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Abstract— In this work, we propose a Frequency-based Ac-
tion Descriptor (FADE) to represent human actions. In robotics,
with the development of Programming by Demonstration (PbD)
methods, representing and recognizing large sets of actions
has become crucial to build autonomous systems that learn
from humans. The FADE descriptor leverages Fast Fourier
Transform (FFT) for action representation and is combined
with the Manhattan distance for measuring similarities between
actions. It is characterized by a low time and space complexity
and is particularly suitable for classification of human actions.
For clustering problems, we propose a modified version of
FADE, called Uncompressed-FADE (U-FADE), which performs
well in combination with Spectral Clustering algorithms at the
price of a reduced compression. We compare FADE with action
descriptors based on Singular Value Decomposition (SVD)
and Hidden Markov Models (HMM) on the entire HDM05
motion capture database. Despite the high dimensionality of
the problem, we obtained on the entire database a promising
recognition rate of 78% combining FADE with a simple 1-NN
classification algorithm. Furthermore, we achieved a rate of
98% on a small action set and 88% on a medium action set.

I. INTRODUCTION
With the development of Programming by Demonstration

(PbD) paradigms, observation, automatic segmentation and
recognition of human actions has become a problem of key
importance in the field of robotics and autonomous systems.
In order to achieve a widespread usage of robotic systems in
service and domestic environments, a key objective is to de-
velop methods that allow nonexpert users to program robots
in an intuitive fashion. One of the most promising solution
is to provide robots with the ability to observe, interpret, and
imitate human actions [1]. By observing human motion and
being able to detect new actions, robots can incrementally
learn by imitation during their entire life cycle. Robotic
systems working in domestic and industrial environments
require the capability to learn a number of motion primi-
tives that is theoretically unlimited. In practice, robots with
lifelong-learning capabilities will be provided with databases
of segmented actions organized in a large numbers of classes
and actions. In order to maintain such databases, actions must
be represented by suitable descriptors in a compact form,
which is also computationally efficient. When moving from
laboratory environments to real applications, the scalability
of action representation and classification becomes a key
issue. As a consequence, particular attention needs to be paid
to computational complexity and to the dimensionality of the
action descriptors. Representation and recognition of human
whole body action is a complex problem for diverse reasons:
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Fig. 1. Overview of FADE approach

• The dimensionality of the problem is high, due to the
high number of human body DoFs

• The time length of actions is highly variable, even with
very similar actions

• Representations that are not highly-compressed induce
a heavy curse of dimensionality during the classification
step

In robotics, moreover, there are additional issues. The action
databases are likely characterized by examples split in a high
number of classes. In this scenario, novel descriptors are
needed that allow a fast and compact representation and,
at the same time, show the capability to distinguish among
different actions with a high number of different classes.
Dealing with large datasets, the time and space complexity
of the encoding process becomes a key issue.

In order to deal with this challenge, we propose FADE
(FFT-based Action DEscriptor). FADE is a simple descriptor
based on frequency analysis of the observed human motion
signals.

As shown in Fig. 1, the signals are converted into the fre-
quency domain through the Fast Fourier Transform (FFT) [2]
and are resampled in a convenient way to exploit the proper-
ties of human motion in the frequency domain. We leverage,
in particular, the property that human motion has frequency
components only in a small range, typically 0 − 10 Hz [3].
To reduce the dimensionality further, Principal Component
Analysis (PCA) is applied in the frequency domain. In order
to investigate accuracy and scalability properties, we tested
FADE, combined with different supervised and unsupervised
classification algorithms, on small, medium, and large-size
datasets of the HDM05 database [4]. The small dataset



includes 10 action classes and 100 actions, the medium-
size dataset includes 78 action classes and 497 actions, the
large dataset includes the entire HDM05 database, which is
composed by 2337 actions and 80 classes. In the medium-
size dataset, all the actions are performed by the same actor,
while in the entire HDM05 dataset there are 5 actors. The
medium-size dataset is also called Le Naour (LN) dataset,
since it has been used for the first time by Le Naour,
Courty, and Gibet in [5]. The classification of the entire
HDM05 dataset is then much more challenging because of
the increased number of actions and the increased variability
due to different performers.

