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MÜNCHEN

Lehrstuhl für Aerodynamik und Strömungsmechanik
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KURZFASSUNG

In der Verfahrenstechnik werden zur Homogenisierung von flüssigen Medien oftmals Gas-
blasen eingesetzt. Der Pfad und die Nachlaufströmung der aufsteigenden Gasblasen sind
für eine effiziente und effektive Homogenisierung ausschlaggebend. Die gezielte Steuerung
ist daher essentiell. Der Vergleich von Ergebnissen aus experimentellen und simulativen
phänomenologischen Studien hat gezeigt, dass diese einer Unschärfe unterliegen, bezie-
hungsweise sogar stark divergieren. Anstelle offene Fragen zu klären, brachten numerische
Quermethodenvergleiche nur weitere hervor. Parameterabhängigkeiten des Aufstiegspfads
und der Nachlaufströmung sind daher weitestgehend unbekannt und eine Steuerung nicht
möglich. Eine weitere Erforschung dieser mittels vorhandener numerischer oder experi-
menteller Methoden ist nicht notwendigerweise erfolgversprechend. Die Hauptintention
der vorliegenden Arbeit ist es, numerische Methoden zu entwickeln beziehungsweise weit-
erzuentwickeln, welche zur Simulation von komplexen, schwach-kompressiblen Ein- und
Mehrphasenströmungen mit höchster physikalischer Detailtreue eingesetzt werden können.
Der zweite Fokus liegt auf der Entwicklung eines Verfahrens zur Quantifizierung der physi-
kalischen Abbildungsgüte von numerischen Algorithmen und Einschätzung von Simula-
tionsergebnissen entsprechend ihrer Aussagekraft. Die simulative Erforschung der Param-
eterabhängigkeiten von Pfad und Nachlaufströmung von in Flüssigkeiten aufsteigenden
Gasblasen, und somit deren gezielte Steuerung, ist durch diese numerischen Methoden
möglich.

Diese kumulative Dissertation gliedert sich folgendermaßen:
Ein Überblick über experimentelle und numerische Untersuchungen zur Erforschung von
in Flüssigkeiten aufsteigenden Gasblasen ist in Kapitel 1 gegeben. Eine mathematische
Beschreibung von Ein- und Zweiphasenströmungen und des Transports oberflächenspan-
nungsaktiver Stoffe erfolgt in Kapitel 2. Die im Rahmen meiner Arbeit entwickelten
beziehungsweise weiterentwickelten numerischen Methoden werden in Kapitel 3 beschrieben.
Ein themenbezogener Literaturüberblick der einzelnen Teilgebiete und die wichtigsten
Erkenntnisse der Hauptpublikationen wird in Kapitel 4 diskutiert, welche im Anhang B
zu finden sind. Eine Aufstellung sämtlicher, im Rahmen dieser Arbeit entstandener, Pub-
likationen befindet sich in Kapitel 5. Schlussfolgerungen dieser Arbeit werden in Kapitel 6
gezogen.
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ABSTRACT

In process engineering, gaseous bubbles are commonly used to homogenize fluids. The
path and wake flow of gaseous bubbles ascending in liquids are crucial for efficient and
effective homogenization. Hence, their controllability is highly desirable. Comparisons of
results from experimental and numerical phenomenological investigations respectively have
revealed uncertainties or even divergence of these. Numerical cross-method comparisons
have not been able to clarify open questions, instead, they have raised further ones. The
prevailing uncertainties in the parameter dependencies of the ascent path and wake flow
prevent their controllability. Further investigations with existent numerical or experimental
methods are not necessarily effective. Thus, the primary intention of this work is to elab-
orate on numerical methods for high-fidelity numerical simulations of weakly compressible
single- and two-phase flows with complex flow structures. The second focus is on devel-
oping a method that quantifies the predictive capabilities of a numerical algorithm and
distinguish regions of higher from those of lower reliability. The numerical investigation
of the parameter dependencies of the path and wake flow of gaseous bubbles ascending in
liquids, and thereby their controllability, is made possible with these methods.

This cumulative thesis structures as follows:
An overview of experimental and numerical investigations in the field of gaseous bubbles
ascending in a liquids is given in Chapter 1. The governing equations of fluid motion,
considering two phases, and surfactant transport are detailed in Chapter 2. The numerical
methods that have been developed and further-developed respectively within the scope of
this work are described in Chapter 3. A literature review of each topic, followed by key
findings of the respective major publications are provided in Chapter 4, copies of these
may be found in Appendix B. All publications that have emerged within the scope of this
work are listed in Chapter 5. Conclusions of this work are drawn in Chapter 6.
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Eötvös or Bond number [−]

Fr2 = We
Eo

=
U2
ref

gLref
Froude number [−]

Lref Reference length [m]

Mo = Eo We2

Re4
=

gµ4
ref∆ρ

ρ2
refσ

3
ref

Morton number [−]

pref Reference pressure
[

kg
m s2

]
Pes =

UrefLref
Ds

Surface Peclet number [−]

Re =
UrefLref
νref

Reynolds number [−]

tref =
Lref
Uref

Reference time [s]

Uref Reference velocity
[
m
s

]
We =

ρrefLrefU
2
ref

σref
Weber number [−]

Other Symbols:

· Inner product

: Frobenius inner product

∆ Laplace-operator

δij Kronecker-symbol

J·K Jump across material interface

1 Identity operator (matrix, vector)

O Approximation order

∇ Nabla-operator

∇n = (nI ⊗ nI)∇ Interface-normal gradient operator

∇s = (1− nI ⊗ nI)∇ Interface-tangential gradient operator

⊗ Outer product, tensor product

· Time-averaged

∂ Partial derivative

·̂ Volume-averaged

·̃ Roe-averaged, volume fraction of variable

Roman Letters:

∆t Time step [−]

A Local flux Jacobian [−]

x



Table of contents

c Advection velocity [−]

D (u) Deformation tensor [−]

Fi Flux vectors in direction i [−]

g = (g1, g2, g3) Vector of gravitational acceleration [−]

K Right eigenvectors corresponding to λ [−]

L Numerical flux [−]

M = (M1, ...,M7) Mixing flux vector [−]

m Vector normal to the circumference of an interface element [−]

n Normal vector [−]

R = (r1, r2, r3) Vector of surface stresses [−]

T Viscous stress tensor [−]

t(1), t(2) Tangential vectors [−]

U = (ρ, ρu1, ρu2, ρu3, ρet) Vector of conservative states [−]

u = (u1, u2, u3)Vector of Cartesian velocities [−]

V Vector for time iteration and extension [−]

w Vector of characteristic variables [−]

a Speed of sound [−]

Cq Linear weight bias [−]

cv, cp Specific heats at constant velocity and pressure [−]

D+
i [·], D−i [·] Forward, backward difference approximation in direction i [−]

Dc
i [·] central difference approximation in direction i [−]

d0, d1, d2, d3 Ideal WENO weights [−]

Ds Surface diffusivity [−]

D∗s Dimensional surface diffusivity
[
m2

s

]
E Surface elasticity, spectral kinetic energy [−]

et Specific total energy [−]

ein Specific internal energy [−]

Ekin Kinetic energy [−]

ekin Specific kinetic energy [−]

Fν Viscous surface work [−]

Fekin Kinetic energy flux [−]

G Surfactant mass [−]

H Hesse-matrix [−]

h Enthalpy [−]

k Wavenumber [−]

k(r) Curvature of osculating circle [−]

xi



Table of contents

kmax Largest resolvable wave number of capillary waves [−]

lα,1, lα,2 First and last cell of CSD in α = 1, 2, 3 direction [−]

Lα Maximum number of cells in α = 1, 2, 3 direction [−]

p Static pressure [−]

p∗ Dimensional static pressure
[

kg
m s2

]
P⊥ Normal-projection operator [−]

q Integer power exponent [−]

R Specific gas constant [−]

r Radius of osculating circle [−]

S WENO candidate stencil [−]

s Perimeter/circumferential area of an interface element [−]

Sg Work of body forces [−]

t Time [−]

t∗ Dimensional time [s]

u∗α Dimensional velocity
[
m
s

]
in direction α = 1, 2, 3

w Characteristic variable [−]

x∗α Dimensional space coordinate [m] in direction α = 1, 2, 3

Z = ρa Acoustic impedance [−]

Superscripts:

(L), (R) Left and right cell-face state

ν Viscous

⊥ Perpendicular

ξi Associated to fluid phase i = 1, 2

a Inviscid, advective

buo Buoyant

diff Diffusive

evol Due to interface evolution

ext Extension

n Instant in time

T Transpose of a matrix

tot Total

xii



1 MOTIVATION

1



1 Motivation

1.1 INTRODUCTION

This thesis comprises a comprehensible overview of my research in the field of the numerical
modeling and evaluation of complex weakly compressible flows. Complex flows are single-
and two-phase flows with multiscale flow structures, such as vortical and turbulent struc-
tures respectively, as well as interfaces undergoing severe distortions and topology changes
respectively. The focus has been on three main topics: the optimal modeling of weakly
compressible flows even when underresolving small scales, the evaluation of numerical mod-
els by means of extracting the local and global numerical dissipation rate and viscosity,
and the modeling of two-phase flows incorporating surface active agents (surfactants).

My research is based on the German Research Foundation (DFG) project AD 186/7-2 “Un-
tersuchung des Aufstiegsverhaltens von Gasblasen in einer Flüssigkeit” (engl. exploration
of the behavior of gaseous bubbles ascending in a liquid). The focus of AD 186/7-2 is on the
phenomenological investigations of single bubbles and bubble clusters during their ascent in
liquids for large Reynolds numbers as well as investigations of the parameter-dependencies
of bubble ascent paths and bubble wake flows. Moreover, AD 186/7-2 includes analysis of
the influence of surfactants.

Flows of bubbles are two-phase flows. These are characterized by the coexistence of two
disjunct phases separated by an interface. Two-phase flows may be distinguished either
based on the aggregate phases of one fluid, or different chemical properties of two coexisting
fluids. Depending on the material combination at the interface, different effects, such as
diffusion between the fluids, phase changes, chemical reactions or surface tension effects
may arise. Gaseous bubble flows are flows of a disperse gaseous phase within a bulk liquid
of much higher density and dynamic viscosity. Within the scope of this work, flows of
ascending bubbles are gaseous bubble flows with a dominant direction of motion parallel
to the gravitation vector, or a surfactant gradient vector, yet, in opposite direction. During
their ascent, the interfacial may evolve complex, multiscale structures.

Ascending bubbles induce vorticity into their wake, improving mixing and homogeniza-
tion of the bulk phase [1]. The complex, multiscale vortical structures of the wake, at
larger Reynolds numbers denoted bubble induced turbulence, strongly effect (turbulent)
dispersion of the bubbles, bubble-coalescence, and -breakup [2]. As the individual ascent
path and wake flow determine the efficiency of mixing when employing bubbles in process
engineering applications, control of these is highly desirable.
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1.2 State of the Art

1.2 STATE OF THE ART

Figure 1.1: Leonardo da
Vinci’s sketch of a spiraling
bubble ascent. Reproduced
from [3, 4].

A variety of theoretical and experimental investigations
have gathered a multitude of information on ascending
single-bubble flows. The first phenomenological investi-
gations on the three-dimensional (3D) bubble dynamics,
known to modern society, were conducted by Leonardo da
Vinci (1452-1519) [5, 4]. His sketch 1.1 on the spiraling
ascent of a gas bubble, is accompanied with the following
phenomenological description: “When air together with wa-
ter is submerged underneath a layer of flowing water, the
air returns to the air. Thereby, it passes through the water
on a winding path, while changing its shape continuously.
And this happens because the lighter (fluid) cannot remain
underneath the heavier (fluid). Moreover, it is being com-
pressed continuously by the liquid above.”, [6].

1.2.1 EXPERIMENTAL AND THEORETICAL STUDIES

Since then, many more have studied the spiral as well as zigzag ascent path instability
experimentally and analytically [7, 8, 9, 10, 11]. A series of studies have focused on the
terminal ascent velocity, drag and shape of ascending bubbles [12, 13, 14, 15, 16, 17, 18,
19, 20, 21]. Wake flow structures have been investigated experimentally among others
by [22, 23, 24]. The interaction of the wake flow with the bubble, potentially causing
bubble shape oscillations have been investigated by e.g. [25, 26]. Landel et al. [27] find
that smaller satellite bubbles which follow a larger one within its wake reduce turbulent
dissipation and thereby drag.

Magnaudet and Eames [28] as well as Clift et al. [29] provide in depth summaries of
the knowledge derived from these early experimental studies. Clift et al. have correlated
observed bubble shapes, terminal Reynolds (Re), Eötvös (Eo), and Morton (Mo) num-
ber, see Fig. 1.2. Moreover, they define three principle shape regimes, spherical at low
Reynolds and Eötvös numbers, ellipsoidal at high Reynolds and moderate Eötvös, and
spherical-cap or ellipsoidal-cap at high Reynolds and Eötvös numbers. Note that the di-

mensionless groups Re =
UrefLref
νref

, Eo =
∆ρgL2

ref

σref
≈ ρrefgL

2
ref

σref
, Mo = Eo We2

Re4
=

gµ4
ref∆ρ

ρ2
refσ

3
ref

relate

inertial to viscous forces, buoyant to capillary forces, and viscous to capillary forces, respec-

tively. Herein We =
ρrefLrefU

2
ref

σref
is the Weber number, relating inertial to capillary forces,

furthermore, Uref , Lref , ρref , σref , νref , and µref denote the reference velocity, length-scale,
density, surface tension coefficient, kinematic, and dynamic viscosity.
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1 Motivation

Figure 1.2: Bubble shapes and regimes for free buoyancy driven ascent in liquids. Adopted
from [29].
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1.2 State of the Art

Yet, even when initial and boundary conditions were identical, different bubble shapes
and ascent paths have been observed experimentally [30]. The onset of the path instabil-
ity for bubbles rising in water occurs at a bubble radius of 0.7mm in the experiments of
Saffman [8], whereas an experiment with ’hyper clean’ water [17] indicates a critical radius
of 0.91mm. Moreover, especially for smaller bubbles, the observed ascent velocity is larger
than in the experiments of [31]. Comparing the results of [17] to those of Hartunian and
Sears [7] shows that the decrease of ascent velocity, which is due to the influence of impuri-
ties in distilled water, is less dominant for larger bubbles. The dependence of the influence
of surfactants on the kind and concentration has been documented by Bel Fdhila and
Duineveld [32]. Aybers and Tapucu [18] record the ascent velocity of bubbles as a function
of the distance these have traveled. For small sized bubbles, following a rectilinear path,
the ascent velocity reaches its maximum after a short distance, then the bubble decelerates
almost at a constant, non-zero rate. They conclude that the decrease is due to surfactant
impurities. Their observations are confirmed independently by e.g. [33, 34, 35, 36]. The
combined theoretical and experimental investigation of Griffith [37] can be noted as one of
the first successful attempts to describe the decrease in ascent velocity due to surfactants
for very simple cases. Yber and di Meglio [38] find that because of dilute proteins in water,
which accumulate at the interface, ascending bubbles rigidify and decelerate with distance
traveled, and in consequence behave hydrodynamically as solid spheres. Apart from an
increase of drag, interface contaminations entail higher damping rates of shape oscillations,
yet, the oscillation frequencies are unaffected [39]. Any kind of impurities, introduced un-
intentionally or intentionally, such as tracer particles for particle image velocimetry, act
alike surfactants. At large Reynolds numbers interfacial contamination reduces deforma-
tion and shape oscillations [28]. Hence, the intrusiveness of experimental methods that
rely on tracers intensifies with increasing Re [24]. The experiments of Zhang and Finch
[40], however, indicate that below a certain threshold, particularly for dilute solutions, the
terminal ascent velocity is independent of the surfactant concentration. The effect of sur-
factants on confined bubble ascent has been studied experimentally by Almatroushi and
Borhan [41]. According to them, surfactants retard the motion of small bubbles due to
adverse Marangoni stresses, yet, large bubbles benefit from surfactants as these allow the
bubbles to deform away from walls. Besides being intrusive, experimental data acquisi-
tion of the shape and wake is challenging. Large, scarcely predictable deflections require
real-time tracing and re-positioning of e.g. particle image velocimetry [23] or Schlieren
[24] imaging systems. Nonpolar photochromatic dye, as used by Sanada et al. [42], is less
intrusive, yet, detailed flows structures cannot be observed. In metallurgical applications,
with opaque fluids, visual data acquisition is impossible. Alternative techniques such as
ultrasound doppler velocimetry [43, 44] or local conductivity probe velocimetry [45, 46, 47]
exist. Yet, these are often too costly, and data on flow fields as well as interface-evolution
is limited.
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1 Motivation

1.2.2 ROLE OF COMPUTATIONAL FLUID DYNAMICS

Computational fluid dynamics (CFD) is free of these experimental deficiencies. Accurate
prediction of natural and technical ascending bubble flows by means of CFD rely on proper
numerical models. Even when resolution is low, these models need to physically consistently
[48, 49, 50] reproduce the full range of length scales of vortical structures, which are the key
to the technical application of ascending bubble flows. The bubble shape strongly effects
its wake and vice versa. Hence, valid models for the interaction at the two-phase interface
are essential. On the basis of valid models and their stable implementation, numerical
studies can be carried out for a wide range of parameters.

Brabston and Keller [51] have studied the drag coefficients of ascending bubbles for a
Reynolds number range between 0.1 to 200. The shape of axisymmetric incompressible
bubbles for infinite Reynolds numbers is investigated in [52, 53]. The ascent velocities, drag
coefficients and bubble shapes at high Reynolds numbers have been recorded by Miksis et
al. [54] also assuming axial symmetry.
Toroidal bubbles forming from initially spherical ones and their ascent are the focus of Ref.
[55]. Ryskin and Leal [56, 57] have studied numerically the shape, wake (by streamlines)
and drag coefficients of axisymmetric buoyancy driven bubbles for 1 < Re < 200 and for
Weber numbers up to 20. Yang et al. [58] find that neither the initial bubble shape nor the
intermediate relaxation determine the terminal velocity or shape, refuting experimental
observations. Mougin et al. [59, 60, 61] have studied numerically the ascent of rigid
ellipsoidal bubbles. According to them, the path instability is primarily due to a double
threaded wake, which itself results from the wake instability. Moreover, the curvature of the
bubble is the key parameter. Analysis of the forces acting on spherical bubbles indicate that
as soon as the wake becomes 3D, a lateral force in the order of the buoyancy force initiates
[61], which conjoined with the corresponding torque, entails horizontal deflections. The
rotation of the bubble determines the sign of the trailing vortices and thereby the evolution
of the wake during a zigzag ascent. These studies have confirmed the experimentally
assumed strong coupling of the wake, shape and path. Yet, the interplay of interface
evolution and wake flow were ignored.

Bonometti and Magnaudet [62] have investigated the evolution of shape and ascent velocity
of single bubbles within an axisymmetric domain. Direct numerical simulations (DNS)
of gaseous bubbles in liquids are challenging due to the large differences in density and
viscosity between the phases and the high bubble Reynolds numbers typically encountered
[63]. Therefore, fundamental numerical studies such as [64] have been carried out under the
assumption of small density and viscosity ratios. Gaudlitz [30] and Gaudlitz and Adams
[1] have simulated deforming ascending 3D bubbles with DNS. For bubbles rising steadily
along a rectilinear path, their results are in very good agreement with experimental data.

For bubbles ascending along zigzag paths, the periodic shedding of connected hairpin
vortices, including the head, as well as shape oscillations have been resolved, see Fig. 1.3.
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1.2 State of the Art

(a) Top views of bubble at
different time instants
during a half period of
the path oscillation.

(b) Bubble with wake at time t,
top-left view of Fig. 1.3a. The
isosurface λ2 = −0.2 viaualizes
vortex structures; colored with
vertical vorticity ωy.

Figure 1.3: Simulation of 3D bubble ascending along
a zigzag path. Reproduced from [1].

It is observed that the connected
hairpin vortex-legs are the cause
of horizontal deflection, which is
in agreement with Refs. [59,
60, 61]. Also considering dy-
namic shape deformations, Refs.
[30, 1] show that the turbulent
wake leads to symmetric and
asymmetric bubble-shape oscilla-
tions. The necessity to take real-
istic bubble shapes into account
when investigating path instabil-
ities numerically, in contrast to a
frozen shape [65, 66], is confirmed
by Cano-Lozano et al. [67]. Tri-
pathi et al. [68] have studied the
shape-evolution and rise patterns
of buoyancy driven air bubbles in
water for a wide range of Galilei

(Ga =
gL3

ref

ν2
ref

) and Eötvös num-

bers. Their newly predicted type
of bubble breakup, for low Mor-
ton numbers, has not yet been
confirmed.

Few numerical investigations have been conducted on the effect of surfactants. In the study
of Cuenot et al. [69] on spherical, axisymmetric bubbles rising in a liquid contaminated by
a weakly soluble surfactant, it is found that when surface diffusion is subordinate to advec-
tion, at least parts of the bubble become stagnant. This in turn increases drag significantly
up to the level of drag on a rigid sphere. Forking results of numerical and experimental
investigations, for a review see e.g. [70], reveal the necessity to intensify research in this
field. For instance, Takemura et al. [71] have compared experimental to numerical data,
which are in good agreement and verify that the stagnant cap model explains the mecha-
nism of the transition from fluid-sphere to solid-particle behavior. From their comparative
studies they have even derived equations that estimate the drag coefficient of surfactant
contaminated bubbles. Yet, Dijkhuizen et al. [72] have studied the drag force on single air
bubbles rising in viscous liquids over a wide range of viscosities numerically. Their results
are in excellent agreement with analytical theory, whereas their experimental data predict
much higher drag forces as expected from existing correlations. These studies highlight
the importance of modeling contaminants on the drag force.
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1.3 AIM OF THIS THESIS

It is evident that the parameter dependencies for free single-bubble ascent, as well as the
influence of surfactants and impurities, have only been elaborated sufficiently enough to
gain a basic understanding. Controlling these parameter dependencies effectively is, at
this venue, to my knowledge, impossible. Validation of numerical results with experiments
and cross-method comparison, see e.g. [73, 74, 75, 76, 77], strongly indicates the necessity
for numerical methods that can reproduce the entire range of physical relevant phenomena
of these configurations. The interaction of bubble wake and shape determine the ascent,
which can only be predicted if local variations of surface tension as well as the propagation
of vorticity, generated at the interface, into the wake flow is modeled accurately.

This work includes five contributions to the exploration of the behavior of gaseous bubbles
ascending in a liquid :

• A physically consistent approach for the underresolved simulation of weakly com-
pressible flows, see Sec. 4.1.

• A method to evaluate numerical fluid flow simulations by extracting the local and
global numerical dissipation rate and viscosity, see Sec. 4.2.

• Optimization of the method for the underresolved simulation of weakly compressible
flows, see Sec. 4.3.

• Grid-convergent benchmark simulations of classical viscous, incompressible two-phase
flows with and without surface tension, see Sec. 4.4.

• A conservative interface-interaction method for the numerical simulation of two-phase
flows with insoluble surfactant, see Sec. 4.5.
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2 BASIC EQUATIONS

In this chapter, the theoretical basis of the analytical continuum mechanics background for
describing fluids in motion is set forth. Based on the description of the system of Navier-
Stokes Equations (NSE) as partial differential equations (PDE), their compact form is
developed. Thermodynamic closures for the NSE, applied within the scope of this work,
are given. Fundamentals of the Riemann problem, used for solving the Euler equations
within this work, are described. The equations describing immiscible two-fluid flows are
provided and the chapter is closed with the system of equations describing the evolution of
insoluble surfactants. This chapter results from combining Refs. [50, 114, 98, 102, 82].
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2 Basic Equations

2.1 NONDIMENSIONALIZATION

Within the scope of this work, all quantities are normalized with a reference state. The
nondimensional measures in time and space are t∗

tref
= t, x∗α

Lref
= xα. The density, the

three Cartesian velocities, the static pressure, and the temperature are ρ∗

ρref
= ρ, u∗α

Uref
=

uα, p∗

pref
= p, T ∗

Tref
= T . The dynamic, kinematic viscosity, and thermal conductivity

are µ∗

µref
= µ, ν∗

νref
= ν, λ∗

λref
= λ. Considering surfactants and capillary effects, the

surfactant concentration, surface diffusivity and surface tension coefficient are γ∗

γref
= γ,

D∗s
Dref

= Ds,
σ∗
σref

= σ. α = 1, 2, 3 denote the Cartesian directions and pref = 1
2
ρrefU

2
ref

the reference pressure. In two-fluid configurations, the reference density (ρref ), dynamic
(µref ), kinematic (νref ) viscosity, are those of the bulk phase denoted as phase ξ1. Uref ,
Lref are problem-dependent.

2.2 SINGLE PHASE EQUATIONS

2.2.1 THE CONSERVATION EQUATIONS

The motion of smooth and continuous fluid flows can be described by the conservation of
mass, momentum and energy in differential conservation law form:

∂ρ

∂t
+∇T · (ρu) = 0 , (2.1a)

∂ρu

∂t
+∇T · [ρu⊗ u−Π] =

1

Fr2
ρg , (2.1b)

∂ρet
∂t

+∇T · [(ρet)u−Π · u + q] =
1

Fr2
ρ(gT · u) . (2.1c)

u = (u1, u2, u3)T , and g = (g1, g2, g3)T denote the vectors of Cartesian velocities and body

forces respectively. The Froude number (Fr2 = We
Eo

=
U2
ref

gLref
) relates inertial to buoyant

forces. The specific total energy et = ekin + ein decomposes into the specific kinetic energy
ekin = 1

2
u2 = 1

2
u2
α and the specific internal energy ein, for which

∂ρekin
∂t

+∇T · [(ρekin) u]− uT ·
(
∇T ·Π

)
=

1

Fr2
ρ(gT · u) , (2.2)

∂ρein
∂t

+∇T · [(ρein) u + q]−Π : (∇⊗ u) = 0 (2.3)
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2.2 Single Phase Equations

hold. The stress tensor is Π = −1p+ T. Under the assumption of Stokes’ hypothesis, the
viscous stress tensor is

T = T(u) =
1

Re

τ 11 τ 12 τ 13

τ 21 τ 22 τ 23

τ 31 τ 32 τ 33

 =
1

Re
{µD(u) + 1

(
µb −

2

3
µ

)
(∇T · u)} (2.4)

with the deformation tensor D(u) =
(
∂uα
∂xβ

+
∂uβ
∂xα

)
. The dynamic viscosity is µ = νρ. For

Newtonian fluids the bulk viscosity µb = 0. Within the scope of this work, the dynamic
viscosity is constant in each fluid phase, hence

ταβ =
µ

Re

(
∂uα
∂xβ

+
∂uβ
∂xα
− 2

3

∂uγ
∂xγ

δαβ

)
. (2.5)

With α, β, γ representing the three spatial directions. The Kronecker-symbol δαβ is unity
for α = β and zero for α 6= β. Within the scope of this work, heat fluxes due to thermal
conduction are not considered, hence q = 0. In compact form, the system of conservation
laws (2.1) is

∂U

∂t
+∇T · F = S(U), (2.6)

where U = (ρ, ρu1, ρu2, ρu3, ρet)
T and F =

[
FT

1 ,F
T
2 ,F

T
3

]T
denote the vector of conserved

variables and the flux tensor. S(U) are body forces. Within the scope of this work, solely
buoyancy contributes,hence

S(U) =
ρ

Fr2

[
0,g,gT · u

]T
. (2.7)

The flux vectors include advective and viscous components Fβ = Fa
β − Fν

β, β = 1, 2, 3.
The advective (superscript a) and viscous (superscript ν) fluxes are

Fa
β(U) =


ρuβ

ρuβu1 + pδβ1

ρuβu2 + pδβ2

ρuβu3 + pδβ3

(ρet + p)uβ

 , Fν
β(u) =


0
τβ1

τβ2

τβ3

τβαuα

 . (2.8)

Eq. (2.6) includes partial derivatives. Only smooth solutions are permitted, discontinuities
such as shock waves or material interfaces are excluded [78]. Applying Gauss‘s theorem,
the integral of Eq. (2.6) over a domain Ω is∫

Ω

Ut dV +

∮
Γ

FT · nΓ dΓ′ =

∫
Ω

S(U) dV , (2.9)

where nΓ = (n1, n2, n3) is the outward pointing unit normal vector of Γ = ∂Ω. Eq. (2.9)
admits discontinuous solutions and the smoothness assumption no longer holds [78]. Note
that V =

∫
Ω

1 dV =
∫

∆x3

∫
∆x2

∫
∆x1

1 dx′1 dx
′
2 dx

′
3, with ∆xα , α = 1, 2, 3 being the extent

in the three spatial directions.
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2 Basic Equations

The Kinetic Energy Equation in Integral Form

The integral of Eq. (2.2) over Ω is

∂ (Ekin)

∂t
+ Fekin + Ψ− Fν + Eν = Sg, (2.10)

where Ekin =
∫

∆x3

∫
∆x2

∫
∆x1

ρekin dx
′
1 dx

′
2 dx

′
3. The kinetic energy flux, the acoustic work,

the viscous surface work, and the work of body forces are

Fekin =

∫
Ω

∇T · [(ρekin) u] dV =

∫
Γ

nTΓ · [(ρekin) u] dΓ′ , (2.11)

Ψ =

∫
Ω

uT · ∇pdV , (2.12)

Fν =

∫
Ω

∇T · (T · u) dV =

∮
Γ

nTΓ · (T · u) dΓ′ , (2.13)

Sg =
1

Fr2

∫
Ω

ρ(gT · u)dV . (2.14)

By denoting

E =

∫
Ω

E dV =

∫
Ω

ταβ

ρ

∂ (uβ)

∂xα
dV = (2.15)

=

∫
∆x3

∫
∆x2

∫
∆x1

ρ

Re

[
2

(
∂u1

∂x1

2

+
∂u2

∂x2

2

+
∂u3

∂x3

2)
− 2

3

(
∂uα
∂xα

)2

+

+

(
∂u1

∂x2

+
∂u2

∂x1

)2

+

(
∂u1

∂x3

+
∂u3

∂x1

)2

+

(
∂u2

∂x3

+
∂u3

∂x2

)2
]
dx′1 dx

′
2 dx

′
3

as the dissipation function and assuming a constant kinematic viscosity, the viscous dissi-
pation is

Eν = νE . (2.16)

2.2.2 EQUATIONS OF STATE

The caloric equation of state (EOS) p = p(ρ, ein) closes the equations of fluid motion (2.1),
(2.6), or (2.9). Further constitutive equations can be solved successively, e.g. the general
relation for the speed of sound which is essential for wave propagation solutions

a2 =
∂p

∂ρ

∣∣∣∣
s

=
∂p

∂ρ

∣∣∣∣
ein

+
p

ρ2

∂p

∂e

∣∣∣∣
ρ

. (2.17)

A well-defined EOS is thermodynamically stable [79], i.e. the specific internal energy ein
is a convex function. Furthermore, a well-posed EOS leads to simple and unique results in
the Riemann problem [79].
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2.2 Single Phase Equations

Artificial Compressibility Approach for Weakly Compressible Fluids

At Mach numbers Ma = ||u||
a
� 1 compressibility is negligible, i.e. β = 1

ρ
∂ρ
∂p
≈ 0. In

contrast to classical incompressible approaches, claiming β = 0, the artificial compress-
ibility approach (ACA) of Chorin and Temam [80, 81] assumes a non-zero, yet constant
compressibility. The isentropic compressibility relates to the speed of sound according to
a2 = 1

ρβ|s , see also Eq. (2.17). For isothermal processes β = β|T = β|s, and the ratio of
specific heats is ω = 1. Pressure and density are linearly related by the caloric EOS

p = p(ρ) = a2ρ (2.18)

for such artificially compressible fluids. Density fluctuations are small, if a is large.

Tait’s Approach for Weakly Compressible Fluids

Tait’s EOS applies to weakly compressible and barotropic fluids. In contrast to the ACA,
β|T 6= β|s. Hence ω = β|T

β|s 6= 1, and the EOS

p = p(ρ) = p1

[(
ρ

ρ0

)ω
− 1

]
+ p0 (2.19)

is highly nonlinear. The speed of sound is

a2 =
p1

ρω0
ωρ(ω−1) =

ω

ρ
(p− p0 + p1) (2.20)

Generally, ω ∈ (1; 7.15], p0 = p(t = 0).

Remarks for Fluids Modeled as Weakly Compressible
Remark 1:
For both approaches, the energy equation is decoupled from the continuity and momentum
equations, see Eq. (2.6). For the Tait EOS, a formal ein may be obtained from p =
(ω − 1) ρein. The ACA does not permit a valid expression for ein.
Remark 2:
Within the scope of this work, nonlinearity in the EOS is minimized by ω = 1 + 10−6, p1

is chosen based on a target (artificial) speed of sound a ≈ const. and the restriction of
constraining Ma below 0.3 according to Eq. (2.20).
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2 Basic Equations

2.3 RIEMANN PROBLEM AND SOLUTION TO THE EULER

EQUATION

A general analytical solution to nonlinear hyperbolic PDEs such as the one-dimensional
Euler equations

Ut + Fa
x (U) = 0, (2.21)

cannot be determined. Yet, their locally linearized approximates permit constructing local
solutions that in sum lead to approximate global solutions. Within the following, the
concepts for solving transport phenomena described by nonlinear hyperbolic systems are
outlined. The basis is the Riemann problem, an initial value problem with piecewise
constant, yet discontinuous data,

U(x, 0) =

{
U(L) if x ≤ 0

U(R) if x > 0
, (2.22)

in conjunction with a hyperbolic system such as (2.21). Fa
x(U) of Eq. (2.21) may be

rewritten as Fa
x(U) = ∂Fa

∂U
∂U
∂x

= A(U)Ux, where

A(U) =


∂F a

1 /∂U1 · · · ∂F a
1 /∂Um

∂F a
2 /∂U1 · · · ∂F a

2 /∂Um
...

. . .
...

∂F a
m/∂U1 · · · ∂F a

m/∂Um


denotes the Jacobian matrix of the flux. Replacing A(U) with a constant Jacobian A,
such that Fa(U) = AU, leads to the linear(ized) hyperbolic system

Ut + AUx = 0. (2.23)

For a diagonalizable A, i.e. when A = KΛK−1, where Λ is the diagonal eigenvalue matrix
and K the matrix of right eigenvectors,

Λ =

λ1 · · · 0

0
. . . 0

0 · · · λm

 , K =
[
K(1), · · · , K(m)

]
, AK(i) = λiK

(i) , (2.24)

with λi being the eigenvalues of A and their corresponding eigenvectors K(i), a vector
w = (w1, · · · , wm)T for which

w = K−1U and U = Kw (2.25)

can be found. w is the vector of characteristic variables wi, i ∈ [1,m] of the system (2.23).
Due to A = const., K = const., Ut = Kwt, and Ux = Kwx follows. Substitution into
Eq. (2.23) and left-sided multiplication with K−1 leads to the characteristic form

wt + Λwx = 0 . (2.26)
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2.3 Riemann Problem and Solution to the Euler Equation

Let λi be a characteristic speed, then for each characteristic variable, wi,
∂wi
∂t

+ λi
∂wi
∂x

=
0, i = 1, · · · ,m holds, i.e. wi is constant along the characteristic curve λi. A system is
considered strictly hyperbolic if λ1 < λ2 < · · · < λm. According to Eq. (2.25),

U(x, t) =
m∑
i=1

wi(x, t)K
(i) , (2.27)

thus a linear combination of the eigenvectors K(i). Since each wi(x, t) propagates with
constant λi, it is

U(x, t) =
m∑
i=1

w
(0)
i (x− λit)K(i) , (2.28)

where w
(0)
i are the initial values of the characteristic variables. K(i) are linearly inde-

pendent. Thus, one finds for the constant left U(L) and right U(R) states that U(L) =∑m
i=1 αiK

(i), U(R) =
∑m

i=1 βiK
(i), where αi, βi are such that the constant propagation of

wi can be stated with velocity λi:

wi(x, t) = w
(0)
i (x− λit) =

{
αi if x− λit ≤ 0,
βi if x− λit > 0

for i = 1, · · · ,m (2.29)

With Eq. (2.28), one finds that

U(x, t) =
m∑

i=I+1

α(i)K(i) +
I∑
i=1

β(i)K(i), (2.30)

where I is the maximal index for which x − λit > 0. The jump over the wave structure
is

∆U = U(R) −U(L) =
m∑
i=1

(β(i) − α(i))K(i) =
m∑
i=1

δiK
(i) (2.31)

As Fa(U) = AU,

∆Fa(U) = A∆U = Fa,(R) − Fa,(L) =
m∑
i=1

δ(i)λiK
(i), (2.32)

with the wave strength δ(i).
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2.4 TWO-PHASE PROBLEM FORMULATION

Ωξ1

Ωξ2
Υ,γ

Γ
nΥ = nξ1Υ

nξ2Υ

x1

x2

x3

nΓ
3

nΓ
1

nΓ
1

nΓ
2

nΓ
2

tΥ

∆Υ

Figure 2.1: Schematic of the two-fluid
configuration. Adopted from [82].

