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Abstract

This thesis discusses the modeling of self-excited thermoacoustic oscillations.
On the one hand two different types of hybrid CFD/low-order models are inves-
tigated. These models resolve the flame and its immediate vicinity with reactive
flow simulations. The acoustic field is modeled via a coupled acoustic low-
order model. One of the hybrid CFD/low-order models resolve the flame with a
fully compressible and reactive CFD simulation. So called Characteristic Based
State-Space Boundary Conditions (CBSBC), which have been developed within
this thesis, are used to couple the simulation via characteristic wave amplitudes
to the acoustic low-order model. The other hybrid CFD/low-order model inves-
tigated resolves the flame with a low-Mach CFD simulation. Here, the coupling
is based on the fluctuations of a reference velocity and of the global heat release
rate. A cross-validation in terms of a bifurcation analysis shows good agreement
between the two models. This corroborates that premixed flame respond pre-
dominantly to fluctuations of the upstream velocity and that the most important
nonlinearities can be attributed to hydrodynamic effects and flame kinematics.

Hybrid CFD/low-order models describe thermoacoustic oscillations accurately
and reduce the computational costs significantly compared to fully compressible
simulations of the whole domain. However, the computational effort is still con-
siderable. Therefore, on the other hand, nonlinear extensions of the CFD/system
identification (SI) approach are investigated. The CFD simulation is forced with
a broadband, high-amplitude signal and the time series of the fluctuations of the
reference velocity and of the global heat release rate are collected. Thereafter,
system identification is applied in order to obtain nonlinear low-order models.
Artificial neural networks are used as nonlinear model structure. It is found
that these models can reproduce the forced response up to a certain amplitude
level. The nonlinear low-order models are then combined with a thermoacoustic
network model in order to model the self-excited thermoacoustic oscillations.
Unfortunately, the oscillations predicted differ significantly from the ones pre-
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dicted by the hybrid models. Theoretically, good agreement can be achieved, if
sufficiently long time series are available. Our analysis indicates that generating
sufficiently long time series is prohibitively expensive. Hybrid CFD/low-order
models, such as those developed in the present thesis, appear to be more promis-
ing. It is expected that with this methodology it is possible to simulate self-
excited thermoacoustic oscillations with high accuracy and reasonable compu-
tational effort.
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1 Introduction

“Thermoacoustic instabilities are a cause for concern in combustion applica-
tions as diverse as small household burners, gas turbines and rocket engines”
[1–10]. A self-amplifying feedback between an unsteady heat source and the
surrounding acoustic field yields large oscillations of the flow variables. These
oscillations can reach amplitude levels at which they cause serious damage to
the engine. For the case of a perfectly premixed flame, the fundamental mech-
anism is illustrated and explained in Fig. 1.1. As noted by Culick et al. [11],
thermoacoustic instabilities have been observed during the development of prac-
tically all rocket engines. In gas turbine combustion chambers thermoacoustic
oscillations limit the operational flexibility [12, 13]. Giacomazzi [12] discuss
the problems occurring when gas turbines are used as backup solution for re-
newable power plants, such as wind turbines or solar power plants. For this
purpose gas turbines have to compensate the unsteady power generation of the
renewable power plants and therefore, have to adjust their operating condition
quickly and flexibly.
A well established method to describe thermoacoustic instabilities is linear sta-
bility analysis [14–18]. This methodology allows to predict stable and unstable
operating ranges. A generic stability map is shown in Fig. 1.2. Typically, it is
assumed that the stable operating range is acceptable and that the unstable oper-
ating range should be avoided. This, however, is a very conservative assumption.
As indicated in Fig. 1.2, according to the linear analysis small perturbations de-
cay exponentially in the stable regime and grow exponentially in the unstable
regime. Theoretically, according to the linear stability analysis, small perturba-
tions grow to infinity in the unstable regime. Obviously, this is unphysical. In
real engines nonlinear effects will become important and the engine exhibits a
thermoacoustic oscillations with a finite amplitude. If this amplitude is below a
certain threshold, the oscillation will not damage the engine. Hence, knowing
the oscillation amplitude allows to extend the operating range of the engine.
Therefore, the main objective of this thesis is the development of methods to
predict the amplitude of self-excited thermoacoustic oscillations.
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Thermoacoustic oscillation can be very complex. Kabiraj et al. [19] observed
periodic, aperiodic and chaotic oscillations as well as hysteresis while study-
ing a laminar premixed flame. Such complex oscillations can only be described
with nonlinear models. For gas turbine engines the two most important non-
linear effects are the nonlinear flame dynamics [20–22] and nonlinear acoustic
damping [23, 24]. The present thesis focuses on modeling the nonlinear flame
dynamics. The most common model is the flame describing function3 (FDF)
proposed by Dowling [25]. Noiray et al. [26] demonstrated that an FDF com-
bined with a linear model for the acoustics can predict limit cycle amplitudes,
mode switching and instability triggering with good accuracy. The configura-
tion investigated was a laminar matrix burner. With the FDF it is also possi-
ble to model thermoacoustic oscillations of turbulent combustors (see e.g. [27,
28]). The FDF framework has two significant drawbacks: (1) It can describe
only harmonic limit cycles, i.e. thermoacoustic oscillations with a single dom-
inant frequency. More complex types of oscillations cannot be predicted. (2)
It is very expensive to determine an FDF. Commonly, a given configuration is
forced with harmonic signals at a large number of frequencies and amplitudes
[26]. This procedure can in principle be applied to experimental [26, 27] as well
as to simulated flames [29–32]. However, this approach is prohibitively expen-
sive for large parameter studies in industrial applications. A detailed discussion
on other nonlinear models proposed is provided in Sec. 4.2.
The methods investigated in this thesis aim to overcome both issues. On the one
hand, in PAPER-CBSBC and PAPER-HYBRID, hybrid CFD/low-order models
are investigated: The flame is simulated with a computational fluid dynamics
(CFD) solver, which is coupled to a linear model of the acoustics. These mod-
els can describe self-excited thermoacoustic oscillations accurately, and reduce
the effort compared to a CFD simulation of the whole configuration signifi-
cantly. The novelty of the hybrid formulations developed in the present thesis is
their consistency, (no spurious waves are generated), and their robustness and
flexibility (complex impedances can be imposed and the formulation works for
laminar as well as for turbulent flows). However, the hybrid models are still ex-
pensive. Therefore, on the other hand, CFD/system identification (SI) [33] ap-
proach is investigated: a transient simulation is forced with a broadband signal
and time series are collected from which low-order model are deduced via sys-
tem identification. In PAPER-GREYBOX linear grey-box models are discussed,

3A describing function is a frequency response which depends on the amplitude of the excitation signal (see
also Sec. 4.2).
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ū+ u′

¯̇q + q̇′

Figure 1.1: Thermoacoustic coupling: A perturbation u′ of the mean flow velocity ū causes a
fluctuation q̇′ of the mean heat release rate ¯̇q. The additional heat yields an expan-
sion of the gas surrounding the flame. Thus, the flame acts as an unsteady volume
source and consequently as a sound source. The acoustic waves emitted, are re-
flected at the combustion chamber walls and again cause a perturbation u′ of the
mean flow at the flame base. This closes the feedback.

which allow among other things to estimate the heat release rate fluctuations
from acoustic measurements only. Following the work of Selimefendigil et al.
[34–36] in PAPER-ANN a nonlinear extension of the CFD/SI approach is in-
vestigated. Artificial neural networks (ANN) are used to model the nonlinear
dynamics of a laminar premixed flame. In theory, when very long time series
are available, the ANN identified should represent the CFD model accurately.
The uncertainty of the prediction made by the models identified is assessed. The
results indicated that generating sufficiently long time series is prohibitively ex-
pensive and that more sophisticated models are required.
The remainder of this thesis is organized as follows: In Chap. 2 some fundamen-
tal properties of dynamical systems are derived and discussed. System identi-
fication is discussed in detail in Chap. 3. Chap. 4 focuses on the modeling of
thermoacoustic oscillations. In Chap. 5 the publications contributing to this the-
sis are summarized.
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Figure 1.2: Generic example of a linear stability map and possible types of oscillations occur-
ring in the stable and in the unstable regime.
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2 A few words on systems theory

The present thesis builds on a system theoretic perspective of the modeling of
thermoacoustic oscillations. This perspective has been developed over the last
decades by several authors. The most important results of systems theory are
discussed in the present chapter. A detailed review of the literature related to
thermoacoustics is provided in Chap. 4. The material discussed in the present
chapter is well known to the systems theory community and can be found in
a large number of books. The author of the present thesis used the books by
Lunze [37, 38].
In Fig. 2.1 a generic dynamical system G is shown. It connectsm inputs u(t) =
[u1(t), . . . , um(t)]T and p outputs y(t) = [y1(t), . . . , yp(t)]

T . Mathematically,
we write this as

y(t) = G ◦ u(t).

G denotes the operator of the system and t the time. The symbol “◦” describes
the dynamic mapping of the inputs u to the outputs y via the operator G.
The most general classification of systems is between linear and nonlinear sys-
tems. Linear systems fulfill the principle of additivity

G ◦ (u1 + u2) = G ◦ u1 + G ◦ u2,

and the principle of homogeneity

G ◦ (αu) = α (G ◦ u) .

If at least one of these principles is violated the system is called nonlinear. This
is the only common feature of nonlinear systems and thus, these systems are
hard to characterize in general. Indeed, an large eddy simulation (LES) solver
can be considered as a nonlinear system. In the present work, we will discuss
the flame dynamics as a specific type of nonlinear systems in Sec. 4.2. Within
the present chapter we focus the discussion on linear systems.
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Figure 2.1: Generic dynamical system

2.1 Continuous-time models

A linear system can be represented without loss of generality in state-space
form:

ẋ = Ax + Bu, (2.1)
y = Cx + Du, (2.2)

with the system matrices A ∈ Rn×n,B ∈ Rn×m,C ∈ Rp×n,D ∈ Rp×m and
the state-vector x ∈ Rn×1. Here, n is the order of the system. The system
matrices can be determined in manifold ways. In PAPER-CBSBC an overview
of the most appropriated approaches to obtain these matrices for thermoacoustic
systems is provided, written by the author of the present thesis.
A state-space model is not a unique representation of a specific system. We
can introduce a transformation matrix T ∈ Rn×n with full rank and define the
transformation

x = Tz.

Inserted in (2.1) this yields

ż = T−1ATz + T−1Bu,

y = CTz + Du.

For example, such a transformation can represent a transformation of units or
a reordering of equations. All system matrices are changed, while the system
still describes the same physics. Consequently, many properties (e.g. stability,
transfer behavior) of the model are preserved. Please note that although the
system describes the same physics, the transformation can change its numerical
properties significantly.
A linear state-space model is essentially a system of ordinary differential equa-
tions (ODE). A large number of properties can be deduced from this perspec-
tive. The solution of the ODE can be found with the matrix exponential function
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given as

eAt = In + At+
A2

2!
t2 +

A3

3!
t3 + . . . ,

with the identity matrix In ∈ Rn×n. An important property of the matrix ex-
ponential function is that for a diagonal matrix Λ with the values λi on the
diagonal the matrix exponential function can be calculated according to

eΛt =

eλ1 . . .
eλn

 .
Its inverse is (

eAt
)−1

= e−At,

and the temporal derivative is given as

d

dt
eAt = AeAt = eAtA.

In order to solve the ODE we use the ansatz

x(t) = eAtk(t). (2.4)

Inserting this expression in Eq. (2.1) yields

ẋ = AeAtk + Bu = AeAtk + eAtk̇

⇒ k̇ =
(
eAt
)−1

Bu = e−AtBu(t)

⇒ k(t) = k(0) +

∫ t

0

e−AτBu(τ)dτ.

Together with Eq. (2.4) and the initial condition k(0) = x0 we obtain

x(t) = eAtx0 +

∫ t

0

eA(t−τ)Bu(τ)dτ + Du(t).

Considering the output equation (2.2) of the state-space model this yields the
general solution of (2.1)

y(t) = CeAtx0 +

∫ t

0

CeA(t−τ)Bu(τ)dτ + Du(t). (2.6)

The system matrix A can be decomposed according to

A = VΛVT .
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Here, V is a matrix containing the eigenvectors of A. In the scope of this tutorial
we restricted the discussion to eigenvalues with an algebraic multiplicity of one.
Thus, Λ is a diagonal matrix with the eigenvalues λi on the diagonal. Using V
as transformation matrix, the general solution (2.6) of the state-space model
becomes

y(t) = CVeVTAVtV x0 +

∫ t

0

CVeVTAV(t−τ)VTBu(τ)dτ + Du(t)

= CVeΛtVTx0 +

∫ t

0

CVeΛ(t−τ)VTBu(τ)dτ + Du(t). (2.7)

Thus, the response of the system can be described in terms of a sum of expo-
nential functions. The response will decay if and only if all real parts of the
eigenvalues λi are smaller than zero. In this case the response to an arbitrary
initial excitation of the model will decay exponentially. Such models are called
asymptotically stable.
For an impulse excitation, i.e. u(t) = δ(t) one obtains

y(t) =

∫ t

0

CeA(t−τ)Bδ(τ)dτ + Dδ(t)

= CeAtB︸ ︷︷ ︸
h(t)

+Dδ(t)

Here, h(t) is the impulse response. Inserting this expression in (2.6) one obtains

y(t) =

∫ t

0

h(t− τ)u(τ)dτ + Du(t) (2.9)

If h(t) is known, the output of the system to an arbitrary input signal can be
computed. In that sense the system is characterized by its impulse response.
The representation (2.9) is also known is infinite impulse response (IIR) model.
Please note that according to Eq. (2.7) the impulse response can be described
by exponential functions. For a stable system these functions will decay expo-
nentially and thus, never be exactly zero. Therefore, the impulse response of a
continuous-time model is always infinite in time.
To model thermoacoustic systems the response of the model to harmonic forc-
ing signals is of particular importance. Therefore, we consider the response of
the state-space model (2.1) to the input signal

u(t) = u0e
st.
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Here, u0 is the vector of amplitudes of the signal and s is the Laplace variable

s = σ + jω,

with the angular frequency ω, the growth rate σ. The response to an harmonic
input signal oscillating at frequency ω corresponds to s = jω. Inserting this
ansatz in Eq. (2.7) yields

y(t, ω) = CVeΛtVTx0 +

∫ t

0

CVeΛ(t−τ)VTBu0e
sτdτ + Du0e

st.

The first term represents the transient response and will vanish for long times.

y(t, ω) = CV

(∫ t

0

eΛ(t−τ)esτdτ

)
VTBu0 + Du0e

st

= CV

(∫ t

0

eΛτes(t−τ)dτ

)
VTBu0 + Du0e

st

= CV

(∫ ∞
0

eΛτes(t−τ)dτ −
∫ ∞
t

eΛτes(t−τ)dτ

)
VTBu0 + Du0e

st,

for t→∞ the second integral tends to zero as the size of the integration interval
decreases.

y(t, s) = CV

(∫ ∞
0

eΛτe−sτdτ

)
estVTBu0 + Du0e

st

= CV

(∫ ∞
0

e−(sIn−Λ)τdτ

)
estVTBu0 + Du0e

st

= CV
[
− (sIn −Λ)−1 e−(sIn−Λ)τ

]∞
0
estVTBu0 + Du0e

st

= CV (sIn −Λ)−1 estVTBu0 + Du0e
st

=
[
CV (sIn −Λ)−1 VTB + D

]
u0e

st

=
[
C
(
sIn −VΛVT

)−1
B + D

]
u0e

st

=
[
C (sIn −A)−1 B + D

]
︸ ︷︷ ︸

=G(s)

u0e
st.

G(s) is called the transfer matrix of the state-space model (2.1)

G(s) =

G11(s) · · · G1m(s)
... ...

Gp1(s) · · · Gpm(s)

 = C (sIn −A)−1 B + D.
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The elements Gij = Yi(s)/Uj(s) of the transfer matrix G(s) are the transfer
functions from the j-th input to the i-th output of the state-space model. Please
note, this result can be obtained in a much simpler manner via the Laplace
transform.
With the modal transformation it can also be shown that each transfer function
is a rational polynomial function

G(s) = C (sIn −A)−1 B + D

= CV (sIn −Λ)−1 VTB + D

= CV

s− λ1
. . .

s− λn


−1

VTB + D

=

c̃11 · · · c̃1n
... ...
c̃p1 · · · c̃pn




1
s−λ1 . . .

1
s−λn


b̃11 · · · b̃1m

... ...
b̃n1 · · · b̃nm

+ D

=
n∑
i=1

1

s− λi

b̃i1c̃1i · · · b̃imc̃1i
... ...

b̃i1c̃pi · · · b̃imc̃pi

 .

Expanding the sum yields

G(s) =
1

sn + αn−1sn−1 + · · ·+ α0βn−1
11 sn−1 + · · ·+ β0

11 · · · βn−1
1m sn−1 + · · ·+ β0

1m
... ...

βn−1
p1 sn−1 + · · ·+ β0

p1 · · · βn−1
pm sn−1 + · · ·+ β0

pm

 .
with the coefficients α and β of the rational polynomials.

2.2 Discrete-time models

Discretizing the continuous-time state-space model (2.1) in time yields a
discrete-time state-space model

x(k∆t) = xk+1 = Adxk + Bduk (2.13)
yk = Cdxk + Dduk.

10



Here, k is the discrete time increment defined as t = k∆t with the time step
∆t.
The general solution of the discrete-time state-space model is given as

y(k) = CdA
k
dx0 +

k−1∑
i=0

CdA
k−1−i
d Bdu(i) + Ddu(i) (2.14)

This solution can be found by inserting Eq. (2.13) iteratively into itself. A
discrete-time state-space model is stable if all eigenvalues of Ad have a magni-
tude smaller than 1.
As for continuous-time models, the impulse response model of a discrete-time
time model can be deduced imposing an impulse excitation, i.e.

δd(k) =

{
1/∆t for k = 0

0 else

This yields
y(k) = CdA

k−1
d Bd/∆t︸ ︷︷ ︸
hd(k)

+Ddδd(k).

Inserted into Eq. (2.14) yields

y(k) =
k−1∑
i=0

hd(k − i)∆tu(i) + Ddu(i)

Thus, as for the continuous-time models, knowing the impulse response is suf-
ficient to calculate the output of a discrete-time model for an arbitrary input
signal. The impulse response of discrete-time models has one significant dif-
ference compared to the impulse response of continuous-time models: If the
matrix A is Nilpotent4 the impulse response will be finite. The corresponding
model is called finite impulse response (FIR) model.
Applying the z-transform to Eq. (2.2) yields the frequency response of the
model

G(z) = Cd (zIn −Ad)
−1 Bd + Dd. (2.15)

As for continuous-time models it can be shown that the z-transfer matrix can be
represented as rational polynomial function. In order to calculate the response
of the model to a harmonic excitation at frequency ω we set

z = ejω∆t.
4i.e. it exists a k ∈ N such that Ak = 0. All eigenvalues of a Nilpotent matrix are equal to zero.
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The z-transfer matrix of a discrete-time model can be converted in to a
continuous-time transfer matrix. For this we first discretize the continouse-time
state-space model (2.1) in time using a forward Euler scheme:

xk+1 = (I + ∆tA)︸ ︷︷ ︸
Ad

xk + ∆tB︸︷︷︸
Bd

uk

yk = C︸︷︷︸
Cd

xk + D︸︷︷︸
Dd

uk

inserting these expressions for the system matrices of the discrete-time model
into Eq. (2.15) yields

G(z) = C (zIn − (I + ∆tA))−1 ∆tB + D

= C

z − 1

∆t︸ ︷︷ ︸
=s

In −A


−1

B + D

Thus by choosing

s =
z − 1

∆t
⇔ z = 1 + s∆t

a continuous time transfer matrix can be transformed into a discrete-time trans-
fer matrix and vise versa. This transformation is an approximation and intro-
duces the error made by the use of the forward Euler scheme. The methodol-
ogy can be extended for other schemes. As shown in [39], applying a Crank-
Nicholson discretization of Eq. (2.1) yields the famous Tustin transformation.
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3 System identification

The most common way to build models is to use the relations provided by fun-
damental principles, such as mass or energy conservation etc.. This, however, is
a very challenging task and the agreement with validation data is often insuffi-
cient. One way to overcome this issue is to fit some or even all of the model pa-
rameters to measured data. This creates the risk of over-fitting. Nevertheless, the
quality of the predictions made by such empirical models is often significantly
higher than models built entirely on fundamental principles. System identifica-
tion (SI) provides a general framework to build empirical models in an efficient
and consistent manner. Dependent on the data available different methods are
needed. Experimental data is often provided in terms of a frequency response.
Bothien et al. [18] and PAPER-CBSBC discuss, with a focus on thermoacoustic
problems, how to use this kind of data to build models. Typically, frequency re-
sponses are determined by forcing a given system at several distinct frequencies
and by post-processing the data collected with a Fourier transform. Applying
the same procedure to a CFD simulation is extremely expensive, as it requires a
large number of simulations. In the present chapter we discuss system identifi-
cation methods that allow to deduce a model from a CFD simulation efficiently.
The key idea is to force the simulation with a broadband signal. This signals
excites all frequencies simultaneously and allows to deduce an empirical low-
order model from data generated by a single simulation. The procedure is called
CFD/SI approach. Polifke [33] provides an overview of this approach. Overall,
the method can be divided into four steps: Setting up the CFD simulation, run-
ning the simulation, pre-processing the data, fitting the model to the data and
validating the model. A schematic overview of the method is shown in Fig. 3.1.
In the remainder of this chapter these steps are discussed in detail.
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3.1 Setting up the CFD simulation

The first step is to setup a CFD simulation. This step does not differ from any
other CFD simulation, except that one has to be able to impose a forcing sig-
nal and to collect the output signal. For example. if, as in the present case, one
wants to obtain a low-order model for the flame dynamics, one has to be able
to force the inflow velocity with an arbitrary signal and to collect the result-
ing fluctuations of the global heat release rate. Many CFD solvers provide this
functionality out of the box, otherwise the necessary modifications are minimal.
This makes the CFD/SI approach applicable to a large number of problems.

3.2 Running the simulation

The second step is to run the simulation with an appropriate excitation signal.
A general method to create signals well suited for the CFD/SI approach was
proposed by Föller et al. [40]. The most important property of the signal is the
cutoff frequency. It should be chosen such that all frequencies of interest are
excited. Besides this the excitation amplitude is to be selected. For the linear
CFD/SI approach a constant amplitude with a value as large as possible without
exciting nonlinear effects should be chosen. For the nonlinear CFD/SI approach
larger amplitudes and preferably non-constant amplitudes should be used. Addi-
tionally, the time series have to be significantly longer. Indeed, in PAPER-ANN
time series that are up to 30 times longer than time series sufficient for the linear
CFD/SI approach are used. It is found that even for these extremely long time
series the variance of results is significant.

3.3 Post-processing of the time series collected

After running the simulation, the time series collected have to be pre-processed
before the system identification methods can be applied. On the one hand this
means to normalize the data. On the other hand the data is sampled down. This
step is necessary, as discrete time models are commonly used for the identifica-
tion. Consequently, the time steps of the model and of the data have to be equal.
The down sampling rate is an additional parameter which has to be chosen. This
step can be avoided if continuous-time models are used for the identifications
(see e.g. [41]). To the best of our knowledge continuous time system identifica-
tion has not yet been applied to thermoacoustic problems.
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3.4 Fit a model to the data

The next step is to choose a suitable model structure given as

y(t,Θ) = G(Θ) ◦ u(t),

with the vector of unknown parameters Θ. In the linear regime a state-space
model (see Eq. (2.2)) provides a general model structure5. In the nonlinear
regime a large number of different model structures are available. At this point
we refer to Isermann et al. [49] and Nelles [50]. Nonlinear models suitable to
model the flame dynamics are discussed in Sec. 4.2.
The vector of unknown parameter can be determined by solving a least squares
optimization problem

Θ̂ = argmin
Θ

{
N∑
i=0

‖y(ti)− ŷ(ti,Θ)‖2
2

}
.

