the gestures for the classification, we approach this problem from

the perspective of mining a large number of video blocks with arbitrary shapes, spatio-temporal
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sizes, or location that carry discriminative gesture video statistics. However, this approach poses

a fundamental challenge: without any feature selection, even a modestly sized video will yield

millions of video blocks. In addition, as large number of the blocks overlap significantly, these

blocks are highly correlated and introduce significant redundancy among these features. On the

other hand, many video blocks are not discriminative for distinguishing different gesture classes.

To address this issue, we propose a random forest with discriminative decision trees approach

to mine video blocks that are highly discriminative for the gesture classification tasks. Unlike

traditional decision trees [163], our approach uses a SVM classifier at each node and integrates

information at different depths of the tree to effectively mine a very dense sampling space of

the video data. The final predicted label for a candidate gesture is assigned to the class which

maximum the average of the posterior probability from the leaf node of each tree.

We implement various modules in the system using off-the-shelf tools available on differ-

ent platforms. For example, pre-processing of the video data were implemented on Python.

Unsupervised learning of spatio-temporal features were coded in Matlab. Segmentation of ges-

tures based on skeletal joint data was implemented on Matlab and the classification based on

the Random Forest was implemented using C++/Matlab. The SVM classifier was carried out

using open-source Support Vector Machine libraries. Due to this fragmented nature of the

implementation, the evaluation was conducted as a sequence of batch process.

5.3 Gesture Detection and Segmentation

We train a SVM model to classify a fixed length time window of each input sample and then

use a sliding window on the test sample to obtain a probability distribution over time for each

window. The predict labels for the test sample with likelihood scores average the prediction

confidence of all the SVM models trained on the training samples. According with the predict

labels of the test sample, we segment the sample into several candidate gestures. To tackle the

problem of consecutive gestures in the input sample, we first manually annotate the frames of

the training samples into two classes: consecutive frame and nonconsecutive frame. We then

train a SVM model on these annotated frames and classify the frames of candidate gestures to

consecutive frame and nonconsecutive frame to get the final segment of the samples.

69



5. MULTIMODAL GESTURE DETECTION AND RECOGNITION WITH
RANDOMIZATION AND DISCRIMINATION

5.3.1 Segmentation based on skeletal joints

We analyze the skeletal joint data stream from the Kinect sensor to identify the start frame

and end frame of each gesture within an input sample. We approach this problem as two-class

classification task: classify each frame of the input sample as gesture frame or non-gesture

frame. The skeletal joint data provide world position, pixel position, and world rotation of

20 joints for each video frame. Since all the 21 gesture classes (20 pre-defined gesture plus 1

unrecognized gesture) are performed using the joints of upper body, we focus only on the joints

above waist level reducing the number of joints from 20 to 12.

5.3.1.1 Skeletal Feature Engineering

We extract the skeletal feature from the skeletal joint data. The 3D coordinates of these joints

are, however, not invariant to the position of the subject. Therefore we aligned the skeletal

joints of each frame for each sample so that the hip centers of all frames are overlapped. We

employ 3D position differences of joints to characterize gesture information including motion

feature fc and hand-based feature fh. We extract features fc,t and fh,t from a 13-frame-long

slide window st where the frame t is at the center of this slide window.

Let pj,t ∈ R3 be the 3D world position (xj,t, yj,t, zj,t) and of joint j at frame t. J represent

the 12 joints used in our approach. The motion features fc,t of frame t are defined as the joints

differences within the slide window st:

fc,t = {max(pj,i − pj,t) | ∀j ∈ J}, i ∈ [t− 6, t+ 6]; i 6= t (5.1)

We designed the hand-based feature fh to pay attention to hand motion signals as all the

gestures are performed by the hands. In particular, we consider only the y-coordinate of the

hand joint locations and hip joint locations. We first compute the y-coordinate differences

between hand joint and hip joint:

δhh,i = max(| yjr,i − yjh,i |, | yjl,i − yjh,i |) (5.2)

where jr, jl, jh represent the right hand joint, left hand joints, and hip joint, respectively. As

the same gesture can be performed by either right hand or left hand, Equation 5.4 is able to

achieve the invariance under different hand performances. To capture the motion property of

the hand joints, The hand-based features fh,t of frame t are defined as y-coordinate differences

between hand joint and hip joint of each frame within the slide window st:
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Figure 5.3: Illustration of the process of greedy SVM model selection described in Section 5.3.1.3:

Left: initial number T of the SVM model (T = 6 in this figure). Middle: greedy SVM model

selection process (the number of dropped SVM model is n = 3 ). Right: the remaining T − n

SVM model that maximize validation performance (T − n = 3)

fh,t = {δhh,i | i ∈ [t− 6, t+ 6]} (5.3)

5.3.1.2 Skeletal Feature Classifier

We extract the motion feature fc and hand-based feature fh from each frame of the input

sample. In our implementation, each frame is represented by 13-frame-long slide window where

the frame is at the center of the window. We annotate each frame with a label, either gesture

frame or non-gesture frame according to the annotation labels provided by the training dataset.