Consider the system of two distinct and immis-
cible fluid phases ξ1 and ξ2 as sketched in Fig.
2.1, where Ωξi(t) ⊆ Ω(t) | Ωξ1(t)∪Ωξ2(t) = Ω(t).
The fraction of Ω covered by phase ξi is ζξi(t) =
1
V

∫
Ω∩Ωξi

dV . Within Ω ζξ1 + ζξ2 = 1.

Some part of the boundary of fluid phase ξ1 is
shared with the boundary of phase ξ2, denoted
as ∂Ωξ1(t) and ∂Ωξ2(t). This shared boundary
Υ = ∂Ωξ1,ξ2(t) = Ωξ1(t) ∩ Ωξ2(t) of length ∆Υ
is the two-fluid interface, generally Υ ∩ Γ = 0.
In each Ωξi(t) , i = 1, 2 the system of conservation equations (2.9) holds [83]. In close
proximity to the interface, the conservation equations for mass

d

d t

∫
∆Υε

ρdV −
∫

∆Υξ1
ρξ1nT,ξ1Υ ·

(
uξ1 − uΥ

)
d Υ′−

∫
∆Υξ2

ρξ2nT,ξ2Υ ·
(
uξ2 − uΥ

)
d Υ′ = 0 , (2.33)

and momentum

d

d t

∫
∆Υε

(ρu) dV −
∫

∆Υξ1
ρuξ1nT,ξ1Υ ·

(
uξ1 − uΥ

)
d Υ′−

−
∫

∆Υξ2
ρuξ2nT,ξ2Υ ·

(
uξ2 − uΥ

)
d Υ′ =

∫
∆Υξ1

nT,ξ1Υ ·Π(u)ξ1d Υ′+

+

∫
∆Υξ2

nT,ξ2Υ ·Π(u)ξ2d Υ′ +
1

Fr2

∫
∆Υε

ρg dV +
1

We

∮
s

m σds′ ,

(2.34)

hold. nξ1Υ = nΥ and nξ2Υ = −nΥ, with nΥ denoting the interface-normal vector.

nΥ

t
(1)
Υ

(ρ,u,Π,∆Υ)ξ2

(ρ,u,Π,∆Υ)ξ1

Rξ2

Rξ1

ε

1

We

∮
s

m σds′

t
(2)
Υ

m

m

Figure 2.2: 3D schematic of an interface el-
ement. Adopted from [82].

An interface segment of perimeter s, sur-
face area ∆Υξ1 and ∆Υξ2 is sketched in Fig.
2.2. For an infinitesimally thin interface, i.e.
ε → 0, it follows that ∆Υξ1 = ∆Υξ2 = ∆Υ.
The interface contains neither mass nor mo-
mentum [29], and phase changes do not oc-
cur. Continuity at the interface thus im-
plies

nTΥ·uξ1
∣∣
Υ

= uξ1Υ,⊥ = nTΥ·uξ2
∣∣
Υ

= uξ2Υ,⊥ = uΥ,⊥ .
(2.35)

The interface acts as a no-slip boundary
[63], hence, the interface-tangential velocity
is continuous [84]

||uξ1Υ,‖|| = ||u
ξ2
Υ,‖|| = ||uΥ,‖||. (2.36)
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2.4 Two-Phase Problem Formulation

At the interface, the velocity is uΥ = uΥ,⊥ + uΥ,‖, with uΥ,⊥ = uΥ,⊥nTΥ, and uΥ,‖ =

u
(1)
Υ,‖+u

(2)
Υ,‖ = u

(1)
Υ,‖t

(1)
Υ +u

(2)
Υ,‖t

(2)
Υ , respectively. Note also that uΥ,‖ ·uΥ,⊥ = 0. The interface-

tangentials t
(1)
Υ , t

(2)
Υ are computed according to [85]. Together with nΥ they build an

orthonormal basis on the interface. In 2D, t
(2)
Υ is obsolete. In close proximity to Υ, the two

fluids share the interface’s characteristic motion, thus, the interface velocity is a property
of both phases [86]. Considering Eq. (2.35), the interface momentum equation (2.34)
becomes

0 = Rξ1∆Υ−Rξ2∆Υ +
1

We

∮
s

m σds′ , (2.37)

where Rξi(x,nΥ) = Π(u)ξi ·nΥ represents the surface stresses, [84]. The term 1
We

∮
s

m σds′

denotes the surface tension force exerted in direction of the unit vector tangential to the
free surface of area ∆Υ and normal to the perimeter s. One finds that [87, 88]∮

s

m σds′ =

∫
∆Υ

∇sσ(x, t)dΥ′ =

∫
∆Υ

∇ (σ (1− nΥ ⊗ nΥ)) dΥ′ =

=
[
−σnΥ

(
∇T · nΥ

)
+ (∇sσ)

]
∆Υ .

(2.38)

∇s = (1− nΥ ⊗ nΥ)∇ denotes the interface-tangential gradient operator.
Consequently, the stress balance at the interface segment is

JRKΥ = −Rξ1 + Rξ2 =
1

We

[
−σnΥ

(
∇T · nΥ

)
+ (∇sσ)

]
. (2.39)

The first term on the right of equation (2.39),

σc(γ(x, t)) = − 1

We
σ(γ(x, t))nΥ

(
∇T · nΥ

)
= σc(γ(x, t))nΥ (2.40)

is the capillary stress, balancing the jump in normal stress

JrKΥ,⊥ = nTΥ · JRKΥ = −nTΥ ·Rξ1 + nTΥ ·Rξ2 =

= −rξ1⊥ + rξ2⊥ = σc(γ(x, t)) .
(2.41)

Note that rξi⊥ = nTΥ ·Rξi = nTΥ ·Πξi · nΥ = nβΠξi
βγn

γ = (nΥ ⊗ nΥ) : Πξi = P⊥Πξi , which
is the projection of the stress tensor of phase ξi normal to the interface by the normal-
projection operator P⊥, compare [89]. The surfactant concentration γ(x, t) is the amount
of surfactant present within an element of interface ∆Υ. Due to (2.35), the shear stresses
in interface normal direction diminish ideally, i.e. τ ξinn = 0. The second term,

σM(γ) =
1

We
∇sσ(γ) , (2.42)

is the Marangoni stress. It balances the discontinuity of the interface-tangential stresses

JrKΥ,‖ = −rξ1‖ + rξ2‖ = |σM(γ)| = σM(γ) . (2.43)
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2 Basic Equations

Hereby, rξi‖ = Πξi
δδ − nβΠξi

βγn
γ = (1− nΥ ⊗ nΥ) : Πξi = P ‖Πξi is the interface-tangential

projection of the shear stress tensor of phase ξi. Decomposed into the respective surface-
tangential directions (δ),

JrK(δ)
Υ,‖ = t

(δ),T
Υ · JRKΥ = −t

(δ),T
Υ ·Rξ1 + t

(δ),T
Υ ·Rξ2 = −rξ1‖,(δ) + rξ2‖,(δ) = t

(δ),T
Υ · σM (2.44)

is obtained, where rξi‖,(δ) = t
(δ)
Υ,βR

ξi
β = t

(δ)
Υ,βΠξi

βγn
γ.

2.5 TRANSPORT OF SURFACTANT

The surfactant concentration evolves according to

∂γ

∂t
+∇ · (uΥγ)− γ ((nΥ ⊗ nΥ) · ∇)T · uΥ =

1

Pes
∇2
sγ . (2.45)

The subscript s indicates transport along the interface-tangential plane. Pes =
UrefLref

Ds
is

the surface Peclet number, that relates interfacial inertial to diffusive forces. The advection
term is

∇T · (uΥγ) = uTΥ · (∇γ) + γ∇T · uΥ . (2.46)

The third term on the left side of Eq. (2.45) accounts for transport due to variations in
interface shape. The interface diffusion of γ is

∇2
sγ(x) = 4γ(x)−

(
nTΥ · ∇γ(x)

) (
∇T · nΥ

)
− nTΥ ·Hγ · nΥ , (2.47)

with Hγ being the Hessian of γ(x, t).

Equation of State for the Surface Tension Coefficient
The dependence of σ on γ follows the nonlinear Langmuir equation [90, 91]

σ(γ) = 1 + E ln(1− ζγ) . (2.48)

For small ∇sγ, σ(γ) can be approximated as [90, 91]

σ(γ) = 1− Eζγ . (2.49)

E = RTγ∞
σref

and ζ = γeq
γ∞

are the surface elasticity and coverage, σref is the surface ten-

sion coefficient for a clean interface (γ = 0). γ∞ is the concentration of surfactant in
the maximum packing limit, and γeq = 1

∆Υ

∫
∆Υ

γdΥ′
∣∣
t=0

is the initial average surfactant
concentration.
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3 NUMERICAL METHODS

Within this chapter, the further-developed and newly-developed numerical methods are
presented. The method of finite volumes is explained in the context of solving single-phase
configurations. In conjunction with the cell-face reconstruction and Riemann solvers, used
within this work, the fundamentals of the implicit large eddy method are set forth. Follow-
ing that, the numerical treatment of two-phase configurations is described. Thereby, the
conservative interface-interaction, surrogate-interface model, and sub-cell space description
of the interface are illuminated particularly. Moreover, the algorithms for the propagation
of the interface and the extension of fluid states are outlined. The numerical methods for
propagating insoluble surfactant conservatively are described. Also, the numerics relevant
for advancing the fluids, the interface, and surfactant in time are discussed. The chapter
is concluded by describing the method for analysis of the numerical dissipation rate and
viscosity. This chapter results from combining Refs. [50, 114, 98, 102, 82].
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3 Numerical Methods

3.1 THE SINGLE-PHASE DISCRETIZATION

The continuous domain Ω is partitioned into a collection of disjunct finite volumes (FV)
Ω[i,j,k] ≤ Ω |Σ Ω[i,j,k] = Ω; i, j, k ∈ N. For a FV, the conservation equations (2.9) become

∂Û[i,j,k]

∂t
−
(

F1,[i− 1
2
,j,k] − F1,[i+ 1

2
,j,k]

∆x1

+
F2,[i,j− 1

2
,k] − F2,[i,j+ 1

2
,k]

∆x2

+

+
F3,[i,j,k− 1

2
] − F3,[i,j,k+ 1

2
]

∆x3

)
= Ŝ[i,j,k] ,

(3.1)

where Û[i,j,k] = 1
∆V[i,j,k]

∫
Ω[i,j,k]

U[i,j,k] dV , Ŝ[i,j,k] = 1
∆V[i,j,k]

∫
Ω[i,j,k]

S[i,j,k] dV , are the vol-

ume averaged conservative states and sources. Moreover, ∆x1 = x1,[i+ 1
2
,j,k] − x1,[i− 1

2
,j,k],

∆x2 = x2,[i,j+ 1
2
,k] − x2,[i,j− 1

2
,k], and ∆x3 = x3,[i,j,k+ 1

2
] − x3,[i,j,k− 1

2
].

i− 1 i i+ 1

i+ 1
2

i− 1
2

F1,[i− 1
2

] F1,[i+ 1
2

]

F(L)

U(L)
F(R)

U(R)

x

Figure 3.1: Local Riemann problem.

Within a short time interval ∆t ≤ ∆x
unmax

, ∆t→
0 where unmax denotes the maximum wave
speed within the domain at time tn, the so-
lution U[i± 1

2
,j,k] of the Riemann problems at

cell faces [i ± 1
2
, j, k], with U(L) = Û

n,(L)

[i± 1
2
,j,k]

and U(R) = Û
n,(R)

[i± 1
2
,j,k]

, see Fig. 3.1, re-

mains constant with lim
∆t→0

O(∆t) = 0, i.e.

U[i± 1
2
,j,k] = lim

∆t→0

1
∆t

tn+1∫
tn

U[i± 1
2
,j,k] dt. It follows

that F
a

1,[i± 1
2
,j,k] = lim

∆t→0

1
∆t

tn+1∫
tn

F(U)a
1,[i± 1

2
,j,k]

dt, F
ν

1,[i± 1
2
,j,k] = lim

∆t→0

1
∆t

tn+1∫
tn

F(û)ν
1,[i± 1

2
,j,k]

dt,

S
n

[i,j,k] = lim
∆t→0

1
∆t

∫ tn+1

tn
Ŝ[i,j,k] dt. Same applies for the fluxes F2,[i,j± 1

2
,k] and F3,[i,j± 1

2
,k] at

[i, j ± 1
2
, k] and [i, j, k ± 1

2
]. Integration of E.q. (3.1) from tn to tn+1 leads to

Ûn+1
[i,j,k] = Ûn

[i,j,k] + ∆t L
n

[i,j,k] (3.2)

with

L
n

[i,j,k] =

[
F1,[i− 1

2
,j,k] − F1,[i+ 1

2
,j,k]

∆x1

+
F2,[i,j− 1

2
,k] − F2,[i,j+ 1

2
,k]

∆x2

+

+
F3,[i,j,k− 1

2
] − F3,[i,j,k+ 1

2
]

∆x3

+ S[i,j,k]

] (3.3)

In the original first order accurate Godunov method [92] U(L) and U(R) are extrapolated

from the cell average states Ûn, e.g. U
(L)

[i+ 1
2
,j,k]

= Ûn
[i,j,k] and U(R) = Û

n,(R)

[i± 1
2
,j,k],R

= Ûn
[i+1,j,k].
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3.1 The Single-Phase Discretization

It is not possible for a linear, thus monotone scheme to be both higher than first-order
accurate and free of spurious oscillations [92]. Upwind schemes behave dissipatively, while
central schemes, although being at least second order accurate, are dispersive. In this work,
high-order reconstruction schemes are employed to capture discontinuous solutions as well
as steep gradients with high accuracy.

3.1.1 CELL-FACE STATES RECONSTRUCTION

To obtain U
(α)

[i± 1
2
,j,k]

, α = L,R, weighted essentially non-oscillatory (WENO) schemes [93]

are used. Thereby, m reconstruction polynomials for non-averaged conservative cell-face

vector candidates u
(α,υ)

[i+ 1
2
,j,k]

=
m−1∑
l=0

cυ,lÛ[i−υ+l,j,k], υ = 0, ...,m − 1 on m candidate stencils

Sυ[i] ≡
{

Û[i−υ,j,k], ..., Û[i,j,k], ..., Û[i−υ+m−1,j,k]

}
are combined convexly according to

U
(α)

[i± 1
2
,j,k]

=
m−1∑
υ=0

ω(α)
υ û

(α,υ)

[i+ 1
2
,j,k]

. (3.4)

The set of nonlinear weights
{
ω

(α)
υ

}
, satisfying ω

(α)
υ ≥ 0,

m−1∑
υ=0

ω
(α)
υ = 1, ensures stability

and consistency. Note that cυ,l are polynomial coefficients. The computationally efficient
weights of Jiang et al. [94] are C∞, i.e. smooth functions of the involved cell averages:

ω(α)
υ =

α
(α)
υ

m−1∑
s=0

α
(α)
s

, α(α)
υ = f

(
dυ, β

(α)
υ

)
, (3.5)

where dυ and β
(α)
υ are the ideal weights and smoothness indicators, respectively. “The

smoothness indicators diminish with increasing smoothness of the solution on a stencil”
[50]. In defining αυ, the core idea is to consider each of the û

(α,υ)

[i+ 1
2
,j,k]

according to their

smoothness by weighting them appropriately. Thereby, ω
(α)
υ approximates dυ. Yet, if

the solution was to contain a discontinuity in at least one of the stencils Sυ[i], leading to

β
(α)
υ = O(1), the corresponding weights ω

(α)
υ need to diminish to exclude the approximation

û
(α,υ)

[i+ 1
2
,j,k]

and thereby keep the overall non-oscillatory behavior. The weighting factors

α(α)
υ =

dυ(
ε+ β

(α)
υ

)q (3.6)

of Jiang et al. [94] fulfill these requirements. The WENO-CU6-M1 weights, a further-
development of the original WENO weights Eq.(3.6), remedy excessive dissipation of the
underlying WENO-CU6 scheme [95], while preserving its shock-capturing properties and

21



3 Numerical Methods

thus allow to recover physical consistency [96]. The weighting factors of the WENO-CU6-
M1 scheme are [96]

α(α)
υ = dυ

(
Cq +

τ
(α)
6

ε+ β
(α)
υ

)q

, υ = 0, ..., 3 , (3.7)

where the reference smoothness indicator is τ
(α)
6 = β

(α)
3 − 1

6

(
β

(α)
0 + 4β

(α)
1 + β

(α)
2

)
[95, 97].

û
(α,υ)

[i+ 1
2
,j,k]

, dυ, β
(α)
υ , with υ = 0, 1, 2 are identical to the ones of the 5th order WENO scheme,

which can be found e.g. in App. A.1. û
(α,3)

[i+ 1
2
,j,k]

, d3, β
(α)
3 , and the four ideal weights are also

provided in App. A.1 as well as in Refs. [98, 99].

3.1.2 THE RIEMANN SOLVERS OF ROE AND ROE-PIKE

Intercell numerical fluxes are determined at the respective cell faces. The reconstructed
non-averaged cell-face left and right conservative states U

(L)

[i± 1
2
,j,k]

and U
(R)

[i± 1
2
,j,k]

generally

differ. The solution of the local Riemann problem
(
U(L),U(R)

)
[i± 1

2
,j,k]

leads to F
a

1,[i± 1
2
,j,k].

Low-dissipation flux approximations are due to Roe [100] as well as Roe and Pike [101]. The
key idea of these approximate Riemann-solvers is the linearization of the local flux Jacobian
Ã = Ã

(
U(L),U(R)

)
, see Sec. 2.3. Thereby, Ã is hyperbolic, i.e. λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃m, the

set of linearly independent right eigenvectors, K̃(1), K̃(2), · · · , K̃(m) is complete, consistency
with the exact Jacobian is fulfilled, i.e. Ã

(
U(L),U(R)

)
= A(U), and conservation across

discontinuities holds, i.e. Fa(U(R)) − Fa(U(L)) = Ã(U(R) −U(L)). The eigenvalues of Ã,

λ̃j(U
(L),U(R)) and right eigenvectors K̃(j)(U(L),U(R)) are determined, see App. A.2, so

that the Roe numerical flux can be computed according to

Fa
[i+ 1

2
,j,k]

=
1

2

(
Fa(U(L)) + Fa(U(R))

)
− 1

2

m∑
j=1

δ̃(j)
∣∣∣λ̃j∣∣∣ K̃(j) , (3.8)

where δ̃(j) denote the wave strengths. These are found by evaluating

∆w = U(R) −U(L) =
m∑
j=1

δ̂(j)K̂(j) . (3.9)

For the solver of Roe [100] ∆w = U(R) −U(L), while for the solver of Roe and Pike ∆w
evaluates a jump of primitive variables. The details for solving Fa

1,[i+ 1
2
,j,k]

, Fa
2,[i,j+ 1

2
,k]

, and

Fa
3,[i,j,k+ 1

2
]

are in App. A.2.
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3.2 The Two-Phase Treatment

3.2 THE TWO-PHASE TREATMENT

A
ξ1
[i,j+ 1

2
,k]

[i,j,k]
Ωξ1

[i,j,k]

Ωξ2
[i,j,k]

Υ[i,j,k]

A
ξ1
[i+ 1

2
,j,k]

A
ξ2
[i,j+ 1

2
,k]

[i−1,j,k]

[i−1,j−1,k]

[i−1,j+1,k]

[i,j+1,k]

[i+1,j+1,k][i,j+1,k]

[i+1,j−1,k][i,j−1,k]

Figure 3.2: 2D schematic of conservative
discretization of a cut cell. Red and
green indicate phase ξ1, and ξ2,
respectively. Adopted from [102, 82].

In two-phase immiscible flow simulations,
only parts of the domain contain either of
the fluids. Finite volume cells Ω[i,j,k] that
are not cut by the interface are single fluid
cells. For such cells, Eq. (3.2) advances
the solution in time. A finite volume Ω[i,j,k]

that contains a portion of the interface Υ
is subdivided into two disjunct subdomain
Ωξ1

[i,j,k] and Ωξ2
[i,j,k], see Fig. 3.2. To advance

the volume-averaged vector of conservative
states Ûξi

[i,j,k] in time, the conservation of
mass, momentum, and energy at the inter-
face, see Sec. 2.4, as well as the partitioning
of cut cells needs to be accounted for.

3.2.1 CONSERVATION EQUATIONS FOR A TWO-FLUID FLOW

For each Ũξi
[i,j,k] = {ζξiÛξi}[i,j,k], the discrete, non-dimensional conservation equation

Ũξi,n+1
[i,j,k] = Ũξi,n

[i,j,k] + ∆t L
ξi,n

[i,j,k] (3.10)

with

L
ξi,n

[i,j,k] =

 X
ξi
[i,j,k]

∆V[i,j,k]

+ S
ξi
[i,j,k] +

[
A F1

]ξi
[i− 1

2
,j,k]
−
[
A F1

]ξi
[i+ 1

2
,j,k]

∆x1

+

+

[
A F2

]ξi
[i,j− 1

2
,k]
−
[
A F2

]ξi
[i,j+ 1

2
,k]

∆x2

+

[
A F3

]ξi
[i,j,k− 1

2
]
−
[
A F3

]ξi
[i,j,k+ 1

2
]

∆x3

 (3.11)

is solved individually. Buoyant forces are modeled such that they diminish within phase

ξ1, i.e. S
ξi
[i,j,k] = 1

Fr2

(
ρξi[i,j,k] − 1

) [
0; gT ; uT · g

]T
. By considering the interface-interaction

flux

Xξi
[i,j,k] = {X⊥,ξi + X‖,ξi}[i,j,k] , (3.12)
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3 Numerical Methods

the two Ωξi
[i,j,k] are coupled and the system is globally conservative. The terms

X⊥,ξi[i,j,k] = {rξiΥ,⊥∆Υ

 0

nξiΥ
uΥ,⊥

}[i,j,k], (3.13)

and
X
‖,ξi
[i,j,k] =

{
X‖,ξi,(1) + X‖,ξi,(2)

}
[i,j,k]

, (3.14)

account for the flux in interface-normal and tangential direction, respectively. Herein, the
tangential flux in direction of t

(δ)
Υ is:

X
‖,ξi,(δ)
[i,j,k] = {rξi,(δ)Υ,‖ ∆Υ

 0

t
(δ)
Υ

u
(δ)
Υ,‖

}[i,j,k] . (3.15)

The interface stresses rξiΥ,⊥, r
ξi,(δ)
Υ,‖ and velocities uΥ,⊥, u

(δ)
Υ,‖ in Eqs. (3.13), (3.15) are the

solution of the two-material Riemann problem arising at the interface Υ, see Sec. 3.2.2.
Note that

Aξi
n |[i,j,k] = {nξiΥ∆Υ}[i,j,k] = [Ax1 , Ax2 , Ax3 ][i,j,k] =


Aξi

[i− 1
2
,j,k]
− Aξi

[i+ 1
2
,j,k]

Aξi
[i,j− 1

2
,k]
− Aξi

[i,j+ 1
2
,k]

Aξi
[i,j,k− 1

2
]
− Aξi

[i,j,k+ 1
2

]

 . (3.16)

Aξi
[i± 1

2
,j,k]

, Aξi
[i,j± 1

2
,k]
, Aξi

[i,j,k± 1
2

]
are apertures which are that part of Γξi[i,j,k](t) not coinciding

with Υ[i,j,k](t) but with the cell face Γ[i,j,k](t), [83]. Within ∆t = tn+1 − tn, they are

A
ξi
[i+ 1

2
,j,k] = lim

∆t→0

1
∆t

tn+1∫
tn

∫
Γ
ξi
[i,j,k]

∩Γ[i,j,k]

1dx2dx3dt , A
ξi
[i,j+ 1

2
,k] = lim

∆t→0

1
∆t

tn+1∫
tn

∫
Γ
ξi
[i,j,k]

∩Γ[i,j,k]

1dx1dx3dt

, A
ξi
[i,j,k+ 1

2
] = lim

∆t→0

1
∆t

tn+1∫
tn

∫
Γ
ξi
[i,j,k]

∩Γ[i,j,k]

1dx1dx2dt , see also Fig. 3.2, depicting the right and

upper apertures. For single-fluid cells, the apertures of phase ξ1 are unity within Ωξ1
[i,j,k] and

zero within Ωξ2
[i,j,k], and vice versa for phase ξ2. Employing the algorithm of [85], without

normalization, leads to A
ξi,(δ)
t |[i,j,k] = {∆Υt

(δ)
Υ }[i,j,k]. The orthogonal

(
An,A

(1)
t ,A

(2)
t

)ξi
[i,j,k]

,

which is equivalent to
(
nΥ, t

(1)
Υ , t

(2)
Υ

)ξi
[i,j,k]

∆Υ, are consistent with the orthonormal basis(
nΥ, t

(1)
Υ , t

(2)
Υ

)
[i,j,k]

.

Mixing of Small Cells

The intersection of the interface with the Cartesian grid results in two-fluid cells with
diminishing ζξi[i,j,k], denoted as small cells. Based on the time step constraints of cells with
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3.2 The Two-Phase Treatment

ζξi[i,j,k] ≈ 1, i.e. full cells, spurious solutions may evolve for small cells [103, 104]. More
restrictive constraint on ∆t lead to high numerical costs. A conservative mixing procedure
(CMP) has been proposed by Hu et al. [103] as a remedy. Thereby, the vector of Ω[i,j,k]-
averaged conservative states of small cells are mixed with those of neighboring full cells
denoted as target cells. The further developed CMP of Lauer et al. [104] includes all
possible neighbors, i.e. three in two dimensions and seven in three dimensions.
In 2D, cells of ζξi[i,j,k] ≤ 0.3 are small cells, such with ζξi[i,j,k] > 0.3 are full. In 3D, the

threshold is 0.6. For empty cells ζξi,n+1
[i,j,k] = 0. Following cells are mixed with their neighbors

[103]:

• small cells at the current time step n+ 1,

• empty cells at n+ 1 which were small or full at time step n,

• empty cells at n which are small or full at n+ 1.

The target cell indices are determined based on nξiΥ,[i,j,k]:

itrg =


i+ 1 if nξiΥ,1,[i,j,k] > 0

i− 1 if nξiΥ,1,[i,j,k] < 0

i else

, jtrg =


j + 1 if nξiΥ,2,[i,j,k] > 0

j − 1 if nξiΥ,2,[i,j,k] < 0

j else ,

ktrg =


k + 1 if nξiΥ,3,[i,j,k] > 0

k − 1 if nξiΥ,3,[i,j,k] < 0

k else

.

(3.17)

For each mixing target cell, a mixing fraction, indicating the contribution to the mixing,
is defined as:

βξi,n+1
[i,j,k] =



β1

β2

β3

β4

β5

β6

β7



ξi,n+1

[i,j,k]

=



β[itrg ,j,k]

β[i,jtrg ,k]

β[itrg ,jtrg ,k]

β[i,j,ktrg ]

β[itrg ,j,ktrg ]

β[i,jtrg ,ktrg ]

β[itrg ,jtrg ,ktrg ]



ξi,n+1

=



∣∣ (nΥ,1nΥ,1)
∣∣∣∣ (nΥ,2nΥ,2)
∣∣∣∣ (nΥ,1nΥ,2)
∣∣∣∣ (nΥ,3nΥ,3)
∣∣∣∣ (nΥ,1nΥ,3)
∣∣∣∣ (nΥ,2nΥ,3)
∣∣∣∣ (nΥ,1nΥ,2nΥ,3)
∣∣2/3



ξi,n+1

[i,j,k]

. (3.18)

Note that for 2D numerical simulations βξi,n+1
4 = βξi,n+1

5 = βξi,n+1
6 = βξi,n+1

7 = 0. Double
mixing between two cells is avoided by enforcing βξi,n+1

[trg] = 0, if ζξi,n+1
[i,j,k] > ζξi,n+1

trg . βξi,n+1
[i,j,k] is
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normalized, i.e. βξi,n+1
[i,j,k] =

β
ξi,n+1

[i,j,k]

‖βξi,n+1

[i,j,k]
‖
. The mixing flux Mξi,n+1

[i,j,k] is computed according to

Mξi,n+1
[i,j,k] =



M1

M2

M3

M4

M5

M6

M7



ξi,n+1

[i,j,k]

=



M[itrg ,j,k]

M[i,jtrg ,k]

M[itrg ,jtrg ,k]

M[i,j,ktrg ]

M[itrg ,j,ktrg ]

M[i,jtrg ,ktrg ]

M[itrg ,jtrg ,ktrg ]



ξi,n+1

=

=



β[itrg,j,k]

ζ[i,j,k]+ζ[itrg,j,k]

[(
ζ[i,j,k]Ũ[itrg ,j,k]

)
−
(
ζ[itrg ,j,k]Ũ[i,j,k]

)]
β[i,jtrg,k]

ζ[i,j,k]+ζ[i,jtrg,k]

[(
ζ[i,j,k]Ũ[i,jtrg ,k]

)
−
(
ζ[i,jtrg ,k]Ũ[i,j,k]

)]
β[itrg,jtrg,k]

ζ[i,j,k]+ζ[itrg,jtrg,k]

[(
ζ[i,j,k]Ũ[itrg ,jtrg ,k]

)
−
(
ζ[itrg ,jtrg ,k]Ũ[i,j,k]

)]
β[i,j,ktrg ]

ζ[i,j,k]+ζ[i,j,ktrg ]

[(
ζ[i,j,k]Ũ[i,j,ktrg ]

)
−
(
ζ[i,j,ktrg ]Ũ[i,j,k]

)]
β[itrg,j,ktrg ]

ζ[i,j,k]+ζ[itrg,j,ktrg ]

[(
ζ[i,j,k]Ũ[itrg ,j,ktrg ]

)
−
(
ζ[itrg ,j,ktrg ]Ũ[i,j,k]

)]
β[i,jtrg,ktrg ]

ζ[i,j,k]+ζ[i,jtrg,ktrg ]

[(
ζ[i,j,k]Ũ[i,jtrg ,ktrg ]

)
−
(
ζ[i,jtrg ,ktrg ]Ũ[i,j,k]

)]
β[itrg,jtrg,ktrg ]

ζ[i,j,k]+ζ[itrg,jtrg,ktrg ]

[(
ζ[i,j,k]Ũ[itrg ,jtrg ,ktrg ]

)
−
(
ζ[itrg ,jtrg ,ktrg ]Ũ[i,j,k]

)]



ξi,n+1

.

(3.19)

Mixing between Ũξi,n+1
[i,j,k] and the respective target cells is carried out consecutively [102].

Therefore, the mixing operations associated to the mixing fluxes Mm,m = 1, .., 7 are or-
dered in descending magnitude of mixing fractions βm, i.e. after executing mixing the
most “effective” mixing Ũξi,n+1

[i,j,k] = Ũξi,n+1
[i,j,k] + M ξi,n+1

1,[i,j,k], M
ξi,n+1
2,[i,j,k] is computed and Ũξi,n+1

[i,j,k] =

Ũξi,n+1
[i,j,k] +M ξi,n+1

2,[i,j,k] executed, followed by M ξi,n+1
3,[i,j,k] and so forth. Global conservativity is en-

sured by defining M ξi,n+1
m,[trg] = −M ξi,n+1

m,[i,j,k] and executing Ũξi,n+1
[trg] = Ũξi,n+1

[trg] +M ξi,n+1
m,[trg]. Within

all cells, the volume-averaged vector of conservative states is obtained from Ûξi,n+1
[i,j,k] =

Ũξi,n+1
[i,j,k] /ζ

ξi,n+1
[i,j,k] .

3.2.2 SURROGATE-INTERFACE CONDITIONS AND SOLUTION

At the interface, the two-material Riemann problem (2.39), i.e. R(Uξ1 ,Uξ2) 6= 0 can be
restated as two independent interactions, the one of ξ1 with the surrogate state ?2 and the
one of ξ2 with the surrogate state ?1, such that

Rξ1,?2 = R(Uξ1 ,U?2) = 0 , (3.20a)

Rξ2,?1 = R(Uξ2 ,U?1) = 0 . (3.20b)
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3.2 The Two-Phase Treatment

In the viewpoint of phase ξ1, phase ξ2 has vanished and been replaced by instantaneous,
macroscopic interface-surface stresses R?2 producing the combined effect of the interface
and ξ2 on Ωξ1 at Υξ1 , see Ref. [84]; the same applies for phase ξ2. Phase ?j adopts the
density, static pressure, speed of sound and velocity of fluid ξj:

ρ?j = ρξj , p?j = pξj , a?j = aξj , u?j = uξj (3.21)

The surrogate-interface Riemann problems (3.20a) and (3.20b) can be solved with the
method of characteristics. For a wide range of fluid states and interface stresses the jump
over Υ is assumed as an isentropic process [105, 84]. It takes on the characteristics of a
contact discontinuity and is solved for the characteristic, continuous interface velocities
and interface stresses in the interface normal and tangential directions with an acoustic
Riemann solver, see e.g. [106].