Here, Θ̂ is the identified parameter vector, N is the number of sampled data
points, y denotes the measured output signal and ŷ the output predicted by
the model. Depending on the model structure, different algorithms are used to
solve the optimization problem. Using a fully parametrized state-space model
as given in Eq. (2.2), which provides a general structure for linear models, how-
ever, yields numerical difficulties [51]. This is because a state-space model has
a large number of redundant parameters. As discussed in the previous chapter
a state-space model can be transformed into a transfer function described by
rational polynomial functions. This transformation preserves the input-output
behavior of the model. However, the state-space model has n2 +(m+p)n+pm

parameters while, the corresponding transfer function only n− 1 +npm. Thus,
the parameters of the state-space models are linearly dependent in respect to
the transfer behavior of the state-space model. This results in a poorly condi-
tioned optimization problem, which is why for a long time only transfer func-
tions were used for identification. The Wiener-Hopf inversion [33, 52] used
frequently to identify the flame transfer function is one of these techniques. Ro-
bust algorithms for the identification of fully parametrized state-space models
are the subspace identification methods [53–55] and gradient based algorithms,
which calculate the search direction according to the data-driven local coordi-
nates (DDLC) parametrization [51]. These algorithms are expected to be ad-
vantageous for problems with a large number of input and output signals. For

5Note, in this work only a deterministic model is discussed. The CFD/SI approach can be extended in such a
way that model of the noise source is identified. This is extensively discussed by Sovardi et al. [42–48].
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nonlinear system identification the parameters used depend strongly on the non-
linear model structure. The algorithm used to identify artificial neural networks
is called error back propagation [50]. Using an Volterra series6 yields an linear
optimization problems. A variety of algorithms has been proposed to identify
Hammerstein-Wiener models (see e.g. [56–59]). A discussion from a thermoa-
coustic perspective for some model structures can be found in [34–36] and in
PAPER-ANN.
As LES requires a huge computational effort, the time series used for the
CFD/SI approach are often very short. In this limit regularization can improve
the quality of the models identified. The idea is to add constraints to the opti-
mization problem:

Θ̂ = argmin
Θ

{
N∑
i=0

‖y(ti)− ŷ(ti,Θ)‖2
2 + ΘTRΘ

}
,

with the regularization matrix R. This allows to use assumptions e.g. that the
impulse response of the model identified is smooth and decays exponentially.
An overview on the methods available can be found in [52, 60].

3.5 Validation of the model

The final step is to validate the models identified. Here, experimental data can
be used to validate the CFD simulation only. A comparison of the models iden-
tified and experimental data should only be done if one is sure that the model
identified represents the CFD simulation accurately. In order to investigate this
a number of strategies and methods are available. The most reliable methods re-
quire to generate additional data. For example one compares the FDF deduced
directly from the CFD simulation against the one predicted by the nonlinear
model identified. When self-excited thermoacoustic oscillations are to be mod-
eled, it is ideal to compare the oscillations predicted by the CFD simulation
against the one predicted by the nonlinear model identified. In order to avoid
additional error sources the CFD simulation and the nonlinear model should be
coupled with the same model for the acoustics. This was done within the scope
of the present thesis in PAPER-ANN. Other methods are residual analysis or
Akaike’s information criterion (AIC) [61]. These methods do not require addi-
tional data. However, their reliability is much lower and they can be used only
in the linear regime.

6This model structure is also called nonlinear auto regressive (NLARX) models.
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The validation of the model can fail for several reasons. In order to find the error
source in a systematic manner one may follow the steps shown in Fig. 3.1 from
bottom to top. A possible error source is the identification algorithms used [50].
As non-deterministic algorithms are used to identify artificial neural networks,
simply restarting the optimization can yield a better model. For the Wiener-
Hopf inversion the regularization can be changed. The next possible error is the
model structure. Here, one can e.g. change the number of the impulse response
coefficients or the structure of an artificial neural network. Another error source
is the pre-processing of the data used for the identification. This kind of error
is most often related to an incorrect down sampling rate. However, one should
also check the normalization of the data. If all these possible errors sources can
be excluded, the issue is related to the CFD simulation. At best the time series
are too short. In this case one should simple continue the simulation. In order to
obtain a continuous time series, it is necessary that the broadband excitation sig-
nal is long enough. Therefore, it is best practice to create an excitation signal,
which is at least ten times longer than the required simulation time expected.
Obviously, this signal should be created before the first simulation is started.
In the linear regime confidence intervals allow to estimate the uncertainty of
the model with respect to the length of the time series used. Sovardi et al. [42]
discuss this strategy and use it to identify the scattering matrix of an orifice.
With sufficiently long time series one should always be able to identify a proper
model. Please note, as shown in PAPER-ANN in the nonlinear regime one may
not be able to create sufficiently long time series. Another possible issue with
the excitation signal is the amplitude. For the linear regime it should be as high
as possible without exciting nonlinear effects. In the nonlinear regime the exci-
tation signal should excite all amplitudes of interest. Additionally, the excitation
signal should excite all frequencies of interest. Once all issues mentioned above
have been solved, one has ensured that the model identified represents the CFD
simulation accurately. The next step is to validate the model identified against
experimental data. If no agreement is obtained the issue either caused by CFD
simulation or by the experiment.
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Figure 3.1: Schematic procedure of the CFD/SI approach. Adapted from [62]
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4 Modeling of thermoacoustic oscillations

In Fig. 4.1 (top) a generic sketch of a premixed combustor is shown. At the
left hand side premixed gas is injected into the plenum of the combustor. For
swirl flames the swirler coincides with the area contraction. The flame stabilizes
after the area expansion. For certain working conditions the combustor will ex-
hibit thermoacoustic oscillations. The first step to model these oscillations is to
separate the acoustics and the flame dynamics, as shown in Fig. 4.1 (middle).
In the present project only low-frequency oscillations are considered. In this
limit the acoustic wave-lengths are much larger than the relevant length scales of
the cross-sections. Therefore, all acoustic waves are plane and can be described
in terms of the characteristic wave amplitudes f and g (see e.g. [63, 64])

f =
1

2

(
p′A
ρ̄c̄

+ u′A

)
, g =

1

2

(
p′A
ρ̄c̄
− u′A

)
,

with the density ρ, the speed of sound c and the acoustic fluctuation of pressure
p′A and of velocity u′A. The symbol (̄·) denotes the temporal average. As shown
in Fig. 4.1, f corresponds to the wave traveling in downstream direction and g
to the one traveling in upstream direction.
In order to model thermoacoustic oscillations, a model which describes how
an unsteady heat source q̇′ generates acoustic waves is necessary. For low-
frequency oscillations the minimal acoustic wave length is significantly smaller
than the axial expansion of the flame. Thus, the flame is acoustically compact
and can be considered to be infinitesimally thin. Evaluating the one dimen-
sional momentum and energy equations over this infinitesimal flame yields the
Rankine-Hugoniot equations. They are given in state-space form as [65–67][

gu
fd

]
=

1

ζ + 1

[
1− ζ 2 θū1

2ζ ζ − 1 θζū1

]fugd
q̇′

 , (4.17)

with ζ = ρ̄3c̄3/ρ̄4c̄4 and θ = T̄4/T̄1 − 1. T̄ is the temperature. The index u and
d denote the position upstream and downstream of the flame front, respectively.
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The Rankine-Hugoniot equation describe a static relationship. Therefore, the
corresponding state-space model consists only of the matrix D. The matrices
A,B and C are equal to zero.
With the Rankine-Hugoniot equations a model that describes how the unsteady
heat source acts on the acoustics is available. In order to close the thermoa-
coustic feedback loop a model which describes how the acoustics acts on the
unsteady heat source is necessary. Perfectly premixed flames react predomi-
nantly to fluctuations of the velocity upstream of the flame [68, 69]. Therefore,
the flame dynamics can be represented as the dynamical system

q̇′ = Gflame ◦ u′. (4.18)

In the remainder of this chapters we will first discuss the modeling of the acous-
tics and then the modeling of the flame dynamics. Finally, we discuss hybrid
CFD/low-order modeling approaches of thermoacoustic oscillations.

4.1 Modeling of the acoustics

Plane acoustic waves can be described with acoustic network models [14–16].
As shown in Fig. 4.1 (bottom), the key idea is to divide the configuration into
several elements. The elements are modeled separately from each other. In a
final step, all models are interconnected in order to obtain a model for the whole
configuration. The internal elements can be represented as scattering matrix[

gu
fd

]
=

[
S11(s) S12(s)
S21(s) S22(s)

] [
fu
gd

]
.

The coefficient S11 describes the reflection of the wave fu, which results in the
wave gu, and so on (compare Fig. 4.2). The boundary elements can be modeled
as reflection coefficients Ru(s) and Rd(s).
Both the scattering matrix and the reflection coefficients describe linear dynam-
ical systems and can be represented as linear state-space models. The models
for the internal elements are given as

ẋS = ASxS +BS

[
fu
gd

]
,[

gu
fd

]
= CSxS +DS

[
fu
gd

]
.
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Figure 4.1: Top: Generic combustor, Middle: separation in acoustics and flame dynamics, Bot-
tom: Corresponding network model
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The state-space representation allows a robust and general implementation. It
was first proposed by Schuermans et al. [17]. The methodology was then gen-
eralized by Bothien et al. [18] and Emmert et al. [70].
A simple model for an area jump is given as (see e.g. [71])[

gu
fd

]
=

[
α−1
α+1

2
α+1

2α
α+1

α−1
α+1

]
︸ ︷︷ ︸

=Darea jump

[
fu
gd

]
,

with the area ratio α = A2/A3. This is a static model and thus, its state-space
representation consists of the feed through matrix, only.
For the duct sections a model based on the linearized one-dimensional Euler
equations can be found. A detailed derivation by the author of this thesis is pro-
vided in PAPER-CBSBC. Emmert et al. [70] discuss how general geometries
can be modeled via numerical discretization of linearized perturbation equa-
tions.
Within the scope of the dissertation of T. Emmert a thermoacoustic network
framework called taX7 was developed. The author of this thesis supported the
development with a lot of discussions, some coding and by being the first user.
All network models used for the present work were generated with taX.

4.2 Modeling of the flame dynamics

In the limit of small perturbation a linear model can capture the flame dynamics.
This linear model is known as flame transfer function (FTF) [65]. Well estab-
lished methods exist to obtain an FTF. It can be determined from experiment
by harmonic forcing or from CFD via the CFD/SI approach, as discussed in
the previous chapter. For higher levels of perturbations nonlinear models are
necessary. Here, several modeling approaches have been proposed.
One model proposed is the flame describing function (FDF) [25]. The FDF is

7https://tax.wiki.tum.de/
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an amplitude dependent FTF

FDF(ω,A) =
F {q̇′(ω,A)}
F {u′(ω,A)}

with the excitation amplitude A. F {·} denotes the Fourier transform. It has
been shown that the FDF in combination with a network model for the acous-
tics can predict thermoacoustic oscillations of laminar [26] and turbulent [27,
72, 73] flames. In order to obtain an FDF, a given flame is forced at different
frequencies and amplitudes and the resulting fluctuations of the global heat re-
lease rate are recorded. With this information the FDF can be obtained via a
Fourier transform of the signals. This procedure works for real flames in an ex-
periment as well as for simulated flames. For the latter, however, the procedure
is extremely expensive as a large number of simulations are necessary. Heckl
[74] developed an analytic model based on the FDF. Unfortunately, it is not
straight forward (and at the best of our knowledge not possible) to use the ideas
behind the FDF in order to develop an identification algorithm. This is because
the amplitude of a broadband excitation signal is not known in the time domain.
Therefore, other model structures are necessary.
Another model structure proposed are Hammerstein-Wiener models. As shown
in Fig. 4.3, the core of these models is a linear transfer function G(s). The
nonlinearity is modeled via two static nonlinear functions γ1(t) and γ2(t). From
the analysis of the FDF it is known that the response of the heat release rate
saturates for high excitation amplitude. This effect can be modeled by using
a saturation function for γ2(t) [17, 20]. In [75], system identification with a
Hammerstein-Wiener model was used to determine low-order models of a flame
modeled via the G-equation.
A very general nonlinear model structure are artificial neural networks [50].
A generic artificial neural networks is shown in Fig. 4.4. It consists of several
neurons. The structure can be extended by increasing the number of layers and
the number of neurons per layer. This allows to model complex nonlinearities.
Selimefendigil et al. [34–36] used artificial neural networks to model the non-
linear dynamics of the heat transfer of an cylinder in pulsating cross-flow. The
potential and limitations of artificial neural networks to model the dynamic of a
laminar premixed flame are investigated in PAPER-ANN.
A model for laminar premixed flame is based on the G-equation [76]. The non-
linear dynamics of this model agrees qualitatively with experimental results [77,
78]. However, the results depend strongly on the velocity model used and there-
fore no quantitative agreement with experimental results is achieved.
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Figure 4.4: Generic artificial neural network (PAPER-ANN)

The most accurate, though most expensive, way to model the flame dynamics
is a CFD simulation. For low frequencies, as discussed in the present work, the
flame is compact. This allows us to utilize a low Mach 8 simulation. Kornilov
et al. [79] modeled the linear dynamics of a laminar flame with a low Mach
CFD solver and compared the results against experiment. Good agreement was
reported. Moeck et al. [80] and Jaensch et al. (PAPER-HYBRID) coupled a low
Mach simulation with an acoustic network model in order to model self-excited
thermoacoustic oscillations. In [81] the coupling is based on the upstream and
the downstream velocity. In PAPER-HYBRID the coupling is based on the up-
stream velocity and the global heat release rate. By inserting Eq. (4.18) into
Eq. (4.17) one can easily show that both formulations are equal. If the flame
is modeled with a fully compressible simulation, self-excited thermoacoustic
oscillations can be captured without the need of an acoustic network model.
Nevertheless, it can be advantageous to couple the simulation with an acoustic
model: This allows to change the acoustic boundary conditions without chang-
ing the mesh. PAPER-CBSBC provide an overview over these so called time-
domain impedance boundary conditions (TDIBC).

8I.e. the density depends on the temperature, but not on pressure.
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5 Summary of achievements and papers

In this section the achievements and the papers of this doctoral research project
are summarized. An overview of all papers is provided in Fig. 5.1. Major parts
of the present manuscript were already submitted as final report of the FVV
project nonlinear flame dynamics [82].
In PAPER-GREYBOX a grey-box identification approach for thermoacoustic
network models was developed. This ansatz allows to use a priori knowledge
of the physics of thermoacoustic oscillations (e.g. the Rankine-Hugoniot equa-
tions) for the results of the CFD/SI approach. This enables us to deduce the FTF
and to the estimate fluctuations of the global heat release rate from acoustic
measurements only. Furthermore, within this paper the modeling of thermoa-
coustic oscillations was analyzed from a system theoretic perspective. In that
sense PAPER-GREYBOX can be considered as foundation of the present thesis.
In PAPER-CBSBC the system theoretic perspective, developed in PAPER-
GREYBOX, was extended to a novel formulation of time-domain impedance
boundary conditions (TDIBC). The so called “characteristics based state-space
boundary conditions” (CBSBC) allows to impose almost arbitrary reflection co-
efficients or impedances at the inflow and outflow boundary conditions of large
eddy simulations and direct numerical simulations. In contrast to other TDIBC
formulations found in the literature, CBSBC is at the same time numerically
robust, avoids drift of the mean flow variables and does not introduce artificial
reflections at the boundary. It already has been decided to include the algorithm
to the release version of AVBP 9 (Cerfacs and IFP). Furthermore, CBSBC forms
the basis of the time-domain impedance BC implemented in LESLIE10 (Com-
putational Combustion Lab, Georgia Institute of Technology).
CBSBC made possible the coupling of a compressible CFD code to a low or-
der acoustic model. In PAPER-HYBRID this was utilized to conduct a bifurca-
tion analysis of self-excited thermoacoustic oscillations of a laminar premixed
flame. As illustrated in Fig. 5.1, the results obtained with the model based on

9http://cerfacs.fr/en/computational-fluid-dynamics-softwares/
10http://www.ccl.gatech.edu/leslie
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CBSBC were compared against a second model. The second model is based on
a low-Mach CFD solver, which is coupled to an acoustic network model ac-
cording to the Rankine-Hugoniot equations. Good agreement between the two
models was observed. PAPER-HYBRID is the first bifurcation study of a laminar
flame with high-fidelity models.
In PAPER-ANN an extension of the CFD/SI approach to the nonlinear regime
is investigated. Artificial neural networks (ANNs) are utilized to model the non-
linear dynamics of a laminar flame. A large parameter study was conducted in
order analyze the robustness of the method. The results from PAPER-HYBRID

allowed us to compare self-excited thermoacoustic oscillations predicted by the
ANNs identified directly with the oscillations predicted by the hybrid CFD/low-
order models (compare Fig 5.1). Unfortunately, the agreement observed was
poor. It is concluded that more sophisticated methods are needed. The main
achievements of PAPER-ANN are the systematic way the quality of the nonlin-
ear model was investigated and the direct comparison of the quantity of inter-
est i.e. the amplitude of self-excited thermoacoustic oscillations. The procedure
proposed should always be used to analyze the capability of novel nonlinear
low-order models to predict self-excited thermoacoustic oscillations.

5.1 PAPER-GREYBOX

A GREY-BOX IDENTIFICATION APPROACH FOR THERMOACOUSTIC NET-
WORK MODELS

S. Jaensch, T. Emmert, C. F. Silva, and W. Polifke, GT2014-27034, in Pro-
ceedings of ASME Turbo Expo, Düsseldorf, Germany, 2014, 10.1115/GT2014-
27034.
Abstract: This work discusses from a system theoretic point of view the low
order modeling and identification of the acoustic scattering behavior of a ducted
flame. In this context, one distinguishes between black-box and grey-box mod-
els. The former rely on time series data only and do not require any physical
modeling of the system that is to be identified. The latter exploit prior knowl-
edge of the system physics to some extent and in this sense are physically mo-
tivated. For the case of a flame stabilized in a duct, a grey-box model is for-
mulated that comprises an acoustic part as well as sub-models for the flame
dynamics and the jump conditions for acoustic variables across the region of
heat release. Each of the subsystems can be modeled with or without physical
a priori knowledge, in combination they yield a model for the scattering behav-

26



ior of the flame. We demonstrate these concepts by analyzing a CFD model of
a laminar conical premixed flame. The grey-box approach allows to optimize
directly the scattering behavior of the identified model. Furthermore, we show
that the method allows to estimate heat release rate fluctuations as well as the
flame transfer function from acoustic measurements only.
Contribution: I implemented the SI routines which are not part of Matlab’s SI
toolbox, applied the system identification methodology and analyzed the results.
Additionally, I wrote most of the manuscript.

5.2 PAPER-CBSBC

ON THE ROBUST, FLEXIBLE AND CONSISTENT IMPLEMENTATION OF TIME

DOMAIN IMPEDANCE BOUNDARY CONDITIONS FOR COMPRESSIBLE FLOW

SIMULATIONS

S. Jaensch, C. Sovardi, and W. Polifke, Journal of Computational Physics, vol.
314, pp. 145–159, 2016, http://dx.doi.org/10.1016/j.jcp.2016.03.010.
Abstract: The accurate simulation of compressible flows requires the appropri-
ate modeling of the reflection of acoustic waves at the boundaries. In the present
study we discuss time domain impedance boundary conditions (TDIBC). The
formulation proposed allows to impose a desired reflection coefficient at the
inflow and outflow boundaries. Our formulation is an extension of the well
known Navier-Stokes characteristic boundary conditions. The frequency depen-
dent reflections at the boundaries are implemented with a state-space model in
the time domain. We provide a comprehensive discussion on how such state-
space models can be constructed and interpreted. This discussion shows that
the state-space description allows a robust and flexible implementation. It al-
lows to consider complex reflection coefficients and account for non constant
CFD time steps in a straight forward manner. Furthermore, we prove analyti-
cally and demonstrate numerically that the formulation proposed is consistent,
i.e. the formulation ensures that the flow simulation exhibits the reflection co-
efficient imposed accurately, as long as the waves impinging on the boundary
are plane, and it prohibits drift of the mean flow variables. Finally, the boundary
conditions are tested successfully for laminar and turbulent flows.
Contribution: I developed the method, implemented a first version of CB-
SBC in LESLIE 11, conducted the validation simulations and wrote most of
the manuscript.

11Computational Combustion Lab, Georgia Institute of Technology
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5.3 PAPER-HYBRID

HYBRID CFD/ LOW-ORDER MODELING OF NONLINEAR THERMOACOUSTIC

OSCILLATIONS

S. Jaensch, M. Merk, E. A. Gopalakrishnan, S. Bomberg, T. Emmert, R. I. Su-
jith, W. Polifke, Proceedings of the Combustion Institute, vol. 36, pp. 3827-
3834, 2017, http://dx.doi.org/10.1016/j.proci.2016.08.006.
Abstract: This paper proposes and compares two nonlinear time-domain mod-
els of self-excited thermoacoustic instabilities of laminar premixed flames. The
flame and its immediate vicinity are resolved with reactive flow simulations.
Simultaneously, the acoustic field is modeled with low-order models which are
coupled to the reactive flow simulations. On the one hand a model based on the
fully compressible Navier-Stokes equations is investigated. Here, the low-order
model is coupled to the simulation via the characteristic wave amplitudes at the
inlet boundary. The other model resolves the flame with a weakly compressible
reactive flow simulation. In order to include the thermoacoustic feedback, this
model is coupled with an acoustic network model by the global heat release
rate and the fluctuation of the axial velocity at a reference position upstream
of the flame. A bifurcation analysis using the plenum length as bifurcation pa-
rameter is conducted. Both models exhibit complex nonlinear oscillations. A
bifurcation analysis shows that both models are in good agreement with each
other. Therefore, we conclude that the coupling of a linear acoustic model and a
nonlinear flame model via reference velocity and global heat release rate is suffi-
cient to accurately capture nonlinear oscillations of thermoacoustic instabilities.
This implies that the most important nonlinearities can be attributed to hydrody-
namic effects and the flame kinematics. Additionally, the study provides further
evidence that premixed flames predominantly respond to fluctuations of the up-
stream velocity-pressure fluctuations and acoustic waves act on the flame only
in an indirect manner, as they cause fluctuations of the upstream velocity.
Contribution: I implemented the coupling of the low Mach simulation and the
acoustic network model. I conducted the low Mach simulations and wrote most
parts of the manuscript.
Comment: A first version of this paper was published as a report for the
SFB/TRR 40 summer program [83].
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5.4 PAPER-ANN

UNCERTAINTY ENCOUNTERED WHEN MODELLING SELF-EXCITED THER-
MOACOUSTIC OSCILLATIONS WITH ARTIFICIAL NEURAL NETWORKS

S. Jaensch, W. Polifke, International Journal of Spray and Combustion Dynam-
ics, 2017, http://dx.doi.org/10.1177/1756827716687583.
Abstract: Artificial neural networks are a popular nonlinear model structure
and are known to be able to describe complex nonlinear phenomena. This arti-
cle investigates the capability of artificial neural networks to serve as a basis for
deducing nonlinear low-order models of the dynamics of a laminar flame from
a Computational Fluid Dynamics (CFD) simulation. The methodology can be
interpreted as an extension of the CFD/system identification approach: a CFD
simulation of the flame is perturbed with a broadband, high-amplitude signal
and the resulting fluctuations of the global heat release rate and of the reference
velocity are recorded. Thereafter, an artificial neural network is identified based
on the time series collected. Five data sets that differ in amplitude distribution
and length were generated for the present study. Based on each of these data
sets, a parameter study was conducted by varying the structure of the artificial
neural network. A general fit-value criterion is applied and the 10 artificial neu-
ral networks with the highest fit values are selected. Comparing of these 10 ar-
tificial neural networks allows to obtain information on the uncertainty encoun-
tered. It is found that the methodology allows to capture the forced response of
the flame reasonably well. The validation against the forced response, however,
depends strongly on the forcing signal used. Therefore, an additional validation
criterion is investigated. The artificial neural networks are coupled with a ther-
moacoustic network model. This allows to model self-excited thermoacoustic
oscillations. If the training time series are sufficiently long, this coupled model
allows to predict the trend of the root mean square values of fluctuations of the
global heat release rate. However, the prediction of the maximal value of the
fluctuation amplitude is poor. Another drawback found is that even if very long-
time series are available, the behaviour of artificial neural networks cannot be
guaranteed. It is concluded that more sophisticated nonlinear low-order models
are necessary.
Contribution: I conducted the parameter study, implemented the coupling be-
tween artificial neural networks and the acoustic network models and wrote
most of the manuscript.
Comment: A first version of this paper has been published as report at the FVV-
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Figure 5.1: Overview of the papers contributing to this thesis.