However, as the unrecognized gestures in the training dataset were mislabled as non-gesture

frames, we choose the y-coordinate differences | yjr,i − yjl,i | between right hand joint jr and

left hand joint jl to filter out the flase non-gesture frames. Any non-gesture frame which has

the y-coordinate differences | yjr,i − yjl,i | above a specified threshold are removed from the

training data. To eliminate the effect of different sizes of the performers, we train a two-class

SVM model for each input sample of the training dataset and validation dataset, in total, having

500 SVM models.
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5.3.1.3 Greedy SVM Model Selection

We use the samples to train 500 SVM models independently, however, some smaples include

mislabled frames. Therefore, we need to select the best subset of SVM models based on the

validation performance in a greedy manner. We select the subset of models in a sequential

manner: first, we evaluate the performance of T SVM models on validation data. Then, we

drop one SVM model and evaluate the performance on the remaining set of T−1. We select the

T −1 SVM models that maximizes the validation performance. We then evaluate the validation

performance when we drop one more from the T − 1 SVM models and pick the T − 2 SVM

models that maximize performance. We repeat this process for n times, and select the best

subset as the remaining T −n SVM models that maximize the validation performance (n = 3 in

Fig. 5.3). A greedy method is required as there are too many possible subsets of SVM models

to enumerate exhaustively. Once the best subset of T − n SVM models are selected, we test

each sample in the testing dataset. If the number of the consecutive frames which are labeled

as gesture frames is greater than a specified threshold, it is assumed that a candidate gesture

is detected. This is done to filter away any impulse or spurious signals that might be mistaken

as a candidate gesture.

5.3.2 Dealing with consecutive gestures

Normally, each sample include 10 ∼ 20 candidate gestures. Most of them are typically separated

by long-pauses in between (e.g., the long-pause contains tens of nongesture frames), but some

of them are consecutive gestures (e.g., separated by short-pause containing less than 2 frames)

(see Fig. 5.4). The above SVM models may classify the non-gesture frames of short-pause as

gesture frames. To tackle this problem, we train a new SVM model to classify the frames of

candidate gestures as consecutive frame or nonconsecutive frame. To get the training data of

the new model, we scan all the samples in the training and validatation dataset and find the

consecutive gestures where two adjacent gestures are separated by a short-pause. We manually

annotate the frames in the short-pause as nonconsecutive frame and the frames in the adjacent

gestures as consecutive frame. We then train the SVM model based on the labeled training data.

For the frames in the candidate gesture, if two consecutive frames are labeled as consecutive

frames by the new SVM model, we divided the candidate gesture into another two candidate

gestures further (indicated by the black circles in Fig. 5.4). Fig. 5.4 shows the segmentation

results of Sample 701 and 707 in the testing dataset.

72



5.4 Gesture Classification

The advantage of the proposed detection and segmentation method based on skeletal joint

data is that it efficiently identifies segments containing a candidate gesture without any heavy

computation. The disadvantage is that it does not differentiate between pre-defined and unrec-

ognized gestures. Consequently, segments containing unrecognized gestures get included in the

segmentation results.

5.4 Gesture Classification

The segmentation results can not separate the pre-defined gestures from the unrecognized ges-

tures. Thus, during the gesture classification phase, we will perform the classification of 21

classes of gestures (20 pre-defined gestures plus unrecognized gesture) instead of 20 classes of

pre-defined gestures. We first explore a 3D dense representation of each candidate gesture.

Dense feature have been shown the advantage in classifying human activities [164]. We use

a random forest framework to identify discriminative video blocks. Inspired from [164], we

combine discriminative training and randomization to obtain an effective classifier with good

generalizability. For each tree node, we train an SVM classifier from one of the randomly sam-

pled video blocks. This allows us explore a richer feature set efficiently as well as identifies

semantically meaningful video blocks that closely match human intuition.

5.4.1 Spatio-temporal Feature Extraction

We extract spatio-temporal feature from four channels (grayscale, gradient, depth, surface nor-

mal) of RGB-D video data by using Independent Subspace Analysis (ISA) algorithm [85], which

is based on the unsupervised learning framework in Chapter 3. ISA is a popular unsupervised

learning algorithm that learns spatia-temporal features from unlabeled video data

The main advantage of unsupervised feature learning is that it readily applies to novel data,

such as grayscale and gradient magnitude video data from a RGBD-camera. We learn spatio-

temporal features up to four channels of RGB-D video data: grayscale, gradient, depth, and

surface normal (z-axis). The learned features are visualized in Fig. 3.5. These features are

interesting to look at and share some similarities. For example, the learned feature (each row of

the sub-figure) is able to assign similar patterns into a group, and has sharper edges like Gabor

filters.
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(a) The detection result of sample 701
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(b) The detection resutt of sample 707

Figure 5.4: Segmentation result of Sample 701 and Sample 707 in testing dataset. The first

sub-figure shows the ground truth label of each sample. Peaks indicate a gesture being performed.

The height of the peaks means different types of gestures. The second sub-figure shows the labeled

results of the SVM models (without considering the consecutive gestures). The third sub-figure

shows the initial segmentation results that filter away any impulse or spurious signals. The fourth

sub-figure shows the labeled results of the SVM model for dealing with the consecutive gestures.

The fifth sub-figure shows the final segmentation result of each sample.
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5.4.2 Spatio-temporal Dense Sampling Space

Our approach aims to identify discriminative spatio-temporal blocks that are useful for the

gesture classification. For example, in order to recognize whether a human is performing a

gesture Ok, we want to use the spatio-temporal blocks surrounding the human hands that are

closely related to the gesture Ok. We need to identify not only the spatial position of this kind

of blocks (the image coordinate of the blocks) but the temporal position of the blocks (the

start and end timestamps of the blocks). An algorithm that can reliably locate such regions is

expected to achieve high classification accuracy. We achieve this goal by searching over spatio-

temporal blocks with arbitrary spatial size, temporal size, and the 3D position of the blocks.

