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Abstract 

The design of large infrastructure facilities, such as inner-city subway lines, requires the consideration 

of widely divergent scales. This ranges from the kilometer scale, for the basic alignment definition, 

down to the centimeter scale, for the design of underground stations and hubs. Moreover, the strongly 

inter-disciplinary nature of infrastructure projects implies an intensive exchange of highly semantic 

design information between the different engineering teams participating in the project. Though the 

exchange of this information is successfully accomplished by current product models, none of them 

are able to guarantee the specific consistency demands required during the multi-scale design of large 

infrastructure facilities. 

To close this technological gap, this thesis focuses on two main aspects of the exchange of design 

information. First, a comprehensive multi-scale shield tunnel product model is presented, which makes 

extensive use of a spatial structure concept. The resulting hierarchical structure of entities matches the 

demands of conceptual and detailing design stages, placing the physical objects only after their space 

definition is known. Moreover, the previously defined spaces are assigned to different scales or levels 

of detail (LoD). Secondly, in order to guarantee the geometric consistency across the different LoDs, 

this thesis introduces a novel geometric representation based on parametric techniques. To this end, 

procedural geometric representations are introduced during the definition of coarse LoDs, giving to the 

design process a high level of flexibility. For the detailed design on LoD5, a dual design approach 

combining procedural and assembly models is introduced. Thus, the introduction of assembly models 

enables the construction of a hierarchical structure of assemblies and parts that reproduce the seman-

tic description of the product model, and improves its overall performance. Finally, as an evaluation 

and proof-of-concept, these methods are implemented and successfully applied in a real case study 

based on the Second main suburban track, which is about to be constructed in the city of Munich, 

Germany. 
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Zusammenfassung 

Der Entwurf großer Infrastrukturbauwerke erfordert den Einsatz sehr unterschiedlicher Skalen. Bei der 

Planung von U-Bahnlinien arbeitet man im Kilometerbereich bei der Definition der zugrunde liegenden 

Trassierung und gelangt in den Zentimeterbereich bei der detaillierten Ausgestaltung der einzelnen U-

Bahnstationen und Knotenpunkte. Der hohe Grad an Interdisziplinarität bei Infrastrukturbauprojekten 

erfordert den intensiven Austausch hochwertiger semantischer Planungsinformationen zwischen den 

teilnehmenden Ingenieurteams. Der erfolgreiche Austausch dieser Informationen wird von gängigen 

Produktmodellen gewährleistet. Nichtsdestotrotz können diese aber nicht die spezifischen Anforde-

rungen hinsichtlich der Konsistenz garantieren, wie sie von mehrskaligen Infrastrukturmodellen gefor-

dert werden. 

Um diese technologische Lücke zu schließen, konzentriert sich diese Arbeit auf zwei wesentliche 

Aspekte  beim Austausch von Planungsinformationen: Zuerst wird ein allgemeingültiges mehrskaliges 

Produktmodell für Schildtunnel präsentiert, das einen ausgiebigen Gebrauch von einem räumlichen 

Strukturkonzept macht. Die sich hieraus ergebende hierarchische Struktur von Entitäten erfüllt die 

Anforderungen, die während den konzeptionellen und detaillierten Entwurfsphasen auftreten, indem 

die realen physikalischen Objekte erst dann platziert werden, wenn ihre räumlich Lage genau spezifi-

ziert wurde. Zudem werden die zuvor festgelegten Räume verschiedenen Skalen oder Detailierungs-

ebene (Levels of Detail – LoD) zugeordnet. In einem zweiten Schwerpunkt dieser Arbeit wird eine 

neue geometrische Modellierungsmethodik präsentiert, die auf parametrischen Techniken basiert und 

die geometrische Konsistenz über verschiedene LoDs hinweg aufrechterhält. Hierzu werden während 

der Definition der groben LoDs prozedurale geometrische Darstellungsformen eingeführt, die dem 

Entwurfsprozess einen hohen Grad an Flexibilität verleihen. Zusätzlich wird während des detaillierten 

Entwurfs in LoD5 ein „zweigleisiger― Entwurfsprozess vorgeschlagen, der prozedurale Modelle und 

Baugruppe-Modelle kombiniert. Auf diese Weise erlaubt die Einführung von Baugruppe-Modellen die 

Konstruktion einer hierarchischen Struktur, die sowohl Baugruppen als auch Teile enthält, die seman-

tische Beschreibung des Produktmodells einbezieht und zudem die Gesamtperformanz erhöht. Um 

die Praxistauglichkeit des präsentierten Ansatzes zu plausibilisieren, wurden diese Methoden ab-

schließend implementiert und in einer Fallstudie angewandt: Diese basiert auf der 2.S-Bahn-Stamm 

strecke, die in der bayerischen Landeshauptstadt München gebaut werden soll. 
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  Chapter 1.
 
Introduction 

1.1. Motivation 

The building of large infrastructure facilities
1
 is frequently associated with construction schedule delays 

and budget overruns. The nature of the design and construction of such projects demands temporary 

collaboration between large engineering teams belonging to different companies. To successfully 

perform these tasks the exchange of information plays a key role. However, this exchange of infor-

mation is nowadays only partially accomplished, resulting in undesired delays and additional cost. In 

the recent years several large projects in Europe reached this undesirable level. Among them, the 

High Speed One (HS1) in England, the main rail station in Stuttgart (Stuttgart 21), and the bridge over 

the Mosel valley in Frankfurt Rhine-Main area (Hochmoselübergang), all became examples of ineffi-

ciencies in the information´s exchange between designers and contractors (BMVI 2016).  

These disgraceful projects and the enormous amount of public money needed to cover these overruns 

seeded doubt in society on the efficacy of the government establishment and strength of the construc-

tion industry. Thus, in order to improve reputation and to reduce the deficits on design and construc-

tion of large projects, in 2013 the German Minister of Transport and Digital Infrastructure Alexander 

Dobrindt created a special commission to address these issues. This was called the Reformkommis-

sion Bau von Großprojekten. The results of this commission were concentrated in a ten point action-

plan where digital methods play a major role in achieving the desired interoperability (BMVI 2015a). 

This idea was captured by one statement of minister Dobrindt, who said: “Erst virtuell und dann real 

bauen”. This loosely translates to: built virtually first. 

A central component in the digital design of large projects is the concept of Building Information Mod-

eling (BIM). Defined as a digital representation of physical and functional characteristics of a facility 

(NBIMS-US 2015), BIM models offer a reliable information resource that spans a complete project life-

cycle. Though for northern countries such as the United Kingdom, Denmark, Sweden, and the Nether-

lands, digital documentation is already required as a standard procedure (Cabinet Office 2012, Hooper 

2015), in Germany, there is not yet a similar agreement about the degree of BIM implementation. 

Therefore, the German Ministry of Transport and Digital Infrastructure published in 2015 a road map, 

the goal of which is to demand BIM methods for all public infrastructure projects from 2020 onwards 

(BMVI 2015b). This road map is composed of three steps that evolve from: the research of novel 

methods; implementing these methods on real case scenarios; and concluding in a detailed regulation 

that all companies applying for public constructions must fulfil. Specifically, in the first step, conceptual 

methods for design of large infrastructure projects are considered and fostered, e.g. railways and 

roads, bridges and flyovers, and tunnel facilities.  

                                                           
1
 In this thesis the terms large infrastructure facility and alignment-based infrastructure facility are used with 

equivalent sense and as synonyms. 
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This thesis is accordingly placed in the context of a fundamental change in the practice of designing 

and engineering large infrastructure facilities. From conventional 2D-drawing based procedures to the 

modern ones based on semantically enriched 3D models. In this regard, this thesis focuses on tunnel 

design and contributes new advanced consistency methods based on parametric multi-scale modeling 

for the efficient design of subway shield-tunnels. 

1.2. Current state on infrastructure design 

The design of a subway infrastructure facility is a highly complex task that demands the close collabo-

ration of large engineering teams integrating diverse background and expertise, e.g. tunnel engineers, 

civil engineers, and electrical engineers. Despite the collaborative nature of infrastructure design, the 

work done by each of these designers or specialized teams is usually done in an isolated manner, 

even when their independent results influence the entire project. 

One reason for this independent work are the different scales each of these teams have to take into 

consideration. Ranging from the kilometer scale, for the definition of the infrastructure‘s alignment, 

down to the centimeter scale, for the design of the cross-section of the tunnel, each specialized team 

is engaged with extremely different project requirements. Moreover, each designated team employs 

particular tools and data formats specific from its own working field, adding an additional level of 

difficulty to the efficient exchange and integration of information. 

To address these limitations and to improve the collaborative work emerged during the last two dec-

ades several neutral product data models that enabled the exchange of design information between 

applications. Hence, first product models and later Building Information Models (BIM) implemented a 

twofold approach that enabled a clear separation of the geometric representation from its semantic 

definition. Although, in a short time, this novel methodology boosted the development of a great varie-

ty of semantic models in a wide spectrum of engineering fields, none of them have achieved to include 

the multi-scale description of buildings and infrastructures. 

Parallel to these developments, Geographic Information Systems (GIS) extended the concept of 

geographic data models to integrate the definition of several Levels-of-Detail (LoD). As a result, city 

models were able to visualize different representations of the same object based on a predefined LoD. 

Despite the clear benefits this approach introduced, multi-scale data models are not able to guarantee 

the geometric consistency across several LoD when a change is performed. This well-known limitation 

has its roots in the absence of explicit dependencies between the representations on the different 

LoDs. However, as city models are considered rather static than dynamic, this general limitation has 

never been considered as a real drawback. 

Differently, the design of large infrastructure facilities is based on highly dynamic processes that 

cannot be supported by the current city and product models. The risk of schedule delays and budget 

overruns due to inconsistencies during the design and planning stages force infrastructure engineers 

to carry on with conventional drawing systems. Although in recent years a slow adoption of novel 

design methodologies has been observed, these techniques do not yet support the multi-scale nature 

of infrastructure design. 

At the same time, the most innovative companies in the Architecture, Engineering and Construction 

(AEC) domain have started to intensively use parametric modeling systems. The main difference with 

conventional CAD systems lies in the fact that parametric models establish dependencies among the 

different parts of the geometric representation. This allows designers and engineers to update the 

model in a reliable and consistent manner at any time during the design process. Moreover, paramet-
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ric models enable the representation of design intent, allowing the re-use of pre-defined geometry with 

minimal effort. 

1.3. Research questions and expected contributions 

This thesis aims to answer two main research questions. These are motivated by the deficiencies in 

product models and CAD systems, mainly in the early and detailing stages of the design process. 

Question 1: How can current product models be extended in order to support the multi-scale 

modeling approach? During the design of large infrastructure facilities teams of engineers 

must work together. The exchange of information among them is frequently based on product 

models. In particular, product models have been widely established as the best methodology 

to achieve the required level of collaboration and integration. However, current product models 

do not support the exchange based on several levels of abstraction or detail. 

Question 2: How can consistency preservation mechanisms be realized, and how can they be 

embedded into a neutral product model? The design of infrastructure facilities requires 

highly dynamic processes. To reflect this dynamism it is desirable to realize mechanisms that 

enable automated consistency preservation across the different levels of detail. 

The exchange of information based on multi-scale representations is a methodology widely applied in 

Geographic Information Systems (GIS). Geographic data models introduced the concept of several 

Levels of Detail (LoD) to represent real objects on the basis of several levels of abstraction. Such 

representations are mainly generated after the construction is finished and based on a completed 

model that is successively simplified in a process known as generalization (Sester 2000). On the 

contrary, the subway infrastructure design methodology follows a top-down approach, where more and 

more detailed information is successively introduced as the design evolves. In addition, geographic 

data models are considered rather static than dynamic. This is in opposition with the highly dynamic 

requirements on infrastructure design. These issues prevent the direct application of the multi-scale 

approach in the field of infrastructure design. 

Contribution 1: The development of a novel multi-scale product model that comprehensively de-

scribes subway infrastructure facilities. Not only avoiding, but also correcting the limitations of 

current geographic data models. 

Product models provide several methods to represent geometric information, most of them based on 

the final explicit geometry created on conventional CAD systems during the modeling process. Though 

this geometry is related to its semantic definition, usually no dependencies are established between 

geometric objects. Consequently, the single modification of a geometric object may generate an 

inconsistency in the product model that engineers must detect and manually update. 

In opposition, parametric CAD systems store the construction steps needed to reproduce the model 

instead of the final outcome geometry. Furthermore, parametric CAD systems establish dependencies 

among different construction steps, automatically updating the geometry every time a modification is 

completed. 

Contribution 2: Thanks to the clear separation product models provide between semantics and 

geometry, an expected contribution of this thesis is the integration of parametric technologies 

as a novel geometric representation into product models. Hence, product models can be used 

not only for the exchange of final information, but also as a dynamic model that contains relia-

ble and consistent information during the entire design process. 
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Parametric CAD systems in general and procedural models in particular enable the capture of what is 

known as design intent (Shah & Mäntylä 1995) Mainly based on the use of parametric sketches, 

engineers can define algebraic relations among geometric elements that permit the modification of 

existing designs based on the engineer‘s knowledge. Similarly, the design of large infrastructure 

facilities is strongly ruled by guidelines, codes and national standards. However, these engineering 

rules must be interpreted and implemented every time the infrastructure project is updated, a workflow 

that is error-prone and time-consuming. Hence, a second concept known as design rationale has been 

coined to overcome these limitations (Lee & Lai 1991, Moran & Carroll 1996). While design intent is 

understood as capturing the engineer‘s knowledge by parameterization schemes that govern the 

modification of existing models, the design rationale represents the underlying logic that motivated the 

engineer to adopt a specific design solution (Regli et al. 2000). 

Contribution 3: In addition to the basic design intent that can be represented by parametric sketches, 

the third expected contribution of this thesis is the definition of a novel methodology to encap-

sulate the design rationale that engineers apply when designing subway infrastructure facilities 

built upon guidelines, codes, and national standards. 

1.4. Thesis overview 

This thesis is organized as follows: 

Chapter 2 reviews the current state-of-the-art in multi-scale product models as a tool for the exchange 

of information in infrastructure design. First, this chapter provides a sound review of current 

multi-scale data models with special focus on geographic information systems (GIS) and large 

infrastructure facilities. Secondly, an introduction to the current state-of-the-art in parametric 

systems is given, and their benefits and drawbacks pointed out. Finally, the need of neutral 

data formats as exchange instruments is reported and the current common product models 

are analyzed. 

Chapter 3 presents a novel multi-scale shield tunnel product model. Based on the current version of 

the IFC standard, a thorough product model for shield tunnels is presented, which introduces 

the concept of the partition of large infrastructure facilities into smaller sections. Following this, 

the previously defined product model is extended under the premise of multi-scale modeling. 

In particular, the multi-scale concept is introduced in detail. 

Chapter 4 introduces a novel methodology for using parametric systems to tackle the main problem of 

multi-scale product models, i.e. the consistency preservation of their geometric representation. 

To achieve this goal, procedural representations and assembly models are introduced which 

enable the definition of dependency relations among the different geometric elements in order 

to define geometric consistency. Moreover, this chapter presents a novel methodology to cap-

ture the design rationale by distinct logic models. This new approach allows engineers and 

designers to address the design of infrastructure facilities based on the abstract knowledge, 

avoiding the inconsistencies produced by erroneous interpretation of engineering rules. 

Chapter 5 investigates, based on a proof-of-concept implementation, the viability of the concepts and 

approaches presented in this thesis. First, the multi-scale product model presented in Chapter 

3 is tested with the definition of IFC-based example files. Second, the methodologies on par-

ametric representation and design rationale encapsulation are implemented and tested in a 

commercial CAD system. Finally, the complete collection of developed approaches is applied 
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with a real case study: a tunnel that connects two subway stations of the new suburban line 

planned for the city of Munich. 

Chapter 6 summarizes this thesis presenting the major findings and results, the limitations of the 

proposed approaches as well as concluding remarks and future research directions. 
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  Chapter 2.
 
State of the art in multi-scale infrastructure design 

2.1. Overview 

The efficient and exhaustive exchange of design information has been the ambition of designers and 

engineers for decades. Due to the highly specific needs that architects, civil, and mechanical engi-

neers require, several unrelated approaches and neutral data models were developed in parallel over 

the last few years. At the same time, the design of large infrastructure facilities cannot be achieved by 

a single group of engineers working in an isolated manner, but by the collaboration of large teams of 

experts and engineers with different backgrounds and expertise. Moreover, this collaboration demands 

the integration of design information into a common product model, which none of the currently availa-

ble approaches have been able to achieve. 

Due to the specific requirements on subway infrastructure design, this chapter is divided into three 

main parts, which are: multi-scale approaches in cartography and geography, parametric modeling, 

and data exchange based on neutral product models. First, the evolution of cartography is reported, 

from its origins and perception of scale to its current definition based upon multi-scale data models. 

Secondly, an introduction to the state-of-the-art in parametric CAD systems is given, focusing on the 

benefits and drawbacks of procedural representations and assembly modeling. Finally, a review of the 

currently more extended product models for architects, civil, and mechanical engineers is given, and 

their evolution into the field of large infrastructure facilities evaluated. 

2.2. Multi-scale representations in cartography and geography 

2.2.1. Scale-based cartographic representations 

Since ancient times, humans have tried to capture geographic information in cartographic representa-

tions. In the antique Babylonia around 1000 B.C., the first maps were sculptured on stones and kept in 

a temple where their integrity was protected by gods (Hatzopoulos 2008). At that time, and due to the 

impossibility of the exact reproduction of the geographic reality, map makers introduced several levels 

of abstraction that allowed them to represent vast geographic regions in a reduced cartographic 

space. These initial techniques were improved during the following centuries until they reached its 

current state. Hence, in the last century, the International Association of Cartography, the world-

leading institution for cartography, defined cartographic maps with the following quotation (Gomarasca 

2009): 

“A map is a symbolized image of geographic reality, representing selected features or 

characteristics, resulting from the creative effort of his author’s choices, and it is de-

signed for use when spatial relationships are of primary relevance” (Sep. 1995) 
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An additional challenge that arose when developing the first cartographic maps was the cognitive 

processes that take place in the abstraction or generalization of reality and its later interpretation. 

Though cartographic maps are simple representations of reality, the human perception of reality differs 

from individual to individual (Sester 2002). Therefore, it is quite established that the inferred reality 

resulting from the interpretation of one map will not match perfectly with the original cartographer‘s 

reality and a certain degree of transmission reduction will arise (Ratajski 1977). To illustrate this mis-

match, Figure 1 depicts a combination of the Ratajski cartographical transmission‘s concept and the 

Morrison‘s cartographic processes graph (Morrison 1978). In particular, the cartographer generalizes 

the original selected reality in a cognitive process that extracts, classifies, and simplifies the selected 

data in a set of predefined symbols. Similarly, the map reader interprets the map‘s information in a 

cognitive process that detects, identifies, and estimates the characteristics of the symbols to recreate 

the intended reality. 

Since cartographic maps are a reduced representation of geographic reality, map symbols are used to 

represent real objects. Specifically, symbols are categorized in three main groups: geometric shapes, 

textures and colors, and informative elements. Geometric shapes are frequently subdivided into 

points, lines and areas, e.g., points for singular points of interest, lines for roads and rivers, and areas 

for countries and city regions. Textures and colors introduce attributes to predefined symbols such as, 

green areas representing forested land, and blue areas representing lakes and seas. Finally, informa-

tive elements give the map reader additional information regarding the given symbols, e.g., north 

arrow, legend, and scale (Hatzopoulos 2008). 

 
Figure 1: Cartography interpretation circle. The geometric reality is generalized into a map by a cartographer. 

Later a user interprets this information to infer the original reality. 

The selection of an appropriate scale to be used in a map is one of the most important variables in a 

cartographic map (Watson 1978). Doing so, the same geographic object can be represented by differ-

entiated symbols depending on the ‗resolution‘ of information required, e.g., a complete city can be 

represented by an area in a large scale and by a point in a small scale (Gomarsca 2009). Moreover, 

every object represented in a map has an ideal scale where its readability and usability is optimized. 

Frequently, this ideal scale is not related to the scene itself but to the requirements of the map‘s read-

er. In conclusion, one single scale may not be enough to address all the requirements of a map‘s 

reader (Sester 2002). 



 
 
2.2. Multi-scale representations in cartography and geography 9 

 

 

 

 

To respond to the need of several scales, Harvey (1969) asserted, based on the later work of Kant, 

that the space defined by an object in a given scale can also be defined as a container. If that is the 

case, the hierarchical structure built upon containers and subcontainers is a straightforward statement 

only depending on the classification schema (Meentemeyer 1989). An example of this hierarchical 

structure can be found in a city map where the original symbol can be refined by districts, areas, and 

neighborhoods. Consequently, defined in a hierarchical structure, a multi-scale representation can 

encompass several representations of the same object, answering in this way the several require-

ments of a map‘s reader. 

2.2.2. Geographic Information Systems (GIS) 

Already in the early 1950s, several research initiatives were conducted in the United States (U.S.) to 

bring cartography into the computer era (Coppock & Rhind 1991). However, it was not until the early 

1970s, and in parallel with the development of the first CAD systems, that GIS technology was devel-

oped. Those first implementations were mainly fostered by the government of the U.S. with the goal of 

producing electronic maps for national mapping agencies. From these first developments, the U.S. 

Geological Survey (USGS) defined GIS technology with this statement (Karimi & Akinci 2009): 

“…a computer system capable of assembling, storing, manipulating, and displaying 

geographically referenced information or geospatial data.” 

Nowadays, GIS technology is observed as a subset of four main technologies, namely, computer 

cartography, database management, remote sensing, and computer-aided design (Maguire 1991). 

Despite its common roots with other technologies, GIS systems developed a number of other features 

not previously existing in the technologies they grow out of. Hence, Goodchild (1987) defined the 

ability to analyze spatial data using spatial analysis techniques as its main contribution. Differently, 

Cowen (1988) emphasized equally the capability of GIS technologies as a management tool and as a 

decision support system. 

 
Figure 2: Definition of GIS technology as the subset of other four information systems. Author reproduction 

based on the work of Maguire (1991) 

Despite CAD and GIS technologies starting and growing in parallel, their scopes and objectives were 

clearly differentiated. Thereby, CAD systems focused on the design of objects not yet existing in the 

real world, whereas GIS systems were applied to built-up models with existing real objects (Newell & 
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Sancha 1990). However, the increasing complexity of current infrastructure projects demanded from 

design tools, not only the capability of modeling small or existing objects, but supporting the wide 

range of scales and views such projects comprise. These demanding requirements coined the term 

geodesign. Flaxman (2010) defined geodesign as: 

“Geodesign is a design and planning method which tightly couples the creation of de-

sign proposals with impact simulations informed by geographic contexts.” 

The aim of geodesign is to stretch the capabilities of both CAD and GIS systems to enhance and 

improve the decision making of designers and engineers. However, such a technology cannot cover 

the complete spectrum provided by both technologies on its own and therefore Karimi and Akinci 

(2009) defined geodesign as the technology situated on the border (Figure 3). Several examples can 

illustrate the importance of geodesign. First, real state managers may be interested in the demograph-

ic capabilities provided by GIS systems to decide the construction of a store or architectural complex 

in a specific area, whereas the capabilities of CAD systems may address the design of the specific 

buildings. Second, a facility manager of a university campus may be interested in the localization of a 

leak in a gas conduction based on CAD drawings, whereas emergency teams may be more interested 

in the capabilities of GIS systems to prepare an evacuation plan (van Oosterom et al. 2006). Finally, 

the design of large infrastructure facilities may require GIS information systems to design the basic 

course of the facility, while engineers may need CAD systems to design in detail the different construc-

tive elements. 

 
Figure 3: Area of influence of each technology; CAD, GIS and Geodesign. Author reproduction based on the 

work of Karimi and Akinci (2009). 

One essential difference between CAD and GIS systems is the difference of scales they handle. CAD 

systems mainly employ a Cartesian coordinate system, while GIS systems equally employ several 

projections and scales depending on the purpose of the final application. Moreover, some GIS sys-

tems have the capability of storing the different scales on several layers giving them the capability of 

changing from one scale to another as the requirements change. This multi-scale feature of GIS 

systems has been implemented by some neutral data models, allowing them a successful model 

exchange. Among others, CityGML implemented a system of five levels of detail (LoD) that boosted 

this data model to be one of the most widely used and referenced. 
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2.2.3. Multi-scale city and infrastructure models based on CityGML 

One central aspect of GIS models is interoperability. The exchange of information among models such 

as the Digital Terrain Model (DTM), the 3D representation of city buildings, and infrastructure networks 

play a critical role in the analysis of geo-information needed to answer the demands on: disaster 

management, urban and infrastructure planning, and real estate management (Gröger et al. 2005). 

The concept of interoperability was defined by the ISO organization with the following statement (ISO 

1996):  

“…capability to communicate, execute programs, or transfer data among various func-

tional units in a manner that requires the user to have little or no knowledge of the 

unique characteristics of those units” 

To address the interoperability requirements in the area of 3D city models, in 2002 the Special Interest 

Group 3D (SIG 3D) of the initiative Geodata Infrastructure North-Rhine Westphalia (GDI NRW) started 

the development of CityGML (Kolbe et al. 2005). CityGML was developed to cover geometrical, topo-

logical, and semantic aspects of 3D city models, not only for building structures, but also for elevation, 

vegetation, water bodies, and transportation facilities like streets and railways (Kolbe et al. 2005, 

Gröger et al. 2005). Technically, the CityGML data format was based on the existing Geography 

Markup Language (GML3) developed by the Open Geospatial Consortium (OGC) enabling CityGML 

the direct integration within Web Feature Services (WFS) and Web Map Services (WMS) (Cox et al. 

2004, de La Beaujardiere 2006, OGC 2010, Vretanos 2014). 

CityGML introduced six novel concepts to support interoperability, consistency, and functionality 

(Kolbe et al. 2005): 

 Level of Detail. Probably the most referenced attribute of CityGML enables city models to be 

semantically and geometrically represented by several levels of abstraction. Although there 

are other data models that implement the LoD approach, e.g., Blom3D or NAVTEQ (Ludwig et 

al. 2011), the guidelines introduced by CityGML are considered the state-of-the-art in city 

modeling (Biljecki et al. 2013). 

 Geometric-topological modeling. CityGML employs conventional boundary representations 

as the most basic geometric element. Later on, these objects are merged by aggregation rela-

tions into topological structures as defined in the GML3 standard (Herring 2001). In addition to 

primitives and aggregation objects, CityGML introduced the definition of integrity constraints. 

These constraints guarantee the consistency of the model, and are understood as the clean 

definition without intersections where every building is disjoint from the others. 

 Coherence semantic-geometrical modeling. In addition to the geometric-topological defini-

tion of buildings, a second hierarchy of semantic attributes, relations, and aggregations is de-

fined as a part-whole-relation. These two parallel hierarchies of semantic and geometric-

topological objects enable an easy and efficient navigation through the data model. 

 Closure surface objects were introduced by CityGML to enable the computation of volumes 

on geometries that are not closed. One example of this calculation can be found in the volume 

of a pedestrian underpass. In order to calculate, for example, the volume of water needed to 

flood such an underpass, CityGML defines two ClosureSurface that are not related as geome-

try by the semantic object, but which enables its calculation. 
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 References to objects in external data sets. The need of access to external information 

contained in independent databases or datasets is critical to complete the geo-information. 

Thus, every city object contains a list of possible external references linked by a Uniform Re-

source Identifier (URI). 

 Dictionaries and code list for attributes. In order to avoid the wrong definition of attributes 

by misspellings or unknown types, CityGML includes a collection of dictionaries and code lists 

assuring that the attribute value is recognized by the data model.  

Levels of Detail (LoD) in CityGML 

The CityGML data model defines five LoD. The more detailed LoDs are used to describe buildings and 

3D objects, while the coarsest LoD0 simply describes the digital terrain model (DTM) based on a two 

dimensional tessellated representation, where the nodes represent the map elevation. Each of the 

remaining LoDs describe city objects under two different assumptions, namely, from their semantic-

geometric relation and from their accuracy. Based on the first assumption, LoD1 represents objects 

built upon the blocks model, i.e., without any associated roof geometry or texture. LoD2 introduces the 

definition of roof structures and uniform textures on the surfaces of the building. In addition, LoD3 

includes façade objects such as windows or balconies and enables the definition of high-resolution 

textures. Finally, LoD4 incorporates interior structures of the building such as, floors, stairs, and 

rooms. Figure 4 depicts the four LoD in which buildings can be represented. 

From the other side, each LoD defines the accuracy and the minimal dimension one object has to 

measure to be represented in a LoD. So, in LoD1, objects require a minimal footprint of 6 by 6 meters, 

and are represented with a vertical and horizontal accuracy not larger than 5 meters. In LoD2, the 

minimal footprint is reduced to 4 by 4 meters, while the horizontal accuracy is reduced to 2 meters and 

the vertical to 1 meter. In LoD3 the minimal footprint is reduced to only 2 by 2 meters, and both accu-

racies are reduced to 0.5 meters. Finally, as the LoD4 is defined to depict the interior of buildings the 

minimal footprint is neglected (all objects must be represented regardless of their size) and both 

accuracies reduced to 0.2 meters. 

 
Figure 4: The four LoD as defined in the CityGML data model. Source: Karlsruhe Institute of Technology 

Although the LoD approach as defined by CityGML boosted the interoperability and exchange of city 

models, some researchers pointed out a list of limitations to be addressed in future versions of the 

model (Lemmens 2011, Biljecki et al. 2013, and Tamminga et al. 2013). From these limitations, the 

two more repeated ones are the one regarding the LoD definition and the one related to the thematic 

independence of accuracy. Hence, there is not yet a common definition about how and which ele-
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ments must be defined in a LoD, and which role the geometric scale must play. This arguable point 

brought Benner et al. (2013) to present a novel proposal where the concept of LoD was first split into 

semantics (SLoD) and geometry (GLoD), and then into interior (SLoD-I/GLoD-I) and exterior (SLoD-

E/GLoD-E). Thus, Benner‘s approach introduces the possibility of combining not only the interior and 

exterior geometry of buildings on coarse LoD, but also the independent managing of semantics and 

geometry. 

From another point of view, city data models are widely used for the analysis of large geographical 

areas, which demands high accuracy on coarser LoD, e.g., the solar potential estimation based on 

existing roof surface (Kaden & Kolbe 2014). Based on the current state of the standard, dull models on 

coarser LoD are possible. This fact, which may not affect applications built upon semantics, may result 

in a severe deviation of simulation results depending on geometric information. 

Infrastructure models in CityGML v2.0 

In a continuous process of improvement, the OGC organization released in 2012 CityGML Version 

2.0. Although the initial plans were to perform only a minor update to its predecessor, CityGML Ver-

sion 1.0, some of the changes introduced into the data model cannot be considered consistent with 

the OGC directives regarding minor revisions and backwards compatibility (Gröger et al. 2005). Thus, 

in the current version 2.0, the data model was extended by 203 attributes, 41 feature classes, and two 

new modules (Löwner et al. 2012, Löwner et al. 2013).  

Amongst others, the new version introduced a redefinition of the LoD0 for buildings and the extension 

of the data model with bridge and tunnel objects. While in the previous versions, the LoD0 was mainly 

associated with the DTM, the newly released version 2.0 enables the definition of buildings based on a 

2.5D representation, i.e., buildings can be represented by flat geometries either at the roof elevation or 

at the footprint elevation (Gröger & Plümer 2012). 

 
Figure 5: Representation of a bridge in CityGML v2.0. Source: Karlsruhe Institute of Technology 
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Figure 6: Representation of a tunnel in CityGML v2.0. Source: Karlsruhe Institute of Technology 

The need of bridge and tunnel modules became apparent during the practical implementation of 3D 

city models (Löwner et al. 2012). Unlike building models, both infrastructure facility elements have the 

characteristic of interacting actively with the territory they were placed into, i.e., with the DTM model 

represented in LoD0. Therefore, and contrary to the improvements implemented in LoD0 for buildings, 

the bridge and tunnel modules were defined based on the previous four LoD approach. Figure 5 and 

Figure 6 depict the four LoD, from LoD1 to LoD4, as defined by CityGML v2.0. 

In contrast to buildings or bridges, where a fair distribution of information can be made based on the 

geometric shape and detailing of surface elements, in tunnels the major part of information is placed in 

their inside and hidden under ground. This below-surface property of tunnels was considered as the 

triggering feature that might allow a different definition of their LoD. However, as the boundary be-

tween objects placed above- and under-surface can only be determined by the DTM, and this is not 

always known with precision (when not missing), this approach was considered as violating the 

CityGML unity of objects and was therefore rejected (Gröger & Plümer 2012). The impossibility of 

defining tunnels under other LoD approaches, meant that the main information was constrained to 

LoD4, reducing the practical applicability of the tunnel module. 

The tunnel module of CityGML divides first the complete infrastructure into smaller TunnelParts. These 

frequently represent the tunnel objects that are constructed for each travelling direction. Once the 

tunnel parts are defined, their LoD are distributed as follows: LoD1 defines the external shape of the 

tunnel, which is used to calculate its enclosing volume; in LoD2, its semantic and external geometry is 

refined by the definition of several function surfaces, e.g., wallsurface, roofsurface and groundsurface; 

in LoD3, openings like doors can be introduced as thematic objects; and LoD4 enables the definition 

of interior objects such as an installation or hollow spaces (Gröger et al. 2012, Borrmann et al. 2015a). 

Figure 6 shows one example of a tunnel represented with CityGML and Figure 7 depicts the UML 

diagram of the tunnel module as defined by the standard. 
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Figure 7: UML diagram of the CityGML tunnel model. Source: Gröger et al., 2012 

2.3. Parametric CAD systems – procedural and assembly modeling 

The concepts underlying parametric CAD systems where developed in the mid-1980s and first imple-

mented in a commercial product by Pro/ENGINEER in 1988 (PTC, 2016). Nowadays parametric CAD 

systems are not only the state-of-the-art in automotive and aeronautical industries, but also in naval 

and train-construction as well as machinery and manufacturing. 

One of the reasons for this success is the different approach they implement in comparison with 

conventional CAD systems. First, parametric CAD systems implement a combined model structure 

approach, i.e. they offer the possibility of designing geometric models using diverse technologies (e.g. 

free-form modeling, surface modeling and procedural modeling) and to integrate any of those models 

in a common assembly environment (Baumann 2004). This flexibility reduces the size of the resulting 

files and allows engineers to share single components in a reliable way. 
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Secondly, procedural geometric models maintain the construction steps needed to re-build the model 

instead of keeping the final outcome geometry. Moreover, procedural models define dependencies 

between these construction steps – also known as procedural or construction operations – that allow 

designers to modify a single operation while the system updates the entire geometry in a consistent 

manner. 

In addition to the different modeling technologies parametric CAD systems support, different software 

companies have been developed domain-specific modules for individual tasks. The idea behind these 

modules is to respond to specific needs of specific industries. Thus, CAD modules such as piping or 

cable routing, and integration modules for CAM or CAE became available to almost all commercial 

software. 

The remainder of this section is divided into four main topics: (1, 2) a comprehensive description of 

procedural models and its dependency relations is done; (3) the limitations of the feature granularity 

are reported; and (4) the basic concepts on assembly modeling and assembly structuring introduced. 

2.3.1. Basic concepts in procedural modeling 

Parametric sketches and construction history models 

Modern parametric CAD systems implement a hybrid approach, based on the combination of 2D 

parametric sketches with the principle of procedural geometric modeling, where the applied construc-

tion operations are recorded. In particular, 2D parametric sketches are flexibly defined by dimensions 

and constraints, and solved as single entity, while 3D volumes are created and modified through the 

consecutive application of construction operations such as extrusion, rotation, or Boolean operations 

between solids (Shah & Mäntilä 1995, Monedero 2000, Betting & Shah 2001). 

Parametric sketches are defined by three different types of objects: geometry elements, e.g. points, 

lines and circles, geometric constraints, and dimensional constraints. From the two types of con-

straints, geometric constraints apply geometrical relations between pairs of geometry elements that 

specify their relative position (Sitharam et al., 2006). Figure 8 depicts some of the typical geometric 

constraints available in major parametric CAD systems. 

 
Figure 8: Geometrical constraints typically provided by parametric CAD systems 

Dimensional constraints, on the other hand, are used to restrict the size or the position of geometric 

elements. Furthermore, each dimension comprises a parameter that can be defined as a static value 

or as an algebraic equation where other parameters can be interrelated. Combined, these two types of 

constraints (geometric and dimensional) enable the generation of complex 2D designs that capture the 

design intent and provide a high degree of flexibility (Regli, et al. 2000, Chandrasegaran et al. 2013). 

