
Event-based signaling for large-scale artificial robotic skin - Realization
and performance evaluation

Florian Bergner, Emmanuel Dean-Leon and Gordon Cheng

Abstract— In this paper we describe how we realized event-
based signaling for large scale artificial robotic skin. We devel-
oped a new algorithm for the event generation on multi-modal
skin cells. The skin cells have two modes, the conventional
data sampling mode and the event mode. A comprehensive
performance evaluation and comparison of these two modes
is presented. We perform different experiments on our robot
TOMM which has two UR5 robot arms, each covered with 260
multi-modal skin cells. Each skin cell samples 9 signals of 4
different modalities. Finally we derive models for extrapolating
CPU usage and network traffic for larger numbers of skin
cells and higher sample rates. The results show that the event-
based system has superior performance and its performance
edge increases with larger numbers of skin cells and higher
sample rates. Experimental validation on our real robot system
shows that in reactive control the event-based system reduces
in comparison to the conventional system the packet rate by
48.2% and the CPU usage by 17.79%. We extrapolate the worst
case for 5000 cells and show that the event-based system can
at least reduce the packet rate by 21.2% and the CPU usage
by 17.46%.

I. INTRODUCTION

A. Motivation

Giving robots skin and thus giving them the sense of touch
has already been addressed in the 1980’s [1]. The reasons
for equipping robots with skin are diverse and are recently
becoming more important as robots are evolving to a state
where they need to interact and collaborate with humans.
For intuitive and easy interactions interactive robots need
to become aware of people and tactile guidance and thus
perceive and process tactile stimuli. Skin for robots will
not only enhance human-robot interaction to a completely
new level, skin will make robots also safer for human-robot
interaction.
Recent work on robotic skin [2]–[6], [17], [18] demonstrate
different approaches to tackle general hardware and software
challenges on realizing skin which partially covers robots.
Eventually, to fully exploit the capabilities of robotic skin,
skin has to cover a robot completely. We estimate the lower
bound of skin cells for full robot coverage to somewhere
between 3000 and 5000 skin cells. Scaling up robotic skin to
cover a whole robot induces many new complex challenges,
e.g. handling, conveying and processing vast amounts of
tactile information. These challenges become more promi-
nent with increasing amounts of skin cells, up to the point
where solutions become infeasible or non-existent. One way
to cope with these challenges is to organize skin in a modular,

All authors are with the Institute for Cognitive Systems,
Technische Universität München, Munich, Germany, see
http://www.ics.ei.tum.de

Events

tactile
stimuli

Fig. 1. Robot TOMM with robotic skin using event-based signaling.

distributed form with separated skin regions connected with
multiple interfaces [2], [4]. This results in low latency and
high bandwidth communication paths by using parallelism.
However it also increases the number of cables and interfaces
which induces higher costs and deployment problems in
space constrained mobile robots. The work of [7], [8] pro-
poses an organized architecture to handle tactile information
more efficiently in higher processing layers. Organizing data
helps to reduce latency by reducing searching time. However
these contributions do not reduce the amount of data which
has to be communicated and processed. But a low latency,
high speed flow of information is essential for stable and fast
controllers and thus for fast robot reactions to tactile stimuli.
A very promising bio-inspired approach for solving these
challenges is using event-based signaling and processing
[10]–[16], [20]–[23]. The event-based principle can reduce
the amount of data which has to be conveyed and processed
while not reducing or loosing information. In the standard
approach the synchronous system acquires and processes in-
formation at a predefined constant sampling rate, in the asyn-
chronous event-based approach however the whole system
becomes only active on the appearance of new information.
More precisely, the ideal event based sensor becomes only
active and forwards information whenever the transduced and
monitored information change exceeds a specified threshold.
Obviously, such an event-based system has the potential to
generate less data which has to be conveyed and processed.
This results in lower demands on communication bandwidth
and processing power for the same amount of skin cells.
In our previous paper [9] we demonstrated through simula-
tions with off-line event generators and real sensor data that
event-based signaling indeed reduces the requirements on the
communication bandwidth. This work now focuses on the
realization of the previously proposed event-based signaling

principle in our robot skin architecture. The full realization of
the new concept allows us to compare it to the conventional
system in real time and to fully and comprehensively evaluate
its performance. The performance evaluation allows us to
extrapolate demands on communication bandwidth and CPU
usage for larger robotic skin in the near future. We expect
event-based systems to reveal a much better performance
than conventional systems for large numbers skin cells and
high sample rates.

