
MACKE: Compositional Analysis of Low-Level

Vulnerabilities with Symbolic Execution

Saahil Ognawala1, Martín Ochoa2, Alexander Pretschner1, Tobias Limmer3
1 Technical University of Munich, Germany, {ognawala,pretschn}@in.tum.de

2 Singapore University of Technology and Design, Singapore, martin_ochoa@sutd.edu.sg
3 Siemens AG, Germany, tobias.limmer@siemens.com

ABSTRACT
Concolic (concrete+symbolic) execution has recently gained
popularity as an e↵ective means to uncover non-trivial vulner-
abilities in software, such as subtle bu↵er overflows. However,
symbolic execution tools that are designed to optimize state-
ment coverage often fail to cover potentially vulnerable code
because of complex system interactions and scalability is-
sues of constraint solvers. In this paper, we present a tool
(MACKE) that is based on the modular interactions inferred
by static code analysis, which is combined with symbolic ex-
ecution and directed inter-procedural path exploration. This
provides an advantage in terms of statement coverage and
ability to uncover more vulnerabilities. Our tool includes
a novel feature in the form of interactive vulnerability re-
port generation that helps developers prioritize bug fixing
based on severity scores. A demo of our tool is available at
https://youtu.be/icC3jc3mHEU.

CCS Concepts
•Security and privacy ! Vulnerability management;
•Software and its engineering ! Software testing
and debugging; •General and reference ! Verifica-
tion;

Keywords
Symbolic execution, Compositional analysis

1. INTRODUCTION
Symbolic execution has been used for analyzing programs

and to look for vulnerabilities of the kind that are typically
hard to find for “blackbox” methods that ignore specific
program structure. Symbolic execution performs much better
in terms of coverage [27], finding bugs in parts of the code
that are seldom exposed via random testing. This can be
attributed to the fact that symbolic execution exploits the
semantics of the program by assuming symbolic values for the
input parameters and simulating possible execution paths.
But symbolic execution su↵ers from bottlenecks of underlying
model checkers and constraint solvers [14, 29]. Since most
of the real-world programs are highly intricate and contain

many environmental interactions, the size of the constraints
(path conditions) generated during symbolic execution may
grow too large for constraint systems to solve in a reasonable
amount of time. This leads to low coverage of the program,
potentially leaving many vulnerabilities undetected.
In this paper, we present a tool that enables testers to

detect low-level vulnerabilities (defined, for this study, as
unhandled memory operations resulting in memory out-of-
bounds/bu↵er overflow) in a program using symbolic execu-
tion in a reasonable amount of time. “Reasonable” amount
may be defined in terms of time taken for program analysis, or
required computing resource. However, for this study, we will
perform our performance comparison in terms of time taken
for the full analysis, only. We achieve our goal by performing
a fully compositional1 analysis of the program under test.
Our tool, named Modular And Compositional analysis with
KLEE Engine (MACKE2), makes use of symbolic execution
techniques at the level of C functions, and then combines the
results using static code information and inter-procedural
path feasibility. Moreover, our tool allows security experts
to reach informed decisions on fixing vulnerabilities based
on their respective severity scores and potential risk.

Problem: Most symbolic execution tools generate test cases
by starting at the entry point of the program (forward sym-
bolic execution), resulting in insu�cient code coverage. This
leaves many potential bugs undetected. On the other hand,
symbolically executing only individual functions, f , yields
many “false positive” vulnerabilities, which may never mate-
rialize if the corresponding inputs are sanitized by the func-
tions that (transitively) call f . Compositional approaches
to symbolic execution, such as [9, 10, 16], have either not
been evaluated on multiple real-world programs or are not
accompanied by automated tools.
Solution: Our solution is a three-step approach – Firstly,

MACKE performs symbolic execution on the individual com-
ponents of a program, in isolation. This has the advantage
of higher code coverage and ability to uncover many low-
level vulnerabilities in all program components. Secondly,
MACKE uses results of the first step to reason about (and,
therefore, reduce the number of) reported vulnerabilities
from a compositional perspective, i.e. by finding feasible
inter-procedural paths for those vulnerabilities to be ex-
ploited. Thirdly, MACKE assigns severity scores to reported
vulnerabilities by considering several characteristic features
and provides the result in an interactive visual format.

