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Abstract

Recent development in representation learning shows that appropriate data representations
are the key to the success of machine learning algorithms, since di�erent representations
can entangle di�erent explanatory information of the data. Among the various methods of
learning representations, sparse representations of data have been observed to contain rich
distributed information of the data with respect to speci�c learning tasks, such as image
classi�cation, regression, etc. By taking advantage of such a bene�t, the focus of this dis-
sertation is on developing algorithmic framework that allows disentangling the underlying
explanatory factors hidden in sparse representations of image and video data. For example,
explanatory information considered in this dissertation can be an underlying linear system
that explains the dynamics of texture videos, or the similarity of image data points that
explores the intrinsic structure of data. Moreover, such disentangled factors have shown
to conveniently solve various computer vision problems. Speci�cally in this dissertation,
they are dynamic texture modeling and low dimensional image representations. The key
concept behind this development is to construct a joint cost function, which combines the
criteria for learning sparse representations and the criteria for discovering underlying factors
in the learned sparse representations. Since the admissible sets of solutions to our opti-
mization problem are restricted on appropriate matrix manifolds, geometric optimization
techniques that exploit the underlying manifold structures of solutions can be employed to
e�ciently solve such an optimization problem. Finally, we leverage the advantage of di�er-
ential geometric optimization to develop a collection of e�cient algorithms on appropriate
di�erentiable manifolds.
The key di�culty for solving the proposed joint learning problem is the di�erentiability

of sparse representation with respect to a given dictionary. For addressing such a challenge,
we consider the sparse coding problem by minimizing a quadratic reconstruction error with
appropriate convex sparsity priors, such as elastic net prior and Kullback-Leibler divergence
prior. In this way, sparse representation can be shown to be a locally di�erentiable function
with respect to a dictionary, and hence a generic form of the directional derivative of sparse
representation with respect to the given dictionary is developed. The ability to compute
such a derivative leads to various further learning mechanisms in sparse representations
that disentangle di�erent underlying explanatory factors. By leveraging such an algorithmic
bene�t and geometric optimization techniques, in what follows, we construct joint learning
cost functions to study two aforementioned challenging computer vision problems, dynamic
textures and image dimensionality reduction.
Modeling Dynamic Textures (DT) is a long standing active research topic in the computer

vision community. Study and analysis of DT attracts both theoretical and practical research
e�orts, such as building a stable DT modeling system, video segmentation, video recogni-
tion and video synthesis. However, the continuous change in the shape and appearance
of a dynamic texture makes the application of traditional computer vision algorithms very



challenging. Thus, �nding an appropriate spatio-temporal generative representation model
to explore the evolution of the dynamic textured scenes is the key to many DT studies. One
classical technique is to model the dynamical course of DTs as a Markov random process.
Following the Markov random process, one typical model is developed and widely applied
to the practice, namely, linear dynamical system (LDS). LDS assumes that each observation
is correlated to an underlying latent variable, or �state�, and the dynamic process of these
consecutive states can be captured by a parameter transition operator. In this dissertation,
we follow the framework of classical LDS, and present to treat the sparse coe�cients over a
learned dictionary as the underlying �states�. In this way, the dynamical process of dynamic
textures exhibits a transition course of corresponding sparse events. Next, our goal is to �nd
a suitable and robust linear transition matrix that captures the dynamics between two adja-
cent frames of sparse representations in time series. Under several reasonable assumptions,
we read this transition as a linear transformation matrix with the constraint of stability.
Under this way, a DT sequence is represented by an appropriate sparse transition matrix
together with a dictionary, shortly called DT parameters. Such learned DT parameters can
be used for various DT applications, such as DT synthesis, recognition and denoising.
The second computer vision problem studied in this dissertation is �nding an appropri-

ate low dimensional representations of raw images. It is known that natural images are
often very high dimensional, statistically non-Gaussian, and show abundant varying texture
patterns. Hence, they are di�cult to be explicitly parameterized by a common probabilis-
tic model. Therefore, some machine learning techniques, such as linear smooth regression,
may not be directly used to construct the prediction model for such raw images. Finding
appropriate low dimensional representations of image data is an e�cient way to promote
the further prediction models learning. In this dissertation, we present a uni�ed algorith-
mic framework for learning low dimensional representations of images for the three classic
machine learning scenarios of unsupervised, supervised and semi-supervised learning. The
core concept of our development is to combine two popular data representation criteria,
namely sparsity and trace quotient. The former is known to be a convenient tool to identify
underlying factors, and the latter is known for disentangling underlying discriminative fac-
tors. We construct a generic cost function for learning jointly a sparsifying dictionary and
a dimensionality reduction transformation. The proposed cost function covers a wide range
of classic low dimensional representation methods, such as Principal Component Analysis,
Local Linear Embedding, Laplacian Eigenmap, Linear Discriminant Analysis (LDA), Semi-
supervised LDA, and more. Experimental evaluations on image classi�cation, clustering, 2/3
D visualization, and object categorization demonstrate the strong competitive performance
in comparison with state-of-the-art algorithms.
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Chapter 1

Introduction

Machine learning algorithms attempt to discover the structure (e.g., patterns) in data and
make accurate predictions for previously unseen data. From a probabilistic perspective, that
often means discovering statistical dependencies between random variables. More generally,
that means discovering where probability mass concentrates in the joint distribution of all
the observations. However, it is known that the natural signals often have complex sta-
tistical structure with unknown distribution. Typical examples like natural images, they
are photographed under changeable environment by cameras with various internal settings,
thus, they are often di�cult to be explicitly parameterized by a common probabilistic model.
Another example is raw image sequences or videos, which show the continuous changes in
the shape and appearance of dynamic scenes associated with varying illumination condi-
tions, viewpoint of moving cameras or complex backgrounds. It is also not easy to infer
the dynamic courses or extract visual information from such spatial and temporal changes
occurring in an image sequence. Therefore, most machine learning techniques may not be
directly used to construct the prediction model for these raw images or videos. Recent de-
velopment in representation learning shows that �nding appropriate representations of data
plays a critical role as a preprocessing procedure for the success of modern machine learning
algorithms, cf. [5]. It aims to disentangle suitable underlying information or factors of the
data to facilitate the learning task of interest. For instance, the class information can be
disentangled after the use of multiple layers of nonlinear transformations [6] or a set of ker-
nel functions [7]. For that reason, many researchers focus on building preprocessing pipeline
to support e�ective machine learning algorithms, i.e., �nding appropriate representations
of �raw� inputs to improve the performance of supervised or unsupervised tasks, such as
classi�cation and 2/3D visualization. The aim of this dissertation is to investigate e�ective
data representation learning approaches to disentangle various explanatory or discriminative
information in image data for solving computer vision problems.

1.1 The Role of Image Representation in Computer Vision

In the literature, image representation learning refers to the problem of extracting useful
features from raw images or image sequences to feed a speci�c machine learning predic-
tor, such as a linear classi�er. For the reason that di�erent representations can disentangle
di�erent explanatory factors of variation behind the data, the choice of representation has
an enormous e�ect on the performance of such machine learning predictors. A good ab-
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stract representation should carry explanatory factors that either describe the underlying
internal structures of the raw data, or explain the target for a speci�c supervised task. Ul-
timately, such a good representation is expected to make further task learning easier. For
the supervised learning, the factors are directly described by given targets. For example,
in classi�cation problem, the factors could be speci�ed by observed class labels, which lead
to training an explicit learner to separate these observed factors from the others. More
generally, for the learning problem with large unlabeled data, the underlying internal struc-
tures of data can be described by a set of causal factors that generate the observed data.
For instance, they can be the posterior distribution of the underlying explanatory factors
of variation hidden in observed data, or the geometrical relationships between a data point
and its adjacent points. Knowing speci�c underlying structures of data allows composing
models of the considered signals, to disentangle the information of interest in representation
space.
However, identifying and disentangling the underlying causal/explanatory factors that

described the underlying structures of data needs prior knowledge. Such knowledge priors are
conveniently built into the representation learner. In other words, the practical algorithms for
learning underlying causal/explanatory factors are associated with some explicit or implicit
knowledge priors. The latter are expected to provide clues or hints about the former. These
general knowledge priors are not necessary task speci�c but help the representation learner
discover, identify and disentangle the underlying factors hidden in data. As introduced
in [8, 5, 6, 9, 10], examples of such general-purpose priors include smoothness, linearity,
depth of explanatory factors, manifold, linear subspace, natural clustering, semi-supervised
learning, temporal and spatial coherence, sparsity, factor dependencies, etc. Speci�cally, the
performance of representation learning is strongly dependent on the choice and organization
of various such general purpose priors.
This thesis focuses on developing representation learning methods for solving computer

vision problems. Knowing that the knowledge about speci�c raw inputs, such as the images
or the videos, can also be used to help design representations. Therefore, many research
e�orts are attracted on choosing appropriate aforementioned purpose priors as ways to help
the representation learner discover some of the underlying priori unknown factors of speci�c
raw inputs, cf. [5, 9]. By incorporating appropriate purpose priors into algorithms for solving
speci�c problem in computer vision, in what follows, we review some typical examples of
such techniques. These examples include low dimensional representation learning, sparse
coding and deep learning.
In the past several decades, the increasingly larger volume of data challenges many com-

puter vision algorithms. To overcome such a di�culty, methods on learning low dimensional
representations are proposed to avoid the so called �curse of dimensionality�. It refers to var-
ious phenomena that arise when analyzing and organizing data in high-dimensional spaces,
e.g., the natural images or videos (often with hundreds or thousands of dimensions). Note
that, the "curse of dimensionality" is not a problem of high-dimensional data, it arises when
the machine learning algorithm does not scale well to high-dimensional data, typically due
to needing an amount of time or memory that is exponential in the number of dimensions
of the data. On the other hand, the high dimensional data can contain high degree of irrele-
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vant and redundant information which may greatly degrade the performance of some speci�c
prediction models. Fig. 1.1 shows that the performance of a classi�er decreases when the
dimensionality of the problem becomes too large.
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Figure 1.1: Using marginal �sher criterion to classify a large scale image dataset. As the dimensionality
increases, the classi�er's performance increases until the optimal number (255 dimension) of features is
reached. Further increasing the dimensionality without decreasing the number of training samples results in
a decrease in classi�er performance.

When facing the curse of dimensionality, a good solution can be found by developing
the suitable functions to map the data into a lower-dimensional form without signi�cant
information loss. The understanding of such mapping often resorts to the biological and
geometric interpretation. Massive high-dimensional vision information (e.g., images and
videos) about the natural world is captured every second by generic sensors (e.g., eyes or
cameras). This information is often interrelated and largely redundant in two main aspects:
First, it often contains multiple correlated versions of the same physical world and each
version is usually sampled by widely distributed generic sensors. Compared to such large
volume of recorded data sets, the relevant information about the underlying processes that
cause our observations is generally of much reduced dimensionality. The extraction of this
relevant information by identifying the cause factors within observed signals provides a good
way to understand vision data. Secondly, each pixel of image corresponds to a potentially
independent light intensity measurement, these intensities show strong spatial correlations
in natural images [11]. Because of such structures, the variations of possible natural images
can be described by only a few underlying factors, which includes various levels of brightness,
resolutions, sharpness, camera orientations, etc. Typical example like human action videos,
such variations could be arbitrary illuminations, poses, viewpoints, background clutters, and
occlusion. It could conclude that the intrinsic dimension of natural images is much lower
than the ambient dimension, thus natural images are concentrated around low-dimensional
form, such as �manifold�, cf. [12, 13, 5]. The objective of low dimensional representations is
to reduce such irrelevance and redundancy of the high-dimensional image data in order to
be able to store or transmit data in an e�cient form.
Under the general purpose priors that the high dimensional images lie on a low-dimensional

smooth manifold or subspaces, various methods have been proposed to �nd a suitable low
dimensional space that high dimensional ambient space embedded in. They seek to convey
underlying structure of interest (e.g., global/local geometry of data) from original high-
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dimensional space to low dimensional ones. The related learning process relies on the
decomposition of data relationship matrix over an undercomplete bases set, called under-
complete dictionary. The di�erent choices of bases in such a dictionary can be interpreted
as underlying explanatory factors that can describe the underlying data structures of inter-
est. Typical data structures include covariance, dynamical structure, correlation between
data sets, input-output relationships, and margin between data classes, cf. [14, 15]. For
example, as a popular feature extraction algorithm, Principal Components Analysis (PCA)
[16] is to �nd the directions of greatest variance in the data set and represents each data
point by its coordinates along each of these directions. These directions are orthogonal and
their collection form an orthogonal dictionary. As a set of underlying factors, these orthog-
onal directions are expected to disentangle the uncorrelated structure of the data, which
is measured by the proportion of variance explained by principal eigenvectors of the data
covariance matrix. Changes in the directions of the principal components are perfectly cap-
tured by the PCA, whereas changes in the orthogonal directions are completely lost. Thus, a
set of uncorrelated features are e�ciently disentangled by cutting the low-variance directions
out. Similarly, another example is known as Independent Component Analysis (ICA) [17],
which �nds the independent factors hidden in a mixture of several unknown sources. More
examples include Locally Linear Embedding (LLE) [13], Spectral Clustering (SC) [18], Non-
Negative Matrix Factorization (NMF) [19], etc. The details about these learning algorithms
will be presented in Chapter 4.
Similar to representation learners based on the prior of manifold, another popular way is

to represent the raw images or patches by appealing to the prior of sparsity. Formally, it
often reads a natural signal x ∈ Rm (such as a m-pixel image) actually reside in a union
of much lower dimensional subspace of dimension s, with s � m. For example, one wants
to approximate a given image signal as a linear combination of as few as possible basis
functions {dj ∈ Rm}. Each basis function is called an atom and their collection is called a
dictionary D = [d1, · · · ,dk] ∈ Rm×k, such as wavelets of various sorts [20]. The dictionary
is overcomplete k > m when it spans the signal space and its atoms are linearly dependent.
In that case, every signal x ∈ Rm can be represented as a linear combination of a wavelet
basis D as follows:

x = Dφ =

k∑
i=1

ϕidi, (1.1)

where φ = [ϕ1, · · · , ϕk]> ∈ Rk represents the wavelet and scaling function coe�cients. For
most natural signals x ∈ Rm, most components of the vector φ have negligible amplitude,
i.e., it contains s coe�cients that are large in magnitude while all other k− s coe�cients are
very small or exactly zero in the ideal case, see Fig. 1.2. The s large coe�cients carry all
important information about the image and the corresponding wavelets span the subspace
the image resides in. Geometrically, the set of s-sparse signals in the basis D consists of
the union of all possible s-dimensional subspaces in Rm spanned by s-basis vectors from D.
Therefore, if φ? represents the weights φ with the smallest coe�cients set to zero, the signal
x is reconstructed by x̃ = Dφ?. The relative reconstruction error ‖x− x̃‖2 is often negligibly
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Figure 1.2: Sparse representation.

small for s � k. This property has led to the development of state-of-the-art compression
algorithms based on wavelet-based transform coding, cf. [21, 22, 23].
Knowing that the dictionary is overcomplete (k > m), and hence φ? is not unique. Now,

the question becomes how to �nd a sparest φ? that well reconstruct the input x. This is where
the sparsity constraint comes into play. To achieve e�cient and sparse representations, ones
generally relax the requirement for �nding the exact representation. We look for a sparse
linear expansion with an approximation error ε, i.e.,

x = Dφ? + ε (1.2)

with φ? being a sparse vector in Rk. The objective is now to �nd a sparse vector φ? that
contains a small number of signi�cant coe�cients, while the rest of the coe�cients are close
or equal to zero. Under some mild conditions on the dictionary D, the sparse representation
of x is computed by solving a constrained optimization problem of the form

φ? := arg min
φ
‖φ‖0, s.t. ‖x−Dφ‖2 ≤ ε, (1.3)

where ε ∈ R+ is reconstruction error. Therein, ‖ · ‖0 denotes the `0-norm, and ‖φ‖0 counts
the number of nonzero terms in φ. Unfortunately, this optimization problem ‖ · ‖0 is an
integer-valued, discontinuous and nonconvex function. The only known searching method
for the exact solution is an intractable combinatorial search, which is well known to be NP-
hard, cf. [24]. In order to overcome such di�culty, many relaxed approximation algorithms
were proposed to �nd a suboptimal solution for the sparse vector φ, and the details will be
described in Chapter 2.1.
Many literatures [21, 22, 23] have shown that some natural signals like image patches

could be represented as sparse coe�cients over some �xed dictionary, such as wavelet bases.
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Given X = to train D =

under each patch x = Dφ with φ being sparse.

Figure 1.3: Learning dictionary for image patches.

However, for broader application areas, it is not easy to get a �xed base like wavelets with the
capability of sparse representation. Therefore, jointly learning D and φ is well developed,
known as the dictionary learning (DL) problem [4, 25, 26]. As shown in Fig. 1.3, given
a collection of training image patches X , the goal of DL problem is to train a dictionary
that allows each patch to be represented most accurately with a coe�cient vector φ that is
as sparse as possible. The technical details will be introduced in Chapter 2.2. The sparse
factorization of Eq. (1.1) is the backbone of many successful signal reconstruction, denoising
and image classi�cation [4, 25, 3].
Aforementioned research on design of data representation often imply that the input im-

ages have already been preprocessed, such as the well cropped images/patches set with
uniform scales, good alignment and illumination. Then, some linear/nonlinear transfor-
mation model (e.g., PCA or sparse representation) is constructed directly on such features.
When it comes time to achieve good results on tiny image processing problems, such as faces
and handwritten digits, but it may fail to deal with the more general practical real-world
computer vision problems. In summary, it may su�er from the following aspects: i) Most
raw photographic images have very high dimension (millions of dimensions) under various
changes, such as rotations, illuminations, centering o�sets, etc. ii) The raw input images
may contain multiple objects in a variety of scales, locations and viewpoints with complex
backgrounds (e.g., background clutter and occlusion, or scenes in both outdoor and indoor).
In addition, another challenge is that the raw image pixel intensity values may not provide
enough unambiguous information to directly generate semantic-level concepts (e.g., the label
of object).
With the aim of adapting more general computer vision problems, such as large scale object

categorization, it needs to learn higher-level features on �raw� image input. One popular way
is �rst to detect various local image features, such as Scale-invariant feature transform (SIFT)
or Histogram of Oriented Gradients (HOG), cf. [27, 28, 29, 30]. These extracted features
are often invariant to the scales, rotation, small image perturbation, even illumination. We
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then quantize them into discrete �visual words� over a codebook or dictionary. Finally, it
computes a spatial pyramid pooling (SPP) vector of acquired �visual words�, cf. [27, 28, 29].
The objective of the model is to represent an image as a bag of visual words or features,
called BoW or BoF. Fig. 1.4 shows a general pipeline for a visual recognition system based

Local discriptors
(SIFT,HOG,Haaris,…) Visual Words

S2: Local Features Coding
(Mid-level features)

Spatial Pyramid 
Pooling, …

S1: Local Features
(Fixed Low-level features) S3: Spatial Pooling

Dimension
Reduction SVM, KNN, CRF,…

or

Labels, …

S4: Low Dimensional
Representation S5: ClassificationInput Objects 

Figure 1.4: An example of general visual recognition pipeline using the bag-of-features model.

on the use of local feature extraction, features coding and SPP technique. This pipeline
generates a single �xed-length vector that describes the entire image, which is convenient
to learn a uniform task-related prediction model for each dataset. This example illuminates
the whole process of classical visual recognition pipeline.
It is easy to see that the pipeline depicted in Fig. 1.4 relies on various hand-crafted local

feature descriptors. Hand-crafted feature extraction provide a preliminary bridge between
raw image pixels and semantic-level concepts. However, such a feature engineering is often
labor-intensive and in�exible to adapt a wide variety of machine learning tasks. In order
to address this challenge, many algorithms are emerged to exploit the depth of represen-
tation learning, called deep learning, i.e., learning multiple levels of representation. Deep
learning algorithms admit the prior of the depth of explanatory factors, and seek to exploit
the unknown structure in the input distribution in order to discover more abstract features
in the higher levels of the representation. Fig. 1.5 shows a classical method known as the
convolutional neural network (LeNet5 network), cf. [1]. It focused on tackling the vision
problem through a fully-supervised multilayer network with convolution operators in each
layer mapping their inputs to produce a new representation via a bank of �lters. Such a
highly adapted hierarchical local connectivity has the potential to encode structure suitable
for modeling raw images [31]. Recent developments show that the convolutional deep net-
work [32] can be used to classify large-scale image datasets with millions of training data,
convincingly winning the ImageNet Large Scale Visual Recognition Challenge. However,
such deep learning networks often requires huge amounts of training images/patches with
prohibitive training time on the specialized computing hardwares, such as the multi-threaded
computing on the GPU, cf. [32, 33].

1.2 Sparse Representation in Image Processing

Among the various ways of learning representations, sparse representation over a redundant
dictionary is one widely adopted approach of representing the data, which has been veri�ed
as an e�cient and useful tool to promote the tasks of image processing. For example, it
has led to a great success in signal reconstruction, denoising and image super-resolution,
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Figure 1.5: The LeNet5 network [1] was trained to recognize hand written characters in order to automat-
ically process bank checks.

cf. [4, 25, 34]. Works in [28, 35, 36, 37] show that the locality could lead to the sparsity and
hence the aforementioned manifold-based dimensionality reduction (DR) algorithms can be
modeled as local sparse coding problems. Sparse representation is also an e�cient technique
to acquire the visual words of local descriptors in the classical visual recognition pipeline,
which is depicted in Fig. 1.4. The results in [28, 37] show that such a local descriptors coding
technique exactly improve the �nal object categorization accuracy. Recent literatures in [38,
39] valid that when the representations are learned in a deep neural network architecture that
encourages sparsity, improved performance is obtained on image classi�cation and object
detection. It also has been empirically observed that the structure in sparse domain could
make the hidden patterns more prominent and easier to be captured, and sparse coe�cients
are often interpreted as the extracted features to promote the tasks of machine learning,
such as image classi�cation in [3, 40, 41, 42]. Motivated by such progress, the focus of this
dissertation is on the investigation of sparse coding methods and their potential applications
in image and video processing. Before presenting our main contributions of this dissertation,
in this section, we review some popular applications of sparse coding on solving computer
vision problems. One intuitive illustration is shown in Fig. 1.6.
Many computer vision applications can be modeled as resolving a linear inverse problem.

Prominent examples are image denoising [4], inpainting [25] or super-resolution [43], which
refer to recover a high-quality image from its low-quality version, such as the image su�ers
from additive Gaussian noise, occlusion, missing or damaged portions, or very low resolution.
Another one intriguing example is well known as Compressive Sensing (CS) [22, 23], which
involves reconstructing an unknown image as accurately as possible from the measurements
in far fewer dimensional space than what is usually considered necessary. Let us denote such
down-sampled or corrupted measurements by y ∈ Rl, i.e.,

y = Ax + ε, (1.4)

where the vector ε ∈ Rl models sampling errors and noise, and A is the measurement system
modeling the sampling process. In this formulation, given a measurement system matrix A,
determining x from the measurements y is the famous linear inverse problem. Certainly,
when ε = 0 and l ≥ m, the reconstructed signal x? ∈ Rm simply can be computed via
x? = A†y. However, in the presence of noise term ε 6= 0 or when the system is under-
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Figure 1.6: Incorporating sparse coding into computer vision problems, such as image denoising, inpaint-
ing, objects or scenes categorization, etc.

determined (i.e., l < m), there exist in�nitely many solutions to the inverse problem of
Eq. (1.4). However, if x is known to be sparse or could be sparsely represented in a given
basis set D, then under additional mild conditions on A [23, 44], the reduced measurements
y determine x uniquely as long as l is large enough. Formally, the sparse representation φ
of an original signal x is formulated in the following constrained `0-minimization

φ? := arg min
φ
‖φ‖0, s.t. ‖y −ADφ‖2 ≤ ε (1.5)

with ε ∈ R+. Here, A is called a sampling (measurement) matrix which could be chosen as
a random matrix in CS, or A is a square identity matrix in classical denoising or inpainting
problem [4, 25]. D ∈ Rm×k is the basis (such as wavelet basis [22, 23]), also called dictionary,
in which all putative signals x are supposed to be sparse under the sparse factorization
Eq. (1.3).
Using a wide adaption function g : Rk → R to measure the sparsity, the problem (1.5)

can be recast as the following general minimization problem

φ? := arg min
φ

k∑
i=1

g(ϕi), s.t. ‖y −ADφ‖2 ≤ ε, D ∈ D(m, k), (1.6)

where φ? = [ϕ?1, . . . , ϕ
?
k]
> ∈ Rk, and D(m, k) is some prede�ned admissible set of solutions

for the dictionary.
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1.3 Contributions and the Dissertation Outline

From a perspective of representation learning, it is a logical conclusion that sparse repre-
sentations contain rich distributed information of the data with respect to certain learning
tasks. This motivates us to construct e�ective learning mechanisms for further disentangling
underlying explanatory information hidden in sparse representations. Such disentangled in-
formation is expected to make it easier to build machine learning predictors, such as linear
classi�ers. To be more speci�c, by exploring the di�erentiability of solutions of some sparse
coding methods, the main objective of this dissertation is to investigate how it learns repre-
sentative features in sparse coe�cients of images data. Such learned representative features
can improve the performance of some speci�c computational visual tasks, such as image
classi�cation, dimensionality reduction, 2/3D visualization and timing image sequence mod-
eling.
The main contributions of this dissertation are summarized as follows.
(I) With the aim of disentangling useful information in sparse representation space for

solving speci�c computer vision problems, we propose a two-layer representation learning
framework. The related optimization problem can be treated as minimizing/maximizing a
generic cost function, which involves a sparsifying dictionary and a further representation
learning instrument in sparse representation. In this dissertation, such a further represen-
tation learning instrument is built according to speci�c computer vision problems, such
as dynamic textures (DT) and image dimensionality reduction. Since the admissible sets
of solutions to the constructed cost function are restricted on appropriate matrix mani-
folds, solving the related optimization problem requires that i) the di�erentiability of sparse
representation with respect to a given dictionary, and ii) an e�cient geometric gradient
optimization algorithm for learning the model parameters.
To address the �rst requirement, this dissertation regards the sparse representation of data

as a locally di�erentiable function with respect to a given dictionary. By adopting appropri-
ate convex sparsity priors in the sparse coding formulation, we develop a generic form of the
directional derivative of sparse representation with respect to the speci�c dictionary. Such
a directional derivative can be adapted to a variety of convex sparsity priors, such as elastic
net prior and Kullback-Leibler (KL)-divergence prior. Secondly, to give a suitable solution
to the optimization problem of the constructed cost function, we develop a collection of
e�cient algorithms on appropriate di�erentiable manifolds.
(II) In bene�t of learning image representations, we present to explore the evolution of

the dynamic textured scenes in representation space. Concretely, we follow the framework of
classical linear dynamical system (LDS), which assumes that each observation is correlated to
an underlying �state�, and the dynamic process of these consecutive states can be captured
by a transition matrix. However, the LDS is sensitive to input variations due to various
noise. Especially, it is vulnerable to non-Gaussian noise, such as missing data or occlusion
of the dynamic scenes. To tackle these challenges, by treating the sparse coe�cients over
a learned dictionary as the underlying �states�, we propose to learn a transition matrix
between two adjacent frames of sparse events in time series. We construct a combined `2
regression, which involves jointly learn a sparsifying dictionary and a linear transformation
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with several constraints. Such a learning scheme has been used for synthesizing dynamic
textures, denoising and classifying a query DT sequence. In addition, numerical experiments
show that an appropriately sparse transition matrix can signi�cantly improve the results of
DT recognition.
(III) We then consider one general problem of constructing e�ective low dimensional rep-

resentation learning approaches to disentangle sparse coe�cients for solving discriminative
features learning problems. Our main construction is to apply trace quotient criterion on
sparse coe�cients for triple supervised, unsupervised and semi-supervised learning tasks.
With the aim of leveraging the DR-driven sparse representation and signal reconstruction,
we also developed several di�erentiable regularizations to promote the learning dictionary
for having both reconstructive and discriminative power. Then, we construct a di�erentiable
cost function, namely SparLow, to jointly learn a sparsifying dictionary and a corresponding
DR transformation matrix.
This dissertation is organized as follows.
In Chapter 2, we provide a survey of state-of-the-art algorithms on sparse representation

with respect to pre-de�ned dictionaries and dictionary learning with the goal of data recon-
struction. By leveraging the local di�erentiability of solutions of some sparse coding methods,
Chapter 3 introduces a generic cost function that learn representations in sparse coe�cients
for solving various computer vision problems. We then give a brief introduction of sparse
regression with convex sparsity priors. A generic form of the directional derivative of sparse
representation with respect to a given dictionary is also developed in this chapter. Since
the admissible sets of solutions to such a cost function are restricted on matrix manifolds,
some basic concepts of optimization on matrix manifolds are �nally reviewed in Chapter 3.
By taking advantage of the local smoothness of the elastic net solutions, Chapter 4 models
the dynamic scene in sparse representation space. In this way, the dynamical process of
dynamic textures exhibits a transition course of corresponding sparse events. By exploring
the di�erentiability of more general sparse coding methods based on convex sparsity priors, a
framework, called SparLow, is constructed in Chapter 5, for learning dictionary and orthog-
onal DR transformation with unsupervised, supervised and semi-supervised learning. The
proposed approach has been adapted to a wide variety of image processing tasks, such as
2/3D data visualization, face/digit/cartoon recognition, and object categorization. Chapter
6 comes a conclusion of this dissertation. Some suggestions for future work are presented as
well.
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Chapter 2

Sparse Coding and the Related Optimization

Algorithms

In this chapter, we �rst review basic knowledge of sparsity, sparse representation with respect
to pre-de�ned dictionary. Then, we recall some technical details of dictionary learning
methods.