B. Related Work

In the field of sensing many works already take advantage
of event-based approaches. So far the works on event-
based vision sensors of [10]–[15] are most advanced and
the proposed sensors and principles are already used in
various applications. The proposed vision sensor monitors
the temporal contrast at pixel level and generates a pixel
event whenever its contrast exceeds a defined threshold.
The events are time multiplexed within a matrix structure
and forwarded using the address event representation (AER)
protocol. In the AER protocol the presence of an event itself
encodes its occurrence time and the address bus encodes
the occurrence location of the event. These vision sensors
provide low data rates and high temporal resolution.
The work of [16] investigates the feasibility of develop-
ing a neuromorphic event-based force sensor which uses
the same principles as the event-based vision sensors. The
proposed force sensor transduces forces to voltages and
voltages changes above a specified threshold generate force
events. The authors propose to arrange these event-based
force sensors into arrays and propose the AER protocol to
convey force events from the periphery to higher processing
layers. The surveys of [17], [18] refer to this neuromorphic
event-based force sensor and deduce that neuromorphic force
sensors will be advantageous for data reduction in large scale
robotic skin. The authors also propose on site embedded
signal processing using SVD for data reduction. However
they do not provide solutions for the wiring problem when
using the parallel AER protocol or solutions for sufficient on
site embedded computing power. A solution to the wiring
problem of the AER protocol is presented in [19]. The
authors introduce a low latency high speed AER serial-
izer/deserializer which is able to transport an AER event by
using only 3 wires. This serial interface has potential but
requires reliable high speed connections between skin cells.
The works of [20]–[23] introduce two principles for event-
based systems within the context of signaling in low power
distributed sensor networks, namely the send-on-delta princi-
ple and the principle of compound architectures. The send-
on-delta principle is quite similar to the event generation
proposed in [10]–[15], [19]. But instead of immediately
propagating the event using the multiplexed AER protocol,
the event triggers the transmission of a packet containing
the event. The send-on-delta principle reduces transmission
rates and still works with standard communication interfaces.
However the principle cannot match the high temporal preci-
sion of the AER protocol. The send-on-delta principle allows

compound architectures where the signal transduction and
acquisition is still synchronous but where the information
flow from the periphery to higher layers is event based.
These two principles offer the chance to employ event-based
principles in existing robotic skin systems with conventional
sensors. Neuromorphic sensors which transduce stimuli di-
rectly to events would reduce the processing load of the
skin cell microcontrollers and the energy consumption of the
whole system. However such multi-modal event-based touch
sensors do not exist yet.
The works of [4], [7], [8] focus on the overall skin software
architecture and on how to convey tactile information from
the periphery to higher processing levels in a generalized and
organized way. However the proposed system is based on
the send-on-request principle which enforces a synchronous
information acquisition process. This process increases laten-
cies as new information has to be requested which doubles
the impact of the network delay.

C. Contributions

To our best knowledge this work introduces the first
realization of event-based signaling in larger scale robotic
skin. We integrated event generators to our skin cell firmware
and developed a skin driver library and ROS interface. The
whole skin system supports now two modes, the conven-
tional data sampling mode and the event mode. This allows
us to switch between modes while executing experiments.
Furthermore we investigate the behavior of the new system,
compare it to the conventional one and provide a thorough
and comprehensive performance evaluation. We also propose
empirical models for the relationship between CPU usage,
packet rate, sample rate and the executed experiment such
that we can extrapolate CPU usage and packet rate for large
scale robot skin and higher sample rates.

II. SYSTEM DESCRIPTION

A. CellulARSkin

Fig. 2. CellulARSkin.