Contribution: In terms of compositional analysis of vulner-
abilities, the contribution of our work is three-fold – (i) eval-
uation on multiple real-world examples, which is missing in

1We will use “components” and “functions” interchangeably
since MACKE works on C code only.
2Tool available at https://github.com/tum-i22/macke.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive version was published in the following publication:

ASE’16, September 3–7, 2016, Singapore, Singapore

ACM. 978-1-4503-3845-5/16/09...

http://dx.doi.org/10.1145/2970276.2970281

780

https://youtu.be/icC3jc3mHEU
https://github.com/tum-i22/macke

3 int mask b (int⇤ b , int n) {
4 b [n++] = 1 ; /⇤ po t en t i a l buf . over f low ⇤/
5 return n ;

6 }
7 int main (int argc , char⇤⇤ argv) {
8 int i , n=0, b [4] = {0 , 0 , 0 , 0} ;
9 for (i =0; i<argc , i++) {

10 i f (⇤ argv [i]== ’b ’)

11 n = mask b (b , n)

12 else

13 foo () ; /⇤ expensive funct ion ⇤/
14 }
15 while (1) {
16 i f (getchar ()) /⇤ symbolic input ⇤/
17 /⇤ . . . do something . . . ⇤/
18 }
19 return 0 ;

20 }

Listing 1: Program to show e↵ectiveness of targeted-
search.

[1, 10], (ii) automation of all stages of instrumentation and
concolic execution, which is missing in [10], and (iii) an open–
source implementation for reproduction of results, which is
missing in [9, 16, 10, 19]. We also provide a compositional
approach to ranking vulnerabilities on perceived severity
scores, which is absent from all the previously cited works.
This paper is structured as follows. In Section 2 we de-

scribe our approach, starting with KLEE, the underlying
symbolic execution engine, and the architecture of MACKE.
We provide preliminary evaluation results in Section 3. Sec-
tion 4 enumerates some related work to our tool. In Section 5
we conclude our paper.

2. APPROACH
As discussed in the previous sections, termination of for-

ward search strategies in symbolic execution depends on the
ability of the underlying constraint solver to return quickly
and e↵ectively [14, 29]. In our solution, we prefer to reduce
the size of constraints that we input to the constraint solvers.
Then we use compositional methods to combine the results.
Before explaining MACKE, we describe KLEE, the symbolic
execution engine used by our tool.

2.1 KLEE - A Symbolic Execution Tool
KLEE [4] is the most popular symbolic execution tool and

it is well documented and maintained by its developers. This
is the reason we chose it as the symbolic execution engine
for MACKE framework. KLEE is a coverage-first symbolic
execution tool, which means that it focuses on covering
as many paths in a program as possible. This is done by
symbolically executing a program till a branching statement
is encountered. At this point, the branching condition (p) is
analyzed to determine its feasibility, depending on the path
condition (PC) obtained from all the preceding branching
conditions in the path and assignments to variables in the
branching conditions. A PC is defined as a conjunction
of predicates that represent which branch (true or false)
was taken at any branching statement. If both branches (p
and ¬p) are feasible, then the program is cloned with both
possibilities added to the PC, respectively for each clone [4].

A path is said to end at a node when (i) the next branching
condition to be added is inconsistent with the PC, (ii) an
exception is with the current PC and a possibly unsafe
memory handling operation, or (iii) the path has reached a
leaf node with a return statement. At the end of the path,

an attempt is made by the underlying decision procedure to
find an assignment for the symbolic variables in the PC. By
default, this is done by a satisfiability solver such as STP or
any other constraint solver [15, 13].