ξ1 − ?2-interface and interface states
Let R?2 = Rξ2−(σc + σM), then the ξ1−?2-interface momentum balance is−Rξ1+R?2 = 0.
In direction of the interface-normal and -tangentials, one obtains

−rξ1⊥ + r?2
⊥ = 0 , (3.22a)

−rξ1‖,(1) + r?2

‖,(1) = 0 , − rξ1‖,(2) + r?2

‖,(2) = 0 , (3.22b)

where

r?2
⊥ = rξ2⊥ − σc , (3.23a)

r?2

‖,(δ) = rξ2‖,(δ) − t
(δ),T
Υ · σM . (3.23b)

For the interface-normal direction, the solution of the Riemann problem yields

uξ1Υ,⊥ =
Zξ1uξ1⊥ + Z?2u?2

⊥
Zξ1 + Z?2

+
rξ1⊥ − r?2

⊥
Zξ1 + Z?2

, (3.24a)

rξ1Υ,⊥ =
Z?2rξ1⊥ + Zξ1r?2

⊥
Zξ1 + Z?2

+
Zξ1Z?2

Zξ1 + Z?2

(
uξ1⊥ − u?2

⊥

)
. (3.24b)

The interface tangential velocity u
ξ1,(δ)
Υ,‖ , and stress r

ξ1,(δ)
Υ,‖ are

u
ξ1,(δ)
Υ,‖ =

Zξ1u
ξ1,(δ)
‖ + Z?2u

?2,(δ)
‖

Zξ1 + Z?2
+
r
ξ1,(δ)
‖ − r?2,(δ)

‖
Zξ1 + Z?2

, (3.25a)

r
ξ1,(δ)
Υ,‖ =

Z?2r
ξ1,(δ)
‖ + Zξ1r

?2,(δ)
‖

Zξ1 + Z?2
+

Zξ1Z?2

Zξ1 + Z?2

(
u
ξ1,(δ)
‖ − u?2,(δ)

‖

)
. (3.25b)

Zξi = ρξiaξi is the acoustic impedance of the respective fluid.
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ξ2 − ?1-interface
Assuming R?1 = Rξ1 + (σc + σM), the ξ2 − ?2-interface the momentum balance is
−R?1 + Rξ2 = 0. For the interface-normal and -tangential directions, one obtains:

−r?1
⊥ + rξ2⊥ = 0 , (3.26a)

−r?1

‖,(1) + rξ2‖,(1) = 0 , − r?1

‖,(2) + rξ2‖,(2) = 0 , (3.26b)

where

r?1
⊥ = rξ1⊥ + σc , (3.27a)

r?1

‖,(δ) = rξ1‖,(δ) + t
(δ),T
Υ · σM (3.27b)

The solution of the Riemann problem, in the interface-normal direction, yields the interface
normal velocity and stress

uξ2Υ,⊥ =
Z?1u?1

⊥ + Zξ2uξ2⊥
Z?1 + Zξ2

+
r?1
⊥ − rξ2⊥

Z?1 + Zξ2
, (3.28a)

rξ2Υ,⊥ =
Zξ2r?1

⊥ + Z?1rξ2⊥
Z?1 + Zξ2

+
Z?1Zξ2

Z?1 + Zξ2

(
u?1
⊥ − uξ2⊥

)
. (3.28b)

The interface tangential velocity u
ξ2,(δ)
Υ,‖ , and stress r

ξ2,(δ)
Υ,‖ are

u
ξ2,(δ)
Υ,‖ =

Z?1u
?1,(δ)
‖ + Zξ2u

ξ2,(δ)
‖

Z?1 + Zξ2
+
r
?1,(δ)
‖ − rξ2,(δ)‖
Z?1 + Zξ2

, (3.29a)

r
ξ2,(δ)
Υ,‖ =

Zξ2r
?1,(δ)
‖ + Z?1r

ξ2,(δ)
‖

Z?1 + Zξ2
+

Z?1Zξ2

Z?1 + Zξ2

(
u
?1,(δ)
‖ − uξ2,(δ)‖

)
. (3.29b)

Summary of the Model
Equations (3.24) to (3.25) and (3.28) to (3.29) can be summarized. The interface-normal
velocity uξiΥ,⊥, and stress rξiΥ,⊥ are:

uΥ,⊥ =
Zξ1uξ1⊥ + Zξ2uξ2⊥
Zξ1 + Zξ2

+
rξ1⊥ − rξ2⊥ + σc
Zξ1 + Zξ2

, (3.30a)

rξiΥ,⊥ =
Zξ2

(
rξ1⊥ + σcδi2

)
+ Zξ1

(
rξ2⊥ − σcδi1

)
Zξ1 + Zξ2

+
Zξ1Zξ2

Zξ1 + Zξ2

(
uξ1⊥ − uξ2⊥

)
. (3.30b)
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For the interface tangential velocity and stress, one finds:

u
(δ)
Υ,‖ =

Zξ1u
ξ1,(δ)
‖ + Zξ2u

ξ2,(δ)
‖

Zξ1 + Zξ2
+

(
r
ξ1,(δ)
‖ − rξ2,(δ)‖ + t

(δ),T
Υ · σM

)
Zξ1 + Zξ2

, (3.31a)

r
ξi,(δ)
Υ,‖ =

Zξ2

(
r
ξ1,(δ)
‖ + t

(δ),T
Υ · σMδi2

)
+ Zξ1

(
r
ξ2,(δ)
‖ − t

(δ),T
Υ · σMδi1

)
Zξ1 + Zξ2

+ (3.31b)

+
Zξ1Zξ2

Zξ1 + Zξ2

(
u
ξ1,(δ)
‖ − uξ2,(δ)‖

)
.

3.2.3 DESCRIPTION OF THE INTERFACE

Defining a scalar function φ(x, t) with |∇φ| = 1 such that φ(x, t) ≡ 0 on Υ(x, t) captures the
interface implicitly within an Eulerian framework [107, 108, 109]. Furthermore, φ(x, t) < 0
in Ωξ2(x, t) and φ(x, t) > 0 in Ωξ1(x, t). Based on φ(x, t), defined within a narrow band in
the vicinity of Υ(x, t) [110], geometrical quantities of Υ, such as the normalized outward

pointing normal vector nΥ(x) = ∇φ(x)
‖∇φ(x)‖ , and the mean curvature, which correlates to

the divergence of the interface normal vector according to κM =
(
∇T · nΥ

)
in 2D, and

2κM =
(
∇T · nΥ

)
in 3D, can be obtained. Numerically, the 1st and 2nd spatial derivatives

are approximated with 2nd-order central differences. The curvature is evaluated at the cell
center, where not necessarily φ[i,j,k] = 0. The sub-cell corrected κΥ is obtained directly at
the interface by

κΥ =
(
|κ[i,j,k]|+ κ2

[i,j,k]φ[i,j,k]

)
sgn

(
κ[i,j,k]

)
, (3.32)

Details on the derivation are provided e.g. in App. A.3.2.

3.2.4 PROPAGATION OF THE INTERFACE

The interface is advected with the interface-normal velocity:

∂φ(x, t)

∂t

∣∣
φ=0

+ (uΥ,⊥(x, t) · ∇φ(x, t))
∣∣
φ=0

= 0 . (3.33)

Numerically, not only φ = 0 is advanced from time-instant n to n + 1. Instead, within a
band of three cells around Υ, the discrete level-set φn[i,j,k] propagates according to

φn+1
[i,j,k] = φn[i,j,k] + ∆t

3∑
α=1

F
a

α[φ][i,j,k] . (3.34)
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Herein, F
a

α[φ][i,j,k] = −{uΥ,⊥,αDα[φ]}[i,j,k] , α = 1, 2, 3. The differential operator Dα[φ]
represents a directed difference operator such that

Dα[φ] =


D−α [φ] if uΥ,⊥,α > 0

D+
α [φ] if uΥ,⊥,α < 0

0 if uΥ,⊥,α = 0

.

A 5th-order upwind WENO scheme with ε = 10−6 is used to approximate it, [82, 102].

Advection is only valid for φ = 0. Solving Eq. (3.34) perturbs any φ 6= 0 and leads to an
irregular φ(x, t) [111]. To ensure |∇φ| = 1, φ(x, t) is reinitialized according to [111]

∂φ

∂τ
= sgn (φ0) (1− |∇φ|) , (3.35)

with φ0 = φ(x, t = 0). Thereby, φ0 remains unchanged as sgn (φ0) = 0. Within the
original reinitialization algorithm of Sussman et al. [111], a smoothed sign function serves
to suppress reinitialization in cells containing the interface. The algorithm developed within
the scope of this work excludes such cells explicitly [82, 102], see A.3.1.

3.2.5 EXTENSION OF FLUID STATES

To solve for the numerical intercell fluxes Fα,[i,j,k] , α = 1, 2, 3, interface stresses r
ζi,(δ)
Υ,‖ , rζiΥ,⊥

and velocities u
(δ)
Υ,‖, uΥ,⊥ in close proximity to the interface, extension of V = (u1, u2, u3, p, ρ)T

from one partial domain into the cells of the ghost domain, collocated to the cells of the
partial domain of the other fluid, is required. Following [105], the extension equation
∂V(x)
∂τ
− nΥ(x)ζi,T · ∇V(x) = 0 in space-time-discrete form, i.e.

Vm+1
[i,j,k] = Vm

[i,j,k] + ∆τ
3∑

α=1

F
ext

α [V[i,j,k]], (3.36)

is solved for 20 pseudo-time steps, ∆τ = 0.5∆x, to populate a narrow band of ghost cells.

Thereby, F
ext

α [Vα,[i,j,k]] = {nξiΥ,αDα[V]}
∣∣
[i,j,k]

, α = 1, 2, 3. The difference operator is

Dα[V][i,j,k] =


D−α [V[i,j,k]] if − nξiΥ,α,[i,j,k] > 0

D+
α [V[i,j,k]] if − nξiΥ,α,[i,j,k] < 0

0 if − nξiΥ,α,[i,j,k] = 0

.

In [102, 82], D− and D+ are approximated with 1st-order biased differences.
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3.3 DISCRETE EVOLUTION OF THE SURFACTANT

The transport of insoluble surfactant along the interface is due to advection, diffusion, and
interface-evolution.

3.3.1 EXTENSION OF THE SURFACTANT CONCENTRATION

To confine surfactant to the interface, so that ∇nγ(x, t)) = (nΥ ⊗ nΥ)∇γ(x, t)) vanishes,
γ is extended off Υ according to ∂γ

∂τ
+ nζi,TΥ · ∇γ = 0 , γ(x, t = 0) = γ0(x) prior to solving

Eq. (2.45). Within the scope of this work, in space-time discrete form

γm+1
[i,j,k] = γm[i,j,k] −∆τ

[
3∑

α=1

F
ext

α [γ]m[i,j,k]

]
, (3.37)

is solved for 20 pseudo-time iterations to populate non-interfacial cells. The fluxes are

F
ext

α [γ]m[i,j,k] = {niΥ,αDα[γ]}[i,j,k] , α = 1, 2, 3, and ∆τ = 0.5∆x. Note that

Dα[γ] =


D−α [γ][i,j,k] if nζiΥ,α,[i,j,k] > 0

D+
α [γ][i,j,k] if nζiΥ,α,[i,j,k] < 0

0 if nζiΥ,α,[i,j,k] = 0

.

D− and D+ are approximated with 1st-order biased differences [82].

3.3.2 DISCRETE SURFACTANT TRANSPORT

Within a narrow band around the interface, γ[i,j,k] is advanced in time by

γn+1
[i,j,k] = γn[i,j,k] + ∆t L[γ][i,j,k] . (3.38)

where L[γ][i,j,k] = L[γ]a[i,j,k] +L[γ]diff[i,j,k] +L[γ]evol[i,j,k] denotes the numerical flux. The evolution
of surfactant due to advection with uΥ is accounted for by

L[γ]a[i,j,k] = −
(

3∑
β=1

F a
β [γ][i,j,k] + γ [Dc[uΥα]β][i,j,k]

)
, (3.39)
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where F a
β [γ][i,j,k] = {uΥ,βDβ[γ]}[i,j,k] , β = 1, 2, 3, with Dβ[γ] =


D−β [γ] if uΥ,β > 0

D+
β [γ] if uΥ,β < 0

0 if uΥ,β = 0

.

A 5th-order upwind WENO scheme [94] is used for Dβ[γ]. The surface diffusion flux is

L[γ]diff[i,j,k] =
1

Pes
{∇2

sγ}[i,j,k] =

=
1

Pes
{∆γ(x)−

(
nTΥ · ∇γ(x)

) (
∇T · nΥ

)
− nTΥ ·Hγ · nΥ}[i,j,k] =

=
1

Pes

[
∂2γ

∂x2
α

−
(
nΥ,α

∂γ

∂xα

)
κ−

(
nΥ,α

∂2γ

∂xα ∂xβ
nΥ,β

)]
[i,j,k]

≈

≈ 1

Pes

[
D2,c[γ]α − (nΥ,αD

c[γ]α)κ− (nΥ,α D
c[Dc[γ]α]β nΥ,β)

]
[i,j,k]
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(3.40)

Herein, κ =
|∇φ|2tr(Hφ)−(∇φ)T ·Hφ·(∇φ)

|∇φ|3 . Interface deformation entails transport of γ[i,j,k]:

L[γ]evol[i,j,k] = {γ ((nΥ ⊗ nΥ) · ∇) · u}[i,j,k] =
{
γ
(
nTΥ · (∇u) · nΥ

)}
[i,j,k]

=

=

{
γ nΥ,α

∂uα
∂xβ

nΥ,β

}
[i,j,k]

≈ {γ nΥ,αD
c[uα]βnΥ,β}[i,j,k] ,

(3.41)

where Dc[uα]β denotes the central approximation to the derivative of uα in direction β, it
is approximated with a 2nd-order central scheme [82].

3.3.3 CONSERVATION OF SURFACTANT

The evolution equation of surfactant concentration is not conservative. Conservation of
surfactant mass, i.e. G(t) =

∫
∆Υ

γ(x, t)dΥ′ =
∫

∆Υ
γ(x, 0)dΥ′ = G0, can be ensured.

Therefore, the surfactant concentration is renormalized after each time step according to

γ(x, t) = βγ̃, where β =
∫
∆Υ γ̃dΥ′

∣∣0∫
∆Υ γdΥ′

∣∣n+1 . γ̃ the result of Eq. (3.38) [112]. In the sharp-interface

framework the interface segment length/area ∆Υ[i,j,k] is computed geometrically in each
cell containing a portion of the interface [82]. Such cells are considered exclusively within
the algorithm.

3.4 TIME INTEGRATION

The conservation equations (3.2), (3.10), (3.34), (3.38) for advancing the conservative states
U, level-set φ, and surfactant-concentration γ in time numerically, are formally discretized
with the first-order Euler scheme. The order of accuracy is O(∆t). Runge-Kutta schemes
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3.4 Time Integration

maintain strong stability in any semi-norm (total variation norm, maximum norm, entropy
condition, etc.) of the forward Euler step [113] and are of higher order.

3.4.1 DISCRETIZATION IN TIME

Within the scope of this work [50, 114, 115, 99, 98, 82], a 3rd-order total-variation dimin-
ishing (TVD) Runge-Kutta scheme is employed [116]:

V
(1)
[i,j,k] = Vn

[i,j,k] + ∆tL
n

[i,j,k],

V
(2)
[i,j,k] =
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4
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[i,j,k] +
1

4
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(1)
[i,j,k] +

1

4
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(1)

[i,j,k],

Vn+1
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1

3
Vn

[i,j,k] +
2

3
V

(2)
[i,j,k] +

2

3
∆tL

(2)

[i,j,k].

(3.42)

In high-resolution two-phase flow simulations [102, 82], interface-distant regions may be
resolved low, without deteriorating the accuracy near the interface and within the bubble
wake. A wavelet-based adaptive multi-resolution algorithm [117] is used to obtain a high
spatial resolution near the interface and a low resolution in interface-distant regions. To
further improve computational efficiency, the two-step TVD Runge-Kutta scheme [116]

V
(1)
[i,j,k] = Vn

[i,j,k] + ∆tL
n

[i,j,k],

Vn+1
[i,j,k] =

1

2
Vn

[i,j,k] +
1

2
V

(1)
[i,j,k] +

1

2
∆tL

(1)

[i,j,k].
(3.43)

is used. Note that V[i,j,k] may be φ[i,j,k], γ[i,j,k], Û[i,j,k], or Ũ[i,j,k].

3.4.2 CONTROL OF THE TIME STEP SIZE

The advective terms of the transport equations limit the time step size ∆t according to
the Courant-Friedrichs-Lewy (CFL) condition

∆ta =
min (∆xα)

max|uξiα + aξi |
, (3.44)

where α represents one of the spatial directions 1, 2, 3. Furthermore, ∆t may be limited
due to buoyancy [118],

∆tbuo =
2min (∆xα)

max|uξiα + aξi |+
√(

max|uξiα + aξi |
)2

+ 4 min(∆xα)
Fr2

(3.45)
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as well as viscous effects [118]

∆tν =
3

14
min

(
ρξ1

µξ1
;
ρξ2

µξ2

)
Re (min (∆xα))2 (3.46)

The diffusion of γ limits ∆t according to

∆tD =
1

6
Pes (min (∆xα))2 . (3.47)

The explicit treatment of surface tension forces is stable under the condition that the
time step allows to represent capillary wave motion on the computational grid [119]. The

largest resolvable advection speed of capillary waves is ucap =
√

We kmax

ρξ1+ρξ2
, where kmax =

2π
2 min(∆xα)

= π
min(∆xα)

denotes the largest resolvable wave number. Considering that two
capillary waves with opposite direction of advection may concurrently enter the same cell
one obtains

∆tcap =
1

2

min (∆xα)

ucap
=

√
min (∆xα)3We (ρξ1 + ρξ2)

4π
(3.48)

Assuming a CFL = 0.3, the time step size is determined per iteration according to

∆t = CFL ·min
(
∆ta; ∆tbuo; ∆tν ; ∆tD; ∆tcap

)
. (3.49)

3.5 ANALYSIS OF THE NUMERICAL DISSIPATION RATE AND

VISCOSITY

For numerical simulations performed with an arbitrary finite-difference (FD) Navier-Stokes
solver, the derivatives in Eq. (2.2) are replaced with difference approximations, introducing
numerical discretization errors. Generally, these do not vanish, and the local residual

−En,[i,j,k] = {Dc[(ρekin)]t +Dc[(ρekinuα)]α + uαD
c[p]α−

− Dc[
(
uβτ

αβ
)
]α + ταβDc[uβ]α − ρgαuα

Fr2

}
[i,j,k]

(3.50)

at the grid point [i, j, k] defines the numerical dissipation, due to discretization errors of
the FD Navier-Stokes solver [120]. Similarly, a FV approximation is contaminated with
numerical truncation errors that affect the kinetic-energy decay rate in each finite volume
Ω[i,j,k] and for which the local residual is [114]

− En,[i,j,k] = {Dc[∆Ekin]t + Fekin − Fν −Ψ + Eν − Sg}[i,j,k] . (3.51)

The individual terms in the energy equation (2.10) are computed numerically as [114]

Ekin = (ρekin)[i,j,k] ∆x1∆x2∆x3 , (3.52)
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Fekin ≈ (ρekinu1)[i+ 1
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τ 3βuβ

)
[i,j,k+ 1

2
]
−
(
τ 3βuβ

)
[i,j,k− 1

2
]
]∆x1∆x2 ,

Sg ≈
1

Fr2
{ρgαuα}[i,j,k] ∆x1∆x2∆x3 , (3.55)

Ψ ≈ {pDc[uα]α}[i,j,k] ∆x1∆x2∆x3 , (3.56)

Eν,[i,j,k] = νE[i,j,k] ≈
ν

Re

{
ρ
[
2
(
(Dc[u1]1)2 + (Dc[u2]2)2 + (Dc[u3]3)2

)
−

− 2

3
(Dc[uα]α)2 + (Dc[u1]2 +Dc[u2]1)2 (3.57)

+ (Dc[u1]3 +Dc[u3]1)2 + (Dc[u2]3 +Dc[u3]2)2]}
[i,j,k]

∆x1∆x2∆x3 .

For the flux terms, Eqs. (3.53) and (3.54), v = (p,u, ρ) are reconstructed at respective cell
faces, e.g. [i ± 1

2
, j, k], from nearby data with a 6th-order central scheme, e.g. v[i± 1

2
,j,k] ≈

1
60

{
v[i±3,j,k] − 8

(
v[i±2,j,k] + v[i∓1,j,k]

)
+ 37

(
v[i±1,j,k] + v[i,j,k]

)
+ v[i∓2,j,k]

}
. The dissipation E ,

Eq. (3.57) is approximated with at least 2nd-order accuracy [114]. Integrating Eq. (3.51)
over a set of FVs, comprising a closed computational subdomain (CSD), i ∈ [l1,1; l1,2],
j ∈ [l2,1; l2,2] , k ∈ [l3,1; l3,2] with 0 ≤ lα,1 ≤ lα,2 ≤ Lα, where Lα is the extent of the domain
Ω in xα-direction, and its bounding surface, results in its numerical dissipation rate

ECSDn =

l1,2∑
i=l1,1

l2,2∑
j=l2,1

l3,2∑
k=l3,1

En,[i,j,k] . (3.58)

For the entire computational domain, lα,1 = 0, and lα,2 = Lα, one obtains the total
numerical dissipation rate E totn . Similarly, one may find the numerical viscosity either locally

νn,[i,j,k] =
En,[i,j,k]

E[i,j,k]
, in a CSD νCSDn = ECSDn

ECSD , or within Ω νtotn = Etotn
Etot . For FD corresponding

definitions may be defined.
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4 ACCOMPLISHMENTS

In this chapter, the accomplished further-developments and developments are presented.
For each topic, a brief literature review summarizes the state of the art. Limitations as
well as open questions, which are the motivation for the individual research that have
been overcome by the respective research, are discussed. Thereby this chapter results from
combining Refs. [50, 114, 98, 102, 82].
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4 Accomplishments

4.1 A PHYSICALLY CONSISTENT WEAKLY COMPRESSIBLE

HIGH-RESOLUTION APPROACH FOR UNDERRESOLVED

DNS OF INCOMPRESSIBLE FLOWS

The hyperbolic nature of the (weakly) compressible NSE, in contrast to the elliptic(-
parabolic) incompressible NSE, permits the use of high-order conservative finite volume
methods with higher spatial accuracy and better inherent numerical stability [78]. Ade-
quate solution strategies for systems of hyperbolic PDEs allow to simulate unsteady tur-
bulent and non-turbulent flows, such as bubble wake flows, with a wide range of scales
even when underresolved. Spectral methods are most accurate for well-resolved flows, yet,
they do not account for subgrid-scale (SGS) energy transfer without explicit SGS models
[121, 122].

Mathematical consistency of numerical discrete functions is necessary for convergence of
numerical results. It is, however, hardly relevant when the available resolution of the flow
is far from resolving the asymptotic range of the local truncation error. Modified differ-
ential equation analysis (MDEA) [123] has revealed that the truncation error of nonlinear
discretization schemes can be constructed such to recover the theoretical spectral eddy
viscosity, in other words, to represent an implicit SGS (ISGS) model [124, 125] for implicit
large eddy simulations (ILES) of underresolved turbulent flows. The nonlinear regulariza-
tion mechanism of high order, finite volume schemes with shock-capturing capabilities has
made this approach applicable to ILES [126]. The correct physical SGS behavior model-
ing by means of the non-negligible local truncation error of a numerical scheme is called
physically consistent behavior [48, 49]. In [122], it has been demonstrated that standard
finite-difference and spectral methods do not provide the basis for physically consistent
SGS modeling capability.

WENO weighting implies measuring the local resolution of the flow. It potentially allows
to state a physically consistent scheme with a truncation error shaped to exhibit implicit
subgrid-scale modeling capabilities for turbulent as well as non-turbulent flows [124, 125].
A low-dissipative WENO-scheme, combining the advantages of an upwind scheme, e.g.
the 5th-order WENO scheme [94], and a 6th-order central scheme, denoted as WENO-CU6,
has been proposed by Hu et al. [95]. Hu and Adams [96] have investigated the physical
consistency of the underresolved contribution of WENO-CU6. A proper modification of
WENO-weights has resulted in a separation of contributions from the resolved and non-
resolved scales to the locally reconstructed solution [50]. Thus, non-resolved scales are
subject to dissipation, while the shock-capturing capabilities and the order of accuracy are
maintained in smooth flow regions. The scheme is denoted WENO-CU6-M1. Evidence
strongly suggests that a scheme suitable for the underrsolved simulation of high-Reynolds
number flows cannot exclusively be based on the local truncation error of the underlying
high-order reconstruction scheme. It is, however, a well-balanced interaction of the ther-
modynamic fluid-modeling, the reconstruction scheme and the intercell-numerical flux, i.e.
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4.1 A physically consistent weakly compressible high-resolution approach for
underresolved DNS of incompressible flows

the nonlinear regularization mechanism of high-order finite-volume schemes with shock-
capturing capabilities.

The three-dimensional Taylor-Green vortex (TGV) [127] is the most simple generic flow to
study the generation and evolution of small scale turbulent structures by vortex stretching
and the evolution of isotropic turbulence in time. Shu et al. [122] have found that the
fifth-order WENO scheme shows unphysical dissipation, yet allows for stable underresolved
simulations of the inviscid, nearly incompressible TGV.

39



4 Accomplishments

In Felix S. Schranner, Xiangyu Y. Hu, Nikolaus A. Adams: A physically consistent
weakly compressible high-resolution approach to underresolved simulations of incompressible
flows ; Computers & Fluids, Volume 86, pp. 109-114, November 2013 [50]

it is demonstrated that a physically consistent high-resolution model for ILES of in-
compressible flows can be constructed by matching the WENO-CU6-M1 weighting to
the weakly compressible flow modeling of Chorin and Temam [128, 129, 81] and a low-
dissipative Roe-Pike [100, 130, 131] solver. A 6th-order central reconstruction for density
is employed. The separated reconstruction for the density and the velocities emphasizes
the ISGS model on the pure nature of incompressible turbulence.

The correct transition of the TGV to self-similar isotropic turbulence, even at large Reynolds
numbers and for the inviscid case, is reproduced. General validity of the weakly compress-
ible WENO-CU6-M1 based scheme for underresolved DNS is confirmed by considering also
moderate Reynolds number decaying grid generated turbulence.

Moreover, the underresolution prediction capability for non-turbulent flows of the physi-
cally consistent weakly compressible numerical high-resolution model is demonstrated. The
instability of the inviscid, yet, finite-thickness double shear layer [132, 133] is studied even
in the highly nonlinear stages. With an equivalent resolution as in a pseudospectral and
a centered vorticity-stream function method, a similar quality of predictions is achieved.
Yet, in the underresolved setup, the alternative methods need stabilization with artificial,
numerical viscosity that exceeds physical viscosity. The exploration of the infinitely thin
double shear layer at zero viscosity with the newly developed weakly compressible WENO-
CU6-M1-based method with an implicit SGS model confirms the speculation of Brown and
Minion [132] that the final stage of shear layer evolution is a single vortex. This final stage
is independent of shear layer thickness and Reynolds number.

Furthermore, a viscous-inviscid interaction of a vortex dipole colliding with a no-slip wall
is considered. The simulation results are in excellent agreement with reference data of
[134, 135] at much lower resolution.

For the lid driven cavity, the model predictions agree with reference solutions that are based
on high-resolution schemes, see [136, 137, 138] and on strictly incompressible formulations.
For Re ≤ 7500, steady state solutions comparable to reference DNS are obtained with
underresolved DNS. At Re = 10000, a flow with low-frequency periodic unsteadiness is
found. Since this result is grid independent, the periodic behavior is likely to be physically
correct, whereas the steady state behavior observed in Refs. [137, 138], is due to numerical
damping.

My contribution to this work lies in developing the method and its implementation in an in-
house code. Moreover, I have verified the implementation and validated the method, hence,
performed the numerical simulations. The algorithm for postprocessing and analyzing the
results is due to me. The manuscript for the publication has been written predominantly
by me.
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fluid flows

4.2 ASSESSING THE NUMERICAL DISSIPATION RATE AND

VISCOSITY IN NUMERICAL SIMULATIONS OF FLUID

FLOWS

The discretization of the governing differential equations for fluid flows entails contam-
ination of the simulation results by the local truncation errors, which diminishes if all
physical relevant scales are resolved adequately. For a lower resolution, the effects of trun-
cation errors may be of similar magnitude as physical effects. The simulation results are
thereby influenced. This situation is most frequently encountered in numerical simulations
of turbulent flows at high Reynolds numbers. Such flows require modeling contributions
of unresolved scales according to common turbulence modeling procedures. For Reynolds-
averaged Navier-Stokes (RANS) simulations, a large number of turbulence models exists,
ranging from mathematically simple and numerically cheap algebraic models to complex
and expensive Reynolds stress models, for an overview see e.g. [139, 140, 141]. For Large
Eddy Simulation (LES), a variety of explicit as well as implicit subgrid-scale models have
been proposed, for an overview refer to e.g. [142, 143, 144, 145].

ISGS models of ILES schemes rely on the nonlinear contributions of the truncation er-
ror, which is necessarily far from an asymptotic behavior. Classical tools for truncation
error analysis fail [145, 120]. The modified differential equation cannot be written down
in closed form, and Taylor series expansions are of no use as the truncation error is not
asymptotically small. The current rather vague definition of SGS modeling capabilities
of the wide range of the existing ILES schemes demands a more systematic approach to
determine the effective dissipation aposteriori. The first aposteriori method for computing
integral numerical dissipation has been proposed by Domaradzki et al. [146]. Flow evolu-
tions from identical initialization, yet, solved with a scheme of finite numerical dissipation
and a spectral reference code with negligible numerical dissipation, are compared. Based
on results of this analytical method, Hickel et al. [49] have developed the Adaptive Local
Deconvolution Method (ALDM), that recovers the physical energy transfer in turbulence.
The method of analysis [146] is in spectral space to allow one-to-one comparisons with
spectral eddy viscosities obtained from analytical theories of turbulence, and it measures
the global (spectral) dissipation rate.
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In Felix S. Schranner, J.Andrzej Domaradzki, Stefan Hickel, Nikolaus A. Adams:
Assessing the numerical dissipation rate and viscosity in numerical simulations of fluid
flows ; Computers & Fluids, Volume 114, pp. 84-97, July 2015 [114],

a method for analyzing grid-based fluid flow simulations for the numerical dissipation rate
and numerical viscosity is developed. It is free of the deficiencies of the spectral space
method of Domaradzki et al. [146]. Which means that it does not require the use of an
additional spectral code for analysis, which is practically unfeasible. Furthermore, it is not
restricted to fully periodic computational domains. Consequently, it seeks its application
in non-periodic flows of practical interest.

The novel physical space method of analysis is validated by comparing results for the
effective numerical dissipation rate with exact reference data. These have been obtained
with an accurate spectral-space approach. As the optimal test case for the validation study,
the Taylor-Green vortex is selected. Excellent agreement of both methods is achieved on
arbitrary, non-periodic domains. This holds even true for temporal and spatial derivative
approximations of only second-order accuracy.

The predictive capabilities of the novel physical space method depend neither on the size
nor shape of the computational domain under consideration. Yet, generally, the larger the
numerical dissipation rate, the smaller is the uncertainty in predicting it. This particularly
true for high Reynolds numbers. Since the method is designed to analyze simulations for
their non-diminishing numerical errors, this constraint is rather natural.

In contrast to the reference method, the newly developed method is applicable to arbi-
trary flows and non-uniform unstructured grids in a straightforward manner. The stud-
ies performed within the scope of this work clearly indicate that considering a diminish-
ing time-step size for the analysis is not necessary. Hence, the aposteriori application is
straightforward to results of simulations fulfilling the CFL-stability criterion.

The methods capabilities are demonstrated for underresolved TGV flows. A Reynolds
number range of Re = 100 to Re = 3000 has been considered.

Besides evaluating the global numerical dissipation rate and viscosity within the simulation
domain, even local estimates can be obtained. Thereby it is even possible to analyze the
computational cell-wise numerical dissipation rate and viscosity.

Our studies show that the larger the numerical dissipation rate and viscosity, the smaller
the uncertainty in predicting these. In consequence, critical flow regions may thus be
identified and evaluated easily.

My contribution to this work lies in the development of the method. This physical space
method and the reference spectral space method have been implemented by me. Moreover,
I verified the implementation and validated the method, hence, performed the numerical
analysis. The algorithm for postprocessing and analyzing the results is due to me. Major
parts of the manuscript for the publication have been written by me.
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4.3 OPTIMIZATION OF AN IMPLICIT LARGE-EDDY

SIMULATION METHOD FOR UNDERRESOLVED

INCOMPRESSIBLE FLOW SIMULATIONS

In underresolved regions, the truncation error of the underlying numerical schemes strongly
affects the solution. If the local truncation error of the underlying numerical scheme func-
tions as an ISGS model, i.e. it models the evolution of otherwise resolved scales, resolution
may remain low. Thereby, computational efficiency is improved. The range of applica-
tions of WENO-CU6-M1 [96] has been extended from compressible to incompressible flows
by Schranner et al. [50]. In combination with the material modeling and appropriate
Riemann-solver, an adjusted scheme has recovered self-similar isotropic turbulence when
physical viscosity diminishes. Mere by adapting the scheme’s free parameters, (Cq; q), the
ISGS modeling capability has been ported. As in e.g. Refs. [94, 147], in Schranner et al.
[50] an adequate set for free parameters has been determined through “extensive numerical
experiments”. This approach is neither efficient nor does it guarantee an optimal model
performance.
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Finding an optimal weakly compressible WENO-CU6-M1 model for underresolved simula-
tions is considered within a deterministic design optimization framework in

Felix S. Schranner, Vladyslav Rozov, Nikolaus Adams: Optimization of an Implicit
Large-Eddy Simulation Method for Underresolved Incompressible Flow Simulations ; AIAA
Journal, Volume 54 Number 5, pp. 1567-1577, February 2016 [98].

Therefore, the potential of weakly compressible WENO-CU6-M1 Roe Riemann-solver for-
mulations to reproduce Kolmogorov scaling in the quasi-isotropic state of an infinite
Reynolds number TGV flow is evaluated. The previous works [50, 115] are extended
on this subject to a more general scope.

Evaluating potential surrogate modeling and sampling strategies for their applicability
shows that the approximation quality of polynomial regression surrogate models of a cer-
tain order depends predominantly on sampling resolution. These demonstrate as inade-
quate for design optimization of WENO-CU6-M1. A thin plate spline interpolation model
determines an optimal set of WENO-CU6-M1 parameters, which closely approximates the
fittest sample. The relative difference in fitness between these is below 1%. At already
30% of the highest level resolution, the response surface approximation has been sufficient
to localize the optimal (Cq; q) approximately.

The design of an ISGS model according to “best recovery of the inertial subrange E(k)
according to Kolmogorov theory” leads to a stronger correlation of SGS dissipation and
small scales. The correlation of kinetic energy dissipation, quantified with the method of
Schranner et al. [114], and existence of small scales is more apparent in the optimized
scheme than in the reference. Insights into areas of physical and numerical kinetic energy
dissipation are gained by visualizing the local, dissipation structures. In the TGV flow,
these exist independent of the underlying ILES scheme in each octant of the domain and
are point-reflectional symmetric with respect to the center of the domain [114]. Yet, when
a WENO-CU6-M1 based SGS model is physically consistent, that is, when scale-separation
is optimally controlled, small-scale structures are of a longer life span.

The effective dissipation rates of low to high Re TGV flows, simulated with the optimal
scheme, are compared to reference DNS data. For very low Re it is found that even when no
subgrid-scales are present, the model adds a minimum amount of dissipation. For medium
to high Re, the surrogate weakly compressible WENO-CU6-M1 model predictions agree
well with DNS. A comparison of optimized weakly compressible WENO-CU6-M1-based
model results to those of alternative ILES and LES simulations at medium to infinite Re
TGV flows show its superior performance.