For our experimentation and evaluation we use our robot
skin CellulARSkin [2], a modularized, multi-modal skin. The
skin consists of hexagonally shaped skin cells (see Fig. 2).
The sensors of such a skin cell transduce different tactile
modalities like vibration (3D acceleration sensor), pressure
(3 capacitive force sensors), pre-touch (proximity sensor)
and temperature (2 temperature sensors). The microcontroller
on the back of the skin cell collects the sensor data, filters
the acquired data and packs it into a data packet. The data

packet which contains 9 sensor values is sent through the
skin cell network to higher processing layers. The skin cells
communicate with up to four neighbors and embody the skin
cell communication network (see Fig. 3). The network is
managed by the distributed microcontrollers of the skin cells
and is initialized during the start-up process. The skin cells
can change their sample rate on demand.
In this work we extended the skin cell firmware such that it
supports the conventional data sampling mode and the event
mode. Since the skin cell network only supports one fixed
packet size the event packet size has to be the same as the
data packet size. This constraint prevents us from using the
optimal packet size for event packets. The interface boxes
at the root of a skin cell network convert skin cell network
packets to standard UDP Ethernet packets (see Fig. 3).

Fig. 3. The skin cell network architecture and interface to the PC.

B. Event generation

1) The general principle: We use the send-on-delta prin-
ciple, introduced by [20], [21] within a compound architec-
ture to generate the events. In our previous work [9] we
explained how we can use of this principle in the context of
robot skins. We demonstrated by off-line simulation with real
sensor data how the proposed event generator will behave
and how it will reduce network bandwidth demands. The
proposed event generator samples, locally on the microcon-
troller, sensor values as fast as it can. The event generator
monitors the change of the sampled signal and generates an
event whenever the accumulated change exceeds the given
threshold. ∣∣∣∣ d

dt
f(t)

∣∣∣∣ dt ≥ thresh → event (1)

For discrete sampled signals with a sampling period of Ts =
ti − ti−1 this equation results in:∣∣∣ ∫ ti

ti−1

d
dtf(t) dt

∣∣∣
ti − ti−1

≥ thresh → event (2)

∆f = |f(ti)− f(ti−1)| ≥ thresh → event (3)

In our implementation an event is represented by its sensor
type (proximity, force, acceleration and temperature) and the
sensor value at its occurrence. In this way we avoid drifts.

2) The realization on skin cells: We integrate the event
generator into the existing microcontroller firmware which
allows us to switch between the conventional data sampling
mode and the event mode. This eases the experimentation

where we need to compare the performance of both modes.
As a drawback we cannot change the event packet size to
its optimum [9]. Algorithm 1 describes how the skin cell
program generates events from updated sensor values. First
the skin cell acquires and filters sensor data and thus gets
the most recent set of sensor values. If the cell is in the
data mode then it directly creates a normal data packet and
queues it to the output buffer. However if the skin cell is in
event mode then the skin cell program calculates the absolute
difference between the current sensor values and the previous
ones. Whenever the difference of one sensor value is above
the given threshold then the current sensor value is saved
and an active event flag is set. Next the skin cell creates a
packet containing the current values of all active events. Fig.
4 shows how to encode and store events into an event packet.
Note that we make use of the whole space of the fixed 20
byte size of a packet and store up to 6 events into one packet.
From the simulations in [9] we know that a smaller packet
which encodes only 3 events would have been optimal.

Algorithm 1 Event generation
prevData ← 0

loop
update currData
if mode is DATA MODE then

create data packet
send data packet
continue

end if
diff ← |currData − prevData|
mask ← 0

for i = 0 to 8 do
if diff [i] > thresh[i] then

set bit i in mask

prevData[i]← currData[i]
end if

end for
if any set bit of enabledMask is set in mask then

create event packet
send event packet

end if
end loop

byte 0 Event data packet header
byte 1 - 2 Cell Id (14 bits)
byte 3 - 4 Event type mask (9 bits + 1 bit)

9 bits → 9 event types
1 bit → either packet one or two

byte 5 - 18 6 × 16 bit values for 6 events
byte 19 End of packet

Fig. 4. Event data packet definition.

