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Zusammenfassung

In den vergangenen Jahrzehnten wurden zahlreiche verschiedene Ansätze zur Quantifizierung
des Schweregrades von Dürren entwickelt. Jedoch haben die meisten dieser Dürreindizes un-
terschiedliche Mängel, berücksichtigen nur ein oder zwei Faktoren die Dürre begünstigen und
vernachlässigen deren wechselseitige Abhängigkeiten. Im ersten Teil der Dissertation präsen-
tieren wir eine neuartige Methodik zur Berechnung von (multivariaten) Dürreindizes, welche die
Vorteile bestehender Ansätze kombiniert und deren Nachteile umgeht. Sie kann flexibel in ver-
schiedensten Anwendungen eingesetzt werden, um verschiedene Arten von Dürre basierend auf
benutzerdefinierten, Dürre-relevanten Variablen zu modellieren. Sie profitiert von der Flexibilität
von Vine Copulas bei der Modellierung multivariater nicht-Gaußscher Abhängigkeitsstrukturen
zwischen verschiedenen Variablen. Basierend auf einem dreidimensionalen Datensatz entwick-
eln wir einen beispielhaften agrometeorologischen Dürreindex. Eine Analyse der Daten ver-
anschaulicht und rechtfertigt die beschriebene Methodik. Eine Validierung des exemplarischen
multivariaten agrometeorologischen Dürreindexes mit Hilfe von beobachtetem Sojabohnenertrag
bestätigt die Validität und das Potenzial der Methodik. Der Vergleich mit etablierten Dürrein-
dizes zeigt die Überlegenheit unseres multivariaten Ansatzes.

Verschiedene Disziplinen verfolgen das Ziel, Modelle zu entwickeln, die bestimmte Phäno-
mene so genau wie möglich charakterisieren. Die Klimawissenschaft als Paradebeispiel ist daran
interessiert die zeitliche Entwicklung des Klimas zu modellieren. Um verschiedene Modelle zu
vergleichen und zu verbessern, ist Methodik für eine faire Modellevaluierung unerlässlich. Da
Modelle und Vorhersagen eines Phänomens für gewöhnlich mit Unsicherheit behaftet sind, sind
korrekte Bewertungsregeln (proper scoring rules) und korrekte Divergenzfunktionen (proper di-
vergence functions), welche Werkzeuge sind die diese Unsicherheit berücksichtigen, eine geeignete
Wahl für die Modellevaluierung. In der Gegenwart von Nicht-Stationarität wird eine derartige
Modellevaluierung jedoch schwierig, da sich die Eigenschaften des Phänomens von Interesse
verändern. Der zweite Teil der Dissertation liefert Methodik zur Modellevaluation im Kon-
text von nichtstationären Zeitreihen. Die neue Methodik nimmt an, dass die Zeitreihen in
kleinen, zeitlich versetzten (gleitenden) Zeitfenstern stationär sind. Diese gleitenden Fenster,
welche basierend auf einer Changepoint-Analyse ausgewählt werden, werden verwendet, um die
Unsicherheit des Phänomens/Modells für die entsprechenden Zeitpunkte zu beschreiben. Dies
resultiert im Konzept der gleitenden Scores und Divergenzen, welches eine zeitliche Beurteilung
der Modell-Performance ermöglicht. Die Vorzüge der vorgeschlagenen Methodik werden anhand
einer Simulations- und einer Fallstudie illustriert.
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Abstract

During past decades, many different approaches to quantify drought severity have been de-
veloped. However, most of these drought indices suffer from different shortcomings, account
only for one or two driving factors which promote drought conditions and neglect their inter-
dependencies. In the first part of the thesis, we provide a novel methodology for the calculation of
(multivariate) drought indices, which combines the advantages of existing approaches and omits
their disadvantages. It can be used flexibly in different applications to model different drought
types based on user-selected, drought relevant variables. It benefits from the flexibility of vine
copulas in modeling multivariate non-Gaussian inter-variable dependence structures. Based on
a three-variate data set, an exemplary agro-meteorological drought index is developed. The data
analysis illustrates and justifies the described methodology. A validation of the exemplary mul-
tivariate agro-meteorological drought index against observed soybean yield affirms the validity
and capabilities of the novel approach. Comparison to established drought indices shows the
superiority of our multivariate approach.

Different disciplines pursue the aim to develop models which characterize certain phenomena
as accurately as possible. Climatology is a prime example, where the temporal evolution of
the climate is modeled. In order to compare and improve different models, methodology for a
fair model evaluation is indispensable. As models and forecasts of a phenomenon usually are
associated with uncertainty, proper scoring rules and proper divergence functions, which are
tools that account for this kind of uncertainty, are an adequate choice for model evaluation.
However, under the presence of non-stationarity, such a model evaluation becomes challenging,
as the characteristics of the phenomenon of interest change. The second part of the thesis
provides methodology for model evaluation in the context of non-stationary time series. The
novel methodology assumes stationarity of the time series in small moving time windows. These
moving windows, which are selected based on a changepoint analysis, are used to characterize
the uncertainty of the phenomenon/model for the corresponding time instances. This leads to
the concept of moving scores and divergences, which allows a temporal assessment of the model
performance. The merits of the proposed methodology are illustrated based on a simulation and
a case study.
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1 Introduction

Years after the establishment of the Intergovernmental Panel on Climate Change (IPCC) in 1988,
climate change has slowly become one of the hot topics concerning our modern day society. Ever
since 1990, the IPCC has published several reports on the current state of knowledge on climate
change. Its latest Assessment Report (AR5, see IPCC, 2014, for the synthesis report) consolidates
our current understanding of climate change, its causes and impacts, and discusses possible
adaptation and mitigation strategies. As a contribution to all the endeavors to better understand
(different aspects of) climate change, this thesis in the area of applied statistics is concerned with
two different topics of relevance in the wide field of climate change research. These two topics
are drought (respectively drought modeling) and the evaluation of climate models (respectively
model evaluation under the presence of non-stationarity; see also Flato et al., 2013, for Chapter
9 of the contribution of Working Group I to the Fifth Assessment Report of the IPCC on the
evaluation of climate models). The first part of the following introduction on drought modeling
and the development of novel drought indices is based on Erhardt and Czado (2016).

Drought modeling and the development of novel drought indices The challenging field
of drought research has a long history. Scientists of different disciplines described and defined
different drought concepts and tried to measure, quantify and predict drought events and their
impacts. There exist several review papers trying to depict/portray the state of the art and dif-
ferent developments in drought modeling (see e.g. Mishra and Singh, 2010; AghaKouchak et al.,
2015). Drought indices aim to quantify how dryness conditions evolve over time (based on time
series of drought-relevant variables) and enable a classification of the severity of drought events.
The most popular drought indices are the Palmer Drought Severity Index (PDSI; Palmer, 1965)
respectively its self-calibrating version (SC-PDSI; Wells et al., 2004) and the Standardized Pre-
cipitation Index (SPI; McKee et al., 1993; Edwards and McKee, 1997). Despite the fact, that
there already exist plenty of different drought indices (see also Section 2.1 and Section 4.1 for a
detailed discussion of established drought indices), the development of novel drought indices is
still a vibrant field of research. This is especially due to the fact, that “drought is best charac-
terized by multiple climatological and hydrological parameters” (Mishra and Singh, 2010) and
that different drought types like

• meteorological drought (lack of precipitation),

• hydrological drought (declining water resources),

• agricultural drought (lack of soil moisture),

• socio-economic drought (excess demand for economic good(s) due to shortfall in water
supply)
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1 Introduction

• ground water drought (decrease in groundwater recharge, levels and discharge)

are driven by different variables. Recently, there have been several attempts to develop mul-
tivariate drought indices (see e.g. Kao and Govindaraju, 2010; Hao and AghaKouchak, 2013,
2014; Farahmand and AghaKouchak, 2015), i.e. measures that summarize the dryness informa-
tion captured in at least two different variables in one indicator of drought severity (see also
Section 2.2). In this thesis (Chapter 4), we motivate and present a flexible and statistically sound
approach for the calculation of standardized uni- and multivariate drought indices. The novel
(multivariate) method allows the end-user to decide which type(s) of drought to investigate and
which variables are relevant for her or his specific application. In contrast to earlier methods, it
allows to incorporate more than two variables. Inter-variable dependencies are modeled based
on vine copulas (see e.g. Aas et al., 2009, as well as Section 2.3, where we provide the necessary
background on (vine) copulas). Flexible modeling of the full multivariate distribution of interest
is crucial in order to account for the joint occurrence of extremes of different drought drivers.

Model evaluation under the presence of non-stationarity Climate models (which are a
mathematical description of certain processes in the Earth’s climate system) are the main tool
to learn about possible future changes of the climate. Also the discussion on climate change in
the Fifth Assessment Report of the IPCC (see IPCC, 2014, for the synthesis report) is based
on projections of future states of the climate which assume different scenarios of greenhouse gas
and air pollutant emissions and land use. A multitude of climate models is used to simulate fu-
ture states of the climate (that is, variables like surface temperature and precipitation, amongst
others). In order to evaluate the accuracy of different climate models, simulations from these
models are compared to historical observations. One way to perform such a comparison is to
compare simulations to observations separately for each time unit (and each spatial unit). Such
a point-wise comparison (e.g. based on one of the metrics discussed in Hyndman and Koehler,
2006) is obviously the most straightforward approach to model evaluation. However, this ap-
proach might be rather less adequate for the evaluation of climate models based on a daily or
even finer temporal resolution. As climate models aim at modeling the long-term evolution of
the climate, they can not provide accurate simulations/forecasts on a daily basis, they rather
intend to model/simulate the characteristics of the climate for longer time periods (several con-
secutive days/weeks). In other words, a climate model respectively a simulation/forecast from a
climate model for a specific time instance is associated with uncertainty. A point-wise evaluation
neglects this uncertainty. Proper scoring rules/scores (see e.g. Gneiting and Raftery, 2007) are
a possible remedy. Assuming a distribution for the model/forecast, a scoring rule evaluates how
well the observation of the modeled/forecast quantity fits to this distribution. One can further
argue, that also the observation is associated with uncertainty. Then, proper divergence func-
tions/divergences (see Thorarinsdottir et al., 2013) can be used to compare a distribution for
the observed quantity to the model/forecast distributions. However, considering these options
from a practical point of view, three questions arise:

1. How can we assess the model/forecast distribution, if all we have is one time series of
realizations from the model/deterministic forecasts?

2. How can we assess the distribution of the observed quantity, if all we have is one time
series of realizations of that quantity?

3. Can we assume one and the same distribution for different time instances, that is, are the
distributions stationary?

2



To answer these questions we cling to our application of climate model evaluation. Under the
presence of climate change and seasonality, it is obvious, that we have to negate the third
question. This makes it more difficult to answer the first two questions. Our answer assumes,
that the characteristics of the variables of interest (modeled by the climate model) change only
gradually, and can be considered as (approximately) stationary for short time windows. Then, for
each of these time windows, we can construct empirical distributions based on the corresponding
realizations. This idea is the basis for the novel evaluation approaches under the presence of
non-stationarity introduced in this thesis (Chapter 5). It is not restricted to the evaluation
of climate models. Hence, we introduce it in a general setting. The (moving) time windows,
for which we assume stationarity are selected based on a changepoint detection algorithm (see
Killick et al., 2012). We propose and compare three different window selection strategies. Based
on the samples/empirical distributions corresponding to these (moving) windows we compute
time series of (moving) scores and divergences. This allows to assess the model performance over
time.

Outline of the thesis In Chapter 2 we provide some background on standardized and mul-
tivariate drought indices. Being the heart of the novel drought indices which we propose, we
further introduce (vine) copulas. Furthermore, we introduce some metrics which will be used
to validate the novel drought indices. As the backbone of our novel evaluation technique, we
introduce proper scoring rules and divergence functions. For comparison we give an overview of
traditional evaluation measures used in a time series context. Moreover, we provide an introduc-
tion to the problem of changepoint detection, with a focus on the PELT (Pruned Exact Linear
Time) method (see Killick et al., 2012).

After providing the necessary theoretical background on which this thesis is built (Chapter
2), we introduce the data sets used to illustrate the new methodology presented in this the-
sis (Chapter 3). Finally, Chapter 4 elaborates on the novel standardized uni- and multivariate
drought indices. Their development is discussed in detail and illustrated with an example. Chap-
ter 5 covers the novel technique for model evaluation under the presence of non-stationarity. In
a simulation and a case study, we show the merits of the proposed methodology.

3
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2 Preliminaries

2.1 Standardized drought indices

Among the multitude of methods applied to quantify drought (see e.g. Mishra and Singh, 2010,
and reference therein), there has been a trend towards standardized drought indices (see e.g.
Bachmair et al., 2016). Following the original suggestion of the Standardized Precipitation In-
dex (SPI) by McKee et al. (1993) (see also Edwards and McKee, 1997) the concept of standard-
ized drought indices has been used for/extended to various drought-relevant variables (see e.g.
Bachmair et al., 2016, and reference therein). We list the corresponding indices in chronological
order:

SPI Standardized Precipitation Index (McKee et al., 1993)

SRI Standardized Runoff Index (Shukla and Wood, 2008)

SPEI Standardized Precipitation Evapotranspiration Index (Vicente-Serrano et al., 2010)

SSI Standardized Streamflow Index (Vicente-Serrano et al., 2012)

SGI Standardised Groundwater level Index (Bloomfield and Marchant, 2013)

SSI Standardized Soil moisture Index (AghaKouchak, 2014)

SMRI Standardized Snow Melt and Rain Index (Staudinger et al., 2014)

SPDI Standardized Palmer Drought Index (Ma et al., 2014)

Subsequently, we outline in a general setting how standardized drought indices are calculated
using the SPI-method introduced by McKee et al. (1993). A (detailed) description of the math-
ematical procedure behind the SPI can be found in Edwards and McKee (1997). To illustrate
the single steps of the standardized drought index computation in Figures 2.1–2.3 we use a time
series of monthly precipitation aggregates obtained from the Deutscher Wetterdienst (2015). We
consider the precipitation (PRE) time series for Regensburg (Germany) for the 30 year period
1951–1980.

Computation of standardized drought indices according to McKee et al. (1993) Let
now xtk , k = 1, . . . , N be a monthly time series of a drought-relevant variable (e.g. precipita-
tion). Then we can consider the time index tk as a 2-tupel (mk, yk), where mk ∈ {1, . . . , 12}
(1 =January, . . . , 12 =December) represents the month and yk ∈ Z the year corresponding to tk.
Using this notation, the computation of a standardized drought index (following the SPI-method,
McKee et al., 1993) comprises the following steps in the given order:

5
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Figure 2.1: Illustration of Steps 1 and 2 of the computation of standardized drought indices in
Section 2.1. The original precipitation (PRE) time series (upper panel) is aggregated at time
scale ℓ = 18 (middle panel) and the 12 month-wise sub-series are extracted (lower panel). The
blue dots correspond to the aggregated PRE18 observations for June.

1. For a selected time scale/aggregation period ℓ ∈ N calculate the aggregated time series
xℓ,tk as xℓ,tk =

∑ℓ−1
j=0 xtk−j

, k = ℓ, . . . , N .

2. From the aggregated time series xℓ,tk , k = ℓ, . . . , N , extract the 12 month-wise sub-
series xℓ,m := (xℓ,tk)k∈K(m) =

{
xℓ,(m,yk), k ∈ K(m)

}
, m = 1, . . . , 12, where K(m) :=

6



2.1. STANDARDIZED DROUGHT INDICES
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Figure 2.2: Illustration of Steps 3 and 4 of the computation of standardized drought indices in
Section 2.1. The CDF of a gamma distribution (black line, left panel) is fitted to the month-wise
sub-series of the (at time scale ℓ = 18) aggregated precipitation (PRE18) time series correspond-
ing to the June observations (blue dots). Based on the fitted CDF each observation (blue dots)
is first transformed to a standard uniform distribution (green dots) and then transformed fur-
ther (orange dots) using a standard normal distribution CDF (black line, right panel). Then the
orange dots represent the Standardized Precipitation Index (SPI18) values corresponding to the
month of June.

{k : mk = m} defines the set of all time indices corresponding to a particular month m.

3. To each of the 12 month-wise sub-series xℓ,m, m = 1, . . . , 12, separately fit a parametric
probability distribution with CDF F (x;θm) parametrized by a (set of) parameters θm.
(This step incorporates the selection of an adequate distribution family and the computa-
tion of the corresponding parameter estimates θ̂m, m = 1, . . . , 12.)

4. Using the probability distributions estimated in the previous step, transform each month-
wise sub-series xℓ,m, m = 1, . . . , 12, separately to a normal distribution. Hence, the

standardized drought index time series is obtained as SDIℓ(tk) := Φ−1
(
F (xℓ,tk ; θ̂mk

)
)
,

k = ℓ, . . . , N , where Φ is the cumulative distribution function (CDF) corresponding to the
standard normal distribution.

The choice of the distribution family in Step 3 depends on the variable under consideration.
Candidate distributions which were considered for (at least one of) the standardized indices listed
in the beginning of the section are the gamma, log-logistic, Pearson type III, generalized extreme
value, beta, log-normal, normal, Weibull and the generalized Pareto distribution. Also non-
parametric approaches were considered for the transformation to a standard normal distribution.
For instance AghaKouchak (2014) used the empirical Gringorten plotting position (Gringorten,
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Figure 2.3: Illustration of the computation of standardized drought indices in Section 2.1. The
upper panel shows the SPI18 (Standardized Precipitation Index, time scale 18) time series for
Regensburg. The color-coding reflects the severity of dry-/wetness according to the different
(D/W) categories specified in Table 2.1 (which are defined based on certain quantiles of the
standard normal distribution). For better identification of dry/wet periods (upper panel) points
at the bottom/top indicate points in time of dry/wet conditions. A histogram of the SPI18
realizations (lower panel) shows the grouping into the different categories. The PDF of a standard
normal distribution is indicated for comparison.
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2.2. MULTIVARIATE DROUGHT INDICES

1963), and Bloomfield and Marchant (2013) considered a rank transformation instead of fitting
a parametric distribution.

Figures 2.1–2.3 illustrate the computation of standardized drought indices outlined above in
the case of a precipitation time series and for a time scale of 18. Figure 2.1 illustrates the aggre-
gation of the precipitation time series for ℓ = 18 and the extraction of the 12 monthly sub-series.
It shows that a differentiation between different months is meaningful, as the characteristics of
the time series varies with the season. Figure 2.2 illustrates the month-wise transformation of the
aggregated time series to a standard normal distribution, for the month of June. Here a gamma
distribution was employed. From the plot it becomes clear that the result of the transformation
depends very much on the chosen distribution family and on the length of the time series (sample
size). The transformation results only in an approximately standard normal distributed sample.
Figure 2.3 visualizes the resulting Standardized Precipitation Index (SPI18) and the grouping
of its realizations into certain dry-/wetness categories (see Table 2.1). The figure identifies the
most severe drought conditions during the years 1954/55, 1961 and 1973/74. The histogram
which summarizes the SPI18 realizations into dry-/wetness categories shows a general lack in
the approximation of a standard normal distribution.

Classification of standardized drought indices To classify the values of standardized
drought indices we use the dry-/wetness categories as defined in Table 2.1, which are based on
quantiles of the standard normal distribution (cp. Svoboda et al., 2002).

Table 2.1: Dryness (D) and wetness (W) categories for standardized drought indices (SI), defined
based on certain quantiles of a standard normal distribution.

cumulative
category probability quantile

W4 exceptionally wet 0.98–1.00 +2.05 < SI < +∞
W3 extremely wet 0.95–0.98 +1.64 < SI ≤ +2.05
W2 severely wet 0.90–0.95 +1.28 < SI ≤ +1.64
W1 moderately wet 0.80–0.90 +0.84 < SI ≤ +1.28
W0 abnormally wet 0.70–0.80 +0.52 < SI ≤ +0.84
D0 abnormally dry 0.20–0.30 −0.84 < SI ≤ −0.52
D1 moderately dry 0.10–0.20 −1.28 < SI ≤ −0.84
D2 severely dry 0.05–0.10 −1.64 < SI ≤ −1.28
D3 extremely dry 0.02–0.05 −2.05 < SI ≤ −1.64
D4 exceptionally dry 0.00–0.02 −∞ < SI ≤ −2.05

2.2 Multivariate drought indices

Besides the trend towards the development and favored application of standardized drought in-
dices (see Section 2.1), in recent years there has also been a trend towards drought indices which
aim to quantify drought based on multiple input variables. The review paper of Hao and Singh
(2015) discusses different approaches undertaken to join drought information captured in differ-
ent variables. They differentiate between indices that are obtained based on

• blending different drought indicators,

• a water balance model,

9
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• latent variables computed from observed variables,

• linear combinations of drought indicators,

• joint distributions (copulas), and

• principal component analysis (PCA).

In the literature there is no unified naming convention for these different types of (multivariate)
drought indices. Such indices have been termed aggregate, combined, composite, comprehensive,
hybrid, integrated, joint, multi-scalar and multivariate (see Hao and Singh, 2015, and reference
therein). In this thesis we are particularly interested in drought indices which take variable inter-
dependencies into consideration by modeling a joint, multivariate distribution. Throughout the
thesis we will use the naming convention multivariate drought indices to address this class of
drought indices.

2.3 Dependence modeling with copulas

In this section, we provide the necessary background on vine copulas, which is required to fully
understand the modeling ideas behind the novel multivariate drought indices introduced in this
thesis. Also known as pair-copula constructions, vine copulas allow to model highly flexible and
asymmetric dependence structures in dimension d > 2, by constructing a d-dimensional copula
based on bivariate building blocks, so called pair-copulas. Subsequently, we introduce copulas in
general (Section 2.3.1), explain vine copulas (Section 2.3.2) with a focus on so called canonical
vine copulas as well as their inference (Section 2.3.3), and show how a multivariate probability
integral transformation can be calculated for this special class of copulas (Section 2.3.4).

2.3.1 Copulas

What is a copula? Considering the general setting of d ≥ 2 dimensions, a d-dimensional
copula C is a d-dimensional (cumulative) distribution function (CDF) on the d-dimensional unit
hypercube [0, 1]d with the univariate margins following a standard uniform distribution. We
denote the corresponding copula density by c.

How can copulas be used to model dependencies? To explain the use of copulas in
dependence modeling, we consider a setting where we are interested in modeling the dependence
of d ≥ 2 random variables X1, . . . , Xd with marginal distributions F1, . . . , Fd and joint multivari-
ate distribution F . The famous theorem of Sklar (1959) states that in this setting there exists a
copula C, such that

F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) . (2.1)

In the case of an absolutely continuous CDF F the copula C is unique. From Equation (2.1)
we see, that the copula C captures the dependence between the margins of the multivariate
distribution F . Hence, Sklar’s Theorem allows a separation of the modeling of univariate margins
and multivariate dependence structure.

How does this work in practice? Let us now consider an i.i.d. sample (x1,k, . . . , xd,k),
k = 1, . . . , N , from an unknown d-variate distribution function F . In order to model F , we now
can make use of the above addressed separation (Sklar’s Theorem/Equation (2.1)).

10



2.3. DEPENDENCE MODELING WITH COPULAS

1. We transform the margins to so called copula data using the probability integral transfor-
mations (PIT)

uj,k = Fj(xj,k), j = 1, . . . , d, k = 1, . . . , N, (2.2)

where Fj , j = 1, . . . , d, are the univariate marginal CDFs corresponding to F .

2. We model the dependence of the copula data (u1,k, . . . , ud,k), k = 1, . . . , N , by means of a
d-dimensional copula C.

However, the marginal distributions Fj , j = 1, . . . , d, in the first step are usually unknown.
Hence, they have to be estimated, either parametrically or non-parametrically. If the marginal
distributions in the above two-step procedure are estimated using parametric marginal models,
we speak of the inference functions for margins (IFM) method (see Joe and Xu, 1996). If they
are estimated based on empirical distributions we call the above procedure semi-parametric (see
Genest et al., 1995).

How do we model copulas? It is common practice in dependence modeling to model the
copula C in Equation (2.1) using a parametric copula C(·;θ), parametrized by one or more
parameters, here summarized in a vector θ. The literature provides a wide range of parametric
copula families (see e.g. Joe, 2014, Chapter 4).

Which are the most popular parametric copula families? One of the most popular
classes of copulas are elliptical copulas. Considering an arbitrary elliptical multivariate distribu-
tion F with known marginal distributions Fj , j = 1, . . . , d, elliptical copulas (see Fang et al.,
2002; Frahm et al., 2003) are derived easily from Equation (2.1) provided by Sklar’s Theorem.
Substituting xj in Equation (2.1) by F−1

j (uj) for all j = 1, . . . , d, results in the formula

C(u1, . . . , ud) = F
(
F−1
1 (u1), . . . , F

−1
d (ud)

)
,

which yields the copula corresponding to our arbitrary elliptical multivariate distribution F .
Popular elliptical copulas are the Gaussian and the Student t copula derived from the multivari-
ate Gaussian and Student t distribution, respectively. Hence, their bivariate versions are both
parametrized by a correlation parameter ρ ∈ (−1, 1) and the Student t copula has an additional
degrees of freedom parameter ν > 0.

Another popular copula class are called Archimedean copulas. We briefly introduce them in
a two-dimensional setting. They are discussed in more detail for example by Joe (2001) and
Nelsen (2006). A bivariate Archimedean copula is defined by

C(u1, u2) := ϕ[−1] (ϕ(u1) + ϕ(u2)) ,

where the function ϕ : [0, 1] → [0,∞] called generator has to be continuous, convex, strictly
decreasing, with ϕ(1) = 0 and the pseudo-inverse ϕ[−1] is defined as

ϕ[−1](u) :=

{
ϕ−1(u) for 0 ≤ u ≤ ϕ(0)
0 for ϕ(0) < u ≤ ∞.

Popular examples of Archimedean copulas (each parametrized by one parameter θ) are the

Clayton
[
ϕ(u) = 1

θ
(u−θ − 1), θ ∈ (0,∞)

]
,

Gumbel
[
ϕ(u) = (− lnu)θ, θ ∈ [1,∞)

]
,
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Frank
[
ϕ(u) = − ln exp(−θu)−1

exp(−θ)−1 , θ ∈ (−∞,∞)\{0}
]
, and

Joe
[
ϕ(u) = − ln

(
1− (1− u)θ

)
, θ ∈ [1,∞)

]

copula (with the corresponding generators stated in brackets).
Another important copula, which is a limiting case of all copulas stated above is the inde-

pendence copula. The d-dimensional independence copula is defined as

C(u1, . . . , ud) =
d∏

j=1

uj , (2.3)

with density c(u1, . . . , ud) = 1, for (u1, . . . , ud) ∈ [0, 1]d. It can be used to model independence.
Due to its CDF being a product it is also known as product copula and often denoted as Π.

What is the interpretation of the copula parameters? The copula parameters are often
also called dependence parameters, as they characterize the magnitude of association among the
variables under consideration. The parameters of (bivariate) elliptical and Archimedean copulas
can for instance be related to the association measure Kendall’s τ (see e.g. Embrechts et al.,
2003, for mathematical expressions of these relationships). The association measure Kendall’s τ
(see e.g. Kruskal, 1958) for a variable pair is defined as

τ :=P((X1 − Y1)(X2 − Y2) > 0)− P((X1 − Y1)(X2 − Y2) < 0)

= 2P((X1 − Y1)(X2 − Y2) > 0)− 1,

where the random variable pairs (X1, X2) and (Y1, Y2) are i.i.d. One important property of
Kendall’s τ is, that it depends only on the copula C corresponding to the variable pair under
consideration. It can be written as

τ = 4

∫

[0,1]2
C(u1, u2)dC(u1, u2)− 1

(see e.g. Nelsen, 2006, Chapter 5).

How do copulas specify dependence in bivariate distribution tails? As we have seen,
there are plenty of different parametric copula families, whose parameters influence the magni-
tude of dependence. Moreover, their functional shapes differ. This results in different behavior
of these families in terms of the joint occurrence of extreme values. This behavior can be char-
acterized using tail dependence coefficients (see e.g. Joe, 1993; Nelsen, 2006, Section 5.4). Let
(X1, X2) ∼ F with corresponding copula C. Then the lower tail dependence coefficient is defined
as the limit

λlower := lim
uց0

P(X2 ≤ F−1
2 (u)|X1 ≤ F−1

1 (u)) = lim
uց0

C(u, u)

u
.

Accordingly, the upper tail dependence coefficient is given by

λupper := lim
uր1

P(X2 > F−1
2 (u)|X1 > F−1

1 (u)) = lim
uր1

1− 2u+ C(u, u)

1− u .

If the limits λlower and λupper exist and lie in ∈ (0, 1], then the copula C has lower and/or upper
tail dependence, respectively. Table 2.2 summaries which of the above addressed copulas have
upper and/or lower tail dependence.
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Table 2.2: Summary of the presence of upper/lower tail dependence for Gaussian (N), Student-t
(t), Clayton (C), Gumbel (G), Frank (F) and Joe (J) copulas.

N t C G F J

upper no yes no yes no yes
lower no yes yes no no no

How do different copula families look like? What are their distributional character-
istics? Here, we provide a visualization of how the dependence structures modeled by bivariate
Gaussian (N), Student-t (t), Clayton (C), Gumbel (G), Frank (F) and Joe (J) copulas differ.
Figure 2.4 provides contour plots which visualize the densities of bivariate distributions obtained
from Equation (2.1), where the corresponding copulas from above were combined with standard
normal margins. The provided plots show that both elliptical copulas (N and t) as well as the
Frank copula (F) are symmetric with respect to both diagonals. Also the different tail behavior
summarized in Table 2.2 can be observed. For more details on different copula families we refer
to Joe (2014, Chapter 4).
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Figure 2.4: Visualization of bivariate Gaussian (N), Student-t (t), Clayton (C), Gumbel (G),
Frank (F) and Joe (J) copulas: Density contour plots of bivariate distributions obtained from
Equation (2.1) (Sklar’s Theorem), where the corresponding copulas were combined with standard
normal margins. For all copulas the (first) parameter was chosen such that Kendall’s τ = 0.7.
The degrees of freedom parameter of the Student-t copula was fixed to ν = 5.
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How can (asymmetric) copulas be used to obtain copulas which model the opposite
tail behavior or negative dependence? Many copulas are asymmetric (e.g. in terms of tail
dependence) and often their parametrization is restricted to positive dependence. By (counter-
clockwise) rotation of a bivariate copula C we can obtain a copula which models negative
dependence or the opposite tail behavior (see e.g. Joe, 1993). The corresponding copulas rotated
by 90, 180 and 270 degrees are defined for (u1, u2) ∈ [0, 1]2 as

• C90(u1, u2) := u2 − C(1− u1, u2) [c90(u1, u2) := c(1− u1, u2)],

• C180(u1, u2) := u1 + u2 − 1 + C(1− u1, 1− u2) [c180(u1, u2) := c(1− u1, 1− u2)],

• C270(u1, u2) := u1 − C(u1, 1− u2) [c270(u1, u2) := c(u1, 1− u2)],
respectively, where the corresponding copula densities are stated in brackets. The copula rotated
by 180 degrees is also called survival copula.

How do we select a copula and estimate its parameters? In order to select an appropri-
ate parametric copula C(·;θ) modeling the dependence of a given i.i.d. sample (x1,k, . . . , xd,k),
k = 1, . . . , N , from an unknown d-variate distribution function F , we can make use of the above
introduced two-step modeling procedure. Using either parametric marginal models or empirical
estimates of the univariate marginal distributions we can transform our observations to pseudo
copula data u := {(u1,k, . . . , ud,k), k = 1, . . . , N}, as shown in Equation (2.2). Then, maximiza-
tion of the pseudo log-likelihood

ℓpseudo(θ;u) =
N∑

k=1

log c(u1,k, . . . , ud,k;θ) (2.4)

yields an estimate θ̂ for the parameter(s) of a specific parametric copula with density c(·;θ).
This allows to compare the fit of different candidate copula families to the copula data. For the
comparison/selection, criteria like the Akaike information criterion

AIC = −2ℓpseudo(θ̂;u) + 2(#parameters) (2.5)

or the Bayesian information criterion

BIC = −2ℓpseudo(θ̂;u) + (logN)(#parameters) (2.6)

can be used, where small values of these criteria are preferred. For further reading about copula
selection and parameter estimation we refer to Joe (2014, Chapters 1, 5).

2.3.2 Vine copulas

Vine copulas are d-dimensional copula constructions composed of pair-copulas (bivariate cop-
ulas) only. Hence, they are also often referred to as pair-copula constructions (PCCs). Due to
their modularity, they allow very flexible modeling of non-Gaussian, asymmetric dependence
structures, as the choice for the different bivariate building blocks can be made among a wide
variety of different copula families. Pair-copula constructions were initially considered by Joe
(1996), where the construction was based on distribution functions. Later Bedford and Cooke
(2001, 2002), rediscovered such constructions. They systematized them based on densities. In-
spired by the early work on PCCs, Aas et al. (2009) complemented the existing theory on the
construction of such multivariate distributions with practical results, including methodology for
statistical inference.
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Pair-copula constructions We introduce pair-copula constructions (PCCs) in a general d-
dimensional setting (d ≥ 2). Let us consider a set of random variables X1, . . . , Xd, with joint
probability density function f , univariate marginal distributions F1, . . . , Fd and corresponding
densities f1, . . . , fd. Moreover, we denote conditional densities corresponding to conditional (mul-
tivariate) margins as fI|J , where I and J are disjoint subsets of the index set {1, . . . , d}. Then,
apart from re-labeling, f can be decomposed uniquely into the following product of one marginal
density and d− 1 conditional densities fj|1,...,j−1, j = 2, . . . , d:

f(x1, . . . , xd) = f1(x1) · f2|1(x2|x1) · f3|1,2(x3|x1, x2) · · · fd|1,...,d−1(xd|x1, . . . , xd−1) (2.7)

Moreover, Equation (2.1) from Sklar’s Theorem allows to express conditional densities fi|{j}∪D,
i, j ∈ {1, . . . , d}, i 6= j, D ⊆ {1, . . . , d} \{i, j}, as they occur in Equation (2.7) as

fi|{j}∪D(xi|xk, k ∈ {j} ∪ D) =
fi,j|D(xi, xj |xk, k ∈ D)
fj|D(xj |xk, k ∈ D)

=
∂2

∂xi∂xj
Fi,j|D(xi, xj |xk, k ∈ D)

1

fj|D(xj |xk, k ∈ D)
= ci,j;D

(
Fi|D(xi|xk, k ∈ D), Fj|D(xj |xk, k ∈ D)|xk, k ∈ D

)
(2.8)

· fi|D(xi|xk, k ∈ D),

where ci,j;D is the density of the copula associated with the conditional distribution Fi,j|D. For
D = ∅ Equation (2.8) simplifies to

fi|j(xi|xj) = ci,j (Fi(xi), Fj(xj)) fi(xi). (2.9)

Hence, replacement of the conditional densities in Equation (2.7) by recursive application of
Equation (2.8) allows to write/decompose our multivariate density f as/into a product of bi-
variate copula densities and marginal densities. Such a decomposition is called pair-copula con-
struction (PCC). Note however, that the recursive application of Equation (2.8) can be done in
different ways, i.e. there is not a unique decomposition.

Now, we illustrate the above procedure in three dimensions. For d = 3 Equation (2.7) reduces
to

f(x1, x2, x3) = f1(x1)f2|1(x2|x1)f3|1,2(x3|x1, x2).

Exploiting Equation (2.9), the second term in the product equals

f2|1(x2|x1) = c1,2 (F1(x1), F2(x2)) f2(xj). (2.10)

The third term f3|1,2(x3|x1, x2) can be decomposed in two different ways by recursive application
of Equation (2.8). We obtain

f3|1,2(x3|x1, x2) = c2,3;1
(
F2|1(x2|x1), F3|1(x3|x1)|x1

)
c1,3 (F1(x1), F3(x3)) f3(x3)

= c1,3;2
(
F1|2(x1|x2), F3|2(x3|x2)|x2

)
c2,3 (F2(x2), F3(x3)) f3(x3).

Hence, omitting the arguments, we obtain the two PCCs

f(x1, x2, x3) = c2,3;1c1,3c1,2f1f2f3

= c1,3;2c2,3c1,2f1f2f3.
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Computation of conditional distribution functions from pair-copulas Until now we
have not addressed how we obtain the arguments of the pair-copulas composing a PCC (see e.g.
Equation (2.8)). We provide a general expression how such conditional distribution functions of
the form Fi|{j}∪D(xi|xk, k ∈ {j} ∪ D) are computed. As before (see Equation (2.8)) we consider
indices i, j ∈ {1, . . . , d}, i 6= j, and an arbitrary index set D ⊆ {1, . . . , d} \{i, j}. Following Joe
(1996) we obtain

Fi|{j}∪D(xi|xk, k ∈ {j} ∪ D) =
∂ Ci,j;D

(
Fi|D(xi|xk, k ∈ D), Fj|D(xj |xk, k ∈ D)|xk, k ∈ D

)

∂Fj|D(xj |xk, k ∈ D)
,

(2.11)
where Ci,j;D is the bivariate copula associated with the conditional distribution Fi,j|D. For D = ∅
Equation (2.11) simplifies to

Fi|j(xi|xj) =
∂ Ci,j (Fi(xi), Fj(xj))

∂Fj(xj)
. (2.12)

Similar to Equation (2.8), Equation (2.11) hast to be applied recursively in order to calculate
Fi|{j}∪D(xi|xk, k ∈ {j} ∪ D) for D 6= ∅.

Simplifying assumption As we have seen, PCC densities are composed of several pair-copula
densities of the form ci,j;D (see Equation (2.8)) and the computation of their arguments requires
repeated evaluation of derivatives of Ci,j;D (see Equation (2.11)). In order to facilitate the work
with PCCs, we consider the commonly used simplifying assumption

Ci,j;D(·, ·|xk, k ∈ D) = Ci,j;D(·, ·),
ci,j;D(·, ·|xk, k ∈ D) = ci,j;D(·, ·).

It is assumed that pair-copulas associated with conditional distributions Fi,j;D do not depend
on the conditioning values xk, k ∈ D. In the remainder of the thesis, we make this simplifying
assumption. Hence, we drop the corresponding conditioning terms in Equations (2.8) and (2.11).

h-functions As the computation of simplified PCCs (i.e. PCCs with simplifying assumption)
involves repeated evaluation of partial derivatives of copulas Ci,j;D, Aas et al. (2009) defined so
called h-functions

hi|j;D (vi|vj) :=
∂

∂vj
Ci,j;D (vi, vj) . (2.13)

Application of Equation (2.11) for the conditional distributions Ci|{j}∪D and utilization of the
h-function notation (2.13) yields

Ci|{j}∪D (ui|uk, k ∈ {j} ∪ D) = hi|j;D
(
Ci|D(ui|uk, k ∈ D)|Cj|D(uj |uk, k ∈ D)

)
. (2.14)

Hence, conditional distributions Ci|{j}∪D can be evaluated by nesting h-functions.