2.2 MACKE
MACKE is a framework written on top of the KLEE

symbolic execution engine for compositional analysis of C
programs. The complete procedure of compositional analysis
is divided into three stages, each of which we describe next.

2.2.1 Looking for Low-level Vulnerabilities

The first step of such a compositional analysis is the isola-
tion of low-level components. Low-level components may be
defined di↵erently for di↵erent programming languages or
runtime frameworks. For all experiments in our study, these
low-level components are C functions.

To look for bu↵er overflows in low-level components, MACKE’s
static analyzer isolates them and creates a unit-test file for
each of them. These isolated components are then symbol-
ically executed by KLEE to obtain test cases and bu↵er
overflow violation reports for each C function. A benefit
of symbolically executing isolated components is that this
process may be parallelized e�ciently. As our intent is to
focus on inter-procedural interactions [1] only in the second
step (Section 2.2.2), this approach makes sense in the first
step. When functions are isolated, the function calls are
not stubbed with symbolic return values but are executed
normally. Doing this, in our experience, results in many
false positives to a degree that does not provide a good cost-
benefit w.r.t. higher path coverage in the isolated component.
Also, doing this obviates application of static compositional
analysis step, as described in Section 2.2.2.

Referring to the code in Listing 1, which we will use as a
running example3 4, this means that we first isolate functions
main

5 and mask_b and then execute them both with symbolic
arguments (argc and argv for main and b and n for mask_b).
Symbolic arguments are the variables which determine the
execution paths in symbolic execution. As the output of this
stage, we get unit test-cases for both functions individually.
It is highly likely that we achieve full path coverage in mask_b

due to only two non-expensive instructions.
Some covered paths lead to memory out-of-bounds error

(bu↵er overflow), based on some assignment to the symbolic
arguments. These test-cases are reported (in unrefined bug
reports) as low-level vulnerabilities, or simply bugs. In List-
ing 1 such a vulnerability exists on line 2. Function mask_b

might try to write outside the bounds of array b. The same
vulnerability would be reported in main function if more than
4 elements of argv[0] are ‘b’, and line 9 is executed.

2.2.2 Exploring Paths to Vulnerabilities

After we have a report of bugs found by symbolic execution
on the isolated functions, the next step is to rule out the
ones that are unfeasible, i.e. they cannot be reached due to
input sanitization conditions in higher level functions.

Below are the activities that MACKE perform for exploring
paths to low-level vulnerabilities – Firstly, static analyzer

3Program directly adapted from shortest distance symbolic
execution (SDSE) description in [26].
4Include statements are not shown, so lines start from 3.
5
main is treated the same as all other functions. MACKE

does this by changing main’s function name to main_aux.

781

(a)

(b)

Figure 1: KLEE bug reports – (a) describes a bug
in mask_b and (b) describes a matching bug in main.

creates a call-graph and control-flow graph of the program.
Secondly, MACKE analyzes the call-graph in combination
with the unrefined bug reports generated in the previous stage.
The bug reports that KLEE produces contain relevant details,
viz. the problematic symbolic variable(s), the problematic
value(s) those variables take (function exploit), the source
line containing a↵ected instruction, and the call stack up to
function containing the a↵ected instruction.
With these artifacts, the second stage of compositional

analysis may be further divided into following sub-steps –
Static compositional analysis and partial PC matching.
Static compositional analysis: The first step in exploring

vulnerability paths aims to confirm whether some of the bugs
reported at the isolated function level can be reproduced via
higher compositional level. MACKE does this by comparing
the location of a bug reported in a function, f , to that
reported in the parent function of f . Consider the call-
sequence of the program in Listing 1. For every function,
such as mask_b, that contains bug(/s) at the isolated level,
we look at bug reports of all functions that call mask_b, such
as main. A bug in f is said to be matching to a bug in parent
of f if the call stack of the parent function’s bug report shows
that the a↵ected instruction is located in the same source
file and line as that reported for the bug in f . As shown in
Fig. 1(b), the bug reported by KLEE in main is at the same
program location as the bug reported in mask_b, as shown
in Fig. 1(a). Thus, these two bugs, as reported by KLEE in
isolated components, are called matching bugs.