C. System architecture

1) Skin Driver Library: Besides supporting the data mode
and event mode in the skin cell firmware, the new host
software which acquires and processes skin information
also needs to support both modes. For this reason we
completely revised the host software and created a new
system architecture which generalizes and modularizes the
skin driver library for host applications (see Fig. 5). The

Fig. 5. Skin Driver and ROS skin driver.

skin hardware abstraction layer Skin HAL generalizes the low
level part of the skin driver. The Skin HAL provides a set of
Interfaces which manages connections to skin cell networks
over different hardware interfaces like Ethernet/UDP or USB
(see Fig. 5). The low level driver LLD of the Interface
converts skin packets to more general skin driver packets
and data/event unpackers convert data/event packets to skin
cell data or skin cell events. The interface also handles the
initialization of the skin network and the different operation
modes. The high level driver Skin HLD (see Fig. 5) provides
a generalized high level interface and allows the selection of
a desired hardware connection. The new skin driver library
allows applications directly to select either data or event
mode which simplifies our experiments.

2) Event unpacking: Algorithm 2 demonstrates how we
unpack event packets to events in the event unpacker module
of a skin driver Interface. The unpacking algorithm uses the

Algorithm 2 Event unpacking
loop

clear eventList

fill eventPktQueue
for each eventPkt in eventPktQueue do

get eventMask

for each bit set in eventMask do
get eventType

get eventValue

create event
append event to eventList

end for
end for
publish eventList

end loop

event mask of the event packet to find out which events
are active and which event values are encoded in the event
value section of the event packet. Each bit in the event mask
represents one specific event like a force sensor 1 event or an
x-axis acceleration event. The order of the bits also represents
the order of the event values in the event value section of
the packet. After an event is unpacked it is added to the
event list. The event list is finally forwarded to the higher
abstraction levels of the skin driver.

3) Event to Skin Cell Data conversion: The skin driver
library also provides a Event to Data Converter module
which converts skin cell events back to normal skin cell
data containing all the current sensor values of a skin cell.

This module has a local memory of all skin cell sensor
values which are updated according to the incoming events.
Every update of a skin cell data block also triggers the
forwarding of this block to higher processing layers. The
converter module is helpful in applications which not yet
support events but which want to take advantage of event-
based signaling.

4) ROS skin driver: The experiments include our robot
TOMM which uses ROS (see Fig. 5). The ROS skin driver
provides a ROS interface to the skin and makes extensive
use of the new skin library. The ROS interface supports skin
cell data and skin cell events. In this way ROS nodes can
take full advantage of event-based signaling.

D. Performance evaluation

We developed a performance evaluation library which
allows us to monitor the CPU usage of a specified thread
and the network traffic of the skin interface and the ROS skin
interface. We determine the CPU usage by reading special
pseudo files in the Linux /proc file system and we calculate
the network traffic using the pcap library. Our performance
evaluation tool is embedded in the ROS environment such
that we can measure performance indicators along with other
values from the skin or the robot.

III. EXPERIMENTS
A. Performance indicators and their dependencies

Fig. 6. Performance indicator dependency tree.

For building up a consistent and comprehensive perfor-
mance analysis and comparing between data mode and event
mode, we are particularly interested in two performance
indicators: 1) the CPU usage and 2) the packet rate. A
bounded and low packet rate is extremely important for
a stable skin cell network and a low CPU usage of the
skin driver is important for compact, autonomous robotic

skin applications. Both indicators are limiting factors for
applications with very large robot skin. Our previous work
[9] indicates that the event mode reduces packet rates. With
the following experiments we formally prove that this is also
true for real systems. Moreover we show that the CPU usage
is coupled with the packet rate and we notice that the event
packet rate has many dependencies. We execute experiments
in order to determine the relationships between packet rate
and CPU usage and between event packet rate and its many
influence factors, e.g. sample rate and threshold. Based on
the found relationships we develop empirical models such
that we can extrapolate for very large scale robot skin with
huge numbers of skin cells and higher sample rates. This
will result in extrapolated performance estimates for future
robotic skin systems. To keep track of the various dependen-
cies between CPU usage, packet rate and its influence factors,
we introduce a dependency tree (see Fig. 6). We observe that
the packet rate influences the CPU usage as processing more
packets requires more processing power. The data packet rate
is only dependent on the sample rate fsample and number of
skin cells n:

pktRate = n · fsample (4)