The concept of this study is due to me. I implemented the thin plate spline interpolation
model, analyzed and evaluated the results. Furthermore, I performed the two comparative
studies, namely the one involving the optimal, surrogate, original scheme and the one also
incorporating reference data. Major parts of the manuscript for the publication have been
written by me.
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4.4 On the convergence of the weakly compressible sharp-interface method for two-phase
flows

4.4 ON THE CONVERGENCE OF THE WEAKLY

COMPRESSIBLE SHARP-INTERFACE METHOD FOR

TWO-PHASE FLOWS

The numerical simulation of incompressible, immiscible, two-phase flows is challenging due
to large density and viscosity ratios of gas-liquid systems, which may deteriorate numeri-
cal stability, especially when numerical dissipation is sought to be low. Furthermore, the
numerical method needs to accurately reproduce the dynamic interface evolution even for
complex interface topology evolution at affordable numerical cost. Interface singularities,
such as capillary stresses, may entail discontinuities in field quantities. For flow configura-
tions, ranging from small scale micro fluidics to larger scale microgravity sloshing surface
tension effects dominate areas of the flow. These requirements have lead to a variety of
Lagrangian and Eulerian approaches. Independent of the approach, method and code de-
velopment typically passes through two stages. Firstly, a single-phase flow solver with
increasing spatial dimensionality, incorporating viscous and boundary-treatment is imple-
mented, validated and verified (V&V). Validation is “the process of determining the degree
to which a model is an accurate representation of the real world from the perspective of the
intended uses of the model” [148]. Verification is “the process of determining that a model
implementation accurately represents the developer’s conceptual description of the model
and the solution to the model” [148]. In the second stage, the solver is extended to model
the interaction and evolution of multiple immiscible fluids, V&V concludes this stage. For
the verification of single-fluid algorithms, analytical solutions and reference DNS-results of
a variety of generic test flows are available. Such data may be found in Refs. [149, 50] for
the Taylor-Green vortex, Refs. [150, 151] for the turbulent channel flow, Refs. [133, 132]
for the 2D double shear layer, Refs. [135, 152, 50] for a vortex pair-wall interaction, and
[136, 138, 50] for a lid-driven cavity. A list of references for validation experiments may
e.g. be found in Oberkampf and Trucano [153].
Verification of two-phase algorithms, especially in 2D, is accomplished best by cross-method
comparison as suitable analytical solutions are scarce. Validation basis on visual inspection
and comparison with experimental data. One frequently used test case for verification of
two-phase flow solvers is the dam break experiment by Martin and Moyce [154]. The 2D,
or axisymmetric, dam break is helpful only during early stages of code development. The
lack in small-scale interface evolution restricts its subsequent use.
The Rayleigh-Taylor instability (RTI) suits to evaluate the capability of a two-phase solver
to resolve fine-scaled density stratifications, while maintaining a sharp interface, in the
absence of surface tension. According to Cummings and Rudman [155]: a “numerical
simulation of the Rayleigh-Taylor instability keeps on producing finer scales of density
stratification until the resolution of the method is reached”. Simulations of 2D submerged
air bubbles rising due to the influence of gravity (BLG) can assess capillary and viscous
effects, as they combine all relevant phenomena of two-phase, immiscible flows. While
the benchmark results of Cummins and Rudman [155] resolve a sharp interface, charac-
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teristic for Lagrangian approaches, they are underresolved. The data of Sussman et al.
[111], used for comparison in e.g. [77, 156, 74], are based on the Eulerian diffuse-interface,
level-set continuum method. The lack of conservativity is the main drawback of diffuse-
interface methods, such as volume-of-fluid [157], level-set continuum [109] or phase-field
[158] methods. Smoothed particle hydrodynamics (SPH) methods can be mass and mo-
mentum conservative, see e.g. Adami et al. [159]. Szewc et al. [76, 160] have simulated the
RTI and a BLG with several SPH formulations and found forking solutions. Neither for the
RTI nor for the BLG, resolution-independent, mass- and momentum conservative, sharp-
interface-maintaining solutions were available for proper cross-method comparisons.
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4.4 On the convergence of the weakly compressible sharp-interface method for two-phase
flows

Providing these data has been the goal of

Felix S. Schranner, Xiangyu Hu, Nikolaus A. Adams: On the convergence of the
weakly compressible sharp-interface method for two-phase flows ; Journal of Computational
Physics, Volume 324, pp. 94-114, July 2016 [102].

The algorithm of [102] relies on a mass and momentum conservative, weakly compressible,
fully Eulerian, sharp-interface method [103] for immiscible, viscous, weakly compressible
two-phase flows. For computing the finite volume fluxes, a fifth-order WENO reconstruc-
tion [161] is coupled to a weakly compressible Roe-Riemann solver [50, 115, 98]. Sub-cell
corrections for interfacial viscous [162] and capillary stresses improve the spatial accuracy.
Due to resolving only near-interface regions at highest accuracy and permitting underres-
olution otherwise, numerical cost remain low.

With this algorithm, the RTI is studied until late stages. Local resolution is increased until
grid independence of the interface and integral quantities is observed. Thereby, fine-scale
structures appear to evolve grid-independently.

For the BLG different physically dominant phenomena are identified at sufficient spatial
resolution. Firstly, a low-Reynolds/ supercritical (for cusp formation) capillary number
configuration of the BLG is studied. Unsteady cusp formation and shedding of bubbles are
observed when the bubble is subject to large shear rates. Moreover, tertiary bubbles result
from the viscous interaction of the bulk fluid flow with the secondary bubbles, from which
they detach. Secondly, a high Reynolds number (low Ca) BLG is considered. Viscous
effects are subordinate, the interface development is complex. The interface shape and
the location of secondary bubbles can be resolved adequately at moderate grid resolution.
At higher resolution capillary waves are captured and the secondary-bubble sizes are grid-
independent.

For both Re, the disperse-phase integral quantities centroid and degree of circularity are
monitored. The x2-centroid, monitored for both Re, indicates the convergence of primary
and secondary bubbles. When secondary bubbles detach, the primary bubble regains a
stable cap and ascent. The x1-centroid and circularity mark the occurrence of bubble
shedding. DNS of a freely ascending high-Re bubble are performed. It is observed that
the wake flow of the primary, cap-shaped, bubble is the driving motor for the evolution of
the secondary bubbles.

In summary, the results of these two flow configuration [102] ought to serve as a reference
for cross-method comparison of two-phase models incorporating interfacial capillary and
viscous effects and verification of their implementation.

My contribution to this work lies in the development of the concept of this study and the
method to obtain the sub-cell corrected interface curvature. Moreover, I implemented most
of the algorithm, validated the models and verified the implementations. I performed the
numerical simulations and evaluated the results. The algorithm for postprocessing is due
to me. The manuscript for the publication has been written predominantly by me.
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4.5 A CONSERVATIVE INTERFACE-INTERACTION MODEL

WITH INSOLUBLE SURFACTANT

Numerical methods for solving interfacial flows with surfactants may be categorized into in-
terface tracking and interface capturing. Interface tracking methods either use an interface-
adapted grid or marker particles to represent the interface. A surface mesh is used instead
in boundary integral methods. A boundary integral method for studying the effect of insol-
uble surfactants on drop deformation has been developed in [163, 164]. In the front-tracking
method [165], a fixed grid is used for the flow, and a set of connected marker particles tracks
the interface and surfactant. A front-tracking method for insoluble surfactants is due to
Jan [166]. The immersed boundary method [167] was used to simulate interfacial flows
with insoluble surfactant A ghost-cell immersed boundary method [168] was employed in
Ref. [169] to study the effects of diffusion-controlled surfactant on a viscous drop injected
into a viscous medium. The dynamics of capillary waves with insoluble surfactant were
investigated using a hybrid level-set/front-tracking approach [170]. Another front-tracking
method, combining a finite element methodology with adaptive body-fitted meshes, served
to simulate the deformation and breakup of axisymmetric liquid bridges [171] and thin
filaments [172], considering insoluble surfactants.

In general, interface tracking methods are very accurate, yet, especially in 3D and for
evolving interfaces, the implementation is complicated. Possible drawbacks of marker La-
grangian approaches include difficulties in evaluating topology changes, the need to remove
parts of the evolving front (delooping) to correctly characterize the viscosity solution, the
need to adaptively add and remove points, and complexities in three dimensions [110].
Interface capturing methods define the interface implicitly with an auxiliary function, e.g.
a level-set, phase-field or color function. Gridding, discretization and handling of topo-
logical changes is straightforward. In [173], Teigen et al. develop and apply the diffuse
interface approach [158] to simulate flows with soluble and insoluble surfactants.
A level-set method [107, 109] for solving the surfactant transport is due to Adalsteinsson et
al. [174] and Xu et al. [175]. It is coupled with the immersed interface method (IIM) [176]
in [112]. With the IIM, the interface jump conditions are handled explicitly by modifying
the discretization stencils near the interface. As a simple and robust alternative to IIM Xu
et al. have modeled interface forces within the level-set framework by a continuous surface
force (CSF). A common property of these incompressible level-set and phase-field meth-
ods is the smoothing of material properties such as density and viscosity at the interface.
This implies their drawbacks: The lack of discrete conservation and ineffectiveness at large
density and viscosity ratios.

The fully conservative level-set based Sharp-Interface Method (SIM) for compressible flows
[103], is robust even for large interface topology changes [117], and large density and viscos-
ity ratios [177, 102]. It has been further developed to model viscous, weakly compressible
two-phase flows [162]. The key idea of the SIM framework, where the Navier-Stokes equa-
tions are solved on a Cartesian grid, is the modification of FVs that are cut by the interface
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4.5 A conservative interface-interaction model with insoluble surfactant

to allow explicit application of the interface-jump conditions, see Sec. 3.2. Interaction
terms considering capillary forces for a constant surface-tension coefficient and viscous
forces have been proposed in Ref. [162]. Yet, the formulation cannot account for a jump
condition in interface-tangential direction, occurring in the general case of non-vanishing
Marangoni stresses [84, 178].
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In Felix S. Schranner, Nikolaus A. Adams: A conservative interface-interaction model
with insoluble surfactant ; Journal of Computational Physics, Volume 327, pp. 653-677,
September 2016 [82],

a robust and consistent interface-interaction model is developed that accounts for the
fluid-fluid interaction, as well as capillary and Marangoni stresses explicitly at the sharp
interface. The interface-exchange is a direct solution of the interface jump conditions as
discussed in Sec. 2.4. The novel model is simpler than the CSF-approach and the IIM-
based approach of [112, 173].

The temporal evolution of surfactant concentration, level-set, and fluid phases follow an
identical Runge-Kutta algorithm. Level-set and surfactant evolution are evaluated only
within a narrow band near the interface, thus being highly efficient. Within the SIM
framework, local interface-segment lengths/areas are computed, avoiding the need for a
smoothed delta-function, for approximation of the interface length.

The algorithm of Xu et al. [112] is further-developed to employ these interface-segment
lengths/areas. A significant improvement in efficiency, compared to the alternative smoothed
delta-function formulation of [112], is achieved. Furthermore, due to the algorithm it is
unnecessary to propagate the interface area as another variable as proposed in [91].

The expected Marangoni and viscous stresses are predicted for a thermocapillary flow
configuration [179], validating the method. Physically expected behavior for the general
case of non-zero interface curvature is demonstrated on basis of drops propelled by a
surfactant gradient.

As an application demonstration the dynamic evolution of a single, two-dimensional drop
in a shear flow is analyzed with respect to the capillary (Ca =

µrefUref
σref

), Weber, and

Reynolds number, surfactant coverage, and surface Peclet number. The observations are in
agreement with previous numerical and experimental studies. Parameter analysis indicate
that decreasing Re increases initial drop stretching, and larger We entail more distinct
interface dynamics. Yet, very small We stiffen the drop, so that it remains more circular
even at low Re. The presence of surfactant lowers the interface stabilizing surface tension,
and thus leads to larger elongation at steady-state. Recovery of an ellipsoidal drop shape
is delayed with increasing surfactant coverage and elasticity. In case of a harmonically
oscillating drop, increasing surfactant coverage shows only minor effects. Moreover, the
critical We appears to be independent of surfactant coverage.

My contribution to this work lies in developing the concept of this study, as well as the
methods. I implemented the methods and algorithm. Moreover, I have verified the imple-
mentations and validated the methods, hence, performed the numerical simulations. The
algorithm for postprocessing and analyzing the results is due to me. I have written major
parts of the manuscript for the publication.
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6 Conclusion

Replacing a strictly incompressible with a weakly compressible approach reduces data
communication of the single-fluid algorithm significantly. Moreover, validation simulations
indicate that the weakly compressible WENO-CU6-M1 model, incorporating an implicit
subgrid-scale model, is a reliable method for the simulation of a wide range of 2D and 3D
turbulent and non-turbulent flows with underresolved, complex multiscale structures. A
self-contained method for quantifying the effective numerical dissipation rate and viscosity
in CFD simulations has been developed. It relies exclusively on simulated flow-field data.
Hence, it suits as a stand-alone post-processing tool to alleviate estimation of the relia-
bility of the acquired data. Deterministic design optimization of the weakly compressible
WENO-CU6-M1 scheme has allowed to recover Kolmogorov inertial subrange scaling for an
infinite Reynolds number Taylor-Green vortex in its quasi-isotropic turbulent state. For fi-
nite, yet, high Re TGV flows, the optimized model performs superior to alternative explicit
and implicit SGS models, allowing for two-phase flow simulations in these regimes. The de-
sign optimization framework is general, hence application to alternative gradient-capturing
schemes for underresolved DNS is straightforward. Three distinct, two-dimensional, com-
plex interface evolutions from initially simple setups, characteristic for a wide range of
academic and industrial two-phase flow applications have been realized at unprecedented
accuracy. The high-resolution data define a benchmark suite for cross-method comparison
and method verification of interface-capturing or tracking methods. A sharp-interface mo-
mentum exchange consistently accounting for the interface-interaction of two immiscible,
weakly compressible fluids, as well as capillary and Marangoni stresses has been devel-
oped and integrated into the sharp-interface framework. Conservative insoluble surfactant
transport along the sharp interface is consistent to the fluid, and level-set transport on a
Cartesian grid and explicit in time. The sharp-interface surfactant conservation algorithm
is at least as accurate as its original diffusive interface formulation, yet, computationally
more efficient. Sub-cell space interface reconstruction and curvature computation enables
very accurate computations of capillary stresses and surfactant diffusion.

In conclusion, computationally efficient and physically valid simulations of complex, incom-
pressible single- and two-phase flows with potentially underresolved multiscale structures
are straightforward with the methods developed within the scope of this work. In particu-
lar, studying ascending gaseous bubbles in liquids has been made possible for a wide range
of Reynolds, Eötvös and Morton numbers. Thereby, physical conditions such as at least
weakly compressible effects, large density and viscosity ratios, sharp-interfaces, and small-
scale turbulent structures can be accounted for. Moreover, even the dynamics of insoluble
surfactants and their effect on bubble evolution can be considered. Additionally, evaluation
of numerical simulation results for their local and global reliability is henceforth similarly
straightforward as in experimental studies. Alike the numerical methods for single- and
two-phase flow simulations, this method of analysis is directly applicable to a wide range
of scientific and industrial computational fluid dynamics configurations.
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A Mathematical Appendix

A.1 INTERPOLATION OF CELL FACE STATES

Parameters of the 5th-order WENO Scheme

The ideal weights are [93]:

d0 =
1

10
, d1 =

3

5
, d2 =

3

10
. (A.1)

Upwind Interpolation

Three different 3rd-order approximations of the non-averaged upwind cell-face value u
(L,υ)

i+ 1
2

are formulated on the three-point candidate stencils S0, S1, S2:

u
(L,0)

i+ 1
2

=
1

6

(
2Û[i−2] − 7Û[i−1] + 11Û[i]

)
,

u
(L,1)
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)
,
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(L,2)

i+ 1
2

=
1

6

(
2Û[i] + 5Û[i+1] − Û[i+2]

)
.

(A.2)

From these three upwind candidate stencils, a 5th-order accurate WENO cell-face U
(L)

[i+ 1
2

]

is calculated by equation (3.4). Via

β(α)
υ =

m−1∑
l=1

x
i+ 1

2∫
x
i− 1

2

∆x2l−1

(
∂lu(α,υ)(x)

∂xl

)2

dx, (A.3)

the smoothness indicators are calculated as:
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)2

+
13

12

(
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(A.4)
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A.1 Interpolation of Cell Face States

Downwind Interpolation

Three different 3rd-order approximations of the non-averaged downwind cell-face value
u

(R,υ)

i+ 1
2

are formulated on the three-point candidate stencils S0, S1, S2:

u
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(A.5)

From these three upwind candidate stencils, a 5th-order accurate WENO cell-face U
(R)

[i+ 1
2

]

is calculated by equation (3.4). The smoothness indicators are:
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)2

,

β
(R)
1 =

1

4

(
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Extension of the Parameter Set to Allow for 6th-order CU-WENO-M1
Reconstruction

The ideal weights adapt to account for four stencils:

d0 = d3 =
1

20
, d1 = d2 =

9

20
. (A.7)

Upwind Interpolation

The fourth 3rd-order approximation to U
(L)

[i+ 1
2

], based on the three-point candidate stencil

S4, is:
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)
. (A.8)
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The fourth smoothness indicator evaluates as:
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Downwind Interpolation

The fourth 3rd-order approximation to U
(R)
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], based on the three-point candidate stencil

S4, is:
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The fourth smoothness indicator for the downwind reconstruction evaluates as:
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A.2 EQUATION OF STATE DEPENDENT ROE AND ROE-PIKE

RIEMANN SOLVER

Given the cell-face normal vector n = (n1, n2, n3), which is n = (1, 0, 0) for computing F1,
n = (0, 1, 0) for computing F2, and n = (0, 0, 1) for computing F3, the cell-face tangent
vectors are t(1) = (−n2, n1, 0), t(2) = n× t(1) = (−n3n1,−n2n3, n1n1 + n2n2).

A.2.1 COMMON ROE AVERAGED STATES
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√
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(A.12)

and ũ2 = ũ2
1 + ũ2

2 + ũ2
3

A.2.2 ∆w FOR THE EVALUATION OF ROE WAVE STRENGTHS

According to Roe [100]∆w evaluates as
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A.2.3 ∆w FOR THE EVALUATION OF ROE-PIKE WAVE STRENGTHS

Roe and Pike [101] simplify ∆w by evaluating:

∆w =


∆w0

∆w1

∆w2

∆w3

 =


∆ρ
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A.2.4 COMMON ROE WAVE STRENGTHS:
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δ̃(5) = 1
ã
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A.2.5 COMMON ROE-PIKE WAVE STRENGTHS:
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A.2.6 ARTIFICIALLY COMPRESSIBLE EOS

EOS specific Roe Averages:

ã = a . (A.17)

EOS specific Roe Wave Strength δ(2):

δ̃(2) = 0 . (A.18)

EOS specific Roe-Pike Wave Strength δ(2):

δ̃(2) = 0 . (A.19)

Right Eigenvectors:

K(1) =


1
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A.2.7 TAIT EOS

EOS specific Roe averages:

h̃ = ẽkin + ωẽin,

with ẽin = p̃
ρ̃(ω−1)

where p̃ = p1

[(
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p1

ρω0
ωρ̃(ω−1) .

(A.21)

EOS specific Roe Wave Strength δ(2):

δ̃(2) =
[
ũ1∆w1 + ũ2∆w2 + ũ3∆w3 + ∆w0

(
h̃− 2ẽkin

)
−∆w4

]
. (A.22)

EOS specific Roe-Pike Wave Strength δ(2):

δ̃(2) =
ω

ρ̃(ω − 1)
(p0 − p1) (ρ(R) − ρ(L)) . (A.23)

Right Eigenvectors:

K(1) =


1

ũ1 − ã · n1

ũ2 − ã · n2

ũ3 − ã · n3

h̃− ã u · n

 , K(2) =


0
0
0
0
−1

 , K(3) =

 0
t(1)

ũ · t(1)

 ,

K(4) =

 0
t(2)

ũ · t(2)

 , K(5) =


1

ũ1 + ã · n1

u2 + ã · n2

ũ3 + ã · n3

h̃+ ã u · n

 .

(A.24)
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A.3 INTERFACE TRANSPORT AND REPRESENTATION

A.3.1 DETAILS OF THE LEVEL-SET REINITIALIZATION

Eq. (3.35) can be rewritten as

∂φ

∂t
+ c · ∇φ = sgn (φ0) , (A.25)

where the advection velocity is

c = sgn (φ0)

(
∆φ

|∆φ|

)
. (A.26)

The characteristics of the nonlinear hyperbolic equation (A.25), emanating from φ(x) = 0,
lead to reinitialization of φ(x) in sequence with the distance to the interface.
To obtain the level set field φn+1 at the pseudo time step n+1, the discretized Eq. (A.25),

φn+1
[i,j,k] = φn[i,j,k] + ∆τL[i,j,k] , (A.27)

is solved for φ0 6= 0. This is realized by explicitly marking and omitting cells that contain
the interface. L[i,j,k] = sgn

(
φ[i,j,k],n=0

)
G(φ[i,j,k]) denotes the difference operator and

G(φ|[i,j,k]) =


1−

√
max

((
a+
)2 ;

(
b−
)2) + max

((
c+
)2 ;

(
d−
)2) + max

((
e+
)2 ;

(
f−
)2) if φ[i,j,k] > 0

1−
√

max
((
a−
)2 ;

(
b+
)2) + max

((
c−
)2 ;

(
d+
)2) + max

((
e−
)2 ;

(
f+
)2) if φ[i,j,k] > 0

0 otherwise

, (A.28)

where

a+ = max
(
D−1 [φ[i,j,k]]; 0

)
, a− = min

(
D−1 [φ[i,j,k]]; 0

)
,

b+ = max
(
D+

1 [φ[i,j,k]]; 0
)
, b− = min

(
D+

1 [φ[i,j,k]]; 0
)
,

c+ = max
(
D−2 [φ[i,j,k]]; 0

)
, c− = min

(
D−2 [φ[i,j,k]]; 0

)
,

d+ = max
(
D+

2 [φ[i,j,k]]; 0
)
, d− = min

(
D+

2 [φ[i,j,k]]; 0
)
,

e+ = max
(
D−3 [φ[i,j,k]]; 0

)
, e− = min

(
D−3 [φ[i,j,k]]; 0

)
,

f+ = max
(
D+

3 [φ[i,j,k]]; 0
)
, f− = min

(
D+

3 [φ[i,j,k]]; 0
)
.

(A.29)

The upwind differences are approximated with a 1st-order scheme, i.e. e.g. D−1 [φ[i,j,k]] =
φ[i,j,k]−φ[i−1,j,k]

∆x1
, and D+

1 [φ[i,j,k]] =
φ[i+1,j,k]−φ[i,j,k]

∆x1
, in the appropriate direction. The pseudo-

time step size is ∆τ = 1
4

√
(∆x1)2 + (∆x2)2 + (∆x3)2. Ten iterations are performed to

reach steady state.
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A.3 Interface Transport and Representation

A.3.2 SUB-CELL CORRECTED INTERFACE CURVATURE

Let the radius of the osculating circle at a point on the interface be r, then its curvature,
which is the reciprocal of its radius,

k(r) =
1

r
, (A.30)

equals the principal curvature of the local interface segment. In two-dimensional space,
the mean curvature is

κM(r) = k(r) . (A.31)

By Taylor-series expansion of (A.31), one obtains a 1st-order accurate approximation to
the interface curvature

κΥ = κM(r) +
dκM(r)

dr
∆r+O2 = κM(r)− 1

r2
∆r+O2 = κM(r)−κM(r)2∆r+O2 . (A.32)

Considering that κM(r) may also be negative, Eq. (A.32) is modified as

κΥ,2D = κM(r + ∆r) ≈
(
|κM(r)| − κM(r)2∆r

)
sgn(κM(r)) . (A.33)

In 3D, the local mean curvature relates to the radii of the maximal and minimal osculating
circles as

κM =
1

2
(k1 + k2) =

1

2

(
1

r1

+
1

r2

)
. (A.34)

Assuming an osculating sphere of k1 = k2 = k, Eq. (A.34) becomes

κM(r) = k =
1

r
, (A.35)

from which it can readily be seen that

κΥ,3D = κΥ,2D . (A.36)

Note that φ[i,j,k] < 0 corresponds to ∆r > 0 and vice versa. Generally, the local mean
curvature κ(x, t) of the interface is obtained from the local level-set according to

κM,2D(φ) =
|∇φ|2 tr (Hφ)− (∇φ)T ·Hφ · (∇φ)

|∇φ|3
=

=

∂φ
∂x1

2 ∂2φ
∂x2

2
+ ∂φ

∂x2

2 ∂2φ
∂x2

1
− 2 ∂φ

∂x1

∂φ
∂x2

∂2φ
∂x1∂x2(

∂φ
∂x1

2
+ ∂φ

∂x2

2
)3/2

(A.37)
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in 2D, and with

κM,3D(φ) =
|∇φ|2 tr (Hφ)− (∇φ)T ·Hφ · (∇φ)

2 |∇φ|3
=

=

∂φ
∂x1

2
(
∂2φ
∂x2

2
+ ∂2φ

∂x2
3

)
+ ∂φ

∂x2

2
(
∂2φ
∂x2

1
+ ∂2φ

∂x2
3

)
+ ∂φ

∂x3

2
(
∂2φ
∂x2

1
+ ∂2φ

∂x2
2

)
2
(
∂φ
∂x1

2
+ ∂φ

∂x2

2
+ ∂φ

∂x3

2
)3/2

−

−
2
(
∂φ
∂x1

∂φ
∂x2

∂2φ
∂x1∂x2

+ ∂φ
∂x1

∂φ
∂x3

∂2φ
∂x1∂x3

+ ∂φ
∂x2

∂φ
∂x3

∂2φ
∂x1∂x2

)
2
(
∂φ
∂x1

2
+ ∂φ

∂x2

2
+ ∂φ

∂x3

2
)3/2

(A.38)

in 3D, where tr (Hφ) denotes the trace of the Hessian of φ.
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a b s t r a c t

In engineering applications critical complex unsteady flows often are, at least in certain flow areas, only
marginally resolved. Within these areas, the truncation error of the underlying difference schemes
strongly affects the solution. Therefore, a significant gain in computational efficiency is possible if the
truncation error functions as physically consistent, i.e. reproducing the correct evolution of resolved
scales, subgrid-scale (SGS) model. The truncation error of high-order WENO-based schemes can be
exploited to function as an implicit subgrid-scale (SGS) model. A recently developed sixth-order adaptive
central-upwind weighted essentially non-oscillatory scheme with implicit scale-separation has been
demonstrated to incorporate a physically consistent implicit SGS model for compressible turbulent flows.
We consider the implicit SGS modeling capabilities of an improved version of this scheme simultaneously
for underresolved turbulent and non-turbulent incompressible flows, thus extending previous works on
this subject to a more general scope. With this model we are able to reach very long integration times for
the incompressible Taylor–Green vortex at infinite Reynolds number, and recover in particular a low-
mode transition to isotropy. Inviscid shear-layer instabilities are resolved to highly nonlinear stages,
which is shown by considering the doubly periodic two-dimensional shear layer as test configuration.
Proper resolved-scale prediction is also obtained for viscous–inviscid interactions and fully confined
viscous flows. These properties are demonstrated by applying the model to a vortex–wall interaction
problem and lid-driven cavity flow.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Truncation error asymptotic analysis (sufficiently small grid
spacing) is hardly relevant for practical applications, when the
available grid resolution in certain parts of the computational do-
main is far from resolving all physically relevant flow structures.
Thus, in most practical computations, the effect of the truncation
error is not small and it contributes to the solution as an effective
subgrid-scale model. The idea arises to adjust the local truncation
error in order to function as a physically consistent subgrid-scale
(SGS) model, i.e. delivering an accurate solution for resolved slow
structures without determinating its asymptotic behavior at the
fine-resolution limit. Modified differential equation analysis
(MDEA) [1] has enabled us to show that the truncation error of
nonlinear discretization schemes can be constructed such as to
represent an implicit SGS model for turbulent flows [2]. It is known
that the nonlinear regularization mechanism of high-order finite-
volume schemes with shock-capturing capabilities can be used
for implicit large eddy simulations (LES), for a review refer to [3].

A spectral extension of MDEA has allowed for designing the trun-
cation error of a nonlinear scheme such that it recovers the theo-
retical spectral eddy viscosity when the flow is turbulent and
underresolved. Such a situation, where the non-negligible local
truncation error of a numerical scheme recovers correct physical
SGS behavior is called in the following ‘‘physically consistent’’
behavior [4,5] in order to distinguish the analysis from that for
asymptotically small truncation errors. Successful applications for
physically consistent implicit LES models have been shown for a
wide range of compressible and incompressible turbulent flows,
e.g. [6–8]. Hu and Adams [9] have investigated the physical
consistency of the underresolved contribution of an existing low-
dissipation scheme (WENO-CU6) [10]. A proper modification of
WENO-weights has resulted in a scale separation between contri-
butions from the resolved and non-resolved scales to the locally
reconstructed solution so that non-resolved scales are subject to
dissipation, while the shock-capturing capabilities and the sixth
order of accuracy in smooth flow regions of the underlying scheme
are maintained.

Shu et al. have studied the evolution of the nearly incompress-
ible, inviscid three-dimensional Taylor–Green vortex (TGV) [11].
They have found that the fifth-order WENO scheme shows unphys-
ical dissipation effects but allows for stable underresolved
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simulations. It is well established that spectral methods are most
efficient in well-resolved cases but cannot provide SGS energy
transfer without explicit SGS models, e.g. [12,11]. In [11] it has
been demonstrated that standard finite-difference and spectral
methods do not provide the basis for physically consistent implicit
SGS modeling capability. Furthermore, it has been found that inte-
gral flow quantities, such as enstrophy and kinetic energy, do not
allow for a clear assessment of underresolved flow simulations.
On the other hand, a discretization scheme that reproduces self-
similar Kolmogorov spectra of a decaying isotropic turbulent flow
at infinite Reynolds numbers is more likely to be robust to un-
der-resolution. As WENO weighting involves measuring of flow
resolution, it offers the potential to derive a physically consistent
high-resolution scheme with a truncation error adjusted such that
it exhibits implicit subgrid-scale modeling capabilities for both,
turbulent and non-turbulent flows. We emphasize that for extre-
mely large-scale simulations on massively parallel computers the
weakly compressible flow model faces renewed significance as
an alternative to strictly incompressible approaches. This is due
to the fact that the weakly compressible flow model inherently
requires less memory communication, as all operations are local
unlike the strictly incompressible model, where the elliptic pres-
sure-projection leads to global communication needs.

The objective of the current paper is to develop and to investi-
gate physical consistency of a weakly compressible non-linear
high-resolution approach for the under-resolved simulation of tur-
bulent and non-turbulent incompressible flows. Due to the lack of
analytic accessibility of the case dependent large truncation errors
that occur in these cases, such an analysis mostly needs to rely on
empirical investigation for a range of carefully selected test flow
configurations that capture the essential properties of later target
applications. A conservative approximate Roe–Pike solver is
adapted to a weakly compressible flow model and combined with
a low-dissipation WENO scheme. A modification of the underlying
WENO scheme is proposed in order to obtain physical consistency
of the resulting implicit SGS model.

As reference flow for implicit SGS model development we con-
sider the three-dimensional Taylor–Green vortex (TGV) at infinite
Reynolds number, in particular also extending previous consider-
ations to very late times. The implicit LES capability for moderate
Reynolds number ranges is assessed by the Comte–Bellot Corrsin
decaying grid generated isotropic turbulence. The evolution of
shear layer instabilities into and throughout highly nonlinear
stages can be studied by considering the two-dimensional dou-
bly-periodic shear layer with finite thickness, further extended to
infinitely thin shear-layers at infinite Reynolds numbers. The
interaction between large scale vortical structures with the very-
small-scale structures of viscous boundary layers walls is studied
by considering an isolated vortex dipole colliding with a no-slip
wall, following Refs. [13–16]. The lid-driven cavity is discussed as
an example for a fully confined wall-bounded non-turbulent, but
with respect to proper numerical resolution highly demanding
two-dimensional flow.

2. Model formulation

2.1. Artificial compressibility approach

At Mach numbers M� 1 compressibility is negligible, i.e.
b ¼ 1

q
@q
@p � 0. The artificial compressibility approach of Chorin and

Temam [17,18] assumes a nonzero but constant compressiblity
for weakly compressible flows. The isentropic compressibility re-
lates to the sound speed by a2 ¼ 1

qbjs
. For flows with M = 0.1, as con-

sidered within this work, the isentropic compressibility is on the
order of bjs = 0.01. For isothermal processes b = bjs, and the ratio

of specific heats is c = 1. Pressure and density are directly related
by

p ¼ a2q: ð1Þ

It is evident that density fluctuations can be considered as
small, if a is a sufficiently large constant.

2.2. Numerical-flux computation adapted to weakly compressible fluid
treatment

Within the weakly compressible approach total energy is deter-
mined by the evolution of mechanical energy. Thus, the flow is
governed by equations for the conservation of mass and momen-
tum. In one dimension (for simplicity) u = (q,qu) is the solution of

@u
@t
þ @

@x
fðuÞ ¼ 0: ð2Þ

In a discrete space–time-domain, the discrete conservation
equation

dUi

dt
¼ � 1

Dxi
F u xiþ1

2
; t

� �� �
� F u xi�1

2
; t

� �� �� �
; ð3Þ

for the cell-averaged solution Ui requires approximations of the
cell-face fluxes Fi�1

2
. A straightforward low-dissipation flux approx-

imation is due to the Roe [19] approximate Riemann solver. Suc-
cessful applications of Roe schemes to the solution of weakly
compressible flows have been demonstrated by Marx [20] and
Elsworth and Toro [21].

Roe’s linearization of the local flux Jacobian ~Aj ¼ ~AðûL; ûRÞ is
essential. The eigenvalues of ~Aj are ~kjðûL; ûRÞ and its right eigenvec-
tors ~KðjÞðûL; ûRÞ are determined so that the Roe numerical flux func-
tion can be computed as

F̂iþ1
2
¼ 1

2
ðf̂ L þ f̂ RÞ �

1
2

Xm

j¼1

~ajj~kjj~KðjÞ: ð4Þ

Using the left and right reconstructed states ûL and ûR at the
interface i ¼ 1

2, the procedure to compute the eigenvalues ~kj, right
eigenvectors ~KðjÞ and wave speeds ~aj is straightforward. The Roe
averaged density ~q and velocity ~u are obtained from the left and
right states as

~q ¼ ffiffiffiffiffiffiffiffiffiffiffi
qLqR
p

;

~u ¼
ffiffiffiffiffiqL
p

uL þ
ffiffiffiffiffiffiqR
p

uRffiffiffiffiffiqL
p þ ffiffiffiffiffiffiqR

p :
ð5Þ

Within the weakly compressible approach the local Roe-aver-
aged speed of sound ~a is replaced by the constant speed of sound
a. Thus, ~kj; ~KðjÞ and ~aj are:

~k1 ¼ ~u� a; ~k2 ¼ ~uþ a; ð6Þ

~Kð1Þ ¼
1

~u� a

� �
; ~Kð2Þ ¼

1
~uþ a

� �
; ð7Þ

~a1 ¼
1

2a2 ½ðpR � pLÞ � ~qaðûR � ûLÞ�;

~a2 ¼
1

2a2 ½ðpR � pLÞ þ ~qaðûR � ûLÞ�:
ð8Þ

The resulting semi-discrete evolution equation

dUi

dt
¼ � 1

Dxi
F̂ xiþ1

2
; t

� �
� F̂ xi�1

2
; t

� �� �
; ð9Þ

can be advanced in time with a three-step TVD Runge–Kutta
scheme [22].
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2.3. Revisiting the WENO-CU6-M1 weighting

Based on the sixth order adaptive central-upwind scheme
WENO-CU6 [10], a central-upwind WENO scheme with implicit
SGS modeling capabilities has been developed (WENO-CU6-M1)
[9]. The modified weighting of the WENO-CU6-M1 formulation
remedies excessive dissipation of the underlying WENO-CU6
scheme while preserving its shock-capturing properties and thus
recovers physical consistency for both, the solenoidal and the dila-
tational components of the velocity field, without the need to
explicitely distinguish these, see. e.g. [9].

The modified weights of the WENO-CU6-M1 scheme are

xr ¼
arP3
s¼0as

; ar ¼ dr Cq þ
s6

�þ br

� �q

; r ¼ 0; . . . ;3 ð10Þ

with the reference smoothness indicator s6 ¼ b3 � 1
6 ðb0 þ 4b1 þ b2Þ.