We refer to this extensive set of spatio-temporal blocks as the spatio-temporal dense sampling

space, as shown in Figure 5.5. We densely sample spatio-temporal blocks with varying spatial

and temporal size, and spatial and temporal position. The 3 varying dimensions of the sampling

blocks include one dimension along with the width of the block, one dimension along with the

height of the block, and one dimension along with the temporal length of the block. This figure

has been simplified for visual clarity that all the dense sampled blocks starts from the first

frame. The actual density of spatio-tempral blocks is significantly higher than the illustration

in Figure 5.5.

Sampling a fixed size 30pixels×30pixels×8frames of spatio-temporal blocks in a 300pixels×

300pixels × 50frames video every two pixels and two frames leads to thousands of spatio-

temporal blocks. This increases many folds when considering blocks with arbitrary spatial and

temporal sizes. Furthermore, there is much redundancy in this huge feature set. Richer feature

indeed provide enough information for the classification task, however, many spatio-temporal

blocks are not discriminative for distinguishing different gesture classes. Additionally, dense

sampling introduces many overlapped spatio-temporal blocks which brings significant redun-

dancy. Therefore, it is challenging to explore this 3D dimensional, noisy and redundant feature

space. In this work, we address this problem using the idea of combining discrimination and

randomization.

5.4.3 Discriminative Random Forest Framework

In order to explore the 3D dense sampling feature space for the gesture classification, we combine

two ideas: 1) Discriminative training to extract the information in the spatio-temporal blocks

effectively; 2) Randomization to explore the 3D dense feature space efficiently. Specifically, we
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Figure 5.5: Illustration of the proposed 3D spatio-temporal dense sampling space. (a) A sample

of the video. (b) We densely sample spatio-temporal blocks with varying spatial and temporal

size, and spatial and temporal position. (c) The 3 varying dimensions of the sampling blocks

include one dimension along with the width of the block, one dimension along with the height of

the block, and one dimension along with the temporal length of the block. This figure has been

simplified for visual clarity that all the dense sampled blocks starts from the first frame. The

sampled blocks are highlighted by red cuboids.
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Figure 5.6: Comparison of our discriminative decision tree (Left side of the figure) with conven-

tional random decision tree (Right side of the figure). Conventional decision trees use information

from the entire video data at each node, which encodes no spatio-temporal information, which our

decision trees sample the spatio-temporal blocks from the dense sampling spcace. The histograms

below the leaf nodes illustrate the posterior probability distribution. Our approach use strong

classifiers (SVM) in each node, while the conventional method uses weak classifiers.

adopt a random forest framework [164, 165] where each tree node is a SVM classifier that is

trained on one spatio-temporal block.

5.4.3.1 Introduction of Random Forest Framework

A random forest is a multi-class classifier consisting of an ensemble of decision trees where each

tree is constructed via some randomization. As illustrated in Fig. 5.6, the leaf nodes of each

tree encode a distribution over the gesture classes. All internal nodes contain a binary classifier

that splits the data into two parts and sends the two parts to its children nodes. The splitting

is stopped when a leaf node is encountered. A candidate gesture is classified by descending each

tree and combining the leaf distributions from all the trees of the forest. This method allows

the flexibility to explore a rich feature space effectively because it only considers a small subset

of features (e.g., several hundreds of spatio-temporal blocks sampled from the video data) in

every tree node.

Each tree returns the posterior probability of an test example belonging to the given classes.

The posterior probability of a particular class at each leaf node is learned as the proportion

of the training videos (each training video contains one gesture) belonging to that class at the

given leaf node. The posterior probability of class cm at leaf l of tree t is denoted as Pmt,l(cm),

where m means the type of the modality used in the representation of video data. Thus, a test

candidate gesture can be classified by averaging the posterior probability from all the trees of
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the forest:

ĉm = arg min
cm

1
T

∑T
t=1 P

m
t,lf

(cm) (5.4)

where ĉm is the predicted labeled using the modality data m, T is the number of the trees of

the forest, and lf is the leaf node that the testing video falls into. To fuse multi-modality data

in the random forest framework, we utilize later fusion to classify the test candidate gesture:

ĉ = arg min
c

1
M×T

∑T
t=1

∑M
m=1 P

m
t,lf

(cm) (5.5)

where ĉ is the predicted labeled using the multi-modality data, M is the number of the

types of the modality data.

5.4.3.2 Sampling the Spatio-temporal Dense Feature

As shown in Fig. 5.6, each internal node in the decision tree corresponds to a single spatio-

temporal video blocks that are sampled from the 3D dense sampling space (Section 5.4.2), where

the spatio-temporal blocks can have many possible spatio-temporal size and spatio-temporal

positions. In order to sample a candidate spatio-temporal blocks, we first normalize all videos

to unit width, height and temporal dimension, and then randomly sample (xl, yl), (xr, yr) and

(ts, te) from a uniform distribution U([0, 1]). The coordinates (xl, yl) and (xr, yr) specify two

diagonally opposite vertices of the spatial region of the block. The coordinates (ts, te) specify

the start and end position along the temporal dimension of the block. Such blocks could

correspond to small area of the gesture segment or even the complete gesture segment. This

allows the method to capture both the global and local information in the video.

In our approach, each sample saptia-temporal block is represented by a histogram of spatio-

temporal features. The features are augmented with the decision value wT f (described in

Equation 5.6) of this video segment from its parent node (indicated by the red lines in Fig. 5.6).