Regular vines Now we introduce vines which are a tool that helps to obtain/organize valid
PCCs. Generally speaking, the structure of (d-dimensional) PCCs is organized using a nested
set of trees T1, . . . , Td−1 (a tree is a connected graph without cycles) fulfilling certain conditions.
The trees Tk, k = 1, . . . , d− 1, are nested in the sense that edges of a tree become nodes in the
subsequent tree. We formalize this in the following.

A d-dimensional regular vine (R-vine) tree structure V (see Bedford and Cooke, 2001, 2002)
is defined as follows:
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(a) V = (T1, . . . , Td−1)

(b) T1 = (N1, E1) is a tree with node set N1 = {1, . . . , d} and edge set E1.

(c) Tk = (Nk, Ek) is a tree with node set Nk = Ek−1 and edge set Ek, for all k = 2, . . . , d− 1.

(d) For all k = 2, . . . , d − 1, two nodes a, b ∈ Nk in tree Tk may only be joined by an edge
e ∈ Ek, if the corresponding edges a, b ∈ Ek−1 share a common node in Nk−1 (proximity
condition).

Note, that for all k = 1, . . . , d − 1 it holds that each edge set Ek consists of d − k edges due to
Tk being a tree. Hence, the number of edges in a d-dimensional R-vine tree structure sums up
to d(d − 1)/2. From the above definition it becomes clear, that with increasing dimension the
number of valid tree structures grows drastically.

Subsequently, we label the edges following the scheme i, j;Dk. We call {i, j} conditioned set
and the set Dk consisting of k − 1 elements conditioning set. Figure 2.5 provides an exemplary
5-dimensional R-vine tree structure, where the labeling of nodes and edges follows this scheme.

T1 1 2 3 4

5

T2 1,2 2,5 2,3 3,4

T3 1,5;2 3,5;2 2,4;3

T4 1,3;2,5 4,5;2,3

1,2 2,3 3,4

2,5

1,5;2 3,5;2 2,4;3

1,3;2,5 4,5;2,3

1,4;2,3,5

Figure 2.5: Exemplary 5-dimensional R-vine tree structure.

Canonical vines The literature (see e.g. Aas et al., 2009) features two sub-classes of regular
vines, which exhibit special tree structures, namely canonical (C-) and drawable (D-) vines. For
our application in Chapter 4 we focus on canonical vines, as their structure is of particular
interest for this application.

For canonical vines (C-vines) each tree Tk, k = 1, . . . , d−1, has a star like structure, i.e. one
node is linked to all remaining nodes. That allows to order the variables under consideration by
importance. The variable order determines for each tree, which variable plays the role of the
root variable, i.e. the variable which occurs in all tree edges in the conditioned set. Hence, for
variables named 1, 2, . . . , d and order (1, 2, . . . , d), variable 1 is the root of tree T1, variable 2 is
the root of tree T2 and so on. The last variable d remains as there are only d−1 trees. To further
illustrate C-vines, Figure 2.6 provides a graphical representation of a d-dimensional C-vine.
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T1 2 1 d

3

· · ·

d− 1

T2 1, 2 1, d

...

1, 3

· · ·

1, d− 1

Td−1 d− 2, d− 1; 1, . . . , d− 3 d− 2, d; 1, . . . , d− 3

1, 2

1, 3 · · ·
1, d− 1

1, d

2, 3
; 1

· · ·
2, d− 1; 1

2, d; 1

d− 1, d; 1, . . . , d− 2

Figure 2.6: Illustration of d-dimensional C-vine tree structure.

Vine copulas As already indicated above, vines allow to construct valid d-dimensional copulas
(distributions) based on d(d − 1)/2 pair-copulas (and d univariate marginal distributions), see
also Bedford and Cooke (2001, 2002). Hence, to obtain a regular vine copula we associate a
bivariate copula (pair-copula) to each edge of an R-vine tree structure. The corresponding d-
dimensional copula density is then obtained as the product of the pair-copula densities. Note,
that here we will use parametric pair-copulas (see also Section 2.3.1). Thus, full specification of
a parametric vine copula also requires specification of the corresponding pair-copula parameters.
Subsequently, we treat this construction principle in more detail for the R-vine sub-class of C-
vines. For a more general treatment we refer the reader to Czado (2010) and Kurowicka and Joe
(2011).

Canonical vine copulas Now we outline the construction of a canonical vine copula in d
dimensions. For this, we start from the canonical vine tree structure shown in Figure 2.6, cor-
responding to variables named 1, 2, . . . , d and variable order (1, 2, . . . , d). Then a canonical vine
copula is specified by assigning a parametric pair-copula Ci,j;D(·, ·;θi,j;D) (with parameters θi,j;D)
to each edge {i, j;D} occurring in the vine trees T1, T2, . . . , Td−1. We list below, which edges occur
for each tree T1, T2, . . . , Td−1:

(T1) {1, 2}, . . ., {1, d}

(T2) {2, 3; 1}, . . ., {2, d; 1}
...
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2.3. DEPENDENCE MODELING WITH COPULAS

(Td−1) {d− 1, d; 1, . . . , d− 2}

The corresponding d-dimensional canonical vine copula density c is given as the product

c(u1, . . . , ud;θ) =
d−1∏

i=1

d−i∏

j=1

ci,i+j;Di

(
Ci|Di

(ui|uk, k ∈ Di;θ), Ci+j|Di
(ui+j |uk, k ∈ Di;θ);θi,i+j;Di

)
,

(2.15)
of the pair-copula densities ci,i+j;Di

associated to the edges of all d−1 trees, where D1 := ∅, Di :=
{1 . . . , i−1}, i = 2, . . . , d−1, are the conditioning sets corresponding to the trees T1, T2, . . . , Td−1,
respectively, the conditional distributions Ci|Di

and Ci+j|Di
can be obtained recursively using

h-functions (see Equation (2.14)), and the pair-copula parameters are summarized in a vector
θ = (θi,j;D)i=1,...,d−1;j=1,...,d−i. The outer product in Equation (2.15) runs through the trees
Ti, i = 1, . . . , d − 1. The inner product runs through all d − i tree edges for each tree Ti,
i = 1, . . . , d − 1. Note, that Equation (2.15) can be used for arbitrary variable orders, after
relabeling the variables according to their order.

To further illustrate canonical vine copulas we consider the three-dimensional case (i.e. d =
3). In this case we need to specify pair-copulas C1,2, C1,3 (tree T1) and C2,3;1 (tree T2) for
the variable pairs (1, 2), (1, 3) and (2, 3) given 1, respectively. Moreover, the corresponding
parameters θ = (θ1,2,θ1,3,θ2,3;1) have to be determined. Then the vine copula density c is given
as

c(u1, u2, u3;θ) = c1,2(u1, u2;θ1,2) · c1,3(u1, u3;θ1,3)
· c2,3;1(h2|1(u2|u1;θ1,2), h3|1(u3|u1;θ1,3);θ2,3;1),

where c1,2, c1,3 and c2,3;1 are the pair-copula densities corresponding to the copulas C1,2, C1,3

and C2,3;1.

Simulation from vine copulas A simulation algorithm for the general class of R-vine copulas
is provided by Dißmann et al. (2013). Algorithms for the two sub-classes of D- and C-vine copulas
are treated in Aas et al. (2009). Refer also to Joe (2014, Section 6.14) for a detailed discussion
of all three algorithms. All these sampling algorithms are based on one common idea. To obtain
a sample u1, . . . , ud from a d-dimensional vine copula C, we start with a sample v1, . . . , vd, with
each vj , j = 1, . . . , d, sampled i.i.d. from a standard uniform distribution. Then we fix u1 = v1
and successively apply inverse probability integral transforms uj = C−1

j|1,...,j−1(vj |u1, . . . , uj−1),
j = 2, . . . , d, based on conditional distributions Cj|1,...,j−1 specified by the vine copula C. Note,
that the numbering of the variables 1, . . . , d depends on the vine tree structure at hand.

2.3.3 Statistical inference for vine copulas

For the inference of vine copulas we assume a d-dimensional i.i.d. sample (u1,k, . . . , ud,k), k =
1, . . . , N , from a vine copula C. We summarize the sample as u := {(u1,k, . . . , ud,k), k =
1, . . . , N}. As we have seen in Section 2.3.2 a model for the vine copula C consists of three
components,

• a vine tree structure,

• pair-copulas (corresponding to the vine tree edges), and

• corresponding (pair-copula) parameters.
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Thus, different settings for the inference of a vine copula model are possible:

(S1) The tree structure and pair-copulas are fixed/pre-selected. The parameters are unknown.

(S2) The tree structure is fixed/pre-selected. The pair-copulas and the corresponding param-
eters have to be specified.

(S3) All three components are unknown.

Sequential and maximum likelihood based parameter estimation in Setting (S1) is treated in
detail by Aas et al. (2009) in the context of C- and D-vine copulas and by Dißmann et al.
(2013) for R-vine copulas. For C-vine copulas maximum likelihood estimation of the parameters
is easily achieved by maximizing the pseudo log-likelihood (2.4) based on the C-vine copula
density (2.15). Note, that the pseudo log-likelihood of vine copulas can be written as a sum of
logarithmized pair-copula densities. Two different sequential model selection approaches which
deal with Setting (S3) (where also the vine tree structure and the pair-copulas have to be
determined) are proposed in Kurowicka and Joe (2011) and by Dißmann et al. (2013).

The setting of particular interest in this thesis is Setting (S2). For the canonical vine copula
based drought indices in Chapter 4 we pre-select a canonical vine tree structure based on a
specific variable order. Appropriate pair-copulas and their parameters need to be inferred from
the data. The pair-copulas in such a setting are usually selected sequentially, starting in the first
tree (T1). In subsequent trees (T2,. . . ), so called pseudo observations can be used to determine
suitable pair-copulas corresponding to conditioned variable pairs. Pseudo observations corre-
sponding to the pair-copula arguments are computed using Equation (2.14). To decide among a
range of candidate pair-copulas, bivariate maximum-likelihood estimation (see Equation (2.4))
is performed for all pair-copula families under consideration (for each relevant pair of (pseudo)
observations). The resulting pair-copula fits are then compared based on criteria like the Akaike
information criterion (2.5) or the Bayesian information criterion (2.6). Suitable pair-copula pa-
rameters are given by the sequential parameter estimates corresponding to the selected families.
Note that before a pair-copula is selected for a (conditioned) variable pair a bivariate indepen-
dence test (see Genest and Favre, 2007) can be performed to see if an independence copula (2.3)
should be selected instead.

2.3.4 The multivariate probability integral transform for vine copulas

The computation of univariate probability integral transforms (see Equation (2.2)) is a recurring
task in copula based dependence modeling. Rosenblatt (1952) introduced a multivariate analog
of such a transformation, the so called Rosenblatt transform. Here, we introduce the Rosenblatt
transform for vine copulas. Let us consider a sample u1, . . . , ud from a d-dimensional vine copula
C. Then, the Rosenblatt transform v1, . . . , vd of u1, . . . , ud is defined as

v1 := u1,

v2 := C2|1(u2|u1),
...

vd := Cd|1,...,d−1(ud|u1, . . . , ud−1),

(2.16)

where Cj|1,...,j−1 is the conditional cumulative distribution function for variable j given the
variables 1, . . . , j − 1, for all j = 2, . . . , d. Then, the Rosenblatt transform v1, . . . , vd is i.i.d.
standard uniform distributed.
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The computation of the Rosenblatt transform for C- and D-vine copulas is treated in
Aas et al. (2009). For details on the computation of the Rosenblatt transform for R-vine copulas
see Schepsmeier (2015). We elaborate on the Rosenblatt transform for C-vine copulas. For them,
the order of the variables in the transformation (2.16) is determined by the selected order of
root variables. For C-vine copulas the Rosenblatt transform (2.16) can be computed based on
h-functions (2.13) using the following algorithm:

1. Set v1 = u1.

2. For i← 2, . . . , d

(a) Set vi = ui.

(b) For j ← 1, . . . , i− 1 set vi = hi|j;1,...,j−1(vi|vj).

2.4 Validation metrics

To validate the drought indices developed in Chapter 4 we consider different methods and
metrics. In a (binary) setting, where we model a phenomenon that differentiates if an event of
interest occurred or not, the probability of detection (POD), the false alarm ratio (FAR) and
the critical success index (CSI) (see e.g. Wilks, 2011) are metrics of interest. For instance, these
metrics were used in Hao and AghaKouchak (2014) for the validation of drought indices.

Validation metrics for phenomena with binary outcome Generally speaking, the met-
rics addressed above allow to assess the capability of a model to correctly detect a certain event
occurrence. For this assessment, two time series xot , x

d
t ∈ {0, 1}, t = 1, . . . , N , representing if the

event of interest occurred (o)/was detected (d) or not are compared. For any time instance t,
xot = 1 means event occurrence, xdt = 1 means event detection, xot = 0 means that the event did
not occur and xdt = 0 means that the event was not detected. For any t, four different scenarios
are possible:

1. The event occurred and was detected.

2. The event occurred but was not detected.

3. The event did not occur but was detected.

4. The event neither occurred nor was it detected.

We define number counts of the first three scenarios as follows:

H = #{t ∈ {1, . . . , N} : xot = 1, xdt = 1}
M = #{t ∈ {1, . . . , N} : xot = 1, xdt = 0}
F = #{t ∈ {1, . . . , N} : xot = 0, xdt = 1}

Hence, the probability of detection is defined as

POD := H/(H +M). (2.17)

It provides the share of correctly identified event occurrence. That is, a high value indicates
good performance. The false alarm ratio is defined as

FAR := F/(H + F ). (2.18)
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It gives the portion of incorrectly detected events. Thus, a low value indicates good performance.
Moreover, the critical success index is defined as

CSI := H/(H +M + F ). (2.19)

It is a measure which indicates good performance (high value) if event occurrence is mostly
detected correctly and bad performance (low value) if event occurrence and detection do not
match in most cases.

Application of POD, FAR and CSI for continuous variables We are further interested
in the setting, where the phenomenon of interest is quantified in terms of continuous variables.
Hence, we consider a time series zot ∈ R, t = 1, . . . , N , of observations from the phenomenon
(occurrence) and a time series zdt ∈ R, t = 1, . . . , N , representing the model of the phenomenon
(detection). In order to differentiate, if the event of interest occurred/was detected or not a
threshold ϑ ∈ R which determines occurrence/detection has to be specified. By convention we
decide, that non-exceedance of the threshold ϑ corresponds to occurrence/detection. Then we
can translate the time series zot , z

d
t ∈ R, t = 1, . . . , N , to binary time series xot , x

d
t ∈ {0, 1},

t = 1, . . . , N , containing information if the event of interest occurred (o)/was detected (d) or
not. For all t = 1, . . . , N we obtain

xot =

{
1 if zot ≤ ϑ (event occurrence),

0 else,

and

xdt =

{
1 if zdt ≤ ϑ (event detection),

0 else.

This threshold-based translation of the originally continuous time series to binary time series
allows computations of the probability of detection (POD), the false alarm ratio (FAR) and the
critical success index (CSI) according to Equations (2.17)–(2.19) from above.

2.5 Proper scoring rules and divergence functions

In Chapter 5 we investigate novel evaluation techniques for the assessment of model performance
in a time series context. In this section, we provide the necessary background on proper scoring
rules (see Gneiting and Raftery, 2007) and proper divergence functions (Thorarinsdottir et al.,
2013). To outline the required theory behind these two concepts, we consider the following setup:
Let F be a convex class of probability measures on a sample space Ω. Moreover, consider an
(observed) phenomenon with the random outcome

• Y with (unknown) distribution G ∈ F and realization y ∈ Ω.

Further, we consider a model/forecast for Y given through a random variable

• X with (modeled) distribution F ∈ F and realization x ∈ Ω.

In practice we often face the setting that we have access to samples yj , j = 1, . . . ,m, m ∈ N,
and xj , j = 1, . . . , n, n ∈ N, from the distributions G,F ∈ F , respectively, rather than knowing
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their actual parametric representation. Hence, we are interested in the corresponding empirical
distribution functions defined as

Ĝm
y (z) :=

1

m

m∑

j=1

1{yj ≤ z} and F̂n
x (z) :=

1

n

n∑

j=1

1{xj ≤ z}, (2.20)

respectively, where y := (y1, . . . , ym), x := (x1, . . . , xn) and the indicator function 1{A} equals
1 if the event A is true and 0 otherwise.

2.5.1 Proper scoring rules

A scoring rule is a function
s : F × Ω→ R, (2.21)

that assigns a score to a pair (F, y) of a distribution F and a realization y ∈ Ω of a phenomenon
with (random) outcome Y . It can be interpreted as a distance measure between the realization
y and a model/forecast distribution F for Y .

For Y ∼ G we denote the expectation of the score s(F, Y ) as

S(F,G) := EG [s(F, Y )] . (2.22)

Then, we call the scoring rule (2.21) (negatively oriented) proper scoring rule if

S(G,G) ≤ S(F,G) for all F,G ∈ F .

Hence, a scoring rule (2.21) is proper if we expect the mean of the random score s(F, Y ) to be
minimized if our forecast/model F equals the true distribution G of Y .

Two examples for proper scoring rules For continuous variables (sample space Ω = R),
popular examples of proper scoring rules are the Squared Error (SE) score

sSE(F, y) := (EF [X]− y)2 , where X ∼ F, (2.23)

and the Continuous Ranked Probability Score (CRPS)

sCRPS(F, y) :=

∫ ∞

−∞
(F (z)− 1 {z ≥ y})2 dz, (2.24)

where 1 {z ≥ y} equals 1 if z ≥ y and 0 otherwise. In case of the normal distribution there exists
an analytic solution of the integral in (2.24). If F is the normal distribution with mean µ and
standard deviation σ, then it holds

sCRPS(N (µ, σ2), y) = −σ
{

1√
π
− 2ϕ

(
y − µ
σ

)
− y − µ

σ

[
2Φ

(
y − µ
σ

)
− 1

]}
, (2.25)

where ϕ and Φ are the probability density function (PDF) and the cumulative distribution
function (CDF) of a standard normal distribution (see Gneiting and Raftery, 2007). As in general
there are no analytic solutions for the CRPS formula (2.24), Gneiting and Raftery (2007) suggest
an alternative expression of the CRPS in terms of expectations. For X̃ ∼ F an independent copy
of X ∼ F , the CRPS can be obtained using the equation

sCRPS(F, y) = EF [|X − y|]− 1

2
EF

[∣∣∣X − X̃
∣∣∣
]
. (2.26)
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Whereas the CRPS is of interest if the model/forecast is given in terms of a CDF F , there exist
also (proper) scoring rules which are calculated based on the corresponding PDF f (see e.g.
Gneiting and Raftery, 2007, Section 4.1). Besides scoring rules for continuous variables, there
are also scoring rules for categorial variables. For more details on different scoring rules we refer
the reader to Gneiting and Raftery (2007).

Scores for deterministic models/forecasts Before we discuss the above introduced scoring
rules from a practical point of view and illustrate them with an example, we are interested in
the special case when the model/forecast is deterministic. In that case the model/forecast is
not subject to uncertainty, it corresponds to a constant random variable X = x, which follows
a degenerate distribution with CDF Fx(z) := 1 {x ≤ z}. The SE score (2.23) simplifies to the
squared error

sSE(x, y) := (x− y)2 = sSE(Fx, y). (2.27)

From Equation (2.26) it follows, that the degenerated CRPS equals the absolute error

sAE(x, y) := |x− y| = sCRPS(Fx, y). (2.28)

Practical implications Let us now discuss the practical implications of the Squared Error
score (2.23) and the CRPS (2.24). Evaluation based on the SE score assesses the deviation of a
realization y of Y from the mean EF [X] of the forecast/model distiribution F . The SE score does
not consider higher order moments of the distribution F for the evaluation. The CRPS however,
considers not only the distance of the realization y from the “center” of the distribution F . On
the contrary, it measures the distance of y to the whole distribution F .

Illustration To illustrate the computation of the different scores and differences between them,
we consider the following example: Let the phenomenon of interest (with outcome Y ) have the
realization y = 0. Further, let us consider the distributions

F1 = N (0, 4/9),

F2 = N (0, 1/9), (2.29)

F3 = N (1/2, 1/9),

as candidate models/forecasts for the outcome of the phenomenon. Figure 2.7 illustrates the
example. The upper left panel shows the densities f1, f2 and f3 corresponding to F1, F2 and
F3, respectively. Since the densities are symmetric, their means coincide with their modes. The
means are visualized in the middle left panel and compared to the realization y = 0. We see that
the means for F1 and F2 equal the realization y = 0. The deviation of the mean for F3 is indicated
by a dash-dotted horizontal line. This illustrates the computation of the SE scores, which are
equal to the squared difference between the realization y and the mean of the model/forecast
distribution. Hence, the SE score is not able to distinguish between F1 and F2, which have the
same mean (sSE(F1, y) = sSE(F2, y) = 0). However, these two distributions differ in terms of
uncertainty. The CRPS takes this into consideration (see upper right and middle right panel)
and is able to distinguish between F1 and F2 (sCRPS(F1, y) = 0.16, sCRPS(F2, y) = 0.08). F2 has
the better (lower) score, as it is more certain (sharp) about the location of y = 0. The differences
(in terms of CRPS) between the three models can be identified best by looking at the curves
(Fi(z)− 1 {z ≥ y})2, i = 1, 2, 3 (bottom left panel). The CRPS corresponds to the area under
these curves. As F3 is not centered around y = 0, it has a higher SE score (sSE(F3, y) = 0.25).
Also the CRPS of F3 is higher compared to F1 and F2 (sCRPS(F3, y) = 0.33).
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Figure 2.7: Illustration of score computation (realization y = 0 and models F1 = N (0, 4/9),
F2 = N (0, 1/9) and F3 = N (1/2, 1/9)): Comparison of realization y with densities f1, f2, f3
corresponding to the models (CDFs) F1, F2 and F3 (upper left). Comparison of model means
and realization (middle left). Computation of CRPS (bottom left). Comparison of 1 {z ≥ y}
with CDFs F1, F2 and F3, respectively, and corresponding SE scores and CRPS (right panel).
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Scoring based on samples from the model/forecast distribution In practice we do not
always have a (parametric) model/forecast distribution F , but rather a sample x := (x1, . . . , xn)
of size n ∈ N from F . In that setting, we consider sample versions of scoring functions. Using
the empirical distribution F̂n

x corresponding to x (see Equation (2.20)) they are defined as

s(x, y) := s(F̂n
x , y). (2.30)

Sample versions of the SE score and the CRPS can easily be derived from Equations (2.23) and
(2.26), respectively, by replacing the occurring expectations with their corresponding sample
version. The sample SE score is given by

sSE(x, y) =


 1

n

n∑

j=1

xj − y




2

, (2.31)

and the sample CRPS by

sCRPS(x, y) =
1

n

n∑

j=1

|xj − y| −
1

2n2

n∑

j=1

n∑

k=1

|xj − xk| . (2.32)

If the sample consists only of one element (n = 1), the sample SE score degenerates to the
squared error (2.27) and the sample CRPS to the absolute error (2.28).

2.5.2 Proper divergence functions

Divergence functions are functions

d : F × F → [0,∞] (2.33)

which fulfill the property d(F, F ) = 0 for all F ∈ F . Considering a distribution G ∈ F that
describes the random outcome of a phenomenon on the one hand and a distribution F ∈ F that
is supposed to model/forecast the very same outcome of the phenomenon on the other hand,
d(F,G) can be used to judge how well the outcome of the phenomenon is modeled/forecast by
F . Hence, divergences are distance measures between distributions F,G ∈ F .

To introduce the concept of propriety for divergence functions (see Thorarinsdottir et al.,
2013), we consider the following quantities. For k ∈ N let Y1, . . . , Yk ∼ G ∈ F (independent)
and Y := (Y1, . . . , Yk). The corresponding (random) empirical distribution function is given by
Ĝk

Y (z) := 1/k
∑k

j=1 1{Yj ≤ z}. Further, we denote the expectation of the divergence d(F, Ĝk
Y )

as

Dk(F,G) := EG

[
d(F, Ĝk

Y )
]
.

Then a divergence function d in (2.33) is called k-proper, if for all F ∈ F it holds that

Dk(G,G) ≤ Dk(F,G).

Hence, having observed a sample of size k ∈ N from G ∈ F (the phenomenon of interest), a
k-proper divergence d(F, Ĝk

Y ) is supposed to be minimized in expectation if the forecast/model
F equals the true distribution G.
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Construction of divergence functions from proper scoring rules Divergence functions
can for example be constructed using score expectations (2.22) of proper scoring rules s, if it
holds that |S(G,G)| <∞ for all G ∈ F . Score divergences are then defined as the difference

d(F,G) := S(F,G)− S(G,G). (2.34)

Thorarinsdottir et al. (2013) show that score divergences constructed as in (2.34) are k-proper
for all k ∈ N.

Two examples for score divergences Now, we consider two divergence functions for con-
tinuous variables (sample space Ω = R), the Mean Value (MV) divergence

dMV(F,G) := (EF [X]− EG [Y ])2 , where X ∼ F and Y ∼ G, (2.35)

and the Integrated Quadratic (IQ) distance

dIQ(F,G) :=

∫ ∞

−∞
(F (z)−G(z))2 dz. (2.36)

Whereas the Mean Value divergence (2.35) is the score divergence corresponding to the Squared
Error score (2.23), the Integrated Quadratic distance (2.36) is the score divergence derived from
the Continuous Ranked Probability Score (2.24). Hence, both divergence functions (2.35) and
(2.36) are k-proper for all k ∈ N. In analogy to Equation (2.26) the Integrated Quadratic distance
(2.36) can be rewritten in terms of expectations (see Thorarinsdottir et al., 2013) as

dIQ(F,G) = EF,G [|X − Y |]− 1

2

(
EF

[∣∣∣X − X̃
∣∣∣
]
+ EG

[∣∣∣Y − Ỹ
∣∣∣
])
, (2.37)

where X̃ ∼ F and Ỹ ∼ G are independent copies ofX ∼ F and Y ∼ G, respectively. Again, there
are also divergence functions for categorial variables. For more details see Thorarinsdottir et al.
(2013).

Divergences for deterministic models/forecasts Before we further discuss and illustrate
the Mean Value divergence (2.35) and the Integrated Quadratic distance (2.36), we are again
interested in their degenerated versions. To obtain them we assume this time, that both distribu-
tions (outcome of the phenomenon and model/forecast) are deterministic. That is, we consider
two constant random variables Y = y and X = x with degenerate CDFs Gy(z) := 1 {y ≤ z} and
Fx(z) := 1 {x ≤ z}, respectively. Then, the Mean Value divergence (2.35) reduces to the squared
error

dMV(Fx, Gy) = (x− y)2 = sSE(x, y). (2.38)

From Equation (2.37) it follows, that the degenerated IQ distance equals the absolute error

dIQ(Fx, Gy) = |x− y| = sAE(x, y). (2.39)

Practical implications From a practical perspective, the Mean Value divergence (2.35) con-
siders only the distance between the means of two distributions F and G and completely ignores
higher order moments of F and G. The Integrated Quadratic distance (2.36) however measures
the distance between F (z) and G(z) for all z ∈ R and hence also considers higher order structures
of the distributions F and G.
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Figure 2.8: Illustration of divergence function computation (outcome Y ∼ G, G = N (0, 1),
and models/forecasts F1 = N (0, 4/9), F2 = N (0, 1/9) and F3 = N (1/2, 1/9)): Comparison of
densities g, f1, f2, f3 corresponding to G, F1, F2 and F3 (upper left). Comparison of model
means and the mean of the outcome (middle left). Computation of IQ distances (bottom left).
Comparison of outcome CDF G with model/forecast CDFs F1, F2 and F3, respectively, and
corresponding MV divergences and IQ distances (right panel).
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Illustration To illustrate the computation of and the differences between the two divergence
functions (2.35) and (2.36), we consider the following example: Let the outcome of the phe-
nomenon of interest be Y ∼ G with G = N (0, 1). Further, again consider the model/forecast
distributions F1, F2 and F3 (2.29) from the example in Section 2.5.1. Figure 2.8 illustrates the
example. The upper left panel compares the densities f1, f2 and f3 corresponding to F1, F2 and
F3, respectively, to the density g corresponding to the distribution G of the outcome. Since the
densities are symmetric, their means coincide with their modes. The means corresponding to
F1, F2 and F3 are visualized in the middle left panel and compared to the mean of the out-
come. We see that the means for F1 and F2 equal that of the outcome Y ∼ G. The deviation
of the mean for F3 is indicated by a dash-dotted horizontal line. This illustrates the compu-
tation of the MV divergences, which are equal to the squared difference between the means of
the outcome and the model/forecast distribution. Hence, the MV divergence does not allow to
differentiate between F1 and F2, which have the same mean (dMV(F1, G) = dMV(F2, G) = 0).
However, F1 and F2 differ in terms of uncertainty. The IQ distance takes this into consideration
(compare upper right and middle right panel) and is able to distinguish between F1 and F2

(dIQ(F1, G) = 0.02, dIQ(F2, G) = 0.09). F1 has the better (lower) divergence, as its variance is
closer to the variance of G. The differences (in terms of IQ distances) between the three models
can be identified best by looking at the curves (Fi(z)−G(z))2, i = 1, 2, 3 (bottom left panel).
The IQ distance corresponds to the area under these curves. While the curves corresponding to
F1 and F2 are symmetric around 0, which is the center of the distributions G, F1 and F2, the
curve corresponding to F3 is asymmetric. Both divergences penalize F3 for not being centered
around 0 (EF3

[X] 6= EG[Y ]), the IQ distance accounts also for the wrong specified variance
(VarF3

[X] 6= VarG[Y ]). As a result, the divergences for F3 are higher (worse) compared to F1

and F2 (dMV(F3, G) = 0.25, dIQ(F3, G) = 0.18).

Computation of divergences based on samples In practice we usually/often do not have
explicit outcome distributions G and model/forecast distributions F , but rather samples y :=
(y1, . . . , ym), m ∈ N, from G and x := (x1, . . . , xn), n ∈ N, from F , respectively. In that setting,
we consider sample versions of divergence functions. Using the empirical distributions Ĝm

y and

F̂n
x (see Equation (2.20)) they are defined as

d(x,y) := d(F̂n
x , Ĝ

m
y ). (2.40)

Sample versions of the MV divergence and the IQ distance can easily be derived from Equations
(2.35) and (2.37), respectively, by replacing the occurring expectations with their corresponding
sample version. The sample MV divergence is given by

dMV(x,y) =


 1

n

n∑

j=1

xj −
1

m

m∑

j=1

yj




2

, (2.41)

and the sample IQ distance by

dIQ(x,y) =
1

mn

m∑

k=1

n∑

j=1

|xj − yk| −
1

2


 1

n2

n∑

j=1

n∑

k=1

|xj − xk|+
1

m2

m∑

j=1

m∑

k=1

|yj − yk|


 . (2.42)

If the samples consists only of one element (m = n = 1), the sample MV divergence degenerates
to the squared error (2.27) and the sample IQ distance to the absolute error (2.28). If m = 1
(n ∈ N), it holds dMV(x, y) = sSE(x, y) and dIQ(x, y) = sCRPS(x, y).
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2.6 Traditional evaluation measures

Hyndman and Koehler (2006) provide a comprehensive review of different traditional evaluation
measures which can be used for the evaluation of forecasts/models. To list the corresponding
definitions of these measures, we consider time series of observations yt, t = 1, . . . , N from the
phenomenon of interest and corresponding model output/forecasts xt, t = 1, . . . , N . Then we
can define a time series of model/forecast errors as

et := yt − xt, t = 1, . . . , N.

Scale-dependent measures The most popular scale dependent measures are the sample
Mean Square Error

M̂SE :=
1

N

N∑

t=1

e2t , (2.43)

the sample Root Mean Square Error

R̂MSE :=

√√√√ 1

N

N∑

t=1

e2t ,

the sample Mean Absolute Error

M̂AE :=
1

N

N∑

t=1

|et|, (2.44)

and the sample Median Absolute Error

M̂dAE := median
t=1,...,N

(|et|) ,

where mediant=1,...,N (·) denotes the sample median. As their scale depends on the data, the
measures above are not suitable to compare methods based on different types of data sets.

Measures based on percentage errors If we scale the errors et by 100/yt, we obtain scale
independent percentage errors

pt =
100et
yt

, t = 1, . . . , N.

Commonly used measures based on percentage errors are the sample Mean Absolute Percentage
Error

M̂APE :=
1

N

N∑

t=1

|pt|,

the sample Median Absolute Percentage Error

M̂dAPE := median
t=1,...,N

(|pt|) ,

the sample Root Mean Square Percentage Error

R̂MSPE :=

√√√√ 1

N

N∑

t=1

p2t ,

and the sample Root Median Square Percentage Error

̂RMdSPE :=
√
median
t=1,...,N

(
p2t
)
.
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Measures based on relative errors One other way of scaling the errors et, t = 1, . . . , N , is to
scale by errors e∗t , t = 1, . . . , N , corresponding to a benchmark model/method. The subsequent
measure definitions are based on the relative errors

rt =
et
e∗t
, t = 1, . . . , N :

Some measures based on relative errors are the sample Mean Relative Absolute Error

M̂RAE :=
1

N

N∑

t=1

|rt|,

the sample Median Relative Absolute Error

M̂dRAE := median
t=1,...,N

(|rt|) ,

and the sample Geometric Mean Relative Absolute Error

̂GMRAE :=

(
N∏

t=1

|rt|
) 1

N

.

Relative measures Besides measures based on relative errors it is also possible to consider

relative measures. Let ÊM denote one of the evaluation measures introduced above and ÊM
∗

the same measure applied for a benchmark model. Then, the corresponding relative measure
(sample version) is defined as

R̂elEM :=
ÊM

ÊM
∗ .

The sample Relative Mean Absolute Error ̂RelMAE := M̂AE/M̂AE
∗
is an example of a relative

measure.

Measures based on scaled errors Another method to obtain evaluation measures is to use
scaled errors of the form

qt :=
et

1
N−1

∑N
j=2 |yj − yj−1|

, t = 1, . . . , N.

Hence, measure like the sample Mean Absolute Scaled Error

M̂ASE :=
1

N

N∑

t=1

|qt|,

can be defined in analogy to the measures defined above.

2.7 Detection of multiple changepoints

The detection of multiple changepoints and hence, the segmentation of time series into stationary
segments is an active field of research. Many different algorithms have been suggested (see e.g. the
changepoint repository (http://changepoint.info) provided by Killick et al., 2012). In Chap-
ter 5 we are interested in segmenting non-stationary time series into segments where stationarity
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can be assumed (approximately), in order to be able to access the ability of models/forecasts to
reproduce the distributional characteristics of the (observed) outcome of a phenomenon. In this
section, we provide the necessary background on multiple changepoint detection. After giving
a general introduction to the problem of detecting multiple changepoints by minimization of
a target function, we provide more detail for the so called PELT (Pruned Exact Linear Time)
method (Killick et al., 2012). We focus on this method, as it is exact (in terms of minimization of
the cost function). Moreover, under certain conditions, the computational cost of the algorithm
depends linear on the number of observations of the time series. The most important of these
conditions is the assumption that the number of changepoints increases linearly with increasing
length of the time series, which is met by many applications. The subsequent introduction is
based on Killick et al. (2012).

What is a changepoint analysis? A changepoint analysis concerns the detection of one or
multiple so called changepoints in a time series y1, . . . , yN . Generally speaking, a time instance
τ ∈ {1, . . . , N − 1} is considered a changepoint, if the statistical properties of the sub-series
y1, . . . , yτ and yτ+1, . . . , yN differ.

Notation To provide a more general explanation of how multiple changepoints can be de-
tected, we have to introduce some more notation. We can interpret a time series y1, . . . , yN as
an ordered sequence of data points

y1:N := (y1, . . . , yN ).

For 1 ≤ s ≤ t ≤ N , we denote sub-sequences of y1:N by ys:t := (ys, . . . , yt). Further, we denote
by

τ1:m := (τ1, . . . , τm)

the ordered sequence of m ∈ {0, . . . , N −1} changepoints of y1:N , where τj ∈ N, 1 ≤ τj ≤ N −1,
j = 1, . . . ,m. As τ1:m is ordered, it holds that τi < τj for 1 ≤ i < j ≤ m. Defining τ0 := 0 and
τm+1 := N , the changepoints τ1:m split the sequence y1:N into the m+ 1 segments

y(τj+1):τj+1
, j = 0, . . . ,m,

with segment lengths (τj+1 − τj), j = 0, . . . ,m. We call

τ0:(m+1) := (τ0, τ1:m, τm+1)

an (m + 1)-segmentation of y1:N . Furthermore, we denote the set of all possible (m + 1)-
segmentations of an ordered sequence y1:s by

T m
s := {τ : τ is a valid (m+ 1)-segmentation of y1:s},

for all s = 1, . . . , N .

How can we identify changepoints? One option to detect multiple changepoints is based
on the minimization of a target function

m∑

j=0

C(y(τj+1):τj+1
) + κg(m). (2.45)
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The target function is a sum of cost functions C : Rn → R, n ∈ N, which for all j = 0, . . . ,m
assign a cost to the segment y(τj+1):τj+1

, and a penalty term κg(m), composed out of a constant
κ and a function g in m.

A changepoint detection algorithm which is minimizing (2.45), that considers all possible
(m+ 1)-segmentations T m

N , for all possible numbers of changepoints m = 0, . . . , N − 1 is called
exact. The Binary Segmentation Algorithm (see Scott and Knott, 1974) is an example for a
popular algorithm, which is not exact. A common choice for the cost function C is (twice) the
negative log-likelihood. The penalty term is supposed to prevent overfitting by penalizing the
number of changepoints m. Most often, the common choice of g(m) = m is used in combination
with a κ that corresponds to one of the popular information criteria like the Akaike information
criterion (AIC; κ = 2p) or the Bayesian information criterion (BIC; κ = p ln(N)). These penalties
depend on p, the number of additional parameters needed per additional segment. Note, that
the additional changepoint, which is required per segment, is also counted as an additional
parameter.