Frühjahrstagung Turbomaschinen [84] and at the International Symposium on
Thermoacoustic Instabilities in Gas Turbines and Rocket Engines [85].
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6 Outlook

All methods developed in the present thesis are formulated in a very general
way and can easily be applied to a variety of other problems. The laminar pre-
mixed flame investigated should be considered as an example application. Tud-
isco et al. [86] use CBSBC to investigate the Continuously Variable Resonance
Combustor (CVRC) rig located at Purdue University. The rig is a single injec-
tor rocket engine type combustor. With CBSBC it should also be possible to
model the influence of Helmholtz resonators and dissipative liners in LES of
gas turbine combustion chambers. The methods are also expected to improve
combustion noise simulations. The noise measured from a real flame depends
strongly on the acoustic boundary conditions. This can be modeled via CB-
SBC. With the hybrid low-Mach formulation proposed it should, in theory, be
possible to simulate combustion noise with an incompressible simulation. In the
FVV follow-up project ROLEX12 it is planned to use the hybrid formulations to
model annular and multi-can combustors of modern gas turbines. Other possible
applications are thermoacoustic engines or HVAC systems.
CBSBC can be applied as long as the waves impinging on the boundary condi-
tions are plane. The limitation of the hybrid low-Mach model is the compactness
assumption of the heat source. Further effort should be spent to overcome these
limitations.
As the computational effort of the hybrid models is still considerable, methods
to build nonlinear low-order models of the flame dynamics in a general and con-
sistent way are required. In the scope of this thesis, in PAPER-ANN, artificial
neural networks have been used to extend the CFD/SI approach to the nonlin-
ear regime. Unfortunately, a high uncertainty of amplitudes of thermoacoustic
oscillations predicted was observed. Hence, more sophisticated methods are re-
quired. One way to improve the results are white- or grey-box models, which
account for the physics of the flame more accurately. Another idea is to use not
only the time series of the input and output signal to identify the model, but also

12Hybrid Reduced Order / LES Models of self-eXcited Combustion Instabilities in Multi-Burner Systems
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field data [87]. This allows to use more information to build the models which
should reduce the length of the time series required. These models should be
validated in the systematic procedure proposed in PAPER-ANN.
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O.J., Radespiel, R., Sattelmayer, T., Schröder, W., and Weigand, B. Garching, Germany,
2015.

[84] S. Jaensch and W. Polifke. “CFD-Basierte, Niedrigdimensionale Modellierung
Der Nichtlinearen Dynamik von Vormischflammen”. In: Informationstagung Mo-
toren/Turbomaschinen. R574 / R575. Bad Neuenahrt, Germany: FVV, 2016.

[85] S. Jaensch and W. Polifke. “On the Uncertainty Encountered When Modeling Self-
Excited Thermoacoustic Oscillations with Artificial Neural Networks”. In: Int. Symp. on
Thermoacoustic Instabilities in Gas Turbines and Rocket Engines. GTRE-006. Garching,
Germany, June 2016.

[86] P. Tudisco, R. Ranjan, S. Menon, S. Jaensch, and W. Polifke. “Application of the Time-
Domain Admittance Boundary Condition to Large-Eddy Simulation of Combustion In-
stability in a Shear-Coaxial, High Pressure Combustor”. In: Flow, Turbulence and Com-
bustion (2017). DOI: 10.1007/s10494-017-9804-3.

[87] B. Peherstorfer and K. Willcox. “Data-Driven Operator Inference for Nonintrusive
Projection-Based Model Reduction”. en. In: Computer Methods in Applied Mechanics
and Engineering 306 (July 2016), pp. 196–215. ISSN: 00457825. DOI: 10.1016/j.cma.
2016.03.025. (Visited on 10/29/2016).

39

http://dx.doi.org/10.1016/j.combustflame.2009.07.017
http://dx.doi.org/10.1007/s10494-017-9804-3
http://dx.doi.org/10.1016/j.cma.2016.03.025
http://dx.doi.org/10.1016/j.cma.2016.03.025


Appendices

40



 

1 
 

Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition 
GT2014 

June 16-20, 2014, Düsseldorf, Germany 

 
 

GT2014-27034 
 
 
 

A GREY-BOX IDENTIFICATION APPROACH FOR THERMOACOUSTIC NETWORK MODELS 
 
 

S. Jaensch, T. Emmert, C. F. Silva, W. Polifke 
Lehrstuhl für Thermodynamik 

Technische Universität München 
D-85747 Garching, Germany 
Email: polifke@td.mw.tum.de 

 
 
 

ABSTRACT 

This work discusses from a system theoretic point of view 

the low order modeling and identification of the acoustic 

scattering behavior of a ducted flame.  

In this context, one distinguishes between black-box and 

grey-box models. The former rely on time series data only and 

do not require any physical modeling of the system that is to be 

identified. The latter exploit prior knowledge of the system 

physics to some extent and in this sense are physically motivated. 

For the case of a flame stabilized in a duct,  a grey-box 

model is formulated  that comprises  an acoustic part as well as 

sub-models for the flame dynamics  and the jump conditions for 

acoustic variables across the region of heat release. Each of the 

subsystems can be modeled with or without physical a priori 

knowledge, in combination they yield a model for the scattering 

behavior of the flame.  

We demonstrate these concepts by analyzing a CFD model 

of a laminar conical premixed flame. The grey-box approach 

allows to optimize directly the scattering behavior of the 

identified model. Furthermore, we show that the method allows 

to estimate heat release rate fluctuations as well as the flame 

transfer function from acoustic measurements only. 

NOMENCLATURE 

𝑓𝑖 downstream traveling characteristic wave 

amplitude measured at position 𝑖 

𝑔𝑖  upstream traveling characteristic wave 

amplitude measured at position 𝑖 

𝑆𝑖𝑗   element of the Scattering matrix 

𝑮  general dynamical system 

ℎ  impulse response coefficient   

𝑨,𝑩, 𝑪, 𝑫 state-space matrices 

𝑛   order of the state-space model 

𝒙   state vector 

𝝊, 𝜐𝑖   input signal 

𝒚̂, 𝑦̂𝑖   output signal 

𝑞  time-shift operator 

𝑎, 𝑏  coefficients of polynomials  

𝚯   parameter vector 

𝑒   prediction error 

𝑉(𝚯)   cost function 

𝜆  regularization parameter 

𝑢′  velocity fluctuation 

𝑝′   pressure fluctuation 

𝑞̇′   heat release rate fluctuation 

𝑞̂̇′   estimated heat release rate fluctuation 

𝜏, 𝜎   coefficient of the 𝑛 − 𝜏 − 𝜎 model 

Δ𝑡   sampling time 

𝜏𝑐   characteristic time scale 

𝑓   frequency 

𝜔⋆   normalized frequency 

ℎ̅   continues time impulse response 

𝜌̅   mean density 

𝑐̅   mean speed of sound 

fit   fit-value 

INTRODUCTION 

Thermoacoustic instabilities are a cause for concern in 

combustion applications as diverse as domestic heaters, gas 

turbines, and rocket engines. They go along with high 

fluctuations of pressure and heat release rate and therefore, can 

lead to a significant reduction of the life time of the engine [1]. 

Due to the today limited computational capacities it is not 

possible to simulate a whole gas turbine with CFD in order to 
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analyze thermoacoustic instabilities. Instead, the gas turbine is 

divided into several subsystems and a low-order model for each 

of the subsystems is determined. Then, all low-order models are 

connected in order to predict the stability of the whole system. 

This type of models is called “thermoacoustic network model” 

[2–6]. 

Point of discussion of the present study is the low-order 

modeling of the acoustic scattering behavior of a flame stabilized 

in a duct. This is the relationship between acoustic waves that 

are impinging on a flame and the resulting reflected and 

transmitted acoustic waves. The state of the art ansatz is to 

combine the Rankine-Hugoniot jump conditions with the flame 

transfer function (FTF) [7]. Thereby, the Rankine-Hugoniot 

equations represent the linearized, one dimensional momentum 

and energy equations evaluated over the flame. They relate the 

incoming and outgoing acoustic waves with the fluctuation of 

the global heat release rate. The FTF closes the equations by 

relating the velocity fluctuation at a reference position with the 

fluctuation of the heat release rate. We can distinguish between 

two different types of models used for the FTF.  On the one hand 

there are analytic models like the 𝑛 − 𝜏 − 𝜎 model [8–10]. On 

the other hand the FTF can be determined with an approach that 

combines CFD simulations with system identification (SI) 

techniques. Thereby, at first the CFD model is excited with 

broadband signals in order to generate data. Afterwards, the SI 

methods are used to derive models from the time series. This 

approach is called CFD/SI approach and was originally proposed 

in [11]. The part of the identification does not require any 

physical assumptions and therefore, is a black-box approach. As 

we will see grey-box modeling establishes a connection between 

the analytical white-box models and the black-box modeling of 

the CFD/SI approach.  

The rest of the paper is organized as follows. First an 

overview of thermoacoustic network models and the basic theory 

of system identification is provided. Then the modelling of the 

scattering matrix of an acoustic flame element is analyzed from 

a system theoretic perspective and different models of the flame 

dynamics are discussed. Finally, the approach is validated using 

a CFD model of a laminar premixed conical flame. 

THERMOACOUSTIC NETWORK MODELS 

This section gives a brief overview on the modeling of 

thermoacoustic networks, as it is used in the paper. The classical 

modeling of acoustic networks is in frequency domain [2,3,6]. 

An alternative way of the modeling is based on state-space 

models in the time domain [4,5]. It is possible to show that both 

formulations are equivalent. Further details on the 

implementation used in the present work are given in [12]. 

The modeling of the acoustic network is based on the 

assumption of plane waves. This is justified, as the cross section 

length of the acoustic elements is much smaller than the 

characteristic wavelength relevant in those systems. In order to 

obtain a causal formulation of the acoustic network, the acoustic 

perturbations are formulated throughout the paper in terms of the 

characteristic wave amplitudes 𝑓 and 𝑔. They are defined as 

 

𝑓 =
1

2
(

𝑝′

𝜌̅ 𝑐̅
+ 𝑢′) , 𝑔 =

1

2
(

𝑝′

𝜌̅ 𝑐̅
− 𝑢′) ( 1 ) 

with the fluctuation of pressure 𝑝′ and of velocity 𝑢′ and the 

mean density 𝜌̅ and speed of sound 𝑐̅.  
Acoustic elements like ducts, area jumps and flames are 

described by their corresponding scattering systems. In an 

abstract way it is given as 

 𝑮𝑆: [
𝑔1

𝑓1
] ↦ [

𝑓2

𝑔2
] ( 2 ) 

As shown in Figure 1 it relates the acoustic waves upstream 

and downstream of the element. We omit entropy waves  because 

entropy waves generated by the flame couple with acoustic 

perturbations only in regions of strong mean flow acceleration, 

which are not discussed in the present work [13]. However, the 

presented framework can be extended without essential 

difficulty to account for this effect. Commonly, a scattering 

system is expressed in terms of the scattering matrix. We use the 

terminology “system” to point out that we describe a dynamic 

relationship between the input output signals and that it is 

unnecessary to restrict oneself to the frequency domain or to a 

specific model structure.   For elements like ducts and area jumps 

analytic expressions for the scattering systems exist [14]. 

Scattering systems of complex elements can be derived from 

experiments or from CFD.  In the latter case two main 

approaches are used: On the one hand solvers based on a 

linearized formulation of the Navier-Stokes equations [15] and 

on the other hand solvers based on the full Navier-Stokes 

equations. The present study considers the determination of the 

scattering systems from fully compressible CFD simulations. 

Here, the computationally most efficient method is the CFD/SI 

approach [11,16–18]. The approach forms the basis for this work 

and therefore, is discussed in the subsequent sections.  

SYSTEM IDENTIFICATION 

With SI we can derive dynamical models from time series 

data. Within this section we explain the general procedure, which 

consists of three steps: collection of the time series data, 

selection of the model structure and the determination of the 

unknown parameters of the model [19–21]. 

 

Figure 1: Up- and downstream acoustic waves of a general 
scattering system 

𝑮𝑆 

𝑓1 

𝑔1 

𝑓2 

𝑔2 
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Data Acquisition 

The first step is the collection of the data. For a given 

experimental setup or, as in the present case, a CFD simulation 

one first defines the inputs and outputs of interest. When the 

scattering system is to be identified, the inputs and the outputs 

are the incoming and outgoing acoustic waves, respectively. 

Afterwards, input signals are designed in order to make the 

experiment as informative as possible. One requirement is to 

excite all frequencies of interest with an amplitude as high as 

possible, i.e. without bringing the amplitude to levels where non-

linear effects are important. When the experiment has more than 

one input channel, the data is more informative if the correlation 

of the input signals of each channel is low. The input signals used 

for the present study are given in [22] and meet these 

requirements.  

Selection of the Model Structure 

The second step is the selection of the model structure. As 

shown in Figure 2, a dynamical model describes the relationship 

between the 𝑛𝜐 input signals 𝜐𝑖 and the estimates of the 𝑛𝑦 output 

signals 𝑦̂𝑗. The mapping is described by a function 𝑓(𝝊, 𝚯). 

Here, 𝚯 is the vector of unknown parameters that are to be 

determined during the identification process. Within this work 

we consider the function 𝑓(𝝊, 𝚯) to be linear. 

A general description for linear models is given by the so 

called transfer function notation 

𝑦̂𝑗(𝑡) = ∑
1 + 𝑎1,𝑖,𝑗𝑞

−1 + ⋯+ 𝑎𝑛𝑎,𝑖,𝑗𝑞
−𝑛𝑎𝑖,𝑗

𝑏0,𝑖,𝑗 + 𝑏1,𝑖,𝑗𝑞
−1 + ⋯+ 𝑏𝑛𝑏,𝑖,𝑗𝑞

−𝑛𝑏𝑖,𝑗

𝑛𝜐

𝑖=1 

𝜐𝑖(𝑡) ( 3 ) 

where 𝑞 is the time-shift operator, and 𝑎𝑘,𝑖,𝑗 and 𝑏𝑘,𝑖,𝑗 are the 

coefficients of the polynomials. An equivalent formulation is the 

state space structure. It is given as 

 [
𝒙(𝑡 + 𝛥𝑡)

𝒚̂(𝑡)
] = [

𝑨 𝑩
𝑪 𝑫

] [
𝒙(𝑡)

𝝊(𝑡)
] ( 4 ) 

Here, 𝒙(𝑡) ∈ ℝ𝑛 is the state vector, 𝒚̂(𝑡) and 𝝊(𝑡) are the 

vectorized output and input signals as given in Figure 2, Δ𝑡 is the 

sampling time and 𝑨, 𝑩, 𝑪,and 𝑫 are the system matrices of 

appropriate size. The integer 𝑛 denotes the order of the system. 

The parameters for this type of model are the coefficients of the 

system matrices.  

A model structure commonly used for the CFD/SI approach 

is the finite impulse response (FIR) model, it is given as 

 𝑦̂𝑗(𝑡) = ∑ ∑ ℎ𝑘,𝑖,𝑗𝜐𝑖(𝑡 − 𝑘𝛥𝑡)

𝐿𝑖,𝑗

𝑘=0

𝑛𝜐

𝑖=1

 ( 5 ) 

The unknown parameters for this model structure are the 

coefficients of the impulse response ℎ𝑘,𝑗. 𝐿𝑖 is the length of the 

impulse response. With 𝑗 = 1,… , 𝑛𝑦 equation ( 5 ) describes an 

FIR model with 𝑛𝜐 inputs and 𝑛𝑦 outputs. The FIR model ( 5 ) 

is a simplification of transfer function model ( 3 ) and the state 

space model ( 4 ). For the transfer function model this can easily 

be seen by setting the parameters to 𝑎𝑘,𝑖,𝑗 = ℎ𝑘,𝑖,𝑗, 𝑏0,𝑖,𝑗 = 1, 

𝑏𝑘≠0,𝑖,𝑗 = 0 and 𝐿𝑖,𝑗 = 𝑛𝑎𝑖,𝑗
. For the state-space model one can 

show that if all eigen values of the Matrix 𝑨 are equal to zero, 

the state space model has a finite impulse response and hence, is 

an FIR model.  

Throughout the paper we separate between black-box, grey-

box and white box models as follows. When we use a black-box 

model, only the input and output signals of the model have a 

physical meaning and we do not have any insight regarding the 

mechanisms leading to the specific relationship between these 

signals. Mathematically the model can be described as a state-

space model where all coefficients of the system matrices are to 

be estimated by system identification routines. A Grey-box 

models uses some physical knowledge to determine the model 

structure. This means that some of the parameters of the system 

matrices are known from physical considerations and the 

remaining parameters are identified. As we will show later on 

the 𝑛 − 𝜏 − 𝜎 model may be considered as an example of a grey-

box model.  Accordingly, a white-box model is a model where 

all parameters are known from physical considerations and none 

of the parameters is identified. 

Determination of the Parameters 

The last step is to determine the unknown parameters of the 

model. Therefore, we define an optimization problem based on 

the least squares approach. The parameters are determined by 

minimizing the cost function 

 𝑉(𝜣) = ∑ 𝑒(𝑘 𝛥𝑡, 𝜣)2

𝑁

𝑘=1

 ( 6 ) 

with the length of the time series 𝑁 and the prediction error 

𝑒(𝑡) = 𝑦(𝑡) − 𝑦̂(𝑡, 𝚯). Hereby, 𝑦(𝑡) and 𝑦̂(𝑡, 𝚯) are the 

measured and the estimated output, respectively. If the model is 

an FIR filter, the resulting optimization problem can be solved 

analytically and is known as the Wiener-Hopf equation. For a 

general state-space model the optimization can only be solved 

using iterative algorithms. Wills and Ninness [23] give an 

overview over these algorithms. 

As long simulation times are very expensive, the time series 

used in the CFD/SI approach are typically very short. In this case 
 

Figure 2: General dynamical model 

𝜐1  𝑦̂1 

𝜐𝑛𝜐
  𝑦̂𝑛𝑦

 
 𝑓(𝒖, 𝚯) ⋮ ⋮ 
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the quality of the identified model can be improved by 

regularization. Thereby, the cost function 𝑉(𝚯) is extended to 

 𝑉(𝜣) = ∑ 𝑒(𝑘 𝛥𝑡, 𝜣)2

𝑁

𝑘=1

+ 𝜆𝜣𝑇𝜣 ( 7 ) 

with the regularization parameter 𝜆. A study on the 

influence of the regularization to the CFD/SI approach is given 

in [22]. Chen et. al. [24] discuss different ways to interpret 

regularization using the example of the FIR model.  

FROM BLACK-BOX TO WHITE-BOX MODELLING 

In this section we analyze the modelling of a thermoacoustic 

flame element from a system theoretic perspective. We start with 

a black-box model that does not require any physical knowledge. 

Then we show that physical relationships allow us to split the 

black-box model into several subsystems with different physical 

interpretation. At first we model each of these subsystems again 

as black-box model. Afterwards, we discuss how the subsystem 

representing the flame dynamics can be modeled. 

Black-box Modeling of the Scattering System  

Using the black-box approach we see the scattering system 

as shown in Figure 1. We know the physical meaning of inputs 

and outputs and the black-box identification provides the transfer 

behavior between them. However, we do not get an 

understanding of the physical mechanisms that lead to the 

specific scattering behavior. 

Grey-box Modeling of the Scattering System 

The following derivation of the scattering system is 

motivated by the analysis in [12]. In the grey-box approach the 

scattering system of the flame is seen as shown in Figure 3. The 

schematic diagram in Figure 4 represents the same configuration 

in a more abstract way. Here, the whole system is separated into 

three subsystems: 1) the system 𝑮𝐹 describing the dynamics of 

the flame, 2) the system 𝑮𝐴 describing the acoustic part and 

 3) the system 𝑮𝐽𝐶 describing the jump condition over the flame. 

Each of these subsystems is discussed in the remaining 

paragraphs of this section. 

The system 𝑮𝐹 represents the dynamics of the flame. It links 

the velocity fluctuation 𝑢′ at a reference position to the 

fluctuation of the global heat release 𝑞̇′. We define the 

corresponding system as 

 𝑮𝐹: 𝑢′ ⟼ 𝑞̇′  ( 8 ) 

Secondly, the acoustic system 𝑮𝐴 describes the dynamic 

behavior of the acoustic waves. Its main components are the 

scattering systems 𝑮𝑺
𝑢 and 𝑮𝑺

𝑑 of the acoustic elements upstream 

and downstream of the flame, respectively. The upstream 

scattering system 𝑮𝑺
𝑢, linking the acoustic waves upstream of the 

flame position, is given as 

 𝑮𝑺
𝑢: [

𝑓1
𝑔2

] ⟼ [
𝑔1

𝑓2
] ( 9 ) 

According to Figure 3 this scattering system represents a 

duct/area-jump configuration. The corresponding transfer 

behavior of the system can be determined in manifold ways, e.g. 

by the CFD/SI approach or by analytical modelling. 

In analogy the downstream scattering system 

 𝑮𝑺
𝑑: [

𝑓3

𝑔4
] ⟼ [

𝑔3

𝑓4
] ( 10 ) 

relates the acoustic waves traveling on the downstream side 

of the flame.  

For the reference velocity we define the following 

expression 

 𝑢′ = 𝑓1 − 𝑔1 ( 11 ) 

Finally, the acoustic system 𝑮𝐴 is retrieved by assembling  

( 9 ) to ( 11 ) and is given as 

 

𝑮𝐴: [

𝑔2

𝑓3

𝑓1
𝑔4

] ⟼

[
 
 
 
 
𝑔1

𝑓4
𝑔3

𝑓2

𝑢′]
 
 
 
 

 ( 12 ) 

 

Figure 3: Grey-box model for the scattering behavior of a 
flame stabilized in a duct 

 

Figure 4: Schematic diagram of the configuration from 
 Figure 3 
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The system 𝑮𝐽𝐶 represents the jump condition over the 

flame and closes the formulation. It relates the following 

properties 

 

𝑮𝐽𝐶 : [

𝑓2

𝑔3

𝑞̇′
] ⟼ [

𝑔2

𝑓3
] ( 13 ) 

A specific structure of this system can be derived from the 

Rankine-Hugoniot jump equations [25]. 

Grey-box Modeling of the Flame Dynamics 

In the previous section the flame is treated as black-box 

model. However, there are different grey-box and white-box 

models for the flame dynamics. As an FIR model it can be 

described as 

 

𝑮𝐹: 𝑞̇′(𝑡) =  ∑ ℎ𝑘𝑢′(𝑡 − 𝑘𝛥𝑡)

𝐿

𝑘=0

 ( 14 ) 

with the sampling time Δ𝑡 and the coefficients of the 

impulse response ℎ𝑘. From a system theoretic point of view the 

FIR model is typically seen as black-box model. However, 

Blumenthal et. al. [26] show that a linearized G-equation model 

of the flame has indeed a finite impulse response. Furthermore, 

it can be shown that the flame response can be discussed in terms 

of perturbations, which are convected along the flame front with 

distributed time delays [8,27]. The FIR model also accounts for 

this effect, thus it should be considered as grey-box model of the 

flame.  

The 𝑛 − 𝜏 − 𝜎 model [8,27] is  a further grey-box model for 

the flame dynamics. It can be derived from the FIR model. 

Thereby, the coefficients of the FIR model ( 14 ) are calculated 

according to 

 

ℎ𝑘 =
𝛥𝑡

𝜎√2𝜋
𝑒𝑥𝑝 (−

1

2
(
𝑘𝛥𝑡 − 𝜏

𝜎
)

2

) ( 15 ) 

Here, 𝜏 and 𝜎 are the unknown parameters that are to be 

identified. The occurrence of the time step Δ𝑡 in equation ( 15 ) 

is discussed in the appendix. The 𝑛 − 𝜏 − 𝜎 model is a 

parameterization of the FIR model and reduces the number of 

unknown parameters from 𝐿 to 2. This helps to interpret the 

model. If both of these parameters are determined by analytic 

equations, we obtain a white-box model of the flame. 

APPLICATION TO A LAMINAR PREMIXED FLAME 

In this section we use the grey-box modeling to investigate 

a 2D CFD simulation of a laminar premixed flame. At first we 

show the CFD setup and discuss the network model. Afterwards 

we discuss the results of the identification.

CFD Setup 

The CFD configuration is based on an experiment from Le 

Helley [28]. This experiment was studied numerically in [29] 

and [30]. With the exception of the inflow and outflow boundary 

conditions (BCs), we use the 2D CFD model shown in [29,30] 

utilizing the CFD solver AVBP. With Plane wave masking [31] 

we obtain boundaries with low reflection. The geometry is 

shown in Figure 5 and was discretized using a mesh with a 

minimum cell size of about 3.42 ⋅ 10−15 𝑚3. At the inlet we 

impose a stoichiometric propane-air mixture at 300 𝐾 with a 

mean velocity of 4𝑚/𝑠. The intake walls are adiabatic non slip 

walls whereas the chamber walls are modeled as adiabatic slip 

walls. 