2.1 Sparse Representation and the State-of-the-art

Optimization Algorithms

Sparse Representation is established based on one basic concept of sparsity, which is the
signal structure behind many data analysis algorithms that employ sparse factorization of
Eq. (1.2). It is the most prevalent signal structure used beyond in compressive sensing,
include signal denoising, deconvolution, restoration and inpainting.
Earlier research assume that the dictionary is prede�ned and solving the sparse factoriza-

tion of Eq. (1.2) generally depends on how to choose the measurement of sparsity. Ideally,
sparsity is measured by `0 norm, and learning spare representation corresponds to solving
the problem (1.3). Formally, if φ ∈ Rm satis�es sparsity condition

‖φ‖0 ≤ s, for s ∈ Z+, (2.1)

we call the vector φ is s-sparse. Here, ‖φ‖0 denotes the number of nonzero terms in φ.
However, as introduced in Chapter 1.1, such a sparsity measurement function is nonconvex,
highly non-robust against small perturbations of the zero elements, besides, �nding sparsest
solution to the corresponding sparse learning problem (1.3) is in general NP-hard [24].
To overcome this di�culty, many algorithms turn to �nd a suboptimal yet sparse enough

representation, and one popular extension is to consider instead the `0 norm with `p, 0 <
p ≤ 1 (the smaller we choose p, the more we are putting a premium on sparsity). The
p = 1 special case, known as Lasso problem (least absolute shrinkage and selection operator)
[45, 4], has become particularly popular since in this case the relaxation leads to a convex
problem. Under such kind of sparsity measurement, the sparse representation of a signal x
over a �xed dictionary D ∈ Rm×k can be found by solving the optimization

φ? := arg min
φ
‖φ‖p, s.t. ‖x−Dφ‖2 ≤ ε, (2.2)
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where 0 ≤ p ≤ 1, and ε ∈ R+ is the residual term.
It is known that the linear system (1.1) is under-determined, or ill-conditioned when

m < k. There are a lot of algorithms, which have been developed for learning sparsity under
such an ill-conditioned linear system. In what follows, we review several state-of-the-art
optimization algorithms that are important and popular for resolving the problem (2.2),
under various sparsity measurement functions.

2.1.1 Convex Relaxation Algorithms

Convex relaxation is a well-known class of algorithms for sparse learning. A standard ap-
proach, as aforementioned, is based on the convex relaxation of `0-norm, namely, `1-norm,
and the sparsest representation is the solution of either

φ? := arg min
φ
‖φ‖1, s.t. ‖x−Dφ‖2 ≤ ε, (2.3)

or
φ? := arg min

φ
‖x−Dφ‖22, s.t. ‖φ‖1 ≤ s (2.4)

with ε ∈ R+ and s ∈ Z+. Note that, problem (2.3) is a quadratically constrained linear
program (QCLP), whereas (2.4) is a quadratic program (QP).
Problem of the form (2.3) or (2.4) is closely related to the following convex unconstrained

optimization problem

φ? := arg min
φ

1

2
‖x−Dφ‖22 + λ‖φ‖1, (2.5)

called `1-regularized least squares problem (RLS), where x ∈ Rm and D ∈ Rm×k, λ ∈ R+

weighs the sparsity and reconstruction error. From a Bayesian perspective, the form (2.5) can
be seen as a maximum a posteriori (MAP) criterion for estimating φ = [ϕ1, . . . , ϕk]

> ∈ Rk
from observations x = Dφ+ ε. The prior distribution for the elements of coe�cient vector
φ is assumed to be Laplace in R, which is a priori independent from ε and could be de�ned
as

p(φ) =
k
Π
i=1

p(ϕi), p(ϕi) = λ · exp{−λ|ϕi|+ K}. (2.6)

Problem of the form (2.5) has been used for more than four decades in several signal pro-
cessing problems where sparseness is sought. Convex analysis can be used to show that a
solution of (2.3) is either φ = 0 or else is a minimizer of (2.5) with λ ∈ R+. Similarly, a
solution of (2.4) for any t ≥ 0 is also a minimizer of (2.5) with λ ∈ R+. More details we
refer the interested readers to [46].
Unlike the `0-norm which enumerates the nonzero coordinates, the presence of the `1

term encourages small components of φ to become exactly zero, thus promoting sparse
solutions, cf. [45, 47]. It is known that minimizing `1-norm is a convex optimization problem
that conveniently reduces to a linear program known as basis pursuit (BP) [47], whose
computational complexity is about O(k3). Such a solution implies that the `1-norm is
computationally more tractable than the `0-norm, which requires an exhaustive enumeration
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of all Csk possible locations of the nonzero entries in φ. In addition, literatures in [48, 49]
showed exact equivalence between the two programs `1 norm and `0 norm.
Based on `1-minimization, many optimization algorithms and codes have been proposed

to solve the QCLP (Eq. (2.4)), the QP (Eq. (2.4)), and the unconstrained RLS formulation
Eq. (2.5). For example, the Lasso regression has the form of Eq. (2.4), while the BP [47] has
the form of Eq. (2.3) with ε = 0, i.e., a linear program (LP)

φ? := arg min
φ
‖φ‖1, s.t. x = Dφ, (2.7)

and basis pursuit denoising (BPDN) has the form of Eq. (2.3) with ε > 0, cf. [50, 47].
It is known that the formulations Eq. (2.3), Eq. (2.4), and Eq. (2.7) are classical linear

programming problems, therefore, it can be solved with general simplex methods or interior
point methods, cf. [51, 52, 53]. E.J.candès and Tao propose to solve the LP problem (2.7)
using a generic path-following primal-dual method [54]. Similar to LP, E.candès and J.
Rombergas show that the second-order cone programs (SOCP) [55] are also computationally
tractable on solving `1 minimization problem. Besides such basic model selection algorithms,
homotopy algorithms [56, 57] are applied to �nd the full path of solutions to the quadratic
programming formulation of Eq. (2.5). The name Homotopy refers to the fact that this
objective function is undergoing a homotopy from the `2 constraint to the `1 objective as λ
decreases, i.e., it solves the problem Eq. (2.5) for essentially all values of λ. As another one
typical homotopy method, the least angle regression (LARS) procedure described in [50] can
be adopted to solve the Lasso problem (2.4).
However, such kind of solvers reach a best solution by traversing the interior of the feasible

region and may not scale well when the dimension of involved problem is big. To accelerate
the convergence, a technique based on Barzilai-Borwein (BB) steps is used. The typical
approaches are known as �xed-point continuation (FPC) method [58], and its improvement
version, called �xed-point continuation and active set approach (FPC-AS)[59, 60]. FPC
is based on two powerful algorithmic ideas: continuation and operator-splitting, to solve
the general problem (2.5). They established a Q-linear rate of convergence of the method
without assuming strict convexity nor uniqueness of solution. FPC can be simply explained
as the decomposition of a maximal monotone operator T := ∇(|φ|1 + 1

2‖x−Dφ‖22) into the
sum of two maximal monotone operators T1 := 1

λ∂|φ|1 and T2 := ∂(‖x −Dφ‖22), and then
naturally consider the �xed point iterations as: φk+1 = (I + τT1)(I − τT2)φk with τ ∈ R+

being an adjustable parameter.
Similar to FPC algorithms, a gradient projection (GP) algorithm, called gradient projec-

tion for sparse reconstruction (GPSR), is proposed to �nd sparse solutions to the problem
(2.5), cf. [61]. In GPSR, the search path from each iteration is obtained by projecting the
negative-gradient direction onto the feasible set. Di�erent to the second part T2 of the FPC
operator T , GPSR reformulate Eq. (2.5) as a bound-constrained quadratic program, and
then apply projected gradient steps, optionally using a variant of Barzilai-Borwein steps
(GPSR-BB) in order to accelerate convergence. Another one gradient methods, called spec-
tral projected gradient for `1 minimization (SPGL1) [62, 63], utilize the pareto root-�nding

15



Chapter 2 Sparse Coding and the Related Optimization Algorithms

approach to perform the `1 regularization optimization problem (2.5). At each iteration, a
spectral gradient-projection (SPG) method approximately minimizes a least-squares prob-
lem with an explicit `1-norm constraint. The algorithm is suitable for problems that are large
scale and for those that are in the complex domain. Experimental study shows that it exactly
improve the performance of original BP, BPDN and Lasso for large scale data, and the related
SPGL1 software package is online available at http://www.cs.ubc.ca/labs/scl/spgl1/.
In order to speed up the gradient approach, a block coordinate gradient descent method is
proposed in [64] to solve the `1 regularized optimization problem (2.5). The Q-linear conver-
gence rate can be obtained when the coordinate block is chosen by a Gauss-Southwell-type
rule. Very recently, M. Afonso et al. propose for solving the problem Eq. (2.5) based on
a variable splitting to obtain an equivalent constrained optimization formulation, which is
then addressed with an augmented Lagrangian method, called Split Augmented Lagrangian
Shrinkage Algorithm (SALSA) [65].

2.1.2 Iterative Shrinkage/Thresholding Algorithms

Iterative shrinkage/thresholding (IST) algorithms, also tailored for objective functions with
the form of Eq. (2.5), were independently proposed by several authors in di�erent frame-
works. Initially, IST was presented as an Expectation�maximization (EM) algorithm, in the
context of image deconvolution problems, cf. [66]. IST can also be derived in a majorization-
minimization (MM) framework [67, 68, 69]. Convergence of IST algorithms was shown in
[70, 67]. In the original IST [67, 68], the formulation of Eq. (2.5) can be written as an
iterative equation

φ(t+1) = (1− β)φ(t) + βP
(
φ(t) + D>(x−Dφ(t))

)
, (2.8)

where 0 < β < 1 is a tuning parameter, and P is a projection or transform function,
e.g., P is the wavelet transform [68]. Under the updating form (2.8), each iteration of the
IST algorithm only involves sums of residuals. Bene�t from its simple form, various IST
methods were proposed as iterative shrinkage/thresholding methods to resolve the problem
(2.5), cf. [67, 71, 72]. Recently, a novel two-step IST method (TwIST) was presented by
J.Dias and M.Figueiredo [71], achieving a signi�cantly faster convergence rate than original
IST.

2.1.3 Greedy Pursuit Algorithms

Iterative greedy pursuit is another well-known class of algorithms for learning sparse rep-
resentation, cf. [73]. Rather than minimizing an global objective function, these methods
are iterative select columns of D according to their correlation with the measurements x
determined by an appropriate inner product, and then construct a sparse solution to this
given problem by iteratively building up an approximation. The earliest ones include the
matching pursuit (MP)[74] and orthogonal matching pursuit (OMP)[75]. MP works by iter-
atively choosing the dictionary element that has the highest inner product with the current
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residual, thus it reduces the reconstruction error at most. Considering it maybe emerge the
suboptimal solutions from each iteration in MP, OMP follows the atomic selection criteria in
the MP algorithm, and ensures the optimality of each iteration just by recursively orthogo-
nalized atomic collection of selected subsets. OMP includes an extra orthogonalization step,
which is known to reduce the number of iterations.
On this basis, various methods have been developed and improved including the Regular-

ized Orthogonal Matching Pursuit (ROMP)[76], Compressive Sampling Matching Pursuit
(CoSaMP)[77], Stagewise Orthogonal Matching Pursuit (StOMP)[78], etc. Zhang [79] re-
cently proposed a combination algorithm that is based on the forward greedy algorithm but
takes backward steps adaptively whenever bene�cial.
Low computational cost is one of the main arguments in favor of greedy schemes like OMP.

Thus, they are easy to invent, easy to implement and most of the time quite e�cient. Many
general optimization problems can be solved correctly by greedy approaches. However, such
methods are not designed to solve any of the optimization problems on learning sparse, e.g.,
minimizing an global objective functions like Eq. (2.5).

2.1.4 Non-convex Optimization Algorithms

We have reviewed some literatures that using convex relaxed sparsity measures, i.e., `1-
norm, or turning to greedy optimization. Although these methods show good performance in
practical applications, they inherently require a degree of over-sampling above the theoretical
minimum sampling rate to guarantee that exact reconstruction can be achieved. In this
section, we consider the case of replacing the `1-norm by a `p norm with 0 ≤ p < 1, which
is non-convex but a sharper measure on sparsity.
Among the existing methods, the IST method is quite universal, robust and much easier

to be implemented by engineers. Similar to IST for resolving convex optimization problem
(2.5), IST has also been used to directly solve `0 regularized optimization problem

φ? := arg min
φ
‖x−Dφ‖22 + λ‖φ‖0, λ ∈ R+ (2.9)

by Kingsbury, N.G in [80]. More recently, T. Blumensath and M. Davies [72] proposed two
nonconvex iterative hard thresholding algorithms(IHT) that are directly minimizing the `0
regularized problem to �nd non-zero coe�cients of φ, i.e.,

φ? := arg min
φ
‖x−Dφ‖22, s.t. ‖φ‖0 ≤ s, s ∈ Z+. (2.10)

But they are very sensitive to initialization, for example initializing the coe�cients with zero,
the algorithms were often found to perform worse than Matching Pursuit. L.C. Patrick and
R.W. Valèrie [81] presented a general iterative thresholding derived for signal recovery from
forward-backward splitting. I. Daubechies et al. [82] gave a rigorous convergence proof for
iterative soft thresholding. T. Blumensath, M. Davies [83, 72] gave a mathematical analysis
for IHT and then extend the application from general sparse approximation to Compressive
Sensing.
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Di�erent to aforementioned non-smooth IST or IHT algorithms for solving `0 minimization
problem, S`0 (Smoothed `0) [84, 85] is a smooth approximation algorithm for �nding the
sparsest solutions of an undetermined system of linear Eq. (1.1). It approximates the `0
norm of a vector φ by a smooth exponential function Fσ(φ), where σ determines the quality
of approximation: The larger σ, the smoother Fσ(·) but worse approximation to the `0 norm;
and the smaller σ, the better approximation to the `0 norm but the less smooth Fσ(·). S`0
was �rstly proposed by H. Mohimani et al[84], and then was extended to deal with complex-
valued signals [86]. More recently, H.Mohimani et al[85] study the convergence properties
of S`0, and show that under a certain sparsity constraint in terms of Asymmetric Restricted
Isometry Property (ARIP), the convergence of S`0 to the sparsest solution is guaranteed, as
well as with same order complexity as Matching Pursuit (MP).
We have discussed some `0-minimization algorithms using iterative thresholding, in what

follows, another non-convex relaxation optimization problem, `p minimization with 0 < p <
1, will be introduced.
We say x can be recovered by `p-minimization if and only if it is the unique solution to the

problem (2.2). The related optimization problem can be viewed as the focal underdetermined
system solver (FOCUSS), cf. [87, 88], which is very similar to convex relaxations optimization
methods, i.e., using the `p-norm with as a replacement for the `1-norm. Here, for p < 1, the
similarity to the true sparsity measure is better but the overall problem becomes nonconvex,
giving rise to local minima that may mislead in the search for solutions. Work in [44, 89]
demonstrate that the much simpler task of �nding a local minimizer can produce exact
reconstruction of sparse signals with many fewer measurements than when p = 1. However,
such methods often result in the high computational cost and, in some cases, compromised
convergence.
FOCUSS, proposed in [87, 88], develop a nonparametric algorithm designed to address the

shortcomings of such techniques. Namely, the algorithm provides a relatively inexpensive
way to accurately reconstruct sparse signals. FOCUSS algorithm consists of two parts:
It starts by �nding a low resolution estimate of the sparse signal, and then, this solution
is pruned to a sparse signal representation. The pruning process is implemented using a
generalized A�ne Scaling Transformation (AST), which scales the entries of the current
solution by those of the solutions of previous iterations. Considering the underdetermined
matrix equation form of Eq. (1.1), a straightforward solution is computed as

φ = D†x (2.11)

where D† = DT (DDT )−1 denotes the Moore�Penrose inverse. This solution has the ad-
vantage of low computational cost, but it does not provide sparse solutions. Compared to
the search methods with maximum sparsity constraint, the FOCUSS algorithm utilize a
weighted minimum norm to promote sparsity, i.e., `p diversity ( p < 1 ), given by

‖φ‖pp = sgn(p)
k∑
i=1

|ϕi|p, p < 1.
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The FOCUSS algorithm gives an exact solution to problem (1.1). The basic form of the
FOCUSS algorithm is (at tth iteration)

Wt+1 = (diag(φt−1[i]))

qt+1 = (DWt+1)
†x

φt+1 = Wt+1qt+1.

(2.12)

While considering the general model of Eq. (1.1) with noise, a variation of the FOCUSS
algorithm that allows noise has been discussed in [90]. The iterations are given by

Wt+1 = diag
(
(|φt−1[i]|

1−
p

2 )
)

qt+1 = arg min
q
‖DWt+1q− x‖+ λ‖q‖2

φt+1 = Wt+1qt+1,

(2.13)

where Eq. (2.13) is a regularization optimization problem. The two terms in Eq. (2.13)
are a function of the parameter λ, and the regularization problem is a compromise between
sparsity and error in the representation.
R. Chartrand [89, 91], Chartrand and Yin [92], Saab and Yilmaz [93] have proposed

several nonconvex `p-norm optimization methods for reconstructing a sparse signal, which
showed that the `p-minimization could be more e�ective for some special cases under weaker
Restricted Isometry Constant (RIP) condition. Recently, R. Chartrand and his cooperators
[94] extend the results of Candès, Romberg and Tao [22] to the p < 1 case and proved that
`p minimization with certain values of p < 1 provides better theoretical guarantees in terms
of stability and robustness to noise level, than `1 minimization does.

2.2 Dictionary Learning

The aforementioned methods for learning sparse representation approximate the observations
with the linear combination of a few column vectors (or atoms) from a �xed dictionary. The
performance of these algorithms in terms of the approximation quality and the sparsity of
coe�cient vector depends not only on the signal itself, but also on the choice of dictionary.
In the simplest case, the dictionary is orthogonal, and the representation coe�cients can
be computed as inner products of the signal and the atoms in dictionary. For example,
the orthogonal transforms, such as discrete cosine transform (DCT) and discrete wavelet
transform (DWT), provide a unique representation for a given signal, and have been widely
employed in signal processing due to their mathematical simplicity.
On the contrary, redundant or overcomplete dictionaries (referred to as redundant systems)

do not have a unique representation for a given signal. Expanding a signal under a redundant
system raises an ill posed problem, but also provides extra freedoms of selecting an optimized
solution, and have more power on signal expressiveness. Typically, overcomplete bases are
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constructed by merging a set of complete bases (e.g., Fourier, wavelet, and Gabor), or by
adding basis functions to a complete basis (e.g., adding frequencies to a Fourier basis).
Although overcomplete bases can be more fexible in terms of how the signal is represented,

there is no guarantee that hand-selected basis vectors will be well matched to the structure
in the natural data, e.g., images. Ideally, one would like the basis itself to be adapted to the
data, so that for signal class of interest, each basis function captures a maximal amount of
structure. Such a type of dictionaries deliver increased �exibility and the ability to adapt
to speci�c signal data. Therefore, recently, many research e�orts are attracted on how to
jointly learn dictionary D and sparse solution φ from the input data, cf. [4, 25, 26].
Compared to the pre-determined dictionaries, the main advantage of learning based dic-

tionaries is that they �t the input images or signals and can signi�cantly improve the sparsity
and thus the results of signal processing. Roughly speaking, the research in dictionary learn-
ing (DL) has followed two main directions that correspond to two categories of algorithms: i)
data-driven dictionary learning methods, i.e., the methods for learning dictionaries with goal
of data expressiveness, and ii) target-driven dictionary learning methods, i.e., the methods
for learning dictionaries with a particular signal processing target, such as classi�cation. In
what follows, we �rst present the main principles of representative algorithms in data-driven
dictionary learning category. Some popular methods on target-driven dictionary learning
will be introduced in Chapter 3.
Given a set of data samples xi ∈ Rm, the aim of data-driven dictionary learning is to �nd

a collection of atoms dj ∈ Rm such that each data sample can be approximated by a linear
combination of only a few of the atoms {dj}. The collection of atoms (often as columns in
a matrix) is called a dictionary D ∈ Rm×k. The focus of this section consider atoms in the
dictionary are not required to be orthogonal, but overcomplete.
Let X := [x1, . . . ,xn] ∈ Rm×n be the matrix containing the n independent training

samples arranged as its columns, the task of dictionary learning focuses on �nding the best
dictionary to sparsely represent the elements of X. Formally, let Φ := [φ1, . . . ,φn] ∈ Rk×n
contain the corresponding n sparse transform coe�cient vectors, a common approach to
the classical dictionary learning techniques [95, 96, 97, 98, 4, 99, 100], is the optimization
problem

min
D,Φ

`X(D,Φ)

`X(D,Φ) :=
1

2
‖X−DΦ‖2 +

n∑
i=1

g(φi), s.t. D ∈ D(m, k),
(2.14)

where φ = [ϕ1, · · · , ϕk]> ∈ Rk, the �rst term penalizes the reconstruction error of sparse
representation, g : Rk → R is a function that promotes the sparse structure of φ, and
D(m, k) is some prede�ned admissible set of solutions for the dictionary.
Generally, D(m, k) are de�ned as the convex set of matrices that satisfying several con-

straints. In the following, we give two de�nitions that are frequently used in many DL
methods:
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� In the �rst case, with the aim of preventing the `2-norm of {di} from being arbitrarily
large, which would lead to arbitrarily small value of ϕi, D(m, k) is de�ned as a convex
set of matrices satisfying

D(m, k) :=
{

D ∈ Rm×k
∣∣ rank(D) = ω, ‖di‖2 ≤ 1

}
(2.15)

with ω := min(m, k). Such a de�nition has been widely favored by lots of gradient
based methods, such as e�cient `1 [99] and online DL (ODL) [101].

� In the second case, it restricts each column di ∈ Rm of D to have unit norm, i.e.,

S(m, k) :=
{

D ∈ Rm×k
∣∣ rank(D) = ω, ‖di‖2 = 1

}
, (2.16)

which is a product manifold of (m − 1)-dimensional unit spheres, known as Oblique
manifold [102]. Such a de�nition could sharply avoid the problem of scale ambiguity,
and has been widely adopted, such as K-SVD [4] and separable DL (SDL) [25].

Earlier work in [95] assumed the prior probability distribution over the elements of sparse
vector φ was Cauchy or Gaussian and took the Kullback-Leibler (KL) divergence to promote
the sparsity of φ. Di�erently, work in [4, 99] assumed the elements of φ admitted the Laplace
distribution, and `1-norm was used to measure the sparsity. Methods in [96, 87, 98, 25]
utilized `p-norm (0 < p ≤ 1) to measure the sparsity. The iterative shrinkage algorithms,
such as Iterative least square based DL (ILS-DL)[100] and Recursive Least Squares based
DL (RLS-DL) [103], used the approximation of `0-norm to measure sparsity.
With the sparsity measurement at hand, a practical optimization strategy, not necessarily

leading to a global optimum, can be found by splitting the problem into two parts which are
alternately solved within an iterative loop. The two parts are often described as

1. Keeping �xed D, update Φ;

2. Keeping �xed Φ, update D.

Such a learning scheme is shared by lots of DL methods, such as the generalized Lloyd
algorithm (GLA) [104], K-SVD [4], ILS-DL [100], and e�cient `1 [99].
In the following, we present some representatives of classical data-driven DL methods.

2.2.1 Method of Optimal Directions and its Extensions

Engan et. al. [96, 105] present an appealing dictionary training algorithm, namely, method
of optimal directions (MOD). MOD follows more closely the K-Means outline, with a sparse
coding stage that uses either OMP or FOCUSS followed by an update of the dictionary.
The main contribution of the MOD method is its simple and e�cient way of updating the
dictionary.
Assuming that Φ is �xed, we can seek an update to D such that the

R(D) := ‖X−DΦ‖2F
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is minimal. Taking the derivative of R(D) with respect to D, we obtain the relation (X −
DΦ)Φ> = 0. This results in a simple update for D in (t+ 1)th iteration:

D(t+1) = XΦ(t)>(Φ(t)Φ(t)>)−1. (2.17)

Finally, we normalize D, i.e., scale each column vector (atom) of D to unit norm.
It is known that MOD was aimed at learning block oriented dictionaries with the ap-

plication of signal compression. Later work extended MOD to the design of overlapping
dictionaries [106, 107]. The essence of MOD and its extensions is summarized in [100],
where the least square approach of the di�erent variants is clearly presented. Such ap-
proaches are included in the family of algorithms, namely, iterative least squares dictionary
learning algorithm (ILS-DLA). Work in [103] follow the ILS-DLA, and go one step further
to develop the algorithm into a recursive least squares (RLS) algorithm, called RLS-DLA.
MOD and its extensions have proved to be e�cient for representing low-dimensional input

data while requiring only a few iterations to converge. However, for high-dimensional data,
the inversion operation in Eq. (2.17) often leads to a very high computational cost. On the
other hand, computing the pseudoinverse is in many cases intractable.

2.2.2 Clustering Based Methods

A slightly di�erent family of dictionary learning techniques to MOD, is based on vector
quantization (VQ) achieved by K-means clustering. Such kind of algorithm optimizes a
dictionary given a set of image patches by �rst grouping patterns such that their distance
to a given atom is minimal, and then by updating the atom such that the overall distance
in the group of patterns is minimal.
Such kind of methods is typically known as K-SVD [4], in which a generalized K-Means

clustering process is proposed. The related objective function is constructed as

min
D,Φ
‖X−DΦ‖2F , s.t. |φi|0 ≤ s, ∀i. (2.18)

Followed the learning scheme of MOD, i.e., alternatively update D and Φ. In the �rst step,
update Φ via the OMP algorithm while D is �xed; In the second step, a Singular Value
Decomposition (SVD) of the error matrix (X−DΦ)(X−DΦ)> is used to update D. This
approach is an approximation of the `0-norm solution.
K-SVD is considered to be standard for dictionary learning and many extensions have

been proposed in a variety of applications, cf. [108, 109]. However, it shares weaknesses
with MOD being e�cient only for signals with relatively low dimensionality and having the
possibility for a solution to be stuck at local minima.
This shortcoming has inspired the development of other dictionary learning methods, such

as gradient based approaches.
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2.2.3 Lagrange Dual Method

Di�erent to afore-described iterative shrinkage algorithms that are appealing to non-convex
sparsity measures, the methods in [99] adopted the convex sparse learning formation (2.5),
and solved the problem

min
D∈D(m,k),{φi∈Rk}

1

2

n∑
i=1

‖xi −Dφi‖22 + λ

n∑
i=1

‖φi‖1. (2.19)

This problem can be written more concisely in matrix form, i.e.,

min
D∈D(m,k),Φ

1

2
‖X−DΦ‖2F + λ

n∑
i=1

‖φi‖1. (2.20)

The basic idea in [99] is to alternatively minimize Eq. (2.20) over φ for a given dictionary
D, and then over D for a given φ, leading to a local minimum of the overall objective
function. The technical details can be stepped as following: i) While keeping the bases �xed,
update φi via solving (2.5) using the feature-sign search algorithm; ii) Given �xed coe�cients
Φi, update D solving a Lagrange dual problem. Consider the following Lagrangian:

L =
1

2
‖X−DΦ‖2F +

k∑
i=1

λi

 k∑
j=1

d2
ij − c

 ,

where c is a constraint on the norm of the atoms and λi are the so-called dual variables form-
ing the diagonal matrix Λ. We can then provide an analytical expression for the Lagrange
dual after minimization over

min
D
L(D,Λ) with L(D,Λ) := ‖XX> −XΦ>(ΦΦ> +Λ)−1(XΦ>)> − cΛ‖2F .