while the event packet rate has several dependencies and
influence factors. The event packet rate is dependent on
the event rate. However the relationship is not straight
forward since multiple events occurring at the same time
can be packed into one single event packet. How many
events occur at the same time is loosely dependent on the
external stimuli but mainly a stochastic process. On average
relationship between event packet rate and event rate is
linear and becomes better than linear as soon as the packet
contains more than one event. Furthermore the event rate
depends on the threshold and the accumulated change of
the observed sensor value over time dt (see Eq. 1). The
accumulated change is dependent on the sample rate, the
exerted stimuli and noise. Of course tactile stimuli depend
on the experiment or the application scenario. We note that
in the event mode the performance indicators CPU usage and
packet rate depend on the experiment. Thus experiments in
both modes have to be repeated in the same manner to ensure
valid comparisons.

B. Experimental setup

Experiment Description

Idle The robot is not moving and the skin is not stimulated
Stroking upper arm The upper arm skin of the robot is stroked by one person,

the robot arm itself is inactive.
Stroking arm The upper and lower arm skin of the robot is stroked by two persons,

the robot arm itself remains inactive.
Hammering on The skin is not touched, one person hammers on the end effector.
end effector of the robot arm, the robot arm itself is inactive.
Moving arm The skin is not touched, the robot arm is active and moving.
Reactive control The robot arm is controlled by the skin, touching the skin

results in an arm action/movement.

Fig. 7. Overview and description of experiments.

We perform the experiments on our robot TOMM (see
Fig. 1). TOMM has two Universal Robot UR5 arms, each

covered with 260 multi-modal skin cells. The experiments
are only performed on one arm as listed and explained in
Fig. 7. The experiments are chosen in such a way that
the skin is stimulated in different modalities with different
intensities (see Fig. 8) and should span over the most realistic
application scenarios and should enclose the best and the
worst case. We execute each experiment for 10 seconds with
different sample rates in data and event mode. During the
execution the stimuli are uniformly and continuously applied
such that we can average for the evaluation. For finding good
event thresholds we use the standard deviation of the signals
as a first hint and then tune the thresholds heuristically to
minimize errors. For comparability we use the same event
thresholds as we determined in [9]. In the future dynamic
thresholds might also contribute to a better event generator
performance. We notice that the experiment stroking while
moving with movements feature rich in acceleration changes
will result in high event rates as almost all tactile modalities
are stimulated at the same time. Nevertheless we expect for
this experiment a packet rate below 100% which we will
prove in the future.

Experiment Acceleration Force Proximity Temperature Packet rate

Idle 1.23 (0.33 %) 0.21 (0.17 %) 4.17 (3.33 %) 0.15 (0.12 %) 5.71 (4.57 %)
Stroking upper arm 9.33 (2.49 %) 1.95 (1.56 %) 17.9 (14.3 %) 0.20 (0.16 %) 25.2 (20.1 %)
Stroking arm 14.6 (3.90 %) 3.09 (2.47 %) 26.2 (21.0 %) 0.20 (0.16 %) 37.3 (29.9 %)
Hammering on end effector 137 (36.6 %) 0.57 (0.46 %) 5.69 (4.55 %) 0.29 (0.23 %) 89.6 (71.7 %)
Moving arm 174 (46.6 %) 1.85 (1.49 %) 4.65 (3.72 %) 0.36 (0.29 %) 95.8 (76.6 %)
Reactive control 86 (22.9 %) 3.66 (2.93 %) 8.60 (6.88 %) 0.27 (0.22 %) 64.7 (51.8 %)

Fig. 8. Mean event rate per cell per second and percentage of max. event
rate for different modalities at 125 Hz sampling rate on skin cells; 100%
event rate in one modality would equal the data rate in the data mode;
the packet rate is the mean packet count per cell per second and 100%
packet rate would equal the packet rate in the data mode; the colored fields
highlight the dominant modalities within a given experiment.

C. CPU load and packet rate

events

const. sample rate

cp
u
u
sa
g
e
in

%

packet rate in k packets per second

100 k

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

Mode Index a b R2

Constant sample rate d 45.52 5.453 · 10−5 0.9993

Events e 32.65 1.239 · 10−4 0.9969

Fig. 10. CPU usage in % vs. packet count; the CPU usage in % is the
CPU usage of one of the eight cores of an Intel Core i7 4770 CPU; the
data points belong to experiments listed in Fig. 7; the table shows the curve
fitting results; the index d denotes the data mode and the index e denotes
the event mode; the logarithmic model shows that handling data and event
packets becomes more efficient for higher packet rates.