Therefore, the feature representation combines the information of all upstream tree nodes that

the corresponding video segment has descended from.

5.4.3.3 Learning the binary classifier of the tree node

We describe the process of learning the binary splits of the data using SVM. This is achieved

in two steps: 1) Randomly assigning all segments from each class to a binary label; 2) Using

SVM to learn a binary split of the data. Assume that we have C classes of gesture segments at

78



5.4 Gesture Classification

a given node. We uniformly sample C binary variables, b. We then assign all sampled blocks of

a particular class ci a class label of bi. As each node performs a binary split of the data, this

allows us to learn s simple binary SVM at each node. Using the feature representation f of an

spatio-temporal block, we find a binary split of the data:

score = wT f,

{
score ≤ 0, go to left child

score > 0, go the right child
(5.6)

where w is the set of weights learned from a linear SVM.

We evaluate each binary split that corresponds to an spatio-temporal blocks with the infor-

mation gain criteria [163], which is computed from the complete training video segments that

fall at the current tree node. The splits that maximize the information gain are selected and

the splitting processing is repeated with the new splits of the data. The tree splitting stops if a

pre-defined tree depth or a minimum number of samples in the current node has been reached,

or the information gain of the current node is larger than a specified threshold.

5.4.4 Pre-processing and Implementation Details

5.4.4.1 Pre-processing of the RGB-D video data

It is our observation that gestures only related to upper body movement of the performers.

Within the performance of the gestures of each sample, there is little movement of the lower

part of the body, especially the foot movement. Therefore, we cut out part of the video data

containing only the upper body of the performers from the entire video data. During the gesture

classification phase, we extract spatio-temporal features from this partial video instead of the

complete video in each sample. We resize this partial video to a fixed spatial size video of

200× 200. For the learning of the binary split of the tree node, the randomly sampled spatio-

temporal blocks of different gesture segments should have the same spatio-temporal size and

spatio-temporal positions. However, the temporal dimension of gesture segments is different.

We therefore employed time normalization for the temporal alignment of all gesture segments.

We apply the max pooling along the temporal dimension of the dense sampling feature space

of the gesture segments.

5.4.4.2 Implementation details

We densely extract four types of ISA features (gray-ISA, depth-ISA, gradient-ISA, and normal-

ISA feature) on each gesture segments with a spatial spacing of 2 pixels and a temporal spacing
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of 2 frames. Using k-means clustering, we construct a vocabulary of codewords for each modal-

ity. We use Locality-constrained Linear Coding [166] to assign the spatio-temporal features to

codewords instead of vector quantization coding. In order to achieve good performance on clas-

sification tasks, traditional spatial-pyramid matching approach requires nonlinear classifiers.

For locality-contrained linear coding, each descriptor is projected into its local coordinate sys-

tem by utilizing the locality constraints, and the final representation is generated by integrating

the projected coordinates by max pooling. With a linear classifier, locality-constrained linear

coding performs remarkably better than nonlinear spatial pyramid matching, achieving state-

of-the-art performance on image classification tasks [166]. In this work, we use a linear SVM

as stated in Section 5.4.3.3. A bag-of-words histogram representation of the spatio-temporal

blocks is used if the spatial size and temporal size of the blocks are smaller than 0.2, while a

2-level spatial pyramid is used if the spatial size of the block is between 0.2 and 0.9. We limit

the maximum spatial size and temporal size to 0.9 and 0.8 respectively. For each tree of the

forest, we sample 150 spatio-temporal blocks in the root node and the first level nodes respec-

tively, and sample 200 spatio-temporal blocks in all other nodes. Sampling a smaller number

of blocks in the root can reduce the correlation between the resulting trees. In total, we have

trained 100 trees for each type of ISA features.

5.5 Results and Discussion

In this section, we present the experimental results to evaluate the performance of our approach.

We use the training set and validation set as the final training dataset, and the testing set as

the final testing dataset in the following experiments. To best understand the classification

performance of our approach, we use the ground truth labels to segment the testing dataset

instead of the predicted gesture segmentations.

5.5.1 Chalearn Gesture Dataset

Chalearn Gesture Dataset is used to evaluate our approach, which is originally created for

Chalearn gesture spotting challenge. The aim of this challenge on ’Multiple instance, user

independent spotting’ of human gestures. This means that gestures should be recognized from

multiple instances for each class performed by different users.

The dataset is captured by Kinect, including RGB video data, depth video data, segmenta-

tion mask video data, skeletal joint data. In addition to these four modalities, we also create
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(a) RGB (b) Depth (c) Mask (d) Skeleton

(e) Gradient (f) Surface Normal (g) Grayscale

Figure 5.7: The Chalearn Gesture dataset is captured by Kinect, including RGB video data,

Depth video data, video data of user segmentation mask, skeletal joint data. In addition to these

four modalities, we also create two new types of modalities data, which are surface normal video

and gradient video data(best viewed in color).
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(a) Vattene           (b) Viene qui         (c) Perfetto          (d) E un furbo       (e) Che due palle  

(f) Che vuoi       (g) Vanno d accordo    (h) Sei pazzo    (i) Cos hai combinato  (j) Nonme me  

friega niente 

  (k) Ok                 (l) Cosa ti farei      (m) Basta         (n) Le vuio prendere (o) Non ce ne piu  

  (p) Ho fame          (q) Tanto tempo     (r) Buonissimo     (s) Si sono messi    (t) Sono stufo  