How can the changepoint problem (2.45) be solved in an algorithmic fashion? The
Optimal Partitioning (OP) method (see Jackson et al. (2005) and also Killick et al. (2012)) is
an exact changepoint detection algorithm. It requires, that for the penalty term of (2.45) it
holds that g(m) = m. In that case the minimum of (2.45) for an ordered sequence y1:s, s ≤ N ,
is given by

M(s) := min
m<s

min
τ∈T m

s





m∑

j=0

C(y(τj+1):τj+1
) + κm



 . (2.46)

The OP method is based on the fact, that M(s) can be calculated recursively. Setting M(0) :=
−κ, the recursion is obtained easily by rewriting Equation (2.46) as

M(s) = min



C(y1:s), min

0<t<s


min
m<t

min
τ∈T m

t




m∑

j=0

C(y(τj+1):τj+1
) + κm


+ C(y(t+1):s) + κ







= min
t<s

{
M(t) + C(y(t+1):s) + κ

}
. (2.47)

Hence, starting from s = 1, the OP algorithm successively detects the changepoints of the
sub-sequences y1:s. In each step s the algorithm computes M(s). Further it detects the last
changepoint before s as

τs := argmin
t<s

{
M(t) + C(y(t+1):s) + κ

}
.

Starting with an empty set τ (0) := ∅, the algorithm recursively stores the changepoints for y1:s

in the set τ (s), by adding the detected changepoint τs to the changepoints τ (τs) which were
detected for the sub-sequence y1:τs . Hence, the algorithm sets τ (s) := (τ (τs), τs). Finally, after
the last iteration (s = N), τ (N) contains the changepoints detected for y1:N .

Can this algorithm be improved? Killick et al. (2012) found that the performance of the
OP algorithm can be improved by reducing the set of time instances t considered in the mini-
mization (2.47) in order to avoid irrelevant computations. This technique called pruning is based
on the following result: Considering time instances t < s < T and a constant K such that

C(y(t+1):s) + C(y(s+1):T ) +K ≤ C(y(t+1):T ), (2.48)
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the time instance t can not be the latest changepoint before T , if

M(t) + C(y(t+1):s) +K ≥M(s). (2.49)

While Equation (2.48) ensures, that the introduction of an additional changepoint does not
increase the total cost, the condition given by Equation (2.49) identifies time instances whose
selection as a changepoint would increase the value of the target function (2.45) of our min-
imization. Note, that if we select the (scaled) negative log-likelihood for the cost function C,
we can select K = 0. This is because splitting y(t+1):T in Equation (2.48) into two segments
allows different parameters for both segments, which can only lead to a smaller (overall) negative
log-likelihood.

How is the pruning technique implemented in the changepoint detection algorithm?
For a selected cost function C, a constant K which fulfills (2.48) and a penalty constant κ,
we provide the PELT (Pruned Exact Linear Time) algorithm (see Killick et al., 2012) for the
detection of changepoints of an ordered sequence y1:N :

• Set M(0) := −κ, τ (0) := ∅ and S(1) := {0}.

• For s = 1, . . . , N iterate

1. τs = argmint∈S(s)
{
M(t) + C(y(t+1):s) + κ

}
,

2. M(s) =M(τs) + C(y(τs+1):s) + κ,

3. τ (s) = (τ (τs), τs),

4. S(s+ 1) =
{
s ∪ {t ∈ S(s) :M(t) + C(y(t+1):s) +K < M(s)}

}
.

Step 1 of the algorithm detects the last changepoint τs before s, step 2 calculates the minimum
of the target function M(s) for the sub-sequence y1:s, step 3 gathers all detected changepoints
for y1:s and step 4 determines the changepoint candidates for the next iteration. Again, τ (N)
contains the changepoints detected for y1:N .

Which cost function C can we use if we want to detect changes in mean and variance?
Let us assume that the time series observations y1, . . . , yN come from a normal distribution
N (µj , σ

2
j ), where either the (unknown) mean µj and/or the (unknown) variance σ

2
j change after

certain (unknown) time instances (changepoints) τ1:m. Then we can select for the cost function
C twice the negative log-likelihood corresponding to a normal distribution.

Subsequently, we derive the cost C(y(τj+1):τj+1
) of a segment y(τj+1):τj+1

of an arbitrary
(m+ 1)-segmentation τ0:(m+1) of the ordered sequence y1:N . The cost

C(y(τj+1):τj+1
) := −2

τj+1∑

i=τj+1

[
−1

2
ln
(
2πσ̂2j

)
− (yi − µ̂j)2

2σ̂2j

]

= (τj+1 − τj) ln
(
2πσ̂2j

)
+

1

σ̂2j

τj+1∑

i=τj+1

(yi − µ̂j)2

= (τj+1 − τj)


ln

(
2πσ̂2j

)
+

(
σ̂2j

)−1

(τj+1 − τj)

τj+1∑

i=τj+1

(yi − µ̂j)2

 (2.50)
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corresponds to twice the negative log-likelihood for a normal distribution N (µj , σ
2
j ), where the

unknown parameters µj and σ2j are replaced by their maximum likelihood estimators

µ̂j =
1

τj+1 − τj

τj+1∑

i=τj+1

yi (2.51)

and

σ̂2j =
1

τj+1 − τj

τj+1∑

i=τj+1

(yi − µ̂j)2 , (2.52)

respectively. Plugging in expressions (2.51) and (2.52) for µ̂j and σ̂2j in the cost function (2.50)
yields

C(y(τj+1):τj+1
) := (τj+1 − τj)



ln


 2π

τj+1 − τj

τj+1∑

i=τj+1

(
yi −

∑τj+1

k=τj+1 yk

τj+1 − τj

)2

+ 1



 . (2.53)

Hence, we can detect changes in mean and variance using the PELT algorithm with K = 0
and cost function defined by Equation (2.53). Note, that the estimation of the variance requires
the PELT algorithm to enforce a minimum segment length (τj+1 − τj) of 2 for all segments
y(τj+1):τj+1

, j = 0, . . . ,m, of all considered (m+ 1)-segmentations τ0:(m+1).
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This chapter introduces the different data sets used throughout the thesis. We provide (back-
ground) information on the data sets used to illustrate the novel methodology for drought index
computation (Section 3.1) and the data used in an evaluation study of such drought indices
(Section 3.2). Moreover, we outline the data sets used to illustrate the evaluation of Regional
Climate Models (RCMs) using novel evaluation techniques (Sections 3.3–3.4).

3.1 ECMWF Atmospheric Reanalysis of the 20th Century

To illustrate the novel methodology for drought index computation (and its different modeling
steps) presented in Chapter 4 we utilize the publicly available ECMWF Atmospheric Reanalysis
of the 20th Century (ERA-20C) data (European Centre for Medium-Range Weather Forecasts,
2014). The data set is a reanalysis of the weather observed on the earth’s surface during the
years 1900–2010. It is generated using coupled atmosphere, land-surface and ocean-wave models
and intended to describe the spatial and temporal development of the atmosphere, the weather
on the land-surface and ocean waves. It is available on different spatial and temporal resolutions
and consists of manifold variables. We consider

• time series of monthly means (temporal resolution) and

• 0.125◦ × 0.125◦ (longitude/latitude) grids (spatial resolution).

The variables of interest are

• 2 metre temperature (T ) [in K],

• total precipitation (P ) [in m] and

• volumetric soil water (W ) [in m3m−3] in the top soil layer (0–7 cm),

with variable units stated in square brackets. Using the method proposed by Thornthwaite
(1948) we additionally compute the variable potential evapotranspiration (PET ) [in mm] based
on the temperature data. Further, we compute the so called climatic water balance (B) [in mm]
(see e.g. Vicente-Serrano et al., 2010) as difference between P and PET .
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3.2 Arkansas soybean yield

For the validation of the novel drought indices (see Section 4.7), we consider soybean yield (see
National Agricultural Statistics Service, United States Department of Agriculture, 2015) for se-
lected counties of the U.S. state of Arkansas. To be able to observe the effect of droughts in
this data we consider only the yield [in bu/acre] from non-irrigated fields. To have complete
time series (without missing values), we restrict us to the yearly yield over the period 1972–
2001 (see Figure 3.2) for the 27 counties Arkansas, Ashley, Chicot, Clay, Craighead, Crittenden,
Cross, Desha, Drew, Greene, Independence, Jackson, Jefferson, Lawrence, Lee, Lincoln, Lonoke,
Mississippi, Monroe, Phillips, Poinsett, Prairie, Pulaski, Randolph, Saint Francis, White and
Woodruff (see Figure 3.1). Arkansas county (which is used for illustration throughout the arti-
cle) is highlighted in Figures 3.1 and 3.2.
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Figure 3.1: Counties of the U.S. state of Arkansas where soybean yield data (non-irrigated) is
available for all years 1972–2001. Arkansas county is highlighted.
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Figure 3.2: Soybean yield time series for all 27 selected counties of the U.S. state of Arkansas.
The time series for Arkansas county is highlighted.
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3.3 E-OBS gridded data set

For an application (Section 5.9) of the moving score/divergence methodology presented in Chap-
ter 5 we use the high-resolution gridded E-OBS data set (version 13.1, Haylock et al., 2008)
as a reference data set, which was developed in the course of the ENSEMBLES project (see
van der Linden and Mitchell, 2009). The data set is a gridded data set derived/interpolated
from station observations. It covers the European continent (only land, 25◦N–75◦N × 40◦W–
75◦E) and is available for different grids and spatial resolutions (longitude-latitude grids: 0.25◦,
0.5◦; rotated pole grids with North Pole at 39.25◦N, 162◦W: 0.22◦, 0.44◦). We use version 13.1
of the data set, which provides daily values of the variables

• precipitation sum [in mm]

• mean temperature [in ◦C]

• minimum temperature [in ◦C]

• maximum temperature [in ◦C]

for the years 1950–2015, with variable units stated in square brackets.
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Figure 3.3: E-OBS: Time series (1961–1990) of spatial mean temperature average. The average
is taken over the area indicated in Figure 3.4.

As in Section 5.9 we are particularly interested in the mean temperatures, we illustrate
(Figure 3.3) the spatial average of the mean temperature time series over the rectangular region
visualized in Figure 3.4 for the time period 1961–1990. On the contrary, Figure 3.4 illustrates
the temporal average over the same time period.
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Figure 3.4: E-OBS: Map (Europe) of temporal mean temperature average. The average is taken
over the time period 1961–1990.
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3 Data

3.4 ENSEMBLES Regional Climate Model simulations

In a case study in Section 5.9, we evaluate Regional Climate Models (RCMs) using the newly
introduced evaluation method presented in Chapter 5 (Section 5.3). For that, we consider a
selection of the RCM simulations which were carried out as part of the ENSEMBLES project
(see van der Linden and Mitchell, 2009).

The purpose of Regional Climate Models (RCMs) is to dynamically downscale gridded cli-
mate data (which provides the boundary conditions for the RCM/is used to drive the RCM)
with a coarse spatial resolution (say ∼ 200–300 km) to obtain information/simulations of the
climate on a much finer resolution (∼ 25–50 km). Due to their complexity and the related com-
putational burden RCMs are usually applied for a certain (small) area of interest (e.g. Europe).
The output of an RCM is manifold. For climate studies, near-surface (2 meter) temperature as
well as precipitation are variables of particular interest.

As part of the ENSEMBLES project (van der Linden and Mitchell, 2009), ensembles of RCM
simulations from different (European) climate research institutes were compiled. In total 16
climate research institutes provided simulations from their individual RCMs. In an initial 40-
year experiment (1961–2000) covering Europe, the RCMs were driven by the ERA-40 reanalysis
data set (from the European Centre for Medium-Range Weather Forecasts, cp. ERA-20C data set
outlined in Section 3.1). This experiment was used to evaluate the RCMs (see also Section 5.2).
Further, RCM experiments driven by Global Climate Model (GCM) output were conducted to
create an ensemble of regional climate change projections for Europe. These experiments cover
the time period 1951–2050 (some of them cover 1951–2100). Whereas the different involved
climate research institutes considered different driving GCMs, they almost all considered the
same emission scenario. Most of the RCM simulations are available on a spatial resolution of 25
kilometers, some of them are also available for 50 kilometers.

For our case study in Section 5.9 we consider only the output variable 2 meter temperature.
For the control period 1961–1990 and a spatial resolution of 25 kilometers, we compare the
RCMs of

• the Danish Meteorological Institute (DMI ),

• the Royal Netherlands Meteorological Institute (KNMI ),

• the Max-Planck-Institute for Meteorology (MPI ),

• the Swedish Meteorological and Hydrological Institute (SMHI ).

The corresponding model acronyms are

• DMI-HIRHAM,

• KNMI-RACMO2,

• MPI-M-REMO,

• SMHIRCA.

In Section 5.9, we will refer to these different models using only the acronym of the corresponding
institute. We evaluate these four models for both, ERA-40 and GCM boundary conditions, which
yields in total eight different model outputs for our comparison. Note, that all four RCMs were
driven by the same GCM called ECHAM5. To differentiate between the two different boundary
conditions, we will hence use the acronyms ERA-40 and ECHAM5.
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4 Novel Drought Indices

As we have seen in the introduction (see Chapter 1), there already exist several different drought
indices, often with a focus on a specific application area. There have been numerous attempts to
provide multivariate drought indices that outrun established (univariate) indices. We summarize
the lessons we have learned from established drought indices (Section 4.1). Based on these
insights we provide novel methodology for the flexible computation of uni- and multivariate
drought indices (Sections 4.4 and 4.5). The multivariate approach utilizes vine copulas (see
Section 2.3.2) to model the dependence among several drought relevant variables. In a simulation
study (Section 4.6) we investigate some characteristics of the proposed multivariate indices. In
an application (Section 4.7), we illustrate the novel methodology and it its merits. This chapter
is mainly based on Erhardt and Czado (2016).

4.1 Lessons learned from established drought indices

Among the plethora of different drought indicators and indices a few have gained widespread
popularity (see e.g. Mishra and Singh, 2010, for an overview of commonly used drought in-
dices). Clearly, the Palmer Drought Severity Index (PDSI) (Palmer, 1965) respectively its self-
calibrating version (SC-PDSI) (Wells et al., 2004) and the Standardized Precipitation Index
(SPI) (McKee et al., 1993; Edwards and McKee, 1997) are the most popular ones. Due to their
properties they have been used in multitudinous drought studies and have been included in
drought monitoring and early warning systems (Bachmair et al., 2016). However, also some of
their properties have been criticized (Wells et al., 2004; Farahmand and AghaKouchak, 2015).
The vivid scientific discussion about these well established approaches and other recent ap-
proaches to multivariate drought quantification (multivariate drought indices, see Section 2.2)
provides us with valuable insights for the development of novel (multivariate) indices with the
aim to improve existing approaches from a theoretical and practical point of view. Subsequently,
we discuss these insights and summarize the lessons we have learned.

As the climate differs for different regions across the globe, the occurrence of drought depends
on the local (climate) conditions. Moreover, these local conditions vary with the seasons. Hence,
drought indices should quantify deviations from (local) normal conditions, i.e. they should ac-
count for seasonality. By convention, for many established drought indices, negative/small values
reflect dry conditions and positive/high values wet conditions. The computation of most estab-
lished drought indices usually requires long data records to yield meaningful results.

The Palmer Drought Severity Index (PDSI) is calculated based on precipitation and tem-
perature and assumes a simplifying water balance model (for details see Palmer, 1965). The
major criticisms on the PDSI are its lack of applicability and comparability for different cli-
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matic regions. Some of its major shortcomings vanished with the SC-PDSI, whose parameters
are determined based on local climatic conditions rather than on some fixed locations in the
U.S., i.e. it allows for spatial comparison. One further criticism of the PDSI is its autoregres-
sive structure. Present conditions depend on past conditions, however the time interval which
influences the present varies across space but cannot be accessed from the model.

In contrast to the PDSI, many other drought indices like the Standardized Precipitation
Index (SPI) (McKee et al., 1993; Edwards and McKee, 1997) do not make any assumptions
about the physics of the water cycle and have an interpretation in terms of probability. This
allows risk analysis, classification and frequency analysis of drought events. Two advantages
of the purely precipitation based SPI over the PDSI are its standardization (standard normal
distribution of SPI values) and the concept of time scales, which allows to set the time interval
which has an influence on the present (drought) conditions. The SPI methodology can be applied
to other variables as well (see Section 2.1) and the standardization allows for comparison of such
standardized indices and across space and time. A criticism is that the SPI assumes a parametric
distribution to model the data. However, a good fit to the data (especially in the distribution
tails) is never guaranteed (see e.g. Farahmand and AghaKouchak, 2015). Moreover, temporal
dependencies in the data or those introduced through the time scale cause the fitting to be
biased.

As an enhancement of the SPI the Standardized Precipitation Evapotranspiration Index
(SPEI) (Vicente-Serrano et al., 2010) quantifies drought not only based on precipitation. In-
stead a climatic water balance (precipitation minus potential evapotranspiration) is considered
to quantify dry/wet conditions. Using the SPEI, temperature trends (climate change) are passed
on to the index.

Kao and Govindaraju (2010) present a (to our knowledge) first multivariate (see Section 2.2)
copula-based (see Section 2.3.1) drought index, the Joint Deficit Index (JDI). They apply it to
precipitation and streamflow time-series, but application to other variables is possible. Marginals
are modeled using the SPI approach. Empirical copulas are used to (non-parametrically) estimate
the dependence structure of the marginals representing the different time scales of one to twelve
months. Finally, the joint deficit index combines the drought information captured by different
time scales using the empirical Kendall distribution function (see e.g. Barbe et al., 1996) to as-
sess the joint probability. The results are transformed to a standard normal distribution. Note,
that for meaningful estimation of the empirical Kendall distribution in high dimensions (here
multiples of 12) long data records are required. As in such high dimensions the Kendall distribu-
tion becomes almost degenerate at 0 (see e.g. Brechmann, 2014), the quantification/distinction
of dry conditions may become problematic.

Hao and AghaKouchak (2013, 2014) introduce a bivariate parametric and non-parametric
version of the Multivariate Standardized Drought Index (MSDI), respectively, by enhancing the
SPI idea to bivariate data (in their example precipitation and soil moisture time series). While
the parametric MSDI models the bivariate distribution based on copulas (see Section 2.3.1),
the non-parametric MSDI uses a bivariate empirical distribution. To obtain the MSDI the joint
cumulative probability is transformed with the inverse CDF of a standard normal distribution.
Note however, that this approach does not yield a real standardization. Usually, negative values
of the proposed index are more probable, since the joint cumulative probability is not uniformly
distributed on [0, 1]. Moreover, Farahmand and AghaKouchak (2015) provide a Standardized
Drought Analysis Toolbox (SDAT), which allows computation of non-parametric standardized
univariate and non-parametric bivariate (MSDI) drought indices.

Summarizing the lessons learned from the sophisticated drought indices revised above, we
state that (univariate) drought indices should
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Table 4.1: Comparison of different drought indices (SC-PDSI, SPI/SPEI, univariate SDAT, JDI,
MSDI) and their properties: + has this property, − doesn’t have this property, ? no definite
answer possible or not applicable (e.g. because the corresponding model is not a statistical
model).

SC-PDSI SPI/SPEI univ. SDAT JDI MSDI

INTERP − + + + +
ARBVAR − ? + + +
DRYWET + + + + +
SMALLS − − − − −
TRENDS + + + + +
SEASON + + + + +
TIMDEP ? − − + −
NPDIST ? − + − +
STCOMP ? + + + −
TSCALE − + + − +
MULTEX − ? + + +

INTERP be interpretable in terms of probability (frequency analysis/classification of droughts).

ARBVAR be applicable to arbitrary drought relevant variables.

DRYWET be negative/positive to indicate dry/wet conditions.

SMALLS yield meaningful results for (monthly) data records of 10 years (120 months) and more
(small sample size).

TRENDS reflect trends in the input data.

SEASON model and eliminate seasonality.

TIMDEP model and eliminate temporal dependencies before a probability distribution is fitted.

NPDIST use non-parametric distribution estimates (better fit, computationally efficient).

STCOMP be standardized to enable comparison over space/time and with other indices.

TSCALE allow for computation/aggregation at different time scales ℓ.

MULTEX have a multivariate extension (different types of drought).

Table 4.1 summarizes which of these characteristics the above addressed indices fulfill.

4.2 Outline of the modeling approach

In the subsequent sections (Sections 4.4 and 4.5), we introduce a novel approach to drought
modeling. Its main idea is to combine a set of drought-relevant variables into a single drought
index and to simultaneously take the inter-variable dependencies at hand into account. To model
these dependencies we consider the very flexible class of vine copulas, which we introduce in
Section 2.3.2.

The novel methodology for drought index computation considers the above introduced (Sec-
tion 4.1) desired characteristics of drought indices step-by-step as shown in Figure 4.1. The
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proposed procedure starts off with d time-series of user-selected, drought-relevant variables (red
box). It consists of two logical blocks. The first block (orange boxes, see Section 4.4) deals with
modeling each of the selected variables separately (univariate/marginal modeling). It results in a
transformation of each original time-series to an i.i.d. sample of a standard uniform distribution
(uniform margins). Further transformation to the standard normal distribution yields univariate
standardized indices (green box). The second block (blue boxes, see Section 4.5) deals with the
(vine copula based) dependence modeling of the uniform margins resulting from block one. It
provides methodology to combine several variables into a multivariate standardized index (see
Section 2.2).

Input: d time series
of drought relevant
variables (ARBVAR)

1. Identification
of dry/wet con-
ditions (DRYWET)

2. Elimination of
seasonality (SEASON,
TRENDS, SMALLS)

3. Elimination
of serial depen-
dence (TIMDEP)

4. Transforma-
tion to uniform

margins (NPDIST)

5. Vine copula
based dependence
modeling (MULTEX)

Multivariate drought
index (STCOMP,
TSCALE, INTERP)

d univariate drought
indices (STCOMP,
TSCALE, INTERP)

Figure 4.1: Modeling steps for uni-/multivariate drought index calculation.

4.3 Data example: ERA-20C/Arkansas

In the subsequent sections, we elaborate on the modeling/transformation steps addressed in
Figure 4.1. To illustrate the different steps we consider time series of monthly means of the
three variables

T 2 metre temperature,

B climatic water balance,

W volumetric soil water (top layer),

(derived) from the ERA-20C data introduced in Section 3.1. As the introduction of the novel
methodology in Sections 4.4 and 4.5 will be followed by a small evaluation of the proposed
indices, which will be based on the soybean crop yield data for 27 counties of the U.S. state
of Arkansas (see Section 3.2/Figures 3.1–3.2), we consider spatial aggregates of the above time
series to the same 27 counties over the period 1972–2001. For illustration we provide time series
of T , B and W for the county Arkansas (in the state of Arkansas) in Figure 4.2. Subsequently,
if a figure or table refers to this data example we indicate this in the corresponding caption. If
the caption starts with

ERA-20C/Arkansas (27),

the figure/table refers to the full data set consisting of the T , B and W time series for all 27
counties under consideration. If it starts with

ERA-20C/Arkansas (county),

it refers only to the time series for Arkansas county.
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Figure 4.2: ERA-20C/Arkansas (county): Temperature (T ), climatic water balance (B; precipi-
tation minus potential evapotranspiration) and (top layer) volumetric soil water (W ) time series
(1972–2001).
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4.4 Univariate standardized indices

In a first step we develop a statistically sound and generalized modeling framework for monthly
time series of drought-relevant variables. Simultaneously, this serves as marginal model in our
vine copula based modeling framework (see Section 4.5) and as algorithm for the calculation of
univariate standardized indices. These indices will have the properties which were discussed in
Section 4.1.

4.4.1 Identification of dry and wet conditions

Let us now consider a time series xtk , k = 1, . . . , N , for an arbitrary drought-relevant variable
(ARBVAR). By convention, small values should always indicate dry and big values wet conditions
(DRYWET). To ensure that, we change the sign of the time series if it was the other way round.
Consider for instance the three time series for temperature (T ), climatic water balance (B) and
soil water volume (W ) provided in Figure 4.2. We observe minima of B and W at the same time
when temperature peaks occur. High temperatures mean high evapotranspiration, which leads
to dry conditions. For low values the opposite is observed. Therefore we need to multiply the
T time series by −1. In the case of the variables B and W this is not required, as low climatic
water balance and soil water volume correspond to dry conditions.

4.4.2 Elimination of seasonality

The monthly time series of interest xtk , k = 1, . . . , N , typically show seasonal variations in their
mean, variance and skewness. This becomes clear from our exemplary time series provided in
Figure 4.2, if we decompose each of these time series into 12 month-wise sub-series, as visualized
in Figure 4.3.

To eliminate this seasonal heterogeneity (SEASON), subsequent steps include a month-wise
standardization of the time series. As illustrated in Figure 4.3, we decompose the time series xtk ,
k = 1, . . . , N , month-wise into 12 separate series, one for each month of the year: Let each time
point tk, k = 1, . . . , N , be a 2-tupel (mk, yk), where mk ∈ {1, . . . , 12} (1 = January, . . . , 12 =
December) represents the month and the integer yk ∈ Z the year corresponding to tk. Then we
consider the month-wise time series

xm := (xtk)k∈K(m) =
{
x(m,yk), k ∈ K(m)

}
, m = 1, . . . , 12,

where the index set for month m is defined as K(m) := {k : mk = m}.
To enable a standardization of the month-wise time series xm, m = 1, . . . , 12, we first elim-

inate the skewness which may as well vary depending on the season (see e.g. the empirical
skewness estimates in Figure 4.3). To achieve that, we consider continuous, monotonic increas-
ing transformations. An appropriate family of transformations, similar to the famous Box-Cox
transformations, which is defined not only for positive values is the Yeo and Johnson (2000)
transformation ψ : R× R→ R, defined as

ψ (λ, x) =





(
(x+ 1)λ − 1

)
/λ if x ≥ 0, λ 6= 0

ln(x+ 1) if x ≥ 0, λ = 0

−
(
(−x+ 1)2−λ − 1

)
/(2− λ) if x < 0, λ 6= 2

− ln(−x+ 1) if x < 0, λ = 2.
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Figure 4.3: ERA-20C/Arkansas (county): Month-wise T , B and W time series (1972–2001). The
gray dashed lines indicate the month-wise means. The red numbers are month-wise empirical
skewness estimates.

For each monthm = 1, . . . , 12 separately we estimate a parameter λm using maximum likelihood
estimation (see Yeo and Johnson, 2000) (λ̂m, m = 1, . . . , 12, are the corresponding estimates)
and denote the transformed month-wise time series by

x̃m :=
{
x̃tk = x̃(m,yk) = ψ

(
λ̂m, x(m,yk)

)
, k ∈ K(m)

}
, m = 1, . . . , 12. (4.1)

Figure 4.4 provides maps depicting the estimates λ̂m, m = 1, . . . , 12, for the three variables T ,
B and W for all selected 27 counties of the state of Arkansas.

Since drought is considered as a (negative) deviation from ‘normal’ conditions (anomaly),
we model and subtract the month-wise mean µm separately for each of the 12 time series x̃m,
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Figure 4.4: ERA-20C/Arkansas (27): Month-wise maps of Yeo and Johnson transformation pa-
rameters λm, m = 1, . . . , 12, for the month-wise T (top), B (middle) and W (bottom) time
series.
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m = 1, . . . , 12 given by Equation (4.1). We estimate it as the sample mean

µ̂m :=
1

|K(m)|
∑

k∈K(m)

x̃(m,yk), m = 1, . . . , 12.

This ensures that
∑

k∈K(m)

(
x̃(m,yk) − µ̂m

)
= 0 for each month m = 1, . . . , 12. Thus also the

re-composed time series of anomalies atk := x̃tk − µ̂mk
, k = 1, . . . , N , is centered around 0.

Hence, seasonal deviations from the annual mean could be eliminated.

Also the variance of the time series may be subject to seasonality, i.e. in some months the
time series may deviate more from its mean compared to other months. To quantify this seasonal
heterogeneity of the time series atk , k = 1, . . . , N , we estimate month-wise standard deviations
based on the unbiased sample variance as

σ̂m :=

√√√√ 1

|K(m)| − 1

∑

k∈K(m)

a2(m,yk)
, m = 1, . . . , 12,

where | · | is the cardinality. Finally we can return to the full (re-composed) monthly time series
of anomalies and obtain a homogenized time series by computing the standardized residuals

rtk := atk/σ̂mk
, k = 1, . . . , N.

We call rtk , k = 1, . . . , N , deseasonalized time series. The deseasonalized time series correspond-
ing to the time series T , B and W provided in Figure 4.2 are shown in Figure 4.5.

The re-composition into a single time series ensures that the sample size (SMALLS) for fitting
a distribution is twelve times bigger and that only one distribution has to be fitted compared to
fitting one distribution to each of the twelve month-wise time series, how it is done for example
in case of classical standardized drought indices (see Section 2.1). Note moreover, that during
the three steps described above, only monotonic increasing transformations were applied to the
month-wise time series, i.e. their (month-wise) ranking did not change. Hence, the resulting
residuals rtk , k = 1, . . . , N , can be interpreted as deviations from ‘normal’ conditions which are
comparable across different months, due to the standardization.

Besides seasonality, climatic variables can be subject to trends (e.g. due to climate change).
TRENDS are not removed since a drought index should be able to detect changes in drought
frequency and intensity due to climate change.

4.4.3 Elimination of temporal dependencies

Apart from seasonality, time series often feature temporal dependence (TIMDEP). Generally such
serial dependencies can be captured by autoregressive moving-average models (see e.g. Box et al.
(2008)). For a (deseasonalized, homogeneous, zero-mean) time series rtk , k = 1, . . . , N , the
autoregressive moving-average model ARMA(p, q) with AR-order p ∈ N0 and MA-order q ∈ N0

is defined as

rtk =

p∑

j=1

φjrtk−j
+

q∑

j=1

θjεtk−j
+ εtk , (4.2)

where the error terms εtk are independent and identically normal distributed with mean 0 and
variance σ2, that is i.i.d. N(0, σ2). Note, that for p or q equal to 0 the corresponding summands
are neglected and the model is denoted as MA(q) or AR(p), respectively. For adequate choice
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Figure 4.5: ERA-20C/Arkansas (county): Deseasonalized T , B and W time series (1972–2001).
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of the orders p and q in the ARMA(p, q) model (4.2) and estimates φ̂j , j = 1, . . . , p, and θ̂j ,
j = 1, . . . , q, of the corresponding parameters the model residuals

ǫtk := rtk −
p∑

j=1

φ̂jrtk−j
−

q∑

j=1

θ̂jǫtk−j
, k = 1, . . . , N, (4.3)

are approximately temporally independent. Hence, serial dependencies are filtered out and the
residuals ǫtk , k = 1, . . . , N , contain information on the contribution of each month to the current
dry-/wetness conditions.

Note that in the context of monthly climate data most often an AR(1) model is sufficient,
as shown in Figure 4.6 for the time series of our data example. For the deseasonalized variables
T , B and W Ljung-Box tests (at a significance level of α = 5%) reject temporal independence
(p-values close to 0) for almost all counties (with some exceptions for the variable B). However,
the same tests do not reject temporal independence of the residuals of AR(1) models for these
deseasonalized variables for any of the variables or counties (p-values above 0.2).
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Figure 4.6: ERA-20C/Arkansas (27): Ljung-Box test for serial independence; Maps of p-values
for deseasonalized T , B and W time series (top) and corresponding AR(1) residuals (bottom).
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4.4.4 Transformation to standard normal distribution

As the assumption of established standardized drought indices like SPI and SPEI of a parametric
distribution model for the data performs bad, it seems appropriate to use the (non-parametric)
empirical distribution (NPDIST) function

F̂N (x) :=
1

N

N∑

k=1

1{ǫtk ≤ x} (4.4)

of the data respectively the residuals ǫtk , k = 1, . . . , N , (see Equation (4.3)) resulting from the
previous modeling step. Here 1{A} is the indicator function, which equals 1 if the event A is
true and 0 otherwise. Note that for fitting a distribution (no matter if parametric or not) to
a sample ǫtk , k = 1, . . . , N , it is a critical assumption that the components of the sample are
independent from each other and come from one and the same distribution. We ensured this
independent and identical distribution (i.i.d.) assumption in the previous step by eliminating
the temporal dependencies.

We use the estimated distribution F̂N from Equation (4.4) to transform our residuals ǫtk ,
k = 1, . . . , N , to copula data (u-scale), i.e. to be uniformly distributed on the interval [0, 1] (see
Equation (2.2) Section 2.3.1). We calculate the (scaled) probability integral transform (PIT)

utk := N/(N + 1)F̂N (ǫtk) = rank (ǫtk) /(N + 1), k = 1, . . . , N,

where we multiply by N/(N + 1) to avoid any utk = 1. Further, we transform to the z-scale,
calculating

ztk := Φ−1 (utk) , k = 1, . . . , N, (4.5)

using the inverse PIT based on the CDF Φ of a standard normal distribution. It holds that
ztk , k = 1, . . . , N , is (approximately) independent and identically standard normal distributed
(STCOMP).

4.4.5 Standardized indices on different time scales

McKee et al. (1993) introduced the concept of time scales (TSCALE) to make their drought index
(the SPI) applicable to different types of drought (see Section 2.1). We adopt this concept,
however we perform the temporal aggregation in the end of the above described modeling process,
in order not to violate the independence assumption for fitting a probability distribution to the
residuals. This has also the advantage of being computationally more efficient. We need to
perform the different modeling steps of Sections 4.4.1–4.4.4 only once, after that we are able to
calculate the index on arbitrary time scales. Subsequently, we denote the time scale by ℓ and
indicate it as a subscript along with a standardized index.

The (approximately) temporally independent, standard normal distributed time series ztk ,
k = 1, . . . , N , calculated according to Equation (4.5), is already a standardized index with time
scale ℓ = 1. Hence we can write the corresponding index as SI1(tk) := ztk , k = 1, . . . , N . The
normal distribution has the advantage that a sum of (independent) normal distributed random
variables is again normally distributed. We use this property to calculate standardized indices
for time scales ℓ ≥ 1. The sum

∑ℓ−1
j=0 ztk−j

of standard normal variables is normally distributed
with mean 0 and variance ℓ. Hence, we obtain a standardized index with time scale ℓ as

SIℓ(tk) :=
1√
ℓ

ℓ−1∑

j=0

ztk−j
, k = 1, . . . , N. (4.6)
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Following our convention from Section 4.4.1 a small (negative) index value of the index (4.6)
indicates dryness/drought and a big (positive) value indicates wetness. To classify the values of
standardized indices (like the SPI, SPEI and our standardized indices proposed in Sections 4.4
and 4.5) we use the dry- and wetness categories defined in Table 2.1.

Figure 4.7 depicts the univariate standardized drought indices based on the climatic water
balance B for time scales ℓ = 1, 6, 12, for Arkansas county (1972–2001). We identify persistent
dry periods during the years 1972, 1976/77, 1980/81, 1986, 1996 and 2000. The drought events
during the years 1980/81, 1986 can be considered as exceptionally dry (D4), according to the
classification of Table 2.1. Whereas the index with time scale 1 identifies single (agricultural)
drought months, higher time scales (e.g. 6, 12) allow to identify persistent periods of dryness
(hydrological drought).

Figure 4.8 depicts the univariate drought indices SI6(T ), SI6(B) and SI6(W ) for Arkansas
county (1972–2001). We observe that the different variables carry different information about
dry-/wetness conditions. Whereas the drought events during the years 1980/81, 1986 and 2000
were accompanied and intensified by high temperatures, the temperature based index SI6(T )
alone does not indicate drought during the other events (1972, 1976/77 and 1996) identified
by SI6(B) and SI6(W ). Hence, it might be of value to combine the dry-/wetness information
captured in different drought relevant variables in one multivariate index, as we propose in the
subsequent section.
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Figure 4.7: ERA-20C/Arkansas (county): Time series of the standardized indices SI1(B), SI6(B)
and SI12(B) (different time scales). The color-coding reflects the severity of wet-/dryness ac-
cording to the different categories specified in Table 2.1. For better identification of dry/wet
periods points at the top/bottom of the panels (colored accordingly) indicate points in time of
wet/dry conditions.
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Figure 4.8: ERA-20C/Arkansas (county): Time series of the standardized indices SI6(T ), SI6(B)
and SI6(W ) (different variables). The color-coding reflects the severity of wet-/dryness according
to the different categories specified in Table 2.1. For better identification of dry/wet periods
points at the top/bottom of the panels (colored accordingly) indicate points in time of wet/dry
conditions.
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4.5 Multivariate standardized indices

Subsequently, we provide an extension of the methodology introduced in Section 4.4 to multivari-
ate standardized drought indices (MULTEX), i.e. to drought indices that summarize the dryness
information captured in multiple (possibly dependent) variables (see Section 2.2). This extension
is based on vine copulas (see e.g. Aas et al., 2009) which we introduce briefly in Section 2.3.2.
Here, vine copulas are utilized to flexibly model the dependence of several drought relevant
variables. The dependence parameters are estimated after separate modelling of the univariate
margins, using a semi-parametric estimation procedure (see Genest et al., 1995, and Section
2.3.1). Other copula based drought indices were introduced by Hao and AghaKouchak (2013)
and Kao and Govindaraju (2010), as we have seen in Section 4.1.

4.5.1 Marginal models

As copulas allow separate modeling of margins and dependence structure (see Section 2.3.1), we
first model the margins according to Sections 4.4.1–4.4.4 as in the univariate case. If required we
change the sign of the input data (see Section 4.4.1), then we eliminate seasonality (see Section
4.4.2) and temporal dependencies (see Section 4.4.3) and estimate a non-parametric distribution
of the residuals (see Section 4.4.4). This enables transformation to copula data and after that
copula based dependence modeling.

4.5.2 Vine copula based dependence modeling

Let now u := (u1, . . . ,ud) be the copula data obtained from the marginal models corresponding
to d different drought-relevant variables, where uj = (uj,tk)k=1,...,N , j = 1, . . . , d, and uj,tk is the
copula data corresponding to variable j at time tk. In a second (parametric) step we select and
estimate a vine copula C for this data. For an introduction to vine copulas see Aas et al. (2009)
and reference therein, as well as Section 2.3.2.

Vine tree structure selection The proposed multivariate indices utilize canonical vines
(C-vines) to organize the pair-copula construction (vine copula, see Section 2.3.2) which is
supposed to model the inter-variable dependencies of d drought relevant variables. The star like
structured C-vine trees allow to order the involved variables by importance. Having selected
a specific variable order, the corresponding C-vine tree structure tells us, which variable pairs
have to be modeled explicitly in the next step, using (parametric) pair-copulas.

T1 2=B 1=T 3=W
1,2

T,B

1,3

T,W

T2 1=T,2=B 1=T,3=W
2,3;1

B,W;T

Figure 4.9: Selected vine tree structure for the three variables temperature (T ), climatic water
balance (B) and volumetric soil water (W ).