Hence the optimal bases D has a closed expression

D> = (ΦΦ> +Λ)−1(XΦ>)>,

where Λ contains all k Lagrangian dual variables. Note that, this problem is also known as
basis pursuit [47], or the Lasso [45].
Such a learning scheme leads to lots of task-speci�ed dictionary learning methods, such

as super-resolution [43, 34] and object categorization [27, 28].
Solving this problem is less computational hard because the amount of dual variables k

is a lot of times much less than the amount of variables in the primal problem. However,
like MOD or K-SVD, due to the high complexity of the inversion operation, computing the
pseudoinverse in high dimensional cases is in many cases intractable.
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Chapter 2 Sparse Coding and the Related Optimization Algorithms

2.2.4 Learning Dictionary Based on Stochastic Gradient Descent
Algorithms

Most aforementioned algorithms for dictionary learning, cf. [95, 96, 97, 4, 99], are iterative
batch procedures, accessing the whole training set at each iteration in order to minimize
a cost function under some constraints. Thus, they cannot e�ciently deal with very large
training sets (e.g., millions of patches) [110]. To address these issues, di�erent to e�cient
`1 DL, which use the �rst-order gradient descent method to update the dictionary, authors
in [111, 112] propose to use the classical projected �rst-order stochastic gradient descent
algorithm. It consists of a sequence of updates of

D(t+1) = Π
D

[D(t) − δt+1∇D`x(t+1)(D(t),φ(t))] (2.21)

where `x(t+1)(D(t),φ(t)) is the loss function for DL, de�ned in Eq. (2.14), D(t+1) is the
estimate of the optimal dictionary at iteration (t + 1), δt+1 is the gradient step, ΠD is the
orthogonal projector onto D(m, k), and the vectors x(t+1) are i.i.d. samples of the (unknown)
distribution p(x).
Similarly, the authors in [101, 113] go further and exploit the speci�c structure of sparse

coding in the design of an optimization procedure tuned to large training problem, i.e., an
online approach that processes the signals, one at a time, or in mini-batches. The technical
details can be stepped as

� Fixed D, compute sparse coe�cients {φ(t)} using LARS/Lasso [50];

� Update the media matrices: A(t+1) ← A(t) + φ(t)φ(t)>, B(t+1) ← B(t) + x(t)φ(t)>;

� Update D(t+1) = arg minD∈D(m,k)
1
(t)

(
1
2 Tr(D>DA(t+1))− Tr(D>B(t+1))

)
.
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Chapter 3

A Two-layer Representation Learning

Framework

Already introduced in previous chapters, many computer vision problems, such as image
denoising, inpainting and super-resolution, can be solved relying on the fact that an image/-
patch admits a sparse representation over a given dictionary. We also recalled some popular
methods in data-driven dictionary learning, i.e., the methods for learning dictionaries with
the goal of data reconstruction. Form a perspective of representation learning, this chapter
starts with a review of learning or constructing dictionary for speci�c computer vision task,
such as classi�cation. This chapter then gives a brief introduction of the main optimization
problem of the dissertation, i.e., disentangle sparse coe�cients for learning further represen-
tation of interest. Solving such an optimization problem requires that i) the di�erentiability
of sparse representation with respect to a given dictionary, and ii) an e�cient geometric
gradient optimization algorithm for learning the parameters. By regarding the sparse repre-
sentation as a locally di�erentiable function with respect to a speci�c dictionary, a generic
form of the directional derivative of sparse representation with respect to the given dictionary
is developed. Since the admissible sets of solutions to our main optimization problem are
restricted on suitable matrix manifolds, we then recall some basic concepts of optimization
on matrix manifolds.

3.1 Introduction

As introduced in Chapter 1, recent development in representation learning shows that ap-
propriate data representations are a key to the success of many machine learning algorithms,
cf. [5]. Namely, di�erent representations of the data can disentangle di�erent explanatory
information with respect to the speci�c applications. Disentangling appropriate explana-
tory information or factors that describe the speci�c underlying structure is expected to
facilitate the learning problem of interest. For example, to explore the evolution of the
dynamic textured scenes, �nding an appropriate spatio-temporal generative representation
model plays a critical role on many successful video processing applications, cf. [114, 115].
For another example, �nding suitable low dimensional image representations has demon-
strated its prominent capability and convenience in images visualization, segmentation and
classi�cation, cf. [116, 117, 118].
The key challenge to image representations is attributed to the di�culty of disentangling
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Chapter 3 A Two-layer Representation Learning Framework

appropriate underlying factors that can exactly capture the useful information hidden in
images or videos. This more or less relies on how the learning of representative features
discover the underlying internal structure of observed data.
To address such a challenge, a common strategy is to adopt a mechanism of layer-wise

disentangling to unwrap abstract factors of more fundamental features. In previous chap-
ters, we have discussed that sparse representation is a powerful, fundamental instrument
to leverage the underlying sparse structure of data for representing images [4, 3, 119, 120].
Given a collection of atoms, known as a dictionary, an image of interest is modeled as a
linear combination of only a few atoms. The dictionary can be interpreted as underlying
explanatory factors that are responsible for describing internal structures of the data. Such
a model has led to a great success in many signal processing tasks, such as compressed sens-
ing, signal reconstruction, denoising, inpainting and image super-resolution, as introduced
in Chapter 1.2.
On the other hand, sparse representations of image data can also be interpreted as some

disentangled features with respect to a prede�ned speci�c dictionary, i.e., explanatory infor-
mation within the images to facilitate the learning task of interest, such as face recognition
[3, 121], visual tracking [122] and object categorization [123, 27, 124, 42]. One popular ap-
proach is to deploy sparse representations directly as inputs to classi�ers or other predictors.
Often, performance of such an approach relies signi�cantly on the construction of an appro-
priate sparsifying dictionary, which can be obtained by either randomly picking up some/all
data points from a given set of training data [3, 121, 125, 119], or imposing speci�c structural
constraints, such as group sparsity [42]. Nevertheless, it is known that these strategies can
be numerically expensive, and is often not guaranteed with an optimal dictionary.
In order to cope with the aforementioned di�culty, a strategy of jointly learning both a

dictionary and structured sparse representation is popularly adopted. For example, works
in [28, 36, 37] propose to jointly learn a dictionary and structured sparse representation
that promotes the locality of data. With the aim of acquiring a discriminative SR set,
many approaches are developed focus on learning dictionary for maximizing the separation
of sparse coe�cients. The typical examples include, but not limited to, learning multiple
class-speci�c (sub)-dictionaries [40, 126, 127], or learning one compact dictionary by impos-
ing speci�c structural constraints, such as optimal Fisher discrimination criterion [41] and
maximal mutual information [128]. A similar approach of adopting sparse representations
in a classical expected risk minimization formulation leads to the so-called task-driven dic-
tionary learning methods [26, 129, 130]. These approaches often involve jointly learning a
sparsifying dictionary and a problem speci�c parameter. Well known loss functions are least
squares loss function [108, 26, 109], logistic loss function [129, 26], and square hinge loss
[130].
From a perspective of representation learning, aforementioned works can be considered

as a single layer representation disentanglement to directly feed a speci�c predictor, such
as a linear classi�er. Based on such a great success, it is a logical conclusion that sparse
representations can entangle the rich explanatory information of image data with respect
to certain learning tasks. For example, the structure in sparse domain has been empirically
observed that could make the hidden discriminative patterns more prominent and easier to
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3.1 Introduction
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Figure 3.1: The proposed two-layer representation learning framework.

be captured [3, 121, 42]. This motivates the researchers to construct further representation
learning mechanisms that allow to disentangle the underlying explanatory factors hidden in
sparse representations of image data. For example, work in [125] demonstrates that apply-
ing a PCA directly on sparse representations of data is capable of enhancing performance
in 3D visualization and clustering. Similar result in [131] also shows that low dimensional
representations of sparse coe�cients, obtained by a linear projection preserving pairwise
inner products, can facilitate the task of classi�cation. Finally, applying spectral clustering
framework to sparse representations of data leads to the so-called Sparse Subspace Cluster-
ing method [119, 132], which enhances the performance in motion segmentation and face
clustering. However, such representation leaning approaches are presented as a separated
two-layer encoding scheme, i.e., the further disentangling instrument is separated from the
layer of sparse coding. This may make it fails to incorporate such a two-layer representa-
tion learning paradigm into a deeper learning structure, i.e., multiple levels of representation,
that could enable prominent disentanglibility of underlying factors that explains discrepancy
underneath the observed image data [9, 5].
Therefore, it necessitates a generic joint learning paradigm that allows to construct further

e�ective learning mechanisms to jointly disentangle a sparsifying dictionary and underlying
factors hidden in image sparse representations. Such disentangled explanatory information
or factors are expected to conveniently solve various computer vision problems. For example,
explanatory information considered in this dissertation can be an underlying linear system
that explains the dynamics of texture videos, or the similarity of image data points that
explores the intrinsic structure of data. To achieve this goal, we construct a generic cost
function for jointly learning a sparsifying dictionary and a problem-dependent representa-
tion learner. In this dissertation, such a problem-dependent representation learner is built
according to speci�c computer vision problems, such as dynamic textures modeling and low
dimensional image representation learning. The related learning framework is demonstrated
in Fig. 3.1.
As shown in Fig. 3.1, the atoms in dictionary D can be interpreted as a set of fundamental

underlying explanatory factors that are responsible for describing internal structures of the
data. The further explanatory factors in matrix P are in charge of disentangling task-related
information that is hidden in image sparse representations. The combination of D and P can
be understood as layer-wise factors that explains variations behind the input data. At �rst,
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Chapter 3 A Two-layer Representation Learning Framework

by selecting a subset of atoms in D, the sparse representation divides a raw input vector into
the directions according to selected atoms. Such a layer of representation learning is expected
to discover a few factors (the atoms in D) that generate the raw input vector. These factors
could capture several pieces of most fundamental information that underlie each input vector.
Secondly, since P contains a set of factors that explains variation in sparse representation
that are informative to the tasks of interest, the second layer in Fig. 3.1 transforms the
sparse representation into a feature space that are spanned by only a few column vectors
in P. The representations in transformed space are expected to make the task-related
information more prominent or task-driven predictors (e.g., classi�ers) easier to be built.
As an example, consider images of faces, and several factors: person identity, illumination
and pose. The most variations of possible faces in pixel space can be explained by the
aforementioned three factors. The atoms in D and P are responsible for identifying these
factors and hence describing the variations of faces. The �nal representations disentangled
by D and P are abstract features that are dominated by such factors. For instance, two
persons of the same sex, age, and hair type will be distinguishable only by looking at their
disentangled features.
In order to drive the whole learning mechanism (depicted in Fig. 3.1) forward on solving

the �nal speci�c computer vision problem, the di�erentiability and convexity of the cost
function with respect to the parameters play a crucial role. For addressing such a challenge,
we consider the sparse coding problem by minimizing a quadratic reconstruction error with
appropriate convex sparsity priors, such as elastic net prior and Kullback-Leibler (KL) di-
vergence prior. In this way, sparse representation can be shown to be a locally di�erentiable
function with respect to a given dictionary, and hence a generic form of the directional deriva-
tive of sparse representation with respect to the given dictionary is developed. On the other
hand, we consider the set of solutions of our whole joint optimization problem is restricted to
suitable di�erentiable manifolds. By leveraging such algorithmic bene�ts, we introduce an
e�cient geometric gradient optimization algorithm on the underlying Riemannian manifold.

3.2 The Main Optimization Problem

Already introduced in Chapter 3.1, the focus of this dissertation is on developing algorithmic
framework that allows to disentangle the underlying explanatory factors hidden in sparse
representations of image/video data. The developed algorithmic framework is depicted in
Fig. 3.1. By regarding the whole learning process as an optimization problem that involves
a dictionary D and a problem-dependent representation learner P, in the following, we
construct a generic cost function for jointly learning D and P.
One key challenge for aforementioned joint learning process is relying on a set of implicit

variables, i.e., the sparse coe�cients Φ := {φi} in Fig. 3.1, which bridges the given obser-
vations X := {xi} and the �nal representations. Here, we treat each sparse vector φi as
an implicit function with respect to a dictionary D. Formally, once a dictionary is given,
according to Eq. (2.14), �nding the sparse representation of a signal xi ∈ Rm is computed

28



3.2 The Main Optimization Problem

as
φ∗xi(D) := argmin

φ∈Rk
1
2‖xi −Dφ‖22 + g(φ). (3.1)

Here, the �rst term penalizes the reconstruction error of sparse representation, and the
second term is a function that promotes the sparse structure of φi. Commonly, the function
g is designed to be g : Rk → [0,+∞) such that g(0) = 0. There are many choices of function
g in the literature, such as `0 norm and its variations, which have been introduced in Chapter
2.1.
It is reasonable and essentially critical to assure the sparse representations to be unique.

The uniqueness can be achieved by choosing an appropriate convex function g. In such a way,
by using a �xed dictionary D, the solution φ∗xi(D) as given in Eq. (3.1) can be considered
as a function in D, i.e., φ∗D : Rm → Rk. In Section 3.3, we discuss that under the condition
of uniqueness of the sparse solution to the problem in Eq. (3.1), the sparse representation
φ∗D is locally di�erentiable with respect to the dictionary D.
Furthermore, let X := [x1, . . . ,xn] ∈ Rm×n be a given collection of n training data

points in Rm. For each xi, the sparse codes φ∗xi(D) is computed by Eq. (3.1). Hence,
we construct a generic algorithmic framework to directly disentangle sparse coe�cients for
learning further representation of interest. Such an algorithmic framework can be formulated
as a minimization problem

arg min
D∈D,P∈P

ExJ(D,P)

J(D,P) := f(P,φ∗xi(D)) + µγ(D,P),
(3.2)

where D and P are some prede�ned admissible sets of solutions for the parameters P and
D, respectively. f(P,φ∗xi(D)) is a function to measure the loss of problem-dependent rep-
resentation learner in sparse representation. Therein, γ(D,P) denotes the di�erentiable
regularization term on D and P.
In this dissertation, we restrict admissible sets of solutions (D,P) on suitable matrix

manifoldsM := D ×P. For example, we restrict each column di ∈ Rm of D to have unit
norm, i.e., D ∈ S(m, k). S(m, k) is de�ned as Oblique manifold as shown in Eq.(2.16).
For another example, P could de�ne a set of orthogonal transformations, i.e., P ∈ St(l,m).
Here, St(l,m) denotes the Stiefel manifold

St(l,m) :=
{

V ∈ Rm×l|V>V = Il

}
. (3.3)

When the set of solutions of an optimization problem de�ned in a smooth manifold, geometric
optimization techniques that exploit the underlying manifold structures of parameters can
be employed to e�ciently solve such an optimization problem. In Section 3.4, we will shortly
review the general concepts of optimization on matrix manifolds.
In this dissertation, we con�ne ourselves to adopting the popular geometric gradient meth-

ods for solving the optimization problem (3.2). In order to develop a solvable geometric
gradient algorithm to minimize the cost function J , the di�erentiability of J with respect
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Chapter 3 A Two-layer Representation Learning Framework

to D and P plays a crucial role. Given a set of sparse codes {φ∗xi(D)}, f is a convex loss
function that measures the loss of learning problem with respect to a problem-dependent
model parameter P ∈ P. In this dissertation, such a family of loss functions are expected
to be globally di�erentiable with respect to P.
Therefore, the key di�culty for solving the optimization problem (3.2) is the di�erentia-

bility of cost function J with respect to a given dictionary D. Hence, such a di�culty could
be reduced to exploit the di�erentiability of sparse representation with respect to D, which
is implicitly included in the loss function f . By adopting appropriate convex sparsity priors,
such as elastic net prior and KL divergence prior, sparse representation can be shown to
be a locally di�erentiable function with respect to D. More discussions will be delivered in
Section 3.3.

3.3 Local Di�erentiability of Sparse Representation with

Convex Sparsity Priors

We have discussed that the key requirement for developing a geometric algorithm to minimize
the cost function J is the di�erentiability of sparse representation with respect to a given
dictionary. The authors are aware of existing results on the matter of di�erentiability, such
as [26, 130]. Unfortunately, these results are often di�cult for further contributing to a
sophisticated algorithm, such as a geometric conjugate gradient algorithm for minimizing
the cost function J . In this section, we want to investigate the (local) di�erentiability of the
sparse representation in the dictionary from the perspective of global analysis. Speci�cally,
by considering the sparse coe�cients as a element wise function to each atom {di}, we discuss
that the local di�erentiability of sparse representation with respect to a given dictionary is
available. Research on such a problem relies on the suitable choice of the convex measures
of g(·). In this section, we also present a number of popular convex sparsity measures for
estimating φ∗.

3.3.1 Local Di�erentiability of Sparse Representation

Let φ∗ = [ϕ∗1, . . . , ϕ
∗
k]
> ∈ Rk be a solution of the sparse representation of x for a given

dictionary D. Then we denote the set of indexes of non-zero entries of φ∗, known as the
support of φ∗, by

Λ(x,D) := {i ∈ {1, . . . , k}|ϕ∗i 6= 0}, (3.4)

and by r := |Λ(x,D)| the cardinality of Λ(x,D). By the fact of g(·) being convex, the sparse
representation φ∗ is a global minimal of the cost function J . Moreover, it is intuitive and
reasonable to assume that the representation φ∗ is unique.
We denote further by φ∗Λ = {ϕ∗j}, j ∈ Λ and DΛ ∈ Rm×r being the subset of D, in which

the index of atoms (columns) fall into the support Λ. By eliminating all inactive atoms, the
vector φ∗Λ is the solution of the following restricted cost function

min
φΛ∈Rr

ϑΛ(φΛ) := 1
2‖x−DΛφΛ‖22 + g(φΛ). (3.5)
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Proposition 1. Assume the sparse solution φ∗Λ to the problem (3.5) is unique. Then, φ∗Λ
is locally di�erentiable at DΛ and the derivative of φ∗Λ in direction H has a close form
expression as

DφΛ(DΛ)H =
(
K(DΛ)

)−1· (H>x− (H>DΛ + D>ΛH
)
φΛ

)
, (3.6)

where K(DΛ) := D>ΛDΛ+Hg(φΛ) is the Hessian matrix of ϑΛ with Hg(φΛ) being the Hessian
matrix of g.

Proof 1 (Proof of Proposition 1). The �rst derivative of the function ϑΛ(φΛ) with respect
to φΛ in direction ξ ∈ Rr

DϑΛ(φΛ)ξ = −(x−DΛφΛ)>DΛξ + (∇g(φΛ))> ξ, (3.7)

where ∇g(φΛ) ∈ Rr denotes the Euclidean gradient of g at φΛ. Then by setting the �rst
derivative of J to zero, we get the critical point condition for the unique sparse representation
as

∇g(φΛ) = D>Λ(x−DΛφΛ). (3.8)

Then, the critical point condition serves simply as an implicit function in DΛ, i.e.,
φΛ : S(m, k) → Rr. Now, we take the derivative on the both sides of Eq. (3.8) with re-
spect to DΛ in direction H ∈ TDΛ

S(m, k) as

D(∇g(φΛ(DΛ)))H = H>(x−DΛφΛ)−
−D>ΛHφΛ−D>ΛDΛ DφΛ(DΛ)H

(3.9)

Let's take a closer look at the left hand side of the equation, i.e., by the chain rule, we have

D(∇g(φ(D)))H = Hg(φΛ) ·DφΛ(DΛ)H, (3.10)

where Hg(φΛ) : Rr ×Rr → R is the Hessian matrix of function g as a bilinear form. Substi-
tuting Eq. (3.10) into Eq. (3.9) leads to a linear equation in DφΛ(DΛ)H as

K(DΛ) ·DφΛ(DΛ)H = H>x−
(
H>DΛ + D>ΛH

)
φΛ. (3.11)

where K(DΛ) := D>ΛDΛ+Hg(φΛ) is the Hessian matrix that is positive de�nite by assuming
that φ∗Λ is unique. Thus, the derivative of φΛ has a close form expression as Eq. (3.6).

The ability to compute DφΛ(DΛ)H leads to computing the directional derivative of J at
DΛ. Some smooth solvers, like stochastic gradient descent (SGD) algorithm or conjugate
gradient (CG) algorithm can be used to solve the minimization problem (3.2). We have
discussed that the function g is required to be convex. In the following subsection, we will
introduce some popular convex sparsity priors. More convex sparsity priors are described in
[133, 134, 135].
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3.3.2 Convex Sparsity Priors
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Figure 3.2: Convex sparsifying functions. This �gure shows several commonly applied convex sparsifying
functions with di�erent parameter settings. For the KL divergence, we assume p and x carry the same sign.

Roughly speaking, the widely used convex sparsity regularizers can be divided into two
categories.
The �rst class of regularizers is the usual `1-regularization term (also called lasso above)

and its various extensions, namely, the family of `1-sparsity regularizers in this dissertation.
Let us de�ne such the family of `1-sparsity regularizers by component-wise addition

g(φ) =

k∑
i=1

ψ(|ϕi|) (3.12)

with φ = [ϕ1, . . . , ϕk] ∈ Rk, where ψ(ϕi) is convex and satis�es

0 < a ≤ ψ(z; δ)′ ≤ b (3.13)

for all z ≥ 0, cf. [135]. Therein, ψ(z; δ)′ denotes the directional derivative of ψ at z in direc-
tion δ, and a, b are two positive constants. The condition (3.13) is widely adopted that the
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Figure 3.3: Non-convex sparsifying functions. This �gure shows several commonly applied non-convex
sparsifying functions with di�erent parameter settings.

priors, i.e., the sparsity measure ψ(·) in Eq. (3.13), produce sparse solutions that are smooth
on nonzero points with respect to small changes in D and x. Several commonly applied
`1-sparsity regularizers with di�erent parameter settings are depicted in Fig. 3.2, while their
de�nitions are recalled in Table 3.1. As for comparison, we also show the performance of
several non-convex sparsifying functions, depicted in Fig. 3.3.

Table 3.1: Some commonly used `1-sparsity regularizers

The family of `1-sparsity regularizers ψ(|ϕi|)
LARS/Lasso [50] λ|ϕi|
Elastic Net [136] λ1|ϕi|+ λ2

2 |ϕi|
2, λ1, λ2 ∈ R+

p-Elastic Net λ1|ϕi|+ λ2
2 |ϕi|

p, λ1, λ2 ∈ R+, p > 1

Kullback-Leibler (KL)-divergence [95] λ
(
|ϕi| log |ϕi|pi + pi − |ϕi|

)
, λ, pi ∈ R+

The logistic regularizer λ1 log (λ2 + exp(|ϕi|)) , λ1 ∈ R+, 0 < λ2 < 1

The family of `1-sparsity regularizers are e�ective for learning sparse, but the resulting
optimization is challenging due to the non-di�erentiability at zero of sparse coe�cient. To
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Figure 3.4: Smooth approximation of `1-norm.

�x such a drawback, the second set of convex sparsifying functions are proposed as a smooth
function, i.e.,

g(φ) =
k∑
i=1

ψ(ϕi) (3.14)

where ψ(·) is smooth for all {ϕi}, typically known as the smooth approximation to the `1-
norm function. Fig. 3.4 plots some examples of such kind of functions and the corresponding
de�nitions are listed in Table 3.2.
Base on such two categories of convex sparsity priors, it is easy to compute DφΛ(DΛ)H,

based on the Proposition 1. The ability to compute such a directional derivative is one
foundation for solving the minimization problem (3.2). In the following subsections, we
introduce two convex sparsity priors and the corresponding conditions to guarantee the
uniqueness of the sparse solution to the problem (3.1). These two convex sparsity priors
have been applied by work presented in Chapter 3 and Chapter 4.
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Table 3.2: Some commonly used sparsity regularizers that are smooth and convex.

Smooth and convex sparsity regularizers ψ(ϕi)

Smoothing `1 (SL1) [137, 134] 1
α log (2 + exp(−αϕi) + exp(αϕi))

Smoothing `1 (SL1) [138]
ϕi(exp(αϕi)−exp(−αϕi))
2+exp(αϕi)+exp(−αϕi)

Trigonometric functions ϕi arctan(α+ βϕi)

Logarithms of hyperbolic functions log(cosh(α+ βϕi))

Hyperbolas
√
α+ (ϕi + β)2

3.3.3 Lasso and Elastic Net

Lasso/Elastic Net is a popular way to replace `0-norm by its `1-norm convex relaxation. The
Lasso problem has been introduced in Section 2.1. Elastic net is proposed as an extension
of LARS/Lasso, but it considers the structure of sparse coe�cients, cf. [136]. In Elastic net,
one reads the prior distribution for the elements of each coe�cient vector φ as a mixture of
Laplace and Gaussian in R, i.e.,

p(φ) =
k
Π
i=1

p(ϕi), p(ϕi) = C · exp{−λ1|ϕi| − λ2
2 ‖ϕi‖

2} (3.15)

with C, λ1, λ2 ∈ R+. Note that, while λ2 = 0, the elastic net problem (3.15) becomes
the classical Lasso, cf. [45]. Let us denote by φ ∼ LG(µ,C, λ1, λ2) with µ = 0 is location
parameter.
Therefore, the MAP estimate of the coe�cient over p(xi|D), assuming a uniform prior on

the dictionary, is the solution to the following optimization problem,

φ∗ := argmin
φ∈Rk

1
2‖x−Dφ‖22 + g(φ), with g(φ) = λ1‖φ‖1 + λ2

2 ‖φ‖
2
2, (3.16)

where λ1 and λ2 are regularization parameters, which play an important role in ensuring
stability and uniqueness of the solutions.
Let us de�ne the set of indices of the non-zero entries of the solution φ∗ = [ϕ∗1, . . . , ϕ

∗
k]
> ∈

Rk by Λ := {i ∈ {1, . . . , k}|ϕ∗i 6= 0} and r := |Λ|. We compute

D g(φΛ)hΛ = λ1sΛh>Λ + λ2φΛh>Λ ,

D (∇g(φ(DΛ)))HΛ = λ2Ir Dφ(DΛ)HΛ,

Hg(DΛ) = λ2Ir,

(3.17)

where Ir is the r × r identity matrix and sΛ ∈ {±1}r carries the signs of φ∗Λ.
Suppose D ∈ D, let us denote K := D>ΛDΛ+λ2Ir and u := D>Λx−λ1sΛ. Using Eq. (3.17)

to substitute the Hg(DΛ) in Eq. (3.6), we have the �rst derivative of φ∗x(DΛ) of Eq. (3.16)
with respect to DΛ in the direction HΛ is

Dφ∗x(DΛ)HΛ = K−1
(
H>Λx− (D>ΛHΛ + H>ΛDΛ)φ∗Λ

)
(3.18)
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Chapter 3 A Two-layer Representation Learning Framework

Such a prominent property leads to the framework of supervised task-driven dictionary
learning, which is speci�cally dedicated to supervised learning problems, cf. [130, 26, 34].
Real world data and a simulation study in [136] show that the elastic net often outperforms

the Lasso, while enjoying a similar sparsity of representation. In addition, the elastic net
encourages a grouping e�ect, where strongly correlated predictors tend to be in (out) the
model together. An e�cient algorithm called LARS-EN is proposed for computing elastic
net regularization paths e�ciently, much like the LARS algorithm does for the Lasso.

3.3.4 Kullback-Leibler Divergence

To favor the sparsity and di�erentiability, one regularization function that produces this
form of pseudo-sparsity is the Kullback-Leibler (KL)-divergence [95], which has been demon-
strated its e�ectiveness on a wide variety of applications, e.g., the sparse autoencoder
[139, 140] or deep neural networks [141].
Authors in [141] present that KL-divergence regularization is suited to sparse coding,

and produce sparse solutions that integrate into a larger learning architecture, e.g., back-
propagation neural networks. With the aim of approximating `p-norm (p ≤ 1) to promote
the sparsity, the KL-divergenceKL(φ ‖ p) is presented as a regularization function to replace
`p-norm sparsity. A standard form of KL, served as the penalty g(φ) in Eq. (2.14), could be
de�ned as

KL(φ ‖ p) = λ
k∑
i=1

[
|ϕi| log

|ϕi|
pi
− |ϕi|+ pi

]
(3.19)

and hence the corresponding loss function for learning sparse with given D is de�ned by

φ∗x(D) = argmin
φ∈Rk

1

2
‖x− f(Dφ)‖2 +KL(φ ‖ p). (3.20)

The derivative of the gradient of the KL-divergence prior with respect to DΛ is the product
of a Hessian matrix and Dφ(DΛ)HΛ, i.e.,

D (∇g(φ(DΛ)))HΛ = λHg(DΛ) Dφ(DΛ)HΛ, (3.21)

with Hg(DΛ) = diag( λ
φΛ

) being a diagonal matrix whose diagonal entries are λ
φj
, j ∈ Λ. By

taking Eq. (3.21) in Eq. (3.6), we have

Dφ∗x(DΛ) ·HΛ = −
(
DΛ
>DΛ + diag(

λ

φΛ
)
)−1 (

D>ΛHΛφΛ + HΛ(DΛφΛ − x)
)
. (3.22)

Moreover, the results in [141] shows that the learned φ using KL-regularization were more
useful for prediction than those produced with `1 regularization (the Lasso in [99]).
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3.4 Resolving the Main Problem using Geometric

Optimization

Recalling that the solutions of the constrained optimization problem (3.2) are de�ned on a
product manifold M := D × P, in this section, we explain how such a di�erentiable cost
function can be optimized by so-called geometric optimization method.
In the past decades, optimization on matrix manifolds has drawn more attention since it

can reduce the dimension of optimization problems compared against solving the problems
in their ambient Euclidean space. It also provides a good way for solving the optimization
problems with matrix constraints, e.g., matrices on a unit sphere or Stiefel manifold. Many
traditional optimization methods such as the steepest decent method, conjugate gradient
method and Newton method have been extended to Riemannian manifolds or smooth mani-
folds, cf. [142, 143, 102]. Recently, authors in [25, 144, 145, 146] proposed to e�ciently solve
the sparse coding problem using the geometric conjugate gradient method with line search
along geodesics on Riemannian manifolds. In this dissertation, we also focus on the gradient
methods on smooth manifolds for solving data representation problems. In this section,
we shortly recall some basic de�nitions and facts of di�erential geometry. For a detailed
overview on optimization on matrix manifolds, we refer the interested reader to [102, 25].