In this work, the actions are observed as a set of joint
angle trajectories. In computed vision community, however,
the recent trend is to leverage the accurate knowledge of the
human skeletal models [6], [7]. These approaches perform
very well in terms of accuracy, however they use high-
quality information that is not easily available in service and
domestic robotic applications, i.e. accurate measurements of
marker positions, and the accurate skeletal model of the
performer. In laboratories equipped with expensive motion
capture systems, it is feasible to provide measurements of
the performer body and to derive quite an accurate skeletal
model. However, in unstructured environments, visual esti-
mation and tracking of the entire human kinematic chain
are not guaranteed, especially when the human is interacting
with objects, other humans, or with the robot itself. In order
to alleviate this problem, research on low-cost wearable
devices to measure human joint angles, such as Inertial
Measurement Units (IMU) and Accelerometers, is gaining
great interest [8], [9], [10]. Such devices allow measur-
ing joint angle positions and do not require any skeletal
model to observe human movement. Recent papers proposed
descriptors based on joint angle signals [11], [12]. Even
though it is well-known that recognizing actions with only
joint angle signals is more challenging [11], research on
the topic is still very active. The main reason is that joint
angle signals are natively invariant to body roto-translations
and are measurable with several types of sensing systems.
Although FADE can be potentially applied to skeleton-based
features, in this work we propose and leverage FADE to
encode actions described by joint angles.

II. RELATED WORK

Kulic et al. proposed an unsupervised method based on
Hidden Markov Models [13] to represent and cluster ac-
tions [14], [15]. This approach introduces the possibility to
learn a number of actions in an unsupervised incremental
fashion. Recently Takano and Nakamura [16] combined a
HMM-based clustering method with a Real-time Unsuper-
vised Segmentation method (RUS). The approach presented
in [17] leverages Singular Value Decomposition (SVD) to
represent human manipulation actions, Euclidean distance
to measure the similarity among actions, k-means and k-
NN for off-line and online clustering respectively. A more
recent approach to segmentation and classification uses a
neighborhood graph to segment the motion and to define

motion primitives. Primitives are seen as repetition in the
trajectories observed from humans. Zhou et al. proposed the
Hierarchical Aligned Cluster Analysis (HACA) [18], which
combines kernel k-means with generalized dynamic time
alignment kernel to detect repetitions in a data streaming.
A template-based approach to recognize actions [19] uses a
small set of a-priori known actions called templates. To align
observed actions with the example actions, the Dynamic
Time Warping (DTW) is adopted [20]. Although this method
is computationally expensive, it achieves a recognition rate
of 98% for 9 classes in the HDM05 database. In [21], a local
skeleton descriptor is proposed that encodes the relative po-
sition of joint quadruples. The input data are joint Cartesian
coordinates. The authors achieve 94% accuracy on a subset
of HDM05 constituted by 11 classes. An interesting paper,
which considers frequency domain [22], exploits ensembles
models learnt to represent each action and to capture the
intra-class variance. The method shows promising results
in dealing with data from depth cameras. The approach is
supervised and it uses a Support Vector Machine (SVM)
training method [23]. Compared with our approach, the
method proposed in [22] adopts a different descriptor, which
is based on pair-wise joint relative positions and it uses
input data based on joint Cartesian position. It clearly shows
how information in the frequency domain can be valuable in
human action recognition.

One of the main limitations of the the state-of-the-art
approaches is the scalability to a large number of actions and
classes [6]. The scalability is difficult to achieve because of
diverse problems: potential complexity in the representation
of actions, potential complexity in computing distances be-
tween actions, difficulty to differentiate actions in presence
of a high numbers of classes, and heavy curse of dimen-
sionality in the classification process. Chen [6] proposed
a method to alleviate this problem. The method leverages
a skeleton-based action descriptor and extreme Learning
Machines (ELM) for classification. The descriptor is defined
as skeleton-based (or model-based) because it requires the
knowledge of the skeletal model of the performer to obtain
a user-independent normalized representation. It achieves up
to 96% on 40 classes consisting mainly in stationary actions
of the HDM05 database. Using the same skeleton-based
features, in [7] a deep learning Neural Network is proposed
to classify motion capture sequences. It achieves an accuracy
higher than 90% on 2337 actions of HDM05 grouped in 65
classes. Despite its good performance on action recognition,
deep learning requires a massive amount of training data and
long training time. To compute the action representation,
an accurate estimation of the skeleton model is required.
Since these requirements are undesirable in many robotic
applications, we aim at developing a motion descriptor which
is suitable for online incremental learning and which does not
require an accurate skeletal model of the actor.