Figure 9 and Figure 10 show two sketches where typical geometric and dimensional constraints have 

been applied. 
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Figure 9: Example of application of geometric constraints in a 2D sketch 

 
Figure 10: Example of application of dimensional constraints in a 2D sketch 

In a different way, construction operations provided by parametric CAD systems can be classified into 

three different groups: 

 Creation or sketch-based operations need at least one sketch to create a volume. Typical 

operations are: extrusion, rotation and sweep operations. In Figure 11 a tunnel section is cre-

ated by means of a parametric sketch and an extrusion operation. 

 Modification or non-sketch-based operations are applied directly to a volume and do not 

need a sketch to be performed. Typical operations are: fillet, chamfer and Boolean operators. 

 Auxiliary geometry operations create additional reference geometry needed to complete the 

construction task. Typical features are: work-planes, work-axes, and work-points. One exam-

ple can be found in Figure 16 where a work-plane is defined perpendicular to a 3D spline at a 

given point. Later on, this work-plane can be defined as the reference surface for a parametric 

sketch.  
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Figure 11: (left) parametric sketch of a tunnel cross-section and (right) 3D extruded tunnel 

An important aspect that distinguishes parametric sketches from the construction history approach in 

procedural models is the approach they use to solve the geometric problem. Parametric sketches 

define the geometric constraint problem independently of the sequence its dimensions and constraints 

were introduced, in a methodology known as a variational approach (ISO 10303-55 2005a). Different-

ly, in the construction history the construction operations are sequentially retrieved, in a methodology 

known as procedural approach (Shah and Mäntilä 1995, Anderl and Mendgen 1998). 

The variational approach handles the geometry and constraints defined in a parametric sketch as 

geometric-topological elements, whose size and placement must be calculated depending on the 

values of their parameters (Hoffmann & Joan-Arinyo 2005, Bettig and Hoffmann, 2011). A simple 

example is a triangle sketch defined by three lines, three dimensions and the necessary geometrical 

constraints. Thus, for a single set of topological elements, the variational approach will return different 

geometric solutions depending of the value defined on their parameters. 

Parametric CAD systems use Geometric Constraint Solvers (GCS) to accomplish this task. Every time 

a topological modification in the sketch is introduced or one of the dimensions is updated, the GCS will 

start the solving process. If the number of constraints (geometric and dimensional) equals the degree 

of freedom of the system, the GCS will return an updated size and placement for the different topolog-

ical elements. However, if the system is defined with too many or insufficient constraints (over- or 

under-constraint) the GCS will not be able to find a solution and a warning message will be prompted 

(Jubierre, 2009). 

On the contrary, the procedural approach employed on the construction history generates the final 

model by sequentially applying construction operations to the previously evaluated geometry. Unlike 

the variational approach, changes in the sequence of operations may end in different outcome geome-

try. 

Parametric sketches vs. 2D drawings: a critical change in engineer‘s methodology 

The introduction of the technology of parametric sketches by parametric CAD systems changed the 

workflow engineers used to create digital models. Before the appearance of parametric technologies, 

engineers employed conventional CAD systems as computerized tools that allowed them to overcome 

the shortcomings of drafting tables without the need of redefining the design process. In particular, 

conventional CAD systems used the geometry as base element to which auxiliary information, in the 

form of text or dimensions, was attached. Hence, engineers used CAD systems as documentation and 
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not as design tool (Sacks et al. 2004). As a simple example, Figure 12 depicts one drawing of the 

typical cross-section of a single-track shield tunnel, where engineers represent geometry and seman-

tics. 

Later on, and because both technologies, drawing and sketching, manipulated similar geometric 

elements, an initial attempt of importing old drawings into modern sketches was observed. Obviously, 

this approach did not succeed and drove engineers to clearly differentiate the application areas of both 

technologies. Thus, McConnell (2010) distinguished drawings and parametric sketches with the two 

following statements: 

“A drawing is a collection of geometry (lines, points, and arcs) laid out in a 2D format. 

These geometric elements, which have no relation to each other, are used to determine 

the final prints.” 

“A sketch is a collection of geometry (lines, points, and arcs) coupled with relationships 

(parameters, equations, dimensions, and sketch constraints) laid out in a 2D format. 

These geometric elements are related to each other to reflect design intent. These 

sketches are used to define 3D geometry, which is then projected to 2D for the final 

prints.” 

Moreover, parametric sketches introduced a novel concept; ―Shape before size – creating rough 

sketches‖ (Shih 2014). Due to the ability of parametric sketches to update the outcome geometry 

every time a dimension or constraint was added or modified, engineers were allowed to roughly sketch 

the design concept and slowly update the resulting geometry as design decisions were taken. 

 
Figure 12: Drawing of a tunnel cross-section as represented by conventional CAD systems  

(Source: OBERMEYER Planen + Beraten GmbH) 
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Finally, parametric sketches introduced the practice of small and simple sketches in opposition to the 

extreme complex and highly dense 2D drawings. On the one hand, engineers fragmented the design 

process into several independent sketches that offered in return an easy modification of specific 

elements of the design intent. On the other hand, the geometry of holes, fillets, and chamfers was 

integrated in separated construction operations, reducing the complexity of the sketches and enabling 

easier access through the construction history of the model. 

Constraint solving approach on procedural modeling 

Procedural models improved the design process by the introduction of parametric sketches and con-

struction operations. However, the underlying technology also introduced new shortcomings due to the 

evaluation need of the input information to produce the outcome geometry. This evaluation process 

takes place with every modification of any construction operation and may result in an unforeseen 

solution or even in a non-evaluable model. 

First, ambiguous solutions can arise during the evaluation process of parametric sketches. Despite the 

fact that a GCS needs a well-constraint sketch to be able to start a new calculation, this fact by its own 

is not able to guarantee a solution. Even more, the following three issues regarding the identification of 

non-evaluable solutions have been reported for long time in literature: 

 In the evaluation process the topology of the parametric sketch is converted into a set of 

mathematical equations that can be handled by the solver. Then, the GCS tries to solve the 

mathematical problem together with the instance value of its parameters. However, the solver 

may find out that no feasible solution is possible for the topology and parameters provided. 

This fact can be easily observed in Figure 13. This example, originally from Fudos and Hoff-

mann (1997), shows that the solver will not be able to return a solution if one dimension is 

larger than the added value of the other two. 

 
Figure 13: Parametric sketch that is not always solvable by a GCS. Author reproduction based on 

Hoffmann 1997 

 Hoffmann and Joan-Arinyo (2005) also show that for some configurations of the sketch prob-

lem there is an infinite number of solutions. Figure 14 shows the sketch they used to illustrate 

this problem. Thus, for the combination of angle values of 90° the point P can be placed eve-

rywhere along the line defined through the points A and B. 
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Figure 14: The position of the point P (left) is defined at the intersection of the two lines defined by 

the angles a and b. The position of the point P (right) cannot be determined based on the actual con-

straint problem. Author reproduction based on Hoffmann and Joan-Arinyo (2005) 

 Finally, Joan-Arinyo & Soto (1997) reported that for a single topological problem there is al-

ways a collection of feasible mathematical solutions. Choosing the expected right solution 

from this collection has been classified as a NP-hard problem (Mata & Kreinovich 1998). 

Therefore, GCS usually implement a complex heuristic method that returns to the user the 

closest feasible solution to the initial sketched problem. Figure 15 shows an example of four 

feasible mathematical solutions of the same topological irregular quadrilateral problem.  

 
Figure 15: Four feasible mathematical solutions of the irregular quadrilateral problem (Source: Joan-Arinyo 

et al. 2002) 
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Secondly, unforesen solutions can emerge during the sequential evaluation of the construction history. 

On the one hand, even if a single modification of one construction operation is consistent, its evalua-

tion in relation to its dependent operations may end up in a non-evaluable geometry; for example, if 

the inner-diameter of one tunnel is modified and becomes larger than the outer-diameter. Despite both 

operations can be evaluated, the Boolean cutting operation will not be able to return a solution and the 

system will prompt a non-evaluable message. 

On the other hand, parametric CAD systems implement a dual representation based on the procedural 

description and its evaluated boundary representation geometry. The problem itself does not remain in 

this dual representation, but in the fact that later aggregated construction operations may establish 

references to non-persistent topologic entities of the evaluated boundary representation. Consequent-

ly, parametric references to such entities can become ambiguous preventing any modification of the 

model. This behavior is known as the persistent naming problem and has been classified as the most 

serious problem in parametric modeling (Marcheix & Pierra 2002, Bidarra et al. 2005, Wang & Nnaji 

2005). 

These unavoidable geometric issues have to be added to the non-existent dependency analysis and 

the poor capabilities parametric CAD systems provide to manage them. This fact leads to severe 

difficulties for engineers and designers to foresee the consequences of their changes. Anderl and 

Mendgen (1996) stated that in highly parameterized models a single change can trigger a domino 

effect that may end up in the collapse of the complete model. 

“Real life models using parametric functionality very rapidly become too complex to 

keep an overview of the evolving structure and the relations between the components of 

this structure. The effect is that the creation of a parametric model often ends up in a 

model crash, meaning that the designer is no longer able to modify the existing model 

without causing changes he did not intend in consequence.” 

In this thesis, novel techniques are presented that help to avoid the aforementioned problems. Thus, 

procedural model robustness is defined as the capability of a procedural model to be modified 

resulting in a geometry that matches the intended solution. 

2.3.2. Dependency relations in procedural models 

As mentioned before, one important characteristic of procedural models is the available construction 

history defined in the modeling process. In addition, within the creation of the construction history, 

relations between operations are automatically generated by the parametric CAD system in a manner 

transparent to the end user. These relations can be understood as dependencies and allow the para-

metric CAD system to properly update the related geometry when an operation is modified or deleted 

(Shah and Mäntilä 1995, Bodein et al. 2014). 

A simple example of such dependencies can be found in the relation between an extrusion and a 

parametric sketch. Normally, the designer begins with the definition of the sketch and after defining the 

height parameter, the CAD system creates the extruded volume and the dependency between both 

operations. Moreover, this dependency clearly defines a direction – the dependency goes from the 

parametric sketch to the extrusion – indicating that the two operations cannot be swapped in the 

construction history, as no extrusion can be created before its outlining geometry. 
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Figure 16: Parametric tunnel (top) modelled by seven construction operations (left) and its dependency dia-

gram (right) 

As a consequence, the geometric operations and their dependencies represent a directed acyclic 

graph (DAG) where the nodes are the construction operations and the edges the dependencies be-

tween them. This novel representation is called dependency diagram. Although the dependency 

diagram is unique for a given set of operations generating a desired geometric result, the sequence of 

executing operations is not necessarily fixed. Thus, the swapping of two operations is possible when 

they are consecutive and there is no direct dependency between them. This property of the construc-

tion history can be easily seen in the example depicted in Figure 16, where despite some operations 

can be swapped – the two sketches (operations 3 and 4) or the two sweep operations (operations 5 

and 6) – neither the dependency diagram nor the resulting geometry are altered. 

Finally, parametric CAD systems can manage procedural models that define several disconnected 

bodies. A disconnected body is defined as a set of construction operations that do not create depend-

encies on any other operation present in the construction history. The corresponding dependency 

graph becomes a disconnected subgraph. This behavior plays a key role in the design of infrastructure 

models because it enables the subdivision of the complete project into a set of submodels that can be 

treated independently (Jubierre and Borrmann. 2013). Because of its relevance this approach will be 

intensely discussed and analyzed in the following Chapters 4 and 5 of this thesis. 

2.3.3. The granularity problem on procedural models – The cellular model 

One difficulty that impedes the exchange of procedural models between CAD systems is the different 

granularity the same construction operation implements among different parametric systems. In fact, 

parametric CAD systems are usually based on the feature approach rather than on the construction 

operation approach. The feature approach includes several construction operations executed at the 

same modeling step (Chen and Hoffmann 1995, Pratt and Kim 2006, Bodein et al. 2014). Figure 17 

depicts one example based on the extrusion feature in Autodesk Inventor. This enables not only the 

definition of the parameters and direction of the extrusion, but also a Boolean union with its predeces-

sor operation, and the possibility of choosing between a solid or surface outcome. 
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Figure 17: Extrusion feature in Autodesk Inventor. For this simple feature, the user can define, in addition to 

the parameters and direction of the extrusion, a Boolean union and between solid/surface outcomes. 

One method to overcome this granularity limitation is known as cellular representation schemes or 

cellular model (Bidarra et al. 1998). First introduced by Pratt (1988), the cellular model divides the 

output geometry in a set of sub-volumes lying either internal or external to the solid part and wrapped 

around its minimal containing box. There is no evidence that this method, as defined by Pratt, was 

ever implemented. 

The intrinsic history-independence of the cellular model approach made researchers to develop new 

hierarchical structures. Thus, Rossignac (1990) presented the Selective Geometric Complex (SGC). 

This is a cellular model that permits the representation of cell objects with an internal decomposition 

structure, making this approach an attractive choice for representing potentially overlapping features. 

Further research in this field conducted Gomes et al. (1993) to enhance the proposal of Pratt with a 

hybrid approach, where a hierarchical structure of modeling steps is stored in addition to the explicit 

outcome. This approach demands the extensive use of mate constraints between the geometric cells 

that make this methodology complex and inefficient. 

In summary, cellular models are a good alternative when only the geometric representation must be 

exchanged. Due to the fact that cellular models are mainly history-independent, it is almost impossible 

to reconstruct the design intent the engineer or designer applied during the modeling process. Alt-

hough some developments were made to incorporate the construction history, these methods were 

shown complex and inefficient in comparison with the existing procedural method. 

2.3.4. Basic concepts in assembly modeling 

The design of complex engineering systems demands the integration of diverse components devel-

oped by different experts. Such integration can be seldom achieved by the single procedural modeling 

of parts and components. Therefore, in parallel to procedural modeling, parametric CAD systems 

introduced a novel technology that allows engineers to integrate several modeled components in an 

assembly environment (Noort et al. 2002). This technology not only permits engineers and experts to 

work in a more flexible manner, but also opens the door to drive engineering simulations, e.g. contact 

and kinematic analysis, collision detection, and assemblability evaluation (Shah and Mäntylä 1995). 
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In general, assembly models can be understood as a tree structure consisting of nested assemblies 

and parts. By definition, every assembly contains a root node – also known as chassis or master piece 

(Shah and Rogers 1993, Baumann 2004) – that has a fixed reference to the global coordinate system 

(GCS). Moreover, the leaves of the assembly model establish spatial relationships among themselves 

and within the root node that enables the correct placement of the leaves when the root node is 

moved or modified. 

Another important concept of assembly modeling is the occurrence approach. In particular, the leaves 

on the assembly structure are not the modelled parts themselves but displayed instances, known as 

occurrences, describing their placement and orientation in space. This approach allows parametric 

CAD systems to handle large amount of parts with minimal amount of information (van Holland & 

Bronsvoort 2000). The limitation on this approach remains in the fact that the assembly model by itself 

does not contain any geometric information but references to the original parts and their positioning in 

space. Therefore, managing part and assembly files, externally to the CAD system, become a time-

consuming and error-prone process. 

As mentioned before, the aim of spatial relationships is to restrict the degrees of freedom (DOF) 

occurrences have in space. In order to reduce the tedious work such relationships demand, parametric 

CAD systems implement the concept of mating features (Lee and Gossard 1985, Shah and Tadepalli 

1992). Similarly to procedural modeling, where the modification of the outcome geometry is managed 

by construction operations, assembly modeling encapsulates several spatial relationships by a set of 

mating constraints. Additionally, as the assembly model can drive engineering simulations, a dual 

classification of mating constraints has been widely established regarding the final purpose of the 

constrained model (Chen & Perng 1997): 

 Geometric mating defines spatial relationships based on geometric properties between parts. 

For example: two axes must be co-linear, two planes must be perpendicular or two curved 

surfaces must be tangent. 

 Kinematic pairs also known as kinematic joints, define spatial relationships based on kine-

matic interaction between parts, e.g., screw-pair, cylindrical-pair, or spherical-pair. 

Since large infrastructure facilities are considered static rather than dynamic, kinematic-pairs will be 

excluded from further discussion in this thesis. 

Part positioning 

Although parametric CAD systems mainly implement the approach of mating constraints to achieve 

spatial restrictions among parts, other methodologies have been developed and reported by literature 

(Baumann 2004). Thus, in addition to mating constraints, positioning by (relative) coordinates became 

the standard constraint methodology extensively implemented by neutral product models such as 

STEP or IFC. 

The main weakness of constraining by coordinates remains in the fact that every time a part model is 

modified, the coordinate system of the related parts must also be updated. However, this limitation is 

rarely taken as a real drawback, since neutral product models are intended for exchanging assembly 

information and not for supporting dynamic design processes. 

Differently, positioning by mating constraints establishes constraint relations between pairs of parts. 

Each half-constraint, also known as mate, is applied either to one surface of the geometry or an auxil-

iary construction operation of the procedural model. Furthermore, the majority of mating constraints 
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define a parameter that allows mates to establish offset relations. For example, the same flush con-

straint that forces two planes to be co-planar, can drive a separation based on a defined parameter. 

 

Figure 18: Likewise to parametric sketches the mating system of assembly models makes use of a constraint 

solver to resolve the placement of their parts. Therefore, to avoid unexpected solutions the mating system 

must be also well-constraint. The figure above shows four possible solutions of one flush constraint with an 

offset parameter (d1). 

One similarity between procedural and assembly modeling is the use of geometric constraint solvers. 

Thus, in assembly modeling, once the mating system is defined, i.e. the complete set of mating con-

straints between occurrences is established, a geometric constraint solver calculates the updated 

positioning of the instantiated parts. Similarly to parametric sketching, the definition of the mating 

system is independent of the order in which the mating constrains were introduced. Despite their 

similarities and the fact that both solvers deal with constrained systems, assembly solvers address 

different requirements, e.g. kinematic and contact properties, that forced researchers to develop new 

algorithms and techniques (Li et al. 2001, Peng et al. 2006). 

Structuring assembly models 

Structuring assembly models into a hierarchical structure of parts and subassemblies is not a simple 

task. Moreover, its optimal classification is usually more related with the function of the final product or 

the relation among its components that on its geometric needs. Therefore, the hierarchical structure of 

the assembly model is commonly described as the assembly design intent (Whitney 1996). 

In order to represent such relations researchers developed two different but complementary types of 

product data structures, i.e. the assembly hierarchy and the liaison diagrams (Lee and Goosard 1985, 

Lee and Andrews 1985). 
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Figure 19: Assembly model and hierarchy structure of a simple shield tunnel. The main assembly comprise 

two subassemblies, which are differenced occurrences of the same ring assembly model 

Also known as part-of graphs (Mäntylä 1988), the assembly hierarchy describes the basic structure of 

the assembly model. Specifically, two main approaches have been developed to represent assembly 

models: the Bill-of-Material (BOM) and the part-list structure. A BOM can be seen as a flat table where 

each entry represents a different part or subassembly model. Additional information such as the num-

ber of occurrences, material properties, and standard regulations (if any) is frequently attached. By 

contrast the part-list structure is defined as a specific BOM represented in a tree structure where each 

occurrence is counted (Rachuri et al. 2006). Although only part-list structures exactly reproduce the 

assembly hierarchy, BOM are very useful when managing or exporting external modeling references. 

As initially developed, liaison diagrams represented the simplest assembly connectivity among parts, 

regardless of what constraints were involved to create the mating (Bourjault, 1984). Posterior devel-

opments introduced the possibility of recording additional information, such as type of constraint or 

number of neglected degrees of freedom (Whitney et al. 1999). Nowadays, the capability of liaison 

diagrams of representing connectivity among parts placed in different subassemblies plays a key role 

in the automatic definition of simulation scenarios. 

2.4. Data exchange based on Product Models 

Already in the early years of the CAD development, the challenges inherent to the exchange and 

integration of information were identified. The following quoted statement was published at the same 

conference where Sutherland presented Sketchpad, widely considered the first CAD system. 

“There are a great many existing specialized languages and programming systems for 

many of the individual areas which must be covered by a Computer-Aided Design sys-

tem, […] so that it would be completely impractical to attempt to integrate such sys-

tems in a straight-forward manner” (Ross & Rodriguez 1963) 

Although the initial attempts of exchanging information between CAD systems were successfully 

accomplished by the use of neutral data formats covering pure geometric information, additional non-
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geometric data such as material properties, construction dates, or involved cost, were not recognized 

and therefore lost in the exchanging process. In response to this limitation, the definition of neutral 

data models were extended to integrate the previously neglected semantic information together with 

the geometry representation in a novel product model concept, and defined as: 

“A product model is a computer-interpretable, complete and unambiguous description 

of the product being designed, constructed, and operated. It supports the communica-

tion between computer-aided activities by storing all the information that needs to be 

exchanged within the project” (Bakkeren & Tolman 1994) 

Additionally, product models implement a flexible, object-oriented structure with a clear separation 

between semantics and geometric representations. This clear separation promoted, in short time, the 

definition of new semantic models for a large range of field-specific domains. Following this direction, 

this thesis presents a novel proposal for a multi-scale shield tunnel product model. 

The remainder of this section is structured as follows: first, an overview on the historical background 

and main benefits and drawbacks of product modeling are discussed; then, the two most widely 

adopted exchange standards – STEP and IFC – are analyzed; finally, the current IFC extensions for 

infrastructure modeling are reported. 

2.4.1. Overview 

As already introduced, the first attempts on exchange of information focused mainly on geometry. So, 

this subsection gives a brief survey on the historical background of data exchange based on neutral 

data formats and its increasing complexity. Finally, the benefits and drawbacks of modeling exchange 

based on neutral formats are pointed out. 

Historical background on exchange standards: The IGES data format 

As Wilson reported (Wilson 1987), the first real need for exchange of information appeared in the 

1970‘s between CAD/CAM systems. To answer this need, the National Bureau of Standards of the US 

published in 1978 the first version of ―Initial Graphics Exchange Specification” (IGES) with the initial 

scope of exchanging ordinary geometric, graphical, and annotated entities required in blueprints. Thus 

with this broad objective, IGES soon became too slow on its developments, which fostered other 

national standards to appear and to try to fill this gap. 

From the several emerging initiatives, three materialized in the following years. In 1983, a new surface 

modeling interface known as VDA-FS
2
 was released for enabling the transfer of free-form curves and 

surfaces with a degree greater than 3 (VDA 1986), which became part of the standard DIN66301, in 

1986. Later on, in March of 1984, the first revision of the French proposal SET
3
, was published, focus-

ing on the size of the files to be transferred. The SET proposal suggested a totally new approach 

based on a new file format that enabled data sharing between records. The SET proposal became 

standard in 1985 under the AFNOR Z 68300. Finally, in October 1985, the second task of the PDDI
4
 

project was finished and published, focusing on the transfer needs for four selected benchmark parts 

typically used by the aerospace industry. Despite new file structures were designed and new transla-

                                                           
2
 Verband der Automobilindustrie - Flächenschnittstelle 

3
 Standard d’Échange et de Transfert 

4
 Product Data Definition Interface 
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tors were implemented, the PDDI project was never included on an international standard (Vries-

Baayens 1991). 

As counterpart to the alternative initiatives, four new versions of the IGES standard appeared in the 

following years. However, none of them were able to fix the intrinsic problems on the standard, namely 

the excessive file size and processing time, numerical sensibility of some geometrical definitions, and 

ambiguities in its specification (Encarnacao 1986, Wilson 1987). 

In December of 1983, in an attempt to address the IGES limitations and at the request of the United 

States and France, the International Standards Organization (ISO) created the Technical Committee 

TC184/SC4 with the aim of integrating the arising proposals under a new, more complete, standard 

called STEP (STandard for the Exchange of Product model data). Its development was divided into 

smaller parts, known as Application Protocols (AP), with the confidence of reducing the complexity of 

such a wide spectrum of knowledge. Although this subdivision and the arising coordination tasks 

resulted in the first AP not to be published until 1994, the comprehensive results, which prolonged 

over more than ten years, claimed STEP to be the first product model able to exchange not only 

geometry, but also semantics. 

Benefits and drawbacks on information exchange based on product models 

Since the first CAD systems appeared on the market, CAD vendors developed their own file formats, 

frequently referenced as internal or native, to store the information generated by the user. This fact 

was not a problem at early adoption, but as the number of vendors increased, the exchange of infor-

mation became no longer possible. 

Traditionally, two different approaches have been followed to overcome this problem. First, on the 

approach known as ―direct translation‖, the sending CAD system translates its native file into the 

native format of the receiving system. This approach comprises two clear benefits (Vries-Baayens 

1991): 

 Direct translators can have an optimal performance. 

 A complete transfer of data is achievable because only one mapping is involved. 

However, this approach presents a serious drawback. As the number of CAD systems increase, the 

number of needed translators grows in an exponential ratio. 

 
Figure 20: Exchange methods on CAD systems. (left) Direct translation and (right) exchange based on neutral 

file format. Author reproduction based on Vries-Baayens 1991. 

The second approach is based on the use of a shared or neutral product model. The basic idea re-

sides in the definition of a common description of a neutral file format that all CAD systems can trans-
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late. As consequence, CAD systems need only from two translators, one to write down in the neutral 

product model (pre-processor) and other to read from it (post-processor). The benefits of neutral file 

format approaches are (Vries-Baayens 1991): 

 A CAD vendor can handle any change in its system by updating its pre- and post-processors. 

 A new CAD system only needs two translators to communicate with all the other systems, a 

clear advantage to the 2*N translators needed by the direct approach. 

 Product models can be stored in a system-independent open format, which is of special inter-

est for products with a long lifecycle. 

The main drawback on the exchange based on neutral file formats remains in the fact that neutral 

models cannot cover the complete information defined by different CAD systems. Although the ex-

change of geometric representations is currently achieved in a large ratio, the main limitation is fre-

quently associated with the specific semantic information that domain-specific CAD systems imple-

ment. Therefore, if the CAD system defines a different or extended semantic model than the neutral 

model, a double loss of information will be undergone, i.e. at the time of the exporting (pre-processor) 

and at the time of importing (post-processor). 

 
Figure 21: Main drawback of neutral formats. The transferred information is only a portion of the original 

generated by the CAD system. Author reproduction based on Vries-Baayens 1991. 

2.4.2. The ISO-STEP standard 

Background 

Resulting from the experiences gained with the IGES standard, it was clearly recognized that the 

available neutral data models had elementary limitations not easy to overcome or to correct. In 1984, 

these weaknesses compelled the International Standards Organization (ISO) to create the Technical 

Committee TC184/SC4 with the task of developing a new exchange standard that addressed the main 

limitations of the existing efforts. Named STEP (STandard for the Exchange of Product model data) 

the new standard was born under the umbrella of ISO 10303 – Industrial Automation Systems – Prod-

uct Data Representation and Exchange (Pratt 2001). 

Several goals were identified with a higher priority (Eastman 1999): 

 Incorporating new programming language concepts. 

 Separating the data model from the physical file format. 
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 Supporting the clustering of the model, avoiding in this way the overhead produced by the 

manipulation of the complete data model. 

 Supporting alternative physical level implementations, e.g., files, databases, and knowledge-

based systems. 

 Incorporating reference models, commonly shared by large standard models. 

Ten years later, in 1994, the first version of the ISO-STEP was released. Due to the complexity of its 

development, the standard was divided into ten sections denoted as Parts. From them, Part 203 

enabled the exchange of product shape representations built upon wireframe, surface, and boundary 

representations. Though Part 203 became rapidly the most implemented standard among commercial 

CAD systems, the first version of this part had a serious drawback; once the geometry was transferred 

into the receiving system, it cannot be modified efficiently (Pratt et al. 2005). 

The main reason for this limitation was found in the change of the design strategy that engineers 

implemented during the ten years the first version of the standard needed to be released. Thus, in the 

mid-1980s boundary representations were state of the art, while in the 1990s, the parametric approach 

took over this critical gap. This evolution on the design strategy demanded major updates on Part 203, 

which were published in 2005 and 2011. 

In addition to the updated versions, several additional parts were released to address specific issues 

on parametric modeling. In doing so, two main parts were released in 2005 and one in 2007. Part 55 

provided definitions for procedural and hybrid models in a general way, while Part 108 provided means 

for the flexible definition of parametric sketches. Released later on, Part 111 summarized the devel-

opments in form features that initially were enunciated as a draft by Part 48 (Shah & Mathew 1991, 

Shah & Mäntilä 1995, Pratt & Kim 2006). These three parts of the standard will be reported in detail in 

the next section. 

Several organizations performed proof-of-concept experiments to evaluate the exchange capabilities 

of the different STEP parts. The most comprehensive and well-documented study was performed by 

PDES Inc. in the scope of the CHAPS (Construction History And ParametricS) program (Pratt et al. 

2005). This project embraced six engineering companies, three commercial CAD systems, and one 

software company responsible for the STEP translators. The results of this program shown that up to 

two-thirds of the model exchange was successfully achieved without human intervention and that the 

remaining third was achieved after slight manual modification of the procedural models. The insight 

gained from the conducted experiments was submitted to the ISO organization to improve the next 

releases of the standard (Stiteler 2004). 

Modular architecture of STEP 

One of the key decisions at the beginning of the STEP‘s development was the division of the standard 

into several partial models, called Application Protocols (APs). In particular, this decision enabled 

different working groups to concentrate on specific problems while producing useful results in shorter 

time. Later on, combinations of multiple APs would be encapsulated into Application Interpreted Con-

structs (AIC) to create larger domain-specific models (Kemmerer 1999, Feeney 2002). 

Consequently, the STEP architecture was divided into five different parts around the concept of APs. 

Although this initial division was slightly updated at the end of the 1990s, its architecture and main 

components still remain valid, and therefore will be analyzed. 
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Figure 22: Diagram of the different components that conforms the ISO-STEP standard. Dash lines (4) indi-

cate language use and dash arrows (3) indicate a usage of the module. Thick lines (2) indicate reuse of exist-

ing modules and thick arrows (1) indicate a mapping realized by a translator. Author reproduction based on 

Eastman 1999 

The five main components, as described by Eastman (1999), are: 

 Description methods. These modules describe the varying modeling languages employed in 

the definition of the different information models, namely, Integrated Resources (IRs), Applica-

tion Reference Models (ARMs), and Application Interpreted Model (AIMs). The supported lan-

guages are NIAM, IDEF1x, EXPRESS and EXPRESS-G. 

 Integrated Resources (IRs). These modules provide common model subsets employed by 

several Application Models (AMs). Integrated resources are split into the following: 

o The Integrated Generic Resources are shared subsets across multiple application 

domains and describe general elements such as geometry, material, and tolerances. 

o The Integrated Application Resources are specific subsets for given industries, e.g. 

kinematics, finite elements, and electrical applications. 

 Application Protocols (APs). These modules are developed for specific application scenari-

os and built upon Integrated Resources (IRs) and description methods. APs are made up of 

two different components: 

o The Application Reference Model (ARM) represents the requirements for designing 

and assessing the information model of an application. ARMs are written using graph-

ical modeling languages such as EXPRESS-G or NIAM, which makes these modules 

readable not only for computers but also for expert users. 

o The Application Interpreted Model (AIM) is the result of interpreting an ARM and 

resolving its interactions with generic integrated resources. 
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 Implementation methods. A basic STEP implementation is usually built upon a combination 

of an Application Protocol and an Implementation Method. Examples of implementation meth-

ods are the STEP (Part 21) physical file (SPF) and the Standard Data Access Interface (SDAI) 

(Part 22). 

 The conformance testing is usually done by accredited organizations, which certify that APs 

and their implementations have been correctly applied and interpreted. The main focus on 

these tests is placed on ARMs and AIMs. 

In the late 1990s, as the number of independent APs increased, the difficulties in the implementation 

and interoperability of applications sharing several APs slowed down the adoption from industry. In 

particular, the limitations of sharing common information among APs of the same engineering domain 

uncovered the idea of detached modularity of the model. This idea was captured by Björk (1995) in his 

analogy of ―islands of automation‖. 

To address this weakness of the standard, the ISO sub-committee started a modularization effort with 

the main goal of: 

“…to enable the more efficient technical development, standardization, implementa-

tion and deployment of STEP standards without changing the fundamentals of the cur-

rent technical architecture.”(Price 1998) 

To answer this issue the sub-committee developed the concept of Application Modules (AM), which 

complemented and expanded the initial definition of Application Interpreted Constructs (AIC). The 

main weakness in AICs was that, although they were designed to encapsulate several APs, they did 

not document the mapping requirements among APs. Therefore, each software vendor could select 

the strategy that better suited their purposes. The AMs, however, were defined as small reusable units 

responsible for the mapping between APs, which in turn could be nested into other AMs to create 

more complex mapping structures (Feeney & Price 2000, Feeney 2002). 

STEP modeling languages – EXPRESS and EXPRESS-G 

As already introduced in this section, the STEP standard supports four modeling languages, namely, 

NIAM – acronym of Nijssen’s Information Analysis Method – IDEF1x, EXPRESS, and EXPRESS-G. 

Due to the inherent modeling limitations of NIAM and IDEF1x, most of the current activities are ac-

complished using EXPRESS and EXPRESS-G. 

The main purpose of EXPRESS is to represent product models independently of the implementation 

method selected. Thus, defined by Part 11, the EXPRESS language follows an object oriented struc-

ture that enables the definition of schemas, data types, entities, rules, functions, and procedures 

(Eastman 1999, Shah & Mäntylä 1995). 

As a modeling example, in the next paragraph a small family‘s schema is shown. This schema is 

composed of three entities; the entity person and its two subtype entities, male and female. Conse-

quently, each time that male or female is instantiated all the properties described in person will be 

automatically inherited. 
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SCHEMA Family; 

 

ENTITY Person 

   ABSTRACT SUPERTYPE OF (ONEOF (Male, Female)); 

     Name: STRING; 

     Mother: OPTIONAL Female; 

     Father: OPTIONAL Male; 

END_ENTITY; 

 

ENTITY Female 

   SUBTYPE OF (Person); 

END_ENTITY; 

 

ENTITY Male 

   SUBTYPE of (Person); 

END_ENTITY; 

 

END_SCHEMA; 

EXPRESS-based models are encoded using the ASCII standard and therefore readable for humans 

and machines. However, as the model complexity increases, the overall human perception decreases. 

To address this limitation and providing an easier insight of the model, the STEP initiative developed a 

graphical notation called EXPRESS-G. The main weakness on EXPRESS-G is that this initiative was 

just defined as a subset of EXPRESS without the possibility of specifying complex relations. Neverthe-

less, the robust combination of EXPRESS and EXPRESS-G made this mixed approach the most 

advanced modeling methodology. 

 
Figure 23: Graphical representation of the family’s schema using EXPRESS-G.  

A widely accepted method of design exchange between STEP-conforming implementations is based 

on the STEP-Physical File (SPF). Contained in Part 21, this AP describes how to represent data 

according to a given EXPRESS schema. The SPF or STEP files are denoted by the extensions .step, 

.stp and for some specific purposes .p21 

ISO-10303-21; 

HEADER; 

FILE_DESCRIPTION (('A minimal STEP-File example'), '2;3'); 

FILE_NAME ('example', '2015-05-21T16:51:30', ('Javier Jubierre'), 

('TUM CMS'), '0.1', '', ''); 

FILE_SCHEMA ((Family)); 

ENDSEC; 

DATA; 

#10 = MALE ('Adam', $, $); 

#11 = FEMALE ('Eve', $, $); 

#12 = MALE ('Cain', #11, #10); 

#13 = MALE ('Abel', #11, #10); 

ENDSEC; 

END-ISO-10303-21; 
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In the example above, a small STEP file is instantiated from the schema depicted on Figure 23, where 

a family composed by parents and two children is represented. The parents are instantiated without 

reference to their ancestors, while the two children establish equal references to their parents. 

Exchanging parametric models based on ISO-STEP Integrated Resources 

One of the main characteristics of the STEP standard is its division into several modules called Parts. 

Depending on their scope, parts are classified, among other modules, in Application Protocols (APs), 

and Integrated Resources (IRs). As a rough description it can be said that APs handle semantic do-

main-specific descriptions, while IRs provide generic and applied resources transversal to any APs.  

Traditionally, information exchanging processes have been implemented on the basis of explicit ge-

ometry representations such as Constructive Solid Geometry (CSG) or Boundary Representations (B-

rep). However, those processes do not allow the dynamic exchange of information built upon paramet-

ric geometry. To address this limitation, in the late 2000s the standardization committee released a set 

of parts that focused specifically on this topic. Moreover, the division of parametric geometry into 

several parts enabled hybrid geometric representations based upon procedural and explicit geome-

tries (ISO 2005b). 

 
Figure 24: Pyramidal structure of the STEP standard extended with parametric parts (in blue). The basic ge-

ometric capabilities are provided by parts 41, 42 and 43, while part 55 contributes with the procedural model-

ing description. Parts 108 and 111 attach parameterization and procedural solid shapes to the basic geometric 

definitions. The AP 214 and 242 are the first protocols that make use of parametric descriptions. 