� is a small number. Following Jiang and Shu [23], smoothness indi-
cators are computed as

br ¼
Xm�1

l¼1

Z x
iþ1

2

x
i�1

2

Dx2l�1 @lûrðxÞ
@xl

 !2

dx; ð11Þ

where

b0 ¼ 1
4 ðui�2 � 4ui�1 þ 3uiÞ2 þ 13

12 ðui�2 � 2ui�1 þ uiÞ2;
b1 ¼ 1

4 ðui�1 � uiþ1Þ2 þ 13
12 ðui�1 � 2ui þ uiþ1Þ2;

b2 ¼ 1
4 ð3ui � 4uiþ1 þ uiþ2Þ2 þ 13

12 ðui � 2uiþ1 þ uiþ2Þ2:
b3 ¼ 1

10;080 271;779u2
i�2 þ ui�2ð�2;380;800ui�1 þ 4;086;352ui

		
�3;462;252uiþ1 þ 1;458;762uiþ2 � 245;620uiþ3Þ
þui�1ð5;653;317ui�1 � 20;427;884ui þ 17;905; 032uiþ1

�7;727;988uiþ2 þ 1;325;006uiþ3Þ þ uið19;510;972ui

�35;817;664uiþ1 þ 15;929;912uiþ2 � 2;792;660uiþ3Þ
þuiþ1ð17;195;652uiþ1 � 15;880;404uiþ2 þ 2;863;984uiþ3Þ
þuiþ2ð3;824;847uiþ2 � 1;429;976uiþ3Þ þ 139;633u2

iþ3

		:
ð12Þ

Taylor series expansion of br, r = 0, 1, 2, 3 about ui gives

b0 ¼ u02i Dx2 þ 13
12

u002i �
2
3

u0iu
000
i

� �
Dx4 � 13

6
u00i u000i �

1
2

u0iu
0000

i

� �
Dx5

þ OðDx6Þ;

b1 ¼ u02i Dx2 þ 13
12

u002i þ
1
3

u0iu
000
i

� �
Dx4 þ OðDx6Þ;

b2 ¼ u02i Dx2 þ 13
12

u002i �
2
3

u0iu
000
i

� �
Dx4 � 13

6
u00i u000i �

1
2

u0iu
0000

i

� �
Dx5

þ OðDx6Þ;

b3 ¼ u02i Dx2 þ 13
12

u002i Dx4 þ OðDx6Þ:

ð13Þ

The smoothness indicators diminish with increasing smooth-
ness of the solution on a stencil. If � is a small constant number,
both ar and the solution are dominated by the choice of � instead
of the linear-weight bias Cq. An example of a function with a
non-smooth stencil is

uðxÞ ¼ x3 þ cosðxÞ: ð14Þ

When it is evaluated at x0 = 0 the first and third derivatives are
zero and the second and fourth �1 and 1, respectively. Thus, the
smoothness indicators become

b0 ¼ b1 ¼ b2 ¼ b3 ¼ �
13
12

Dx4 þ OðDx6Þ: ð15Þ

For a computational grid with Dx ? 0, br approaches zero with
an error order of OðDx6Þ for smooth stencils and at most OðDx4Þ for
non-smooth stencils. Thus, to ensure ar to be bounded in the case
when br vanishes, � should be of OðDx6Þ so that it does not affect
the overall order of the scheme.

3. Analysis of the implicit subgrid scale model – isotropic
turbulence

Physical consistency of an implicit SGS model can be investi-
gated by means of time evolution of the three-dimensional kinetic
energy spectrum of an underresolved, isotropic turbulent flow. At
very high Reynolds numbers a Kolmogorov scaling inertial sub-
range should be recovered by a SGS model. The three-dimensional
Taylor–Green vortex (TGV) [24] evolving from the initial two-
dimensional condition

uðx; y; z;0Þ ¼ sinðxÞ cosðyÞ cosðzÞ;
vðx; y; z;0Þ ¼ � cosðxÞ sinðyÞ cosðzÞ;
wðx; y; z;0Þ ¼ 0;
qðx; y; z;0Þ ¼ 1:0;

pðx; y; z;0Þ ¼ 100þ 1
16
½ðcosð2xÞ þ cosð2yÞÞð2þ cosð2zÞÞ � 2�;

ð16Þ

within a periodic domain is a commonly used model flow therefore.
After t � 9 and at very high Reynolds numbers the incompressible
TGV has developed three-dimensional, statistically isotropic turbu-
lence [25]. The flow field exhibits self-similar scaling of E(k) / k�5/3

within the inertial subrange. In agreement with high resolution LES
of Grinstein and Fureby [26], Hu and Adams [9] have obtained a
Kolmogorov inertial range. In their simulations, the flow is de-
scribed by the compressible Navier–Stokes equation and the
ideal-gas equation of state. With the original WENO-CU6-M1 for-
mulation [9] transition of the TGV at infinite high Reynolds number
is observed, however, Kolmogorov scaling of the resolved inertial
subrange is not obtained, see Fig. 1. In the following section we pro-
pose a modification of the scheme that recovers the inertial-range
scaling.

3.1. Parameter identification

Through modification of the weighting of the WENO-CU6-M1
scheme, transition to isotropic turbulence and a self-similar

Fig. 1. Evolution of the three-dimensional kinetic energy spectrum for the early
stages (t 6 10) of the inviscid, incompressible Taylor–Green vortex. WENO-CU6-M1
formulation as in Ref. [9] with weakly compressible model.
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physically consistent inertial subrange with Kolmogorov scaling
can be obtained for inviscid, weakly compressible flows, see Sec-
tion 3.2. Based on the following considerations, a suitable set of
WENO-CU6-M1 model parameters (Cq,q) is derived as the pro-
posed modification. For stencils with smooth solutions variations
of s6

�þbr
over the respective stencil support are small. Thus, the lin-

ear-weight bias Cq emphasizes a non-dissipative symmetric recon-
struction of ui�1

2
. Increasing Cq effectively decreases the numerical

dissipation for resolved scales, excessive values for Cq, however, re-
sult in spurious oscillations near discontinuities [27,28]. This can
be relevant for the inverse kinetic-energy cascade (backscatter).
Outscatter and backscatter of an energy cascade can be controlled
by q in Eq. (10). Larger values of q result in stronger separation of
resolved and unresolved scales.

3.1.1. Effect of the integer power exponent q
In the original formulations [10,23], the integer power exponent

q is a free parameter, that does not affect the order of the numerical
truncation error. It does, however, control the amount of nonlinear
dissipation [29], which increases with q, see Ref. [30]. According to
[23] an integer q P 1 is chosen in order to push the weight of the
non-smooth stencil to zero as Dx ? 0. In [31] it has been suggested
to use q = m, with 2m � 1 being the order of accuracy. However,
Jiang and Shu [23] found that q = 2 is sufficient for m 6 3. Geroly-
mos et al. [30] have experimented with varying q for m 6 9. They
find that q has to increase with increasing m to obtain ENO behav-
ior. A sensitivity analysis of q for incompressible very high Rey-
nolds number TGV flows with weakly compressible flow model is
performed for 2 6 q 6 12. From Fig. 2a we observe that when
q 6m = 6 inertial range scaling is lost for wavenumbers exceeding
k � 18, thus indicating non-physical behavior. Effective dissipation
increases with q. Physically consistent inertial range scaling, char-
acteristic for isotropic turbulence, is found for q � 8. For larger q,
the effect of the non-resolved dissipation range is over-empha-
sized, resulting in an excessively dissipative scheme for the chosen
linear-weight bias of Cq = 16,000.

3.1.2. The linear-weight bias Cq

Cq� 1 emphasizes the contribution of optimal weights when
the smoothness indicators are of similar magnitude [28,10]. Higher
values for Cq reduce numerical dissipation [9]. For compressible,
isotropic turbulence it has been observed that proper inertial range
scaling is obtained for Cq = 1000 [9]. Fig. 2b shows 3-D kinetic en-
ergy spectra at t = 10 for 1000 6 Cq 6 20000. For Cq = 1000, the

resulting scheme predicts a too steep inertial subrange indicating
excessive overall dissipation. Proper Kolmogorov scaling is
achieved with Cq � 16,000. Further increase of Cq, e.q. Cq = 20,000,
leads to unphysical energy pile-up at higher wavenumbers.

3.2. Evolution of the incompressible three-dimensional Taylor–Green
vortex at infinite Reynolds number over longer times

As we have found a physically consistent implicit SGS model for
simulating TGV evolution to its quasi-isotropic state at t � 9 [25], it
is now possible to explore the long-term evolution of the under-re-
solved, incompressible TGV at infinite Reynolds number in detail.

The evolution of the resolved energy spectrum for t 2 [0,10] is
shown in Fig. 3a. The energy spectrum evolves from a single Fou-
rier mode of E(k = 1) = 0.125 to span the entire range of resolvable
scales (k 2 [1,32]), whereas at t � 3.4 subgrid-scales are produced
and kinetic energy decays due to SGS dissipation. For t 2 [9,11]
E(t) / t�1.3 is identified, Fig. 3b. For t 2 [11,30] E(t) / t�1.6 and for
t P 30,E(t) / t�2.6 is observed, see Fig. 4. For very late stages,
t P 100, E(t) / t�2 is found, however, the magnitude of E is very
small. The decay of kinetic energy is also well observable in the
3-D energy spectrum of the resolved inertial subrange, Fig. 5,
which scales to E(k) / k�5/3 at least until t � 70. After t � 100 the
bandwidth of the inertial subgrange narrows noticeably. At
t = 200 only the band 2 [ k [ 9 shows Kolmogorov scaling,
whereas higher modes scale according to E(k) / k�7/3 For the tem-
poral evolution of 3-D TGV isotropic turbulent decay we identify
two scaling ranges.

1. E1(k, t) / k�5/31.6(�t/10) for 10 6 t 6 80.
2. E2(k, t) / k�5/31.3�(t�60)/20 is observed for later times

(t P 80).

For 10 6 t 6 30 redistribution of kinetic energy among the large
scale structures is a characteristic indicator of high-Re TGV transi-
tion to isotropy, see Fig. 6. Our implicit SGS captures this low-mode
transition for Re =1 and Re = 3000. During the redistribution of ki-
netic energy, scaling within the inertial subrange is lost momentar-
ily, compare E–k-plot for t = 20. At t � 10 as well as at t � 18
temporal minima of the kinetic energy of the second mode are
identified. Coinciding with the initiation of this low-mode transi-
tion at t � 10, an overall inter-modal kinetic energy redistribution
process initiates, equalizing the kinetic energy distribution. Later,
E(k) follows an isotropic Kolmogorov-spectra.

Fig. 2. 3-D energy spectra of ILES (643 cells) when varying a) q and b) Cq of inviscid 3-D TGV at t = 10. Results are compared to the theoretical E(k) / k�5/3 scaling.
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These results confirm, that the proposed scheme modification
indeed recovers physically consistent SGS model behavior for this
challenging test case, that includes instability development and
nonlinear flow evolution to the isotropic-turbulent state.

3.3. Underresolved numerical simulations of the incompressible
three-dimensional Taylor–Green vortex at finite Reynolds numbers

Now we extend the scope towards including viscous effects and
conduct simulations of TGV flows with Re = 100 to Re = 3000 with-
in a domain of (2p)3. We use a coarse grid of 643 cells. Periodic
boundary conditions are applied. For assessing resolution effects
for Re P 800, a refined grid of 1283 cells has been used. The DNS
of Brachet et al. [32,33] provide reference data.

The time evolution of the total dissipation rate e ¼ dE
dt is an

essential quantity to be reproduced by LES. Fig. 7 shows the
dissipation rates for LES with a conventional (Cs = 0.18) and a
dynamic Smagorinsky model as well as for WENO-CU6-M1-based
implicit LES with parameters as determined in Section 3.1
(Cq = 16,000;q = 8).

Fig. 3. Evolution of the kinetic energy during early stages (t 6 10) of the inviscid, incompressible TGV. (a) Spectral decomposition of kinetic energy and (b) total kinetic
energy.

Fig. 4. Time evolution of the kinetic energy of the 3D TGV for 0 6 t 6 200 as
compared to idealized scaling of t�1.3 for t 2 [9,11], t�1.6 for t 2 (11,30], t�2.6 for
t 2 [30,100], t�2.0 for t P 100

Fig. 5. 3-D energy spectrum within resolved inertial subrange at different times compared to the Kolmogorov scaling E(k) / k�5/3.
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The Smagorinsky model with constant Cs overpredicts dissipa-
tion even for the smallest considered Re = 100. For larger Reynolds
numbers it returns an unphysical flow evolution, missing laminar-
turbulent transition. A dynamic Smagorinsky parameter improves
predictions significantly. For Reynolds numbers 100 and 200 the
agreement with DNS is good. For Reynolds numbers of Re P 400,
however, the dynamic Smagorinsky model overestimates dissipa-
tion rates.

With advancing laminar-turbulent transition, the dissipation
rate increases due to non-linear vortex stretching. The decrease
in e(t) at later times is due to viscous damping. For Re 6 800, the
dissipation rates obtained with the implicit LES based on the
WENO-CU6-M1 scheme with the coarse grid are in good agree-
ment with DNS, Fig. 7c. For 1283 resolution equally good agree-
ment is observed with DNS for Re P 800. Comparable results are
obtained with the adaptive local deconvolution model (ALDM)
[5] for Re 6 1600. At higher Reynolds numbers ALDM overpredicts
small scale structures and thus the dissipation rate, whereas the
WENO-CU6-M1 scheme underpredicts these, see Fig. 7e.

The decomposition of the total dissipation rate e for Reynolds
numbers of 1600 and 3000 into the resolved er and the SGS
modeled dissipation rate esgs = e � er is used for analysis of the
subgrid-scale (SGS) model behavior, Fig. 8. The subgrid-scale
dissipation rate increases with a delay compared to the resolved
dissipation rate, in combination leading to a physically consistent
total dissipation rate, see Fig. 8b and c. We can conclude that our
implicit SGS model performs slightly better than the dynamic
Smagorinsky model, but not quite as good as ALDM. Note, how-
ever, that the current model is computationally much cheaper than
ALDM.

3.4. Analysis of the implicit subgrid scale capabilities for turbulent
decay

As final test for unbounded turbulent flow, we consider the de-
cay of isotropic turbulence at moderate Reynolds number. Comte–
Bellot and Corrsin (CBC) experimentally investigated decaying grid
generated isotropic turbulence. At selected locations downstream

Fig. 6. Spectral decomposition of energy (logarithmic scale) for the 3-D TGV ILES. Projected contours on t � k-plane are in increments of 100.5 for 10�6 to 10�2.

Fig. 7. Reynolds number specific dissipation rate e(t) for the 3-D TGV. On 643 finite volumes (FV): WENO-CU6-M1 implicit LES, – � – � – � – � constant-Cs

Smagorinsky LES, ��������� dynamic Smagorinsky LES. On 1283 FV for Re P 800: – – – – WENO-CU6-M1 ILES. Implicit LES with ALDM [5] on 643 cells: �. Following symbols
indicate DNS data by Brachet et al.: j: Re = 100, N: Re = 200, .: Re = 400, �: Re = 800, I: Re = 1600, h: Re = 3000.
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of a mesh with a width of M = 5.08 cm they have recorded stream-
wise turbulent energy spectra. Under the assumption of local isot-
ropy the corresponding three-dimensional turbulent energy
spectra are calculated and listed in [34] for three locations. The
Taylor microscale Reynolds numbers Rek = u0k/mare Rek,1 = 71.6,
Rek,2 = 65.1, and Rek,3 = 60.7. Under the assumption of approxi-
mately constant mean convection invoking Taylor hypothesis, the
spatial evolution of the experimental data relates to temporal evo-
lution of simulated decaying turbulence in a periodic domain of
(2p)3 discretized with a collocated grid of 643 cells. Given the 3-
D energy spectrum for Rek,1, velocity components are generated
by three sets of random numbers, (h1,h2,/), uniformly distributed
on [0,2p]. Complex velocities that satisfy the requirement of a
solenoidal velocity field in wavenumber space, kiui = 0, are [35]

ð~u1; ~u2; ~u3Þ ¼
1
jkjkh

; ajkjk2 þ bk1k3;�ajkjk2 þ bk3k2; bk2
h

� �
: ð17Þ

Furthermore,

ða; bÞ ¼ Eðk; t ¼ 0Þ
4pk2 ðexpðih1Þ: cosð/Þ; expðih2Þ sinð/ÞÞ: ð18Þ

The decaying turbulent flow is evolved and the computational
3-D energy spectra are compared to experimental spectra at Rek,2

and Rek,3, see Fig. 9a. The WENO-CU6-M1 implicit LES predicted
energy spectra at later times, i.e. lower Rek, agree well with the
experimentally observed ones. At the second measurement station,
where Rek,2 = 65.7, the ALDM implicit LES and LES with Chollet’s

eddy viscosity model [5] compare well in terms of E(k). At later
times and especially at higher wavenumbers, the shape of E(k) pre-
dicted with the WENO-CU6-M1 implicit LES resemble those of the
LES with a dynamic Smagorinsky model. The overall kinetic energy
of the WENO-CU6-M1 implicit LES is similar to the ALDM predic-
tions, which recovers the experimentally observed ones [5]. For
the observed time interval the kinetic energy is found to develop
approximately as E(t) / t�1.0, see Fig. 9b, where a trend to rather
following E(t) / t�1.3 at later times also can be seen. Similar conclu-
sions made for the implicit SGS capability of the current model as
observed in the previous sections transfer to the current case.

4. Analysis of implicit SGS model capabilities for non-turbulent
flows

For a unified study of implicit SGS capabilities of our model for
turbulent and non-turbulent flows it is necessary to investigate a
range of carefully selected non-turbulent flow cases to comple-
ment the studies for turbulent flow provided in the previous
sections.

Key phenomena in two-dimensional wall-bounded flows are
shear-layer instabilities and the interaction between vorticity
structures and the viscous boundary layers at no-slip walls.

For the prediction of the interaction of large scale vortices with
small-scale near-wall structures it is essential to resolve all con-
tributing scales adequately. The underresolution issue of these

Fig. 8. Decomposition of total dissipation rate (e) into resolved (er) – – – – – – and subgrid-scale modeled (esgs) – � – � – � – � dissipation rate as computed on
grids of 643 and 1283 cells. DNS results by Brachet et al. [32] is provided alongside.
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wall-bounded configurations is addressed in the following test
case.

Among others, Kramer et al. [36], Clercx and Bruneau [37] and
Keetels et al. [38] have studied the vortex–wall interaction in detail
and investigated the collision of a single vortex dipole with a no-
slip wall. As viscous effects are relatively confined to a near-wall
region for an integral Reynolds number of Re = 1250 [36] we assess
our method for this particular setup [36,37]. We supplement tabu-
lated benchmark data with vortex-trajectories [36], and a sequence
of vortex contour plots alike [5] of Ref. [38].

The lid-driven cavity with reference DNS data of Ghia et al.
[39,40] and Erturk [41] for 1000 6 Re 6 7500 serves to benchmark
our WENO-CU6-M1-based weakly compressible ILES approach for
fully-confined wall-bounded flows. As a peculiarity of this config-
uration the cavity flow reaches steady state for low to mid Rey-
nolds numbers. For high-Re cavity flows it is yet unclear whether
the flow reaches steady state or becomes time-periodic.

4.1. 2-D free-shear flow – the double shear layer

Kelvin–Helmholtz instabilities are prone to evolve spurious
vortices when underresolved. Numerical methods that suppress

spurious vortices are more likely to lead to incorrect predictions
of the long-time behavior. For this reason, we first investigate
the long-term behavior of free-shear Kelvin–Helmholtz instabili-
ties for diminishing shear-layer thickness and infinite Reynolds
number.

Brown and Minion [42], Minion and Brown [43], and Bell et al.
[44] have analyzed the under-resolution issue of a very simple flow
configuration, the two-dimensional doubly-periodic shear layer,
with respect to robustness of their spatial discretization schemes
to underresolution. We follow and extend their analysis with our
WENO-CU6-M1 scheme. A domain of 1 	 1 with periodic boundary
conditions is initialized with a two-dimensional periodic shear
layer

uðyÞ ¼
tanhððy� 1=4Þ=hÞ; if y 6 0:5
tanhðð3=4� yÞ=hÞ; if y > 0:5




of thickness 1/h. It is disturbed by a cross flow of

vðxÞ ¼ d sinð2pxÞ; ð19Þ

with d = 0.05.

Fig. 9. WENO-CU6-M1 implicit LES on 643 cells for Comte–Bellot–Corrsin ‘isotropic’ decaying turbulence.

Fig. 10. Vorticity contour �70 to 70 by 10 on grids of 642 cells (top row), 1282 cells (middle row), 2562 cells (bottom row). h = 80.
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Minion and Brown mentioned the development of spurious vor-
tices [43]. They found that spurious vortices evolve when the grid
is too coarse to resolve the smallest scales, as the truncation error
of the discretization scheme initiates a vortical instability. Their
tendendcy to occur depends on the respective spatial discretization
method. In particular, grids can be coarser for central discretiza-
tions than for upwind discretizations in order to prevent these arti-
facts. However, without artificial viscosity, central discretizations
become unstable. It is a challenge to devise a scheme that on one
hand provides high wavenumber resolution and on the other hand
sufficient dissipation to prevent instability.

The under-resolved simulations of the thin, h = 80, double shear
layer and Re = 10,000 show oscillations as under-resolution arti-
facts of the central reconstruction [43] in smooth stencils at

t = 0.6 and t = 1.0 on grids of 642 and 1282 cells, Fig. 10. Between
the two counter-rotating vortices a spurious vortex is found. At la-
ter times, oscillations are damped. While the spurious vortices pair
with the largest vortices, only on the grids with a resolution of
1282 and 2562 the primary vortices are stationary, whereas on
the coarse grid the primary vortices revolve around each other. La-
ter, the large vortices become stationary. At this final stage, the
flow field is similar to the final stage of a two-dimensional ran-
dom-noise initialized field. In the case of the under-resolved thick,
h = 30, double shear layer the primary vortices are stationary,
independently of the grid resolution. Although smaller structures
develop for finer grids, on all grids the vortices pair to two coun-
ter-rotating vortices as with the h = 100 shear layer for t ?1,
Fig. 11. For Re ?1 and h ?1 very small structures develop which

Fig. 11. Vorticity contour �70 to 70 by 10 on grids of 1282 cells (top row), 2562 cells (middle row), 5122 cells (bottom row). 0 vorticity contour only shown for t = 20.0.
h = 100.
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are only resolvable with extremely fine grids. The evolution of such
an infinitely thin shear layer is, however, similar as that of shear
layers of finite h, see Fig. 12.

Artificial viscosity for central methods or a hyperviscosity mod-
el for the pseudospectral method are suggested in [42] to stabilize
these under-resolved very thin shear-layer, high-Re flows. This
thickens the shear layer and consequentially prevents the evolu-

tion of spurious vortices. As demonstrated, our model may not
fully prevent the formation of spurious vortices in the case of
diminishing physical viscosity and shear layer thickness. However,
even in the underresolved setup marginally resolved vortex struc-
tures remain unaffected by numerical dissipation indicating phys-
ical consistency.

4.2. Convergence of a dipole–wall collision

For applications, the predictive capability of an implicit SGS
model for under-resolved viscous–inviscid-interaction problems
is very important. For this purpose we investigate the interaction
of a vortex dipole (as primarily inviscid element) and the viscous
wall layer (as viscosity dominated element). As reference we fol-
low the setup of Kramer et al. [36] and Clercx and Bruneau [37],
who have studied the normal dipole–wall collision experiment
with an integral-scale Reynolds number Re = UW/m = 1250. U de-
notes the average velocity derived from the total kinetic energy
EðtÞ ¼ 1

2

R 1
�1

R 1
�1 u2ðx; tÞdxdy of the flow and W the half-width of

the square domain X ¼ x 2 R2j � 1 6 x 6 1;�1 6 y 6 1. In the ref-
erences it was shown that this flow case poses extreme demands
on numerical resolution. Grid convergence was obtained at t 6 1
for an equidistant finite-difference scheme with 15362 cells, and
for a Fourier–Cheybeshev pseudospectral scheme with 512 	 512
collocation points.

At t = 0 the vorticity field x0 is given by

x0 ¼ xe 1� ðr=r0Þ2
� �

exp �ðr=r0Þ2
� �

; ð20Þ

with r = (x2 + y2)1/2 being the distance from the center of the mono-
pole, r0 = 0.1 its length scale and xe � 299.5283 its maximum

Fig. 12. Vorticity contour �100 to 100 by 10 on grids of 10242 cells. 0 vorticity contour not shown. h = 106.

Table 1
The maximum vorticity in the positive dipole half xd at its location along xd and normal yd to the wall at y = 0. Dipole is symmetric to x = 0. xd measures distance along the wall
and yd is distance normal to wall. Results are compared to benchmark results of Kramer et al. [36].

512 	 512 1024 	 1024 KCH

t (xd,yd) xd (xd,yd) xd (xd,yd) xd

0.6 (0.1231,0.1464) 218.14 (0.1416,0.1298) 218.783 (0.1506,0.1260) 219.29
0.625 (0.1348,0.1270) 215.05 (0.1670,0.1181) 215.025 (0.1725,0.1157) 216.15
1.0 (0.2285,0.1699) 169.10 (0.2490,0.1533) 169.935 (0.2568,0.1515) 170.30
1.4 (0.2832,0.2207) 131.67 (0.2959,0.1943) 132.522 (0.2914,0.1908) 132.73

Fig. 13. Resolution dependent trajectories of the positive half of a dipole when
colliding with a no-slip boundary for Re = 1250.
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vorticity. For further details on the choice of parameters, refer to
Ref. [38]. The initial velocity field u0 = (u0,v0) follows as

u0 ¼
1
2
jxej �ðy� y1Þ exp �ðr1=r0Þ2

� �
þ ðy� y2Þ exp �ðr2=r0Þ2

� �� �
;

v0 ¼
1
2
jxej ðx� x1Þ exp �ðr1=r0Þ2

� �
� ðx� x2Þ exp �ðr2=r0Þ2

� �� �
;

ð21Þ

with r2
i ¼ ðx� xiÞ2 þ ðy� yiÞ

2. For our convergence studies, square
equidistant grids with resolutions of 1282 (A), 2562 (B), 5122 (C)
and 10242 (D) are used. The time-step is fixed at Dt = 10�5 to make
sure that the spatial truncation error is dominant.

The trajectory of the positive dipole contribution along and nor-
mal to the wall and its vorticity are reported in Table 1 and com-
pared to the data of [36], denoted as KCH. It is evident that
already with 5122 cells we achieve essentially grid independence
for the maximum vorticity. The relative difference to KCH of vortex

core positions for grid (C) is on the order of up to 22%, whereas for
grid (D) it is below 6% in the x-direction and 3% in y-direction, both
for t = 0.6. The vortex trajectory of the positive dipole half as pre-
dicted on grids (A) to (D) are shown in Fig. 13. It can be seen that
already with grid (C) we recover the reference until after the sec-
ond wall collision. Fig. 14 illustrates the vorticity contour evolution
within the positive quadrant of the coordinate system. We can con-
clude that even for this very challenging test case our model gives
reliable results already at an equidistant grid resolution of the
same magnitude as for a Fourier–Chebyshev scheme. Note that col-
location points condense with a cosine-function towards the wall
for Chebyshev collocation.

4.3. 2-D wall-bounded flow – the lid-driven cavity

As final test configuration we consider the well-established lid-
driven cavity as an example for a fully confined shear flow that
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Fig. 14. Vorticity contour plots showing the evolution of a dipole half colliding with a no-slip wall for integral scale Reynolds number Re = 1250. Contour levels are �310,
�290, . . ., �10, 10, . . ., 290, 310. Solid/dotted lines indicate positive/negative vorticity.
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poses particular demands on resolving secondary flows and thin
viscous wall layers. Normal and tangential velocity boundary con-
ditions are imposed at the domain boundary of a 2-D square cavity
with initial flow at rest, see Fig. 15. We compare our under-re-
solved simulations with well-resolved reference data of Ghia
et al. [39,40] and Erturk [41] for 1000 6 Re 6 7500.

Predicted vortex core locations, vorticity and vortex extents are
recorded in Tables 2–4 for Re = 1000, Re = 5000, and Re = 7500,
respectively. Computed u and v velocity profiles along a vertical
and horizontal line through the geometric center of the cavity

(x,y) = (0.5,0.5) are compared to the reference data, see Figs. 16–
19.

Steady state solutions are obtained for grids with at least 162

cells at Re 6 1000, with 322 cells at Re 6 5000, and with 1282 cells
at Re = 7500. At Re = 10,000 our simulations predict a periodic flow
with distinct harmonic frequencies independent of the grid, i.e. for
resolutions of 1282 and 2562 cells, see Fig. 20. A periodic vortex
movement is observed at a dominant frequency of t � 0.421 Hz.
Large-scale structures such as the primary and secondary vortex
core locations and sizes are accurately resolved, independent of
the considered grid resolutions. The relative deviation from the ref-
erence data is less than approximately 1%. Reference velocity pro-
files through the geometric center of the cavity are accurately
reproduced with significantly coarser resolution than used in the
reference.

5. Discussion and conclusion

Nonlinear high resolution schemes have the potential of provid-
ing physically consistent under-resolved predictions, i.e. predic-
tions that produce the correct resolved-scale evolution, of
turbulent flows. Connecting to earlier work [42–44] we have dem-
onstrated in this paper that this notion can be extended to non-tur-
bulent flows. Moreover, by replacing a strictly incompressible flow
model by a weakly compressible approach one can obtain a signif-
icant reduction of communication loads of the resulting computer

Fig. 15. Schematic of lid-driven cavity flow configuration.

Table 2
Vortex core locations (xvc,yvc), vorticity xvc of primary and induced vortices as well as
horicontal and vertical extent of induced vortices (H, V) of underresolved lid-driven
cavity flows at Reynolds numbers Re = 1000.

Ghia et al. [40]
Grid size: 129 	 129
Property: (xvc,yvc) xvc (H,V)
Vortex:
Primary (0.5313,0.5625) 2.04968 –
BL1 (0.0859,0.0781) �0.36175 (0.2188,0.1680)
BR1 (0.8594,0.1094) �1.15465 (0.3034, 0.3536)
BR2 (0.9922,0.0078) 8.52782 	 10�3 (0.0078,0.0078)

ILES 1
Grid size: 128 	 128
Property: (xvc,yvc) xvc (H,V)
Vortex:
Primary (0.5308,0.5657) 2.05614 –
BL1 (0.08297,0.07773) �0.34410 (0.2254,0.1702)
BR1 (0.8627,0.1124) �1.11013 (0.3061, 0.3676)
BR2 (0.9922,0.0065) 0.011575 (0.0151, 0.0146)

ILES 2
Grid size: 64 	 64
Property: (xvc,yvc) xvc (H,V)
Vortex:
Primary (0.5307,0.5669) 2.02648 –
BL1 (0.08225,0.07664) �0.32429 (0.2205, 0.1671)
BR1 (0.8590,0.1135) �1.11236 (0.3132,0.3722)
BR2 N/A N/A (0.0093,0.0111)

ILES 3
Grid size: 32 	 32
Property: (xvc,yvc) xvc (H,V)
Vortex:
Primary (0.5291,0.5738) 1.94975 –
BL1 (0.0811522,0.0710211) �0.254183 (0.200667,0.152209)
BR1 (0.838987,0.121804) �1.18967 (0.356496, 0.408139)
BR2 N/A N/A N/A

Table 3
Vortex core locations (xvc,yvc), vorticity xvc of primary and induced vortices as well as
horicontal and vertical extent of induced vortices (H,V) of underresolved lid-driven
cavity flows at Reynolds numbers Re = 5000.

Ghia et al. [40]
Grid size: 257 	 257
Property: (xvc,yvc) xvc (H,V)
Vortex:
Primary (0.5117,0.5352) 1.86016 –
TL1 (0.0625,0.9102) �2.08843 (0.1211,0.2693)
BL1 (0.0703,0.1367) �1.53055 (0.3184,0.2643)
BR1 (0.8086,0.0742) �2.66354 (0.3565,0.4180)
BL2 (0.0117,0.0078) 1.88395 	 10�2 (0.0156,0.0163)
BR2 (0.9805,0.0195) 3.19311 	 10�2 (0.0528,0.0417)

ILES 1
Grid size: 256 	 256
Property: (xvc,yvc) xvc (H,V)
Vortex:
Primary (0.514796,0.535558) 1.91205 –
TL1 (0.0640276,0.909221) �2.06326 (0.121723,0.272916)
BL1 (0.0727773,0.13644) �1.49726 (0.326987,0.267884)
BR1 (0.802286,0.0729475) �2.74792 (0.367117,0.431899)
BL2 (0.00752025,0.00801852) 0.00957388 (0.018039,0.018674)
BR2 (0.977799,0.0194042) 0.0344873 (0.058756,0.044715)

ILES 2
Grid size: 128 	 128
Property: (xvc,yvc) xvc (H,V)
Vortex:
Primary (0.5137,0.5363) 1.89086 –
TL1 (0.0654,0.9070) �2.05207 (0.1245,0.2707)
BL1 (0.0724,0.1347) �1.44506 (0.3207,0.2640)
BR1 (0.7942,0.0732) �2.78520 (0.3774,0.4398)
BL2 (0.0062,0.0072) 1.20161 	 10�2 (0.014373,0.0154)
BR2 (0.9731,0.0209) 3.98882 	 10�2 (0.062783,0.0498)

ILES 3
Grid size: 64 	 64
Property: (xvc,yvc) xvc (H,V)
Vortex:
Primary (0.5082,0.5415) 1.82477 –
TL1 (0.0699,0.8976) �1.73942 (0.1331,0.2696)
BL1 (0.0699,0.1237) �1.22613 (0.2883,0.2412)
BR1 (0.7525,0.0747) �3.21003 (0.4293,0.5222)
BL2 N/A N/A (0.0913,0.0161)
BR2 (0.9433,0.0348) 0.07116 (0.1238,0.0873)
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code, at the expense of a certain level of density fluctuations. If
these density errors do not adversely affect the resolved scales,
the weakly compressible model is valid in terms of an overall
coarse-grained flow prediction and not by principle inferior to the
strictly incompressible model. For obtaining a weakly compressible
implicit SGS model for turbulent and non-turbulent flows we have
modified a low-dissipation sixth-order adaptive central-upwind
WENO scheme, denoted as WENO-CU6-M1, in combination with
a weakly compressible Roe-Pike approximate Riemann solver.

The implicit SGS capability of WENO-CU6-M1 is due to the
incorporated scale-separation [9] which is controlled by the lin-
ear-weight bias Cq and an integer power exponent q. Implicit SGS

models rely on the nonlinear contributions of the truncation error,
which is necessarily far from an asymptotic behavior so that clas-
sical tools for truncation error analysis fail. The modified differen-
tial equation cannot even be written down in closed form, and
Taylor expansions are at odds with the fact that the truncation er-
ror is not asymptotically small. Therefore, analysis of the implicit
SGS modeling capability needs to rely on empirical investigations
of a set of carefully selected reference configurations.

With a WENO-CU6-M1 parameter set of (Cq = 16,000;q = 8) we
reproduce the correct transition to self-similar isotropic turbulence
of the Taylor–Green vortex even at large Reynolds numbers and for
the inviscid case. For the Re = 3000 and Re =1 cases we have
recovered a low-mode transition, i.e. a transient re-arrangement
of energy within the low-wavenumber range before isotropic tur-
bulence sets in, which can also be seen from the results of Ref.
[45]. We find that the weakly compressible WENO-CU6-M1 based
implicit LES is superior to the dynamic Smagorinsky model and
performs almost as well as ADLM. At same resolution, however,
the more complex ALDM is computationally more expensive than
WENO-CU6-M1.

We have confirmed the general validity of the parameter set of
WENO-CU6-M1 that was identified for TGV flow by considering
also moderate Reynolds number decaying grid generated turbu-
lence. For a time interval before the final decay we observe a total
energy decay E(t) / t�1. This scaling had been discussed by Spezi-
ale [46] and Davidson [47] as the theoretical minimum energy de-
cay rate in quasi-isotropic grid turbulence at high turbulent
Reynolds numbers. We note however, that the scaling exponent
depends on how the time interval for curve fitting is chosen and
that the difference to the more commonly reported decay
E(t) / t�1.3 is weak. For an extended time-frame exceeding the time
difference between the first and the third experimental measuring
stations, i.e. Rek,1 = 71.6 and Rek,3 = 60.7, we rather observe
E(t) / t�1.1 followed by E(t) / t�1.2.

A main objective of the paper is to address whether the pro-
posed implicit SGS model transfers its coarse-resolution prediction
capability also to non-turbulent flows without further adjustments
to its parameters. First, we follow up on [42,43] and consider the
instability of the inviscid but finite-thickness double shear layer
in the highly nonlinear stages. With equivalent resolution we ob-
tain a similar quality of prediction as reported for a pseudospectral
and a centered vorticity–streamfunction method. However, to sta-
bilize these methods in the underresolved setup artificial viscosity,
exceeding physicial viscosity, is required. The exploration of the
h ?1, Re ?1 with our WENO-CU6-M1 based method with an
implicit SGS model has confirmed the speculation of Brown and

Table 4
Vortex core locations (xvc,yvc), vorticity xvc of primary and induced vortices as well as
horicontal and vertical extent of induced vortices (H, V) of underresolved lid-driven
cavity flows at Reynolds numbers Re = 7500.