To further illustrate the C-vine tree structure selection we return to our three-variate data
example (i.e. d = 3). As in Section 4.4 we consider the three variables temperature (T ), climatic
water balance (B) and volumetric soil water (W ). For these three variables we select the tree
structure as given in Figure 4.9, i.e. we select the variable order (T,B,W ). We decide for the
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given order, as temperature (1=T) has direct impact on the climatic water balance (2=B) and
indirect impact on the water availability in the soil (3=W), as the soil water varies depending on
(2=B) precipitation and evapotranspiration (climatic water balance). Such a derivation of the
variable order based on physical arguments might not always be possible. Note however, that in
low dimensions all possible variable orders can be compared in a validation study of the resulting
multivariate drought indices to find the best model (see also Section 4.7). The above selected
vine tree structure explicitly models the pair-copulas for the variable pairs (T,B), (T,W ) and
(B,W ) given T , which can also be seen in Figure 4.9.

Pair-copula selection and parameter estimation In a next step we select pair-copula fam-
ilies for all variable pairs occuring in the above chosen C-vine tree structure. For the pair-copula
family selection we can choose among a variety of bivariate copula families. In the following we
restrict us to the Gaussian (N), Student-t (t), Clayton (C), Gumbel (G), Frank (F) and Joe (J)
family, which all feature different dependence structures and properties. Also rotated versions
of the Clayton, Gumbel and Joe copula are considered to capture negative asymmetric depen-
dencies (see Section 2.3.1). We select the pair-copulas sequentially (see Section 2.3.3) based on
the Bayesian information criterion (2.6) starting in the first tree T1, which incorporates only un-
conditioned pairs. The parameters of each pair-copula are estimated along with the pair-copula
family selection using maximum likelihood estimation. Before that we test for pair-wise indepen-
dence (Genest and Favre, 2007), to see if an independence copula should be selected. For more
details on the selection of pair-copula families and estimation of the corresponding parameters
see Sections 2.3.1 and 2.3.3.

(T,B)

C
SJ

(T,W)

C
SG
F
SJ

(B,W;T)

N
t
SG

Figure 4.10: ERA-20C/Arkansas (27): Selected pair-copula families for the variable pairs (T,B),
(T,W ) and (B,W ;T ) corresponding to the selected vine tree structure as specified in Figure
4.9.

Returning to our data example (see also Section 4.2) and the C-vine tree structure selected
above (see Figure 4.9), we have to select pair-copula families for the pairs (T,B), (T,W ) and
(B,W ;T ). Figures 4.10 and 4.11 show which pair-copulas/parameters were selected/estimated
for the 27 counties of Arkansas under consideration. For the pair (T,B) for almost all counties the
survival Joe copula was selected. This copula family exhibits lower tail-dependence which seems
meaningful from a practical perspective, as high temperatures1 negatively affect the climatic
water balance B (higher evapotranspiration), but low temperatures do not necessarily mean that

1The temperatures were multiplied by −1 as low values are supposed to correspond to dry conditions.
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B will be high (e.g. if it did not rain in a long time). For the pair (T,W ) mostly Clayton, survival
Joe and survival Gumbel copulas (all lower tail-dependent) were selected. For the conditional pair
(B,W ;T ) the map is divided into three parts. Whereas in the north survival Gumbel copulas are
selected, Gaussian copulas (no tail-dependence) are favored in central Arkansas and Student-
t copulas (lower and upper tail-dependence) in the south-east. From Figure 4.11 we see that
the pair-copula parameters vary slightly across different counties. Whereas the unconditioned
variable pairs (T,B) and (T,W ) are rather weakly associated, a higher association is modeled
for the conditioned pair (B,W ;T ). For more details about the addressed copula families and
their characteristics like tail-dependence we refer to Section 2.3.1 and Table 2.2.

(T,B) (T,W) (B,W;T)

0.1

0.2

0.3

0.4

0.5

Figure 4.11: ERA-20C/Arkansas (27): Kendall’s τ values corresponding to the estimated pair-
copula parameters for the variable pairs (T,B), (T,W ) and (B,W ;T ) corresponding to the
selected vine tree structure as specified in Figure 4.9.

4.5.3 Computation of multivariate indices

In the previous step we showed how we select/estimate a C-vine copula for the copula data
u = (u1, . . . ,ud). The copula data u was obtained as a result of the marginal modeling described
in Section 4.4, where uj = (uj,tk)k=1,...,N , j = 1, . . . , d, and uj,tk is the copula data corresponding
to variable j at time tk. For the C-vine copula we selected/estimated

(a) a variable order and hence a C-vine tree structure,

(b) pair-copula families and

(c) corresponding pair-copula parameters.

Based on the C-vine copula, which is specified by the model components (a)–(c), we now
eliminate the dependencies in the copula data u, i.e. we transform to independent, uniform data
on [0, 1]d. This is achieved by a Rosenblatt (1952) transformation, a multivariate probability
integral transform. For details on the computation of the Rosenblatt transform for vine copulas
see Section 2.3.4 as well as Aas et al. (2009) and Schepsmeier (2015). We calculate the Rosenblatt
transformation v := (v1, . . . ,vd) of u using Equation (2.16) as

v1,tk := u1,tk ,

v2,tk := C2|1(u2,tk |u1,tk),
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...

vd,tk := Cd|1,...,d−1(ud,tk |u1,tk , . . . , ud−1,tk), k = 1, . . . , N,

where for all j = 2, . . . , d, Cj|1,...,j−1 is the conditional CDF for variable j given the variables
1, . . . , j − 1. Note that for canonical vine copulas the order of the variables 1, . . . , d is given by
the selected order of root variables.

In the context of our application, the Rosenblatt transformation of d dependent drought rel-
evant variables (which initially were transformed to copula data) yields independent information
about dry/wet conditions captured in these variables. v1 incorporates the same information as
an univariate drought index calculated according to Section 4.4 based on the first variable. vj ,
j = 2, . . . , d, provide information on dry/wet conditions identified by variable j, conditioned on
a certain state of the previously considered variables 1, . . . , j − 1.

For our three dimensional example, where the variable order was selected as (T,B,W ), we
discuss the Rosenblatt transformation in the following. First, we compute vT,t = uT,t, which
represents the dry-/wetness information captured in the variable temperature (T ) for time point
t. vB,t = CB|T (uB,t|uT,t) provides additional information on how extreme the observed climatic
water balance (B) in time point t is, given the corresponding realization of T . The calculation
of vB,t involves the pair-copula CT,B. vW,t = CW |T,B(uW,t|uT,t, uB,t) captures further drought
information based on the variable volumetric soil water (W ) given the realizations of T and
B, which was not already captured in vT,t and vB,t. Its calculation is a bit more involved. We
calculate vW,t = CW |B;T (CW |T (uW,t|uT,t)|CB|T (uB,t|uT,t)), based on the pair-copulas CB,W ;T ,
CT,W and CT,B.

Subsequently we consider two different approaches to join multivariate drought information
into one index. For comparison, we provide a third approach which ignores the inter-variable
dependence and assumes multivariate normality.

Method A (aggregation) We define the aggregated standardized index with time scale ℓ as

SIAℓ (1, . . . , d)(tk) :=
1√
ℓ · d

ℓ−1∑

i=0

d∑

j=1

Φ−1
(
vj,tk−i

)
. (4.7)

Hence, we first transform the elements of the multivariate probability integral transform to a
standard normal distribution, using the inverse of the CDF Φ of a standard normal distribution.
Then we aggregate the dry-/wetness information captured in these d different variables by
summing them up. After aggregation for a certain time scale ℓ (compare Equation (4.6) in
Section 4.4.5) we divide the sum by

√
ℓ · d, which yields the desired standardization.

Method M (multiplication) For the second approach we exploit that the multivariate de-
pendence structure of v = (v1, . . . ,vd) is represented by the independence copula C(v1, . . . , vd) =∏d

j=1 vj . Hence, we calculate the product ṽtk :=
∏d

j=1 vj,tk for all k = 1, . . . , N . To obtain a stan-
dardized index we proceed as in the univariate case (see Sections 4.4.4 and 4.4.5). We calculate
the rank transformation ũtk := rank (ṽtk) /(N + 1), k = 1, . . . , N , transform to the z-scale and
aggregate for a selected time scale ℓ. Following this procedure, the multiplicative standardized
index with time scale ℓ is defined as

SIMℓ (1, . . . , d)(tk) :=
1√
ℓ

ℓ−1∑

i=0

Φ−1
(
ũtk−i

)
. (4.8)
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Method N (normal) For the third approach which does not eliminate the inter-variable
dependence, we consider z to be the marginal transformation of u to the z-scale. Assuming z

to be a sample from a zero mean multivariate normal distribution, we can conclude that the
linear transformation 1′z, where 1 = (1, . . . , 1), is a sample from a zero mean univariate normal
distribution. We estimate the sample variance of 1′z by

S :=
1

N − 1

N∑

k=1




d∑

j=1

Φ−1(uj,tk)




2

and calculate a standardized index with time scale ℓ as

SINℓ (1, . . . , d)(tk) :=
1√
ℓ · S

ℓ−1∑

i=0

d∑

j=1

Φ−1
(
uj,tk−i

)
. (4.9)

We return to our three-variate data example to illustrate the three different methods. Figure
4.12 depicts the multivariate drought indices SIN6 (T,B,W ), SIA6 (T,B,W ) and SIM6 (T,B,W ) for
Arkansas county (1972–2001). Slight differences between the three approaches can be observed.
Whereas the timing of dry/wet events matches, there are differences in the detected intensities.
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Figure 4.12: ERA-20C/Arkansas (county): Time series of the standardized indices SIN6 (T,B,W ),
SIA6 (T,B,W ) and SIM6 (T,B,W ) (comparison of different methods). The color-coding reflects the
severity of wet-/dryness according to the different categories specified in Table 2.1. For better
identification of dry/wet periods points at the top/bottom of the panels (colored accordingly)
indicate points in time of wet/dry conditions.
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4.6 Simulation study on the relevance of variable order

The above presented vine copula based multivariate drought indices (methods A (aggregation,
see Equation (4.7)) andM (multiplication, see Equation (4.8))) require specification of a variable
order. However, the practical implications of this variable order are not clear from a theoretical
point of view. Hence, we investigate the effect of the order on the drought modeling capabilities
of such indices in a simulation study. Our simulation study for three-variate indices considers
different (artificial) scenarios. For the simulation of (artificial) “drought observations” we make
the following assumptions:

(A1) 3 drought driving variables carry all information about dry-/wetness conditions.

(A2) These 3 variables are realizations of a specific three-variate C-vine copula (true vine
copula) with a specific variable order.

(A3) A three-variate drought index based on the true vine copula from (A2) (and method
A or M, respectively) fully specifies the dry-/wetness conditions, i.e. we consider it as
observed standardized drought index.

Hence, considering variables A, B, C, we simulate (N = 12,000 observations, i.e. thousand
years of monthly observations) from a specific C-vine copula with variable order (A,B,C) (O0),
and calculate the observed drought index based on the same (true) vine copula (A2). We do
this separately for methods A and M, respectively, as there can be only one true/observed
drought index. As pair-copulas for the true vine copula we select a survival Joe copula for the
pair (1, 2), a Clayton copula for the pair (1, 3) and a Gumbel copula for the pair (2, 3; 1). The
corresponding parameters are specified in terms of Kendall’s τ (see Section 2.3.1). We consider
the eight different scenarios

(T1) (0.1,0.1,0.1), (T2) (0.1,0.1,0.5), (T3) (0.1,0.5,0.1), (T4) (0.5,0.1,0.1),

(T5) (0.1,0.5,0.5), (T6) (0.5,0.1,0.5), (T7) (0.5,0.5,0.1), (T8) (0.5,0.5,0.5),

for the triplet (τ1,2, τ1,3, τ2,3;1). The Kendall’s τ values 0.1 and 0.5 are motivated by the example
in Section 4.5.2 (see Figure 4.11). To investigate the effect of variable order, we select/estimate
vine copulas as discussed in Section 4.5.2, now based on the simulated variables and for all 6
possible variable orders

(O0) (A,B,C), (O1) (A,C,B), (O2) (B,A,C),

(O3) (B,C,A), (O4) (C,A,B), (O5) (C,B,A),

and calculate the corresponding multivariate indices for comparison with the “observed” index.

To validate the drought indices originating from orders (O0)–(O5) and seeing the effect of
different magnitudes of pair-wise association (T1)–(T8) we consider four different validation
metrics. The first metric is the Pearson correlation (COR) to assess the overall performance of a
drought index in quantifying the dry-/wetness conditions given by the observed index. Further
considered metrics are the probability of detection (POD), the false alarm ratio (FAR) and the
critical success index (CSI) (see Section 2.4 for a mathematical description of these metrics).
These metrics allow to assess the drought detection capabilities of modeled (detected) drought
indices in comparison to an observed (true) drought index.
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POD provides the share of correctly identified droughts (i.e. a high value indicates good per-
formance),

FAR gives the portion of incorrectly detected droughts (i.e. a low value indicates good per-
formance) and

CSI is a measure which indicates good performance (high value) if observed drought is de-
tected correctly and bad performance (low value) if observation and detection do not
match in most cases.

In order to compute POD, FAR and CSI (according to Section 2.4) we have to specify a threshold
ϑ for the drought indices, which decides if a drought occurred/was detected or not. Considering
the quantile-based (standard normal distribution) classification of drought events given in Table
2.1, selection of one of the quantile-based thresholds given in Table 4.2 seems adequate. For the
further analysis in this section, we select the threshold ϑ = −0.52 which corresponds to the
0.3-quantile of the standard normal distribution.

Table 4.2: Candidate thresholds ϑ for drought occurrence/detection, based on certain quantiles
of a standard normal distribution. The corresponding dryness (D) categories for standardized
drought indices (SI) are stated along with the thresholds. The function Φ−1 denotes the quantile
function of the standard normal distribution.

ϑ quantile categories (in words)

Φ−1(0.30) = −0.52 0.30 D0–D4 abnormally dry or worse
Φ−1(0.20) = −0.84 0.20 D1–D4 moderately dry or worse
Φ−1(0.10) = −1.28 0.10 D2–D4 severely dry or worse
Φ−1(0.05) = −1.64 0.05 D3–D4 extremely dry or worse
Φ−1(0.02) = −2.05 0.02 D4 exceptionally dry

Table 4.3 shows the results of the simulation study (using the 0.3-quantile of the standard
normal distribution as a threshold). Subsequently we summarize the results. Generally, we ob-
serve that the variable order matters. For some (< 10%) order-Kendall’s τ combinations (O-T
combinations) we observe COR < 0.5, POD < 0.5 and FAR > 0.5. However, in the majority
(> 60%) of all considered O-T combinations we observe COR ≥ 0.8, POD ≥ 0.7 and FAR ≤ 0.3.
We observe that for high association (T8) drought indices for both methods perform consider-
ably worse for misspecified variable order compared to low association (T1), according to all
measures under consideration. Method M appears to yield more stable results. Moreover, we
find that (with a few exceptions) the orders (O1) and (O2) which differ from (O0) comparatively
less provide better indices compared to (O3)–(O5). Comparing the different specifications (T1)–
(T8) in more detail yields, that order misspecifications for pairs with small association (0.1) have
less impact on index performance compared to those with high association (0.5). We conclude
that it is not meaningful to combine only highly associated variables into a multivariate drought
index, as in that case additional variables do not carry any additional information but rather
add noise to the index.
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Table 4.3: Simulation study results (validation against “observed” drought index): Pearson cor-
relations (COR), probability of detection (POD), false alarm ratio (FAR) and critical success
index (CSI) for drought indices calculated based on different methods (A and M), variable
orders (O0–O5) and different pair-wise magnitudes of variable association (T1–T8). POD, FAR
and CSI are computed using a threshold ϑ = −0.52, which distinguishes if abnormally dry or
even worse conditions (D1–D4) occured/were detected or not.

A (aggregation) M (multiplication)
(O0) (O1) (O2) (O3) (O4) (O5) (O0) (O1) (O2) (O3) (O4) (O5)

COR
(T1) 1.00 0.99 0.99 0.97 0.97 0.96 1.00 0.99 0.99 0.97 0.97 0.96
(T2) 1.00 0.80 0.99 0.98 0.76 0.78 1.00 0.80 0.99 0.98 0.76 0.78
(T3) 1.00 0.99 0.98 0.77 0.74 0.74 1.00 0.99 0.98 0.78 0.75 0.75
(T4) 1.00 0.99 0.80 0.80 0.97 0.80 1.00 0.99 0.80 0.80 0.96 0.80
(T5) 1.00 0.80 0.98 0.73 0.48 0.53 1.00 0.80 0.98 0.75 0.52 0.51
(T6) 1.00 0.80 0.80 0.92 0.77 0.86 1.00 0.80 0.80 0.89 0.74 0.83
(T7) 1.00 0.99 0.78 0.60 0.73 0.56 1.00 0.99 0.79 0.61 0.74 0.58
(T8) 1.00 0.80 0.78 0.68 0.45 0.44 1.00 0.80 0.80 0.71 0.50 0.50

POD
(T1) 1.00 0.95 0.92 0.88 0.89 0.86 0.99 0.96 0.92 0.88 0.89 0.87
(T2) 0.99 0.72 0.92 0.90 0.69 0.70 0.99 0.78 0.92 0.90 0.74 0.76
(T3) 0.99 0.95 0.92 0.65 0.62 0.62 0.99 0.96 0.90 0.66 0.65 0.65
(T4) 0.99 0.95 0.66 0.66 0.89 0.67 0.99 0.96 0.68 0.68 0.88 0.68
(T5) 0.99 0.73 0.90 0.64 0.46 0.53 0.99 0.78 0.90 0.65 0.54 0.58
(T6) 0.99 0.73 0.68 0.81 0.70 0.76 0.99 0.78 0.69 0.80 0.73 0.74
(T7) 0.99 0.95 0.65 0.52 0.61 0.48 0.99 0.96 0.66 0.55 0.62 0.53
(T8) 0.99 0.73 0.66 0.58 0.45 0.43 0.99 0.78 0.68 0.63 0.51 0.50

FAR
(T1) 0.01 0.05 0.08 0.12 0.11 0.13 0.01 0.04 0.08 0.12 0.11 0.13
(T2) 0.00 0.27 0.07 0.09 0.30 0.29 0.01 0.22 0.08 0.10 0.26 0.24
(T3) 0.01 0.05 0.10 0.35 0.37 0.37 0.01 0.04 0.10 0.34 0.35 0.35
(T4) 0.01 0.05 0.33 0.33 0.10 0.33 0.01 0.04 0.32 0.32 0.12 0.32
(T5) 0.01 0.27 0.09 0.37 0.53 0.46 0.01 0.22 0.10 0.35 0.46 0.42
(T6) 0.00 0.27 0.33 0.19 0.31 0.26 0.01 0.22 0.31 0.20 0.27 0.26
(T7) 0.01 0.05 0.35 0.49 0.40 0.51 0.01 0.04 0.34 0.45 0.38 0.47
(T8) 0.01 0.27 0.34 0.42 0.55 0.57 0.01 0.22 0.32 0.37 0.49 0.50

CSI
(T1) 0.99 0.90 0.85 0.78 0.80 0.76 0.99 0.92 0.85 0.79 0.81 0.77
(T2) 0.99 0.57 0.86 0.83 0.53 0.55 0.99 0.64 0.85 0.83 0.59 0.61
(T3) 0.98 0.91 0.84 0.48 0.45 0.45 0.98 0.92 0.82 0.50 0.48 0.48
(T4) 0.99 0.90 0.50 0.50 0.81 0.51 0.99 0.92 0.52 0.52 0.79 0.52
(T5) 0.99 0.57 0.83 0.46 0.30 0.37 0.98 0.64 0.81 0.48 0.37 0.40
(T6) 0.99 0.57 0.51 0.68 0.53 0.60 0.99 0.64 0.53 0.66 0.58 0.58
(T7) 0.98 0.90 0.48 0.35 0.43 0.32 0.99 0.92 0.49 0.38 0.45 0.36
(T8) 0.98 0.57 0.49 0.41 0.29 0.27 0.98 0.64 0.52 0.46 0.34 0.33
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4.7 Application, validation and comparison to established stan-

dardized drought indices

In this section we resume the data example considered throughout Sections 4.3–4.5. We provide
an application and illustration of the novel methodology in the context of agro-meteorological
drought detection. We compute three-variate standardized (agro-meteorological) drought in-
dices and further uni- and bivariate standardized drought indices based on other established
approaches (see references given below) for comparison. Motivated by the application at hand
(validation data), we consider the variables temperature (T ), climatic water balance (B) and
volumetric soil water (W ) for the computation of agro-meteorological drought indices, as they
are expected to have an influence on crop yield and mirror dry/wet conditions. We validate the
drought indices using the Arkansas soybean yield data introduced in Section 3.2.

Selection of drought indices for comparison and validation based on soybean yield
For our application we compare the eight drought indices

SPI6(P ) Standardized Precipitation Index,
McKee et al. (1993); Edwards and McKee (1997),

SPEI6(B) Standardized Precipitation Evapotranspiration Index,
Vicente-Serrano et al. (2010),

SI6(B) Standardized Index, univariate,
see Equation (4.6) in Section 4.4,

SDAT6(B) Standardized Drought Analysis Toolbox (SDAT), univariate,
Farahmand and AghaKouchak (2015),

SDAT6(B,W ) SDAT/Multivariate Standardized Drought Index (MSDI), bivariate,
Hao and AghaKouchak (2014),

SIN6 (T,B,W ) Standardized Index (method N/normal), trivariate,
see Equation (4.9) in Section 4.5,

SIA6 (T,B,W ) Standardized Index (method A/aggregation), trivariate,
see Equation (4.7) in Section 4.5,

SIM6 (T,B,W ) Standardized Index (methodM/multiplication), trivariate,
see Equation (4.8) in Section 4.5,

all for time scale 6, where the variables (and their order) used for the computation are stated
in parentheses. We reason our decision for these eight indices as follows. Among the univariate
indices we consider the well-established SPI and SPEI, to see if replacing precipitation (P ) by
the climatic water balance (B) yields improvements for drought quantification. We compare
to two further B based univariate indices, the SI6(B) based on our novel methodology and
SDAT6(B) (see Farahmand and AghaKouchak, 2015) to see if these more recent approaches
yield any improvements for drought event identification. As B andW quantify water availability,
thus appear to be more important than T and SDAT/MSDI is restricted to the bivariate case,
we further consider SDAT6(B,W ). Finally, we are interested in validating the novel multivariate
indices and identifying differences between SIN6 (T,B,W ), SIA6 (T,B,W ) and SIM6 (T,B,W ). The
variable order (T,B,W ) was selected based on a comparative validation of all 6 possible variable
orders. For the results of this comparison see the discussion and Table 4.4 below.

The selection of time scale 6 is again motivated by the nature of the validation data. As we
have only yearly yield observations and drought can affect the yield only during the growing
season we make the following assumption (based on information about the growing season from
the Arkansas Soybean Promotion Board, 2011). We assume that the growing season for soybeans
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4 Novel Drought Indices

lasts for six months and approximately ends at the end of October. Hence, for the validation
it seems meaningful to standardize the soybean yield (i.e. transform it to a standard normal
distribution) and compare it to the October values of standardized drought indices based on
time scale 6, as these values are meant to reflect the drought conditions during the respective
growing seasons.

Illustration of drought indices and comparison with standardized soybean yield
Figure 4.13 compares the standardized drought indices under consideration with the standard-
ized soybean yield for Arkansas county (1972–2001). Comparison of the univariate (left panel)
and multivariate indices (right panel) shows a similar temporal evolution of the different indices
and in many cases it is difficult to visually detect differences. However, especially in the extremes
differences become clear. SDAT6(B) appears to be more conservative compared to the other uni-
variate indices. It never detects an exceptional drought (i.e. values below the 0.02-quantile of
the standard normal distribution). The smallest possible value of SDAT6(B) corresponds to the
1/(30 + 1)-quantile of the standard normal distribution. That is due to the length of the data
record (30 years) and the month-wise transformation to the z-scale. SDAT6(B,W ) “prefers”
to indicate dry over wet conditions (see upper plot in right panel). It is not standardized, as
already discussed in Section 4.1 for the multivariate SDAT indices in general. Comparison with
the standardized soybean yield (grey points) shows that the drought indices are mostly able to
reflect the dry-/wetness information captured in the validation data. For some time instances the
multivariate indices capture the dry-/wetness conditions better (see e.g. 1994, 1998). To clearly
differentiate between the different indices, further numerical (non-visual) validation (including
all counties of Arkansas where validation data is available) is required.

Numerical validation of selected drought indices For a numerical comparison and vali-
dation of the different indices, we now consider the four metrics COR, POD (2.17), FAR (2.18)
and CSI (2.19) already applied in our simulation study in Section 4.6 (see also Section 2.4). We
calculate these metrics using only the October values of the indices (as stated above) separately
for each of the 27 counties under consideration. As a threshold ϑ, to distinguish if drought
occurred/was detected or not, we choose the 0.1-quantile of the standard normal distribution,
i.e. ϑ = Φ−1(0.1) = −1.28 (cp. Table 4.2). This threshold corresponds to severe or even worse
drought conditions (D2–D4). Hence, we validate the capability of the indices under consideration
to reliably identify the 10% worst drought conditions.

In order to choose the best variable order for our novel multivariate drought indices (methods
M andA), Table 4.4 provides a comparison of the corresponding indices for all 6 possible variable
orders and shows that the selected variable order (T,B,W ) yields the best results in terms of
Pearson correlations (COR) and critical success index (CSI).

Table 4.5 summarizes the validation results for the eight selected indices. The table provides
averages of the four considered metrics over all 27 counties under consideration. Maps show-
ing the results county-wise are provided in Figures 4.14–4.17. The results for COR show that
inclusion of more than one variable yields improvements. Comparison of the univariate indices
yields clear benefits of using the climatic water balance (B) instead of precipitation (P ). While
SPEI6(B) and SDAT6(B) show similar performance, SI6(B) yields better results in terms of
POD, FAR and CSI. The novel three-variate indices seem to detect D2–D4 droughts better
compared to the other indices (POD), where SIN6 (T,B,W ) performs best. Only SIM6 (T,B,W )
yields a lower average FAR than the univariate SI6(B). CSI ranks all four indices based on
our novel methodology better than the remaining four. Comparing only our three multivariate
approaches (based on POD, FAR and CSI) SIM is preferred over SIA and SIA over SIN .
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4 Novel Drought Indices

Table 4.4: ERA-20C/Arkansas (27): Standardized soybean yield based validation of the drought
indices SIA6 and SIM6 for different variable orders. Only the October values of the indices (time
scale 6) are used for the validation as they mirror the dry-/wetness conditions in the corre-
sponding growing seasons. The provided values are averages of the Pearson correlations (COR),
probability of detection (POD), false alarm ratio (FAR) and critical success index (CSI) calcu-
lated separately for each of the 27 counties of Arkansas under consideration. For the calculation
of POD, FAR and CSI we use ϑ = Φ−1(0.1) = −1.28 as a threshold to distinguish if a severe or
even worse drought (D2–D4) occurred/was detected or not.

Variable order
Index Metric (T,B,W ) (T,W,B) (B, T,W ) (B,W, T ) (W,T,B) (W,B, T )

SIA6 COR 0.48 0.43 0.46 0.46 0.44 0.44
POD 0.70 0.75 0.65 0.65 0.81 0.80
FAR 0.47 0.52 0.53 0.53 0.56 0.56
CSI 0.44 0.42 0.37 0.37 0.40 0.40

SIM6 COR 0.50 0.43 0.48 0.48 0.43 0.43
POD 0.69 0.56 0.68 0.68 0.56 0.56
FAR 0.38 0.51 0.42 0.42 0.58 0.59
CSI 0.49 0.38 0.45 0.45 0.33 0.33

Table 4.5: ERA-20C/Arkansas (27): Standardized soybean yield based validation of the drought
indices SPI6(P ), SPEI6(B), SI6(B), SDAT6(B), SDAT6(B,W ), SIN6 (T,B,W ), SIA6 (T,B,W ) and
SIM6 (T,B,W ). Only the October values of the indices (time scale 6) are used for the validation
as they mirror the dry-/wetness conditions in the corresponding growing seasons. The provided
values are averages of the Pearson correlations (COR), probability of detection (POD), false
alarm ratio (FAR) and critical success index (CSI) calculated separately for each of the 27
counties of Arkansas under consideration. For the calculation of POD, FAR and CSI we use
ϑ = Φ−1(0.1) = −1.28 as a threshold to distinguish if a severe or even worse drought (D2–D4)
occurred/was detected or not.

COR POD FAR CSI

univariate

SPI6(P ) 0.38 0.30 0.65 0.20
SPEI6(B) 0.46 0.43 0.48 0.31
SI6(B) 0.46 0.60 0.45 0.41
SDAT6(B) 0.46 0.44 0.58 0.30

bivariate SDAT6(B,W ) 0.49 0.65 0.58 0.35

trivariate
SIN6 (T,B,W ) 0.49 0.81 0.55 0.41

SIA6 (T,B,W ) 0.48 0.70 0.47 0.44

SIM6 (T,B,W ) 0.50 0.69 0.38 0.49
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Figure 4.14: ERA-20C/Arkansas (27): Pearson correlations of the October values of SPI6(P ),
SPEI6(B), SI6(B), SDAT6(B), SDAT6(B,W ), SIN6 (T,B,W ), SIA6 (T,B,W ) and SIM6 (T,B,W )
with the standardized soybean yield.
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Figure 4.15: ERA-20C/Arkansas (27): Probability of detection (POD) of a severe or even worse
drought (D2–D4) for SPI6(P ), SPEI6(B), SI6(B), SDAT6(B), SDAT6(B,W ), SIN6 (T,B,W ),
SIA6 (T,B,W ) and SIM6 (T,B,W ).
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Figure 4.16: ERA-20C/Arkansas (27): False alarm ratio (FAR) for a severe or even worse
drought (D2–D4) for SPI6(P ), SPEI6(B), SI6(B), SDAT6(B), SDAT6(B,W ), SIN6 (T,B,W ),
SIA6 (T,B,W ) and SIM6 (T,B,W ).
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Figure 4.17: ERA-20C/Arkansas (27): Critical success index (CSI) of a severe or even worse
drought (D2–D4) for SPI6(P ), SPEI6(B), SI6(B), SDAT6(B), SDAT6(B,W ), SIN6 (T,B,W ),
SIA6 (T,B,W ) and SIM6 (T,B,W ).
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Illustration of drought periods Considering once more severe or worse (D2–D4) drought
conditions (cp. Tables 2.1 and 4.2), we are interested to see if the different drought indices identify
different onset and termination of droughts or even different drought periods. For that purpose
Figure 4.18 provides time series for each index (different colors) showing if a drought was detected
(square) or not (or if the index could not be computed, cross). Most of the time the different
indices detected the same drought events. However, we observe differences in drought onset (e.g.
1977) and termination (e.g. 2000). During 1998 the multivariate indices identify drought events
which were not identified by the univariate indices. The numbers at the bottom right indicate
the percentage of months where a D2–D4 drought was identified by the corresponding indices.
Per definition this number should be 0.1, as we consider D2–D4 droughts (cp. Table 4.2). We see
that SDAT6(B,W ) and SIN6 (T,B,W ) have a tendency to decide too often in favor of drought.
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Figure 4.18: ERA-20C/Arkansas (county): Time series (1972–2001) indicating when severe
or worse drought conditions (D2–D4) were detected based on SPI6(P ), SPEI6(B), SI6(B),
SDAT6(B), SDAT6(B,W ), SIN6 (T,B,W ), SIA6 (T,B,W ) and SIM6 (T,B,W ).
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4.8 Conclusions and outlook

We propose novel, vine copula based methodology for the computation of multivariate drought
indices. This approach involves several well reasoned modeling steps (separated into univariate
marginal and multivariate dependence modeling) which are summarized in Figure 4.1. Compar-
ison to existing/established drought indices based on theoretical arguments and application of
the presented methodology for the development and validation of an agro-meteorological drought
index based on a three-variate data example show the benefits of the novel class of (multivariate)
indices. We summarize the results in the following.

Advances in drought modeling (theoretical point of view)

1. More than two different variables can be combined in a multivariate drought index which
accounts for inter-variable dependence (MULTEX).

2. Inter-variable dependence is accounted for/modeled in a very flexible fashion (based on
vine copulas).

3. Multivariate drought indices (see also JDI and MSDI) can account for different drought
types (e.g. meteorological and hydrological drought) at the same time (MULTEX).

4. Flexible modeling approaches (see also SDAT) allow application specific development of
new drought indices based on user-selected variables (ARBVAR, SEASON, TIMDEP, NPDIST).

5. Compared to fitting 12 month-wise probability distributions as in SPI, SPEI, MSDI and
SDAT, consideration (re-composition) of the full monthly time series provides a 12 times
bigger sample size. Hence, stable results (drought indices) can be obtained for much shorter
observation periods (like for instance 10 years) and the severity of droughts occurring in
different months (cp. SDAT) can be distinguished unambiguously (SMALLS).

6. Proper standardization of multivariate indices (cp. MSDI) allows comparison over space,
time and with other indices (STCOMP).

7. Aggregation at different time scales at the end of the modeling procedure (instead of the
beginning, cp. SPI, etc.) avoids introduction of additional serial dependence and allows
more efficient computation of a particular drought index on different time scales (TSCALE).

Application based comparison and validation The soybean yield based validation of the
novel methodology and comparison to other drought indices in Section 4.7 yielded the following
results:

1. The novel methodology is able to identify dry/wet conditions.

2. Our novel univariate approach outperforms established univariate approaches.

3. Compared to univariate indices, multivariate indices improve drought quantification.

4. For our application (agro-meteorological index), the validation indicates improvements of
the novel multivariate approaches over other approaches in terms of probability of detection
(POD) of drought events. The multiplication based method (SIM) positively stands out in
terms of false alarms. Taking drought detection capabilities and the chance of a false alarm
into consideration simultaneously (CSI) the validation suggests to rank the multivariate
indices under consideration as 1. SIM, 2. SIA, 3. SIN , 4. SDAT, where SIM is the best.
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Recommendations for the development of drought indices based on the presented
methodology We do not recommend to use method N (which we introduced only for the
purpose of comparison) as it might lead to an increased number of false alarms due to double
accounting for the “same” drought information (no consideration of dependencies between vari-
ables). Based on only one specific application, we can not give any clear recommendation for
either methodM or A. For the agro-meteorological drought index presented in Section 4.7 how-
ever we favor methodM. Further, we emphasize that the choice of variable order is crucial as it
was detected in a simulation study in Section 4.6. For the development of novel drought indices
based on the presented methodology we recommend to choose the order of variables with care.
It should be validated against appropriate observations/data. If no secondary data is available
for such a validation, however the data records used to calculate the drought indices of interest
are long, the validation can be conducted based on a share of the data (i.e. the data can be
split into training and validation data). For three-variate (four-variate) indices such validation
allows to compare all 6 (24) possible variable orders and hence selection of the most appropriate
one. Moreover, the simulation study advises to consider drought relevant variables which are not
highly dependent, i.e. provide different drought information (cp. AghaKouchak et al., 2015).

Further applications of the presented methodology Our novel approach enables tailor-
ing of drought indices to specific applications. The review paper of AghaKouchak et al. (2015)
outlines several avenues for such indices, where combination of drought information from dif-
ferent sources is promising. Such sources can be different satellite data sets (e.g. soil moisture,
land surface temperature, relative humidity, etc.) or remote sensing products which quantify
vegetation conditions. Also, existing climate-based drought indices can be combined with other
variables in a multivariate index. For specific applications see AghaKouchak et al. (2015) and
reference therein.

Moreover, the presented approach for the calculation of severity indices is not restricted to
drought. Applications to model for example the degree of contamination of a water body due to
different contaminants are feasible.
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5 Proper evaluation of non-stationary
time series models

5.1 Introduction

Many different disciplines like for instance meteorology, climatology, finance and economics
provide forecasts of future states of a specific variable of interest/phenomenon as well as corre-
sponding methodology. It has been argued extensively (see e.g. Gneiting and Raftery, 2007) that
such forecasts should take the form of probability distributions, since each forecast is subject
to uncertainty. In meteorology and climatology forecasts are often based on simulation mod-
els. The simulations are referred to as Numerical Weather Prediction (NWP), which are often
based on Global Climate Models (GCMs) or Regional Climate Models (RCMs). Usually several
simulation runs from these models with different initial conditions/perturbations are performed,
which result in an ensemble of forecasts. These ensembles can be interpreted as realizations of
a predictive probability distribution. However, the ensemble size is restricted due to limitations
with respect to available resources to perform these computationally demanding numerical sim-
ulations. Hence, these (small) ensembles not necessarily are a good representation of the full
predictive probability distribution and in practice a (weighted) average of such ensembles is
considered as a deterministic forecast. Thus, a decision maker often faces the situation where
the performance of several different models can only be compared based on time series output of
these models. In the context of climate change and a natural, deterministic, periodic oscillation
of weather/climate, these time series are usually non-stationary, which should be taken into
consideration for decision making respectively model evaluation.

Hyndman and Koehler (2006) give a comprehensive review of different traditional measures
which can be used for the evaluation of such models. For exact definitions of these measures
see also Section 2.6. Besides the frequently used scale-dependent measures Mean Square Error
(MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Median Absolute
Error (MdAE), Hyndman and Koehler (2006) discuss the flaws of measures based on percent-
age/relative errors as well as relative measures, and reason why measures based on scaled errors
should be used preferably. However, all of these approaches do not account for higher order
structures and properties of the forecast phenomenon, as they only allow for a point-wise com-
parison.

Thorarinsdottir et al. (2013) argue that

Any (. . . ) evaluation procedure ought to provide a quantitative assessment of the
compatibility of the simulation model, and the real world phenomena it is meant to
represent, in a manner that encourages careful assessment and integrity.

77



5 Proper evaluation of non-stationary time series models

Such methods (see also Section 2.5) are given by proper scoring rules (see Gneiting and Raftery,
2007) and proper divergence functions (see Thorarinsdottir et al., 2013), where the concept of
propriety formalizes what is meant by “careful assessment and integrity”. Whereas proper scoring
rules are used to compare a probability distribution to a (deterministic/point) observation,
proper divergence functions are used to compare two distributions, one for the model and one
for the observed phenomenon.