In particular, three new integrated resources were developed and incorporated into the modeling 

structure of STEP. As an integrated general resource, Part 55 was defined as the first level of para-

metric integration, describing the geometry as a successive application of modeling steps. Whether 

these steps were defined as parametric or explicit geometry elements was not relevant for this part. 

This need was addressed by two later integrated application resources: Part 108 and Part 111. Part 

108 gave the tools needed to describe geometry in a variational manner. Specifically, this part de-

scribed how parametric sketches can be exported and provided a list of explicit geometric constraint 

definitions. Part 111 focused on the description of widespread feature construction operations such as 

chamfering or blending. Finally, this strategy allowed independent standardization working groups to 

develop domain-specific application protocols that make use of parametric representations. The first 

reported application protocols were the Part 214, Core data for automotive mechanical design pro-
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cesses, and Part 242, Managed model-based 3D engineering. Due to the relevance of these three 

new modules in the scope of this thesis, a detailed description will be reported next. 

ISO 10303-55 Integrated generic resource: Procedural and hybrid representation.  

Part 55 of the ISO standard addresses two main subjects. First, it outlines general mechanisms for the 

representation of procedural models built upon the consecutive addition of construction operations. 

Specifically, the construction procedure is stored in a procedural representation sequence that is 

exchanged among CAD systems. Although the construction operations are not defined in this part, 

every explicit element defined by the ISO standard can be embedded into an operation and integrated 

into the construction definition. Second, this STEP part defines new relationship types that enable the 

combination of several shape representations. Thus, due to its relevance and complexity, a special 

attention is given to dual models. Defined as the combination of a procedural and an evaluated explicit 

representation, dual models must be exchanged as a unity to keep its consistency (Shapiro & Vossler 

1995, Rappoport 1997). 

Because of the flexible combination of several shape representations, next, a fundamental definition of 

the different shape representation types, as defined by the ISO-STEP, is reported (ISO 2005a, ISO 

2005b): 

 Procedural models are represented exclusively in terms of construction operations. During 

the data exchange procedural models are only defined by their operations, which after the end 

of the transferring process are evaluated by the receiving system to create the explicit model. 

 Explicit models also known as declarative or evaluated, are models whose full details are 

immediately available without any further form of calculation or evaluation. 

 Variational models are explicit models to which parameters and constraints have been at-

tached. Consequently, every time a parameter is modified, the associated explicit geometry is 

adjusted. These models are frequently referred as family models. 

and their combinations: 

 Hybrid models are defined as the combination of variational and procedural models. A com-

mon implementation is the integration of explicit sketch elements into the procedural definition 

as a new variational construction operation. 

 Dual models are defined as the combination of hybrid and explicit models. The available ex-

plicit model enables the direct relation of geometric elements to the definition of construction 

operations, e.g. chamfering or blending operations.  

The procedural description of a model is achieved in a procedural representation entity data type. Its 

instance contains a set of procedural representation sequences that represents, for each sequence, a 

list of construction operations needed for the evaluation of a partial or complete model. The definition 

of sequences in a data set, instead of a list, enables the flexible definition of sequences that have no 

relation among them, e.g., the definition of several components in an assembly representation. 

The construction operations are defined as a subtype of representation item entities allowing its in-

stances to be embedded in the construction sequence‘s list. In addition, a set of suppressed items is 

defined with the sequence that allows construction operations to be excluded of the evaluation pro-
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cess. This characteristic is of special importance in downstream applications that require simplified 

models, e.g. meshing algorithms in simulation software.  

 
Figure 25: EXPRESS-G schema of the main structure of procedural models. Author reproduction based on 

ISO 10303-55. 

Finally, dual models associate its procedural definition with a corresponding explicit representation. 

This relation is granted by explicit procedural representation relationships where the explicit geometry 

is addressed as a secondary model which can only exist under the current state of the representation 

sequence. 

ISO 10303-108 Integrated application resource: Parameterization and constraints for explicit 

geometric product models. 

Part 108 was developed to complement the procedural representation covered by Part 55. In particu-

lar, Part 108 introduced the variational description of explicit geometries by means of parameters and 

constraints, which, combined with the construction sequence of the procedural description, constitute 

what is known as design intent (ISO 2005b, Kim et al. 2007). To this end, this part provides two new 

schemas that enabled the definition of parametric sketches, i.e., the sketch schema and the explicit 

geometric constraint schema. 

Though one of the main contributions of Part 108 is to extend the definition of procedural models to 

hybrid and dual representations, this part addresses two other major goals. First, the definition of 

explicit constraints is generalized in a way that can be used by any STEP model, whether a product, a 

process, or an organization. Second, it enhances the explicit geometric definition by adding parametric 

capabilities. These enhanced models, out of the typical procedural definition, became variational and 

are used as family or template models. One example of this variational modeling is demonstrated with 

the shape of a simple washer. To model this geometry only two circular planar faces with a hole in the 

middle and two cylindrical faces to close the geometry are needed. Later on, to convert this geometry 

into a variational model, geometric constraints and parameters have to be defined to enable the con-

sistent modification of the washer. Finally, every time a modification of one of the parameters is per-

formed the explicit embedded geometry is accordingly modified. 

Due to the wide scope of this part its content was divided into five schemas that are listed next (ISO 

2005b): 

 Parameterization schema provides mechanisms for associating a model parameter instance 

to an attribute of another entity instance contained in the same shape representation. Thus, 

two different model parameters are defined in this schema. On the one hand, a bound model 

parameter is associated to the attribute of an instantiated entity, e.g. the length value in a di-

mensional constraint. On the other hand, an unbound model parameter is not associated to 

any instantiated entity, and is typically employed as variable in algebraic equations. 
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 Explicit constraint schema provides definitions for general explicit constraints among entity 

instances. These constraints ensure the validity of the model when a modification in the re-

ceiving system is performed. 

 Variational representation schema provides the new entity data type variational representa-

tion that encapsulates the combination of a variational description of the model and its em-

bedded current result (explicit) representation. 

 Explicit geometric constraint schema is a specialization of the explicit constraint schema 

that provides geometric and dimensional constraint definitions for pairs of geometric elements 

of a shape model.  

 Sketch schema provides means for the representation of planar sketches as basic construc-

tion elements in procedural sequences. Two types of sketches are defined by this schema. 

The neutral sketch is defined in a two-dimensional space and independently of the model it is 

contained. Thus, neutral models can be stored in a separate library and instantiated several 

times. By contrast, positioned sketches are defined in the three-dimensional space and take 

an active role in the geometric definition. In addition to this two sketch definitions, this schema 

makes provision of a third type of sketch called partial or subsketch. Although the standard is 

not able to provide any real application scenario yet, the possibility of representing portions of 

a planar sketch may play a role in future design. 

 
Figure 26: Relationships stablished among the different schemas of the Part 108. Author reproduction based 

on ISO 10303-108 

ISO 10303-111 Integrated application resource: Elements for the procedural modeling of solid 

shapes.  

Part 111 was developed with a single purpose, to provide procedural models with the definition of the 

so-called form features. To this end, one single schema, the solid shape element schema, defines a 

complete set of complex geometric elements that can be employed in the procedural representation 

sequence defined in Part 55. Procedural representations, however, are not exclusively built upon form 

features and their application is frequently combined with entities described by other parts of the 

standard, e.g., Boolean or swept operations defined in Part 42 - Geometric and topological represen-

tation. 
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Form features are also referred by the standard as local operations, as they create a local modification 

on a given solid. This reference to the given solid is achieved by means of the base solid select type 

and every form feature defines its own type depending of the previously defined construction opera-

tion. In Figure 27 an example of a fillet feature, or blend in a more general way, is shown. This feature 

applies, upon the selected based solid, fillet radius on selected edges. 

 
Figure 27: EXPRESS-G diagram of the fillet form feature. Author reproduction based on ISO 10303-111 

2.4.3. Industry Foundation Classes (IFC) 

Background 

After the STEP standard was released and although it included specific Application Protocols (AP) for 

the description of buildings, the ISO standardization process was considered too slow and insensitive 

to the changing demands of the construction industry (Tolman 1999). Thus in 1995, twelve companies, 

led by Autodesk, formed a private consortium to analyze the state of the construction industry. One 

year later, after some initial prototype developments were made and some critical conclusions wrote 

down, the consortium officially emerged as the International Alliance for Interoperability (IAI) (Kiviniemi 

2006, buildingSMART 2016a). The main goals of the new organization were: (1) to publish a neutral 

building model able to answer the upcoming needs of the AEC industry, and which could be used 

during the complete life cycle of the building, and (2) to release a new version every year to show the 

market the potential of the new standard (Eastman 1999, Laasko & Kiviniemi 2012). 

One of the initial conclusions pointed out by the consortium, was the need to open its membership to 

any interested parties around the globe. Following this reasoning, the IAI was divided into several 

regional chapters built upon country or similar language background. Each chapter placed two repre-

sentatives in the legal governing body known as the International Council, which organized meetings 

four times a year. Some years later, in 2008, the organization changed its name to buildingSMART to 

better reflect the nature and purpose of its work (buildingSMART 2016a). 

For the definition of the new product model, buildingSMART adopted three existing elements from the 

STEP standard, namely the EXPRESS modeling language, the main part of its geometric representa-

tions, and many of the concepts contained in the Building Construction Core Model (BCCM). Eastman 

defined the initiative as (Eastman 1999:314): 

“Technically the IFC is not a standard effort, but rather an industry-led undertaking to 

develop practical user capabilities of data exchange” 

Despite some initial difficulties, mainly due to the lack of long-term plans and insufficient financial 

resources, buildingSMART released periodic updates of the IFC product model that increased their 
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use among end-users and software vendors. Currently, buildingSMART estimates the number of 

applications that implement the standard at more than 160, IFC 2x3 being the most widespread ver-

sion, followed by an increasing adoption of IFC4 (Borrmann et al. 2015b). Figure 28 shows the evolu-

tion of IFC over the last twenty years. 

 
Figure 28: Evolution of the IFC product model. Source: Borrmann et al. 2015b 

In recent years the IFC product model has become the key element of what has been termed 

OpenBIM. The OpenBIM philosophy promotes open collaboration workflows built upon open stand-

ards in clear contraposition with the use of proprietary and closed data formats. An important mile-

stone in this evolution was the acknowledgment of IFC as an ISO standard, ISO 16739 (Liebich 2014). 

This recognition guarantees that the information defined under the IFC standard will remain open 

during the building‘s life cycle, fostering its usage in state buildings and infrastructure.  

Layer-based architecture of IFC 

The will of IFC to become the most comprehensive building model ended up as one of its most re-

peated criticisms; its schema includes a large number of classes. This large amount of classes and 

types makes its complete implementation a difficult task to be performed in a reasonable time. There-

fore, to address this limitation and to improve its management and extensibility, the standard was 

divided into four different layers (Figure 29). The main idea behind this division is that classes placed 

on top layers can be built upon classes placed on bottom layers, but not the other way around. This 

modularity also facilitates its development and applicability in domain-specific tools. 
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Figure 29: Layer architecture of the IFC product model. Source: IFC4 Documentation 

The four layers are: 

 The domain layer is the highest classification layer and contains specializations of products, 

processes and resources proprietary of field-dependent applications, e.g. Structural Analysis 

Domain, Architecture Domain and Electrical Domain. 

 The interoperability layer acts as an interface between the domain and the core layers 

providing class definitions used across several domains. 

 The core layer includes the kernel and the core extension schemas. The classes defined in 

the core layer define the basic structures and relations of the product model. 

 The resource layer is the lowest layer and provides individual schemas containing resource 

definitions. Contrary to the entities defined in the other layers, the classes on the resource 

layer cannot be used independently and must be initialized by IfcRoot or one of its sub-

classes. 
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The subdivision of the schema into several layers and modules provides a clear separation between 

the semantic information and its geometry representation. This separation enables not only the inde-

pendent definition of the semantic information from its geometry, but also the relation of one semantic 

entity with several geometric representations. Figure 30 depicts how one product element can be 

connected with several geometric representations by means of the IfcProductDefinitionShape element. 

 
Figure 30: Connection between the semantic information and its geometric representation in the IFC product 

model 

Semantic structures and relationship entities 

One of the essential benefits of IFC is the extremely rich populated semantic definition. Although 

semantic classes, denoted as entities, contain all the information related to an object, they do not 

define relations with other objects. This task is achieved by dedicated relationship entities that can be 

dynamically instantiated and qualified using properties (Eastman, 1999). From the different relation-

ships the IFC standard provides, two of them are of special importance in the semantic description of a 

building, namely, the IfcAggregation and the IfcContainedInSpatialStructure relation objects.  

The IfcAggregation relationship type is mainly associated with the hierarchical structure of a building. 

Consequentially, instantiated building models can be flexibly structured by aggregation relations 

independently of their inheritance class structure. This logic association is known as spatial structure 

and is frequently composed exclusively by space objects. 

Figure 31 depicts the hierarchical spatial structure of one building based on instantiated space objects. 

At the top of this structure, the IfcProject and IfcSite objects define the general and location infor-

mation of the complete building. Underneath, an instance of the IfcBuilding class is defined as Ele-

ment and related with another two instances of the same entity defined as Partial. In particular, this 

attribute defines whether the space object refers to the complete building (Element) or just one section 

of it (Partial). Finally, at the bottom of the spatial structure, several instances of the class IfcBuild-

ingStorey are accordingly aggregated to the IfcBuilding instances to which they logically belong. 

Differently, the IfcContainedInSpatialStructure entity mainly associates one space object with one or 

many physical product objects. In addition, all IfcElement entities, from which the physical products are 

directly inherited, hold a shape representation object that establishes a direct relation between the 

semantic definition and its geometric representation. This second logic association of semantic objects 

is known as element containment structure. 
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Figure 31: Decomposition of a spatial structure. Source: IFC Documentation 

Finally, a third logic association characterizes the semantic information of IFC, i.e. the placement 

structure. In particular, every object contained in the spatial structure, and in the element containment 

is a subtype of the IfcProduct entity, which owns an attribute that establishes its local placement in 

space. 

The main reason to define a placement in the semantic structure remains in the fact that one simple 

product can be defined by different geometric representations. Done in this way, all local coordinate 

systems defined by the several shape representations will point to the same local placement defined in 

its semantic definition. Furthermore, at least one world coordinate system must be assigned for every 

IfcSite, which must be independently defined of the local placements contained in space and element 

objects, thereby avoiding circular dependencies. 

At this point it is important to notice that the local placement and its coordinate system are two differ-

ent objects. Thus, every instantiated subtype of IfcProduct must have a local placement associated, 

but this can be linked to a shared coordinate system defined by other local placements. 

Figure 32 depicts how the different semantic structures are interrelated. First, the space objects of the 

spatial structure are related by IfcAggregation relations. Secondly, the products of the element con-

tainment are connected to the spaces by IfcContainedInSpatialStructure relations. Finally, the spatial 
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structure and the element containment are connected to equivalent placement structures. The only 

difference between them is the fact that the placement objects attached to the spatial structure recre-

ates the hierarchy of spaces, whereas the placement objects attached to the physical products are 

linked to its spatial element by a relative placement. 

 
Figure 32: Main object structures in the semantic definition with IFC. Author reproduction based on the IFC 

documentation 

Product Shape Representation 

As already discussed, one of the strengths of the IFC product model is the clear separation between 

the semantic description and its geometric representation. This connection is achieved by a shape 

representation object held by all instantiated entities inherited from IfcProduct. An important property 

these representation objects include is the possibility of attaching several geometric representations to 

the same product object. This quality plays a key role when multidisciplinary teams work together. 

Hence, an architect may be interested in a simple visual tessellated representation of the complete 

building, while an engineer may demand a comprehensive understanding of one specific part of the 

building‘s structure, and therefore requiring a CSG representation. 

The different geometrical representations that IFC supports are described by only three schemas in 

the resource layer, namely, Geometric Model Resource, Geometry Resource and Topology Resource. 

The basic definitions and concepts underlying these three schemas are taken directly from the STEP 

standard. In particular, from Part 42: Geometric and topological representations, and from Part 43: 

Representation Structures (Liebich, 2009). 

Despite the benefits several geometric representations related with a single semantic element brings 

to the modeling of buildings, this capability also becomes its strong weakness. The IFC schema does 

not provide any methodology to establish relationships among its several representations, and this 

may end up in geometric inconsistencies. Thus, the IFC standard expects that the modeling tool 

provides this consistency, something that is not frequently provided as modeling tools usually handle 

only one or two types of geometric representations (Borrmann et al. 2015b). 
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The IFC standard supports a great variety of geometric representations, from which the following are 

the more common: 

 Curves in 2D and 3D: Although the IFC standard is mainly focused on 3D modeling, the defi-

nition of auxiliary geometry based on 2D curves is still relevant. Hence, 2D lines that define a 

close geometry can be used to create an extrusion or an open 3D curve can be used to sweep 

geometry in space. 

 Surface modeling: Embodies the most ―economical‖ way to represent 3D models. This 

methodology supports both the representation of the model by sets of faces or shells, and the 

tessellation of the model by tilling the geometry with planar triangles. Typical examples for this 

modeling technique are Digital Terrain Models (DTM). 

 Solid modeling: The main benefit of the solid model above other modeling techniques is that 

it provides not only a 3D representation, but also geometric properties such as volume or iner-

tia. Solid modeling is usually split into two main categories: 

o Boundary representation (Brep) and advanced Brep: This classification belongs to 

one of the most powerful representations built upon surface geometry, the Brep. This 

methodology enables a large range of modeling possibilities spanning from simple 

faceted objects to complex B-Spline surfaces and NURBS.  

o Constructive Solid Geometry (CSG) and swept solids: Frequently combined, 

sweeping geometries such as extrusions and revolutions, and Boolean operations 

such as unions or differences, enables – along with the construction structure of CSG 

methods – a flexible and powerful strategy for the dynamic modeling of geometry. 

 
Figure 33: Four different geometric representations of a box; (top right) by a Bounding Box, (top left) by a 

SweptSolid, (bottom left) by a Brep and (bottom right) by a Tessellation. Source: IFC Documentation 
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Mapped representations and object typing 

Commonly, building models are made up of standard construction components such as doors and 

windows that are introduced to the final model several times. These components, usually named as 

occurrences, blocks, or library parts are managed as templates by the CAD system and instantiated 

as required. The main advantage of this methodology is the fact that CAD systems only need to keep 

a small amount of information at the time that updates in the template model are automatically propa-

gated to all its instances. 

A similar behavior is provided by the IFC product model when using mapped representations. Thus, 

IFC enables the definition of Type objects, which are related to a semantic element and a shape 

representation object. These objects are stored in the model as a library element, and instantiated on 

demand. Every time one concrete product is instantiated, a local transformation operator is attached to 

the main structure of the model defining a local placement and scaling factor. This procedure is known 

as object typing. 

 

Figure 34: Example of a mapped item that is introduced three times in the model. Source: IFC Documentation 

Figure 34 depicts a mapping example where a fastener type, defined by a shape representation and a 

2D placement is instantiated three times in the model. Each instance of the mapped item is associated 

to one IfcCartesianTranformationOperator3D that defines its placement, rotation, and scaling factor. 
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2.4.4. Infrastructure extensions for IFC 

IFC is one of the most extensive standards for the exchange of building and structural engineering 

models (Eastman et al. 2011). However, large infrastructure facilities comprise specific elements and 

requirements that the current development of the standard does not recognize or exchange. To ad-

dress this limitation, the buildingSMART organization founded the openINFRA initiative with the aim of 

developing common principles for achieving integration processes during the design, construction and 

operation stages of infrastructure facilities (buildingSMART 2016b). The result of this ongoing work is 

expected to form part of the upcoming release of the standard IFC5 (Amann et al. 2014a). 

In the following subsection, the four main infrastructure developments built upon IFC are reported. The 

buildingSMART extensions: IFC Bridge, IFC Alignment, IFC Roads, and IFC Railways, and the aca-

demic development of IFC Tunnel will be presented and analyzed in the chronological order they were 

published. 

IFC Bridge 

In the early 2000s, two working groups started the development of a bridge product model. On one 

side, a Japanese research group at the Muroran Institute of Technology developed in collaboration 

with the Japan Pre-stressed Concrete Contractors Association a pre-stressed concrete model known 

as YLBP-BRIDGE (Yabuki et al. 2006). On the other side, the French-speaking chapter of the build-

ingSMART – at that time still the International Alliance for Interoperability (IAI) – published a first 

version of a generic bridge product model called IFC-Bridge. 

Both working groups did neither know each other nor their counterpart efforts in developing a bridge 

product model. They only got in contact after the first publications were issued. Shortly after, both 

groups decided to merge the two incipient models and to publish their results in an extended second 

version of the IFC-Bridge (Lebegue et al. 2007). Although, since its publication in 2007, no further 

developments have been observed or reported, a major revision of the current version is planned for 

the ongoing development of the new IFC5. 

Technically, IFC-Bridge introduced two novel concepts. First, the bridge product model included a 

simple alignment description that was used to place references along the bridge. This novel placement 

methodology enabled the definition of the alignment as the combination of two 2D alignment curves or 

by the representation of the final 3D curve. The definition based upon 2D alignment curves follows 

closely the definition used by engineers, but introduces the drawback of potential errors on its conver-

sion on a 3D curve by viewers and CAD tools. On the contrary, the representation built upon 3D 

alignment curves avoids these evaluation errors, but neglects the semantic information engineers 

apply on the design process. Despite all these issues, the same approach was adopted and extended 

to the development of the new IFC-Alignment. 

The second main contribution was the definition of a new group of elements, namely, the CivilElement 

and CivilStructureElement. This new set of elements, which were not specially developed for bridges, 

opened the door to other working groups to integrate new extensions under the same infrastructure 

umbrella. Figure 35 depicts the integration of the abstract entity, CivilElement, into the hierarchical 

structure of IFC. Inherited from it, the IFC-Bridge working group defined specific elements for bridge 

design. 

In September 2016, buildingSMART initiated an official IFC-Bridge standardization project that will 

take the early proposals and develop a new bridge product model based on IFC4. 
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Figure 35: EXPRESS-G diagram containing the civil element extension of IFC-Bridge. Source: IFC Bridge 

IFC Tunnel 

Differently to the working groups IFC Bridge, IFC Alignment and IFC Road, which are organized and 

coordinated by the buildingSMART association, until now, the developments done in tunnel product 

models are mainly promoted and fostered by research groups in academia. The first proposal of a 

tunnel product model was published by Yabuki (2009) from Osaka University in Japan. In this first 

proposal, Yabuki focused on the development of two main aspects: (1) the lining description of shield 

tunnels, which is the most used construction method in Japan; and (2) the description of the soil 

conditions in which tunnels are located. 

After some years of inactivity, where the product model was not further developed or implemented, in 

the early 2010s, Yabuki and other collaborators started a revision of the product model. For this sec-

ond version, the research group extended the available semantic entities, and implemented the ex-

change of shield tunnels between Autodesk Revit Structure and Google SketchUp by means of IFC 

data files (Yabuki et al. 2013). 

Despite the improvements the second version of the product model introduced, its two main limitations 

were not addressed. First, Yabuki‘s proposal contained a large amount of entities that can be con-

densed by using enumerators. For example, each ring segment type used on the lining was defined by 

a separate entity, demanding a large implementation effort just to support a distinct geometry. The 

second limitation was regarding what the product model does not cover, i.e. the interior space. In 

particular, the interior of the tunnel includes a large number of installations that cannot be described by 

generic IFC entities, and whose absence makes Yabuki‘s proposal incomplete. 
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Figure 36: Cross-section of a double-shield tunnel indicating its semantic entities as described by the  

IFC-ShieldTunnel product model. Source: Yabuki et al. 2013 

A second proposal from academia was the result of a collaborative research effort between the Ruhr-

Universität Bochum (RUB) and the Technische Universität München (TUM) in Germany. On the one 

side, the research group led by Borrmann at TUM developed a tunnel product model that addressed 

the two main limitations of Yabuki‘s proposal (Borrmann & Jubierre 2013). This novel proposal made 

use of enumerators to minimize the number of new entities introduced in the schema, and defined a 

complete set of spaces capable of defining the large amount of installations located in a subway 

tunnel. Additionally, Borrmann‘s research group introduced the concept of multi-scale models in IFC 

by incorporating a description based on several Levels-of-Detail (LoD) (Borrmann et al. 2012). Finally, 

Jubierre and Borrmann (2014) published an initial set of shield tunnel examples built upon their pro-

posal, with the aim of opening the IFC extension to further developments and discussions. 

On the other side, the research group led by König at RUB developed a product model for Tunnel 

Boring Machines (TBM) that implemented the developments done at TUM (Amann et al. 2013, Hege-

mann et al. 2014). In particular, the research conducted at RUB were encompassed in the research 

cluster DFG
5
 SFB

6
 837, which had as its main goal, the development of an integrated product model 

able to consolidate and manage the different sources of information in tunnel construction. This inte-

grated product model was defined by four different partial models, namely, subsoil model, TBM or 

machine model (Hegemann et al. 2012), tunnel model and (surface) building model. To validate their 

approach, the research group developed a model viewer that was applied in a real case study for a 

subway project based on the Wehrhahn-Linie in Düsseldorf.  

                                                           
5
 Deutsche Forschungsgemeinschaft 

6
 Sonderforschungsbereiche 
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Figure 37: Screenshot of the IFC Tunnel Model viewer developed to simulate the construction of shield tun-

nels by tunnel boring machines. Source: Hegemann et al. 2014 

IFC Alignment 

The ―Infrastructure Alignment & Spatial Reference System‖ project, also known as IFC Alignment, was 

the first official extension released of the upcoming IFC5 (buildingSMART 2016b). The main reason for 

buildingSMART beginning with the alignment project was based on the idea that alignments are 

required for all linear infrastructure facilities, and they must act as a baseline for further projects such 

as IFC Bridge and IFC Road. 

Although the first version of IFC Bridge already implemented a simple representation of the alignment, 

the mapping capabilities included in the new project requirements ended in an entirely new model. 

Additionally, the new alignment model is able to map the two most widely extended exchange data 

formats in infrastructure design, namely, LandXML and OKSTRA (Rebolj et al. 2008, Schultze and 

Buhmann, 2008). Moreover, buildingSMART collaborated together with the Land and Infrastructure 

working group of OGC
7
 to realize the direct mapping of IFC Alignment based models with the upcom-

ing InfraGML standard. 

From a technical point of view, IFC Alignment provides two different, but complementary methods to 

describe alignments (Amann et al. 2014a, Amann et al. 2014b). On the one hand, the alignment 

information can be directly represented by one or more 3D curves in space. This methodology permits 

a direct visualization of the alignment without any further effort. On the other hand, two 2D representa-

tions of the horizontal and vertical alignments can be defined, providing the CAD system with the 

original information the engineer introduced. Accordingly, if only this second method is provided, the 

CAD system will need to process the information in order to display the final 3D alignment. 

                                                           
7
 Open Geospatial Consortium 
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Figure 38: Extended IFC architecture for the IFC Alignment Source: IFC Documentation 

Figure 38 depicts the modules and layers that were extended to suit the new developed entities of the 

IFC Alignment model. The definition of the alignment schema is contained in only two modules, i.e. the 

Geometric Constraint Resource and the Geometry Resource. The Product Extension module was also 

modified in order to enable the definition of the placement based on an alignment object. 

IFC Roads 

The first international effort towards an extension of the IFC standard into the design of roads and 

earthworks was conducted by the KICT
8
 Institute in Korea. In 2012, the IFC Road project began with 

the main goal of extending the IFC4 schema in terms of object shape representation, and definition of 

road component entities and basic attributes (Moon 2014). The parallel development of the IFC Align-

ment project persuaded IFC Road researchers not to develop their own alignment approach and 

decided to merge both projects at the end of the research stage. 

After the first version of IFC Alignment was released, buildingSMART began several projects built 

upon the new alignment definition. Taking advantage of the previous developments conducted by 

KICT on road design, buildingSMART created the new IFC Roads project with the goal of coordinating 

and harmonizing the existing extensions, and interest shown by other chapters and entities such as 

OGC (buildingSMART 2016b, 2016e). 
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The fundamental scope of the IFC Roads project is to enlarge the IFC standard to cover the designs 

made for roads and earthworks, and therefore, this project claims to be a common layer on which 

other projects can rely on, e.g. IFC Bridge, IFC Tunnel, and IFC Railways (Moon 2015). In addition to 

the earthwork definition, the road extension is further divided into four additional parts, namely, the 

spatial structure, the road facility, the drainage, and the subsidiary facilities. Figure 39 depicts the 

proposed architecture as reported by Moon (2015). The Korean data model has been officially adopt-

ed as a buildingSMART SPEC, meaning that is documented and published on the buildingSMART 

website, but does not have the character of an official standard (buildingSMART 2016f). The SPEC 

will provide a basis for the international IFC-Road project which is expected to start in early 2017. 

 
Figure 39: IFC Roads proposed architecture. Source Moon 2015 

In spite of the fact that the IFC Roads project inherits the basic architecture from the KICT model, 

there is not much information about how cross-sections will be handled by the new product model. In 

2015, some researchers started to publish some possible trends in this direction (Amann et al. 2015, 

Amann & Borrmann 2015). According to Amann et al., the definition of the cross-sections that define a 

road is provided by two alternative methods. The first method requires the definition of cross-sections 

as they are generated and displayed in the CAD tool. Differently, the second method stores a template 

or master cross-section that is rotated accordingly at every insertion point. Certainly, the insertion 

points in both methods must be defined along the alignment and placed relative to their stationing 

points. In 2016, this late assumption was accepted by buildingSMART, which agreed how cross-

sections have to be modelled and placed along the alignment. This became part of the IFC-Infra 

Overall Architecture Project. 

IFC Railways 

Similarly to the work developed in Korea by the KICT Institute for the development of an IFC extension 

for roads and earthworks, in China, this task was undertaken by the CRBIM
9
 alliance for the develop-

ment of an IFC extension for railways. The research project began in 2014 with three main objectives: 

(1) to provide guidelines and implementation rules for creating and storing BIM data in railway con-

struction, (2) to facilitate cross-platform and cross-application exchange information for railway infra-

structure, and (3) to deliver open BIM format assets to the owners and regulators in the industry 

(CRBIM 2016). The results of this research may drive the development of a first version of IFC Rail-
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way. Also, the Chinese IFC-Rail standard was adopted by buildingSMART as SPEC, again having not 

the characteristic of a binding international standard. 

Moreover, the goal of CRBIM is not only to define the basic elements that comprise the rail track, but 

to include and redefine all the elements from which the rail track goes through. Thereby, new schemas 

were developed for tracks, overhead lines and stations, and existing schemas for alignments, bridges, 

and tunnels were updated. Figure 40 depicts the proposed spatial integration for the different elements 

contained under the IfcRailway infrastructure project. 

 
Figure 40: Spatial composition proposed by CRBIM on IFC Railway. Source: CRBIM 2016 

Two novel developments were undertaken by the CRBIM alliance for the IFC Railways extension. 

First, the inherited IFC Alignment project was extended with a new horizontal alignment definition built 

upon the chainage value. Although the chainage value is not needed for the definition of an alignment 

space curve, chainage is widely accepted as a local positioning indicator. Second, the IFC Railways 

extension proposes the partition of railway infrastructure facilities into smaller elements, similar to the 

spatial partition of the building element into building and building stories. Figure 41 and Figure 42 

show two examples of this subdivision approach applied to a bridge and a tunnel infrastructure facility. 

 
Figure 41: Subdivision of a bridge infrastructure facility as proposed by the IFC Railways extension. Source 

CRBIM 2016 
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Differently to the approach followed by other infrastructure groups, where the proposed extension 

concentrates on the definition of new semantic entities, the CRBIM alliance proposes a combination of 

static and dynamic definitions (CRBIM 2015). For the static definition of generic IFC infrastructure 

modules, the CRBIM proposal relies on the buildingSMART guidelines of object-oriented inheritance, 

and hierarchical entity definition. Otherwise, elements that are considered specific to a country or area 

of influence, are defined following a dynamic definition. 

 
Figure 42: Subdivision of a tunnel infrastructure facility as proposed by the IFC Railways extension. Source 

CRBIM 2016 

2.4.5. Parametric extension for IFC 

Although building models are widely used to exchange information among architects, designers and 

engineers, the geometrical representation techniques these models implement hardly support the 

dynamic processes of the early design phases. In particular, architects are frequently unwilling to start 

their projects using BIM approaches due to the limited modeling capabilities BIM software implement, 

and rather prefer to rely on more generic modeling and drawing techniques (Boeykens 2012).  

Differently, parametric modeling techniques generate flexible geometric representations that can be 

easily altered by the modification of its primary operations and parameters. An example of these 

modeling limitations and how they can be overcome with parametric geometry was reported by Ji et al. 

(2012). In their work, Ji et al. show that the design of bridge‘s superstructures with varying profiles 

along the alignment can be effortlessly defined using sketch-based parametric cross-sections. Fur-

thermore, Ji et al. prove that the geometry generated by such methodology can be directly applied as 

an input model for structural analysis. Katz (2008) gave two examples of structural simulations for 

bridges where parametric geometry was providing the exact geometry without the need of a re-

modeling stage, namely, the precise calculation of centrifugal forces, and the analysis of effects due to 

post-stressing tendons. 

However, the relevance of parametric modeling was acknowledged long time before for mechanical 

and aerospace industries. Moreover, the ISO organization – responsible of the development of the 

STEP standard – established a working group within the TC-184 with the aim of creating a parametric 

model schema (Pratt et al. 2005). The achievements of this group were published under the ISO 

10303 Part 108 ―Parameterization and constraints for explicit geometric product models‖ in 2005 (ISO 

2005b) and its main characteristics previously discussed in Section 2.4.2 

Due to the large amount of constraints the schema defines and the complexity of its implementation in 

commercial software, the exchange functionalities were seldom implemented by software companies 

(Ji et al. 2012). To partially overcome the implementation issues large sets of constraints with complex 

relations between objects introduced, Ji et al. (2011) presented a reduced definition of the schema 

limited to the most basic constraint and dimension types. Figure 43 depicts their reduced schema for 

parametric sketches. The presented schema is divided into three major parts: first, box no. 1 contains 
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the definition of eight geometrical constraints, which relates the geometric objects defined in box no. 2; 

finally, in box no. 3 the schema defines five different dimensional constraints. 

Important to mention is that neither the STEP Part 108 nor the reduction done by Ji et al. takes into 

consideration the construction history of the parametric model. However, as already discussed in 

section 2.4.2, the STEP standard contains two other Parts, 55 and 111, that specifically address these 

procedural constructions. 

 
Figure 43: UML diagram of the reduced parametric sketch presented by Ji et al. 2011. On the box no. 1 the 

geometric constraints are displayed; on the box no. 2 the geometry objects; and on the box no. 3 the dimen-

sional constraints. Source: Modified picture from Ji et al. 2011 

IFC Parametrics 

The strength of parametric geometry is not only a desirable property of infrastructure modeling, but 

also a concept that can be introduced in products defined by catalog, such as doors and windows. 

This potential was also identified by buildingSMART that in the early 2010s organized a working group 

in order to develop a first version of IFC Parametrics. Although the result of this project was never 

integrated in any official IFC version, the proposed extension was named PA1-Parametric and hosted 

on the website of buildingSMART waiting for future developments (buildingSMART 2016c). 

In particular, for the new parametric model the working group made use of the developments achieved 

by Ji et al. in the field of parametric bridge design and implemented their developments in an extended 

parametric version of the IFC-Bridge. Hence, the proposed product model extended the bridge profile 
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definition inheriting a new entity ParametricSketch
10

 from the regular profile definition entity ProfileDef. 

At the same time ParametricSketch defined three lists classifying the three main components of the 

parametric sketch, namely, the geometry, and the geometric and dimensional constraints. These two 

last groups of elements were defined as optional, due to the fact that a sketch can be partially defined 

without dimensions and without geometric constraints. 

Figures 43, 44, and 45 depict by means of EXPRESS-G diagrams the different data structures of 

parametric sketches, geometric constraints and dimensional constraints, in this order. 

 

Figure 44: EXPRESS-G diagram of the basic structure of a parametric sketch. The blue box defines the ex-

tension over IFC-Bridge containing the sketch geometric elements (points, lines and arcs) and the two lists of 

dimensional and geometric constraints. Source: Ji et al. 2012 

 

Figure 45: EXPRESS-G diagram of the geometric constraint data structure. Source: Ji et al. 2012 
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 For sake of simplicity the front term Ifc will be omitted. 
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Figure 46: EXPRESS-G diagram of the dimensional constraint data structure. Source: Ji et al. 2012 

Another novel improvement introduced by the parametric extension was the definition of flexible di-

mensions by means of parameters. In particular, each dimensional constraint defines a single parame-

ter whose numerical value is assigned or calculated from an algebraic formula.  