Figure 5.8: 20 Gesture examples in Chalearn Gesture Dataset.
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three new types of modalities data, which are surface normal video data, gradient video data

and grayscale video data(See Fig. 5.7). The Chalearn gesture dataset includes 940 long video

sequences. Each of the video are performed by a single person. More than 14,000 gestures

are drawn from a vocabulary of 20 Italian sign gesture categories from these video sequences,

which are vattene, vieniqui, perfetto, furbo, cheduepalle, chevuoi, daccordo, seipazzo, combi-

nato, freganiente, ok, cosatifarei, basta, prendere, noncenepiu, fame, tantotempo, buonissimo,

messidaccordo, sonostufo. Example of the gestures in the Chalearn gesture dataset are show

in Fig. 5.8 The number of samples are well balanced between classes. The average length of

gestures is 39 frames, the maximum frame number is 104 and the minimum frame number is 16.

The input samples include other unrecognized gestures that are not included in the vocabulary.

This dataset is challenging due to the ’user independent’ setting. Different gesture classes differ

slightly in hand pose while the arm movements of these gestures are almost the same. The

execution of the same gesture class by different users differs in the spend, location and range.

5.5.2 Evaluation

We trained our models on 10000 gesture segments (20 pre-defined gesture classes + one un-

recognized gesture classes) of the training dataset. Because of the utilization of ground truth

labels, we performed the classification task of 20 pre-defined gesture classes on 3579 gesture

segments in the testing dataset. We used four channels (grayscale, depth, gradient magnitude,

surface normal) of the RGB-D video data to train the spatio-temporal features and the discrim-

inative random forest models. Finally, we get four types of spatio-temporal features (Gray-ISA,

Depth-ISA, Gradient-ISA, Normal-ISA), and four RF models (Gray-ISA-Drf, Depth-ISA-Drf,

Gradient-ISA-Drf, Normal-ISA-Drf) where each model contains 100 decision trees. We also

utilize a fusion model which use a simple late fusion strategy by combining the likelihood scores

of the above four RF models.

The classification results measured by mean average precision (map) and average accuracy

(acc) are shown in Table 5.1. The Gray-ISA-Drf model achieves the best result on the average

map (95.3%) and acc (90.3%) of 20 gesture classes. Note that we achieved this accuracy using

very-low resolution videos (200 pixels × 200 pixels). In detail, the Gray-ISA-Drf model and

fusion model achieve the best result on seven and ten out of 20 classes, respectively. While the

performance based on the Gray-ISA-Drf/Depth-ISA-Drf/Gradient-ISA-Drf models is promising,

the accuracy of the Normal-ISA-Drf model is relative low. This is probably because the process

of down-sampling depth video to a lower resolution loses some important information of surface
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Table 5.1: Mean average precision (map) and classification accuracy (acc) on the testing data of

ChaLearn Looking at People Challenge (Track: 3). The Gray-ISA-Drf, Depth-ISA-Drf, Gradient-

ISA-Drf, Normal-ISA-Drf and Fusion model were represented by Gray, Depth, Gradient, Normal,

Fusion in this table, respectively. Each column shows the results obtained from one model. The

best result is highlighted with bold fonts.

Gesture
Gray Depth Gradient Normal Fusion

map acc map acc map acc map acc map acc

vattene 90.1 76.4 88.2 73.6 87.2 78.1 81.8 68.5 88.5 78.6

vieniqui 92.1 85.7 87.6 79.1 86.6 75.3 79.0 68.1 90.0 81.3

perfetto 94.7 94.4 92.7 89.3 92.8 90.4 90.1 87.6 93.1 90.4

furbo 97.8 90.4 91.5 92.7 95.9 92.1 90.3 91.6 96.4 93.8

cheduepalle 99.6 97.7 99.6 97.7 99.1 96.5 99.2 98.8 99.6 98.3

chevuoi 96.1 89.9 96.4 85.9 93.5 83.8 94.3 81.3 96.4 86.9

daccordo 99.3 99.4 99.2 97.5 98.8 98.8 97.7 93.9 99.6 100

seipazzo 97.5 96.2 96.8 92.4 96.3 90.3 94.8 90.8 97.6 94.6

combinato 99.0 98.3 97.3 97.3 98.5 97.3 98.1 97.3 98.8 98.4

freganiente 92.7 88.2 87.4 75.9 88.2 82.9 81.1 67.0 90.8 82.4

ok 88.4 74.1 81.5 60.9 84.8 65.5 79.6 40.2 88.0 66.7

cosatifarei 96.4 92.0 95.9 90.4 94.8 91.5 92.5 89.4 96.4 92.6

basta 99.8 98.3 99.8 99.4 99.7 98.3 99.6 98.8 99.8 98.9

prendere 93.1 82.1 89.5 81.5 91.4 83.7 84.2 72.3 91.9 80.4

noncenepiu 83.8 68.6 75.2 70.9 76.0 60.5 62.9 60.5 80.2 71.5

fame 99.0 97.8 99.0 97.8 98.7 94.6 98.3 97.8 99.1 98.4

tantotempo 99.0 96.5 96.9 95.4 98.5 96.5 96.1 96.5 98.4 97.7

buonissimo 94.0 92.1 85.7 77.5 88.7 82.6 83.5 75.8 90.5 84.8

messidaccordo 96.8 94.4 97.4 95.6 94.1 96.7 95.4 91.7 97.8 97.8

sonostufo 98.0 93.7 98.8 93.7 96.8 85.7 95.6 89.1 98.8 94.3

95.3 90.3 92.8 87.2 93.0 87.1 89.7 82.9 94.6 89.4
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normals. In addition, the fusion model decreased the performance compared with the Gray-

ISA-Drf model. It is expected to achieve a better performance by investigating different fusion

strategies (e.g., different combination of single models, fusion before training the random forest

model). Fig. 5.9, 5.10 are the visualization of confusion matrix of the Gray-ISA-Drf model.