In a cross validation study three simulations with different 

ways of excitation were performed. One simulation with 

excitation from upstream (case Exu), one with excitation from 

downstream (case Exd) and one with a simultaneous excitation 

at both sides of the flame (case Exu,d). The excitation signal in 

all cases was a broadband wavelet signal proposed in [22]. In the 

case Exu,d with simultaneous excitation both input signals were 

statistically independent. In all cases the outgoing acoustic 

waves as well as the fluctuation of the heat release rate were 

measured as output signals. Each simulation was run for 0.02𝑠. 

Using a sampling interval of 2.2 ⋅ 10−5𝑠 this provides 899 data 

samples.  

The characteristic time scale 𝜏𝑐 [26,32] of the configuration 

is given as 

 𝜏𝑐 =
2𝑅

𝑢̅ 𝑠𝑖𝑛(2𝛼)
= 0.7141𝑚𝑠 ( 16 ) 

Here, 𝑅 = 0.65𝑚𝑚 is the radius, 𝑢̅ = 4𝑚/𝑠 is the inlet 

velocity and 𝛼 = 13.536° is the flame angle. This time scale is 

used to normalize all frequencies and times in the subsequent 

part of this work. 

 

Figure 5: CFD model configuration of the laminar premixed 
flame 
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Direct Identification of the Flame Dynamics 

Direct identification of the flame dynamics means to 

identify the system 𝑮𝐹 from the time series of the velocity 

fluctuations and of the heat release fluctuation. In the previous 

section we introduced the FIR model and the 𝑛 − 𝜏 − 𝜎 model 

as a grey-box model for the flame. In this section we use the 

collected time series of velocity and of the heat release rate 

fluctuation to directly estimate the unknown parameters of the 

flame models. For the identification of the FIR model we use the 

Wiener-Hopf inversion. The unknown parameters of the 

 𝑛 − 𝜏 − 𝜎 model are determined in the following way. We start 

with an initial guess of the parameters and calculate the 

coefficients ℎ𝑘 of the impulse response according to equation  

( 15 ). Using this guess and the collected time series of the 

velocity fluctuation, we can calculate an estimate of the heat 

release fluctuation with equation ( 14 ). With this estimate we 

can evaluate the cost function ( 6 ). In order to minimize the cost 

function we use the Nelder-Mead optimization algorithm [33].  

 We used an FIR model with 50 coefficients.  The estimated 

values of the 𝑛 − 𝜏 − 𝜎 model are 𝜏/𝜏𝑐 = 0.9831 and 

𝜎/𝜏𝑐 = 0.2597. In Figure 6 amplitude and phase of the 

estimated FTF are shown. Polifke and Lawn [34] showed that 

the low frequency limit of the gain of the FTF of a premixed 

flame is equal to one. As this knowledge was used to derive the 

𝑛 − 𝜏 − 𝜎 model, the model exactly fulfills this condition 

whereas the FIR model slightly violates is. Both models exhibit 

a linearly decreasing phase angle. This is in agreement with the 

analytic G-equation model from Schuller et al. [35]. 

Identification of the Scattering System 

As aforementioned, we can model the scattering system of 

the flame with a black-box and a grey-box ansatz. The grey-box 

ansatz is very general and consists of several subsystems, which 

again have to be modeled themselves. 

For the acoustic subsystem 𝑮𝐴 we need models for the 

scattering systems 𝑮𝑺
𝑢 and 𝑮𝑺

𝑑. According to Figure 3, the 

scattering system 𝑮𝑺
𝑢, which relates the acoustic waves upstream 

of the flame, has to represent a duct-area jump configuration. For 

the present study we model the duct as a time delay and the area 

jump as a static gain. However, due to the abstract formulation 

of the problem the use of less simplistic models for the scattering 

system is straight forward. The scattering system 𝑮𝑺
𝑑 for the 

waves downstream of the flame we use a simple time delay 

model. 

To model the system 𝑮𝐽𝐶 we use the Rankine-Hugoniot 

equations [25] in order to describe this system. In state-space 

form they are given as 

𝑮𝑅𝐻: [
𝑔2

𝑓3
] =

1

𝜁 + 1
[
1 − 𝜁 2 𝜗𝑢̅1

2𝜁 𝜁 − 1 𝜗𝜁𝑢̅1
] [

𝑓2

𝑔3

𝑞̇′
] ( 17 ) 

with ζ =
ρ̅2c̅2

ρ̅3c̅3
 and ϑ =

T3

T2
− 1, where ρ̅ denotes the mean 

density, c̅ the mean speed of sound, T the temperature and 𝑢̅1 the 

mean velocity at position 1. The position of the indices is shown 

in Figure 3. Here again, we use of the Rankine-Hugoniot 

equations because they describe the investigated configuration 

sufficiently well. However, the framework allows to consider 

more complex models for the jump conditions as well. This may 

be useful when non-compact flames are investigated. 

Finally, we need a model for the system 𝑮𝐹 describing the 

dynamics of the flame. We introduced the FIR model and the 

𝑛 − 𝜏 − 𝜎 model. As the results for both models are very similar 

we only show the results for the FIR model in this section.  

The analytic models for the system 𝑮𝐴 and 𝑮𝐽𝐶 require only 

parameters that depend on the geometry and on the mean flow 

properties. Therefore, the unknown parameters of the grey-box 

model are the coefficients of the impulse response ℎ𝑘. For these 

parameters we can either use the estimate we obtained in the 

previous section or use a grey-box identification algorithm. The 

latter approach has the advantage that we can directly optimize 

the scattering behavior of the identified system. Furthermore, it 

does not require the collected time series of the heat release 

fluctuation. This is an advantage when experimentally 

determined time series are analyzed because the measurement of 

fluctuations of heat release rate with quantitative accuracy is in 

general very difficult [10]. The procedure of the grey-box 

identification is similar to the identification of the parameters of 

the 𝑛 − 𝜏 − 𝜎 model. We start with an initial guess for the 

coefficients ℎ𝑘. This guess has to fulfill the requirement that the 

resulting model is stable. Now, by simulating the model with the 

time series of the incoming acoustic waves, we obtain an 

estimate of the time series of the outgoing acoustic waves. This 

enables us to evaluate the cost function ( 6 ). Using the state-

space representation of the grey-box model, we can directly 

 

Figure 6: Identified FTF. Solid green lines: 𝑛 − 𝜏 − 𝜎 model; 

Dashed blue lines: FIR model 
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apply the algorithms discussed in [23] in order to find parameters 

that minimize the cost function.  

In Figure 7 the resulting estimate of the scattering system 

are shown in terms of the estimated gain of the scattering matrix. 

Here, the scattering matrix is defined as 

 𝑮𝑆: [
𝑔1

𝑓4
] = [

𝑆11 𝑆12

𝑆21 𝑆22
] [

𝑓1
𝑔4

] ( 18 ) 

We compare the following identification results: 

 

1. A black-box estimate using an FIR filter with 150 

coefficients for each entry of the scattering matrix. In 

order to obtain the full scattering matrix on this way from 

a single CFD run, we have to excite the domain 

simultaneously from the inlet and the outlet. Therefore, 

the results shown were based on the data set Exu,d.  

2. A combination of the grey-box model and the FTF that 

was directly estimated from velocity and heat release 

fluctuations. This approach allows to determine the full 

scattering matrix from a CFD run excited only at the inlet 

or from the outlet. For the results shown in Figure 7 we 

used the data from CFD case Exu, which was excited 

from the inlet only.  

3. We use the grey-box identification routine. This allows 

us to use our physical understanding of the problem and 

yet, to directly identify the scattering behavior of the 

system. Also this approach allows to determine the full 

scattering matrix from a single CFD run, which was 

excited only from the inlet or the outlet. In order to 

perform a cross validation, we used the third data set Exd, 

which was excited from the outlet only. 

 

Each of the models shown in Figure 7 were calculated using 

a different data set. Nevertheless, all estimates are in good 

agreement. However, there are oscillations in the curve of the 

black-box FIR model. The reason is that the black-box model has 

600 unknown parameters, whereas the grey-box model has only 

50 parameters. The high number of unknown parameters of the 

FIR model is necessary, as the black-box model has to model the 

dynamic of the acoustic and of the flame simultaneously. 

Therefore, the black-box identification of the FIR model requires 

much longer time series for the same accuracy. 

Indirect Identification of the Flame Dynamics 

As noted in the previous section, the grey-box identification 

of the scattering system does not require the time series of the 

heat release fluctuation. Nevertheless, we obtain an estimate of 

the impulse response coefficients. Therefore, we can indirectly 

estimate the flame dynamics. The resulting estimate of the 

impulse response is plotted in Figure 8. As the first ten 

parameters of the impulse response could only poorly be 

estimated, they were fixed to zero.  

We can obtain an estimate 𝑞̂̇′ of the time series of the heat 

release rate fluctuations by imposing the measured velocity 

fluctuation to the identified system 𝑮𝐹. In table 1, the real and 

the estimated heat release fluctuations are compared in terms of 

the normalized root mean square error, also known as fit value, 

which is given as 

 fit = 100 (1 −
‖𝑞̇′ − 𝑞̂̇′‖

‖𝑞̇′‖
) ( 19 ) 

As expected, the highest values are achieved by the direct 

identification. However, inverting the Rankine-Hugoniot 

equations by the use of the grey-box identification routine gives 

almost the same estimate without the usage of 𝑞̇′, although the 

corresponding time series was not used for the estimation. Figure 

8 shows that the regularization smooth the resulting estimate of 

the impulse response. This leads according to table 1 to an 

improvement of about 4% points of the fit value. The 

regularization parameter 𝜆 was choosen to maximize the fit 

value for the case Exu,d. The corresponding fit value shows the 

best improvement we can receive with by regularizing the 

estimate. Looking at the fit values for the other two regularized 

cases we can state that the regularization indeed improves the 

results. However, choosing the regularization parameter in this 

way is only possible, if the time series of the heat release 

fluctuation is known.   
Figure 7: Magnitude of the elements of the scattering matrix. 

Solid blue lines: black-box FIR model (data: time series of 
incoming and outgouing acoustc waves of CFD case Exu,d); 

Dashed red lines: Combination of directly identified FTF and 
grey-box model (data: time series of velocity fluctuations and 

heat release rate fluctuations of CFD case Exu); 

Dotted black lines:  grey-box identification (data: time series 
of incoming and outgouing acoustc waves of CFD case Exd);   

excitation direct Grey-box 
Grey-box + 

regularization 

Exu 84.88 77.63 81.23 
Exd 80.49 71.18 76.23 
Exu,d 81.83 75.45 78.55 

table 1: fit values for the different CFD cases and 

identification methods 
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CONCLUSION 

The low order modelling of the scattering behavior of a 

laminar flame stabilized in a duct was analyzed. Starting from a 

black-box description we showed that the scattering behavior 

can be represented by three interconnected subsystems. One 

subsystem models the acoustic part, a second subsystem models 

the flame dynamics and third subsystem models the jump 

condition over the flame. Each of these subsystems can either be 

identified as a black-box model or be modeled using first 

principles. This allows to validate physical assumptions 

separately. The approach was validated by means of a CFD 

model of a laminar conical flame. 

We showed that grey-box identification allows to exploit the 

physical knowledge for the identification. This allows to directly 

optimize the scattering behavior of the identified system and still 

use the relationships of the network modelling. Furthermore, the 

approach allows to indirectly estimate the fluctuation of the heat 

release rate from the acoustic field.  

The grey-box approach was introduced in a very general 

way and therefore, it can easily be extended to more complex 

configurations. It is also possible to adjust the identification 

routine depending on the quantity of interest and the data 

available.  
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APPENDIX 

The following derivation is based on [19]. In continuous 

time the impulse response ℎ̅(𝑡) of the 𝑛 − 𝜏 − 𝜎 model is given 

as 

 ℎ(𝑡) =
1

𝜎√2𝜋 
𝑒𝑥𝑝 (−

1

2
(
𝑡 − 𝜏

𝜎
)

2

) ( 20 ) 

According to [19] the impulse response characterizes a 

linear time invariant causal system. The output 𝑞̇′(𝑡) of the 

system can be calculated by convoluting the input signal 𝑢′(𝑡) 

with the impulse response ℎ̅(𝑡). This is 

 𝑞̇′(𝑡) = ∫ ℎ̅(𝜏)

∞

0

𝑢′(𝑡 − 𝜏)𝑑𝜏 ( 21 ) 

Sampling this equation with a time step Δ𝑡 yields after 𝑘 

intervals 

 𝑞̇′(𝑘𝛥𝑡) = ∫ ℎ̅(𝜏)

∞

0

𝑢′(𝑘𝛥𝑡 − 𝜏)𝑑𝜏 ( 22 ) 

Assuming ℎ(𝑡) and 𝑢′(𝑡) to be constant over a time interval 

Δ𝑡 gives 

 𝑞̇′(𝑘𝛥𝑡) ≈ ∑ ℎ̅(𝑘𝛥𝑡)𝑢′(𝑘𝛥𝑡 − 𝜏)𝛥𝑡

∞

𝑘=0

 ( 23 ) 

Comparing the equations ( 14 ) and ( 23 ) the coefficients of 

the discrete impulse response of the 𝑛 − 𝜏 − 𝜎 model are 

 ℎ𝑘 = ℎ̅(𝑘𝛥𝑡)𝛥𝑡 ( 24 ) 

This yields the factor Δ𝑡 in equation ( 15 ).

 
Figure 8: Impulse response of the FTF. Solid blue line: direct 
SI; dashed black line: grey-box SI; dotted red line: grey-box 

SI with regularization 
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The accurate simulation of compressible flows requires the appropriate modeling of the 
reflection of acoustic waves at the boundaries. In the present study we discuss time domain 
impedance boundary conditions (TDIBC). The formulation proposed allows to impose a 
desired reflection coefficient at the inflow and outflow boundaries. Our formulation is 
an extension of the well known Navier–Stokes characteristic boundary conditions. The 
frequency dependent reflections at the boundaries are implemented with a state-space 
model in the time domain. We provide a comprehensive discussion on how such state-
space models can be constructed and interpreted. This discussion shows that the state-
space description allows a robust and flexible implementation. It allows to consider 
complex reflection coefficients and account for non-constant CFD time steps in a straight 
forward manner. Furthermore, we prove analytically and demonstrate numerically that the 
formulation proposed is consistent, i.e. the formulation ensures that the flow simulation 
exhibits the reflection coefficient imposed accurately, as long as the waves impinging on 
the boundary are plane, and it prohibits drift of the mean flow variables. Finally, the 
boundary conditions are tested successfully for laminar and turbulent flows.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The simulation of unsteady compressible flows in particular by large eddy simulation (LES) or by direct numerical simula-
tion (DNS) requires the appropriate modeling of the reflection of acoustic waves at the boundaries. Otherwise, the simulation 
results will be unphysical and will not match experimental data or numerical instabilities occur. Except for some special 
cases (a chocked inlet, say), the acoustic reflection coefficient depends on the frequency of the acoustic waves. This de-
pendency is a property of the configuration investigated. The boundary conditions discussed in the present work provide a 
solution to this issue as they allow to impose a frequency dependent reflection coefficient. The concept is known as “time 
domain impedance boundary conditions” (TDIBC).

For example, the TDIBC formulation proposed in the present work, can facilitate an LES simulation of a gas turbine 
combustion chamber, which accounts for the acoustic feedback of compressor and turbine. A sketch of such a configuration 
and the corresponding LES model is shown in Fig. 1. The combustion chamber is resolved with an LES. Simultaneously, 
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Fig. 1. Schematic diagram of a gas turbine (top) and the corresponding LES model using a TDIBC formulation (bottom).

a TDIBC accounts for the acoustic feedback by imposing the acoustic impedance at the inlet and the outlet. Additionally, 
turbulence created upstream of the combustion chamber is modeled by a turbulence generator. This modeling reduces 
the computational costs, significantly, and makes an LES of a gas turbine combustion chamber, which accounts for the 
acoustic feedback, possible even with today’s computational resources. A similar scenario can be considered for rocket 
engine combustion chambers. Here, the influence of a large number of injectors can be modeled via a TDIBC formulation, 
efficiently.

A TDIBC formulation has to solve two problems: (1) A time-domain model of the frequency dependent reflection coef-
ficient or of the impedance is required and (2) this model has to be coupled with the flow simulation. The time-domain 
model has to be robust and flexible so that complex reflection coefficients can be modeled with a reasonable effort. The 
coupling of the flow simulation and the time-domain model has to ensure that the formulation is consistent. This means 
that the flow simulation exhibits the reflection coefficient imposed, accurately, without introducing artificial reflections, and 
that drift of the mean flow variables is avoided. Furthermore, the TDIBC should not constrain the flow simulation, e.g. by 
requiring a constant time step. In the present work we review existing TDIBC formulations and propose a formulation that 
is robust, flexible and consistent at the same time.

The time-domain model can either model the acoustic impedance or the acoustic reflection coefficient. The former 
relates primitive acoustic variables and the latter uses characteristic wave amplitudes. One can show that formally both 
expressions are equivalent. For TDIBC a time-domain model of one of the expressions is required. Several authors [1–9]
suggested to apply an inverse Laplace- or z-transform to the reflection coefficient or the impedance. This yields a convolution 
integral in the time domain, which can be integrated in a CFD code. Schuermans et al. [10] proposed, independently, to use 
discrete-time state-space models. State-space models are inherently causal, numerically more robust and more flexible. 
Furthermore, as discussed in section 4.1, they allow a physical meaningful interpretation.

The coupling of the time-domain model with the flow simulation can be done based on primitive variables or on charac-
teristic wave amplitudes. Formulations based on primitive variables use a, possible simplified, version of Myers’s condition 
[11] in the time domain in combination with a time-domain model for the impedance [4,5,8,9]. These formulations work 
well for solvers of perturbation equations. However, when applied as inflow or outflow boundary condition (BC) to an LES 
or DNS this coupling yields drift of the mean variables. Therefore, Schuermans et al. [10] proposed to stabilize the sim-
ulation with a high pass filter. This method was also utilized by Huber et al. [7]. However, as we will show analytically 
in the present work, it yields an incorrect reflection coefficient for low frequencies. Kaess et al. [6] proposed to extend 
“plane wave masking” (PWM) [12] to a TDIBC. PWM itself is an extension of the low-reflective Navier–Stokes characteristic 
boundary conditions (NSCBC) [13,14]. It minimizes the reflection of plane acoustic waves propagating in the direction per-
pendicular to the boundary surface. Therefore, this formulation is suitable for configurations which are ducted in the region 
close to the boundary condition (see Fig. 2). In this case waves with a frequency below the cut-off frequency of the first 
higher order mode are plane.

In the present work we combine the formulation of Kaess et al. [6] with state-space description of the reflection coeffi-
cient as proposed by Schuermans et al. [10]. Therefore, we call the BC proposed Characteristic Based State-space Boundary
Condition (CBSBC). We prove analytically and demonstrate numerically that when PWM is used for the coupling drift is 
avoided and the flow simulation exhibits the reflection behavior imposed, accurately. We show that the coupling based on 
primitive variables yields drift of the mean flow variables and that the use of a high pass filter avoids the drift but yields 
incorrect results for low frequencies. In contrast to [10] we use continuous time state-space models this allows to use non-
constant time steps in a straight forward manner. Furthermore, we propose to use a state-space model with two inputs. 
The first input is the characteristic amplitude of the outgoing wave and the second input is an external excitation signal. 
The latter allows e.g. to consider a loud speaker or a turbulent noise source inside the region of the acoustic model. We 
demonstrate by a numerical example that CBSBC works well with unstable state-space models. We discuss how state-space 
models can be determined in most practically relevant situations. CBSBC was implemented in the fully compressible explicit 
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Fig. 2. LES/DNS configuration considered and characteristic wave amplitudes. Left: inflow. Right: outflow.

density-based solvers AVBP (Cerfacs and IFP) and LESLIE (Computational Combustion Lab, Georgia Institute of Technology). 
To the best of our knowledge the formulation proposed should work also with implicit pressure-based codes.

The paper is organized as follows: In the next section we recapitulate the separation of the flow variables in mean 
field and turbulent and acoustic fluctuation. In section 3 we recall NSCBC and PWM. How PWM can be extended to TDIBC 
is shown in section 4. In subsection 4.1 we give a comprehensive introduction to the modeling of the acoustic reflection 
coefficients in the state-space form. The advantages of the state-space formulation are discussed in subsection 4.2. In sub-
section 4.3 we provide a pseudo-code example of CBSBC. In subsection 4.4 the properties of the BC proposed and of other 
formulations are discussed. Finally, in section 5 we illustrate the theory discussed in the previous sections with numerical 
examples and demonstrate that CBSBC works well for laminar as well as for turbulent flows.

2. Plane acoustic waves

As shown in Fig. 2, we consider configurations that are ducted in regions close to the inlet/outlet BC at which CBSBC are 
applied. In these configurations waves with a frequency lower then the cut-off frequency of the first higher order mode will 
be plane. In this situation the flow field can be separated in

p(t, x, y, z) = p̄(x, y, z) + p′
T (t, x, y, z) + p′

A(t, x), (1a)

u(t, x, y, z) = ū(x, y, z) + u′
T (t, x, y, z) + u′

A(t, x), (1b)

with pressure p and velocity u. Variables with bar (·̄) are temporal averaged fields and the indexes “T ” and “A” denote the 
turbulent and the acoustic fluctuations, respectively. The argument t is the time and x, y, z are spatial coordinates as given 
in Fig. 2. Please note, as we assumed that only plane waves are propagating the acoustic fluctuation depends only on time 
and axial coordinate (along the length of the duct section).

Plane acoustic waves can be described by the characteristic wave amplitudes f and g

f = 1

2

(
p′

A

ρ̄ c̄
+ u′

A

)
, g = 1

2

(
p′

A

ρ̄ c̄
− u′

A

)
. (2)

Here, ρ and c are the density and the speed of sound, respectively. As shown in Fig. 2, f corresponds to the wave traveling 
in downstream direction and g is traveling in upstream direction.

In order to determine f and g from a compressible flow simulation we have to determine the acoustic fluctuations p′
A

and u′
A . As the spatial correlation length of the turbulent fluctuations is very small these fluctuations vanish if a spatial 

average is applied. Therefore, the acoustic fluctuations are given as

p′
A = 〈p − p̄〉 , (3a)

u′
A = 〈u − ū〉 . (3b)

Here, 〈·〉 represents a spatial average of a plane perpendicular to the traveling direction of the acoustic waves.
For highly turbulent flows this area average might not be sufficient. The separation can be improved with characteristic 

based filtering (CBF) [10,15]. At first f and g are determined locally at n planes, which are perpendicular to the traveling 
direction of the acoustic wave. Considering the time lags resulting form the speed of propagation of the waves one can 
average over the local values of f and g

f (t, x) = 1

n

n−1∑
i=0

f

(
t + �xi

c̄ + ū
, x + �xi

)
, (4a)

g(t, x) = 1

n

n−1∑
i=0

g

(
t − �xi

c̄ − ū
, x + �xi

)
. (4b)
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with �xi = xi − x and xi is the axial position of the plane. As demonstrated in [15], this additional filtering allows to 
determine f and g in highly turbulent flows. For the reminder of this work 〈·〉 denotes an CBF average, which simplifies to 
a plane average for n = 1.

3. Non-reflective BC with plane wave masking

The boundary conditions proposed in the present work are based on plane wave masking (PWM) [12]. Therefore, we 
recapitulate PWM in the present section.

The NSCBC framework [13,14] defines the boundary conditions for pressure and velocity as

∂ p

∂t
+ 1

2
ρ̄ c̄ (L5 + L1) = 0,

∂u

∂t
+ 1

2
(L5 − L1) = 0. (5)

Here, L1 and L5 are locally (on the boundary patch) defined derivatives of the characteristic wave amplitudes traveling in 
the up- and downstream direction, respectively. A spatial average over the L-waves yields the derivatives of f and g

∂ f

∂t
= 1

2
〈L5〉 ,

∂ g

∂t
= 1

2
〈L1〉 . (6)

Using the original NSCBC a low-reflective outflow BC can be constructed as follows. L5 leaves the domain and can be 
determined from the internal field

L5 = (u + c)

(
∂ p

∂x
+ ρc

∂u

∂x

)
. (7)

L1 is entering the domain and has to be imposed

L1 = σ

ρ̄ c̄
(p − p∞) , (8)

with the desired pressure at the outflow p∞ . σ is the relaxation parameter and the term (p − p∞) is known as linear 
relaxation term. An inflow boundary condition can be constructed on a similar way [14].