 

Figure 47: EXPRESS-G diagram of the parameter structure. Both constants and formulas are associated to its 

evaluated numerical value. Source: Ji et al. 2012 

In order to describe more complex arithmetical formulas built upon combinations of fixed values and 

algebraic relations, the proposed extension made use of the composite design pattern, widely extend-

ed in software engineering (Gamma et al. 1995). The basic functionality of this pattern is based on 

organizing recursively part-whole hierarchies in a tree structure. Consequently, each parametric for-

mula defines an operator (e.g., ADD, SUBTRACTION, MULTIPLY or DIVIDE) and two elements or 

operands that can be either defined as parametric constants or further decomposed into additional 

parametric formula objects. 

 
Figure 48: Example of a parameter evaluated by an algebraic formula. In this example the inner diameter of a 

tunnel is calculated based on the value of the outer diameter subtracted from the result of doubling the thick-

ness of the lining. 
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As example, in Figure 48 an algebraic formula for the calculation of the inner diameter of a tunnel is 

shown. Thereby, the inner diameter of a shield tunnel is evaluated by the subtraction from the outer 

diameter of the result of a nested algebraic formula parameter, whose value was previously evaluated 

by the multiplication of the thickness parameter by two. 

2.5. Summary 

This chapter first analyzes the evolution of the concept of geographic scale as a representation tool 

that enables the abstraction of large information sets. Initially, Geographic Information Systems (GIS) 

implemented this fundamental concept to represent cartographic maps on conventional CAD systems. 

Due to the variety of scales that GIS systems can manage, several data models appeared to enable 

their exchange. One of the most renowned and widely accepted data models is CityGML, which de-

fines five levels of abstraction or detail (LoD). Although CityGML successfully exchanges city and 

geographic multi-scale data models, the approach adopted in its development makes CityGML unable 

to fulfill the highly dynamic requirements of infrastructure design. 

One of the most significant limitations of multi-scale data models is the cross-LoD consistency preser-

vation of its geometry when an object is modified in one specific scale. On the contrary, procedural 

representations establish direct dependencies among the different construction elements – also 

known as construction operations – that enable the automatic geometry update in a consistent man-

ner. Hence, when one operation is modified by the designer or engineer, its dependent operations are 

automatically updated by the parametric CAD system. Another important approach implemented by 

parametric systems is the concept of occurrence. Included in the assembly modeling technology, 

occurrences are instantiated copies of procedural models that receive a specific position and orienta-

tion in space. 

This chapter summarizes with a description of the most employed product models and describes their 

role in the current exchange processes in the infrastructure domain. Consequently, the STEP and the 

IFC product models are comprehensively described, pointing out their similarities and limitations. Due 

to its predominant role in the infrastructure domain, the developments based on the IFC standard are 

also analyzed e.g., IFC Alignment, IFC Bridge, and IFC Tunnel. Although there are clear movements 

to apply the IFC product model in the infrastructure field, none of the analyzed extensions considers 

the multi-scale needs of their design. Therefore, this specific issue is going to be the central point in 

the next chapter. 
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  Chapter 3.
 
A multi-scale shield tunnel product model 

3.1. Overview 

The design of large infrastructure facilities is a highly complex task that demands the close collabora-

tion of large engineering teams working on different levels of abstraction. These different levels make 

that each engineering team employs the particular tools and data formats specific in its working field, 

giving to the efficient integration and exchange of information an additional level of difficulty. One 

methodology capable of accomplishing this exchange is based on the use of neutral product models. 

However, the main limitation of existing product models, such as STEP or IFC, is the lack of support 

they offer for models built upon different levels of abstraction or detail. 

A similar problem is present when representing large geographic areas and city models. To address 

this problem, GIS systems employ multi-scale data models to reproduce real objects under different 

levels of detail. Though GIS models successfully integrate the concept of several levels of detail, these 

data models cannot guarantee the consistency among geometric representations when an update or 

modification is performed. However, due to the rather static behavior of these models, this weakness 

is frequently considered a minor issue. 

To fill the existing technological gap, a comprehensive multi-scale product model for shield tunnels is 

presented, which addresses the demanding requirements of the design and engineering of large 

infrastructure facilities. In order to achieve this goal, this chapter is divided in two main parts. First, a 

novel product model for shield tunnels will be reported, which makes extensive use of the spatial 

structure concept. The resulting hierarchical structure of entities matches the demands of conceptual 

and detailing design stages, placing the physical objects only after their space definition is known. 

Second, the previously defined spaces will be assigned to different levels of detail. Specifically, in the 

presented concept, the multi-scale definition is part of the semantic model, only enabling access to 

specific entities from a particular level of detail. 

An additional aim defined at the time of developing the presented product model was to establish the 

semantic definition in a way that may be related with any of the current IFC geometrical technologies. 

Due to the strict separation that the standard establishes between semantics and geometry, a novel 

product model was developed independently of the final modeling strategy adopted in its later imple-

mentation. In summary, this chapter presents a novel multi-scale shield tunnel product model that 

covers in a comprehensive way the semantics of a shield tunnel, that is downwards compatible with 

existing IFC implementations, and that can be combined with any conventional modeling strategy. 
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3.2. A novel product model for shield tunnels 

3.2.1. Tunnel space structure 

The point of departure in the development of a novel product model for shield tunnels was the current 

IFC-Tunnel proposal from Yabuki (2007, 2009 and 2013). In particular, the developed product model 

addresses the two main limitations reported on the Yabuki model. First, the new model describes in a 

comprehensive way not only the outside lining of the tunnel, but also the equipment and installations 

located in its interior. Second, the amount of entities needed for its description have been condensed 

to its minimal expression by the use of enumerators, reducing the amount of resources required for its 

implementation. 

During the product model‘s development, a principle of minimal intervention was followed, i.e., only a 

minimal number of the existing IFC entities was modified and only a minimal number of new entities 

were defined. This strategy has its clearest exponent in the tunnel spatial structure. Thereby, only two 

new entities were defined to contain the complete tunnel infrastructure, namely, the Tunnel
11

 and 

TunnelPart. Similar to the building spatial structure where several Buildings can be defined in a Site 

and several BuildingStoreys can be contained in a Building, in the novel tunnel spatial structure, 

several Tunnels can be defined in a Site and several sections or TunnelParts can be chained in a 

Tunnel. Figure 49 shows a comparison of these two spatial structures. 

 
Figure 49: (left) Building spatial structure as defined in the IFC standard; (right) Developed shield tunnel spa-

tial structure, which enables the definition of several tunnels divided into several sections or tunnel parts. The 

new tunnel entities are depicted in white. 

The Tunnel entity is used to represent each of the tunnels contained in the subway facility. On the 

specific case of shield tunnels, which usually are designed in a twin-tunnel configuration, each tunnel 

is represented by one tunnel instance. In a similar way, the TunnelPart entity represents each of the 

sections in which the tunnel is subdivided. Typically, these sections are logical subdivisions mainly 

based on design or construction requirements. The term TunnelPart was chosen in favor of Tun-

nelSection first to avoid confusions with the term cross-section frequently used in subway design and 

second, to unify the concept with the term as defined by CityGML v2.0. 

Although the proposed solution based on tunnels and tunnel-parts is a particular development for the 

updated version of IFC-Tunnel, the developed methodology of minimal intervention and subdivision of 

the product model into smaller sections is general and applicable to a larger range of infrastructure 

facility types. 
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 From this point, the prefix Ifc is going to be omitted for simplicity. 
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3.2.2. Tunnel refinement – Structure of space and physical objects 

The basic tunnel spatial structure is exclusively described by the entities Tunnel and TunnelPart. 

These two general entities describe the simplest semantic subdivision independently of the tunnel 

cross-section or construction method selected. Differently, the subsequent tunnel space refinement is 

strongly related to the cross-section and topology of the tunnel, i.e., the spaces defined in a one-way 

shield tunnel will greatly differ from a two-way cut-and-cover tunnel.  

A recurrent problem in the spatial refinement of semantic models is the granularity employed in the 

description of the different spaces. Here, a compromise must be taken that does not reduce the num-

ber of spaces to a general, all-inclusive structure, but also avoiding the definition of a space volume for 

every physical object. As an example, in the presented approach only one single service space is 

defined along the tunnel, while for the same physical objects the PAS 1192-2 specification generates 

three subspaces; the communication, signaling, and ohle volumes (BSI 2013).  

 
Figure 50: A tunnel cross-section depicting the individual spaces (left) and physical elements (right) of the 

proposed shield tunnel product model. 

Keeping this compromise in mind, the proposed shield tunnel product model describes six main tunnel 

spaces that together with three gathering spaces and two alignment objects complete the semantic 

refinement of the shield tunnel product model. In particular, the two alignment objects are sequential 

additions of space curves with the only aim of providing extra information to the engineering process. 

Thus, the two alignment objects are: 

 The alignment object – The tunnel alignment represents the curve midway between the two 

rails and is usually constructed by the superposition of two 2D curve representations known as 

horizontal and vertical alignments. Although in the presented product model, these space 

curves are directly related to the alignment object, a further semantic detailing is possible. So, 

the integration of the IFC-Alignment contained in the future IFC 5 standard is the next logical 

step (Amann et al. 2014a, 2014b). 

 The tunnel axis object – The tunnel axis object represents the theoretical path that shapes 

the lining of the shield tunnel. During the design, engineers employ this curve to calculate the 

successive placement and rotation of individual rings. Similar to the alignment object, the tun-

nel axis is not further detailed and its representation is based on simple spatial curves. 
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As previously mentioned, additional to the alignment objects, three gathering spaces and six tunnel 

specific spaces have been defined. Figure 50 depicts, on the left-hand side, the mentioned tunnel 

spaces. More in detail, the developed spaces are the following: 

 Annular Gap Space – The annular gap is the space that remains between the resulting cavity 

created by the Tunnel Boring Machine (TBM) and the inserted ring. This gap is usually filled 

with injected concrete in order to increase the structural stability of the tunnel (Maidl et al. 

1996, 2008, Guglielmetti et al. 2008).  

 Ring Space – As previously mentioned, the shield tunnel construction methodology employs 

rings to generate the lining of the tunnel. These rings integrate several pre-cast segments that 

are assembled as the construction of the tunnel progresses. Each instance of this space ob-

ject contains the complete definition of one individual ring. 

 Floor Space – The floor space acts as a placeholder for all the elements that are constructed 

under the track, e.g., cable ducts, sewage systems, and drainage pits. In particular, the bottom 

part of this space is adapted to the ring‘s geometry and therefore this space has no continuity 

outside of the tunnel (Coats and Walter, 1999). 

 Track Space – The track space defines the main properties, location, and maximal size of the 

track system. As the track configuration, usually ballast-track or slab-track, runs stable along 

several sections of the subway infrastructure, this space can have continuity outside of the 

tunnel, i.e., the same track space definition can be used in a tunnel and its connected subway 

stations. 

 Service Space – The service space contains the active systems that enable the operation of 

the infrastructure, e.g., signaling, illumination, and traction system. Though some of these sys-

tems are also placed on the subway station, the definition of the service space is exclusive to 

the inside of the tunnel and this space has no continuity outside of the tunnel. 

 Clearance Space – The clearance space, also known as structure gauge, is the security zone 

reserved for the travelling train. This space, defined by international standards, is empty and 

has no physical objects attached to it. Although the space reserved for the gauge can slightly 

diverge from tunnels to stations, in the proposed product model the definition of the clearance 

space is constant and therefore can be applied outside of the tunnel. 

Finally, the spatial structure is completed by the application of three gathering spaces. At the top, the 

FullTunnelSpace assembles the entire instantiated objects in a unique space object that is placed 

directly beneath the TunnelPart and parallel to the alignment objects. Situated below, the LiningSpace 

and the InteriorSpace collect the ring spaces that outline the tunnel‘s lining and the specific spaces 

that subdivide the tunnel‘s interior respectively. Figure 51 depicts an instantiated spatial structure 

diagram where the different detailing spaces are represented. 

To represent unambiguously the refinement structure of spaces, the new entity IsRefinedBy has been 

introduced. This class, which is directly inherited from the Aggregation relationship, enables the clear 

representation of the hierarchical relations among the gathering and the specific spaces. In addition, 

and just for consistency reasons, the two alignment objects have been also related to the tunnel space 

object with the IsRefinedBy aggregation relationship. 
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Figure 51: Instantiated space structure diagram containing the different detailing space objects. The black 

rhomboids represent the aggregation relationships IsRefinedBy.  

The detailing of the product model is completed by the definition of seven physical objects, namely, 

the ring segment, cable duct, drainage, track bed concrete, track bed rails, traffic light, and walkway. 

These objects, which are instances of the two newly defined RingSegment and TunnelInstallation 

classes, are logically placed on the element containment structure. As a direct consequence of this 

separate location, instead of the aggregation relation implemented among the space objects in the 

spatial structure, the relation ContainedInSpatialStructure is used to connect spaces and physical 

objects. 

Unlike the Yabuki approach, where every ring segment type is described by a dedicated entity, the 

new defined RingSegment class is unique and can be applied to all type of segments by introducing 

the right description to its instantiated properties. In a different way, the TunnelInstallation class is 

instantiated with the value of an enumerator that contains the attribute of the physical object. Although 

the number of items on the current version of the product model is limited, the description based on 

enumeration variables enables the flexible extension of the presented proposal with more detailed 

references. 

In addition to the identification of the physical objects that are placed in the interior of the tunnel, a 

thematic sorting of the different objects has been made. Thus, physical objects that are not related to a 

specific space can be neither instantiated nor related. In particular, the physical objects are organized 

as follows: the RingSegment is related to the RingSpace; the CableDuct and Drainage are related to 

the FloorSpace; the TrackBedConcrete and TrackBedRails are related to the TrackSpace; and finally 

the TrafficLight and Walkway are related to the ServiceSpace. Figure 50 shows, on the right-hand 

side, the different physical objects as they are located in a tunnel cross-section, while Figure 53 de-

picts the relations among the physical objects and their tunnel spaces. 
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3.3. Integrating multiple scales into the shield tunnel product model 

3.3.1. Integrating LoD into the space structure 

A novel multi-scale approach for the design and exchange of subway infrastructure facilities has been 

developed on the basis of the comprehensive product model introduced in the previous section. In 

particular, the presented approach diverges from the GIS standards, such as CityGML, in the scale-

aware subdivision of the semantic information of the product model. While the GIS standards enable 

the simultaneous definition of semantic elements and their related geometries in several LoDs, the 

proposed approach makes use of explicit aggregation relationships to discretize the semantic space 

structure into several LoDs. Similar to the distribution of building objects into five LoDs that CityGML 

implement, the presented approach also distributes the tunnel elements among five LoDs. Contrary to 

CityGML, space objects are distributed among four initial LoDs, while physical objects are exclusively 

placed in the finest level, providing in this way a higher degree of semantic-geometrical coherence of 

the complete product model. 

One key feature in the development of the multi-scale methodology is the use of gathering spaces to 

identify the transition between refinement levels. This hierarchical containment strategy has been 

called Matryoshka principle (Borrmann & Jubierre 2013). Similar to Russian dolls, where the smaller 

figures are contained within the larger ones, in the multi-scale approach the finer levels are aggregat-

ed by those on the higher LoDs. Though the gathering spaces can identify the transition between 

LoDs, they cannot resolve the destination level where their nested spaces are placed. Therefore to 

address this limitation, a second type of aggregation relation has been introduced: the LoD entity. This 

new aggregation entity establishes a direct relation between the TunnelPart object and their contained 

tunnel spaces, explicitly defining the related LoD. The sole modification of these LoD aggregations to 

define the LoD makes possible the flexible rearrangement of the space structure, increasing in this 

way the product model‘s flexibility and maintainability. 

 
Figure 52: Instantiated space structure diagram containing the different detailing space objects in a multi-

scale distribution. The black rhomboids represent the aggregation relationships, which are either IsRefinedBy 

or LoD entities. 
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The proposed tunnel spatial structure has been discretized into the four coarser levels. In LoD1, only 

the alignment of the shield tunnel is represented, whiles the tunnel axis and the first gathering space, 

the so-called FullTunnelSpace, is introduced in LoD2. The subsequent nested spaces are distributed 

following the principle ―one step, one LoD―, which means that directly related space objects are placed 

just one LoD apart. Consequently, the AnnularGapSpace and the two remaining gathering spaces are 

placed in LoD3 and their nested spaces in LoD4. Figure 52 depicts the proposed distribution. It is 

important to mention that the nested spaces preserve their IsRefinedBy relation with the gathering 

space, making them reachable by two ways, i.e., via LoD or via IsRefinedBy. 

3.3.2. Integrating LoD with physical objects 

During the detailing process, the specific spaces are populated with physical objects. Though the 

spaces are distributed across different LoD in direct relation with the location of its parent gathering 

space, the physical objects are placed essentially in the finest LoD, the LoD5. Similar to the double 

aggregation dependency that relates the alignment and space objects, the physical objects are related 

to their specific space and to the TunnelPart object. However, while the LoD aggregation is equally 

applied to physical objects placed on LoD5, the relation IsRefinedBy is not used among spaces and 

physical objects. The relation ContainedInSpatialStructure is applied instead. This entity is the IFC 

regular connector between elements in the spatial structure and in the element containment, and 

makes the proposed product model downwards compatible with the current IFC standard. Figure 53 

depicts the relations stablished among the physical objects placed on the finest LoD and the tunnel 

spaces. In addition, Figure 54 shows in a 3D view, the distribution of the different spaces and physical 

objects across the different LoD. 

 
Figure 53: Instantiated LoD4 of the space structure and the physical objects contained in LoD5. The physical 

objects are related to both the LoD and the ContainedInSpatialStructure entities. 
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Figure 54: A 3D illustrative representation of the spaces and physical objects located across the LoDs. The 

alignment object contained in LoD1 is not represented. 

As already mentioned in this chapter, the development of the new multi-scale shield tunnel product 

model has been conducted under the principle of minimal intervention. This principle is not a novel 

paradigm, but both a widely adopted approach in object-oriented programming and a recommendation 

described in the general guidelines of the IFC standard. In order to give a complete overview of the 

developed extension, Figure 55 depicts a UML diagram where the three major conceptual extensions 

are represented. 

 
Figure 55: UML class diagram depicting the three areas where the IFC standard was extended. In blue are the 

two new aggregation relationships IsRefinedBy and LoD. In grey are the space entities related to the space 

structure. Finally, in black are the physical element entities. 

First, on the top, the two new aggregation relationships IsRefinedBy and LoD are represented. These 

entities are inherited directly from the Aggregation class and enable the scale-aware subdivision of the 

semantic model. Later, on the bottom left part of the UML diagram, the classes of the spatial structure 

are depicted. In the first row, the general Tunnel and TunnelPart are represented, while, on the sec-
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ond row, the more specific TunnelSpace is depicted. Finally, on the bottom right part, the alignment 

objects generated as instances of the TunnelAxis entity, and the physical objects generated as in-

stances of the TunnelElement entity are displayed. 

3.4. Summary 

In this chapter a novel multi-scale product model for shield tunnels has been presented. To achieve 

this goal, a comprehensible analysis and decomposition of the tunnel structure has been performed, 

defining and distributing in a spatial hierarchy the different spaces and physical objects that typically 

shape a shield tunnel. This hierarchical behavior was achieved by the definition of a new aggregation 

relation, known as IsRefinedBy, among the different space objects. By contrast, the physical objects 

are placed in the containment structure of the semantic model and related to the tunnel spaces by the 

ContainedInSpatialStructure entity.  

Once the product model was defined, the different spaces and physical objects were distributed 

across five LoDs. To accomplish this goal, the hierarchical structure of spaces was distributed across 

the different LoD following the rule ―One step, one LoD‖ and placing the entire set of physical objects 

on the finest level. In order to explicitly define the LoD of every object, a second aggregation relation 

has been defined, the LoD. The combined use of both aggregations guarantees the exclusive access 

to objects located on a specific LoD. Altogether, this makes the presented multi-scale modeling ap-

proach the perfect tool for creating optimal visualization scenarios, to clearly sort tunnel components, 

and to provide the basic principle for consistency preservation of the product model. 

So, although the presented product model implements a multi-scale approach that provides a coherent 

representation of the semantic structure across several LoD, it cannot guarantee the consistency of 

the geometry associated when a modification in one of the objects is introduced. This limitation is 

based on the loose dependency system established among the different geometrical representations. 

To overcome this weakness, in the next chapter, a novel integration with parametric representations 

will be introduced, which establishes explicit dependencies among the different elements of the geo-

metric representation, enabling an automatic consistency preservation of the complete geometric 

model. 
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  Chapter 4.
 
Consistency preservation methods for multi-scale 
procedural geometry representations 

4.1. Overview 

The previous chapter introduced a comprehensive multi-scale product model that provides a coherent 

representation of the semantic structure across several LoD. Although this novel approach guarantees 

a sound distribution of semantic elements up to a defined LoD, their shape representation capabilities 

are limited to conventional geometric structures, i.e. explicit B-Rep representations or implicit repre-

sentations based on closed profiles, sweeps, and Boolean operations. These structures do not hold 

any relation or dependency among them, but a single association with the corresponding semantic 

object. This loose coupling system makes current product models very sensitive to changes in coarser 

LoDs, which can easily generate inconsistencies in the geometric representation of the product model. 

This issue is known as the cross-LoD consistency problem, i.e. the geometry in more detailed LoD has 

to remain consistent with that of the coarser LoD when a modification in a coarser LoD is performed 

(Borrmann & Jubierre 2013). 

Another source of inconsistency in the geometric representation of product models is caused by the 

subdivision of the model into several partitions or submodels. Based on diverse criteria such as budget 

disposal, topological distribution, and design optimization, the developed shield-tunnel product model 

enable the subdivision of large infrastructure projects into several parts, so each part contains a quasi-

identical semantic definition associated with a greatly divergent geometric representation. This makes 

that a small update in a semantic element on a submodel can influence several geometric elements 

located in several submodels. One example of this behavior can be easily illustrated on the alignment 

of an infrastructure facility. Thus, the update of an alignment element affects not only its geometry but 

also the geometry of its related submodels. This problem has been called the cross-submodel con-

sistency problem (Jubierre & Borrmann, 2013). 

Both consistency problems - the cross-LoD and the cross-submodel - are originally caused by the fact 

that dependencies between geometric elements cannot be defined when using conventional shape 

representations. On the contrary, procedural geometries define explicit dependencies among their 

construction operations that guarantee a consistent update when one of these operations is modified. 

Moreover, parametric sketches allow designers and engineers to create flexible designs that can be 

altered by updating a parameter or modifying the defined constraints (Joan-Arinyo & Soto 1997). 

An additional difficulty designers and engineers have to tackle during the design of a large infrastruc-

ture facility is the interpretation of engineering guidelines, codes, and national standards. Moreover, 

the implementation of these engineering rules in a set of construction operations is not a simple or 

direct task. Thus, designers and engineers must be aware of the additional dependency relations 
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needed to achieve the desired consistency preservation and implement them manually in a process 

that is labor-intensive and error-prone. 

To support designers and engineers appropriately, this chapter presents in Section 4.3 a novel usage 

of procedural geometric models for the design of large infrastructure facilities. To this end, an exten-

sion of the basic procedural dependency approach is presented, which enables procedural models to 

preserve its consistency through several LoDs. In addition, to clearly represent the combination of 

procedural and newly-defined dependencies, in Section 4.2, a novel notation based on dependency 

diagrams is reported. 

To address the cross-submodel consistency problem, Section 4.4 presents a new set of dependencies 

that relate equivalent construction operations on consecutive submodels. Moreover, this section also 

introduces the integration of distinct infrastructure elements as a special type of submodels that are 

located at specific stationing points, e.g., rescue shafts, connection tunnels, and tunnel chambers. 

Finally, this chapter presents in Section 4.5, a novel methodology that assists designers and engineers 

in the generation of geometry and required dependencies at the time of implementing complex engi-

neering rules. This methodology encapsulates the underlying generation knowledge in discrete units 

named logic models that convert the abstract information into a corresponding parametric geometry 

model. 

4.2. Integration concept and dependency graph notation 

4.2.1. Integration of procedural representations into product models 

Current product models, such as STEP or IFC, establish direct relations between semantic elements 

and geometric objects. These relations enable a comprehensive semantic-geometric description of the 

model. However as described previously, the provided geometric representations do not support the 

definition of dependencies between the shape representation of individual objects, which in turn per-

mits the existence of geometric inconsistencies. To address this limitation, this thesis proposes the 

use of procedural representations to introduce a new level of control that prevents geometric incon-

sistencies from appearing. In the following sections the conceptual integration of procedural models as 

a novel geometric representation is analyzed, focusing on the handling of space objects and physical 

objects. 

Integrating procedural space objects 

Chapter 3 presented a new product model that distributes several space objects throughout four LoDs. 

These space objects act as containers of physical elements located in LoD5. Current product models, 

such as STEP or IFC, base their shape representation on conventional explicit geometries, whose 

loose dependency systems make the geometric shape representation highly sensitive to modifications 

and susceptible to inconsistencies. 

Introducing procedural models as a novel geometric shape representation implies that the current 

relation system between semantics and geometry is no longer valid. In contrast to the explicit geome-

tries that conventional CAD systems handle, procedural models store a sorted list of construction 

operations that allow parametric systems to rebuild the final geometry. This approach has two direct 

consequences on conventional semantic-geometry relations: (1) semantic elements no longer have a 

direct relation with the resulting geometry, but with a construction operation that must be interpreted by 



 
 
4.2. Integration concept and dependency graph notation 71 

 

 

 

 

the parametric CAD system; and (2) not all the operations on the construction history have a direct 

relation with a semantic element, e.g. one semantic object points to the volume created by an extru-

sion operation, but not to the sketch that defines its cross-section.  

In consequence, a new methodology is defined to regulate how semantics and geometry have to be 

related. Based on a single dependency rule, semantic spaces only relate one construction operation at 

a time. In case the space object is defined by a collection of procedural operations, its dependency will 

be established with the last defining operation. However, this basic rule can be relaxed depending on 

the type of semantic object that is related. Following, the three main types of semantic spaces defined 

in the previous chapter are analyzed and their relaxation approach described: 

 Alignment objects are frequently modelled by a single 3D curve contained in a construction 

operation. Hence, alignment objects establish a one-to-one relation with its defining construc-

tion operation. 

 Gathering space objects are applied to collect several semantic-related space objects. 

Since gathering objects do not relate any geometry, they do not define any relation to any 

construction operation. 

 Tunnel space objects are usually modelled by a subset of construction operations. Thus, the 

relation is exclusively defined between the space object and the last construction operation of 

the subset.  

 
Figure 56: Portion of a tunnel product model, which represents the relations established between semantic 

space objects and procedural construction operations. (In this figure, the arrows between construction opera-

tions only represent their sequence on the construction history) 

An example of this new relation system is depicted in Figure 56. In the provided example, a small 

portion of a tunnel product model is shown. The semantic model is represented by an alignment 

object, a gathering, and tunnel space objects, while the geometry is represented by four construction 

operations. The TunnelAxis object is directly related to the first construction operation, which describes 

the alignment curve with a single spline 3D operation. In a different way, the AnnularGapSpace object 

points only to the last construction operation. Despite this, the space object needs the complete set of 

operations to be fully defined. Finally, as the FullTunnelSpace is defined to collect semantic-related 

space objects, it does not have any relation to any construction operation. 
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Integrating procedural physical objects 

The integration of procedural representations into multi-scale product models has several essential 

benefits such as, consistency preservation, division of the complete project into smaller partitions, and 

the integration of design intent. However, the use of a single procedural model that describes the 

complete multi-scale system involves at least three serious limitations: 

 Large infrastructure facilities frequently use large amount of standardized objects such as, 

traffic lights, ventilation systems, and sewage conductions. Due to the limitations of procedural 

models to define dependency relations between imported neutral geometries and the con-

struction operations, designers and engineers are often forced to re-model such geometries 

inside the parametric system, an extremely time-consuming process. 

 Once the design is finished and physical objects must be exchanged with other stakeholders, 

the task of isolating the list of construction operations that are responsible for the definition of 

each physical object becomes extremely difficult and highly time-consuming. 

 Although there are no scientific studies that relate the number of construction operations with 

its processing time, experience shows that this relation can be approximated by a linear rela-

tion. Therefore, the more detailed the model, the lower its performance. 

These three major limitations arise mainly for modeling LoD5. First, standardized parts are usually 

exchanged by means of explicit geometry, which cannot be easily handled by procedural geometries. 

Secondly, the explosion in the number of construction operations needed for the design of every 

physical object strongly reduces its performance and consequently the acceptance of procedural 

geometries. Finally, once the geometric model is completed, the selection and exchange of parts of 

the model becomes a highly time-consuming task. 

However, these limitations can be easily overcome by the use of the assembly approach. Assemblies 

divide the complete geometry into smaller portions called parts. These parts can be either procedural 

or neutral explicit geometries. Procedural parts contain only a limited number of construction opera-

tions needed to describe distinct elements, so their performance is not affected. Finally, parts are 

stored on independent files, which can be easily exchanged among stakeholders. 

Due to the clear benefits assemblies introduce on the infrastructure design, this thesis presents a dual-

design concept based on procedural and assembly geometries. On the one side, procedural models 

are applied to the design of infrastructures with coarse LoD. Thereby, the complete tunnel space 

design is performed by means of a single procedural geometry named space model. This model 

encapsulates all the construction operations defined by the different parts in which the infrastructure is 

divided, thereby realizing the demanded unity and consistency.  

On the other side, the detailing required for LoD5 is achieved by the combination of assembly, proce-

dural and explicit geometries. In particular, each tunnel space object generates a new assembly model 

that contains as many independent models as physical objects defined in its semantic definition. Such 

independent models are defined as a procedural or neutral explicit geometry. One example of this 

strategy is depicted in Figure 19 in Section 2.2.3 where a simple tunnel model – represented by the 

lining space and two nested ring spaces – is modeled by three assemblies, namely, one for the lining 

space and two for the two ring spaces. In turn, each ring assembly contains as many independent 

geometrical objects as segments defined by the ring. 
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Figure 57 – Floor space represented in LoD5, where the dual approach is implemented. Hence, space objects 

are represented by assemblies, and physical objects by procedural (grey) and explicit (orange) geometries. 

Another example of this dual strategy is depicted in Figure 57. This time a floor space is detailed by 

the combination of one procedural model for the concrete floor, and three neutral explicit geometries 

for the cable duct cover and drainage system. This approach is clearly advantageous because tunnel 

engineers only need to model the concrete floor while just having to add to the assembly the neutral 

explicit geometries created by an external provider. 

4.2.2. Dependency graph notation in parametric modeling 

Dependency graph notation in procedural models 

In comparison with conventional CAD systems where the user directly generates the final geometry, 

procedural CAD systems maintain the construction steps engineers applied to create the design. This 

new approach allows procedural models to consistently update the complete geometry when a modifi-

cation in one construction step is performed. This behavior is possible because the procedural model 

establishes dependency relations between construction steps in a transparent manner to the end user. 

Construction steps or construction operations, and their dependency relations can be graphical repre-

sented by a dependency diagram. Even more, as the dependencies are oriented, i.e. the dependency 

direction cannot be reversed, dependency diagrams fall into the classification of directed acyclic 

graphs (DAG) (Hernán & Robins 2006, Foraita et al. 2014). However, the geometric complexity of 

multi-scale infrastructure facility models makes insufficient the representation of procedural dependen-

cies based on simple nodes and edges. Consequently, in the scope of this thesis the basic node and 

edge elements of DAG representations are extended by a novel procedural notation that is going to be 

applied in the remainder of this thesis. 



 

 
74 Chapter 4. Consistency preservation methods for multi-scale procedural geometry representations 

 

 

 

 

To fully describe the dependency system three different types of graphical elements have been desig-

nated: 

 Model box is used to enclose the complete procedural model. 

 Submodel or body box is used to enclose each disconnected / independent body. 

 Procedural operation node represents one atomic construction operation of the procedural 

model. 

Each procedural operation node can be tagged with two types of auxiliary-labels: 

 Global-parameter label defines one parameter reachable to all operations. Its formal defini-

tion is introduced in Section 4.3.3 

 Attribute label describes one property or attribute of the procedural operation attached. Usu-

ally the name of the semantic element associated. 

Each procedural operation node can be related by three types of dependency edges: 

 External-dependency arrow indicates an external-created dependency between two opera-

tions. The arrow has a text associated that names the dependency type instantiated. The di-

rection of the arrow is directed towards the depending operation. 

 Procedural-dependency arrow indicates the CAD dependency between two operations. The 

direction of the arrow is directed towards the depending operation. 

 Attribute line connects an attribute label with an operation. 

Figure 58 depicts the graphical notation of the elements introduced. 

 
Figure 58: Graphical notation used to represent dependencies in multi-scale procedural models 

Figure 59 depicts a dependency diagram of a simple tunnel based on the graphical notation previously 

described. Additionally, as the tunnel is modelled by just one body, enclosed by the procedural model 

box a single submodel box defines the complete set of operations. Finally, as the model was created 

without external intervention all dependencies belong to the parametric system. 
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Figure 59: Example of a dependency diagram of a simple tunnel model using the proposed notation. 

Dependency graph notation in assembly models 

In the previous section a novel dependency notation is reported that enables the representation of 

procedural dependencies in multi-scale models. Though this notation is still valid for the procedural 

models contained in an assembly structure, an extension to the notation must be performed to incor-

porate the assembly concept. Consequently, a new graphical element called assembly box has been 

included to encompass all the geometric models defined within the assembly. This single notation 

element – represented by a blue line box – enhances the previously defined representation capabili-

ties and enables the typical hierarchical representation of the assembly structure. 

One aspect that is not covered by this extension is the representation of the spatial dependencies (see 

Section 2.3.3) among the procedural models contained in the assembly. This, however, is out of scope 

of this notation as such relations cannot be represented by DAG diagrams. 

 
Figure 60: Tunnel project represented by its space and assembly models. On the left the space model repre-

sent the space definition up to LoD4, while on the right the assembly model contains two physical objects 

represented by two procedural models. The additional dependencies needed to guarantee the consistency be-

tween construction operations on the space and assembly models are not represented. 
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To illustrate this new notation element with an example, Figure 60 depicts two dependency diagrams 

of a tunnel model. First, on the left-hand side the space model defines, contained in one single proce-

dural model, the concrete floor and track bed space geometries. Differently, on the right-hand side the 

assembly model encompass two independent procedural models, where one of them contains the 

subset of procedural operations generated in the space model and the construction operations added 

during the detailing for LoD5. 

4.3. Consistency preservation across different Levels-of-Detail 

4.3.1. Overview 

The geometrical shape representation in a conventional product model is mainly achieved by using 

explicit geometries. Normally, these geometric objects solely have relations with the corresponding 

semantic element, leaving the geometric dependencies uncovered. This loose dependency system 

can provoke inconsistencies when geometric modifications are performed. To address this weakness, 

the previous section has introduced the concept of procedural and assembly geometries applied to 

infrastructure design. In particular, procedural geometries define dependencies among its defining 

construction operations that allow the parametric CAD system to consistently update the complete 

geometry. 

The multi-scale design of infrastructure facilities introduces an additional collection of requirements 

that product models, based on pure procedural geometries, cannot cover. Therefore, this section first 

introduces the adoption of procedural geometries as a tool to guarantee the consistency of multi-scale 

product models. Secondly, this section presents a new set of additional procedural dependencies that 

fulfil the specific geometric requirements of multi-scale infrastructure product models. Finally, this 

section concludes with the introduction of a novel methodology to initialize and relate assembly geom-

etries with the construction operations contained in its defining procedural space model. 

4.3.2. Including the concept of Levels-of-Detail in procedural models 

The design of a large infrastructure facility follows a top-down approach, i.e., pieces of information are 

added to the initial model as the design evolves. This sequential behavior of the design is effectively 

covered by multi-scale product models. So additionally to the scale separation, LoD can be used to 

determine several stages of design. However, the spread of design content over several LoD without a 

comprehensive geometric dependency system, makes multi-scale product models very sensitive to 

updates, and therefore to geometric inconsistencies between LoD. To illustrate this sequential design, 

Figure 61 depicts an example of a subway infrastructure facility where the same product model is 

represented by up to four different LoD or stages of design. 
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Figure 61: Multi-scale tunnel model represented up to the fourth LoD. Due to the top-down design approach 

and the loose dependency system established among geometric objects, multi-scale product models become 

very sensitive to geometric inconsistencies between LoD. 

One essential aspect of multi-scale product models is that the semantic model is the unique source of 

information required to determine which geometric object is related to each LoD, i.e., no hierarchy in 

the geometric model is required. As a consequence, a single dependency system among geometric 

objects is sufficient to guarantee the complete geometric consistency of the multi-scale product model. 

To achieve this goal, in the previous section, procedural modeling was conceptually introduced. In 

contrast to explicit geometries, procedural models only store the construction steps required to rebuild 

the outcome geometry. Moreover, procedural geometries have dependencies among its defining 

construction operations that allow the parametric CAD system to consistently update the complete 

geometry. Based on this approach, semantic elements defined in a distinct LoD only need to set a 

reference to the last defining operation in order for the parametric CAD system to identify all the re-

quired construction operations inside the product model. 

