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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der automatischen Erkennung von Fehlern (Common

Weaknesses) in C Programmen. Der Ansatz ist eine selektive symbolische Ausführung auf der Quelltext-

Ebene mit interpolationsbasierter Pfadverschmelzung. Interpolation und Pfadverschmelzung werden ei-

nerseits zur Verringerung der nötigen Rechenleistung ohne Genauigkeitsverlust der Fehlererkennung

im Vergleich zu Path Coverage eingesetzt, erzielt wird dann ”Error and Branch Coverage”. Anderer-

seits kann die Interpolation zur Erreichung eines wählbaren Coverage-Kriteriums (z.B. Branch Cove-

rage) angepasst werden, um die nötige Rechenleistung noch weiter zur reduzieren, allerdings bei ver-

minderter Genauigkeit der Erkennung. Die Interpolation besteht in einer Entfernung von Constraints

aus dem Pfad-Constraint. Es wird gezeigt, dass die betrachteten Algorithmen eine Interpolations- und

Coverage-Hierarchie ergeben, bezüglich Teilmengen von Constraints bzw. Teilmengen von Programmp-

faden und Implikation von Coverage-Kriterien. Anpassungen des Quelltextes sind zur Analyse nicht

erforderlich. Symbolische Ausführung mit Satisfiability Modulo Theories Solver wird mit Instrumentie-

rung von Binärcode kombiniert, um verschiedene Fehlerarten effizient zu erkennen. Die Implementie-

rung ist eine plug-in Erweiterung der Eclipse C/C++ Development Tools und verwendet ein Debugger

Machine Interface. Sie wird mit Testprogrammen der Juliet Suite für Speicherzugriffsfehler, Endlos-

schleifen, Information Exposures, Dead Code und Race Conditions bewertet. Die vorliegende Arbeit

basiert auf den auf Seite 109 folgende aufgelisteten Publikationen.
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Abstract

This thesis deals with the automated detection of common software weaknesses in C programs. The

approach is selective symbolic execution on the source code level with interpolation based path merging.

Interpolation and path merging are used to reduce the necessary computational effort without reduction

in bug detection accuracy compared to path coverage, the symbolic execution then achieves error and

branch coverage. Interpolation is also used to further reduce the computational effort and to achieve a

selectable coverage criterion (e.g., branch coverage), at the expense of false negative detections. The

interpolation consists in a removal of constraints from the path constraint. It is shown that the considered

algorithms yield an interpolation and coverage hierarchy with respect to subsets of constraints and subsets

of program paths, and with respect to the implication of coverage criteria, respectively. Modification of

source code is not necessary for analysis. Symbolic execution with Satisfiability Modulo Theories Solver

is combined with binary instrumentation to efficiently detect different bug types. The implementation is

a plug-in extension to the Eclipse C/C++ development tools and uses a debugger machine interface. It is

evaluated by detecting memory access errors, infinite loops, information exposures, dead code and data

race conditions in test programs from the Juliet test suite for program analyzers. The document at hand

is based on the publications listed on page 109 and the following.
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Chapter 1

Introduction

1.1 Common Software Weaknesses

The common weakness enumeration ∗ (CWE) is part of a community effort for a common taxonomy

of software bugs [MBC07]. It is closely related to the common vulnerabilities and exposures † (CVE)

list, the common weakness scoring system ‡ (CWSS) and several other classifications. The common

vulnerabilities and exposures are a set of unique identifiers for publicly known and potentially exploitable

bugs. A bug is potentially exploitable, if it can be reached by data structures under control of an attacker.

The US National Vulnerability Database § is a repository of the US government, that currently lists over

78000 CVE entries. The common weakness enumeration classifies different types of software bugs

and can therefore be seen as an abstraction of the CVE. CVE entries are mapped to CWE types. The

weakness enumeration is not a list, but rather a graph. It comprises different views, each with different

abstraction levels. Category nodes comprise related sets of weaknesses. CWE node types are ’weakness

base’, ’weakness variant’, ’weakness class’, ’category’, and ’view’. The CWE currently comprises 33

views, 244 categories, 719 weaknesses, and in total 1004 entries. An example view is ’development

concepts’ (CWE-699), which comprises, e.g., the views ’weaknesses introduced during design’ (CWE-

701) and ’weaknesses introduced during implementation’ (CWE-702). Another example is the weakness

class ’improper restriction of operations within the bounds of a memory buffer’ (CWE-119), which,

e.g., comprises the weakness base ’out-of-bounds write’ (CWE-787) and the weakness base ’access

of uninitialized pointer’ (CWE-824). Most current program analysis tools adhere in their reports to

the common weakness enumeration. The common weakness scoring system provides a risk metric to

∗. https://cwe.mitre.org

†. https://cve.mitre.org

‡. https://cwe.mitre.org/cwss

§. https://nvd.nist.gov
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2 Chapter 1. Introduction

prioritize software weaknesses. The prioritization can be used to decide which bug to fix first. The

CWSS consists of the three factor groups ’base finding’, ’attack surface’ and ’environmental’. In sum, it

comprises 16 factors. The base finding group comprises, e.g., ’technical impact’ and ’acquired privilege’.

The attack surface group comprises, e.g., ’required privilege’. The environmental group comprises, e.g.,

’likelihood of discovery’ and ’likelihood of exploit’. The 16 factors are scored, and the factor scores

are combined in a formula to yield the CWSS score. The metric can be automatically computed by an

analysis tool. In the following, the terms ’bug’ and ’error’ are used for brevity with the meaning of

common software weakness in the sense of the CWE.

1.2 Software Testing and Coverage

The standard method to find and remove software bugs before deployment is to use a manually

written test suite, i.e., to specify input and output vectors. For each input vector of concrete values, the

program takes a certain path and produces a vector of concrete output values. The test suite detects

a bug if the bug leads to unexpected output (including operating system error output). For systematic

testing with a defined criterion for when to stop, a code coverage criterion can be used. During test suite

execution, the execution coverage is then monitored. There are different coverage criteria, that consider

the coverage of input values, control flow, data flow or thread interleavings.

An input coverage criterion is, e.g., parameter value coverage. It requires, that ’common’ values

are covered for all input parameters of a method. ’Common’ values include boundary cases like empty

or null input, or invalid input. Control flow oriented coverage criteria are, e.g., branch coverage or

modified condition / decision coverage (MC/DC). Complete branch coverage means that every branch

in the program is covered by at least one program path when executing the test suite. MC/DC is more

comprehensive than branch coverage. It requires, that each control flow decision in the program takes

every possible outcome and that each condition in a decision affects the decision outcome independently

of the others. A data flow oriented coverage criterion is, e.g., define / use pair coverage. It monitors the

data flow, which is given by variable definitions (writes) and variable uses (reads). For multi-threaded

code, thread scheduling is additionally of interest. The detection of concurrency bugs like data races

or deadlocks depends on the coverage of thread interleavings. A thread interleaving is a sequential

execution of threads (a scheduling of all threads on a single CPU core). Data flow oriented coverage

criteria can be extended to multi-threaded code. An example is local-or-remote-define coverage [LJZ07].

Complete coverage is achieved under this criterion, if the executions cover for each variable use both
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a thread interleaving in which the variable is defined thread-locally, and an interleaving in which the

variable is defined by a different thread. Coverage criteria differ in complexity, i.e., in the number of

program executions necessary to achieve the coverage criterion — and correspondingly in the size of

the test suite. Of practical interest are branch coverage and MC/DC. Test suites for standard software

typically target branch coverage, while for certain safety critical software, MC/DC is required.

Bug detection during testing can be improved by instrumenting the program with additional checks.

The aim is to detect bugs on an executed path also in cases when the bug does not lead to unexpected

output. Instrumentation can be performed on the source or on the binary level. During execution, the

instrumentation traces relevant information and stores it in shadow memory and performs checks for

bug detection. Source instrumentation automatically modifies source code. An example is CCured

[NCH+05], that adds checks for type and memory safety to C programs. Additional checks can also be

added by binary instrumentation. Binary instrumentation can be dynamic or static. Prominent frame-

works for dynamic binary instrumentation are Pin [LCM+05] and Valgrind [NS07]. Example tools

built with Valgrind are Memcheck [SN05] and Helgrind [MW06]. Memcheck detects memory access

errors. Helgrind is a checker for data race conditions. It can detect a data race not only when it actu-

ally does occur with the current thread interleaving, but also when it might occur with a similar thread

interleaving. Static binary instrumentation is often integrated into compilers (compiler instrumentation).

Current compilers can, for example, add stack canaries to detect buffer overflows at runtime. Prominent

checkers based on static binary instrumentation are AddressSanitizer [SBPV12], that detects memory

access errors, and ThreadSanitizer [SI09], that detects race conditions. Both are integrated, e.g., in

the GNU C Compiler (gcc). Instrumentation slows down execution. Compiler instrumentation typically

has a lower overhead compared to dynamic binary instrumentation.

If a check algorithm has negligible overhead, it can be applied not only in testing, but also after

deployment at runtime. Then, bug detection is not restricted by the execution coverage of a test suite.

Checks are possible at different levels: not only with source or binary instrumentation, but also in a

managed runtime environment or with CPU acceleration (extra hardware). Examples for checks in a

managed runtime are provided by the Java virtual machine. It features a bytecode verifier that checks,

e.g., that data is always initialized and that references are type-safe. It further enforces access restrictions

like ’private’ at runtime. Java also features the Java Virtual Machine Tool Interface, an API for the

development of tools that need access to the state of the virtual machine. A modification of the Java

virtual machine with integrated checks for data race conditions is evaluated in [EQT10]. An example for

hardware-assisted runtime checks are the Intel Memory Protection Extensions (MPX), that can be used to
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detect memory access violations. MPX consists of extra bounds registers and instruction set extensions

that operate on these registers. A proposal for hardware extensions to detect data race conditions is

evaluated in [DWS+12].

1.3 Constraint Solving and Automated Theorem Proving

Interesting software bugs are path-sensitive. For path-sensitive bug detection, a constraint solver is

needed as logic backend. Typically, a Satisfiability Modulo Theories (SMT) solver is used. The satisfi-

ability problem in Boolean logic (propositional satisfiability, SAT) is the problem of deciding whether

there exists a valuation of variables, that satisfies a given Boolean formula (assignment of truth values

so that the formula evaluates to true). The related problem of formula validity can also be decided with

a SAT solver. A formula is valid, if it evaluates to true for all variable valuations. This means, that a

formula is valid if its negation is not satisfiable. The SAT problem is known to be NP hard. However,

many instances can be solved efficiently by equi-satisfiability transformations with the DPLL algorithm

[DLL62]. The algorithm is a backtracking based search algorithm. Current solvers are based on the

DPLL algorithm [DLL62] and conflict-driven clause learning [ZMMM01].

SMT is a generalization of SAT on the word level. It is a combination of background theories,

expressed in first-order logic with equality. It features, for example, integer and real variables and arrays

[dB11]. An SMT formula can contain predicates (Boolean valued functions) from different theories. An

SMT solver can be implemented as combination of theory solvers with a SAT solver [NOT06], or the

SMT problem can be reduced to SAT by ’bit-blasting’. Satisfiability is known to be undecidable in first-

order logic, but is decidable for certain fragments of first-order logic. Of special practical interest are the

theories of bit-vectors, floating-point numbers and arrays, that can model computer arithmetic with bit-

precision. SMT can be seen as a form of the constraint satisfaction problem [Dec03]. An example state

of the art SMT solver is Z3 [dB08]. Current solvers feature model generation functionality. If a formula

is decided to be satisfiable, the solver can generate a variable valuation, i.e., an assignment of values to

all variables, that satisfies the formula. The performance of SMT solvers is regularly compared at the

Satisfiability Modulo Theories Competition ¶. A standard interface to SMT solvers has been defined with

the SMTlib [BST10]. The SMTlib is supported by current SMT solvers.

¶. www.smtcomp.org
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1.4 Model Checking, Abstract Interpretation and Symbolic Execution

Symbolic analysis methods can be used to increase the input coverage to arbitrary input. Program in-

put is treated as symbolic variables, and operations on variables yield logic equations. Symbolic methods

can be used to automatically detect many types of common weaknesses independent of the availability of

a test suite. Symbolic model checking, abstract interpretation and symbolic execution are closely related

and partly overlapping approaches, that rely on a constraint solver (typically an SMT solver) as logic

backend.

Infeasible perfect checker The perfect bug checker would be sound, complete, and have bounded

runtime. Sound bug detection means that if a bug is reported, then it is indeed a bug (no false positives).

Complete bug detection means that all bugs are found (no false negatives). Because the Halting problem

is known to be undecidable in general [Tur37], the perfect checker can not exist. Any practical checker

must drop at least one of the three properties.

Two types of checkers One type of bug checker is used by developers, in order to fix bugs as soon

as they arise. It does not report too many false positives and preferably is sound. The other type of

bug checker is used by quality assurance. It does not have too many false negatives and preferably is

complete. Quality assurance can sort out false positives by hand, if the checker does not report too many.

In the two cases, there is a different trade-off between the probability of missed bugs and the tolerable

amount of time needed to sort out false positives.

Symbolic model checking Symbolic model checking typically translates the complete program into

a formula, and evaluates properties of interest with a solver. Properties can be specified, e.g., in linear

temporal logic (LTL) or computation tree logic (CTL) [BK08]. Model checking is typically applied as

complete bug detection for verification, i.e., in order to prove a program bug-free. Verification normally

stops at the first detected bug (when verification fails). Model checking faces a scaling problem, which

is often called the combinatorial state explosion problem.

Abstract interpretation Abstract interpretation is a symbolic interpretation with automated abstrac-

tion, i.e., generalization of formulas. Abstractions overapproximate sets of bug-free satisfiable program

paths, in order to avoid exploration of the complete set of satisfiable program paths. Abstract interpre-

tation can be applied as complete bug detection for verification [CC77]. Scaling behaviour is improved
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by allowing false positives. Counterexample guided abstraction refinement (CEGAR) [CGL+03] is an

iterative method that identifies and removes false positives.

Symbolic execution Symbolic execution automatically explores different paths through a program and

collects path constraints [Kin76]. A path is satisfiable, if there exists at least one vector of program input,

for that the program’s execution takes the respective path. The set of a program’s satisfiable paths is called

the execution tree. The solver is used to decide path satisfiability and bug satisfiability for a given path

constraint. The solver’s model generation functionality can be used to generate an example input vector,

that corresponds to the taken path and triggers a detected bug. Symbolic execution is typically applied as

sound bug detection for testing. The scaling behaviour is improved by allowing false negatives [BS08].

Often, heuristic path exploration is used to quickly achieve a high degree of code coverage. The aim is

typically to find as many bugs as possible in a given program, without false positives. Joint concrete /

symbolic (’concolic’) execution enables partial analysis of a program through consistent concretization

[GKS05, SMA05]. Concretization leads to false negatives, but not false positives. An overview of

available symbolic execution tools and applications is provided in chapter 6 on related work.

Overlap Symbolic execution can be applied both as a verification method [DE82, JNS11] and as a

testing method. Some model checkers do not translate the complete program into one formula, but

rather use static symbolic execution. In bounded model checking, loops are unrolled a bounded number

of times before this underapproximation of the program’s reachable states is translated into logic for

incomplete bug detection. State interpolation [McM10, JNS11] in symbolic execution and model check-

ing is a method for automated abstraction. CEGAR is seen as an implementation of model checking

[CGL+03]. It has been noted in [JMNS12], that CEGAR starts abstract and through refinement becomes

more concrete, while symbolic execution with state interpolation starts with concrete paths and abstracts

them through interpolation. To enable verification of code functionality (rather than the absence of cer-

tain common weaknesses), source code has to be annotated adequately. In testing, typically unannotated

code is checked for the presence of common weaknesses. Annotations in functionality verification reduce

the context that has to be analyzed, and enable a compositional verification. Somewhere in between is

extended static checking [DLNS98]: with a growing number of annotations (and an annotation checker),

there is a smooth transition to functionality verification.
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1.5 Evaluating Program Analyzers

Program analyzers are evaluated in practice by comparing the number of false positives, number of

false negatives and analysis runtime on a sufficiently large test suite.

Two types of test suites Test suites for program analyzers are composed either of artificial test pro-

grams or of natural code. Natural code in this context are known bugs in (old versions of) open-source

software, i.e., available bugs from the CVE list. The advantage of natural code is that the bugs are realis-

tic, and that the test programs have realistic code size and complexity. An artificial test suite is typically

composed of small test programs with intentional bugs. The advantage of an artificial test suite is the

possibility of systematic coverage of bug types, syntax constructs and different context depths.

Juliet suite for C/C++ The Juliet suite [BB12] was developed by the US National Institute of Stan-

dards and the US National Security Agency’s Center for Assured Software to evaluate and compare

program analyzers. It is currently the most comprehensive artificial test suite for C/C++. In the current

version 1.2 [Uni13] it covers 118 CWE types and 1617 flaw types. It consists of over 60000 small test

programs with in sum over 8 million lines of code. It further covers 38 data and control flow variants for

C. ’Baseline’ bugs are systematically combined with the different flow variants, that cover the available

programming language constructs. The maximum bug context depth spanned by a flow variant is five

functions in five different source files. Each program in the suite contains both ’good’ (without bug) and

’bad’ (including a bug) cases in order to measure false positive and false negative detections.

1.6 Aims and Structure of the Text

Aims The work at hand deals with automated bug detection in C programs, with available source code.

The aim is to detect as many common weaknesses as possible and as accurately as possible, within one

analysis, with limited computational power. The detection is fully automated, i.e., without specification

or annotations. Modification of source code is not necessary. Not all types of bugs can be detected fully

automatically. An example of this is incorrect calculation. If a programmer means ’+’ but writes ’*’,

this can not be detected as constraint violation (although it might lead to a detectable number overflow).

The detection algorithms are suited for a tool for developers and therefore avoid false positives. Because

these aims are at least partly conflicting, the approach of this thesis is a comparative investigation of

algorithm variants of symbolic execution.
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Structure The approach is a configurable analysis engine, that uses dynamic and selective symbolic

execution on the source code level with interpolation based path merging.

Out of the known set of coverage criteria, some form a hierarchy with respect to implication. A

test suite, that achieves for example MC/DC, does also achieve branch coverage. A test suite, that

achieves path coverage (which is normally not possible because of an infinite execution tree), also

achieves MC/DC. A coverage criterion can in general be achieved with different combinations of pro-

gram paths. With respect to the hierarchy of coverage criteria, the respective sets of program paths can

be chosen as subsets. The set of paths, that achieves MC/DC then contains the set of paths, that achieves

branch coverage. Under this constraint, symbolic execution with higher code coverage (according to

the hierarchy) detects at least an equal amount of bugs. It detects the bugs, that are reachable with the

respective path set and are detectable as violations of automatically generated constraints. All bugs, that

are detectable with symbolic execution, would be detected with path coverage.

Interpolation can be used to prune program paths as early as possible when path extensions can not

contribute to achievement of a coverage criterion or to bug detection. Through interpolation, a chosen

coverage criterion can normally be achieved with a smaller path set and correspondingly smaller com-

putational effort. An interesting coverage criterion is ’error coverage’, i.e., reaching all bugs that would

be reachable with path coverage (considering only bugs, that can be detected as constraint violations).

Through interpolation, error coverage is generally possible without path coverage, i.e., with a reduced

path set. For error coverage it suffices to reach each bug on one path. It is not necessary to find all

paths, that reach a bug. This work uses the approach of interpolation with unsat-cores and depth-first

search from [JSV09]. In [JSV09], it is used for verification, i.e., to prove non-reachability of error lo-

cations. Interpolation with unsat-cores means omitting constraints from the path constraint. With this

view, the approach can be generalized. Pruning paths based on live variable analysis [BCE08] then also

falls into this framework, as it means omission of constraints for dead variables from the path constraint.

The achieved coverage can be described as ’live context coverage’. If only unsat-cores of unsatisfiable

branches are used for interpolation, then branch coverage is achieved. Considering the sets of constraints

used for interpolation, then some sets again form a hierarchy as subsets. An interpolation hierarchy

(constraint sets) corresponds to a hierarchy of coverage criteria and path sets. Omitting more constraints

leads through more pruning of paths to a smaller path set and smaller coverage.

The implementation of symbolic execution with selectable interpolation is evaluated with test pro-

grams from the Juliet suite. Accurate bug detection in the Juliet suite requires modelling functions from

the standard library and Posix (Portable Operating System Interface) library (e.g., symbolic execution
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does not follow system calls into the kernel). Because completely modelling these libraries would re-

quire an effort that goes beyond the scope of this thesis, the evaluation is limited to small subsets of

Juliet’s programs and standard library and Posix functions. The test programs are chosen to cover all

data flow and control flow variants of the Juliet suite and to cover a variety of different common weak-

ness types, namely buffer overflow, integer overflow, race condition, infinite loop, information exposure

and dead code. The used test programs and modelled library functions are listed in the chapter on error

detection.

The implementation follows the approach of concolic execution and uses a debugger machine inter-

face for instrumentation. The implementation is a plug-in extension to the Eclipse C/C++ development

tools (CDT) and uses CDT’s code analysis framework and its debugger services framework. Z3 [dB08]

is used as external process for constraint solving. Before static execution, a static taint analysis is done to

detect (as over-approximation) decision nodes and potential error locations, that could be reached with

symbolic variables. Based on this taint analysis, first breakpoints are set. Bugs that depend on symbolic

input are detected during selective symbolic execution as violation of constraints, that are automatically

generated during analysis. Constraints are generated at breakpoints. Breakpoints are set and removed

path-sensitively. Any missing concrete values are queried from the debugger. The implementation is a

symbolic tree-based interpreter. Constraints for bug conditions are generated at certain syntax constructs

with symbolic parameters and are checked for satisfiability together with the path constraint. Bugs that

only depend on concrete input are detected by compiler instrumentation. The implementation only par-

tially models the C standard library, enough to detect errors in the test set. To detect more than the used

few baseline bugs, an extended modeling of the standard library would be necessary.

The thesis is structured as follows: Chapter 2 describes the debugger-based selective symbolic exe-

cution on source level and its implementation in CDT. As much code as possible is executed concretely

rather than interpreted symbolically. Chapter 3 illustrates methods for partial traversal of a program’s

execution tree. State interpolation and path merging and the algorithms for error coverage and branch

coverage are illustrated. In Chapter 4, automated error detection with symbolic execution is presented in

detail. Chapter 5 discusses the suitability of the described algorithms for further applications. Chapter 6

discusses related work. Results of the evaluation with the Juliet suite are discussed in Chapter 7.

Contributions

— A new algorithm for symbolic execution with branch coverage, based on interpolation of unsatis-

fiable branches with unsat-cores (Section 3.6.4.). The algorithm can be used, e.g., to detect dead
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code (Section 4.3.7). The algorithm can be applied along the same lines for MC/DC (Section

5.2).

— A new algorithm for detection of race conditions in multi-threaded code, based on symbolic exe-

cution with FIFO scheduling on one CPU core and instrumentation with happens-before analysis

(Section 4.3.5). With this algorithm, multiple sequential errors can be detected on a path, because

data races do not occur with this scheduling (but can often still be detected).