We can see that 12 out of 20 gesture classes achieved a result of > 90% accuracy. This is a

good performance considering that we use single spatio-temporal feature, without using any

hand-engineering spatio-temporal features or skeleton-based feature (for classification task).

In Fig. 5.11, we visualize the 2D heat map of the dominant positions of the first 40 gesture

segments in the testing dataset. The 2D heat map shows the distribution of the discriminative

positions discovered by our approach for the specific gesture segment. The 2D heat maps are

obtained by aggregating the spatial region of the spatio-temporal block of all the tree nodes in

the random forest weighted by the probability of the corresponding gesture class. We can see the

difference of distributions for different gesture classes. We observe that they show semantically

meaningful locations of where we would expect the discriminative regions of subjects performing

different gestures to occur. For example, the regions of corresponding to the hand joint of

the human body are usually highlighted. We can also see that the regions corresponding to

background or irrelevant joints (e.g., head, hip center) are not frequently selected.

In Fig. 5.12, we visualize the 3D heat map of the dominant spatio-temporal positions of the

first 9 gesture segments in the testing dataset. The 3D heat maps are obtained by aggregating

the spatio-temporal space of the spatio-temporal blocks of all the tree nodes in the random

forest weighted by the probability of the corresponding gesture class. To a better visualization,

we mapped the 3D heat maps to a sequence of 2D heat maps where the timestamps of the heat

maps range from the start of the gesture segment to the end of the gesture segment. From this

figure, we can clearly see that the different timestamps of the gesture segment have completely

different heatmaps of the dominant positions. This means that, at different phase of a gesture,

we would expect the different discriminative regions of the subjects performing gesture to occur.

In addition, the 3D heat maps show three distinct phases of a gesture: pre-stroke, nucleus, post-

stroke (see Fig. 5.12), which consists with description in previous research on hand gesture [167].

The pre-stroke corresponds to the subject moving from the resting posture to the initial posture,

which matches the start-phase of our 3D heat maps. During this phase, the spatio-temporal

spaces are not frequently selected by our model (indicated by the blue space in the start-phase

of the 3D heat map). The nucleus corresponds to the actual gesture performed by the subject,

which matches the middle phase of our 3D heat maps (indicated by the red space in the middle

85



5. MULTIMODAL GESTURE DETECTION AND RECOGNITION WITH
RANDOMIZATION AND DISCRIMINATION

vattene 
vieniqui 
perfetto 

furbo 
cheduepalle 

chevuoi 
daccordo 
seipazzo 

combinato 
freganiente 

ok 
cosatifarei 

basta 
prendere 

noncenepiu 
fame 

tantotempo 
buonissimo 

messidaccordo 
conostufo 

v
at

te
n
e 

v
ie

n
iq

u
i 

p
er

fe
tt

o
 

fu
rb

o
 

ch
ed

u
ep

al
le

 
ch

ev
u
o
i 

d
ac

co
rd

o
 

se
ip

az
zo

 
co

m
b
in

at
o
 

fr
eg

an
ie

n
te

 
o
k
 

co
sa

ti
fa

re
i 

b
as

ta
 

p
re

n
d
er

e 
n
o
n
ce

n
ep

iu
 

fa
m

e 
ta

n
to

te
m

p
o
 

b
u
o
n
is

si
m

o
 

m
es

si
d
ac

co
rd

o
 

co
n
o
st

u
fo

 

1.0 
 
 
0.8 
 
 
0.6 
 
 
0.4 
 
 
0.2 
 
 
0.0 

 
 

(a) Gray-ISA-Drf Model
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(b) Depth-ISA-Drf Model

Figure 5.9: The fusion matrice on the testing dataset using the Gray-ISA-Drf model and Depth-

ISA-Drf model. Rows represent the actual gesture classes, and columns represent predicted classes

(best viewed in color).
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(a) Gradient-ISA-Drf Model
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(b) Normal-ISA-Drf Model

Figure 5.10: The fusion matrice on the testing dataset using the the Gradient-ISA-Drf model

and Normal-ISA-Drf model. Rows represent the actual gesture classes, and columns represent

predicted classes (best viewed in color).
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Figure 5.11: The 2D heat maps of the dominant positions of the first 40 gesture segments in the

testing dataset. Each 2D heat map is corresponding to one gesture segment. The 2D heat maps

are obtained by aggregating the spatial region of the spatio-temporal block of all the tree nodes in

the random forest weighted by the probability of the corresponding gesture class. Red rectangles

mean the mis-classified gesture segments. Red indicates high frequency and blue indicates low

frequence (best viewed in color).
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(a) 3D heatmap of sample 1 (b) 3D heatmap of sample 2 (c) 3D heatmap of sample 3