If a matching bug is found to be reported in calling function,
we recursively do a similar static bottom-up reasoning all the
way up to the entry point of the program (in this case main

is the entry point of the program). We define “lowest-level”
function as the one which does not call any other function,
or calls functions external to the tested system.
The above described initial compositional analysis step

confirms reachability of some (or all) of the vulnerabilities
reported in the isolated functions. However, due to time-
outs in constraint solver, this does not help us in ruling out
reproducibility of the bugs for which matching bugs are not
found. This gives rise to the need for partial PC matching.

Partial PC matching: To understand the need for partial
PCs, let us reiterate the cases when a matching bug may not
be found in a higher compositional level - a) if input to the
lower level component is sanitized in a higher level component,
or b) if the higher level component is incompletely covered
(time-out). In case a), there is nothing to report as the
malicious input is already taken care of. In case b), the set
of partially covered paths in main are called partial PCs.
Consider again Listing 1. Assume that a matching bug

7 int main (int argc , char⇤⇤ argv) {
8 int i , n=0, b [4] = {0 , 0 , 0 , 0} ;
9 for (i =0; i<argc , i++) {

10 i f (⇤ argv [i]== ’b ’)

11 k l e e a s s e r t (! (! \ \
12 memcmp(⇤ argv , ”bbbbb” , s izeof (argv))\\
13 && argc==5));

14 else

15 foo () ; /⇤ expensive funct ion ⇤/
16 }
17 while (1) {
18 i f (getchar ()) /⇤ symbolic input ⇤/
19 /⇤ . . . do something . . . ⇤/
20 }
21 return 0 ;

22 }

Listing 2: Modified main function. Call to mask_b

replaced by assertion statement

to line mask_b has not been reported in main. Note that
mask_b has been su�ciently covered to find a vulnerability.
One way of reducing the number of paths for symbolic execu-
tion to explore in main is to replace the call to mask_b with
the summary of those symbolic execution runs of mask_b

performed previously, which resulted in bugs. Programmati-
cally, summarizing is done by the PC Matcher component of
MACKE as follows – i) prepare a KLEE assertion statement
that compares actual parameter with solution assignments
to formal parameters found by KLEE, ii) replace function
call by the KLEE assertion statement.
For the code in Listing 1, MACKE modifies the code,

as shown in Listing 2. The values, "bbbbb" and 5, are
assignments found for (b, c) that lead to the bu↵er overflow.
Furthermore, the time taken to reach the target compo-

sitional interactions can be decreased by executing those
branches first that take the execution closest to the target
statements. As a part of the full MACKE framework, we
implemented an additional search strategy in KLEE, known
as targeted-search. For our targeted-search mechanism, we
draw inspiration from the best-first strategy described in
[30] and variants of SDSE described in [26, 30]. The PC
matching phase of our approach is essentially another run
of KLEE on isolated components, but with targeted-search
strategy enabled, instead of the default cover-new-paths-first
strategy. Targeted-search is implemented by, first, picking
the shortest path to the function containing the assertion
statement (from program call-graph), and, then, employing a
source-code based distance metric within the container func-
tion. This way, we avoid spending time in expanding those
execution paths that do not reach the assertion statements.
For the code in Listing 1, symbolic execution will cover line
9 only when the PC is ((i < argc)&&(⇤argv[i] ==0 b0)).
Considering that this is true for only a few possible inputs to
the program, targeted-search performs better than KLEE’s
path-search by directing exploration explicitly to line 9.