Ofli et al. suggested the SMIJ (Sequence of the Most
Informative Joint) for action recognition [24], which is based
on ranking the informative joints involved in an action [12].
In particular, the set of joints that present the maximum



0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Number of points K

64

66

68

70

72

74

76

78

80
A

cc
ur

ac
y 

w
ith

  1
-N

N
 (

%
)

f
th

= 10Hz

f
th

= 5 Hz

f
th

= 2Hz

f
th

=1Hz

f
th

=15Hz

Fig. 2. Accuracy with 1-NN as a function of number of points K for
different values of the frequency threshold fth

variance during the motion are considered most informative.
The approach was tested on 16 actions in the HDM05
database and on 11 actions in the Berkeley MHAD database
[24]. On 11 actions of HDM05, the authors reach an accuracy
of 84% with a supervised learning approach.

In [5] the authors proposed a representation that exploits
the pair-wise joint-to-joint distances in the skeletal model.
Afterwards, the dimensionality is reduced by Principal Com-
ponent Analysis (PCA). The descriptor is associated to a 2-
NN method to classify the actions. The approach proposed in
[5] is tested on a set of classes that is larger compared to most
state-of-the-art works. The dataset is constituted by a large
part of the HDM05 database, which consists of 497 actions
and 78 classes. Another interesting feature is that such a
dataset presents a high number of classes but a relatively
small number of repetitions for each class. This situation
can be realistic in robotics applications, where the user is
supposed to provide the robot with a limited number of
repetitions in the training process.

With respect to the papers in the literature, we focus
on two particular key issues. The first is how to represent
and classify the observed trajectories with a skeleton-free,
computationally efficient, and low-dimensionality strategy.
The second is the scalability of action representation and
classification in terms of accuracy and in computational time.
To take a step towards the solution of the first issue, we
propose the FADE descriptor, which is fast to compute,
presents a very low dimensionality, and exploits the effec-
tiveness of frequency analysis, already proven in the signal
processing domain. To show the scalability of FADE, we
test the descriptor on three different action sets of HDM05:
the small dataset (10 classes, 100 actions), the Le Naour’s
dataset (LN) [5] (78 classes, 497 actions), and the complete
HDM05 database (80 classes, 2337 actions).

III. PROPOSED APPROACH
The proposed strategy for human action classification

can be divided in three tightly connected problems: action
representation, similarity metrics between actions, and class
selection.

A. Action Representation
We define the FADE action representation as the function

f : A → Rm, where A is the set of all the human actions.

In this work each action A ∈ A is associated to a matrix At

of the form

At =


q1(t1) q2(t1) ... qJ(t1)
q1(t2) q2(t2) ... qJ(t2)
... ... ... ...
q1(tN ) q2(tN ) ... qJ(tN )

 (1)

The vector qk = [q1(tk), . . . , qJ(tk)] contains the joint
angular values at the discrete time frame k. In our work,
J is the number of joint angle signals. In HDM05 database
we have J = 56. In this work the sampling frequency fs
is set to 60 Hz. In Eq. (1) we use the symbol At to signify
that the matrix contains values in the time domain. The first
step of FADE is to compute the Discrete Fourier Transform
(DFT) of the time-domain signals. In order to compute the
DFT, we leverage the Fast Fourier Transform algorithm. For
more details about the FFT, refer to [2]. Applying the FFT
algorithm we have:

Aω = FFT(At) (2)

The columns of the matrix Aω contains the FFT of the
columns of the matrix At

Aω =


q1(ω1) q2(ω1) ... qJ(ω1)
q1(ω2) q2(ω2) ... qJ(ω2)
... ... ... ...
q1(ωN ) q2(ωN ) ... qJ(ωN )

 (3)