(d) 3D heatmap of sample 4 (e) 3D heatmap of sample 5 (f) 3D heatmap of sample 6

(g) 3D heatmap of sample 7 (h) 3D heatmap of sample 8 (i) 3D heatmap of sample 9

Figure 5.12: The 3D heat map of the dominant spatio-temporal positions of the first 9 gesture

segments in the testing dataset. The 3D heat maps are obtained by aggregating the spatio-

temporal space of the spatio-temporal blocks of all the tree nodes in the random forest weighted

by the probability of the corresponding gesture class. To a better visualization, we mapped the

3D heat maps to a sequence of 2D heat maps where the timestamps of the heat maps range from

the start of the gesture segment to the end of the gesture segment. The left side of each 3D heat

map is the start point of the gesture, and the right side of the 3D heat map is the end point of

the gesture. Red indicates high frequence and blue indicates low frequence (best viewed in color).

part of the 3D heat map). Post-stroke corresponds to the hand motions from the end of the

gesture back to the resting posture, which matches the end of the 3D heat maps (indicated by

the blue space at the end of the 3D heat map).

5.6 Conclusion

Gesture detection and recognition has a wide variety of applications and the Chalearn gesture

dataset serves as an important benchmark of the state-of-the-art in this field. We present

our multi-modality gesture detection and recognition system in this chapter. Comparing to

state-of-the-art approaches relying on hand designed features, our system is able to extract

spatio-temporal features from four different modalities of RGB-D data in an unsupervised way.
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In addition, our system utilizes the random forest framework with discriminative decision trees

to discover spatio-temporal blocks that are highly discriminative for gesture recognition tasks.

We show that our method identifies semantically meaningful spatio-temporal blocks that closely

match human intuition.
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Chapter 6

Conclusion

In the concluding chapter of this thesis, we take a retrospective look to get an overview of

the proposed work and to discuss the contributions and future work to the field of 3D human

motion perception.

In Section 6.1, we summarize this thesis and conclude the main contributions. After that,

in Section 6.2, we briefly revisit thesis goals which are previously introduced in Chapter 1. We

discuss how we finally achieve these goals. Finally, in Section 6.3, we provide a vision of futurity

for developing 3D human motion perception system.

6.1 Summary

In this thesis, we consider the task of developing 3D human motion perception system where

human motions are recorded in multi-modal time series data. Human motion is one of the most

natural means for humans to regulate interactions with the environment. Machine recognition

of human motions constitutes an active research field due to its various applications in robotics,

automotive industry, video surveillance and human-machine interaction. The interest in the

topic is also motivated by the increasing popularity of novel 3D sensing devices. The low-cost

3D sensors enable researchers to record new 3D datasets and to design novel representation

and algorithms. While 3D human motion perception may seem trivial (e.g., with the help of

skeleton data), it is obviously incorrect. The key factor is that 3D muli-modal data and 2D

modality data differ in essence. First, 3D modality provide 3D structure information, but there

are some technical limitations such as low resolutions of the 3D data. Second, 3D modality data

are full of noisy, and tracking results of the skeleton may be wrong if occlusions occur. Third,

multi-modality data make the computation more expensive. Therefore, directly extending the
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solutions of 2D human motion perception into 3D space is inefficient. In this thesis, we are

developing efficient 3D human motion perception system by introducing advanced machine

learning techniques.

In Chapter 2, we provided a comprehensive study of state-of- the-art 3D human motion

perception methodologies and discuss the advantages and disadvantages of different methods.

While a significant amount of research in the literature is described and analyzed in detail, we

did not intend to cover all work in this area. We focused on recent work in machine recognition

of human motions based on 3D video datasets. In this chapter, we observed that in 3D human

motion perception there are some challenges which are not fully addressed by state-of-the art

methodologies: (1) Multi modalities challenge. The depth cameras provide multi modalities,

such as skeleton joint data, depth data, gray-scale data, surface normal data. To achieve a

robust and efficient human motion perception system, how to represent multi modalities in

an efficient way? (2) Domain-dependent and modality-dependent problem. One drawback of

state-of-the-art human motion perception systems is that they are highly domain-dependent and

modality-dependent. Previous study shows that there is no universally best hand-engineering

feature for different dataset. (3) Redundant knowledge. In many computer vision tasks, dense

feature representations are often used to capture enough information from high-dimensional

visual data. This principle can also be employed in 3D human motion perception. However,

rich representations always introduce significant redundancy among the feature space, and are

not discriminative for distinguishing different human motions. Based on these observations, we

firstly developed an unsupervised feature learning framework which we introduced in Chapter 3.

We described our approach for learning 3D spatial-temperal feature from RGBD video data and

3.5D spatial-temperal feature from RGBD video and skeleton data. As a general framework,

it can be used by any discriminative and generative classifiers in human motion perception

systems.

After introducing the unsupervised learning feature framework, in Chapter 4, we present

an efficient 3D action recognition system by combining unsupervised feature learning with dis-

criminative feature mining. Unsupervised feature learning allowed us to extract spatio-temporal

features from unlabeled video data. With this, we can avoid the cumbersome process of de-

signing feature extraction by hand. We proposed an ensemble approach using a discriminative

learning algorithm, where each base learner is a discriminative multi-kernel-learning classfier.

Our approach was able to learn an optimal combination of joint-based features. In our eval-

uation, we analyzed the efficiency of our 3D action recognition approach. In more detailed

92



6.2 Discussion

discussions, we investigated which joint subsets are discriminative for different types of actions,

and we studied which of these joints are sufficient to recognize these actions. Our experimental

results of the EnMkl approach showed a performance superior to existing techniques. Results

also suggested that learning spatio-temporal features directly from depth video data may be

a promising direction for future research, as combining these features with ensemble learning

may further increase performance.