3.4.1 Geometric Optimization

The essence of optimization problems is to �nd the maximum or minimum of a cost function.
For example, considering a general unconstrained optimization problem, if its cost function J
is de�ned in the Euclidean space Rn, one can use conventional methods such as the steepest
descent method, conjugate gradient method or Newton method to minimize this function,
cf. [147]. However, many optimization problems that occurred in computer vision tasks,
often consist of maximizing or minimizing a real function subject to �xed outside conditions
or constraints, known as constrained optimization problem. In such a case, �nding a closed
form for the cost function being extremized is often di�cult. One widely adopted strategy
is to transform the constrained problem into an unconstrained form using the method of
Lagrange multipliers or using a barrier penalty function [147]. This kind of approaches are
e�cient and allow one to solve the constrained optimization problem by taking advantage of
the aforementioned conventional optimization techniques in Euclidean space. However, they
merely treat constrained problem as a `black box' and solves it using algebraic manipulation.
Instead of solving the optimization problem in their ambient Euclidean space, methods

of solving minimization problem on smooth manifolds is developed and allow to exploit the
underlying manifold structure of solutions, cf. [102]. By extending the concepts of vector
addition in Euclidean space to the exponential map and parallel translation, minimization
along lines to minimization along geodesics, partial di�erentiation to covariant di�erentia-
tion, many conventional optimization techniques in Euclidean space can have their coun-
terparts on smooth manifolds, which have been well studied in [148, 142, 149, 102]. These
methods include steepest descent [148, 142, 149], conjugate gradient [150, 25], trust-region
method [102, 151] and Newton's method [152, 102]. By appealing to these geometric gradient
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M

Θ(i)

TΘ(i)M

H(i)

RΘ(i)(t(i)H(i))

Θ(i+1)

TΘ(i+1)M

T(Θ(i),t(i)H(i))(H
(i))

∇J(Θ(i+1))

grad J(Θ(i+1))

H(i+1)

Figure 3.5: This �gure shows two points Θ(i) and Θ(i+1) on a manifold M together with some required
concepts onM. Tangent space (green areas): TΘM; The search direction (tangent vector) atΘ: H ∈ TΘM;
The Euclidean gradient ∇J(Θ) and its projection onto the tangent space at Θ, called Riemannian gradient:
grad J(Θ) ∈ TΘM; Retraction: RΘ : TΘM→M; Vector transport: TΘ,tH : TΘM→ TRΘ(tH)M.

methods, this dissertation focuses on solving the optimization problem (3.2) formulated on
a product manifoldM := D×P, i.e., searching or selecting the admissible solutions on the
sets that admitting the geometry structure ofM. This gives rise to some general concepts
of Riemannian manifold, such as a Riemannian gradient, geodesic, Riemannian exponential
mapping and Parallel transport.

Geometric Gradient Methods on Matrix Manifolds LetM be a smooth Riemannian
submanifold of some Euclidean space and let J : M→ R be the di�erentiable cost function.
We consider the problem of �nding

arg min
Θ∈M

J(Θ), (3.23)

whereM := D×P in the optimization problem (3.2).
To compute the Riemannian gradient of J at every point Θ ∈M, the concept of tangent

space TΘM should be de�ned. TΘM is a real vector space containing all possible directions
that tangentially pass through Θ. An element Ξ ∈ TΘM is called a tangent vector at Θ.
In order to characterize which direction of motion from Θ produces the steepest increase

in J , we further need a notion of length that applies to tangent vectors. This is done by
endowing every tangent space TΘM with an inner product, denoted by 〈·, ·〉. Such an inner
product 〈·, ·〉 induces a norm, denoted by ‖ · ‖, i.e., ‖Ξ‖ =

√
〈Ξ,Ξ〉 for any Ξ ∈ TΘM.

The Riemannian gradient of J at Θ is an element of the tangent space TΘM that points
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3.4 Resolving the Main Problem using Geometric Optimization

in the direction of steepest ascent of the cost function on the manifold. For the case where
J is globally de�ned on the entire surrounding Euclidean space, the Riemannian gradient
grad J(Θ) is simply the orthogonal projection of the (standard) gradient ∇J(Θ) onto the
tangent space TΘM, which reads as

grad J(Θ) = ΠTΘM(∇J(Θ)). (3.24)

A geodesic is a smooth curve Γ (Θ,Ξ, t) emanating from Θ in the direction of Ξ ∈
TΘM which locally describes the shortest path between two points on M. Intuitively,
it can be interpreted as the equivalence of a straight line in the manifold setting. The
corresponding Riemannian exponential mapping, which maps a point from the tangent space
to the manifold, is de�ned as

expΘ : TΘM→M, Ξ 7→ Γ (Θ,Ξ, 1). (3.25)

In general, such an exponential map is only locally de�ned, that is, it only takes a small
neighborhood of the origin at TΘM, to a neighborhood of Θ in the manifold.
As Riemannian exponential mappings of Eq. (3.25) are costly to compute in general, to

deal with the cases of large scale datasets, we adopt an alternative approach, based on the
concept of Retraction and its corresponding Vector transport. Some required concepts are
depicted in Fig. 3.5 to alleviate the understanding.
A Retraction at Θ ∈M is a smooth mapping from TΘM toM denoted by

RΘ : TΘM→M

with a local rigidity condition [102], as RΘ(0) = Θ and DRΘ(0) = idTΘM. Therein,
idTΘM denotes the identity mapping on TΘM. As shown in Fig. 3.5, for a tangent vector
H(i) ∈ TΘ(i)M, the curve

ΓH(i) : t(i) 7→ RΘ(i)(t(i)H(i))

satis�es DΓH(i)(0) = H(i).
The Vector transport on M speci�es how to transport a tangent vector Ξ from a

point Θ(i) ∈ M to a point Θ(i+1) ∈ M along the curve RΘ(i)(t(i)H(i)), denoted by
T(Θ(i),t(i)H(i))(Ξ).
The geometric optimization method reviewed in this section is based on iterating the

following line search scheme. Given a current optimal point Θ(i) and a search direction
H(i) ∈ TΘ(i)M at the ith iteration, the step size t(i) which leads to su�cient decrease of J
can be determined by �nding the minimizer of

t(i) = arg min
t≥0

J(RΘ(i)(tH(i))). (3.26)

Once t(i) has been determined, the new iterate is computed by

Θ(i+1) = RΘ(i)(t(i)H(i)). (3.27)
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Now, one straightforward approach to minimize J is to alternate Equations (3.24), (3.26),
and (3.27) using

H(i) = −G(i)

with the short hand notation G(i) := gradJ(Θ(i)), which corresponds to the steepest descent
on a Riemannian manifold. By leveraging the simplicity such a geometric steepest descent,
in Chapter 4, it is used to solve the optimization problem for modeling dynamic textures.
However, as in standard optimization, steepest descent only has a linear rate of conver-

gence. Therefore, another solver, called conjugate gradient (CG) method is often employed
on a manifold, as it o�ers a superlinear rate of convergence, while still being applicable to
large scale optimization problems with low computational complexity, e.g., in sparse recovery
[144]. We refer to [102, 144] for further technical details for these computations. In Chapter
4, a geometric CG algorithm onM is presented.
In the CG method, the updated search direction H(i+1) ∈ TΘ(i+1)M is a linear combina-

tion of the gradient G(i+1) ∈ TΘ(i+1)M and the previous search direction H(i) ∈ TΘ(i)M.
Since addition of vectors from di�erent tangent spaces is not de�ned, we need to map H(i)

from TΘ(i)M to TΘ(i+1)M. This is done by the so-called Vector transport T(Θ(i),t(i)H(i))(Ξ
(i)),

which transports a tangent vector Ξ(i) ∈ TΘ(i)M along the curve RΘ(i)(t(i)H(i)) to the tan-
gent space TΘ(i)M. Then, the new CG search direction is computed by

H(i+1) = −G(i+1) + β(i)T(Θ(i),t(i)H(i))(H
(i)) (3.28)

with the direction parameter β(i), which is proposed in [153], as

β(i) =
〈G(i+1),G(i+1)−G(i)〉
〈H(i),G(i)〉 . (3.29)

Note that the concrete formulations of above-mentioned concepts, i.e., Riemannian gra-
dient, Retraction and Vector transport, are established according to the speci�c de�nition
of each smooth manifold M. Throughout the dissertation, M := D × P with D being a
product of k unit spheres, i.e., S(m, k), de�ned in Eq. (2.16). The admissible set for P is
chosen as a common matrix set in Rk×k in Chapter 4 or the set of all m-dimensional rank-l
orthogonal projectors, called Grassmann manifold [154], i.e., Gr(l,m), de�ned by

Gr(l,m) :=
{

VV>|V ∈ St(l,m)
}
. (3.30)

In the following two subsections, we quickly review some facts about the product of k unit
spheres and the Grassmann manifold.

3.4.2 Geometry of the Product of k Unit Spheres

Given the tangent space of S(m, k) at D as

TDS(m, k) := {X ∈ Rm×k| ddiag(X>D) = 0}, (3.31)
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the orthogonal projection of a matrix Σ ∈ Rm×k onto the tangent space TDS(m, k) with
respect to the inner product 〈X ,Y〉 = tr(X>Y) is given by

ΠD(Σ) := Σ −D ddiag(D>Σ). (3.32)

Therein, ddiag(Z) is the diagonal matrix whose entries on the diagonal are those of Z.
Recalling that the S(m, k) is a Riemannian submanifold of a product of k unit spheres

Sm−1, and let d ∈ Sm−1 be a point on a sphere. Given a tangent vector h ∈ TdSm−1 at d
and a �xed step size t0, a Retraction is given by Rd := γ(d,h, t = t0) with a curve

γ(d,h, t) : = d+th
‖d+th‖2 .

Then the vector transportation along the direction h ∈ TdSm−1 at d for transporting ξ ∈
TdS

m−1 is de�ned as

τ(ξ,d,h, t) : = 1
‖d+th‖2

(
In + (d+th)(d+th)>

‖d+th‖22

)
ξ.

Using this, the Retraction through D ∈ S(m, k) in the direction of HD ∈ TDS(m, k)
is simply the combination of the Retraction for each column of D in the direction of the
corresponding column of HD, i.e. RD := ΓS(D,HD, t0) with HD : = [h1, · · · ,hk] and a
curve being

ΓS(D,HD, t) = [γ(d1,h1, t), · · · , γ(dk,hk, t)]. (3.33)

Accordingly, the vector transport of ΞD ∈ TDS with ΞD : = [ξ1, · · · , ξk] along the curve
ΓS(D,HD, t) is given by

TS(ΞD,D,HD, t) = [τ(ξ1,d1,h1, t), · · · , τ(ξk,dk,hk, t)]. (3.34)

3.4.3 Geometry of Grassmann Manifold

Let us denote the set of all k × k skew-symmetric matrices by

so(k) :=
{
Q ∈ Rk×k

∣∣∣ Ω = −Ω>
}
. (3.35)

The tangent space of Gr(l, k) at P ∈ Gr(l, k) is given by

TPGr(l, k) := {[P,Ω] | Ω ∈ so(k)} (3.36)

with matrix commutator [A,B] := AB−BA. Let P ∈ Gr(l, k) and let Ξ ∈ TPGr(l, k) be
a tangent vector. We consider the Euclidean Riemannian metric on Gr(l, k) induced by the
embedding space of symmetric matrices, which is de�ned by the Frobenius inner product,
i.e., 〈Ξ1,Ξ2〉 := tr(Ξ>1 Ξ2) for all Ξ1,Ξ2 ∈ TPGr(l, k). The orthogonal projection of an
arbitrary point Σ ∈ Rk×k onto the tangent space at P is

ΠP : Rk×k → TPGr(l, k), Σ 7→ [P, [P,Σs]] (3.37)
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with Σs =
1

2
(Σ +Σ>) being the symmetric part of Σ.

The unique geodesic γP,Ξ through P in direction Ξ ∈ TPGr(l, k) is given by

γP,Ξ : R→ Gr(l, k), γP,Ξ(t) := et[Ξ,P] P e−t[Ξ,P] . (3.38)

The parallel transport of η ∈ TPGr(l, k) with respect to the Levi-Civita connection along
the geodesic γP,Ξ(t) is given by

η(t) = et[Ξ,P]ηe−t[Ξ,P]. (3.39)

Let
O(m) :=

{
Q ∈ Rk×k

∣∣∣ Q>Q = Ik

}
, (3.40)

be the Lie group of all k × k orthogonal matrices. As Gr(l, k) is a homogeneous space of
O(k), one can represent any point P ∈ Gr(l, k) by

P = Q

[
Il 0
0 0

]
Q> (3.41)

for suitable Q ∈ O(k), and can accordingly represent

[Ξ,P] = Q

[
0 −Z>

Z 0

]
Q>, (3.42)

where Z ∈ R(k−l)×k, cf. [155].
As discussed before, geodesic and parallel transport are often more computationally de-

manding. In this work, by appealing to the general concepts of Retraction and its corre-
sponding Vector transport, we present an approximation of Riemannian exponential map-
pings based on the QR-decomposition, cf. [156]. For this purpose, �rstly we introduce a
lemma from [156] without giving a proof.

Lemma 1. The map
ΥΩ : R→ U(k), ΥΩ(t) := (Ik + tΩ)Q (3.43)

is smooth for all Ω ∈ so(k).

Therein, U(k) denotes the set of unitary matrices in Rk×k, and (·)Q is the unique QR
decomposition of an invertible matrix, i.e. all diagonal entries of the upper triangular part
of QR are positive.
Let Ξ ∈ TPGr(l, k) and Υ[Ξ,P](t) de�ned as in Eq. (3.43). The curve

ΓGr(P,Ξ, t) : R→ Gr(l, k),

t→ Υ[Ξ,P](t)P(Υ[Ξ,P](t))
> (3.44)

is a second order approximation of the geodesic Eq. (3.38) around P. Let HP ∈ TPGr(l, r)
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be a direction, then we de�ne the following retraction on the Grassmann manifold as RP :=
ΓGr(P,HP, t = t0), where t0 denotes a �xed step size.
According to Eq. (3.39), the Vector transport of ΞP ∈ TPGr(l, k) along the curve

ΓGr(P,HP, t),HP ∈ TPGr(l, k), is given by

TGr(ΞP,P,HP, t) := Υ[HP,P](t)ΞP(Υ[HP,P](t))
>. (3.45)

Above we shortly reviewed the required concepts of optimization on matrix manifolds. In
the Chapter 4 and the Chapter 5, we will discuss in detail on the concrete formulas and
implementations for our optimization problems.
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Chapter 4

Sparse Linear Dynamical Systems for

Modeling Dynamic Textures

In Chapter 3, we have presented a two-layer representation learning framework. In this
chapter, we discuss its �rst application for modeling and classifying videos. Video repre-
sentation is an important and challenging task in the computer vision community. In this
chapter, we consider the problem of modeling and classifying video sequences of dynamic
scenes which could be modeled in a dynamic textures (DT) framework. At �rst, we assume
that image frames of a moving scene can be modeled as a Markov random process. We
propose a sparse coding framework, named Sparse Linear Dynamical Systems (SLDS ), to
model a video adaptively. By treating the sparse coe�cients of image frames over a learned
dictionary as the underlying �states�, we learn an e�cient and robust linear transition ma-
trix between two adjacent frames of sparse events in time series. Hence, a dynamic scene
sequence is represented by an appropriate transition matrix associated with a dictionary.
In order to ensure the stability of SLDS, we impose several constraints on such transition
matrix and dictionary. The developed framework is able to capture the dynamics of a mov-
ing scene by exploring both sparse properties and the temporal correlations of consecutive
video frames. Moreover, such learned SLDS parameters can be used for various DT ap-
plications, such as DT synthesis and recognition. Experimental results demonstrate the
strong competitiveness of our proposed SLDS approach in comparison with state-of-the-art
video representation methods. Especially, it performs signi�cantly better in dealing with
DT synthesis and recognition on heavily corrupted data.

4.1 Introduction

Temporal or dynamic textures (DT) are video sequences that exhibit spatially repetitive
and certain stationarity properties in time. This kind of sequences are typically videos of
processes, such as moving water, smoke, swaying trees, moving clouds, or a �ag blowing in
the wind. Fig. 4.1 shows several examples of DT. Furthermore, consistent spatiotemporal
motion, such as facial expressions, orderly pedestrian crowds, and vehicular tra�c, can be
seen as a generalization of DT. Study and analysis of DT attracts both theoretical and
practical research e�orts, such as video modeling [157, 114], DT segmentation [158, 115],
video recognition [159], object tracking [160], saliency (e.g., emergency) detection [161] and
video synthesis [114]. However, the continuous change in the shape and appearance of
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a dynamic texture makes the application of traditional computer vision algorithms very
challenging. Thus, �nding an appropriate spatio-temporal generative representation model
that can explore the evolution of the dynamic textured scenes, is the key to the success of
many DT applications.

Figure 4.1: Eight examples of dynamic textures.

In the past several decades, various approaches have been proposed for modeling and syn-
thesizing video sequences of dynamic textures [157, 162, 163, 114, 158, 164, 165]. Among
them, one classical approach is to model dynamic scenes via the optical �ow [157]. However,
such methods require a certain degree of motion smoothness and parametric motion models.
Non-smoothness, discontinuities, and noise inherent to rapidly varying, non-stationary DTs
(e.g., �re) pose a challenge to develop optical �ow based algorithms. Another technique,
called particle �lter [166], models the dynamical course of DTs as a Markov process. A
reasonable assumption in DT modeling is that each observation is correlated to an underly-
ing latent variable, or �state�, and then derives the parameter transition operator between
these states. Some approaches directly treat each observation as a state, and then focus on
transitions between the observations in the time domain, cf. [163, 162, 164]. For instance,
the work in [163] treats this transition as an approximation matrix of a target frame from
its several nearest neighbors, and other methods construct a spatio-temporal autoregressive
model (STAR) [162] or position a�ne operator for this transition [164]. However, natural
images often have complex statistical structure with unknown distribution and are di�cult
to be explicitly parameterized. Therefore, some machine learning synthesis techniques, such
as linear smooth regression, may not be directly used to model the transition of consecutive
raw images.
Alternatively, representation-based models capture the intrinsic law and underlying struc-

tures of the observations by projecting the observations onto a low-dimensional representa-
tion space via feature extraction techniques, such as principle component analysis (PCA).
G. Doretto et al. [167, 114] model the evolution of the dynamic textured scenes as a lin-
ear dynamical system (LDS) under a Gaussian noise assumption. As a popular method in
dynamic textures, LDS and its derivative algorithms (e.g., kernel LDS) have been success-
fully used for various dynamic texture applications [114, 167, 168]. However, constraints
are imposed on the types of motion and noise that can be modeled in LDS. For instance,
it is sensitive to input variations due to various noise. Especially, it is vulnerable to non-
Gaussian noise, such as missing data or occlusion of the dynamic scenes. Moreover, stability
is also a challenging problem for LDS [169]. Additionally, another one possible challenge
is that such a LDS may su�er a weak data reconstruction when observations's �rst several
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Observations
xt

xt
xt+1

xt+1

Sparse states
φt φt+1

xt = Dφt

φt+1 = Pφt

Figure 4.2: Pipeline of our proposed SLDS model. Therein, xt, φt, D and P denote the tth observation,
its hidden �state� or feature, the dictionary, and the state transition matrix, respectively.

largest singular values are not dominant. To tackle these challenges, the approach in this
chapter is to explore an alternative method to model the DTs by appealing to the principle
of sparsity. Instead of using the Principle Components (PCs) as the transition �states� in
LDS, sparse coe�cients over a learned dictionary are imposed as the underlying �states�. In
this way, the dynamic process of DTs exhibits a transition course of corresponding sparse
events. These sparse events can be obtained via a recent technique on linear decomposition
of data, called dictionary learning, which has been introduced in Chapter 2. Formally, these
sparse representations φ ∈ Rk to a signal x ∈ Rm, can be written as Eq. (1.1). That is, the
signal x can be sparsely represented only using a few elements from some dictionary D.
Based on the sparse factorization of Eq. (1.1), our goal is to �nd a suitable and robust

linear transition matrix between two adjacent frames of sparse representations in time series.
With the aim of making the state transition stable and adapt to the sparse structures of
image pairs from such adjacent frames, we enforce this linear transition matrix with moderate
determinant and bounded largest eigenvalue. In this chapter, we start with a brief review
of the dynamic textures model from the viewpoint of convex `2 optimization, and then
deduce a combined regression associated with several regularizations for a joint process�
�state extraction� and �state transition�. Then we treat the solution of the above combined
regression as a joint learning problem, i.e., jointly learning a sparsifying dictionary and a
linear transition matrix, which can achieve two distinct yet tightly coupled tasks� e�ciently
reducing the dimensionality via sparse representation and robustly modeling the dynamic
process. In the rest of the chapter, we refer to such a proposed model as Sparse Linear
Dynamical Systems (SLDS ). The pipeline is summarized in Fig. 4.2.
With the DT model at hand, this chapter also focuses on how to incorporate such a model

into several video processing applications, such as synthesis, denoising and recognition on
DT sequences. Note that, video synthesis and denoising could be achieved directly via basic
SLDS model. Then, we are interested in the problem of categorization of DT sequences, i.e.,
identifying which class a query DT sequence belongs to. We propose a discriminative SLDS
model that learns uniform SLDS parameters for each class, i.e., a dictionary associated
with a transition matrix, which minimize the state transition error for intraclass DTs but
maximize the state transition error for interclass DTs.
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The rest of this chapter is organized as follows. In Section 4.2, we start with a brief
review of linear dynamical systems. In Section 4.3, we construct a generic cost function
for learning both the dictionary and the linear transition operator, and develop a geometric
gradient descent algorithm on the underlying smooth manifold. Two classi�cation algorithms
are developed in Section 4.4. Numerical experiments on several applications of the proposed
model are discussed in Section 4.5. Finally, conclusions and outlooks are given in Section 4.6.

4.2 Modeling Dynamical Textures using Linear Dynamic

Systems

As mentioned earlier, one popular way to model the time series data is representing observed
information about the past through a real-valued hidden state vector, known as state-space
models (SSM), such as various descendants of either hidden Markov models (HMM) or
stochastic LDS, cf. [170]. HMM represent information about the past of a sequence through
a single discrete random variable � the hidden state. The prior probability distribution of
this state is derived from the previous hidden state using a stochastic transition matrix.
Knowing the state at any time makes the past, present and future observations statistically
independent. The dependency between the present state vector and the previous state vector
is speci�ed through the dynamic equations of the system and the noise model. When these
equations are linear and the noise model is Gaussian, the state-space model is also known
as a LDS or Kalman �lter model, in which the dynamics can transition in a discrete manner
from one linear operating regime to another.
A state-space model de�nes a probability density over time series of real-valued obser-

vation vectors {xt} by assuming that the observations were generated from a sequence of
hidden state vectors {φt}. In particular, the state-space model speci�es that given the
hidden state vector at one time step, the corresponding observation vector is statistically
independent from all other observation vectors, and that the hidden state vectors obey the
Markov independence property. The joint probability for the sequences of states {φt} and
observations {xt} can therefore be factored as:

P({φt,xt}) = P(φ1)P(x1|φ1)
T
Π
t=2

P(φt|φt−1)P(xt|φt). (4.1)

The conditional independencies speci�ed by Eq. (4.1) can be expressed graphically in the
form of Fig. 4.3(a).
The simplest and most commonly used models of this kind assume that the transition

and output functions are linear and time-invariant, and the distributions of the state and
observation variables are multivariate Gaussian. We will use the term state-space model,
i.e., LDS, to refer to this simple form of the model, see Fig. 4.3(b).
Let us denote a given sequence of (T + 1) frames by X := [x0, . . . ,xT ] ∈ Rm×(T+1), where

the time is indexed by t = 0, 1, . . . , T . The evolution of a LDS is often described by the

48



4.2 Modeling Dynamical Textures using Linear Dynamic Systems

(a) General SSM model (b) LDS model

Figure 4.3: The dynamical process of DTs exhibits a transition course of corresponding state events.

following two equations {
φt+1 = Pφt + wt

xt = Dφt + vt,
(4.2)

where xt ∈ Rm, φt ∈ Rk, wt ∈ Rk and vt ∈ Rm denote the observation, its hidden state or
feature, state noise, and observation noise, respectively. Therein, wt and vt are assumed to
be zero-mean Gaussian with covariance matrix Q. The system is described by the dynamics
matrix P ∈ Rk×k, and the modeling matrix D ∈ Rm×k. Here we are interested in estimating
the system parameters P and D, together with the hidden states, given the sequence of
observations X.
The problem of learning the LDS in Eq. (4.2) can be considered as a coupled linear

regression problem [169]. Let us denoteΦ = [φ0, . . . ,φT ] ∈ Rk×(T+1), Φ0 = [φ0, . . . ,φT−1] ∈
Rk×T , and Φ1 = [φ1, . . . ,φT ] ∈ Rk×T . The system dynamics and modeling matrix are
expected to be obtained by solving the following minimization problem,

min
P,D,Φ

∥∥Φ1 −PΦ0

∥∥2
F
, s.t.

∥∥X−DΦ
∥∥2
F
≤ ε, (4.3)

where ε is a small positive constant. Therein, ‖ · ‖F denotes the Frobenius norm of matrices.
Conventional LDS methods [114, 160, 169] often encode the observations as an under-

complete representation over a dictionary with orthogonal columns, i.e., X := DΦ, with
D ∈ St(m, k). Here, St(m, k) denotes the Stiefel manifold de�ned in Eq. (3.3). Hence the
solutions to the problem (4.3) relies on the so called singular value decomposition (SVD) of
observations, i.e.,

X ≈ UΣV>

with U ∈ St(m, k) and V ∈ St(k, T + 1). Therein, Σ = diag{δ1, · · · , δk} contains the
�rst k largest non-negative singular values with k < m. Finally, one can obtain suboptimal
estimates of D and Φ as follows:

D̃ = U and Φ̃ = ΣV>. (4.4)
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The estimate of P is
P̃ = Φ1Φ

†
0, (4.5)

where † denotes the Moore-Penrose inverse.

4.3 Sparse Linear Dynamical Systems

In this section, we develop a joint learning framework for modeling dynamic textured se-
quences, i.e., jointly learning a dictionary and a transition matrix to represent a DT sequence.

4.3.1 A Dictionary Learning Model for Dynamic Scene

In our approach, we assume that all observations xt admit a sparse representation with
respect to an unknown dictionary D ∈ S(m, k), i.e.,

xt = Dφt, for all t = 0, 1, . . . , T, (4.6)

where φt ∈ Rk is sparse.
Finally, by adopting the common sparse coding framework to problem (4.3), we have the

following minimization problem

min
P,D,Φ

∥∥Φ1 −PΦ0

∥∥2
F

+ µ1
∥∥X−DΦ

∥∥2
F

+ µ2‖Φ‖1, (4.7)

with D ∈ S(m, k), P ∈ Rk×k, Φ ∈ Rk×(T+1), µ1 ∈ R+, µ2 ∈ R+. The parameter µ2 ∈ R+

weighs the sparsity measurement against the two residual terms.
Solving the minimization problem as stated in Eq. (4.7) is a very challenging task. In

this chapter, we employ an idea similar to subspace identi�cation methods [171, 169], which
treats the �state� as a function of (P,D).
Here, we con�ne ourselves to the sparse solution of a Lasso/Elastic Net problem, as

Eq. (3.16), which is introduced in Chapter 3.3.3. Therein, g(φ) = λ1‖φ‖1 + λ2
2 ‖φ‖

2
2 with

λ1 � λ2 > 0. A very small λ2 > 0 is chosen to ensure stability and uniqueness of the
sparse solution. By a slight abuse of notations, we denote by φ∗xt(D) : xt 7→ φxt the sparse
solutions to Eq. (3.1) with speci�c D. We further denote by X0 = [x0, . . . ,xT−1] and
X1 = [x1, . . . ,xT ]. In this way, by an abuse of notation, we de�ne

Φ0(D) : S(m, k)→Rk×T

D 7→ [φ∗x0
(D), . . . ,φ∗xT−1

(D)].
(4.8)

In a similar way, Φ1(D) is de�ned by

Φ1(D) : S(m, k)→Rk×T

D 7→ [φ∗x1
(D), . . . ,φ∗xT(D)].

(4.9)

By regarding such sparse events as the underlying �states� of observations, the dynamic
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course of a moving scene can be modeled as a linear square regression problem with respect
to a time-invariant transition matrix P and a dictionary D, i.e.,

f : Rk×k × S(m, k)→ R
(P,D) 7→ 1

2T ‖Φ1(D)−PΦ0(D)‖2F .
(4.10)

An illustration of such a process is described in Fig. 4.2.
The linear dynamic system referring to Eq. (4.10) may su�er from the three aspects as

following: i) The learned linear transition matrix may not adapt to the distribution of sparse
�states�. ii) The instability of the learning system. iii) The high coherence of non-orthogonal
atoms in dictionary may result in an ambiguity of sparse representation.
With the aim of building a solvable and stable learning procedure for the problem (4.10),

in the following, we further regularize the problem by imposing several constraints on P and
D.