Since the human motion does not contain significant fre-
quency components beyond 10 Hz [3], we can remove the
values above a given threshold fth, with fth ≤ 10 Hz. As
shown in Fig. 5, we found empirically that fth = 5 Hz
guarantees the same performance as fth = 10 Hz. Since
the pulse ω is related to the frequency f by the relation
ω = 2πf , the pulse threshold will be ωth = fth/2π. In
order to have a consistent representation for all the actions
of the set A, we remove the frequencies bigger than ωth and
resample the data with the sampling rate in the frequency
domain ∆ω. In the standard FADE representation, we use a
constant value for ∆ω. In this work, we used ∆f = 0.010
Hz. As a consequence, we have ∆ω = 0.020/2π rad/s. The
set of all the selected sampling frequencies is denoted as ΩK ,
where K is the number of points in the frequency domain
sampled by the DFT of each joint signal. In this work, we
have chosen K = 500. This value offers a good trade-off
between accuracy and computational time.

After computing the sampling point in the frequency
domain we obtain the matrix

Aω̃ =


q1(ω̃1) q2(ω̃1) ... qJ(ω̃1)
q1(ω̃2) q2(ω̃2) ... qJ(ω̃2)
... ... ... ...
q1(ω̃th) q2(ω̃th) ... qJ(ω̃th)

 (4)

Given the matrix Aω̃ , we compute the Principal Compo-
nent Analysis (PCA) on the matrix Aω̃ , in order to maximize
the compression of our descriptor:

V ω̃ = PCA(Aω̃) (5)



Fig. 3. Visualization of a selected action: cartwheel

The matrix V ω̃ contains the PCA coefficients and has
dimension J × J , where J is the number of joints. To
derive the FADE representation, we choose the first column
of the matrix V ω̃ and denote it as v. The vector v is
then the FADE representation of the action At and we can
use the notation: v = FADE(At). The dimension of our
descriptor is then J × 1. A sequential description of the
representation procedure is described in Algorithm 1. We
have chosen PCA for compressing our descriptor because
(i) it is a very mature and well-known technique, (ii) it
is very easy to find optimized software implementations in
most programming languages, (iii) it can be applied for both
supervised and unsupervised learning approaches, since PCA
does not require data labels, and (iv) it does not require
a training phase like, for example, neural autoencoders.
As shown in Sec. IV, for some unsupervised algorithms
like Spectral Clustering (SC), it is convenient to use an
uncompressed version of FADE that we called U-FADE. The
main reason is that Spectral Clustering computes internally
a Singular Value Decomposition, exploiting information on
eigenvectors to cluster the actions. To derive U-FADE, we
simply reshape the matrix Aω̃ into a J ×K column vector,
where K is the number of points in the frequency domain.
Algorithm 2 reports the procedure to derive U-FADE. In Fig
3 an example of the HDM05 action ”cartwheel” is shown.
Fig. 4 show the joint angular signals of the same action in
the time domain. In Fig. 5 the FFT of the matrix At relative
to the action cartwheel is computed. Each signal depicted
in Figures 4 and 5 is associated to a color and represents
one of the 56 joint angles as a function of the time and of
the frequency respectively. From Fig. 5 it is evident how the
significant information about a complex action like cartwheel
is all contained in the range 0 − 5 Hz. For any action or
automatically segmented primitive of any time duration, the
significant information is contained always in a very limited
interval of frequencies. Figure 6 shows the values of FADE
descriptors for the actions cartwheel, walk, and punch. It
is evident how walk and cartwheel are encoded with more
FADE components, while punch presents high values on a
limited number of components. From the figure it can be seen
that FADE is able to encode different actions into clearly
distinct patterns.
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Fig. 4. Joint angular values in the time domain of the action cartwheel

The asymptotic complexity of FADE and U-FADE as a
function of the time-frame number is O(n log n). To derive
such complexity we consider the steps of Algorithm 1. In line
2 we compute the FFT, whose O(.) complexity is O(n log n).
In line 3 we resample the signal in the frequency domain
stopping at fth. Using linear interpolation for resampling the
complexity is O(n). Line 4 computes the PCA of the matrix
Aω̃ . Since the dimension of Aω̃ is fixed and does not depend
on n, we have a O(1) computational cost. The total cost is
then O(n log n)+O(n)+O(1), that is asymptotically equal to
O(n log n). The dimensionality is only J for FADE and K×
J for U-FADE. The number of frequency domain points K
does not depend on the number of frames in the time domain.
As a consequence, after fixing the number of joints, both
FADE and U-FADE have O(1) for memory requirements.
As shown in Sec. IV, with such a high compression rate,
FADE shows good accuracy and low computational cost.