Coming back to the setting where we want to compare the performance of several models
based on one realization/simulation of a time series for each model and a time series of realiza-
tions from the modeled phenomenon, we do not have a probability distribution for each time
instance but only a single value. If the time series were stationary (that is, free of trends and
periodic behavior, homogeneous with respect to variability, etc.), then we could consider the
whole time series as a sample of a distribution and use proper scoring rules to assess the model
accuracy in each time instance for which we have observed the phenomenon of interest, or proper
divergence functions to get an overall picture of the model accuracy. However, in practice one
is more concerned with the non-stationary setting, where forecasting is more challenging. Think
of predicting the climate in 100 years from now under the presence of climate change. In this
chapter (Section 5.3) we provide methodology for the proper evaluation of models/forecasts in
a non-stationary context. The novel methodology assumes stationarity on small (moving) win-
dows of the time series and applies proper scoring rules and divergence functions based on these
windows, resulting in time series of “moving” scores and divergences. These moving scores/diver-
gences enable model evaluation in the presence of non-stationarity and allow to assess the model
capabilities/credibility over time. To learn how different approaches to calculate these moving
scores and divergences perform in different settings we conduct simulation studies (see Sections
5.4–5.8) covering a wide range of cases which are relevant in practice. As a case study (Section
5.9) we evaluate the daily mean surface temperature output of four Regional Climate Models (see
the ENSEMBLES project : van der Linden and Mitchell, 2009) on a fine resolution grid covering
Europe. Moreover, in the subsequent section (Section 5.2), we review some evaluation studies of
Regional Climate Models, with a focus on the ENSEMBLES project.
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5.2 Review: Evaluation of Regional Climate Models

The ENSEMBLES project (van der Linden and Mitchell, 2009) is an example where climate re-
search institutes from all over Europe compiled a big data set of simulations from their individual
Regional Climate Models (RCMs). One goal of this project was it to evaluate and compare these
different models (see e.g. Kjellström et al., 2010; Lorenz and Jacob, 2010). Further evaluation
studies of these models for Scandinavia were conducted by Landgren et al. (2014). Another ex-
tensive evaluation of regional climate models for a region in Canada was performed by Eum et al.
(2012). In this section we are interested to see, which evaluation techniques were applied in the
studies addressed above. Further, we discuss the disadvantages of the applied approaches. Table
5.1 summarizes for the four evaluation studies addressed above, which variables were considered,
how many models were compared, which boundary conditions were used to simulate from the
RCMs, which reference period was considered for the evaluation, which locations/regions were
considered, which reference data set (observations) was considered for comparison and which
evaluation methods were applied.

The study of Lorenz and Jacob (2010) evaluates and compares 15 RCMs for Europe based
on comparing linear trends in near-surface temperature to linear trends observed in a reference
data set. As reference data set they consider the E-OBS data set (see Section 3.3). For their
study, they divide Europe into eight sub-regions. As reference period they consider 1961–2000.
Besides comparing trends obtained after annual aggregation of the time series, they differentiate
between different seasons, as it is common practice in climate science. They differentiate between
the seasons

DJF winter (December, January, February)

MAM spring (March, April, May)

JJA summer (June, July, August)

SON autumn (September, October, November)

each consisting of three months. Obviously, the study focuses only on one aspect/characteristic
of the models under consideration. However, many other aspects are important to be able to
judge the adequacy of such models. Hence, the evaluation does not yield a full assessment of the
model performance. The way in which the study accounts for seasonality is a oversimplification
of the problem. Splitting the year into four fixed seasons is somewhat arbitrary and requires a
subjective decision on how important each season is for the comparison.

Kjellström et al. (2010) made an attempt to evaluate RCMs using estimates of full prob-
ability distributions. For the output of 16 RCMs (using boundary conditions from the ERA-40
reanalysis) as well as for the reference data, the gridded E-OBS data set (see Section 3.3), they
constructed empirical estimates of probability density functions by binning the data into a cer-
tain number of bins. For this, they use the same eight aggregation areas and distinguish between
the same seasons as Lorenz and Jacob (2010). As reference period they consider the years 1961–
1990. Apart from minimum and maximum temperatures they perform their evaluation also for
the precipitation output of the RCMs. In comparison to Lorenz and Jacob (2010), the evaluation
approach of Kjellström et al. (2010) is more holistic, as it considers full probability distributions
and not only a single model characteristic. However, Kjellström et al. (2010) are aware, that
their approach is “associated with a large degree of subjectivity”, as it requires several sub-
jective choices (bin width, metric for comparison, seasons, aggregation areas, etc.). Our novel
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Table 5.1: Overview of the four evaluation studies by Lorenz and Jacob (2010), Kjellström et al.
(2010), Landgren et al. (2014) and Eum et al. (2012): considered variables, number of com-
pared models, boundary conditions used to simulate from the RCMs, reference period used for
evaluation, considered locations/regions, reference data set (observations) used for comparison,
methods applied for evaluation.

Lorenz and Jacob
(2010)

Kjellström et al.
(2010)

Landgren et al.
(2014)

Eum et al.
(2012)

Variables temperature minimum and
maximum
temperature,
precipitation

temperature,
precipitation

minimum and
maximum
temperature,
precipitation

# models 15 16 25 3

Boundary
conditions

ERA-40
reanalysis

ERA-40
reanalysis

different driving
GCMs

ERA-40 and
NCEP reanalysis

Reference
period

1961–2000 1961–1990 1981–2000,
2001–2012

1979–2001

Reference
region

Europe (divided
into 8 regions,
the so called
PRUDENCE
regions)

Europe
(PRUDENCE
regions)

Scandinavia (5
selected
locations)

Southern area in
the Canadian
provinces
Quebec and
Ontario

Reference
data

E-OBS (see
Section 3.3)

E-OBS 2 reanalysis
(ERA-40,
ERA-Interim)
and a hindcast
(NORA10) data
set, observations
(E-OBS, station
data)

Gridded
observational
data

Methods Comparison of
annual/seasonal
linear trends

Comparison of
empirical
probability
density function
estimates

Root Mean
Square
Deviation
(RMSD) and a
measure of
Inter-Annual
Variability
(IAV)

5 different
metrics assessing
different
characteristics of
the
models/forecasts
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approach (introduced in Section 5.3) is less subjective as it applies proper scores/divergences,
and does not require to choose a bin width or splitting of the year into seasons.

For their evaluation, Landgren et al. (2014) consider temperature and precipitation out-
puts from in total 25 RCMs (using boundary conditions from Global Climate Model (GCM)
simulations). They restrict their evaluation to five selected locations in Scandinavia and con-
sider two reference periods 1981–2000 and 2001–2012. Besides the E-OBS data set (see Section
3.3), they consider also two reanalysis datasets (ERA-40, ERA-Interim), a hindcast data set
(NORA10) as well as station data as reference data. After monthly aggregation of the time
series under consideration, they rank the different RCMs based on the Root Mean Square De-
viation (RMSD) between model output and reference data on the one hand and a measure for
difference in Inter-Annual Variability (IAV) on the other hand. Again only two selected, specific
model characteristics are considered and there is no objective criterion which helps to decide
on the relative importance of the two measures. Compared to the other approaches above, this
approach has the advantage, that it does not require to split the data set into different seasons.

Eum et al. (2012) evaluate the Canadian RCM for a region in southern Canada, based on
the years 1979–2001. They compare different versions of the Canadian RCM driven by different
reanalysis products. Their comparison is based on the variables minimum/maximum temper-
ature and precipitation. As reference data they use a gridded observational data set. Model
performance is judged based on the five attributes

(i) Relative Absolute Mean Error (RAME) on a daily time scale,

(ii) discrepancy in the annual variability of monthly means,

(iii) discrepancy in the spatial pattern of mean values in a certain region,

(iv) discrepancy between 0.1 and 0.9 quantiles (“extremes”) of daily observations and model
output,

(v) differences in long-term linear trends.

This is an attempt to evaluate different features/moments of the probabilistic forecast, instead
of considering the full distribution, which again comes along with the difficulty how to judge the
relative importance of each attribute. Again, these considerations have to be made distinguishing
between different seasons. All of this can be avoided with our novel (moving window) approach
for model evaluation, as it considers the full distribution in time windows which are chosen such
that the seasonal differences are evaluated in an appropriate manner.
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5.3 Methodology

To make the concept of proper evaluation (see Section 2.5) available for the evaluation of time
series models in a non-stationary context, we subsequently propose novel methodology. In com-
parison to a purely point-wise evaluation (see also Section 2.6) the novel methodology also
considers higher order structures of time series. It enables to jointly evaluate different model
characteristics and avoids subjective choices on the importance of these characteristics. More-
over, it is designed to deal with seasonality and avoids a separate consideration of different
selected seasons.

In order to introduce the novel methodology for proper evaluation in a time series context
(t = 1, . . . , N), we have the following setup (compare Section 2.5): Let F be a convex class of
probability measures on a sample space Ω. Then we consider an (observed) phenomenon with
the random outcomes

• Yt with (unknown) distributions Gt ∈ F and realizations yt ∈ Ω (t = 1, . . . , N).

Further, we consider a model/forecast for Yt, t = 1, . . . , N , given through random variables

• Xt with (modeled) distributions Ft ∈ F and realizations xt ∈ Ω (t = 1, . . . , N).

5.3.1 Discussion of naive evaluation approaches

For now, let us further assume, that Gt and Ft, t = 1, . . . , N , are both parametric distributions
(Gϑt

and Fθt), parametrized by (time varying) parameters ϑt ∈ Rq and θt ∈ Rp, respectively.
Hence, for t = 1, . . . , N we have

Yt ∼ Gϑt
and Xt ∼ Fθt .

Evaluation under a stationarity (ST) assumption First, we consider the stationary case,
in which the parameters ϑt and θt are constant. That is, ϑt = ϑ and θt = θ, and Yt ∼ Gϑ and
Xt ∼ Fθ for all t = 1, . . . , N . Hence, in order to evaluate the model Xt for Yt, we can use
ST-scores

sST(Fθ, yt), t = 1, . . . , N, (5.1)

and the ST-divergence

dST(Fθ, Gϑ). (5.2)

The prefix ST is used, as these scores and divergences are computed under a stationarity as-
sumption. While ST-scores provide a time series of scores and allow an assessment for every
time instance t = 1, . . . , N , the ST-divergence allows only for an overall model evaluation. As in
practice, we might not know the parametric distributions Fθ and Gϑ, we can use sample versions
of the ST-scores (5.1) and ST-divergence (5.2) instead. Using all realizations x = (x1, . . . , xN )
of Xt, t = 1, . . . , N , and y = (y1, . . . , yN ) of Yt, t = 1, . . . , N , the sample ST-scores are given by

sST(x, yt), t = 1, . . . , N, (5.3)

applying sample scores (2.30) and the sample ST-divergence is given by

dST(x,y) (5.4)

applying the sample divergence (2.40).

82



5.3. METHODOLOGY

However, in practice the stationary case is not of so much interest, as one usually has to
deal with the non-stationary case, where the parameters ϑt and θt are not constant. Then
the assumption that Yt and Xt are identically distributed for all t = 0, . . . , N according to
distributions Gϑ, Fθ ∈ F , respectively, is not realistic. Hence, ST-score (5.1) and ST-divergence
(5.2) based evaluation is inappropriate.

Point-wise (PW) evaluation based on degenerated scores/divergences Let us now
consider the non-stationary case. In Section 2.5 we have discussed degenerated scores and di-
vergences, which arise in the case of deterministic models/forecasts, where we have only one
realization xt from our model Xt for each t = 1, . . . , N . As we have seen in Section 2.5, the
degenerated scores and divergences correspond to degenerated sample based scores (2.30) and
divergences (2.40) where the samples x and y consist of only one element each. Essentially, de-
generated scores and divergences result in a point-wise (PW) model/forecast evaluation, which
is conducted based on point-wise scores (PW-scores)

sPW(xt, yt), t = 1, . . . , N, (5.5)

and point-wise divergences (PW-divergences)

dPW(xt, yt), t = 1, . . . , N. (5.6)

Our introduction to proper scoring rules and divergence functions in Section 2.5 showed that
the squared error sSE(xt, yt) = (xt − yt)2 (compare Equation (2.27)) occurs as the degenerated
SE score (2.27) and the degenerated MV divergence (2.38), and the absolute error sAE(xt, yt) =
|xt − yt| (compare Equation (2.28)) occurs as the degenerated CRPS (2.28) and the degenerated
IQ distance (2.39). Hence it holds, that

sPWSE (xt, yt) = dPWMV(xt, yt) = sSE(xt, yt) = (xt − yt)2

and
sPWCRPS(xt, yt) = dPWIQ (xt, yt) = sAE(xt, yt) = |xt − yt| ,

for all t = 1, . . . , N . Note, that the means of these point-wise scores/divergences correspond to
the sample Mean Square Error (2.43) and the sample Mean Absolute Error (2.44), respectively.

For a comprehensive model evaluation, point-wise scores (5.5) and divergences (5.6) are
also not satisfying, since they do not account for higher order structures and properties of the
observed/modeled phenomenon. They evaluate only how similar phenomenon and model/fore-
cast behave in terms of their (temporarily varying) mean. Such point-wise model evaluation
completely neglects differences in higher order moments (e.g. variance). A point-wise score/diver-
gence treats a discrepancy in xt and yt that occurs due to a falsely specified model/forecast mean
in the same way as such a discrepancy that occurs due to a high uncertainty of the phenomenon.

5.3.2 Moving scores and divergences

To deal with non-stationarity and to consider higher order structures of the observed phe-
nomenon in the evaluation we suggest the following. We assume, that the phenomenon Yt and
its model/forecast Xt are (approximately) stationary for small time intervals. Then, for each
time instance t = 1, . . . , N (window location), we can select integers δ−t , δ

+
t ∈ {0, . . . , N − 1}

which determine the width of a moving (time) window

W(t) = {t− δ−t , . . . , t, . . . , t+ δ+t } ⊂ {1, . . . , N},
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such that it completely lies in the observation period and that Ys and Xs are (approximately)
stationary for all time points s ∈ W(t). Thus, we assume that for s ∈ W(t), Ys and Xs are dis-
tributed according to distributions Gt and Ft (depending on the window location t), respectively.
Hence, we can consider the theoretical moving scores

s(Ft, yt) (5.7)

and the theoretical moving divergences

d(Ft, Gt), (5.8)

in order to evaluate the model/forecast Xt for the phenomenon Yt, for a specific time instance
t = 1, . . . , N . As in practice we usually do not know Ft and Gt, we instead consider sample
versions (see Equations (2.30) and (2.40)) of the above moving scores/divergences, based on the
sub-samples xW(t) := {xs : s ∈ W(t)} from the realizations xs, s = 1, . . . , N , of Xs, s = 1, . . . , N ,
and the sub-samples yW(t) := {ys : s ∈ W(t)} from the realizations ys, s = 1, . . . , N , of Ys,
s = 1, . . . , N . Hence, we consider the (sample) moving scores

s(xW(t), yt) (5.9)

and the (sample) moving divergences

d(xW(t),yW(t)), (5.10)

to evaluate the model/forecast Xt for the phenomenon Yt, for a specific time instance t =
1, . . . , N . In contrast to the theoretical moving scores (5.7) and divergences (5.8), the moving
scores (5.9) and divergences (5.10) are empirical scores and divergences, since they are sample-
based. Same holds for the PW- and ST-scores and divergences introduced in Section 5.3.1.

Appropriateness of moving score/divergence averages for model evaluation In order
to rank different models based on time series s(xW(t), yt), t = 1, . . . , N , of empirical scores and
time series d(xW(t),yW(t)), t = 1, . . . , N , of empirical divergences, we consider averages

1

N

N∑

t=1

s(xW(t), yt) (5.11)

and

1

N

N∑

t=1

d(xW(t),yW(t)), (5.12)

of these time series over all available time instances t = 1, . . . , N . Since in (5.11), the scores corre-
sponding to the observations y1, . . . , yN are all weighted equally, the propriety of the evaluation
metric (5.11) is warranted if s is a proper scoring rule (see Theorem 1 in Gneiting and Ranjan,
2011). On the contrary, the propriety of the evaluation metric (5.12) is not necessarily warranted.
The proof of Theorem 2 in Thorarinsdottir et al. (2013) demonstrates that consideration of a
score divergence d(xW(t),yW(t)) to evaluate the model/forecast Xt for the phenomenon Yt for a
specific time instance t = 1, . . . , N , is equivalent to considering the average

1

|W(t)|
∑

j∈W(t)

s(xW(t), yj).
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of the corresponding scores. Thus, in the case of score divergences, model evaluation based on
the metric (5.12) is equivalent to using the metric

1

N

N∑

t=1

1

|W(t)|
∑

j∈W(t)

s(xW(t), yj).

This equation can be rewritten as

1

N

N∑

t=1

∑

k:t∈W(k)

1

|W(k)|s(xW(k), yt). (5.13)

From the equivalent representation (5.13) of the evaluation metric (5.12) it follows that if the
windows W(t), t = 1, . . . , N , are overlapping (e.g. W(s) ∩W(t) 6= ∅ for s 6= t such that W(s) 6=
W(t)) or of varying size |W(t)|, t = 1, . . . , N , the observations y1, . . . , yN in (5.13) are not
necessarily weighted equally. Hence, the metric (5.12) does not necessarily adopt the propriety
property from the (proper) score divergences d(xW(t),yW(t)), t = 1, . . . , N . Along with the
introduction of different selection approaches for the windows W(t), t = 1, . . . , N , in Section
5.3.3, we will discuss if and how gravely the propriety property is violated by the metric (5.12).

Discussion of the moving window size Bearing in mind the discussion of Section 5.3.1,
it becomes clear, that the moving score/divergence methodology is a compromise between a
point-wise evaluation (which does not account for higher order structures) and an evaluation
which wants to make use of all available realizations of Xt and Yt, t = 1, . . . , N , at the same
time, ignoring non-stationarity. Let us discuss the trade-off between having small and big moving
windows W(t): In order not to violate the stationarity assumption, we have to keep the moving
windows small enough. Looking at the formulas (2.32) and (2.42) for the computation of sample
CRPS and sample IQ distances, respectively, we see that their usage in a moving window based
evaluation results in a computation time which grows quadratically with increasing window width
|W(t)|. Hence, if we have to deal with many long time series for several models and possibly
many different spatial locations, a moving window based evaluation may become infeasible if the
moving windows are too big. However, if the moving windows are too small (small sample size),
the samples xt and yt coming from these small windows W(t) can only achieve an inaccurate
approximation of the true distributions Ft and Gt, respectively. We illustrate this problem with
a small simulation study. We simulate samples yn = (y1, . . . , yn) and xn = (x1, . . . , xn) with
different sample sizes n = 1, . . . , 50 from Y ∼ N (0, 1) and X ∼ N (0, 1), repectively. Then we
compute the (sample) IQ distances dIQ(xn,yn) defined in Equation (2.42). We repeat this 1000
times and calculate the averages of the obtained IQ distances. The results are visualized in
Figure 5.1. Since both Y and X have the same distribution, we know that the theoretical value
of the IQ distance should be dIQ(N (0, 1),N (0, 1)) = 0. We see that the approximation of the
true IQ distance by the sample divergences gets better with increasing sample size n. While
big improvements are observed for small sample sizes (n ≤ 10), the convergence slows down for
bigger sample sizes.

We see that there are reasons supporting both, small and big window sizes of the moving
windowsW(t). In the subsequent section we introduce three different window selection strategies,
which all try to make a compromise between small and big windows, where two of these strategies
take the time varying stationarity behavior of the time series of interest into consideration.
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Figure 5.1: Approximation of theoretical IQ distance (dotted line) by sample IQ distances
dIQ(xn,yn) (solid line) for different sample sizes n.

5.3.3 Selection of moving windows

So far, we have not discussed, how we choose the moving windows W(t) ⊂ {1, . . . , N}, t =
1, . . . , N . We emphasize, that the appropriateness of the different, subsequently introduced ap-
proaches depends very much on the characteristics of the phenomenon of interest. Some ap-
proaches might be more adequate, if there are clear changepoints in the statistical behavior of
the phenomenon of interest. Others are a better choice, if the characteristics of the phenomenon
of interest change gradually. As moving scores and divergences are introduced in order to have
a tool for the comparison of several models for a certain phenomenon and as the comparison
is always based on one and the same time series of realizations y1, . . . , yN , it is meaningful to
determine the moving windows W(t) ⊂ {1, . . . , N}, t = 1, . . . , N , based on the very same time
series y1, . . . , yN .

Subsequently, we introduce three different approaches on how to specify the moving win-
dows, which are all based on a changepoint analysis (see Section 2.7). In a first step, m < N − 1
changepoints τ1:m = (τ1, . . . , τm) of y1, . . . , yN are detected using the PELT method introduced
in Section 2.7. We use the cost function given by Equation (2.53), which is based on the assump-
tion that the yt come from a normal distribution. As it assumes varying means and variances
for different segments of the time series, it allows to detect changes in both mean and variance.
Since the cost function (2.53) is twice a negative log-likelihood, the constant K in the PELT
algorithm is set to K = 0. For the penalty constant κ we choose κ = p ln(N) which corresponds
to the penalty of the Bayesian information criterion (BIC). The number of parameters p for each
additional segment is selected as p = 3, as we count one parameter for the mean, one for the
variance and one for the changepoint. Moreover, we demand that the minimum segment length
is 11 (see our discussion in Section 5.3.2 and Figure 5.1), that is it must hold (τj+1 − τj) > 10,
j = 0, . . . ,m. In a second step, (different types of) moving windows are specified, based on the
selected (m+ 1)-segmentation τ0:(m+1) = (0, τ1:m, N):
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Overlapping windows with fixed width (OF) For the first approach, we consider moving
time windows WOF(t) of a fixed width ωOF :=

∣∣WOF(t)
∣∣, as long as these windows are located

“far enough” from the start and the end of the time interval {1, . . . , N}. Below, we specify more
precisely, what is meant by not “far enough”. We will refer to the corresponding time instances
(window locations) t which are not “far enough” as border case. As we center the (symmetric)
windows WOF(t) around their window location t, they are overlapping. To calculate the fixed
window width ωOF, we first calculate the median segment length

λ := median
j=0,...,m

(τj+1 − τj) ,

where medianI (·) denotes the sample median of quantities indexed by the index set I. Then,
we compute the (fixed) window width parameter defined as

δOF :=

⌊
λ− 1

2

⌋
,

where ⌊·⌋ rounds a number to its next smaller integer. Defining the window width parameter
δOF
t := δOF, for all t = 1 + δOF, . . . , N − δOF, we ensure that the moving windows defined as

WOF(t) :=
{
t− δOF

t , . . . , t, . . . , t+ δOF
t

}
, (5.14)

are symmetric with fixed window width

ωOF = 2δOF + 1,

for all t = 1 + δOF, . . . , N − δOF. The windows WOF(t) for t = 1, . . . , δOF and t = N − δOF +
1, . . . , N are those which are not “far enough” from the start and the end of the time interval
{1, . . . , N} (border case). Hence, we define the window width parameter as δOF

t := t − 1, for
t = 1, . . . , δOF, and as δOF

t := N − t, for t = N − δOF + 1, . . . , N . Like that it is guaranteed that
WOF(t) ⊂ {1, . . . , N}. All in all, the overlapping windows with fixed width (OF-windows) are
defined by Equation (5.14), where

δOF
t :=





t− 1, for t = 1, . . . , δOF,

δOF, for t = 1 + δOF, . . . , N − δOF,

N − t, for t = N − δOF + 1, . . . , N.

The corresponding window widths are obtained as ωOF
t = 2δOF

t + 1. Moving scores and diver-
gences obtained based on OF-windows will also be referred to as OF-scores and OF-divergences,
respectively.

The top panel of Figure 5.2 illustrates two time series (yt and xt, t = 1, . . . , N) of realiza-
tions from a phenomenon Yt and a corresponding model/forecast Xt. Moreover, it shows which
changepoints τ1:m were detected by the PELT algorithm. The middle panel shows, which window
width was selected by the OF-method for each time instance t = 1, . . . , N . The corresponding
moving windows WOF(t1) and WOF(t2) for two selected time instances t1 and t2 are illustrated
as gray boxes in the upper panel. We clearly see, that both windows are symmetric/centered
around their locations t1 and t2. Both windows have the same width. Due to their fixed width
it can happen that these windows contain more than one changepoint. The lower panel shows
for both OF-windows (located at t1 and t2), how the empirical CDFs for both the phenomenon
(Ĝt) and the model/forecast (F̂t) differ from each other and how much they deviate from the
observation (yt) in the window location (t). Comparing the empirical CDFs F̂t1 and F̂t2 , it is
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Figure 5.2: Illustration of moving window methodology for overlapping windows with fixed width
(OF): Realizations yt (orange) and xt (blue), t = 1, . . . , N (of phenomenon Yt and corresponding
model/forecast Xt), detected changepoints τ1:m, and moving windows WOF(t1) and WOF(t2)
(gray) for two selected time instances t1 and t2 (upper panel). Selected window width (middle
panel). Empirical CDFs for phenomenon (Ĝt) and model/forecast (F̂t) based on windowWOF(t),
and observation (yt) in the window location (t), for the time instances t1 (lower left panel) and
t2 (lower right panel).
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obvious that for t1 we can expect a smaller moving CRPS, since F̂t1 is much steeper and cen-
tered better around the corresponding observation. Moreover, we observe that also the moving
IQ distance for t1 will be much smaller than that for t2, as the empirical CDFs F̂t and Ĝt are
much closer to each other for t1.

To close our introduction of the OF-window selection approach, we discuss if the utilization
of moving divergence averages (5.12) based on OF-windows and score divergences violates the
propriety property or not. Consideration of Equation (5.13), which is equivalent to the metric
(5.12), reveals immediately that the metric (5.12) is non-proper, as the OF-windows WOF(t),
t = 1, . . . , N , are overlapping (and for the border case their width varies). To see if propriety holds
at least approximately, we reconsider (5.13) under the assumption that for all time instances
t = 1, . . . , N all scores s(xW(k), yt), k ∈ {j : t ∈ W(j)}, corresponding to the observation yt
approximately equal the score s(xW(t), yt). Then we can rewrite (5.13) as

1

N

N∑

t=1

Ω(t)s(xW(t), yt),

with weights defined as

Ω(t) :=
∑

k:t∈W(k)

1

|W(k)| . (5.15)

Since the weights (5.15) are obtained based on an approximation we also refer to them as
approximate weights. For the time instances t = 1 + 2δOF, . . . , N − 2δOF the weights (5.15) are
constant and equal 1, as each of these time instances falls in exactly ωOF many windows and each
window has the same fixed window width ωOF. From this we conclude, that if the considered
time series is long (N large) in comparison to the fixed window width ωOF = 2δOF + 1, the
metric (5.12) is at least approximately proper.

Overlapping windows with varying width (OV) For the second approach, we consider
moving time windows WOV(t) with varying width ωOV

t :=
∣∣WOV(t)

∣∣. Again, we center these
(overlapping) windows around their window location t. To obtain the varying windows WOV(t),
we first determine the centers of the segments {τj + 1, . . . , τj+1}, j = 0, . . . ,m, of the (m + 1)-
segmentation τ0:(m+1). The segment centers are defined as

γj :=
τj + 1 + τj+1

2
, j = 0, . . . ,m.

Then, we linearly interpolate the corresponding segment lengths λj := (τj+1 − τj) between the
segment centers γj , j = 0, . . . ,m. Hence, the interpolated segment lengths are given by

ς(t) :=
γj+1 − t
γj+1 − γj

λj +
t− γj

γj+1 − γj
λj+1, for t ∈ [γj , γj+1], j = 0, . . . ,m.

Based on ς(t) we compute the corresponding window width parameters

δOV
t :=

⌊
ς(t)− 1

2

⌋
, for t = ⌈γ0⌉ , . . . , ⌊γm+1⌋ ,

where ⌊·⌋ and ⌈·⌉ round a number to its next smaller and bigger integer, respectively. For the
border case, that is the start (t = 1, . . . , ⌊γ0⌋) and the end of the time series (t = ⌈γm+1⌉ , . . . , N),
we again define δOV

t such that the corresponding moving windows (with maximum possible
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Figure 5.3: Illustration of moving window methodology for overlapping windows with varying
width (OV): Realizations yt (orange) and xt (blue), t = 1, . . . , N (of phenomenon Yt and cor-
responding model/forecast Xt), detected changepoints τ1:m, and moving windows WOV(t1) and
WOV(t2) (gray) for two selected time instances t1 and t2 (upper panel). Segment centers (γj ,

j = 0, . . . ,m) and selected window width (middle panel). Empirical CDFs for phenomenon (Ĝt)
and model/forecast (F̂t) based on window WOV(t), and observation (yt) in the window location
(t), for the time instances t1 (lower left panel) and t2 (lower right panel).
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width) completely lie in {1, . . . , N}. To sum up, the (symmetric) overlapping windows with
varying width (OV-windows) are defined by

WOV(t) :=
{
t− δOV

t , . . . , t, . . . , t+ δOV
t

}
, (5.16)

where

δOV
t :=





t− 1, for t = 1, . . . , ⌊γ0⌋ ,
⌊(ς(t)− 1) /2⌋ , for t = ⌈γ0⌉ , . . . , ⌊γm+1⌋ ,
N − t, for t = ⌈γm+1⌉ , . . . , N.

The corresponding varying window widths are obtained as ωOV
t = 2δOV

t + 1. Moving scores
and divergences obtained based on OV-windows will also be referred to as OV-scores and OV-
divergences, respectively.

Figure 5.3 is the analog of Figure 5.2 for the OV-method. Its middle panel shows, how the
OV-method interpolates the window widths between the segment centers γj , j = 0, . . . ,m. The
resulting moving windows WOV(t1) and WOV(t2) for two selected time instances t1 and t2 are
illustrated in the upper panel. We observe, that both windows are symmetric/centered around
their locations t1 and t2, however they have different widths. The lower panel again shows for
both OV-windows (located at t1 and t2), how the empirical CDFs for both the phenomenon
(Ĝt) and the model/forecast (F̂t) differ from each other and how much they deviate from the
observation (yt) in the window location (t). Comparison of the empirical CDFs for t1 (left lower
panel) and t2 (right lower panel) shows that the empirical CDFs for t2 are comparatively coarser.
This is due to the fact that the windowWOV(t1) is wider thanWOV(t2) (i.e. ω

OV
t1

> ωOV
t2

). Again,

we expect a smaller moving CRPS for t1 compared to t2, since F̂t1 is much steeper and more
centered around the corresponding observation. Furthermore, we observe a much smaller moving
IQ distance for t1 than for t2, as the empirical CDFs F̂t and Ĝt are much more similar for t1.

To close our introduction of the OV-window selection approach, we discuss if the utilization
of moving divergence averages (5.12) based on OV-windows and score divergences violates the
propriety property. As already for the OF-windows, we learn from Equation (5.13) that the
metric (5.12) is also not proper for OV-windows. Since the OV-windows WOV(t), t = 1, . . . , N ,
are overlapping and their width varies continuously over time, the propriety property is violated
much more in comparison to the case of the OF-windows.

Disjoint windows with varying width (DV) For the third approach, we consider moving
time windows WDV(t) with varying width ωDV

t :=
∣∣WDV(t)

∣∣. This time, we do not center these
windows around their window location t. Instead, we consider the (disjoint) windows which are
given by the segments {τj + 1, . . . , τj+1}, j = 0, . . . ,m, of the (m + 1)-segmentation τ0:(m+1).
Then, the disjoint windows with varying width (DV-windows) are defined by

WDV(t) := {τj + 1, . . . , τj+1} , for t = τj + 1, . . . , τj+1, j = 0, . . . ,m. (5.17)

The (varying) window widths, which equal the corresponding segment lengths are given by

ωDV
t := (τj+1 − τj) , for t = τj + 1, . . . , τj+1, j = 0, . . . ,m.

Moving scores and divergences obtained based on DV-windows will also be referred to as DV-
scores and DV-divergences, respectively.

Figure 5.4 is the analog of Figures 5.2 and 5.3 for the DV-method. Its middle panel shows,
that the window width ωDV

t of the disjoint windows selected by the DV-method is constant for
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Ĝ

t 1
(z

)

yt1

yt1

F̂t1(z)
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Figure 5.4: Illustration of moving window methodology for disjoint windows with varying width
(DV): Realizations yt (orange) and xt (blue), t = 1, . . . , N (of phenomenon Yt and corresponding
model/forecast Xt), detected changepoints τ1:m, and moving windows WDV(t1) and WDV(t2)
(gray) for two selected time instances t1 and t2 (upper panel). Selected window width (middle
panel). Empirical CDFs for phenomenon (Ĝt) and model/forecast (F̂t) based on windowWDV(t),
and observation (yt) in the window location (t), for the time instances t1 (lower left panel) and
t2 (lower right panel).

92



5.3. METHODOLOGY

each window. The moving windows WDV(t1) and WDV(t2) for two selected time instances t1
and t2 are illustrated in the upper panel. This time, both windows are not symmetric/centered
around their locations t1 and t2. Moreover, they have different widths and do not contain any
changepoint. The lower panel again shows for both DV-windows (located at t1 and t2), how
the empirical CDFs for both the phenomenon (Ĝt) and the model/forecast (F̂t) differ from
each other and how much they deviate from the observation (yt) in the window location (t).
Comparing the left and the right side of the lower panel, we obtain very similar results as for
the OV-windows (Figure 5.3).

To close our introduction of the DV-window selection approach, we discuss if the utilization
of moving divergence averages (5.12) based on DV-windows and score divergences violates the
propriety property or not. To answer this question, we again consider Equation (5.13), which
is equivalent to the metric (5.12). For the DV-windows it holds that for all time instances
t = 1, . . . , N all scores s(xW(k), yt), k ∈ {j : t ∈ W(j)}, corresponding to the observation yt
equal one and the same score s(xW(t), yt). As a consequence, (5.13) again simplifies to

1

N

N∑

t=1

Ω(t)s(xW(t), yt),

with weights

Ω(t) :=
∑

k:t∈W(k)

1

|W(k)| .

Note that the formula for the weights Ω(t) equals Equation (5.15). This time we have exact (and
not only approximate) weights. From the Definition (5.17) of the DV-windows it follows directly
that the weights Ω(t) all equal 1. Hence, utilization of moving divergence averages (5.12) based
on DV-windows preserves propriety.
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5.4 Organization of simulation studies

To assess the properties and judge the applicability of moving scores and divergences (see Section
5.3.2) based on different moving window selection approaches (see Section 5.3.3), we conduct a
simulation study. To this end, we first consider a

changepoint scenario (C, see Section 5.5),

where the characteristics (mean and variance) of the phenomenon of interest change at certain
(unknown) time instances. Moreover, as one of the main application areas of the introduced
validation techniques are the validation of weather forecasts and climate models, and both
weather and climate are non-stationary phenomena subject to trends and periodicity, we consider
a

trend scenario (T, see Section 5.6)

and a

periodicity scenario (P, see Section 5.7).

General setup of the simulation studies For all three scenarios we consider a phenomenon
given by

Yt, t = 1, . . . , N, (5.18)

and five models

Xk
t , t = 1, . . . , N, (5.19)

for that phenomenon, numbered by k = 1, . . . , 5. We assume that Yt, X
k
t , k = 1, . . . , 5, are

normally distributed for all t = 1, . . . , N , that is

Yt ∼ N
(
µ0,t, σ

2
0,t

)

and

Xk
t ∼ N

(
µk,t, σ

2
k,t

)
, k = 1, . . . , 5.

Since we simulate the phenomenon for the simulation studies, we also refer to Yt, t = 1, . . . , N ,
as data generating process. Depending on the scenario (changepoint (C), trend (T), periodicity
(P)) both the means µk,t (k = 0, . . . , 5) and the standard deviations σk,t (k = 0, . . . , 5) vary
with time (t = 1, . . . , N). The results of the simulation studies presented in Sections 5.5–5.7 are
based on 10,000 replications of the data generating process (5.18) and each of the five models
(5.19).

Methods For all 10,000 replications, we compute time series (t = 1, . . . , N) of moving scores
(5.9) and divergences (5.10) for each of the five models (5.19). We repeat this procedure for
different window selection approaches (see Section 5.3.3), that is

• overlapping windows with fixed width (OF, see Equation (5.14)),

• overlapping windows with varying width (OV, see Equation (5.16)),

• and disjoint windows with varying width (DV, see Equation (5.17)).
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Moreover, for comparison, we compute point-wise (PW) scores (5.5) and divergences (5.6). In
case of the changepoint (C) and the trend scenario (T), we also consider ST-scores (5.3) and
ST-divergences (5.4), which assume stationarity of the time series. We compare these time series
of empirical scores and divergences to the corresponding theoretical (Theo.) scores (5.7) and
divergences (5.8), which can be obtained, since we know the distributions of the data generating
process (5.18) and each of the five models (5.19) for all time instances t = 1, . . . , N .

To get an idea of the temporal evolution of the (moving) scores and divergences, we average
the obtained score/divergence time series over all 10,000 replications (see Figures 5.8–5.14, 5.18–
5.24, 5.28–5.34). For this purpose we consider Continuous Ranked Probability Scores (CRPS, see
Equations (2.24) and (2.32)) and Integrated Quadratic (IQ) distances (see Equations (2.36) and
(2.42)). To provide an overall ranking of the different models (distinguishing between different
approaches for the computation of scores and divergences) we further average over all time
instances t = 1, . . . , N (see Tables 5.2, 5.5 and 5.8) and also look at Squared Error (SE) scores
(see Equations (2.23) and (2.31)) and Mean Value (MV) divergences (see Equations (2.35) and
(2.41)). Note that utilization of moving divergence averages is not necessarily a proper evaluation
method (that is in case of OF- and OV-windows; see discussion in Sections 5.3.2 and 5.3.3).
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5.5 Simulation study: Changepoint scenario

To describe the changepoint scenario (C) we consider time varying means and time varying
standard deviations which change after certain changepoints τ1:m ∈ Rm (see Section 2.7). As
usual we denote the corresponding (m+1)-segmentation by τ0:(m+1). Hence, for the changepoint
scenario (C), the time varying means are defined as

MC(t; τ0:(m+1),µ) := µj , for t ∈ {τj + 1, . . . , τj+1},

where the parameter vector µ = (µ0, . . . , µm) ∈ Rm+1 consists of the mean values corresponding
to them+1 segments of the (m+1)-segmentation τ0:(m+1). The time varying standard deviations
are defined as

SC(t; τ0:(m+1),σ) := σj , for t ∈ {τj + 1, . . . , τj+1},

where the parameter vector σ = (σ0, . . . , σm) ∈ Rm+1 consists of the standard deviations corre-
sponding to the m+ 1 segments of the (m+ 1)-segmentation τ0:(m+1).