The Choice of Dictionary

Recalling the fact that the Eq. (3.18) exists if
(
D>ΛDΛ + λ2Ir

)−1
holds, i.e., DΛ is full rank

for all r < m or the dictionary D is suitably incoherent with λ2 > 0. A critical choice for D is
a set of orthonormal atoms, i.e., D ∈ St(m, k) with k < m, and the problem (4.10) is simply
solved by Eq. (4.4) and Eq. (4.5). Such a dictionary can e�ciently project the observations
into an low-dimensional orthogonal subspace, but it may yield a bad approximation for
data reconstruction, i.e., E(x ‖ φ,D) :=

∥∥X −DΦ
∥∥2
F
may exceed the allowable limit. Let

us denote by δi the ith largest singular value of X, and further de�ne �Ratio of singular
values� as tk =

∑k
i=1 δi/

∑m
j=1 δj . An DT example is shown in Fig. (4.4). Fig. (4.4(g))

shows that it is di�cult to choose a small low dimension k associated with a suitable tk.
Similarly, from Fig. (4.4(h)), it is easy to see that �nding a small k often results in a high
reconstruction error. For such a DT sequence, �nding a suitable low dimensional subspace
may not be achieved by Eq. (4.4) and Eq. (4.5). On the other hand, practically, �nding
a sparse representation over an orthogonal dictionary is often a challenge for some natural
images.
Now, we relax the orthogonal constraint on D to a general D ∈ S(m, k) under appropriate

incoherence conditions. Let us de�ne the mutual coherence of D as follows

µ(D) := max
1≤i<j≤k

|d>i dj |.

In order to prevent solution dictionaries from being highly coherent, we employ a log-barrier
function on the scalar product of all dictionary columns to control the mutual coherence of
the learned dictionary D, cf. [25], i.e.,

κ(D) := −
∑

1≤i<j≤k
log(1− (d>i dj)

2). (4.11)
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Figure 4.4: Two ducks on the surface of the lake, (Nr.645b410) from DynTex database [2]. (a)-(f) are
six image examples in di�erent time. (c) plots tk =

∑k
i=1 δi/

∑m
j=1 δj with increasing k. (d) depicts the

reconstruction error
∥∥X−DΦ

∥∥
F
with increasing k.
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4.3 Sparse Linear Dynamical Systems

It is easy to see that a non-zero dictionary D ∈ S(m, k) with κ(D) = 0 indicates D ∈
St(m, k).

Stability Analysis

The stability is a desirable characteristic for LDS problems (4.2) and (4.3), especially when
simulating long sequences from the system in order to generate representative data or infer
stretches of missing values.
Recalling that we use the mixture of `1 norm and `2 norm to measure the sparsity, as

Eq. (3.16) with λ2 → 0+. λ2 → 0+ indicates that the prior distribution for the elements of
each coe�cient vector φ is zero-mean i.i.d. with standard Symmetric Laplace in R, which
could be de�ned as

p(φ) =
k
Π
j=1

p(ϕj), p(ϕj) =
λ1
2
exp{−λ1|ϕj − µ|}. (4.12)

where φ = [ϕ1, . . . , ϕk]
> ∈ Rk, λ1 ∈ R+ is a scale parameter, and µ = 0 is the location

parameter. Let us denote by φx ∼ L(µ, λ1) the Univariate Symmetric Laplace distribution
for φx with parameters µ = 0 and λ1 ∈ R+.
Let us consider the sparse representations matrices Φ0(D) and Φ1(D) of the data X0 and

X1. The multidimensional extension of the generative model of Eq. (4.12) for vectors set
Φ := Φ(D) is straightforward. Here, we adopt the setting for multivariate Laplace (ML)
distribution as shown in [172], which de�nes the formulation of ML distribution as a scale
mixture of a multivariate Gaussian given by φ =

√
zΣ1/2θ. Therein, θ ∼ N (µ, Ik), Σ1/2 ∈

Rk×k is a positive de�nite, i.e., covariance matrix of Φ, and z is drawn from a univariate
exponential distribution with probability density function (pdf) pZ(z) = λ1 exp(−λ1z). The
integrated distribution of {φt} over the prior distribution pZ(z) is given by

pΦ(φ) =

∫ ∞
0

pΦ|Z(φ|Z = z)pZ(z)dz

=

∫ ∞
0

1

(2πz)k/2
exp(− 1

2z
q(φ))pZ(z)dz

=

2K(k/2)−1

(√
2

λ1
q(φ)

)
(2π)(k/2)λ1

(√
λ1
2
q(φ)

)(k/2)−1 ,

(4.13)

with q(φ) = (φ − µ)>Σ−1(φ − µ), and Kd(x) denotes the modi�ed Bessel function of
the second kind and order d, evaluated at φ. In what following, we will use the notation
Φ ∼ ML(µ, λ1,Σ) to denote that Φ is an ML distributed variable with parameters µ,
λ1, and Σ. The model parameters of the Eq. (4.13) could be estimated using classical
maximum-likelihood approach, e.g., iterative EM-type algorithm.
Let matrices Σ1, Σ2 de�ne the internal covariance structure of the variables of Φ0 and
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Φ1, respectively. Now, let
Φ1 = P>Φ0 + ζ (4.14)

with ζ ∼ N (0,Σ′), be an arbitrary linear transformation of a ML(µ1, λ1,Σ1) random
vector Φ0, where P ∈ Rk×k. The transformed variable Φ1 admits Φ1 ∼ ML(µ2, λ

′
1,Σ2)

with 
Σ2 = P>Σ1P|det(P)|−(2/k),
λ′1 = λ1|det(P)|(1/k),
µ2 = P>µ1 + µ(ζ),

(4.15)

where µ(ζ) is the mean vector of ζ and assumed to be 0 in this chapter. Finding Ã given
Φ0 and Φ1 is triple approximation problems of (4.15).
In this chapter, we assume the length of sequence is su�ciently big. Thus, Φ0 := Φ0(D)

and Φ1 := Φ1(D) share the same distribution as sparse coe�cients set Φ. We assume
Φ ∼ ML(µ, λ1,Σ) with µ = 0. From the de�nition of Φ0(D) and Φ1(D), it easily infers
that Φ0(D) ∼ML(µ, λ1,Σ), Φ1(D) ∼ML(µ, λ1,Σ). Therefore, the linear transformation
satis�es 

Σ = P>ΣP|det(P)|−(2/k),
λ1 = λ1|det(P)|(1/k).
µ = P>µ,

(4.16)

Eq. (4.16) shows that a stable transition process implies that det(P) = 1 and ‖P>P‖2 = 1
with ‖ · ‖2 denoting the `2 norm of matrices.
Given data sequence {φt ∈ Rk}Tt=0, we hope to learn a stable linearity of expectation for

Eq. (4.14), i.e., the latent variable �tting Eq. (4.16). Eq. (4.16) shows that a stable linear
transformation requires a moderate det(P) and a moderate ‖P>P‖2. Given a square matrix
P ∈ Rk×k, it is known that ‖P‖F ≥ ‖P‖2. Thus we can enforce constraints on P with the
penalty functions

h(P) =
1

4 log(k)

(
log
(
η + det(P>P)

))2
, (4.17)

ρ(P) =
1

2k2
‖P‖2F , (4.18)

with η ∈ (0, 1) being a small smoothing parameter. h(P) is provided to void the worse case
of det(P>P) being exponentially big.
Let {σi}ki=1 denote the singular values of a transition matrix P ∈ Rk×k in decreasing order

of magnitude, and σ(P) denotes the largest one. It is known that ‖P‖2F =
√∑k

i=1σ
2
i ≥

σ(P)2. Thus, imposing a penalty as in Eq. (4.18) could result in a small σ(P). On the other
hand, P is expected to be full rank, and the Gram matrix P>P is positive de�nite, which
implies det(P>P) > 0. Recalling that det(P>P) =

∏
σ2i and 0 < η � 1, thus the constraint

term in Eq. (4.17) is imposed to restrict all singular values around 1. Such two constraints
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are similar, but more critical, to the conventional work in [171, 169], which states that an
LDS with dynamics matrix P is stable if all of P's eigenvalues have magnitude at most 1.

The Objective Function

By combining the regularizers discussed above, we construct the following cost function to
jointly learn both the dictionary and the linear transition matrix, i.e.,

J : Rk×k × S(m, k)→ R
(P,D) 7→ f(P,D) + γ1ρ(P) + γ2h(P) + γ3κ(D),

(4.19)

where the weighting factors γ1, γ2, γ3 ∈ R+ control the in�uence of three constraints on the
�nal solution. Our experiments have veri�ed that the regularizers ρ(P) and h(P) ensure
solutions of the global cost function J de�ned in Eq. (4.19) to be self explanatory to the
data, and guarantees stable performance towards the task of learning. On the other hand,
such a learned P could capture the dynamic course of a moving scene and it is the key
parameter for dynamic scenes synthesizing and classi�cation, cf. [114, 167].

4.3.2 Optimization Algorithm for SLDS

In this section, we employ a gradient descent (GD) algorithm to minimize Eq. (4.19). Let
M := Rk×k×S(m, k) be a product manifold of a Riemannian submanifold of Rk×k×Rm×k,
and let J : M → R be the di�erentiable cost function of Eq.(4.19). The general solution
to optimization problem in Eq. (4.19) on matrix manifold, an element ofM, is denoted by
Θ ∈ M,Θ := (P,D). For a detailed overview on optimization on matrix manifolds, we
refer the interested reader to [102, 25]. Before introducing the technical details of the GD
algorithm onM, we �rst compute the Riemannian gradients of J with respect to P and D.
Since all measures above on P and D are di�erentiable, thus, the current key challenge

for Eq. (4.19) is the di�erentiability of φx(D) with respect to D. Let us denote K :=
D>ΛDΛ + λ2Ik and u := D>Λx − λ1sΛ. The �rst derivative of φ∗x(D) with respect to D in
the direction H ∈ TDS(m, k) is

Dφ∗x(D)H = K−1H>x−K−1(D>ΛH + H>DΛ)K−1u. (4.20)

Therein, TDS(m, k) denotes the tangent space of S(m, k) at D.
Then, by computing the �rst derivation of J at (P,D) in tangent direction (HP,HD) ∈

T(P,D)M, we get the Riemannian gradient of J at (P,D) as

grad J(P,D) =
(
∇J(P), ΠD

(
∇J(D)

))
,

where∇J(P) and∇J(D) are the Euclidean gradients of J with respect to the two arguments,
respectively. Therein, the map ΠD : Rm×k → TDS(m, k) is de�ned in Eq. (3.32).
Using the shorthand notation, for all t = 0, 1, . . . , T , let Λt+1 be the support of nonzero

entries of φt+1(D), and denote ut+1 := D>Λt+1
xt+1−λ1sΛt+1 , ∆φt+1 := φt+1(D)−PΛtφt(D),
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Algorithmus 1 : A GD-SLDS Algorithm.

Input : Given training set {xt ∈ Rm}Tt=0, parameters γ1, γ2, γ3 and λ1 ;
Output: (P∗,D∗) ∈ Rk×k × S(m, k) ;
Step 1: Generate initialization for (P(0),D(0)), and set j = −1 ;
Step 2: Set j = j + 1 ;

Step 3: Update sparse codes ΦX(D(j)) for each φt(D(j)) using Lasso/Elastic Net in
Eq. (3.16);

Step 4: Update H(j) : = (H(j)
D ,H(j)

P )← − grad J(P(j),D(j)) ;

Step 5: Find step size t(j) via a backtracking line search along retractions or
geodesics, cf. [25, 144];

Step 5: Update D(j+1) ← ΓS(D(j),H(j)
D , t(j)), cf. Eq. (3.33);

Step 6: Update P(j+1)← t(j)P(j) + H(j)
P ;

Step 7: If
∥∥H(j)

∥∥ is small enough, stop. Otherwise, go to Step 2;

and qt := ut∆φ
>
t+1, the Euclidean gradient ∇J(D) of J with respect to D is

∇J(D) =
T−1∑
t=0

1

T
V{
(
xt+1∆φ

>
t+1 −DΛt+1K

−1
t+1(qt + q>t )

)
·K−1t+1}

+
1

T
V{
(
DΛt(Kt)

−1(PΛtqt + q>t P>Λt)− xt(∆φt+1)
>PΛt

)
(Kt)

−1}+ γ3∇κ(D)

with

∇κ(D) = D
∑

1≤i<j≤k

2d>i dj

1− (d>i dj)2
(Eij + Eji) (4.21)

being the gradient of the logarithmic barrier function Eq. (4.11). Therein, V{·} denotes the
full length vector of sparse coe�cients {·}.
Finally, the Euclidean gradient ∇J(P) is computed as

∇J(P) =
T∑
t=0

1

T
φt+1∆φ

>
t+1 + γ1∇ρ(P) + γ2∇h(P) (4.22)

with

∇h(P) =
η

log(k)
P(ηP>P)−1,

∇ρ(P) =
1

k2
P.

Then, we denote by G := gradJ(P,D), H ∈ T(P,D)M the Riemannian gradient of J and
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the gradient direction for update. Given dimS(m, k) = k(m− 1), we summarize a gradient
descent algorithm for minimizing the function J as de�ned in Eq. (4.19), cf. Algorithm 1.

4.4 DTs Classi�cation using SLDS Model

In the previous section, we proposed a generic regularized cost function to model the evolu-
tion of a temporal DT sequence, namely, SLDS. In this section, we present one application
of the proposed SLDS model, to demonstrate its validity for DTs classi�cation.
It is observed that the DTs from the same class exhibit similar spatial and temporal

dynamics, which show strong dissimilarity for DTs from di�erent classes, cf. [173, 174, 175,
176, 177]. In order to capture the similarity of dynamics of intraclass DTs, we propose
to learn one uni�ed SLDS model for all samples in such a class. At the same time, such
learned class-wise SLDS parameters are expected to be against the dynamics of DTs outside
the class. The key idea behind our development is to minimize the dissimilarity of dynamics
of intraclass DTs, and simultaneously maximize the dissimilarity of dynamics of interclass
DTs.
In this section, we consider to independently learn one SLDS classi�er, i.e., one dictionary

and one transition matrix, for each class. In what follows, at �rst, we introduce the SLDS
classi�er that suits for modeling each whole video sequence using a single SLDS model,
which is called global SLDS classi�er in the rest of the chapter. However, in the practical
applications of visual recognition, one issue often challenges most sparse coding based algo-
rithms, i.e., the linear system of Eq. (1.1) might become prohibitively expensive when the
dimensionality of the raw image of input DT is huge. To address such a challenge, we then
consider to learn one SLDS classi�er for the small spatiotemporal patches extracted from
the DT videos, which is simply called patch-based SLDS classi�er.

4.4.1 Global SLDS Classi�er

Let us denote by images set Y = [X1, . . . ,Xn] ∈ Rm×n×(T+1) with each Xi denoting one
DT sequence. The corresponding sparse coe�cients are denoted by X = [Φ1, . . . ,Φn] ∈
Rk×n×(T+1) with each Φi being one sequence of (T + 1) sparse events. We now assume that
each training sequence {Xi ∈ Rm×(T+1)} is associated with a indicator vector zi ∈ R, which
indicates the corresponding class label. Let c > 1 denote the number of classes, nj denotes

the number of data samples in the j-th class with n =
c∑
j=1

nj . Let Scj refer to the subset of

{Xi}ni=1 in the jth class.
Let us denote Pj and Dj as parameters for modeling samples from the jth class. Minimiz-

ing the dissimilarity of intraclass DTs can be read as an optimization problem to minimize

Ejw =
1

2Tnj

∑
i∈Scj

T∑
t=1

∥∥φxi,t(Dj)−Pjφxi,t−1(Dj)
∥∥2
2 (4.23)
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with xi,t being the (t+ 1)th frame of the ith DT sequence Xi. On the contrary, maximizing
the dissimilarity of interclass DTs can be cast as an optimization problem to maximize

Ejb =
1

2T (n− nj)
∑
i/∈Scj

T∑
t=1

∥∥φxi,t(Dj)−Pjφxi,t−1(Dj)
∥∥2
2
. (4.24)

By combining Eq. (4.23) and Eq. (4.24), learning the jth-class predictive model parameters
{Dj ,Pj} could be formulated as the following minimization problem

(Pj ,Dj) := arg min{Ejw − γ4E
j
b + γ5κ(Dj)} (4.25)

with γ4, γ5 ∈ R+ being two tuning parameters. Speci�cally, γ5 ∈ R+ is introduced to avoid
the repeated atoms of Dj .
Minimizing (4.25) could endow the model parameters (Pj and Dj) with discrimination,

but it does not take advantage of the sparse structure of �states� set X . Various works have
veri�ed that the sparse coe�cients carry rich discriminative information, cf. [26, 146]. In
order to explore the useful information from the sparse structure of X , in the following, we
improve the classi�cation model (4.25) by imposing a constraint on P.

Sparse Transition Matrix

Let us focus on the problem of DTs classi�cation, the stability for sparse state transition
in (4.10) is not necessary. Our goal is to build an e�cient mapping between the sparse
coe�cients of the current and previous images in time, and this mapping could capture the
discriminative information hidden in sparse coe�cients.
Works in [173, 175, 177] �nd that there exist strong spatial homogeneity and temporal

periodicity in a single moving scene or motion, which implies that the DT patterns from one
sequence are repetitive and often show a similar sparse structure over a suitable dictionary.
On the other hand, the sparse events {Φi}nii=1 from the same class are often ideally assumed
to share the similar essential sparse structure. Therefore, capturing such a similarity of
sparse events of intraclass DTs provides a good way to help DTs classi�cation, and hence
the suitable choice of transition matrix P is sparse. The nonzero support of P is dominated
by the support of nonzero entries in the sparse representations of consecutive images from
intraclass DT sequences. In other words, the sparse structure of Pj is shared by sparse
�states� of all DT sequences in the j-th class.
Here, we admit this assumption, and enforce the sparsity of each row of P as minimizing

a `p norm with 0 ≤ p ≤ 1. In this chapter, we use the following term to measure the overall
sparsity of P := {pij}, i.e.,

r(P) =
1

2k

k∑
i=1

k∑
j=1

log(1 + νp2
ij) (4.26)
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with 0 < ν < 1 being a weighting parameter.
Essentially, for each DT sequence, the sparse transition matrix is expected to capture the

dynamics of sparse events in time. Correspondingly, a learned highly row sparse matrix Pj

could push the consecutive sparse vectors {φt,φt+1} in jth class tending to the similar per-
mutation of nonzero entries. Therefore, it logically infers that such a sparse transition matrix
could capture the similarity hidden in sparse representation sequences from the same class.
Simultaneously, such a transition matrix may also promote the discrepancy of structures of
interclass sparse events.

The Objective Function

By taking advantage of the sparse constraint on P, i.e., Eq. (4.26), we modify the optimiza-
tion problem (4.25) by minimizing

L : S(m, k)× Rk×k →R,

L(Pj ,Dj) := Ejw−γ4E
j
b + γ5κ(Dj) + γ6r(Pj),

(4.27)

where γ6 > 0 is introduced to promote the sparse structure of Pj . Our experiments have
veri�ed that an appropriately sparse P can signi�cantly improve the results of DTs classi�-
cation.

Classi�cation

For the multi-class classi�cation problem, i.e., c > 2, we use the one-against-all or one-
against-one strategy to learn {Pj ,Dj}. Let us consider one example which adopts the
one-against-all strategy. When the training parameters {Pj ,Dj}cj=1 are learned, classifying
a test DT sequence X := {xt}Tt=0 can be formulated as �nding

identity(X) = argmin
j

T∑
t=1

∥∥φxt(Dj)−Pjφxt−1(Dj)
∥∥2
2
,

for all j = 1, 2, · · · , c.

4.4.2 Patch-based SLDS Classi�er

Given a set DT sequences of jth class with each sequence X ∈ Ra×b×(T+1), m = a × b, we
divide it into non-overlapping spatiotemporal volumes of size p × p × τ where p represents
the spatial size and τ represents the temporal size. The patch size is set according to the
resolution of training sequences to ensure that we utilized the entire video sequence while
extracting non-overlapping patches and not disregard any region. We randomly select nj
patches {X̃i}

nj
i=1 from each category for training its sub-dictionary Dj with the size of p2×k.

Therefore, for jth class, we learn one dictionary Dj and nj sparse transition matrices {Pi}
nj
i=1
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by minimizing

1

2(τ − 1)nj

nj∑
i=1

τ∑
t=2

∥∥φx̃i,t(Dj)−Piφx̃i,t−1
(Dj)

∥∥2
2

+ γ7κ(Dj) + γ8r(Pj), (4.28)

with γ7 ∈ R+, γ8 ∈ R+ and x̃i,t being the (t+ 1)th frame of the ith patch sequence X̃i. We
shortly denote the jth class SLDS parameters byMj = (Dj , {P}

nj
i=1).

With the learned SLDS parameters {Mj}cj=1 at hand, some standard classi�cation meth-
ods can be employed. Here, c ∈ Z+ denotes the number of classes. In this section, the
classi�cation is performed by SLDS associated with the sparse representation-based classi-
�er (SRC) [3, 178], called SLDS-SRC, which is discussed in detail as follows.
Before performing SLDS-SRC, we combine all the sub-dictionaries {Dj}cj=1 as a shared

dictionary D with the size of p2 × (ck).
Given a query DT sequence X, we �rst divide it into N spatiotemporal patches X̃i :=
{x̃it} ∈ Rp2×τ and for each patch we obtain its sparse coe�cients set Φ̃i := {φ̃it} ∈ R(ck)×τ

via performing Eq. (3.16) with respect to D. Let us denote an operator δj : Rck → Rck be
the characteristic function which selects the coe�cients associated with the jth class, cf. [3].
For our learned φ̃, δj(φ̃) ∈ Rck denotes the sparse codes of class j, i.e., all entries are set to
zero if they do not belong to class j. By using the sparse codes from jth class, we calculate
the reconstruction error via

Rj(X̃,D) =
1

Nτ

N∑
i=1

τ∑
t=1

‖x̃it −Dδj(φ̃it)‖2. (4.29)

Similarly, by using {P}nji=1 from jth class, we approximate the temporal dynamic process
by solving the following optimization problem

min
α

N∑
i=1

τ−1∑
t=1

‖φ̃i(t+1) −
L∑
ι=1

αiιPiφ̃it‖+ λ
N∑
i=1

‖αi‖1

with L = cnj . In our experiments, in order to reduce the computation cost, we set L = c(n′j)
with n′j ∈ Z+, n′j < nj .

With the sparse vectors {αiι}i=N,ι=Li=1,ι=1 at hand, we calculate the approximate error by

Rj(Φ̃,P) =
1

N(τ − 1)

N∑
i=1

τ−1∑
t=1

‖φ̃i(t+1) −
L∑
i=1

δj(αiι)Piφ̃it‖2.

Therein, δj(αiι) keeps the value of αiι if Pi belongs to jth class, δj(αiι) = 0 otherwise.
Hence, we classify a query DT sequence X as follows

identity(X) = argmin
j

Rj(X̃,D) + γRj(Φ̃,P),
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where γ is a tuning parameter to balance the two residual terms. We set γ = 1 in our
following experiments. Therein, X̃ and Φ̃ denote the patches set of X and the corresponding
sparse coe�cients set, respectively.

(a) Corrupted original sequence (b) Reconstructed sequence

(c) Synthesized video using LDS and SLDS on DTs with Gaussian noise

(d) Synthesized video using LDS and SLDS on DTs with missing data

Figure 4.5: Reconstruction and synthesizing on the candle scene. (a), (b) are (t = 1, 64, 128, 512, 1024)th
frame of the corrupted data by Gaussian noisy and the reconstructed data using SLDS, respectively. (c) The
top row is the synthesized sequence using LDS (128PCs), and the bottom row is the synthesized sequence
using SLDS ((t = 2, 1024, 3072, 5120, . . . , 20480)th frame). (d) The top row is the sequence with missing
data. The middle row the synthesized sequence using LDS, and the bottom row is the synthesized sequence
using SLDS.

4.5 Numerical Experiments for Evaluating the SLDS Model

In this section, we carry out several experiments on natural image sequences data to demon-
strate the practicality of the proposed algorithm. Our test dataset comprises of videos from
several benchmark datasets, and data from internet sources (for instance, YouTube).

4.5.1 Datasets

So far, two basic databases have been widely used for DT analysis: the UCLA-DT database
[114] and the DynTex database [2].
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The UCLA-DT database originally consists of 200 DT sequences with 50 categories, and
each category contains 4 video sequences captured from di�erent viewpoints. Its DT se-
quences have already been pre-processed from their raw form, whereby each sequence is
cropped to show its representative dynamics in absence of any static or dynamic back-
ground. For each DT sequence, there is only a single DT is present. Each sequence has
T = 75 frames with m = 48× 48 pixels.
The DynTex database is a large pool of DT sequences and consists of a total of 656 AVI

video sequences with the size of 720 × 576. It aims to serve as a standard database for
dynamic texture research and to accommodate the needs for assessing the di�erent research
issues, such as texture synthesis, detection, segmentation and recognition, cf. [2].
DynTex++ [179] is a well-designed dataset from original DynTex database and is often

used for evaluating DT classi�cation algorithms. It eliminated sequences that contained
more than one DT, contained dynamic background, included panning/zooming, or did not
depict much motion. The remaining sequences were then labeled as 36 classes. Each class
has 100 subsequences of length 50 frames with 50 × 50 pixels cropped from the original
sequences.
As the color information is not our focus, all images will be normalized to the grayscale

between 0 and 1. Throughout all experiments, we consistently set λ2 = 10−5 in Eq. (3.16).
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Figure 4.6: The maximum singular value of P for SLDS and LDS. The �stable line� denotes the boundary
for stable P, in which the singular value is equal to 1. (a). Comparing the largest singular value of P with
increasing loops, on candle video. (b). Largest singular value of P with increasing training samples, on
candle video, n = 512, 1024, 3072, 5120, 7168, 10240. Both select the 1024× 512 dictionary.
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Table 4.1: Synthesizing results on sequence of burning candle.

Instance
LDS, (PCs) SLDS, (loops)

64 128 256 1 50 100 200 400
Compression
rate (%)

6.25 12.50 25.00 1.02 3.29 3.41 3.50 3.55

σ 0.9802 0.9833 0.9849 1.78 1.06 0.9992 0.9994 0.9994
ex 135265 135138 135060 1360 60.2 58.8 56.0 71.3

eφ 101.58 135.88 168.95 37500 171.99 75.52 61.96 46.18

(a) Tidewater and synthesized data (bottom two rows)

(b) synthesized data using LDS and SLDS

Figure 4.7: Tidewater from DynTex database. (a) (Original) Tidewater sequence (m = 40 × 56, T =
3297 − 1) and reconstructed data via SLDS (bottom 2 rows (t = 1, 21, 41, . . . , 101)st frame). (b)The top
row is synthesized sequence using LDS (200PCs), and the bottom row is synthesized sequence using SLDS,
((t = 4001, 5351, 6401, . . . , 8551)st frame).
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4.5.2 Dynamic Textures Synthesis

DT synthesis is the process of creating a longer or in�nite DT sequence using a video exem-
plar as input. This can be achieved starting either from a model of a physical phenomenon
or from existing video sequences, cf. [180]. This chapter focuses on the image-based meth-
ods, i.e., �nding a mathematical model of the video, e.g., LDS or SLDS, that can explain
the dynamic process of generation of a DT sequence. Once this model is at disposal, it can
generate longer video sequences, by just producing new video frames using this model. In
what follows, we test our SLDS on DT synthesis in comparison with classical LDS method.
Firstly, we show the performance on reconstruction and synthesis with a grayscale video of

burning candle from YouTube, which is corrupted by Gaussian noise or occlusion. This video
has 10240 frames with size of 32 × 32, as seen in Fig. 4.5(a). But in the �rst experiment,
we select its �rst 1024 frames as training sequence. The initial dictionary is with the size of
1024× 512. We set λ1 = 0.2, γ1 = 0.5, γ2 = 0.02, and γ3 = 0.0005. After obtaining D and
P by minimizing Eq. (4.19), the synthetic data can be generated easily by φt+1 = Γβ(Pφt),
where Γβ is the element-wise hard thresholding operator which keeps the elements whose
magnitudes are larger than β while setting the rest zeros. We also use a following convex
formulation to estimate φt+1, i.e.,

min
φt+1

1

2
‖φt+1 −Pφt‖22 + λ1‖φt+1‖1 + λ2‖φt+1‖2.