In order to give an example on how K and fhz affect
the performance of the recognition pipeline, we plot the
performance of FADE, combined with 1-NN and Man-
hattan distance, evaluated on the whole HDM05 dataset.
It is possible to notice that fth = 5 Hz, fth = 10 Hz,
and f = 15 Hz show similar performance. As expected,

Algorithm 1 FADE Action Representation
1: v = FADE(ActionMatrixAt)
2: Aω = FFT(At)
3: Aω̃ = resample(Aω,ΩK)
4: V ω̃ = PCA(Aω̃)
5: v = V ω̃(:, 1) //select the first column
6: return v

Algorithm 2 U-FADE Action Representation
1: vU = UFADE(ActionMatrixAt )
2: Aω = FFT(At)
3: Aω̃ = resample(Aω,ΩK)
4: vU = reshape(Aω̃,K · J, 1)
5: return v
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Fig. 5. FFT of the joint angular values of the action cartwheel
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Fig. 6. FADE descriptors of three actions: cartwheel, walk, and punch.

frequencies beyond 10 Hz do not add valuable information.
Reducing the frequency threshold to 2Hz and to 1 Hz, the
accuracy decreases for every value of K. In terms of number
of points K, the accuracy increases significantly before a
threshold. Increasing the number of points K after a certain
threshold, the improvement of the accuracy becomes minor.
The threshold is around K = 500. The number of points
affects the computational cost. When limited computational
power is available, it can be important to choose a trade-off
between accuracy and computational cost.

We found that FADE is particularly convenient to rep-
resent and classify segmented actions due to the following
properties:

Human motion is bounded at a low frequency: Signals
captured from human actions have a narrow frequency spec-
trum: low-pass filter with a bandwidth bound width around
10 Hz.

Representation independent from the time duration of an
action: We can represent all the actions with the same
number of points in the frequency domain, independently
from the duration of the motion.

Efficient algorithms to compute Fourier Transform: There
are efficient algorithms to compute the Fourier Transform
such as Fast Fourier Transform (FFT). FFT is well-known
for general signal processing and it is easy to implement in
CPU for wearable devices. Its computational complexity is
O(n log n).

Suitable both for single and cyclic motion: We can recog-
nize both one repetition of an action and cyclical repetitions
with the same representation.

Robustness to noise: FADE takes into account only a
well-known frequency interval where information of human
motion is contained [3]. As a consequence, it is more robust
to measurement noise and has ”native” filtering properties.

Good performance with low dimensionality: The dimen-
sionality of the compressed FADE is only 1 × J . Despite
such a compression rate, we achieve a scalable classification
accuracy with most popular classification methods.

B. Similarity Between Actions

As described in Sec. III, FADE allows representing a
matrix time sequence of dimension (N, J) into a vector
of dimension J × 1. To measure the similarity among
actions, we evaluated different distance measures: Euclidean,
Cosine, Manhattan, and Mahalanobis. We observed that the
Manhattan distance performed best to measure similarity
among FADE representation of human actions. Our empirical
observation is confirmed by [25], which shows how Manhat-
tan distance performs better with high dimensional data. The
Manhattan distance between two vectors x = (x1, x2, ..., xn)
and y = (y1, y2, ..., yn) is computed by the following
equation:

d(x,y) =

( n∑
i=1

|xi − yi|
)
. (6)

C. Action Classification and Clustering

In order to test FADE in both classification and clustering
problems, we combine FADE and U-FADE with popular
supervised and unsupervised approaches. Concerning su-
pervised methods, we considered k-Nearest-Neighbors (k-
NN) and Support Vector Machines (SVM). Since we are
particularly interested in simplicity and low computational
cost, we combined FADE with 1-NN and 2-NN. SVMs,
on the other hand, are well-known for their effectiveness in
supervised classification, even if the training process is more
computationally expensive. We compare k-NN and SVM to
evaluate how much we gain in accuracy by accepting a longer
training time.