— Two small modifications of the interpolation algorithm from [JSV09]. The first (minor) modifi-

cation is that potential error locations do not need to be annotated, but that the error conditions

are generated from the syntax during analysis. This shows a difference between unsatisfiable

branches and unsatisfiable error conditions. The second small modification allows further path

pruning if the analysis is continued after detection of an error (precluding the detected error with

an additional constraint). The modification consists in further weakening already computed inter-

polants. Constraints, that only stem from the (in previously analyzed contexts unsatisfiable) error

condition are removed. This modification could identically also be applied, e.g., in [JMN13],

where interpolation is combined with heuristic path exploration. The description can be found in

Section 3.6.

— The qualitative description of a trade-off between computational effort and accuracy of bug de-

tection. The trade-off stems from the algorithm variants of symbolic execution with selectable

coverage through interpolation (from live context coverage over error coverage to branch cover-

age) and the description as coverage and interpolation hierarchy (Section 3.6.6).

— The quantitative description of the trade-off for the special case of a certain subset of the Juliet

suite. The evaluation uses on the one hand the implementation-independent measures of false

detection rates and path set sizes, and on the other hand the comparison of runtimes of the imple-

mentations within the same framework.

— A new algorithm for dynamic detection of infinite loops based on a modified autocorrelation with

the Kronecker Delta function (Sections 4.3.3, 5.3).

— A new approach to symbolic execution of machine code. The standard approaches are either

to write a dedicated symbolic execution engine for a certain processor architecture [GLM08,

CARB12], or to lift instructions to an intermediate representation for symbolic execution [BJAS11].

The new approach consists in retargeting a symbolic execution engine based on an architecture

description language (Section 5.7).



Chapter 2

Selective Symbolic Execution on the

Source Code Level

2.1 Symbolic Execution as State Transition System

2.1.1 Single-Threaded Code

Formalization for a simplified language Symbolic execution can be seen as a state transition system

[DE82, KKBC12]. This paragraph illustrates symbolic execution with a formalization from [KKBC12]

shown in Algorithm 1, for a simplified language with only assignments, conditional goto statements,

assertions and halt statements. Symbolic execution performs forward expression substitution starting

from input variables, and can be described with the worklist algorithm [KKBC12]. A state is a triple

(l, pc, s) with program location l, path condition pc and symbolic store s. The symbolic store s maps

each variable to a concrete value or an expression (formula) over input variables. The initial program

location is denoted l0. States are kept in worklist w, a choice function pickNext() chooses the next state to

process from the worklist. The set of successor states is denoted S . The branch checker function f ollow()

decides whether to follow a branch (checks path satisfiability). In line 1, the worklist is initialized. λx.e

denotes the function, that maps parameter x to expression e. In each loop iteration, one state is selected

for processing from the worklist (line 3). In case of an assignment (line 6-8) v := e, the successor state has

program location succ(l). The expression e is evaluated by eval(s, e) in the context of s, and v is mapped

to the resulting (possibly symbolic) expression. Apart from literal expressions and identity expressions

(variables), the simplified language contains only unary and binary expressions with arithmetic or logic

operators. It does not contain function call expressions. If all operands in e are concrete, then eval(s, e)

11
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evaluates to a concrete value. If at least one operand is symbolic, then eval(s, e) yields a formula: a

symbolic operand in e is replaced by its formula. The new state is added to S . In case of a conditional

goto statement (line 9-14), it is checked whether to take either branch (path satisfiability). If so, the

branch condition is added to the successor state, and the successor state is added to S . In case of an

assertion (line 15-20), the conjunction of path condition, symbolic store and negated assertion is checked

for satisfiability; In case of a halt statement (line 21-23), the analyzed program is terminated and the path

condition is output [KKBC12].

1 w := {(l0, true, λv.v)} ;

2 while (w , ∅) do

3 (l, pc, s) := pickNext(w); S := ∅ ;

4 // Symbolically execute the next instruction

5 switch instr(l) do

6 case v := e do

7 // assignment

8 S := {(succ(l), pc, s[v 7→ eval(s, e)])} ;

9 case if(e) goto l′ do

10 // conditional jump

11 if follow(pc ∧ s ∧ e) then

12 S := {(l′, pc ∧ e, s)} ;

13 if follow(pc ∧ s ∧ ¬e) then

14 S := S ∪ {(succ(l), pc ∧ ¬e, s)} ;

15 case assert(e) do

16 // assertion

17 if isSatisfiable(pc ∧ s ∧ ¬e) then

18 abort ;

19 else

20 S := {(succ(l), pc, s)} ;

21 case halt do

22 // program halt

23 print pc ;

Algorithm 1: Symbolic execution, formalization from [KKBC12]

Control flow graphs On the source code level, the basis for analysis are Control Flow Graphs (CFG).

A program consists of functions, that can be transformed into CFGs. The program’s source files are

parsed into abstract syntax trees (AST). The AST are then searched for function definitions. For each

function definition, a CFG is constructed. There are different CFG node types:

Start node Each function begins with a start node.

Plain node A plane node has one parent and one child.

Decision node A decision node has several children, which are branch nodes.

Branch node A branch node has a label, which is normally ’then’ or ’else’. If a branch node origi-

nates from a switch statement, it may have more than one sibling.
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Connector node A connector node has several parents.

Exit node Each control flow graph has at least one exit node. Exit nodes normally originate from

return statements.

A CFG node corresponds to a subtree of the file’s AST, e.g., an expression statement or a declaration

statement. Such a subtree may contain one or more function call expressions. Taking function calls

into consideration, an extended CFG for the complete program can be constructed from the functions’

CFGs by adding the following edges: In the extended CFG, connections are added from a CFG node that

contains a function call to the called function’s start node, and from the called function’s exit nodes back

to the calling node. A program location l is a CFG node. Successor locations succ(l) are the children of

l in the extended CFG.

2.1.2 Multi-Threaded Code

On a multi-core machine, different threads may run concurrently. Which combination of ready

threads runs at which time is decided by the operating system scheduler. For the purpose of detect-

ing software bugs including multi-threading bugs like data races or deadlocks, it is sufficient to consider

only executions on one CPU core. An execution of a multi-threaded program on one CPU core is called

a thread interleaving. Two executions of a multi-threaded program on one core may execute the same

paths in all threads, but with a different thread interleaving (if the thread scheduling is different). For

multi-threaded programs, the program state contains the program locations of all threads, that have been

started, and one active thread (that will run next). The successor states are yielded by symbolic evalua-

tion of the active thread’s next CFG node and non-deterministic selection of the next active thread from

the set of threads, that are ready to run. The program’s multi-threaded execution tree is formed by the set

of thread interleavings, that are satisfiable for any program input.

2.1.3 Traversing the Multi-Threaded Execution Tree

Within the framework of the worklist algorithm [NNH10], different tree traversal algorithms are

possible:

Depth first search (DFS) A program path is followed till program end. Then, iteratively the last not

taken branch on the path is further explored till program end. The worklist is a stack (last in, first

out).

Breadth first search (BFS) The worklist is a queue (first in, first out).
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Other Random or heuristic methods; a state scheduling algorithm is applied to select the next state

to extend.

Completely traversing the multi-threaded execution tree obviously does not scale. For the purpose of ac-

curate bug detection, full exploration is not necessary. The exploration methods with reduced complexity

that are used in the work at hand (e.g., state interpolation and path merging), are presented in Chapter 3.

Other methods like partial order reduction are discussed in Chapter 6 on related work.

2.2 Static Symbolic Execution using Eclipse CDT

Eclipse is a widely used open source IDE. Implementing symbolic execution as extension of Eclipse’s

C/C++ Development Tools (CDT) benefits from available framework functionality.

2.2.1 Extending CDT’s Code Analysis Framework

CDT includes a C/C++ parser and a syntax tree visitor. The visitor class enables customized AST

traversal according to the visitor pattern, which is described in [GHJV94]. CDT also includes a code

analysis framework (Codan, [Las15]). Codan features a control flow graph builder and extensions of

Eclipse’s GUI for configuration, analysis start and error reporting. Codan currently (Eclipse release 4.5)

does not feature any path-sensitive or context-sensitive analysis. CFG and AST are illustrated in Figure

2.1 for a simplified example function from the Juliet suite [BB12]. Important classes in CDT for CFG

and AST are shown in Figure 2.2. There are different CFG node types for plain nodes, decision nodes,

branch nodes, jump nodes etc. A CFG node (depending on the type) typically includes a reference to the

corresponding AST subtree.

The work at hand is implemented as a plug-in extension for CDT, at Eclipse’s extension point

org.eclipse.cdt.codan.core.model.IChecker. It is assumed, that source code for the program

under analysis is available.

2.2.2 Tree-Based Translation

Tree-based interpretation is a language implementation pattern [Par10]. Tree-based interpretation

in this case means that for a CFG node the referenced AST subtree is interpreted. The AST subtree is

traversed according to the visitor pattern. The traversal is typically bottom-up. The translation result

can be a concrete value or a symbolic formula, depending on the AST subtree and the context. In

case of a symbolic result, the AST subtree is translated into an SMTlib [BST10] logic equation, more
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1 void s i m p l i f i e d m e m c p y 1 7 b a d ( ) {

2 f o r ( i n t j =0; j <1; j ++) {

3 c h a r v o i d c v s t r u c t ;

4 c v s t r u c t . y = ( void ∗ ) SRC STR ;

5 / ∗ FLAW: Use t h e s i z e o f ( c v s t r u c t ) which w i l l o v e r w r i t e t h e p o i n t e r y ∗ /

6 memcpy ( c v s t r u c t . x , SRC STR , s i z e o f ( c v s t r u c t ) ) ;

7 }

8 }

Figure 2.1 – Control flow graph and abstract syntax tree [Ibi13b]

specifically in the sublogic of closed quantifier-free formulas over the theory of bitvectors and bitvector

arrays (QF ABV). Bitvector lengths in the translation depend on the target architecture.

2.2.3 Deciding Path Satisfiability

The current Eclipse version does not feature an SMT solver as plug-in (only a SAT solver, [LP10]).

Therefore, an SMT solver is connected as an external process. All evaluations in the work at hand use

the Z3 SMT solver [dB08]. When a path reaches a branch node for whose parent’s boolean decision a

Figure 2.2 – Data structures for CFG and AST [Ibi15b]
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Figure 2.3 – Main components

symbolic boolean variable was generated, then a constraint is added for the parent boolean decision. In

case of a ’then’ branch, the symbolic boolean is constrained to be true. The SMT solver is then used

to decide whether the path constraint together with this branch constraint is satisfiable. For a satisfiable

equation system, an SMT solver can generate a model, i.e., a variable valuation that satisfies the equation

system. If the path is satisfiable, the solver’s model generation functionality can be used to generate

input, for which the program would take the current path in concrete execution. This can be used for

automated test-case generation [CGP+06].

2.3 Offloading Work to Dynamic Analysis

Static symbolic execution can be combined with concrete execution into dynamic symbolic exe-

cution, which is also called concolic execution (mixed concrete / symbolic) [GKS05, SMA05]. The

motivation is the following:

— Code execution is faster than interpretation, and especially faster than symbolic interpretation

with a solver. Interpretation and translation into logic should therefore only be applied where

necessary for the purpose of analysis.

— Dynamic symbolic execution offers the possibility for consistent concretization. Constraints are

collected during concrete program execution, i.e., the full concrete program state always satis-

fies the collected path constraint. If certain program parts can not be handled with the solver,

the respective symbolic variables can be concretized with a fall-back to their values in concrete

execution. Concretization does not cause false positive error detections, but it does cause false

negative detections (and misses some programs paths).

The work at hand implements a selective symbolic execution with debugger based dynamic instrumenta-

tion. The debugger is used to automatically drive execution into all program paths (measures for partial

execution tree traversal are discussed in chapter 3). Selective symbolic execution allows to search for
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Figure 2.4 – Concolic execution [Ibi15b]

bugs symbolically only in selected source files and to not fork paths in other files, e.g., in libraries.

2.3.1 Selective Symbolic Execution with Tree-Based Interpretation

Execution of a program path changes between concrete execution in the debugger and symbolic inter-

pretation. Debugger breakpoints are used to switch from concrete execution to symbolic interpretation.

The debugger controls a full concrete program state. The interpreter contains the partial variable set, that

is treated as symbolic, i.e., the values are logic formulas. C programs interact with their environment

through functions from the C standard library (libc). The dynamic symbolic execution engine described

in this section trace program input and determines a program path by forcing corresponding input.

Certain library functions are defined a-priori to have symbolic return variables. Correspondingly,

initial breakpoints are inserted at call locations to the specified functions. The program argument vector

is also treated as symbolic, i.e., breakpoints are set at locations where it is accessed.

Concrete variables may become symbolic, i.e., when they are assigned a formula. Then correspond-

ing breakpoints at access to the new symbolic variable are set. Symbolic variables may become concrete,

i.e., when they are assigned a concrete value. Then, the corresponding breakpoints are removed.

After reaching the program end, program input is automatically generated for the next path to explore.

The solver and its model generation functionality are used to generate concrete input values, which are

forced in the next program run. The input determines that the next program run will take a different

branch, according to depth-first traversal of the execution tree.

An overview of the main components is shown in Figure 2.3. These comprise the Eclipse runtime

with plug-ins for the C/C++ development tools (CDT). These contain a code analysis framework (Codan)

and debugger services framework (DSF). The instrumented program under test is controlled through DSF

using a debugger (here the GNU debugger gdb). The debug inferior process is scheduled by the operating

system scheduler. Symbolic execution is implemented as Eclipse plug-in on top of CDT. Logic formulas

are decided using the Z3 SMT solver [dB08].
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An overview of the main classes is given in Figure 2.4. The symbolic execution engine performs

tree-based interpretation [Par10] for program locations which use symbolic variables. The interpreter

has a partial symbolic memory store which contains the symbolic variables (global memory and function

space stack). For the rest, CDT’s debugger services framework is used. For the detection of bugs that

depend on symbolic input, the engine provides a checker interface. Through this interface, checker

classes can register for triggers and query context information, which is necessary for the corresponding

solver satisfiability checks.

The debugger stops at breakpoints or when the inferior process receives a signal. The symbolic execu-

tion engine then switches to symbolic interpretation and tries to resolve the respective CFG node and AST

subtree. The source location (file and line number) can be obtained from CDT (CDT’s CSourceLocator).

In order to enable efficient CFG node resolution, a location map for the source files of interest is pre-

computed before analysis start. From the resolved CFG node a reference is then followed to its AST

subtree, which is symbolically interpreted. Any needed concrete values are queried from the debugger.

Using CDT’s debugger services framework Debuggers typically feature a machine interface (MI) to

ease the development of graphical debugger frontends. CDT includes a debugger services framework

(DSF) [PWCR08], which is an abstraction layer over debuggers’ machine interfaces. DSF provides

a set of asynchronous services. The main service interfaces are illustrated in Figure 2.5. They are

mainly used to control dynamic execution with the debugger (IMIRunControl) and to insert breakpoints

(IBreakpoints). The current program location and variables can be queried. This comprises local

(IStack) and global variables (IExpressions).

Branches depending on symbolic input The debugger only breaks at a decision when the decision

contains a symbolic variable (branch that depends on symbolic input). Possible branch targets (CFG

branch nodes and their children) are obtained as children of the corresponding decision node. The de-

bugger is commanded to step, and the taken branch is identified through the newly resolved CFG node.

The branch constraint is formulated as symbolic formula. Branch constraints need to be remembered as

part of the path constraint and to enable input generation for the next execution path. If there is already

a breakpoint set for the source location after stepping, then this location is also symbolically interpreted.

Otherwise the debugger is commanded to resume execution.
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Implementation of read/write watchpoints

Concrete execution must be breaked at read and write accesses to symbolic variables. This means

conceptually that a very large number of read/write watchpoints is needed. Software watchpoints would

severely slow down debugger execution and in general are only available as write watchpoints, not read

watchpoints [SPS11]. Hardware watchpoints can also not be used, since standard processors only support

a handful of them. The implementation therefore uses normal software line breakpoints and determines

the relevant locations using the available source code. To this end, a map of language bindings is pre-

computed before analysis. The map contains AST names with references to the corresponding source

file locations. When a variable becomes symbolic, the corresponding breakpoints are inserted (through

DSF’s IBreakpoints interface, Figure 2.5). For accurate bug detection it is additionally necessary to

trace pointer targets. Pointer assignments must be traced and considered because there may be pointers

to a target when the target becomes symbolic (an example is presented in section 2.4).

Input generation

The parts of an execution path that are symbolically interpreted are called symbolic execution path in

the following. To generate input for the next execution path, the symbolic execution path is backtracked

to the last decision node. For any unvisited child branch nodes, satisfiability of the backtracked path

constraint together with the respective branch constraint is checked using the solver. If the constraints

are satisfiable, corresponding input values are generated using the solver’s model generation functionality

(SMTlib get-model command). If the constraints are not satisfiable, first the unvisited branch siblings

are tested, then the symbolic execution path is further backtracked. Traversal of the symbolic execution

tree is complete when further backtracking is not possible.

Function models and controlling program input

The implemented concolic execution consists of concrete program execution in the debugger with

simultaneous partial symbolic interpretation on the same program path. Input enters the program under

analysis through the argument vector and through function calls, especially through calls to the standard

library. Functions can be configured as input functions. Then, a function model has to be provided. A

function model serves two purposes. The first purpose is for symbolic interpretation. The model creates

a symbolic variable for the return value and possibly also for function parameters that are written by the

function. The second purpose is for the simultaneous concrete execution. The function model uses the

debugger to enforce a certain concrete return value (and possibly set certain concrete values for function
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Figure 2.5 – Main interfaces of CDT’s debugger service framework [Ibi15b].

parameters) so that the concrete execution takes the desired path.

Eclipse CDT and the symbolic execution plug-in including the function models are implemented in Java.

A function model is implemented as a Java class. Debugger breakpoints are set on every C function for

that a function model is registered. When the breakpoint is hit, the respective function model is executed.

The function model can implement the following:

— Concrete values of return value and possibly other variables are enforced with debugger com-

mands (step into, return, ...). Concrete value(s) on the first path are pre-configured in the

model. On later program paths, the debugger commands are used to force input values generated

by the SMT solver.

— Symbolic variables (for return value and possibly function parameters) are instanciated. Depend-

ing on the function that is being modelled, the return variables either remain unconstrained, or

their symbolic values (formulas) are set in dependence on the (possibly symbolic) function’s

input parameters.

One example are input functions from the standard library (the modelled standard library functions are

listed in Section 4.1.1). The libc contains several functions for which the debugger cannot step into

or break inside. The reason is that these functions directly access the virtual dynamically shared object.

Also preloading a wrapper library (with LD PRELOAD) would not work in this case. To handle these cases,

the program under test is compiled/linked for analysis with a linker wrap parameter (ld --wrap), which

replaces symbols to redirect these calls into a wrapper library where the debugger can break. When

for example malloc() is wrapped in this way, a call resolves to wrap malloc(). The system function

becomes real malloc(). The implemented wrapper functions each contain only a function call to the

real function, because the only purpose is to enable setting a breakpoint.
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2.3.2 Thread Scheduling

Thread scheduling can be handled by the concrete part of concolic execution. One consideration

might be to use the debugger to control the thread interleaving. But for this purpose, debuggers could

only use single-stepping. The debug inferior process is scheduled by the operating system (OS) scheduler.

Single-stepping would deteriorate the efficiency of selective symbolic execution. There are two options

for selective symbolic execution of multi-threaded code with concrete scheduling:

User-space threads There are several user level thread libraries, that come with a user level scheduler.

This scheduler can be controlled to execute the desired thread interleaving. This approach seems useful

for very accurate detection of data races and deadlocks, in combination with partial order reduction. This

approach is not used in the work at hand.

Operating system scheduler The operating system scheduler can be configured to apply deterministic

scheduling on one core for the process under analysis. This yields the execution tree for the applied

deterministic scheduling (without alternative thread interleavings). Due to the limitation to one fixed

scheduling, in general not all bugs present in a program can be detected (false negative detections).

Standard coverage criteria like for single-threaded code can then be applied. This option is implemented

by the work at hand. Methods for the detection of races and deadlocks with deterministic scheduling are

discussed in chapter 4.

2.4 Static Pre-Analysis

State pre-analysis can be used to reduce the number of locations that are interpreted, and to pre-

compute information that is needed during symbolic execution. This static analysis is path insensitive.

The implementation pre-computes:

— control flow graphs

— A location map for CFG node resolution. An AST node provides a reference to the corresponding

source location. The computed map provides a lookup from source location to CFG node.

— initial break locations: program input functions and uses of the argument vector

— A binding map with reference to source locations. This is needed for the implementation of watch-

points. When a variable becomes symbolic, breakpoints are set on its usage (and re-definition).

— pointer analysis: the set of pointers that might (on any path) point to a symbolic target
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— for automated error detection: potential bug locations depending on symbolic input, i.e., potential

bug locations where a symbolic variable might be used. These locations must be symbolically

interpreted in order to detect the bugs with a solver satisfiability check (Section 4.2) or, for state

interpolation and path merging (Section 3.6), in order to compute an unsat-core.

Part of this information could also be computed in a lazy way instead of pre-computation. The analysis

overapproximates the set of pointers that might on any program path point to a symbolic target. Break-

points are set on the definition of such pointers, in order to trace the target. If a target becomes symbolic

during symbolic execution, breakpoints are set on usage and definition of all pointers, that might point

to this target. The static pre-analysis can be seen as taint analysis, or could be called ’maybe symbolic’

analysis.

The analysis is implemented as a propagation of changes and uses the worklist algorithm [NNH10].

When the properties of a control flow node change, the change is propagated to its children (which are

then added to the worklist). The analysis is not path-sensitive and does not need a constraint solver.