However, the use of a single procedural model to represent the complete geometry of the product 

model involves several limitations, namely, reduction of the loading performance, difficulty in integrat-

ing 3
rd

-party explicit geometries, and complexity of isolating and exporting distinct physical objects. 

Hence, as already mentioned in Section 4.2.1, a methodology that efficiently addresses these weak-

nesses is the combined use of procedural and assembly modeling techniques. The great benefit of 

this solution is that assembly models can be defined as combinations of explicit, procedural and nest-

ed assembly models. This modeling approach, based on the definition of one space model for the 

coarser LoD and several assemblies for LoD5, generates a new inconsistency risk due to the exist-

ence of several procedural models that includes the same construction operation and that must remain 

consistent. One example of this problem can be found in modeling the concrete floor. Initially defined 

in LoD4, its cross-section is defined by a construction operation in the procedural space model. The 

same operation is later applied to start the detailing of the concrete floor model on the LoD5 in a 

separate procedural model. Consequently, to avoid inconsistencies, every time the construction opera-

tion of the space model is modified, its counterpart on the assembly model must also be updated. 
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As a consequence, in the scope of this thesis, cross-LoD consistency is defined as the capability of 

a multi-scale product model to be modified when represented by a LoD, while keeping the consistency 

of its related LoDs. 

4.3.3. Cross-LoD consistency methods 

The multi-scale design of large infrastructure facilities presents one main challenge: the consistency 

preservation of its geometrical representation. In particular, the loose dependency system established 

among its geometric objects enables the same entity to be represented inconsistently in two LoD. To 

address this issue, this thesis proposes the use of procedural representations to define dependencies 

between the geometric elements of different LoD. However, pure procedural geometries only establish 

singular dependencies among their construction operations, which is not sufficient to fulfil the require-

ments of multi-scale design. Thus, this section discusses the limitations involved, and presents four 

methods that increase the consistency capabilities of procedural geometries in the specific task of the 

multi-scale design of large infrastructure facilities. 

Construction history 

One critical limitation of existing multi-scale data models, such as CityGML, is the duplicated represen-

tation of the same entity on several LoDs, i.e., the same building object is associated with different 

geometric objects for each individual LoD. In consequence, if not consistently updated, those geomet-

ric sets can represent diverging geometries when a modification is performed. To prevent this duplicity 

problem, this thesis proposes the use of procedural geometries. In opposition to explicit geometries, 

procedural representations are based on the sequential evaluation of distinct construction operations 

responsible for the evaluation of the outcome geometry. Moreover, as these operations are related 

among them by procedural dependencies, every modification performed in one particular operation is 

automatically propagated to all its depending operations. Therefore, as the resulting geometry is 

exclusively defined by its construction operations, any local modification produced by the update of 

one semantic entity is consistently updated on the complete procedural representation. 

The application of procedural representations on multi-scale product models implies a redefinition of 

the concept of LoD as currently defined by multi-scale models. CityGML, for example, defines LoD in 

an isolated manner, i.e. each LoD can be displayed regardless the existence of coarser or detailed 

ones. This can be explained due to the several methodologies data models employ to populate the 

different LoD, e.g. generalization methods, raster of aerial photography, and LiDAR technologies. 

However, procedural geometries rely on the construction history, i.e. on the construction operations 

applied previously. Consequently, construction operations of one LoD depend on that of coarser LoDs, 

enabling the implementation of a cross-LoD consistency preservation system. An example can be 

found in the definition of the lining space. Although defined exclusively on LoD3, the definition of the 

lining space is based on the alignment and the tunnel axis geometry that are specified on LoD1 and 

LoD2 respectively. 

Global parameters 

In the course of the design of large infrastructure facilities some dimensions play a prominent role. The 

external diameter of a tunnel, or the track´s width of a highway, are typical dimensions that are used to 

derive or constraint other geometries. However, ISO-STEP Part 55 (ISO 2005a) describes procedural 

models solely by the sequence of their operations, making the definition of dimensions and parame-

ters a local attribute of construction operations. Although dimensions and parameters can be associat-
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ed to other parameters by means of algebraic equations, representing shared parameters in local 

operations may raise inconsistencies when particular operations are deleted. Accordingly, it is neces-

sary to create a central space for storing shared parameters where they can be accessed regardless 

of the modeling sequence. 

A method to address this limitation is based on the definition of a global parameter central storage list. 

In particular, the definition of a central list involves two main advantages. First, defined independently 

of a given LoD, global parameters can be related by local parameters independently of the modeling 

sequence. Secondly, the modification of the construction history, by deleting operations, does not 

affect the consistency of the remaining parameters. Moreover, when global parameters are used, the 

dependency diagram is not affected due to the fact that global parameters are introduced as an exter-

nal reference into distinct construction operations. 

To exemplify the use of global parameters, Figure 62 depicts a simple tunnel model represented by its 

dependency diagram. Specifically, this tunnel is modeled by the use of two parametric sketch opera-

tions that define the outer and the inner surface of the tunnel tube. A simple modeling strategy con-

nects the inner dimension of the inner sketch to the outer diameter on the outer sketch using an alge-

braic relation. To avoid the possible inconsistency which may arise from replacing of the outer sketch, 

this example makes use of a single global parameter with the value of the outer diameter of the tunnel. 

Accordingly, the outer sketch is directly linked to the global parameter, while the inner sketch uses an 

algebraic relation referring to it. 

 
Figure 62: Tunnel dependency diagram, where a global parameter is applied as a reference to define the inner 

and outer tunnel´s diameter. 

Projected geometry – single geometric element 

From the different types of construction operations that integrate procedural models, parametric 

sketches are the elements that encapsulate a larger variety of information. Due to the constraint 

solving approach that parametric sketches implement, sketches can be differentiated by topological 

and instantiated representations. Hence, the topological representation of a parametric sketch can be 

defined by the dataset of geometric elements, dimensional, and geometric constraints created during 

the modeling process. Differently, the instantiated representation of a sketch can be defined as the 

evaluated geometry returned by the GCS (Jubierre, 2009). This quality allows one single topological 

sketch representation to generate varied instances depending on the specific values of their parame-

ters. 
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Consequently, parameters are able to alter the instantiated representation of a parametric sketch, but 

not its topological definition. One example of this behavior can be found in the outer and inner circle 

definition of a shield tunnel. Although the inner diameter of the tunnel can be defined as an offset 

distance between both circles, this simple dimension does not guarantee the topological concentricity 

that both circles require. Thus, when two parametric sketches must share the same topology, the 

scalar information stored in global parameters is insufficient. In addition, a topological link must be 

unidirectional, as this is the fundamental principle upon which the procedural models are based. In 

consequence, a new topological relation is needed that enables construction operations to share 

distinct topological information while keeping the dependency principle. 

Although a central place to store atomic geometric elements emerges as a feasible solution, following 

the methodology established for scalar values, the unidirectional requirement of topological relations 

makes this approach too demanding compared with other solutions. So a novel projected geometry 

dependency, similar to the standard procedural dependency, has been developed to connect pairwise 

topological objects between two parametric sketches. In particular, this dependency makes singular 

geometric elements of the referred sketch available to the referencing operation. Thereby, the referred 

geometry becomes a constraining portion in the referenced sketch. 

The same tunnel example used in the previous section can illustrate the application of the projected 

geometry dependency. Using a different modeling strategy, this time the outer sketch projects its circle 

onto the inner sketch operation. Then the inner sketch can use this reference as a fixed geometry to 

constrain the inner circle by a concentricity geometric constraint and an offset dimension. Due to the 

projected geometry dependency, if the outer sketch modifies the diameter of the tunnel, the inner 

sketch will automatically update the inner geometry, maintaining the offset distance between the two 

circles. Figure 63 depicts the dependency diagram for the given example. 

 
Figure 63: Tunnel dependency diagram, where two parametric sketches are coupled by a projected geometry 

dependency. In this example, the inner sketch depicts the circle element (in red) contained on the outer 

sketch. 

An additional key characteristic of projected dependencies is that their consistency is guaranteed 

across multiple LoD. Similar to the procedural dependency behaviour, projected dependencies only 

connect construction operations that are defined on the same or detailed LoD. Consequently, the 

referred operation is always available in the construction history, and therefore the consistency of the 

complete model is guaranteed. 
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Projected geometry – complete construction operation 

Combining procedural and assembly modeling strategies allows designers and engineers to perform 

the multi-scale design of large infrastructure facilities in an efficient manner. As already discussed in 

the previous section, the early design of coarse LoD is accomplished by means of a single procedural 

model, the so-called space model (see Section 4.2.1). Later on, during the detailed design of LoD5, 

the space model is extended with a hierarchy of assembly and procedural models. In particular, each 

procedural model represents one physical object, while the hierarchical structure of assemblies and 

sub-assemblies reproduce the semantic space structure. 

This change in the modeling approach requires the automatic recognition in the space model of the 

set of construction operations that generates each space object. To achieve this integration in a trans-

parent manner to the user, the semantic information contained in the product model is essential. Since 

the search of the needed operations and the generation of the physical model is not a trivial task, this 

methodology will be explained in detail in Section 4.3.4. 

During the automatic generation of physical objects, procedural models are initialized with the space 

geometry definition contained in the space model. This approach allows designers and engineers to 

constrain the detailed geometry to the envelope defined by the space object. However, although this 

method enables the creation of consistent procedural models, as soon as a modification on the space 

model is performed, the generated physical objects will no longer be consistent. Therefore, an addi-

tional dependency is needed that preserves the consistency of two equivalent construction operations 

in two different procedural models. 

To achieve this requirement, the previous projected geometry dependency has been extended to 

enable the projection of one construction operation within a referencing model. In particular, this 

projection is differentiated depending on which type of construction operation is applied: 

 In the case of parametric sketches, only their instantiated representation is projected. As the 

geometry in the referencing model is locked in front of manual modifications, the parameters 

and constraints defined into the referenced sketch do not need to be transferred. 

 In the case of creation or sketch-based operations including parameters, these are projected 

as fixed values. Where parameters define an algebraic equation, their value is evaluated be-

fore the projection. 

To illustrate the use of complete projected geometry dependencies, Figure 64 depicts an example of a 

tunnel concrete floor. First, the geometry defining the space object is defined in the space model by 

four construction operations distributed across three LoD. Later, a second procedural model is gener-

ated representing the physical element. In this second model, contained in an assembly structure, four 

dependencies establish a relation with their original definition in the space model. Finally, the designer 

can carry on with the detailing process, while the complete projected geometry dependencies preserve 

the consistency of the model in the case of modifications regarding the space or the alignment defini-

tion. 

 



 

 
82 Chapter 4. Consistency preservation methods for multi-scale procedural geometry representations 

 

 

 

 

 
Figure 64: Example of a tunnel concrete floor represented (left) in the space model as a space object and 

(right) as a physical entity in an assembly structure. The four initial construction operations of the physical 

model are projected from their definition of the space model. 

4.3.4. Automatic generation of physical objects out of space objects 

In the previous section has been shown how projected dependencies guarantee the consistency 

between construction operations defined in the space model and the generated physical object mod-

els. The generation of such physical models out of spaces is not a trivial problem. The main challenge 

in the generation process resides on the identification of construction operations that fully define a 

space object. 

To solve this technological problem a novel algorithm has been developed to extract the required 

information from the space model and to automatically generate the physical part model. The pro-

posed algorithm makes use of the available semantic information contained on the product model to 

find out the construction operation related to a particular space definition. Once this construction 

operation is known, the rest of the required operations can be extracted by recursively searching on 

the parent relations in the dependency diagram. Finally, the placement of physical parts is achieved by 

the generation in each physical part of a local coordinate system that is later matched with the origin of 

the assembly. 

The developed algorithm comprises four steps: 

 Step 1 – Identification of the construction operation that is associated with a specific space. 

This construction operation, named as the conclude operation, is the only element that relates 

the semantic and geometry models. On the simple example depicted on Figure 64 the con-

clude operation is the sweep operation, which is related to the semantic space object concrete 

floor. 

 Step 2 – Starting from the conclude operation, a recursive search on the parent dependencies 

results in a thorough identification of the complete set of construction operations that generate 

the space geometry.  

 Step 3 – Generation of a new procedural model for each physical object contained in a space 

definition. The construction history of these procedural models is initialized with a copy of the 

extracted operations and connected to the space model by means of projected dependencies. 
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 Step 4 – Integration of the generated models into an assembly structure. This step constrains 

the global coordinate system on the physical procedural models with the one on the assembly 

structure. 

4.4. Consistency preservation across different submodels 

4.4.1. Overview 

A widespread methodology employed on the design of large infrastructure facilities is to divide the 

entire project into several sections or parts. Based on diverse criteria such as budget disposal or 

geographical distribution, this subdivision enables an optimized use of the available resources. Thus, 

by dividing the project into several sections, the design process can be performed in parallel, reducing 

development times, and maximizing the allocation of resources (Dori 2016). 

The geometric subdivision of the infrastructure model into several sections does not have a single 

solution. A straightforward strategy is the generation of independent geometric models, one for each 

section. Done in this way, engineers and designers can independently work on different model files, 

achieving the desired optimization of resources. However, the main drawback of this approach is the 

lack of consistency among the different models. One example can be found in the common size of the 

cross-section in a shield tunnel. Every time an engineer updates the diameter of the tunnel, he must 

be aware that the same change must be also implemented in the other model files in order to avoid 

inconsistencies on the project. In conclusion, the strategy of subdividing the geometry into several 

model files requires external management to avoid inconsistencies. A process that is time-consuming 

and error-prone. 

To solve this technological problem, this thesis proposes the subdivision of the infrastructure model 

into several sections as part of the same procedural model. In particular, the proposed approach 

creates clusters of construction operations that do not interact with other clusters. Consequently, 

infrastructure sections can be modified independently, while the complete project is contained in the 

same model file. To preserve the consistency of the model, novel dependencies must be defined 

among equivalent procedural operations contained in distinct clusters. This section describes the 

consistency requirements of infrastructure clustering and proposes a novel approach to achieve con-

sistency between consecutive infrastructure sections. 

4.4.2. Including the concept of submodels in procedural models 

The alignment is the main feature employed to completely describe large infrastructure facilities. In 

combination with a single cross-section, a section of the alignment curve can represent a complete 

area of the infrastructure facility. In addition, these sections are frequently subdivided into smaller 

parts to optimize the resources invested in the design process. Since the reasoning applied by de-

signers and engineers to decide the length of such parts is usually more related to the specific needs 

of the project than to geometric requirements, henceforth in this thesis, a subdivision based on the 

horizontal description of the alignment will be used. In particular, the alignment curve will be subdivid-

ed in a way that emulates the amount and length of the elements contained in its horizontal descrip-

tion. 

Once the alignment is subdivided, engineers apply equivalent construction operations to each section. 

Although the outcome geometry on each section is different, they are topologically identical, i.e. the 

geometry is generated by the same collection of construction operations, sweeping a different path 
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curve. Moreover, construction operations, regardless of their location on the construction history, do 

not establish dependencies with their equivalent modeled subdivisions, enabling their clustering and 

local modification. Thereby, each of these modelled subdivisions are referred to as submodels, and 

formally defined as clusters of construction operations that fully define one section of an infrastructure 

facility. 

This modeling approach, based on the subdivision of an infrastructure section into several submodels, 

does not influence the consistency preservation methodology applied across different LoD. However, 

having several topological equivalent submodels creates the potential risk of inconsistencies across 

different submodel definitions. As an example, Figure 65 depicts one simple tunnel model represented 

up to its LoD4, and divided into three submodels. In the given example, if the diameter of the initial 

cross-section is altered, the same modification must be performed on the other two submodels, or the 

model will become inconsistent. 

Therefore, in the scope of this thesis, cross-submodel consistency is defined as the capability of a 

procedural model to modify a single submodel, while keeping the consistency between its topological 

equivalent submodels. 

 
Figure 65: A tunnel infrastructure model divided into three submodels. In addition to the consistency re-

quirements of multi-scale models, the submodel approach introduces a new source of inconsistency that has 

to be addressed. 

Although cross-LoD consistency methods are also used to guarantee the continuity and consistency of 

the complete model, the design based on submodels requires a novel type of dependencies that allow 

geometric elements to adapt themselves to the changing boundary conditions. One example of this 

requirement can be found in the design of the track-bed. Although global parameters and projected 

geometry methods emerge as the optimal solution to guarantee the stepwise continuity between the 

different submodels, these methods can only handle exact copies of the geometry, and are therefore 

unable to adapt the projected cross-section to the changing value of the super-elevation. In short, new 

dependencies are needed that project in a flexible way, not only the geometry, but also parameters 

and constraints, creating flexible objects that can adapt themselves to the specific requirements of 

varying boundary conditions. 
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4.4.3. Cross-submodel consistency methods 

In this section two main limitations of the infrastructure modeling based on submodels are addressed. 

First, the required consistency between equivalent sketches placed in different submodels is ad-

dressed by the definition of master-copy dependencies that relate the copied sketches with a single 

master sketch. Secondly, the limitation of placing geometry along several submodels is addressed by 

the use of dynamic dependencies, which in turn minimizes the depending submodels. 

Master-copy sketch dependency 

Different sections of roads, bridges and tunnels are frequently defined by equivalent cross-sections 

that only vary in some of their basic dimensions. However, isolated by definition, submodels cannot 

define procedural dependencies to other parametric sketches outside their cluster. Consequently, this 

isolation of parametric sketches becomes de facto the main source of geometric inconsistencies when 

modeling with submodels. 

To close this technological gap, a dependency type based on a master-copy pattern has been devel-

oped. In particular, this dependency type defines a single master sketch that defines the geometry, 

constraints and parameters of the primary cross-section. The copy sketches replicate this information 

assigning differing values to the parameters as required. Specifically, the parameters of the copied 

sketches are either overridden with new values or defined through an arithmetic expression that links a 

local margin parameter with the corresponding parameter on the master-sketch. In consequence, copy 

sketches provide a topological identical but morphological deviating version of the master sketch. 

 
Figure 66: A master-sketch (in dashed red color) and its three copied sketches (in continuous blue color) de-

fine the railway clearance gauge. The copied parameters are related to the master-sketch except the one which 

defines the slope of the super-elevation stripe that is overridden. 

Applications of the master-copy dependency can be found in a wide number of engineering problems. 

A first example that overrides one of the parameters defined in the master sketch can be found in the 

clearance gauge. Thus, the master sketch defines a rotation angle that is initialized with a fixed value 

associated to the super-elevation of the track. Although the copy sketches are replicated from the 

master, the angle parameter will be accordingly overridden in relation with the speed and the curvature 
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radius at every placement position. A second example is the storing of the annular gap grout deviation 

on shield tunnels (Thewes and Budach 2009, Hegemann et al, 2014) Although this constructive devia-

tion is frequently stored and classified as semantic information, the tolerance parameter introduced on 

the copy sketches can be used to additionally register this information in a geometrical representation 

manner. 

 
Figure 67: Dependency diagram of a tunnel model designed using three submodels. To guarantee the con-

sistency among the parametric sketches a master-copy dependency has been introduced, where the sketch in 

the submodel SM1 is considered the master. 

Adding master-copy dependencies in the procedural model do not alter the given dependency system. 

Specifically, master-copy dependencies establish direct relations between the master sketch and each 

of the copy sketches. However, these dependencies are managed externally to the parametric CAD 

system and therefore do not invalidate the submodel approach. Figure 67 depicts the dependency 

diagram of a tunnel model that employs master-copy dependencies to guarantee the cross-submodel 

consistency. The presented tunnel model is divided into three submodels from which the first defines 

the master sketch and the last two the copy sketches.  

Dynamic dependency 

During the design of large infrastructure facilities stationing points are frequently used to place auxilia-

ry elements such as road signs, traffic lights, and ventilation booster-fans. Measured along the align-

ment, stationing points give engineers and designers the flexibility to locate elements independently of 

their geographic coordinates. However, a local modification on the alignment affects all the auxiliary 

elements placed downstream.  

To illustrate this problem, Figure 68 represents the alignment of an infrastructure facility with one 

object placed on a given stationing point. The modeling strategy described in this thesis would divide 

the alignment into three submodels and place the object along the second spline by means of one 

positioning parameter. Defined as the local distance between the starting and object stationing points, 

if a shortening modification on the first spline is performed, the value of the positioning parameter 

could be greater than the length of the spline and then the object cannot be longer placed. The 

straightforward solution to this problem is to integrate all the splines in order that the positioning pa-

rameter would be always able to place the desired object. However, this solution creates procedural 

dependencies among the construction operations, invalidating the submodel approach. 
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Figure 68: Placement of one auxiliary element based on its stationing. 

To enable the unambiguous placement of auxiliary elements at the time that preserves the submodel 

approach, this thesis presents a novel dynamic dependency that establishes a single dependency 

relation among a set of feasible construction operations. In particular, the dynamic dependency stores 

in a sorted table the set of construction operations and the range of values for which they are effective. 

Consequently, after the modification of one of these construction operations, the table is updated and 

if necessary the procedural dependency accordingly reassigned. 

Both properties of dynamic dependencies have been introduced into dependency diagrams. First, all 

dependencies between feasible construction operations are represented in the diagram. Secondly, 

only the established dependency is described as Active. To exemplify the use of dynamic dependen-

cies Figure 69 depicts one simple tunnel model split into two submodels. Additionally, the exit to a 

rescue shaft, modelled as a third submodel, is dynamically attached to the alignment of the tunnel. 

Subsequently, both feasible dependencies are represented by a dashed line and only the one which is 

related is marked as active. 

 
Figure 69: Dependency diagram of a tunnel model and a rescue shaft. The placement of the rescue shaft is 

based on a stationing point and attached to the alignment splines by means of a dynamic dependency. 

4.4.4. Automatic coupling of submodels and non-linear models 

The main characteristic that defines large infrastructure facilities is its alignment. Roads, bridges and 

tunnels define complete sections of the infrastructure facility built upon its alignment and a single 

cross-section. From its linear behavior such modelled sections received the name of linear models. In 

opposition, there is a second type of infrastructure buildings that does not follow this linear pattern. 

Rescue shafts, tunnel cross passages, and bridge piles are examples of infrastructure elements that 

are attached to linear-models on a given stationing point. Therefore, and due to their loose coupling to 

the alignment, such infrastructure elements are denoted as non-linear models. 
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Parametric non-linear models have the advantage that they can be designed independently as a 

separate procedural model and stored as a template in a domain-specific library. Later on, if properly 

defined, non-linear models automatically adapt themselves to fulfill the given boundary conditions. 

Furthermore, non-linear models can be treated as additional submodels of the procedural model, 

which can be replaced and moved freely along the alignment by means of dynamic dependencies. 

One example of a non-linear model is shown in Figure 70 where a rescue shaft is attached to a tunnel 

model. In particular, the tunnel axis and tunnel hollow surface are used as boundary conditions by the 

rescue shaft and a collection of design parameters – such as the depth of the shaft or the length of the 

corridor area – determine the final shape from a large range of possible scenarios. 

 
Figure 70: Rescue shaft (non-linear model) attached to a tunnel model (linear model). 

Automatic coupling algorithm for non-linear models 

The coupling of non-linear models with procedural models implies overcoming two main limitations, 

namely, the renaming of the construction operations and the definition of new procedural dependen-

cies. First, procedural models cannot contain two construction operations defined with the same name, 

which is of particular relevance if the same template model is introduced several times. If that case 

occurs, the dependency diagram will become inconsistent and the procedural model can no longer be 

resolved. Therefore, every time a non-linear model is introduced in a procedural model a renaming 

procedure must be executed. Secondly, during the design of non-linear models, construction opera-

tions are introduced in the procedural description that simulates the boundary conditions of the receiv-

ing linear model. Those additional construction operations do not need to be transferred as the linear 

model contains their equivalent. As consequence, some of the dependencies of the non-linear model 

must be reassigned with the construction operations defining the boundary conditions of the linear 

model. 

From the second limitation arise the challenge of recognizing the construction operations that act as 

boundary condition. To confront this limitation an attribute has been added to the definition of every 

construction operation that determines the role of the operation in the non-linear model. This attribute 

must be defined as one of the three following options: 
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 Auxiliary defines construction operations that have been used in the design of the non-linear 

model but which are not needed in the receiving model. 

 Connection defines construction operations that have to be replaced with their equivalent in 

the receiving model. Connection operations are frequently identified as boundary operations. 

 Geometry defines construction operations that have to be transferred directly to the receiving 

model. These construction operations define the complete geometric representation of the 

non-linear model. 

Based on the definition of this attribute an algorithm has been developed that enables the automatic 

coupling of linear and non-linear models. The proposed algorithm has been designed in a four-step 

basis: 

 Step 1 – In the first step, all the construction operations defined as geometry are transferred 

to the linear model and placed at the bottom of the construction history. 

 Step 2 – In the second step, the construction operations and their locally defined parameters 

are renamed. The new names must not be previously used in the procedural model and they 

must be consistent with the already given. 

 Step 3 – In the third step, the dependencies of the imported operations must be updated with 

the new assigned names. 

 Step 4 – In the last step the construction operations that define the boundary conditions are 

coupled. To achieve this goal, the dependencies defined in the non-linear model among oper-

ations defined as connection and geometry are replicated in the linear model between the im-

ported operations and the equivalent of those classified as connection on the non-linear mod-

el. 

The implementation of this algorithm as a proof of concept is presented in Section 5.3. Additionally, to 

illustrate the complete workflow, a practical example will be reported. 

4.5. Assisted geometry and dependency generation based on Logic Models 

4.5.1. Overview 

The previous sections have been addressed the manual generation of parametric geometry and how 

parametric dependencies can guarantee the consistency on multi-scale infrastructure models. In 

addition to the manual modelling of the infrastructure geometry, at various occurrences throughout the 

design process, it is desirable to support the engineer with automated modelling processes, mainly 

during the interpretation of guidelines, codes, and national and international standards. Understanding 

and implementing the underlying abstract knowledge in a parametric geometry is not a simple task. 

Moreover, experts should interpret the demands of such engineering rules, match them to their specif-

ic requirements, and express their decisions in an appropriate geometric model. In conclusion, the 

repetitive modeling tasks are time consuming and impede the creative searching of innovative solu-

tions based on the what-if analysis. 

One example of those engineering rules can be found in the definition of the alignment of the infra-

structure facility. As previously mentioned, the design of the alignment is accomplished by the combi-
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nation of two plane curves. For the horizontal alignment, which describes the curvature related to the 

XY-plane, engineers have to define parameters such as the minimal radius of curvature or the clothoid 

constant for the connection curves, which later influence the cant and the ―smoothness‖ of the driving 

in a track. Similarly, for the vertical alignment, engineers must decide the values of the parameters that 

rule the length of crest and sag curves or the slope between two kilometric points. Finally, the infor-

mation of both curves must be combined in order to generate one or more 3D spatial curves. 

 
Figure 71: Alignment of an infrastructure as a combination of its horizontal and vertical alignment curves 

One essential benefit of modeling these engineering rules in a parametric CAD system is that the 

outcome geometry produced after applying the rule is enclosed in a few construction operations that 

can be easily recognized and isolated in the construction history. Further, the interpretation of such 

engineering rules can be easily encapsulated in a way that the user only needs to provide the input 

information, e.g. the horizontal and vertical alignments, and leave the system return a new or updated 

procedural geometry. 

Consequently, this section introduces the novel concept of logic models as an assisted generative 

methodology integrated in the modeling process with parametric CAD systems. In particular, each 

logic model encapsulates a well-defined engineering rule and is able to interpret the input parameters 

and to generate a corresponding set of procedural operations. This approach also allows engineers 

and experts to modify complete sections of an infrastructure facility by the simple modification of a 

parameter, and to visualize the resulting geometry almost instantaneously. 

 
Figure 72: Rescue shaft attached to a subway tunnel in two different locations. The generation and modifica-

tion of such geometries can easily be managed using logic models. 

4.5.2. Logic Model definition 

As discussed previously, there are two methods that can capture the intention engineers apply on the 

design of large infrastructure facilities, i.e., the semantic information and the design intent. On the one 

hand, semantic models are mainly library structures that store attributes of specific building elements. 

Some of those attributes can also be defined as parameters and used to modify existing geometry in 
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what has been called dimension-driven modeling (Lee et al. 2006). On the other side, one of the 

arguments that stand for parametric systems is the ability to capture the design intent followed by 

engineers during the modeling process. However, in the design built upon engineering rules neither 

semantic models nor design intent can address the assisted generation of such complex geometries. 

The needed knowledge has been classified by the International Organization for Standardization (ISO) 

as design rationale and defined in opposition to design intent as follows: 

Design intent is captured in the schemes of parameterization and constraints imposed 

upon models during their construction. It therefore governs the ways in which a model 

may be edited. Design rationale, on the other hand, is concerned with the reasons why 

a particular configuration or constructional process was adopted, and therefore with 

the logic underlying the design intent. (ISO 13030-55, 2005a) 

Therefore, this thesis proposes a novel methodology to capture the design rationale built upon distinct 

units called logic models. In particular, each logic model is defined as an autonomous system devel-

oped to solve one specific problem defined by a single engineering rule. Thereby, designers and 

engineers only need to introduce the abstract information and let the logic model generate the accord-

ing procedural geometry. Figure 73 presents the concept of logic model as a black-box, where the 

engineer is introducing functional requirements and gets back a set of procedural operations that fulfils 

the demands of the engineering rule or code. 

In addition, logic models are not developed as isolated features in parametric systems, but as ele-

ments that can be interrelated to achieve more complex modeling results. Thus, logic models need to 

communicate with each other and exchange logic and geometric information. These requirements 

demand for a novel type of geometric dependency that guarantees the geometric consistency in front 

of modifications on its underlying logic definition. Consequently, in the following section a comprehen-

sive description and analysis of this novel dependency system is reported. 

 
Figure 73: Basic architecture of Logic Models. Each logic model acts as a black-box that inputs some func-

tional requirements, analyse them based on engineering rules and codes, and generate an according output in 

form of procedural construction operations 

4.5.3. Logic Model architecture 

To achieve a more flexible implementation, logic models are developed on the basis of a three-layer 

architecture that enables the discrete encapsulation of detached components such as the engineering 

knowledge or the geometry generation algorithms. Hence, the top layer acts as interface to the user 

and contains the logic unit. This unit encloses the knowledge the user must provide in order to fully 

define the selected engineering rule. The second layer, called logic interpreter, translates this abstract 
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knowledge into a set of neutral – CAD system independent – procedural operations that parametric 

systems cannot directly employ. Finally, the geometry layer receives the neutral information from the 

logic interpreter and converts it into a set of proprietary procedural operations specifically for one 

parametric system. In the following a formal description of every layer is provided. 

 
Figure 74: Logic model three-layer architecture. 

Logic Unit (LU) 

The logic unit embodies the abstract knowledge the engineer must provide to fulfil the requirements of 

the engineering rule. This unit remains independent of the CAD system and its information can be 

captured by a graphical user interface or defined by an external tool. Thus, the information can be 

submitted in two ways: (1) based on the knowledge contained in a built model or (2) by the direct 

application of a neutral data format. 

When the logic unit is described by a built model, its definition is close to the formal model described in 

the MOKA approach, which is usually modelled using the MOKA Modeling Language (MML) (Stokes 

2001). Although MML was originally derived from the UML modeling language, during the research 

stage undergone for this thesis it was decided not to use MOKA and to stick with the UML language. 

This decision was taken to reduce the amount of specific requirements needed to test the possibilities 

logic units can offer to anyone without previous experience on system engineering process. On the 

other hand, the literature describes other modeling languages – e.g. Alloy or SysML – that can be 

used instead (Bailey et al. 2004, He 2006). 

Although the majority of neutral data formats were not originally developed to exchange engineering 

rules, their content can be used as structure to capture and initialize the information of the logic model. 

One example of this novel usage of neutral data formats can be found in the alignment‘s definition. 

Based on a similar principle of horizontal and vertical separation of the alignment, several data formats 

became a standard among planning offices, e.g. LandXML developed by Autodesk, and OKSTRA 

developed by BASt (Rebolj et al. 2008, Schultze and Buhmann 2008). 

Logic Interpreter (LI) 

The main task of the logic interpreter is to translate the abstract knowledge represented by the logic 

unit into a set of neutral procedural operations. In the scope of this thesis a neutral data model was 

developed that supports the exchange of procedural geometries among parametric CAD systems and 

which was successfully validated by enabling the exchange between the two parametric systems, 

Autodesk Inventor and Siemens NX (see Section 5.3., Borrmann et al., 2014). 
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Although the standard input information for the interpreter is obtained from its logical unit, interpreters 

can also handle neutral procedural operations produced by other interpreters. This property enables 

the linking of several logic models and together with its dependency system will be explained in the 

next section. 

Similar to the definition of the logic unit, logic interpreters are defined independent of the selected 

parametric system and therefore executed externally. Consequently, the development of a logic inter-

preter can be realized by software engineers in any available programing language. 

Geometry Layer (GL) 

Differently to the previously described layers, the geometry layer is embedded in the parametric sys-

tem. Implementing this layer as a CAD module enables the geometry layer to accomplish two main 

tasks: first, to convert the neutral procedural operations into a set of proprietary construction opera-

tions that a specific CAD system can handle, and secondly, to lock the generated operations with 

respect to manual modification of the user and thereby to avoid inconsistencies on the model. 

The proprietary characteristics of construction operations force geometric layers to be implemented 

accordingly for the parametric system selected. However, this need does not mean that a geometry 

layer must embed so many different implementations as possible parametric CAD systems working on 

the same project. Usually engineers complete their design in a single parametric system and therefore 

only one implementation is needed. At the time to exchange the model, if a modification is required, 

the receiving CAD system will require a suitable geometry layer. 

 
Figure 75: Integration of a Logic Model with two different CAD systems. The Logic Unit and the Logic In-

terpreter are independent of the CAD system selected while the Geometry Layer must be specifically defined 

for each system. Arrows shows the information exchange fluxes between layers. This figure does not imply 

the parallel or simultaneous use on two CAD systems. 

Due to fact that several logic models working on the same parametric system may require to convert 

the same type of neutral construction operations, e.g. parametric sketches, swept volumes, and Bool-

ean operations, the strategy of using a common geometry layer can reduce the implementation effort. 

Doing so, the common geometry layer acts as an interface between the different logic models and the 

parametric system. Additionally, having several geometry layers concentrated in a common geometry 

layer allows developers to enhance and update operation converters in a faster and consistent way. 
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4.5.4. Consistency methods across different levels-of-detail 

As the design of an infrastructure facility evolves, the knowledge needed to model it becomes also 

more complex. To avoid repetition in the knowledge‘s definition and the need of developing logic 

models that describes all possible scenarios, several logic models can be horizontally connected to 

create a compound modeling. 

 
Figure 76: Tunnel model designed upon the alignment and tunnel axis curves. 

A simple example of two logic models that can be linked to provide a more complex modeling can be 

found in the alignment and axis curves of a ring tunnel, placed respectively on LoD1 and LoD2. On the 

one hand, the logic model of the alignment contains the needed information to create a spatial-curve – 

described by the mid curve between the two rails – based on the horizontal and vertical alignments. 

On the other hand, the logic model responsible for the tunnel axis – used to guide the Tunnel Boring 

Machine (TBM) – creates a second spatial-curve that is shifted from the alignment curve by vertical 

and horizontal parameters. As the tunnel axis is based on the curve described by the alignment, both 

models can be linked to avoid redundancy and logic‘s complexity. Hence, a modification in the align-

ment model will update the geometry of the alignment and the axis curve – even when the tunnel axis 

model remains unchanged. 

 
Figure 77: Integration of two Logic Models within one CAD system. The two logic models are linked 

through the logic interface layer to generate a more complex knowledge. 

This behavior is achieved by horizontal connectors, which allow logic models to communicate among 

each other. Horizontal connectors implement a one-to-many communication that propagates the 

changes and the logic content from the related model to the linked models. 
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Horizontal connectors 

Although the workflow in the logic model is mainly top-down, from the logic unit to the geometry layer, 

several logic models can be horizontally connected to create a more complex modeling. Horizontal 

connections are defined as a one-to-many relationship and their communication are only granted 

between connectors of the same type. In addition, horizontal connections provide two different types 

of communication between logic models, i.e. the active and the passive connection. 

The active connection enables all linked models to get informed when an update arises in the related 

logic model. To implement this communication strategy the widely known observer-pattern has been 

used (Gamma et al., 1995). This pattern defines two main elements, known as subject and observer 

objects. The subject object sends out update notifications without knowing who are getting them, while 

the observer object is subscribing the notifications broadcasted by a subject object. Thus, after getting 

a notification, the linked model can start an update process to collect the changes. 