Ghia et al. [40]
Grid size: 257 	 257
Property: (xvc,yvc) xvc (H,V)
Vortex:
Primary (0.5117,0.5322) 1.87987 –
TL1 (0.0664,0.9141) �2.15507 (0.1445,0.2993)
BL1 (0.0645,0.1504) �1.78511 (0.3339,0.2793)
BR1 (0.7813,0.0625) �3.49312 (0.3779,0.4375)
BL2 (0.0117,0.0117) 1.72980 	 10�2 (0.0234,0.0254)
BR2 (0.9492,0.0430) 1.41058 	 10�1 (0.1270,0.0938)
BR3 (0.9961,0.0039) – (0.0039,0.0039)

ILES 1
Grid size: 256 	 256
Property: (xvc,yvc) xvc (H,V)
Vortex:
Primary (0.512565,0.53231) 1.90658 –
TL1 (0.067591,0.911266) �2.19939 (0.147129,0.309638)
BL1 (0.0642259,0.151967) �1.85996 (0.342326,0.283213)
BR1 (0.787636,0.0654213) �3.21949 (0.380513,0.448191)
BL2 (0.0106178,0.0112304) 0.013239 (0.0252095,0.0283785)
BR2 (0.950083,0.0435404) 0.163971 (0.126247,0.0992314)
BR3 (0.998002,0.00210992) 0.00216711 (0.00255,0.00255)

ILES 2
Grid size: 128 	 128
Property: (xvc,yvc) xvc (H,V)
Vortex:
Primary (0.5107,0.5334) 1.86490 –
TL1 (0.0691,0.9087) �2.11330 (0.1522,0.3077)
BL1 (0.0637,0.1490) �1.77755 (0.33232,0.276788)
BR1 (0.7692,0.0644) �3.43703 (0.399768,0.461295)
BL2 (0.0098,0.0093) 0.972509 	 10�2 (0.0222,0.0241)
BR2 (0.9399,0.0514) 1.88414 	 10�1 (0.149005,0.11703)
BR3 N/A N/A N/A

Fig. 16. Velocities along the geometric center lines as found for a lid-driven cavity flow of Re = 1000.
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Minion [42] that the final stage of shear-layer evolution is just a
single vortex which is independent of h and Re.

The resolution of viscous wall-layers is crucial for practical
applications. We have considered a case of viscous-inviscid
interaction where a vortex dipole collides with a no-slip wall. We
find that our model produces results in excellent agreement with

reference data of Ref. [36,37] at much lower resolution. A fully con-
fined case is the classical lid driven cavity. Our predictions agree
with reference solutions that are based on high-resolution
schemes, see Ref. [41,39,40] and on strictly incompressible formu-
lations. For Reynolds numbers smaller than 7500 steady state solu-
tions comparable to reference DNS have been obtained with much

Fig. 17. Velocities along the geometric center lines as found for a lid-driven cavity flow of Re = 5000.

Fig. 18. Velocities along the geometric center lines as found for a lid-driven cavity flow of Re = 7500.

Fig. 19. Velocities along the geometric center lines as found for a lid-driven cavity flow of Re = 10,000.
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lower spatial resolution. At Re = 10,000 we obtain a flow with low-
frequency periodic unsteadiness. Since this result is grid indepen-
dent, we believe that the periodic behavior is most likely physically
correct, and the steady state behavior observed by Ghia et al. at
same parameters may be caused by numerical damping.

It can be concluded, that the weakly compressible WENO-CU6-
M1 with the identified parameter set, (Cq = 16,000;q = 8), can serve
as a reliable method for simulations of a wide range of underre-
solved turbulent and non-turbulent flow simulations. The results
for all considered cases agree with reference data at lower resolu-
tion than used for obtaining these reference data, albeit not always
being more accurate than other state-of-the-art methods for cer-
tain configurations.
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a b s t r a c t

We propose a method for quantifying the effective numerical dissipation rate and effective numerical viscos-
ity in Computational Fluid Dynamics (CFD) simulations. Different from previous approaches that were
formulated in spectral space, the proposed method is developed in a physical-space representation
and allows for determining numerical dissipation rates and viscosities locally, that is, at the individual
cell level, or for arbitrary subdomains of the computational domain. The method is self-contained and
uses only the results produced by the Navier–Stokes solver being investigated. As no further information
is required, it is suitable for a straightforward quantification of numerical dissipation as a post-processing
step. We demonstrate the method’s capabilities on the example of implicit large-eddy simulations of a
three-dimensional Taylor–Green vortex flow, serving as a test flow going through laminar, transitional,
and turbulent stages of time evolution. For validation, we compare results for the effective numerical
dissipation rate with exact reference data we obtained with an accurate, spectral-space approach.

� 2015 Published by Elsevier Ltd.

1. Introduction

Results of numerical simulations of fluid flows are always con-
taminated by truncation errors introduced by the discretization of
governing differential equations. Truncation errors are only
negligible if all physical scales are well resolved by the given mesh
and time-step size. For lower temporal or spatial resolution, how-
ever, truncation errors affect the simulation results and can be of
similar magnitude as physical effects. This situation is most fre-
quently encountered in numerical simulations of turbulent flows
at high Reynolds numbers. Simulating such flows usually requires
modeling contributions of unresolved scales by various turbulence
modeling procedures, leading to Reynolds-averaged Navier–Stokes
(RANS) simulations or large-eddy simulations (LES).

In recent years, it has been recognized that the truncation errors
may even act as a substitute for modelling of non-resolved scales.
In turbulence, this approach is known as monotonically integrated
LES (MILES) or implicit LES (ILES), and was originally proposed by
Boris et al. [1] and reviewed more recently in a monograph edited
by Grinstein et al. [2]. With ILES, the Navier–Stokes equations are
solved numerically on a coarse LES mesh without explicit SGS

models. Often one relies on nonlinearly stable methods, such as
total variation diminishing (TVD), flux-corrected-transport (FCT)
and flux-limited and sign-preserving schemes [3–5], originally
developed to control numerical oscillations in configurations
involving steep gradients or discontinuities. In the stabilized spec-
tral LES [6] the numerical stability is not provided by the trunca-
tion error of the numerical discretization (which is exponentially
small for a spectral method [7]) but by the spectral filter that
strongly attenuates the small resolved scales if applied at each
time step. In the same spirit, Bogey and Bailly [8] use an explicit fil-
ter applied every few time steps as a substitute for a SGS model in
LES of a turbulent jet flow. Such methodologies are justified on a
basis of the practical observation that truncation errors in non-
oscillatory methods, as well as explicit filtering, introduce numeri-
cal dissipation, and that they effectively act as SGS models. For

instance, [9] report the development of the k�5=3 inertial subrange
in numerical simulations of isotropic turbulence performed using
the piecewise parabolic method (PPM) implemented in an Euler
solver. This is a nominally inviscid case where the kinetic energy
should be conserved but in the simulations it decays in agreement
with Navier–Stokes dynamics because of numerical dissipation.
Despite a wealth of positive results it should be recognized that
the presence of numerical dissipation or explicit filtering does
not guarantee physically correct dynamics of the resolved
scales. For example, Garnier et al. [10] analyzed several different

http://dx.doi.org/10.1016/j.compfluid.2015.02.011
0045-7930/� 2015 Published by Elsevier Ltd.
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shock-capturing Euler schemes applied to decaying isotropic tur-
bulence and the conclusions were less favorable for ILES. While it
was possible to obtain the inertial subrange, other results, such
as probability densities of velocity derivatives and pressure,
showed characteristics of low Reynolds number flows rather than
what would have been expected from high Reynolds number LES.
This behavior was attributed to the fact that the numerical dissipa-
tion often overwhelms the SGS dissipation computed for the same
field using an explicit SGS model. Similar conclusions were drawn
by Domaradzki and Radhakrishnan [11], who showed that the
results obtained with the MPDATA method [12] for rotating and
non-rotating turbulence were sensitive to the time-step size, and
the method failed to produce theoretically expected results for cer-
tain initial conditions, and for rotating turbulence. The current
rather vague definition of SGS modeling capabilities of the wide
range of ILES schemes proposed in literature demands a more
systematic approach to determine the effective dissipation apos-
teriori. Such a tool would allow comparisons of the effective
numerical dissipation with the physical dissipation provided by
resolved viscous stresses, and by explicit SGS models. Analytical
information about the truncation errors can be obtained from the
modified equation analysis but this approach is not feasible for
multidimensional, nonlinear transport equations. The first
aposteriori method for computing integral numerical dissipation
has been proposed by Domaradzki et al. [13]. It is based on com-
paring flow evolutions from the same initial condition using two
different discretization schemes, a scheme with finite numerical
dissipation and a spectral code with negligible numerical dissipa-
tion. The method was used to analyze ILES simulations performed
with the MPDATA approach for freely decaying high Reynolds
number homogeneous turbulence with and without Coriolis forces
Domaradzki and Radhakrishnan [11] and for a spectral multido-
main simulations stabilized by spectral filtering and penalty meth-
ods Diamessis et al. [14]. The procedure computes the effective,

wavenumber-dependent, numerical dissipation rate bEn;sp j; tð Þ and
the corresponding numerical viscosity m̂n;sp j; tð Þ for comparison
with the analytical theories of turbulence. This procedure was
employed by Hickel et al. [15] to develop a specific ILES method
that is consistent with the physical energy transfer in turbulence,
the so-called adaptive local deconvolution method (ALDM). It is
based on a nonlinear discretization scheme which contains several
free deconvolution parameters that allow to control its truncation
error. The free parameters are constrained so that the numerical
viscosity optimally matches the theoretical eddy viscosity
predicted by the analytical theories of turbulence. While the
optimization was performed for isotropic turbulence, the parame-
ters of the scheme, once determined, proved to be valid also for
simulations of other turbulent flows. Another method for estimat-
ing the numerical dissipation in LES was proposed recently by
Zhou et al. [16] and is based on using the energy flux from the
large, resolved scales as the numerical dissipation estimate.

The analysis of Domaradzki et al. [13] was developed in spectral
space (to allow one-to-one comparisons with spectral eddy vis-
cosities obtained from analytical theories of turbulence) and mea-
sures the global (spectral) dissipation rate. Despite being very
accurate, Fourier-space based analysis of the numerical dissipation
has some limitations. Since the computational domain must be
periodic, the method cannot be easily generalized to non-periodic
flows for which a local estimate of physical-space numerical
dissipation is of particular practical interest. Also, using an addi-
tional spectral code for analysis is not always feasible.

The objective of this work is to develop and validate a more
general procedure, free of the limitations listed above, for assessing
the numerical dissipation rate for any given grid-based Navier–
Stokes solver and a wide range of flows. The proposed method is

equally applicable to periodic and non-periodic flows, provides a
numerical-dissipation field, and can be employed as a post-pro-
cessing tool for computational data.

2. Basic equations

The evolution of smooth and continuous fluid flows can be
described by the conservation of mass, momentum and total
energy. For a fluid with constant dynamic viscosity l ¼ mq as
assumed for this study this set of equations, denoted as the
Navier–Stokes equations (NSE), is

@q
@t
þ @ðquaÞ

@xa
¼ 0; ð1aÞ

@ quað Þ
@t

þ @ðquaubÞ
@xb

¼ � @p
@xa
þ l @ðs

abÞ
@xb

; ð1bÞ

@ qetð Þ
@t

þ @ qetuað Þ
@xa

¼ � @ puað Þ
@xa

þ l
@ ubsab
� �
@xa

� @

@xa
k
@T
@xa

� �
ð1cÞ

The stress tensor is

sab ¼ @ua

@xb
þ @ub

@xa
� 2

3
@uc

@xc
dab; ð2Þ

ua are the components of the velocity vector, p denotes the pres-
sure, T is the temperature and k is the thermal conductivity. For
when m ¼ 0 the second term on the right-hand side of the momen-
tum and total-energy transport equations, Eqs. (1b) and (1c), vanish
and the system of conservation equations is denoted Euler equa-
tions. The transport of et can be separated into the transport equa-
tion for internal energy ein

@ qeinð Þ
@t

þ @ qeinuað Þ
@xa

¼ �p
@ uað Þ
@xa

þ lsab @ ub

� �
@xa

� @

@xa
k
@T
@xa

� �
ð3Þ

and kinetic energy ekin ¼ 1
2 uaua

@ qekinð Þ
@t

þ @ qekinuað Þ
@xa

¼ �ua
@ pð Þ
@xa
þ lub

@ sabð Þ
@xa

: ð4Þ

The second term on the right hand side of Eq. (4) is the viscous
contribution to the kinetic energy equation. To express the transfer
of kinetic energy by viscous dissipation to the internal energy more
clearly, the viscous contribution may be rewritten as

lub
@ sabð Þ
@xa

¼ l
@ ubsab
� �
@xa

� lsab @ ub

� �
@xa

: ð5Þ

The first term on the right hand side of Eq. (5) is the the viscous
work. Thus, the kinetic energy transport equation (for compressible
flows) is:

@ qekinð Þ
@t

þ @ qekinuað Þ
@xa

þ ua
@ pð Þ
@xa
� l

@ ubsab
� �
@xa

þ lsab @ ub

� �
@xa

¼ 0: ð6Þ

Integration of the kinetic-energy transport Eq. (6) over the control
volume V ¼ L1 � L2 � L3 leads to its integral form

@ Ekinð Þ
@t

þ Fekin þ Fac � Fm �Pþ Em ¼ 0; ð7Þ

where

Ekin ¼
Z L1

0

Z L2

0

Z L3

0
qekindx1dx2dx3 ð8Þ

and the kinetic and acoustic energy fluxes as well as the viscous
surface work are

Fekin ¼
ZZZ

V

@ qekinuað Þ
@xa

dV ¼
ZZ

A
naðqekinuaÞdA ð9Þ
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Fac ¼
ZZZ

V

@ puað Þ
@xa

dV ¼
ZZ

A
naðpuaÞdA ð10Þ

Fm ¼ m
ZZZ

V
q
@ ubsab
� �
@xa

dV ¼ m
ZZ

A
qnaðubsabÞdA ð11Þ

where na with a 2 ½1;2;3� are the components of the outward point-
ing unit vector normal to the surface A bounding the volume V. The
compression work

P ¼
ZZZ

V
p
@ua

@xa
dV ð12Þ

vanishes for incompressible flows. In this work, we express the
viscous dissipation Em as

Em ¼ mE; ð13Þ

with E denoting the dissipation function for the general case of
compressible flows

E ¼
ZZZ

V
EdV ¼

ZZZ
V
qsab @ ub

� �
@xa

dV

¼
Z L1

0

Z L2

0

Z L3

0
q 2

@u1

@x1

2

þ @u2

@x2

2

þ @u3

@x3

2
 !

� 2
3

@ua

@xa

� �2
"

þ @u1

@x2
þ @u2

@x1

� �2

þ @u1

@x3
þ @u3

@x1

� �2

þ @u2

@x3
þ @u3

@x2

� �2
#

dx1dx2dx3

ð14Þ

The simplification of Eq. (14) for incompressible flows with con-
stant density is straightforward.

3. The effect of discretization errors on the kinetic-energy
transport equation

3.1. Basic concept

To explain the concept behind the proposed method let us con-
sider the incompressible Navier–Stokes equations for a constant
density fluid (say, q ¼ 1:0) obtained by assuming an incompressible
flow, for which the incompressible continuity equation @ua=@xa ¼ 0
holds and consequently allows to reformulate (1b) such that

@ua

@t
þ ub

@ua

@xb
¼ � @p

@xa
þ m

@2ua

@x2
b

: ð15Þ

Written symbolically Eq. (15) is

@�u
@t
þ ðNSÞ�u ¼ 0; ð16Þ

where the operator NS encompasses all spatial derivative terms and
�u denotes the analytical, and generally unknown, solution for some
particular fluid flow problem. A numerical Navier–Stokes solver is
obtained by discretizing Eq. (16) symbolically,

@u
@t

� �
d
þ ðNSÞdu ¼ 0; ð17Þ

and provides the numerical velocity field ui;j;kðtnÞ at all mesh points
0 6 i < N1;0 6 j < N2;0 6 k < N3and time steps tn. Note that the
numerical solution u is not identical to the analytical solution �u.
In analyzing numerical schemes the discretized Eq. (17) sometimes
can be rewritten as the partial differential equation in a form of the
so called modified equation

@u
@t

� �
d

þ ðNSÞdu ¼ @u
@t
þ ðNSÞuþ E ¼ 0; ð18Þ

where E is the truncation error of the scheme. Hence, one obtains an
expression for the truncation error:

�E ¼ @u
@t
þ ðNSÞu; ð19Þ

which, so far, is only formal because it requires the knowledge of
the numerical solution u as an analytical function for which the
time derivative and spatial derivatives in the operator ðNSÞ can be
calculated. Nevertheless, Eq. (19) is an useful starting point for
elucidating how the truncation error can be estimated. Assuming
that the velocity field ui;j;kðtÞ has been determined with an arbitrary
Navier–Stokes solver at several consecutive time steps, e.g.,
tn�1 ¼ tn � Mt; tn; tnþ1 ¼ tn þ Mt, the time derivative in Eq. (19) can
be approximated at time tn using central differences

@ui;j;k

@t
jCD �

ui;j;kðtn þ MtÞ � ui;j;kðtn � MtÞ
2Mt

: ð20Þ

Note that this time derivative is affected by the discretization errors
of the original Navier–Stokes solver. Subsequently, to use Eq. (19)
the differential Navier–Stokes operator should be applied to the
velocity field ui;j;kðtnÞ at time tn. If no analytical expression for u
as a function of x; y; z exists the spatial derivatives must be com-
puted numerically, and to minimize the numerical errors the high-
est order numerical formulas should be employed, leading to the
approximate numerical formula for the truncation error

�Ei;j;kðtnÞ �
@ui;j;k

@t
jCD þ ðNSÞhoui;j;kðtnÞ; ð21Þ

where ðNSÞho is the discretized Navier–Stokes operator using arbi-
trary high order numerical differentiation formulas. In practice,
whenever possible, spectral methods are used (see [11,13]. From
Eq. (17) we see that the second term on the r.h.s. of (21) is the rate
of change of the velocity field computed using a high order scheme,
allowing to rewrite Eq. (21) as

�Ei;j;k �
@ui;j;k

@t
jCD �

@ui;j;k

@t
jho: ð22Þ

The above formula involves computation of time derivatives for
the same velocity field ui;j;k but computed with two different dis-
cretizations of the same Navier–Stokes operator. Multiplying each
time derivative by the velocity ui;j;k and using a product rule will
formally lead to time derivatives for the energy ei;j;k ¼ ui;j;kui;j;k=2.
While the same velocity is used in the computations, the resulting
derivatives will be different because of different discretizations of
the momentum equation. One can think of the given velocity field
as an initial condition which is advanced forward in time with two
differently discretized Navier–Stokes operators, leading to differ-
ent rates of change of the energy. This results in the error estimate
for the kinetic energy equation

�Ei;j;k
n;ho ¼

@ei;j;k

@t

����
CD

� @ei;j;k

@t

����
ho

; ð23Þ

i.e., we define the error as the difference between how the energy
did evolved using a given FD/FV code and how it would have
evolved if the discretization errors could be neglected.

The Eq. (23) can thus be viewed as the residual of computing
the energy decay rate in two different ways. In applying this con-
cept in practice the first term on the r.h.s. of Eq. (23) is computed
directly as a discretized time derivative of the energy data obtained
in the numerical simulation, i.e., the energy ei;j;k ¼ ui;j;kui;j;k=2 is
obtained from the velocity field at several time steps and the time
derivative at time tn is approximated, e.g., using central differences
involving time levels tnþ1 and tn�1. The second term on the r.h.s. of
Eq. (23) is computed indirectly, using terms in the energy equation
originating from the spatial terms of the Navier–Stokes equation,
i.e., from the representation symbolically given by the second term
on the r.h.s. of Eq. (21). In this representation only the velocity field
at time tn and its spatial derivatives are used. While the indirect
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computation assumes that high order numerical formulas are used,
in what follows we generalize this concept to the analysis of the
energy equation without a reference to spectral schemes.

We will consider the residual

�Ei;j;k
n ¼ @ei;j;k

@t

����
CD

� @ei;j;k

@t

����
FD=FV

; ð24Þ

where the first term on the r.h.s. is computed directly from the
energy data and the second term is computed using Finite
Difference or finite volume discretized spatial terms in the energy
balance equation. The estimate may depend on the discretization
order and possibly on the form of the fluxes used. Yet, with the
availability of the energy error results obtained using spectral
methods for the high order discretization in Eq. (23) the accuracy
of the approximations made in (24) can be assessed easily. We
demonstrate in the following sections that the accuracy of the esti-
mate is robust, and largely independent of the FD/FV discretizations
used, and very accurate when compared with the spectral results.
We attribute this to the fact that the kinetic energy is a derived
quantity, obtained from the primitive variables, and the discretized
kinetic energy balance Eq. (24) is not subject directly to the con-
strains for the momentum Eq. (21) that requires the application
of a high order discretization.

3.2. Finite volume formulation

For numerical simulations performed with an arbitrary, grid-
based, compressible Navier–Stokes solver the symbolic Eq. (24) is
replaced by the discretization of Eq. (6)

�Ei;j;k
n ¼ M qekinð Þ

Mt
þ M qekinuað Þ

Mxa
þ ua

M pð Þ
Mxa

� lub
M sabð Þ
Mxa

; ð25Þ

where the time derivative on the r.h.s is approximated using the
kinetic energy data from the simulations at time steps tn�1 and
tnþ1. The remaining terms are discretized spatial terms in the energy
equation at time step tn. The residual Ei;j;k

n may be designated as the
numerical dissipation due to discretization errors of the Navier–
Stokes solver. In general, the residual contains effects of all terms
in the truncation error of a numerical scheme, including dissipative
as well as dispersive errors. Yet, as shown later in Section 6.2, for
sufficiently large subdomains the dissipative contributions domi-
nate in a sense that the subdomain-integrated E i;j;k

n is positive.
In a finite volume framework Eq. (25) is formally equivalent to

�Ei;j;k
n ¼ MEkin

Mt
þ Fekin þ Fac � Fm �Pþ Ei;j;k

m ; ð26Þ

where the kinetic energy is approximated as

Ekin ¼ qekinð Þi;j;kMx1Mx2Mx3; ð27Þ

and the remaining terms in (26) are computed numerically as (see
also formulas (9)–(14) for the energy Eq. (7))

Fekin � ½ qekinu1ð Þiþ1
2;j;k
� qekinu1ð Þi�1

2;j;k
�Mx2Mx3

þ ½ qekinu2ð Þi;jþ1
2;k
� qekinu2ð Þi;j�1

2;k
�Mx1Mx3

þ ½ qekinu3ð Þi;j;kþ1
2
� qekinu3ð Þi;j;k�1

2
�Mx1Mx2 ð28Þ

Fac � ½ pu1ð Þiþ1
2;j;k
� pu1ð Þi�1

2;j;k
�Mx2Mx3 þ ½ pu2ð Þi;jþ1

2;k

� pu2ð Þi;j�1
2;k
�Mx1Mx3 þ ½ pu3ð Þi;j;kþ1

2
� pu3ð Þi;j;k�1

2
�Mx1Mx2 ð29Þ

Fm � m½ qs1bub

� �
iþ1

2;j;k
� qs1bub

� �
i�1

2;j;k
�Mx2Mx3

þ m½ qs2bub

� �
i;jþ1

2;k
� qs2bub

� �
i;j�1

2;k
�Mx1Mx3

þ m½ qs3bub

� �
i;j;kþ1

2
� qs3bub

� �
i;j;k�1

2
�Mx1Mx2 ð30Þ

P � p
Mua

Mxa

� �
i;j;k

Mx1Mx2Mx3 ð31Þ

Ei;j;k
m ¼ mE i;j;k

� m q 2
Mu1

Mx1

2

þ Mu2

Mx2

2

þ Mu3

Mx3

2
� �

� 2
3
Mua

Mxa

� �2

þ Mu1

Mx2
þ Mu2

Mx1

� �2
"(

þ Mu1

Mx3
þ Mu3

Mx1

� �2

þ Mu2

Mx3
þ Mu3

Mx2

� �2
#)

i;j;k

Mx1Mx2Mx3 ð32Þ

To denote the FV faces terms � 1
2 are added to the corresponding cell

indices. The edge-length in the relevant direction a is denoted as
Mxa.

Alternatively, the FV formulation of Eq. (25) can be written as

�Ei;j;k
n ¼ MEkin

Mt
þ Fekin;V þ Frp � Sm: ð33Þ

In Eq. (33) the cell face flux terms of Eq. (26) are replaced by volu-
metric fluxes. To itemize, the kinetic energy flux Fekin;V is approxi-
mated as

Fekin;V ¼
ZZZ

V

@ qekinuað Þ
@xa

dV � M qekinuað Þ
Mxa

� �
i;j;k

Mx1Mx2Mx3

¼ M qekinu1ð Þ
Mx1

þ M qekinu2ð Þ
Mx2

þ M qekinu3ð Þ
Mx3

� �
i;j;k

Mx1Mx2Mx3;

ð34Þ
the pressure gradient advection becomes

Frp ¼
ZZZ

V
ua
@ pð Þ
@xa

dV � ua
Mp
Mxa

� �
i;j;k
Mx1Mx2Mx3

¼ u1
Mp
Mx1
þ u2

Mp
Mx2
þ u3

Mp
Mx3

� �
i;j;k
Mx1Mx2Mx3 ð35Þ

and the viscous contribution to the kinetic energy equation may be
expressed as

Sm ¼
Z Z Z

V
lub

@ sabð Þ
@xa

dV

� l u1
M

2u1

Mx2
1

þM
2u1

Mx2
2

þM
2u1

Mx2
3

� �
þu2

M
2u2

Mx2
1

þM
2u2

Mx2
2

þM
2u2

Mx2
3

� �	�
þu3

M
2u3

Mx2
1

þM
2u3

Mx2
2

þM
2u3

Mx2
3

� �

�2

3
u1
M

2u1

Mx2
1

þ M
2u2

Mx1Mx2
þ M

2u3

Mx1Mx3

� �	
þu2

M
2u2

Mx1Mx2
þM

2u2

Mx2
2

þ M
2u3

Mx2Mx3

� �
þu3

M
2u1

Mx1Mx3
þ M

2u2

Mx2Mx3
þM

2u3

Mx2
3

� �
�
i;j;k

�Mx1Mx2Mx3: ð36Þ

Integrating Eq. (26) or (33) over an arbitrary set of FVs, correspond-
ing to a closed computational subdomain (CSD),
i 2 ½l1; l2�; j 2 ½m1; m2�, k 2 ½n1; n2� with 0 6 la; ma; na 6 Na, and its
bounding surface, gives the numerical dissipation rate within the
subdomain

ECSD
n ¼

Xl2

i¼l1

Xm2

j¼m1

Xn2

k¼n1

Ei;j;k
n : ð37Þ

For the entire computational domain, l1 ¼ m1 ¼ n1 ¼ 0, and
l2 ¼ N1; m2 ¼ N2; n2 ¼ N3, one obtains the total numerical dissipa-
tion rate Etot

n . Similarly, one may find the numerical viscosity either
locally

mi;j;k
n ¼ E

i;j;k
n

Ei;j;k
; ð38Þ

in an arbitrary computational subdomain

mCSD
n ¼ E

CSD
n

ECSD ; ð39Þ
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or within the total volume

mtot
n ¼

Etot
n

Etot : ð40Þ

Denominators in the above expressions are obtained from Eq. (32)
either for a single FV (i; j; k) or a summation over a subdomain
(CSD) or the total domain (tot).

4. Fourier-space analysis of numerical dissipation

4.1. The spectral kinetic energy equation for incompressible flows

We assume a periodic domain with V ¼ ð2pÞ3 and an ideal low-
pass filter with a Nyquist wavenumber jN;1d identical in each spa-
tial direction. The Nyquist wavenumber in three-dimensional spec-
tral space is jN;3d ¼

ffiffiffi
3
p

jN;1d. The Fourier-transformed low-pass
filtered velocity vectors ûaðj; tÞ ¼ F uaðx; tÞf g a ¼ 1; 2; 3 are

ûaðjb; tÞ ¼
ûaðjb; tÞ; 8 jb 6 jN;1d;

0; else

�
ð41Þ

with b ¼ 1; 2; 3. The complex conjugate of û is denoted as ûI. The
kinetic-energy and the dissipation spectra in three-dimensional
spectral space are

êðj; tÞ ¼ 1
2

ûðj; tÞ2 ¼ 1
2

ûaðj; tÞûI

a ðj; tÞ; ð42Þ

bEðj; tÞ ¼ 2j2êðj; tÞ; ð43Þ

with the wavenumber j ¼
ffiffiffiffiffiffi
j2

b

q
. As in physical space, the viscous

dissipation rate is defined as the productbE mðj; tÞ ¼ mbEðj; tÞ: ð44Þ

The kinetic-energy transport equation in Fourier space is

@êðj; tÞ
@t

¼ t̂ðj; tÞ � bE mðj; tÞ; ð45Þ

where the nonlinear energy transfer term t̂ðj; tÞ accounts for pres-
sure and nonlinear effects. Its exact form is

t̂ðj; tÞ ¼ 1
2

Im ûI

a ðjÞPacbðjÞ
Z
jj0 j6jN;3d

ûcðjÞûbðj� j0Þdj0
� 
( )

ð46Þ

where

PacbðjÞ ¼ jb dac � jajc=j2� �
þ jc dab � jajb=j2� �

: ð47Þ

The integral of the nonlinear transfer term over the entire domain
vanishes.

4.2. Spectral numerical dissipation

Consider a velocity field u in a periodic domain obtained in a
dissipative code. The discretization of the domain of volume

V ¼ 2pð Þ3 with N3 FVs, implicitly defines the Nyquist wavenumber

as jN;1d ¼ N
2. Expressions êðj; tÞ; bEmðj; tÞ and t̂ðj; tÞ defined in

Section 4.1 can be computed numerically with negligible errors
in Fourier-space with discrete wave numbers j ¼ j1;j2;j3ð Þ with
ja 2 0;jN;1d

� 

; a ¼ 1;2;3 and the rate of change of the kinetic

energy at time tn can be computed from Eq. (45) with the spectral
accuracy:

@êðj; tÞ
@t

����t¼tn

sp

¼ t̂ðj; tnÞ � bE mðj; tnÞ: ð48Þ

On the other hand, the rate of change of the kinetic energy provided
by the dissipative code is obtained by approximating the rate using
a second-order central differences in time

@êðj; tÞ
@t

����t¼tn

CD

� êðj; t þ MtÞ � êðj; t � MtÞ
2Mt

: ð49Þ

The residual of these expressions is the three-dimensional spectral
numerical dissipation rate (see [13,11,14])

�bEn;sp j; tð Þ ¼ êðj; t þ MtÞ � êðj; t � MtÞ
2Mt

� t̂ðj; tÞ þ bE mðj; tÞ: ð50Þ

Summation over shells with the radius j

êðj; tÞ �
XjN;1d

j1¼�jN;1d

XjN;1d

j2¼�jN;1d

XjN;1d

j3¼�jN;1d

êðj0; tÞd jj0j � jð Þ ð51Þ

bEðj; tÞ ¼ XjN;1d

j1¼�jN;1d

XjN;1d

j2¼�jN;1d

XjN;1d

j3¼�jN;1d

bEðj0; tÞd jj0j � jð Þ ð52Þ

t̂ðj; tÞ ¼
XjN;1d

j1¼�jN;1d

XjN;1d

j2¼�jN;1d

XjN;1d

j3¼�jN;1d

t̂ðj0; tÞd jj0j � jð Þ ð53Þ

results in the j-dependent effective spectral numerical dissipation
rate

�bEn;sp j; tð Þ ¼ êðj; t þ MtÞ � êðj; t � MtÞ
2Mt

� t̂ðj; tÞ þ bEmðj; tÞ; ð54Þ

see also [13,11,15]. The effective total numerical dissipation rate in
spectral space

�bEn;sp tð Þ ¼
bEðt þ MtÞ � bEðt � MtÞ

2Mt
þ bE mðtÞ ð55Þ

is obtained by summation of Eq. (54) over j 2 ½0;jN;3d�, where the
individual terms are:

bEðtÞ ¼XjN;3d

j¼0

êðj; tÞ; ð56Þ

bE mðtÞ ¼
XjN;3d

j¼0

bEmðj; tÞ: ð57Þ

It is obvious that in total the non-linear transfer vanishes:

bT ðtÞ ¼XjN;3d

j¼0

t̂ðj; tÞ ¼ 0: ð58Þ

Fig. 1. Etot
n;ph tð Þ; bE tot

n;sp tð Þ, Etot
n;sp tð Þ, dEn;sp ; dbE n;sp

for Re ¼ 1.
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5. Physical-space analysis of numerical dissipation

5.1. Implementation of the method

To compute the effective numerical dissipation rate and
viscosity within a computational subdomain (CSD) Eq. (26) is
employed if not noted otherwise, and two different approaches

can be used. In the first approach Eq. (26) is evaluated locally in
each computational cell, providing local Eloc

n;ph values, where
subscript ph indicates physical space computation as opposed to
spectral space computation. Integrating E loc

n;ph over the domain of
interest, the computational sub-domain denoted as CSD, results
in ECSD

n;ph.

Fig. 2. Etot
n;ph tð Þ; bE tot

n;sp tð Þ, Etot
n;sp tð Þ; dEn;sp ; dbEn;sp

.
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In the second approach Eq. (26) can be directly evaluated on the
domain of interest. Hereby the flux terms are only evaluated over
the bounding surface of the CSD. Although mathematically as well
as numerically identical to the first procedure, the latter procedure
is computationally less demanding since it does not involve local
evaluation of all individual terms contributing to En;ph.

We note that instead of using Eq. (26) one may also employ its
volumetric equivalent, Eq. (33), to evaluate Eloc

n;ph or ECSD
n;ph.

The rate of change of kinetic energy is approximated using a
second-order central derivative [11]

MEkinðtÞ
Mt

¼ MEkinðtÞ
Mt

����
CD

� Ekinðt þ MtÞ � Ekinðt � MtÞ
2Mt

: ð59Þ

For the flux terms, Eqs. (29), (28) and (30), necessary data (e.g.,
p; u; q) need to be reconstructed at the bounding surface from
nearby data. The data at the bounding surface located at i� 1

2, with
i being the index of the cell that shares the relevant face with the
domain surface, is reconstructed with a sixth-order central scheme
to minimize the approximation errors:

f i�1
2
¼ 1

60
f i�3�8f i�2þ37f i�1þ37f i�8f i�1þ f i�2

� �
þOðMx6Þ: ð60Þ

Spatial derivatives in viscous terms are often approximated with
second-order accuracy. In general, the order of approximation for
the spatial derivatives should be consistent with the order used in
the Navier–Stokes solver. Numerical viscosities, mCSD

n;ph or mtot
n;ph, are

determined directly from Eqs. (39) and (40), respectively.
A particular case of interest is the numerical dissipation for the

entire computational domain with periodic boundary conditions.
The flux terms in Eq. (26) should cancel exactly if integrated over
a full periodic domain. Thus, the total numerical dissipation rate
Etot

n;ph and consequently mtot
n;ph depend only on the rate of change of

the total kinetic energy (59) and total viscous dissipation (13) if
the physical viscosity is non-zero:

�En ¼
Ekinðt þ MtÞ � Ekinðt � MtÞ

2Mt
þ Em: ð61Þ

According to the Parseval theorem [17] it is êðtÞ ¼ EkinðtÞ andbEðtÞ ¼ EðtÞ. Consequently, Eqs. (55) and (61) and in particular their

left hand sides are identical: bEn;spðtÞ ¼ En;phðtÞ. Note that the exact
correspondence between spectral and physical space analysis holds
only for the full periodic domain.