Changepoint scenario (C) The subsequent equations define the changepoint scenario (C),
where we consider time series of length N = 200 with m = 2 changepoints and corresponding
segmentation τ0:3 = (0, 80, 130, 200). The data generating process (C0) and the five models
(C1)–(C5) are given by

(C0) Yt ∼ N
(
MC(t; τ0:3,µ

0),
[
SC(t; τ0:(m+1),σ

0)
]2)

(data generating process),

(C1) X1
t ∼ N

(
MC(t; τ0:3,µ

1),
[
SC(t; τ0:(m+1),σ

1)
]2)

(true model),

(C2) X2
t ∼ N

(
MC(t; τ0:3,µ

2),
[
SC(t; τ0:(m+1),σ

2)
]2)

(constant mean),

(C3) X3
t ∼ N

(
MC(t; τ0:3,µ

3),
[
SC(t; τ0:(m+1),σ

3)
]2)

(constant variance),

(C4) X4
t ∼ N

(
MC(t; τ0:3,µ

4),
[
SC(t; τ0:(m+1),σ

4)
]2)

(constant mean and variance),

(C5) X5
t ∼ N

(
MC(t; τ0:3,µ

5),
[
SC(t; τ0:(m+1),σ

5)
]2)

(wrong mean and variance),

with parameters

(C0) µ0 = (0, 1, 0), σ0 = (0.9, 0.9, 0.3), (data generating process),

(C1) µ1 = µ0, σ1 = σ0, (true model),
(C2) µ2 = (0.25, 0.25, 0.25), σ2 = σ0, (constant mean),
(C3) µ3 = µ0, σ3 = (0.6, 0.6, 0.6), (constant variance),
(C4) µ4 = µ2, σ4 = σ3, (constant mean and variance),
(C5) µ5 = (0.1, 0.9, 0.1), σ5 = σ3, (wrong mean and variance).

Whereas the true model (C1) is equivalent to the data generating process (C0) in terms of its
parametrization, the other Models (C2)–(C5) differ from the data generating process (C0) in at
least one parameter.
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Illustration of the changepoint scenario (C) The differences between the data generating
process (C0) and the models (C1)–(C5) in the temporal evolution of the mean and the standard
deviation are visualized in Figure 5.5. In comparison to the data generating process (C0) where
the mean µ0,t changes after two and the variance σ20,t after one changepoint(s),

• the constant mean µ2,t of Model (C2) differs from µ0,t for all t = 0, . . . , N ,

• the constant variance σ23,t of Model (C3) differs from σ20,t for all t = 0, . . . , N ,

• the constant mean µ4,t and the constant variance σ24,t of Model (C4) differ from µ0,t and

σ20,t for all t = 0, . . . , N ,

• the mean µ5,t of Model (C5) deviates slightly from µ0,t for all three segments defined by
τ0:3 = (0, 80, 130, 200) and the constant variance σ25,t differs from σ20,t for all t = 0, . . . , N .

Hence, Model (C2) does not consider that the mean of the data generating process changes in
two points and rather assumes a constant mean. It captures the change in the variance. Model
(C3) models the change in the mean correctly, however it neglects the change in the variance (it
assumes a constant variance). Models (C4) and (C5) are both misspecified in terms of mean and
variance, where the misspecification of the mean is less severe for Model (C5). The true model
(C1) is specified correctly. A comparative model evaluation should consider Model (C1) best.

Illustration of changepoint analysis and selection of moving windows Figure 5.6
illustrates one replication of the data generating process (C0) and the corresponding selection of
moving windows according to Section 5.3.3. We observe that m = 2 changepoints were detected,
which results in a 3-segmentation. Apparently, the changepoint locations of the data generating
process were detected more or less accurately. Also the mean µ̂t and variance estimates σ̂2t
corresponding to the different segments reflect the temporal evolution of their true counterparts
defined by the data generating process (C0).

The segmentation into three segments is also reflected in the moving windows selected by
the OV and DV approach. For the border case (time instances close to the start and the end of
the observation period), the window widths ωOF

t and ωOV
t decrease towards 1 when approaching

the start (t = 1) and the end (t = N) of the time series. For all other time instances t (apart
from the border case), the window width ωOF

t is constant and equals 69, and the window width
ωOV
t varies between 47 and 81. The window width ωDV

t takes only the three different values 82,
48 and 70. Hence, in most cases the window width differs considerably from the window width
ωPW
t = 1 used in the case of a point-wise (PW) evaluation.
With the bottom panel of Figure 5.6 we illustrate the (approximate) weights Ω(t) (see Equa-

tion (5.15)) corresponding to each observation yt, t = 1, . . . , N , in an evaluation based on moving
divergence averages (5.12). As already discussed, the propriety of the metric (5.12) is given only
if the weights Ω(t) are constant. From the figure we observe, that the DV-windows yield propri-
ety, while the OF- and OV-windows do not. Especially in the beginning and in the end of the
considered time interval (border case), the weights Ω(t) deviate from 1 for OF- and OV-windows.
In general the metric based on OF-windows approximates propriety better than that based on
OV-windows.

As Figure 5.6 is based on one replication only, we are further interested to see how many
changepoints were detected for all 10,000 replications. Moreover, we are interested to know if
the selected window widths vary a lot. Figure 5.7 summarizes for all 10,000 replications of the
data generating process (C0) how many changepoints were detected and which window widths
were selected predominantly by the OF approach. We observe that almost always (in more than
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Figure 5.5: Changepoint scenario (C): Temporal evolution of mean µk,t (upper panel) and
standard deviation σk,t (lower panel) for the data generating process (C0) (k = 0) and the
Models (C1)–(C5) (k = 1, . . . , 5).
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Figure 5.6: Changepoint scenario (C): One replication of the data generating process (C0)
(observations yt, t = 1, . . . , N) and changepoint analysis. The detected segmentation (gray
dotted vertical lines) and the mean and standard deviation estimates µ̂t and σ̂t for each segment
(red) are indicated (upper panel). The corresponding moving window widths ωt chosen by the
OF (dashed), OV (solid) and DV (dotted) selection approach, as well as the window width
ωPW
t = 1 used in the case of a point-wise (PW) evaluation (dash-dotted) are compared in the

middle panel. The resulting (approximate) weights Ω(t) for each time instance t (see Equation
(5.15)) are illustrated in the bottom panel.
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Figure 5.7: Changepoint scenario (C): Share (in %) of all 10,000 replications, where the given
number of changepoints was detected (left panel), and where the given fixed window width ωOF

was selected by the OF approach (right panel).

95% of all cases) the correct number of changepoints (2) was detected and that in most cases
the fixed OF-window width was either 69 or 71. Hence, in most cases a 3-segmentation close to
the true segmentation was identified.

Results (model-wise comparison of different evaluation approaches) Figures 5.8–5.12
illustrate the temporal evolution of the empirical (moving) CRPS and IQ distances and their
deviation from their theoretical counterparts, for Models (C1)–(C5), respectively. We observe
the following:

(C) For all models (Figures 5.8–5.12):

– The PW-scores and divergences deviate considerably from the theoretical scores and
divergences, respectively.

– For the start and the end of the time series (border case), the OF- and OV-scores
and divergences tend towards the PW-scores and divergences, respectively.

– For most models (and most time instances) the deviation of the ST-scores and diver-
gences from the theoretical scores and divergences, respectively, exceeds that of the
moving (OF-, OV- and DV-) scores and divergences. Exceptions are addressed below.

– The simultaneous change of mean and variance affects the OF- and OV-scores and
divergences more than the sole change of the mean.
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– In most cases, the deviation of the moving (OF-, OV- and DV-) scores and divergences
from the theoretical scores and divergences, respectively, is most pronounced close to
the changepoints, where the deviation is the smallest for DV-windows.

(C1) True model (Figure 5.8):

– The theoretical CRPS remain (approximately) constant as long as the variance does
not change. Their temporal evolution is not affected by a sole change in the mean.
(The theoretical IQ distances are—by definition—constantly 0.)

– While the DV-scores approximate the theoretical scores best, the OV-scores yield an
improvement compared to the OF-scores.

– Here, the ST-divergence approximates the theoretical divergences best. Despite the
presence of non-stationarity this behavior can be observed for the true model. This
is because the true model specifies the characteristics of the data generating process
correctly for each single time instance. Construction of an empirical CDF based on the
sample given by all realizations of the corresponding time series then (approximately)
yields the same distribution which we obtain in case of the data generating process.
Hence, the ST-divergence gets close to the theoretical divergences which are all 0. All
other (moving) divergences also come very close to the theoretical divergences.

(C2) Constant mean (Figure 5.9):

– The theoretical scores and divergences jump in both changepoints.

– All in all, the DV-scores and divergences approximate their theoretical counterparts
best.

– Again, the OV-scores and divergences yield a slight improvement compared to the
OF-scores and divergences, respectively.

(C3) Constant variance (Figure 5.10):

– The theoretical scores and divergences jump only in the second changepoint (change
of mean and variance).

– While the DV-scores approximate their theoretical counterparts best, no such general
statement can be made for the moving divergences. The DV-divergences are better
for the start and the end of the time series (border case), while in between, the OF-
and OV-divergences approximate their theoretical counterparts slightly better.

(C4) Constant mean and variance (Figure 5.11):

– While for most time instances all moving scores approximate their theoretical coun-
terpart very well, the DV-score performs better for the start and the end of the time
series (border case).

– The DV-divergences approximate their theoretical counterparts comparatively best.

(C5) Wrong mean and variance (Figure 5.12):

– As the model misspecification does not differ much from model (C3), we observe a
similar temporal evolution of the moving scores and divergences.

All in all, we conclude that the moving scores and divergences based on DV-windows are
most suitable for model evaluation under the presence of changepoints.
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Figure 5.8: Changepoint scenario (C1/true model): Comparison of empirical scores/di-
vergences computed using different approaches (OF, OV, DV, PW, ST) with theoretical (Theo.)
scores/divergences. CRPS time series (upper left panel) and difference between empirical CRPS
(OF, OV, DV, ST) and theoretical CRPS time series (upper right panel). IQ distance time
series (lower left panel) and difference between empirical IQ distance (OF, OV, DV, ST) and
theoretical IQ distance time series (lower right panel). The depicted time series are averages
based on all 10,000 replications of the simulation study. The right panel does not show the
(complete) time series for all different approaches, since some of them differ too much from 0
(for some time instances).
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Figure 5.9: Changepoint scenario (C2/constant mean): Comparison of empirical scores/di-
vergences computed using different approaches (OF, OV, DV, PW, ST) with theoretical (Theo.)
scores/divergences. CRPS time series (upper left panel) and difference between empirical CRPS
(OF, OV, DV, ST) and theoretical CRPS time series (upper right panel). IQ distance time
series (lower left panel) and difference between empirical IQ distance (OF, OV, DV, ST) and
theoretical IQ distance time series (lower right panel). The depicted time series are averages
based on all 10,000 replications of the simulation study. The right panel does not show the
(complete) time series for all different approaches, since some of them differ too much from 0
(for some time instances).
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Figure 5.10: Changepoint scenario (C3/constant variance): Comparison of empirical
scores/divergences computed using different approaches (OF, OV, DV, PW, ST) with theo-
retical (Theo.) scores/divergences. CRPS time series (upper left panel) and difference between
empirical CRPS (OF, OV, DV, ST) and theoretical CRPS time series (upper right panel). IQ
distance time series (lower left panel) and difference between empirical IQ distance (OF, OV,
DV, ST) and theoretical IQ distance time series (lower right panel). The depicted time series
are averages based on all 10,000 replications of the simulation study. The right panel does not
show the (complete) time series for all different approaches, since some of them differ too much
from 0 (for some time instances).
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Figure 5.11: Changepoint scenario (C4/constant mean and variance): Comparison of
empirical scores/divergences computed using different approaches (OF, OV, DV, PW, ST) with
theoretical (Theo.) scores/divergences. CRPS time series (upper left panel) and difference be-
tween empirical CRPS (OF, OV, DV, ST) and theoretical CRPS time series (upper right panel).
IQ distance time series (lower left panel) and difference between empirical IQ distance (OF, OV,
DV, ST) and theoretical IQ distance time series (lower right panel). The depicted time series
are averages based on all 10,000 replications of the simulation study. The right panel does not
show the (complete) time series for all different approaches, since some of them differ too much
from 0 (for some time instances).
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Figure 5.12: Changepoint scenario (C5/wrong mean and variance): Comparison of em-
pirical scores/divergences computed using different approaches (OF, OV, DV, PW, ST) with
theoretical (Theo.) scores/divergences. CRPS time series (upper left panel) and difference be-
tween empirical CRPS (OF, OV, DV, ST) and theoretical CRPS time series (upper right panel).
IQ distance time series (lower left panel) and difference between empirical IQ distance (OF, OV,
DV, ST) and theoretical IQ distance time series (lower right panel). The depicted time series
are averages based on all 10,000 replications of the simulation study. The right panel does not
show the (complete) time series for all different approaches, since some of them differ too much
from 0 (for some time instances).
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Results (model comparison based on different evaluation approaches) Figures 5.13
and 5.14 compare Models (C1)–(C5) based on (time series of) theoretical/empirical CRPS and
IQ distances, respectively. As before, we consider theoretical (Theo.), moving OF-, moving OV-,
moving DV-, point-wise (PW) and ST-scores/divergences. For the scores (Figure 5.13) we ob-
serve the following:

• Theoretical (Theo.) scores:

– The true model (C1) is strictly the best. The differences between the five models can
be explained by their different misspecifications of mean and variance.

– For the first and last segment of the time series, the scores of all models move closely
together, as their means deviate not or not much from the data generating process.

– For the middle segment of the time series, the scores of Models (C2) and (C4) jump
up, as their means deviate more from the mean of the data generating process.

– After the variance of the data generating process drops for the last segment of the
time series the scores drop as well.

– Model (C3) performs worse than (C1) and Model (C4) performs worse than (C2),
due to a misspecification of the variance.

– Model (C5) performs worse than (C3), due to its misspecification of the mean.

– The misspecification of Model (C4) is worst for all segments of the time series.

• Moving scores with OF-windows:

– For the start and the end of the time series (border case), the scores of all models
increase together.

– For the first and the last segment of the time series, the models are ranked falsely, as
we approach the changepoints.

– For the middle segment of the time series, approaching the second changepoint, the
true model (C1) gets ranked falsely.

• Moving scores with OV-windows:

– The scores evolve similar to those for the OF-windows. Our observations are the same.

• Moving scores with DV-windows:

– For most time instances the models are ranked appropriately.

– Wrong rankings occur only very close to the changepoints.

• Point-wise (PW) scores:

– For the first and the middle segment of the time series, Models (C1) and (C2) get a
far too bad evaluation.

– For the last segment of the time series, Models (C3) and (C5) are evaluated too bad.

• Scores under the assumption of stationarity (ST):

– For all segments of the time series the scores for the different models do not differ
very much from one another.

– The observed rankings are wrong for all segments of the time series.
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Figure 5.13: Changepoint scenario (C): Comparison of Models (C1)–(C5) based on (time
series of) theoretical/empirical CRPS. Comparison based on theoretical scores (upper left panel),
moving scores computed using the OF approach (upper right panel), moving scores computed
using the OV approach (middle left panel), moving scores computed using the DV approach
(middle right panel), point-wise (PW) scores (lower left panel) and based on ST-scores under
the assumption of stationarity (lower right panel).
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For the divergences (Figure 5.14) we observe the following:

• Theoretical (Theo.) divergences:

– The true model (C1) is strictly the best. The differences between the five models can
be explained by their different misspecifications of mean and variance.

– For the middle segment of the time series, the divergences of Models (C2) and (C4)
jump up, as their means deviate more from the mean of the data generating process.

– After the variance of the data generating process drops for the last segment of the
time series, the divergences of Models (C3) and (C5) jump up a little bit, which is
due to their misspecification of the variance.

– Model (C3) performs worse than (C1) and Model (C4) performs worse than (C2),
due to a misspecification of the variance.

– Model (C5) performs worse than (C3), due to its misspecification of the mean.

– The misspecification of Model (C4) is worst for all segments of the time series.

– The models are ranked in the same way as for the CRPS (see above).

• Moving divergences with OF-windows:

– For the start and the end of the time series (border case), the divergences of all models
increase together.

– For the first segment of the time series, the ranking of Model (C2) is mostly false.

– For the last segment of the time series, the divergences of Models (C2) and (C4) are
partly to low.

– The models are ranked correctly for the middle segment of the time series.

• Moving divergences with OV-windows:

– For the middle segment of the time series, the divergences evolve different compared
to those for the OF-windows.

– In terms of model ranking, we make the same observations as for the OF-windows.

• Moving divergences with DV-windows:

– For most time instances the models are ranked appropriately.

– Only for the first segment of the time series, where the Models (C2), (C3) and (C5)
perform very similar in terms of theoretical divergences, Model (C2) is ranked falsely.

• Point-wise (PW) divergences:

– The point-wise IQ distances are equal to the point-wise CRPS. Hence, we make the
same observations as above.

• Divergences under the assumption of stationarity (ST):

– The ST-divergences do not differentiate between the different segments.

– Model (C5) is ranked wrong for the middle and the last segment of the time series.
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Figure 5.14: Changepoint scenario (C): Comparison of Models (C1)–(C5) based on (time
series of) theoretical/empirical IQ distances. Comparison based on theoretical divergences (upper
left panel), moving divergences computed using the OF approach (upper right panel), moving
divergences computed using the OV approach (middle left panel), moving divergences computed
using the DV approach (middle right panel), point-wise (PW) divergences (lower left panel) and
based on ST-divergences under the assumption of stationarity (lower right panel).
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Table 5.2: Changepoint scenario (C): Comparison/ranking of Models (C1)–(C5) based on
average (empirical/theoretical) SE scores, CRPS, MV divergences and IQ distances. Average
scores/divergences (left) and corresponding model rankings (right) are provided, distinguish-
ing between theoretical scores/divergences (Th) and empirical scores/divergences computed
using different approaches (OF, OV, DV, PW, ST). The rankings based on the theoretical
scores/divergences (Th) are considered as the true model rankings, which are used to judge the
rankings given by the empirical scores/divergences. Note that moving divergence averages based
on OF- and OV-windows do not warrant propriety.

average scores/divergences model rank
Th OF OV DV PW ST Th OF OV DV PW ST

S
E

sc
or
e

(C1) 0.558 0.637 0.627 0.559 1.117 0.748 1 2 2 2 4 3
(C2) 0.746 0.764 0.765 0.754 1.305 0.748 4 5 5 5 5 3
(C3) 0.558 0.632 0.622 0.556 0.919 0.747 1 1 1 1 1 1
(C4) 0.746 0.759 0.759 0.751 1.107 0.747 4 4 4 4 3 1
(C5) 0.568 0.648 0.638 0.570 0.929 0.750 3 3 3 3 2 5

C
R
P
S

(C1) 0.389 0.425 0.422 0.392 0.779 0.473 1 1 1 1 3 1
(C2) 0.460 0.476 0.476 0.466 0.850 0.479 4 4 4 4 5 3
(C3) 0.410 0.441 0.439 0.411 0.749 0.475 2 2 2 2 1 2
(C4) 0.482 0.494 0.495 0.487 0.821 0.483 5 5 5 5 4 5
(C5) 0.414 0.449 0.447 0.417 0.753 0.480 3 3 3 3 2 4

M
V

d
iv
.

(C1) 0.000 0.036 0.038 0.018 1.117 0.005 1 2 2 2 4 3
(C2) 0.188 0.111 0.136 0.214 1.305 0.005 4 5 5 5 5 3
(C3) 0.000 0.032 0.033 0.015 0.919 0.004 1 1 1 1 1 1
(C4) 0.188 0.106 0.131 0.210 1.107 0.004 4 4 4 4 3 1
(C5) 0.010 0.037 0.039 0.029 0.929 0.007 3 3 3 3 2 5

IQ
d
is
t.

(C1) 0.000 0.027 0.028 0.012 0.779 0.004 1 1 1 1 3 1
(C2) 0.071 0.060 0.068 0.086 0.850 0.009 4 4 4 4 5 3
(C3) 0.020 0.042 0.044 0.031 0.749 0.006 2 2 2 2 1 2
(C4) 0.092 0.075 0.085 0.107 0.821 0.014 5 5 5 5 4 5
(C5) 0.025 0.047 0.048 0.037 0.753 0.011 3 3 3 3 2 4

Model ranking based on average scores and divergences To have an overview which
evaluation approaches rank the models (C1)–(C5) correctly and which do not, we provide Table
5.2. Besides the CRPS and the IQ distance, we now also consider SE scores and MV divergences.
The table provides the average scores and divergences (averages over all time instances and all
10,000 replications of the simulation study) for the different considered evaluation approaches
(OF, OV, DV, PW and ST) and compares them to the corresponding theoretical (Th) scores and
divergences, respectively. Note that utilization of moving divergence averages is not necessarily a
proper evaluation method (that is in case of OF- and OV-windows; see discussion in Sections 5.3.2
and 5.3.3). Based on the average scores/divergences we rank the different models, distinguishing
between the theoretical scores/divergences and the five different evaluation approaches. Hence,
for each approach (column) and separately for each score/divergence type (SE score, CRPS, MV
divergence, IQ distance), the model with the smallest average score/divergence is ranked best (1)
and the model with the highest average score/divergence is ranked worst (5). Accordingly, the
models with intermediate scores/divergences are ranked 2–4. If the score/divergence averages of
two or more models are equal, all of these models get the same (minimum) rank. The resulting
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model rankings are compared in the right half of the table.
To decide if an evaluation approach is good or not, we consider the following two criteria.

For good evaluation approaches

(E1) the true model (C1) should be ranked lowest (best), and

(E2) the ranking should be identical to that based on the theoretical (Th) scores/divergences.

All in all, we observe that (E1) and (E2) are fulfilled for the CRPS and the IQ distances
calculated based on the OF, OV and DV approach.

Now, we discuss the results from Table 5.2 in more detail, distinguishing between the different
types of scores and divergences:

• SE scores:

– The theoretical scores can not differentiate between Models (C1) and (C3), and also
not between (C2) and (C4). This is due to the fact, that SE scores neglect misspeci-
fications of the variance.

– The moving (OF-, OV- and DV-) scores falsely rank (C3) better than (C1), and (C4)
better than (C2).

– The rankings based on the PW- and ST-scores are both wrong.

– The ST-scores are unable to differentiate between Models (C1) and (C2), and also
between (C3) and (C4).

• CRPS:

– The scores are able to differentiate between all five models.

– The moving (OF-, OV- and DV-) scores rank all five models correctly.

– The PW-scores yield a faulty model ranking.

– The ST-scores rank Models (C2) and (C5) wrong.

• MV divergences:

– We obtain the same (faulty) model rankings as for the SE scores.

• IQ distances:

– Same as for the CRPS, the moving (OF, OV and DV) IQ distances rank all five
models correctly.

– The rankings based on the PW- and ST-divergences (same as for the CRPS) are both
wrong.

Further analysis of the model rankings Whereas in Table 5.2 we investigated model rank-
ings which were obtained by averaging over all 10,000 replications of the simulation study (we
refer to them as average based model rankings), we now look into all 10,000 replications sepa-
rately, to see if the individual model rankings correspond to the average based model rankings
found in Table 5.2. For this we consider the models pair-wise and calculate the share of all
10,000 replications for which the average (moving) score/divergence of the first model is smaller
(better) than the average (moving) score/divergence of the second model. This time the (mov-
ing) scores/divergences are averaged only temporally, that is over all available time instances.
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Table 5.3: Changepoint scenario (C): Pair-wise comparison of Models (C1)–(C5), distin-
guishing between theoretical CRPS (Th), moving CRPS computed using the OF, OV and DV
approach, point-wise CRPS (PW) and CRPS under the assumption of stationarity (ST). Each
table entry equals the share of all 10,000 replications of the simulation study for which the
average (moving) score of the model indicated in the corresponding row is smaller (better) than
the average (moving) score of the model indicated in the corresponding column of the table.

Th OF
(C1) (C2) (C3) (C4) (C5) (C1) (C2) (C3) (C4) (C5)

(C1) – 1.00 1.00 1.00 1.00 – 1.00 0.99 1.00 1.00
(C2) 0.00 – 0.00 1.00 0.00 0.00 – 0.01 0.99 0.02
(C3) 0.00 1.00 – 1.00 0.86 0.01 0.99 – 1.00 0.96
(C4) 0.00 0.00 0.00 – 0.00 0.00 0.01 0.00 – 0.00
(C5) 0.00 1.00 0.14 1.00 – 0.00 0.98 0.04 1.00 –

PW OV
(C1) (C2) (C3) (C4) (C5) (C1) (C2) (C3) (C4) (C5)

(C1) – 0.99 0.04 0.90 0.08 – 1.00 0.99 1.00 1.00
(C2) 0.00 – 0.00 0.05 0.00 0.00 – 0.02 0.99 0.02
(C3) 0.96 1.00 – 1.00 0.74 0.01 0.98 – 1.00 0.95
(C4) 0.10 0.95 0.00 – 0.00 0.00 0.01 0.00 – 0.00
(C5) 0.92 1.00 0.26 1.00 – 0.00 0.98 0.05 1.00 –

ST DV
(C1) (C2) (C3) (C4) (C5) (C1) (C2) (C3) (C4) (C5)

(C1) – 0.92 0.87 0.98 0.91 – 1.00 1.00 1.00 1.00
(C2) 0.08 – 0.17 0.99 0.65 0.00 – 0.01 0.99 0.01
(C3) 0.13 0.83 – 0.98 0.91 0.00 0.99 – 1.00 0.87
(C4) 0.02 0.01 0.02 – 0.16 0.00 0.01 0.00 – 0.00
(C5) 0.09 0.35 0.09 0.84 – 0.00 0.99 0.13 1.00 –

The results of these computations (shares) are summarized in Tables 5.3 and 5.4. Table 5.3 is
based on CRPS, Table 5.4 on IQ distances. Both tables again distinguish between theoretical
scores/divergences (Th) and empirical scores/divergences calculated using different approaches
(OF, OV, DV, PW and ST). Each block of Tables 5.3 and 5.4 corresponds to one particular ap-
proach. It is best to read each block row-wise. Each row provides the shares telling how often the
model indicated to the left (model under consideration) had a better average score/divergence
than the other models (indicated above). A share equal to 0 means that the model under con-
sideration is never considered better than the other model, a share equal to 1 means that it is
always considered better than the other one, a share in (0, 0.5) means that the model under
consideration is considered worse than the other one for the majority of all replications and a
share in (0.5, 1) means that it is considered better than the other one for the majority of all
replications.

First, we are interested to know, if the pair-wise and replication-wise consideration in Tables
5.3 and 5.4 supports the model rankings found in Table 5.2. If we rank model A better than
model B if the share corresponding to the model pair (A,B) is greater than 0.5, then we obtain
exactly the same rankings as in Table 5.2.

Second, we are interested to see, how certain the different evaluation approaches are about
the relative pair-wise rankings they indicate. Table entries close to 0 or 1 support certainty,
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5 Proper evaluation of non-stationary time series models

Table 5.4: Changepoint scenario (C): Pair-wise comparison of Models (C1)–(C5), distin-
guishing between theoretical IQ distances (Th), moving IQ distances computed using the OF,
OV and DV approach, point-wise IQ distances (PW) and IQ distances under the assumption of
stationarity (ST). Each table entry equals the share of all 10,000 replications of the simulation
study for which the average (moving) divergence of the model indicated in the corresponding
row is smaller (better) than the average (moving) divergence of the model indicated in the
corresponding column of the table.

Th OF
(C1) (C2) (C3) (C4) (C5) (C1) (C2) (C3) (C4) (C5)

(C1) – 1.00 1.00 1.00 1.00 – 0.99 0.99 1.00 0.99
(C2) 0.00 – 0.00 1.00 0.00 0.01 – 0.11 0.98 0.13
(C3) 0.00 1.00 – 1.00 1.00 0.01 0.89 – 0.99 0.82
(C4) 0.00 0.00 0.00 – 0.00 0.00 0.02 0.01 – 0.00
(C5) 0.00 1.00 0.00 1.00 – 0.01 0.87 0.18 1.00 –

PW OV
(C1) (C2) (C3) (C4) (C5) (C1) (C2) (C3) (C4) (C5)

(C1) – 0.99 0.04 0.90 0.08 – 1.00 0.99 1.00 0.99
(C2) 0.00 – 0.00 0.05 0.00 0.00 – 0.07 0.99 0.07
(C3) 0.96 1.00 – 1.00 0.74 0.01 0.93 – 0.99 0.82
(C4) 0.10 0.95 0.00 – 0.00 0.00 0.01 0.01 – 0.00
(C5) 0.92 1.00 0.26 1.00 – 0.01 0.93 0.18 1.00 –

ST DV
(C1) (C2) (C3) (C4) (C5) (C1) (C2) (C3) (C4) (C5)

(C1) – 0.92 0.87 0.98 0.91 – 1.00 1.00 1.00 1.00
(C2) 0.08 – 0.17 0.99 0.65 0.00 – 0.01 0.99 0.01
(C3) 0.13 0.83 – 0.98 0.91 0.00 0.99 – 1.00 0.87
(C4) 0.02 0.01 0.02 – 0.16 0.00 0.01 0.00 – 0.00
(C5) 0.09 0.35 0.09 0.84 – 0.00 0.99 0.13 1.00 –

entries close to 0.5 indicate that the evaluation approach under consideration has difficulties to
decide in favor of one of the corresponding models. In most cases we observe shares close to 0
or 1. We point out cases, where this does not hold. The ST-scores and divergences for instance
have difficulties with the relative ranking of models (C2) and (C5). The theoretical CRPS mostly
allow for unambiguous decisions, only the decision between models (C3) and (C5) is not always
the same. The DV-scores seem to mirror this behavior best. In contrast, the theoretical IQ
distances always allow for unambiguous decisions. Generally, the shares obtained for OF-, OV-
and DV-scores and divergences come very close to their theoretical counterparts.

All in all, we conclude that the average based model rankings found in Table 5.2 (for CRPS
and IQ distances) and the differentiation between the different models in these rankings are
justified.
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5.6 Simulation study: Trend scenario

For the trend scenario (T) we consider trends in the mean and standard deviation of a time
series. To model these trends, we consider the function

hT(t;θ) := θ0 + θ1t exp (θ2t) , (5.20)

with intercept parameter θ0, linear trend parameter θ1 and non-linear trend parameter θ2, where
θ := (θ0, θ1, θ2) ∈ R3. Based on (5.20) we model the trend in the mean by

MT(t;µ) := hT(t;µ), for all t = 1, . . . , N,

with parameter vector µ = (µ0, µ1, µ2) ∈ R3. Hence, the mean grows exponentially, if µ1, µ2 > 0.
The trend in the standard deviation is modeled as

ST(t;σ) := hT(t;σ), for all t = 1, . . . , N,

with parameter vector σ = (σ0, σ1, σ2) ∈ R3. The standard deviation increases exponentially, if
σ1, σ2 > 0.

Trend scenario (T) The subsequent equations define the trend scenario (T), where we con-
sider time series of length N = 200. The data generating process (T0) and the five models
(T1)–(T5) are given by

(T0) Yt ∼ N
(
MT(t;µ

0),
[
ST(t;σ

0)
]2)

(data generating process),

(T1) X1
t ∼ N

(
MT(t;µ

1),
[
ST(t;σ

1)
]2)

(true model),

(T2) X2
t ∼ N

(
MT(t;µ

2),
[
ST(t;σ

2)
]2)

(wrong mean),

(T3) X3
t ∼ N

(
MT(t;µ

3),
[
ST(t;σ

3)
]2)

(wrong variance),

(T4) X4
t ∼ N

(
MT(t;µ

4),
[
ST(t;σ

4)
]2)

(wrong mean and linear variance),

(T5) X5
t ∼ N

(
MT(t;µ

5),
[
ST(t;σ

5)
]2)

(wrong mean and constant variance),

with parameters

(T0) µ0 = (0, 1/3, 2)/N, σ0 = (20, 0.05, 2)/N, (data generating process),

(T1) µ1 = µ0, σ1 = σ0, (true model),
(T2) µ2 = (0, 1/3, 1.9)/N, σ2 = σ0, (wrong mean),
(T3) µ3 = µ0, σ3 = (20, 0.0375, 1.5)/N, (wrong variance),
(T4) µ4 = µ2, σ4 = (20, 0.05, 0)/N, (wrong mean and linear variance),
(T5) µ5 = µ2, σ5 = (20, 0, 0)/N, (wrong mean and constant variance).

Whereas the true model (T1) is equivalent to the data generating process (T0) in terms of its
parametrization, the other Models (T2)–(T5) differ from the data generating process (T0) in at
least one parameter.
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5 Proper evaluation of non-stationary time series models

Illustration of the trend scenario (T) The differences between the data generating process
(T0) and the models (T1)–(T5) in the temporal evolution of the mean and the standard deviation
are visualized in Figure 5.15. For the data generating process (T0) we see, that the mean µ0,t
and the variance σ20,t both grow exponentially. In comparison to the data generating process
(T0)

• the mean µ2,t of Model (T2) increases slower than µ0,t,

• the variance σ23,t of Model (T3) increases slower than σ20,t,

• the mean µ4,t of Model (T4) increases slower than µ0,t and the variance σ24,t grows only
linearly,

• the mean µ5,t of Model (T5) increases slower than µ0,t and the variance σ25,t remains
constant.

Hence, the mean of Model (T2) is always below the mean observed for the data generating
process (T0), where the variance is modeled correctly. Model (T3) models the exponentially
increasing mean correctly, however, the variance it assumes is always to low. Both, Models (T4)
and (T5) are wrong in terms of mean and variance, where the misspecification of the variance
is less severe for Model (T4). The parameters of the true model (T1) coincide with those of the
data generating process (T0). Thus, a ranking of all Models (T1)–(T5) should rank Model (T1)
best.

Illustration of changepoint analysis and selection of moving windows Figure 5.16
illustrates one replication of the data generating process (T0) and the corresponding selection of
moving windows according to Section 5.3.3. We observe that 7 irregularly spaced changepoints
were detected. Obviously, the exponential growth of the mean and the variance play a role for
the detection of the changepoints.

The segmentation into eight segments of different length is also reflected in the moving
windows selected by the OV and DV approach. The minimum detected segment length is 13
and the maximum detected segment length is 42. Hence, the window width ωDV

t takes values
between 13 and 42. Apart from the border case (time instances t close to the start and the end
of the time series), the window width ωOF

t is constant and equals 21, and the window width
ωOV
t varies between 13 and 41. The difference of OF-, OV- and DV-windows in comparison to a

point-wise (PW) evaluation (ωPW
t = 1) become clear from the figure.

With the bottom panel of Figure 5.16 we illustrate the (approximate) weights Ω(t) (see
Equation (5.15)) corresponding to each observation yt, t = 1, . . . , N , in an evaluation based on
moving divergence averages (5.12). As already discussed, the propriety of the metric (5.12) is
given only if the weights Ω(t) are constant. From the figure we observe, that the DV-windows
yield propriety, while the OF- and OV-windows do not. For the OF-windows, the weights Ω(t)
deviate from 1 only in the beginning and in the end of the considered time interval (border case).
We clearly see, that the metric based on OV-windows approximates propriety much worse than
that based on OF-windows.

As Figure 5.16 is based on one replication only, we are further interested to see how many
changepoints were detected for all 10,000 replications. Moreover, we are interested to know if the
selected window widths vary a lot. Figure 5.17 summarizes for all 10,000 replications of the data
generating process (T0) how many changepoints were detected and which window widths were
selected predominantly by the OF approach. We observe that in most cases (> 90%) five or six
changepoints were detected. Moreover, we observe that in most cases the fixed OF-window width
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Figure 5.15: Trend scenario (T): Temporal evolution of mean µk,t (upper panel) and standard
deviation σk,t (lower panel) for the data generating process (T0) (k = 0) and the models (T1)–
(T5) (k = 1, . . . , 5).
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Figure 5.16: Trend scenario (T): One replication of the data generating process (T0) (ob-
servations yt, t = 1, . . . , N) and changepoint analysis. The detected segmentation (gray dotted
vertical lines) and the mean and standard deviation estimates µ̂t and σ̂t for each segment (red)
are indicated (upper panel). The corresponding moving window widths ωt chosen by the OF
(dashed), OV (solid) and DV (dotted) selection approach, as well as the window width ωPW

t = 1
used in the case of a point-wise (PW) evaluation (dash-dotted) are compared in the middle
panel. The resulting (approximate) weights Ω(t) for each time instance t (see Equation (5.15))
are illustrated in the bottom panel.
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Figure 5.17: Trend scenario (T): Share (in %) of all 10,000 replications, where the given
number of changepoints was detected (left panel), and where the given fixed window width ωOF

was selected by the OF approach (right panel).

was between 23 and 35. While there seems to be not much variation in the detected number of
changepoints, the window widths vary considerably.

Results (model-wise comparison of different evaluation approaches) Figures 5.18–
5.22 illustrate the temporal evolution of the empirical (moving) CRPS and IQ distances and their
deviation from their theoretical counterparts, for Models (T1)–(T5), respectively. We observe
the following:

(T) For all models (Figures 5.18–5.22):

– The PW-scores and divergences deviate very much from the theoretical scores and
divergences, respectively.

– The ST-scores deviate considerably from the theoretical scores.

– For the start and the end of the time series (border case), the OF- and OV-scores
and divergences tend towards the PW-scores and divergences, respectively.

– The deviation of the different scores and divergences from the theoretical scores and
divergences, respectively, increases with increasing trend steepness.

(T1) True model (Figure 5.18):

– The theoretical CRPS increases with increasing variance. (The theoretical IQ dis-
tances are—by definition—constantly 0.)
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5 Proper evaluation of non-stationary time series models

– While the DV-scores approximate the theoretical scores best, the OF- and OV-scores
perform similar.

– Here, the ST-divergence approximates the theoretical divergences best. Despite the
presence of non-stationarity this behavior can be observed for the true model. This
is because the true model specifies the characteristics of the data generating process
correctly for each single time instance. Construction of an empirical CDF based on the
sample given by all realizations of the corresponding time series then (approximately)
yields the same distribution which we obtain in case of the data generating process.
Hence, the ST-divergence gets close to the theoretical divergences which are all 0. All
other (moving) divergences also come close to the theoretical divergences.

(T2) Wrong mean (Figure 5.19):

– The theoretical scores and divergences increase both with increasing trend steepness
(mean and variance).

– The DV-scores approximate their theoretical counterpart best. OF- and OV-scores
come close to the DV-scores.

– For most time instances, the ST-divergences approximate the theoretical divergences
best. However, for steep trends, the ST-divergences become smaller than the theoret-
ical divergences. That is, they evaluate Model (T2) too good.

– OF- and OV-divergences perform similar to each other.

(T3) Wrong variance (Figure 5.20):

– The theoretical scores and divergences increase both with increasing trend steepness
(mean and variance).

– For most time instances, the different moving (OF-, OV- and DV-) scores approximate
their theoretical counterparts similarly well. For steep trends, these scores evaluate
Model (T3) too good (the DV-scores deviate most).