This BC is partially reflective. As shown by Selle et al. [16] and Polifke et al. [12] the resulting reflection coefficient R(ω)

is a first-order low pass filter

R(ω) = ĝd

f̂d

= −1

1 + 2iω/σ
, (9)

with the angular frequency ω. The hat 
(·̂) labels variables in the frequency domain. The relaxation parameter σ determines 

the cut-off frequency of the filter. Using this formulation it is not possible to control phase and magnitude of the reflection 
coefficient independently from each other. A small value of σ yields a low cut-off frequency and thus, lower reflections. 
However, if σ is chosen too low, drift of the mean variables is observed.

Polifke et al. extended the NSCBC with PWM, in order to minimizes the reflection of plane acoustic waves at the bound-
aries [12]. The idea is “to identify outgoing plane waves at the boundary, and then explicitly eliminate outgoing wave 
contributions from the linear relaxation term” [12].

According to PWM the linear relaxation term for a outflow BC is modified

L1 = σ

ρ̄ c̄
(p − ρ̄ c̄ ( fd + gx) − p∞) + 2

∂ gx

∂t
. (10)

Here, ρ̄c̄ ( f + gx) = p′
A represents the acoustic part of the pressure fluctuation. This term compensates any plane-wave 

acoustic fluctuation at the boundary condition. The external excitation gx is the amplitude of an imposed plane wave 
entering the domain.

As in the NSCBC formulation, the relaxation term of PWM avoids drift of the mean values. PWM yields non-reflective 
boundary conditions, if (1) all waves close to the boundary are plane and (2) one can accurately separate between mean 
field, turbulent fluctuations and acoustic fluctuations. As discussed in section 2 the first assumption limits the BC to the low 
frequency regime and to ducted configurations. CBF allows to separate the flow field, accurately. In summary, one can state 
that PWM yields very low reflection coefficients for plane acoustic waves, as demonstrated in [12].

A non-reflective inflow boundary condition can be constructed, analogously. Here, the wave L1 leaves the domain and 
can be calculated from the internal field

L1 = (u − c)

(
∂ p

∂x
− ρc

∂u

∂x

)
. (11)

According to PWM the ingoing wave L5 is given as

L5 = σ (u − ( fx − gu) − uT ) + 2
∂ fx

∂t
, (12)

where fx is the amplitude of a plane wave imposed at the boundary.
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Fig. 3. System theoretic perspective of the impedance boundary conditions.

4. Characteristic based state-space boundary conditions (CBSBC)

In the previous section the wave amplitudes fx and gx were considered to be independent external excitation signals. In 
order to impose a specific reflection behavior this excitation has to be calculated from the characteristic wave leaving the 
domain according to a proper acoustic model (compare Fig. 3).

In the sake of better readability we restrict the discussion in this section to an outflow BC. The corresponding expressions 
for an inflow boundary can be derived, analogously. The necessary changes for the implementation are briefly summarized 
in section 4.3.

For many configurations of practical interest the reflection of acoustic waves can be assumed to be linear and causal. 
Hence, it can be described with a linear state space model

ẋ = Ax + B

[
fd

ex,d

]
︸ ︷︷ ︸

u

(13a)

gd︸︷︷︸
y

= Cx + D

[
fd

ex,d

]
︸ ︷︷ ︸

u

(13b)

Here, u denotes the input vector of the model. Its first element fd is the amplitude of the wave leaving the CFD-domain. The 
second element is the external excitation signal ex,d . This signal is also filtered by the state-space model and can describe 
e.g. an excitation with a loud speaker or turbulent sound production inside the acoustic domain. The output signal y of the 
acoustic model is the amplitude gd of the wave imposed to the CFD simulation. The matrices A, B, C and D are the state 
space matrices and x is state vector.

The state-space model given in (13) is a complete mathematical representation of any linear causal system. Depending on 
the choice of the matrices A, B, C and D it can represent, e.g. a linear acoustic solver, a measured reflection coefficient or a 
thermoacoustic network model. The only restriction made by using the (linear) state-space structure as such is its linearity. 
Therefore, the state-space representation allows a very general implementation of TDIBCs. In the remainder of this section, 
we will first explain by examples how a state-space model for TDIBC can be determined in situations of practical interest. 
Afterwards, we discuss the advantages of using state-space models compared to other model structures that are found in 
the literature. Then we present a pseudo code implementation of CBSBC. We conclude the section with a discussion of the 
properties of CBSBC and other TDIBC formulations found in the literature.

4.1. Examples of state-space models for acoustic boundary conditions

In this subsection we give examples how a state-space model for the acoustic can be constructed. The results of this 
subsection are probably familiar to readers with a profound background in control theory. However, in order to apply the 
boundary condition proposed in practical application, a good understanding of the state space description of acoustic models 
is mandatory. Therefore, we discuss in this section how such state space models can be determined and interpreted in detail.

The best way to determine the parameters of a state space model depends on the information available. We identify 
three situations that typically occur: (1) A set of linear partial differential equations (PDE) is known to model the acoustic 
reflections. (2) Measurements of the reflection coefficient at several distinct frequencies are available. (3) Different modeling 
approaches are combined using an acoustic network model as discussed by Schuermans et al. [17] and Bothien et al. [18].

4.1.1. State-space models deduced from linear partial differential equations
In many situations the reflection of acoustic waves is well described by a set of linear PDEs, e.g. the linearized Euler or 

Navier–Stokes equations. In this subsection we discuss how an exhaust duct can be modeled. This is a pedagogical example 
of how PDEs can be casted in state space form. The same procedure can be extended to three dimensional PDEs and to 
more sophisticated discretization schemes.

As shown in Fig. 4, the exhaust is discretized with a homogeneous one-dimensional mesh. Please compare the notation 
in Fig. 3 and Fig. 4.
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Fig. 4. Discretization of the exhaust section.

The plane-wave acoustic inside the exhaust section can be modeled with the one dimensional Euler equations. Neglecting 
mean flow gradients they are given as

∂ f

∂t
+ (ū + c̄)

∂ f

∂x
= 0, (14a)

∂ g

∂t
+ (ū − c̄)

∂ g

∂x
= 0. (14b)

The problem is closed with the boundary conditions

f (x = 0, t) = f1 = fd, (15a)

g (x = L, t) = gN = R L f (x = L, t) + ex,d. (15b)

The meaning of all variables is given in Fig. 4. The Dirichlet boundary condition at x = 0 couples the acoustic model with 
the CFD simulation. The boundary condition at x = L describes the reflection of an acoustic wave at the boundary with a 
scalar (real valued) reflection coefficient R L . Additionally, it models an excitation with an acoustic source ex,d , e.g. a loud 
speaker.

We apply a linear upwind finite difference scheme for the spatial discretization. This yields for (14a)

∂ f i

∂t
= − (ū + c̄)

f i − f i−1

�x
for i = 2, · · · , N (16)

and for (14b)

∂ gi

∂t
= − (ū − c̄)

gi+1 − gi

�x
for i = 1, . . . , N − 1. (17)

The boundaries (15) are included according to

∂ f2

∂t
= − (ū + c̄)

f2 − fd

�x
, (18a)

∂ gN−1

∂t
= − (ū − c̄)

R L f N + ex,d − gN−1

�x
. (18b)

Now, a state-space model can easily be derived by rewriting the equations (16) to (18b) in matrix vector form

∂

∂t

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f2
f3
...

f N

g1
...

gN−2
gN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ẋ

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α+ 0
α+ −α+

. . .
. . .

α+ −α+
α− −α−

. . .
. . .

α− −α−
−R Lα− 0 α−

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f2
f3
...

f N

g1
...

gN−2
gN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x
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Fig. 5. Reflection coefficient of the quarter wave resonator. Determined by discretizing the one dimensional Euler equations with a mesh of 10 nodes 
( ), of 100 nodes ( ) and of 1000 nodes ( ) and analytical solution ( ).

+

⎡
⎢⎢⎢⎢⎢⎣

α+ 0
0 0
...

...

0 0
0 −α−

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

[
fd

ex,d

]
︸ ︷︷ ︸

u

(19a)

gd︸︷︷︸
y

= g1 = [0 · · · 0 1 0 · · · 0
]︸ ︷︷ ︸

C

x + [0 0
]︸ ︷︷ ︸

D

u, (19b)

with α+ = (ū + c̄)/�x and α− = (ū − c̄)/�x. In this form the meaning of the parameters of the state space model becomes 
evident. The state vector x consists of the values of f and g at the nodes of the mesh. The state matrix A is a linear operator. 
The elements at the diagonal band are determined by the discretization scheme. The off diagonal element couples the state 
values f N and gn−1 and thus, describes the reflection at the outlet of the resonator. The input matrix B models how the 
input signal u acts on the temporal derivative of the state vector. Again, its elements are determined by the discretization 
scheme. All but one element of the output vector C are equal to zero. One element is equal to unity and by multiplying the 
output vector C with the state vector x one obtains the output signal y = gd . The feed through D is a null vector in the 
case considered.

The corresponding reflection coefficient is the transfer function of the state-space model. It can be determined by apply-
ing a Laplace transform to equation (19)

Rd (s) = ĝd

f̂d

= C (sI − A)−1 B1. (20)

Here, ĝd and f̂d denotes the Laplace transform of the respective signals, B1 is the first column vector of B , I the identity 
matrix and s is the complex frequency. Restricting s to purely imaginary values yields the well known interpretation of the 
reflection coefficient, as the response of the model to a harmonic forcing signal. The result with R L = 1 is shown in Fig. 5. 
ω is the real valued angular frequency of the excitation signal. The frequency is normalized by the propagation time of the 
acoustic signal

τ = L

c̄ + ū
+ L

c̄ − ū
. (21)

In Fig. 5 the results are compared against the analytical solution

Rd (s) = e−τ s. (22)

The figure shows that the state-space model behaves as an acoustic solver of the one dimensional advection equation which 
utilizes the first order upwind scheme. Looking at the gain one can clearly see the dissipative behavior of the scheme. 
The error increases with the frequency of the excitation and with the time lag of the resonator. It decreases when a finer 
grid is chosen. It is interesting to note that the linear upwind scheme captures the phase quite well, which is of particular 
importance for stability analysis.
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Fig. 6. Time response gd (t) of the model (19) with a mesh of 10 nodes ( ), of 100 nodes ( ) and of 1000 nodes ( ) and analytical solution ( ). 
The full line ( ) is the excitation signal fd (t).

We can also determine the response of the model (19) to a Gaussian impulse signal. For this we consider the state-space 
model as set of ordinary differential equation (ODE), which is to be discretized in time. Fig. 6 shows the results with a Euler 
forward scheme and a CFL number of 0.3. Again, the results of the state-space model are identical to the results expected 
from an acoustic solver of the same problem.

Considering that the state-space model is a set of ODEs, it becomes evident that the stability of the state-space model is 
determined by the eigenvalues of the matrix A. The model is stable, if the real part of all eigenvalues is smaller then zero.

A exhaust duct, as sketched in the present example, may also be modeled efficiently within a LES/DNS by coarsening 
the mesh towards the outline. This approach, however, has a number of disadvantages compared to a TDIBC. A TDIBC 
formulation allows to impose an arbitrary reflection coefficient at the end of the exhaust and to add an external excitation 
signal. With the latter one can model e.g. loudspeaker or a turbulent sound source. Furthermore, a TDIBC formulation can 
also be applied at the inlet. Here, the additional difficulty arises that besides the acoustic field also a mean velocity profile 
and possibly turbulence has to be imposed. In particular the imposition of a proper turbulence statistics requires a good 
mesh. In contrast to TDIBC, a coarse grid cannot maintain these properties, accurately.

The main take away message of the example is that a state-space model can be interpreted as a complete and exact 
representation of an acoustic solver. The procedure can also be applied to a more complex set of PDEs, e.g. the linearized 
Navier–Stokes equations, and to three dimensional meshes. Modeling errors are introduce due to the choice of a specific 
set of PDEs or of a specific discretization scheme. The state-space representation as such does not introduce any additional 
error.

However, developing suitable models is a time consuming task and the discretization of linearized Navier–Stokes equa-
tions is prone to numerical instabilities. As these instabilities are unphysical they will yield unphysical results when imposed 
as boundary condition. Therefore, in practical application it is often more convenient to determine the model based on mea-
sured reflection coefficients, as discussed in the next section.

4.1.2. Determining state-space models from measured reflection coefficients
Often, the reflection coefficient is known at several distinct frequencies, e.g. from experimental measurements or from 

an analytical solution. This information can be used to construct a state space model. For the sake of better readability and 
without loss of generality, we neglect the source term in this subsection.

At first we apply an algorithm which fits the coefficients ai and bi of the rational polynomial

Rd (s) = ĝd

f̂d

= bnb snb + · · · + b1s + b0

sna + ana−1sna−1 + · · · + a1s + a0
, (23)

with na ≥ nb to the complex frequency response. A robust algorithm for this fitting is given in [19]. The next step is to apply 
the inverse Laplace transform to (23). Considering the relation L 

(
y[n])= sn ŷ this yields an ODE of order na

g[na]
d + ana−1 g[na−1]

d + · · · + a1 g[1]
d + a0 gd = bnb f [nb]

d + · · · + b1 f [1]
d + b0 fd (24)

where g[i]
d and f [i]

d are the ith temporal derivatives of the respective signals. This ODE can be rewritten in the so-called
controllability normal form of a state space model (see e.g. [20])
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Fig. 7. Acoustic network model of the example case shown in Fig. 1.

d

dt

⎡
⎢⎢⎢⎢⎢⎢⎣

gd

g(1)

d
...

g(na−2)

d
g(na−1)

d

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ẋ

=

⎡
⎢⎢⎢⎢⎢⎣

0 1
0 1

. . .
. . .

0 1
−a0 −a1 · · · −ana−2 −ana−1

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎢⎢⎢⎣

gd

g(1)

d
...

g(na−2)

d
g(na−1)

d

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x

+

⎡
⎢⎢⎢⎣

0
...

0
1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
B

u (25a)

gd︸︷︷︸
y

= [b0 − bna a0, b1 − bna a1, · · · , bna−1 − bna ana−1
]︸ ︷︷ ︸

C

x + bna︸︷︷︸
D

u (25b)

In this form the elements of the state vector consists of higher order temporal derivatives of the output signal gd . The first 
na − 1 lines of (25a) are trivial. The last line of equation (25a) and equation (25b) can be verified in a straight forward 
manner if bi = 0 for i > 0. The remaining terms follow from the linearity of the ODE and the Laplacian transform (compare 
e.g. [20]).

Once a state space model has been constructed in this way, we can validate its quality by comparing the measured fre-
quency response with the frequency response of the model. The frequency response of the model is given in (20). Integrating 
equation (25) in times allows to determine its response in the time domain.

4.1.3. State-space representation of acoustic network models
Determining a state space model for an acoustic BC by fitting its frequency response to a given reflection coefficient, 

is a method which is of particular importance for complex configurations, where the reflection coefficient is known only 
from experiment. The drawback of this approach is that changes in the experimental setup can be considered only by new 
experiments. Acoustic network models overcome this drawback with a divide and conquer approach. At first a given complex 
configuration is divided into subsystems. For each of these subsystems a model is determined. Finally, all theses models are 
interconnected in order to obtain a single model describing the whole configuration. The state space representation of 
acoustic network models is discussed in detail by Schuermans et al. [17] and Bothien et al. [18].

Again the ducted exhaust section as already discussed in section 4.1.1 is a good example where network models can be 
very useful. A network model of this configuration is shown in Fig. 7. The network model consists of two elements. The 
first element models a duct section. For this part an analytical model can be derived analogously to the model shown in 
section 4.1.1. The second element is an open end. Here, analytical models are available. However, the reflection at an open 
end depends on the geometry behind the open end, which is difficult to model in a general way. Therefore, it is beneficial to 
describe this part with a fitted model. This network model clearly combines the advantages of analytical and fitted models. 
A change of the length of the duct section can be considered easily as this is a parameter of the analytical duct model and 
still an accurate model of the open end can be used.

4.2. The advantage of using continuous time state space models

Discretizing the continuous-time state-space model (13) in time with a constant time step �t yields a discrete time 
state-space model

x ((k + 1)�t) = Ãx(k�t) + B̃u(k�t) (26a)

y(k�t) = C̃x(k�t) + D̃u(k�t) (26b)

with t = k�t . The discrete state-space matrices are market with (·̃). Schuermans et al. [10] proposed to utilize this form of 
a state-space model. The drawback of this formulation is that it requires an interpolation to account for non-constant CFD 
time steps. Furthermore, transforming a continuous-time state-space model into discrete-time, explicitly, may (depending 
on the scheme used) yield dense matrices and thus be extremely inefficient. In order to overcome this drawback we propose 
to use a continuous time state-space model, directly, and to integrated it with an ODE solver. This has the advantage that 
the behavior of an ODE solver is much better understood, which simplifies a general and efficient implementation.

A discrete-time state-space model can be transformed into an IIR model

y(k�t) =
na∑

i=1

ãi y ((k − i)�t) +
nb∑

i=0

b̃iu ((k − i)�t) (27)
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with na coefficients ãi and nb coefficients b̃i . This form is utilized in many TDIBC formulations [1–3,5–7]. There exists a 
transformation from the IIR model (27) to a time-discrete state-space model, similar to the transformation discussed in 
section 4.1.2. Therefore, IIR models can also be imposed if a implementation of TDIBC is based on the state-space represen-
tation. As IIR models utilizes a fixed time step, an interpolation scheme is necessary in order to account for non-constant 
time steps. However, the main problem when using the convolution formulation is that the coefficients ãi and b̃i are on the 
one hand hardly ever known, directly, and on the other hand that the response of the model can be extremely sensitive 
to a small change of the coefficients. This difficulties arise because the transformation from a state-space model, which 
can be interpreted as a one-to-one representation of an acoustic solver, to an IIR model is poorly conditioned. Paige [21]
demonstrated that this transformation can become problematic for a system of order 10 and should not be used.

Therefore, the only general way to determine the coefficients of an IIR model is to fit them to a given frequency response. 
As discussed in 4.1.2, this is also possible for state space models. Therefore, there exits no situation where IIR models are 
superior to state-space models. Hence, a general implementation of TDIBC should be based on continuous time state-space 
models, as proposed in the present work.

In summary continuous state-space model have the following advantages: They can be understood as one-to-one corre-
spondence to an acoustic solver In section 4.1.1 we have demonstrated this with a simplistic example, but more sophisticated 
discretization schemes or 3D formulations are also possible. State-space models allow to account for non-constant CFD time 
steps in a robust and general way. When only the frequency response of the reflection coefficient is known, a state-space 
model can be determined using a fitting algorithm, which induces the same numerical error as when an IIR model is uti-
lized (see section 4.1.2). As discussed in section 4.1.3, it is also possible to obtain a state-space model by interconnecting 
several state-space models. This is useful in many situations of practical interest.

4.3. Implementation of CBSBC

A schematic implementation of CBSBC as outflow BC is given in Listing 1. In a pre-processing step the matrices A, B, C
and D of the state space model are loaded from data file. Additionally, an external excitation ex,d (t) is read as a time series 
from a data file. The variables x(n−1), e(n−1)

x,d and f (n−1)

d are necessary in order to perform a clean restart. Here, the exponent 
(n − 1) denotes values at the last final sub-time step. In contrast, the exponent (n) in Listing 1 corresponds to values at the 
current time or sub-time step.

In the processing step at first the values of the input signals e(n)

x,d and f (n)

d of the state space model are calculated. The 
current value of the external excitation e(n)

x,d is determined by interpolating the corresponding time series. The wave leaving 
the CFD-domain f (n)

d is determined by characteristic based filtering according to equation (4a). This is represented by calling 
the function cbf().

The second step is to calculate the amplitude g(n)

d of the wave imposed to the CFD domain according to the output 
equation (13b) of the state space model (13).

In order to determine L1 according to (10) the time derivative of the wave amplitude entering the domain has to be 
calculated. Therefore, at first the derivative in time of the output equation (13b) is taken

ġd = C ẋ + Du̇. (28)

The derivative of the state vector ẋ is determined according to the state equation (13a). The derivative of the input u̇ is 
calculated by a finite difference approximation, which yields the expression in line 7 in Listing 1.

The next step is to calculate L1 according to (10).
Finally, at the final sub-time step of the current CFD time step, the state space model is integrated in time for the time 

instance �t . This is indicated by calling the function integrateODE(). The implementation used in the present study 
utilizes a forward Euler scheme for this integration. Additionally, the values at time (n − 1) are updated.

As LES/ DNS time steps are typically much smaller then the time step required to integrate the acoustic model, the 
error created by the forward Euler scheme is small. Nevertheless, higher order time integration schemes for the state space 
models can be applied, if necessary.

For an inflow BC one has to exchange the following variables in Listing 1 (compare Fig. 3)

ex,d → ex,u, fd → gu, gd → fu . (29)

Furthermore, at the inflow the wave L5 has to be calculated according to (12).
In comparison to the original NSCBC, CBSBC is changing only the way in which incoming waves are calculated. Hence, 

they can be implemented in a straight forward way on any solver, which already includes NSCBC.

4.4. Properties of the boundary condition

The most important property of CBSBC is that the reflection coefficient imposed is captured accurately, provided that 
all assumptions made for PWM hold. That is the acoustic waves impinging on the BC have to be plane and one is able to 
distinguish between acoustic and turbulent fluctuations with a negligible error. Following [12] we can prove this property
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1 Pre-processing:

2 load A, B, C, D,ω (t) , x(n−1), e(n−1)

x,d , f (n−1)

d from file
3 Processing: Calculate incoming L-wave
4 e(n)

x,d = interpolation
(
ex,d (t) , t(n)

)
5 f (n)

d = cbf ()

6 g(n)

d = Cx(n−1) + D

[
f (n)

d

e(n)

x,d

]

7 ġ(n)

d = C Ax(n−1) + C B

[
f (n)

d

e(n)

x,d

]
+ 1

�t(n) D

[
f (n)

d − f (n−1)

d

e(n)

x,d − e(n−1)

x,d

]

8 L(n)
1 = σ

(
p(n) − ρ̄c̄

(
f (n)

d + g(n)

d

)
− p∞

)
+ ġ(n)

d

9 if final sub-time step

10 x(n−1) = integrateODE

(
x(n−1),�t, A, B,

[
f (n)

d

e(n)

x,d

])
11 f (n−1)

d = f (n)

d , e(n−1)

x,d = e(n)

x,d
12 end if

Listing 1: Implementation of CBSBC as outflow BC.

Rd(s) = ĝd(s)

f̂d(s)
=
〈
L̂1(s)

〉
/2〈

s f̂d(s)
〉

= 1

2s f̂d(s)

〈[
σ

ρ̄ c̄

(
p̂(s) − ρ̄ c̄

(
f̂d(s) + ĝd(s)

)
− p∞

)
+ 2sĝd(s)

]〉

= σ

2sρ̄ c̄

⎛
⎜⎜⎜⎝〈p̂(s) − p∞

〉︸ ︷︷ ︸
≈p′

A

−
〈
ρ̄ c̄
(

f̂d(s) + ĝd(s)
)〉

︸ ︷︷ ︸
≈p′

A

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
≈0

+
〈
ĝd(s)

〉〈
f̂d(s)

〉
︸ ︷︷ ︸
=Rd(s)

(30)

As we assumed that the turbulent length scales are much smaller than the acoustic length scales, the CBF average 〈·〉 sep-
arates the turbulent and the acoustic fluctuations. Hence, in this case the relaxation term vanishes and the CFD simulation 
will exhibit the reflection behavior imposed.

In [4,5] it was proposed to impose an impedance, directly. The velocity is calculated from the internal field and the 
pressure BC is given as

p = p∞ + Zd ∗ 〈u − ū〉 . (31)

Here, ∗ denotes a convolution. For the further analysis of the BC please recall the transformation from impedance to reflec-
tion coefficient and vice versa

R(s) = Z(s) − ρ̄ c̄

Z(s) + ρ̄ c̄
⇐⇒ Z(s) = ρ̄ c̄

1 + R(s)

1 − R(s)
(32)

Applying the Laplace transform to (31) yields the reflection coefficient

Rd(s) = ĝd(s)

f̂d(s)
=
〈(

p̂(s) − p∞
)− ρ̄ c̄

(
û(s) − ū

)〉〈(
p̂(s) − p∞

)+ ρ̄ c̄
(
û(s) − ū

)〉 = Zd(s) − ρ̄ c̄

Zd(s) + ρ̄ c̄
= Rd(s), (33)

which seems to be exactly the behavior desired. However, comparing (33) with (30) it becomes evident that imposing 
an impedance directly implies a relaxation coefficient equal to zero. Hence, the BC given in (31) can be imposed only to 
linearized Navier–Stokes equations, as they will cause a drift of the mean quantities otherwise.