We expect that the CPU load is increasing for higher
packet rates and that identical packet rates in data or event
mode roughly cause the same CPU usage. Plotting the CPU
usage of all the experiments against the packet rate reveals
that the relationship is approximately logarithmic:

cpuUsage = f(pktRate) (5)
f{d,e}(x) = a · log(b · x + 1) (6)

cp
u
u
sa
g
e
in

%

sample rate in Hz

185.00 Hz

260 cells

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

cp
u
u
sa
g
e
in

%

num. of cells

702 cells

62.5 Hz

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

150
cp
u
u
sa
g
e
in

%

sample rate in Hz

100.00 Hz

500 cells

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

cp
u
u
sa
g
e
in

%

num. of cells

190 cells

250.0 Hz

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

150

200

Fig. 9. The two graphs on the left side show extrapolations for the CPU usage with respect to the sampling rate for 260 or 500 cells; the gray bars are
the worst case bounds for the sample rate after which the event-based system becomes superior; the two graphs on the right side show explorations for
the CPU usage with respect to the skin cell count for a sampling rate of 62.5 Hz and 250 Hz; the gray bars indicate the worst case bounds for the number
of cells after which the event-based system becomes superior.

The index d denotes the data mode and the index e denotes
the event mode. a and b are fitting parameters which can
be found in the table of Fig. 10 and x denotes the packet
rate. The logarithmic model verifies that handling data and
event packets becomes more efficient for higher packet rates.
The relationship also indicates that the overhead of events
becomes less significant for higher packet rates.

D. Event packet rate extrapolation

p
a
ck
et

ra
te

sample rate in Hz
0 50 100 150 200 250 300 350 400

0

100

200

300

400

Mode / experiment Index a b R2

Const. sample rate: ref. d1 1.0 − −
Const. sample rate: actual d2 0.9435 − 0.9971

Events: idle e1 243.8846 2.248 · 10−4 0.9651

Events: stroking upper arm e2 85.0385 3.215 · 10−3 0.9764

Events: stroking arm e3 74.2308 6.154 · 10−3 0.9732

Events: hammering on end effector e4 330.2692 2.512 · 10−3 0.9888

Events: moving arm e5 1.214 · 107 1.687 · 10−5 0.9983

Fig. 11. Packet rate per cell in packets per second vs. sample rate on skin
cells; the reference and actual packet rates describe data packets rates of
the system in data mode; the other packet rates are event packet rates of the
corresponding experiment, e.g. reactive control; the data packet rate of the
system in data mode is not dependent on the experiment; the table shows
the curve fitting results.

The relationship between event rate and event packet
rate is not straight forward. We investigate the relationship
between the event packet rate, the experiment and the sample

rate and predict that the relationship between stimulation
intensity, sample rate and event packet rate is better than
linear. In the worst case scenario the event rate equals the
sample rate and consequently the performance of the system
in event mode falls back to the one in data mode (see
Fig. 11). The results show that experiments with a higher
stimulation intensity, e.g. the moving arm experiment, have a
event packet rate close to the linear bound while experiments
with lower stimulation intensities are much better than linear.
The relationship between the event packet rate and the
sample rate can be modeled by logarithmic functions (see
Fig. 11):

cellPacketRate = g(fsample, n = 1) (7)

gdi
(x, n) = a · n · x (8)

gei(x, n) = a · n · log(b · x + 1) (9)

The extrapolations in Fig. 11 indicate that the performance
edge of the event based system increases for higher sample
rates. The high speed arm movement experiment seems to
embody the worst case bound for our sets of experiments.