To represent the relations among several models a novel Logic Model Diagram (LMD) is employed, 

where the nodes are the logic models and the edges the horizontal connections between models. To 

differentiate the horizontal connections, two connectors were placed at the extremes of the edges that 

are colored differently whether they are source- or sink-connectors. This nomenclature follows the 

concepts of subject and observer objects. Finally, every connector is represented by one letter that 

identifies its exchanged information. One example of a LMD is shown in Figure 78. 

 
Figure 78: Example of a simple logic model diagram (LMD). The source-connector (black) of the alignment 

model is communicating its changes with the sink-connector (grey) placed in the tunnel axis model. ‘T’ is the 

connectors’ name that identifies them in front other connector types. 

The passive connection enables linked logic models to access anytime the information contained in 

the related logic model. This communication is mainly taking place during the model‘s initialization 

process when the logic interpreter is firstly executed and the neutral geometry created. 

Due to the fact that each logic model pre-defines its own connections, as soon as a new logic model is 

instantiated in the modeling process the system will grant its communication. In case the expected 

related model does not exist, the system will not allow the logic model to be initialized and an error will 

be generated. 

Parametric consistency preservation built upon horizontal connectors 

During the design process, each time a logic model is applied a new set of procedural operations are 

added at the end of the construction history. This behavior, together with the fact that logic models 

input can only be defined by abstract information or by other logic models output, results in the fact 

that the dependency diagram of the existing model is not altered and its global consistency is guaran-

teed. In addition, as the construction operations generated by the logic model are native operations of 

the parametric system, every further modeling based on those operations will be consistently updated 

by the dependencies of the parametric CAD system. 
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However, this behavior is not achieved when two or more logic models are chained. A closer look at 

the previous example based on the alignment and tunnel axis models shows that although the result-

ing space-curves are produced by two connected logic models, the two added construction operations 

do not include any parametric dependency between them. In consequence, the geometry can become 

inconsistent if the user only modifies one of them. 

To address this shortcoming, this thesis proposes to extend the concept of horizontal connectors into 

a novel dependency type, the logic model dependency. In particular, horizontal connectors, whose 

main purpose was to notify the update on a related logic model, can also be used to trigger updates in 

the geometry. In this way, parametric dependencies guarantee consistency between procedural op-

erations generated by CAD features, while horizontal connector dependencies keep the consistency 

between geometries generated by logic models. 

 
Figure 79: Dependency diagram of the tunnel model presented in Figure 76 built upon logic model opera-

tions. Additionally, the dependency diagram shows the logic model dependencies (dashed arrow) generated 

by connected logic models and the parametric dependencies (solid arrows) generated by the CAD system 

Figure 79 depicts the dependency diagram of the previously presented parametric tunnel built upon 

the alignment and tunnel axis models. Specifically, the connection between the two spline operations 

is handled by the alignment logic model dependency, while the remaining construction operations are 

directly managed by the parametric system. 

4.5.5. Consistency methods across different submodels 

As previously described in this chapter, a quite established practice in the design of large infrastruc-

ture facilities is the division of the complete project into several sections. Independently of the reason, 

whether political, economic, or technical, the design based on several sections introduces a novel type 

of inconsistencies into the model. To address this issue, Section 4.4 has presented a novel collection 

of consistency methods that create geometric dependencies among equivalent construction opera-

tions in different submodels. 

However, similarly to the methodologies presented to guarantee the cross-LoD consistency, the cross-

submodel methodologies cannot capture the design rationale, e.g. the master-copy dependency is not 

able to answer the reasons followed by an engineer to choose a specific subdivision strategy. For this 
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reason, a novel proposal of this thesis is to introduce the submodel approach into the logic model 

definition. Once more the tunnel example built upon the alignment and tunnel axis models can illus-

trate this integration. So far, each spatial-curve of the tunnel model is represented by a single 3D-

spline operation that spans the complete length of the tunnel. Integrating the submodel approach into 

the logic modeling strategy results in that each logic model generates and manages not just a single 

curve but a collection of 3D-spline creation operations, where each operation represents a different 

submodel or section of the project. 

To accomplish this goal, the logic interpreter definition was extended to manage several submodels. 

First, the abstract design information coming from the logic unit is processed and analyzed as a whole. 

Secondly, the analysis result is divided among a set of interpreter entities that match with the number 

of submodels. These entities are responsible for generating equivalent collections of neutral construc-

tion operations specifically for each submodel. Finally, each of these interpreter entities is in charge to 

independently establish the communication with the geometry layer and to manage the updating 

processes. 

Once more the alignment example can illustrate this new workflow. First the alignment information is 

analyzed by the logic interpreter as a whole. Secondly, the alignment information is divided piecewise 

in so many alignment curves as submodels are generated by the subdivision strategy. Finally, each 

alignment curve is handled separately by the geometry layer, updating them independently after every 

modification of the logic unit. Figure 80 depicts the extension of the logic interpreter to embrace the 

submodel approach. 

 
Figure 80: Extension of the logic model structure to adopt the submodel approach. In particular, the extension 

is performed at the logic interpreter layer, where a number of interpreter entities have been introduced. Those 

entities manage independently the generation and modification of related construction operations. 

The implementation of the submodel approach into the logic interpreter pursues one main goal: the 

preservation of the consistency throughout the whole model. In particular, in the interpretation process 

the abstract information coming from the logic unit is processed as a whole before being divided 

among the interpreter entities. This strategy guarantees that all interpreter entities get known when an 

update is performed. Later on, only submodels affected by the modification need to be updated. This 

behavior is introduced in the dependency diagrams as horizontal dependencies between consecutive 

submodel construction operations. To illustrate this new type of logical model dependencies, Figure 81 
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depicts the dependency diagram of the previous tunnel model built upon two submodels. The depend-

ency diagram shows how novel logic model dependencies have been added between equivalent 

construction operations. 

 
Figure 81: Dependency diagram of the tunnel model presented in Figure 76 built upon two submodels and 

two logic models. To guarantee the consistency among submodels logic models introduce a novel type of hor-

izontal dependency between equivalent construction operations. 

4.6. Summary 

This chapter explains a novel modeling strategy that has been developed based on the integration of 

parametric geometries into conventional product models. Hence, the design of the coarser LoDs (up to 

LoD4) is performed in a single procedural geometric model called space model. This model encapsu-

lates the complete space structure and all the submodels in which the infrastructure is subdivided, 

guaranteeing its complete consistency. Differently, for the detailed LoD5, a dual-design approach has 

been followed that combines the use of assembly and procedural geometries. 

However, the combined use of assembly and procedural geometries as a novel multi-scale geometric 

representation is likely to suffer from inconsistencies that parametric systems are not able to address. 

Therefore, this chapter presents four new dependency methods that extend the basic capabilities of 

the procedural dependency system. Three of these dependency methods focus on requirements of 

the space model in coarser LoD, while the last method centers on the dependency system needed 

during the detailing in LoD5. 

Moreover, the subdivision of the geometric model into smaller parts or submodels is a reasonably 

established practice applied during the infrastructure design. This practice requires additional depend-

encies in order to keep the step-wise consistency throughout the model. Thus, this chapter introduces 

two new dependency types that guarantee the consistency between submodels, and enable the 

dynamic placement of non-linear submodels along the infrastructure alignment. 

An additional difficulty during the infrastructure design is the interpretation of engineering rules. Hence, 

this chapter presents a novel methodology that assists designers and engineers in the generation of 

geometry and required dependencies at the time of implementing complex engineering rules. This 

methodology encapsulates the underlying generation knowledge in discrete units named logic models 
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that convert the abstract information into a corresponding parametric geometry model. Furthermore, 

logic models include two main features, namely, (1) the capability of handling several submodels at a 

time and (2) the possibility of connecting two or more logic models horizontally to create a more com-

plex modeling. In addition, these two features of logic models were introduced as novel dependencies 

into the procedural dependency system. 

Table 1 summarizes the different dependencies presented in this chapter, where each dependency is 

represented by its name, type of dependency, and section where it is fully described. 

Table 1: Summary of the different procedural dependencies developed on this chapter. 

Dependency name Dependency type  Section 

Construction history Cross-LoD 4.3.3 

Global parameter Cross-LoD 4.3.3 

Projected geometry – Single geometric element Cross-LoD 4.3.3 

Projected geometry – Construction operation Cross-LoD 4.3.3 

Master-copy sketch dependency Cross-Submodel 4.4.3 

Dynamic dependency Cross-Submodel 4.4.3 

Logic model dependency 

Cross-LoD 4.5.4 

Cross-Submodel 4.5.5 

Additionally, Figure 82 depicts a complete example of a tunnel model represented by two submodels, 

and three LoDs. Moreover, a rescue shaft is attached to the tunnel model by dynamic dependencies. 

However, in this example, the rescue shaft does not enclose any geometry in LoD1, and is only repre-

sented to exemplify the connection of linear models with non-linear models. 

In summary, this chapter introduces a novel geometric representation based on the extensive applica-

tion of parametric modeling techniques and the introduction of various types of dependencies. First, a 

single procedural model is responsible for the geometric consistency in ―vertical‖ (cross-LoD) as well 

as in ―horizontal‖ (cross-submodel) directions. Thereby, this procedural model called space model 

comprises the complete definition of the semantic space structure up to LoD4. The newly developed 

dependencies allow engineers to include non-linear models such as rescue shafts or construction 

chambers, in a flexible way at distinct alignment points. Secondly, the detailing required in LoD5 is 

achieved by the combination of procedural and assembly geometries. This dual-design approach 

allows designers and engineers to elude the three main limitations of procedural models, namely: (1) 

integrating 3
rd

-party neutral explicit geometries, (2) improving the exchange of individual physical 

objects among stakeholders, and (3) decreasing the number of construction operations in each proce-

dural model, which in turn improves its overall performance. 
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Figure 82: Dependency diagram of a tunnel model and a rescue shaft. The tunnel model is represented by two 

submodels and three LoD, while the rescue shaft is only represented up to its second LoD. 
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  Chapter 5.
 
Proof of Concept 

5.1. Overview 

In the previous chapters, several methods that enable the consistent multi-scale design of large infra-

structure facilities were presented. These methods are built upon the combined use of product models 

and procedural geometries. First, product models allow designers and engineers to define distinct 

levels of abstraction or detail based on the specific needs of large infrastructure projects. Second, 

procedural geometries define dependencies among the different construction operations that enable 

the consistent update of the complete geometric representation when a local modification is per-

formed. 

To evaluate these different consistency preservation methodologies, this chapter first presents the 

implementation efforts conducted during the preparation of this thesis. To this end, the three main 

areas of research are presented, namely multi-scale semantic models, extended procedural depend-

encies, and logic models. Later, these methodologies are applied to a real case study based on the 

Second main suburban track, which is about to be constructed in the city of Munich, Germany. 

5.2. Prototypical implementation of a multi-scale product model for shield tunnels 

5.2.1. Overview 

The first step of the proof of concept was the prototypical development of a multi-scale product model 

for shield tunnels. This implementation, based on the product model presented in Chapter 3, has been 

conducted in two directions, namely, using an established data exchange standard and developing a 

novel neutral data format from scratch. This twofold implementation pursues one clear goal, i.e. to 

verify unequivocally the viability of the multi-scale approach for subway infrastructure facilities. 

For the prototypical implementation based on an established exchange standard, the Industry Founda-

tion Classes (IFC) was chosen (see Section 2.4.3). IFC is the most widespread exchange standard in 

the AEC industry and due to its clear separation between the semantic information and the geometric 

representation offers the perfect testing platform. Although in IFC the definition of multi-scale modeling 

is lacking so far, the concepts of scale aggregation and tunnel specific entities can be easily extended. 

What remains, however, is the capability of IFC to represent geometry built upon parametric tech-

niques. 

Despite the fact that the IFC geometry is mainly based on the STEP standard, and that this standard 

defines three Parts that describe the procedural exchange (see Section 2.4.2), including the STEP 

entities, the IFC schema has been considered an extremely complex task that goes far beyond what is 

expected of a proof of concept. Therefore, in a second step a completely new neutral product model 

has been developed that enables the exchange of multi-scale product models represented by proce-

dural and assembly geometries.  
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5.2.2. A multi-scale product model for shield tunnels based on IFC 

For the first part of the prototypical implementation, an extension of the latest IFC4 standard has been 

accomplished. This extension proves the feasibility of multi-scale approaches for the design and 

exchange of large infrastructure facilities. In particular, for demonstrating the use of the developed 

data model, a new schema and a set of corresponding instance files were created. One of the clear 

advantages of extending a consolidated standard is the wide range of available tools, e.g. different 

types of viewers, schema compilers, and file converters (buildingSMART 2016d). Figure 83 depicts 

two of the currently available IFC viewers. 

 

Figure 83: Two different IFC viewers representing a shield tunnel model. The (top-) left viewer represents the 

tunnel based on a SweptDiskSolid entity, while the (bottom-) right viewer represents the same model based on 

an ExtrudedAreaSolid entity. 

The existing viewers, however, are only capable of processing models described in fully conforming 

files, and are therefore of limited use for a novel, not yet accepted, extension. As neither the semantic 

shield tunnel extension of the IFC data model, nor the introduction of LoD concepts into IFC is close to 

standardization, the developed example files were divided into three different levels of extension. 

 Level 1: On the lowest level, the standard IFC4 schema is applied without any tunnel-specific 

extension. Proxy objects are used to represent tunnel objects on the semantic model. As a re-

sult, the instance file can be interpreted and visualized by any IFC4-capable viewer. 

 Level 2: The standard IFC4 schema is extended by tunnel-specific semantic elements, such 

as Tunnel
12

, TunnelPart, TunnelSpace, and TunnelElement. This extension (or a minor varia-

tion) is expected to form part of the future IFC-Infrastructure data model. 

 Level 3: The schema extends the second level of extension by entities that enable the explicit 

representation of LoDs by introducing the entity LevelOfDetail as well as the description of the 

refinement relationships among the elements by means of elements RelIsRefinedBy. 

To have a better insight into the capabilities of the IFC standard, three different geometric approaches 

were evaluated. These geometric approaches, with their benefits and limitations, are currently part of 

the IFC standard, and therefore do not introduce any new limitation on the proof of concept. 

                                                           
12

 Similarly to Chapter 3, from now on the prefix Ifc will be omitted for simplicity. 
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The three geometric approaches are based on: 

 The ExtrudedAreaSolid entity extrudes the tunnel profile along a straight axis. As the align-

ment is a complex curve in 3D, this geometry approach can only be applied when the tunnel 

axis can be approximated by a polygonal curve. 

 The SweptDiskSolid entity sweeps a circular disk along a given axis. For this geometric ap-

proach, two different strategies are evaluated, namely, the CompositeCurve (a composition of 

linear and arc segments), and the BSplineCurve. As this representation supports only the 

sweeping of a circular disc, tunnel spaces on LoD4 cannot be generated. 

 The FixedReferenceSweptAreaSolid object sweeps an arbitrary closed profile along a given 

path. For the path‘s definition, the same type of curves introduced in the previous geometric 

approach can be used. As this representation supports the definition of arbitrary geometry, all 

LoD can be generated. 

Finally, combining these three factors – LoD, level of extension, and geometric approaches – resulted 

in unfeasible product models for some specific cases, e.g. geometries based on SweptDiskSolid 

entities cannot represent spaces beyond LoD3. The combinations of the three factors are collected in 

Table 2, which shows the feasible models with an IFC logo and the unfeasible ones with a gray cell. 

Table 2: Summary table showing the feasible models generated for the third level of extension. 

 

The complete IFC shield tunnel schema proposal and some illustrative examples of the different levels 

of extension can be found in the appendices of this thesis. Additionally, all variants of the schema as 

well as the corresponding examples can be downloaded from the chair‘s website
13

. 

5.2.3. An XML-based product model incorporating procedural geometry and semantics 

The prototypical implementation of the multi-scale product model based on the current version IFC4 

presents a major problem; inconsistencies between the different LODs may arise when a modification 

is performed. This lack of consistency is caused by the loose coupling among the different representa-

tion objects. A novel proposal that address this weakness is presented in Chapter 4, and is based on 

the use of procedural and assembly models. However, the implementation of these novel consistency 

methodologies in an exchange standard is particularly challenging. IFC does not support procedural 

modeling and the developments done in STEP have not yet reached an operative maturity (Pratt and 

Kim 2006, Kim et al. 2007). 

                                                           
13

 https://www.cms.bgu.tum.de/de/forschung/projekte/31-forschung/projekte/415-ifctunnel.html 
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Therefore, and due to the already described geometric limitations of the current IFC standard, an 

independent neutral product model has been developed. This product model does not pretend to be a 

substitute for IFC or STEP, and its development is only related to the need of having a platform, which 

is flexible enough to implement the developed methodologies. Similar to IFC, the developed schema 

provides a clear separation between the geometric representation and the semantic information, 

providing the flexibility afforded by its independent development. Finally, in opposition to IFC and 

STEP, the developed product model uses XML technology to exchange the instantiated information.  

In addition to these two modules, geometry and semantics, a connector element was developed, i.e. 

the IdentifierRelationship entity. This element, equivalent to the IFC‘s ProductDefinitionShape, enables 

the connection of the semantic element and the procedural construction operation by registering the 

object‘s ID in a dedicated structure. This connection is only defined between the semantic element and 

the last construction operation defining a tunnel space (see Section 4.2.1). Figure 84 depicts a UML 

diagram with an instantiated semantic, procedural, and identifier relationship objects. In this example, 

it can be observed how the semantic schema follows the tunnel structure, while the procedural geome-

try is mainly based on a list of construction operations. This example also shows how the connection is 

achieved through the identifier relationship object, which registers the IDs of the two related objects. 

Similar to the ProductDefinitionShape entity, which is able to link one semantic element to several 

geometric representations, the IdentifierRelationship element is able to connect additional models. 

Specifically, for the prototypical implementation, the logic model associated with the geometric repre-

sentation was also linked. This optional attribute is only given when the semantic space is created, or 

managed by a logic model, leaving its value empty in the other cases. One example of other models or 

representations that can be linked through the IdentifierRelationship element is the explicit geometry. 

Combining procedural geometry with the explicit one, allows the product model to export models using 

a dual geometry representation. 

 
Figure 84: UML diagram of the tunnel product model. The model is composed of three modules: (in blue) the 

procedural geometry model, the list of IdentifierRelationship and (in black) the semantic model. The connec-

tion between the procedural and semantic model is achieved by the identifier relationship object. 
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5.3. Consistency methods for parametric modeling 

5.3.1. Overview 

As presented in Chapter 4, model inconsistencies are the main limitation when using conventional 

product models during the dynamic multi-scale design of infrastructure facilities. These inconsistencies 

are mainly a consequence of the missing dependencies defined for geometric objects. To address this 

problem, a novel approach was presented in Chapter 4 that replaces the explicit representations by 

procedural and assembly geometries. Through the introduction of geometric dependencies, procedural 

representations can automatically update the complete model when a modification is performed, thus 

preserving the product model‘s consistency. 

Two main goals were defined to achieve a successful evaluation of the presented approach. First, new 

procedural and assembly data models had to be developed that enable the exchange of geometric 

information between parametric CAD systems, and facilitate the integration of externally defined 

consistency dependencies. Secondly, a new Consistency Management System (CMS) tool had to be 

implemented that guarantees the consistency of the geometric model when a change in the geometry 

arises e.g., an update of a global parameter or the modification of a master sketch. Finally, parallel to 

this implementation, and taking advantage of the already mentioned CMS module, the implementation 

of the automatic coupling of submodels and non-linear models algorithm had to be conducted by 

modeling a real-world infrastructure facility. 

5.3.2. Data models for interacting with parametric CAD systems 

Exchanging geometric information between two parametric CAD systems is the first step to verify the 

viability of the proposed methodology. Procedural dependencies are only the starting point to preserve 

the consistency of the geometric model. The particular geometric characteristics of large infrastructure 

facilities make demands of novel dependencies that the CAD system cannot handle. Therefore, in 

order to interact with the CAD system, the development of novel procedural and assembly data mod-

els is compulsory. Next, a detailed description of the developed data models is given. 

Procedural and assembly data models 

The central component in the presented approach is the procedural geometry model, which is inspired 

from an initial common development achieved in collaboration with Flurl (2016). Hence, the procedural 

model enables the definition of geometry based on construction operations that, together with the 

procedural dependencies, preserve the geometric consistency. However, in order to achieve a com-

prehensive exchange of the infrastructure design, in addition to the construction history, auxiliary 

geometric information must be included within the procedural model. The required information has 

been classified into four groups; the construction history, the design units, the referenced origins of the 

project, and the global parameters. Therefore, the procedural data model that has been developed 

takes into consideration this classification and distributes their contents into four different sections: 

 The Unit section is designed to define the by default units required for distinct parameters 

e.g., length, angle, and mass. If the parameter does not define an explicit unit, the system will 

assign the corresponding default unit. 

 The Origin section is designed to include all necessary origin references such as the CAD 

origin, or the geo-referenced positioning. In the prototypical implementation, additionally to 

the CAD origin, the coordinates in the Gauss-Krueger system were included. 
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 The Global Parameter section specifically implements one of the developed consistency 

methods. These parameters are defined outside of the construction history, and are reacha-

ble independently of the displayed LoD. For detailed information, see Section 4.3.3. 

 The Construction History section holds the sequential list of construction operations in the 

same order they were generated. Similarly to the definition of the procedural model, construc-

tion operations are divided into four different components or sections. 

o The Local Parameter section stores the parameters generated by the construction 

operation. Although local parameters can be related by other construction operations, 

they can only be removed or modified from the operation that contains them. 

o The Dependency section is split into two separated lists. The parent dependencies 

refer to the operations upon which the construction operation depends, while the child 

dependencies relate the operations that depend on it. 

o The Identifier section only stores the IdentifierRelationship ID, which enables the 

linkage of the construction operation with other existing models e.g., the semantic 

model or the logic model. 

o The Geometry section defines the specific geometric information of each operation 

type. The developed procedural data model defines seven construction operations; 

work-plane, parametric sketch, 3D spline, extrusion, sweep, loft, and Boolean union. 

Figure 85 depicts the procedural and assembly data models in a UML diagram. Specifically, in box 

no.1 the four sections of the procedural model definition are depicted, while in box no.2 the four blocks 

of the procedural construction operation are represented. Finally, box no.3 illustrates the basic modu-

larization of the assembly data model. 

The assembly model is defined by the presented approach as a container of procedural models that 

define constraint relations among them. The introduction of procedural models in the assembly defini-

tion is based on the concept of occurrence that generates as many instances of the model as required 

(see Section 2.3.3). Similarly to procedural models, assembly models include a construction history. 

The construction operations defined in this procedure are used to modify the occurrences of a given 

model e.g., to create an opening in the ring assembly to connect the main tunnel with a rescue shaft. 

Due to these similarities, the assembly data model is inherited from the procedural data model and 

extended with two new features. First, an occurrence identifier list stores the instantiated procedural 

geometric models. Second, an assembly constraint list holds the generated mates among the different 

occurrences. These mate constraints relate pairs of assemblies, procedural models, and construction 

operations; or combinations of them. 
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Figure 85: Procedural and assembly data models represented by a UML diagram. In box no.1 the four contain-

ers of the procedural model definition are depicted. In box no.2 the four blocks of the procedural construction 

operation are represented. Finally, box no.3 illustrates the modularization of the assembly data model. 

Feature decomposition vs cellular model 

When exchanging design information modeled with a commercial parametric CAD system, the feature 

definition and its granularity appears as one of the main challenges. Since several parametric systems 

define features with several capabilities, a neutral definition must find a compromise between them. 

The cellular model approach (see Section 2.3.3) has been shown complex and inefficient. Therefore, 

the solution adopted during the proof of concept was to subdivide the features into its basic construc-

tion operations, and to replace the original feature operation by a set of construction operations. This 

process has been called feature decomposition. 

The extrusion feature can be used to illustrate this approach with an example. This feature, that usual-

ly enables an additional Boolean union with its predecessor operation, has been split into an extrusion 

operation and a Boolean operation. The main advantage on this approach is that without defining 
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additional operations complex features can be reproduce by the sequence of several simple construc-

tion operations. Another benefit in front of the cellular model is that the presented approach keeps the 

design intent introduced by the engineer or designer, and is fully compatible with the multi-scale and 

submodel definition. 

Parametric sketch geometry data model 

Among the several construction operations defined in the procedural model, the parametric sketch is 

clearly the most complex one. Its definition contains not only geometry elements, but also geometric 

and dimensional constraints. To address its prototypical implementation, the developments done by Ji 

et al. (2011) for the IFC-Parametric proposal were taken into consideration. Figure 43 in Section 2.4.5 

shows a UML diagram of their proposal. Thus, the developed parametric sketch construction operation 

is an evolution of the Ji proposal, adapted to the subway infrastructure scenario. 

Similarly to the Ji proposal, the developed parametric sketch is defined by three lists of objects, name-

ly the geometry objects, and the geometric and dimensional constraints. However, the main difference 

remains in the fact that Ji‘s development was focused on the representation of bridge cross-sections. 

Such a cross-section rarely employs circles or arcs, and these geometry objects, together with the 

concentric geometric constraint and the diameter dimensional constrant, were missing in the proposed 

data model. 

A second main difference with Ji‘s proposal is the lack of local placement of the parametric sketch. In 

Ji‘s proposal, parametric sketches are defined as independent elements integrated in an extension of 

the IFC data model as a new entity, and therefore sketches need the positioning and orientation 

provided by the IfcLocalPlacement object. However, in a fully procedural definition of the parametric 

sketch, the positioning and orientation are not needed because this information is provided by the 

work-plane operation upon which the parametric sketch depends. 

Finally, the parametric sketch is the abstract construction operation for the master-copy dependency. 

The master sketch definition includes an additional list of copied sketches, while the copied sketch 

contains only an attribute to its master sketch. It is important to mention that the dependencies among 

the master and its copies are not related in the dependency section of the construction operation, but 

on the geometry section. This implementation decision is based on the fact that master-copy depend-

encies are not managed by the CAD system, but from the CMS. 

5.3.3. Consistency management architecture 

The basic method employed to preserve the consistency of the geometric representation is based on 

the application of procedural representations. Parametric CAD systems define and manage, in a 

transparent manner to the end-user, procedural dependencies among the different construction opera-

tions that guarantee the consistency of the geometry when a modification is performed. However, 

these basic procedural dependencies are not sufficient when modeling large infrastructure facilities. To 

this end, new dependencies have been developed that extend the basic parametric capabilities (see 

Chapter 4). From an implementation point of view, this development presents several difficulties 

because parametric systems neither support the definition of external dependencies nor their automat-

ic management. 

Another difficulty for the implementation of the presented approach in a parametric system lies in the 

impossibility of defining a parallel semantic model. Defined as the combination of geometry and se-

mantics, multi-scale product models require semantic information to categorize the different space 

objects and their related geometry across the several LoDs. 
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Figure 86: Implemented consistency management architecture. The Consistency Management System (CMS) 

is responsible for guaranteeing the consistency of the entire product model (geometry and semantics), and is 

developed independently of the parametric CAD system. 

To address these two challenges – the external management of dependencies, and the hosting of the 

product model – a novel architecture has been developed. The structure of its prototypical implemen-

tation is divided into two separate modules, namely, an Add-In embedded in the parametric system 

and a Consistency Management System (CMS) tool. In particular, the developed Add-In is responsible 

for the direct interaction with the parametric system managing the generation and modification of the 

construction steps either generated by the designer or loaded from the CMS module. 

On the other hand, the CMS module is responsible for three different tasks: (1) the management of 

dependencies not defined by the parametric system, (2) hosting and managing semantics and LoDs, 

and (3) providing local storage for the product model in a domain-specific database. To accomplish 

these requirements, the CMS is split into a consistency platform and a database. The consistency 

platform is the active element that guarantees the correct management of the product model, while the 

database is the passive element where the models are stored. Next, a closer description of both 

modules is reported. 

Consistency Management System – Consistency platform 

The main goal of the consistency platform is to act as an active element that supervises and guaran-

tees the geometric consistency of the multi-scale product model. To achieve this goal, the consistency 

platform manages the dependencies included in the procedural geometry, hosts and manages the 

semantics, and hosts the logic interpreters defined by the implemented logic models. Though initially 

defined as a separate module, independent from the parametric system, its main functionality could be 

integrated into the parametric CAD system if so required. The reason for this unusual implementation 

is based on the fact that its basic functionalities were inherited from a parallel research project con-

ducted within the same research group (Borrmann et al. 2014, Flurl et al. 2012, and Flurl et al. 2014). 

Thus, the consistency platform is an enhanced development, based on the initial work done by Flurl 

(2016). From all the features that the original collaboration platform developed by Flurl offers, only four 

were enhanced, namely, socket communication, locking mechanism, and data and dependency man-

agement. In addition to these existing features, the hosting of semantics, and logic interpreters and 

horizontal connectors were developed from scratch: 

 Socket communication – The communication between the parametric CAD system and the 

collaboration platform was designed with client-server architecture, and developed for IP-

based networks. This architecture enabled the collaboration platform to be hosted on a dedi-

cated server, independently from the CAD workstations. Although the socket communication 

is a capable feature, this architecture does not play any role in the consistency approach. So, 

this implementation was just included in the CMS module without any further development. 
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 Locking mechanism –The main goal of the original collaboration platform was to consistently 

manage geometric representations when several users access the same model at the same 

time. To avoid inconsistencies due to simultaneous modification of the same geometry, the 

collaboration server
14

 implemented the capability of locking specific construction operations on 

specific CAD clients. This feature was extended to lock and refuse the manual modification of 

construction operations created by logic models. 

 Data management – The presented multi-scale approach is based on the combination of 

several neutral, procedural, and assembly models. To achieve this goal, the database linked 

to the collaboration platform was extended to manage these three types of models. Figure 87 

shows the project management tab on the user interface of the consistency platform. 

 Dependency management – Another main goal of the collaboration platform was to manage 

the dependencies created outside of the parametric CAD system. This light-enhanced module 

enables the consistency preservation of the geometric representation through several LoDs 

and several submodels. Thus, any modification that the parametric system cannot manage, 

such as a modification on a global parameter or a master-copy sketch, is recognized by this 

module and updated in the geometry accordingly. 

 Hosting semantics – Hosting the semantic information parallel to the geometry plays a main 

role in the multi-scale methodology. In particular, the semantic information is the only element 

that describes which geometry is placed in each LoD, and without the hosting and managing 

of this information, the parametric CAD system would receive the complete model without 

knowing whether a construction operation must be displayed or not. 

 Logic interpreters and horizontal connectors – Since the hosting and management of the 

logic interpreters and horizontal connectors is done in the consistency platform, the logic 

models‘ implementation can profit from the existing locking mechanism and dependency man-

agement module.  

 
Figure 87: Project management tab contained in the consistency platform user interface. On the left-hand 

side, a list of procedural and assembly models for the different projects is referenced, while on the right-hand 

side, the list of semantic spaces created for a space model is shown. 

                                                           
14

 In the work done by Flurl et al. (2012, 2014) the terms Collaboration platform and Collaboration server are 

equivalent and used as synonyms. 
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Consistency Management System – Database 

The second module contained in the CMS is the domain-specific database. Inherited and enhanced 

from an initial development by Flurl (2016), this passive element provides storage for the latest version 

of each product model, i.e. the updated objects managed by the consistency platform overwrite the 

existing ones in the database. Due to the large amount of objects that constitute a multi-scale product 

model, the database was divided into several tables. This design additionally enables the direct ac-

cess to specific parts of the product model, such as logic models or semantic information, inde-

pendently during the modeling process. 

 
Figure 88: Five main areas of the database: (1) the main area; (2) the assembly area; (3) the logic model area; 

(4) the procedural model area; and (5) the semantics area. 
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Figure 88 and Figure 89 depict the relational schema of the database divided in six main subject 

areas: (1) the main area holds the tables for the definition of the projects and their related models; (2) 

the assembly area holds the list of occurrences and constraints for each assembly model; (3) the logic 

model area specifies separately the content of each logic model; (4) the procedural model area de-

fines the general information of the procedural model; (5) the semantic area holds the semantic ele-

ments and the LoDs; and finally (6) the operation area relates the construction operations contained in 

the construction history. 

 
Figure 89: Procedural geometry area in the local database containing the construction operations. 

5.3.4. Implementation of an automatic coupling of submodels and non-linear models 

In Chapter 4, the concept of submodel was defined as a cluster of construction operations generated 

when an alignment-based infrastructure facility is divided into several sections. In clear opposition to 

this linear behavior, distinct building elements are frequently located at precise stationing or chaining 

points. Due to their discrete and repetitive behavior along the alignment, these elements are denoted 

as non-linear models. Typical examples of non-linear models in subway infrastructure are tunnel 

chambers, rescue shafts, and connection tunnels. Although submodels and non-linear models are 

characterized by the cluster definition, in order to be fully constrained, non-linear models need to 

establish geometrical dependencies with its related submodel, neglecting – to a certain degree – the 

basic cluster definition. 
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In addition, the repeated integration of non-linear models into large infrastructure facilities presents two 

main difficulties, namely, the renaming of the instantiated construction operations and the definition of 

new procedural dependencies between the submodel and the non-linear model. To fulfill these de-

mands, Section 4.4 presented a three-step methodology where the two first steps add the semantic 

information to the construction operations, and the third executes the integration algorithm. 

During the first integration step, an attribute is added to all the construction operations that define the 

non-linear model. This attribute can only be defined as auxiliary, connection, and geometry, depending 

on its role during the integration process. In order to evaluate this methodology, a new user interface 

was developed that allows designers and engineers to define and manage construction operations 

based on this attribute. Figure 90 shows the mentioned interface. 

 

Figure 90: User interface developed to define and manage construction operations based on its integration at-

tribute. 

During the second integration step, pairs of construction operations must be defined. The idea behind 

these pairs is to match equivalent construction operations in the submodel, and the non-linear model. 

In the example depicted in Figure 92, the equivalent operations are the work-planes. In the linear 

model, the work-plane indicates the stationing point in which the non-linear model must be introduced, 

while in the non-linear model, the work-plane is the starting construction operation for defining the 

axes of the rescue shaft. 

Although this process can be automated in coarser LoDs based on the attribute defined in both mod-

els, in more detailed LoDs, with large amount of pairs to be matched, the mere existence of this attrib-

ute cannot guarantee the success of the matching process. However, this limitation has become the 

starting point for a branched research topic with promising first results (Vilgertshofer & Borrmann 

2015). Figure 91 shows the developed interface that allows designers and engineers to create these 

construction operation pairs. 
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Figure 91: User interface developed to create pairs of construction operations. 

During the third integration step, the integration algorithm presented in Section 4.4 is executed. To 

illustrate this, Figure 92 presents the algorithm built upon an instantiated example. 

5.4. Consistency methods based on logic models 

5.4.1. Overview 

The design of subway infrastructure facilities is firmly governed by guidelines, codes, and national and 

international standards. Understanding and implementing the underlying abstract knowledge in a 

parametric geometry is a non-trivial task. Moreover, experts should interpret the demands of such 

engineering rules, match them to their specific requirements, and express their decisions in an appro-

priate geometric representation. In conclusion, the design task built upon engineering rules is time 

consuming and impedes the search of innovative solutions based on what-if analyses. 

To respond to this technological weakness, Section 4.5 presented a novel methodology that captures 

the underlying design knowledge by means of distinct units known as logic models. In particular, each 

logic model encapsulates an engineering rule, enabling both the automatic interpretation of abstract 

input parameters, and the generation of a corresponding set of construction operations. Moreover, to 

avoid the repetition of their input definition, several logic models are horizontally connected to create a 

more complex modeling result. In this way, engineers and other experts can alter complete sections of 

an infrastructure facility through the modification of parameters. 

For evaluating the developed methodology, four logic models and three horizontal connectors were 

developed. Each logic model and horizontal connector responds to a different design challenge, 

ranging from the alignment description at LoD1, down to the ring design at LoD5. Finally, two different 

integrations within the design workflow are shown, and their benefits and drawbacks are discussed. 
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Figure 92: The four integration steps built upon an instantiated example. In this particular infrastructure a 

tunnel submodel and a rescue shaft are modelled in LoD1. (The arrows between construction operations only 

represent their sequence in the construction history) 
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5.4.2. Alignment and tunnel axis models 

The first two logic models are characterized by the similar output they generate, i.e. a set of spatial 

curves that describe the course of the subway infrastructure in space. The first curve, defined in LoD1, 

is created by the alignment model, and represents the curve midway between the rails. The second 

curve, defined in LoD2, is created by the tunnel axis model, which shifts the resulting alignment curves 

by vertical and horizontal parameters. Both logic models are explained in detail. 

Alignment Model (AM) 

The Alignment Model (AM) is responsible for converting the alignment information into a set of 3D 

spline curves in the parametric CAD system. The alignment of a subway infrastructure represents the 

curve midway between the two rails and is usually constructed by the superposition of two 2D curve 

representations known as horizontal and vertical alignments. While the horizontal alignment is defined 

by straight segments, arcs, and connection curves, the vertical alignment is only described by straight 

lines and their interpolation curves at the intersection points, which generate the crest and sag curves. 