Regarding clustering approaches, we investigate Spectral
Clustering (SC), K-Means (KM), and Agglomerative Clus-
tering (AC) [23]. SC and KM are mature state-of-the-art
approaches for data mining applications. The main limitation
of such approaches is that they require as an input the
maximum number of clusters. In order to alleviate this issue,
we tested AC [23], which does not require such a parameter.
Unsupervised classification of segmented human actions is a
challenging research problem, especially when scaling from



a dozen actions and few classes to hundred classes and
thousand actions. The return in developing new strategies
for unsupervised clustering of big action datasets will have a
high impact in robotics. Clustering approaches can provide
autonomous systems with the capability to interpret and learn
diverse classes of actions without the direct supervision of
humans. In particular, a robotic system can autonomously
observe humans, encode the segmented actions with FADE,
and automatically cluster the observed actions without any
human intervention.

IV. EXPERIMENTAL RESULTS

A. Comparisons

Among different methods for skeleton-free action repre-
sentation, we decided to compare FADE with representations
based on SVD and HMM [23]. Both are mature approaches
that can be adopted for action representation with different
segmentation and recognition strategies.

1) SVD-based descriptors: In order to derive a descriptor
based on SVD [17], let us compute the Singular Value
Decomposition of the matrix At, where At is defined in
Eq. (1). It is:

(UA,ΣA,V A) = svd(At) (7)

According to the properties of SVD, matrices UA,V A

belong to Rn×m, where m is the number of DOFs and n
is the number of time frames. The dimension of the matrix
V A is m×m. As a consequence, it does not depend on the
number of time frames. A SVD descriptor, as proposed in
our previous work [17], can be obtained by extracting the
first column of the matrix V A.

2) HMM-based descriptors: An HMM represents spa-
tiotemporal variations of motion trajectories as a set of S hid-
den states. It is described by the set of parameters λ, learned
from motion trajectories using the Baum-Welch algorithm
[13]. In case of continuous time input, the output probability
is represented as a mixture of M Gaussians. We tried the
mixture of 1, 2, 5, and 8 Gaussians. In our analysis, the
accuracy decreases when the number of Gaussians increases.
This is due to the relatively limited number of points per state
(20 per state on average). As a consequence, in this work
we use one Gaussian for each state, i.e. M = 1. A left-
to-right HMM, where state transitions occur only between
two consecutive states [13], is the most suitable to represent
actions. Human actions, in fact, have a starting and an ending
point. The procedure to classify incoming actions requires
two steps. First, an HMM for the new action is learned.
Second, the action is assigned to the closest class using
the HMM distance. The distance between two HMMs is
computed using the Kullback-Leibler distance:

d12 =
1

T
[logP (O2|λ1))− logP (O2|λ2))] (8)

where λ1, λ2 are two models, O2 is an observation sequence
generated by λ2 [13] and T is the length of O2. Since d12
in (8) is not symmetric, the distance between two HMMs is
computed as dhmm

1,2 = dhmm
2,1 = (d12 + d21)/2. In order to

Representation Time Complexity Space Complexity
FADE O(n logn) O(1)
SVD O(n2) O(1)

HMM O(n2) O(s)

TABLE I
TIME AND SPACE COMPLEXITY OF THE ENCODING PROCEDURE AS A

FUNCTION OF NUMBERS OF FRAMES IN THE TIME DOMAIN

ensure that the representation is implemented in an optimal
way, we selected the optimal number of states by exploiting
the Akaike Information Criterion (AIC) [26]. In order to
reduce the search space of AIC, we limit the maximum
number of states to 15.

B. Analysis of Space and Time Complexity

We report in Table I the time (computational) and space
complexity of the action encoding procedure as a function of
the number of frames n. We consider the number of joints to
be fixed to J . As described in Section III, the computational
complexity of FADE is O(n log n), while the dimension is
J and it does not depend on the the number of frames. The
spatial complexity is then O(1). The time complexity of U-
FADE is O(n log n), while the spatial complexity is J ×K.
Since both K and J remain constant when n increases, U-
FADE has a spatial complexity O(1). Concerning SVD, we
have a complexity of O(n2), since we have to compute
the SVD on the entire time-domain sequence [23]. The
spatial complexity for SVD is constant and it is equal to
J . Therefore the space complexity does not depends on n.
According to Sec. IV-A.2 and to [13], the time complexity of
HMM is in our case O(n2) [13], while the space complexity
is O(S), where S in the number of states selected to encode
the actions. If we choose a number of states that depends
on the length of the action, we have a space complexity of
O(n).