2.2.3 Ranking the Vulnerabilities

A thorough compositional analysis for finding low-level
vulnerabilities is more useful when there is a process to
prioritize those vulnerabilities. After consulting with our
industry partners, we decided to implement in our frame-
work an interactive procedure to assign severity scores to
vulnerable functions that are found in the analysis stages
of MACKE. This severity score is based on the functions
described below (with their intuition), and a weight (im-
pact factor) between 1 and 5 associated with each function –

782

Table 1: Results of compositional analysis with MACKE
1 2 3 4 5 6 7 8 9 10

Program LOC Coverage Vuln. Instr. 1-level up main exploit
Forward Compositional Splint Forward Compositional Compositional Forward Compositional

Bzip2 7725 5% 53% 1263 0 106 16 0 0
Grep 10929 44% 54% 3292 0 114 12 0 0
Flex 11784 7% 21% 1137 1 75 9 1 1

Coreutils 63542 43% 51% 10656 20 240 27 20 21

(i) The function len chain(f) returns a natural number rep-
resenting the depth of function hierarchy through which a
vulnerability in f might be exploited. It has the impact fac-
tor L. If a function can be exploited through a long hierarchy,
it’s more likely somebody forgot to sanitize the exploit input.
(ii) The function is int(f) returns a boolean according to
whether the function f is an exposed interface or not. It has
the impact factor I. Vulnerability in an exposed interface,
such as the main function, is easily exploitable and must
be fixed with higher priority. (iii) The function vuln inst(f)
returns the number of distinct instructions that were found
to contain a vulnerability and has the impact factor N. More
vulnerabilities strongly indicates a missing input sanitiza-
tion check somewhere in the function. (iv) The function
d interface(f) returns the proximity (length of nested func-
tion chains) of the function to an exposed interface and has
the impact factor D. A vulnerable function closer to an ex-
posed interface may be easier to exploit. (v) The function
is outlier(f) returns a boolean depending on whether the
number of vulnerable instructions found (Section 2.2.1) is
much greater than the average number of vulnerable instruc-
tions per function in the program6. The intuition behind this
is the same as that for vulnerable inst(f). It has the impact
factor O.

We formulated the above functions with our industry part-
ners and, based on our combined intuitions on the programs
that we analyzed, we used the following function, s, to cal-
culate the total severity value:

s(f) = L ⇤ len chain(f) + I ⇤ is int(f) +N ⇤ vuln inst(f)

+D ⇤ d interface+O ⇤ is outlier(f)

Functions with higher severity scores are, in our view, more
vulnerable to attacks. The specific values for the impact
factors are also, as the function s itself, dependent on the
context of development and vulnerability analysis, as we
clarify once more in Section 3.
As a final presentation step, MACKE color codes the

ranges of severity scores for all functions in the program
and displays the call graph, with function and instruction
level details of the test cases that cause a vulnerability to be
exposed with compositional analysis.

3. RESULTS
We conducted experiments to show (Table 1) that our

compositional analysis technique with symbolic execution
performs better than a plain forward symbolic execution
technique and näıve static analysis7, by evaluating the out-
comes on a number of parameters. We applied MACKE on

6Specifically, the number of vulnerable instructions > µ+2⇤�,
where µ is the average number of vulnerable instructions in
all functions and � is the standard deviation in number of
vulnerable instructions.
7Using Splint for memory management vulnerabilities

4 open-source applications and evaluated the results w.r.t.
forward symbolic execution over a comparable amount of to-
tal time. The programs considered were – Flex, Grep8 Bzip2
and a set of Coreutils programs (91 Unix utilities). For each
candidate program, we put a limit of 2 minutes per function
for the stage one of compositional analysis with MACKE,
i.e. looking for low-level vulnerabilities. After this stage, all
the static analysis processes and instrumentation for tar-
geted path search were performed by MACKE automatically
and took less than 5 minutes per program. For compari-
son with forward symbolic execution, we ran KLEE (with
nurs:covnew as the search method) on the main functions
for 2 hours per program.

The source code coverage in all four programs was found to
be higher with MACKE compositional analysis (column 4),
than forward symbolic execution at main functions (column
3). In case of Coreutils and Grep, however, the relatively
smaller increase in coverage may be attributed to the fact that
most of the functionality in these programs are implemented
in single monolithic functions, instead of the more modular
implementations found in Bzip2 or Flex. Overall, the increase
in coverage can be trivially attributed to the first stage of
compositional analysis that looks for low-level vulnerabilities
by separately analyzing functions in isolation.