Figure 2.6 illustrates the need for pointer tracing with flow variant 32 of the Juliet suite (’data flow

using two pointers to the same value within the same function’ [Uni13]). The ’bad’ function contains

three variables data (declared in lines 2, 5 and 14). An initial breakpoint is set on the fgets function

call in line 7. The second data variable becomes symbolic in line 9 due to the atoi library call, so that

a breakpoint is set in line 12 (read access to this data). With an assignment through pointer dereference

in line 12 the first data variable (from line 2) becomes symbolic. This would have been missed without

tracing the pointer targets (here the pointer assignment in line 3). In line 12, also data ptr2 becomes

symbolic, because it points to the now symbolic first data. Therefore also data ptr2 is watched, i.e., a

breakpoint is set on line 14. In line 14, the third data variable becomes symbolic and is watched, so that

the debugger breaks on lines 16 (where a constraint is collected) and 18. In line 18, solver bounds checks

are triggered for the array subscript expression, and the buffer overflow is detected because the solver

decides that the index expression might be larger than the buffer size. The detection of buffer overflow

bugs depending on symbolic input is described in detail in section 4.3.1.
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1 void CWE121 fgets 32 bad ( ) {

2 i n t d a t a = −1;

3 i n t ∗ d a t a p t r 1 = &d a t a ;

4 i n t ∗ d a t a p t r 2 = &d a t a ;

5 { i n t d a t a = ∗ d a t a p t r 1 ;

6 char i n p u t b u f [CHAR ARRAY SIZE ] = ” ” ;

7 i f ( f g e t s ( i n p u t b u f , CHAR ARRAY SIZE ,

8 s t d i n ) != NULL)

9 { d a t a = a t o i ( i n p u t b u f ) ; }

10 e l s e

11 { p r i n t L i n e ( ” f g e t s ( ) f a i l e d . ” ) ; }

12 ∗ d a t a p t r 1 = d a t a ;

13 }

14 { i n t d a t a = ∗ d a t a p t r 2 ;

15 i n t b u f f e r [ 1 0 ] = { 0 } ;

16 i f ( d a t a >= 0) {

17 / / FLAW: p o s s i b l e b u f f e r o v e r f l o w :

18 b u f f e r [ d a t a ] = 1 ;

19 f o r ( i n t i = 0 ; i < 1 0 ; i ++)

20 { p r i n t I n t L i n e ( b u f f e r [ i ] ) ; }

21 }

22 e l s e

23 { p r i n t L i n e ( ”ERROR: o u t of bounds ” ) ; }

24 }

25 }

Figure 2.6 – Need for pointer target tracing; example from Juliet suite [BB12]





Chapter 3

Partial Execution Tree Traversal

It is neither practical nor necessary to traverse the complete combined scheduling and execution tree

for multi-threaded software. This chapter deals with methods to reduce coverage in some form, with

or without degradation of bug detection accuracy. All experiments in this chapter are run in an Eclipse

version 4.5 (CDT 8.8.0) on a i7-4650U CPU, on 64-bit Linux kernel 3.16.0 with GNU debugger [SPS11]

version 7.7.1.

3.1 Deterministic Concrete Scheduling

Exactly locating feasible data races is known to be NP hard [NM92]. For accurate detection of data

races and deadlocks, different thread interleavings have to be explored. Typically, dynamic partial order

reduction [FG05, AAJS14] is used for this purpose, discussed in chapter 6 on related work. The work

at hand is content with faster approximate detection of data races and deadlocks (details in chapter 4 on

error detection). For complexity reduction and acceleration, deterministic scheduling with the operating

system scheduler is used. Compared to completely traversing the multi-threaded execution tree, the

combinatorial explosion is drastically reduced. Symbolic execution is used to explore the execution tree

of multi-threaded software for FIFO scheduling on a single CPU core.

Reproducible execution tree for multi-threaded programs Concolic execution needs a reproducible

execution tree, also for multi-threaded software. This can be achieved by restricting the scheduling to

one CPU core and to reproducible scheduling independent of outside parameters (independent of system

load etc.). Then, the execution tree for this scheduling is yielded. The execution becomes reproducible:

when restarted with the same program input, the identical thread interleaving is yielded. Here, FIFO

scheduling on one CPU core is used. Bugs other than races (e.g., buffer overflows) can be found just

25
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like with symbolic execution of single-threaded code, and standard code coverage criteria like in single-

threaded execution can be applied.

Reduced complexity at the expense of false negative bug detections The operating system scheduler

is used in concolic execution for speed-up compared to scheduling in the symbolic interpreter. Only one

thread interleaving is analyzed per program path. Due to the limitation to one fixed scheduling, in general

not all bugs present in a program can be detected (false negative detections).

Prevents race conditions between threads The analysis of a program path should be able to continue

after the detection of a potential data race, in order to achieve the desired code coverage. This means,

that actual races should be avoided while still detecting them. Program behaviour without races is inde-

pendent of scheduling. Data races between threads are prevented by using FIFO scheduling on one CPU

core, because only one thread at a time is active, and it is not preempted by another thread (the thread

executes until itself yields execution by calling the scheduler through a library call, e.g., from pthreads

library). Potential data races can in many cases still be detected using happens-before, lockset or hybrid

analysis. Signal handler race conditions can still occur.

Single-core FIFO scheduling on Linux The implementation currently runs on Linux, which supports

different scheduling algorithms at the same time for different processes. Differing from the standard

scheduler SCHED OTHER, for the program under test the FIFO scheduler (SCHED FIFO) is used. The

CPU affinity is restricted to one CPU core. The corresponding Linux commands are chrt (to set the

scheduling) and taskset (for CPU affinity).

3.2 Coverage Heuristics

A variety of path exploration heuristics have been proposed to achieve high branch coverage with

limited computational resources. The approaches range from bounded exhaustive search over random

search to informed search heuristics. In [GKS05, SMA05], one program path is analyzed at a time, with

depth-first path enumeration. In [BS08], DFS is compared to a randomized approach and to a control-

flow based heuristic. It is shown that DFS performs worst with respect to branch coverage on a set of

example programs. The control-flow based heuristic searches for short satisfiable path extensions from a

prefix of the current path to an uncovered program location. It randomly picks a branch with minimal sum

of distance measure to uncovered code and number of previous branch flips during search. The distance
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to uncovered code is computed with Dijkstra’s algorithm. It is concluded that the heuristic achieves

”significant branch coverage in practice” [BS08]. In [XTHS09] it is recognized that breadth-first search

favors initial branches, while DFS favors final branches. A different heuristic function is proposed to

determine a branch that is to be flipped for the next analysis path. The algorithms described in [CGP+06]

and [CDE08] do not process one program path at a time, but rather use the worklist algorithm. Several

active program states are kept in a worklist, and a heuristic function determines which state to extend

next. At branch locations, a program state is forked into two. In [CGP+06], the state scheduling strategy

switches between depth-first and best-first, where best-first extends the state whose code line has run the

fewest number of times. In [CDE08], a random path strategy, a ’minimum distance to uncovered’ strategy

and a weighted random selection are used in a round-robin fashion. The weight function considers the

minimum distance to an uncovered instruction, the call stack and whether the state recently covered any

new code. Additionally there is a maximum number of instructions and a maximum number of time, that

limit the extension of a single program state.

1 while (! (direction == exhausted) ) do

2 if (direction == forward) then

3 cfgnode = getNextNode();

4 if (isProgramEnd(cfgnode)) then

5 direction = backtrack;

6 continue;

7 interprete(cfgnode);

8 else if (direction == backtrack) then

9 while (!foundNewInputVec) do

10 cfgnode = backtrackLastNode(path);

11 if (isProgramStart(cfgnode)) then

12 direction = exhausted;

13 break;

14 if (cfgnode instanceof DecisionNode) then

15 if (hasUncoveredBranch(cfgnode)) then

16 boolean isSat = checkSat(path + newBranch);

17 if (isSat) then

18 InputVector newInput = getModel(path + openBranch);

19 foundNewInputVec = true;

20 if (foundNewInputVec) then

21 direction = forward;

22 restart(newInput);

Algorithm 2: Simple branch coverage under-approximation

Simple Branch Coverage Under-Approximation

This subsection illustrates a simple path exploration strategy, that approximates branch coverage but

in general does not achieve it. The algorithm is based on depth-first search, which would compute path
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Figure 3.1 – Coverage heuristic, speed-up

coverage. The difference is in the backtracking mode.

In the following, a path’s context means the set of all concrete and symbolic variables defined on the

path. DFS backtracks a path to a branch node, that is satisfiable but not covered in the current context.

The heuristic algorithm backtracks a path to a branch node, that is satisfiable in the current context and

not yet covered in any context. The algorithm is depicted as pseudo-code in Algorithm 2.

The variable direction switches the algorithm mode between forward and backtrack, the algorithm

terminates when direction takes the value exhausted. The variable path is a list of CFG nodes that

corresponds to the program path being analyzed. The algorithm’s forward symbolic execution mode

spans lines 2-7. The variable cfgnode is the next control flow graph node (program location) to be

interpreted and to be added to the path. The lines 9-22 belong to the backtracking mode. The boolean

variable foundNewInputVec is set to true if backtracking finds a decision node with a yet uncovered child

branch node, the conjunction of path condition with branch condition is satisfiable (solver call checkSat(),

result in variable isSat(), and if the solver has generated the corresponding input vector (solver call

getModel()). The input vector generated by the solver is newInput. Each entry in the vector contains the

concrete program input for one input function. The algorithm partially traverses the execution tree, and

with every switch from backtracking mode to forward symbolic execution mode, a new branch node in

the program’s CFGs is covered.

Complexity

In the following, a ’live branch node’ denotes a branch node, that can be covered in some context (for

arbitrary input there is a path on which the node is reachable). Conversely, a ’dead branch node’ can not

be covered in any context (unreachable). A ’symbolic branch node’ denotes a branch node whose branch

condition depends on at least one symbolic parameter. ’Live symbolic branch node’ therefore means a

branch node that is reachable on at least one path and whose condition depends on a symbolic parameter.
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Figure 3.2 – Coverage heuristic, path reduction and branch node count

The algorithm only switches from backtracking mode to forward symbolic execution mode when there

is a new input vector so that a new symbolic branch node is covered. This means, that the number of

paths explored by the algorithm is bounded by the number of live symbolic branch nodes in the program.

The number of branch nodes in a program grows linearly with program size. The number of paths, that

the heuristic algorithm explores, therefore also grows at most linearly with program size.

Illustration

The algorithm is illustrated with 39 test programs from the Juliet suite [Uni13], that contain stack

based buffer overflows with fgets(). The set of test programs used in this section contains just one of

Juliet’s many baseline bugs for buffer overflows, but it covers all of Juliet’s data and control flow variants

for C. The flow variants are listed in Table 4.1 on page 60. Aim of the experiment is first to validate

accurate bug detection for all flow variants when running symbolic execution with path coverage (depth-

first). Then, the heuristic algorithm is compared with respect to analysis speed-up and the number of

missed bugs due to the reduced number of investigated paths. Further aim is to validate the complexity,

i.e., the bound on the number of analyzed paths. The test set contains bugs that depend on symbolic

input. The error condition is described as constraint violation in Section 4.2 on error detection during

symbolic interpretation. The test programs are compiled for analysis. Address sanitization and coverage

data collection (with gcov) is included in the binaries.

Speed-up Analysis runtimes for the test set are shown for path coverage and for the branch coverage

heuristic in Figure 3.1. The figure uses a logarithmic scale. The horizontal axis shows the Juliet C

flow variants (the flow variants in [Uni13] are not numbered consecutively in order to allow for later

insertions). Only for flow 21 (control flow depending on static global variable) the runtimes are missing.

This is because CDT’s CFG builder misclassifies a branch node as dead, which leads to too few analyzed
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program paths and consequently to a false negative detection. The average speed-up on the test-set is

about factor 4.

Number of analyzed program paths The number of analyzed paths for path coverage and for the

branch coverage heuristic is shown in Figure 3.2 (on the left). It also uses a logarithmic scale. The high

correlation of this figure with Figure 3.1 indicates that the reduction of the number of analyzed program

paths is the main reason for the runtime speed-up. The average reduction of analyzed paths on the test-

set is about factor 6. Coverage information is collected with gcov during symbolic execution. Figure

3.2 shows on the right side the number of branch nodes in the binaries (obtained from gcov). It also

shows the number of live branch nodes. This number is obtained from gcov after running the tests with

symbolic execution with path coverage. Additionally, the figure shows the number of symbolic branch

nodes, i.e., the number of branches depending on symbolic input. This number is obtained from the

symbolic execution engine in path coverage mode (a debugger breakpoint is only set for a decision if the

decision depends on a symbolic variable). Figure 3.2 validates that the number of analyzed paths using

the simple heuristic algorithm is indeed smaller than the number of symbolic branch nodes.

Bug detection accuracy The reduction of coverage is expected to cause false negative detections. Run-

ning the symbolic execution engine with path coverage correctly detects all bugs in the test set apart

from flow 21, as explained above. Running it with the presented branch coverage heuristic algorithm

only misses one additional bug, namely in flow 12. In this flow variant, the program takes different paths

in dependence on random program input (rand() function). The engine is configured to enforce return

value 0 for the rand() call on the first path. The return values on later paths are determined by the solver

according to the presented path exploration algorithm.

3.3 Parallelisation

In order to achieve high code coverage in a limited time, parallelization of symbolic execution has

been investigated. [SP10] presents a parallelized version of [APV07] and initially performs a breadth-

first exploration of the symbolic execution tree up to a certain depth, and then runs multiple workers on

the disjunct static partitions of the execution tree. [BUZC11] presents a parallelized version of KLEE

[CDE08] with dynamic redistribution of work between workers.

For illustration, parallelization with multi-threading is applied here to (static) symbolic execution.

Execution tree traversal is depth-first with backtracking of the symbolic program state. Different worker
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threads concurrently explore disjunct partitions of the execution tree, with dynamic re-distribution of

work. Each worker of the parallelized engine keeps the symbolic program states along its current program

path in memory, to allow for quick backtracking. Dynamic redistribution of work between workers is

enabled by splitting a worker’s partition of the execution tree at the partition’s top decision node, where a

partition is defined by the start path leading to its root control flow decision node. The child branches not

taken by the current worker are returned as start paths for other workers. After a split, the partition start

path is adjusted (prolonged by one branch). Analysis starts with one worker, who splits its work until the

configured number of workers is busy. If a worker reaches an unsatisfiable branch or a satisfiable leaf

of the execution tree, it backtracks and changes a path decision according to depth-first tree traversal. If

backtracking reaches the end of the partition start path, the partition is exhausted.

Execution tree exploration and splitting into subtrees is illustrated in Figure 3.3, which shows part of

the execution tree of the Juliet test program CWE121 char type overrun memcpy 12. The tree shows

only decision nodes and branch nodes; other CFG node types are not shown. The unexplored part of

the (sub)tree is shaded. Red lines indicate the paths which have been explored by worker 1, green lines

correspond to worker 2. Partition start paths are shown as solid lines, and a dashed line indicates the

current position of a worker. Worker 1 splits its partition and generates a split path, which becomes

start path for worker 2. After the partition split, worker 1’s start path is prolonged by one branch. The

execution tree is normally not generated during analysis, it is only traversed on-the-fly.

The worker threads share control flow graphs and abstract syntax trees. AST nodes are not thread-

safe, so workers lock AST subtrees at the CFG node level (the AST subtree which is referenced by the

currently interpreted CFG node). Each CDT project has an index, which is the persisted document object

model (DOM). Access means (possibly blocking) I/O operations on a database stored in small files, so

that workers acquire a read lock for accesses.

On the Juliet buffer overflow test cases with fgets() used in the last section, a 2x speed-up is

achieved with three threads [Ibi13a].

3.4 Concretization

Variables become symbolic through assignment of a symbolic value. Concretization can always be

used to simplify constraint systems, with a fall-back to concrete values in the debugger. Concretization

leads to reduced coverage (due to control flow decisions that depend on symbolic input) and false negative

bug detections, but also to an analysis speedup. Complexity (and bug detection accuracy) can be reduced
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Figure 3.3 – Dynamic execution tree partitioning [Ibi13a]
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by limiting the propagation of symbolic values with a propagation bound. Up to this point, potentially

infinite propagation was described. A bound to level zero means, that if symbolic input is assigned to

another variable, this variable is concretized. Bugs depending on symbolic input are then only detected,

if the bug condition is directly reached with program input. A bound to level n means, that variables are

concretized, that depend on program input indirectly over n steps.

3.5 Input Bounds

Program input like the argument vector or input from files and sockets can be restricted to a config-

urable limited size. This causes restrictions on the execution tree. Bounded input length can often avoid

input-dependent infinite loops and cause a finite execution tree.

3.6 State Interpolation and Path Merging

A variable is dead if it is not read along any extension of the current path, otherwise (read on at least

one path extension) it is live. A path’s live context is yielded by removing all dead concrete and symbolic

variables from the path’s context. In many cases it is possible to prune a path from the execution tree

without losing bug detection accuracy. Pruning a path means to stop analyzing it and to skip the subtree

of all path extensions. This is possible if there is another path in the traversed part of the execution

tree that (together with its subtree of path extensions) yields at least the same analysis results. In the

following, pruning one path with reference to another one that is equivalent with respect to bug detection

is denoted as merging one path into another.

In order to alleviate the path explosion problem, it is shown in [BCE08] that a live variable analysis

can be applied so that program paths, that only differ in dead variables, can be merged without degrading

bug detection accuracy. A more comprehensive path merging approach is described in [JSV09]. It is

based on logic interpolation (Craig interpolation [Cra57]), i.e., on automated generalization of constraint

formulas. The interpolation uses unsatisfiable cores (unsat-cores) and approximates weakest precondi-

tion computation.

The work at hand implements path merging with selectable interpolation. Section 3.6.6 describes

a coverage and interpolation hierarchy, that includes the work described in [BCE08, JSV09] as special

cases. Section 3.6.3 describes an algorithm that by way of comparison efficiently achieves error and

branch coverage, section 3.6.4 describes one that achieves branch coverage (at the expense of missing

some bugs). The work at hand only considers finite execution trees, i.e., programs with only a finite
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number of satisfiable program paths. Correctness of path merging for a finite execution tree is considered

on pages 44ff. Completeness is neither claimed nor considered.

3.6.1 Path Merging Based on Live Variable Analysis

Constraints for dead variables are not generated for the path constraint. Paths can be merged, when

their live context (including the stack) is identical. Merging in this way does not need a solver, it can be

implemented as comparison (e.g., string comparison). This algorithm can be applied during breadth first

path exploration with an over-approximation of live variables [BCE08]. It could also be applied during

depth first exploration with more accurate liveness information from backtracking.

A path constraint P is the conjunction of constraints p j collected on the path during symbolic execu-

tion:

P = p1 ∧ p2 . . . ∧ pN =
∧

j∈J

p j , J = [1 . . . N]

The N constraints p j are numbered beginning from the program entry point. J is the set of natural

numbers from 1 to N.

For a different path, the path constraint P′ is:

P′ =
∧

k∈K

p′k , K = [1 . . . N′]

The path constraint P′ consists of N′ conjunctions, K is the set of numbers from 1 to N′. Removing

constraints for dead variables from P means removing the p j with j ∈ JD, where JD indicates the set

of indices of those constraints. This yields the live context:

∧

j∈J\JD

p j

The two paths P and P′ are merged at the same program location lN = l′
N′

under the following condition:

∃N,N′ ∈ N.
(

lN = l′N′
)

∧
(
∧

j∈J\JD

p j =
∧

k∈K\KD

p′k′
)

where KD is the index set that indicates constraints for dead variables in P′.

An illustration with a control flow graph of a ’bad’ function from Juliet is shown in Figure 3.4

(simplest flow variant, ’baseline’ bug). There are 8 satisfiable paths through the CFG. On one path, there

is a buffer overflow (indicated as red path). All operations are on stack variables, that die before function
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:StartNode

int data  ��

global_returns_t_or_f()

else then

char input_buf[CHAR_ARRAY_SIZE] = "";

fgets(input_buf, CHAR_ARRAY_SIZE, stdin) != NULL

data = atoi(input_buf);

global_returns_t_or_f()

printLine("fgets() failed.");

data = 7

data >= 0

int i;

int bu�er[10] = { 0 };

else then

else then

int i;

int bu�er[10] = { 0 };

data >= 0 && data < (10)

elsethen else then

printLine("ERROR:

   Array index is negative.");

return; // fake

bu�er[data] = 1;

i < 10

else then
printIntLine(bu�er[i]);

i++;

printLine("ERROR:

   Array index is negative.");
bu�er[data] = 1;

i = 0;

i < 10

elsethen
printIntLine(bu�er[i]);

i++;

i=0;

Figure 3.4 – There are 8 satisfiable paths through this CFG, on one there is a buffer overflow (red path).

Path differences at function exit are only in dead variables, so path merging is possible [Ibi15c].

exit. Path differences at function exit are therefore only in dead variables. All paths can therefore be

merged into one at function exit (the exit node is indicated in blue).

Another illustration with program execution tree is given in Figure 3.5. It shows on the top a reduced

execution tree of a test program from the Juliet suite ∗, that only depicts decision nodes and branch nodes

(other node types are omitted). There are four satisfiable paths through the program, that are indicated

with a green ’SAT’ label. The traversed execution tree with merging is shown on the bottom. Paths

are merged at two locations, which is indicated with blue arrows. The figure shows that two sub-trees

are skipped, which corresponds to folding the execution tree at two locations. The number of program

paths, that are analyzed till program end, is reduced from four to one. Since path merging corresponds

to folding the execution tree, one can expect an exponential effect on analysis run time.

3.6.2 Logic Interpolation and Path Merging with Unsatisfiable Cores

By leveraging the SMT solver, additionally some paths with different live contexts can be merged.

The logic interpolation theorem [Cra57] states that ”in between” two formulas A and C with respect to

∗. CWE121 Stack Based Buffer Overflow char type overrun memcpy 12
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Figure 3.5 – Merging: folding the execution tree [Ibi15c]
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implication there is another formula B.

|=
(

A =⇒ C
)

then ∃B.

(

|=
(

A =⇒ B
)

∧ |=
(

B =⇒ C
)

)

Interpolation is an automatic way of generalizing (abstracting) formulas. The interpolant B is then gen-

erated. Some SMT solvers support interpolation. In symbolic execution, interpolation can be used to

learn from unfeasible paths [JMNS12]. State interpolation in symbolic execution corresponds to conflict-

driven clause learning in SAT solvers [McM10].

Unsatisfiable cores Given an unsatisfiable conjunction of formulas, an unsat-core is a subset of the

formulas whose conjunction is still unsatisfiable. In a minimal unsat-core, every subset of formulas is

satisfiable. Minimal unsat-cores are not unique. A minimum unsat-core contains the smallest possible

number of formulas.

Unsat-core computation SAT and SMT solvers can compute unsat-cores. But for efficient path merg-

ing, it is advantageous to control the way in which unsat-cores are computed. Here, computation with

serial constraint deletion [JSV09] is used. The algorithm goes once through the collected constraints

from program start on. It sequentially tries whether the current constraint can be removed without ren-

dering the conjunction satisfiable. If the conjunction stays unsatisfiable, the constraint is removed, and

the algorithm proceeds with the next constraint.

3.6.3 Path Merging for Error and Branch Coverage

Motivation

In order to detect all detectable bugs, it is sufficient to detect each bug on one program path only.

It is not necessary to detect each bug on all paths where this bug might be triggered. A program path

can therefore be pruned from the execution tree (merged) if it is impossible to detect any new bugs on

any extension of the path. This information can be gained from backtracking information about program

paths, that were analyzed till program end. This implies a depth-first traversal of the program execution

tree.

Algorithm

Interpolants are computed as unsat-cores for unsatisfiable paths and for unsatisfiable error conditions.

The interpolants are backtracked as approximate weakest precondition (described later in more detail).
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A merge formula denotes the conjunction of backtracked interpolants for unsatisfiable paths and unsat-

isfiable error conditions. A merge formula belongs to a program location to where the interpolants have

been backtracked. A path can be pruned (merged) at a location, when it implies the location’s merge

formula. The locations, where path merging possibilities are checked (merge locations), are the branch

nodes in control flow graphs (CFG). The key terms are:

Path constraint means the conjunction of the collected constraints along one program path.

Interpolant is the result of an interpolation, computed as an unsat-core.

Error condition means the context-free condition for occurrance of an error in a certain CFG node.