Table 4.1 shows the DT synthesis performance on burning candle with Gaussian noise.
The error pairs (ex, eφ) are de�ned as ex =

∑
t ‖xt −Dφt‖, eφ =

∑
t ‖φt+1 − Pφt‖, and

the largest eigenvalue of P is denoted by σ. The compression rate for SLDS is the sparsity
of φ to m, and for LDS is the number of PCs to m. Table 4.1 shows that SLDS can
obtain the stable dynamic matrix P (σ ≤ 1), smaller compression rate and smaller error
(ex, eφ) of cost function (4.19), by increasing the number of main loops in Algorithm 1.
Stability for (4.2) and (4.3) will be achieved while the largest singular value is bounded by
1, cf. [169]. The main formulation (4.19) with constraints on P has enforced stability on
P, but doesn't guarantee all the maximum of singular values are less than 1. However, this
goal can be reached while the training samples are huge or increasing the number of main
loops in Algorithm 1, as seen in Fig. 4.6.
Fig. 4.5 (a ∼ c) is the visual comparison between LDS and SLDS. SLDS performs well

on denoising against corruption by Gaussian noise. In the case of occlusion in Fig. 4.5 (d),
random 50 frames of the 1024 burning candle video are corrupted by a (6 × 7) rectangle.
The length of both synthesizing data is 1024, based on the �rst frame of the burning candle.
The experimental results show that 87.01% of the synthesizing data from LDS are corrupted
by this rectangle, but only 9.47% are slightly corrupted by this rectangle for SLDS. The
synthesizing images are shown in the bottom two lines of Fig. 4.5 (d).
Similar to Fig. 4.5, we then perform SLDS on another DT sequence, namely Tidewater,

from DynTex database. The synthesizing experiments are depicted in Fig. 4.7. Fig 4.7(a)
shows that SLDS can model and synthesize such DT sequence. For synthesizing a longer
videos in Fig 4.7(b), compared with LDS, SLDS also performs better.
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Figure 4.8: Examples of some training samples. The top line images set is from the class of �candles� and
the bottom one is from the class of ��owers�.

Table 4.2: DT recognition rates on the DynTex++ database with occlusion.

Occlusion rate (%) 0 5 15 30
LDS-NN (20PCs) 69.72 45.00 25.14 14.17
LDS-SRC (20PCs) 73.14 56.66 29.04 15.26
MMDL [179] 63.7 - - -
SLDS-NN 70.28 64.72 44.44 22.36
global SLDS 88.28 88.08 84.11 71.34
SLDS-SRC 90.64 88.82 83.21 69.10
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Figure 4.9: Applying SLDS classi�er (global) on DynTex++ with di�erent choices of η(P).

4.5.3 Dynamic Textures Classi�cation

In this section, the performance of the proposed SLDS is evaluated for DT classi�cation on
DynTex++ and UCLA-DT 50 databases. We address the multi-class classi�cation problem
with a one-against-all strategy. All recognition experiments are repeated ten times with
di�erent randomly selected training and test subsets, and the average of per-class recognition
rates is recorded for each run.
The �rst classi�cation experiment is applied on DynTex++. We use total 3600 videos

with c = 36 and randomly choose 50 videos per class for training, and the rest 50 videos for
test. For SLDS-SRC classi�er in Section 4.4.2, we set λ1 = 0.1, γ7 = 0.005, γ8 = 0.2, p = 10,
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Table 4.3: DT recognition rates on the UCLA-DT 50 database with missing pixels.

The rates of
missing pixels

LDS-NN
(25PCs)

LDS-SRC
(25PCs)

MMDL
[179]

SLDS-NN
global
SLDS

SLDS-SRC

0% 88.08 94.32 99.00 90.22 96.18 97.23
5% 83.72 85.10 89.40 88.13 96.02 96.84
15% 55.06 64.26 70.64 84.34 94.44 94.68
30% 17.90 26.28 18.18 78.42 91.12 84.48
50% 12.88 20.18 14.42 58.65 83.56 74.00

τ = 25, and c × k = 36 × 20. For DT sequences from jth class, we train its sub-dictionary
Dj with the size of 100 × 20. We then combine all the sub-dictionaries as dictionary D̂
with the size of 100 × 720. For global SLDS classi�er in Section 4.4.1, we set γ4 = 1,
γ5 = 0.002, and γ6 = 0.5. We choose the dictionary size as m = 2500, k = 36 × 20. Note
that, LDS-NN, SLDS-NN, LDS-SRC, SLDS-SRC are classi�cation methods that employ
Nearest Neighbors (NN) classi�er or SRC classi�er to classify the model parameters (P,D)
learned by LDS or SLDS. In order to evaluate the robustness of SLDS to non-Gaussian
noise, Table 4.2 depicts the recognition results with increasing occlusion rates for test data.
Compared to LDS-NN and LDS-SRC, Table 4.2 shows the proposed global SLDS and SLDS-
SRC classi�ers perform better while the test videos are corrupted by increasing occlusion.
Some DT examples corrupted by occlusion are shown in Fig. 4.8. In addition, compared
with SLDS-SRC classi�er, the global SLDS classi�er achieves a higher recognition rate while
having a heavy occlusion (e.g., 30% occlusion).
Let us denote by η(P) = s/(k2) the sparsity ratio of the transition matrix Pk×k with s

denoting the sparsity of P. Fig. 4.9 depicts the recognition rate against η(P) using global
SLDS classi�er. It is easy to see that the setting of a suitable sparsity of P can improve the
recognition rate.
The second classi�cation experiment is performed on UCLA-DT 50 database. Since these

50 classes contain the same DTs at di�erent viewpoints, they can be grouped together
to form 9 classes, as in [181]. For SLDS-SRC classi�er, we set λ1 = 0.1, γ7 = 0.005,
γ8 = 0.25, p = 10, τ = 25, and c × k = 50 × 20. The size of each sub-dictionary is set
with 100 × 20. We also combine all the sub-dictionaries as dictionary D̂ with the size of
100 × 1000. For global SLDS classi�er, we set γ4 = 1, γ5 = 0.001, and γ6 = 0.2. We
choose the dictionary size as m = 2304, k = 50 × 20. The missing pixels for an image is
another kind of non-Gaussian noise. Note that, the image with a% missing pixels means
that we set the values of random a% pixels in such an image to zero. Table 4.3 shows the
recognition results for DTs corrupted by missing pixels, in comparison of classical methods,
i.e., LDS-NN and LDS-SRC. For LDS-SRC, we choose 25PCs for �states� which achieved the
best performance recorded in [178]. As shown in Table 4.3, for the DT classi�cation without
missing pixels, SLDS classi�ers perform better than classical LDS-NN and LDS-SRC, and
behind the current record achieved by MMDL in [179]. But for classi�cation with increasing
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missing pixels, SLDS based methods (i.e., SLDS-NN, global SLDS and SLDS-SRC ) decease
slowly, compared with the dramatically decreasing performance of LDS-NN, LDS-SRC and
MMDL.
Overall, the results in this subsection suggest that the proposed SLDS classi�ers can

achieve a good performance on DTs classi�cation, especially when the DTs are corrupted by
heavy non-Gaussian noise.

4.6 Summary

This chapter has presented an alternative method, called SLDS, to model the dynamic
process of DTs. In SLDS, the sparse events over a dictionary are imposed as transition
�states�. A constrained transition matrix is learned to represent each DT sequence. It
has been demonstrated that the proposed method is much more robust in synthesizing
and reconstruction on DTs corrupted by Gaussian noise. To enable the SLDS in DT's
classi�cation, we proposed two discriminative SLDS algorithms associated with a sparse
transition matrix. Our experiments have shown that an appropriately sparse transition
matrix could well capture the discrimination of DT sequences. Especially, SLDS and SLDS
classi�ers become more powerful in the case of test data corrupted by non-Gaussian noise,
such as occlusion or missing pixels. For instance, in one test case, the recognition rate
of SLDS-SRC decreased from 97.23% to 84.48% while conventional LDS-SRC approach
decreased from 94.32% to 26.28% when 30% missing pixels occur.
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Chapter 5

Sparse Low Dimensional Representation

Learning

By adopting the representation learning framework presented in Chapter 3, this chapter
focuses on the problem of �nding appropriate low dimensional image representations to
facilitate the speci�c problem of learning. The core concept of our development is to dis-
entangle sparse representations of images by employing the trace quotient criterion. As
already discussed in previous chapters, sparse representation is a convenient, powerful tool
to identify underlying self-explanatory factors of data, and the trace quotient criterion is
known for disentangling underlying discriminative factors in data. We construct a uni�ed
cost function for jointly learning both a sparsifying dictionary and a dimensionality reduction
transformation. The cost function is widely applicable to various algorithms in three classic
machine learning scenarios, namely, unsupervised, supervised, and semi-supervised learning.
Our proposed optimization algorithm leverages the e�ciency of geometric optimization on
Riemannian manifolds and the di�erentiability of sparse solutions with respect to dictionary.
Performance of our proposed framework is investigated on several machine learning tasks,
such as 3D data visualization, face/digit/cartoon recognition and object/scene categoriza-
tion.

5.1 Introduction

In Chapter 1, we have discussed that �nding appropriate low dimensional representation of
data, i.e., low dimensional representation learning could facilitate the learning task of inter-
est. Speci�cally, for image processing, appropriate low dimensional representation of images
has demonstrated its prominent capability and convenience in various applications, such as
images visualization [116, 182, 13], segmentation [117, 119], clustering [116, 18, 183] and
classi�cation [184, 118, 185, 186, 187]. This Chapter focuses on the problem of constructing
e�ective low dimensional representation algorithms to disentangle underlying explanatory
information in the data for solving various computer vision problems. One key di�culty in
learning low dimensional image representations lies in the observation that di�erent repre-
sentations of image can disentangle di�erent explanatory information or factors, which are
supposed to promote the speci�c machine learning task [5, 188]. Disentangling appropriate
explanatory information that can explain internal intricate structure in high dimensional
image sets become a challenging problem in image processing [116, 184, 14]
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Chapter 5 Sparse Low Dimensional Representation Learning

To address such a challenge, in Chapter 3, a two-layer representation learning frame-
work was proposed to disentangle useful information hidden in sparse representations. Since
sparse representations of data have been observed to contain rich explanatory information
of the data with respect to certain learning tasks. In this chapter, we follow the framework
depicted in Fig. 3.1. By employing an e�ective disentangling instrument, we propose to
jointly disentangle a sparsifying dictionary and underlying factors hidden in image sparse
representations. Among various low dimensional representation learning instruments, the
trace quotient criterion is a simple but powerful framework for disentangling underlying dis-
criminative factors in data. This generic criterion is shared by various classic dimensionality
reduction (DR) methods, which include PCA, Linear Discriminant Analysis (LDA) [186],
Linear Local Embedding (LLE) [13], Marginal Fisher Analysis (MFA) [187], Orthogonal
Neighbourhood Preserving Projection (ONPP) [15], Locality Preserving Projections (LPP)
[183], Orthogonal LPP (OLPP) [189], Spectral Clustering (SC) [18], semi-supervised LDA
(SDA) [190], etc.
Our main construction in this chapter is to apply the trace quotient criterion to further

disentangle sparse representations for triple supervised, unsupervised and semi-supervised
learning tasks. In the rest of the chapter, we refer to such a model as SPARse LOW
dimensional representation learning (SparLow). Then, we construct a di�erentiable cost
function to jointly learn a sparsifying dictionary and a DR transformation, which are de�ned
on the product manifold of the product of unit spheres and the Grassmann manifold. Finally,
we develop a conjugate gradient (CG) algorithm for minimizing the cost function.
The chapter is organized as follows. Section 5.2 provides a brief review on low dimensional

representations based on the trace quotient criterion. In Section 5.3, we �rst construct a
generic cost function for learning both the sparsifying dictionary and the orthogonal DR
transformation, and then develop a geometric conjugate gradient algorithm on the under-
lying smooth manifold. Several applications of the proposed generic model are discussed in
Section 5.4, together with their experimental evaluations presented in Section 5.5. Finally,
conclusions and outlooks are given in Section 5.6.

5.2 Optimization of Trace Quotient Criterion

In this section, we brie�y review some state of the art results in trace quotient optimization
based dimensionality reduction.
Classic dimensionality reduction methods aim to �nd a lower-dimensional representations

yi ∈ Rl of given data samples xi ∈ Rm with l < m, via a mapping µ : Rm → Rl, which
captures certain desired properties of the data to facilitate the speci�c applications. Many
classic DR methods restrict the mapping µ to an orthonormal transformation. Let us de�ne
the set ofm×l matrices, consisting of l orthonormal columns in Rm, by St(l,m) as Eq. (3.3).
In this work, we con�ne ourselves to the form of orthonormal linear mapping as µ : Rm →
Rl, µ(x) := V>x. This model covers a wide range of classic supervised and unsupervised
learning methods, such as LDA, MFA, PCA, OLPP, and ONPP. Further details are given
in section 4.3.
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One generic algorithmic framework to �nd the orthogonal transformation V ∈ St(l,m) is
formulated as a maximization problem of the so-called trace quotient or trace ratio, i.e.,

argmax
V∈St(l,m)

tr(V>AV)

tr(V>BV) + σ
, (5.1)

where matrices A,B ∈ Rm×m are often symmetric positive semide�nite, and constant σ > 0
is chosen to prevent the denominator from being zero. Both matrices A,B ∈ Rm×m are
constructed according to the speci�c problems [14, 15], and examples will be given and
discussed in Section 4.3.
It is obvious that solutions of the problem in (5.1) are rotation invariant, i.e., let

V∗ ∈ St(l, k) be a solution of the problem (5.1), then so is V∗Θ ∈ St(l, k) for any
Θ ∈ Rl×l being orthogonal. Namely, the solution set of the problem in (5.1) is the set
of all l-dimensional linear subspace in Rm. In order to cope with this structure, we employ
the Grassmann manifold, which can be alternatively identi�ed as the set of allm-dimensional
rank-l orthogonal projectors, as de�ned in Eq. (3.30). Thus, the trace quotient maximization
problem can be reformed as

argmax
P∈Gr(l,m)

tr(AP)

tr(BP) + σ
. (5.2)

Although various e�cient optimization algorithms over Riemannian manifolds have been
developed to solve the trace quotient maximization problem [14, 191, 155, 192, 193], the
construction described in the next section requires further constructive development.

5.3 The Proposed Joint Learning Framework

In this section, we �rstly present a generic cost function, which adopts the sparsifying dic-
tionary learning in the framework of trace quotient maximization in Section 5.2. Then a
geometric conjugate gradient algorithm is presented in Section 5.3.2.

5.3.1 A Generic Cost Function

As suggested by the work of [130, 26, 125, 119], further processing on the sparse representa-
tion is capable of unveiling task-related underlying factors, potentially for both supervised
and unsupervised learning tasks. In what follows, we construct a cost function, which allows
to jointly learn both the sparsifying dictionary and the orthogonal transformation in the
framework of trace quotient maximization.
Let us denote by Φ(D,X) := [φD(x1), . . . ,φD(xn)] ∈ Rk×n the sparse representation of

the data X = [x1, . . . ,xn] for a given dictionary D. The sparse representations are con�ned
to the solutions of the sparse regression problem as in Eq. (3.1). Let A : Rk×n → Rk×k
and B : Rk×n → Rk×k be two smooth functions that serve as generating functions for the
matrices A and B in the trace quotient in Eq. (5.2). Constructions of the mappings A and
B are exempli�ed in Section 5.4. Then we de�ne a generic trace quotient function in sparse
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Chapter 5 Sparse Low Dimensional Representation Learning

representations as

f : S(m, k)×Gr(l, k)→R,

f(D,P) :=
tr (A(Φ(D,X))P)

tr (B(Φ(D,X))P) + σ
.

(5.3)

When the structure function A and B are smooth in its parameter, it is direct to conclude
that the function f is locally di�erentiable on the product manifold S(m, k)×Gr(l, k).
In order to prevent solution dictionaries from being highly coherent, which is critical for

guaranteeing the local smoothness of the sparse solutions, we employ a log-barrier function
on the scalar product of all dictionary columns to control the mutual coherence of the learned
dictionary D [144], i.e., for dictionary D = [d1, . . . ,dk] ∈ Rm×k,

hc(D) := −
∑

1≤i<j≤k

1
2 log

(
1− (d>i dj)

2
)
. (5.4)

Furthermore, the authors in [121] argues that an appropriate dictionary of choice in sparse
representation can reveal the semantics of the data. We propose to the following regularizer
on the dictionary to be learned

hd(D) := 1
2‖D−D∗‖2F , (5.5)

where D∗ is the optimal data-driven dictionary learned from the data X, i.e., learning
dictionary adapted to data reconstruction. It measures the distance between an estimated
dictionary D and the optimal dictionary D∗ in terms of Frobenius norm. Practically, we use
a dictionary D̂ produced by state of the art methods, such as K-SVD, to replace D∗. Our
experiments have veri�ed that the heuristic regularizer hd ensures solutions of the generic
cost function J de�ned in Eq. (5.6) to be self explanatory to the data, and guarantees stable
performance towards the task of learning.
To summarize, we construct the following cost function to jointly learn both the sparsifying

dictionary and the orthogonal transformation, i.e.,

J : S(m, k)×Gr(l, k)→ R,
J(D,P) := − f(D,P) + µ1hc(D) + µ2hd(D),

(5.6)

where the two weighting factors µ1 > 0 and µ2 > 0 control the in�uence of the two regular-
izers on the �nal solution.

5.3.2 A Geometric Conjugate Gradient Algorithm

In Chapter 3, we have investigated the (local) di�erentiability of the sparse representation
in the dictionary from the perspective of global analysis. By leveraging such a bene�t,
in this subsection, we brie�y present a geometric CG algorithm on the product manifold
M := S(m, k) ×Gr(l, k) to maximize the generic cost function J , de�ned in Eq. (5.6). As
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5.3 The Proposed Joint Learning Framework

Algorithmus 2 : A CG-SparLow Algorithm.

Input : X ∈ Rm×n and functions A : Rk×n → Rk×k and B : Rk×n → Rk×k as speci�ed
in Section 5.4 ;

Output: D∗ ∈ S(m, k) and P∗ ∈ Gr(l, k);

S1: Initialize D(0) ∈ S(m, k), V(0) ∈ St(l, k), P(0) = V(0)V(0)>,
Ω(0) = [P(0),∇J(P(0))], and set i = −1 ;

S2: Compute G(0) = (G
(0)
D ,G

(0)
P ), H(0) = −G(0) ;

S3: Set i = i+ 1;

S4: Update sparse representation matrix Φ(i) via Eq. (3.1);
S5: Find step size t(i) via a backtracking line search along geodesics, cf. Algorithm 3
and [144] ;

S6: Update D(i+1) ← ΓS(D(i),H(i)
D , t(i)), cf. Eq. (3.33); Let Q := (I + t(i)Ω(i))Q

via QR decomposition, then, update V(i+1) = QV(i), P(i+1) = V(i+1)V(i+1)> ;

S7: Update G(i+1) = (G
(i+1)
D ,G

(i+1)
P ), where

G
(i+1)
D = ΠD(∇J(D(i+1))),G

(i+1)
P = πP(∇J(P(i+1))) ;

S8: Compute β(i) according to Eq. (3.29);

Update H(i+1)
D = −G

(i+1)
D + β(i)TS,H(i)

D

;

Let TGr,Ω(i) := Q[H(i)
P ,P(i)]Q>,

H(i+1)
P = −G

(i+1)
P + β(i)[TGr,Ω(i) ,P(i+1)],

Ω(i+1) = [H(i+1)
P ,P(i+1)];

Update H(i+1) = (H(i+1)
D ,H(i+1)

P ) ;
S10: If

∥∥G(i+1)
∥∥ is small enough, stop. Otherwise, go to Step 3 (S3);

introduced in Section 3.4, it is known that CG algorithms o�er prominent properties, such as
a superlinear rate of convergence and the applicability to large scale optimization problems
with low computational complexity, e.g., in sparse recovery [144, 25].
Although the technique of geometric optimization is nowadays popularly available, devel-

opment of such an algorithm on a product manifold is not necessarily trivial. Note that, the
required concepts of Geometry of Grassmann manifold and product of r unit spheres have
been introduced in Chapter 3. Since the dimensions m, k and l are �xed throughout the
rest of the paper, the product of k unit spheres is further on denoted by S, and Grassmann
manifold is denoted by Gr in some place.
In the following, we use the geometric CG algorithm to resolve the optimization problem

(5.6), the solution of which is restricted to a product of Oblique manifold and Grassmann
manifold. LetM := S(m, k)×Gr(l, k) be a product manifold of a Riemannian submanifold
of Rm×k × Rk×k, and let J : M → R be the di�erentiable cost function of Eq.(5.6). The
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Chapter 5 Sparse Low Dimensional Representation Learning

Algorithmus 3 : Backtracking Line Search onM in the ith iteration

1: Input: t
(i)
0 > 0, 0 < c1 < 1, 0 < c2 < 0.5, µ > 0, Θ(i),G(i),H(i)

2: Set: t← t
(i)
0

3: while J(ΓM(Θ(i),H(i), t)) > J(Θ(i)) + c2t
〈
G(i),H(i)

〉
do

4: t← c1t
5: end while
6: Output: t(i) ← t

general solution to optimization problem (5.6) on matrix manifold, is an element of M,
denoted by Θ ∈M,Θ = (D,P).
By the product structure of S(m, k)×Gr(l, k), the tangent space ofM at a point Θ ∈M

is simply the product of all individual tangent spaces, i.e.,

TΘM := TDS(m, k)× TPGr(l, k). (5.7)

Then we denote the Riemannian gradient of J at (D,P) by G := (GD,GP), and the CG
direction by H ∈ T(D,P)M. Therein,

GD := ΠD

(
∇J(D)

)
and

GP := ΠP

(
∇J(P)

)
,

where ∇J(D) and ∇J(P) are the Euclidean gradient of J with respect to D and P, re-
spectively. Therein, the maps, ΠD : Rm×k → TDS(m, k) and ΠP : Rk×k → TPGr(l, k), are
de�ned in Eq. (3.32) and in Eq. (3.37), respectively.
The Euclidean gradient of J with respect to P is computed by

∇J(P) = −(tr(BP) + σ)A> − tr(AP)B>

(tr(BP) + σ)2
, (5.8)

where B := B(Φ(D,X)), and A := A(Φ(D,X)).
Let us denote by U := [u1, . . . ,un] = ∇ς(Φ) with ς(Φ) := AP and Q := [q1, . . . ,qn] =
∇%(Φ) with %(Φ) := BP. By using the chain rule, the directional derivative of f in Eq. (4.25)
with respect to D in direction H can be given by

D f(D)H =

n∑
i=1

V{
(tr(BP) + σ)ui,Λi Dφi(DΛi)H

(tr(BP) + σ)2

−
tr(AP)qi,Λi Dφi(DΛi)H

(tr(BP) + σ)2
}

(5.9)

with Dφi(DΛ)H being de�ned in Eq. (3.6). Therein, V{z} denotes the full length vector
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5.3 The Proposed Joint Learning Framework

of sparse coe�cients z. By extracting H, the corresponding Euclidean gradient of f with
respect to D, i.e. ∇f(D), is easily derived from Eq. (5.9).
Taking an example for A(Φ(D,X)) = Φ(D,X)A(Φ(D,X))>, and B(Φ(D,X)) =

Φ(D,X)B(Φ(D,X))>, where A and B are introduced in Section 5.2 and Section 5.4. Based
on the solution in problem (3.16) and its directional derivative of Eq.(3.18), the gradient of
f in (5.6) with respect to D can be given by

∇f(D) =2

n∑
i=1

V{
xiu

>
i,Λi

K−1i −DΛiK
−1
i ρ̂iK

−1
i

tr(ΦBΦ>P) + σ

−
(
xiv
>
i,Λi

K−1i −DΛiK
−1
i ω̂iK

−1
i

)
tr(Φ>U)

(tr(ΦBΦ>P) + σ)2
}

(5.10)

with

ρi := (D>Λixi − λ1sΛi)u
>
i,Λi , ρ̂i := ρi + ρ>i ,

ωi := (D>ωixi − λ1sΛi)v
>
i,Λi , ω̂i := ωi + ω>i .

(5.11)

Finally, the Euclidean gradient ∇J(D,P) of J with respect to D is

∇J(D) = −∇f(D) + µ1∇hc(D) + 2µ2(D−D∗) (5.12)

where∇hc(D) is the gradient of the logarithmic barrier function hc(D), de�ned in Eq. (4.21).
Then the Riemannian gradient of J with respect to the �rst argument D and the second
argument P are given by

GD(Θ) = ∇J(D)−D diag(D>∇J(D)), (5.13)

and
GP(Θ) = [P, [P,∇J(P)]], (5.14)

respectively.
By assembling the Riemannian gradients, geodesics and parallel transports on the underly-

ing manifolds, a conjugate gradient (CG) algorithm on S(m, k)×Gr(l, k) is straightforward.
Given dimS(m, k) = k(m − 1) and dimGr(l, k) = l(k − l), we summarize a CG algorithm
for maximizing the function J as de�ned in Eq. (5.6), cf. Algorithm 2 and Algorithm 3.
Algorithm 2 is based on iterating the following line search scheme, see Fig. 3.5. Given an

initial point Θ(i) ∈ M, a CG search direction H(i) := (H(i)
D ,H(i)

P ) ∈ TΘ(i)M, and the step
size t(i) ∈ R, the new data point is updated by

Θ(i+1) = RΘ(i)(t(i)H(i)) =
(
ΓS(D(i),H(i)

D , t(i)), ΓGr(P
(i),H(i)

P , t(i))
)

(5.15)

with ΓS(D(i),H(i)
D , t(i)) and ΓGr(P(i),H(i)

P , t(i)) being de�ned in Eq. (3.33) and Eq. (3.44),

respectively. In the subsequent iterations, the CG direction H(i+1) := (H(i+1)
D ,H(i+1)

P ) is a
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(a) Features extracted from original data

(1)

(2)

(3)

(4)

(b) Features extracted from sparse representa-
tions

Figure 5.1: Visualization of facial features. The presented features are generated via Eq. (5.36). From top
to bottom: (1) PCA eigenfaces; (2) Laplacianfaces; (3) LLEfaces; (4) Fisherfaces. It needs to draw clear
expression, such as smile and pose.

linear combination of the Riemannian gradient grad J(Θ(i+1)), abbreviated as G(i+1), and

the previous search direction H(i) := (H(i)
D ,H(i)

P ). Since addition of vectors from di�erent
tangent spaces is not de�ned, we need to transport H(i) from TΘ(i)M to TΘ(i+1)M. This is
done by vector transport

T(Θ(i),t(i)H(i))(H
(i)) : =

(
TS,H(i)

D

, T
Gr,H(i)

P

)
.

Therein, let TS,ΞD
:= TS(ΞD,D

(i),H(i)
D , t(i)) and TGr,ΞP

:= TGr(ΞP,P
(i),H(i)

P , t(i)) for any
Ξ ∈ TΘ(i)M, cf. Eq. (3.34) and Eq. (3.45). Then, the new CG search direction is computed
by Eq. (3.28) and Eq. (3.29) in Chapter 3.

5.4 Applications of the SparLow Model

In the previous section, we propose a generic regularized cost function, and develop a geomet-
ric CG algorithm to maximize the generic cost function J . In what follows, we present coun-
terparts of several classic unsupervised, supervised and semi-supervised learning methods,
namely, PCA, LLE, MFA, LDA, Semi-LDA, and more. Note that, the proposed SparLow is
�exible and it is not limited to such methods depicted in the following. Experimental evalua-
tions are conducted in Section 5.5, to illustrate the performance of our proposed framework,
in comparison to several direct competitors.