It can be seen from Table 1 that vulnerable instructions re-
ported by MACKE (column 7) are more comprehensive than
forward symbolic execution (column 6). However, this num-
ber is still far lower than a static code analysis tool (column
5). We infer from these figures that due to higher coverage,
compositional analysis finds more pote ntial vulnerabilities
(with exploit parameters) in individual components, than for-
ward symbolic execution. However, developers do not have
to go through thousands of reported vulnerable instructions,
many of which have no corresponding exploit parameters, as
is the case with static analysis. In order to further demon-
strate the e↵ectiveness of MACKE, column 8 lists the number
of vulnerabilities reported in isolated functions, that were
also reproducible via at least one higher level of composition.
This shows that MACKE’s compositional approach helped
to confirm the reachability of some low-level vulnerabilities
through higher compositional interfaces, thereby refining the
set of reported vulnerabilities even more. Last two columns
list the number of vulnerabilities that were reported from
the main functions. For compositional case (last column)
this set is a subset of the vulnerabilities reported in “1-level
up”. In the case of Coreutils (version 6.10), we found one
real vulnerability (exploitable though main) in touch.c, that
could not be found with forward symbolic execution. Finally,
in Fig. 2, we present part of an interactive report generated
by MACKE for Grep program. All the vulnerable functions
are represented in compositional “chains” for depicting their

8Sources for Flex and Grep were obtained from the Software-
artifact Infrastructure Repository (SIR)[12].

783

Figure 2: Interactive tool’s sample result on Grep
(L=3,I=5,N=2,D=4,O=1).

reproducibility – a novel feature in symbolic analysis tools.
We claim that MACKE’s approach leads to higher source

coverage than forward symbolic execution, more composi-
tional information about reported vulnerabilities than static
analysis, a low number of possible false positives and high-
lighted function chains in a graphical report.

4. RELATED WORK
The earliest conceptualization of symbolic execution dates

back to 1976 [23]. Over the years, many improvements to
the basic symbolic execution techniques and domain-specific
implementations have been developed [5, 22, 20]. Tools
for symbolic execution have also been developed for several
programming languages [2, 6, 4, 31, 7, 11].
The problem of directing path exploration in symbolic

execution to specific source locations is addressed in [34, 26,
30, 3, 33]. Unfortunately, most such works do not adequately
describe ways to e↵ectively find vulnerabilities. The same
shortcoming also applies to papers that deal with the problem
of path explosion in symbolic execution. In [24, 32, 8], we
find methods of merging, modifying or summarizing program
states or individual components. The technique proposed
in [28], for instance, partitions the input space such that
dynamic execution may execute separate paths of the pro-
gram that depend exclusively on one input partition. In [18],
the concolic execution tool is modified to deal with appli-
cations based on a specific grammar for the input, and the
constraint solver is changed from a normal bu↵er based one
to a grammar based constraint solver. Above ways are useful
in mitigating the path explosion problem so as to increase
coverage in a reasonable amount of time with symbolic exe-
cution. However, none of these works are accompanied by
a tool for discovering and analyzing vulnerabilities, which,
we postulate, should follow increased path coverage in the
program.