Satisfiability of the conjunction of error condition and path constraint determines if the error may

occur on a certain program path.

Interpolated error guard means an interpolant of an unsatisfiable conjunction of path constraint

and error condition.

Merge formula Merge formulas are computed by the algorithm and assigned to CFG nodes. A path

is merged if it reaches a CFG node where the path constraint implies the node’s merge formula.

The algorithm overview is listed as pseudo-code in Algorithm 3. A debugger machine interface is used,

and the functions setBreaks(), continue() and restart() perform the usual debugger actions of setting

breakpoints, continueing execution and restarting execution. The static pre-analysis corresponds to line

1. Function f indInitialBreakLocation() determines the locations where initial breakpoints are set The

depth-first selective symbolic execution corresponds to lines 4-37. It has a forward and a backtracking

mode. The backtracking mode generates program input for the next path. The current path is backtracked

to the last control flow decision that depends on symbolic input. If possible (satisfiable), the last decision

is switched to obtain a new path.

Forward symbolic execution The forward symbolic execution mode corresponds to lines 5-15 in Al-

gorithm 3. The debugger is run until it stops at a breakpoint. Function isProgramEnd() (line 7) checks

whether the end of the program is reached. If so, the algorithm switches to backtracking mode. Oth-

erwise, function getNodeLocation(Locationloc) (line 14) resolves the CFG node for the location where

the debugger breaked. This CFG node is then interpreted and translated into an SMT logic equation

(function interprete(c f gnode) in line 15). Values of concrete variables are queried from the debugger

when needed. Functions from the standard library are modelled and/or wrapped, so that input can be

traced and forced as desired using debugger commands (compare subsubsection ”Function models and

controlling program input” on page 19).
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1 Set{Location} symlocs = findInitialBreakLocations();

2 debugger.setBreaks(symlocs);

3 direction = forward;

4 while (! (direction == exhausted) ) do

5 if (direction == forward) then

6 Location loc = debugger.continue();

7 if (isProgramEnd(loc)) then

8 direction = backtrack;

9 continue;

10 if (mergeLocs.contains(loc)) then

11 if (cansubsume(loc)) then

12 direction = backtrack;

13 continue;

14 cfgnode = getNode(loc);

15 interprete(cfgnode);

16 else if (direction == backtrack) then

17 foundNewInputVec = false;

18 while (!foundNewInputVec) do

19 backtrackMergeFormula(cfgnode);

20 if (cfgnode instanceof BranchNode) then

21 setNewMergeLocation(cfgnode);

22 cfgnode = backtrackLastNode(path);

23 if (isProgramStart(cfgnode)) then

24 direction = exhausted;

25 break;

26 if (cfgnode instanceof DecisionNode) then

27 if (hasOpenBranch(cfgnode)) then

28 boolean isSat = checkSat(path + openBranch);

29 if (isSat) then

30 InputVector newInput = getModel(path + openBranch);

31 foundNewInputVec = true;

32 else

33 uc = getUnsatCore(path + openBranch);

34 setMergeFormula(openBranch, uc);

35 if (foundNewInputVec) then

36 direction = forward;

37 debugger.restart();

Algorithm 3: Dynamic symbolic execution with interpolation based path merging
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Unsat-core interpolation for unsatisfiable bug conditions Another path can be merged if no

new bug detection is possible along any of its extensions, i.e., when potential bug locations remain

unsatisfiable for the new path. This is the case when the new path’s path constraint implies the unsat-cores

of the potential bug locations. Symbolic interpretation of a CFG node (function interprete(c f gnode) in

line 15) comprises error detection with the solver. At certain syntax elements, a corresponding checker is

called. The checker then calls the solver to check satisfiability of the conjunction of path constraint and

error condition. If the solver answers ’sat’, the detected error is reported and the negated error condition

is added to the path constraint. If the solver answers ’unsat’, an unsat core interpolant is computed and

added as interpolated error guard to the CFG node.

Updating for bug detections When a bug is detected, any new detection (re-detection) of the

same bug (same type and location) becomes irrelevant. Therefore, any unsat-cores that were computed

for this potential bug location before, can be deleted and the constraints removed from merge formulas

(if these constraints do not also originate from other constituents of the merge formula). Unsat-cores are

computed using the idea of serial constraint deletion from [JSV09]. A path constraint is a conjunction

of a set of formulas. For each of these formulas it is checked in turn with the solver, whether the

conjunction remains unsatisfiable if the formula is removed. The function is only kept if the conjunction

would become satisfiable otherwise.

Path merging Breakpoints are set during backtracking for branch locations, for which a merge

formula has been computed. The function mergeLocs.contains(Location) (line 10) determines, whether

a merge formula is available for the program location passed as parameter. When the current path con-

straint implies the merge formula, the path is pruned. Function cansubsume() (line 11) checks the impli-

cation. The implication is valid if its negation is not satisfiable.

Backtracking The backtracking mode corresponds to lines 16-37 in Algorithm 3. It generates program

input for the next path and generates merge formulas for program locations higher up in the program

path (closer to program start) by backtracking merge formulas. Backtracking is only concerned with the

partial symbolic program state along the current path, i.e., only with locations, that were symbolically

interpreted. Function backtrackLastNode(path) (line 22) removes the last node from the path. Function

isProgramS tart(c f gnode) checks whether backtracking has reached the program’s entry point. If so,

the search is exhausted.
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Figure 3.6 – Example function for interpolation based path merging [Ibi16a]
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global_returns_t_or_f()

else then

fgets(input_buf, CHAR_ARRAY_SIZE, stdin) != NULL

else then

data = atoi(input_buf);

global_returns_t_or_f()

else then

data � 00 � data < 10

else thenelse then

Figure 3.7 – Algorithm progress [Ibi16a]

Input generation The symbolic program state is backtracked to the last decision node. Function

hasOpenBranch(c f gnode) (line 27) checks whether the decision node has a child branch node that has

not been visited in the path’s context. For child branches, that were not yet covered in the context

of the current (backtracked) path, it is checked with the solver whether or not this path extension is

satisfiable. Function checkS at() (line 28) wraps the SMT solver call to check satisfiability. If it is

satisfiable, the solver’s model generation functionality is used to generate corresponding program input

values for the next path. Function getModel() (line 30) wraps the SMT solver call for model generation

(input generation for the next path). If not, an unsat-core is computed and set as merge formula, and the

symbolic program state is further backtracked.

Unsat-core interpolation for unsatisfiable paths Because unsatisfiable paths are not further ex-

plored, any potential error locations after the unsatisfiable branch are not evaluated in this context. An-

other path can therefore only be merged as long as unsatisfiable branches remain unsatisfiable. This

means, that an unsat-core for an unsatisfiable path could also be seen as an interpolated error guard.

Function getUnsatCore() (line 33) performs interpolation by removing as many constraints as possible

while keeping the result unsatisfiable and returns the computed unsat core. Function setMergeFormula()

(line 34) sets the computed interpolant as merge formula for the branch node whose branch is unsatisfi-

able in this context.

Backtracking merge formulas A merge formula is generated when the program end is reached

(at exit node of main() function). A merge formula is also computed for an unsatisfiable path as unsat-
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core. Interpolated error guards at the locations of unsatisfiable bugs on the path are computed as unsat-

cores in forward symbolic execution. Backtracking also backtracks merge formulas. The approach is

approximate weakest precondition computation [JSV09, JMNS12]. While forward symbolic execution

computes strongest postconditions, this could be seen as ’reverse symbolic execution’. When a node’s

child is backtracked, then any constraints which were generated in this child (as symbolic interpretation)

are removed from the node’s merge formula. Because constraints are removed, backtracking means a

generalization of merge formulas. Decision nodes are the only control flow node type that has more

than one child node, i.e., several branch nodes. The children’s contributions to a decision node’s merge

formula are determined during backtracking as the conjunction of the children’s merge formulas. The

reason is that path merging requires that no new bug detection becomes possible on any extension of

the current path. When backtracking reaches a branch node, a breakpoint is set and associated with the

merge formula. Function backtrackMergeFormula(c f gnode) (line 19) backtracks the computed merge

formula over one CFG node (the node is the call parameter). Function setNewMergeLocation(c f gnode)

(line 21) sets the merge formula for the program location that is given as parameter.

Implementation Interpolation based path merging means that more breakpoints are set than without

merging. On a path that can not be merged, more locations are symbolically interpreted than without

merging. The implication check for merging further requires variable projections as described in the

following. Single assignments are used in the translation to logic to avoid destructive updates, i.e., single

assignment names are used for variables in the logic equations. Because a merge formula was computed

on a different path and the translation into logic uses single assignment names, a subset of variable names

in both formulas (merge formula and path constraint) has to be substituted. These variable names are the

last single assignment versions in both formulas of variables whose definitions reach the merge location.

These variables are projected (substituted) to the corresponding syntax tree names (names in the source

code). Because branch nodes are not necessarily explicit in the source node, the merge locations are not

exactly branch nodes, but rather the next following program location where a debugger breakpoint can

be set. This is the following expression or declaration with initializer. Merge location examples are given

in Figure 3.6.

Example

To illustrate the algorithm, it is applied to the example function shown in Figure 3.6. The example

is a ’bad’ function from the Juliet suite [BB12], which contains a path-sensitive buffer overflow in line
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17. The standard library functions fgets(), atoi() and rand() are treated as giving arbitrary (uncon-

strained) symbolic input. These functions are called in lines 5, 6 and 38. Static pre-analysis additionally

yields breakpoints for lines 3, 13, 16 and 27 as symbolic input dependent control flow decisions, and for

lines 17 and 28 as symbolic input dependent potential error locations. Together, these lines are indicated

as shaded in the figure. Breakpoints are set on these lines, so that the debugger stops there and they are

symbolically interpreted. The remaining not shaded locations are always just executed concretely, the

debugger is not stopped for them. For the example, we assume that the function is called directly before

program end, i.e., there are no backtracked formulas from other functions called later.

Algorithm progress is illustrated in Figure 3.7. The explored satisfiable program paths are marked

with green numbers 1-8 in exploration order. Unsat-cores for unsatisfiable bugs are shown as green

formulas (on path 1 and 2). Unsatisfiable branches are marked with a blue ’false’ symbol (⊥, four times).

Interpolants are computed as unsat-cores. Backtracked merge formulas are shown as red formulas next

to the respective control flow nodes. Merge locations are the branch nodes, i.e., ’then’ and ’else’. The

merge formulas are shown in red next to them. The ’true’ symbol (T) indicates an empty backtracked

merge formula (7 times). Path merges occur during the exploration of paths 5, 6, and 7. The respective

merge targets are marked ’A’ to ’C’. The bug is detected on path 8. This potential bug was unsatisfiable

on path 2. The respective computed (backtracked) unsat-core is removed, because any re-detection of

this bug on another path would be irrelevant. By removing constraints, more path merging can become

possible in general. The updated tree nodes are marked ’D’ and ’E’, the removed constraints are crossed

out in green.

Analysis results are also illustrated in Figure 3.6: merge locations and the corresponding merge

formulas (implications) are indicated in red on the right side of the figure. For any further call of this

function in the program under analysis, all paths can be merged at latest in lines 15 or 26 (because the

respective implications are always valid).

Correctness

The path merging algorithm for error and branch coverage is correct, if the same set of errors is

detected and the same branch coverage is reached compared to symbolic execution without merging.

This is true if only paths are merged (pruned), that can not cover previously uncovered code and can

not detect previously undetected errors. The proof idea is backwards structural induction, starting from

program end. The description uses different types of control flow graph nodes like exit node and decision

node. CFG node types are described on page 12. The path exploration order of the algorithm is depth-
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first. It is also shown as an intermediate result that merge formulas by way of construction are (like

path constraints) conjunctions of constraints, where each of the constraints is present in at least one path

constraint (selected by serial constraint elimination, unsat-core computation).

Interpolation at program end When symbolic execution reaches an exit node of the main() function

(i.e., program end), the merge formula for this location is set to:

M = ⊥

This can be seen as an empty conjunction of constraints (zero constraints, unconstrained). This means

that every other path reaching this node can be merged, because true is implied by all path constraints.

This merging is correct, because it is impossible that new code is covered or that a new bug is found after

an exit node of the main() function.

Interpolation of unsatisfiable paths Any path constraint P is a finite conjunction of the constraints

collected along the path:

P = p1 ∧ p2 . . . ∧ pN =
∧

j∈J

p j , J = [1 . . . N]

An unsatisfiable path is interpolated at the first branch node where the path constraint becomes unsatisfi-

able. That branch constraint is denoted B.

(P ∧ B) unsat

means that the following is valid:

¬(P ∧ B)

Interpolant I is computed as unsat-core of P ∧ B by serial constraint elimination from P:

I =
∧

j∈K

pi , K ⊆ J

The index set K is a subset of the index set J , i.e., I contains a subset of the constraints that P contains.

The merge formula M is:

M = I
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Another path P′ is merged if

P′ =⇒ M

This means that:

P′ ∧ B =⇒ I ∧ B

From

(I ∧ B) unsat

it follows that

(P′ ∧ B) unsat

i.e., the path P′ cannot take branch B. Therefore merging P′ into M at this location is correct.

Backtrack merge formula over one control flow node to non-decision node Consider a CFG node

L1 with child node location L2. Assume that the merge formula at the child node is M2 and that it is

correct. Assume that the merge formula M2 is a conjunction of constraints that occur in path constraints.

There are four possibilities:

1. M2 does not contain the constraint C1 that was generated by symbolic interpretation of L1, and

M1 is not a location with a potential error that is not yet detected. The merge formula M1 at L1 is

the same as the one at L2.

M1 = M2

Then the following holds true:

(P′ =⇒ M1) =⇒ { (P′ ∧ C1) =⇒ M2 }

A path P′ that is merged at L1 would have been merged at L2 anyway.

2. M2 contains the constraint C1 that was generated by symbolic interpretation of L1, and M1 is not

a location with a potential error that is not yet detected. The constraint C1 is removed from M2

to yield M1.

M2 = M1 ∧ C1

M1 = M2 \C1
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Then the following holds true:

(P′ =⇒ M1) =⇒ { (P′ ∧ C1) =⇒ (M1 ∧ C1) }

A path P′ that is merged at L1 would have been merged at L2 anyway.

3. M2 does not contain C1, but L1 is a potential error location and the error condition E1 is unsatis-

fiable under the current path constraint. The interpolated error guard is G1, computed by serial

constraint elimination from the path constraint. Therefore G1 is a conjunction of constraints. The

merge formula M1 at L1 becomes:

M1 = M2 ∧G1

Then the following holds true:

{ P′ =⇒ (M2 ∧G1) } =⇒ { (P′ ∧ C1) =⇒ M2 }

A path P′ that is merged at L1 would have been merged at L2 anyway, and the potential error at

L1 is not satisfiable on P′.

4. M2 contains C1, and L1 is a potential error location where the error condition E1 is unsatisfi-

able under the current path constraint. The interpolated error guard is G1, computed by serial

constraint elimination from the path constraint. Therefore G1 is a conjunction of constraints.

M1 = (M2 \ C1) ∧G1

Then the following holds true:

{ P′ =⇒
(

(M2 \C1) ∧G1

)

} =⇒ { (P′ ∧C1) =⇒ (M2 ∧ C1) }

A path P′ that is merged at L1 would have been merged at L2 anyway, and the potential error at

L1 is not satisfiable on P′.

In all cases, M1 is a conjunction of constraints that occur in path constraints (the ones that were generated

in L1 are dropped from M2 and any interpolated error guard is added as conjunction. The assumed

correctness of merging at L2 into M2 implies correctness of merging at L1 into M1.
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Backtrack merge formulas from control flow branch nodes to decision node This case is illustrated

in Figure 3.8. Location L3 is a decision node and has the two branch nodes L1 and L2 as children. The

branch condition from L3 to L1 is denoted B. Merge formula at L1 is M1, the merge formula at L2 is M2.

The merge formula at L3 becomes:

M3 = (M1 \ B) ∧ (M2 \ ¬B)

Given that M1 and M2 are conjunctions of constraints, then M3 also is a conjunction of constraints. A

new path P′ is merged into M3 if

P′ =⇒ M3

This means that P′ implies both M1 \ B and M2 \ ¬B:

(P′ =⇒ (M1 \ B)) ∧ (P′ =⇒ (M2 \ ¬B))

This yields both

(P′ ∧ B) =⇒ M1

and

(P′ ∧ ¬B) =⇒ M2

This means, that if P′ ∧ B is satisfiable, the path would have been merged at L1 anyway. And if P′ ∧ ¬B

is satisfiable, it would have been merged at L2 anyway. Therefore merging P′ at L3 into M3 is correct.

If the condition node L3 is a potential error location of a yet undetected error that is unsatisfiable on path

P, and the interpolated error guard is G, then merge formula M3 becomes:

M3 = (M1 \ B) ∧ (M2 \ ¬B) ∧ G

The correctness argumentation is identical, because:

((M1 \ B) ∧ (M2 \ ¬B) ∧ G) =⇒ ((M1 \ B) ∧ (M2 \ ¬B))
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¬B�

B ¬B

Figure 3.8 – Backtracking merge formulas

Figure 3.9 – Run-times with and without path merging [Ibi16a]

Figure 3.10 – Breakdown of the number of analyzed paths with merging [Ibi16a]
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Experiments

The implementation is evaluated with the Juliet buffer overflow test cases with fgets() from the

last section. The error condition is described as constraint violation in Section 4.2 on error detection

during symbolic interpretation. Aim of the experiments is to validate an analysis speed-up with path

merging for error and branch coverage without loss of detection accuracy compared to path coverage

(while path merging does require extra computation of interpolants, merge formulas and implication

checks, an overall speed-up is expected). Another aim is to validate the expected main reason for speed-

up, i.e., a reduction of the number of analyzed program paths (merging skips a subtree of the execution

tree). The results are shown in Figures 3.9 and 3.10. As expected, both the presented algorithm and

the path coverage algorithm accurately detect the contained errors for all flow variants except for flow

variant 21 (CFG builder exception).

Speedup with merging The measured run-times both with and without path merging are shown in

Figure 3.9. The figure’s time scale is logarithmic. Despite the additional analyses for path merging, there

is a clear speed-up for all test cases. The biggest speed-up is achieved for flow variant 12, which also

contains the largest number of satisfiable program paths.

Reduction in the number of analyzed paths Figure 3.9 on the right also shows the number of ana-

lyzed paths with path coverage on the one hand and with error and branch coverage on the other. There is

a clear reduction in the number of analyzed paths for all test programs. Merging prunes a subtree, which

in general splits into more than one satisfiable program path. The figure shows a strong correlation with

Figure 3.9 on the left, so that the reduction in the number of analyzed paths can be seen as the main

reason for the speed-up.

Proportion of merged paths Figure 3.10 shows a breakdown of the analyzed paths for merging only

(error and branch coverage). The analyzed paths are distinguished into paths, that are completely ana-

lyzed until program end, and others, that are merged at some point. The figure shows that for all test

cases the majority of analyzed paths is merged at some point, which is an additional reason for speed-up

and explains another part of it (with the reduction of the analyzed lengths of the paths that are merged).

3.6.4 Path Merging for Branch Coverage

Path merging for branch coverage is a special case of the presented algorithm for error and branch

coverage. Only unsat-cores for unsatisfiable branches are computed, unsat-cores for unsatisfiable poten-
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tial errors are not computed. A path is then pruned as early as it becomes clear that no extension can take

any previously unsatisfiable branch.

3.6.5 Path Merging for Modified Condition / Decision Coverage

For MC/DC, the described branch coverage algorithm can be applied with a minor adaptation. The

adaptation is to compute unsat-cores for unsatisfiable boolean constraints over individual decision pred-

icates. Conceptually this corresponds to transforming the source code by splitting decisions into a con-

catenation of simple decisions, and then applying the branch coverage algorithm.

3.6.6 A Coverage and Interpolation Hierarchy

A path constraint is the conjunction of constraints collected along the path. Interpolation is consid-

ered in this thesis as removal of constraints from the path constraint. Code coverage can be changed by

varying interpolation. With ’more’ interpolation it is meant here to remove more constraints from the

path constraint. In this section it is assumed that both the algorithms for branch coverage and for error &

branch coverage compute interpolants in the described deterministic way as serial constraint elimination.

The algorithm for path coverage is interpreted as path merging without any interpolation (no path con-

straint implies any other path constraint because they differ in at least one branch, therefore no merging

in possible). Merge formulas are yielded from interpolation. With fewer constraints in merge formulas,

more paths imply the merge formula and are pruned from the execution tree. The achieved coverage is

given by the set of remaining paths.

Figure 3.11 illustrates four interesting algorithms and corresponding coverage. Unsat-cores are not

unique. This corresponds to different path sets that can achieve the same coverage criterion. The left

side of the figure considers the analyzed path sets and the corresponding code coverage. ’Contains’

in arrow direction means that the set of analyzed program paths for one algorithm contains the set of

analyzed program paths for the other one. The right side of the figure considers constraint sets. The

set of constraints from the path constraint that remain after interpolation contains the set of constraints

for another algorithm in the direction of the ’contains’-arrow. For the merge formulas (conjunction

of interpolants) this means that a merge formula implies the merge formula of another algorithm in

’contains’-arrow direction, if both were computed in the same context for the same location.

Branch coverage (Backtracked) unsat-cores of unsatisfiable branches are used as merge formulas. A

path is only pruned if it implies the previously computed backtracked unsat-cores. This means, that any
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Figure 3.11 – Coverage and interpolation hierarchy [Ibi16a]

extension of the (pruned) path can not cover any yet uncovered branch. Therefore, this interpolation

achieves branch coverage. Branch coverage means, that every branch in the program that can be covered

with any program input is actually covered.

Error and branch coverage This is the algorithm described in Section 3.6.3. It uses unsat-cores

for unsatisfiable branches and additionally unsat-cores of potential (and yet undetected) errors. This

comprises unsat-cores necessary to achieve branch coverage. The additional constraints require to only

prune a path when all previously unsatisfiable error conditions remain unsatisfiable. This means that

any extension of the pruned path can not witness any yet undetected error. Error coverage means, that

every error that is satisfiable with any program input, and for whose potential existence a constraint is

generated, is actually witnessed on a remaining (not pruned) path.

Live context coverage In backtracking, the sets of dead and live variables are exactly known. Live

variables are the ones that are read on at least one extension of the current path. Only live variables can

contribute to unsat-cores in a path extension. This interpolation therefore comprises the interpolation

needed to achieve error and branch coverage. By not generating constraints for dead variables, path

constraints can become identical. Context coverage means that every program location is covered in

every distinct live context.
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Path coverage Complete path constraints (including constraints for dead variables) are used, no inter-

polation is done. Every path constraint is different, so no paths are pruned. Depth-first traversal without

path merging achieves path coverage, i.e., every satisfiable program path is actually covered. This in-

cludes (live) context coverage.