C. Comparative Results

In order to show the performance of our approach on
datasets of different sizes, we have chosen three sets of data:

• Small action subset (Table II). We picked up 10 classes
and 100 actions of HDM05

• Le Naour’s subset (Table III) We considered the dataset
adopted in [5], which contains 78 classes and 497
actions of the HDM05 database. These actions were
performed by a single actor.

• Entire HDM05 dataset (Table IV) We used all the
actions and the classes in the HDM05 dataset without
removing lower quality actions. The actions were per-
formed by five different actors.

For each data set we evaluated how FADE performs with
supervised and unsupervised classification methods. In par-
ticular, we compared FADE, U-FADE and SVD combined
with the classification approaches described in Section IV-A.

In Table II, the results for the small action set are shown.
In this dataset, FADE outperforms both SVD and HMM



Representation Classification Type Accuracy(%)
FADE 1-NN Supervised 89.0
FADE 2-NN Supervised 87.0
FADE SVM Supervised 89.0

U-FADE 1-NN Supervised 96.0
U-FADE 2-NN Supervised 95.0
U-FADE SVM Supervised 96.0

SVD 1-NN Supervised 84.0
SVD 2-NN Supervised 81.0
SVD SVM Supervised 84.0
HMM HMM Supervised 90.0
FADE SC Unsupervised 80.0
FADE K-Means Unsupervised 76.0
FADE AC Unsupervised 79.0

U-FADE SC Unsupervised 98.0
U-FADE K-Means Unsupervised 82.0
U-FADE AC Unsupervised 88.0

SVD SC Unsupervised 60.0
SVD K-Means Unsupervised 61.0
SVD AC Unsupervised 62.0

TABLE II
RESULTS FOR THE SMALL ACTION SET FOR SUPERVISED APPROACHES

(TOP) AND UNSUPERVISED APPROACHES (BOTTOM)

Representation Classification Type Accuracy(%)
FADE 1-NN Supervised 86.5
FADE 2-NN Supervised 84.9
FADE SVM Supervised 88.0

U-FADE 1-NN Supervised 81.5
U-FADE 2-NN Supervised 85.9
U-FADE SVM Supervised 85.9

SVD 1-NN Supervised 84.7
SVD 2-NN Supervised 81.4
SVD SVM Supervised 85.0
HMM HMM Supervised 82.5
FADE SC Unsupervised 59.8
FADE K-Means Unsupervised 59.2
FADE AC Unsupervised 63.2

U-FADE SC Unsupervised 67.2
U-FADE K-Means Unsupervised 59.1
U-FADE AC Unsupervised 58.8

SVD SC Unsupervised 54.7
SVD K-Means Unsupervised 53.5
SVD AC Unsupervised 57.1

TABLE III
RESULTS FOR THE LN ACTION SET PROPOSED IN [5] FOR SUPERVISED

APPROACHES (TOP) AND UNSUPERVISED APPROACHES (BOTTOM)

based descriptors in terms of accuracy and in terms of com-
putational complexity. The time complexity of FADE-based
encoding is O(n log n). For the SVD approach it is O(n2),
and for HMM it is O(n2), where n is the number of the
frames in the time domain. It is interesting to note how with a
relatively small number of actions the unsupervised methods
achieve good performance, especially the Spectral Clustering
algorithm. When dealing with a relatively small number of
actions, the benefits of compression are not directly visible.
U-FADE reaches 98% with spectral clustering and 88% with
agglomerative clustering. Using SVM, U-FADE achieves
96% accuracy. For supervised methods, we adopted a 10-
fold cross-validation approach.