In [10] it was proposed to apply a high pass filter in order to avoid drift

p = p̄ + FHP ∗ Zd ∗ 〈u − ū〉 . (34)

Here, FHP denotes the high pass filter. Its properties are FHP (ω = 0) = 0 and FHP (ω → ∞) = 1. The resulting reflection 
coefficient is

Rd(s) = ĝd(s)

f̂d(s)
= FHP(s)Zd(s) − ρ̄ c̄

FHP(s)Zd(s) + ρ̄ c̄
�= Rd(s). (35)
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Fig. 8. Velocity probe in the center of the CFD model with an unstable outflow BC. Left: With non-reflective inflow BC. Right: With a reflective inflow BC.

As FHP (ω = 0) = 0 the reflection coefficient for this formulation is equal to unity for low frequencies. This avoids drift, 
however, the CFD will not exhibit the reflection behavior desired for low frequencies. For high frequencies FHP (ω → ∞) = 1
holds and thus, in this limit the formulation is equivalent to the formulation proposed in the present study.

Please note, it is possible to impose a impedance using CBSBC. Therefore, we assume a model of the impedance in state 
space form is available

ẋ = A Z x + B Z u′
A, (36a)

p′
A

ρ̄ c̄
= C Z x + D Z u′

A . (36b)

It has to be transformed into a state space model of the reflection coefficient. This is done by inserting (2) into (36). 
Reformulating the equations obtained yields

ẋ =
(

A Z + 1

1 + D Z
B Z C Z

)
︸ ︷︷ ︸

A

x + B Z

(
1 − D Z − 1

D Z + 1

)
︸ ︷︷ ︸

B

f (37a)

g = 1

1 + D Z
C Z︸ ︷︷ ︸

C

x + D Z − 1

D Z + 1︸ ︷︷ ︸
D

f . (37b)

We neglected the source term without essential loss of generality, it can be included in a straight forward manner. D Z = −1
implies an infinite reflection coefficient and thus is unphysical.

Please, note the transformation modifies the A matrix of the state space model. Therefore, it may change the stability 
of the model from stable to unstable or vice versa. Fortunately, as will be demonstrated in the subsequent example, CBSBC 
works well with both stable and unstable state-space models.

The example case is a 3D CFD model of a 70 mm long cylindrical pipe, with slip walls and a mean flow of 5 m/s. At the 
outlet we impose CBSBC with the reflection coefficient

Rd = K

(s − p1)(s − p2)
, (38)

where K = 2.5 · 107 and p1,2 = 50 ± 5000i. As the real part of the poles are larger than zero, the model is unstable.
Using this setup, we performed two simulations: (1) a non-reflective inflow according to PWM was applied and (2) the 

inflow boundary condition was changed to a constant reflection coefficient of Ru = 0.5. This value was determined by a 
stability analysis. A network model of the whole setup i.e. the CFD model with both boundary conditions as depicted in 
Fig. 3 was configured. This model predicts that the CFD setup should be unstable for Ru = 0 and stable for Ru = 0.5.

The results of both simulations are shown in Fig. 8. The amplitudes in the first case grow rapidly, as there is no stabiliza-
tion mechanism. Please note, this simulation shows the robustness of our formulation as the simulation did not diverge up 
to reverse flow with a Mach number larger than 0.7 at the outflow BC. In the second case the reflective inflow BC stabilizes 
the simulation and the initial oscillation decays.

As mentioned above, the transformation of the state space model for the impedance (36) to a state space model for the 
reflection coefficient (37) can change the stability of the model. However, considering that the state-space representation is 
inherently causal, it is interesting to notice that both the impedance and the reflection coefficient can be represented in the 
state-space representation. From this we can deduce that if the reflection coefficient is causal the impedance is causal, too, 
and vice versa.
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Fig. 9. Comparison of imposed ( ) and measured (Euler scheme ( ) and TTGC scheme ( )) reflection coefficients for the laminar case.

5. Numerical examples

As discussed above, CBSBC is based on the same assumptions as PWM i.e. all waves impinging on the boundary are 
plane and one can determine their amplitude accurately. PWM itself was used for LES of highly turbulent and reactive flows 
(see e.g. [22]). It is expected that also CBSBC yields accurate results in these situations.

In the scope of the present work we implemented CBSBC in the solver AVBP and LESLIE. The results presented in the 
present paper were obtained with AVBP.

Please note, the example shown could not have been achieved by any of the other TDIBC formulation mentioned in 
this paper. The formulations discussed in [7,10] yield a reflection coefficient equal to 1 for flow frequencies. The method 
proposed in [5] is valid only for linearized solver. The formulation discussed [6] is based on IIR model, which has several 
drawbacks as discussed in section 4.2. An implementation of this approach accounting for non-constant time steps and 
higher order time integration would be very complicated. Therefore, a constant time-step and a one-step time integration 
scheme has been used in [6].

5.1. Laminar test case

The domain of the laminar test case is cylindrical duct of 70 mm length with an diameter of 30 mm. The mesh is three 
dimensional and consists of 40 320 hexahedral cells. At the wall we impose isothermal slip boundary conditions. The mean 
flow velocity is 5 m/s. The CFL-number was set to 0.7. Four planes at the inlet and the outlet, respectively, were utilized 
for the CBF.

At the inlet as well as at the outlet, we use CBSBC. The state space matrices imposed at the inlet are

A = 0, B = [ 0 0
]
, C = 0, D = [ 0 1

]
. (39)

As the first element of B and D , which correspond to the wave leaving the CFD domain (compare Eq. (13)), are equal to 
zero, this choice yields a non-reflective BC. The value 1 in the D vector corresponds to the external source term and allows 
to impose an external acoustic excitation. We use this functionality to analyze the reflection coefficient at the outlet BC by 
harmonic forcing. The time series required for the post processing are sampled by a probe located at the center line of the 
cylinder at the outlet. The use of probes ensures that the sampling is independent of any modifications made in the source 
code of AVBP in order to implement the boundary conditions.

At the outflow BC we impose a state-space model which describes the upstream reflection coefficient of the orifice in-
vestigated in [23]. The reflection coefficient itself was determined using the LES/SI approach, see [22,24,25] and transformed 
into state-space form.

We performed the simulation using a forward Euler scheme and the Taylor–Galerkin scheme TTGC. The results are shown 
in Fig. 9. The imposed and measured reflection coefficients are in very good agreement.

5.2. Turbulent test case

The turbulent test case is a three dimensional cylindrical duct with an diameter of 30 mm and a length of 150 mm. It 
was discretized with 518 400 hexahedral cells. The mean flow velocity is 9 m/s and the CFL-number was set to 0.7. At the 
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Fig. 10. Comparison of imposed ( ) and measured ( ) reflection coefficients for the turbulent case.

wall we apply an isothermal non-slip BC. In order to impose turbulence CBSBC was combined with a turbulent inflow BC, 
which created a homogeneous isotropic turbulence (HIT) with a RMS value of 1 m/s. Therefore, the turbulent fluctuation 
was added to L5. A WALE model was used for the LES.

Again, we impose the TDIBC at the inlet and the outlet. The boundary at the outlet is non-reflective and the matrices 
are given in (39). At the inflow we impose the downstream reflection coefficient of the orifice investigated in [23]. Again, a 
state-space model for this reflection coefficient was determined with the LES/SI approach.

In order to evaluate the actual reflection coefficient at the inflow we imposed a broadband forcing signal at the out-
flow BC. Again, the data was collected with a probe located at the inflow boundary and hence, independently from our 
modifications of the source code. For the post processing we applied system identification [22].

The results are shown in Fig. 10. The imposed and measured reflection coefficients are in excellent agreement. Please 
note, for these results we imposed CBSBC and a turbulence generator, simultaneously, at the inflow BC.

6. Conclusion

CBSBC may be considered as a combination of the TDIBC formulations of Kaess et al. [6] and Schuermans et al. [10]. The 
coupling of the acoustic model and the flow simulation is done by plane wave masking (PWM) [12]. We proved analytically 
that with this coupling the CFD exhibits the reflection behavior imposed, accurately, provided all acoustic waves impinging 
on the boundary are plane. Our analysis made evident that the coupling proposed in [4,5] and [10] yields ill posed problems 
if applied to LES/ DNS or incorrect result for low frequencies, respectively.

Following Schuermans et al. [10], we utilize a continuous-time state-space model to describe the frequency dependent 
reflection of acoustic waves. It was discussed that it allows a general and robust implementation. A comprehensive overview 
on the modeling of acoustic reflection coefficients in state-space form was provided. We identified and discussed by way of 
examples three ways to determine a state-space model used for CBSBC: (1) A set of linear partial differential equations (PDE) 
is known to model the acoustic reflections. (2) Complex values of the reflection coefficient at several distinct frequencies are 
available. (3) Different modeling approaches are combined using an acoustic network model. The state-space formulation 
also allows to add an external excitation. E.g. it allows to consider a loud speaker or a turbulent sound source within 
the impedance domain. The formulation proposed allows a simple yet general implementation. A pseudo-code example of 
an implementation which accounts for non-constant CFD time steps and which is independent from the time integration 
schemes of the flow simulation was provided.

Finally, we demonstrated numerically that our formulation handles complex and possibly unstable reflection coefficients 
and that it works well with laminar as well as turbulent flows.

Acknowledgements

The financial support for the first author by the Research Association for Combustion Engines (Forschungsvereinigung 
Verbrennung e.V. – FVV, project number: 6011150) and for the second author by the Marie Curie People program FlowAirs 
of the European Union (grant number FP7-PEOPLE-2011-ITN-289352) is gratefully acknowledged. We thank CERFACS and 
IFP for providing the solver AVBP and in particular for the access to the source code. The authors gratefully acknowledge 
the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing computing time on 
the GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre (LRZ, www.lrz.de).

A.2 PAPER-CBSBC

S. Jaensch, C. Sovardi, and W. Polifke, Journal of Computational Physics, vol. 314, pp. 145–159, 2016,
http://dx.doi.org/10.1016/j.jcp.2016.03.010.. Reprinted with permission from Elsevier.

64



S. Jaensch et al. / Journal of Computational Physics 314 (2016) 145–159 159

We also like to thank Prof. Suresh Menon (Georgia Institute of Technology) for inviting the first author to a short term 
visit to his department, where a first version of CBSBC was implemented.

References

[1] R. Luebbers, F. Hunsberger, K.S. Kunz, R. Standler, M. Schneider, A frequency-dependent finite-difference time-domain formulation for dispersive mate-
rials, IEEE Trans. Electromagn. Compat. 32 (3) (1990) 222–227, http://dx.doi.org/10.1109/15.57116.

[2] J. Maloney, G. Smith, The use of surface impedance concepts in the finite-difference time-domain method, IEEE Trans. Antennas Propag. 40 (1) (1992) 
38–48, http://dx.doi.org/10.1109/8.123351.

[3] D.M. Sullivan, Frequency-dependent FDTD methods using z transforms, IEEE Trans. Antennas Propag. 40 (10) (1992) 1223–1230, http://dx.doi.org/
10.1109/8.182455.

[4] Y. Özyörük, L.N. Long, A time-domain implementation of surface acoustic impedance condition with and without flow, J. Comput. Acoust. 5 (3) (1997) 
277–296.

[5] Y. Özyörük, L.N. Long, M.G. Jones, Time-domain numerical simulation of a flow-impedance tube, J. Comput. Phys. 146 (1998) CP985919.
[6] R. Kaess, A. Huber, W. Polifke, A time-domain impedance boundary condition for compressible turbulent flow, in: 14th AIAA/CEAS Aeroacoustics 

Conference, 29th AIAA Aeroacoustics Conference, Vancouver, Canada, 2008.
[7] A. Huber, P. Romann, W. Polifke, Filter-based time-domain impedance boundary conditions for CFD applications, in: Proceedings of ASME Turbo Expo 

2008: Power for Land, Sea and Air, Berlin, Germany, 2008.
[8] K.-Y. Fung, H. Ju, B. Tallapragada, Impedance and its time-domain extensions, AIAA J. 38 (1) (2000) 30–38, http://dx.doi.org/10.2514/2.950.
[9] K.-Y. Fung, H. Ju, Broadband time-domain impedance models, AIAA J. 39 (8) (2001) 1449–1454, http://dx.doi.org/10.2514/2.1495.

[10] B. Schuermans, H. Luebcke, D. Bajusz, P. Flohr, Thermoacoustic analysis of gas turbine combustion systems using unsteady CFD, in: Proc. of ASME Turbo 
Expo 2005 Power for Land, Sea and Air, ASME, 2005.

[11] M.K. Myers, On the acoustic boundary condition in the presence of flow, J. Sound Vib. 71 (3) (1980) 429–434.
[12] W. Polifke, C. Wall, P. Moin, Partially reflecting and non-reflecting boundary conditions for simulation of compressible viscous flow, J. Comput. Phys. 

213 (2006) 437–449.
[13] T. Poinsot, S.K. Lele, Boundary conditions for direct simulation of compressible viscous flows, J. Comput. Phys. 101 (2) (1992) 104–129, http://dx.doi.org/

10.1016/0021-9991(92)90227-P.
[14] T. Poinsot, Theoretical and Numerical Combustion, 2nd edition, Edwards, Philadelphia, 2005.
[15] J. Kopitz, E. Bröcker, W. Polifke, Characteristics-based filter for identification of planar acoustic waves in numerical simulation of turbulent compressible 

flow, in: 12th Int. Congress on Sound and Vibration, 2005.
[16] L. Selle, F. Nicoud, T. Poinsot, Actual impedance of nonreflecting boundary conditions: implications for computation of resonators, AIAA J. 42 (5) (2004) 

958–964.
[17] B. Schuermans, V. Bellucci, C.O. Paschereit, Thermoacoustic modeling and control of multi burner combustion systems, in: Proc. of ASME Turbo Expo 

2003 Power for Land, Sea and Air, ASME, 2003.
[18] M. Bothien, J. Moeck, A. Lacarelle, C.O. Paschereit, Time domain modelling and stability analysis of complex thermoacoustic systems, Proc. Inst. Mech. 

Eng. A, J. Power Energy 221 (5) (2007) 657–668, http://dx.doi.org/10.1243/09576509JPE384.
[19] B. Gustavsen, A. Semlyen, Rational approximation of frequency domain responses by vector fitting, IEEE Trans. Power Deliv. 14 (3) (1999) 1052–1061, 

http://dx.doi.org/10.1109/61.772353.
[20] J. Lunze, Regelungstechnik 1, Springer Vieweg, Berlin, 2014.
[21] C.C. Paige, Properties of numerical algorithms related to computing controllability, IEEE Trans. Autom. Control 26 (1) (1981) 130–138.
[22] W. Polifke, Black-box system identification for reduced order model construction, Ann. Nucl. Energy 67C (2014) 109–128, http://dx.doi.org/10.

1016/j.anucene.2013.10.037.
[23] P. Testud, Y. Aurégan, P. Moussou, A. Hirschberg, The whistling potentiality of an orifice in a confined flow using an energetic criterion, J. Sound Vib. 

325 (4–5) (2009) 769–780, http://dx.doi.org/10.1016/j.jsv.2009.03.046.
[24] C. Sovardi, S. Jaensch, C. Silva, W. Polifke, Identification of sound sources in internal ducted flows: a large eddy simulation–system identification 

approach, in: 21st International Congress on Sound and Vibration, ICSV21, 2014.
[25] C. Sovardi, S. Jaensch, W. Polifke, Concurrent identification of aero-acoustic scattering and noise sources at a flow duct singularity in low Mach number 

flow, J. Sound Vib. (2016), submitted for publication.

A.2 PAPER-CBSBC

S. Jaensch, C. Sovardi, and W. Polifke, Journal of Computational Physics, vol. 314, pp. 145–159, 2016,
http://dx.doi.org/10.1016/j.jcp.2016.03.010.. Reprinted with permission from Elsevier.

65



Available online at www.sciencedirect.com 

Proceedings of the Combustion Institute 36 (2017) 3827–3834 
www.elsevier.com/locate/proci 

Hybrid CFD/low-order modeling of nonlinear 

thermoacoustic oscillations 

S. Jaensch 

a , M. Merk 

a , E.A. Gopalakrishnan 

b , S. Bomberg 

a , T. Emmert a , 
R.I. Sujith 

b , W. Polifke 

a , ∗

a Professur für Thermofluiddynamik, Fakultät für Maschinenwesen, Technische Universität München, Boltzmannstr. 15, 
D-85748 Garching, Germany 

b Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600036, India 

Received 3 December 2015; accepted 1 August 2016 
Available online 5 October 2016 

Abstract 

This paper proposes and compares two nonlinear time-domain models of self-excited thermoacoustic oscil- 
lations of laminar premixed flames. Both models are hybrid formulations, where the flame and its immediate 
vicinity are resolved with a reactive flow simulation, while the acoustic field is modeled with a low-order 
model that is coupled to the reactive flow simulation. Firstly, a flame model based on the fully compressible 
Navier–Stokes equations is investigated. In this case, the flame simulation is coupled to the low-order model 
via the characteristic wave amplitudes at the inlet boundary. Secondly, the flame is resolved with a low Mach 

number reactive flow simulation. In order to include two-way thermoacoustic feedback, this flame model is 
coupled with an acoustic network model via the global heat release rate and the fluctuation of the axial veloc- 
ity at a reference position upstream of the flame. A bifurcation analysis using the plenum length as bifurcation 

parameter is conducted. Both models exhibit complex nonlinear oscillations and are in good agreement with 

each other. Therefore, we conclude that the coupling of a linear acoustic model and a nonlinear flame model 
via reference velocity and global heat release rate is sufficient to accurately capture thermoacoustic oscilla- 
tions of the configuration investigated. This implies that the most important nonlinearities can be attributed 

to hydrodynamic effects and flame kinematics. Furthermore, the study corroborates that premixed flames 
respond predominantly to fluctuations of the upstream flow velocity. 

© 2016 by The Combustion Institute. Published by Elsevier Inc. 
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1. Introduction 

The development of gas turbines or rocket en- 
gines is often impeded by thermoacoustic insta- 
bilities. Feedback between the unsteady heat re- 
lease rate of the combustion and the acoustic field 

http://dx.doi.org/10.1016/j.proci.2016.08.006 
1540-7489 © 2016 by The Combustion Institute. Published by Elsevier Inc. 
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results in very large oscillations of pressure, heat re- 
lease and velocity. These oscillations can reach am- 
plitude levels at which gas turbines have to be shut 
down, or rockets are destroyed. To decide whether a 
thermoacoustic instability reaches such amplitude 
levels, nonlinear models are required. 

This modeling is a challenging task, as complex 
nonlinear phenomena are involved. Durox et al. 
[1] studied the response of various laminar flame 
configurations to fluctuations of the inflow velocity. 
It was observed that the fluctuations of the global 
heat release rate saturate for high forcing ampli- 
tudes. Correspondingly, Kabiraj et al. [2] studied 

self-excited thermoacoustic oscillations of a lam- 
inar flame and observed periodic, aperiodic, or 
chaotic oscillations as well as hysteresis. In order to 

obtain qualitative and quantitative agreement with 

these experimental results, a model of thermoa- 
coustic instabilities has to account for all effects 
observed. Dowling [3] proposed to model the non- 
linear flame dynamics with a flame describing func- 
tion (FDF). Noiray et al. [4] showed that the FDF 

combined with an acoustic network model pro- 
vides a useful estimate of limit cycle amplitudes in 

many cases. However, it is a frequency domain ap- 
proach and considers only a single unstable acous- 
tic mode. Therefore, it can only predict harmonic 
oscillations. The advantage of time-domain models 
is that they can account for multi-modal coupling, 
which is necessary to describe complex types of os- 
cillations. A time-domain model that has enjoyed 

recent interest uses a G -equation based flame model 
coupled with a low-order acoustic model [3,5–7] . 
This model shows complex nonlinear oscillations. 
However, the results depend strongly on the ve- 
locity model used [8,9] . Indeed, the G -equation 

models found in the literature do not account for 
vortex shedding or vortex-flame interaction. Ad- 
ditionally, gas expansion and shear layer effects 
were reported to have a significant influence on the 
flame response [10] . These effect are also not con- 
sidered by state-of-the-art G -equation implemen- 
tations. Therefore, quantitative agreement with ex- 
periment is not obtained and more sophisticated 

models are needed. 
A suitable low-order model has to account for 

the complex interactions between flame, flow and 

acoustics. The present study compares two mod- 
els which account for these effects: Firstly, a model 
which resolves the flame and its vicinity with a fully 
compressible, reactive flow simulation. As shown 

in Fig. 1 , the simulation is coupled to the acoustic 
low order model via the characteristic wave ampli- 
tudes in order to model the full acoustic field of the 
plenum. In the following we denote this simulation 

“C-fg”. Secondly, a model as proposed by Moeck 

et al. [11] that utilizes a low Mach number, reactive 
flow simulation. Here, the density depends only on 

the temperature, but not on pressure. As shown in 

Fig. 2 , this model is coupled to a low-order network 

model via a reference velocity and the global heat 

Fig. 1. Coupling of the fully compressible simulation and 
the corresponding acoustic model (Model: C-fg). 

Fig. 2. Coupling of the low Mach number simulation and 
the corresponding acoustic model. The reference velocity 
is measured at two different locations (compare Table 1 ) 
(Model: LM-uq). 

release rate. Consequently, we denote this model 
“LM-uq”. 

Please note that in the literature [12–14] other 
hybrid models for thermoacoustic oscillations have 
been proposed. However, the coupling used by 
these hybrid models has not been cross-validated 

in a systematic manner against a fully compressible 
simulation. This cross-validation allows to directly 
verify the coupling between flame, hydrodynamics 
and acoustics. 

In the following section, the two formulations 
are explained in detail. Thereafter, in Section 3 the 
results of the two models are compared via a bifur- 
cation analysis. Although, complex thermoacous- 
tic oscillations are observed, the two models are in 

good agreement with each other. Thus we conclude 
that the coupling of a nonlinear flame model and 

a linear acoustic model is sufficient to describe the 
thermoacoustic oscillation of the configuration in- 
vestigated. 

2. Numerical setup 

The laminar slit burner considered in the present 
study is shown in Fig. 3 . Kornilov et al. [15] and 

Duchaine et al. [16] investigated the linear dynam- 
ics of this configuration by experiment and simula- 
tion, respectively. Good agreement between experi- 
mental and numerical results was found. The CFD 

setup used in the present work corresponds to that 

A.3 PAPER-HYBRID

S. Jaensch, M. Merk, E. A. Gopalakrishnan, S. Bomberg, T. Emmert, R. I. Sujith, W. Polifke, Proceedings of
the Combustion Institute, vol. 36, pp. 3827-3834, 2017, http://dx.doi.org/10.1016/j.proci.2016.08.006.. Reprinted
with permission from Elsevier.

67



S. Jaensch et al. / Proceedings of the Combustion Institute 36 (2017) 3827–3834 3829 

Fig. 3. Left: sketch of the experimental configuration 
considered. Right: truncated CFD domain. 

of Duchaine et al. [16] . As sketched in Fig. 3 , sym- 
metry boundary conditions are imposed, such that 
only one half of one flame is resolved within the 
two dimensional CFD domain. A structured grid 

with 122,300 cells was used. In the region of the 
steady-state position of the flame and of the area 
contractions, the grid is uniform with a cell size of 
0.025 mm. This corresponds to about 18 grid points 
in the reactive zone. Outside this region the cells 
were stretched in the axial direction. At the inflow, 
we impose a mean velocity of 0.4 m/s and a temper- 
ature of 293 K. The plate on which the flame is sta- 
bilized is modeled as a no-slip wall with a fixed tem- 
perature of 373 K, as measured in experiment [15] . 
The fuel is methane with an equivalence ratio of 
0.8. For a detailed description of the two-step reac- 
tion mechanism we refer to [16] . 