With respect to compositional analysis, to the best of our
knowledge, none of the past works describe a freely avail-
able tool that finds vulnerable instructions, compositionally
analysis them, and assigns severity to vulnerable compo-
nents, all in a single work. Additionally, previous works
like [1, 16, 19, 25] do not report reproducible improvements

on existing evaluations [4], such as on Coreutils. Our work
shows a clear improvement in terms of program coverage
and vulnerability discovery. Our results also indicate a re-
duction in probable false positives w.r.t. static analysis tools
or compositional analysis methods that use static analysis
for low-level vulnerability detection, such as [21]. Compared
to our approach, pure static code analysis typically reports
many more vulnerabilities using only code patterns, most
of which, in our experience, can be discarded as false posi-
tives without analyzing path feasibility. Some works such as
[1, 25] do not limit the directed search strategy to finding
vulnerabilities in the code, but to a more generalized goal of
generating summaries for parts of program, to be re-used for
compositionally analyzing higher-level components.
In [10], the authors describe verification of a proprietary

Windows library. The proposed technique uses the same first
step of executing functions in isolation (without stubbing
return values). However, the second step of path exploration
is highly tailored to the image parsing library being verified.
Specifically, only 12 functions analyzed by the authors were
not fully covered, compared to more than 510 functions in our
analysis. For the impartially covered 12 functions, authors
of [10] either manually inlined the functions to the calling
contexts, or manually examined the calling pre-conditions
to decide absence of memory related faults. For a larger
scale evaluation like ours, this would, of course, be infeasi-
ble. Moreover, our automation approach for summarizing
paths to potential vulnerabilities and automatically replacing
calling contexts with assertion statements works for more
general scenarios. In a related work by (author?) [9] only
those low-level functions are (automatically) summarized in
the program whose input parameters are free of constraints
up to the point that they are called [17]. For the real-world
examples that we evaluated MACKE on, this would be un-
productive because most of the low-level functions in the
call-graphs were dependent on variables that were part of
path-constraints up to the calling statements.
With the above research gaps in mind, our work aims to

provide an open-source tool to find vulnerabilities, analyze
their reachability compositionally, and report vulnerabilities
in the context of their usage environment. Even though other
works in the past have addressed the problem of vulnerability
discovery with a similar compositional approach, they have
either, not been shown to be e↵ective (in terms of cover-
age and discovered vulnerabilities) on multiple real-world
programs, or not fully automated or are closed source im-
plementations. Moreover, none of the above works integrate
vulnerability discovery with priority based reporting.

5. CONCLUSION
In this paper, we have presented a tool for compositional

analysis that uses symbolic execution on the isolated func-
tional level and combines the results using static code analysis
and targeted path search. We evaluated MACKE on four
open-source projects. In addition to being better than for-
ward symbolic execution in terms of program coverage and
vulnerability discovery, MACKE also includes a severity scale
that is based on the context around a reported vulnerability,
such as the distance of the function from a known interface
and the number of possibly vulnerable instructions. Values
of impact factors (L, I, N, D and O) are chosen based on
the context of development, which is, naturally, specific to
the responsible stakeholders. An empirical study of these

784

impact factor values is left to future work. All these impact
factors together form a severity score. This, we believe, is
novel and crucial because, in the absence of this severity
metric, it would be very di�cult for developers to prioritize
the bug fixing procedure. When combined with severity
scores, our compositional analysis tool empowers developers
to not only analyze the reported vulnerabilities with more
contextual information but also reason about which bugs are
more critical to be resolved than others. We wish to point
here that the results of our study may have been a↵ected
due to particularities of the open-source programs we chose
that may not be generalizable to a larger class of programs
under test. An empirical investigation on how MACKE can
e↵ectively impact the productivity of developers and security
of the resulting applications is left to future work.

6. REFERENCES

[1] S. Anand, P. Godefroid, and N. Tillmann. Demand-
driven compositional symbolic execution. In TACAS.
2008.

[2] S. Anand, C. S. Păsăreanu, and W. Visser. JPF–SE:
A symbolic execution extension to java pathfinder. In
TACAS. 2007.

[3] P. Boonstoppel, C. Cadar, and D. Engler. RWset: At-
tacking path explosion in constraint-based test genera-
tion. In TACAS. 2008.

[4] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unas-
sisted and Automatic Generation of High-Coverage Tests
for Complex Systems Programs. In OSDI, 2008.

[5] C. Cadar and D. Engler. Execution generated test
cases: How to make systems code crash itself. In Model
Checking Software. 2005.