E. CPU usage extrapolation

We combine the models of CPU usage versus packet rate
and packet rate versus sample rate and get extrapolations on
the CPU usage for larger numbers of skin cells or for higher
sample rates:

cpuUsage = h(fsample, numOfCells) (10)

h(x, n) = f ◦ g = f(g(x, n)) (11)

The results in Fig. 9 show that the event-based system
becomes superior for higher sample rates and more skin cells.
The gray bars in Fig. 9 display the lower bounds for the

number of skin cells and the sample rate. As long as the
number of cells and the sample rate stay above these bounds
the event based system has superior performance, e.g. in the
worst case scenario with 260 skin cell at 250 Hz the event
based system shows a reduction of the packet rate by 21.2%
and the CPU usage by 2.72%. However if we increase the
number of skin cells to 5000 these values change to 21.2%
and 17.46%, respectively (see Fig. 12).

Mode Number of cells Sample rate Rel. packet rate Rel. CPU usage
data − − 100% 100%
events 500 62.5 Hz 79.4% 104%
events 500 100 Hz 78.7% 100%
events 500 500 Hz 78.4% 88.1%
events 100 250 Hz 78.8% 107%
events 190 250 Hz 78.8% 100%
events 260 250 Hz 78.8% 97.2%
events 5000 250 Hz 78.8% 82.54%

Fig. 12. Worst case CPU usage extrapolations for different numbers of
skin cells and sample rates; the packet rate and CPU usage is relative with
respect to the conventional data sampling mode.

IV. CONCLUSIONS
We discussed the realization of event generators in robotic

skin and evaluated in detail how the performance of robotic
skin using events compares to a conventional data sampling
system. We evaluated the two most important performance
indicators, CPU usage and packet rate in event and data mode
and extrapolated these indicators for larger number of skin
cells and higher sample rates. The results show that the event
based system indeed proves to have a higher performance and
the extrapolations indicate increasing superiority for more
skin cells and higher sample rates. We extrapolate for 5000
cells and show that in the worst case scenario the packet
rate reduces to 78.8% of the conventional data mode and
the CPU usage to 82.54% of the conventional data mode.
In other words, the event-based system at least reduces the
packet rate by 21.2% and the CPU usage by 17.46%. For
low sample rates and small skin networks the event-based
system has a higher CPU usage per packet ratio because
of the overhead and a less efficient event packet unpacker.
However the performance of the event-based system can be
further improved when we use the optimal packet size for
event packets [9]. The results also show that the event packet
rate is always smaller and in worst case equal to the data
packet rate. All together the event-based robot skin system
shows good improvements in CPU usage and network load
and brings us one step further to large scale robot skin
deployment.

ACKNOWLEDGMENT
This work has received funding from the European Com-

munity’s Seventh Framework Program (FP7/2007-2013) un-
der grant agreement no. 609206.

REFERENCES

[1] L. D. Harmon, “Automated Tactile Sensing”, in The International
Journal of Robotics Research, vol. 1, no. 2, pp. 3-32, 1982.

[2] P. Mittendorfer, E. Yoshida, and G. Cheng, “Realizing whole-body
tactile interactions with a self-organizing, multi-modal artificial skin
on a humanoid robot”, in Advanced Robotics, vol. 29, no. 1, pp. 51-67,
February 2015.

[3] G. Cannata, R. Dahiya, M. Maggiali, F. Mastrogiovanni, G. Metta,
and M. Valle, “Modular Skin for Humanoid Robot Systems”, in 4th
International Conference on Cognitive Systems (CogSys), 2010.

[4] E. Baglini, S. Youssefi, F. Mastrogiovanni and G. Cannata “A Real-
Time Distributed Architecture for Large-Scale Tactile Sensing”, in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 1663-1669, 2014.

[5] M. Strohmayr and D. Schneider, “The DLR artificial skin step I:
Uniting sensitivity and collision tolerance”, in IEEE International
Conference on Robotics and Automation (ICRA), pp. 1012-1018, 2013.

[6] M. Strohmayr and D. Schneider, “The DLR artificial skin step II:
Scalability as a prerequisite for whole-body covers”, in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 4721-4728, 2013.

[7] S. Youssefi, S. Denei, F. Mastrogiovanni, and G. Cannata, “A Real-
time Data Acquisition and Processing Framework for Large-scale
Robotic Skin”, in Robotics and Autonomous Systems, vol. 68, pp. 86-
103, 2015.