5.2. Physical-space reference solution for the local numerical
dissipation

Assume that the velocity field ui;j;kðtÞ has been determined with
an arbitrary physical space solver at several consecutive time steps,
e.g., tn�1 ¼ tn � Mt; tn; tnþ1 ¼ tn þ Mt. In the Navier–Stokes equation,
the time derivative of the velocity can be approximated at time tn

as

@ui;j;k

@t
� ui;j;kðtn þ MtÞ � ui;j;kðtn � MtÞ

2Mt
: ð62Þ

Multiplying Eq. (62) by ui;j;kðtnÞ yields the numerical kinetic-energy
decay rate at each point

@ei;j;k

@t

����
CD

� ui;j;kðtnÞ
ui;j;kðtn þ MtÞ � ui;j;kðtn � MtÞ

2Mt
: ð63Þ

Since the time-evolving velocity ui;j;kðtÞ is approximated by a
Navier–Stokes solver, the energy decay rate is affected by its
approximation errors. For a triply-periodic domain the time deriva-
tive of the velocity (62) and consequently the r.h.s. of Eq. (63) can be
computed without dispersive and dissipative artefacts by

evaluating all spatial derivative terms in Fourier space and then
transforming back to the physical space, i.e., using a pseudo-spec-
tral method (see also Section 4.2). We have used a skew-symmetric
pseudo-spectral scheme, hence dissipation-free. We refrain from
applying de-aliasing as these rules, e.g. 2=3- or 1=2-rule, imply
spectral cutoff filters of the nonlinear convective terms.
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Fig. 3. Etot
n;ph tð Þ for varying Mt; Re ¼ 1.
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The difference between kinetic-energy decay rates computed in
these two ways provides an estimate of the numerical error intro-
duced by the FD/FV discretization

�Ei;j;k
n;sp ¼

@ei;j;k

@t

����
CD

� @ei;j;k

@t

����
sp

; ð64Þ

where the subscript sp indicates the energy rate computed with the
help of the pseudo-spectral scheme. Unlike the spectral method of
the previous section, implemented solely in spectral space and
determining the spectral numerical dissipation (or viscosity), Eq.
(64) yields the physical-space numerical dissipation distribution,
i.e., the numerical dissipation on each individual mesh point i; j; k.

5.3. Computation of the viscous dissipation term

It must be recognized that the derivatives in the viscous
dissipation term are normally contaminated by the truncation
errors of the discretization used by a numerical solver. In contrast,

a spectral code uses exact Fourier-space derivatives, represented

by df̂ ðxÞ
dx / �ijf̂ . Therefore, one may expect that the value of the vis-

cous dissipation will be different depending on which method is
used. The comparison between results for these different ways of
computing the viscous dissipation is provided in Appendix A.
However, when validating the physical space approach with the
help of an external spectral code, we constrain the spectral
computation of the viscous dissipation to be consistent with the
way it is computed in the actual, dissipative code. This is accom-
plished by using the Fourier differentiation formulas with modified
wavenumbers. Specifically, the exact wavenumbers in Eqs. (43) are
replaced with the modified wavenumbers appropriate for a given
numerical discretization, e.g., for the second-order central deriva-

tives ja;mod ¼ sin ja Mxað Þ
Mxa

and for the fourth-order central derivatives

ja;mod ¼ sin ja Mxað Þ
3 Mxa

4� cos ja Mxað Þ½ �. This is done as we are interested
in the numerical dissipation provided by the code in excess of the
explicit viscous dissipation, even if the latter is not exact because of
the approximation errors in computing spatial derivatives.

6. Feasibility study

Fourier-space analyzes permit to determine total numerical
dissipation rates exactly (and mode-dependent), however, they
are limited to fully periodic flows. We will show that the three
methods at hand, Fourier-space, pseudo-spectral, and physical-
space, result in the same predictions of numerical dissipation rates
for such flows. For non-periodic flows Fourier-space analysis is no
possible. However, the pseudo-spectral reference method permits
to determine numerical energy dissipation rates locally for arbi-
trary, non-periodic, subdomains of periodic domains. Note that
the existence of an underlying periodic domain is not required in
the context of the direct physical-space analysis. In contrast to
the pseudo-spectral method, the physical-space method is also
applicable to non-uniform or unstructured grids. Hence, it is suffi-
cient, and essential, to base a feasibility study on one well-defined
flow, with the prerequisite that it shows, independent of the res-
olution, all characteristics of laminar, transitional and turbulent
flows within arbitrary subdomains.

All these requirements are fulfilled for a three-dimensional
Taylor–Green vortex (TGV) flow [18], which evolves from the origi-
nal two-dimensional laminar state

Fig. 6. E ¼ 9e�5 colored by sgnðmn;phÞ for Re ¼ 1600.
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Fig. 7. En;ph tð Þ (Lines), En;sp tð Þ (Symbols) for CSD1.
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Fig. 8. En;ph tð Þ (Lines), En;sp tð Þ (Symbols) for NCSD2.
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Fig. 9. En;ph tð Þ (Lines), En;sp tð Þ (Symbols) for CSD2.
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uðx; y; z;0Þ ¼ sinðxÞ cosðyÞ cosðzÞ;
vðx; y; z;0Þ ¼ � cosðxÞ sinðyÞ cosðzÞ;
wðx; y; z;0Þ ¼ 0;
qðx; y; z;0Þ ¼ 1:0;

pðx; y; z;0Þ ¼ 100þ 1
16

cosð2xÞ þ cosð2yÞð Þ 2þ cosð2zÞð Þ � 2½ �

ð65Þ

to a turbulent flow with a self-similar bEðjÞ / k�5=3 scaling at late
times, t > 9. Furthermore, the vast amount of reported data allows
to neglect discussion of the flow itself but instead focus on the
feasibility study of estimating the numerical dissipation.

The data for this study are obtained using incompressible TGV
flows simulated with the ALDM model of Hickel et al. [15]. All sim-

ulations are carried out in a periodic domain of V ¼ 2pð Þ3 dis-
cretized with 643 finite volumes. The time step is constant,
Mt ¼ T

500 ¼ 0:02 if not noted otherwise. An explicit three-step TVD
Runge–Kutta method [19] is used to integrate the equations in
time.

In the first step, the physical-space method of Section 5.1 and
the pseudo-spectral method of Section 5.2 are compared to the
effective total numerical dissipation rate computed according to

Eq. (55) in Fourier-space. Both, the spectral and pseudo-spectral
method rely on fully periodic flows, hence the comparison is based
on such. In contrast to the Fourier-space method, with which onlybE tot

n;sp is computable, the pseudo-spectral method permits to deter-

mine E i;j;k
n;sp at individual mesh points. An intermediate step serves to

demonstrate that the total flux, FtotðtÞ ¼ FekinðtÞ þ FacðtÞ � FmðtÞ is
determined correctly for arbitrary subdomains. In the second and
final step the physical-space analysis is extended to random, arbi-
trary, non-periodic subdomains. Embedding these in larger, fully
periodic domains allows for pseudo-spectral reference ECSD

n;sp to be
available for comparisons.

6.1. Analysis for the fully periodic domain

We note that for all tested Reynolds numbers, and indepen-
dently of compressible or incompressible data, analysis of En;ph

via Eq. (61) instead of (26) numerically is exact. Furthermore,
results are identical for both approaches described in Section 5.1.
The physical space results, discussed in the following subsection,
are obtained by evaluation of Eq. (26) for each individual finite vol-
ume and summing over all finite volumes (approach one, see
Section 5.1).
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Fig. 10. En;ph tð Þ (Lines), En;sp tð Þ (Symbols) for CSD3.
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6.1.1. Comparison of spectral and physical total effective numerical
dissipation rates

The Fourier-space approach as well as the physical space
approach employ the identical formulation of the rate of change
of total kinetic energy and viscous dissipation rate, except that
the relevant quantities, the total energy and the total viscous
dissipation, are computed either in the Fourier space or the physi-
cal space representation. For the inviscid case, Eqs. (61) and (55)

reduce to �Etot
n;ph ¼

EkinðtþMtÞ�Ekinðt�MtÞ
2Mt ¼ MEkinðtÞ

Mt jCD and �bE tot
n;sp tð Þ ¼bEðtþMtÞ�bEðt�MtÞ

2Mt ¼ MbE
Mt jCD, respectively. For this inviscid case the total

dissipation rate computed in three different ways is shown in

Fig. 1. Quantities Etot
n;ph and bE tot

n;sp are described above. Quantity Etot
n;sp

is based on the rate of change of the total kinetic energy computed
by the pseudo-spectral code in the physical space, i.e., Eq. (64). All
three approaches are in an excellent agreement with the relative
error

dEn;sp ¼
Etot

n;ph � E
tot
n;sp

Etot
n;sp

ð66Þ

between the pseudo-spectral and the physical-space approaches on
the order of �0:5% – hence negligible – for most of the evolution
time. The error increases slightly only for a short time period
around t � 4, which is the time of a rapid generation of small scales
in the TGV flow. The difference between the physical space and fully

spectral computations, also shown in Fig. 1, is exactly zero, as
expected.

Fig. 2a–f shows comparisons among all three different methods
for several finite Reynolds numbers, i.e., accounting for the explicit
viscous dissipation terms in (55) and (61). All three methods pro-
duce basically the same results. The error dEn;sp becomes noticeable
at times t P 4 for Re > 400, but is generally less than 1%. For smal-
ler Re the evolution of small scales is inhibited and the error is uni-
formly small. Overall, dEn;sp decreases with increase of the molecular
viscosity.

6.1.2. Effect of the time-step size
For determining the influence of the time-step size, we consider

Etot
n;ph tð Þ for Re ¼ 1 for which the total numerical kinetic-energy

dissipation rate depends solely on the rate of change of the total
kinetic energy. We compute the TGV flow with four different
Mt : Mt1 ¼ 0:1; Mt2 ¼ 0:06; Mt3 ¼ 0:02 and Mt4 ¼ 0:005, keeping
the mesh size constant, Mx � 0:1. While Mt1and Mt2 are on the
order of Mx; Mt3 and Mt4 are much smaller than Mx. As seen in
Fig. 3 Etot

n;ph tð Þ exhibits only weak dependence on Mt and a time-step
size on the order of Mt3 is sufficient for obtaining Mt-independent
results.

6.1.3. Form of the kinetic energy transport equation
As discussed in Section 3 the numerical dissipation rate may be

obtained according to two different approaches either using Eq.
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Fig. 11. En;ph tð Þ (Lines), En;sp tð Þ (Symbols) for NCSD1.
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(33) or Eq. (26). For comparing Etot
n tð Þ data of Eq. (33) to those of Eq.

(26), we employ the second approach. We denote the respective
results as Etot

n;VI tð Þ (the volumetric integral) and Etot
n;Flx tð Þ (the flux

form) and the relative difference as dEn;Flx
. For the evaluation of

Eq. (33) cell face state reconstruction is not required, local differ-
ences, however, are approximated with the same order as in Eq.
(26). We chose a finite Re of 3000 to account for differences in
the formulation of viscous terms. As seen in Fig. 4 both evaluations
lead to essentially identical results.

6.2. Analysis within subdomains

6.2.1. Self-contained flow within an octant
The symmetries of the TGV flow allow to reconstruct the whole

solution from one octant. Although the octants are not periodic, the
fluxes over each octant’s boundary should cancel. The total flux,
FtotðtÞ ¼ FekinðtÞ þ FacðtÞ � FmðtÞ, over the boundary of the first
octant, 0 6 i; j; k < 32, for Re ¼ 1600 is shown in Fig. 5 as an exam-
ple. We note that FacðtÞ ¼ 0 because u vanishes. It is seen that the
total flux computed as described in Sections 3 and 5.1 is zero
within machine precision.

Within each octant E x; tð Þ; En x; tð Þ as well as their derived quan-
tities such as mn x; tð Þ, reflect point-reflexion symmetry with respect
to the center of the domain (see Fig. 6). The major contribution to

Eeff x; tð Þ originates in subdomain L1 � 1
2 p; L2 ¼ L3 ¼ p, see outlined

box.

6.2.2. Arbitrary non-periodic subdomains
In Figs. 7–11 we compare results for the physical space method

En;ph tð Þ and the reference solution En;ps tð Þ obtained as described in
Section 5.2 on three cubic (CSD) and two non-cubic (NCSD) subdo-
mains. Subdomains CSD1–CSD3 and NCSD1 are picked randomly.
The subdomain CSD1 consists of cells from i; j; k ¼ 10 to 56, CSD2
from i; j; k ¼ 10 to 15, and CSD3 includes cells from 57 to 62.
NCSD1 is composed of cells with i 2 ½12; 14�; j 2 ½14; 19�;
k 2 ½19; 27�. The region within octant one with non-negligible
numerical dissipation is denoted NCSD2, and consists of cells
i 2 ½8; 23�; j; k 2 ½0; 31�.

The match between En;ph tð Þ and En;sp tð Þ within CSD1 and NCSD2
is almost perfect for the entire Re range and simulations times. For
the three smaller subdomains En;ph tð Þ and En;sp tð Þ agree very well
for medium to high Reynolds numbers, i.e. 800 6 Re 6 3000.
However, discrepancies become noticeable for smaller Re. Even
though CSD2 and CSD3 have the same volume, 63 cells, En;ph tð Þ
and En;sp tð Þ agree better in CSD2 than in CSD3 for a wide range of
Re. However, ECSD2

n tð Þ � ECSD3
n tð Þ.

Overall, the comparison is very encouraging, clearly indicating
the robustness of the analysis for moderately sized subdomains.
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7. Summary and conclusion

We have proposed a method for analyzing grid-based flow sim-
ulations for the effective numerical dissipation and local numerical
viscosity of the underlying CFD solver. The method is based on
computing a residual of the kinetic-energy evolution equation
locally in the physical space. It generalizes previous approaches
that were formulated for periodic domains in spectral-space and
have required an extraneous spectral solver. The current method
can serve as a post-processing tool for the quantification of
numerical errors in CFD simulations in a self-contained framework.

Its capabilities have been demonstrated for three-dimensional
Taylor–Green vortex flows for a large range of Reynolds numbers.
Determining the total numerical dissipation via spectral-space
analysis is more accurate than in physical-space, though limited
to periodic domains. The physical-space analysis, on the other
hand, estimates numerical kinetic-energy dissipation rates in very
good agreement with spectral-space findings. This holds even for
temporal and spatial derivative approximations of second-order
accuracy, and high to infinite Reynolds number fully turbulent
flows.

An excellent agreement between spectral-space and physical-
space methods has also been observed for arbitrary, non-periodic
domains for which the physical-space method is sought to be
applied. In contrast to the spectral-space reference method, this
novel physical-space method is applicable to arbitrary flows and
non-uniform unstructured grids in a straightforward manner.

Moreover, we find that the choice of a time step size has negligi-
ble influence as long as the time-integration error is below or on
the order of the spatial discretization error. This is generally the
case for explicit time marching schemes and when a CFL condition
CFL � 1 is satisfied. Even for larger time-steps numerical
dissipation rates are still estimated fairly accurately. Considering
an especially low time-step size for the analysis is therefore not
necessary. Since the method itself is conservative, the way intercell
fluxes are evaluated is of no concern.
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Appendix A

A.1. The influence of the order of spatial differentiation

In addition to numerical errors introduced by the flux terms in
the energy balance Eq. (26), the viscous dissipation term Em ¼ mE is
also affected by truncation errors when using discrete FD/FV
operators. However, since E is positive-definite and one is usually
interested in the numerical dissipation in excess of the viscous
dissipation produced already by a given code, the error in comput-
ing E is of less interest than errors introduced by the remaining
terms in the energy balance equation. For the comparison of FD/
FV results with spectral reference data, the exact wavenumbers
in Eq. (43) were replaced with the appropriate modified wavenum-
bers to account for the approximation of spatial derivatives in
physical space. This forces the viscous dissipation computed with
spectral formulas (using modified wavenumbers) to be equal to
the viscous dissipation computed using difference formulas.
Effectively, in our tests, the total dissipation is the sum of the
resolved viscous dissipation and the numerical dissipation caused
by discrete approximations of the terms in the energy balance
Eq. (26) other than Em. Furthermore, while the explicit calculation
of the viscous dissipation contribution for a given code is straight-
forward, computing the viscous dissipation with spectral accuracy
would always require an external spectral code, which is to be
avoided. Nevertheless, in this work we can compute the numerical

dissipation with spectral accuracy bEm;sp tð Þ using spectral expres-
sions defined in Section 4.1 (using the actual, un-modified
wavenumber j). Such results are presented below for
completeness.

The difference between bE sp tð Þ and the approximate E tð Þ
increases with the presence of small-scale structures, see

Figs. 12a–d. bE sp is always larger than E because j is always equal
or larger than the modified wave number. Higher-order approx-
imations to spatial differences predict E tð Þ more accurately.
Finally, the approximation also improves for well resolved flows,
either at the initial times when primarily large scale modes are
active, or for decreasing Reynolds numbers when the flow remains
laminar.

A.2. On the order of reconstruction of the cell-face states

In certain cases a flow configuration under investigation may
not permit computing the flux terms described in Section 3 based
on high-order reconstructed cell-face states. We are thus eval-
uating the influence of the order of the reconstruction when choos-
ing more local stencils based on considering Etot

n;ph tð Þ for Re ¼ 1 in
NCSD2.

Besides the sixth-order reconstruction (60) we have employed a
second-order central, i.e., f i�1

2
¼ 1

2 f i þ f i�1

� �
, and a fourth-order cen-

tral, i.e., f i�1
2
¼ 1

16 �f i�1 þ 9f i þ 9f i�1 � f i�2

� �
, scheme to obtain cell

face states.
The resulting Etot

n;ph tð Þ are depicted in Fig. 13. For most of the
time, especially within the transitional period, identical numerical
dissipation rates are predicted with all three schemes. Only for
short periods of time marginal differences among different meth-
ods can be observed, e.g., for t 2 ½8; 9:5� the relative difference of
Etot

n;ph computed with second-order reconstructions to the one based
on sixth-order reconstructions is within 2.8%.
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Fig. 13. Etot
n;ph tð Þ for varying order of cell-face state reconstructions, Re ¼ 1.
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Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.compfluid.2015.
02.011.
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In engineering applications, resolution is often low. In these underresolved regions, the truncation error of the

underlying numerical schemes strongly affects the solution. If the truncation error functions as a physically consistent

subgrid-scalemodel (that is, itmodels the evolutionof otherwise resolved scales), resolutionmay remain low.Thereby,

computational efficiency is improved. The sixth-order adaptive central-upwind weighted essentially nonoscillatory

scheme with implicit scale separation, denoted as WENO-CU6-M1, potentially allows for physically consistent

implicit subgrid-scale modeling, when shaped accordingly. In this work, finding an optimal formulation of WENO-

CU6-M1 is considered within a deterministic design optimization framework. Possible surrogate modeling and

sampling strategies are considered. Design optimization is based on evaluating the potential of a WENO-CU6-M1

scheme formulation to reproduceKolmogorov scaling for a Taylor–Green vortex in its quasi-isotropic state. As in the

absence of physical viscosity, kinetic energy dissipates exclusively due to the subgrid-scales, the Reynolds number is

infinite, and the evolution of the flow is determined by proper subgrid-scale modeling. To complete the work, the

effective numerical dissipation rate of theWENO-CU6-M1model optimized for artificially compressible fluid flows is

quantified, and it is compared to the original one. Not only is the zero viscosity limit considered, but the model

behavior is benchmarked offdesign, for low to high Reynolds numbers. A comparison to an alternative explicit and

implicit subgrid-scale model demonstrates its superior behavior for the chosen test flow.

I. Introduction

M ODIFIED differential equation analysis (MDEA) [1] has
shown that the truncation error of nonlinear discretization

schemes can be constructed to represent an implicit subgrid-scale
(SGS) model for turbulent flows [2]. The nonlinear regularization
mechanism of high-order finite volume schemes with shock-
capturing capabilities can be employed for implicit large-eddy
simulations (ILES). For a review refer to [3]. On the basis of a spectral
extension of the MDEA, the truncation error of a nonlinear scheme
has been designed to recover the theoretical spectral eddy viscosity
when the flow is turbulent and underresolved. Such a situation, where
the nonnegligible local truncation error of a numerical scheme
recovers correct physical SGS behavior, is called physically
consistent behavior [4,5].
Hu et al. [6] proposed a weighted, essentially nonoscillatory

(WENO) scheme combining the advantages of an upwind scheme,
e.g., the fifth-order WENO scheme [7], and a sixth-order central
scheme. It adaptively alters its biasing between central and upwind by
evaluation of the smoothness indicators of the optimal higher-order
stencil and lower-order upwind stencils. Thereby, it decreases
numerical dissipation in smooth flow regions and permits a
numerically stable solution in nonsmooth flow regions while
preserving shock-capturing capabilities. It is denoted asWENO-CU6.
Hu and Adams [8] investigated the physical consistency of the
underresolved contribution of WENO-CU6. Based thereupon, a

central-upwind WENO scheme with implicit SGS modeling cap-
abilities has been developed [8]; it is denoted as WENO-CU6-M1.
Schranner et al. [9] identified that WENO-CU6-M1 offers a set of

free parameters, enabling implicit subgrid-scale modeling by
controlling scale separation of resolved and nonresolved scales for
compressible aswell as incompressible flows. In combination with the
material modeling, i.e., equation of state (EOS), and an appropriate
Riemann solver, an adjustment of the model permits recovery of self-
similar isotropic turbulence when physical viscosity diminishes.
Amethod that quantifies the effective numerical dissipation rateℰn

and effective numerical viscosity νn in computational fluid dynamics
was proposed in [10]. It permits a straightforward quantitative
evaluation of SGS modeling capabilities of a numerical algorithm.
The objective of this work is to determine an optimal combination

of the WENO-CU6-M1 modeling parameters by means of design
optimization (DO). The notion of being optimal implies that the
transition is predicted physically consistently and inertial subrange
scaling,which is characteristic of isotropic turbulence, is recovered as
most optimal when dissipating energy only within the SGS. On the
basis of an optimal WENO-CU6-M1 weighting, we are stating a
physically consistent implicit large-eddy simulation (LES) model for
incompressible, underresolved flows. Proceeding forward, the
effective numerical dissipation rates of the optimal and original
WENO-CU6-M1 scheme are compared. We thereby demonstrate
that optimization of a quantifiable spectral-space norm entails
improvements in a physical-space norm. Subsequently, we evaluate
the offdesign behavior of the optimized WENO-CU6-M1 model by
comparing simulation results of low to high, yet finite, Reynolds
number Re Taylor–Green vortex (TGV) [11] flows to direct
numerical simulation (DNS) data [12,13]. Furthermore, benchmark-
ing to established explicit and implicit SGSmodels at these Reynolds
numbers is included.

II. Model Formulation

A. Artificial Compressibility Approach

At Mach numbers ofMa ≪ 1, compressibility is negligible. This
means that the compressibility β, relating the relative change of
density to the change of pressure, is almost zero:

β � 1

ρ

∂ρ
∂p

≈ 0
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In contrast to classical incompressible approaches, claiming
β � 0, the artificial compressibility approach (ACA) of Chorin [14]
and Temam [15] assumes a nonzero yet constant compressibility.
Such flows may be considered weakly compressible. The isentropic
compressibility relates to the sound speed by

a2 � 1

ρβjs
For isothermal processes. β � βjT � βjs; and the ratio of specific

heats κ is one. The pressure and density are linearly related by the
caloric EOS p � p�ρ� � a2ρ for these artificially compressible
fluids. It is evident that density fluctuations are small if a is
sufficiently large.

B. Numerical-Flux Computation Adapted to Weakly Compressible
Fluid Treatment

Within the ACA, the energy equation is decoupled from the
continuity and momentum equations. Thus, the flow is governed by
equations for the conservation of mass and momentum only. In one
dimension (for simplicity), U � �ρ; ρu� is the solution of

∂U
∂t

� ∂
∂x

F�U� � 0 (1)

In a discrete space-time domain, the discrete conservation equation

Ûn�1
�i� � Ûn

�i� �
Δt
Δx�i�

�
�F�i−�1∕2�� − �F�i��1∕2��

�
(2)

for the cell-averaged solution

Û�i� �
1

Δx�i�

Z
Δx�i�

Un
�i� dx

requires approximations of the cell-face fluxes

�F�i��1∕2�� �
1

Δt

Ztn�1

tn

F�i��1∕2�� dt �
1

Δt

Ztn�1

tn

F
�
U�i��1∕2��

�
dt (3)

where Δt is sufficiently small. Note that, generally, the flux vectors
include advective and viscous components: �F � �Fa − �Fν. Com-
putation of �Fν is straightforward within the scope of this work and at
fourth-order accuracy.
A low-dissipation advective flux approximation is due to the Roe

[16] approximate Riemann solver, which is used within the scope of
this work. The key idea of this class of solvers is using the linearized
local flux Jacobian ~A � ~A� �U�l�; �U�r��. The high-order reconstructed
conservative states at the left and right sides of the cell face are
denoted by �i� �1∕2���l� and �r�. The eigenvalues of ~A,
~λ�j�� �U�l�; �U�r��, and right eigenvectors ~K�j�� �U�l�; �U�r�� are deter-
mined (see Appendix A), so that the Roe numerical flux can be
computed as

�F�i��1∕2�� �
1

2
� �F� �U�l�� � �F� �U�r��� − 1

2

Xm
j�1

~δ�j�j~λ�j�j ~K�j� (4)

where ~δ�j� denotes the wave strengths.

C. Time Integration and Time-Step Constraints

The conservation equations [Eq. (2)] are integrated explicitly in
time with a third-order total variation diminishing Runge–Kutta
scheme [17]. The time step is chosen adaptively as

Δt � CFL · min�Δta;Δtν� (5)

with a Courant–Friedrichs–Lewy (CFL) of 0.3:

Δta � min�Δxα�
max juα � aj

and Δtν � 3
14
Re�min�Δxα��2 where α represents one of the spatial

directions.

D. Reconstructing Cell-Face States and WENO-CU6-M1 Weighting

To obtain �U�α�
�i��1∕2��, where α is either l or r, weighted essentially

nonoscillatory schemes [18] definem reconstruction polynomials for
nonaveraged conservative cell-face vector candidates

u�α;γ��i��1∕2�� �
Xm−1

j�0

cγ;jÛi−γ�j; γ � 0; ...; m − 1 (6)

on m candidate stencils Sγ �i� ≡ fÛ�i−γ�; : : : ; Û�i�; : : : ; Û�i−γ�m−1�g in
the vicinity of the cell face and combine these convexly according to

�U�α�
�i��1∕2�� �

Xm−1

γ�0

ω�α�
γ u�α;γ�i��1∕2� (7)

Hereby, the set of nonlinear weights fω�α�
γ g satisfying

ω�α�
γ ≥ 0;

Xm−1

γ�0

ω�α�
γ � 1

ensures stability and consistency. Jiang and Shu [7] have formulated
computationally efficient weights such that these areC∞, i.e., smooth
functions of the involved cell averages:

ω�α�
γ � α�α�γP

m−1
s�0 α

�α�
s

; α�α�γ � f�dγ; β�α�γ � (8)

where dβ and β�α�γ are the ideal weights and smoothness indicators,
respectively.
“The smoothness indicators diminish with increasing smoothness

of the solution on a stencil” [9]. In defining αγ , the core idea is to
consider each of the u�γ�i��1∕2� according to their smoothness by
weighting them appropriately. Thereby,ω�α�

γ approximates dβ. Yet, if
u�x�was to contain a discontinuity in at least one of the stencils Sγ �i�,
leading to β�α�γ � O�1�, the corresponding weights ω�α�

γ need to
diminish to exclude the approximation u�γ�i��1∕2�, and thereby keep the
overall nonoscillatory behavior. TheWENOweighting factorsα�α�γ of
Jiang and Shu [7] fulfill these requirements:

α�α�γ � dγ

�ϵ� β�α�γ �q
(9)

The WENO-CU6-M1 weights, a further development of the
original WENO weights (9), remedy excessive dissipation of the
underlying WENO-CU6 scheme while preserving its shock-
capturing properties, and thus allow recovery of physical consistency
for both the solenoidal and the dilatational components of thevelocity
field, without the need to explicitly distinguish these; see, e.g., [8].
The WENO weighting factors of the WENO-CU6-M1 scheme are

α�α�γ � dγ

�
Cq �

τ�α�6

ϵ� β�α�γ

�q

; γ � 0; : : : ; 3; (10)

where the reference smoothness indicator is

τ�α�6 � β�α�3 −
1

6
�β�α�0 � 4β�α�1 � β�α�2 �

see, therefore, [6,19]. Also, u�α;γ�i��1∕2�, dγ , and β
�α�
γ with γ � 0, 1, 2 are

identical to the ones of the fifth-order WENO scheme, which can be
found in Appendix B; u�α;3�i��1∕2�, d3, β

�α�
3 , as well as the four ideal

weights, may be found in Appendix C.
To allow for weights in nonsmooth stencils to approach zero at an

accelerated rate as Δx → 0, the integer power exponent q has to be
chosen accordingly. In the original formulations [6,7], the integer
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power exponent q is a free parameter that does not affect the order of
the numerical truncation error. It does, however, control the amount
of nonlinear dissipation [20], which increases with q; see [21].
According to [7], an integer of q ≥ 1 is chosen in order to push the
weight of the nonsmooth stencil to zero asΔx → 0. In [22], it has been
suggested to use q � m, with 2m − 1 being the order of accuracy.
However, Jiang andShu [7] find by “extensive numerical experiments”
[7] that q � 2 is adequate to obtain essentially nonoscillatory
approximation for m ≤ 3. Gerolymos et al. [21] have experimented
with varying q for m ≤ 9. They found that q had to increase with
increasing m to obtain essentially nonoscillatory behavior.
Cq ≫ 1 emphasizes the contribution of optimal weights when the

smoothness indicators are of similar magnitude [6,23]. Higher values
for Cq reduce numerical dissipation [8]. For compressible, isotropic
turbulence, inertial range scaling is obtained for Cq � 1;000 [8].
Schranner et al. [9] identified that a proper choice of �Cq; q�
potentially enabled implicit subgrid-scale modeling, not only for
compressible flows but for a wide range of material fluid models.
Note that ϵ > 0 has the purpose of ensuring a nonzero denominator.

III. Optimization

A. Statement of the Problem

For a given material modeling and Riemann solver, an optimal
combination of �Cq;q� is sought so that the thereby stated implicit
LES model is fulfilling the following two design requirements best:
First, transitioning of the incompressible, physically inviscid,
originally two-dimensional Taylor–Green vortex [11],

u1�x; y; z; 0� � sin�x� cos�y� cos�z�;
u2�x; y; z; 0� � − cos�x� sin�y� cos�z�;
u3�x; y; z; 0� � 0;

ρ�x; y; z; 0� � 1.0;

p�x; y; z; 0� � 100� 1

16
��cos�2x� � cos�2y���2� cos��2z�� − 2�

(11)

defined within a periodic domain, to three-dimensional statistically
isotropic turbulence [24] must occur. Completion of transition is
expected at t ≈ 9 s. Second, and as a consequence of proper
transition, a Kolmogorov scaling inertial subrange, i.e.,

E�k� � Cϵ2∕3k−5∕3 (12)

ought to be recovered most optimally.
The linear weight bias Cq and the power exponent q define the

parameter set x � �Cq; q�. Based on [8,9], we expect the global
optimum within the parameter domain X � 1;000 ≤ Cq ≤ 20;000×
1 ≤ q ≤ 20.
The quality of a sample (model) is evaluated on the basis of the

total least-squares difference [25,26] between the numerically
simulated E�ki� and the theoretical E�ki� as

z�x� �
Xm
i�n

�E�ki� − E�ki��2 (13)

where n and m mark the first and last wave number of the inertial
subrange. Within the scope of this work, n � 2 and m � 32, where
the latter is equivalent to the Nyquist wave number. The x with the
global min�z�x�� (i.e., showing best fitness) is sought. The fitness
function [Eq. (13)] is evaluated at t � 10.

B. Optimization Strategy

Simulating a TGV evolution up to t � 10 for a possible sample
requires approximately 63 min on a dual-socket Intel SandyBridge-
EP Xeon E5–2670 node. Furthermore, up to this venue, the

characteristics of the response surface (RS) corresponding to Eq. (13)
within X are unknown.

1. Surrogate Modeling

Avariety of optimization approaches, deterministic and stochastic,
exist. The choice ofmethod primarily depends on the optimization task
[27]. Stochastic approaches, such as evolutionary algorithms, have the
advantage of coping with discontinuous fitness functions or when
noise is severe [28]; yet, potentially, a large number of samples needs to
be evaluated. Deterministic approaches are commonly gradient based.
The commonproperties of these are that anoptimum isgenerally found
and the number of iterations therefore is comparably low when the
response surface is shaped appropriately. Yet, when the optimization
task is not confined enough (that is, when the response surface contains
several local optima apart from the global optimum), gradient-based
approaches are likely to find a local one [29].
The response surface approach, consideredwithin the scope of this

work, leads to continuous surrogate models.Within the deterministic
surrogate model framework, the response surface is approximated
with a simplified model. For such a surrogate model, a system
response [i.e., z�x�, for any x ∈ X] is at hand instantly and at a low
numerical cost. To differentiate the ILES system response from the
surrogate model response, the latter will be denoted as ẑ�x�. Within
the scope of this work, two approaches have been selected for further
testing regarding their applicability to the optimization task
formulated in Sec. III.A. Both the response surface approximation by
polynomial regression (PR) and the radial basis function
interpolation (RBFI) models qualify, as they are both robust, simple,
and easy to code. This does not hold for artificial neural networks.

2. Response Surface Approximation by Polynomial Regression

Response surface approximation by polynomials is a regression
approach, which implies that, generally, ŷ�x� ≠ y�x�, ∀x ∈ X.
Moreover, the degrees of freedom are fewer, leading to an
overdetermined system of equations. Let

ŷ�x� � b0 � b1x1 � b2x2 � b3x1x2 � b4x
2
1 � b5x

2
2 � : : :

�
Xn
k�0

bkpk�x� (14)

be the polynomial that approximates the response surface with a
desired order. To derive the model, the unknown polynomial
coefficients bk are determined by minimizing the least-squares
difference of ŷ�x� and y�x�:

z�x� �
Xm
j�0

e2j �
Xm
j�0

�y�xj� − ŷ�xj��2

�
Xm
j�0

�
y�xj�2 −

Xn
k�0

bkpk�xj�
�
2

(15a)

which in vector notation reads

z�x� � eT · e � �y − Pb�T · �y − Pb� (15b)

Herein,

e �

0
BBBBB@

e0

e1

..

.

em

1
CCCCCA
; y �

0
BBBBB@

y0

y1

..

.

ym

1
CCCCCA
; b �

0
BBBBB@

b0

b1

..

.

bn

1
CCCCCA
;

P �

0
BBBBB@

1 p0;1 : : : p0;n

1 p1;1 : : : p1;n

..

. . .
. ..

.

1 pm;n : : : pm;n

1
CCCCCA

(16)
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Note thatm ≥ n.Minimizing of the objective function [Eq. (15)] is
achieved by solving

∂z�x�
∂b

� ∂�eTe�
∂b

�
∂
�P

m
j�0 e

2
j

�
∂bk

� 0 (17)

from which the coefficients are determined. Therefore, one evaluates

b � �PTP�−1PTy (18)

3. Interpolation of the Response Surface via Radial Basis Functions

When interpolating a higher-order response surface from samples
of an nth-order RS via radial basis functions (RBFs), it is

ŷ�x� � y�x�; ∀ x ∈ X (19)

RBFs are local, such that their value at xj is only a function of the
distance to its origin xi:

ϕ�xi; xj� � ϕ�kxi − xjk� � ϕ�rij� (20)

A simple RBF, which allows for easy coding of a straightforward
solution algorithm, results in a C∞ response surface, and has been
demonstrated to deliver sufficiently accurate results is the thin-plate
spline, [30]

ϕ�rij� �
�
r2ij log�rij� rij ≠ 0;
0 rij � 0

(21)

At each contributing sample point xi, an ωi-weighted RBF is
stated. The sum of all weighted RBFs constitutes the two-
dimensional RS approximation according to [31]

ŷ�xj� � b0 � b1x1;j � b2x2;j �
Xm
i�0

ωiϕ�xi; xj�

�
X2
i�0

bipi�xj� �
Xm
i�0

ωiϕij � ŷj (22)

where theweightsωi aswell as polynomial coefficientsb0,b1, andb2
are to be determined such that Eq. (19) is fulfilled. Note thatm is the
number of sample or support points. Furthermore,

Xm
i�0

pjiωi � 0 (23)

Equation (22) and condition (23) constitute a linear system of
equations

�
Φ P
PT O

�
·
�w
b

�
� L ·

�w
b

�
�

� y
o

�
(24)

where

Φ �

0
BBBBB@

ϕ00 : : : ϕ0 m

ϕ10 : : : ϕ1 m

..