– The different moving (OF-, OV- and DV-) divergences perform similar compared
to each other. Again, the ST-divergences become smaller than the theoretical diver-
gences.

(T4) Wrong mean and linear variance (Figure 5.21):

– For steep trends, the DV-scores deviate most from the theoretical scores.

– The negative deviation from the theoretical divergences is worst for the ST-divergen-
ces. The moving (OF-, OV- and DV-) divergences deviate much less.

(T5) Wrong mean and constant variance (Figure 5.22):

– The results are similar as for model (T4). However, the negative deviation from the
theoretical scores and divergences is more pronounced.

From Figures 5.18–5.22 we conclude that the moving scores and divergences based on OF-,
OV- and DV-windows all approximate their theoretical counterparts reasonably well. If they
provide the correct model rankings is investigated subsequently.
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Figure 5.18: Trend scenario (T1/true model): Comparison of empirical scores/divergences
computed using different approaches (OF, OV, DV, PW, ST) with theoretical (Theo.)
scores/divergences. CRPS time series (upper left panel) and difference between empirical CRPS
(OF, OV, DV, ST) and theoretical CRPS time series (upper right panel). IQ distance time series
(lower left panel) and difference between empirical IQ distance (OF, OV, DV, ST) and theo-
retical IQ distance time series (lower right panel). The depicted time series are averages based
on all 10,000 replications of the simulation study. The right panel does not show the (complete)
time series for all different approaches, since some of them differ too much from 0 (for some time
instances).
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Figure 5.19: Trend scenario (T2/wrong mean): Comparison of empirical scores/divergences
computed using different approaches (OF, OV, DV, PW, ST) with theoretical (Theo.)
scores/divergences. CRPS time series (upper left panel) and difference between empirical CRPS
(OF, OV, DV, ST) and theoretical CRPS time series (upper right panel). IQ distance time series
(lower left panel) and difference between empirical IQ distance (OF, OV, DV, ST) and theo-
retical IQ distance time series (lower right panel). The depicted time series are averages based
on all 10,000 replications of the simulation study. The right panel does not show the (complete)
time series for all different approaches, since some of them differ too much from 0 (for some time
instances).
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Figure 5.20: Trend scenario (T3/wrong variance): Comparison of empirical scores/diver-
gences computed using different approaches (OF, OV, DV, PW, ST) with theoretical (Theo.)
scores/divergences. CRPS time series (upper left panel) and difference between empirical CRPS
(OF, OV, DV, ST) and theoretical CRPS time series (upper right panel). IQ distance time
series (lower left panel) and difference between empirical IQ distance (OF, OV, DV, ST) and
theoretical IQ distance time series (lower right panel). The depicted time series are averages
based on all 10,000 replications of the simulation study. The right panel does not show the
(complete) time series for all different approaches, since some of them differ too much from 0
(for some time instances).
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Figure 5.21: Trend scenario (T4/wrong mean and linear variance): Comparison of em-
pirical scores/divergences computed using different approaches (OF, OV, DV, PW, ST) with
theoretical (Theo.) scores/divergences. CRPS time series (upper left panel) and difference be-
tween empirical CRPS (OF, OV, DV, ST) and theoretical CRPS time series (upper right panel).
IQ distance time series (lower left panel) and difference between empirical IQ distance (OF, OV,
DV, ST) and theoretical IQ distance time series (lower right panel). The depicted time series
are averages based on all 10,000 replications of the simulation study. The right panel does not
show the (complete) time series for all different approaches, since some of them differ too much
from 0 (for some time instances).
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Figure 5.22: Trend scenario (T5/wrong mean and constant variance): Comparison of
empirical scores/divergences computed using different approaches (OF, OV, DV, PW, ST) with
theoretical (Theo.) scores/divergences. CRPS time series (upper left panel) and difference be-
tween empirical CRPS (OF, OV, DV, ST) and theoretical CRPS time series (upper right panel).
IQ distance time series (lower left panel) and difference between empirical IQ distance (OF, OV,
DV, ST) and theoretical IQ distance time series (lower right panel). The depicted time series
are averages based on all 10,000 replications of the simulation study. The right panel does not
show the (complete) time series for all different approaches, since some of them differ too much
from 0 (for some time instances).
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5 Proper evaluation of non-stationary time series models

Results (model comparison based on different evaluation approaches) Figures 5.23
and 5.24 compare Models (T1)–(T5) based on (time series of) theoretical/empirical CRPS and
IQ distances, respectively. As before, we consider theoretical (Theo.), moving OF-, moving OV-,
moving DV-, point-wise (PW) and ST-scores/divergences. For the scores (Figure 5.23) we ob-
serve the following:

• Theoretical (Theo.) scores:

– The true model (T1) is strictly the best. The differences between the five models can
be explained by their different misspecifications of mean and variance.

– For the flat part of the time series (flat trend), the scores of all models move closely
together, as their means deviate not or not much from the data generating process.

– As the trend steepness (mean an variance) increases, the scores of the different models
deviate more and more from each other.

– Model (T2) performs worse than (T1), due to its misspecification of the mean.

– Model (T3) performs worse than (T1) and Models (T4) and (T5) perform worse than
(T2), due to their misspecification of the variance.

– The misspecification of Model (T5) is worst.

• Moving scores with OF-windows:

– The differentiation among the different models is more difficult compared to the
theoretical scores.

– With one exception (Model (T3)) the models get ranked correctly for most time
instances.

– For steep trends Model (T3) is evaluated better than the true model (T1).

• Moving scores with OV-windows:

– The scores evolve similar to those for the OF-windows. Our observations are the same.

• Moving scores with DV-windows:

– Compared to OF- and OV-scores the differentiation among the different models is
even more difficult.

– Again, Model (T3) is evaluated better than the true model (T1).

• Point-wise (PW) scores:

– Models (T1) and (T2) are evaluated far too bad.

– Models (T4) and (T5) are evaluated too good.

• Scores under the assumption of stationarity (ST):

– For all time instances, the scores for the different models do not differ very much
from one another.

– The observed rankings are wrong for the whole time period.
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Figure 5.23: Trend scenario (T): Comparison of Models (T1)–(T5) based on (time series of)
theoretical/empirical CRPS. Comparison based on theoretical scores (upper left panel), moving
scores computed using the OF approach (upper right panel), moving scores computed using the
OV approach (middle left panel), moving scores computed using the DV approach (middle right
panel), point-wise (PW) scores (lower left panel) and based on ST-scores under the assumption
of stationarity (lower right panel).
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5 Proper evaluation of non-stationary time series models

For the divergences (Figure 5.24) we observe the following:

• Theoretical (Theo.) divergences:

– The true model (T1) is strictly the best. The differences between the five models can
be explained by their different misspecifications of mean and variance.

– For the flat part of the time series (flat trend), the divergences of all models move
closely together, as their means deviate not or not much from the data generating
process.

– As the trend steepness (mean an variance) increases, the divergences of the different
models deviate more and more from each other.

– Model (T2) performs worse than (T1), due to its misspecification of the mean.

– Model (T3) performs worse than (T1) and Models (T4) and (T5) perform worse than
(T2), due to their misspecification of the variance.

– The misspecification of Model (T5) is worst.

– The models are ranked in the same way as for the CRPS (see above).

• Moving divergences with OF-windows:

– The differentiation among the different models is more difficult compared to the
theoretical divergences.

– The divergences for Model (T3) can hardly be differentiated from those for the true
model (T1). Other than that, the models get ranked correctly for most time instances.

• Moving divergences with OV-windows:

– The divergences evolve similar to those for the OF-windows. Our observations are
the same.

• Moving divergences with DV-windows:

– Compared to OF- and OV-divergences we obtain more spurious model rankings.

– For many time instances, Model (T3) is evaluated better than the true model (T1).

– The flat ends of the DV-divergence curves occur due to the restrictions on the mini-
mum size (11) of the DV-windows.

• Point-wise (PW) divergences:

– The point-wise IQ distances are equal to the point-wise CRPS. Hence, we make the
same observations as above.

• Divergences under the assumption of stationarity (ST):

– The ST-divergences do not differentiate between different time instances.

– Models (T2) and (T3) are ranked too bad and too good, respectively.
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Figure 5.24: Trend scenario (T): Comparison of Models (T1)–(T5) based on (time series
of) theoretical/empirical IQ distances. Comparison based on theoretical divergences (upper left
panel), moving divergences computed using the OF approach (upper right panel), moving di-
vergences computed using the OV approach (middle left panel), moving divergences computed
using the DV approach (middle right panel), point-wise (PW) divergences (lower left panel) and
based on ST-divergences under the assumption of stationarity (lower right panel).
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5 Proper evaluation of non-stationary time series models

Table 5.5: Trend scenario (T): Comparison/ranking of Models (T1)–(T5) based on aver-
age moving SE scores, average moving CRPS, average moving MV divergences and average
moving IQ distances. Average scores/divergences (left) and model rankings (right) are pro-
vided, distinguishing between theoretical (Th) scores/divergences (true model ranking), moving
scores/divergences computed using the OF approach, moving scores/divergences computed using
the OV approach, moving scores/divergences computed using the DV approach, point-wise (PW)
scores/divergences and scores/divergences under the assumption of stationarity (ST). Note that
moving divergence averages based on OF- and OV-windows do not warrant propriety.

average scores/divergences model rank
Th OF OV DV PW ST Th OF OV DV PW ST

S
E

sc
or
e

(T1) 0.053 0.057 0.057 0.056 0.106 0.515 1 2 2 2 4 2
(T2) 0.059 0.063 0.063 0.064 0.112 0.518 3 5 5 5 5 5
(T3) 0.053 0.054 0.054 0.054 0.079 0.515 1 1 1 1 3 1
(T4) 0.059 0.059 0.060 0.062 0.075 0.518 3 4 4 4 2 4
(T5) 0.059 0.059 0.059 0.062 0.069 0.518 3 3 3 3 1 3

C
R
P
S

(T1) 0.116 0.124 0.124 0.120 0.232 0.387 1 2 2 2 4 2
(T2) 0.121 0.128 0.128 0.126 0.237 0.388 3 3 3 3 5 5
(T3) 0.119 0.122 0.122 0.119 0.206 0.386 2 1 1 1 3 1
(T4) 0.131 0.128 0.129 0.127 0.201 0.388 4 4 4 4 2 3
(T5) 0.136 0.130 0.130 0.128 0.193 0.388 5 5 5 5 1 4

M
V

d
iv
.

(T1) 0.000 0.008 0.008 0.004 0.106 0.001 1 2 2 2 4 2
(T2) 0.007 0.015 0.015 0.012 0.112 0.003 3 5 5 5 5 5
(T3) 0.000 0.006 0.006 0.003 0.079 0.000 1 1 1 1 3 1
(T4) 0.007 0.011 0.012 0.011 0.075 0.003 3 4 4 4 2 4
(T5) 0.007 0.011 0.011 0.010 0.069 0.003 3 3 3 3 1 3

IQ
d
is
t.

(T1) 0.000 0.014 0.014 0.009 0.232 0.001 1 2 2 2 4 2
(T2) 0.005 0.019 0.019 0.015 0.237 0.002 3 3 3 3 5 5
(T3) 0.003 0.014 0.014 0.008 0.206 0.001 2 1 1 1 3 1
(T4) 0.015 0.021 0.021 0.016 0.201 0.002 4 4 4 4 2 3
(T5) 0.020 0.023 0.023 0.017 0.193 0.002 5 5 5 5 1 4

Model ranking based on average scores and divergences In order to see, if any evalu-
ation approach ranks the models (T1)–(T5) correctly, we provide Table 5.5. Besides the CRPS
and the IQ distance, we now also consider SE scores and MV divergences. The table provides
the average scores and divergences (averages over all time instances and all 10,000 replications of
the simulation study) for the different considered evaluation approaches (OF, OV, DV, PW and
ST) and compares them to the corresponding theoretical (Th) scores and divergences, respec-
tively. Note that utilization of moving divergence averages is not necessarily a proper evaluation
method (that is in case of OF- and OV-windows; see discussion in Sections 5.3.2 and 5.3.3).
Based on the average scores/divergences we rank the different models, distinguishing between
the theoretical scores/divergences and the five different evaluation approaches. Hence, for each
approach (column) and separately for each score/divergence type (SE score, CRPS, MV diver-
gence, IQ distance), the model with the smallest average score/divergence is ranked best (1)
and the model with the highest average score/divergence is ranked worst (5). Accordingly, the
models with intermediate scores/divergences are ranked 2–4. If the score/divergence averages of
two or more models are equal, all of these models get the same (minimum) rank. The resulting
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5.6. SIMULATION STUDY: TREND SCENARIO

model rankings are compared in the right half of the table.
To decide if an evaluation approach is good or not, we again consider the following two

criteria. For good evaluation approaches

(E1) the true model (T1) should be ranked lowest (best), and

(E2) the ranking should be identical to that based on the theoretical (Th) scores/divergences.

All in all, we observe that (E1) and (E2) are satisfied best for the CRPS and the IQ distances
calculated based on the OF, OV and DV approach.

Now, we discuss the results from Table 5.5 in more detail, distinguishing between the different
types of scores and divergences:

• SE scores:

– The theoretical scores can not differentiate between Models (T1) and (T3), and also
not between (T2), (T4) and (T5). This is due to the fact, that SE scores neglect
misspecifications of the variance.

– The moving (OF-, OV- and DV-) scores falsely rank (T3) better than (T1). Moreover,
they rank (T4) and (T5) better than (T2).

– The rankings based on the PW- and ST-scores are both wrong.

– The ST-scores provide the same ranking as the OF-, OV- and DV-scores.

• CRPS:

– The scores are able to differentiate between all five models.

– The moving (OF-, OV- and DV-) scores falsely rank Model (T3) better than (T1).
All other models are ranked correctly.

– The ranking provided by the PW-scores is completely wrong.

– The ST-scores rank Model (T2) too bad and Model (T3) too good.

• MV divergences:

– We obtain the same (faulty) model rankings as for the SE scores.

• IQ distances:

– Same as for the CRPS, the moving (OF, OV and DV) IQ distances rank Model (T3)
better than (T1). All other models are ranked correctly.

– The rankings based on the PW- and ST-divergences (same as for the CRPS) are both
wrong.

Further analysis of the model rankings Whereas in Table 5.5 we investigated model rank-
ings which were obtained by averaging over all 10,000 replications of the simulation study (we
refer to them as average based model rankings), we now look into all 10,000 replications sepa-
rately, to see if the individual model rankings correspond to the average based model rankings
found in Table 5.5. For this we consider the models pair-wise and calculate the share of all
10,000 replications for which the average (moving) score/divergence of the first model is smaller
(better) than the average (moving) score/divergence of the second model. This time the (mov-
ing) scores/divergences are averaged only temporally, that is over all available time instances.
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5 Proper evaluation of non-stationary time series models

Table 5.6: Trend scenario (T): Pair-wise comparison of Models (T1)–(T5), distinguishing
between theoretical CRPS (Th), moving CRPS computed using the OF, OV and DV approach,
point-wise CRPS (PW) and CRPS under the assumption of stationarity (ST). Each table entry
equals the share of all 10,000 replications of the simulation study for which the average (moving)
score of the model indicated in the corresponding row is smaller (better) than the average
(moving) score of the model indicated in the corresponding column of the table.

Th OF
(T1) (T2) (T3) (T4) (T5) (T1) (T2) (T3) (T4) (T5)

(T1) – 0.94 0.98 1.00 1.00 – 0.84 0.15 0.83 0.87
(T2) 0.06 – 0.26 1.00 1.00 0.16 – 0.09 0.53 0.65
(T3) 0.02 0.74 – 1.00 1.00 0.85 0.91 – 0.92 0.95
(T4) 0.00 0.00 0.00 – 1.00 0.17 0.47 0.08 – 0.94
(T5) 0.00 0.00 0.00 0.00 – 0.13 0.35 0.05 0.06 –

PW OV
(T1) (T2) (T3) (T4) (T5) (T1) (T2) (T3) (T4) (T5)

(T1) – 0.83 0.00 0.00 0.00 – 0.85 0.19 0.85 0.89
(T2) 0.17 – 0.00 0.00 0.00 0.15 – 0.09 0.60 0.72
(T3) 1.00 1.00 – 0.22 0.02 0.81 0.91 – 0.93 0.96
(T4) 1.00 1.00 0.78 – 0.00 0.15 0.40 0.07 – 0.97
(T5) 1.00 1.00 0.98 1.00 – 0.11 0.28 0.04 0.03 –

ST DV
(T1) (T2) (T3) (T4) (T5) (T1) (T2) (T3) (T4) (T5)

(T1) – 0.88 0.42 0.91 0.92 – 0.92 0.19 0.92 0.94
(T2) 0.12 – 0.12 0.51 0.54 0.08 – 0.05 0.63 0.71
(T3) 0.58 0.88 – 0.93 0.93 0.81 0.95 – 0.97 0.98
(T4) 0.09 0.49 0.07 – 0.64 0.08 0.37 0.03 – 0.92
(T5) 0.08 0.46 0.07 0.36 – 0.06 0.29 0.02 0.08 –

The results of these computations (shares) are summarized in Tables 5.6 and 5.7. Table 5.6 is
based on CRPS, Table 5.7 on IQ distances. Both tables again distinguish between theoretical
scores/divergences (Th) and empirical scores/divergences calculated using different approaches
(OF, OV, DV, PW and ST). Each block of Tables 5.6 and 5.7 corresponds to one particular ap-
proach. It is best to read each block row-wise. Each row provides the shares telling how often the
model indicated to the left (model under consideration) had a better average score/divergence
than the other models (indicated above). A share equal to 0 means that the model under con-
sideration is never considered better than the other model, a share equal to 1 means that it is
always considered better than the other one, a share in (0, 0.5) means that the model under
consideration is considered worse than the other one for the majority of all replications and a
share in (0.5, 1) means that it is considered better than the other one for the majority of all
replications.

First, we are interested to know, if the pair-wise and replication-wise consideration in Tables
5.6 and 5.7 supports the model rankings found in Table 5.5. If we rank model A better than
model B if the share corresponding to the model pair (A,B) is greater than 0.5, then we mostly
obtain the same rankings as in Table 5.5. The ST-scores and divergences are the only exception.
Here, Model (T2) is ranked better than Models (T4) and (T5), where the average based model
ranking suggests that Model (T2) is ranked worse than (T4) and (T5).
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Table 5.7: Trend scenario (T): Pair-wise comparison of Models (T1)–(T5), distinguishing
between theoretical IQ distances (Th), moving IQ distances computed using the OF, OV and DV
approach, point-wise IQ distances (PW) and IQ distances under the assumption of stationarity
(ST). Each table entry equals the share of all 10,000 replications of the simulation study for which
the average (moving) divergence of the model indicated in the corresponding row is smaller
(better) than the average (moving) divergence of the model indicated in the corresponding
column of the table.

Th OF
(T1) (T2) (T3) (T4) (T5) (T1) (T2) (T3) (T4) (T5)

(T1) – 1.00 1.00 1.00 1.00 – 0.85 0.45 0.91 0.95
(T2) 0.00 – 0.00 1.00 1.00 0.15 – 0.14 0.77 0.85
(T3) 0.00 1.00 – 1.00 1.00 0.55 0.86 – 0.94 0.97
(T4) 0.00 0.00 0.00 – 1.00 0.09 0.23 0.06 – 0.99
(T5) 0.00 0.00 0.00 0.00 – 0.05 0.15 0.03 0.01 –

PW OV
(T1) (T2) (T3) (T4) (T5) (T1) (T2) (T3) (T4) (T5)

(T1) – 0.83 0.00 0.00 0.00 – 0.86 0.44 0.91 0.95
(T2) 0.17 – 0.00 0.00 0.00 0.14 – 0.14 0.78 0.88
(T3) 1.00 1.00 – 0.22 0.02 0.56 0.86 – 0.95 0.97
(T4) 1.00 1.00 0.78 – 0.00 0.09 0.22 0.05 – 0.99
(T5) 1.00 1.00 0.98 1.00 – 0.05 0.12 0.03 0.01 –

ST DV
(T1) (T2) (T3) (T4) (T5) (T1) (T2) (T3) (T4) (T5)

(T1) – 0.88 0.42 0.91 0.92 – 0.92 0.19 0.92 0.94
(T2) 0.12 – 0.12 0.51 0.54 0.08 – 0.05 0.63 0.71
(T3) 0.58 0.88 – 0.93 0.93 0.81 0.95 – 0.97 0.98
(T4) 0.09 0.49 0.07 – 0.64 0.08 0.37 0.03 – 0.92
(T5) 0.08 0.46 0.07 0.36 – 0.06 0.29 0.02 0.08 –

Second, we are interested to see, how certain the different evaluation approaches are about
the relative pair-wise rankings they indicate. Table entries close to 0 or 1 support certainty,
entries close to 0.5 indicate that the evaluation approach under consideration has difficulties to
decide in favor of one of the corresponding models. Whereas the theoretical CRPS not always
allow for unambiguous decisions (Models (T1)–(T3)), the theoretical IQ distances always allow
for unambiguous decisions. For the empirical scores/divergences we observe shares smaller than
0.25 or greater than 0.75, in most cases. We point out cases, where this does not hold. The
ST-scores and divergences are worst in ranking the different models unambiguously. They have
problems with the relative ranking for the model pairs (T1,T3), (T2,T4), (T2,T5) and (T4,T5).
The shares obtained for OF-, OV- and DV-scores (CRPS) yield uncertainty for the relative
ranking of (T2) with respect to (T4) and (T5) and vice versa. For OF- and OV-divergences only
the distinction between Models (T1) and (T3) is problematic.

All in all, we find that the average based model rankings found in Table 5.5 (for CRPS and
IQ distances) and the differentiation between the different models in these rankings are justified
in most cases. Cases where the relative ranking of models can not be trusted are addressed in
the two paragraphs above.

133



5 Proper evaluation of non-stationary time series models

5.7 Simulation study: Periodicity scenario

For the periodicity scenario (P) we consider time series with periodically varying mean and
standard deviation. To model the periodicity, we consider the function

hP(t;θ) := θ0 + θ1 sin (2πtθ2) , (5.21)

with intercept parameter θ0, amplitude parameter θ1 and frequency parameter θ2, where θ :=
(θ0, θ1, θ2) ∈ R3. Based on (5.21) we model the periodicity in the mean by

MP(t;µ) := hP(t;µ), for all t = 1, . . . , N,

with parameter vector µ = (µ0, µ1, µ2) ∈ R3. Hence, the mean oscillates periodically (following
a sine curve), if it holds µ1, µ2 6= 0. The length of one period is given by 1/µ2. The periodicity
in the standard deviation is modeled as

SP(t;σ) := exp (hP(t;σ)) , for all t = 1, . . . , N,

with parameter vector σ = (σ0, σ1, σ2) ∈ R3. The standard deviation oscillates periodically
(following the exponential of a sine curve), if it holds σ1, σ2 6= 0, where the length of one period
is given by 1/σ2. It is strictly positive.

Periodicity scenario (P) The subsequent equations define the periodicity scenario (P),
where we consider time series of length N = 730. The data generating process (P0) and the
five models (P1)–(P5) are given by

(P0) Yt ∼ N
(
MP(t;µ

0),
[
SP(t;σ

0)
]2)

(data generating process),

(P1) X1
t ∼ N

(
MP(t;µ

1),
[
SP(t;σ

1)
]2)

(true model),

(P2) X2
t ∼ N

(
MP(t;µ

2),
[
SP(t;σ

2)
]2)

(wrong mean),

(P3) X3
t ∼ N

(
MP(t;µ

3),
[
SP(t;σ

3)
]2)

(wrong variance),

(P4) X4
t ∼ N

(
MP(t;µ

4),
[
SP(t;σ

4)
]2)

(wrong mean and variance),

(P5) X5
t ∼ N

(
MP(t;µ

5),
[
SP(t;σ

5)
]2)

(wrong mean and constant variance),

with parameters

(P0) µ0 = (0, 10, 1/365), σ0 = (0,−0.5, 1/365), (data generating process),

(P1) µ1 = µ0, σ1 = σ0, (true model),
(P2) µ2 = (0, 9.5, 1/365), σ2 = σ0, (wrong mean),
(P3) µ3 = µ0, σ3 = (0,−0.25, 1/365), (wrong variance),
(P4) µ4 = µ2, σ4 = σ3 (wrong mean and variance),
(P5) µ5 = µ2, σ5 = (0, 0, 1/365), (wrong mean and constant variance).

Whereas the true model (P1) is equivalent to the data generating process (P0) in terms of its
parametrization, the other Models (P2)–(P5) differ from the data generating process (P0) in at
least one parameter.
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Illustration of the periodicity scenario (P) The differences between the data generating
process (P0) and the models (P1)–(P5) in the temporal evolution of the mean and the standard
deviation are visualized in Figure 5.25. For the data generating process (P0) the mean µ0,t varies
sinusoidal and the variance σ20,t varies according to the exponential of a sine curve. It can be
seen, that times of high means coincide with times of low variance and vice versa. In comparison
to the data generating process (P0)

• the amplitude of the mean µ2,t of Model (P2) is smaller than that of µ0,t,

• the amplitude of the variance σ23,t of Model (P3) is smaller than that of σ20,t,

• the amplitudes of the mean µ4,t and the variance σ24,t of Model (P4) are smaller than those

of µ0,t and σ
2
0,t,

• the amplitude of the mean µ5,t of Model (P5) is smaller than that of µ0,t and the variance
σ25,t is constant.

Hence, Model (P2) underestimates the magnitude of the mean oscillations observed for the data
generating process (P0), where it captures the variance oscillations correctly. Model (P3) cap-
tures the mean oscillations correctly, however the oscillations in the variance are underestimated.
Models (P4) and (P5) are both wrong in terms of mean and variance. Whereas Model (P4) at
least models some of the variation in the variance, Model (P5) completely ignores this character-
istic of the data generating process (P0). Only the true model (P1) models the data generating
process (P0) correctly. Thus, a comparative evaluation of the Models (P1)–(P5) should favor
Model (P1).

Illustration of changepoint analysis and selection of moving windows Figure 5.26
illustrates one replication of the data generating process (P0) and the corresponding selection
of moving windows according to Section 5.3.3. Again, irregularly spaced changepoints were
detected. While big segment lengths (48, 63, 75, 90) occur around the minima and maxima of
each period, the remaining segments are comparatively short (11–31).

This results in the window widths illustrated in the lower panel of Figure 5.26, which are
symptomatic for periodic time series. The window widths ωOV

t and ωDV
t of the small windows

mostly vary around the window width ωOF
t , which is constant (19) for time instances t apart

from the border case (far enough from the start and the end of the time series). As we move
closer to the period minima and maxima, the window widths ωOV

t and ωDV
t are considerably

larger.

With the bottom panel of Figure 5.26 we illustrate the (approximate) weights Ω(t) (see
Equation (5.15)) corresponding to each observation yt, t = 1, . . . , N , in an evaluation based on
moving divergence averages (5.12). As already discussed, the propriety of the metric (5.12) is
given only if the weights Ω(t) are constant. From the figure we observe, that the DV-windows
yield propriety, while the OF- and OV-windows do not. For the OF-windows, the weights Ω(t)
deviate from 1 only in the beginning and in the end of the considered time interval (border case).
We clearly see, that the metric based on OV-windows approximates propriety much worse than
that based on OF-windows.

Figure 5.27 summarizes for all 10,000 replications of the data generating process (P0) how
many changepoints were detected and which window widths were selected predominantly by the
OF approach. We observe that in most cases (> 95%) between 26 and 32 changepoints were
detected. Moreover, we observe that in most cases the fixed OF-window width was either 15, 17,
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Figure 5.25: Periodicity scenario (P): Temporal evolution of mean µk,t (upper panel) and
standard deviation σk,t (lower panel) for the data generating process (P0) (k = 0) and the
models (P1)–(P5) (k = 1, . . . , 5).
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Figure 5.26: Periodicity scenario (P): One replication of the data generating process (P0)
(observations yt, t = 1, . . . , N) and changepoint analysis. The detected segmentation (gray
dotted vertical lines) and the mean and standard deviation estimates µ̂t and σ̂t for each segment
(red) are indicated (upper panel). The corresponding moving window widths ωt chosen by the
OF (dashed), OV (solid) and DV (dotted) selection approach, as well as the window width
ωPW
t = 1 used in the case of a point-wise (PW) evaluation (dash-dotted) are compared in the

middle panel. The resulting (approximate) weights Ω(t) for each time instance t (see Equation
(5.15)) are illustrated in the bottom panel.
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Figure 5.27: Periodicity scenario (P): Share (in %) of all 10,000 replications, where the given
number of changepoints was detected (left panel), and where the given fixed window width ωOF

was selected by the OF approach (right panel).

19 or 21. Looking at Figure 5.27, there seems to be not much variation in the detected number
of changepoints and the selected window widths.

Results (model-wise comparison of different evaluation approaches) Note, that for
this scenario we do not compute ST-scores and divergences. This is due to the fact, that this
would require repeated computation of sample CRPS (2.32) and IQ distances (2.42) based on a
sample size equal to the length of the time series N = 730, which is computationally not feasible
in a reasonable time. Since for the periodicity scenario (P) the stationarity assumption is gravely
violated, we already know in advance that we can not trust in ST-scores and divergences and
forgo them.

Figures 5.28–5.32 illustrate the temporal evolution of the empirical (moving) CRPS and
IQ distances and their deviation from their theoretical counterparts, for Models (P1)–(P5),
respectively. We observe the following:

• The theoretical CRPS increases with increasing variance of the data generating process of
interest.

• For a misspecification of the mean the theoretical IQ distance increases more if the variance
of the data generating process is low than if it is high.

• The PW-scores and divergences deviate very much from the theoretical scores and diver-
gences, respectively.
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Figure 5.28: Periodicity scenario (P1/true model): Comparison of empirical scores/diver-
gences computed using different approaches (OF, OV, DV, PW, ST) with theoretical (Theo.)
scores/divergences. CRPS time series (upper left panel) and difference between empirical CRPS
(OF, OV, DV, ST) and theoretical CRPS time series (upper right panel). IQ distance time
series (lower left panel) and difference between empirical IQ distance (OF, OV, DV, ST) and
theoretical IQ distance time series (lower right panel). The depicted time series are averages
based on all 10,000 replications of the simulation study. The right panel does not show the
(complete) time series for all different approaches, since some of them differ too much from 0
(for some time instances).
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Figure 5.29: Periodicity scenario (P2/wrong mean): Comparison of empirical scores/di-
vergences computed using different approaches (OF, OV, DV, PW, ST) with theoretical (Theo.)
scores/divergences. CRPS time series (upper left panel) and difference between empirical CRPS
(OF, OV, DV, ST) and theoretical CRPS time series (upper right panel). IQ distance time
series (lower left panel) and difference between empirical IQ distance (OF, OV, DV, ST) and
theoretical IQ distance time series (lower right panel). The depicted time series are averages
based on all 10,000 replications of the simulation study. The right panel does not show the
(complete) time series for all different approaches, since some of them differ too much from 0
(for some time instances).
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Figure 5.30: Periodicity scenario (P3/wrong variance): Comparison of empirical scores/di-
vergences computed using different approaches (OF, OV, DV, PW, ST) with theoretical (Theo.)
scores/divergences. CRPS time series (upper left panel) and difference between empirical CRPS
(OF, OV, DV, ST) and theoretical CRPS time series (upper right panel). IQ distance time
series (lower left panel) and difference between empirical IQ distance (OF, OV, DV, ST) and
theoretical IQ distance time series (lower right panel). The depicted time series are averages
based on all 10,000 replications of the simulation study. The right panel does not show the
(complete) time series for all different approaches, since some of them differ too much from 0
(for some time instances).
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Figure 5.31: Periodicity scenario (P4/wrong mean and variance): Comparison of em-
pirical scores/divergences computed using different approaches (OF, OV, DV, PW, ST) with
theoretical (Theo.) scores/divergences. CRPS time series (upper left panel) and difference be-
tween empirical CRPS (OF, OV, DV, ST) and theoretical CRPS time series (upper right panel).
IQ distance time series (lower left panel) and difference between empirical IQ distance (OF, OV,
DV, ST) and theoretical IQ distance time series (lower right panel). The depicted time series
are averages based on all 10,000 replications of the simulation study. The right panel does not
show the (complete) time series for all different approaches, since some of them differ too much
from 0 (for some time instances).
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Figure 5.32: Periodicity scenario (P5/wrong mean and constant variance): Comparison
of empirical scores/divergences computed using different approaches (OF, OV, DV, PW, ST)
with theoretical (Theo.) scores/divergences. CRPS time series (upper left panel) and difference
between empirical CRPS (OF, OV, DV, ST) and theoretical CRPS time series (upper right
panel). IQ distance time series (lower left panel) and difference between empirical IQ distance
(OF, OV, DV, ST) and theoretical IQ distance time series (lower right panel). The depicted
time series are averages based on all 10,000 replications of the simulation study. The right panel
does not show the (complete) time series for all different approaches, since some of them differ
too much from 0 (for some time instances).

143



5 Proper evaluation of non-stationary time series models

• For the start and the end of the time series (border case), the OF- and OV-scores and
divergences tend towards the PW-scores and divergences, respectively.

• The deviation of the moving (OF-, OV- and DV-) scores from the theoretical scores is
higher for time periods of higher variance of the data generating process and also for time
periods of steep trends.

• Among the different types of moving scores, the OF-scores deviate least from the theoretical
scores. The OV- and DV-scores are far more sensitive to periodic oscillations of mean and
variance.

• The deviation of the moving OF-divergences from the theoretical divergences is higher for
time periods of higher variance of the data generating process.

• The deviation of the moving OV- and DV-divergences from the theoretical divergences is
higher for time periods of steep trends.

• Among the different types of moving divergences, the OV-divergences reflect the temporal
evolution of the theoretical divergences best. The DV-divergences generally yield similar
results as the OV-divergences.

All in all, we conclude from the above considerations that under the presence of periodic-
ity we favor OF-scores and OV-divergences, which approximate their theoretical counterparts
reasonably well.

Results (model comparison based on different evaluation approaches) Figures 5.33
and 5.34 compare Models (P1)–(P5) based on (time series of) theoretical/empirical CRPS and
IQ distances, respectively. We consider theoretical (Theo.), moving OF-, moving OV-, moving
DV- and point-wise (PW) scores/divergences. In order to discuss the results, we differentiate
between four segments of equal length of the time series, as indicated with dotted vertical lines in
Figures 5.33 and 5.34. For the first and third segment, the mean of the data generating process
reaches its maximum, the variance its minimum. For the second and fourth segment, the mean
of the data generating process reaches its minimum, the variance its maximum. In between
(transition from one segment to the other) the mean and the variance of the data generating
process increase or decrease, the curve corresponding to the realization is steep.

For the scores we observe the following from Figure 5.33:

• Theoretical (Theo.) scores:

– The true model (P1) is strictly the best. The differences between the five models can
be explained by their different misspecifications of mean and variance.

– For the steep parts of the time series (transition from one segment to the other), the
scores of all models move closely together, as their means and variances deviate not
or not much from the data generating process.

– Where the mean of the data generating process reaches its maximum and the variance
its minimum (first and third segment), the scores of Models (P1) and (P3) are similar
to each other, also the scores of Models (P2), (P4) and (P5). That is due to the fact,
that the mean of Models (P1) and (P3) is the same, as well as the mean of Models
(P2), (P4) and (P5).
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Figure 5.33: Periodicity scenario (P): Comparison of Models (P1)–(P5) based on (time series
of) theoretical/empirical CRPS. Comparison based on theoretical scores (upper left panel),
moving scores computed using the OF approach (upper right panel), moving scores computed
using the OV approach (middle left panel), moving scores computed using the DV approach
(middle right panel) and point-wise (PW) scores (lower left panel).
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– Where the mean of the data generating process reaches its minimum and the variance
its maximum (second and fourth segment), the scores of the different models deviate
most from each other.

– Model (P2) performs worse than (P1), due to its misspecification of the mean.

– Model (P3) performs worse than (P1) and Models (P4) and (P5) perform worse than
(P2), due to their misspecification of the variance.

– The misspecification of Model (P5) is worst.

• Moving scores with OF-windows:

– The scores behave very similar to the theoretical scores.

– For some time instances, the ranking of Models (P2) and (P4) is switched in compar-
ison to the theoretical scores.

– For the second and fourth segment the differentiation between Models (P1) and (P3)
becomes difficult.

• Moving scores with OV-windows:

– Especially in the centers of all four segments, where the mean and the variance of
the data generating process reach their extremes, the scores behave different from the
theoretical scores.

– Except for Models (P2) (first and third segment) and (P3) (second and fourth seg-
ment), the models get ranked correctly for most time instances.

– In comparison to the OF-scores, the OV-scores behave much less like the theoretical
scores.

• Moving scores with DV-windows:

– Compared to the OV-scores the similarity to the theoretical scores diminishes further.

– Especially for time instances in the second and fourth segment wrong model rankings
occur.

• Point-wise (PW) scores:

– The model rankings are false for (almost) all time instances.

– For the first and the third segment, Model (P2) is evaluated too good, Model (P3)
too bad.

– For the second and the fourth segment, Models (P1) and (P2) are evaluated too bad,
Model (P5) is evaluated too good.

For the divergences we observe the following from Figure 5.34:

• Theoretical (Theo.) divergences:

– The true model (P1) is strictly the best. The differences between the five models can
be explained by their different misspecifications of mean and variance.

– For the steep parts of the time series (transition from one segment to the other), the
divergences of all models are close to 0, as their means and variances deviate not or
not much from the data generating process.
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Figure 5.34: Periodicity scenario (P): Comparison of Models (P1)–(P5) based on (time se-
ries of) theoretical/empirical IQ distances. Comparison based on theoretical divergences (upper
left panel), moving divergences computed using the OF approach (upper right panel), moving
divergences computed using the OV approach (middle left panel), moving divergences computed
using the DV approach (middle right panel) and point-wise (PW) divergences (lower left panel).
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– Where the mean of the data generating process reaches its maximum and the variance
its minimum (first and third segment), the divergences of Models (P1) and (P3) are
close to each other, also the divergences of Models (P2), (P4) and (P5). That is due
to the fact, that the mean of Models (P1) and (P3) is the same, as well as the mean
of Models (P2), (P4) and (P5).

– Where the mean of the data generating process reaches its minimum and the variance
its maximum (second and fourth segment), the divergences of the different models
deviate most from each other.

– Model (P2) performs worse than (P1), due to its misspecification of the mean.

– Model (P3) performs worse than (P1) and Models (P4) and (P5) perform worse than
(P2), due to their misspecification of the variance.

– For most time instances, the misspecification of Model (P5) is worst.