The correct definition of the alignment‘s information is crucial in the design of a subway infrastructure, 

not only because it is the fundamental geometry upon which the other LoDs rely, but also because it is 

the basic information needed to define the submodel partition strategy. Often, two different strategies 

are used to define this submodel partition, namely: based on a fixed number of horizontal alignment 

segments, or based on a constant length along the stationing. For the implementation done in the AM, 

and due to the fact that the submodel definition is an intrinsic characteristic not easily altered in a later 

design stage, a partition equivalent in number to the divisions of the horizontal alignment has been 

chosen. As a direct consequence, short tunnel tracks defined by a small number of horizontal align-

ment segments, generate a sufficient number of submodels capable of evaluating the proposed ap-

proach. 

During the infrastructure design, the alignment‘s definition is the design start point, and the only se-

mantic object contained in LoD1. Unlike other horizontally connected logic models, the definition of the 

AM is solely based on the engineer‘s design contribution. To capture it, the logic unit of the AM speci-

fies an alignment‘s data model that independently records the information of horizontal and vertical 

alignment segments. These two types of segments are defined as abstract classes that share com-

mon properties with their inherited elements. Once instantiated, these elements are collected in two 

separated lists and aggregated to the alignment model object. The resulting alignment data model is 

depicted in Figure 93. 

A primary difference between the two alignment curves is the method they implement for the linear 

referencing. In particular, the horizontal alignment makes use of the stationing, while the vertical 

alignment employs the chainage. The stationing, measured as flat projection of the alignment onto the 

horizontal plane, yields an imprecise value of the global length. On the contrary, the chainage of the 

vertical alignment, evaluated out of the stationing and elevation values, provides an exact magnitude 

of the global length (Scarponcini 2002, ISO 2012). Despite the precise positioning of physical ele-

ments based on stationing values that involves measurement difficulties on the construction site, the 

use of the stationing over the chainage is widely stablished. One reason for its usage is the small 

gradient allowed for subway infrastructure, where the maximal values are typically under 4% (FGSV 

1995, Lindamood et al. 2003, Schneider 2011), making stationing and chainage almost equivalent. 
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Figure 93: UML diagram of the logic unit defined by the alignment model. 

Though the information required by the logic unit is intended to be manually entered by the designer, 

for widespread engineering rules, this initializing information can be also extracted from neutral data 

models. For the specific case of infrastructure alignments, several open standards provide such infor-

mation, e.g. LandXML, OKSTRA, and IFC-Alignment (Rebolj et al. 2008, Schultze and Buhmann 

2008, and Amann et al. 2014a). To evaluate this possibility, a parser has been written that extracts the 

needed information from an instantiated LandXML file and initializes the logic unit. This parsing capa-

bility is contained in one of the two modules in which the logic interpreter is divided. 

Thus, the first module can extract any sequence of alignment segments provided by a LandXML file 

and convert it into a set of B-spline operations. In order to generate the B-splines, pairs of horizontal 

and vertical alignment segments are combined, generating a list of space points that are used to 

define the through prescribed points of the B-spline curve (PICC 2012, Höllig and Hörner 2013). From 

the different transition curves that can be defined between the straight and the curve segments in the 

horizontal alignment, only the clothoid is taken into consideration.   

The second module is responsible for updating the affected alignment segments after a parameter is 

modified in the logic unit e.g., the A-constant of a clothoid or the radius of a curve. Specifically, this 

module calculates the updated coordinates for the connection points of two consecutive alignment 

segments. Contrary to the parser module, not all the sequences of alignment segments are supported 

and only patterns LKCKL are identified and modified (Line-Clothoid-Curve-Clothoid-Line). Figure 94 

depicts an example of such a LKCKL alignment pattern. Appendix C explains this algorithm in detail. 

The recognition on this pattern enables three types of modifications: 

 Modification of the A-constant of one clothoid affects the segment itself and one predecessor 

and one successor, namely the line and the curve neighboring the clothoid. This modification 

is therefore classified as Grade 1. 

 Modification of the curve’s radius affects the segment itself and two predecessors and two 

successors. This modification is classified as Grade 2. 
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 Displacement of the curve’s PI. PI stands for Point of Intersection and is equivalent to the vir-

tual intersection of its two lines nearby. As these lines are connected at the same time to other 

clothoids and curves, the amount of affected segments is large, and spans four predecessors 

and four successors. This displacement is classified as Grade 4. 

 
Figure 94: Alignment based on the pattern LKCKL; Line (in black) – Clothoid (in red) – Curve (in blue) – 

Clothoid – Line. The description of the segments are done by the engineer or extracted from a neutral data 

model. The connection points must be specified, while the inner points are calculated by the logic interpreter. 

Tunnel axis model (TAM) 

Building subway infrastructure is an expensive activity. Of the multiple aspects that affect its final 

budget, the diameter of the tunnel is one of the most important. Every reduced centimeter affects, 

among others, the required volume of concrete, and the fabrication expenses of the TBM. Therefore, 

tunnel engineers try to reduce the diameter of the tunnel to its minimum. This reduction stops when 

the clearance profile reserved for the train collides with the tunnel‘s construction tolerance. Although 

this effect can be easily adjusted on straight segments, the consequence of a train tilting on a canted 

curve may enforce the construction of a larger diameter for the complete tunnel. To overcome this 

limitation on narrow curves, tunnel engineers introduce a horizontal shift between the tunnel axis and 

the infrastructure alignment. This displacement generates an extra space that the clearance profile 

can occupy. Figure 95 shows a clearance profile of a train tilting on a canted curve with and without 

horizontal shifting. 

 
Figure 95: Example of how the clearance profile of the train is affected by shifting the tunnel axis. On the left 

the axis is not shifted and the clearance of the train overlaps the construction tolerance of the tunnel. On the 

right, the axis has been shifted and both spaces do not overlap. 

The main goal of the Tunnel Axis Model (TAM) is to provide tunnel engineers with a shifting tool for the 

tunnel axis. In particular, the TAM allows engineers to assign an independent vertical and horizontal 

shift parameter for every horizontal alignment segment. By default, the vertical shift parameter remains 
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constant along the tunnel, while the horizontal parameter can differ for each curve. The tunnel axis is 

defined as an alignment equivalent curve, where the curve‘s radius is reduced along with the horizon-

tal shift parameter. A simple example is shown in Figure 96, where a section of a tunnel is represented 

by its alignment and tunnel axis curves. In this example the TAM defines a shift parameter on the 

curve alignment segment that creates an offset between both curves. 

 
Figure 96: Tunnel section represented by its alignment (in black) and tunnel axis (in red) curves. The TAM 

defines a vertical and horizontal shift. The vertical shift parameter is constant, while the horizontal one varies, 

creating the desired tunnel axis offset. 

For the implementation of the TAM‘s logic unit, a simple data model has been developed that contains 

only two classes. So, a list of axis displacement entities is aggregated to the TAM main class. This list 

is equivalent in number to the horizontal alignment segment list, and describes for each element the 

corresponding shifting parameter. To initialize this logic model, a link to an alignment model is needed. 

After the initialization process is finished, the tunnel engineer can introduce the shifting parameters to 

the required curves. 

 
Figure 97: UML diagram of the TAM’s logic unit and its access to the information contained in the alignment 

model. 

Once the logic unit is initialized or each time a shift parameter altered, the logic interpreter creates or 

modifies the corresponding construction operations. Because the TAM is constructed on the basis of 

the AM, any change introduced to the AM will additionally trigger an update in the outcome geometry 

of the TAM. Figure 97 represents the UML diagram of the TAM logic unit, and its access to the infor-

mation contained in the alignment model.  



 

 
120 Chapter 5. Conclusions and future work 

 

 

 

 

5.4.3. Ring design and tunnel configurator models 

In comparison to the AM and the TAM developed to evaluate the viability of logic models in the early 

stages of design, the two logic models presented in this section address the need for engineering 

rules in the detailing process, i.e. in LoD5. Thereby, the ring design model (RDM) assists engineers in 

the definition of the main ring parameters, e.g. the inner and outer diameter, the length of the ring, and 

the value of the conicity. In a similar way, the tunnel configurator model (RCM) profits from the infor-

mation defined in the RDM and the TAM to create a sequence of rings that minimizes its deviation 

from the theoretical tunnel axis curve. Both logic models, their benefits and limitations, are explained in 

detail. 

Ring design model (RDM) 

One widely accepted construction methodology for subway tunnels is based on the assembly of con-

secutive precast concrete rings. From the different typology of existing rings, the so-called universal 

ring has proved especially successful (Guglielmetti et al 2008, Maidl et al 2011). Universal rings are 

single tapered rings where the portal side surface is frequently not perpendicular to the ring axis. The 

conicity created by this tapered surface enables the ring to follow the alignment definition. So, the 

larger the conicity, the smaller the curvature of the feasible alignment. Figure 98 shows a universal 

ring made up of seven ring segments. Notice that in this example the key stone is from the same size 

as the other segments, in a configuration that is known as 7+0. 

 
Figure 98: Universal ring made up of seven ring segments. 

The logic unit of the Ring Design Model (RDM) is based on a single class that stores the parameters 

introduced by the tunnel engineer. At this point it is important to mention that this logic model does not 

pretend to analyze or simulate the new ring design based upon the boundary conditions, but to create 

a geometric model that matches the information provided. To achieve this goal, four input parameters 

have been defined in the logic unit: 

 Inner and outer diameter – These values must be inside of the range defined for the lining 

space. The main reason these parameters are not directly extracted from the space infor-

mation is due to the tunnel construction tolerances, which are also included in the space defi-

nition, and that change for every single project. 

 Ring length – Fundamental parameter whose value can only be defined by experience, or 

heuristics. On the one hand, short rings allow tunnel engineers to follow alignments more ex-

actly, and to build tunnels with smaller curves. On the other hand, the time to erect a ring is 
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independent of its length and therefore longer rings enable shorter construction schedules 

(BTS & ICE 2004). 

 Conicity – Although the conicity parameter can be calculated from the alignment information, 

tunnel engineers use a smaller curve radius to allow TBM operators to return to the theoretical 

trajectory when a deviation appears at the construction site (Guglielmetti et al 2008). 

 Number of segments – The number of segments is directly related to the tunnel‘s diameter. 

So, a smaller number of segments produces faster building ratios, but increases the weight of 

each segment. Increasing the weight of segments is not only a limitation that some TMB ma-

chines cannot handle, but poses a potential risk of rings collapsing when the building is not yet 

complete. 

Once the engineer has introduced the complete information to the logic unit, the logic interpreter 

modifies an existing assembly ring model to adapt the geometric model to the information committed. 

From the experience gained through the evaluation of this logic model, it can be said that using a 

single assembly ring model where all the parameters are applied is a difficult task to meet. Specifically, 

the modification of the number of segments in a ring requires a costly modification to the assembly 

that is not required for parameters such as the conicity or the length of the ring. Therefore, it is rec-

ommended that logic models for detailed LoD make use of a combined approach based on several 

pre-defined topic-related models and parametric modifications. 

Tunnel configurator model (TCM) 

One of the challenges engineers have to solve when constructing a shield tunnel is the calculation of 

the rotation angle for each ring along the axis. As the axis of the ring is straight, the combination of 

rings approximates the theoretical tunnel axis using a polygonal curve. Figure 99 shows an example of 

a straight tunnel made up of five universal rings. Even in this simple example, and due to the ring‘s 

conicity, the sequential combination of rings is unable to exactly follow the tunnel axis. Therefore, an 

optimization process is needed in the logic interpreter that minimizes the deviation of the polygonal 

curve created by the selected combination of rings from the theoretical tunnel axis. 

 
Figure 99: Example of a simple tunnel made up of five rings. The tunnel axis (dashed line) is approximated 

by the combination of rings, creating a polygonal tunnel axis (red line)  

An additional difficulty for this optimization process is the fact that rings can only be erected in a limited 

number of positions. First, the number of feasible positions is usually directly related to the amount of 

pressure jacks on the TBM. For universal rings, these are frequently two or three positions, equally 

distanced, per segment. Secondly, from the feasible number of positions, some of them are excluded 

from the optimization analysis, because two adjacent rings cannot have their longitudinal joints 

aligned. This avoids cross-joints, which are the most common location for leaks in tunnels (Maidl et al. 

2013). 
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Figure 100: Example of a tunnel section created by the TCM, where 110 rings were combined. 

The logic unit of the TCM allows the tunnel engineer to define, additionally to the already explained 

restrictions, some initialization parameters for the optimization process, such as the number of jacks 

per segment, the angle for the positioning of the first key-stone, and if needed, the angles of the lock 

sector. This lock sector is defined by contractors who want to avoid the risk of installing rings with the 

key-stone at the bottom of the ring. Once this information is introduced, the logic interpreter launches a 

new optimization process together with the definition of the ring (RDM) and the tunnel axis (TAM). 

The optimization algorithm is placed in the logic interpreter, and its main goal is to minimize the devia-

tion of the polygonal axis created by the selected combination of rings from the theoretical tunnel axis 

curve. For the prototypical implementation of this optimization problem, the algorithm described by 

Socher (2013) has been used, which provides reliable results for short tunnels. Figure 100 shows the 

result of this optimization algorithm for a 300-meter radius curved tunnel and 110 rings. 

The geometric layer receives the result of this optimization algorithm as an assembly model. In this 

assembly model, the constraints and rotation parameters are defined in a neutral manner, which the 

geometry layer must convert into a proprietary outcome. For the complete representation of the as-

sembly tunnel, only three types of constraints have been defined, from which only the angle between 

axes defines a parameter. This minimal implementation shows how effective the combination of pro-

cedural and assembly modeling for the description of infrastructure facilities can be.  

5.4.4. Horizontal connectors 

As the design of an infrastructure facility evolves, the underlying knowledge becomes more complex. 

To avoid redundancy in the definition of logic models but at the same time, reducing its developing 

effort, several models can be connected horizontally (see Section 4.5.4). These horizontal connectors 

allow logic models to initialize themselves with the current information contained in dependent models, 

and to be notified each time a modification arises in one of these models. 

To evaluate the modeling approach based upon logic models, three horizontal connectors have been 

developed. These connectors are defined by a single letter and are defined as follows: 

 The connector Track (T) links the alignment and the tunnel axis models. In addition to the up-

date events of the active connection, the track connection makes the horizontal alignment de-

scription, and its neutral procedural operations available to any logic model that implements 

the sink-plug. 

 The connector Axis (A) links the tunnel axis and tunnel configurator models. An additional ap-

plication of the axis connector, not covered in this case study, links the tunnel axis with the 
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ring design model. If so, the ring‘s conicity parameter, defined as a fixed value in the ring de-

sign, could be dynamically updated with any modification to the alignment model. 

 The connector Ring (R) links the ring design and tunnel configurator models. This connector 

communicates the ring parameters defined in its logic unit. 

The integration of horizontal connectors with logic models has been successfully accomplished with a 

simple tunnel case study. Due to the limitations of the optimization algorithm (Socher 2013) that runs 

as a part of the TCM, this case study is independent of the real-world case study presented in Section 

5.5. For this case study, a shorter tunnel, about 300 meters long, was selected. Besides this limitation, 

the same design parameters and the same universal ring of the real case study were employed. The 

final combination of logic models and horizontal connectors is depicted in a logic model diagram 

(LMD) represented in Figure 101.  

 
Figure 101: Logic Model Diagram (LMD) for the tunnel case study, where the four logic models and the 

three horizontal connectors have been applied. 

5.4.5. Integration of logic models into the infrastructure design workflow 

In order to achieve a successful adoption of the logic model design methodology, its integration into 

the engineer‘s workflow is conditional. This integration must guarantee the consistency of the product 

model, enabling the coexistence of conventional and logic model approaches. Finally, the integration 

of new interfaces has to be performed in a natural and seamless manner from the user perspective. 

Two restrictions were identified in order to guarantee the consistency of the procedural model when 

new construction operations are introduced by logic models. First, construction operations generated 

by logic models must be introduced in the procedural model at the end of the construction history, 

independently of their LoD and submodel. This approach avoids inconsistencies arising from reverse 

dependencies between construction operations, i.e. referenced construction operations are placed 

earlier in the construction history than the referencing operations. Secondly, the logic model‘s input 

must be based either on the abstract information introduced by the engineer or on the geometry 

resulting from other logic models. This restriction avoids the need for interpreting the content of a 

parametric sketch or the sequence of several construction operations. Therefore, as the construction 

operations generated by logic models are native operations of the CAD system, every subsequent 

modeling step built upon these operations will be consistently updated by the parametric CAD system. 

This fact assures the total integration of the logic model outcome into the procedural models. 

To illustrate the workflow combining manual modeling and logic models, Figure 102 shows an exam-

ple of a tunnel model up to LoD3. The workflow begins with the definition of the alignment of the 

subway infrastructure. To perform this modeling step, the designer imports the alignment information 

directly from a LandXML file. Once the alignment is converted into a set of 3D splines by the AM, the 

definition of the tunnel axis can be generated. To achieve this, the TAM provides a user interface 
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where the value of the horizontal parameter can be defined separately for each curve. At this modeling 

point, the designer can carry on with the detailing process using the parametric system as usual, 

regardless of the logic model extension. Next, at the time of constructing the lining of the tunnel, the 

designer only needs to fill in the information requested by the user interface of the RDM and RCM. 

Completion of this step generates, the tunnel‘s lining automatically. Finally, to avoid inconsistencies in 

the generated geometry, logic models lock their construction operations from manual manipulation. 

However, the interfaces defined by each logic models can be always reopened and its abstract infor-

mation revised to complete a rapid and consistent modification of the final geometry. 

 
Figure 102: Workflow followed to model a tunnel. On the left, the dependency diagram of the procedural ge-

ometry model, and on the right, the workflow the engineer follows to model the complete model. For demon-

stration purposes the workflow is extended beyond LoD3 until LoD5. 

The logic units are the elements responsible for interfacing with the designer. The integration of these 

new interfaces into the design workflow is key to their successful adoption. Therefore, two different 

integration strategies have been adopted: directly into the CAD system as a set of advanced features; 

and joined in a domain-specific editor. Both methodologies are explained in detail below.  

Integration of logic models as advanced features 

The literature and practical experience show that CAD users prefer to work with feature-based sys-

tems rather than with the direct manipulation of surface geometries (Regli et al., 2000; Bidarra, 1999). 

In parametric CAD systems, the non-sketch-based procedural operations described in Section 2.3.1 

usually follows this feature approach, where users only introduce the semantic information of the 

geometry they want to create or modify, while the CAD system manipulates the geometry and estab-

lishes the necessary dependencies. Figure 103 shows an example of a graphical user interface for the 

hole-feature in Autodesk Inventor. In this feature interface, the user can define not only the placement 

and size of the hole, but also semantic information such as the type of the hole or the angle of the drill 

point. 
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Figure 103: Hole-feature interface in Autodesk Inventor. 

Following this feature interface methodology, the logic units can be introduced in the parametric sys-

tem as a new set of advanced domain-specific feature interfaces. To achieve this goal, the basic 

architecture described in Section 5.3.3 was extended, allocating as many new advanced features as 

developed logic models. Specifically, the developed Add-In module includes the logic units and the 

geometric layers, while the consistency platform in the CMS includes the logic interpreters. The work-

flow associated with this approach begins with the parametric CAD system, where the engineer se-

lects the logic models of his interest. After introducing all the information in the advanced feature, the 

content of the logic unit is sent to the CMS where the logic interpreter analyzes and generates a set of 

neutral construction operations. Finally, these operations are sent back to the parametric system 

where the geometric layer translates and incorporates them as new proprietary construction opera-

tions. Figure 104 depicts the mentioned extension of the basic architecture. 

 
Figure 104: Extension of the basic architecture to incorporate the use of logic models as advanced features. 
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Integration of logic models in a domain-specific editor 

The approach built upon advanced features presents a minor weakness, i.e. the broad picture needed 

for the infrastructure design cannot be recognized at first sight. The different pieces of knowledge are 

spread under several advanced features and hidden from the infrastructure experts‘ sight through the 

different LoD. Therefore, a second approach to integrate the logic model methodology is based on the 

incorporation of all the different logic models into a single domain-specific editor. This approach allows 

engineers and experts not only to manage all the knowledge information form a central tool, but also 

to introduce modifications to the applied knowledge. 

The architecture needed to integrate an editor is slightly different compared to the one used in the 

advanced features approach. Although the logic interpreter remains in the CMS, and the geometry 

layer in the CAD system, the logic units are collected in the editor. Figure 105 depicts the extension of 

the basic architecture to incorporate the use of a domain-specific editor. The design workflow is also 

changing and under this methodology the engineer enters all the required knowledge into the editor. 

After the changes are committed, the content of the logic units is sent to the CMS where they are 

analyzed by the logical interpreters, which as in the advanced features method, send the neutral 

construction operations to the geometrical layer placed on the CAD system. 

 
Figure 105: Extension of the basic architecture to incorporate the centralized use of logic models in a domain-

specific editor. 

In summary, the integration of logic models as advanced features seems to be an approach that better 

suits the workflow and expertise from infrastructure designers, where every design step is achieved by 

a specific feature. On the other side, the integration of logic models in a domain-specific editor seems 

to better match the needs of engineers, who may be interested in a broader picture spanning several 

logic models. 

5.4.6. Measuring efficiency gains 

Finding a metric that enables a suitable comparison between the logic model approach and conven-

tional modeling techniques is a difficult issue. First, there is a software implementation effort, that due 

to the complexity in the development of a logic model, an average engineer cannot undertake alone. 

So, a close collaboration between civil engineers and software developers is expected in order to 

successfully achieve their development. 
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Once this software implementation is done, the CAD users can integrate logic models into their work-

flow as they would do with any other feature of the parametric CAD system. To test how much time is 

saved during the design stage with every design‘s iteration, two experiments were performed: First, a 

tunnel section containing 110 rings was selected, resulting in a total length of 150 meters. The time 

required by the TCM logic model to generate the model was about 25 seconds, while the manual 

assembly took an advanced Autodesk Inventor user almost two hours (1h 57min). Secondly, the 

alignment of this tunnel section was modified by implementing a standard what-if analysis: More 

precisely, the radius of a curve was changed from 200 meters to 300 meters. This modification implied 

the update of the rotation parameter of 80 tunnel rings. Undertaking these changes manually took the 

advanced Inventor modeler almost 10 minutes (9 min 23 sec), while the logic model was performed 

almost instantaneously. 

In conclusion, the employment of logic models and parametric CAD systems enabled the modeling of 

this complex case study in a short time and with little effort. Moreover, the resulting parametric model 

was extremely flexible, i.e. the modification of one parameter, as the curvature radius of a horizontal 

alignment segment, consistently updated the complete tunnel model. 

5.5. Case study 

5.5.1. Second main suburban track in Munich, Germany 

To prove the feasibility of the multi-scale design approach for subway infrastructure facilities, the 

different consistency methodologies developed during this thesis were applied on the modeling of a 

subway tunnel that is about to be constructed in the city of Munich, Germany. This infrastructure 

project, called the second main suburban track, has been designed to increase the limited capacity of 

the actual main track, and to provide a faster connection between the two ends of the city (Deutsche 

Bahn 2016a). 

The proposals for a second main track were initially discussed in the mid 90‘s after the estimations of 

250.000 passengers per day were clearly exceeded. However, and because the huge challenge such 

infrastructure facilities represent, the first measure was to increase the number of trains on the track; 

setting a frequency of two minutes between trains and making the first main track in Munich one of the 

most dense tracks in Germany (Deutsche Bahn 2016b). Despite the augmented capacity more trains 

introduced, the continuous growing, which reached more than 800.000 passengers in recent years, 

led authorities to decide for the construction of the second main track. Hence, in the late 2000‘s the 

planning stage began. 

The newly designed infrastructure facility is a nine-kilometer twin-tunnel railway track, with more than 

seven kilometers running underground. To avoid collisions with existing transportation networks the 

tunnels are planned 40 meters beneath the city‘s surface. This requirement, together with the length of 

each tunnel section – only three stops are planned within the city center – make the construction of 

nine rescue shafts necessary to allow passengers to safely leave the tunnel in case of emergency. 

Finally, an underground turnout is designed for a future, not yet planned, south branch. 

The early design phases (HOAI Leistungsphase 2-4) were carried by the engineering office Obermey-

er Planen + Beraten. The resulting 2D drawings provided the basis for the product modelling efforts 

conducted in the frame of this case study. The detailed design phase is currently underway. Altogeth-

er, this infrastructure facility is a highly challenging and dynamic project and the perfect testing scenar-

io for the proposed methodology. 
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Figure 106: Partial model of the new second main suburban track planned for the city of Munich. On this 

model are represented the main station, one section of the tunnel and the inner city. 

To illustrate the complexity of such a design, Figure 106 shows a partial model of the new second 

main suburban track planned for the city of Munich. Specifically, on this model are represented the 

main train station, one section of the twin-tunnel railway track and the inner city model. 

5.5.2. Multi-scale design methodology applied on a real twin shield tunnel scenario 

Built upon the ongoing design and planning of the second main subway project in the city of Munich, a 

section of the infrastructure was extracted in order to evaluate the presented multi-scale design meth-

odology based on product models and procedural geometries. In particular, the selected tunnel sec-

tion extents from the central train station (Hauptbahnhof) to the Marienhof station located on the city 

center. This section of the subway infrastructure is about two kilometers in length and has a rescue 

shaft placed in its middle point. Due to the fact that the Socher‘s library implemented by the TCM logic 

model does not return accurate solutions beyond 300 meters in length (see Section 5.4.3), the pro-

posed section of the tunnel is only modelled up to LoD4. For testing the feasibility of the LoD5 ap-

proach a shorter example was used. This testing scenario was introduced in Section 5.4.3. 

From a modeling point of view, the workflow begins with the definition of the alignment of the subway 

infrastructure. To perform this modeling step, the designer imports the alignment information directly 

from a LandXML file. Once the alignment is converted into a set of 3D splines by the AM, the definition 

of the tunnel axis can be introduced (see Section 5.4.2). To achieve this, the TAM provides a user 

interface where the value of the horizontal parameter can be defined separately for each curve. At this 

modeling point, the designer can carry on with the detailing process on the parametric system as 

usual, regardless of the logic model extension. 

However, as the complete tunnel is divided into several submodels by the AM, the designer cannot 

directly use standard construction operations. Standard parametric operations do not implement the 

submodel approach, and therefore are not able to establish the required dependencies. To overcome 

this problem the construction operations were overridden with a new user interface, where additionally 

to the basic geometry the designer introduces the semantic information related to the specific space 

object. Done in this way, the definition of the geometry and semantics can be performed on the same 

design step, avoiding unnecessary rework of the product model. Figure 107 shows one of the devel-

oped user interfaces. 
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Figure 107: Interface developed to integrate the semantic and the geometry definition under the same design 

step. This interface enables also the automatic definition of submodel dependencies. 

Finally, to complete the design of the proposed tunnel section, a rescue shaft is placed in its middle 

stationing point. Since there is not yet any semantic definition for such infrastructure elements, during 

the evaluation of the proposed approach only a geometric model was developed. After the definition of 

the connection tags required for its automatic integration, the developed algorithm initializes and 

introduces a copy of the procedural operations (see Section 4.4.4). The resulting tunnel section is 

depicted in Figure 108. 

After the modeling was completed, the original design can be easily modified to analyze several what-

if scenarios. On the one hand, each logic model can be reopened and its abstract information revised 

at all times to complete a rapid and consistent modification of the geometry. On the other hand, mas-

ter-copy dependencies (see Section 4.4.3) are built upon standard parametric sketches that can be 

modified in the same way any other conventional construction operation. 

 
Figure 108: Tunnel section and rescue shaft of the second main suburban track between the central train sta-

tion (Hauptbahnhof) and the Marienhof station 
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The study could show that the use of logic models, submodel dependencies, and conventional con-

struction operations integrated within multi-scale product models enables flexible designs that can be 

consistently modified almost instantaneously. 

5.6. Summary 

This chapter has verified the different consistency preservation methodologies presented in this thesis. 

First, the several consistency preservation methods introduced in Chapter 3 and Chapter 4 were 

implemented in a proof of concept effort. Secondly, the developed methods were applied and evaluat-

ed in a real case study based on the Second main suburban track, which is about to be constructed in 

the city of Munich, Germany. 

For the proof of concept of the several consistency preservation methods, three different tasks were 

conducted. First, a multi-scale semantic model was developed. This conceptual model was prototypi-

cally implemented on the basis of an established exchange standard, the well-known IFC, and on the 

basis of an ad-hoc XML data format. This second implementation additionally provided the possibility 

of integrating semantics and geometry in a common product model. The remaining two tasks were 

implemented in a commercial parametric system, the software Autodesk Inventor. Profiting from its 

API, several extensions were developed that enhanced its basic functionality with the new procedural 

dependencies and logic models. 

Finally, these novel methodologies were successfully applied to a real subway infrastructure project. 

Starting from its basic alignment definition, the flexible combination of the different methods enabled 

the highly detailed modeling of a complete tunnel section. Moreover, during the modeling of this pro-

ject, several modifications were performed at different LoDs, showing that this approach is feasible for 

the reliable and consistent modification of multi-scale models created during the design infrastructure 

projects.
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  Chapter 6.
 
Conclusions and future work 

6.1. Concluding remarks 

A central component in the digital design of infrastructure projects is Building Information Modeling 

(BIM). As reported by the British Infrastructure and Projects Authority (2016), if properly implemented, 

BIM technologies can reduce the design and construction costs of an infrastructure project up to 15%. 

Similarly, BIM methodologies contribute to reducing construction delays, improving relationships 

throughout the supply chain, and boosting innovation.  

One of the key features of BIM is the use of 3D geometric representations as a basic element from 

which the 2D drawings are derived. However, single 3D models can hardly encompass all the levels of 

abstraction that different engineering disciplines are used to. Therefore, during the research conduct-

ed for this thesis, novel methodologies have been examined that resulted in the development of a 

proposal for an IFC schema for shield tunnel infrastructure projects. Moreover, the widely accepted 

concept of Levels of Detail (LoD) in Geographic Information Systems (GIS) has been integrated and 

adapted to the specific requirements of infrastructure design. Although the proposed IFC extension is 

specific for shield tunnels, the basic multi-scale approach is general and widely applicable. 

The adoption of a multi-scale approach during the design of large infrastructure facilities presents clear 

advantages, but also risks and challenges. The main difficulty resides in the consistency preservation 

of the geometry across several LoD when a modification is performed. To address this issue, this 

thesis developed several methods to preserve the consistency. Based on the use of well-known para-

metric CAD systems and new developed geometric dependencies, procedural geometries and as-

sembly structures give designers and engineers the flexibility of working independently on different 

LoD, while the CAD system keeps the consistency of the complete model. 

6.2. Research contributions 

The research presented in this thesis aims at finding new methodologies to overcome the two main 

challenges that emerge during the design of large infrastructure facilities, namely, the difficulties with 

the exchange of planning information between engineering teams, and the lack of automated con-

sistency methods required when working in different levels of detail. 

To address these challenges, this thesis provided three major contributions:  

 A new multi-scale product model was built upon the concepts of product models and multi-

scale data models to respond to the current limitations of both technologies. 

 Due to the clear separation product models establish between semantics and geometry, 

methods based on parametric technologies have been developed that are capable to realize 

the desired cross-LoD consistency preservation. 
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 In addition to the basic design intent that can be captured by parametric sketches, a novel 

methodology was developed, which allows designers and engineers to encapsulate the design 

rationale when planning subway infrastructure facilities built upon codes, guidelines, and na-

tional standards. 

To respond to the first aforementioned challenge, Chapter 3 presented a multi-scale product model for 

shield tunnels that provides a complete representation of the semantic structure throughout five LoD. 

A comprehensive analysis and decomposition of the tunnel structure was provided, which defines and 

distributes in a spatial hierarchy the different spaces and physical objects that typically shape a shield 

tunnel. More specifically, the hierarchical structure of spaces is composed across the four initial LoD, 

while the entire set of physical objects are handled by the finest LoD5. This hierarchical structure is 

realized by the definition of two new aggregation entities. Thus, combining these two entities enables 

not only the definition of refinement relationships across different LoDs, but also the exclusive and 

direct access of an object located at a specific LoD. 

To contribute to solving the geometric consistency limitations current product models involve, this 

thesis successfully introduced the integration of parametric technologies. Accordingly, Chapter 4 

started with the investigation of the two main sources of inconsistency that arise when planning large 

infrastructure facilities, namely, the cross-LoD and cross-submodel consistency problems. Contrary to 

what might be initially expected, these two different types of model subdivisions enable the flexible 

integration and combination of procedural and assembly representations. Thus, procedural models 

were applied to space and physical objects, while assemblies were employed for the hierarchical 

structure definition in LoD5. In addition, several dependency methods were developed that extend the 

basic procedural consistency system and that enable the consistent update of the complete model 

when a local modification is performed. Moreover, the submodel approach combined with the devel-

oped consistency methods enables the flexible and dynamic integration of non-linear models, such as 

rescue shafts, connection tunnels and tunnel chambers. 

Finally, also in Chapter 4, a novel methodology that enables the capture of the design rationale by 

means of distinct units known as logic models was presented. These units, defined as autonomous 

systems, assist designers and engineers in the automatic generation of geometry and dependencies 

needed to render the requirements of an engineering rule. Moreover, to avoid repetition of the design 

rationale, several logic models were horizontally connected to create a more complex modeling ap-

proach. In this way, engineers and experts can alter complete sections of an infrastructure facility by 

the modification of distinct parameters, and visualize the resulting geometry almost instantaneously. 

6.3. Limitations and future work 

Although the methodologies developed and implemented in the frame of this thesis are generic and 

widely applicable, the base technologies on which they rely on make further investigations necessary. 

One example of this situation can be found in the IFC standard. Although it is just a matter of time 

before the BuildingSmart organization adopts a multi-scale approach, the integration of parametric 

technologies is not a minor topic that can be left unattended. In this direction the standardization 

efforts made by the STEP standard are certainly a good starting point. 

Parallel to these geometric difficulties, the presented approach is based on pure procedural represen-

tations, i.e., the geometry is solely described by its construction operations without any reference to its 

generated explicit representation. During the design of tunnel spaces, this limitation does not repre-

sent a real drawback due to the fact that tunnel spaces are defined by simple geometry that encom-

passes the set of physical objects. However, this limitation becomes more evident when the detail of 
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the model increases, mainly in LoD5. So for the design of physical components, engineers need to 

define cross-references between the procedural operation and the explicit geometry at a specific point. 

Though the challenge of keeping the consistency of dual representations is a well-known issue called 

persistent naming problem (Marcheix & Pierra 2002, Bidarra and Bronsvoort 2002), neither the STEP 

standard nor the IFC product model describe methods to consistently address this problem. While it is 

true that this persistency problem has been traditionally left to CAD vendors, the definition of new 

consistency methodologies that integrate dual models also require further investigations. 

Finally, the analysis done for the proof of concept identified one essential limitation of the logic model 

approach: the implementation of logic models in LoD5 became an extremely laborious and time-

consuming task. However, this work can be significantly reduced by the integration of dynamic CAD 

templates that the logic interpreter can handle and modify. Thus, modelled by design experts, dynamic 

templates have the ability to adapt themselves in a predefined scenario, following conventional pa-

rameterization techniques. As a consequence, logic interpreters only need to manage a limited 

amount of parameters, which in turn accelerates the deployment of new logic models. Actually, this 

approach was already studied and implemented for the design and optimization of aircraft components 

by LaRocca (2011) and Amadori et al. (2012). Thereby, one topic for future research could be the 

merging of both approaches – logic models and dynamic CAD templates – to create a more flexible 

and agile method to design large infrastructure facilities. 
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Appendix A.  
 
IFC proposal extension schema for shield tunnels 

A.1. Modified entities of the IFC4 schema 

Next, the three entities from the IFC4 schema that were modified and that act as an interface to the 

tunnel extension are reported, namely, IfcElement, IfcSpatialStructureElement and IfcRelAggregates. 

This extension is based on the IFC4 schema released on august 4
th
, 2014. 