3.6.7 Relation to Abstract Interpretation

Abstract interpretation was shortly reviewed in the introduction on page 5, an overlap with certain

other program analysis approaches including symbolic execution was outlined on page 6. While sym-

bolic execution traverses (parts of) the execution tree, abstract interpretation performs a fixed-point iter-

ation on a graph in an abstract domain. The abstraction yields a finite state system (a finite graph) and

is typically computed with predicate abstraction. A prominent tool example is PVS [GS97]. In order to

speed up convergence of the fixed-point iteration, abstract interpretation uses Widening and Narrowing

operations [CC77]. Abstract interpretation can be applied for bug detection without false negatives, but

typically has false positives. A method to iteratively remove false positives is counterexample-guided

abstraction refinement (CEGAR [CGL+03]). It consists in adding predicates to remove spurious coun-

terexamples.

This chapter has illustrated that path merging folds the execution tree into a graph. This makes it

interesting to consider the relationship to abstract interpretation again. A program path through a loop

contains the same CFG node multiple times. In the backtracking phase of depth-first symbolic execution

with path merging, merge formulas are assigned to such CFG nodes multiple times (one assignment each

time when backtracking reaches the node). A later assignment assigns a more generalized (abstracted)

formula. This can be seen as an instance of widening in abstract interpretation. Further, interpolation

of unsatisfiable paths, interpolation at program end and interpolation of unsatisfiable potential error lo-

cations can be seen as widening in a similar way: abstractions (in the form of path constraints) are

weakened by removing constraints.

Some differences remain. Symbolic execution does not explore unsatisfiable paths. Unsat-cores

limit the widening of the abstraction. This can be used to limit widening to comprise only error-free

paths (using unsat-cores for unsatisfiable paths and unsatisfiable error conditions, subsection 3.6.3), or to

comprise only paths with limited coverage (unsat-cores for unsatisfiable paths, subsection 3.6.4). Further,

the work at hand considers only finite execution trees and in contrast to abstract interpretation does not

consider completeness.





Chapter 4

Automated Error Detection

Interesting bugs are context-sensitive, and a context-sensitive analysis is needed to accurately detect

them. This chapter describes automated bug detection during symbolic execution, where the aim is to

detect bugs as accurately as possible within one (partial) traversal of the execution tree. Detection of bugs

that depend on symbolic input requires a solver, while detection of bugs that only depend on concrete

input does not.

The work at hand combines static and dynamic checks in order to detect both bugs depending on

symbolic input and bugs depending only on concrete input. The former type of bugs is detected during

symbolic interpretation, while the latter type is detected with binary instrumentation during concrete

execution.

Consecutive faults are not to be detected. When a bug is detected, it is reported. Then, the bug

condition is negated and added to the path constraint, in order to find additional bugs on extensions of

the current path. A special case are data races. If a data race occurs, then negating the bug condition

means pruning the current path. Therefore, FIFO scheduling on one CPU core is used (Section 3.1). This

prevents races, while many race conditions can still be detected (Section 4.3.5).

Detection of bugs that depend on symbolic input with the SMT solver during symbolic interpretation

is described in Section 4.2, detection of bugs that only depend on concrete input during the concrete

execution phases of selective symbolic execution with binary instrumentation is described in Section

4.3.
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4.1 Test Programs and Modelled Part of Standard Library

4.1.1 Modelled Part of Standard Library

The usage of function models in general is described on pages 19ff. The following functions are

modelled.

C standard library getenv, memcpy, rand, srand, printf, fprintf, fwprintf, fclose, fwgets, fgetws, fopen,

fgets, fscanf, gets, puts, strcpy, strlen, wcscpy, wcslen, time, atoi, bind, listen, accept, connect

Posix pthread create, pthread exit, pthread join, pthread mutex init, pthread mutex destroy, pthread mutex lock,

pthread mutex unlock

Windows LogonUserA, LogonUserW, CryptAcquireContext, CryptCreateHash, CryptHashData, Crypt-

DeriveKey, CryptEncrypt

Functions from the C standard library are either modelled to simply generate unconstrained input.

This is the case for rand() and fgets(), for example. The function model just instantiates symbolic vari-

able(s) without setting constraints on them. For other functions, a model needs to instantiate symbolic

variable(s) with constraints that depend on symbolic function parameters, in order to enable accurate bug

detection. This is the case for memcpy(), for example. The formula (constraint) of the destination buffer

depends on the symbolic source buffer.

The models for pthread functions like pthread create() and pthread exit() manage the symbolic stack

objects for thread operations. For thread creation, a new symbolic stack object is instantiated to enable

symbolic interpretation. The mutex functions were modelled for a first experiment on data race detection

during symbolic interpretation, before this was removed and ThreadSanitizer [SI09] was used for more

efficient data race detection during concrete execution [Ibi16b]. Data race detection is discussed on page

84ff.

Windows cryptographic functions and standard library functions that perform input/output operations

were modelled for a first experiment on information exposure detection during symbolic interpretation.

The models set information flow labels that identify sensitive information like password or keys (models

of cryptographic functions) or environment variables (model of getenv() from the standard library) in

order to enable detection of information exposures by propagating these labels through the data flow.

These labels are checked in the function models of output functions like printf(). Information exposure
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detection is discussed on page 83f.

4.1.2 Test Programs from Juliet Suite

The following tests from the Juliet Suite [Uni13] are used:

— CWE121 Stack Based Buffer Overflow char type overrun memcpy

— CWE121 Stack Based Buffer Overflow CWE129 fgets

— CWE366 Race Condition Within Thread global int

— CWE366 Race Condition Within Thread int byref

— CWE835 Infinite Loop do

— CWE835 Infinite Loop do true

— CWE835 Infinite Loop for

— CWE835 Infinite Loop for empty

— CWE835 Infinite Loop while

— CWE835 Infinite Loop while true

— CWE190 Integer Overflow char fscanf add

— CWE190 Integer Overflow char fscanf multiply

— CWE190 Integer Overflow char fscanf square

— CWE190 Integer Overflow char max add

— CWE190 Integer Overflow char max multiply

— CWE190 Integer Overflow char max square

— CWE190 Integer Overflow char rand add

— CWE190 Integer Overflow char rand multiply

— CWE190 Integer Overflow char rand square

— CWE190 Integer Overflow int64 t fscanf add

— CWE190 Integer Overflow int64 t fscanf multiply

— CWE190 Integer Overflow int64 t fscanf square

— CWE190 Integer Overflow int64 t max add

— CWE190 Integer Overflow int64 t max multiply

— CWE190 Integer Overflow int64 t max square

— CWE190 Integer Overflow int64 t rand add

— CWE190 Integer Overflow int64 t rand multiply

— CWE190 Integer Overflow int64 t rand square

— CWE190 Integer Overflow int connect socket add

— CWE190 Integer Overflow int connect socket multiply

— CWE190 Integer Overflow int connect socket square

— CWE190 Integer Overflow int fgets add

— CWE190 Integer Overflow int fgets multiply

— CWE190 Integer Overflow int fgets square

— CWE190 Integer Overflow int fscanf add
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— CWE190 Integer Overflow int fscanf multiply

— CWE190 Integer Overflow int fscanf square

— CWE190 Integer Overflow int listen socket add

— CWE190 Integer Overflow int listen socket multiply

— CWE190 Integer Overflow int listen socket square

— CWE190 Integer Overflow int max add

— CWE190 Integer Overflow int max multiply

— CWE190 Integer Overflow int max square

— CWE190 Integer Overflow int rand add

— CWE190 Integer Overflow int rand multiply

— CWE190 Integer Overflow int rand square

— CWE190 Integer Overflow short fscanf add

— CWE190 Integer Overflow short fscanf multiply

— CWE190 Integer Overflow short fscanf square

— CWE190 Integer Overflow short max add

— CWE190 Integer Overflow short max multiply

— CWE190 Integer Overflow short max square

— CWE190 Integer Overflow short rand add

— CWE190 Integer Overflow short rand multiply

— CWE190 Integer Overflow short rand square

— CWE190 Integer Overflow unsigned int fscanf add

— CWE190 Integer Overflow unsigned int fscanf multiply

— CWE190 Integer Overflow unsigned int fscanf square

— CWE190 Integer Overflow unsigned int max add

— CWE190 Integer Overflow unsigned int max multiply

— CWE190 Integer Overflow unsigned int max square

— CWE190 Integer Overflow unsigned int rand add

— CWE190 Integer Overflow unsigned int rand multiply

— CWE190 Integer Overflow unsigned int rand square

— CWE259 Hard Coded Password w32 char

— CWE325 Missing Required Cryptographic Step w32 CryptCreateHash

— CWE325 Missing Required Cryptographic Step w32 CryptDeriveKey

— CWE325 Missing Required Cryptographic Step w32 CryptEncrypt

— CWE325 Missing Required Cryptographic Step w32 CryptHashData

— CWE666 Operation on Resource in Wrong Phase of Lifetime accept bind listen

— CWE666 Operation on Resource in Wrong Phase of Lifetime accept listen bind

— CWE666 Operation on Resource in Wrong Phase of Lifetime bind accept listen

— CWE666 Operation on Resource in Wrong Phase of Lifetime listen accept bind

— CWE666 Operation on Resource in Wrong Phase of Lifetime listen bind accept
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— CWE526 Info Exposure Environment Variables basic

— CWE534 Info Exposure Debug Log w32 char

— CWE534 Info Exposure Debug Log w32 wchar t

— CWE535 Info Exposure Shell Error w32 char

— CWE535 Info Exposure Shell Error w32 wchar t

The Juliet Suite combines baseline bugs with different control flow and data flow variants [Uni13]. The

flow variants for C are listed in Table 4.1.

4.2 Error Detection During Symbolic Interpretation

Potential error locations that may directly depend on symbolic input are determined during static

pre-analysis (Section 2.4), and breakpoints are set on these locations. When the debugger breaks at such

a location, a bug condition is generated. When the path constraint together with the bug condition are

satisfiable, then the bug with corresponding input is reported. The solver call with path constraint P and

error condition E is:

check-sat( P ∧ E )

If the solver returns true, then the detected error is reported.

4.2.1 Memory Access Errors

Potential error locations are the following expression types with at least one symbolic parameter:

— array subscript expressions

— pointer dereference

Checks are triggered during interpretation of such expressions. An array subscript expression contains

an array expression (the array) and a subscriptexpression (the index). The size of the array (buffer) is

denoted as bS , the integer index is denoted as i. Both may have concrete or symbolic values, i.e., they

may be logic formulas. A pointer is modelled by the symbolic interpreter as having a target and an

integer offset. The size of the pointer target is also denoted as bS , the integer offset is also denoted as i. A

buffer underread or buffer underwrite (CWE-127,124) means that i < 0 is satisfiable, i.e., the index/offset

can be negative. The error condition is:

Ebufferunderflow = (i < 0)
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Flow variant Description

1 Baseline - Simplest form of the flaw

2 if(1) and if(0)

3 if(5==5) and if(5!=5)

4 if(STATIC CONST TRUE) and if(STATIC CONST FALSE)

5 if(staticTrue) and if(staticFalse)

6 if(STATIC CONST FIVE==5) and if(STATIC CONST FIVE!=5)

7 if(staticFive==5) and if(staticFive!=5)

8 if(staticReturnsTrue()) and if(staticReturnsFalse())

9 if(GLOBAL CONST TRUE) and if(GLOBAL CONST FALSE)

10 if(globalTrue) and if(globalFalse)

11 if(globalReturnsTrue()) and if(globalReturnsFalse())

12 if(globalReturnsTrueOrFalse())

13 if(GLOBAL CONST FIVE==5) and if(GLOBAL CONST FIVE!=5)

14 if(globalFive==5) and if(globalFive!=5)

15 switch(6) and switch(7)

16 while(1)

17 for loops

18 goto statements

21 Flow controlled by value of a static global variable. All functions contained in one

file.

22 Flow controlled by value of a global variable. Sink functions are in a separate file

from sources.

31 Data flow using a copy of data within the same function

32 Data flow using two pointers to the same value within the same function

34 Use of a union containing two methods of accessing the same data (within the same

function)

41 Data passed as an argument from one function to another in the same source file

42 Data returned from one function to another in the same source file

44 Data passed as an argument from one function to a function in the same source file

called via a function pointer

45 Data passed as a static global variable from one function to another in the same source

file

51 Data passed as an argument from one function to another in different source files

52 Data passed as an argument from one function to another to another in three different

source files

53 Data passed as an argument from one function through two others to a fourth; all four

functions are in different source files

54 Data passed as an argument from one function through three others to a fifth; all five

functions are in different source files

61 Data returned from one function to another in different source files

63 Pointer to data passed from one function to another in different source files

64 void pointer to data passed from one function to another in different source files

65 Data passed as an argument from one function to a function in a different source file

called via a function pointer

66 Data passed in an array from one function to another in different source files

67 Data passed in a struct from one function to another in different source files

68 Data passed as a global variable in the ”a” class from one function to another in

different source files

Table 4.1 – The Juliet suite combines baseline bugs with data and control flow variants [Uni13]
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Figure 4.1 – Screenshot error reporting
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A buffer overread (CWE-126) or buffer buffer overwrite (overflow; CWE-121,122) means that i ≥ bS is

satisfiable, i.e., the index/offset can be equal to or larger than the buffersize. The error condition is:

Ebufferoverflow = (i >= bS )

Examples for buffer overflows from the Juliet suite and their detection are discussed on page 50 in Section

3.6.3. A screenshot of error reporting in the CDT GUI is shown in Figure 4.1.

4.2.2 Number Format Errors

Potential error locations are the following expression types with at least one symbolic parameter:

— arithmetic operations

— type casts

Arithmetic expressions are unary expressions (operator and one expression) or binary expressions (op-

erator and two expressions). A prominent bug type are integer overflows or wrap arounds (CWE-190).

The error condition is:

Enumoverflow = (expr > MAX)

where expr is the translated arithmetic expression and MAX is the maximum value of the result type

(concrete value). Correspondingly, the error condition for integer underflows (CWE-191) is:

Enumunderflow = (expr < MIN)

where MIN is the minimum value of the result type (concrete value). Signed to unsigned conversion

errors or unsigned to signed conversion errors (CWE-195,196) are detected along the same line. The

error conditions for number typecasts are:

Ecastoverflow = (expr > MAX)

Ecastunderflow = (expr < MIN)

where MAX is the maximum value of the result type and MIN is the minimum value of the result type. A

related bug type is division by zero (CWE-369). Potential error locations are division expressions (binary

expression with division operator) with symbolic divisor expression. For detection, the solver is queried
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Figure 4.2 – Single-path loop, multi-path loop and transformation monoid [IM15]

whether a divisor of zero is satisfiable under the path constraint. The error condition is:

Edivzero = (expr = 0)

where expr is the divisor expression.

4.2.3 Infinite Loops

Some infinite loops are intended by the developer, for example in reactive systems. On the other

hand, input-dependent infinite loops are often unintended, i.e., bugs. Infinite loop bugs are both an issue

of software safety and of software security. A program that runs into an infinite loop bug becomes unre-

sponsive, which violates safety properties. If an infinite loop can be triggered with program input by an

attacker, the program is vulnerable to a denial of service attack. Under the common weakness enumera-

tion, infinite loops are known as CWE-835 (’loop with unreachable exit condition’) or ’unchecked input

for loop condition’ (CWE-606).

Potential error locations are (revisited) decision nodes that depend on symbolic input. Loops can be

categorized into single-path loops, multi-path and nested loops. A loop model is illustrated for a single-

path loop in figure 4.2 (upper left). The figure shows the vector x of loop variables, a path constraint

P on which the loop is reached from the program entry point, the loop guard set G and the loop update
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function U(x). The vector x′ denotes the loop variables after update, so that one loop update computes

x′ = U(x)

The problem of interest is to detect all loops, that may run infinitely for any program input. This includes

the question whether such a loop can be reached on a satisfiable path with corresponding input.

A loop may run a different number of iterations for different input. This means that it computes

different functions for different sets of input. The sequence (x(k))k∈N of values of x for each iteration is

denoted as the orbit of x. The loop effect is described with function composition of the update functions

of different iterations. If there is input for the single-path loop from figure 4.2 for which it runs n

iterations, then it computes the orbit:

x = x(0) 7→ x(1) = U(x(0))

7→ x(2) = U(x(1)) = U2(x(0))

7→ . . .

7→ x(n) = Un(x)

A multi-path loop contains different loop update functions for each path. A two-path loop is illustrated

in Figure 4.2 (upper right). Different paths through the loop in each iteration may be taken for different

input sets. The possible compositions of update functions form a transformation monoid, which is also

illustrated in Figure 4.2 (bottom). If the loop is not taken (0 iterations), this corresponds to the identity

mapping ID of x. For one iteration the resulting function is either U1 or U2. For a two-path loop (e.g.

an If/Else statement within a loop) the transformation monoid is a binary tree. The problem is to detect

whether a loop can be reached with adequate input so that an infinite orbit is satisfied.

This subsection describes an algorithm, that is based on fixed-point satisfiability checks with the

solver and that makes use of Brouwer’s fixed-point theorem [Bro11] to speed-up analysis in case of

’simple’ loops. Brouwer’s theorem states that any continuous mapping of a compact (bounded and closed)

convex set into itself has a fixed-point. The number formats are discrete and finite, so that an infinite orbit

(without overflow) must be a periodic orbit, i.e.

x(t+p) = x(t) for some p > 0, t ≥ 0

The symbolic execution engine keeps the program path in memory which is symbolically interpreted
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at the moment. A loop is reached with symbolic execution from a program entry point on a path which

we call stem path (as in [GRH+08]). When an already visited decision node (which is on the current

path) is visited again, the algorithm to test for an infinite loop is called. The path is split into stem and

loop body at each previous occurrence of the loop decision node. Loop variables xi’ from the loop body

and the corresponding xi from the stem as their previous values are identified.

The algorithm performs two types of tests. The first type is a context-free analysis to decide whether

’simple’ loops terminate for all input, or whether they are infinite for all input. The context-free analysis

is performed only once per loop statement. The second type performs context-sensitive non-termination

analysis of the loops which have not yet been decided in the first step. Both types are run during symbolic

execution. The method for context-free checks is given as pseudo-code in Algorithm 4. The method for

context-sensitive non-termination checks is depicted as pseudo-code in Algorithm 5.

Context-free (Non-)Termination Tests for ’Simple’ Loops

Loop property determination The three properties of interest are whether the loop is single-path,

whether it is linear with convex guard set (only linear arithmetic), and whether it contains the modulo

operator. There is an AST subtree corresponding to the loop compound statement, which is accessible

through a reference from the CFG decision node. This AST subtree is traversed once with an AST visitor.

This can be done during static pre-analysis (Section 2.4), or when the decision node is revisited for the

first time on any path. The property determination needs to run only once per loop statement.

The context-free tests are performed only once per loop statement, when the loop decision node is

revisited for the first time on any path. Stem path equations are not included in the equation system,

which removes the context of the loop. The remaining constraints are the guard condition before the

loop, the loop update and the guard condition after the update. Any recomputations later when the loop

is reached with a different path constraint would therefore be redundant. The algorithm generates an

additional constraint for termination and non-termination checks respectively and tests equation system

satisfiable with the SMT solver (compare Algorithm 4).

Termination This check is performed for single-path loops with linear arithmetic and convex guard set,

which do not contain the modulo operator (which would destroy the precondition of Brouwer’s theorem).
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The loop guard can be expressed in matrix notation as:

Gx ≤ g, G ∈ Rk×n
, g ∈ Rn

The loop guard is a convex set if it consists of conjunctively connected linear inequalities (no disjunc-

tions). The loop update function is then:

x′ = U(x) = Ux + u, U ∈ Rn×n
, x, x′, u ∈ Rn

The loop always terminates if the orbit leaves the guard set for all possible input vectors {x | Gx ≤ g}

after a finite number of iterations. In the paragraph on soundness and bounded completeness on page 68

it is explained in detail that as a consequence of Brouwer’s fixed-point theorem [Bro11] there can only

be a periodic orbit if the loop update function U(x) contains a fixed-point x(1) = x(0) within the guard

set:

Gx ≤ g

∧ x′ = Ux + u

∧ x′ = x

If the constraint solver answers ’unsat’ to this query, the loop is marked as terminating.

Non-termination This check is performed for single-path loops (possibly non-linear). If the loop was

already decided to always terminate, then this check is not performed. The loop is non-terminating for

all input if:

∀(x ∈ G).U(x) ∈ G

⇔ ¬∃(xi ∈ G).U(xi) < G

The constraint solver is therefore asked to check satisfiability of:

x ∈ G ∧ x′ = U(x) ∧ ¬(x′ ∈ G) (4.1)

If the solver answers ’unsat’ to this query, the loop is marked as non-terminating.
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1 checkContextFree(CFNode node, SymVars x, SymVars x′)

2 if (isLinearNoModulo(node)) then

3 // 1. check terminating:

4 s1 = check-sat
(

Gx ≤ g ∧ x′ = Ux + u ∧ x′ = x
)

;

5 if (s1 == unsat) then

6 markTerminating(node);

7 return;

8 if (isSinglePath(node)) then

9 // 2. check infinite:

10 s2 = check-sat
(

x ∈ G ∧ x′ =U(x) ∧ ¬(x′ ∈ G)
)

;

11 if (s2 == unsat) then

12 markNonTerminating(node);

13 return;

Algorithm 4: Context-free termination and non-termination checks for ’simple’ loops [IM15].

Context-sensitive Non-Termination Tests for Remaining Loops

Symbolic execution automatically explores the satisfiable part of the transformation monoid, given

the current path constraint. Loops which have not been decided by the context-free analysis are analyzed

context-sensitively during symbolic execution. Such loops are e.g. multi-path loops or loops which

terminate only for a partial input set. If the loop guard is satisfiable for the stem path context, then

symbolic execution unrolls the loop once and checks guard satisfiability again. It is detected that a loop

is closed when the same decision node on the path is revisited (the unrolled loop body is then denoted

as ’closed loop’). If the guard condition is satisfiable also after unrolling the loop body, then the loop

variables are identified and the non-termination analysis algorithm is called. If the same decision node

is already several times on the path, then several loops are closed at the same time. The test is then

run for each of the closed loops. The test checks the existence of a fixed-point in the unrolled loop.

This corresponds to checking for a satisfiable periodic orbit in the respective composite function of the

transformation monoid, that corresponds to the taken loop unrolling branches. A fixed-point of, e.g.,U4
1

is a periodic orbit of U1 with periodicity 4. A fixed-point of an n-fold function composition from the

transformation monoid is a periodic orbit through the loop with periodicity p = n. The loop body path

constraint contains the constraints for correct domains of the respective update functions. By checking

for fixed-points for all loop closed events on the current path, also periodic orbits with t prefix iterations

and periodicity p = n − t are found. The fixed-point equations for the loop variables are in SMTLIB
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Figure 4.3 – Analysis run-times for infinite loop test programs [IM15]

notation:

(assert (= x1’ x1 ))

. . .

(assert (= xn’ xn ))

where the xi’ and xi are replaced with the actual (translated) loop variable names in single assignment

form. If the solver answers SAT, an infinite loop is detected and reported. Corresponding input triggering

the infinite loop bug can be queried from the solver with the SMTLIB ’get-value’ command.