5.4.1 Unsupervised Learning methods

At �rst, we brie�y introduce four unsupervised learning methods that are investigated in
the format of Eq. (5.3). In what follows, we de�ne dij = 1, exp(−‖xi − xj‖22/t) or Consine
metric as the distance between xi and xj .
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5.4 Applications of the SparLow Model

PCA-like SparLow

The standard PCA method computes an orthogonal transformation V ∈ St(l,m) such that
the variance of the low dimensional representations is maximized, i.e., V is the maximizer
of the problem

max
V∈St(l,m)

tr
(
V>XHnX

>V
)
. (5.16)

In the framework of trace quotient, the denominator can be trivially considered to be
tr(V>BpcaV) with Bpca = tr(XHnX

>)In, which is a constant. By adopting the sparse
representations Φ(D,X), we construct straightforwardly

Apca(Φ(D,X)) := Φ(D,X)Hn(Φ(D,X))>, (5.17)

and
Bpca(Φ(D,X)) :=tr(Φ(D,X)Hn(Φ(D,X))>)Ik. (5.18)

LLE-like SparLow

The original LLE method aims to �nd low dimensional representations of the data via
�tting directly the barycentric coordinates of a point based on its neighbors constructed in
the original data space, cf. [13]. It is well known that the low dimensional representations in
the LLE method can only be computed implicitly. In order to overcome this drawback, the
so-called Orthogonal Neighborhood Preserving Projections (ONPP) is developed in [194],
by introducing an explicit orthogonal transformation between the original data and its low
dimensional representation.
Speci�cally, the ONPP method solves the problem

min
V∈St(l,m)

tr
(
V>XMX>V

)
, (5.19)

where M = (In−W)>(In−W) with W ∈ Rn×n being the matrix of barycentric coordinates
of the data. Similar to the construction in the previous subsection, we construct the following
functions for an LLE-like SparLow approach, i.e.,

Alle(Φ(D,X)) := Φ(D,X)M(Φ(D,X))>, (5.20)

and
Blle(Φ(D,X)) :=tr(Φ(D,X)M(Φ(D,X))>)Ik. (5.21)

Laplacian SparLow

Another category of DR methods are the ones involving a Laplacian matrix of the data. It
includes, for example, Locality Preserving Projection (LPP) [183], Orthogonal LPP (OLPP)
[189], Linear Graph Embedding (LGE) [187] , and Spectral Clustering [18]. Similar to the
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approaches applied in the previous two subsections, we adapt a simple formulation by setting

Alap(Φ(D,X)) :=Φ(D,X)M(Φ(D,X))>, (5.22)

with M := {mij} ∈ Rn×n being a real symmetric matrix measuring the similarity between
data pairs (xi,xj), and

Blap(Φ(D,X)) :=Φ(D,X)Ξ(Φ(D,X))>, (5.23)

with Ξ := {ξij} ∈ Rn×n being a diagonal matrix having ξii :=
∑

j 6=i mij ,∀i, j. Speci�cally,
the similarity matrix M can be computed by applying a Gaussian kernel function on the
distance between two data samples, i.e., mij = dij if φi and φj are adjacent, mij = 0
otherwise. Note that, if following up a clustering approach, the learning model Eq. (5.3)
associated with Eq. (5.22) and Eq. (5.23) could be viewed as a joint learning version of sparse
subspace clustering method [119].
Speci�cally for LPP [183] and LGE [187], it involves a generalized orthogonal constraint

U>CU = Il with C := Φ(D,X)Ξ(Φ(D,X))> and U> ∈ Rk×l. C is assumed to be
symmetric positive de�nite (PSD). Therefore, we can rewrite formulations Eq. (5.22) and
Eq. (5.23) as

Alpp(Φ(D,X)) := C−1/2Φ(D,X)M(Φ(D,X))>C−1/2,

and
Blpp(Φ(D,X)) :=tr(Φ(D,X)Ξ(Φ(D,X))>)Ik,

with U = C−1/2V,V ∈ St(l, k).

UDP-like SparLow

Unsupervised discriminant projection (UDP) [195] is one extension of Laplacian matrix
related methods with the purposes of classi�cation. It addresses to maximize the ratio of
nonlocal scatter to local scatter. The nonlocal scatter and the local scatter are characterized
by a nonlocal Laplacian matrix and a local Laplacian matrix, respectively.
Let us de�ne a global kernel matrix K := {kij} ∈ Rn×n with kij = exp(−‖xi−xj‖22/t) or

kij = 1, and a local kernel matrix M := {mij} ∈ Rn×n with mij = exp(−‖xi − xj‖22/t) or
mij = 1 if φi and φj are adjacent, mij = 0 otherwise. The local Laplacian matrix is de�ned
by LL := WM−M with a diagonal WM,WM

ii :=
∑

j 6=i mij for all i = 1, . . . , n. The nonlocal

Laplacian matrix is de�ned by LN := WK−K−LL with a diagonal WK,WK
ii :=

∑
j 6=i kij

for all i = 1, . . . , n.
Similar to Laplacian SparLow, we construct the formulation by setting

Audp(Φ(D,X)) := Φ(D,X)LN (Φ(D,X))>,

and
Budp(Φ(D,X)) :=Φ(D,X)LL(Φ(D,X))>.
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5.4.2 Supervised Learning methods

In the following, we consider a set of data samples Xi = [xi1, . . . ,xini ] ∈ Rm×ni with
i = 1, . . . , c, where c > 1 indicates the number of classes and ni refers to the number of data
samples in the corresponding i-th class. The corresponding sparse coe�cients are denote by

Φi := [φi1, . . . ,φini ] ∈ Rk×ni , and Φ := [Φ1, . . . ,Φc] ∈ Rk×n with n =
c∑
i=1

ni.

LDA SparLow

The goal of LDA [186] is to �nd a low-dimensional representation of the high dimensional
data, so that the between-class scatter is maximized, while the within-class scatter is mini-
mized.
Let us de�ne by Πk := Ik − 1

k1k1
>
k the centring projector, and φi ∈ Rk be the centre of

the i-th class. The with-in class scatter matrix is computed as

Blda(Φ(D,X)) =

c∑
i=1

ni∑
j=1

(φij − φi)(φij − φi)>

=
c∑
i=1

ΦiΠniΦ
>
i

=ΦLwΦ>,

(5.24)

with

Lw =

 Πn1 · · · 0
...

. . .
...

0 · · · Πnc

 (5.25)

being the Laplacian matrix for intraclass samples.
Let φ ∈ Rk be the center of all classes. Similarly, we compute the between class scatter

matrix as

Alda(Φ(D,X)) =
c∑
i=1

ni(φi − φ)(φi − φ)>

=
[
φ1

1n1√
n1
, . . . ,φc

1nc√
nc

]
Πc

[
φ1

1n1√
n1
, . . . ,φc

1nc√
nc

]>
=ΦLbΦ>,

(5.26)

with

Lb =


1n1√
n1
· · · 0

...
. . .

...

0 · · · 1nc√
nc

·Πc ·


1n1√
n1
· · · 0

...
. . .

...

0 · · · 1nc√
nc


>

(5.27)

being the Laplacian matrix for interclass samples.
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Figure 5.2: Discriminative features illustration. Sparse codes, reduced �sher features and 2D �sher features
using proposed LDA-SparLow, SRC [3] and K-SVD [4], respectively. From �rst column to third column, the
pictures depict the sparse codes with k = 2040, the reduced �sher features with l = 67, and 2D visualization
of �sher features, using LDA-SparLow, SRC, and K-SVD respectively. From �rst column to second column,
each waveform indicates a sum of absolute values for di�erent testing samples from the same class. The
curves in the �rst, second, and third rows correspond to 5-th class, 35-th class and 65-th class.

MFA SparLow

Marginal Fisher Analysis (MFA) in [187], also called Linear Discriminant Embedding (LDE)
in [196], is the supervised version of Linear Graph Embedding (LGE) [187]. The idea is to
maintain the original neighbor relations of points from the same class while pushing apart
the neighboring points of di�erent classes.
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5.4 Applications of the SparLow Model

Let N+
k1

(φi) denote the set of k1 nearest neighbors which share the same label with φi,
and N−k2(φi) denote the set of k2 nearest neighbors among the data points whose labels are
di�erent to that of φi.
Let us de�ne

W+
ij =

{
1 or exp(−‖xi − xj‖22/t), if φj ∈ N+

k1
(φi) or φi ∈ N+

k1
(φj)

0, otherwise.

and

W−
ij =

{
1 or exp(−‖xi − xj‖22/t), if φj ∈ N−k2(φi) or φi ∈ N−k2(φj)

0, otherwise.

with Σ+
ii =

∑
j 6=i W

+
ij ,Σ

−
ii =

∑
j 6=i W

−
ij ,∀i being diagonal.

Let us further de�ne L− = Σ− −W− and L+ = Σ+ −W+ by the Laplacian matrices
for characterizing the interclass locality and the intraclass locality, respectively. Hence, we
construct the following functions for an MFA-like SparLow approach, i.e.,

Amfa(Φ(D,X)) := Φ(D,X)L−Φ(D,X)>, (5.28)

and
Bmfa(Φ(D,X)) := Φ(D,X)L+Φ(D,X)>. (5.29)

The similar idea is also shown in Supervised Neighborhood Embedding [183, 15], Supervised
LPP in [15], Supervised NPP in [183, 15], etc.

MVR SparLow

In this subsection, we consider to learn low dimensional representation and task learning
(e.g., multi-label classi�cation) simultaneously. Considering the following multivariate ridge
regression (MVR) model:

min
D,V,W

‖Z−W>V>Φ(D,X)‖2F + µ‖W‖2F , (5.30)

where Z ∈ Rd×n is the target matrix, V ∈ St(l, k), W ∈ Rl×d and µ ∈ R+. Fixed other
parameters, minimizing Eq. (5.30) with respect to W, it has a closed expression

W =
(
V>(Φ(D,X)(Φ(D,X))> + µIk)V

)−1
V>Φ(D,X)Z>.

Using this closed expression to substitute the W in Eq. (5.30), we can rewrite Eq. (5.30) as
the format of Eq. (5.3) with

Amvr(Φ(D,X)) := −Φ(D,X)Z>ZΦ(D,X)>, (5.31)
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and
Bmvr(Φ(D,X)) :=

(
Φ(D,X)Φ(D,X)> + µIk

)
. (5.32)

Therein, Z could be the binary class labels of input signals, which is usually coded as Z ∈
Rc×n with Zi = (Zi1, · · · ,Zic)>, Zij = 1 if Zi is in class cj , Zij = 0 otherwise. Z is also could
be some handcrafted indicator matrix according to labels, e.g., the �discriminative� sparse
codes in [197, 109]. Some typical multivariate regression approaches, such as Orthogonal
Partial Least Squares (OPLS), and Joint DR with Hinge Loss, cf. [197], could be modeled
as their sparse formats according to Eq. (5.3).

5.4.3 Semi-supervised Learning methods

We now introduce that the SparLow Model is also well suited to exploit unlabeled data
in a semi-supervised setting. In this section, we consider that we only have partially nL
labeled observed points and nU unlabeled points, i.e., X := [XL ∈ Rm×nL ,XU ∈ Rm×nU ]
with n = nL + nU .
The �rst assumption to support semi-supervised SparLow model is that the learned dic-

tionary for speci�c class is also e�ective for learning good sparse features from unlabeled
data, cf. [123, 26]. Second, we follow the way that learning semi-supervised DR settings
associated with preserving the global data manifold structure, namely, nearby points will
have similar lower-dimensional representations [190, 198] or labels [199, 200, 201]. For the
whole dataset X, let us de�ne the graph Laplacian matrix L = Ξ −M in Rn×n where
M := {mij} with mij weighting the edge between adjacency data pairs (φi,φj), mij = 0
otherwise. Ξ := {ξij} is diagonal and ξii :=

∑
j 6=i mij ,∀i, j.

Semi-supervised LDA SparLow

For labeled dataset XL, we adopt the criterion of LDA and compute matrices Lw and Lb be-
ing same to section 5.4.2. Hence the total scatter matrix can be written as St(Φ(D,XL)) :=

Φ(D,XL)LtΦ(D,XL)
>

with Lt = Lw + Lb in RnL×nL . Similar to the constructions of
section 5.4.2, we construct the formulations of Semi-supervised LDA SparLow as

Aslda(Φ(D,X)) :=Φ(D,X)L̃b(Φ(D,X))>, (5.33)

and

Bslda(Φ(D,X)) :=Φ(D,X)(L̃t + αL)(Φ(D,X))>, (5.34)

where α ∈ R controls the in�uence of labeled Laplacian matrix L̃t ∈ Rn×n and global
Laplacian matrix L ∈ Rn×n, and L̃b and L̃t are the augmented matrices of Lb and Lt,
namely,

L̃b =

[
Lb 0nU×nU

0nU×nU 0nU×nU

]
,
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5.4 Applications of the SparLow Model

and

L̃t =

[
Lt 0nU×nU

0nU×nU 0nU×nU

]
.

Since the admissible set of the projection matrix P of our proposed SDA SparLow is well
de�ned on Gr(l, k), SDA SparLow could combine the many extensions of SDA, such as Trace
Ratio LDA [202] and Trace Ratio Based Flexible SDA [203, 204, 201].

Semi-supervised MFA SparLow

We now consider the semi-supervised version of Laplacian SparLow. For the whole dataset
X, let us de�ne the nonlocal graph Laplacian matrix LN = ΞN −MN in Rn×n with mN

ij

weighting the edge between non-adjacency data pairs (φi,φj), mN
ij = 0 otherwise. ΞN :=

{ξNij } is diagonal and ξNii :=
∑

j 6=i m
N
ij ,∀i, j. For the labeled dataset XL, we adopt the setting

of section 5.4.2 and de�ne interclass local Laplacian matrix L− ∈ RnL×nL and intraclass local
Laplacian matrix L+ ∈ RnL×nL . Hence, we construct the formulations of Semi-supervised
Laplacian SparLow as

Aslap(Φ(D,X)) :=Φ(D,X)(L̃− + α1L
N )(Φ(D,X))>,

and

Bslap(Φ(D,X)) :=Φ(D,X)(L̃+ + α2L)(Φ(D,X))>

with α1 ∈ R+, α2 ∈ R+ control the in�uence of labeled Laplacian matrix and unlabeled
Laplacian matrix. Similar to the setting of Section 5.4.3, let L̃− ∈ Rn×n and L̃+ ∈ Rn×n
denote the augmented matrices of L− and L+.

Semi-supervised MVR SparLow

The supervised linear (label-based) regression (e.g., SVM) associated with a manifold reg-
ularization cf. [200, 201], is another one popular framework for resolving semi-supervised
learning problem. In this section, we adopt a MVR model associated with a manifold regu-
larization as

min
D,V,W

‖ZL −W>V>Φ(D,XL)‖2F + ρ1‖W‖2F

+ ρ2 tr
(
W>V>Φ(D,X)L(Φ(D,X))>VW

)
,

(5.35)

in which ZL ∈ Rd×nL is the target matrix for XL, V ∈ St(l, k), W ∈ Rl×d and ρ1, ρ2 ∈ R+.
Fixed other parameters, minimizing Eq. (5.35) with respect to W, it has a closed expression

W =
(
V>(Φ(D,XL)(Φ(D,XL))> + ρ1Ik

+ ρ2Φ(D,X)L(Φ(D,X))>)V
)−1

V>Φ(D,XL)(ZL)>.
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Chapter 5 Sparse Low Dimensional Representation Learning

Using this closed expression to substitute the W in Eq. (5.35), we can rewrite Eq. (5.35) as
the format of Eq. (5.3) with

Asmvr(Φ(D,X)) :=−Φ(D,XL)(ZL)>ZL(Φ(D,XL))>,

and

Bsmvr(Φ(D,X)) := Φ(D,XL)(Φ(D,XL))> + ρ1Ik + ρ2Φ(D,X)L(Φ(D,X))>.

5.5 Experimental Evaluations

In this section, we investigate the performance of our proposed SparLow methods on real
image data. We apply the SparLow methods to �rstly learn low dimensional representations
of real images, and then evaluate their performance in several aspects, such as (1) visu-
alization and clustering, (2) the object/scene categorization using known class labels, (3)
2/3D visualization of disentangling factors learned by applying the SparLow, or parameters
sensitivity.

5.5.1 Experimental Settings

In the following of the paper, we refer to the proposed SparLow methods proposed in Sec-
tion 5.4.1, 5.4.1, 5.4.1, 5.4.1, 5.4.2, 5.4.2, 5.4.2, 5.4.3, 5.4.3 and 5.4.3 as PCA-SparLow,
LLE-SparLow, Lap-SparLow, UDP-SparLow, LDA-SparLow, MFA-SparLow, MVR-SparLow,
SDA-SparLow, SMFA-SparLow and SMVR-SparLow, respectively. Similarly, we refer to di-
rect applications of the classic DR methods on sparse representations that are generated
with respect to a �xed dictionary as SparLDR. Seven members of the SparLDR family
are investigated in our experiments, namely, SparPCA, SparOLPP, SparONPP, SparUDP,
SparLDA, SparMFA, SparMVR, SparSLDA, SparSMFA and SparSMVR, as the ten corre-
sponding counterparts of the SparLow.
In our experiments with unsupervised setting, dictionaries are initialized as a column-

wise normalized Gaussian matrix and then improved by employing the K-SVD algorithm
[4]. In the cases of supervised and semi-supervised settings, we use K-SVD to learn a sub-
dictionary for each class, and then combine all the sub-dictionaries as a shared dictionary
D̂. The learned dictionaries D̂'s are used in the regularizer h, as de�ned in (5.5). Once
an initial dictionary D̂ is given, the orthogonal projection P ∈ Gr(l, k) can be obtained by
applying classical DR methods on the sparse representations. However, when the size of the
training dataset is huge, directly performing classical DR methods is often prohibitive. In
order to overcome this di�culty, we propose to randomly select a relatively small number
of samples, and then to employ the classical DR methods on their sparse representations to
obtain an estimation of the initial orthogonal projection P0 ∈ Gr(l, k).
Throughout all experiments, we consistently set σ = 10−3 in Eq. (5.3). We treat each

image as an m-dimensional vector, and normalize it into a unit ball. Let n be the number of
all signals which contain c classes, we use ntrain, ntest to denote the number of total training
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samples and the number of total testing samples for each class, respectively. Usually, we
set ni = ntrain + ntest, n =

∑c
i=1 ni with ni being the number of samples from ith class.

In addition, we denote nLtrain by the number of labeled samples from a training set. For
datasets without standard division of training set and testing set, all recognition experiments
are repeated ten times with di�erent randomly selected training and test subsets, and the
average of per-class recognition rates is recorded for each run.
By default, we employ elastic net method to solve the sparse coding problem (3.16).

Note that, we also adapt other sparse coding methods, such as learning sparse based on
KL-divergence, where we will give special annotations.

5.5.2 Evaluation of Unsupervised SparLow

Handwritten digit images

50 100 150 200 250 300

20

40

60

100 200 300 400 500

20

40

60

80

100

Figure 5.3: Digital databases. The left images set is from USPS dataset, and right one is from MNIST
database.

Table 5.1: Classi�cation Performance (Accuracy (%)) for the MNIST & USPS datasets of the Proposed
SparLow methods, with comparisons to some classical unsupervised DR approaches.

Methods
USPS
(1NN)

USPS
(GSVM)

MNIST
(1NN)

MNIST
(GSVM)

PCA [125]
86.40%,
l = 50

92.43%,
l = 50

84.62%,
l = 50

94.63%,
l = 50

OLPP [189] 84.11% 91.48% 83.12% 94.76%

ONPP [194] 87.39% 92.73% 85.01% 95.21%

KPCA [15]
89.19%,
l = 50

93.27%,
l = 50

− −

LLE [13] 68.81% 90.43% 66.09% 93.11%

LE [15] 71.85% 91.93% 68.16% 93.90%

ISOMAP [15] 64.80% 90.13% 60.51% 91.67%

CS-PCA [125] 87.84% 94.22% 87.65% 96.04%

PCA-SparLow
92.18%,
l = 50

96.82%,
l = 50

91.23%,
l = 50

97.12%

Lap-SparLow 91.83% 96.26% 89.32% 96.91%

LLE-SparLow 90.78% 96.16% 89.10% 96.93%

UDP-SparLow 92.85% 96.18% 90.10% 97.12%
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Figure 5.4: 3D visualization using OLPP, PCA and ONPP on USPS handwritten digits. From top to
bottom: Applying OLPP/PCA/ONPP in original space, in sparse space with respect to initial dictionary

D̂, and in sparse space with respect to learned dictionary via SparLow, respectively.
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Figure 5.5: Performing SparLow with or without developed regularizations on USPS database. PCA-
SparLow/R denotes PCA-SparLow without regularizations, and in same way to Lap-SparLow/R and LLE-
SparLow/R.

Our �rst experiment is performed on the handwritten digits from the MNIST database 1

and the USPS [205]. The MNIST database consists of 60, 000 handwritten digits images for
training and 10, 000 digits images for testing. All images are grayscale between 0 and 1 and
have a uniform size of 28 × 28 pixels. The USPS database has 7, 291 training images and
2, 007 testing images of size (16× 16). Some examples are shown in Fig. 5.3. By vectorising
the pixel intensity values of the images, each image is represented as a vector of dimension
m = 784 or m = 256 for the MNIST database and the USPS database, respectively.

1http://yann.lecun.com/exdb/mnist/
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Figure 5.7: Comparison of 1NN classi�cation using PCA-SparLow, PCA, KPCA, CS-PCA on MNIST &
USPS database. Dictionary size is 1000.

In this experiment, the parameters for elastic net are set to be λ1 = 0.2, λ2 = 2 × 10−5,
and µ1 = 5×10−3, µ2 = 2.5×10−4, for both experiments on the MNIST and USPS datasets.
The size of dictionary is chosen to be k = 1000. For CS-PCA [125], we employ one common
strategy of randomly choosing a certain number of data points as dictionary in a given set
of training data, cf. [3].
To demonstrate the e�ectiveness of the proposed algorithms, experiments of 3D visual-

ization were conducted on the USPS dataset, compared to the classic DR methods and the
SparLDR methods, see Fig. 5.4. It is easily seen that the low dimensional representations
captured in the original data space, shown in the �rst row in Fig. 5.4, are very hard to cluster

88



5.5 Experimental Evaluations

or group. In particular, the boundary between each pair of digits are completely entangled.
Direct applications on the sparse representations for a given dictionary, i.e., the second row
in Fig. 5.4, show a signi�cant improvement in disentangling the class information. Further-
more, it is evidentially clear that visualization powered by the SparLow, i.e., the third row
in Fig. 5.4, leads to direct clustering of the handwritten digits.
Let us denote by δi the ith largest eigenvalue of Φ(D,X)Hn(Φ(D,X))>, and further de�ne

�Ratio of eigenvalues� in Fig. 5.6 as tl =
∑l

i=1 δi/
∑r

j=1 δj . Fig. (5.6) shows that our proposed
PCA-SparLow signi�cantly increase the ratio tl. It also can be seen, our tl are consistently
larger than those of CS-PCA and KPCA, which indicates that the PCA-SparLow method
captures more structure information, which preserves power in the l dimensional subspace,
cf. [189].
One obvious bene�t of the proposed SparLow model is that the learned low dimensional

representations share both reconstructive and discriminative capacities. In this experiment,
after applying the SparLow methods on the images from the USPS database, we employ
the 1NN method to classify the reduced features. Reconstruction errors in terms of Peak
Signal-to-Noise Ratio (PSNR) are presented in Fig. 5.5(a). Fig. 5.5(b) shows the box plot
of results of applying the 1NN classi�cation ten times on the USPS database with random
initialisations. It is clear that the regulariser h, de�ned in Eq. (5.5) has the capability of
ensuring good reconstruction, and achieving stable discriminations.
Finally, we compare the SparLow methods to several state of the art methods, on the task

of 1NN and Gaussian SVM (GSVM) classi�cation. For PCA, KPCA and PCA-SparLow, we
set l = 50, for other methods, we set l = 20. For USPS, we use the full training and testing
database. For MNIST, we randomly choose 30, 000 images for training, and use standard
10, 000 testing database. According to Fig. 5.7 and Table 5.1, it is obvious that the SparLow
methods consistently outperform the state of the arts.

Figure 5.8: Face databases. The top line images set is from CMU PIE dataset, and the bottom one is from
Yale B database.

CMU PIE faces analysis

In this subsection, we test the SparLow methods on the CMU PIE face database [206]. The
CMU PIE face database contains 68 human subjects with 41, 368 face images. As suggested
in [206], a subset containing 11, 554 PIE faces are chosen, all of which are manually aligned
and cropped, thus we nearly get 170 images for each individual, with the scale 32× 32 and
256 gray levels per pixel. All the face images are manually aligned and cropped, as shown
in top row images in Fig. 5.8.
All experiments are repeated ten times with di�erent randomly selected training and test
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(c) ONPP and its sparse counter-
parts

Figure 5.9: 3D visualization using OLPP, PCA and ONPP on PIE faces. From top to bottom: Applying
OLPP/PCA/ONPP in original space, in sparse space with respect to initial dictionary, and in sparse space
with respect to learned dictionary, respectively.

images, and the average of per-class recognition rates is recorded for each run. In our
experiments, we set λ1 = 10−2, λ2 = 10−5, µ1 = 2.5× 10−4, µ2 = 5× 10−3.
First of all, similar to the experiments conducted on the handwritten digits, Fig. 5.9 gives

the 3D visualization of low dimensional representations learned by the SparLow methods
and their classical counterparts. It unveils a same message that the SparLow methods can
disentangle the class information very clearly.
Then we perform 3D visualization on PIE faces without class information. We choose

choose 70 faces from the class 5 with 3 variations, i.e., poses, illumination, and with/without
glasses. As can be seen from the Fig. 5.10, the information referred to poses and illumination
could be clearly disentangled, but the information related to glasses is roughly entangled. In
Fig. 5.10(a), from left to right, the illumination become stronger. From top to bottom, the
poses of faces change from left to right. The similar results are also shown in Fig. 5.10(b)
and Fig. 5.10(c).
Fig. 5.11 illustrates the performance of LDR, SparLDR and SparLow in terms of recogni-

tion accuracy. It is easily seen that the SparLow methods outperform the state of the art
algorithms, such as PCA, OLPP and ONPP.
Moreover, visualizing the facial features is a common approach to assess the performance
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(a) PCA-SparLow.

(b) OLPP-SparLow

(c) ONPP-SparLow

Figure 5.10: 2D visualization of PIE faces (class 5). Applying OLPP/PCA/ONPP in sparse space with
respect to learned dictionary by SparLow, respectively.
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Figure 5.11: Face recognition on 68 class PIE faces. The classi�er is 1NN. Randomly choose 8160 training
samples and 3394 testing samples.

of DR methods. In order to facilitate this task, we de�ne the jth disentangling factor υj as

υj = Dvj ∈ Rm, (5.36)

with vj being the jth column vector of projection matrix V. This construction is similar
to the concept of eigenfaces in [186], laplacianfaces in [183], orthogonal laplacianfaces in
[189], and orthogonal LLEfaces in [13]. Fig. 5.1(b) gives the �rst 10 basis vectors of learned
disentangling factors for PCA-SparLow, Lap-SparLow and LLE-SparLow. As for comparison,
Fig. 5.1(a) shows the �rst 10 eigenfaces, laplacianfaces, and LLEfaces. It shows that (i) our
learned facial features are more prominent, especially for laplacianfaces and LLE faces, (ii)
our learned facial features captures richer information, such as varying pose and expression
(e.g., smile).

5.5.3 Evaluation of Supervised SparLow

Faces Analysis

The experimentations reported here were performed on the CMU PIE face database [206]
and extended Yale B database [207]. The information on CMU PIE face database has been
introduced in Section 5.5.2. The Extended Yale-B face database contains 16128 images of
38 human subjects under 9 poses and 64 illumination conditions, as shown in bottom line of
Fig. 5.8. In this experiment, we follow the setting of [208, 206] and choose the frontal pose
and use all the images under di�erent illumination, thus we get 64 images for each person
with the resized scale 32× 32.
We �rst compare the 1NN recognition performance of supervised DR in original domain

and in sparse domain, shown in Fig. 5.12. We use LDA and MFA as the representatives
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Figure 5.12: Performing the DR in original domain, SparDR and SparLow in sparse domain. The dictio-
nary size k = 2040, 1140 for PIE and Yale-B, respectively. The classi�er is 1NN.

Table 5.2: Training and testing computation time. m: minuet, ms

Methods k
Training
time (m)

Testing
time (ms)

Accuracy (%)

FDDL [41] 2040 234.1 16.89 98.0

TDDL [26]
300
× 68

56.4 210.12 97.89

LC-KSVD[109] 2040 19.2 0.81 98.02

SRC [3] 6800 − 78.44 97.36

LDA-SparLow 2040 29.5 1.08 98.68 ∼ 98.88

MFA-SparLow 2040 28.3 0.96 98.82 ∼ 98.96

MVR-SparLow 2040 22.5 0.75 97.86 ∼ 98.06
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Figure 5.13: Comparison on recognition results with di�erent number of training samples and di�erent
dictionary size for PIE faces. The classi�er is 1NN.

to test SparLDA, LDA-SparLow, SparMFA, and MFA-SparLow on PIE and Yale B faces
dataset. For PIE faces, we choose ntrain = 48, 72, 96, 120, 144, respectively, and the rest for
testing. In the same way, for Yale B faces, we choose ntrain = 20, 28, 36, 45, 54. The results
show that (i) if D̂ is learned K-SVD, applying DR (LDA and MFA) in sparse domain,
i.e., SparLDA and SparMFA, have much better performance than DR in original domain;
(ii) our proposed LDA-SparLow and MFA-SparLow could achieve much improvement on
classi�cation compared with SparLDA and SparMFA based on D̂.
Fig. 5.13(a) shows the comparison between the proposed LDA-SparLow, MFA-SparLow

with other famous dictionary learning based classi�cation methods, such as SRC [3], TDDL
[26, 129], and LC-KSVD [109]. In the rest of the paper, we apply TDDL ourselves using
�one-versus-all� strategy with logistic regression. The dictionary size of TDDL for each class
is �xed as k = 300 as recommended in [26]. Considering the fairness, the size of dictionary
in SRC, LC-KSVD is same proposed LDA-SparLow. In Fig. 5.13(a), our proposed LDA-
SparLow and MFA-SparLow show the strong competitive performance compared with SRC,
TDDL, and LC-KSVD. Especially, when the training sample is limited, our methods perform
much better. Fig. 5.13(b) plots the recognition rates of LDA-SparLow, MFA-SparLow, SRC,
FDDL [41], and LC-KSVD with varying dictionary sizes (number of atoms). In all cases, the
proposed methods perform better than SRC and FDDL, and give signi�cant improvement
to LC-KSVD and TDDL. This demonstrates that learning a compact and representative
dictionary could highly improve the images recognition. By applying LDA on sparse co-
e�cients learned via SRC, K-SVD and LDA-SparLow, 3D visualization of low dimensional
representations is depicted in Fig. 5.2. It shows LDA-SparLow has more strong performance
on disentangling the class information, in comparison of SRC and K-SVD.
When running on a 64-bit computer with double 3.5G HZ processors, Table (5.2) demon-

strates the computation times for training the models and classifying one testing PIE face
using LDA-SparLow, MFA-SparLow, MVR-SparLow, SRC, FDDL, LC-KSVD, and TDDL.
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We set the threshold for accuracy rate is greater than 97% with ntrain = 120, and k is the
dictionary size. It shows that our methods take the less training time and testing time, but
achieve a higher recognition accuracy.