Representation Classification Type Accuracy(%)
FADE 1-NN Supervised 77.4
FADE 2-NN Supervised 68.2
FADE SVM Supervised 79.0

U-FADE 1-NN Supervised 74.5
U-FADE 2-NN Supervised 70.9
U-FADE 2-SVM Supervised 74.1

SVD 1-NN Supervised 75.1
SVD 2-NN Supervised 65.9
SVD SVM Supervised 73.9

HMM HMM Supervised 63.5
FADE SC Unsupervised 37.5
FADE K-Means Unsupervised 37.0
FADE AC Unsupervised 36.2

U-FADE SC Unsupervised 46.6
U-FADE K-Means Unsupervised 40.4
U-FADE AC Unsupervised 39.2

SVD SC Unsupervised 34.0
SVD K-Means Unsupervised 33.3
SVD AC Unsupervised 34.4

TABLE IV
RESULTS ON THE ENTIRE HDM05 DATABASE, FOR SUPERVISED

APPROACHES (TOP) AND UNSUPERVISED APPROACHES (BOTTOM)

Table III summarizes the results obtained with the action
set adopted in [5], which is denoted as LN dataset. It is
composed by 78 classes and 497 actions. FADE reaches a
recognition rate of 88% with SVM and 87% with 1-NN,
cross-validated with 10-fold. Despite the lowest computa-
tional complexity, it outperforms SVD in all the approaches
and unsupervised approaches we considered. This larger
dataset shows how the scalability of unsupervised methods
is limited. With FADE we reach 63% with Agglomerative
Clustering (AC) and 60% with K-means. Considering that
AC is unsupervised and it does not even require the number
of clusters as an input parameter, the result can be considered
promising. Concerning Spectral Clustering (SC), we can
observe that the extreme compression of FADE causes a
small decrease in the performance with respect to U-FADE.

The results on the entire HDM05 are shown in Table IV.
The entire dataset contains 80 classes and 2337 actions. With
respect to the LN dataset, the complete HDM05 presents only
2 classes more but around 5 times the number of actions
as it considers the actions performed by all the actors. This
represents an interesting challenge on the scalability of action
representation and classification methods. As shown in Table
IV, FADE with 1-NN obtains a recognition rate of 77% and
with SVM it achieves an accuracy of almost 80% compared
to 88% on the LN dataset. Considering its simplicity and its
compression rate, FADE shows good properties of scalability
with supervised learning approaches. However, unsupervised
approaches are less scalable and suffer more with high
compression rate. U-FADE combined with SC performs
almost 10% better than FADE with SC.

V. CONCLUSION AND FUTURE WORK

In this work we proposed FADE, a compact and com-
putationally efficient frequency-based action descriptor. The
computation of the descriptor has a complexity of O(n log n)



and the dimensionality is only J , where n is the number of
time-frames and J is the number of signals used to represent
human motion.

FADE has been tested on three datasets of the HDM05
motion capture database: small (10 classes, 100 actions),
medium (78 classes, 497 action) and the entire dataset (80
classes, 2337 actions). The dimension of FADE does not
depend on the time duration of the action and can be used to
encode single or multiple repetitions, and cyclical actions by
leveraging the properties of the Fourier Transform. Having a
reduced dimensionality is crucial to minimize the execution
time of any learning algorithm.

We applied FADE with both supervised and unsupervised
learning for classification of human actions. For unsupervised
approaches, we introduced also U-FADE, a branch of FADE
that performs better in combination with Spectral Clustering
methods, at the price of a reduced compression. FADE with
supervised methods presents good accuracy and scalability
properties, while unsupervised methods show relatively low
recognition rate with the entire HDM05 dataset. However,
with the small dataset, unsupervised approaches perform very
well. Concerning future work, the first step will be to investi-
gate the performance of FADE with other motion databases,
such as the Berkeley MHAD database [24], CMU Graphics
Lab Motion Capture Database [27], and KIT Whole-Body
Human Motion Database [28]. In this work, FADE has been
applied to joint angles. However, especially in the computer
vision community, a significant number of approaches work
with joint Cartesian positions. Since the proposed descriptor
is general, we can encode with FADE (and U-FADE) human
actions described with joint 3D positions. We will investigate
the performace of FADE in this case compared with state-
of-the-art approaches like [6]. Another research direction
will consist in combining FADE with skeleton-free invariant
representations [29] of marker and torso movements.
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[4] M. Müller, T. Röder, M. Clausen, B. Eberhardt, B. Krüger, and
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