• Moving divergences with OF-windows:

– The divergences for the true model (P1) are greater than 0. For the first and the third
segment, they are comparatively low. For the second and the forth segment, they are
comparatively high.

– With some exceptions, the divergences behave similar to the theoretical divergences.

– For some time instances (first and third segment), the rankings of Models (P2), (P4)
and (P5) are switched in comparison to the theoretical divergences.

– For the second and fourth segment the differentiation between Models (P1) and (P3)
is not as unambiguous as for the theoretical divergences.

• Moving divergences with OV-windows:

– The temporal evolution of the OV-divergences differs from that of the theoretical
divergences.

– In terms of wrong model rankings the OV-divergences behave very similar to the
OF-divergences.

• Moving divergences with DV-windows:

– The (relative) temporal evolution of the DV-divergences differs very much from that
of the theoretical divergences.

– Especially for time instances in the second and fourth segment, the indicated model
rankings are completely wrong.

• Point-wise (PW) divergences:

– The point-wise IQ distances are equal to the point-wise CRPS. Hence, we make the
same observations as above.
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Table 5.8: Periodicity scenario (P): Comparison/ranking of Models (P1)–(P5) based on av-
erage moving SE scores, average moving CRPS, average moving MV divergences and average
moving IQ distances. Average scores/divergences (left) and model rankings (right) are pro-
vided, distinguishing between theoretical (Th) scores/divergences (true model ranking), moving
scores/divergences computed using the OF approach, moving scores/divergences computed using
the OV approach, moving scores/divergences computed using the DV approach and point-wise
(PW) scores/divergences. Note that moving divergence averages based on OF- and OV-windows
do not warrant propriety.

average scores/divergences model rank
Th OF OV DV PW Th OF OV DV PW

S
E

sc
or
e

(P1) 1.266 1.341 1.361 1.427 2.531 1 2 2 2 4
(P2) 1.391 1.485 1.589 1.574 2.656 3 5 5 5 5
(P3) 1.266 1.330 1.357 1.424 2.328 1 1 1 1 1
(P4) 1.391 1.474 1.585 1.571 2.453 3 4 3 3 3
(P5) 1.391 1.471 1.586 1.572 2.390 3 3 4 4 2

C
R
P
S

(P1) 0.600 0.643 0.645 0.657 1.200 1 1 1 1 2
(P2) 0.638 0.683 0.699 0.694 1.238 3 3 3 3 5
(P3) 0.605 0.646 0.646 0.659 1.178 2 2 2 2 1
(P4) 0.641 0.684 0.700 0.695 1.214 4 4 4 4 3
(P5) 0.652 0.694 0.706 0.702 1.216 5 5 5 5 4

M
V

d
iv
.

(P1) 0.000 0.149 0.101 0.087 2.531 1 2 2 2 4
(P2) 0.125 0.273 0.221 0.234 2.656 3 5 5 5 5
(P3) 0.000 0.137 0.097 0.084 2.328 1 1 1 1 1
(P4) 0.125 0.261 0.218 0.231 2.453 3 4 3 3 3
(P5) 0.125 0.258 0.218 0.231 2.390 3 3 4 4 2

IQ
d
is
t.

(P1) 0.000 0.071 0.054 0.051 1.200 1 1 1 1 2
(P2) 0.038 0.105 0.085 0.089 1.238 3 3 3 3 5
(P3) 0.005 0.073 0.057 0.053 1.178 2 2 2 2 1
(P4) 0.041 0.106 0.086 0.089 1.214 4 4 4 4 3
(P5) 0.052 0.114 0.092 0.097 1.216 5 5 5 5 4

Model ranking based on average scores and divergences In order to have an overview
how the different approaches rank the models (P1)–(P5), we provide Table 5.8. Besides the
CRPS and the IQ distance, we now also consider SE scores and MV divergences. The table
provides the average scores and divergences (averages over all time instances and all 10,000
replications of the simulation study) for the different considered evaluation approaches (OF, OV,
DV and PW) and compares them to the corresponding theoretical (Th) scores and divergences,
respectively. Note that utilization of moving divergence averages is not necessarily a proper
evaluation method (that is in case of OF- and OV-windows; see discussion in Sections 5.3.2
and 5.3.3). Based on the average scores/divergences we rank the different models, distinguishing
between the theoretical scores/divergences and the four different evaluation approaches. Hence,
for each approach (column) and separately for each score/divergence type (SE score, CRPS, MV
divergence, IQ distance), the model with the smallest average score/divergence is ranked best (1)
and the model with the highest average score/divergence is ranked worst (5). Accordingly, the
models with intermediate scores/divergences are ranked 2–4. If the score/divergence averages of
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5 Proper evaluation of non-stationary time series models

two or more models are equal, all of these models get the same (minimum) rank. The resulting
model rankings are compared in the right half of the table.

To decide if an evaluation approach is good or not, we again consider the following two
criteria. For good evaluation approaches

(E1) the true model (P1) should be ranked lowest (best), and

(E2) the ranking should be identical to that based on the theoretical (Th) scores/divergences.

All in all, we observe that (E1) and (E2) are fulfilled for the CRPS and the IQ distances
calculated based on the OF, OV and DV approach.

Now, we discuss the results from Table 5.8 in more detail, distinguishing between the different
types of scores and divergences:

• SE scores:

– The theoretical scores can not differentiate between Models (P1) and (P3), and also
not between (P2), (P4) and (P5). This is due to the fact, that SE scores neglect
misspecifications of the variance.

– The moving (OF-, OV- and DV-) scores falsely rank (P3) better than (P1), and (P5)
better than (P2).

– The OF-score and the OV- and DV-score based rankings differ from each other.

– The ranking based on the PW-scores is wrong.

• CRPS:

– The scores are able to differentiate between all five models.

– The moving (OF-, OV- and DV-) scores rank all five models correctly.

– The PW-scores yield a faulty model ranking. (P3) is ranked too good and (P2) too
bad.

• MV divergences:

– We obtain the same (faulty) model rankings as for the SE scores.

• IQ distances:

– Same as for the CRPS, the moving (OF, OV and DV) IQ distances rank all five
models correctly.

– The ranking based on the PW-divergences (same as for the CRPS) is wrong.

Further analysis of the model rankings Whereas in Table 5.8 we investigated model rank-
ings which were obtained by averaging over all 10,000 replications of the simulation study (we
refer to them as average based model rankings), we now look into all 10,000 replications sepa-
rately, to see if the individual model rankings correspond to the average based model rankings
found in Table 5.8. For this we consider the models pair-wise and calculate the share of all
10,000 replications for which the average (moving) score/divergence of the first model is smaller
(better) than the average (moving) score/divergence of the second model. This time the (mov-
ing) scores/divergences are averaged only temporally, that is over all available time instances.
The results of these computations (shares) are summarized in Tables 5.9 and 5.10. Table 5.9 is
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5.7. SIMULATION STUDY: PERIODICITY SCENARIO

Table 5.9: Periodicity scenario (P): Pair-wise comparison of Models (P1)–(P5), distinguishing
between theoretical CRPS (Th), moving CRPS computed using the OF, OV and DV approach
and point-wise CRPS (PW). Each table entry equals the share of all 10,000 replications of the
simulation study for which the average (moving) score of the model indicated in the corre-
sponding row is smaller (better) than the average (moving) score of the model indicated in the
corresponding column of the table.

Th OF
(P1) (P2) (P3) (P4) (P5) (P1) (P2) (P3) (P4) (P5)

(P1) – 1.00 1.00 1.00 1.00 – 1.00 0.88 1.00 1.00
(P2) 0.00 – 0.00 0.95 1.00 0.00 – 0.00 0.71 0.98
(P3) 0.00 1.00 – 1.00 1.00 0.12 1.00 – 1.00 1.00
(P4) 0.00 0.05 0.00 – 1.00 0.00 0.29 0.00 – 1.00
(P5) 0.00 0.00 0.00 0.00 – 0.00 0.02 0.00 0.00 –

PW OV
(P1) (P2) (P3) (P4) (P5) (P1) (P2) (P3) (P4) (P5)

(P1) – 1.00 0.00 0.85 0.84 – 1.00 0.79 1.00 1.00
(P2) 0.00 – 0.00 0.00 0.02 0.00 – 0.00 0.56 0.93
(P3) 1.00 1.00 – 1.00 1.00 0.21 1.00 – 1.00 1.00
(P4) 0.15 1.00 0.00 – 0.65 0.00 0.44 0.00 – 1.00
(P5) 0.16 0.98 0.00 0.35 – 0.00 0.07 0.00 0.00 –

DV
(P1) (P2) (P3) (P4) (P5)

(P1) – 1.00 0.84 1.00 1.00
(P2) 0.00 – 0.00 0.63 0.96
(P3) 0.16 1.00 – 1.00 1.00
(P4) 0.00 0.37 0.00 – 1.00
(P5) 0.00 0.04 0.00 0.00 –

based on CRPS, Table 5.10 on IQ distances. Both tables again distinguish between theoretical
scores/divergences (Th) and empirical scores/divergences calculated using different approaches
(OF, OV, DV and PW). Each block of Tables 5.9 and 5.10 corresponds to one particular ap-
proach. It is best to read each block row-wise. Each row provides the shares telling how often the
model indicated to the left (model under consideration) had a better average score/divergence
than the other models (indicated above). A share equal to 0 means that the model under con-
sideration is never considered better than the other model, a share equal to 1 means that it is
always considered better than the other one, a share in (0, 0.5) means that the model under
consideration is considered worse than the other one for the majority of all replications and a
share in (0.5, 1) means that it is considered better than the other one for the majority of all
replications.

First, we are interested to know, if the pair-wise and replication-wise consideration in Tables
5.9 and 5.10 supports the model rankings found in Table 5.8. If we rank model A better than
model B if the share corresponding to the model pair (A,B) is greater than 0.5, then we obtain
exactly the same rankings as in Table 5.8.

Second, we are interested to see, how certain the different evaluation approaches are about
the relative pair-wise rankings they indicate. Table entries close to 0 or 1 support certainty,
entries close to 0.5 indicate that the evaluation approach under consideration has difficulties to
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5 Proper evaluation of non-stationary time series models

Table 5.10: Periodicity scenario (P): Pair-wise comparison of Models (P1)–(P5), distinguish-
ing between theoretical IQ distances (Th), moving IQ distances computed using the OF, OV and
DV approach and point-wise IQ distances (PW). Each table entry equals the share of all 10,000
replications of the simulation study for which the average (moving) divergence of the model
indicated in the corresponding row is smaller (better) than the average (moving) divergence of
the model indicated in the corresponding column of the table.

Th OF
(P1) (P2) (P3) (P4) (P5) (P1) (P2) (P3) (P4) (P5)

(P1) – 1.00 1.00 1.00 1.00 – 1.00 0.84 1.00 1.00
(P2) 0.00 – 0.00 1.00 1.00 0.00 – 0.00 0.66 0.98
(P3) 0.00 1.00 – 1.00 1.00 0.16 1.00 – 1.00 1.00
(P4) 0.00 0.00 0.00 – 1.00 0.00 0.34 0.00 – 1.00
(P5) 0.00 0.00 0.00 0.00 – 0.00 0.02 0.00 0.00 –

PW OV
(P1) (P2) (P3) (P4) (P5) (P1) (P2) (P3) (P4) (P5)

(P1) – 1.00 0.00 0.85 0.84 – 1.00 0.93 1.00 1.00
(P2) 0.00 – 0.00 0.00 0.02 0.00 – 0.00 0.75 0.98
(P3) 1.00 1.00 – 1.00 1.00 0.07 1.00 – 1.00 1.00
(P4) 0.15 1.00 0.00 – 0.65 0.00 0.25 0.00 – 1.00
(P5) 0.16 0.98 0.00 0.35 – 0.00 0.02 0.00 0.00 –

DV
(P1) (P2) (P3) (P4) (P5)

(P1) – 1.00 0.84 1.00 1.00
(P2) 0.00 – 0.00 0.63 0.96
(P3) 0.16 1.00 – 1.00 1.00
(P4) 0.00 0.37 0.00 – 1.00
(P5) 0.00 0.04 0.00 0.00 –

decide in favor of one of the corresponding models. In most cases we observe shares close to 0
or 1. We point out cases, where this does not hold. The PW-scores and divergences for instance
have difficulties with the relative ranking of models (P4) and (P5). The theoretical CRPS mostly
allow for unambiguous decisions, only the decision between models (P2) and (P4) is not always
the same. Also based on OF-, OV- and DV-scores and divergences comparison in that particular
case does not always seem to yield the same result. In contrast, the theoretical IQ distances
always allow for unambiguous decisions.

All in all, we conclude that the average based model rankings found in Table 5.8 (for CRPS
and IQ distances) and the differentiation between the different models in these rankings are
justified in almost all cases.
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5.8. SUMMARY OF SIMULATION STUDY RESULTS

5.8 Summary of simulation study results

Table 5.11 summarizes the results of our simulation studies conducted in Sections 5.5–5.7.
Amongst others, we found that depending on the phenomenon of interest, certain types of
moving windows might be more adequate than others. Moreover, in contrast to PW- or ST-
scores and divergences, moving (OF, OV, DV) scores and divergences are (in most cases) able to
yield an adequate (true) model ranking. One exception where the moving scores and divergences
yield a faulty model ranking is the trend scenario, where only the relative ranking of the models
(T1) and (T3) is inappropriate (∗). Note, that for the periodicity scenario no ST-scores and
divergences were considered, due to computational infeasibility.

Table 5.11: Summary of simulation study results. The table summarizes for the changepoint
scenario (C), the trend scenario (T) and the periodicity scenario (P), for which parts of the time
series the evaluation based on moving scores and divergences is most difficult (critical parts),
which empirical evaluation approaches are most reliable, for which evaluation approaches the
true model is ranked best, for which evaluation approaches the model ranking is identical to the
ranking based on theoretical scores/divergences (consistency of model ranking) and for which
evaluation approaches the model rankings are unreliable (together with a count of model pairs
for which the relative ranking is unreliable). The relative ranking of two models is considered
unreliable, if it differs for more than 25% of all replications of the simulation study.

Changepoint
scenario

Trend scenario Periodicity scenario

critical parts
close to changepoints steep parts steep parts and parts

with high variance

most reliable empirical evaluation approaches
DV-scores and
DV-divergences

OF- and OV-scores and
divergences

OF-scores and
OV-divergences

true model ranked best
SE scores – – –
CRPS OF, OV, DV, ST – OF, OV, DV
MV div. – – –
IQ dist. OF, OV, DV, ST – OF, OV, DV

consistency of model ranking
SE scores – – –
CRPS OF, OV, DV (∗) OF, OV, DV
MV div. – – –
IQ dist. OF, OV, DV (∗) OF, OV, DV

unreliable evaluation approaches
(# model pairs with unreliable relative ranking)

CRPS ST(1) OF(2), OV(2), DV(2),
ST(4)

OF(1), OV(1), DV(1),
PW(1)

IQ dist. ST(1) OF(1), OV(1), DV(2),
ST(4)

OF(1), OV(1), DV(1),
PW(1)

153



5 Proper evaluation of non-stationary time series models

5.9 Case study: Evaluation of Regional Climate Models

As an application of the presented methodology we evaluate four selected Regional Climate Mod-
els (RCMs), which are part of the multi-model RCM ensemble compiled by the ENSEMBLES
project (see van der Linden and Mitchell, 2009). Specifically, we consider the RCMs of

• the Danish Meteorological Institute (DMI ),

• the Royal Netherlands Meteorological Institute (KNMI ),

• the Max-Planck-Institute for Meteorology (MPI ), and

• the Swedish Meteorological and Hydrological Institute (SMHI ),

driven by

• the ERA-40 reanalysis data, and

• Global Climate Model simulations from the ECHAM5 model,

respectively. More details are provided in Section 3.4. As reference data (observations) for the
evaluation we use the gridded E-OBS data set (version 13.1, Haylock et al., 2008). See Section
3.3 for more details. In particular, the evaluation is based on the daily mean temperature output
from the DMI, KNMI, MPI and SMHI model for the years 1961–1990. The RCM simulations as
well as the E-OBS data are all available on the same spatial grid (0.22◦ rotated pole grid, North
Pole at 39.25N , 162W ) covering Europe. We restrict the analysis to an area covering most of
Europe as depicted in Figure 3.4.

5.9.1 Overall model assessment

For the final model evaluation we calculate

• moving Continuous Ranked Probability Scores (CRPS, see Equations (5.9) and (2.32)),
and

• moving Integrated Quadratic (IQ) distances (see Equations (5.10) and (2.42)),

based on

• overlapping windows with fixed width (OF, see Equation (5.14)),

• overlapping windows with varying width (OV, see Equation (5.16)),

• and disjoint windows with varying width (DV, see Equation (5.17)).

Moreover, we compute point-wise (PW) scores (5.5) and divergences (5.6) for comparison. Recall,
that point-wise CRPS and point-wise IQ distances are both equivalent to the absolute error
(2.28) and thus yield the same results. Hence, we subsequently do not differentiate further
between point-wise CRPS and point-wise IQ distances. All computations are then conducted
for all eight models under consideration and all 10937 (land) pixels of the study region, based
on the period 1961–1990.

Table 5.12 provides overall (spatial and temporal) averages of moving CRPS, moving IQ
distances and PW-scores/divergences. Note that utilization of moving divergence averages is not
necessarily a proper evaluation method (that is in case of OF- and OV-windows; see discussion
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5.9. CASE STUDY: EVALUATION OF REGIONAL CLIMATE MODELS

Table 5.12: Overall (spatial and temporal) averages of moving CRPS, moving IQ distances and
PW-scores/divergences for the DMI, KNMI, MPI, SMHI models driven by ECHAM5 (top)
and ERA-40 (bottom), respectively. The relative score/divergence based rank of each model
(distinguishing between ECHAM5 and ERA-40 boundary conditions) is given in brackets. Note
that moving divergence averages based on OF- and OV-windows do not warrant propriety.

ECHAM5 DMI KNMI MPI SMHI

OF 2.73 (4th) 2.42 (1st) 2.49 (3rd) 2.46 (2nd)
CRPS OV 2.70 (4th) 2.41 (1st) 2.48 (3rd) 2.45 (2nd)

DV 2.55 (4th) 2.26 (1st) 2.32 (3rd) 2.29 (2nd)

PW 4.57 (4th) 4.17 (3rd) 4.07 (2nd) 3.99 (1st)

OF 0.96 (4th) 0.66 (1st) 0.72 (3rd) 0.69 (2nd)
IQ OV 0.92 (4th) 0.64 (1st) 0.70 (3rd) 0.67 (2nd)

DV 1.04 (4th) 0.75 (1st) 0.81 (3rd) 0.77 (2nd)

ERA-40 DMI KNMI MPI SMHI

OF 1.95 (1st) 1.98 (2nd) 2.07 (4th) 1.99 (3rd)
CRPS OV 1.94 (1st) 1.96 (2nd) 2.05 (4th) 1.98 (3rd)

DV 1.77 (1st) 1.79 (2nd) 1.89 (4th) 1.81 (3rd)

PW 2.02 (2nd) 2.11 (3rd) 2.24 (4th) 1.99 (1st)

OF 0.25 (1st) 0.27 (2nd) 0.36 (4th) 0.28 (3rd)
IQ OV 0.24 (1st) 0.25 (2nd) 0.34 (4th) 0.27 (3rd)

DV 0.26 (1st) 0.27 (2nd) 0.38 (4th) 0.29 (3rd)

in Sections 5.3.2 and 5.3.3). As expected, the ERA-40 driven models achieve better average
scores/divergences as the GCM driven models. While the CRPS and the IQ divergences yield
identical model rankings for all three different types of moving windows (OF, OV, DV), the
PW-scores/divergences yield a different ranking. As we learned in our simulation study (Section
5.4), point-wise (PW) scores/divergences might lead to a spurious model ranking, since they
do not account for higher order structures of the observed/modeled phenomenon. The results
of Table 5.12 corroborate these findings. Moving scores and divergences provide a more holistic
model assessment and hence should be preferred over a point-wise evaluation (that is, also over
the traditional evaluation measures introduced in Section 2.6). It seems, that for the application
at hand the choice of the moving window selection approach is not crucial.

5.9.2 Temporal evaluation

To assess the model accuracy over time we consider spatial averages (over the whole study area,
that is over all 10937 pixels) of the (moving) scores and divergences obtained in Section 5.9.1.
To illustrate the obtained averaged time series (see Figure 5.35), we further smooth them and
consider only monthly averages of these daily time series. Figure 5.35 compares the resulting
time series for the moving CRPS with OV-windows, the point-wise (PW) scores/divergences and
the moving IQ distances with OV-windows. The corresponding figures for OF- and DV-windows
can be found in Appendix B, as there is not much difference to the results for the OV-windows.

Looking at Figure 5.35, we observe obvious differences between the three metrics behind the
displayed time series. While all three metrics are influenced by the seasonal oscillations of the
phenomenon of interest, the moving IQ distances indicate a clear difference between the two
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Figure 5.35: Monthly averages of spatial averages (over whole study area) of moving CRPS
based on OV-windows (top), point-wise (PW) scores/divergences (middle) and moving IQ dis-
tances based on OV-windows (bottom), for the DMI, KNMI, MPI and SMHI models driven by
ECHAM5 (black) and ERA-40 (gray).
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5.9. CASE STUDY: EVALUATION OF REGIONAL CLIMATE MODELS

different drivers (ECHAM5 and ERA-40). The moving IQ distance time series for the ERA-40
driven models oscillate much less in comparison to those for the ECHAM5 driven models. From
that we conclude that the driving GCM (here ECHAM5) is not able to accurately capture the
(regional) seasonal temperature dynamics.

While for the moving CRPS the differences between the different models and the different
boundary conditions (ECHAM5 and ERA-40) appear to be rather small, the point-wise evalua-
tion indicates big differences for the two different boundary conditions. This is due to the fact,
that the ECHAM5 boundary conditions themselves are simulations from a Global Climate Model
(GCM), while the ERA-40 boundary conditions are a reanalysis of climate observations. Hence,
on a daily basis (point-wise comparison), the ERA-40 boundary conditions result in much more
accurate RCM simulations. However, as we are also interested in the long term model accuracy
(accurate representation of higher order characteristics of the phenomenon of interest), we prefer
metrics which are able to simultaneously evaluate these long term properties.

Focusing on the moving CRPS and IQ distance time series, we observe time periods of
generally weaker model performance (e.g. 1985–1987), compared to periods with much better
model performance (e.g. 1974–1977). Comparison with the average temperatures illustrated in
Figure 3.3 indicates a possible dependency of the model performance on how cold/mild the
winters were. It seems that the models capture the temperature conditions during mild winters
much better. Moreover, we find that the discrepancy distinguishing between the two different
boundary conditions is more obvious for the DMI model compared to the other models. While
the ERA-40 driven DMI model apparently performs best in comparison to the KNMI, MPI
and SMHI model, the ECHAM5 driven DMI model performs rather worst (see also Table 5.12).
Having a closer look at the moving score/divergence time series for the MPI, we observe short
time periods where the ECHAM5 driven model seems to perform better than the ERA-40 driven
model (e.g. 1964). This observation is more distinct considering the moving IQ distances.

To see if the above findings hold for different locations of the study area (Europe), we have to
consider the moving scores/divergences for different locations separately instead of considering
only a spatial average. We conduct such a spatial evaluation in the subsequent section.

5.9.3 Spatial evaluation

To be able to judge the model performance in different locations across Europe we look at
the temporal averages of the (moving) score and divergence time series obtained in Section
5.9.1. Note that utilization of moving divergence averages is not necessarily a proper evaluation
method (that is in case of OF- and OV-windows; see discussion in Sections 5.3.2 and 5.3.3). The
temporal averages corresponding to the moving CRPS with OV-windows, the point-wise (PW)
scores/divergences and the moving IQ distances with OV-windows are depicted in Figure 5.36.
The corresponding figures for OF- and DV-windows are provided in Appendix B.

Again the distinction between the ERA-40 and the ECHAM5 boundary conditions is more
pronounced for the point-wise scores/divergences and again we emphasize that a point-wise
evaluation does not account for higher order structures of the phenomenon of interest. In par-
ticular a point-wise evaluation does not take the uncertainty of the phenomenon of interest into
account, which may also vary across space. Moreover, the simulations of the ECHAM5 driven
RCMs are generally much more uncertain, as already discussed in Section 5.9.2.

Among the ECHAM5 driven models, the DMI model performs worst (especially for the conti-
nental climate in eastern Europe). The MPI model (ECHAM5) has comparatively more problems
in modeling the mean temperature in the north-east of Europe, where many lakes dominate the
landscape. Moreover, Figure 5.36 indicates, that all models have difficulties to model the tem-

157



5 Proper evaluation of non-stationary time series models

Temporal average of moving scores (CRPS, OV)

E
R

A
−

40
E

C
H

A
M

5

DMI KNMI MPI SMHI

1

2

3

4

5

6

Temporal average of moving scores/divergences (PW)

E
R

A
−

40
E

C
H

A
M

5

DMI KNMI MPI SMHI

1

2

3

4

5

6

7

8

Temporal average of moving divergences (IQ, OV)

E
R

A
−

40
E

C
H

A
M

5

DMI KNMI MPI SMHI

0

1

2

3

4

Figure 5.36: Maps (Europe) of temporal averages (1961–1990) of moving CRPS based on OV-
windows (top), point-wise (PW) scores/divergences (middle) and moving IQ distances based on
OV-windows (bottom), for the DMI, KNMI, MPI and SMHI models (ECHAM5/ERA-40). Note
that moving divergence averages based on OV-windows do not warrant propriety.
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perature over large bodies of water (e.g. lakes Ladoga and Onega in Russia). This observation is
identified less well by the point-wise scores/divergences. The DMI model with ERA-40 bound-
ary conditions apparently performs best for large water bodies. Further, we observe that most
models have problems for mountainous areas (e.g. Alps, Pyrenees, Carpathians).

To see which model performs best in which area of Europe we provide maps (Figure 5.37)
which show for each pixel of the study area which model has the lowest (best) average moving
CRPS/IQ distance (distinguishing between OF-, OV- and DV-windows) and the lowest (best)
average point-wise score/divergence. Again we differentiate between the two different boundary
conditions (ECHAM5/ERA-40).

Whereas the moving CRPS and IQ distances indicate similar spatial patterns and mostly
agree on the best model, the point-wise evaluation seems to favor the SMHI model for large
parts of Europe, where the moving score/divergence approaches prefer a different model. We
identify large connected areas where either the KNMI, the MPI or the SMHI model perform best
for ECHAM5 boundary conditions. The DMI model seems to perform better in regions whose
temperatures are more influenced by the sea. For ERA-40 boundary conditions, we identify large
areas where the SMHI or the DMI model perform best. The MPI model is preferred for a large
share of the Iberian Peninsula.

5.9.4 Comparison of results to an evaluation based on linear trends

Having conducted an extensive evaluation and model comparison based on our novel method-
ology, we now want to compare the results to one of the evaluation approaches undertaken
in the literature (see discussion in Section 5.2). For this, we take the approach followed by
Lorenz and Jacob (2010). Basically, we compare linear trends in the RCM output to those
present in the E-OBS reference data set.

In order to compute linear trends for temperature time series, we first aggregate the daily
time series to yearly time series yt, t = 1961, . . . , 1990, by computing annual means. We then
assume a linear regression model

yt = α+ βt+ εt, t = 1961, . . . , 1990,

with intercept parameter α, linear trend parameter β and residuals εt, t = 1961, . . . , 1990. Based
on least-squares estimation (minimization of the sum

∑1990
t=1961(yt−α−βt)2), we obtain estimates

of the linear trend parameter β̂.

Conducting these computations separately for all n = 10937 pixels/locations i = 1, . . . , n
of our evaluation region (compare Figure 3.4), for the RCM output and the E-OBS reference
data set, respectively, we obtain (2 · 4 + 1 = 9) spatial grids of linear trend estimates β̂. In the
following we index these estimates with the corresponding pixel number i = 1, . . . , n. Further,
we distinguish between estimates β̂mod

i corresponding to one of the RCMs and estimates β̂refi

corresponding to the reference data set. In order to be able to compare and rank the different
RCMs (for the two different boundary conditions), we finally compute absolute trend errors of
the form ∣∣∣β̂mod

i − β̂refi

∣∣∣ , i = 1, . . . , n.

Distinguishing between ECHAM5 and ERA-40 boundary conditions, the maps provided
in Figure 5.38 visualize for each pixel of the study area, which of the four RCMs has the
smallest absolute trend error, that is which model is considered best in modeling the linear
temperature trend observed in the E-OBS data set. Whereas for the ECHAM5 driven models,
the DMI model is preferred most over Europe, for the ERA-40 driven models the SMHI model
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ECHAM5

CRPS, OF CRPS, OV CRPS, DV PW

IQ, OF IQ, OV IQ, DV
DMI
KNMI
MPI
SMHI

ERA−40

CRPS, OF CRPS, OV CRPS, DV PW

IQ, OF IQ, OV IQ, DV
DMI
KNMI
MPI
SMHI

Figure 5.37: Maps showing for which areas in Europe which model (DMI, KNMI, MPI or
SMHI) has the lowest (best) average (moving) score/divergence (reference period 1961–1990).
Besides rankings based on moving CRPS and moving IQ distances (based on OF-, OV- and
DV-windows), rankings for point-wise (PW) scores/divergences are displayed. Note that mov-
ing divergence averages based on OF- and OV-windows do not warrant propriety. As before we
distinguish between ECHAM5 (top) and ERA-40 (bottom) boundary conditions for the four
different models.
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performs best in the north-east, the KNMI model in central and north-west Europe and the
DMI model in eastern Europe. Comparison with Figure 5.37 shows, that the approach followed
here and our novel approach based on moving windows yield completely different results. This is
obviously due to the fact, that the approach followed in this section focuses only on one specific
model characteristic, whereas our new approach intends to give a holistic picture of the model
performance.

ECHAM5 ERA−40

DMI
KNMI
MPI
SMHI

Figure 5.38: Maps showing for which areas in Europe which model (DMI, KNMI, MPI or SMHI;
ECHAM5/ERA-40) has the smallest trend error.

To further summarize the results of the linear trend based evaluation and to provide a ranking
of the models based on this approach, we consider spatial averages

1

n

n∑

i=1

∣∣∣β̂mod
i − β̂refi

∣∣∣ ,

of the absolute trend errors. The results are provided by Table 5.13. In accordance with Figure
5.38 the DMI model is considered best by far for ECHAM5 boundary conditions. For ERA-40
boundary conditions the models are ranked in the order SMHI, KNMI, DMI and MPI, where the
SMHI model is considered best. Again, these results differ considerably from those for our novel
evaluation approach summarized in Table 5.12. Direct comparison of the DMI model for the
two different boundary conditions this time even suggests that the model driven by ECHAM5
performs better (in terms of linear trends).

Table 5.13: Average (spatial) absolute trend errors (times 10, i.e. decadal trend).
DMI KNMI MPI SMHI

ECHAM5 0.14 0.28 0.28 0.25
ERA-40 0.15 0.14 0.20 0.13
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5.10 Conclusions and outlook

We propose novel methodology for the evaluation of (time series) models/forecasts under the
presence of non-stationarity. Our novel approach utilizes proper scores and divergences on small
moving time windows (where stationarity is assumed) in order to provide a fair and holistic
comparison/assessment of models/forecasts. The moving window approach is illustrated in Fig-
ures 5.2–5.4. Three simulation studies explore the moving score/divergence technique under the
presence of changepoints, trends and periodicity. A case study, evaluating/comparing Regional
Climate Models, illustrates the utility of the novel technique for practical applications. We sum-
marize our results and conclusions in the following.

Methodology

1. Being based on proper scores/divergences, our novel approach allows for a fair comparative
model/forecast evaluation.

2. Propriety of moving divergence averages is not warranted for all considered types of mov-
ing windows. While DV-windows yield propriety of moving divergence averages, OF- and
OV-windows do not. However for long time series, moving divergence averages based on
OF-windows can at least be considered as approximately proper. The approximation of
propriety for OV-windows is much worse than that for OF-windows.

3. Evaluation based on moving windows instead of a point-wise comparison allows to account
for higher order structures of the modeled/forecast phenomenon.

4. Compared to most other evaluation approaches taken in practice our evaluation method
does not require

(a) a separate consideration of different seasons,

(b) to make a (subjective) decision on the importance/weight of different features of the
model/forecast.

5. Utilization of a changepoint analysis for the choice of the moving windows is meaningful,
since a changepoint analysis segments a time series into stationary segments.

Simulation studies

5. Depending on the phenomenon of interest, certain types of moving windows might be more
adequate than others. Under the presence of

(a) fixed changepoints: Disjoint windows with varying width (DV).

(b) trends or periodicity: Overlapping windows with fixed (OF) or varying width (OV).

6. For the application of the moving score/divergence methodology to continuous outcomes

(a) the utilization of the Continuous Ranked Probability Score (CRPS) is preferred over
the Squared Error (SE) score,

(b) the utilization of the Integrated Quadratic (IQ) distance is preferred over the Mean
Value (MV) divergence.

7. Amongst others, the simulation studies showed that moving scores/divergences

162



5.10. CONCLUSIONS AND OUTLOOK

(a) are able to approximate their theoretical counterparts considerably well,

(b) are better suited than point-wise (PW) scores/divergences or scores/divergences under
a stationarity assumption (ST) to yield an adequate (true) model/forecast ranking,

(c) in most cases yield the correct model ranking (see the trend scenario (Section 5.6) for
an exception).

Application

8. The novel technique has been applied successfully for the evaluation of Regional Climate
Models (RCMs). The case study showed

(a) identical overall model rankings based on moving CRPS and moving IQ divergences
for different window selection approaches,

(b) that (as expected) the reanalysis (ERA-40) driven RCMs obtain better moving scores/
divergences as the corresponding GCM (ECHAM5) driven RCMs,

(c) that moving scores/divergences allow to assess the temporal evolution of model/fore-
cast performance,

(d) that spatial maps of average moving scores/divergences allow to identify areas of bad
model/forecast performance (e.g. water bodies, mountain ranges),

(e) that evaluation based on only one specific model/forecast characteristic does not
mirror the overall model/forecast performance and may result in an inadequate model
ranking.

Future research directions Besides application of the novel evaluation methodology to com-
pare climate models, applications in other areas might be of interest for future research. Given
the context of this thesis and the development of drought indices in Chapter 4, it is of particular
interest to us to investigate if an evaluation of such drought indices using the novel evaluation
approach is feasible or if the presented methodology has to be adapted. Moreover, an extension
of the work presented here in Chapter 5 to categorical outcomes is of interest. For example,
one might want to be able to judge models which differentiate only if a certain (extreme) event
occurs or not. Further extensions of our approach might concern the judgment of model accu-
racy in a spatial context, where we can think of the moving window as a spatial neighborhood
considering either a fixed number of spatial neighbors or all locations within a certain radius.
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Appendix

A List of recurring acronyms

AE absolute error

AIC Akaike information criterion

ARMA autoregressive moving-average (model)

BIC Bayesian information criterion

CDF cumulative distribution function

COR Pearson correlation

CRPS Continuous Ranked Probability Score

CSI critical success index

C-vine canonical vine

DMI Danish Meteorological Institute

DV disjoint windows with varying width

ECMWF European Centre for Medium-Range Weather Forecasts

E-OBS ENSEMBLES daily gridded observational dataset

ERA-20C ECMWF Atmospheric Reanalysis of the 20th Century

FAR false alarm ratio

GCM Global Climate Model

i.i.d. independent and identically distributed

IPCC Intergovernmental Panel on Climate Change

IQ Integrated Quadratic (distance)

JDI Joint Deficit Index

KNMI Royal Netherlands Meteorological Institute

MAE Mean Absolute Error
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MdAE Median Absolute Error

MPI Max-Planck-Institute for Meteorology

MSDI Multivariate Standardized Drought Index

MSE Mean Square Error

MV Mean Value (divergence)

OF overlapping windows with fixed width

OP Optimal Partitioning

OV overlapping windows with varying width

PCC pair-copula construction

PDF probability density function

PDSI Palmer Drought Severity Index

PELT Pruned Exact Linear Time

PET potential evapotranspiration

PIT probability integral transformation

POD probability of detection

PRE precipitation

PW point-wise

RCM Regional Climate Model

RMSE Root Mean Square Error

R-vine regular vine

SDAT Standardized Drought Analysis Toolbox

SE squared error

SI Standardized (Drought) Index

SMHI Swedish Meteorological and Hydrological Institute

SPI Standardized Precipitation Index

SPEI Standardized Precipitation Evapotranspiration Index

ST stationarity (assumption)
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B Evaluation of Regional Climate Models: Further results

Temporal evaluation Figures B.1 and B.2 complement the results of Section 5.9.2 displayed
in Figure 5.35. The figures illustrate monthly averages of spatial averages (over the whole study
area) of the moving scores and divergences obtained in Section 5.9.1. While Figure B.1 shows
the results based on OF-windows, Figure B.2 shows the results based on DV-windows.
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Figure B.1: Monthly averages of spatial averages (over whole study area) of moving CRPS (top)
and moving IQ distances (bottom) based on OF-windows, for the DMI, KNMI, MPI and SMHI
models driven by ECHAM5 (black) and ERA-40 (gray).
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Figure B.2: Monthly averages of spatial averages (over whole study area) of moving CRPS (top)
and moving IQ distances (bottom) based on DV-windows, for the DMI, KNMI, MPI and SMHI
models driven by ECHAM5 (black) and ERA-40 (gray).

168



B. EVALUATION OF REGIONAL CLIMATE MODELS: FURTHER RESULTS

Spatial evaluation Figures B.3 and B.4 complement the results of Section 5.9.3 displayed in
Figure 5.36. The figures illustrate temporal averages (over the period 1961–1990) of the moving
scores and divergences obtained in Section 5.9.1. While Figure B.3 shows the results based on
OF-windows, Figure B.4 shows the results based on DV-windows.
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Figure B.3: Maps (Europe) of temporal averages (1961–1990) of moving CRPS (top) and mov-
ing IQ distances (bottom) based on OF-windows, for the DMI, KNMI, MPI and SMHI models
(ECHAM5/ERA-40). Note that moving divergence averages based on OF-windows do not war-
rant propriety.
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Temporal average of moving scores (CRPS, DV)
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Figure B.4: Maps (Europe) of temporal averages (1961–1990) of moving CRPS (top) and moving
IQ distances (bottom) based on DV-windows, for the DMI, KNMI, MPI and SMHI models
(ECHAM5/ERA-40).
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Vicente-Serrano, S. M., S. Begueŕıa, and J. I. López-Moreno (2010). A multiscalar drought index
sensitive to global warming: the standardized precipitation evapotranspiration index. Journal
of Climate 23 (7), 1696–1718.
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