1 checkContextSens(CFNode node, SymVars x, SymVars x′)

2 P(x) = getPathConstraint();

3 L(x′) = getUnrolledLoopConstraint();

4 s = check-sat
(

P(x) ∧ L(x′) ∧ (x′ == x)
)

;

5 if (s == sat) then

6 reportError(node, ’infinite Loop’);

7 return;

8 else

9 return;

Algorithm 5: Context-sensitive non-termination check for remaining loops [IM15].

Soundness

Proposition 1. The algorithm does not compute any false positive infinite loop detections.

Proof. The detection algorithm is constructive. An infinite loop is reported in two cases:
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Case 1. by the context-free check if:

check-sat
(

G(x) ∧ (x′ = U(x)) ∧ ¬(G(x′))
)

== unsat

i.e. there exists no loop input xi ∈ G(x) for which the next iteration is not also taken. This means that the

loop is infinite if it can be reached with any input. The check function is only called if the loop is reached

with satisfiable input during symbolic execution. The program therefore indeed contains a reachable

infinite loop.

Case 2. by the context-sensitive check if:

check-sat
(

P(x) ∧ L(x′) ∧ (x′ == x)
)

== sat

i.e. there is a program input for which the loop is reached with P(xi), so that loop guard and an un-

rolled loop body are satisfiable and have a fixed-point L(xi). The program therefore indeed contains a

reachable infinite loop.

�

Bounded completeness

In order to prove bounded completeness, it must first be ensured that the context-free termination

check never wrongly marks a loop as terminating if the loop does not always terminate. Otherwise this

would prevent the context-sensitive non-termination check from being performed and would lead to false

negative detections. This means:

Proposition 2. The context-free termination check is sound, i.e., when a context-free single-path loop

with convex guard set and linear update function without modulo operator does not have a fixed-point,

then there is no infinite orbit through it with any stem path constraint.

Proof. By contradiction. The proof is a minor adaptation from [HCS06]. Assume there is a periodic orbit

(x(k)), k ∈ N0, through the loop, i.e. ∀k. x(k) ∈ G. ∧ x(t+p) = x(t). Without loss of generality, t = 0 can be

assumed, i.e., k loop iterations belong to the unrolled loop body and there are no prefix iterations. LetV

be the affine space of the lowest dimension that contains the orbit. By intersecting G and V, a compact

convex set G ∩ V is yielded. Furthermore x(k) ∈ G ∩ V; 0 ≤ k ≤ p. The convex hull X = Conv(x(k))

in considered. It is X ⊂ V ∩ G and ∀xi ∈ X,∀q ∈ N : Uq(xi) ∈ X, i.e. X is a ’positively invariant

set’. The closure X is a compact convex positively invariant set in V. Now the Brouwer fixed-point
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Figure 4.4 – Screenshot infinite loop detection [IM15]

theorem [Bro11] can be applied on the loop update function U : X → X. It guarantees the existence of

a fixed-point inU. �

Now bounded completeness can be considered:

Proposition 3. When all loops are unrolled up to a depth of n (in all satisfiable contexts), then no infinite

loop bug with t prefix iterations and an orbit periodicity of p ≤ n − t is missed.

Proof. Unrolling all loops up to a depth of n (if satisfiable) means building all composition functions of

the loop’s transformation monoid up to level n. Any orbit with periodicity p ≤ n − t is a fixed-point of a

composite function from the transformation monoid with level l ≤ n − t and is therefore not missed. �

Trading-off complexity versus accuracy

It is possible to reduce the computational effort for infinite loop detection at the expense of false

negative detections. One can test for not all possible infinite loops, but for only a certain subset. For

example, one can test only loops with restricted loop path length, by allowing a maximum of n branches

backwards. Again, there is a trade-off between computational effort and detection accuracy.

Experiments

The implementation is validated with the infinite loop test programs from the Juliet test suite [BB12,

Uni13]. These test programs correspond to CWE-835. Juliet’s Test cases for the related CWE-606
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1 s t a t i c void good1 ( ) {

2 i n t i = 0 ;

3 wh i l e ( i >= 0) {

4 / / FIX : Add a b r e a k p o i n t i f i =10

5 i f ( i == 10) {

6 break ;

7 }

8 p r i n t I n t L i n e ( i ) ;

9 i = ( i + 1) % 256;

10 }

11 }

12

13 void C W E 8 3 5 I n f i n i t e L o o p f o r e m p t y 0 1 b a d ( ) {

14 i n t i = 0 ;

15 / / FLAW: I n f i n i t e Loop

16 f o r ( ; ; ) {

17 p r i n t I n t L i n e ( i ) ;

18 i ++;

19 }

20 }

21

22 void C W E 8 3 5 I n f i n i t e L o o p f o r 0 1 b a d ( ) {

23 i n t i = 0 ;

24 / / FLAW: I n f i n i t e Loop

25 f o r ( i = 0 ; i >= 0 ; i = ( i + 1) % 256) {

26 p r i n t I n t L i n e ( i ) ;

27 }

28 }

Figure 4.5 – Example tests for detection of infinite loops from [Uni13]

(’unchecked input for loop condition’) are not used, because those loops are in fact all terminating (but

possibly with a very large number of iterations). The Juliet suite (current version 1.2) contains six test

programs for infinite loop detection. All contained infinite loops are input-independent. In order to test

the algorithm, the engine is run statically, i.e., without debugger. All CFG nodes are interpreted. A differ-

ent algorithm, that detects infinite loops during selective symbolic execution (via binary instrumentation)

is discussed in section 4.3.3.

Example ’good’ (terminating) and ’bad’ functions (with infinite loop) are shown in Figure 4.5. The

’good’ multi-path loop (line 1-11) is unrolled ten times during analysis, at which point termination is

proven. The figure also contains a single-path empty for-loop (line 13-20) which is non-terminating for

all input. The loop guard is simply ’true’, and the bug is detected during the context-free non-termination

check. The figure further contains another single-path for-loop which is non-terminating for all input and

is decided with the context-free test. The context-free termination check is not performed in this case

because the loop contains a modulo operator. Detection runtimes are shown in Figure 4.3. All 6 test

programs are correctly decided within less than three seconds each. A screenshot of error reporting is

shown in figure 4.4.
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4.3 Error Detection During Concrete Execution

Instrumentation and dynamic analysis are used to detect bugs during concrete execution. Rather than

performing checks during interpretation, the program under test is instrumented to make it check itself.

Binary instrumentation adds instructions to collect relevant runtime information in shadow memory and

to check potential bug conditions. This section describes the combination of symbolic execution and

binary instrumentation. The SMT solver is not needed to decide the concrete bug conditions, but it is

used to drive execution into interesting program paths. For most bug types, available binary instrumen-

tation can be reused. Examples are the address sanitizer [SBPV12] or the thread sanitizer [SI09]. Both

of them are integrated in compilers like gcc, so that the program under test can be instrumented during

compilation. The work at hand uses the following available tools: address sanitizer, thread sanitizer and

gcov. These tools do not know anything of symbolic or concolic execution. The sanitizers are used to

detect bugs during concrete execution (between debugger breakpoints) with binary instrumentation. Ad-

dress sanitizer detects memory access errors, Subsection 4.3.1. Thread sanitizer detects race conditions

(Subsection 4.3.5), deadlocks and multiple (un)locks (Subsection 4.3.6). Gcov instrumentation is used

to trace coverage of concrete execution and the combination with symbolic execution enables detection

of dead code (Subsection 4.3.7). For the detection of infinite loops which are independent of symbolic

input, a detection algorithm is developed in Subsection 4.3.3). The source code under test is compiled

and statically linked with the sanitizer libraries. Breakpoints are set on the sanitizer error report functions.

In case the debugger breaks at such a location, the bug is localized by following the call stack back into

the source files of interest.

4.3.1 Memory Access Errors

The address sanitizer [SBPV12] instruments memory accesses and detects memory corruption bugs

like buffer overflows (CWE-121, 122,124,126,127), write-what-where conditions (CWE-123) or ac-

cesses to dangling pointers (use-after-free, CWE-416) in many situations. In [SBPV12], it is reported

that the instrumentation slows down execution by about 73% and increases memory usage about 3.4

times.

Experiments Detection accuracy is evaluated with 19 test programs from Juliet [Uni13], that contain

buffer overflows on the stack with memcpy(). Figure 4.6 shows an example. The ’bad’ function contains

a ’baseline’ bug (simplest flow variant) with memcpy in line 6. The bug is that the size of the complete

struct is used where only the size of a contained array is meant. The debugger breaks on the address



4.3. Error Detection During Concrete Execution 73

1 void CWE121 memcpy 01 bad ( ) {

2 c h a r v o i d c v s t r u c t ;

3 c v s t r u c t . y = ( void ∗ ) SRC STR ;

4 / / FLAW: o v e r w r i t e t h e p o i n t e r y

5 memcpy ( c v s t r u c t . x , SRC STR ,

6 s i z e o f ( c v s t r u c t ) ) ;

7 c v s t r u c t . x [ ( s i z e o f ( c v s t r u c t . x ) /

8 s i z e o f ( char ) ) −1]= ’ \0 ’ ;

9 p r i n t L i n e ( ( char ∗ ) c v s t r u c t . x ) ;

10 p r i n t L i n e ( ( char ∗ ) c v s t r u c t . y ) ;

11 }

Figure 4.6 – Example buffer overflow from [Uni13]

0 0.5 1 1.5 2 2.5 3 3.5 4

runtime [s]

fl
o

w
v
a
ri

a
n

t

Figure 4.7 – Detection run-times for buffer overflow tests [Ibi15b]

sanitizer’s error reporting function and the bug is correctly localized. For flow variant 9 (’control flow

depending on global variables’), the address sanitizer first misses the overflow, but then detects it through

reception of a segmentation fault signal from the operating system. The results are illustrated in Figure

4.7. All bugs are detected in about 1-2s each.

4.3.2 Number Format Errors

Current compilers like gcc also support instrumentation for detection of integer overflows and related

errors (’undefined behaviour sanitizer’). The compiler inserts checks that are executed during concrete

execution.

4.3.3 Infinite Loops

The detection of infinite loops that directly depend on symbolic input is discussed in Section 4.2.3

(in this case, the SMT solver is used). SMT solver checks for such infinite loops are only performed at

revisited interpreted decision nodes.
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The presence of an infinite loop that only depends on concrete input causes one of the two following

effects during selective symbolic execution. Either the concrete execution runs into the infinite loop

between two symbolic interpretation locations. In this case, the debugger becomes unresponsive. Or,

interpretation is performed only inside this infinite loop. This would correspond to an infinite sequence

of interpretation locations. It is assumed in this subsection, that the infinite loop does not contain any

decision that depends on symbolic input (such a location would be interpreted and the loop detected with

the solver).

This section presents an algorithm for automated detection of infinite loops with dynamic analysis. It

is sufficiently lightweight to be applied continuously at runtime, i.e., during concrete execution. It does

not rely on a constraint solver. The algorithm is based on autocorrelation, a computation commonly

used in many areas of applied statistics: One example is in time series analysis to identify periodic

changes. Another example is in signal processing, for synchronization in communication systems. Here,

autocorrelation is applied as an efficient way to compute the lengths of periodic branch sequences on-the-

fly.

Algorithm

Autocorrelation is the correlation of a function f (n) with itself at different points in time. It computes

the similarity between the function and a time-lagged version of itself, where the time lag l is variable.

The (discrete) autocorrelation R f f at lag l for a real-valued function f (n) is:

R f f (l) =
∑

n∈Z

f (n) f (n − l)

Detecting periodic infinite loops For a periodic function f (n) it is:

f (n + p) = f (n)

where p is the period length. The autocorrelation function R f f (l) always has a peak value for l = 0. For

a periodic function of period p, the autocorrelation also peaks at the period length l = p and its integer

multiples. For the detection of infinite loops in programs, the autocorrelation is slightly adapted as

described in the following. A path through a program can be represented by the corresponding sequence

of branches, i.e., the sequence of branch target addresses. The branches comprise both conditional
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branches and unconditional branches (jumps). A branch target address sequence is denoted as:

b(n) n ∈ [0,m]

where b(0) is the first branch after the program’s entry point, and b(m) is the last taken branch, leading

to the current program execution state. The basic idea is to detect an infinite loop through the branch

sequence, which is assumed to become periodic. To this end, the autocorrelation of the branch sequence

is computed on-the-fly during program execution.

Rbb(l,m) =

m
∑

n=1

b(n)b(n − l) , l = 0..m

The value for l = 0 is not of interest and not computed, because an infinite loop has a positive period

length. If the program runs into an infinite loop with period length p, the autocorrelation will show a

peak at Rbb(l = p,m), where the peak value increases with the number of branches m. Unlike in other

applications of autocorrelation where a periodic function undergoes some time variance due to noise,

here there are have identical periods. Therefore, the multiplication is replaced with Kronecker’s delta

function:

δ(i, j) =































1 if i = j

0 else

i, j ∈ Z

That yields:

Rbb(l,m) =

m
∑

n=1

δ
(

b(n), b(n − l)
)

, l = 0..m

i.e., the autocorrelation value is only increased if the branch target address is identical to the target

address of l branches before. The recursive version for on-the-fly computation is:

Rbb(l,m) = Rbb(l,m − 1) + δ
(

b(m), b(m − l)
)

Also the falsification of an infinite loop hypothesis is to be considered. If a periodic sequence is broken,

the corresponding correlation values are reset. The recursive computation becomes:

Rbb(l,m) =































Rbb(l,m − 1) + 1 if b(m) = b(m − l)

0 else

(4.2)
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1 i n t main ( i n t argc , char ∗∗ a rgv ) {

2 unsigned i n t i , j , k = 0 ;

3 / ∗ I n f i n i t e loop : i n c r e m e n t i i n s t e a d of j ∗ /

4 f o r ( j = 1 ; j < 0 x10000 ; i ++)

5 f o r ( i = 0 ; i < 0 x10 ; i ++)

6 k++;

7 }

Figure 4.8 – Sample C program containing an infinite loop

1 004004 b6 <main > :

2 004004 b6 : push rbp

3 004004 b7 : mov rbp , rsp

4 004004 ba : mov DWORD PTR [ rbp−0x14 ] , e d i

5 004004 bd : mov QWORD PTR [ rbp−0x20 ] , r s i

6 004004 c1 : mov DWORD PTR [ rbp−0x8 ] , 0 x1

7 004004 c8 : jmp 4004 e5 <main+0x2f>

8 004004 ca : mov DWORD PTR [ rbp−0x4 ] , 0 x0

9 004004 d1 : jmp 4004 db <main+0x25>

10 004004 d3 : add DWORD PTR [ rbp−0xc ] , 0 x1

11 004004 d7 : add DWORD PTR [ rbp−0x4 ] , 0 x1

12 004004 db : cmp DWORD PTR [ rbp−0x4 ] , 0 xf

13 004004 df : jb e 4004 d3 <main+0x1d>

14 004004 d7 : add DWORD PTR [ rbp−0x4 ] , 0 x1

15 004004 e5 : cmp DWORD PTR [ rbp−0x8 ] , 0 x f f f f

16 004004 ec : jb e 4004 ca <main+0x14>

17 004004 ee : mov eax , 0 x0

18 004004 f3 : pop rbp

19 004004 f4 : r e t

Figure 4.9 – Compiled version of the sample program

An infinite loop candidate is identified if the correlation exceeds a pre-defined threshold value T :

Rbb(l,m) > T for any l (4.3)

the period of the infinite loop is p = l, i.e., the index of the correlation value that first exceeds the

threshold T . The location of the infinite loop is given by the p last branch target addresses. The threshold

T is configured by the tool user. The choice of T is a trade-off between detection speed and false detection

rate, discussed on page 81.

Correlation length In order to limit the buffer length for branch target addresses and autocorrela-

tion values to a constant size independent of the length of a program path, the autocorrelation length can

be limited. Rbb(l,m) is then only computed for indices l ∈ [1..lmax]. With such a fixed correlation length,

the algorithm detects infinite loops with a period of up to p = lmax.
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Figure 4.10 – Snapshot of autocorrelation values (left) and variation over time (right) [IKP16]

Illustration For illustration, a sample program is shown in Figure 4.8. The corresponding assembly

code is shown in Figure 4.9 (compiled with gcc). The outer (infinite) loop is transformed into an uncon-

ditional branch at address 0x4004c8 and a conditional one at address 0x4004ec. Similarly, the branches

at 0x4004d1 and 0x4004df represent the inner loop. Local variables i, j and k are addressed relatively

to the base pointer rbp at offsets -0x4, -0x8 and -0xcwithin the current stack frame. Figure 4.10 shows

the autocorrelation values at the time of (forced) program termination (that is ∃l : Rbb(l,m) ≥ T ) when

choosing lmax = T = 28. The peaks at positions p which are non-zero multiples of 19 clearly indicate

the periodicity of the generated assembly code: To perform one complete iteration of the outer loop, the

conditional branch at 0x4004df corresponding to the inner loop is considered 17 times (16 times taken,

once not taken) by the algorithm, and with the conditional jump at 0x4004ec and the unconditional

jump at 0x4004d1 this results in a total of 19 branches. The second diagram in Figure 4.10 visualizes

the behaviour of two selected autocorrelation values while the instrumented program is executing. One

illustrated autocorrelation value is congruent to the periodicity of the sample program. The other illus-

trated value is its direct neighbour value. Both are plotted over time. The diagram shows that the first

value increases steadily while the second autocorrelation value follows a sawtooth-like shape. The dia-

gram illustrates, that any threshold T will eventually be reached in case of a periodic infinite loop with

number of branches up to the correlation length. It also shows, that non-infinite loops will not be falsely

reported as infinite if the threshold T is big enough.

Detecting certain non-periodic infinite loops The algorithm can be generalized to also detect non-

periodic infinite loops, as long as the branch sequences in the loop have equal length. The following
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Figure 4.11 – Triangular coefficient matrix

recursive correlation detects re-visited branches with constant branch sequence length:

Rbb(l, f ,m) =


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


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
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
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

Rbb(l, f ,m − 1) for f . m (mod l)

Rbb(l, f ,m − 1) + 1 for f ≡ m (mod l) ∧ b(m) = b(m − l)

0 for f ≡ m (mod l) ∧ b(m) , b(m − l)

(4.4)

where f is an offset modulo l. The coefficient vector becomes a triangular matrix (compare Figure 4.11).

The number of coefficient computations is the same as before, i.e., for every new branch and for each

l, only one coefficient is updated (the one for which f ≡ m (mod l)). But the number of coefficients

increases to:

Ncoeff =
lmax

2
(lmax − 1),

i.e., the space for coefficient storage increases quadratically with correlation length.

Avoiding false positives: SMT-based verification of candidate loops Depending on the threshold

value and the application, the presented algorithm has false positive detections. If false positives are not

tolerable, there is a possibility for verification or falsification of infinite loop candidates. One iteration of

the candidate loop is executed with symbolic execution, and an SMT solver is used to check whether the

loop is indeed infinite. This is basically the non-termination check from equation 4.1 from page 66. If the

candidate is not verified, the threshold can be increased by some factor. The low-complexity candidate

detection by autocorrelation reduces the number of SMT solver queries needed for infinite loop detection,

because location and loop length of a candidate are known.
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1 # i n c l u d e ” p i n .H” / ∗ A l l o t h e r i n c l u d e s o m i t t e d f o r r e a d a b i l i t y

r e a s o n s ∗ /

2 # d e f i n e T ( 5 0 0 ) / ∗ T h r e s h o l d t r i g g e r i n g an a b o r t ∗ /

3 # d e f i n e M ( 1 6 ) / ∗ Number of v a l u e s ∗ /

4 # d e f i n e MASK(X) ( (X) % M)

5 s i z e t c u r = 0 ;

6 unsigned long d s t [M] = { 0 } ; / ∗ The m l a s t b ranch t a r g e t s ∗ /

7 unsigned long c n t [M] = { 0 } ; / ∗ The m v a l u e s R bb ( l , m) ∗ /

8

9 void Branch ( unsigned long ip , boo l t aken , unsigned long t a r g e t , unsigned long

f a l l t h r o u g h ) {

10 i f ( ! t a k e n ) t a r g e t = f a l l t h r o u g h ;

11 / ∗ Check i f T has been s u r p a s s e d by any of t h e c o u n t e r s and u p d a t e

a u t o c o r r e l a t i o n v a l u e s ∗ /

12 f o r ( s i z e t i = 0 ; i < M; i ++) {

13 c n t [ i ] = ( d s t [MASK( c u r − i ) ] == t a r g e t ) ? c n t [ i ] + 1 : 0 ;

14 i f ( c n t [MASK( c u r − i ) ] >= T )

15 e r r o r (−1 , 0 , ” I n f i n i t e loop d e t e c t e d . I n s t r u c t i o n : %p T a r g e t

: %p\n ” , ip , t a r g e t ) ;

16 }

17 / ∗ S t o r e most r e c e n t b ranch t a r g e t ∗ /

18 c u r = MASK( c u r ) ;

19 d s t [ c u r++] = t a r g e t ;

20 }

21

22 void I n s t r u c t i o n ( INS ins , void ∗v ) {

23 / ∗ For any newly t r a n s l a t e d branch i n s t r u c t i o n i n t h e main image , add a

c a l l b a c k t o Branch ( ) ∗ /

24 i f ( INS Category ( i n s ) == XED CATEGORY COND BR | | INS Category ( i n s ) ==

XED CATEGORY UNCOND BR) {

25 IMG img = IMG FindByAddress ( INS Address ( i n s ) ) ;

26 i f ( IMG Valid ( img ) && IMG IsMainE xecu tab l e ( img ) )

27 I N S I n s e r t C a l l ( i ns , IPOINT BEFORE , (AFUNPTR) Branch ,

IARG INST PTR , IARG BRANCH TAKEN,

28 IARG BRANCH TARGET ADDR,

IARG FALLTHROUGH ADDR, IARG END) ;

29 }

30 }

31

32 i n t main ( i n t argc , char ∗∗ a rgv ) {

33 i f ( P I N I n i t ( argc , a rgv ) ) re tu rn −1;

34 I N S A d d I n s t r u m e n t F u n c t i o n ( I n s t r u c t i o n , 0 ) ;

35 P I N S t a r t P r o g r a m ( ) ;

36 }

Figure 4.12 – Implementation based on the Pin instrumentation framework [IKP16]
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Figure 4.13 – Overhead of autocorrelation based detection of infinite loops [IKP16]

Implementation

The algorithm is implemented based on the dynamic binary instrumentation engine Pin [LCM+05].

Dynamic binary instrumentation provides a mechanism to monitor, inspect and alter the execution of any

given binary program at runtime. This is typically achieved by injecting callback functions into a Just-

In-Time (JIT) compiled version of the instrumented program which can then observe and/or manipulate

the internal state of the program. Dynamic binary instrumentation allows for fine-grained inspection of

arbitrary code without needing an executable’s source code.

For application in the presented symbolic execution setup, dynamic binary instrumentation can not

be used, because it leads to problems with breakpoints. Therefore, implementation must use static binary

instrumentation, preferably integrated with the compiler. Nevertheless, dynamic binary instrumentation

is useful as first evaluation.