[6] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and
D. R. Engler. EXE: automatically generating inputs of
death. TISSEC, 2008.

[7] V. Chipounov, V. Kuznetsov, and G. Candea. S2E:
a platform for in-vivo multi-path analysis of software
systems. ACM, 2012.

[8] C. Y. Cho, V. D’Silva, and D. Song. Blitz: Composi-
tional bounded model checking for real-world programs.
In ASE, 2013.

[9] M. Christakis and P. Godefroid. IC-Cut: A composi-
tional search strategy for dynamic test generation. In
Model Checking Software. 2015.

[10] M. Christakis and P. Godefroid. Proving memory safety
of the ANI Windows image parser using compositional
exhaustive testing. In VMCAI, 2015.

[11] E. Clarke, D. Kroening, and K. Yorav. Behavioral
consistency of c and verilog programs using bounded
model checking. In DAC, 2003.

[12] H. Do, S. G. Elbaum, and G. Rothermel. Supporting
controlled experimentation with testing techniques: An
infrastructure and its potential impact. ESE Journal,
2005.

[13] N. Eén and N. Sörensson. An extensible SAT-solver. In
SAT, 2004.

[14] I. Erete and A. Orso. Optimizing constraint solving to
better support symbolic execution. In ICSTW, 2011.

[15] V. Ganesh and D. L. Dill. A decision procedure for
bit-vectors and arrays. In CAV, 2007.

[16] P. Godefroid. Compositional dynamic test generation.
In ACM Sigplan Notices, 2007.

[17] P. Godefroid. Micro execution. In ICSE, 2014.

[18] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-
based whitebox fuzzing. In ACM Sigplan Notices, 2008.

[19] P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing. In ACM Sigplan Notices,
2005.

[20] P. Godefroid, M. Y. Levin, D. A. Molnar, et al. Auto-
mated whitebox fuzz testing. In NDSS, 2008.

[21] I. Haller, A. Slowinska, M. Neugschwandtner, and
H. Bos. Dowsing for overflows: A guided fuzzer to
find bu↵er boundary violations. In Usenix, 2013.

[22] S. Khurshid, C. S. Păsăreanu, and W. Visser. General-
ized symbolic execution for model checking and testing.
In TACAS. 2003.

[23] J. C. King. Symbolic execution and program testing.
Communications of the ACM, 1976.

[24] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea.
E�cient state merging in symbolic execution. In Acm
Sigplan Notices, 2012.

[25] Y. Lin, T. Miller, and H. Søndergaard. Compositional
symbolic execution using fine-grained summaries. In
ASWEC, 2015.

[26] K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks. Directed
symbolic execution. In Static Analysis. 2011.

[27] R. Majumdar and K. Sen. Hybrid concolic testing. In
ICSE, 2007.

[28] R. Majumdar and R. Xu. Reducing test inputs using
information partitions. In CAV, 2009.

[29] H. Palikareva and C. Cadar. Multi-solver support in
symbolic execution. In CAV, 2013.

[30] A. Pretschner. Classical search strategies for test
case generation with constraint logic programming. In
FATES, 2001.

[31] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic
unit testing engine for C. ACM, 2005.

[32] K. Sen, G. Necula, L. Gong, and W. Choi. MultiSE:
Multi-path symbolic execution using value summaries.
In FSE, 2015.

[33] N. Sinha, N. Singhania, S. Chandra, and M. Sridharan.
Alternate and learn: Finding witnesses without looking
all over. In CAV, 2012.

[34] T. Xie, N. Tillmann, J. De Halleux, and W. Schulte.
Fitness-guided path exploration in dynamic symbolic
execution. In DSN, 2009.

785

	Introduction
	Approach
	KLEE - A Symbolic Execution Tool
	MACKE
	Looking for Low-level Vulnerabilities
	Exploring Paths to Vulnerabilities
	Ranking the Vulnerabilities

	Results
	Related Work
	Conclusion
	REFERENCES