In Chapter 5, we introduced a novel human motion perception system called multimodal

gesture detection and recognition system with randomization and discrimination. We mainly

focused on human gesture recognition which is regarded as a sub-ordinate level categorization

problem. Sub-ordinate level categorization problem did not receive too much attention in com-

puter vision community. We tackle this problem by combining two key concepts: randomization

and discrimination. A discriminative random forest for the gesture recognition was built in our

system. Unlike traditional random forest, discriminative random forest was built by discrim-

inative decision trees. Our approach was able to efficiently mine a very dense sampling 3D

space by using strong classifiers at each node and combining information along the different

depth of the tree. Comparing to the weak classifier in classical random forest, strong classifiers

significantly enhanced the power of the decision trees. At the same time, the dense sampling

of 3D space guarantee low correlation of different trees. The evaluation results showed the

ability to discover meaningfully semantic information from a large number of video blocks with

arbitrary sizes, shapes, and locations in space and time, as well as discover pairs of video blocks

that carry discriminative video data statistic.

6.2 Discussion

The efficiency of 3D human motion perception system is the leading principle of this thesis.

Efficiency is viewed from three sides in this thesis: the perception system gets more efficient if

it processes data automatically without human intervention while giving the high performance

results, the perception system gives better result within an optimized combination of multiple

input modalities, and the perception system achieves meaningful results by discovering the

useful knowledge from a richer representation.

Efficiency is realized by developing advanced machine learning techniques in this thesis.

Advanced machine learning refers to the process of generating and mining knowledge from

empirical example data, collected by observing a process or system of interest. In this thesis,
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techniques are mainly explored to cope with the noisy and ambiguous data provided by the

depth cameras, and to learn a more robust, effective and discriminative feature representation

of the 3D human motions over richer collections. This thesis shows that the developed advanced

machine learning techniques guarantee the efficiency of each key procedures of 3D human motion

perception.

Efficiency is validated by combining three concepts in this thesis: un-supervision, random-

ization and discrimination. Un-supervision is seen as a way of learning and extracting features

directly from the unlabeled video data. It leverages the plethora of the unlabeled data and

adapt easily to new modality data. Randomization is seen as a way of discovering meaningful

knowledge over the rich collections of features. It enables the algorithm to efficiently mine a

very dense spatio-temporal sampling space of the video data in a principled way. Discrimina-

tion is seen as a way of learning the important and discriminative characteristics of feasible

human motions from labeled video data. Together with un-supervision and randomization, it

guarantees the effectiveness and efficiency of the algorithms.

Efficiency is demonstrated by two main topics: 3D human action recognition and 3D human

gesture recognition in this thesis. The first topics is about the recognition of the 3D human

actions by using unsupervised learning and ensemble learning techniques. Unsupervised feature

learning allows us to extract spatio-temporal features from the depth video data. It avoids the

cumbersome process of manually designed feature extraction. An ensemble approach using a

discriminative learning algorithm is developed to learn an optimal combination of joint-based

features. The evaluation includes a comparison to state-of-the-art methods on the MSRAction

3D dataset. In the second part a 3D human gesture detection and recognition system is built

under the random forest framework by combining discriminative training and randomization.

The system aims at the recognition of continuous, natural human gestures with the multi-

modality nature of the visual cues, as well as technical limitations such as spatial and temporal

resolution and unreliable depth cues. The evaluation is performed on the world’s largest 3D

human gesture dataset Chalearn Gesture dataset.

6.3 Future Work

An important future work is to fusion multi modality video representations. In this thesis, we

discussed 3 categories of 3D video representations. All of them develop techniques on a single

modality. The performance relies on the accuracy of the modality data. This issue should be
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addressed by multi-modality fusion representations, which addresses the hierarchical structure

of different types of features.

Another future work is to pay more attention to high-level vision tasks. Most of the classifi-

cation models focus on low-level action tasks, where the video is already divided into segments

which contain one class of a predefined action label. The action localization task is thus ignored.

Such approaches have many limitations when applied to a realistic scenario where segementa-

tion in space and time is impossible. Due to the large scale and complex properties of the

high-level vision tasks, most of the approaches are complicated and hard to generalize. It is

expected that more research addresses this topic and develops algorithms and implementations

to promote promising solutions in this topic.

A very important issue in vision based perception system in general is achieving real time

performance. Many 3D action recognition algorithms are computationally expensive. As the

amount of data with ever higher resolutions and frame rates increases, the problem will become

even bigger. Thus the area of reserach on optimization methods for either feature extraction or

action modeling constitues an open one. The ultimate goal for 3D human motion perception

will be real-time analysis, requiring real-time video representation and on-line modeling, two

operations that require low computational cost.
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cisco Flórez-Revuelta. Evolutionary joint selection to improve human action recognition

with rgb-d devices. Expert Systems with Applications, 41:786–794, 2014. 18

[44] M. Reyes, G. Dominguez, and S. Escalera. Feature weighting in dynamic time warping

for gesture recognition in depth data. In IEEE International Conference on Computer

Vision Workshops, pages 1182–1188, 2011. 18

[45] A. Hernandez-Vela, M.A. Bautista, X. Perez-Sala, V. Ponce, X. Baro, O. Pujol, C. An-

gulo, and S. Escalera. Bovdw: Bag-of-visual-and-depth-words for gesture recognition. In

International Conference on Pattern Recognition, pages 449–452, 2012. 18, 25, 27
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