Handwritten digits images classi�cation

We then perform the proposed SparLow on the handwritten digits from the USPS [205]
and MNIST database, see Fig. 5.3. For MNIST digits, we compare SparLow with some
state-of-the-art DL methods, SDL [129] 98.95%, TDDL [26] 99.46%, and some deep leaning
approaches: DCNN [209] 99.38% and DBN [140] 98.80% with two hidden layers. For MNIST

Table 5.3: Classi�cation Performance for the MNIST & USPS datasets of the Proposed methods, LDA-
SparLow, MFA-SparLow and MVR-SparLow, with comparisons to approaches from the literature.

Methods
& MNIST

Accuracy
(%)

Methods
& USPS

Accuracy
(%)

SVM 98.60 SVM-Gauss 95.80

KNN 95.00 KNN 94.80

SRC 96.80 SRC [3] 93.95

SDL[129] 98.95 SDL[129] 96.46

TDDL [26] 99.46 TDDL [26] 97.16

DCNN [209] 99.38 FDDL[41] 97.66

DBN [140] 98.80 DBN [140] 96.51

cFA [38] 99.11 JDL [210] 93.92

LDA-SparLow 98.92 ∼ 99.28 LDA-SparLow 97.57 ∼ 97.66

MFA-SparLow 98.80 ∼ 99.02 MFA-SparLow 97.52

MVR-SparLow 98.10 ∼ 98.12 MVR-SparLow 97.24

and USPS digits, we �rst use training samples in each category for training the subdictionary
and then merge them as D̂. In this experiment, the parameters for elastic net λ1 = 0.2, λ2 =
2 × 10−5, µ1 = 5 × 10−3, µ2 = 2.5 × 10−4 in (5.6), for both experiments on MNIST and
USPS.
For MNIST dataset, our proposed LDA-SparLow+NN and MFA-SparLow+NN achieves

99.28%, 99.02% at peak and converged onto 99.07%, 98.80% at average, respectively. Com-
pared with some state-of-the-art approaches on MNIST, our model shows strong competitive
performance, and very close to the best results published on MNIST, such as TDDL [26]
99.46% and DCNN [209] 99.38%. It should be pointed out that TDDL and DLSI is the
class-speci�c dictionaries learning approaches, i.e., learning dictionaries and projections for
each class, while LDA-SparLow only learns a single global dictionary and a �xed rank pro-
jection for all the testing data. Similarly for the USPS, we set λ1 = 0.1, and λ2 = λ1/(104).
LDA-SparLow+NN and MFA-SparLow+NN harvest the peak results as 97.66%, 97.48%,
deleting the unstable values, we �nally get averages 97.62%, 97.48%, respectively. To the
best of our knowledge, this stable accuracy rates almost outperform all the existing results.
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Cartoon images classi�cation

COIL100 [211] is a famous color 3D shape dataset which consists of 100 objects (72 images
per object). The images of each object were taken 5◦ apart as the object is rotated on a
turntable, as shown in Fig. 5.14. We use the cropped gray scale images of size 32 × 32
and each image is represented by a 289-dimensional vector through the �rst order wavelet
transformation. The size of dictionary is set as k = 1000, and λ1 = 6 × 10−2, λ2 = 10−5,
µ1 = 2.5 × 10−4, µ2 = 5 × 10−3. By taking 50 images per class for training and after 20
iterations, our LDA-SparLow model achieves an accuracy rate 97.14% ∼ 97.20% for LDA-
SparLow, and 97.88 ∼ 98.05% for MFA-SparLow. We also compare the performance with
some state-of-the-art methods, such as Standard CNN [212] 79.77%, VTU [213] 89.90%,
videoCNN [213] 92.50%, and NSC [214] 97.19%.

Figure 5.14: Some examples from COIL100 database.

5.5.4 Evaluation of Semi-supervised SparLow

In this section, among the various manifold regularizations [200, 201], we con�ne us to con-
struct the graph Laplacian matrix by L = W−M with W and M being same to Laplacian
SparLow in Section 5.4.1. We perform the experiments on USPS digits and CMU PIE
faces with the information as introduced before. We compare our proposed SparLow with
corresponding similar approaches that applying in original data space, i.e., SDA-SparLow
versus SDA [190], SLap-SparLow versus SDE [198], SMVR-SparLow versus label propagation
methods, such as LapRLS [200] and LGC [199].
We normalize each image vector as the unit length. The dictionary D̂ is initialized

by Laplacian SparLow. For DR algorithms, SDA, SDE, and our SDA-SparLow, SLap-
SparLow, 1NN classi�er is performed in low dimensional space. For label propagation
methods, LapRLS and LGC, we use the settings in [200, 199] for classi�cation. We set
µ1 = 2.5 × 10−4, µ2 = 5 × 10−3 for all the databases. λ1 = 0.02, λ2 = 5 × 10−4 and
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λ1 = 0.2, λ2 = 10−3 are set for PIE faces and USPS digits, respectively. We further set
α = 0.05 for SDA-SparLow and SMVR-SparLow, α1 = 0.05, α2 = 0.01 for SMFA-SparLow.
The adjacency neighbors size for USPS, PIE are 20 and 12, respectively. For each class, we
randomly choose nL labeled samples and the rest for testing.
Fig. 5.15(a) gives the recognition results on PIE faces, in comparison of several state of

the art methods. Similar to [190, 200, 201], for each individual with �ve poses, we randomly
select ηL samples from each pose and totally nLtrain = 5 × ηL are chosen. It shows that
our SDA-SparLow and SLap-SparLow outperform all other methods listed in Fig. 5.15(a),
especially when the number of labeled sample is bigger. We also compare our methods on
USPS digits, see Fig. 5.15(b). Similar to Fig. 5.15(a), it shows that our methods have more
advantage when the number of labeled sample is increasing. Note that, for nLtrain = 1 in
Fig. 5.15(b), LDA can not be applied, cf. [186, 190].
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Figure 5.15: Recognition accuracy on unlabeled data.

5.5.5 Object Categorization

We now perform the experiments on objects or scenes that have di�erent scales and complex
backgrounds, such as the images from the datasets, namely, Caltech-101 [215], Caltech-256
[216], Pascal VOC 2007 [217], and 15-Scenes [29], see Fig. 5.16.
Building upon object categorization, we follow the pipeline depicted in Fig. 1.4. We

use dense SIFT or dense DHOG (a fast SIFT implementation) [218] to detect the local
image features. We shortly call it SIFT/DHOG-SPP representation. In this work, the local
descriptor is extracted from s × s pixel patches densely sampled from each image. s = 16
for SIFT and s = 16, 25, 31 for DHOG. The dimension of each SIFT/DHOG descriptor is
128. A codebook with the size of k = 1024, 2048, or 4096 is learned for coding SIFT/DHOG
descriptors, cf. [28]. We then divide the image into 4 × 4, 3 × 3 and 1 × 1 subregions,
i.e., 21 bins. The spatial pooling procedure for each spatial sub-region is applied via the
max pooling function associated with an �`2 normalization�, cf. [27, 28, 109, 130]. The �nal
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15 Scenes

PASCAL VOC2007

Caltech 256

Caltech 101

Figure 5.16: Examples from four datasets, i.e., Caltech-101, Caltech-256, PASCAL VOC2007 and Scene-15.

SPP representations are computed with the size m = 21504, 43008 or 96016, and hence
are reduced into a low-dimensional PCA-projected subspace. The related codes are publicly
online available, namely VLFeat software, [219]. In what follows, we denote m,mPCA, r, l by
dimension of SPP representations, PCA projected subspace, sparse codes, and our learned
low dimensional representations, respectively.

Caltech-101 dataset

The Caltech-101 dataset [215] contains 9144 images from 102 classes (i.e., 101 object classes
plus a background category), see Fig. 5.16. Most images are in medium resolution, i.e., about
300× 300 pixels. The number of images per category varies from 31 to 800. This dataset is
particularly challenging for learning-based systems, because the number of training samples
in some categories is exceedingly small.
We set λ1 = 5 × 10−2, λ2 = 10−5, k = 1024, and k = 1020. l = 101, 287, 512 are set for

LDA, MFA, MVR related methods, respectively. We follow the common experimental setups
in [27, 28, 29] and then randomly select 1, 5, 10, 15, 20 and 30 labeled images per category
for training and the rest images for testing. For semi-supervised SparLow, the training set
includes all labeled and unlabeled images. Table 5.4 gives the comparison of LDA-SparLow,
SLDA-SparLow with approaches from the literature under di�erent training samples. Note
that, for nLtrain = 1, LDA-SparLow and LDA+SVM can not be applied. It shows that
our proposed approaches consistently outperform all the competing approaches. Especially,
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the semi-supervised SparLow could signi�cantly improve the recognition accuracy when the
labeled training samples are limit. The possible reason is that some categories have large
samples, e.g., the category airplanes has 800 samples, the nLtrain ≤ 30 is too much limit for
training such a category. The semi-supervised SparLow could take advantage of all the data
for training sparsifying dictionary, which is the key factor to promote the discrimination of
sparse representations.
Fig. 5.17 plots the confusion matrix using LDA-SparLow. It shows that 12 categories in

Caltech101 achieve the 100% classi�cation accuracy, i.e., accordion, snoopy, inline_skate,
car_side, dollar_bill, gar�eld, metronome, okapi, pagoda, minaret, trilobite and stop_sign.
Several image examples from such 12 categories are shown in Fig. 5.18. On the other hand,
the categories with highest confusion is water lilly (28.57%) and lotus (58.33%), i.e., 42.86%
of water lilly are identi�ed as lotus and 13.89% of lotus are identi�ed as water lilly, see the
bottom two lines of Fig. 5.18.

Table 5.4: Classi�cation Performance (Average accuracy (%)) on Caltech-101.

Caltech-101 1 5 10 15 20 25 30
KSPM [29] − − − 56.40 − − 64.40

ScSPM+SVM [27] − − − 67.0 − − 73.2
LLC+SVM [28] − 51.15 59.77 65.43 67.74 70.16 73.44
Gri�n [216] − 44.2 54.5 59.0 63.3 65.8 67.60
SRC [3, 109] − 48.8 60.1 64.9 67.7 69.2 70.7

D-KSVD [108, 109] − 49.6 59.5 65.1 68.6 71.1 73.0
LC-KSVD [109] 28.9 54.0 63.1 67.7 70.5 72.3 73.6

SSPIC [42] − 55.1
±0.2

62.1
±0.2

65.0
±0.2

67.7
±0.2

68.9
±0.2

71.5
±0.2

LDA+GSVM − 50.49 60.39 64.28 67.10 71.24 72.40

SparLDA − 54.60 65.26 70.05 72.12 73.2 75.82
LDA-SparLow 31.23 56.44 67.12 73.82 74.70 76.20 76.86
SDA-SparLow 46.12 67.42 72.01 76.12 76.64 77.40 78.25
MFA-SparLow 32.43 57.52 68.44 73.95 75.56 76.63 77.32
SMFA-SparLow 46.02 68.66 72.92 76.02 77.24 77.80 78.42
MVR-SparLow 29.30 54.79 65.63 70.56 73.33 75.41 76.15
SMVR-SparLow 44.82 66.43 70.80 75.48 76.32 77.14 77.76

Similar to Fig. 5.5(a) and Fig. 5.5(b), we also test the reconstructive and discriminative
performance of learned image representations for supervised SparLow. By running the Spar-
Low with or without developed regularizations on the images from Caltech-101 database,
Fig. 5.19(a) and Fig. 5.19(b) show the changing of reconstruction error and sparsity, and
Fig. 5.19(c) and Fig. 5.19(d) compare the GSVM classi�cation results. A similar conclusion
is that the regularizers hc and hd, de�ned in Eq. (5.4) and Eq. (5.5), are imposed to ensure
good reconstruction, and achieve stable discriminations.
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Figure 5.17: Confusion matrix for Caltech-101 with 30 training images per class, shown using the jet color
scale from Matlab. Dark red indicates 100% while dark blue indicates 0%, with a gradient from warm to
cool colors in between (see scale, right). A perfect matrix would be dark blue matrix except for a dark red
diagonal.

Caltech-256 and Pascal VOC 2007

The Caltech-256 dataset holds 30, 607 images falling into 256 categories with resolution from
113 × 150 to 960 × 1280. Each category has a minimum of 80 images. PASCAL VOC2007
consists of 20 categories with 5, 011 training and 4, 952 test images. It contains aero, bicycle,
bird, boat, bottle, bus, car, cat, etc., with object instances occurring in a variety of scales,
locations and viewpoints. The average size of VOC2007 is around 500 × 375 or 375 × 500.
In contrast to Caltech-101, these two databases contain multiple objects in various poses at
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5.5 Experimental Evaluations

Figure 5.18: Performing LDA-SparLow on Caltech-101 with ntrain = 30. This �gure shows the examples
from twelve categories with 100% accuracy and two categories with the highest confusion.

di�erent locations within the image, with background clutter and occlusion, which results
in higher intraclass diversity. Some examples are shown in Fig. 5.16.
For Caltech-256, we carried our DHOG-SPP SparLow on randomly selected 15, 30, 45,

60 training images per class respectively. We set mPCA = 2560, k = 3072, l = 255 for
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Figure 5.19: Performing supervised SparLow with or without developed regularizers on Caltech-101.
ntrain = 30. Total Reconstruction Error is calculated by ‖X−DΦ‖2F .

LDA-like SparLow. The codebook size for coding DHOG descriptors is set to be 128× 4096.
Finally, we use GSVM for classifying the low dimensional features. Table 5.5 shows our
results outperform the state-of-the-art methods under all the cases. We also implemented
TDDL for comparison, and the each sub-dictionary size of TDDL is �xed as k = 200. It
shows that TDDL is far below our results. The possible reason is that TDDL associated
with a binary classi�er may su�er the huge number of classes (i.e., 256).
For Pascal VOC 2007, our recognition accuracy 64.12% and 66.68% achieved by DHOG-

SPP for LDA-SparLow with l = 19 and MFA-SparLow with l = 103. These results are much
higher than state-of-the-art results, such as LLC (acc. 57.66%) in [28], LDP (acc. 53.70%)
in [220], and VQ (acc. 56.07%) in [29].
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5.5 Experimental Evaluations

Table 5.5: Classi�cation Performance (Average accuracy (%)) on Caltech-256 datasets.

Caltech-256 15 30 45 60
KSPM [29] − 34.10 − −

ScSPM+SVM [27] 27.73 34.02 37.46 40.14
LLC+SVM [28] 34.36 41.19 45.31 47.68
Gri�n [216] 28.30 34.10 − −
SRC [3, 109] 27.86 33.33 − −

D-KSVD [108, 109] − 27.79 − 32.67
LC-KSVD [109] 28.9 34.32 − −

LSc [37] 29.99 35.74 38.47 40.32
TDDL [26] 30.20 36.44 38.89 46.42

SparLDA 33.09 36.65 43.74 48.02
LDA-SparLow 35.44 39.48 46.10 51.13

SparMFA (l = 287) 33.32 36.90 44.63 48.62
MFA-SparLow 36.02 40.21 48.02 52.66
SparMVR 31.01 34.92 42.44 47.01

MVR-SparLow 34.11 37.58 45.30 49.29

15-Scenes dataset

We �nally evaluated our SparLow on the 15-Scenes dataset [29]. This dataset contains totally
4485 images falling into 15 categories, with the number of images in each category ranging
from 200 to 400 and image size around 300 × 250 pixels. The image content is diverse,
containing not only indoor scenes, such as bedroom, kitchen, but also outdoor scenes, such
as Building and country, etc., see Fig. 5.16.

Table 5.6: Averaged classi�cation Rate (%) comparison on 15-Scenes dataset. The classi�er is 1NN for the
third column if not speci�ed.

Methods Accuracy Methods Accuracy
LDP [220] 81.40 LDA 91.69
KSPM [29] 83.50 SparLDA 95.89

ScSPM+GSVM [27] 80.28 LDA-SparLow 97.47
LLC+GSVM [28] 89.2 MFA 92.82
SRC [3, 109] 91.8 SparMFA 96.65
LSc [37] 89.7 MFA-SparLow 98.46

K-SVD[4] + LDA 92.6 MVR (l = 512) 93.10
D-KSVD [108] 89.01 SparMVR 96.32
LC-KSVD [109] 92.9 MVR-SparLow 97.55

SDA [190] 97.28 SDA-SparLow 99.18
SDE [198] 97.66 SLap-SparLow 99.25

LapRLS [200] 94.86 SMVR-SparLow 99.12
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Chapter 5 Sparse Low Dimensional Representation Learning

Following the common experimental settings, we use SIFT-SPP as input with k = 1024
and mPCA = 2000. For MFA, we set k1 = 70, k2 = 100, and l = 50. For SparMFA and
MFA-SparLow, we set k1 = 30, k2 = 100 and l = 60. For all supervised and semi-supervised
SparLow methods, the dictionary size k = 750. Table 5.6 compares our results with several
sparse coding methods in [27, 3, 28, 37, 37, 108, 109] and others in [220, 29], which are
all using SPP features as input data. As shown in Table 5.6, our approaches signi�cantly
outperform all state-of-the-art approaches. Note that, the bottom three lines are all semi-
supervised methods, ntest = nUtrain.

5.5.6 Parameters Sensitivity

In this section, we investigate the sensitivity of the performance while varying parameters,
such as µ1, µ2 in Eq. (5.6), the dimension l of low-dimensional representations, and the
dimension m of input features.
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Figure 5.20: Sensitivity in recognition rate on USPS digits with respect to weighing factors µ1 and µ2.

At �rst, we present our preliminary results on sensitivity of the PCA-SparLow and LDA-
SparLow on the 1NN classi�cation problem with respect to the weighing factors µ1 and
µ2, cf. Fig. 5.20. The experiments are performed in USPS dataset with k = 1000, and
l = 50 for PCA-SparLow, l = 9 for LDA-SparLow. Note that, the recognition accuracy is
the average (converged) value after the algorithm running for 20 loops. It is easy to see
that a suitable choice of µ1 and µ2 could improve the convergence of the SparLow system.
Similarity, we next evaluate the sensitivity of the both unsupervised and supervised SparLow
methods on the 1NN classi�cation problem with di�erent low dimensions l, cf. Fig. 5.21(a).
The experimental settings are same to Fig. 5.20, also performed on USPS dataset. The low
dimension l > 32 is a better choice for all unsupervised SparLow. For supervised SparLow,
the best l for MFA-SparLow is around 64, for LDA is 9, for MVR-SparLow is l > 32.
Considering one fact that the computational complexity of sparse coding depends on the

choice of dictionary size, m and k, cf. [221]. One popular way is �rst to lead DR transforma-
tion on raw image and then learn or construct a dictionary on reduced space, cf. [3]. Following
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Figure 5.21: Sensitivity in recognition rate with respect to Low dimension l.

this way, in Fig. 5.22(a), we test the proposedMFA-SparLow in reduced feature space of PIE
faces. We �rst reduce the dimensionality into Rd with d = 512, 289, 100, 64, 36, 16 by random
Gaussian matrix (Randomfaces), Eigenfaces [186], Laplacianfaces [183], and wavelet trans-
forms (Waveletfaces). We then learn the dictionary D ∈ Rd×r and P ∈ Rk×k. Fig. 5.22(a)
demonstrates that the recognition results ofMFA-SparLow with increasing dimensionality of
di�erent reduced input features. It is clear from this result that, when the resolution is not
very low (m > 17× 17), the recognition rates perform not signi�cant recession. Fig. 5.22(b)
plots the recognition results of supervised SparLow and semi-supervised SparLow on input
PCA-projected input features. It shows that l > 512 is the better choice for such methods.
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Figure 5.22: (a) Recognition results using proposed MFA-SparLow in feature space on PIE faces. ntrain =
120, k = 2040. Note that, the dimensionality of Waveletfaces is only 16, 36, 100, 289, 1024. (b) Recognition
results using proposed MFA-SparLow in PCA projected subspace on Caltech-101 dataset. ntrain = 30,
k = 3060.
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Chapter 5 Sparse Low Dimensional Representation Learning

5.5.7 Optimization Process

With the aim of better understanding our proposed SparLow, in this section, we show the
optimization process of supervised SparLow performed on CMU PIE faces, COIL100 car-
toons, Handwritten digits (MNIST and USPS), and objects/scenes datasets (i.e., Caltech-
101, Caltech-256, Pascal VOC2007 and Scene-15). For MNIST, USPS, and VOC2007, we use
the standard splitting for training and testing subsets. For CMU PIE, COIL100, Caltech-
101, Caltech-256 and Scene-15, ntrain is shown in Fig. 5.23. For Caltech-101 and Caltech-256,
GSVM is the classi�er. For other datasets, we choose 1NN to classify a test sample. All
parameter settings are described in previous Sections. All sub-�gures in Fig. 5.23 show that
the supervised SparLow have a good convergence after 10 or 15 iterations. Note that, the
starting points demonstrate the recognition results by directly applying the LDA, MFA and
MVR on sparse representations with respect to D̂.

5.6 Summary

In this chapter, we present a low dimensional representation learning approach, coined here
as SparLow, which leverages both the sparse representation and the trace quotient criterion.
It can be considered as a two-step disentangling mechanism, which applies the trace quo-
tient criterion on the sparse representations. Our proposed generic cost function is de�ned
on a sparsifying dictionary and an orthogonal transformation, which form a product Rie-
mannian manifold. A geometric CG algorithm is developed for optimizing the cost function.
Our experimental results depict that in comparison with the state of the art unsupervised,
supervised and semi-supervised representation learnings methods, our proposed SparLow
method possesses promising performance in data visualization and classi�cation.
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(f) Caltech-256, ntrain = 60
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Figure 5.23: This picture depicts the optimization process of supervised SparLow on di�erent image
datasets.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The focus of this dissertation is on the investigation of disentangling underlying explanatory
information from sparse representations of the image data, that facilitates the learning task
of interest. Technically, by exploring the di�erentiability of solutions of some sparse coding
methods, we proposed a two-layer representation learning framework, which adopts sparse
representations in a further learning mechanism to disentangle the useful information. In
this dissertation, such a two-layer learning block has been successfully applied for solving two
computer vision problems as follows, i) modeling the evolution of dynamic course of dynamic
textures, and ii) constructing e�ective low dimensional image representations. In general,
the whole learning process was treated as an optimization problem on jointly learning a
sparsifying dictionary and a further problem-dependent disentanglement parameter, based
on geometric gradient methods on suitable matrix manifolds.
Modeling dynamic scenes has been widely studied due to its importance in various video

processing applications, e.g., video classi�cation, decomposition and segmentation. This
problem is extremely challenging because the shape and appearance of a dynamic texture
are nonrigid and continuously change as an unknown function over time and space. Thus,
�nding appropriate �states� (or representation) is the key to explore the evolution of dynamic
textured scenes. Moreover, the traditional system, i.e., LDS, is often vulnerable to non-
Gaussian noise, such as missing data or occlusion of the dynamic scenes. To tackle these
challenges, our proposed two-layer learning block is adopted to model the DT by appealing
to the principle of sparsity. In Chapter 3, instead of using Principle Components (PCs)
as the �states� in LDS, sparse coe�cients over a learned dictionary were imposed as the
underlying �states�. In this way, the dynamical process of DTs exhibits a transition course
of corresponding sparse events. We developed a combined regression associated with several
regularizations for a joint process � �state extraction� and �state transition�. Then we
treated the solution of the above combined regression as an adaptive dictionary learning
problem, called SLDS. To enable the SLDS in DT's classi�cation, two discriminative SLDS
algorithms associated with a sparse transition matrix were proposed. Compared with state-
of-the-art video processing methods on several benchmark data sequences, the proposed
method showed a robust performance on DT sequence synthesis, recognition and denoising.
On the other hand, natural images often have high dimensions and complex statistical

structure with unknown distribution, and hence they are di�cult to be explicitly parame-
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terized. Therefore, directly modeling the raw images for tasks may challenge most machine
learning techniques, e.g., the high-computational load. A suitable choice of low-dimensional
data representation has been found to be a powerful preprocessing instrument to support
e�ective machine learning tasks, such as classi�cation and visualization. Based on such ar-
guments, we employed the proposed two-layer learning block to �nd low dimensional repre-
sentations of images in triple unsupervised, supervised and semi-supervised manners. Under
this learning framework, a novel algorithm, called SparLow, was introduced in Chapter 4.
By applying a trace quotient criterion on sparse coe�cients, we developed a generic cost
function for learning jointly a sparsifying dictionary and a dimensionality reduction trans-
formation. It led to a wide range of counterparts of classic low dimensional representation
methods, which include Principal Component Analysis, Local Linear Embedding, Laplacian
Eigenmap, Linear Discriminant Analysis (LDA), Semi-supervised LDA, etc. Our proposed
generic cost function was de�ned on a sparsifying dictionary and an orthogonal transforma-
tion, which form a product Riemannian manifold. A geometric CG algorithm was developed
for optimizing the cost function. The proposed approach had been adapted to a wide vari-
ety of machine learning tasks, such as 3D data visualization, face/digit/cartoon recognition,
object categorization and clustering. Our numerical experiments were compared with state-
of-the-art data representation methods on several benchmark image datasets, to demonstrate
the e�ectiveness of the proposed algorithm.
We have demonstrated that our proposed SparLow could be successfully applied on the raw

images, i.e., pixel intensity values. However, in the practical numerical applications, one issue
often challenges the most algorithms for images processing. This issue often occurs when
objects or scenes having di�erent scales or complex backgrounds, in which it is impossible to
directly learn a uniform dictionary for all images. One popular way to cope with this issue
is to �rst detect various local image features, such as SIFT, HOG or CNN-based features,
and then encode these local features to generate a single �xed-length high-level vector that
describes the entire image. We extended our proposed SparLow to such high-level features,
and the recognition results showed its competitive performance on comparison with the
state-of-the-art object categorization approaches.

6.2 Future Work

This dissertation focuses on the development of a two-layer representation learning block,
as shown in Fig. 3.1. We also developed methods for its two applications, i.e., modeling
dynamic textures and learning low dimensional image representations, called SLDS and
SparLow, respectively. We believe that with a thorough understanding of the proposed
framework, one can be well guided in integrating it into further sophisticated applications.
On the other hand, the proposed framework also has a number of limitations.
According to these arguments, in the following, we introduce several potential future

directions of the proposed two-layer building block.

i) High-computation cost is one signi�cant drawback of the proposed two-layer representa-
tion learning block. For example, the training time will be prohibitive while learning low
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dimensional representations of large scale image dataset, e.g., millions of training images/-
patches, or modeling the dynamic course of a very long image sequence. Optimizing the
optimization algorithms to speed up the learning convergence is one potential direction.

ii) The second possible future extension is to learn a dictionary for DT sequences or images
with high resolution (or high dimension), since �nding an appropriate faction of data as
shown in Eq. (1.1) can be prohibitively expensive when the dimensionality of the raw input
is huge. Extending our proposed two-layer learning block to tensor �eld is an interesting
direction. For example, learning separable dictionaries in small sizes to explore a transition
of 2D sparse events is worth a try.

iii) The proposed SLDS can handle the video with single dynamic textures, e.g., �re, moving
water, smoke, swaying trees or moving clouds, but it fails to handle the video sequence
containing complex moving scenes, such as the DTs under dynamic background or one video
having many dynamic textures. Representing dynamic scenes as a mixture of SLDS s may
cope with such a limitation.

iv) Speci�cally for DT modeling, another potential research direction would be to construct
a hierarchical learning scheme, e.g., bag-of-systems (BoS) representation [222, 223, 224], on a
collection of SLDS parameters to promote the task of interest, such as motion classi�cation,
detection and segmentation. The SLDS parameters mentioned here are dictionary matrices
and sparse transition matrices.

v) Learning an arbitrary linear transformation between two random sparse vectors admitting
the sparse distribution is also a pending question in the community, cf. [172]. For example,
in order to build a solvable and stable learning system for linearly transiting consecutive
sparse states, as introduced in Chapter 3, it needs to �nd a suitable searching set for such a
transition parameter.

vi) The proposed SparLow is �exible and can be extended to more general cases of low
dimensional representation learning models with orthogonal constraints.

vii) Integrating the proposed two-layer representation learning block into deep learning
architectures is another potential research direction. For example, directly constructing a
multi-layer SparLow may improve the performance of some speci�c image processing tasks.
For another example, it can treat the proposed SparLow as one layer or a neuron in deep
CNN framework.
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