The source code of the implementation is shown in Figure 4.12: The code adds a callback function

Branch() to all conditional and unconditional branches that reside in the virtual address space of the

main executable program image. It is the injected handler function’s responsibility to re-compute each

autocorrelation value Rbb (line 12) and to store the most recent branch target. Moreover, the Branch()

function ensures that T is still the upper bound of all values residing in Rbb. In case of a violation of this

last constraint, the Pin tool outputs a warning in line 15.
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Properties

Time Complexity The number of operations performed by the algorithm per branch depends on the

correlation length. The algorithm computes equations (4.2) and (4.3) for each new branch. As can be

derived from the formula for Rbb(l,m), the overhead increases linearly with correlation length lmax, and is

independent of program length. To confirm this, an infinite-loop-free (terminating) version of the sample

program is instrumented with the algorithm implementation as Pin tool. The total runtime for different

values lmax is measured. In the changed sample program, line 6 is updated to increment the local variable

j instead of i. Benchmark results are shown in Figure 4.13.

Space Complexity The amount of memory required to store autocorrelation values and branch target

addresses increases linearly with correlation length and is independent of program size.

Runtime Overhead The runtime overhead of the Pin based instrumentation consists of three parts. A

one-time overhead independent of program length and a dynamic constant overhead for every branch are

due to Pin. The third part is the actual autocorrelation, that causes a constant overhead for every branch,

where the overhead increases linearly with correlation length (number of correlation coefficients).

The Intel Pin creators estimate the runtime overhead added by the instrumentation engine at a factor

of 2.8 with just the JIT compiler enabled and at an average factor of 7.8 for a basic-block counting

instrumentation tool in the worst case [LCM+05]. Figure 4.13 shows a run time of about 2 ms for the

modified (terminating) test program running without instrumentation. The same program takes about

200 ms running within an empty Pin instance. Further, a runtime of about 450 ms is obtained for the

sample program running within Pin using a correlation length of 100. This implies a slowdown of factor

450
2
= 225 for the example correlation length.

An implementation of the algorithm as compiler instrumentation (static binary instrumentation at

compile time) would get rid of the overhead introduced by Pin. The overhead added by Pin are the fixed

one-time overhead introduced by Pin’s JIT as well as the dynamic part that depends on the number of

branches within the target program. Both are independent of the correlation length lmax. A compiler based

instrumentation therefore would show the same slope in dependence on lmax. This runtime is depicted

as a dashed (green) line in Figure 4.13, below the blue linear regression curve for measured values with

Pin instrumentation. The blue line is the graph of the linear function t(lmax) = 2156.2 · lmax + 302700 (t

in milliseconds). For lmax = 100 the slowdown factor decreases to about 100 by changing from dynamic

instrumentation to static instrumentation. Additionally, the example program consists of an unnaturally
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Testcase Runtime (s)

Infinite Loop do 01 0.20

Infinite Loop do true 01 0.20

Infinite Loop for 01 0.14

Infinite Loop for empty 01 0.19

Infinite Loop while 01 0.14

Infinite Loop while true 01 0.14

Table 4.2 – Error detection runtimes for the infinite loop test cases from the Juliet suite

CVE Name lmax T Detection Time Measured Periodicity

CVE-2011-1027 cgit 64 1024 0.23 s 22

CVE-2011-1002 Avahi 64 1024 0.07 s 3

CVE-2010-4645 PHP 128 1024 0.78 s 69

Table 4.3 – Detection runtimes for selected CVEs [IKP16]

high fraction of branches compared to control-flow preserving instructions of about 1
3
. Benchmarks from

[HJ99] show a fraction of branch instructions between 5% and 24% (page 232 in [HJ99]). For real-world

programs, one would expect this fraction between 10% and 20%. This would decrease the slowdown

factor again, resulting in a slowdown factor of about 50 to 70 for real-world programs with compiler

instrumentation and correlation length 100.

Trade-offs The two algorithm parameters lmax for correlation length and T as detection threshold are

configurable. There are two trade-offs. The first trade-off concerns the number of false negative de-

tections versus algorithm complexity. By increasing correlation length, the number of false negative

detections is reduced at the expense of increased program overhead. The second trade-off concerns the

number of false positive detections versus detection delay. By increasing the threshold T , the number

of false positive detections is reduced at the expense of increased detection delay. An infinite loop must

then be executed for more iterations until the threshold is reached. In the practical tests described in the

following, the threshold could be set very high (106 or more) without causing any significant detection

delay.

Experiments

The Pin implementation of the algorithm is tested with the infinite loop test programs from the Juliet

suite and with real-world programs.
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Juliet suite For infinite loops, the Juliet suite contains 6 test programs. The infinite loops are periodic

and do not have a period larger than 2. The terminating ‘good’ loops are breaked after 10 iterations.

Correct detection without false positive therefore requires lmax > 2 and T > 10. The algorithm imple-

mentation with Pin is applied to the compiled test programs with parameters T = 500 and lmax = 16.

The tool correctly detects the contained infinite loops without false positive and without false negative

detections. The runtimes until detection of the respective infinite loop are given in Table 4.2.

Compared to the detection with static symbolic execution as described in Section 4.2.3, the dynamic

instrumentation based detection is an order of magnitude faster. For bigger test programs, a larger speed-

up with dynamic instrumentation is expected, because on the small Juliet test programs a considerable

portion of the runtime is used to perform the instrumentation.

Real-world programs To show that the algorithm is applicable to real-world problems, publicly known

infinite-loop vulnerabilities in three widely-used open-source programs are triggered and successfully de-

tected. The three vulnerabilities outlined below have been selected from the CVE list based on the ease

of triggering the bug, i.e., it seemed that comparably little effort would be needed to reproduce the bug.

— cgit is a web frontend for git repositories written in C. ∗ Prior to version 0.8.3.5, cgit contained

an infinite loop bug that could be triggered by clients sending an invalid hex escape in the URL

query to the remote side. This bug has been assigned CVE-2011-1027.

— Avahi is a Unix daemon providing service discovery in local networks which is enabled by default

in many popular Linux distributions. † Before version 0.6.29, Avahi would enter an infinite loop

upon receiving a zero-length UDP packet (CVE-2011-1002).

— PHP: Hypertext Processor is a highly popular server-side scripting language for web develop-

ment. ‡ All versions before 5.2.17/5.3.5 hang infinitely when processing the string representation

of the floating-point value 2.2250738585072011 · 10−308. This infinite loop bug is referenced as

CVE-2010-4645.

The results of the evaluation are shown in Table 4.3. It features the detected jump target address

period length (as defined by the l value which caused Rbb(m, l) to exceed the threshold T ) as well as

the wall-clock time difference between triggering the bug and forced termination of the instrumented

program using the algorithm implementation.

In all three cases, the threshold value T = 1024 is used. T was arbitrarily chosen to 1024 to prevent

∗. http://git.zx2c4.com/cgit/

†. http://avahi.org/

‡. http://php.net/

http://git.zx2c4.com/cgit/
http://avahi.org/
http://php.net/
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false detections with a very small T (it was not tested for which value of T false detections would begin).

Tests with larger T up to 106 did not show any significant detection slow-down. The tests are initially

conducted with lmax = 64. This yields positive results for the cgit and Avahi tests, detecting the infinite

loops of periodicities 22 and 3 within 0.23 and 0.07 seconds, respectively. lmax = 64 is too small for the

PHP test, since that bug exhibits a period length of 69 branches: After increasing lmax to 128, the infinite

loop is detected within 0.78 seconds.

4.3.4 Information Exposures

This section deals with the detection of information exposure (information leak) errors and the im-

plementation of an information exposure checker. The checker is evaluated with Juliet test programs

for information exposures (CWE-526,534,535). Secure information flow and information exposure bugs

can be modelled based on a lattice [Den76, DD77]. The model uses trust boundaries, security labels,

sanitization and (de)classification functions. Data flows through an application through system calls, i.e.,

I/O functions. The trust boundary here is the process boundary. Data gets attached (in shadow memory) a

security level. Data is allowed to flow from lower to higher security levels. From higher to lower security

levels, data flow is restricted unless the data passes through a declassification function (which reduces

the security level). Additionally, the information flow can be further restricted in the sense of input fil-

tering. All program input first has to pass through a function, that is pre-defined as sanitization function

(input filter). Data flow rules can be either hard-coded in a checker (e.g., based on restrictions and side

information inherent in the standard library and standard crypto libraries) or they can be configurable.

Security levels can be pre-defined for certain parameters in library calls, e.g., encryption / decryption

or I/O functions. Binary instrumentation then performs a security level inference over the data flow on

the taken program path. At an output function (crossing the trust boundary with output), it is checked

whether the output contains a parameter with too high security level. If so, an information exposure error

is reported.

Implementation For a quick evaluation, the security level inference and information exposure checks

are not implemented as binary instrumentation, but in the symbolic interpreter (on the source level).

Evaluation of the checker therefore uses static symbolic execution, where every CFG node on a path

is symbolically interpreted. Offloading the computation to dynamic analysis (e.g., with compiler based

instrumentation) would of course enable much faster execution of each path and would enable selective

symbolic execution also with this checker.
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1 # d e f i n e N ITERS 1000000

2 vo id C W E 3 6 6 R a c e C o n d i t i o n W i t h i n T h r e a d i n t b y r e f 1 2 b a d ( ) {

3 i f ( g l o b a l r e t u r n s t o r f ( ) ) {

4 s t d t h r e a d t h r e a d a = NULL, t h r e a d b = NULL;

5 i n t v a l = 0 ;

6 i f ( ! s t d t h r e a d c r e a t e ( h e l p e r b a d , ( vo id ∗)& val , &t h r e a d a ) ) {

7 t h r e a d a = NULL ;

8 }

9 i f ( ! s t d t h r e a d c r e a t e ( h e l p e r b a d , ( vo id ∗)& val , &t h r e a d b ) ) {

10 t h r e a d b = NULL ;

11 }

12 i f ( t h r e a d a && s t d t h r e a d j o i n ( t h r e a d a ) ) s t d t h r e a d d e s t r o y ( t h r e a d a ) ;

13 i f ( t h r e a d b && s t d t h r e a d j o i n ( t h r e a d b ) ) s t d t h r e a d d e s t r o y ( t h r e a d b ) ;

14 p r i n t I n t L i n e ( v a l ) ;

15 } e l s e {

16 s t d t h r e a d t h r e a d a = NULL, t h r e a d b = NULL;

17 i n t v a l = 0 ;

18 i f ( ! s t d t h r e a d l o c k c r e a t e (& g g o o d l o c k ) ) { return ; }

19 i f ( ! s t d t h r e a d c r e a t e ( h e l p e r g o o d , ( vo id ∗)& val , &t h r e a d a ) ) {

20 t h r e a d a = NULL ;

21 }

22 i f ( ! s t d t h r e a d c r e a t e ( h e l p e r g o o d , ( vo id ∗)& val , &t h r e a d b ) ) {

23 t h r e a d b = NULL ;

24 }

25 i f ( t h r e a d a && s t d t h r e a d j o i n ( t h r e a d a ) ) s t d t h r e a d d e s t r o y ( t h r e a d a ) ;

26 i f ( t h r e a d b && s t d t h r e a d j o i n ( t h r e a d b ) ) s t d t h r e a d d e s t r o y ( t h r e a d b ) ;

27 s t d t h r e a d l o c k d e s t r o y ( g g o o d l o c k ) ;

28 p r i n t I n t L i n e ( v a l ) ;

29 }

30 }

31 s t a t i c vo id h e l p e r b a d ( vo id ∗ a r g s ) {

32 i n t ∗ p v a l = ( i n t ∗ ) a r g s ;

33 f o r ( i n t i = 0 ; i < N ITERS ; i ++) {

34 ∗ p v a l = ∗ p v a l + 1 ;

35 }

36 }

37 i n t g l o b a l r e t u r n s t o r f ( ) {

38 return ( r and ( ) % 2 ) ;

39 }

Figure 4.14 – Data race condition; example from Juliet suite [BB12]

Experiments The checker is evaluated with test programs from the Juliet suite for information expo-

sures through environment variables (CWE-526), through debug log files (CWE-534) and through shell

error messages (CWE-535). For these common weakness types, Juliet contains 90 test programs. The

bugs are correctly detected in all test programs apart from 5 false negative detections, in about 2s per test

program. The false negatives are due to missing support of goto statements in the CFG builder version

and missing support of data flow through unions in the symbolic interpreter version that were used for

the tests [MEI14].

4.3.5 Data Race Conditions

A data race means that there are two concurrent accesses from different threads to the same variable,

of which at least one is a write. Data race bugs are introduced in multi-threaded software when the

developer forgets to lock a resource, that is shared between threads. Because races are observed only for

certain thread interleavings depending on the scheduler’s decisions, they are difficult to reproduce and
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Figure 4.15 – FIFO scheduling on one CPU core [Ibi16b]

Figure 4.16 – Traversed part of execution tree [Ibi16b]

sometimes called ’Heisenbugs’. Exactly locating feasible data races is known to be NP hard [NM92].

This subsection describes data race detection using dynamic symbolic execution and hybrid lockset /

happens-before analysis. Symbolic execution is used to explore the execution tree of multi-threaded

software for FIFO scheduling on a single CPU core.

As described in Section 3.1, the analysis of a program path should continue after the detection of a

potential data race, in order to achieve code coverage. This means, that actual races should be avoided

while still detecting them. Data races can be prevented by using FIFO scheduling on one CPU core.

With this scheduling, potential data races can still be detected using happens-before, lockset or hybrid

analysis.

The presented approach achieves approximate race detection with both false negative and false pos-

itive detections. Concolic execution of multi-threaded code with FIFO scheduling on one CPU core in
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Figure 4.17 – Happens-before analysis [Ibi16b]

general misses relevant interleavings and therefore leads to false negative race detections. The hybrid

happens-before / lockset detection algorithm in general also has false positive detections.

Dynamic race detection using binary instrumentation Race detection on one path works faster dur-

ing concrete execution. Event tracing and instrumentation do not need a symbolic interpreter. Data races

are detected with hybrid dynamic analysis during concrete execution using the available ThreadSanitizer

algorithm and implementation [SI09]. This paragraph shortly reviews the algorithm. Happens-before

analysis with vector clocks is combined with lockset analysis to reduce the number of false negative de-

tections. The hybrid detection has false positive detections. False positives can be eliminated by adding

annotations to the program. Binary instrumentation is used to trace the relevant events [SI09]:

— memory access events: read and write

— synchronization events: locking and happens-before arcs. Locking events are write lock, read

lock, write unlock and read unlock. Happens-before events are signal and wait.

The events are traced as state machines in shadow memory. The state machines can be run as pure

happens-before or as hybrid analysis, with configurable context tracing information (speed versus infor-

mation).

Implementation The implementation uses compiler instrumentation with ThreadSanitizer, which

is featured by gcc. The program under test is linked statically with the ThreadSanitizer library, and

a breakpoint is set on the race detection error report function. If this breakpoint is hit, the stack is

traced back to a source file location, where the race is reported. ThreadSanitizer supports dynamic

annotations (C makros), which can be used if standard Posix threads are not used. They can also be used
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Figure 4.18 – Screenshot data race detection [Ibi16b]

to eliminate false positive detections and to hide benign races [SI09]. Parts of the code can be marked as

safe by the tool user. ThreadSanitizer can be run as happens-before or hybrid analysis. Also in pure

happens-before mode it can report the involved locks. The slow-down by the instrumentation is reported

as factor 20 – 50, and up to several hundred MB can be consumed for shadow memory [SI09].

Experiments The implementation is evaluated with the data race test cases from the Juliet suite [BB12]

for common weakness CWE-366 ’race condition within a thread’. The test cases are 38 small artificial

programs with 5-7 threads each. There are two sets of 19 programs each. One set contains data races on

global variables, the other contains data races on stack variables with access through pointers. Both sets

cover the same 19 different data and control flow variants, that include conditional branches, loops, goto

statements etc. The programs under test are run as unoptimized code with default ThreadSanitizer

settings without any annotations.

An example ’bad’ function is shown in Figure 4.14. It contains a data race on a stack variable with

access by reference in line 34. The control flow depends on random input that is returned by a global
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Figure 4.19 – Analysis runtimes for data race tests from Juliet suite [Ibi16b]

function. The rand() call in line 38 generates this program input, i.e., the debugger breaks at this call,

and the return value of rand() is treated as unconstrained symbolic variable. Before this ’bad’ function,

the program executes a similar ’good’ function with proper locking in both branches, that also executes a

loop with 106 iterations. The test program contains many branches, but few of them depend on symbolic

input. The loops in the ’good’ and ’bad’ functions are executed concretely. Because they contain only

variables and branches depending on concrete input, there is no need for symbolic interpretation. The

symbolic execution finds four satisfiable program paths that non-deterministically depend on two rand()

calls, and of which two paths exhibit the data race. FIFO scheduling on one CPU core for this program is

illustrated in Figure 4.15. This figure looks the same for any of the four paths. The part of the execution

tree (under this scheduling), that is traversed by symbolic execution, is illustrated in Figure 4.16. It only

shows the locations where the debugger stopped. Two paths are followed to program end, the other two

are pruned as indicated in the figure. The data race is accurately detected by ThreadSanitizer. An

example part of the happens-before analysis is illustrated in Figure 4.17, for the else branch of the

example function, where proper locking is used. The shaded memory access events are separated by a

locking arc.

All data races in the 38 test programs are accurately detected without false positives or false negatives.

The (wall-clock) analysis runtimes are shown in Figure 4.19. The horizontal axis indicates the Juliet flow

variant number. The average analysis runtime is below 2s. Error reporting is shown in Figure 4.18.

4.3.6 Deadlocks and Multiple (Un)Locks

This subsection considers the detection of deadlocks (CWE-833), unlock of a resource that is not

locked (CWE-832), multiple locks of a critical resource (CWE-764) and multiple unlocks of a critical
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resource (CWE-765). A deadlock is a circular locking dependency between threads, where threads wait

on each other forever. The described bug types can be detected with state machines by instrumenting

and tracing synchronization events, i.e., locking and unlocking operations. This is available as part of the

instrumentation necessary for data race detection (Subsection 4.3.5). The available ThreadSanitizer

also reports these bug types.

4.3.7 Dead Code

Dead code is known under the common weakness enumeration as CWE-561. For dead code, nor-

mally a warning is issued rather than an error report. For certain safety critical system, code traceability

is required, i.e., every source code line must be mapped to some requirement and test case. In this case,

dead code can be seen as an error.

Dead code can be detected with symbolic execution, if at least branch coverage is achieved. Reach-

ability in general is undecidable. For a concrete program it can be decided whether maximum branch

coverage was achieved after symbolic execution. For single-threaded code, this is the case under follow-

ing conditions:

— all input is treated as symbolic

— symbolic execution is run with at least branch coverage (for example simply with path coverage,

without any merging)

— no concretization has been done

— symbolic execution has terminated, i.e., the execution tree was finite

When it is known that symbolic execution has achieved maximum branch coverage, the remaining un-

covered code must be dead.

Implementation The program under analysis is compiled with the available gcov instrumentation

to trace coverage information (count taken branches). During concrete execution, gcov collects the

coverage information and writes it into two separate text files (with increments for repeated program

executions). It is parsed with CDT’s gcov parser and can be displayed as editor annotation in the GUI.

Uncovered code can be marked in the GUI, as illustrated in Figure 4.20.

Experiments Most test programs of the Juliet suite contain dead code. Here, the same buffer overflow

test cases with fgets are used as in section 3.2. They cover all of Juliet’s flow variants. Figure 3.2 on

page 29 shows the number of branch nodes, number of live branch nodes (reachable with at least one

satisfiable program path) and number of symbolic branch nodes (decisions depending on symbolic input,



4.3. Error Detection During Concrete Execution 91

Figure 4.20 – Error reporting and dead code marking

symbolically interpreted). Dead code is annotated as source code comments in the Juliet test cases. This

is used to validate, that dead code is correctly marked. A screenshot is shown in Figure 4.20, dead code

lines are shaded in red.

There is a special case of obviously dead source lines. An example is Juliet’s flow variant 2, which

contains an

i f ( f a l s e ) { . . . }

statement. Such obviously dead code is detected by the compiler and not translated, even without any

code optimization parameters set. Because these source lines do not make it into the binary, they might

be called ’non-code’. Correspondingly, also the CFG builder detects these CFG nodes as dead. After

querying the CFG builder for dead nodes, these dead non-code source lines can also be marked in the

GUI.





Chapter 5

Further Applications

The algorithms described so far, especially interpolation based path merging (Section 3.6), can be

useful for further applications.

5.1 Path Merging and Interpolant Weakening in Heuristic Path Explo-

ration

To prove the unreachability of annotated error locations for program verification, path pruning based

on unsat-cores of unsatisfiable branches was proposed in [JSV09]. The execution tree traversal order was

DFS. In order to apply this path merging approach with a different traversal order, especially with heuris-

tic path exploration, a differentiation between ’half interpolant’ (subtree only incompletely traversed) and

’full interpolant’ was proposed in [JMN13]. Both publications assume that all potential error locations

are annotated with if/else statements.

The algorithm, that achieves ’error and branch coverage’ in the work at hand (Section 3.6.3) applies

unsat-core based merging in an almost identical way as described in [JSV09]. The work at hand differs

in that potential errors are not annotated, and bug conditions are generated automatically during anal-

ysis. This shows, that unsat-cores for unsatisfiable branches are something different from unsat-cores

for unsatisfiable bug conditions. This difference is exploited in the work at hand for further weakening

computed interpolants in case of bug detections (Section 3.6.3).

The algorithm proposed in [JMN13] could benefit from the additional weakening adjustment in the

same way. When a bug is detected, then constraints stemming only from the previously unsatisfiable bug

condition could be removed from ’half interpolants’ and ’full interpolants’ (because each bug is only to

be detected on one path). This further weakening of interpolants would allow for more path merging and

93
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therefore an analysis speedup, without loss of detection accuracy.

5.2 Interpolation Based Path Merging for Automated Test Case Genera-

tion

Automated test case generation is the automated selection of (concrete) program input vectors, so

that the execution coverage with these inputs satisfies or approximates a chosen coverage criterion. One

approach is to randomly generate test cases and then reduce the set to the required coverage criterion.

Symbolic execution can be used for automated test case generation [CGP+06, CDE08]. Symbolic ex-

ecution builds path constraints, where a path constraint determines the set of input vectors, for which

the program takes the respective path. Example input can be generated with the SMT solver’s model

generation functionality.

The presented coverage-achieving algorithms based on interpolation based path merging can be used

to automate the choice of input vectors, that constitute a test suite with desired coverage. Testing normally

uses complete program paths, path pruning is not (yet) used in test suite execution. When using the

presented algorithms for test case generation, path pruning (program termination) needs to be added

when reading from an empty input vector during test suite execution.

Branch Coverage Several symbolic execution tools use heuristic path exploration in order to quickly

achieve branch coverage. The most prominent example is KLEE [CDE08]. In its current version, it

supports path merging based on live variable analysis, but not (yet) any solver-based interpolation. Path

merging with unsat-core based interpolation for branch coverage (Section 3.6.4) could be used as a

complementary approach.