[8] S. Youssefi, S. Denei, F. Mastrogiovanni, and G. Cannata, “Skinware
2.0: A real-time middleware for robot skin”, in SoftwareX, vol. 3, pp.
6-12, 2015.

[9] F. Bergner, P. Mittendorfer, E. Dean-Leon and G. Cheng, “Event-
based signaling for reducing required data rates and processing power
in a large-scale artificial robotic skin”, in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 2124-2129,
2015.

[10] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 x 128 120 dB 15
µs Latency Asynchronous Temporal Contrast Vision Sensor”, in IEEE
Journal of Solid-State Circuits, vol. 43, no. 2, pp. 566-576, February
2008.

[11] C. Posch, D. Matolin, and R. Wohlgenannt, “An Asynchronous Time-
based Image Sensor”, in IEEE International Symposium on Circuits
and Systems, pp. 2130-2133, May 2008.

[12] C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco, and T. Del-
bruck, “Retinomorphic Event-Based Vision Sensors: Bioinspired Cam-
eras With Spiking Output”, in Proceedings of the IEEE, vol. 102, no.
10, pp. 1470-1484, October 2014.

[13] C. Bartolozzi, and G. Indiveri, “Selective Attention in Multi-Chip
Address-Event Systems”, in Sensors, vol. 9, no. 7, pp. 5076-5098,
2009.

[14] C. Bartolozzi, F. Rea, C. Clercq, and M. Hofstatter, “Embedded
neuromorphic vision for humanoid robots”, in IEEE Conference on
Computer Society, pp. 129-135, June 2011.

[15] R. Benosman, S.-H. Ieng, C. Clercq, C. Bartolozzi, and M. Srini-
vasan, “Asynchronous frameless event-based optical flow”, in Neural
Networks, vol. 27, pp. 32-37, 2012.

[16] S. Caviglia, M. Valle and C. Bartolozzi “Asynchronous, event-driven
readout of POSFET devices for tactile sensing”, in IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 2648-2651, 2014.

[17] L. Seminara, L. Pinna, A. Ibrahim, L. Noli, M. Capurro, S. Caviglia,
P. Gastaldo and M. Valle “Electronic Skin: achievements, issues and
trends”, in Procedia Technology, pp. 549-558, 2014.

[18] L. Seminara, L. Pinna, A. Ibrahim, L. Noli, S. Caviglia, P. Gastaldo
and M. Valle “Towards integrating intelligence in electronic skin”, in
Mechatronics, 2015. In Press.

[19] G. Rovere, C. Bartolozzi, N. Imam and R. Manohar, “Design of a
QDI Asynchronous AER Serializer/Deserializer Link in 180 nm for
Event-Based Sensors for Robotic Applications”, in IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 2712-2715, 2015.

[20] M. Neugebauer, and K. Kabitzsch, “A New Protocol for a Low Power
Sensor Network”, in IEEE International Conference on Performance,
Computing and Communications, pp. 393-399, 2004.

[21] M. Miskowicz, “Send-on-delta Concept: An Event-Based Data Re-
porting Strategy”, in sensors, vol. 6, no. 1, pp. 49-63, January 2006.

[22] K. Staszek, S. Koryciak and M. Miskowisz, “Performance of send-
on-delta Sampling Schemes with Prediction”, in IEEE International
Symposium on Industrial Electronics (ISIE), pp. 2037-2042, June
2011.

[23] J. Wu, Q. Jia, K. H. Johansson, and L. Shi, “Event-Based Sensor Data
Scheduling: Trade-Off Between Communication Rate and Estimation
Quality”, in IEEE Transactions on Automatic Control, vol. 58, no. 4,
pp. 1041-1046, April 2013.

	INTRODUCTION
	Motivation
	Related Work
	Contributions

	SYSTEM DESCRIPTION
	CellulARSkin
	Event generation
	The general principle
	The realization on skin cells

	System architecture
	Skin Driver Library
	Event unpacking
	Event to Skin Cell Data conversion
	ROS skin driver

	Performance evaluation

	EXPERIMENTS
	Performance indicators and their dependencies
	Experimental setup
	CPU load and packet rate
	Event packet rate extrapolation
	CPU usage extrapolation

	CONCLUSIONS
	References