Fully non-reflective outlet acoustic boundary 
conditions are imposed, as indicated in Figs. 1 and 

2 . This simplistic treatment does not represent 
faithfully the acoustic radiation by a collection of 
unconfined flames, but is completely adequate for 
the purpose of cross-comparison of the two hy- 
brid approaches. Note that a more realistic radi- 
ation boundary condition such as the one pro- 
posed by Noiray et al. [4] could be implemented 

without essential difficulty in the low-order model 
as well as the fully compressible flow simulation. 
For the latter, one would employ the CBSBC 

formulation of time-domain impedance boundary 
conditions [17] , see below. The transmission and 

reflection of acoustic waves at the burner plate is 
modeled explicitly in the compressible simulation 

by including the plate within the CFD domain. On 

the other hand, in the low Mach number simulation 

the plate is an element of the low-order acoustic 
model. The treatment of the inlet acoustic bound- 
ary conditions in models C-fg and LM-uq is ex- 
plained in the following subsections. 

2.1. Compressible simulation – plenum modeled via 
acoustic boundary conditions 

By its nature, the compressible simulation used 

by the model C-fg captures the coupling between 

combustion, hydrodynamics and acoustics. How- 
ever, the plenum length L determines the acous- 
tic impedance at the burner plate and thus, is 
crucial for the thermoacoustic stability of the con- 
figuration. In order to capture thermoacoustic in- 
stabilities, the full plenum length has to be mod- 
eled. The most straight-forward way to model 
the plenum is to resolve it within the CFD do- 
main. However, this approach has two important 
drawbacks: (1) with standard boundary conditions, 
the acoustic impedance at the inlet of the ex- 
tended CFD domain can be imposed only with 

limited flexibility. (2) Changing the length of the 
plenum requires to create a new mesh. In order 
to overcome these drawbacks, in the present study 
Characteristics-Based State-Space Boundary Con- 
ditions (CBSBC), as proposed in Jaensch et al. [17] , 
are utilized to effectively extend the plenum to the 
full plenum length (compare Fig. 1 ). 

CBSBC provide a robust and consistent imple- 
mentation of time-domain impedance boundary 
conditions. This formulation allows to impose a 
frequency-dependent impedance and ensures that 
the CFD simulation exhibits with good accuracy 
the desired impedance values. CBSBC are based on 

a model of the reflection coefficient, which can be 
considered as equivalent to the acoustic impedance. 
The reflection coefficient has to be provided in 

state-space representation. We will first explain how 

the state-space model for the present study is deter- 
mined. Afterward, we show how the model is cou- 
pled with the compressible CFD simulation. 

Plane acoustic waves can be described by means 
of the characteristic wave amplitudes 

f = 

1 
2 

(
p ′ / ̄ρc̄ + u ′ 

)
, g = 

1 
2 

(
p ′ / ̄ρc̄ − u ′ 

)
, (1) 

with density ρ̄, speed of sound c̄ . p ′ and u ′ are the 
acoustic pressure and velocity fluctuations, respec- 
tively. f corresponds to the wave traveling in the 
downstream direction and g to the wave traveling in 

the upstream direction. The one-dimensional, lin- 
earized Euler equations 

∂ f 
∂t 

+ ( ̄u + c̄ ) 
∂ f 
∂x 

= 0 and 

∂g 
∂t 

+ ( ̄u − c̄ ) 
∂g 
∂x 

= 0 , 

(2) 

describe the propagation of the acoustic wave am- 
plitudes. At the inlet of the acoustic model the 
boundary condition 

u ′ (x = 0) = 0 ⇔ f (x = 0) = g(x = 0) , (3) 
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represents a rigid wall. At the outlet of the acoustic 
model the boundary condition 

g ( t, x = L A ) = g u ( t ) , (4) 

allows to impose an arbitrary incoming wave g u ( t ). 
The discretization of Eq. (2) with a third-order up- 
wind scheme in space under consideration of the 
boundary conditions (3) and (4) can be written in 

state-space form 

˙ x C-fg = A C-fg x C-fg + B C-fg g u (5a) 

f u = C C-fg x C-fg , (5b) 

with the state-space matrices A C-fg , B C-fg and C C-fg 
and the state-vector x C-fg . The index “C-fg” em- 
phasizes that the state-space model belongs to the 
model C-fg. For a tutorial explanation of how these 
matrices can be determined we refer to [17] . 

The second step is to couple the model 
(5) with the CFD simulation. CBSBC extends the 
well-known Navier–Stokes characteristic bound- 
ary conditions (NSCBC) [18] . As in the NSCBC 

framework, CBSBC define the derivative of pres- 
sure p and velocity u according to 

∂ p 
∂t 

+ 

1 
2 

( L 5 + L 1 ) = 0 , 
∂u 
∂t 

+ 

1 
2 

( L 5 − L 1 ) = 0 . 

(6) 

Here, L 5 and L 1 are the temporal derivatives of the 
characteristic wave amplitudes f and g , respectively. 
With a setup as shown in Fig. 1 , L 1 corresponds to 

the wave leaving the CFD domain and is given as 

L 1 = ( u − c ) 
(

∂ p 
∂x 

− ρc 
∂u 
∂x 

)
. (7) 

L 5 corresponds to the f-wave entering the domain 

and has to be imposed 

L 5 = σ ( u − ( f u − g d ) − u T ) + 2 
∂ f u 
∂t 

, (8) 

The term ( f u − g d ) is equal to the acoustic veloc- 
ity fluctuation. Including this term in the relaxation 

term avoids artificial reflections at the boundaries 
of the CFD domain, as it compensates the effect 
of the acoustic fluctuation on the relaxation term. 
The term ∂ f u / ∂ t allows to impose an ingoing wave. 
Please note that Eq. (8) is equal to the formulation 

given in Polifke et al. [19] . 
Solving Eqs. (5) –(8) at every time step allows 

to extend the acoustic domain to the full plenum 

length. By changing the length L A we can change 
the plenum length without the requirement of a 
new mesh. At the outlet of the compressible simula- 
tion we impose non-reflective boundary conditions 
as proposed by Polifke et al. [19] . The fully com- 
pressible simulations were conducted using AVBP 

1 

1 http://cerfacs.fr/en/computational- fluid- dynamics- 
softwares/ 

(Cerfacs and IFP). The Lax–Wendroff scheme was 
used for the discretization. This scheme is second- 
order accurate in both time and space. The time 
step was set to ensure an acoustic CFL number less 
than 0.7. 

2.2. Low Mach number simulation – coupled to 
acoustics via Rankine–Hugoniot 

The model LM-uq is based on a low Mach num- 
ber simulation. With such a formulation, which 

is also called weakly compressible , the density de- 
pends only on the temperature, but not on pressure. 
In this way acoustic waves and hence, thermoacous- 
tic feedback inside the CFD domain is suppressed. 
In order to account for the thermoacoustic feed- 
back, the low Mach number simulation is coupled 

with an acoustic network model via the linearized 

Rankine–Hugoniot equations [20] for a compact 
heat source. As shown in Fig. 2 , the network model 
and the low Mach number simulation are coupled 

via the global heat release rate ˙ q ′ and a reference 
velocity u ref . It can be shown that the coupling is 
equivalent to the one proposed by Moeck et al. [11] . 
As the acoustic model is linear it can be written in 

state-space form 

˙ x LM−uq = A LM-uq x LM-uq + B LM-uq ̇  q ′ (9a) 

u ref = C LM-uq x LM-uq + D LM −uq ̇  q ′ , (9b) 

with the state-space matrices A LM-uq , B LM-uq 
and, C LM-uq and the state-vector x LM-uq . Here, the 
index “LM-uq” emphasizes that the state-space 
model belongs to the low Mach number simulation. 
A detailed description of how these matrices may 
be formulated can be found in Emmert et al. [21–
23] . The elements of the network model are shown 

in Fig. 2 . As for the C-fg case the duct sections are 
modeled using the linearized Euler equations. The 
model for the area jump is based on the continuity 
equation and does not include acoustic losses. The 
inlet BC of the acoustic network model is a reflec- 
tion coefficient of 1, which corresponds to a rigid 

wall. The outlet BC is a non-reflective boundary 
condition. The temperature ratio across the flame 
is 6.1. Overall, both the models LM-uq and C-fg 
describe the configuration shown in Fig. 3 . 

The Rankine–Hugoniot equations assumes that 
the flame is compact with respect to the acoustic 
wavelength. Considering the height of the flame of 
about 5 mm and the length of the plenum which 

is the characteristic dimension of the acoustics 
for longitudinal modes, varying between 200 and 

1000 mm, this assumption is fulfilled with good ac- 
curacy. The flame acts as an acoustic point source 
while the real flame has some spacial extent. The ex- 
act position of this source is a model parameter. In 

the present study this position was chosen 2.6 mm 

after the burner plate. Additionally, it is assumed 

that the flame responds only to fluctuations of the 
reference velocity. Again, due to the spatial extent 

A.3 PAPER-HYBRID

S. Jaensch, M. Merk, E. A. Gopalakrishnan, S. Bomberg, T. Emmert, R. I. Sujith, W. Polifke, Proceedings of
the Combustion Institute, vol. 36, pp. 3827-3834, 2017, http://dx.doi.org/10.1016/j.proci.2016.08.006.. Reprinted
with permission from Elsevier.

69



S. Jaensch et al. / Proceedings of the Combustion Institute 36 (2017) 3827–3834 3831 

Table 1 
Model settings considered. Compare Fig. 2 for the reference position of the model LM-uq. Abbreviation: 
perturbation (pert.). 

Case name Model Initial condition Reference position 

C-fg-low C-fg Low pert. —
C-fg-high C-fg High pert. —
LM-uq-low-0 LM-uq Low pert. 0 
LM-uq-high-0 LM-uq High pert. 0 
LM-uq-high-1 LM-uq High pert. 1 

of the real flame, the position at which this refer- 
ence velocity is extracted is a model parameter. As 
indicated in Fig. 2 , two different positions were in- 
vestigated: (1) 15 mm upstream of the burner plate. 
This position coincides with the inlet boundary of 
the low Mach number simulation and is denoted as 
reference 0 (compare Fig. 2 and Table 1 ). (2) The 
reference velocity was chosen at the upstream side 
of the burner plate. In Fig. 2 and Table 1 this posi- 
tion is denoted as reference 1. 

The open-source finite volume code Open- 
FOAM 

2 was used as low Mach number CFD 

solver. For the temporal integration the implicit 
Euler scheme with a (hydrodynamic) CFL number 
of 0.3 was employed. Gaussian integration is ap- 
plied. The gradient operator is discretized with the 
linear scheme and the divergence operator with lim- 
ited linear differencing scheme. A transient SIM- 
PLEC algorithm [24] was used, which stopped iter- 
ating once the residuals were lower than 10 −6 . 

3. Numerical results 

The model settings for which self-excited ther- 
moacoustic instabilities were observed are listed in 

Table 1 . Simulations with two different initial con- 
ditions were conducted. (1) The simulations de- 
noted with “low” were started from a converged 

mean field. Here, only a small initial acoustic exci- 
tation was applied. This speeds up the development 
of a thermoacoustic oscillation and allows to re- 
duce the computational costs significantly. (2) The 
simulations denoted with “high” were started from 

a initial condition taken from a snapshot with de- 
veloped thermoacoustic oscillation. For all values 
of the plenum length L the same snapshot is used. 
The two different reference positions for the model 
LM-uq were explained in the previous section and 

are shown in Fig. 2 . Depending on the complexity 
of the oscillations observed for each case, time se- 
ries between 100 and 500 ms were generated. The 
first part of the time series at which the thermoa- 
coustic oscillations are not yet fully developed were 
not included in the post-processing. The two mod- 
els were compared w.r.t. the normalized fluctuation 

2 http://www.openfoam.org/ 

Fig. 4. RMS (top) and dominant frequency (bottom) 
of the reference velocity for different plenum length. 

: LM-uq-low-0, : LM-uq-high-0, : LM- 
uq-high-1, : C-fg-low, : C-fg-high. 

of the reference velocity: 

u ′ = 

(
u ′ re f − ū ′ re f 

)
/ ̄u ′ re f (10) 

Here, u ′ re f is the area averaged velocity measured at 
a plane 15 mm upstream of the burner plate. ū ′ re f 

is the temporal average of u ′ re f . In the remainder of 
this section the two models are first compared via 
a bifurcation analysis. Thereafter, the cases with a 
plenum length of L = 200 mm and L = 700 mm are 
investigated in detail. 

3.1. Bifurcation analysis 

In Figs. 4 (top) and 5 the variation of the root 
mean square (RMS) value with plenum length and 

the bifurcation diagram are shown, respectively. 
The amplitudes predicted by the two models are in 

good agreement with each other. This holds in par- 
ticular for short plenum lengths L . For long plenum 

lengths the amplitudes predicted by the model LM- 
uq are slightly lower than the amplitudes predicted 

by the model C-fg. The corresponding velocities 
correspond to Reynolds numbers of about 1000. 
Thus, the flow is in the transition to turbulence. 

At the onset of the thermoacoustic oscillations, 
we observe what appears to be a supercritical Hopf 
bifurcation. Note that this assessment is based on a 
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Fig. 5. Bifurcation diagram showing the minima and 
maxima of the normalized fluctuation of the reference 
velocity. The black dots show the result obtained with C- 
fg-low and C-fg-high and the gray dots the one obtained 
with LM-uq-low-0 and LM-uq-high-0. 

resolution �L = 10 mm of the bifurcation param- 
eter L around the bifurcation point. A smaller step 

size �L may reveal a weakly pronounced subcriti- 
cal Hopf bifurcation. 

The models C-fg and the LM-uq with refer- 
ence position 1 (compare Fig. 2 ) become unsta- 
ble at a plenum length of L = 160 mm . The model 
LM-uq with reference position 0, however, exhibits 
a thermoacoustic instability starting at a plenum 

length of 170 mm . Therefore, the less intuitive cou- 
pling using a reference position right before the 
burner plate is more accurate than the coupling us- 
ing a reference position that coincides with the in- 
let boundary of the low Mach number simulation. 
The reason is that due to the low Mach number 
formulation, a velocity fluctuation imposed at the 
inlet will act immediately on the whole CFD do- 
main. In the low-order acoustic model, on the other 
hand, the fluctuations propagate with the speed of 
sound. Therefore, the reference position at which 

the acoustic velocity is extracted from the low-order 
acoustic model should be chosen at the location 

where acoustic fluctuations create hydrodynamic 
fluctuations. In the present configuration, this po- 
sition is at the burner plate. 

In Fig. 5 bifurcation diagrams of the two mod- 
els are shown. In Fig. 4 (bottom) the dominant 
frequencies f u predicted with the different setups 
investigated are shown. The comparison shows that 
also the nature of the oscillations predicted by the 
two models is in good agreement with each other. A 

significant difference is observed at a plenum length 

of L = 500 mm . 

Fig. 6. Time series (top), power spectrum (bottom) of the 
velocity signal for L = 200 mm (left) and L = 700 mm 

(right). Dashed gray line: compressible simulation (case: 
C-fg-low), full black line: low Mach number simulation 
(case: LM-uq-low-0). 

3.2. Comparison of time series 

In Fig. 6 the time series (top plots) and the 
power spectrum (bottom plots) of the unsteady ve- 
locity for a plenum length of 200 mm and 700 mm 

are shown. Both plots show that the simulations are 
in good agreement with each other. Consistent with 

the bifurcation diagram, the amplitude at a plenum 

length of 700 mm is significantly larger than the 
amplitude at L = 200 mm . In the power spectrum 

for L = 700 mm a noise content is observed, which 

can be attributed to the onset of turbulence due to 

the high oscillation amplitudes. The corresponding 
maximum Reynolds number observed inside the 
slit of the burner plate is about 1000. 

The nonlinear dynamics of the thermoacous- 
tic instabilities observed can be better understood 

with the help of phase portraits. Phase portraits 
represent the asymptotic state of the system in the 
phase space. We reconstruct the phase space by ap- 
plying Takens’ embedding theorem [25] . The delay 
τ is chosen to correspond to the first minima of 
the average mutual information and the minimum 

embedding dimension is found using the method 

of false nearest neighbors. A detailed description 

of the techniques involved in the phase space re- 
construction in the context of a thermoacoustic 
system can be found in Kabiraj and Sujith [26] . As 
shown in Fig. 7 , also the phase portraits are in good 

agreement with each other. From the phase por- 
trait we can also deduce the nature of the oscilla- 
tion observed: We are observing Period-2 oscilla- 
tions at L = 200 mm and limit cycle oscillations at 
L = 700 mm . 
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Fig. 7. Phase portraits of the velocity signal for L = 

200 mm (top) and L = 700 mm (bottom). Colors as in 
Fig. 6 . 

4. Summary and conclusion 

Two nonlinear, hybrid, time-domain models of 
self-excited thermoacoustic instabilities of a lami- 
nar premixed flame (see Fig. 3 ) were implemented 

and cross-validated. The model C-fg – see Fig. 1 –
resolves the flame with a fully compressible and 

reactive simulation. A low-order model of the 
plenum of the burner is coupled to the simula- 
tion via the characteristic wave amplitudes. This al- 
lows to change the length of the plenum without 
modifying the computational grid. Alternatively, 
the model LM-uq – see Fig. 2 – uses a low Mach 

number formulation of the Navier–Stokes equa- 
tions to describe the flame dynamics. In order to ac- 
count for the thermoacoustic feedback this simula- 
tion is coupled to an acoustic network model. Here, 
the two-way coupling is based on the Rankine–
Hugoniot equations and uses a reference velocity 
measured upstream of the flame and the global heat 
release rate. 

A bifurcation analysis with the plenum length 

as bifurcation parameter was conducted. The two 

models were in good agreement with each other. 
The compressible simulation on which the model 
C-fg is based on resolves the flame acoustic in- 
teraction, possible nonlinear scattering of acous- 
tic waves and hydrodynamic effects. On the other 
hand, the low Mach number simulation utilized by 

the model LM-uq, suppresses all acoustic effects 
inside the CFD domain. Thus, in this model the 
acoustic field is acting on the flame only via fluc- 
tuations of the reference velocity. The bifurcation 

analysis shows good agreement of the two models, 
thus we conclude that the flame investigated indeed 

responds predominantly to fluctuations of the ref- 
erence velocity. This holds even while the flame ex- 
hibits complex thermoacoustic oscillations. Conse- 
quently, the acoustic pressure p ′ and acoustic waves 
f, g act on the flame only indirectly, as they cause 
fluctuations of the reference velocity u ′ . This se- 
quence of cause and effect has been questioned in 

the context of the recent discussion on the intrin- 
sic thermoacoustic feedback [27–32] . Furthermore, 
the comparison shows that the nonlinearities ob- 
served can be attributed to hydrodynamic effects or 
to the flame kinematics. 

The models investigated in the present study 
form a basis for further research. On the one hand 

the two models can be extended in a straightfor- 
ward manner to take into account effects such as 
conjugate heat transfer or three dimensional effects. 
This is expected to be necessary in order to ob- 
tain models which reproduce experimental results 
with quantitative accuracy. Here, the most critical 
limitations are that both models are restricted to 

the low-frequency regime and that the model LM- 
uq is valid only for velocity sensitive heat sources. 
On the other hand the models can serve as refer- 
ence for nonlinear reduced-order models for the 
dynamics of laminar flames. In Jaensch and Po- 
lifke [33] results of the model LM-uq are compared 

against predictions made with artificial neural net- 
works. Furthermore, both coupling methods also 

work with LES and therefore, allow a detailed nu- 
merical study of thermoacoustic oscillations of tur- 
bulent flames. This is of significant applied interest 
and will be the subject of future investigations. 
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Uncertainty encountered when modelling
self-excited thermoacoustic oscillations
with artificial neural networks

Stefan Jaensch and Wolfgang Polifke

Abstract

Artificial neural networks are a popular nonlinear model structure and are known to be able to describe complex

nonlinear phenomena. This article investigates the capability of artificial neural networks to serve as a basis for deducing

nonlinear low-order models of the dynamics of a laminar flame from a Computational Fluid Dynamics (CFD) simulation.

The methodology can be interpreted as an extension of the CFD/system identification approach: a CFD simulation of the

flame is perturbed with a broadband, high-amplitude signal and the resulting fluctuations of the global heat release rate

and of the reference velocity are recorded. Thereafter, an artificial neural network is identified based on the time series

collected. Five data sets that differ in amplitude distribution and length were generated for the present study. Based on

each of these data sets, a parameter study was conducted by varying the structure of the artificial neural network.

A general fit-value criterion is applied and the 10 artificial neural networks with the highest fit values are selected.

Comparing of these 10 artificial neural networks allows to obtain information on the uncertainty encountered. It is found

that the methodology allows to capture the forced response of the flame reasonably well. The validation against the

forced response, however, depends strongly on the forcing signal used. Therefore, an additional validation criterion is

investigated. The artificial neural networks are coupled with a thermoacoustic network model. This allows to model self-

excited thermoacoustic oscillations. If the training time series are sufficiently long, this coupled model allows to predict

the trend of the root mean square values of fluctuations of the global heat release rate. However, the prediction of the

maximal value of the fluctuation amplitude is poor. Another drawback found is that even if very long-time series are

available, the behaviour of artificial neural networks cannot be guaranteed. It is concluded that more sophisticated

nonlinear low-order models are necessary.

Keywords

System identification, nonlinear flame dynamics, laminar premixed flames, self-excited thermoacoustic oscillations,

artificial neural networks
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1 Introduction

Thermoacoustic oscillations limit the development of
gas turbines and rocket engines. These oscillations are
nonlinear. Hence, in order to decide whether or not a
thermoacoustic oscillation reaches critical amplitude
levels, nonlinear low-order models are necessary.

Several models have been developed to predict these
amplitude levels. The flame describing function (FDF)
combined with a one-dimensional model for the acous-
tics has been proven to give useful estimates of the
oscillation amplitudes in many cases.1–3 It is also pos-
sible to deduce an FDF from a CFD simulation.4–6 The
FDF is limited to harmonic oscillations, where higher

harmonics in the flame response are unimportant.
As shown by Moeck and Paschereit7 and Orchini
et al.,8 the FDF can be extended to the so-called
flame double input describing function (FDIDF).
This increases the accuracy of the prediction
significantly. However, determining a FDIDF is
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prohibitively expensive for practically relevant applica-
tions.8 Another model that has drawn recent interest is
the G-equation.2,8–11 The drawback of G-equation-
based models is that the results depend strongly on
the velocity model used. Consequently, no quantitative
agreement with experiment is obtained. A promising
technique is hybrid CFD/low-order models.12–16 These
models have the advantage that they can account for the
complex interaction between heat source, flow and
acoustics. Additionally, compared to a fully compress-
ible simulation of the whole thermoacoustic configur-
ation, the computational effort can be significantly
reduced. However, the computational effort is still high
and more efficient non-linear low-order models are
needed. A general methodology for deriving low-order
models from a CFD simulation is the CFD/system iden-
tification (SI) approach.17 The general idea of the CFD/
SI approach is to force a CFD simulation with broad-
band excitation signal. If the flame dynamics of a pre-
mixed flame is to be determined, the resulting fluctuation
of the reference velocity and of the global heat release
rate is recorded. From these time series low-order
models can be deduced by system identification.18,19 In
the linear regime, the CFD/SI approach is known to
yield accurate estimates of the flame transfer function
(FTF).17 The CFD/SI approach can be extended to the
nonlinear regime.18,20 Selimefendigil et al.21–23 used the
method to identify nonlinear low-order models for a
cylinder in pulsating crossflow. Zhang et al.24 used
Hammerstein–Wiener models to deduce nonlinear low-
order models from a G-equation solver.

In the present study, the CFD/SI approach is used to
obtain nonlinear low-order models of a laminar flame.
The capability of artificial neural networks (ANNs) to
serve as the nonlinear model structure is investigated.
ANNs have become a very popular black-box model
in the last decades. They have been used to predict
stock prices to forecast the weather and to model air-
crafts. The ANN framework provides a model structure,
which can easily be extended in such a way that very
complex nonlinearities can be described.
Consequently, it is expected that there exists an ANN
that describes the nonlinear flame dynamic accurately.
Indeed, Blonbou et al.25,26 and Vaudrey and Saunders27

showed that ANNs can be used to control combustion
instabilities. However, the model structure of an ANN
has a large number of parameters and consequently,
ANNs are prone to over-fitting. This phenomenon
occurs in particular if only short time series are avail-
able. In contrast to experimental test rigs, as investigated
by Blonbou et al.25,26 and Vaudrey and Saunders,27 the
time series used for the CFD/SI approach should be as
short as possible. Otherwise, no advantage in computa-
tional time can be achieved. Therefore, the key question
addressed in the present study is whether or not an

appropriate ANN can be determined based on the lim-
ited information available, i.e. the broadband time
series. An ANN is considered to be appropriate if on
the one hand it can capture the forced response of the
flame. This criterion allows to validate the predicted
fluctuation of the global heat release rate in both the
time and the frequency domain in a straightforward
manner. A drawback of this comparison is that it
depends strongly on the forcing signal used. Therefore,
on the other hand, an additional validation criterion is
investigated. The ANNs identified are combined with a
thermoacoustic network model in order to model self-
excited thermoacoustic oscillations. The predicted oscil-
lations are compared against the results obtained with
the hybrid CFD/low-order models discussed in Jaensch
et al.16 This validation analyses if small errors made by
the ANN accumulate and is very close to the application
considered. A difficulty of this validation is that thermo-
acoustic oscillations can be very complex, which makes
a direct comparison in the time or frequency domain
difficult. In the present study, we compare the oscilla-
tions predicted in terms of root mean square (RMS)-
values and the maximal fluctuation of the global heat
release rate.