Modified Condition /Decision Coverage Test cases with MC/DC are typically used for safety-critical

software, to show that each condition within a decision independently and correctly affects the decision

outcome. In [RH03], an approach for MC/DC test case generation with counter-examples from an LTL

model checker is described. A genetic algorithm for test case generation is presented in [AAA09]. An

approach to MC/DC system test case generation from MC/DC unit test cases based on symbolic execu-

tion is presented in [Pre03]. Symbolic execution and path merging with unsat-core based interpolation

for MC/DC (Section 3.6.5) could be used for speed-up or as complementary approach respectively.
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Figure 5.1 – Fail-secure quick-fix refactoring [MKIE15]

5.3 Hardware Assisted Infinite Loop Checks at Runtime

In Section 4.3.3, an algorithm for infinite loop detection as dynamic analysis was described and

evaluated with binary instrumentation. It detects infinite loop candidates with a modified autocorrelation

of the branch sequence.

It is possible to integrate the algorithm in processors, in order to benefit from hardware acceleration

[IK16]. Hardware acceleration would eliminate the runtime software overhead at the expense of some

extra transistors. Most CPUs already have a branch target address cache. The additional hardware

would mainly consist of storage for the correlation coefficients, and the logic to update coefficients and

compare with the threshold. Detection of an infinite loop candidate could be signaled with an interrupt

to the operating system and with an operating system signal to a process. The operating system could

perform verification / falsification with an SMT solver query after unrolling the loop once, to eliminate

false positives. Only one SMT query is needed, because the location and length of the infinite loop

candidate are detected by correlation.

5.4 Automated Quick-Fix Generation for Detected Bugs

Information from error detection can be used for automated program transformation (AST transfor-

mation). The transformation can be a fail-secure quick-fix, or in some cases an error correction.
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Fail-secure error mitigation With ’fail-secure’ (unlike fail-safe) it is meant here, that the exploitation

of a bug is prevented. Set constraints for input that triggers the bug can be determined from symbolic

execution [BNS+08]. In principle, it is possible to insert one or more branches into a program before the

bug location, so that execution is stopped with an error report for program input that would trigger the

bug. This is easy, e.g., when the size of a buffer that might overflow is context-insensitive.

Fail-secure quick-fix generation for buffer overflow bugs is tested with 54 test programs for stack-

based buffer overflows from the Juliet suite, that were already used in chapter 4.3.7. Figure 5.1 shows

on the top an example quick-fix context menu. On the bottom, it shows an example for a proposed

refactoring.

Error correction One application of automated error detection is automated correction of the detected

errors. For certain common weaknesses, automated correction is possible. An example are locking er-

rors [FF05]. In case of a detected data race, lock and unlock operations can be automatically inserted.

For double lock or double unlock errors, similar changes of synchronization can be inferred. Automated

error correction benefits from faster or more accurate error detection and comes closer to practical appli-

cability.

5.5 Automated Input Filter Generation

Another application of automated error detection is automated generation of an input filter. Equiv-

alent to in-place fail-secure quick-fixes, the bug-triggering input vectors can be prevented from being

read into the program. One approach is to drop network input in a firewall. Such an input filter is prefer-

able, because the computation does not have to be stopped. Computing weakest precondition of a bug’s

path constraints and generating regular expression signatures is described in [BNS+08]. Automated in-

put filter generation benefits from faster or more accurate error detection and comes closer to practical

applicability.

5.6 Path Merging in Symbolic Execution Based Automated De-Obfuscation

Automated reversing or de-obfuscation is used, e.g., for malware analysis. Symbolic execution on

the binary level can be used for this purpose [YD15]. Symbolic execution of binaries means symbolic

CPU simulation. Reversing requires reconstruction of control flow graphs on the binary level. When

instruction addresses are traced, explored program paths can be folded into CFGs. Obfuscated code often
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uses self-modification, e.g., code can be XORed with some data in a loop before execution. In this case,

the control flow graph becomes context sensitive. Memory writes and the execution of overwritten code

can be detected during symbolic execution. From this, a version tree (containing all context-sensitive

code variants) of the binary could be built. Automated de-obfuscation could benefit from the presented

path merging for branch coverage (Section 3.6.4), because CFG reconstruction only requires branch

coverage.

5.7 Path Merging in Retargetable Symbolic Execution

The standard approach for symbolic execution of machine code is to lift machine code instructions

to intermediate code, and perform symbolic execution on the intermediate level. There are different

frameworks for symbolic execution of intermediate code (e.g., [BJAS11, SBY+08]). Intermediate code

has the advantage of a small instruction set and is independent of any special CPU.

Architecture description languages (ADL) are used for the design of application-specific instruction

set processors [SML07]. Syntax and semantics of CPU instructions are specified in the architecture de-

scription language. The effect of changes in the instruction set on application performance can be quickly

evaluated. From the architecture description, compiler backend, instruction set simulator, debugger and

binary utilities can be automatically generated. An example ADL is ArchC [ARB+05, BCR+08], which

is an extension of SystemC. Symbolic CPU simulation can be based on an ADL. This has the conceptual

advantage, that the instruction semantics is specified only once, and not separately in CPU, instruction set

simulator and each analysis tool or code lifter. From the ADL, either a lifter to an intermediate language

or directly a symbolic execution engine could be generated. This is illustrated in Figure 5.2.

Retargetable symbolic execution, i.e., generation of a symbolic execution engine for machine code

based on an ADL, could benefit from path merging in the same way as symbolic execution on any other

code level.

5.8 Path Merging in Symbolic Execution Based WCET Determination

For hard real-time applications, it is necessary to determine the worst-case execution time (WCET)

[WEE+08]. This is essentially the longest (satisfiable) path problem. WCET can be computed with

symbolic execution [LS99]. This can be implemented either as symbolic execution on the binary level,

or by back-annotating basic blocks with instruction counts.

Also WCET analysis with symbolic execution could benefit from a speed-up through path merging.
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Figure 5.2 – Tool flow based on architecture description [Ibi15a]

While interpolation with unsat-cores does not seem applicable, path merging based on live variable

analysis seems feasible.

5.9 Interpolation Based Merging in Selective Symbolic Execution for Re-

mote Debugging

It is often desirable to separate symbolic execution from the host machine into a virtual machine

(VM), or to perform concolic execution in a remote target system with special peripheral hardware. S2E

[CKC11] is a symbolic execution tool, that analyzes binaries in a virtual machine. It is implemented

using the qemu virtual machine with an LLVM backend, on which the KLEE [CDE08] symbolic execution

engine is applied. S2E employs the worklist algorithm with qemu snapshots. It uses ’lazy concretization’

and describes different relaxed consistency models for (return) variables, and their effect on the set of

analyzed paths and false negative / false positive bug detections. Avatar [ZBFB14] makes S2E usable

with physical target hardware (to avoid time consuming writing of special qemu hardware models). It

uses instrumentation in a target, and redirects hardware I/O to concolic execution in parallel in S2E.

Avatar uses gdb both to control the target device through a JTAG (Joint Test Access Group) interface

gdb server and to control S2E through the gdb server in qemu.

Neither S2E nor Avatar use any path merging. Concolic execution in a virtual machine or in a

remote target could benefit from path merging just like the other described applications.



Chapter 6

Related Work

Symbolic Execution There is a large body of work on symbolic execution available, which spans over

30 years. Several survey articles are available [CS13, CSG+11, PV09, ABC+13]. Prominent dynamic

symbolic execution tools include DART [GKS05], CUTE [SMA05], EXE [CGP+06], SAGE [GLM08], KLEE

[CDE08] and Mayhem [CARB12, ARCB14]. EXE and KLEE use heuristic breadth-first execution tree

traversal with the worklist algorithm. Selective symbolic execution is presented with S2E [CKC11]. It

allows to choose which parts of a system are executed symbolically. It uses the qemu virtual machine

monitor with an LLVM backend and runs the engine from KLEE on it.

There are several approaches that are closely related to automated bug detection with symbolic execu-

tion. One approach is annotation-based verification, which proves the absence of errors. The annotations

reduce the context that is necessary for analysis. An annotation language for C is ACSL [BCF+13], one for

Java is JML [BCC+05]. Prominent verification tools for C are Frama-C [CCK+15] and VCC [CDH+09].

Another approach is symbolic model checking [CGP99], where the whole program is treated as a for-

mula. Bounded model checking for C is implemented in CBMC [CKL04]. An approach that offers a

smooth transition between static analysis and verification is extended static checking [DLNS98].

The work at hand differs from previous work on symbolic execution in that is uses selective symbolic

execution of multi-threaded code with interpolation based path merging and combines it with binary

instrumentation.

Different levels of software Symbolic execution has been applied on the software architecture level

to models [PPW+05], e.g., to UML-RT state diagrams [ZD12]. On the source code level, symbolic

execution has been applied to a variety of languages. Examples for C are [RSM+10, CGP+06]. Most

tools perform symbolic execution on an intermediate code representation. KLEE runs on LLVM interme-
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diate code. Pex [TH08] performs dynamic symbolic execution of the Common Intermediate Language

(MSIL/CIL). The engine described in [VPK04] analyzes Java bytecode. Binary code has been analyzed

by lifting to an intermediate representation and symbolic execution of the intermediate code, described in

[SBY+08, BJAS11]. Analysis of x86 binaries with symbolic execution is implemented in SAGE [GLM08].

The work at hand differs in that it uses selective symbolic execution on the C source code level through

a debugger machine interface.

Bounded Search In order to limit the size of the traversed scheduling and execution tree, bounds can

be applied, e.g., to the number context switches, loop unrollings or path lengths [QR05, RG05, CFMS09,

CKL04]. KLEE requires the tool user to specify input bounds. The work at hand uses the more recent

approach of path merging to mitigate the path explosion problem.

Coverage Heuristics Breadth-first, depth-first and structural heuristics are used in [APV07, GV02].

More heuristics are presented in [BH09]: a ’look-ahead’ heuristic to stop path exploration when no

uncovered location can be reached, a ’max-calldepth’ heuristic to avoid backtracking from deep function

calls. and a ’solve-first’ heuristic to explore shorter path prefixes early. In SAGE, a limited generational

search is started from pre-defined input. An approach with evolutionary testing (genetic algorithm) is

described in [IX08]. In [MC12], the coverage is based on an existing test suite. An approach to path

exploration based on length-n subpath program spectra is presented in [LSWL13]. A predictive path

filtering heuristic to skip paths that don’t improve coverage is discussed in [SPF+14], test case reduction

and prioritization is discussed in [ZGA14]. The work at hand uses the more recent approach of path

merging rather than heuristics to mitigate the path explosion problem.

Parallelization Memory and computation requirements of symbolic execution motivated a distributed

version of KLEE, presented in [BUZC11]. SAGE performs symbolic execution of one path at a time in

parallel on different machines. From a path trace, it generates input vectors for related paths (by switching

a decision). Parallelized symbolic execution of Java Bytecode with a coverage heuristic is described in

[SP10]. In order to exploit the full path merging potential, the work at hand uses depth-first exploration

without parallelization.

Partial Order Reduction Another way of pruning the tree is partial order reduction [CGMP99, KWG09,

FG05, AAJS14], which prunes away irrelevant thread interleavings. The number of traversed states of

the scheduling and execution tree is reduced, while maintaining complete coverage of behaviour, e.g., for
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the detection of races and deadlocks. Dynamic partial order reduction [FG05] traces the happens-before

relation for thread interactions to find backtracking points for branching. Optimal dynamic partial order

reduction [AAJS14] explores a minimum number of representative thread interleavings. The work at

hand differs in that it sacrifices data race detection accuracy for a speed-up by analyzing fewer interleav-

ings. It rather uses selective symbolic execution of multi-threaded code with FIFO scheduling on one

CPU core, interpolation based path merging and race detection with binary instrumentation.

Abstraction and Path Merging Other related work uses abstraction, i.e., generalization of constraints,

to merge more paths. Abstract interpretation [CC77] allows for complete bug detection (no false neg-

atives), but introduces false positives (unsound). An approach to automatically generate an abstraction

based on predicates over decision conditions contained in the program source is presented in [GS97].

Counter-example guided abstraction refinement [CGL+03] is an automated abstraction refinement to it-

eratively undo unsound path merges in order to remove false positives. A coverage based abstraction with

refinement is proposed in [BBDP10]. It uses iterative search for satisfiable paths to a program location.

Another method is presented in [JSV09] and further developed in [McM10, JNS11, JMNS12]. It uses

logic interpolation [Cra57] and weakest precondition computing during backtracking of error-free paths,

so that further error-free paths explored later could be merged. In order to alleviate the path explosion

problem, it is shown in [BCE08] that a live variable analysis can be applied so that program paths, that

only differ in dead variables, can be merged. The implementation extends EXE. Merging of paths with

live differences is investigated in [KKBC12, ARCB14]. Path disjunctions are used in the corresponding

logic formulation passed to the solver. Heuristics for path merging are presented, which aim at balanc-

ing computational effort between the symbolic execution frontend and the SMT solver backend. Path

merging based on interpolation using unsat-cores is described in [JSV09]. The latter approach is more

comprehensive than merging based on live variable analysis. It comprises elimination of constraints for

dead variables, because those are not present in backtracked formulas. The interpolation based merging

approach is used in the static symbolic execution tool TRACER [JMNS12] for verification. It has been

combined with heuristic path exploration [JMN13] and with partial order reduction for multi-threaded

code [CJ14]. In [BE13], an approach of path merging during depth-first traversal is described, that does

not use an SMT solver. The removal of constraints from the path constraint is based on dynamic slicing

and dependence analysis. Path merging is decided by checking the inclusion of constraint sets. The

implementation is based on KLEE [CDE08]. The work at hand shows the relation of several known ap-

proaches as part of a coverage and interpolation hierarchy. It presents a symbolic execution algorithm
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with interpolation based path merging to achieve branch coverage. Further, a new path merging refine-

ment is presented that exploits interpolant weakening in case of error detections.

Detection of Infinite Loops relies on a threshold for a maximum duration of unresponsiveness (used,

e.g., in DART), on automated theorem proving [GRH+08, VR08, PS09, BSOG11, CCF+14, BJSS09], or

on comparing program states at branches [CMKR11]. The prominent tools use static symbolic execu-

tion of the program source code, with loop invariant generation [GRH+08, VR08] and/or checking for

satisfiable fixed-points or more generally recurrence sets [GRH+08, CCF+14]. Proving non-termination

is sound, i.e., it does not yield any false positive infinite loop detections. In Looper [BJSS09], it is pro-

posed to use a theorem prover to verify that a program is stuck in an infinite loop. The tool is to be run at

user’s request, and single-steps the unresponsive program with symbolic execution. In [CMKR11], it is

proposed to apply program state comparisons only on demand in case a process becomes unresponsive.

As noted in [CMKR11], this approach misses infinite loops where program states are not identical. Com-

paring process states as described in [CMKR11] is also not sound, i.e., it might false positively report an

infinite loop, because there is also a kernel state (packet queues etc.) for a running process. The kernel

state is not included in the state comparisons. The work at hand presents a new approach for infinite loop

detection based on modified autocorrelation.

Detection of Data Race Conditions Dynamic detection at runtime is a practical way for race detection,

that does not need a constraint solver. One technique is to instrument memory accesses and thread inter-

action with binary instrumentation and check for races using the happens-before relation [Lam78] with

vector-clocks. Happens-before analysis may have false negative detections depending on the scheduling.

It is more sophisticated than lockset analysis, but scales worse with an increasing number of threads.

LiteRace applies sampling, i.e., it monitors only a subset of all memory accesses. It can detect a

majority of races by monitoring a small number of accesses [MMN09]. FastTrack is an optimized im-

plementation of happens-before analysis with reduced complexity [FF09]. Pacer [BCM10] combines

sampling with FastTrack. DataCollider [EMBO10] implements memory access sampling with hard-

ware breakpoints and watchpoints and applies it to kernel code. Lockset analysis is used in Eraser

[SBN+97]. It instruments memory accesses and traces thread locksets and variable locksets. If a variable

access is not protected by a lock, then a warning is issued. Lockset analysis is lightweight and scales

well. On the downside, it leads to more false positive detections than happens-before analysis. Hybrid

race detection is presented in [OC03] as a two-pass solution. First, locksets are used to find problem-

atic variables. Then, happens-before analysis is applied only to those variables. In [ISM99], the DJIT
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algorithm is presented, which is a variation of happens-before analysis. MultiRace [PS03] combines

DJIT with locksets to reduce false positives. A location’s lockset is reset at synchronization barriers.

ThreadSanitizer [SI09] applies static binary instrumentation for happens-before and lockset analysis

and is integrated with several current C compilers. Dynamic race detection is integrated in the managed

runtime environments RaceTrack [YRC05] and Goldilocks [EQT10]. In [ZTZ07, DWS+12], it is

proposed to integrate hardware acceleration for race detection into CPUs.

Static Analysis offers a possibility to detect races without false negatives. A method that requires pro-

grammer annotations and is based on type inference is described in [AFF06]. The tools RELAY [VJL07]

and LOCKSMITH [PFH11] apply lockset analysis statically with data flow analysis. According to Palsberg

[EP14], ”the best existing static technique” is implemented in Chord [Nai08], but it ”reports a large

number of false positives that would be daunting to examine by hand”.

The prominent symbolic execution tools DART, CUTE and KLEE currently do not feature race detection.

Symbolic execution tools that do support race detection are jCUTE [SA06], Con2colic [FHRV13] and

LCT [KSH13]. They use a solver to search paths through the program’s joint execution and scheduling

tree, i.e., the solver determines both program input and thread scheduling. The combinatorial explosion

can be partly mitigated with partial order reduction [FG05]. jCute [SA06] determines program input

and thread schedule with the solver to explore different paths and interleavings, and it detects races

when they occur. Con2colic also determines input and schedule with the solver. It implements a

heuristic to first achieve branch coverage, and then explore an increasing number of context switches.

Also Con2colic can detect a race when it occurs (no happens-before or lockset analysis). LCT [KSH13]

implements concolic execution with dynamic partial order reduction. In [EP14], the tool Racageddon

is described. It starts with race candidates that have been found with an existing hybrid technique. It

then uses concolic execution to search for input and schedule that lead to a real race (to remove false

positives). WHOOP [DDR15] considers races between pairs of entry points to driver code and runs a

symbolic lockset analysis with SMT solver. A combination of partial order reduction with interpolation

based path pruning is described in [CJ14].

The work at hand presents a new race detection algorithm that uses concolic execution of multi-

threaded code with FIFO scheduling on one CPU core, interpolation based path merging and a combina-

tion with binary instrumentation for happens-before / lockset analysis.
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Discussion

While most common weaknesses can in principle be automatically detected, practical automated bug

detection is a complexity / accuracy trade-off, that is determined by the currently known algorithms.

Symbolic execution allows for accurate bug detection, but a naive straight-forward implementation faces

the path explosion problem. Currently, the predominant tools use coverage-oriented heuristic path explo-

ration to find bugs under complexity constraints.

The work at hand follows the more recent approach of state interpolation and path merging. It

develops algorithms for interpolation based path merging, where the chosen interpolation determines

the achieved coverage. This yields a trade-off between computational effort and detection accuracy, that

is qualitatively described as coverage and interpolation hierarchy. The trade-off is also quantitatively

described for the special case of a certain subset of the Juliet test suite. The evaluation uses on the

one hand the implementation-independent measures of false detection rates and path set sizes, and on

the other hand the comparison of runtimes of the implementations within the same framework. The

fastest analysis mode is a branch coverage heuristic. For more accurate analysis, interpolation based path

merging is used, where the coverage is determined by the selected interpolation. For the most accurate

analysis mode of error and branch coverage, the merge conditions are updated in case of a bug detection

for improved efficiency. The presented approach is debugger based selective symbolic interpretation on

the source code level. Source modification is not needed.

The approach is also applicable to symbolic execution in a virtual machine and to remote concolic

execution in a physical target system. One application example is to use the gdb server in the qemu VM.

Another application example is to use a gdbserver in a target system. In-circuit emulators and JTAG

based hardware debuggers also often support the gdb machine interface.

One limitation of the presented implementation is that only a small part of the standard library is
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modelled, just enough to correctly detect the errors for all of the Juliet suite’s data and control flow

variants, for a small number of Juliet’s ’baseline bugs’. Another limitation is slow execution speed. While

lots of computation is saved due to path merging, the execution of a single path remains slow. The work

at hand uses dynamic symbolic execution on the source code level with selective symbolic tree-based

interpretation. An alternative is symbolic interpretation of intermediate code [CDE08], which benefits

from a small instruction set. The implementation would be a stack-based or register-based symbolic

bytecode interpreter, rather than a tree-based symbolic interpreter. Bytecode interpreters in general are

much faster than tree-based interpreters: while tree-based interpretation is ’simple and natural’, it is also

considered the ’slowest approach’ [WWS+12]. The AST contains syntax nodes without related semantic

actions, whose traversal is overhead. Method dispatch for each node is costly. Speed differences for

concrete interpreters are quantified in [EG03]. A slow (concrete) interpreter can be more than a factor

of 1000 slower than native code execution. A fast (concrete) interpreter is only about a factor of 10

slower than native code execution [EG03]. With the debugger-based approach using selective symbolic

execution on the one hand execution between breakpoints proceeds with full concrete execution speed.

On the other hand, the context switches and communication interfaces between debugger, debugger

target, symbolic interpreter and solver processes impose a high overhead. A further limitation is that the

work at hand only considers finite execution trees, i.e., programs with only a finite number of satisfiable

program paths. Completeness is neither claimed nor considered. Another limitation is that the results are

not compared to state of the art symbolic execution engines.

To sum up, the presented implementation is an initial algorithm evaluation. A faster implementation

seems possible by implementing interpolation based path merging within a symbolic bytecode interpreter

(e.g., [CDE08]) or possibly by using binary instrumentation and compiling everything into one binary.

For the future it seems likely that more symbolic execution based bug detection tools will use interpola-

tion based path merging. The adoption of path merging to other applications of symbolic execution like

automated de-obfuscation or worst-case execution time determination (merging based on live variable

analysis) also seems likely. There are tools that mix heuristic path exploration with path merging. KLEE

[CDE08] features path merging based on live variable analysis. In [JMN13], path merging during heuris-

tic path exploration is based on ’half interpolants’. But, in order to exploit the full complexity reduction

potential of unsat-core based interpolation, depth-first traversal is required.
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Abbreviations

ADL (Processor) Architecture Description Language

AST Abstract Syntax Tree

BFS Breadth First Search

CDT (Eclipse) C/C++ Development Tools

CFG Control Flow Graph

CWE Common Weakness Enumeration

DFS Depth First Search

DSF (Eclipse) Debugger Services Framework

DOM Document Object Model

gdb GNU Debugger

gcc GNU Compiler Collection

GUI Graphical User Interface

IDE Integrated Development Environment

I/O Input / Output

JTAG Joint Test Action Group

LLVM LLVM (formerly ’Low Level Virtual Machine’)

MC/DC Modified Condition / Decision Coverage

OS Operating System

PET Program Execution Tree

POSIX Portable Operating System Interface

SAT Satisfiability

SMT Satisfiability Modulo Theories

WCET Worst Case Execution Time

VM Virtual Machine
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