ENTITY IfcElement 

 ABSTRACT SUPERTYPE OF (ONEOF 

    (IfcBuildingElement 

    ,IfcCivilElement 

    ,IfcDistributionElement 

    ,IfcElementAssembly 

    ,IfcElementComponent 

    ,IfcFeatureElement 

    ,IfcFurnishingElement 

    ,IfcGeographicElement 

    ,IfcTransportElement 

    ,IfcVirtualElement 

    ,IfcTunnelElement 

    ,IfcTunnelAxis)) 

 SUBTYPE OF (IfcProduct); 

 Tag : OPTIONAL IfcIdentifier; 

 INVERSE 

 FillsVoids : SET [0:1] OF IfcRelFillsElement FOR RelatedBuildingElement; 

 ConnectedTo : SET [0:?] OF IfcRelConnectsElements FOR RelatingElement; 

 IsInterferedByElements : SET [0:?] OF IfcRelInterferesElements FOR 

RelatedElement; 

 InterferesElements : SET [0:?] OF IfcRelInterferesElements FOR 

RelatingElement; 

 HasProjections : SET [0:?] OF IfcRelProjectsElement FOR RelatingElement; 

 ReferencedInStructures : SET [0:?] OF IfcRelReferencedInSpatialStructure FOR 

RelatedElements; 

 HasOpenings : SET [0:?] OF IfcRelVoidsElement FOR RelatingBuildingElement; 

 IsConnectionRealization : SET [0:?] OF IfcRelConnectsWithRealizingElements 

FOR RealizingElements; 

 ProvidesBoundaries : SET [0:?] OF IfcRelSpaceBoundary FOR 

RelatedBuildingElement; 

 ConnectedFrom : SET [0:?] OF IfcRelConnectsElements FOR RelatedElement; 

 ContainedInStructure : SET [0:1] OF IfcRelContainedInSpatialStructure FOR 

RelatedElements; 

 HasCoverings : SET [0:?] OF IfcRelCoversBldgElements FOR 

RelatingBuildingElement; 

END_ENTITY; 

 

ENTITY IfcSpatialStructureElement 

 ABSTRACT SUPERTYPE OF (ONEOF 

    (IfcBuilding 

    ,IfcBuildingStorey 

    ,IfcSite 
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    ,IfcSpace 

    ,IfcTunnel 

    ,IfcTunnelPart)) 

 SUBTYPE OF (IfcSpatialElement); 

 CompositionType : OPTIONAL IfcElementCompositionEnum; 

 WHERE 

 WR41 : (HIINDEX(SELF\IfcObjectDefinition.Decomposes) = 1)  

AND ('IFC4.IFCRELAGGREGATES' IN TYPEOF(SELF\IfcObjectDefinition.Decomposes[1]))  

AND (('IFC4.IFCPROJECT' IN TYPEOF 

(SELF\IfcObjectDefinition.Decomposes[1].RelatingObject)) 

OR ('IFC4.IFCSPATIALSTRUCTUREELEMENT' IN TYPEOF 

(SELF\IfcObjectDefinition.Decomposes[1].RelatingObject))); 

END_ENTITY; 

 

ENTITY IfcRelAggregates 

 SUPERTYPE OF (ONEOF 

 (IfcLoD 

 ,IfcIsRefinedBy)) 

 SUBTYPE OF (IfcRelDecomposes); 

 RelatingObject : IfcObjectDefinition; 

 RelatedObjects : SET [1:?] OF IfcObjectDefinition; 

 WHERE 

 NoSelfReference : SIZEOF(QUERY(Temp <* RelatedObjects | RelatingObject :=: 

Temp)) = 0; 

END_ENTITY; 

A.2. IFC Shield-tunnel entities included in the IFC4 schema 

The included entities of the IFC Shield-tunnel proposal are reported next. 

TYPE IfcTunnelSpaceEnum = ENUMERATION OF 

 (FULLTUNNELSPACE 

 ,INTERIORSPACE 

 ,ANNULARGAPSPACE 

 ,LININGSPACE 

 ,CLEARANCESPACE 

 ,SERVICESPACE 

 ,FLOORSPACE 

 ,TRACKSPACE 

 ,RINGSEGMENT 

 ,USERDEFINED 

 ,NOTDEFINED); 

END_TYPE; 

 

TYPE IfcTunnelInstallationEnum = ENUMERATION OF 

 (WALKWAY 

 ,TRAFFICLIGHT 

 ,TRACKBEDCONCRETE 

 ,TRACKBEDRAILS 

 ,CABLEDUCT 

 ,DRAINAGE 

 ,USERDEFINED 

 ,NOTDEFINED); 

END_TYPE; 

 

TYPE IfcTunnelAxisEnum = ENUMERATION OF 

 (ALIGNMENT 

 ,TUNNELAXIS 

 ,USERDEFINED 

 ,NOTDEFINED); 

END_TYPE; 
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ENTITY IfcTunnel 

 SUBTYPE OF (IfcSpatialStructureElement); 

 Identification : IfcIdentifier; 

END_ENTITY; 

 

ENTITY IfcTunnelPart 

 SUBTYPE OF (IfcSpatialStructureElement); 

 Identification : IfcIdentifier; 

END_ENTITY; 

 

ENTITY IfcTunnelSpace 

 SUBTYPE OF (IfcSpace); 

 SpaceType : IfcTunnelSpaceEnum; 

 Identification : IfcIdentifier; 

 PropertySet : OPTIONAL IfcPropertySet; 

END_ENTITY; 

 

ENTITY IfcTunnelAxis 

 SUBTYPE OF (IfcElement); 

TunnelAxisType : IfcTunnelAxisEnum; 

 PropertySet : OPTIONAL IfcPropertySet; 

END_ENTITY; 

 

ENTITY IfcTunnelElement 

 ABSTRACT SUPERTYPE OF (ONEOF 

    (IfcRingSegment 

 ,IfcTunnnelInstallation)); 

 SUBTYPE OF (IfcElement); 

END_ENTITY; 

 

ENTITY IfcRingSegment 

 SUBTYPE OF (IfcTunnelElement); 

END_ENTITY; 

 

ENTITY IfcTunnnelInstallation 

 SUBTYPE OF (IfcTunnelElement); 

    TunnelInstallationType : IfcTunnelInstallationEnum;  

END_ENTITY; 

 

(*RelatingObject = higher LoD, ReleatedObject = lower LoD*) 

ENTITY IfcIsRefinedBy 

 SUBTYPE OF (IfcRelAggregates); 

END_ENTITY;  

 

ENTITY IfcLoD 

 SUBTYPE OF (IfcRelAggregates); 

 Level : IfcInteger; 

END_ENTITY;  
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Appendix B.  
 
IFC Shield-tunnel STEP-P21 example files 

B.1. Level of extension 1 – Proxy based instance file 

The following example models a shield tunnel until LoD2. For the semantic implementation the level of 

extension one is used, i.e., only IFC compatible objects are instantiated. Specifically, Building and 

BuildingStorey are employed to describe the Tunnel and TunnelPart spaces, while the rest of the 

tunnel space structure is represented by Proxy instances. The geometry representation is constructed 

by ExtrudedAreaSolid entities.  

ISO-10303-21; 

/* ------------------- 

 Header definition 

   ------------------- */ 

HEADER; 

FILE_DESCRIPTION (('IfcTunnel example file'), '2;3'); 

FILE_NAME ('ShieldTunnel', '2014-05-22T17:20:22', ('Javier Jubierre'), ('TUM 

CMS'), '0.1', 'IfcPreprocessor', ''); 

FILE_SCHEMA (('IFC2X3')); 

ENDSEC; 

DATA; 

/* ------------------- 

 Project definition 

   ------------------- */ 

#1 = IFCORGANIZATION($, 'TUM', 'Technische Universitaet Muenchen', $, $); 

#2 = IFCAPPLICATION(#1, '0.1', 'IfcTunnel - Preprocessor', 'IfcTunnel - 

Preprocessor'); 

#3 = IFCCARTESIANPOINT((0., 0., 0.)); 

#4 = IFCDIRECTION((1., 0., 0.)); 

#5 = IFCDIRECTION((0., 1., 0.)); 

#6 = IFCDIRECTION((0., 0., 1.)); 

#7 = IFCAXIS2PLACEMENT3D(#3, $, $); 

#8 = IFCLOCALPLACEMENT($, #7); 

#9 = IFCUNITASSIGNMENT((#10, #11, #12)); 

#10 = IFCSIUNIT(*, .LENGTHUNIT., $, .METRE.); 

#11 = IFCSIUNIT(*, .AREAUNIT., $, .SQUARE_METRE.); 

#12 = IFCSIUNIT(*, .VOLUMEUNIT., $, .CUBIC_METRE.); 

#13 = IFCPERSON($, 'Jubierre', 'Javier R.', $, $, $, $, $); 

#14 = IFCPERSONANDORGANIZATION(#13, #1, $); 

#15 = IFCOWNERHISTORY(#14, #2, $, .NOCHANGE., $, $, $, 1400772022); 

#16 = IFCGEOMETRICREPRESENTATIONCONTEXT($, 'Model', 3, $, #7, $); 

#17 = IFCPROJECT('3UTuPZwzH94wlKcrI0fNGo', #15, 'Tunnel Project', $, $, $, $, 

(#16), #9); 

/* --------------------------- 

 Space structure definition 

   --------------------------- */ 

#18 = IFCSITE('1qBZZnJ2r8veTRSV_hAYE5', #15, 'SiteName', $, $, #8, $, $, 

.ELEMENT., $, $, $, 'Muenchen', $); 

#19 = IFCRELAGGREGATES('1hJQji2Mf8eOuLrEwu2RLq', #15, $, $, #17, (#18)); 

#20 = IFCRELAGGREGATES('0AY_rr41D9BAFzHplUT4UX', #15, $, $, #18, (#21)); 
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#21 = IFCBUILDING('2YExgyw294VfGm6KnQSegC', #15, 'IfcTunnel', $, 'IfcTunnel', 

#23, $, $, .ELEMENT., $, $, $); 

#22 = IFCAXIS2PLACEMENT3D(#3, $, $); 

#23 = IFCLOCALPLACEMENT(#8, #22); 

#24 = IFCRELAGGREGATES('314KuYMKzDQ8Fvn5Q7THq0', #15, $, $, #21, (#25)); 

#25 = IFCBUILDINGSTOREY('3yqTUIUBXAIuL6QueOKYyU', #15, 'IfcTunnelPart', $, 

'IfcTunnelPart', #27, $, $, .ELEMENT., $, $, $); 

#26 = IFCAXIS2PLACEMENT3D(#3, $, $); 

#27 = IFCLOCALPLACEMENT(#23, #26); 

/* --------------------------------------------------- 

 Space structure definition based on Proxy entities 

   --------------------------------------------------- */ 

#28 = IFCPROXY('20_eNyB_H3zh5ENY2eTzHa', #15, 'IfcFullTunnelSpace', $, $, #30, 

#40, .NOTDEFINED., 'IfcFullTunnelSpace'); 

#29 = IFCAXIS2PLACEMENT3D(#3, $, $); 

#30 = IFCLOCALPLACEMENT(#27, #29); 

#31 = IFCSHAPEREPRESENTATION(#16, $, $, (#39)); 

#32 = IFCCARTESIANPOINT((0., 0.)); 

#33 = IFCDIRECTION((1., 0.)); 

#34 = IFCAXIS2PLACEMENT2D(#32, #33); 

#35 = IFCCIRCLE(#34, 4.11); 

#36 = IFCARBITRARYCLOSEDPROFILEDEF(.AREA., $, #35); 

#37 = IFCCARTESIANPOINT((10., 10., 10.)); 

#38 = IFCAXIS2PLACEMENT3D(#37, #5, $); 

#39 = IFCEXTRUDEDAREASOLID(#36, #38, #6, 20.); 

#40 = IFCPRODUCTDEFINITIONSHAPE($, $, (#31)); 

#41 = IFCRELCONTAINEDINSPATIALSTRUCTURE('1GT$RIwJnABuPEoyT5$9jK', #15, $, $, 

(#28), #25); 

ENDSEC; 

END-ISO-10303-21; 

B.2. Level of extension 2 – Tunnel based instance file 

The following example models a shield tunnel until LoD3. For the semantic implementation the level of 

extension two is used, i.e., only the new developed tunnel-related entities are instantiated, while the 

multi-scale approach is not considered. The geometry representation is constructed by a combination 

of several geometric entities, namely, TrimmedCurve, CompositeCurveSegment, FixedReference-

SweptAreaSolid, and BooleanResult. 

ISO-10303-21; 

/* ------------------- 

 Header definition 

   ------------------- */ 

HEADER; 

FILE_DESCRIPTION (('IfcShieldTunnel example file'), '2;3'); 

FILE_NAME ('ShieldTunnel', '2014-06-13T15:29:57', ('Javier Jubierre'), ('TUM 

CMS'), '0.1', 'IfcPreprocessor', ''); 

FILE_SCHEMA (('IFC4')); 

ENDSEC; 

DATA; 

/* ------------------- 

 Project definition 

   ------------------- */ 

#1 = IFCORGANIZATION($, 'TUM', 'Technische Universitaet Muenchen', $, $); 

#2 = IFCAPPLICATION(#1, '0.1', 'IfcTunnel - Preprocessor', 'IfcTunnel - 

Preprocessor'); 

#3 = IFCCARTESIANPOINT((0., 0., 0.)); 

#4 = IFCDIRECTION((1., 0., 0.)); 

#5 = IFCDIRECTION((0., 1., 0.)); 

#6 = IFCDIRECTION((0., 0., 1.)); 

#7 = IFCAXIS2PLACEMENT3D(#3, $, $); 

#8 = IFCLOCALPLACEMENT($, #7); 
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#9 = IFCUNITASSIGNMENT((#10, #11, #12)); 

#10 = IFCSIUNIT(*, .LENGTHUNIT., $, .METRE.); 

#11 = IFCSIUNIT(*, .AREAUNIT., $, .SQUARE_METRE.); 

#12 = IFCSIUNIT(*, .VOLUMEUNIT., $, .CUBIC_METRE.); 

#13 = IFCPERSON($, 'Jubierre', 'Javier R.', $, $, $, $, $); 

#14 = IFCPERSONANDORGANIZATION(#13, #1, $); 

#15 = IFCOWNERHISTORY(#14, #2, $, .NOCHANGE., $, $, $, 1402666197); 

#16 = IFCGEOMETRICREPRESENTATIONCONTEXT($, 'Model', 3, $, #7, $); 

#17 = IFCPROJECT('2eac0c3Qb80wAj7Zl$8MDn', #15, 'Tunnel Project', $, $, $, $, 

(#16), #9); 

/* --------------------------- 

 Space structure definition 

   --------------------------- */ 

#18 = IFCSITE('1Al_6pctfFx90Y8TDMUMHz', #15, 'SiteName', $, $, #8, $, $, 

.ELEMENT., $, $, $, 'Muenchen', $); 

#19 = IFCRELAGGREGATES('18TGyMLxv4GBWsNnKQspFc', #15, $, $, #17, (#18)); 

#20 = IFCRELAGGREGATES('2EUrn8T_1BQvD6Mhoeiv3q', #15, $, $, #18, (#21)); 

#21 = IFCTUNNEL('3lYVWEOU92$fRXz1jbftqm', #15, 'IfcTunnel', $, 'IfcTunnel', #23, 

$, $, .ELEMENT., 'IfcTunnelId'); 

#22 = IFCAXIS2PLACEMENT3D(#3, $, $); 

#23 = IFCLOCALPLACEMENT(#8, #22); 

#24 = IFCRELAGGREGATES('2T5ZDst1n1qPLII9AhEztw', #15, $, $, #21, (#25)); 

/* ---------------------------------------------------- 

 Space structure definition based on Tunnel entities 

   ---------------------------------------------------- */ 

#25 = IFCTUNNELPART('2axtj$hWrE$P0orWH6nhCL', #15, 'IfcTunnelPart', $, 

'IfcTunnelPart', #27, $, $, .ELEMENT., 'IfcTunnelPartId'); 

#26 = IFCAXIS2PLACEMENT3D(#3, $, $); 

#27 = IFCLOCALPLACEMENT(#23, #26); 

#28 = IFCTUNNELAXIS('1vMDsppUD4Ef3zGsE9i3ll', #15, 'IfcTunnelAxis', $, 

'IfcTunnelAxis(IfcElement)', #33, #50, 'IfcTunnelSpace_Tag', #29); 

#29 = IFCPROPERTYSET('2RbLvFwgP7z8qcRyqgQI_t', #15, 'IfcPropertySetName', 

'IfcPropertySetText', (#30, #31)); 

#30 = IFCPROPERTY('Source DataFormat', 'LandXML'); 

#31 = IFCPROPERTY('DesignTool', 'Civil3D'); 

#32 = IFCAXIS2PLACEMENT3D(#3, $, $); 

#33 = IFCLOCALPLACEMENT(#27, #32); 

#34 = IFCSHAPEREPRESENTATION(#16, $, $, (#49)); 

#35 = IFCCARTESIANPOINT((0., 0.)); 

#36 = IFCCARTESIANPOINT((0., 30.)); 

#37 = IFCPOLYLINE((#35, #36)); 

#38 = IFCCARTESIANPOINT((70., 100.)); 

#39 = IFCDIRECTION((1., 0.)); 

#40 = IFCAXIS2PLACEMENT2D(#38, #39); 

#41 = IFCCIRCLE(#40, 70.); 

#42 = IFCTRIMMEDCURVE(#41, (IFCPARAMETERVALUE(180.)), (IFCPARAMETERVALUE(90.)), 

.F., .PARAMETER.); 

#43 = IFCCARTESIANPOINT((70., 170.)); 

#44 = IFCCARTESIANPOINT((200., 170.)); 

#45 = IFCPOLYLINE((#43, #44)); 

#46 = IFCCOMPOSITECURVESEGMENT(.CONTSAMEGRADIENT., .T., #37); 

#47 = IFCCOMPOSITECURVESEGMENT(.CONTSAMEGRADIENT., .T., #42); 

#48 = IFCCOMPOSITECURVESEGMENT(.CONTSAMEGRADIENT., .T., #45); 

#49 = IFCCOMPOSITECURVE((#46, #47, #48), .T.); 

#50 = IFCPRODUCTDEFINITIONSHAPE($, $, (#34)); 

#51 = IFCRELAGGREGATES('3nvFaaRof96OJ_Ym1wNMZJ', #15, $, $, #25, (#28)); 

#52 = IFCTUNNELSPACE('2Sjl2xJNjCLxvMgrGrIWvl', #15, 'IfcTunnelSpace', $, $, #57, 

#101, 'IfcTunnelSpace_LongName', .PARTIAL., .GFA., 0., .FULLTUNNELSPACE., 

'IfcTunnelSpaceId', #53); 

#53 = IFCPROPERTYSET('2NTQNbnAnBW9YbOwUgm2fw', #15, 'IfcPropertySetName', 

'IfcPropertySetText', (#54, #55)); 

#54 = IFCPROPERTY('TBM-Type', ''); 

#55 = IFCPROPERTY('Soil-Type', ''); 

#56 = IFCAXIS2PLACEMENT3D(#3, $, $); 

#57 = IFCLOCALPLACEMENT(#27, #56); 

#58 = IFCSHAPEREPRESENTATION(#16, $, $, (#100)); 
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#59 = IFCCARTESIANPOINT((0., 0.)); 

#60 = IFCDIRECTION((1., 0.)); 

#61 = IFCAXIS2PLACEMENT2D(#59, #60); 

#62 = IFCCIRCLE(#61, 4.11); 

#63 = IFCARBITRARYCLOSEDPROFILEDEF(.AREA., $, #62); 

#64 = IFCCARTESIANPOINT((0., 0., 0.)); 

#65 = IFCAXIS2PLACEMENT3D(#64, #6, $); 

#66 = IFCFIXEDREFERENCESWEPTAREASOLID(#63, #65, #81, 1.E-1, 9.E-1, #6); 

#67 = IFCCARTESIANPOINT((0., 0.)); 

#68 = IFCCARTESIANPOINT((0., 30.)); 

#69 = IFCPOLYLINE((#67, #68)); 

#70 = IFCCARTESIANPOINT((70., 100.)); 

#71 = IFCDIRECTION((1., 0.)); 

#72 = IFCAXIS2PLACEMENT2D(#70, #71); 

#73 = IFCCIRCLE(#72, 70.); 

#74 = IFCTRIMMEDCURVE(#73, (IFCPARAMETERVALUE(180.)), (IFCPARAMETERVALUE(90.)), 

.F., .PARAMETER.); 

#75 = IFCCARTESIANPOINT((70., 170.)); 

#76 = IFCCARTESIANPOINT((200., 170.)); 

#77 = IFCPOLYLINE((#75, #76)); 

#78 = IFCCOMPOSITECURVESEGMENT(.CONTSAMEGRADIENT., .T., #69); 

#79 = IFCCOMPOSITECURVESEGMENT(.CONTSAMEGRADIENT., .T., #74); 

#80 = IFCCOMPOSITECURVESEGMENT(.CONTSAMEGRADIENT., .T., #77); 

#81 = IFCCOMPOSITECURVE((#78, #79, #80), .T.); 

#82 = IFCCIRCLE(#61, 4.1); 

#83 = IFCARBITRARYCLOSEDPROFILEDEF(.AREA., $, #82); 

#84 = IFCFIXEDREFERENCESWEPTAREASOLID(#83, #65, #99, 1.E-1, 9.E-1, #6); 

#85 = IFCCARTESIANPOINT((0., 0.)); 

#86 = IFCCARTESIANPOINT((0., 30.)); 

#87 = IFCPOLYLINE((#85, #86)); 

#88 = IFCCARTESIANPOINT((70., 100.)); 

#89 = IFCDIRECTION((1., 0.)); 

#90 = IFCAXIS2PLACEMENT2D(#88, #89); 

#91 = IFCCIRCLE(#90, 70.); 

#92 = IFCTRIMMEDCURVE(#91, (IFCPARAMETERVALUE(180.)), (IFCPARAMETERVALUE(90.)), 

.F., .PARAMETER.); 

#93 = IFCCARTESIANPOINT((70., 170.)); 

#94 = IFCCARTESIANPOINT((200., 170.)); 

#95 = IFCPOLYLINE((#93, #94)); 

#96 = IFCCOMPOSITECURVESEGMENT(.CONTSAMEGRADIENT., .T., #87); 

#97 = IFCCOMPOSITECURVESEGMENT(.CONTSAMEGRADIENT., .T., #92); 

#98 = IFCCOMPOSITECURVESEGMENT(.CONTSAMEGRADIENT., .T., #95); 

#99 = IFCCOMPOSITECURVE((#96, #97, #98), .T.); 

#100 = IFCBOOLEANRESULT(.DIFFERENCE., #66, #84); 

#101 = IFCPRODUCTDEFINITIONSHAPE($, $, (#58)); 

#102 = IFCRELAGGREGATES('1ET8faXQDDzhv22Tx2Spgm', #15, $, $, #25, (#52)); 

ENDSEC; 

END-ISO-10303-21; 

B.3. Level of extension 3 – Tunnel and LoD based instance file 

The following example models a shield tunnel until LoD2. For the semantic implementation the highest 

level of extension (three) is used, i.e., the new developed tunnel-related and the multi-scale entities 

are instantiated. The geometry representation is constructed by a combination of two geometric enti-

ties, namely, BSplineCurve and SweptDiskSolid. 

ISO-10303-21; 

/* ------------------- 

 Header definition 

   ------------------- */ 

HEADER; 

FILE_DESCRIPTION (('IfcShieldTunnel example file'), '2;3'); 
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FILE_NAME ('ShieldTunnel', '2014-06-04T14:49:37', ('Javier Jubierre'), ('TUM 

CMS'), '0.1', 'IfcPreprocessor', ''); 

FILE_SCHEMA (('IFC4')); 

ENDSEC; 

DATA; 

/* ------------------- 

 Project definition 

   ------------------- */ 

#1 = IFCORGANIZATION($, 'TUM', 'Technische Universitaet Muenchen', $, $); 

#2 = IFCAPPLICATION(#1, '0.1', 'IfcTunnel - Preprocessor', 'IfcTunnel - 

Preprocessor'); 

#3 = IFCCARTESIANPOINT((0., 0., 0.)); 

#4 = IFCDIRECTION((1., 0., 0.)); 

#5 = IFCDIRECTION((0., 1., 0.)); 

#6 = IFCDIRECTION((0., 0., 1.)); 

#7 = IFCAXIS2PLACEMENT3D(#3, $, $); 

#8 = IFCLOCALPLACEMENT($, #7); 

#9 = IFCUNITASSIGNMENT((#10, #11, #12)); 

#10 = IFCSIUNIT(*, .LENGTHUNIT., $, .METRE.); 

#11 = IFCSIUNIT(*, .AREAUNIT., $, .SQUARE_METRE.); 

#12 = IFCSIUNIT(*, .VOLUMEUNIT., $, .CUBIC_METRE.); 

#13 = IFCPERSON($, 'Jubierre', 'Javier R.', $, $, $, $, $); 

#14 = IFCPERSONANDORGANIZATION(#13, #1, $); 

#15 = IFCOWNERHISTORY(#14, #2, $, .NOCHANGE., $, $, $, 1401886177); 

#16 = IFCGEOMETRICREPRESENTATIONCONTEXT($, 'Model', 3, $, #7, $); 

#17 = IFCPROJECT('1STVQEBhLF6PKXzKxvsQzz', #15, 'Tunnel Project', $, $, $, $, 

(#16), #9); 

/* --------------------------- 

 Space structure definition 

   --------------------------- */ 

#18 = IFCSITE('0$Zt$BUI14KA5EBXEg6Pok', #15, 'SiteName', $, $, #8, $, $, 

.ELEMENT., $, $, $, 'Muenchen', $); 

#19 = IFCRELAGGREGATES('3uXvPbDOT1Aw2$KDUveDZ0', #15, $, $, #17, (#18)); 

#20 = IFCRELAGGREGATES('0O_AAOpF99Sv9rWXGfpRXj', #15, $, $, #18, (#21)); 

#21 = IFCTUNNEL('0TNlGHgAfFCQtNIHPhkG94', #15, 'IfcTunnel', $, 'IfcTunnel', #23, 

$, $, .ELEMENT., 'IfcTunnelId'); 

#22 = IFCAXIS2PLACEMENT3D(#3, $, $); 

#23 = IFCLOCALPLACEMENT(#8, #22); 

#24 = IFCRELAGGREGATES('0ygv_7pbHChfmCgN7OaGBG', #15, $, $, #21, (#25)); 

/* ------------------------------------------------------------ 

 Space structure definition based on LoD and Tunnel entities 

   ------------------------------------------------------------ */ 

#25 = IFCTUNNELPART('12PLAZh6f8t8mCS3cKEZbS', #15, 'IfcTunnelPart', $, 

'IfcTunnelPart', #27, $, $, .ELEMENT., 'IfcTunnelPartId'); 

#26 = IFCAXIS2PLACEMENT3D(#3, $, $); 

#27 = IFCLOCALPLACEMENT(#23, #26); 

#28 = IFCTUNNELAXIS('1sWqsK9tf2eewhcqiNjHvd', #15, 'IfcTunnelAxis', $, 

'IfcTunnelAxis(IfcElement)', #33, #42, 'IfcTunnelSpace_Tag', #29); 

#29 = IFCPROPERTYSET('1LUbkdSS1B6vsbYDJ$Py0G', #15, 'IfcPropertySetName', 

'IfcPropertySetText', (#30, #31)); 

#30 = IFCPROPERTY('Source DataFormat', 'LandXML'); 

#31 = IFCPROPERTY('DesignTool', 'Civil3D'); 

#32 = IFCAXIS2PLACEMENT3D(#3, $, $); 

#33 = IFCLOCALPLACEMENT(#27, #32); 

#34 = IFCSHAPEREPRESENTATION(#16, $, $, (#35)); 

#35 = IFCBSPLINECURVE(3, (#36, #37, #38, #39, #40, #41), .UNSPECIFIED., .F., 

.F.); 

#36 = IFCCARTESIANPOINT((10., 10., 10.)); 

#37 = IFCCARTESIANPOINT((10., 40., 20.)); 

#38 = IFCCARTESIANPOINT((40., 80., 20.)); 

#39 = IFCCARTESIANPOINT((40., 120., 30.)); 

#40 = IFCCARTESIANPOINT((10., 150., 30.)); 

#41 = IFCCARTESIANPOINT((10., 180., 40.)); 

#42 = IFCPRODUCTDEFINITIONSHAPE($, $, (#34)); 

#43 = IFCLOD('18KqxQpbn4DupYca6s_aVR', #15, $, $, #25, (#28), 1); 
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#44 = IFCTUNNELSPACE('0p8DxMrtvA3urx69$8oxo$', #15, 'IfcTunnelSpace', $, $, #49, 

#59, 'IfcTunnelSpace_LongName', .PARTIAL., .GFA., 0., .FULLTUNNELSPACE., 

'IfcTunnelSpaceId', #45); 

#45 = IFCPROPERTYSET('0mPB6r9tL3nQ2RTI8BezEP', #15, 'IfcPropertySetName', 

'IfcPropertySetText', (#46, #47)); 

#46 = IFCPROPERTY('TBM-Type', ''); 

#47 = IFCPROPERTY('Soil-Type', ''); 

#48 = IFCAXIS2PLACEMENT3D(#3, $, $); 

#49 = IFCLOCALPLACEMENT(#27, #48); 

#50 = IFCSHAPEREPRESENTATION(#16, $, $, (#51)); 

#51 = IFCSWEPTDISKSOLID(#52, 4.11, 0, 1.E-1, 9.E-1); 

#52 = IFCBSPLINECURVE(3, (#53, #54, #55, #56, #57, #58), .UNSPECIFIED., .F., 

.F.); 

#53 = IFCCARTESIANPOINT((10., 10., 10.)); 

#54 = IFCCARTESIANPOINT((10., 40., 20.)); 

#55 = IFCCARTESIANPOINT((40., 80., 20.)); 

#56 = IFCCARTESIANPOINT((40., 120., 30.)); 

#57 = IFCCARTESIANPOINT((10., 150., 30.)); 

#58 = IFCCARTESIANPOINT((10., 180., 40.)); 

#59 = IFCPRODUCTDEFINITIONSHAPE($, $, (#50)); 

#60 = IFCLOD('3jGV35R814j8SbWAnygEMH', #15, $, $, #25, (#44), 2); 

ENDSEC; 

END-ISO-10303-21; 
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Appendix C.  
 
Calculation algorithm for LKCKL modifications to 
the alignment model 

One of the features of the alignment model is the calculation of complete new alignment sections 

when one parameter of one of their elements is modified. This is done through a two-step algorithm 

where first the connection points between alignment elements are solved, and secondly, the internal 

points of each element are computed. Contrary to the parser module, also contained in the AM, not all 

the sequences of alignment segments are supported and only patterns LKCKL are identified and 

modified (Line-Clothoid-Curve-Clothoid-Line). 

C.1. Basic architecture of the algorithm 

C.1.1 Starting point for the alignment modification 

The modification begins when the designer or engineer defines a new set of parameters for the current 

alignment. At that point in time, the algorithm knows all the information of the current alignment and 

the required design information for the updated one. As depicted in Figure 109, the key task of the 

algorithm is to calculate the coordinates of the connection points. Once this information is known, the 

inner points of each alignment segment are calculated in sequential order. 

 
Figure 109: During the modification of the alignment, the connection points are displaced to a new location. 

The presented algorithm calculates the new location and the coordinates of their inner points. 
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C.1.2 Modular architecture of the algorithm 

The algorithm performs the complete calculation in two steps: first the connection points are calculat-

ed; and second the internal points are computed. While the internal points are calculated for each 

segment independently and in a sequential order, the connection points between segments are calcu-

lated together in a single process. 

This process executes four subroutines in sequential order. These are: 

1. The initialize subroutine is divided into three functions: (1) if the intersection point (PI) of the 

two lines is unknown, its location is calculated; (2) the clothoid parameters of both curves are 

calculated; and (3) the unity vectors between the different alignment elements are determined. 

2. The resolve curve subroutine locates the origin of the curve and the two connection points 

with the clothoids. 

3. The resolve clothoids subroutine assigns the new curve connection points to the clothoid, 

and calculates the connection points with the lines. 

4. The resolve lines subroutine updates the connection points on the lines. 

C.2. Calculation of the connection points 

During the alignment‘s design, one of the challenges that must be addressed is the type of connection 

curve that is going to be used between straight and curve segments. The clothoid is one of the most 

widely applied connection curves for subway infrastructure. The developed algorithm is specifically 

designed to handle such a curve. 

C.2.1 Basic definitions 

Clothoid as connection curve 

A clothoid is a curve whose curvature changes linearly with its curve length, providing a smooth transi-

tion between a straight line (infinite curvature) and a given curve (fixed curvature). Clothoids are also 

frequently referred to as Euler spirals, or Cornu spirals.  

The parametric form of the clothoid with its origin placed on the coordinate       and 
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where L is the curve length from       to            , and its curvature is: 
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As an alignment transition curve, the code RAS-L-1995
15

 provides a simplification of the parametric 

form that focuses on the three basic parameters needed to fully describe a clothoid in space, namely, 

the clothoid parameter A, the curve length L, and the tangent‘s angle with the abscissa axis T. 
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Additionally to the three fundamental parameters needed to generate the clothoid, other dimensions 

were established to complement its definition. These dimensions are depicted in Figure 110.  

 
Figure 110: Typical dimensions associated to the clothoids’ definition (Source: Nemesdy, 1984) 

Based on the previously defined system of equations, the additional dimensions are determined as: 

               (7) 

               (8) 

                 (9) 

         (          )    (10) 

                                                           
15

 Richtlinien für die Anlage von Straßen – Linienführung 
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Algorithm variables defined in an arbitrary sequence LKCKL 

Figure 111 depicts one arbitrary oriented sequence LKCKL. This is employed to evaluate the validity 

of the vector algebra calculation applied in the subroutines.  

 
Figure 111: Arbitrary oriented sequence LKCKL 

C.2.2 Algorithm subroutines 

Initialize subroutine 

The recalculation sequence is based on two premises: 

 Whenever PI is shifted, the unity vectors of the two lines are calculated upon the new PI. This 

is done since   ̂     ̂  and   ̂     ̂  

   ̂ is found knowing that it is perpendicular to   ̂ and is directed from the center of the curve 

to the first line.   ̂ is found knowing that it is perpendicular to   ̂ and is directed from the cen-

ter of  the curve to the second line. Both are found by rotating   ̂ and   ̂ by 90°. 

Knowing that, the sequence starts with the calculation of the unit vectors –   ̂,   ̂,   ̂ and   ̂ – and 

the clothoid constants –   ,    and   —for both spirals. 

When the intersection point is unknown, first its location must be calculated. From the vector addition 

rule: 

   ⃗⃗⃗⃗⃗⃗  ⃗     ⃗⃗⃗⃗⃗⃗  ⃗    ⃗⃗⃗⃗  ⃗ 

 Vectors can be found as: 

   ⃗⃗⃗⃗⃗⃗  ⃗      ⃗⃗⃗⃗  ⃗ 

   ⃗⃗⃗⃗⃗⃗  ⃗      ⃗⃗⃗⃗  ⃗ 
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Hence the following linear system of equations needs to be solved: 

[
      
      

] *
 
 
+  [

   
   

] 

Then, PI is found as: 

          ⃗⃗⃗⃗  ⃗ (11) 

Resolve curve subroutine 

From the vector addition rule: 

  ⃗⃗⃗⃗ ⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗     ⃗⃗⃗⃗⃗⃗    ⃗⃗ ⃗⃗  ⃗    ⃗⃗⃗⃗  ⃗ 

Vectors can be found as: 

  ⃗⃗⃗⃗ ⃗⃗       ̂ 

  ⃗⃗ ⃗⃗  ⃗      ̂ 

  ⃗⃗ ⃗⃗ ⃗⃗             ̂ 

  ⃗⃗⃗⃗⃗⃗            ̂ 

Hence the following linear system of equations needs to be solved: 
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Then, O is found as: 

         ⃗⃗⃗⃗  ⃗            ̂ (12) 

and C and D are found as: 

         ̂ (13) 

         ̂ (14) 

where   ̂ is found by rotating   ̂ clockwise by angle   , and   ̂ is found by rotating   ̂ counter-

clockwise by angle   . 

Resolve clothoids subroutine 

For the first clothoid, the end point is the same as the start point on the curve. The start point on the 

clothoid is calculated as: 

          ̂       ̂ (15) 
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and Q is found as: 

           ̂ (16) 

Similarly, for the second clothoid, the start point is the same as the end point on the curve (following 

the alignment direction). The end point on the clothoid is calculated as: 

          ̂       ̂ (17) 

and R is found as: 

           ̂ (18) 

Resolve lines subroutine 

Based on the arbitrary sequence geometry, the end point of the first line is the same as the starting 

point of the first clothoid, and the starting point of the second line is the same as the end point of the 

second clothoid. 

C.3. Calculation of the internal points 

Once the connection points are solved, the length of the alignment segments can be calculated. Since 

the number of internal points is constant for all the segments, the distance between two consecutive 

points can be calculated as       for the straight line and clothoid, and as a fraction of the angle 

defined by the circular sector θ. 

Based on the example of the line AB, the coordinates of the internal points for a line are calculated as: 

   
  ̂ 

  ̂ 

 (19) 
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√    
   

   

√    
) (20) 

The internal points of the clothoid are calculated by laying the clothoid on the abscissas‘ axis, and 

rotating the coordinates as: 
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