In the next section, the CFD setup is introduced,
which forms the basis of the present study.
Thereafter, we discuss how ANNs can be used for the
CFD/SI approach. Then, the methodology is validated
in terms of forced response and self-excited oscillations.

2 Numerical setup

The CFD setup is shown in Figure 1 and corresponds to
the multi-slit burner investigated by Kornilov et al.28

Figure 1. Multi-slit burner and the corresponding CFD domain

investigated.16

2 International Journal of Spray and Combustion Dynamics 0(0)

A.4 PAPER-ANN

S. Jaensch, W. Polifke, International Journal of Spray and Combustion Dynamics, 2017,
http://dx.doi.org/10.1177/1756827716687583.. Reprinted in terms of Creative Commons licence (CC BY-
NC).

75



and Duchaine et al.29 The numerical settings were
chosen as in Duchaine et al.,29 i.e. equivalence ratio 0.8,
inlet velocity 0.4m/s, inlet temperature, 293K and wall
temperature 373K. In contrast to Duchaine et al.,29 a low
Mach formulation of the Navier–Stokes equations was
solved. This implies that the density depends on the tem-
perature only, but not on the pressure. Consequently, the
acoustics inside the computational domain is suppressed.
In particular, this modification also suppresses the intrin-
sic thermoacoustic feedback.30 It is expected that this
simplifies the identification significantly, it allows us to
investigate an open-loop problem. OpenFOAM (http://
www.openfoam.org/) was used as CFD solver. The CFD
setup used in the present study is identical to the low-
Mach simulation described in Jaensch et al.16

3 ANNs

In the present section, first the structure of ANNs is
introduced. Afterward, it is discussed how ANNs can
be used as a nonlinear model structure for the CFD/SI
approach.

3.1 Structure of ANNs

An ANN consists of interconnected neurons. A single
neuron is a function y ¼ � u,?ð Þ with input vector u and
a scalar output y. ? is the parameter vector. The func-
tion � (�) is called the activation function. In principle,
any function can be used. For practical applications,
sigmoid functions and radial basis functions (RBF)
have been proven to be useful choices.20;18 Examples
of both functions plotted in Figure 2. A sigmoid func-
tion is given as

�Sig u,?ð Þ¼
2

1þ exp �2?Tu
� �� 1 ð1Þ

Here, the parameter vector ? weights the inputs.
Consequently, the elements �k of ? are called weights.
A radial basis function is defined as

�RBF u, c,�ð Þ ¼ exp �
1

2
ku� ck2�

� �
ð2Þ

with the generalized norm

ku� ck� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u� cð Þ

T � u� cð Þ

q
ð3Þ

Here, the parameter vector ? is represented by the
centre vector c and the norm matrix . These quantities
correspond to the mean vector and the covariance
matrix of a multivariate normal distribution. In order
to reduce the number of parameters, � is assumed to be
a diagonal matrix.

Several interconnected neurons build an ANN. As
depicted in Figure 3, ANNs are structured in several
layers. The inputs of the ANN are time-lagged velocity
signals u0 t� i�tð Þ. Here, i is the time increment and �t
is the time step. The inputs of the ANN are also the
inputs of the neurons positioned in the first layer. The
inputs of the neurons in the second layer are the out-
puts of the neurons in the first layer and so on. The last
layer consists of a single neuron with a linear activation
function. Note that all neurons positioned in the same
layer have the same inputs. As only time-lagged input
signals and no time-lagged output signals are the inputs
of the ANN the impulse response of the ANNs con-
sidered is finite and has the length n�t. An infinite
impulse response would require us to pass the output
of the ANN as feedback to its inputs. This is analogue
to a finite impulse response (FIR) model used for lin-
ear system identification. The finiteness of the impulse
response reflects the convective nature of the flame
dynamics: an impulse velocity perturbation impinging
on the flame causes a perturbation of the flame front
and consequently a fluctuation of the global heat
release rate. Blumenthal et al.31 showed for a G-
equation flame model that the perturbation of the
flame front is convected through the flame and that
the original flame front is restored via a convective

Figure 3. Generic example of a structure of an artificial neural

network with four neurons in the first layer, two neurons in the

second layer and a single neuron in the third layer.

Figure 2. Full line: sigmoid function with �¼ 1, dashed line:

radial basis function (RBF) with
P
¼ 1 and c¼ 0.

Jaensch and Polifke 3

A.4 PAPER-ANN

S. Jaensch, W. Polifke, International Journal of Spray and Combustion Dynamics, 2017,
http://dx.doi.org/10.1177/1756827716687583.. Reprinted in terms of Creative Commons licence (CC BY-
NC).

76



restoration mechanism. Once the perturbation and the
restoration are convected through the flame, the fluctu-
ation of the global heat release vanishes instantan-
eously. Thus the impulse response of the flame is
finite. Therefore, the FIR model should be considered
as a grey-box model of the flame.32 It is expected that
these considerations hold for the nonlinear flame
dynamics. In general, the ANN framework allows to
additionally consider time-lagged values of the output
signal, i.e. the fluctuation of the global heat release rate,
as inputs of to the neural network. However, this yields
an oscillatory impulse response, which does not corre-
spond to the convective nature of the flame response.
Silva et al.33 show that these so-called auto-regressive
models are useful for modeling the scattering matrix of
a flame, but not for the FTF.

Typically, all activation functions of neurons pos-
itioned in the same layer are identical. If RBFs are
used, it is advantageous to normalize the output of
the k-th neuron in a layer by the output of all neurons
in the same layer

�NRBF, k u, c,�ð Þ ¼
�RBF u, ck,�kð ÞPM
i¼0 �RBF u, ci,�ið Þ

ð4Þ

with M being the number of neurons in the layer. The
function NRBF;k(u, c, �) is called normalized radial basis
function (NRBF).

3.2 Identification of ANNs

The identification procedure used to determine the
unknown parameter vector ? of an ANN is similar
to the procedure used for linear identification17,18:

1. First, a broad band time series is created.
2. The model structure has to be chosen.
3. The unknown parameters are determined by solving

an optimization problem.
4. The model identified must be validated.

In order to generate broad band time series, the CFD
simulation introduced above was forced with different
broadband excitation signals. The signals were gener-
ated with the method discussed in Föller and
Polifke.34 As for the linear CFD/SI approach, the fre-
quency content of the signal should be chosen such that
all frequencies of interests are excited. For the nonlinear
identification, also the amplitude of the signal is import-
ant. Therefore, signals with different amplitudes are
investigated in the present study. The particular signals
used are discussed in detail in the next section.

The second step of the identification procedure is to
fix the structure of the ANN. This means choosing the
activation function, the number of layers and the

number of neurons per layer. Additionally, the max-
imum delay n has to be fixed. Unfortunately, there
exist no general design rules for choosing the structure
of an ANN. Typically, one identifies several ANNs
with different structures and selects the ANN with the
best performance. In the present study, this is done in
terms of a large parameter study, which is discussed in
the next section.

The third step of the identification procedure is to
determine the vector of unknown parameters ? of the
neural networks. This is done by solving the optimiza-
tion problem

min
?

1

N

XN�1
i¼0

q0ANN i�t, ?ð Þ � q0CFD i�tð Þ
� �2

ð5Þ

This optimization problem is nonlinear and conse-
quently, nonlinear optimization algorithms are neces-
sary. These algorithms are based on error
backpropagation, which allows to calculate the gradient
of the cost function analytically. In comparison to the
Wiener–Hopf inversion, the computational effort
required is significantly larger. However, compared to
the computational costs of the CFD simulation, the
computational effort is still negligible. A particularity
of ANNs is that the optimization is non-deterministic.
Recall from the discussion of the structure of
ANNs that the inputs and outputs of all neurons pos-
itioned in the same layer are equal (see also Figure 3).
Hence, neurons positioned in the same layer differ only
with respect to their parameter vector. Consequently, if
in order to solve the optimization problem all param-
eters are initialized to zero, after the optimization the
parameters of all neurons positioned in the same layer
will be equal. The performance of such an ANN would
be poor. In order to avoid this behaviour, the parameter
vector is initialized to small, random values.
Consequently, re-identifying an ANN with the same
structure several times can yield ANNs, showing a
significantly different performance. Note that only the
optimization algorithm is non-deterministic. ANNs
are a deterministic model once all parameters have
been determined. The number of unknown parameters
of an ANN grows rapidly with the number of neurons
and layers. This enables ANNs to model
complex nonlinearities, however, it creates the risk of
over-fitting. If the optimization problem (5) is solved
untill convergence, the quality of the ANN obtained
would be poor. In order to avoid over-fitting, the data
used to identify the parameters of the ANNs is divided
into three different data sets: training data, validation
data and test data. The optimization algorithm calcu-
lates the gradient of the cost function using only the
training data set. The optimization stops when the
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error made on the validation data set increases. The test
data set is not used during the optimization. In the pre-
sent work, 70% of the data are used as training data,
15% as validation data and 15% as test data. The data
were divided randomly using a fixed seed.

For the present study, the default implementation of
ANNs in Matlab (www.mathworks.com, version:
R2015b) is used.

4 Numerical results

Unfortunately, there are no general design rules for the
structure of neural networks. Indeed, as the training of
neural networks is non-deterministic, two ANNs with
the same structure can show totally different behaviour.
This holds even if the same data set was used to train
both networks. In order to use ANNs to model self-
excited thermoacoustic oscillations a criterion is neces-
sary, which allows to decide whether or not an ANN
identified is a good low-order model of the nonlinear
flame dynamics. This criterion should be based on the
broadband time series used to identify the network.

Otherwise, the computational effort required to find a
suitable ANN can make the methodology prohibitively
expensive. The criterion investigated in the present
work is the fit value defined as

fit ¼ 100 1�
kq0CFD � q0ANNk

kq0CFD � q0CFDk

� �
ð6Þ

with the temporal average q0CFD of the fluctuations of the
global heat release rate measured in the CFD simula-
tion. This criterion is also known as normalized root
mean square error (NRMSE). The criterion is evaluated
using the full broadband time series including training
data, validation data and test data. Recall that the
weights of the ANN are determined via the optimization
procedure discussed in the previous section using the
validation and the training data. The test data are not
used. Considering this data to select the optimal ANNs
is an additional method to prevent over-fitting.

In order to increase the generalizability of the results
of the present study, a large number of ANNs with
different structures were identified using the five data

Figure 4. Five different data sets used to generate the ANNs. Left: envelope of the time series u0=�u �½ �, middle: power spectral

density PSD (dB/Hz), right: empirical probability density function.
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sets shown in Figure 4. The 10 ANNs with the greatest
fit values on each data set were selected. The underlying
parameter study is explained in detail in the next sub-
section. Thereafter, the ANNs selected are validated
against the forced response and against self-excited
thermoacoustic oscillations.

4.1 Setup of the parameter study

As shown in Figure 4, five different broadband time
series are investigated. These data sets were generated
by forcing the inflow velocity u0 of the CFD simulation
with three different broadband excitation signals. The
length of the time series obtained is 100 �. Here, � is the
length of the impulse response of the flame and is equal
to 10 ms. All signals are statistically independent from

each other and were generated with the non-Gaussian
simulation method described in Föller and Polifke.34 A
small part of the signal is shown in Figure 7. The signals
were scaled such that the amplitude u0= �u of the first
signal is 50%, the one of the second signal is 100%
and the one of the third signal is 150%. From the
three time series obtained, five different data sets were
generated. These data sets are shown in Figure 4. The
data sets 1, 2 and 3 are the time series directly generated
by the CFD simulation. Data set 4 is concatenated and
consists of the first third of the data sets 1 to 3, respect-
ively. Data set 5 is concatenated and consists of the full
data sets 1 to 3. Data set 4 and 5 are investigated in to
analyse whether signals containing several excitation
amplitude levels can improve the results. In the linear
regime, the length of the time series and its power spec-
tral density are sufficient to characterize the excitation
signal used for identification. This is because linearity
implies that the response is independent from the exci-
tation amplitude. In the nonlinear regime, however,
also the distribution of the amplitudes is important.
In Figure 4, this is shown by the empirical probability
density function.

In addition to the time series, also the structure of
the ANN is varied. The parameters changed are listed
in Table 1. All 3780 combinations of these parameters

Table 1. Parameters varied for the parameter study.

�t/� 0.015, 0.03, 0.06

n�t/� 1.5, 2, 2.5

# neurons 2 to 20 (step size of 2)

# layers 2, 3

� (–) Sigmoid, NRBF

Figure 5. Comparison of the FDF deduced from the optimal ANNs and from the CFD simulation. Left: gain; right: phase; lines:

estimate by the ANN with the highest fit value. Shaded area: bounds of the prediction made by the 10 optimal ANNs selected.

Markers: reference generated by forcing the CFD with harmonic signals. Excitation amplitudes: A¼ 50% (full blue line, blue dots),

A¼ 100% (dashed black line, black squares), A¼ 150% (dotted yellow line, yellow diamonds), training data sets ordered top to bottom

as in Figure 4.
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were investigated. The number of unknown parameters
of the ANNs varied between 55 and 3801. On each of
the five data sets shown in Figure 4, ANNs with the
resulting structures were identified. In order to find an
optimal ANN for each of the structures, the non-deter-
ministic optimization algorithm was 10 times repeat-
edly applied. Thereafter, the fit value achieved by
each ANN was determined. The 10 ANNs with the
highest fit values on each data set were selected. The
capability of these optimal ANNs to model

the nonlinear flame dynamics is investigated in the
next subsections.

4.2 Validation of the forced response

In Figure 5, the FDF deduced from the ANNs is com-
pared against the results obtained from the CFD simu-
lation. An FDF can be deduced from an ANN
analogously to the way it is deduced from a CFD simu-
lation or an experiment: at first the ANN is forced with

Figure 6. Validation of the response of the 10 optimal ANNs to harmonic forcing in the time domain. Solid line: estimate by the

ANN with the highest fit value. Shaded area: bounds of the predictions made by the 10 optimal ANNs. Black dotted line: CFD

reference. Forcing frequency: 100 Hz, excitation amplitudes: 50% (left), 100% (middle) and 150% (right), training data sets ordered top

to bottom as in Figure 4.
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a harmonic input signal with a specific amplitude and
frequency. The output of the ANN is its prediction of
the fluctuation of the global heat release rate. The ratio
of the Fourier transformed input and output signals at
the forcing frequency is the value of the FDF. For
frequencies up to 200 Hz, the phases predicted by the
ANNS are in excellent agreement with the CFD refer-
ence data. Also for higher frequencies, the phase is pre-
dicted well. The variance of the results is large only for
the highest forcing amplitude considered, i.e. 150% and
for the ANNs identified on data set 4. Errors at these

high frequencies are expected as the gain of the FDF is
very small. The picture is less distinct for the predicted
gain. Overall, the low-pass characteristic of the FDF is
captured well by the ANNs. The variance of the pre-
diction is quite small for an excitation amplitude of
50% and increases for the higher excitation amplitudes
considered. At an excitation amplitude of 50%, a large
variance is observed for the ANNs identified on data
set 5. This is a problematic observation. It shows that
even if very long-time series are available, it cannot be
guaranteed that the ANNs identified predict the FDF

Figure 7. Validation of the forced response of the 10 optimal ANNs against broadband time series. The broadband data are the last

10 t¼ of data set 5. Solid line: estimate by the ANN with the highest fit value. Shaded area: bounds of the predictions made by the 10

optimal ANNs. Black dotted line: CFD reference. Training data sets ordered top to bottom as in Figure 4.
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with good accuracy. The results with the ANNs identi-
fied on data set 5 improve for higher excitation ampli-
tudes. Here, the prediction is more accurate than the
one made by the ANNs identified on the other
data sets.

Validating against the FDF allows to compare the
results for several different forcing amplitudes and fre-
quencies. However, the analysis is limited to the forcing
frequency. This ignores the capability of ANNs to pre-
dict also a non-harmonic response of the flame.
Therefore, in Figure 6, the response of the optimal
ANNs to a harmonic forcing signal is shown in the
time domain. The predicted fluctuation of the global
heat release rate is validated against the prediction
made by the CFD. At an excitation amplitude of
50%, the results are in good agreement with each
other and independent from the data set used to iden-
tify the ANNs. The variance of the prediction made by
the ANNs increases significantly with the excitation
amplitude. Up to an amplitude level of 100%, the
shape of the response is captured quite well. At 150%
amplitude, the peaks of the response are still captured,
however, the variance becomes large. The results

obtained with data set 4 and data set 5 are slightly
more robust. This is expected as these data sets include
all excitation amplitudes.

In Figure 7, the ANNS are compared on the last
10t=� of data set 5. The shape of the response is captured
by all sets of ANNs. The ANNs identified on data sets 3
and 5 show the lowest variance. This is because the fit
criterion used to select these ANNs contains also the
broadband signal shown in Figure 7. The variance of
the other sets of optimal neurons is larger. Nevertheless,
the main features of the time series are still captured.

4.3 Validation against self-excited oscillations

From the analysis of the forced response, we can con-
clude that over-fitting was successfully avoided by the
procedure applied to obtain the sets of optimal ANNs.
However, the analysis depends strongly on the forcing
signal used. Therefore, in the present section, the cap-
ability of the ANNs identified to predict self-excited
thermoacoustic oscillations is investigated.

Both the weakly compressible CFD simulation and
the ANNs are models for the flame dynamics of the
laminar flame considered. In order to model self-excited
thermoacoustic oscillations, they need to be coupled
with a model for the acoustics. In Figures 8 and 9,
the coupling of the CFD simulation and of an ANN
with an acoustic network model is shown, respectively.
In Jaensch et al.,16 the coupling of the CFD and the
network model is described in detail. The ANNs are
coupled with the acoustic model using Matlab/
Simulink.

In Figure 10, the self-excited thermoacoustic oscilla-
tions are compared in terms of their RMS values and in
terms of the maximal fluctuation of the global heat
release rate. The bifurcation parameter is the plenum
length, as shown in Figures 1, 8 and 9. At each length
investigated, a self-excited oscillation was calculated
with all optimal ANNs for 50 �. As discussed by
Jaensch et al.,16 the thermoacoustic oscillations of the
present configurations hardly depend on the initial con-
dition used. In order to minimize the computational
effort of the CFD simulation the simulation, was
started from a perturbed case. This situation cannot
be reproduced with the ANNs. Therefore, we focus
the discussion on comparing the fully developed ther-
moacoustic oscillation. For the results shown in Figure
10, only the last 20 � of the 50 � time series are used.

At several working points numerical instabilities
were observed. One example of such a numerical
instability is shown in Figure 11. The oscillation pre-
dicted by the ANN develops significantly more slowly
than the oscillation predicted by the CFD simulation.
This mismatch is due to the different initial conditions
used and thus, expected. After about 25 �, the

Figure 8. Coupling of the CFD simulation with an acoustic

network model to model self-excited thermoacoustic

oscillations.

Figure 9. Coupling of an ANN with an acoustic network model

to model self-excited thermoacoustic oscillations.
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oscillation is in good agreement with the CFD simula-
tion. Unfortunately, numerical errors grow and, after
about 35 � unphysical oscillations are observed. Such
numerical instabilities occur irregularly at different
plenum lengths and for different ANNs. These oscilla-
tions can be identified as its dominant frequency fu lies
outside the interval 0< fu< 800Hz. In Figure 10, the
corresponding data are highlighted with squares.

The variance of the prediction made by the ANNs
identified on data set 5 is significantly smaller than the

prediction made by the ANNs identified on the other
data sets. Only the results of one of these ANNs
diverge. This behaviour shows that the prediction of
the ANNs improves when longer time series are used
to train the ANN. The ANNs identified on data set 5
over-predict the RMS values for short plenum lengths
and under-predict the values for long plenum lengths.
Nevertheless, the trend of the RMS values is captured.
However, the prediction of the maximum heat release
fluctuation is poor for long plenum lengths. Only the

Figure 10. Self-excited thermoacoustic oscillations predicted by the 10 ANNs with the highest fit values on each training set. The

training data sets are ordered top to bottom as in Figure 4. Left: comparison in terms of RMS values of the global heat release rate

fluctuations; right: comparison in terms of maximum heat release rate fluctuation. Black circles: CFD reference values, colored

crosses: solutions oscillating at a dominant frequency fu in the range of 0 Hz< fu< 800 Hz predicted by ANNs. These solutions are

considered to be physically meaningful. Colored squares: solutions oscillating with a dominant frequency outside of this range. These

solutions are considered to be unphysical. Dashed black line: mean value of the physically meaningful solutions predicted by the ANNs.

Full green line: connection of the prediction of a selected ANN.

10 International Journal of Spray and Combustion Dynamics 0(0)

A.4 PAPER-ANN

S. Jaensch, W. Polifke, International Journal of Spray and Combustion Dynamics, 2017,
http://dx.doi.org/10.1177/1756827716687583.. Reprinted in terms of Creative Commons licence (CC BY-
NC).

83



prediction of one particular ANN is close to the
expected values. In Figure 10, all estimations made by
this ANN are connected with a line. This shows that the
results of this ANN diverge for short plenum lengths.

5 Conclusion

The capability of ANNs to serve as a model structure in
order to deduce nonlinear low-order models of a lam-
inar flame from a CFD simulation was investigated.
Via a parameter study a large number of ANNs were
identified. A set of 10 optimal ANNs was selected with
a fit criterion. The fit criterion only used broadband
time series. This allows to evaluate the fit criterion effi-
ciently, since the data used to train the ANNs can be
used. Comparing the 10 optimal ANNs allows to esti-
mate the uncertainty of the prediction.

At first the capability of the ANNs to predict the
forced response of the flame was analysed.
Reasonable agreement was achieved. This shows that
over fitting was successfully avoided by the procedure
applied to identify and select the optimal ANNs. The
validation of the forced response depends strongly on

the excitation signal. Therefore, an additional criterion
was investigated. The ANNs identified were combined
with a thermoacoustic network model in order to model
self-excited thermoacoustic oscillations. This compari-
son is very close to the application. At several working
points unphysical numerical instabilities were predicted
by the ANNs. It was shown that the variance of the
results decreases if very long-time series are used to
identify the ANNs. The ANNs identified on the longest
of the investigated time series were able to predict the
trend of the RMS values. However, the prediction of
the maximal fluctuation of the global heat release rate
was still poor.

Therefore, we conclude that ANNs, in combination
with the identification procedure applied in the present
study, do not have the desired properties to deduce
nonlinear low-order models from a CFD simulation.

The main problem of the approach is that a good
prediction of the forced response does not guarantee a
good prediction of self-excited oscillations. This is
because the forced response can be analysed for par-
ticular excitation signals only. Additionally, in order to
obtain an advantage in computational time this signal
should be as short as possible. In the present study the
longest signal was 30 times longer than a signal needed
to determine the FTF. Longer time series would be
prohibitively expensive for practical applications.

For the present study the implementation of ANNs
provided by Matlab has been used. We consider this
implementation as well-established state of the art. The
ANNcommunity is rapidly growing and develops a huge
number of ANN algorithms, which have their own pros
and cons.Oneof these algorithmsmayyield better results
than the implementation provided by Matlab. This
cannot be excluded and is possibly one way to overcome
the issues discussed in the present work. Another way to
improve the results could be to use different types of exci-
tation signal, e.g. one could use data from simulated self-
excited thermoacoustic oscillations. In the author’s opin-
ion, however, more sophisticated white- or grey-box
models, that account for the physics of the flame dynam-
ics more accurately, are necessary. An additional advan-
tage of grey-box models is that also other information
besides the time series of u0 and _q0 can be used. For exam-
ple Jaensch et al.32 additionally used the acoustic waves
emitted by the flame.

Regardless of the way a model was obtained, it
should be validated by the systematic procedure pro-
posed in the present study. In particular, the models
should be compared in terms of self-excited oscillations.
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