. . .
. ..

.

ϕm0 : : : ϕmm

1
CCCCCA
; P �

0
BB@
1 x1;0 x2;0

..

. ..
. ..

.

1 x1;m x2;m

1
CCA;

w �

0
BB@

ω0

..

.

ωm

1
CCA; b �

0
BB@
b0

b1

b2

1
CCA; ŷ �

0
BBB@

ŷ�xj�
..
.

ŷ�xm�

1
CCCA (25)

O and o are a 3 × 3 matrix and a 3 × 1 vector of zeros. Note that the
polynomial terms are necessary to ensure that L is nonsingular [32].
For a small number of sampling points, as within the scope of this
work, one may directly evaluate the polynomial coefficients and
weights as

b � �PTΦ−1P�−1PTΦ−1y; w � Φ−1�y − Pb� (26)

4. Sampling

A proper surrogate model approximates the response surface
adequately. Therefore, a sufficient number of samples needs to be
evaluated for their fitness. The parameter dependence can be
considered as unknown and the number of parameters is only two;
hence, we pursue a full factorial sampling strategy of X. The
parameter space X is subdivided into l disjoint levels with level
spacing Δxi. At each level, one sample is evaluated. As shown in
Fig. 1, the distribution of samples is not necessarily equispaced. An
m-dimensional parameter space with l levels implies jNj � lm

samples, where N is the set of samples.

IV. Results

A. Best Choice for a Reference E�k�
We restate the reference inertial subrange spectrum [Eq. (12)] as

E�k� � Ak−5∕3 (27)

where A � Cϵ2∕3 summarizes the dependence of E�k� on the
Kolmogorov constant C and dissipation rate ϵ�k�, which are both
irrelevant to this DO task.
Evaluation of the fitness function [Eq. (13)] requires a priori

knowledge of A, which is different for each sample. Regression
analysis, as described in Sec. III.B.2, is used to determine A. The RS
approximating polynomial, coefficient vector, matrix, and RS
function are

ŷi � Ak
−5∕3
i (28)

b � A; P �

0
B@
k−5∕3n

..

.

k−5∕3m

1
CA (29)

y�k�i � E�ki� (30)

Fig. 1 Full factorial designwithin a two-dimensional parameter spaceX
and three levels.
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B. Evaluation and Comparison of Surrogate Models

By ILES, jNj � 400 samples are evaluated with a level resolution
ofΔ�Cq; q� � �1;000; 1�. To train the PR and RBFI models, training
sets T ⊂ N are used. The training sets T contain one sample of each
level, e.g., for l � 5, jTj � 25. We increase l from 5 to 20 iteratively.
In each iteration, we reevaluate potential surrogatemodels on basis of
increasing training sets T. The capability of the derived model to
approximate the RS and whether it converges to an optimal sample
are of interest.

1. Polynomial Regression Models

PRmodels of third, fourth, and fifth order are constructed. For each
PR surrogate model, the global minimum in ẑ�X�, denoted as
ẑmin � ẑ�xmin�, and the corresponding coordinates xmin � �Cq; q�min
are sought and listed inTable1.Wealso determine z�xmin� according to
Eq. (13).ΔCq andΔq denote the level resolution. To assess the quality
of ẑ�x� locally, the approximation certainty

ε � 1−
���� zmin − ẑmin

zmin

���� (31)

at �Cq; q�min
is evaluated. The capability of a PRmodel to approximate

the RS is validated on basis of the holdout error

�ε � 1

jVj
X
n∈V

���� zn − ẑn
zn

���� (32)

Except for Δ�Cq; q� � �1;000; 1�, where V � N and the holdout
error becomes the mean approximation error, the set of samples
V ⊂ N with V ∩ T � ∅ is used as the validation set. Neither varying
the polynomial order nor increasing l entails convergence to an
optimal x. Yet, for polynomials of fourth and fifth order, �ε remains

below 10%, even for l � 5. Even when the order is three, �ε is not
larger than 11% for l � 5. Note that �ε decreases with the polynomial
order and l.
Figure 2 visualizes ẑ of the fifth-order polynomial regression

model, which is based on Δ�Cq; q� � �1;000; 1�. The fitnesses
corresponding to the respective samples are visualized as dots. These
data indicate that the polynomial regression ẑ�x� provides an estimate
of z�x� andwhere to expect subspaces of high fitness. Yet, small local
subspaces potentially containing local optima are not predictable.

2. Interpolation Model

Consecutively increased training sets are used to construct the
interpolation models. Each RBFI model is evaluated for its global
minimum ẑmin. Together with the corresponding xmin, as well as
z�xmin� and ε, they are listed in Table 2. On bases of V, the holdout
error is computed according to Eq. (32).
When increasing the number of levels, the interpolation models

converge to �Cq; q� � �5;200; 2�, with a certainty of 99.9% at
Δ�Cq; q� � �1;000; 1�. The holdout error is below 7% for jTj � 25
and decreases with decreasingΔ�Cq; q�. At least jTj � 100 samples
are necessary to resolve the subspace containing the absolute
minimum, such that an optimum, which is close to the actual optimal
sample, is located there. Yet, already, jTj � 49 permits us to find a
local optimum with 94.2% accuracy and a fitness that is 8% lower
than the one found with jTj � 400.
Figure 3 shows the interpolation model based on Δ�Cq; q� �

�1;000; 1�. Dominant structures in the RS are apparent: 1) a region in
the response surface with low fitness, i.e., large z�x�. It is found for
Cq�q� < 1;000q; and 2) forCq�q� > 1;000q, a region of high fitness,
i.e., small z�x�, is identified. Local minima are expected for

Cq ≈ 2;600q; 2 ≤ q ≤ 5 (33)

3. Comparison of the Models

Independent of the resolution and polynomial order of the polyno-
mial regression models, the thin-plate RBF models approximate the
response surface at much smaller �ε. To complete our study of
optimizingWENO-CU6-M1with surrogate models, several samples

Table 1 Comparison of possible regression models

Order Δ�Cq;q� ẑmin z�xmin� ε�%� �ε�%� �Cq; q�min

3 (4,000;4) 1.3028 1.5785 82.5 11.12 (20,000;9)
4 (4,000;4) 1.2457 1.607 77.5 9.33 (20,000;7)
5 (4,000;4) 1.3028 1.5785 82.5 7.82 (15,702;6)
3 (3,000;3) 1.5824 11.523 95.9 10.96 (14,961;5)
4 (3,000;3) 1.2936 1.607 80.5 9.73 (20,000;7)
5 (3,000;3) 1.2939 1.4994 86.3 9.04 (12,892;5)
3 (2,000;2) 1.5021 1.4400 95.7 10.58 (20,000;9)
4 (2,000;2) 1.6326 1.8933 86.2 9.41 (84,57;1)
5 (2,000;2) 1.4886 2.1415 69.5 7.48 (66,65;1)
3 (1,000;1) 1.5060 1.5874 94.9 10.33 (16,610;6)
4 (1,000;1) 1.2603 1.6065 78.4 8.80 (20,000;7)
5 (1,000;1) 1.3754 1.4737 93.3 7.13 (14,561;5)

Fig. 2 Surrogate model: fifth-order polynomial, full factorial design. Parameter space reduced to q ∈ �1; 12� × Cq ∈ �2;000; 20;000� for better
visualization.

Table 2 Comparison of interpolation models

jTj Δ�Cq; q� ẑmin z�xmin� ε% �ε% �Cq; q�min

25 (4,000;4) 1.2934 1.6259 79.6 6.64 (19,500;7)
49 (3,000;3) 1.2078 1.2820 94.2 6.21 (9,700;4)
100 (2,000;2) 1.1819 1.1679 98.8 5.47 (5,800;2)
400 (1,000;1) 1.1204 1.1602 99.9 — — (5,200;2)
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in the vicinity of the potential absolute minima �Cq; q�pol ��14;561; 5� and �Cq; q�int � �5;200; 2� are evaluated. Thereby,
the globally optimal sample �Cq; q�opt � �5;300; 2�, with z�xopt� �
1.1405, is determined. One finds that �z�xopt� − ẑ�xint��∕
z�xopt� � 0.04%.

C. Evaluation of the Optimized WENO-CU6-M1 ILES Model for In-
finite Reynolds Numbers

In Fig. 4, the kinetic energy spectra at t � 10 for theWENO-CU6-
M1 scheme based on xint, xopt, and xorig [8] are depicted. For

comparison, the theoretically expected E�k� ∝ k−5∕3 is shown
alongside. The spectrum corresponding to xopt is almost identical to
the surrogate model sample xsgt � xint in the relevant wave-number
range. Moreover, these spectra coincide with the Kolmogorov
spectrum.
The temporal evolution of the effective numerical viscosity νn for

the WENO-CU6-M1 schemes with xorig and xsgt, evaluated
according to [10], are depicted in Fig. 5a. In [9], tSGS ≈ 3.4 is the time
noted for the onset of SGS dissipation. For t < tSGS, the TGV
develops its full range of scales, and a νn analysis is hardly applicable
due to the lack of SGS. For t ≥ tSGS, νn is lower for xsgt as for xorig.
The relative difference in νn

δν �
νnorig − νnsgt

νnsgt

evaluated for t ≥ 4, is found to be in the order of 20 to 77%.
Especially within early times, yet past tSGS (which are most relevant
for correct transition), the improvement in prediction of numerical
dissipation is significant. Kinetic energy dissipation onset is later for
xsgt; see Fig. 5b. For xsgt the full range of scales has evolved further,
before SGS dissipation initiates, see also [9]. Hence, the correlation
of SGS dissipation to smaller scales is stronger, as for xorig. Time
series 6 visualizes the local dissipation functionℰ�t��i;j;k� colored by
the local numerical dissipation rate ℰn

�i;j;k� within one octant of the
TGV.We rotate the view about the z axis, and α indicates the angle of
rotation corresponding to the current time. In the bottom half of
Figs. 6a and 6b, a view with α� 90 deg is shown. For xsgt,ℰn is, for
themost part, less diffuse and locally of larger magnitude, as for xorig.

Fig. 3 Surrogate model: interpolation model, full factorial design, Δ�Cq; q� � �1;000; 1�.

Fig. 4 Comparison ofE�k� for the original xorig � �1;000; 4�, surrogate
xint � �5;200; 2�, and optimal xopt � �5;300; 2�model to the theoretical
E�k� ∝ k−5∕3 inertial subrange spectrum.

Fig. 5 Comparison of temporal dissipation behavior for ILES schemes based on xorig and xsgt.
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D. Model Behavior for Finite Reynolds Number

In a final set of simulations, we consider TGV flows for Re � 100
to Re � 3;000. The DNS of Brachet et al. [12,13] provide primary
reference data. Furthermore, Fig. 7 depicts data obtained with the
dynamic Smagorinsky model and the adaptive local deconvolution
approach (ALDM) [5]. Note that DNS data and dynamic
Smagorinskyℰeff � ℰn �ℰν are normalized by �2π�3. The original
ALDM simulations [5] were repeated in [10].
With advancing laminar-turbulent transition, the dissipation rate

increases due to nonlinear vortex stretching. The decrease in ℰeff at
later times is due to viscous damping. For Re ≤ 200, both the
dynamic Smagorinsky model and ALDM slightly underpredictℰeff ,
whereas the xsgt-based WENO-CU6-M1 model overpredicts ℰeff .
Yet, the relative difference to the DNS data, evaluated at Re � 100
and t ≈ 4.6, remains below 5%. For 400 ≤ Re ≤ 800, the dissipation
rates of the xsgt-based simulations are in good agreement with DNS.

Especially for Re ≥ 1;600, the xsgt-based WENO-CU6-M1 model
predicts the onset and increase ofℰeff as more strongly correlated to
the existence of SGS (i.e., later) than the two alternative models.
Moreover, ℰeff

DNS�t� for 0 ≤ t ≤ 10 is best represented with the
xsgt-based WENO-CU6-M1 model. The peak effective dissipation
rate is higher, and thereby closer, to the DNS results with the ALDM
and dynamic Smagorinsky model. The dissipated kinetic energy

ΔEkin �
Z

10

t�0

ℰeff�t 0� dt 0

for the DNS and the three underresolved simulations are
ΔEkin;DNS ≈ 11.59, ΔEkin;dynSmago ≈ 14.83, ΔEkin;ALDM ≈ 13.70,
and ΔEkin;sgt ≈ 12.52 for Re � 3;000.

a)
 x

or
ig

b)
 x

sg
t

Fig. 6 Dissipation function ℰ � 0.52 with local numerical dissipation ℰn.
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V. Conclusions

The approximation quality of considered polynomial regression
surrogate models primarily depends on the order and number of
levels. Still, even the fifth-order polynomialmodel does not represent
fine structures of the highly nonlinear response surface. The response
surface approximation may be better when the number of samples is
large, yet we find that, especially at higher polynomial orders,
overfitting deteriorates the surrogate model. It has not been possible
to constitute PRmodels in subspaces with large local gradients and at
Δ�Cq; q� � �1;000; 1� or Δ�Cq; q� � �2;000; 2�. Furthermore, due
to overfitting for the number of training samples provided at
Δ�Cq; q� � �1;000; 1�, polynomials of an even higher order have
shown to not be applicable. Based on the polynomial surrogate
models, a comparably large subspace of high fitness has been

considered as potentially containing the optimal sample; however, it
does not.
The thin-plate RBFmodel approximation quality has proven to be

superior to the polynomial models, independent of the resolution and
polynomial order. The RS has been approximated sufficiently well
with the RBF model at Δ�Cq; q� � �3;000; 3�. Besides indicating a
holdout error of only 6.21%, a local minimum fulfilling Eq. (33) and
of certainty greater than 94%are found.At higher resolution, theRBF
interpolation model indeed determines an optimal set of �Cq; q�,
which closely approximates the fittest sample. The relative difference
in fitnesses between these is below 1%. Already with 25% of the
maximum number of samples, the response surface approximation
fidelity has been sufficient to correctly localize the subspace
containing the optimal �Cq;q�.

Fig. 7 ℰeff (Re) for the viscous TGV: xsgt based ILES (solid lines), dynamic Smagorinsky LES [5] (dashed–dotted lines), and ALDM ILES [10] (dotted

lines) on 643 finite volumes as compared to DNS data by Brachet et al. [12,13] (filled squares).
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Although not discussed explicitly, within the scope of this work,
Latin hypercube sampling has been tested for a potential sampling
strategy. Due to the distinct nonlinearity of the fitness function
response surface, it has proven to be inadequate.
In future attempts, to optimize WENO-CU6-M1’s SGS modeling

capabilities, an iterative search optimization should be included. Yet,
effective iterative approaches, deterministic or stochastic, require an
estimated model behavior. In this work, it has been shown that it can
and should be gained with response surface interpolation surrogate
models. Optimal WENO-CU6-M1-based ILES models for different
Riemann solver/material modeling combinations could, in the future,
be derived by an advanced procedure. In a first step, surrogate
modeling, based on a coarse-level full factorial sampling, provides an
estimate of the response surface z�x�, x ∈ X. A second step may
consist of a local iterative search for the global minimum.
Before this work, various attempts to determine the power

exponent q and linear weight bias Cq have been pursued, such as
numerical testing (see, e.g., [7,9]), linking q to the order of accuracy
[21,22]. The linear weight bias Cq in WENO-CU6 has been
determined by increasing its value from unity as in [19] until the
numerical dissipation for the resolved scales reduces [6]. In [8]
CWENO−CU6M1
q ≫ CWENO−CU6

q . Future numerical WENO-based
schemes potentially introduce other free parameters. Determining
these by extensive numerical testing or relating these to other
quantities may instead be considered within the outlined
deterministic design optimization framework. Besides gaining
higher certainty in the value of the parameters, one can expect that
fewer numerical tests are necessary, reducing costs, and finding
parameter dependencies is facilitated.
Proof has been provided that optimization of a WENO-CU6-M1

ILES scheme in the spectral-space norm “optimal recovery of
Kolmogorov inertial subrange scaling” improves the physical-space
norm νn. Moreover, proper design of an implicit SGS model has
resulted in a better correlation of SGS dissipation and small scales.
Evaluating ℰn�t� has shown that, as a consequence, kinetic energy
dissipation occurs at times, when smaller scales dominate the flow.
Local three-dimensional dissipation structures have been visualized
by computing the local dissipation function. Thereby, macroscopic
structures have been identified in which kinetic energy is dissipated.
Such structures occur principally independent of the underlying ILES
scheme in each octant of the domain. Yet, when a WENO-CU6-M1-
based SGS model is physically consistent, these take the fine-scaled
structures into account better.
Low- to high-Reynolds-number TGV flows have been simulated,

and the effective dissipation rates (i.e., the sum of numerical and
viscous dissipation rates) have been compared to reference data. At
limited Reynolds numbers, the model’s offdesign performance has
thereby been characterized. Only, for very low Reynolds numbers,
kinetic energy dissipation rates are overpredicted slightly. This
implies that, evenwhen no subgrid-scales are present, themodel adds
a minimum amount of dissipation. For medium to high Reynolds
numbers, the surrogate, weakly compressible WENO-CU6-M1
implicit LES model predictions agree well with DNS. The current
simulations have been compared to those obtained with the dynamic
Smagorinsky model, which is an explicit SGS model, and the
ALDM, which is an implicit LES model. It was found that the
surrogate, weakly compressible WENO-CU6-M1 implicit LES
model performed in a superior manner to the dynamic Smagorinsky
model and the ALDM for medium- to infinite-Reynolds-number
TGV flows. Only, for low Reynolds number, the two alternative
models outperform the current model by a maximum of 5% relative
difference to DNS predictions.

Appendix A: Details of the Artificially Compressible Roe
Solver

The details of Roe’s solver adapted to the artificial compressibility
approach in the general case of a three-dimensional intercell
numerical-flux vector are provided within the following:

Roe averaged states:

~ρ �
��������������
ρ�l�ρ�r�

q
; ~uβ �

�������
ρ�l�

p
u�l�β �

��������
ρ�r�

p
u�r�β�������

ρ�l�
p

�
��������
ρ�r�

p ;

and ~u2 � ~u21 � ~u22 � ~u23 (A1)

Given the cell-face normal vector n � �n1; n2; n3�, which is n �
�1; 0; 0� for computing �F1, n � �0; 1; 0� for computing �F2, and
n � �0; 0; 1� for computing �F3, the cell-face tangent vectors t�1� and
t�2� are

t�1� � �−n2; n1; 0�;
t�2� � n × t�1� � �−n3n1;−n2n3; n1n1 � n2n2� (A2)

The wave strengths are found by evaluating

ΔU � U�r� − U�l� �
Xm
j�1

~δ�j� ~K�j�

ΔU �

2
66664

Δw0

Δw1

Δw2

Δw3

3
77775 � U�r� − U�l� �

2
66664

Δρ

Δ�ρu1�
Δ�ρu2�
Δ�ρu3�

3
77775

�

2
666664

ρ�l� − ρ�r�

�ρu1��l� − �ρu1��r�
�ρu2��l� − �ρu2��r�
�ρu3��l� − �ρu3��r�

3
777775

(A3)

and

~δ�1� � 1

2 ~a
�Δw0� ~a� n · ~u� − Δu · n�;

~δ�2� � �Δu − ~uΔw0� · t1;
~δ�3� � �Δu − ~uΔw0� · t2;
~δ�4� � 1

~a
�Δu − ~uΔw0� · n� ~δ�1� (A4)

The right eigenvectors corresponding to the eigenvalues ~λ�1� �
~u − ~a, ~λ�2� � ~λ�3� � ~u, and ~λ�4� � ~u� ~a are

~K�1� �

2
66664

1

~u1 − ~a · n1

~u2 − ~a · n2

~u3 − ~a · n3

3
77775;

~K�2� �
	

0

t�1�



; ~K�3� �

	
0

t�2�



;

~K�4� �

2
666664

1

~u1 � ~a · n1

u2 � ~a · n2

~u3 � ~a · n3

3
777775

(A5)

Note that ~a � a � const:
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Appendix B: Parameters of the Fifth-Order WENO
Scheme

The ideal weights are [18]

d0 �
1

10
; d1 �

3

5
; d2 �

3

10
(B1)

For upwind interpolation, three different third-order approxima-
tions of the nonaveraged upwind cell-face value u�l;γ�i��1∕2� are
formulated on the three-point candidate stencils S0, S1, and S2:

u�l;0�i��1∕2� �
1

6
�2Ûi−2 − 7Ûi−1 � 11Ûi�;

u�l;1�i��1∕2� �
1

6
�−Ûi−1 � 5Ûi � 2Ûi�1�;

u�l;2�i��1∕2� �
1

6
�2Ûi � 5Ûi�1 − Ûi�2� (B2)

From these three upwind candidate stencils, a fifth-order-accurate
WENO cell face �U�l�

�i�1∕2� is calculated by Eq. (7). Via

β�α�γ �
Xm−1

l�1

Zxi�1∕2

xi−1∕2

Δx2l−1
�
∂lu�α;γ��x�

∂xl

�
2

dx (B3)

the smoothness indicators are calculated as

β�l�0 � 1

4
�Ûi−2 − 4Ûi−1 � 3Ûi�2 �

13

12
�Ûi−2 − 2Ûi−1 � Ûi�2;

β�l�1 � 1

4
�Ûi−1 − Ûi�1�2 �

13

12
�Ûi−1 − 2Ûi � Ûi�1�2;

β�l�2 � 1

4
�3Ûi − 4Ûi�1 � Ûi�2�2 �

13

12
�Ûi − 2Ûi�1 � Ûi�2�2 (B4)

For downwind interpolation, three different third-order approx-
imations of the nonaveraged downwind cell-face value u�r;γ�i��1∕2� are
formulated on the three-point candidate stencils S0, S1, and S2:

u�r;0�i��1∕2� �
1

6
�2Ûi�3 − 7Ûi�2 � 11Ûi�1�;

u�r;1�i��1∕2� �
1

6
�−Ûi�2 � 5Ûi�1 � 2Ûi�;

u�r;2�i��1∕2� �
1

6
�2Ûi−1 � 5Ûi − Ûi−2� (B5)

From these three upwind candidate stencils, a fifth-order-accurate
WENO cell face �U�r�

�i��1∕2�� is calculated by Eq. (7). The smoothness
indicators are

β�r�0 �1

4
�Ûi�3−4Ûi�2�3Ûi�1�2�

13

12
�Ûi�3−2Ûi�2�Ûi�1�2;

β�r�1 �1

4
�Ûi�2−Ûi�2�

13

12
�Ûi�2−2Ûi�1�Ûi�2;

β�r�2 �1

4
�3Ûi�1−4Ûi�Ûi−1�2�

13

12
�Ûi�1−2Ûi�Ûi−1�2 (B6)

Appendix C: Extension for the Parameter Set to Allow for
WENO-CU6-M1 Reconstruction

The ideal weights adapt to account for four stencils:

d0 � d3 �
1

20
; d1 � d2 �

9

20
(C1)

For upwind interpolation, the fourth third-order approximation to
�U�l�
�i��1∕2��, based on the three-point candidate stencil S4, is

u�l;3�i��1∕2� �
1

6
�11Ûi�1 − 7Ûi�2 � 2Ûi�3� (C2)

The fourth smoothness indicator evaluates as

β�l�3 � 1

10;080
j271;779Û2

i−2 � Ûi−2�−2;380;800Ûi−1

� 4;086;352Ûi − 3;462;252Ûi�1

� 1;458;762Ûi�2 − 245;620Ûi�3�
� Ûi−1�5;653;317Ûi−1 − 20;427;884Ûi� 17;905;032Ûi�1

− 7;727;988Ûi�2 � 1;325;006Ûi�3�
� Ûi�19;510;972Ûi − 35;817;664Ûi�1� 15;929;912Ûi�2

− 2;792;660Ûi�3�
� Ûi�1�17;195;652Ûi�1 − 15;880;404Ûi�2� 2;863;984Ûi�3�
� Ûi�2�3;824;847Ûi�2 − 1;429;976Ûi�3�� 139;633Û2

i�3j
(C3)

For downwind interpolation, the fourth third-order approximation
to �U�r�

�i��1∕2��, based on the three-point candidate stencil S4, is

u�r;3�i��1∕2� �
1

6
�11Ûi − 7Ûi−1 � 2Ûi−2�: (C4)

The fourth smoothness indicator for the downwind reconstruction
evaluates as

β�r�3 � 1

10;080
j271;779Û2

i�3�Ûi�3�−2;380;800Ûi�2

�4;086;352Ûi�1−3;462;252Ûi�1;458;762Ûi−1−245;620Ûi−2�
�Ûi�2�5;653;317Ûi�2−20;427;884Ûi�1�17;905;032Ûi

−7;727;988Ûi−1�1;325;006Ûi−2�
�Ûi�1�19;510;972Ûi�1−35;817;664Ûi�15;929;912Ûi−1

−2;792;660Ûi−2�
�Ûi�17;195;652Ûi−15;880;404Ûi−1�2;863;984Ûi−2�
�Ûi−1�3;824;847Ûi−1−1;429;976Ûi−2��139;633Û2

i−2j (C5)
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A weakly compressible sharp-interface framework for two-phase flows is presented. Special 
emphasis is on investigating its convergence properties. For this purpose a well-defined 
set of benchmark configurations is introduced. These may serve as future references for 
the verification of sharp-interface methods. Global mass and momentum conservation is 
ensured by the conservative sharp-interface method. Viscous and capillary stresses are 
considered directly at the interface. A low-dissipation weakly compressible Roe Riemann 
solver, in combination with a 5th-order WENO scheme, leads to high spatial accuracy. 
A wavelet-based adaptive multi-resolution approach permits to combine computational 
efficiency with physical consistency. The first test configuration is a Rayleigh–Taylor 
instability at moderate Reynolds number and infinite Eötvös number. A second group of 
benchmark cases are isolated air bubbles rising in water at high Eötvös numbers, and low 
to high Reynolds numbers. With these test cases, three distinct types of complex interface 
evolution, which are typical for a wide range of industrial applications, are realized.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Numerical methods for the simulation of two-phase flows may be categorized into interface tracking and interface captur-
ing methods. Interface tracking methods either use an interface-adapted grid or marker particles to represent the interface. 
In general, interface tracking methods are very accurate, yet, they lack efficiency in three dimensions, and, with varying in-
terface topology, the implementation effort can be overwhelming. Interface capturing methods define the interface implicitly 
by means of an auxiliary function, such as a level-set function. This simplifies grid generation, discretization and handling 
of topological variations. Simulations of immiscible, incompressible two-phase flows are commonly based on the Eulerian, 
diffuse-interface, level-set continuum approaches [1]. Major drawbacks of diffuse-interface methods, such as volume-of-fluid 
[2], level-set continuum [3], phase-field [4] methods, are their lack of conservativity as well as difficulties in maintaining 
large gradients of viscosity and density.

A fully conservative, Eulerian, level-set sharp-interface method (SIM) for compressible flows has been introduced by Hu 
et al. [5]. It accurately predicts two-phase flows, with each phase obeying different equations of state, and large density 
and viscosity ratios [6]. Further-development of the SIM to model viscous, incompressible two-phase flows is described in 
[7]. Schranner et al. [8] have derived a low-dissipative, physically consistent WENO-based implicit subgrid-scale model for 
weakly compressible flows.

* Corresponding author. Fax: +49 89 289 16139.
E-mail addresses: felix.schranner@aer.mw.tum.de (F.S. Schranner), xiangyu.hu@tum.de (X. Hu), Nikolaus.Adams@tum.de (N.A. Adams).

http://dx.doi.org/10.1016/j.jcp.2016.07.037
0021-9991/© 2016 Elsevier Inc. All rights reserved.
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Fig. 1. Two-dimensional schematic of the multi-fluid configuration.

Verification of two-phase numerical algorithms, especially in 2D, is best accomplished by cross comparison of different 
methods as suitable analytical solutions are scarce. Apart from comparing integral quantities of the interface and disperse 
phase, see e.g. [9], validation is often based on visual inspection and comparison with experimental or numerical references. 
For evaluating the capabilities of a two-phase solver to reproduce increasingly fine-scaled density stratifications, while main-
taining a sharp interface, in the absence of surface tension, the Rayleigh–Taylor instability (RTI) is a suitable configuration. 
Simulations of two-dimensional submerged air bubbles rising due to the influence of gravity (BLG) serve to assess capillary 
and viscous effects, and thus comprise a variety of phenomena relevant to a wide range of two-phase, immiscible flows. 
Neither for the RTI nor for the BLG, both undergoing severe interface topology changes, spatial-resolution-independent, 
mass- and momentum conservative, sharp-interface-maintaining references are available that would permit method cross 
comparison.

The objective of this work is twofold: (i) we propose and describe in detail, a weakly compressible sharp-interface 
method (WCSIM) to numerically simulate two-phase flows of immiscible, incompressible fluids and (ii) we establish high 
fidelity solutions with the WCSIM that can serve as a reference for future model developments by concurrently assessing the 
WCSIM’s convergence properties. In section 2, we state the governing equations of motion, the weakly compressible method 
is outlined and the section concludes with providing further details on the numerical model, such as time integration, and 
time-step constraints. Section 3 is devoted to explaining the specifics of the sharp-interface momentum exchange as well 
as the modeling of the propagating interface. Resolved numerical results are presented in section 4, concluding remarks are 
given in section 5.

2. Basic two-fluid flow equations

Consider two immiscible fluid phases in two dimensions, as sketched in Fig. 1. The fluid phases occupy two non-
overlapping subdomains �1(t) and �2(t). � is bounded by � = ∂�, corresponding boundaries exist for the subdomains. 
For each phase, �i(t), i = 1, 2 the system of conservation equations for weakly compressible fluids in differential, non-
dimensional form

∂ρ

∂t
+ ∇T · (ρu) = 0 , (1a)

∂ρu

∂t
+ ∇T · [ρu ⊗ u − �] = 1

F r2
ρg (1b)

holds [10], where ρ denotes the density, u = (u1, u2)
T the vector of Cartesian velocities, and g = (g1, g2)

T the vector of 
body forces. Furthermore, the stress tensor is defined as

� = −Ip + T , (2)

p is the static pressure. With the Stokes hypothesis for a Newtonian fluid the viscous stress tensor is

T = T(u) =
[
τ 11 τ 12

τ 21 τ 22

]
, (3)

where μ = νρ is the dynamic viscosity, and the components of T(u) are

ταβ = μ

Re

(
∂uα

∂xβ

+ ∂uβ

∂xα
− 2

3

∂uγ

∂xγ
δαβ

)
. (4)

Herein, α, β, γ = 1, 2. Moreover, F r2 = U 2
ref

gref Lref
, Re = Uref Lref

νref
, Eo = ρref gref L2

ref
σref

, and Ca = μref Uref
σref

denote the Froude, Reynolds, 

Eötvös, and capillary number. Uref =√gref Lref , Tref = Lref
Uref

=
√

Lref
gref

. When considering a bubble, Lref = d0, i.e. the bubble 

diameter at t = 0. For the case of Rayleigh–Taylor instability Lref = Lx1 , where Lx1 is the extent of the domain in x1-direction.
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2.1. Conservation equations

The integral form of Eq. (1) is∫
�

Ut dV +
∮
�

(F1,F2) · n� d�′ =
∫
�

S(U) dV (5)

where

U = (ρ,ρu1,ρu2)
T , (6)

n� is the normal on �, see Fig. 1. The flux vectors include advective and viscous components Fi = Fa
i − Fν

i with i = 1, 2.
The advective fluxes (superscript a) are

Fa
1(U) =

⎛⎝ ρu1

ρu2
1 + p

ρu1u2

⎞⎠ ,Fa
2(U) =

⎛⎝ ρu2
ρu1u2

ρu2
2 + p

⎞⎠ . (7)

The viscous fluxes (superscript ν) are

Fν
1(u) = 1

Re

⎛⎝ 0
τ 11

τ 12

⎞⎠ ,Fν
2(u) = 1

Re

⎛⎝ 0
τ 21

τ 22

⎞⎠ . (8)

The fraction of the finite volume (FV) V covered by fluid phase i is ζ i(t) = 1
V

∫
�∩�i

dV . Within �, ζ 1 + ζ 2 = 1 must be 

satisfied.
According to [5,11] the conservation equations (5) are integrated in time for each fluid phase and coupled by the interface 

interaction Xi = ∫
�ϒ

F · ni
I dϒ ′ , which ensures global conservation. It accounts for transfer of mass and momentum across 

the interface ϒ = ∂�1,2(t) = �1(t) ∩ �2(t). Note that n1
I = nI and n2

I = −nI , with nI denoting the interface-normal vector, 
Fig. 1. Considering the interaction of the two immiscible fluids at the interface, for each

Ũi = ζ iUi (9)

the system of conservation equations

tn+1∫
tn

dt

∫
�∩�i

∂Ũi

∂t
dV +

tn+1∫
tn

dt

∫
�

(
Fi

1,Fi
2

)
· n� d�′ =

tn+1∫
tn

dt

∫
�∩�i

Si dV +
tn+1∫
tn

dt Xi (10)

holds, where Fi
β = Fβ(Ui), and Si = S(Ui). For a time interval �t ≤ �x

sn
max

, where sn
max denotes the maximum wave speed 

within the domain at time tn , we define:

Fβ = lim
�t→0

1

�t

tn+1∫
tn

Fβ dt , X = lim
�t→0

1

�t

tn+1∫
tn

X dt , S = lim
�t→0

1

�t

tn+1∫
tn

S dt . (11)

2.2. Discrete solution of the conservation equations

In discrete, Cartesian space, for each FV of �V [i, j] we define a cell-averaged vector of conservative states at time tn

as Ũi,n
[i, j] = 1

�V [i, j]
∫

�V [i, j]∩�i
[i, j]

Ui,n
[i, j]dV = Ûi,n

[i, j]ζ
i,n
[i, j] with Ûi,n

[i, j] = 1
�V i,n

[i, j]

∫
�V i,n

[i, j]

Ui,n
[i, j]dV . In order to calculate the fluxes for the 

respective phase across the cell-faces, cell-face apertures are defined. The time-dependent aperture is the part of �i
[i, j](t)

that does not coincide with ϒ[i, j](t) but with the cell face �[i, j](t), [10].
At the right and upper cell face these are defined as depicted in Fig. 2.
For single-fluid cells, which are those not intersected by the interface, the apertures of phase 1 are unity within �1

[i, j]
and zero within �2

[i, j] , and vice versa for phase 2. Within the scope of this work, the cell-face apertures are calculated as in 
Hu et al. [5].
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Fig. 2. Two-dimensional schematic of conservative discretization of a cut cell.

Calculating ζ i
[i, j] , and �ϒ[i, j] according to Lauer et al. [11] allows to evaluate

Ũi,n+1
[i, j] = Ũi,n

[i, j] + �t

⎛⎝ A
i
[i− 1

2 , j]F
i
[i− 1

2 , j] − A
i
[i+ 1

2 , j]F
i
[i+ 1

2 , j]
�x1

+

+
A

i
[i, j− 1

2 ]G
i
[i, j− 1

2 ] − A
i
[i, j+ 1

2 ]G
i
[i, j+ 1

2 ]
�x2

+ X
i
[i, j]

�x1�x2
+ S

i
[i, j]

⎞⎠ ,

(12)

where X
i
[i, j] summarizes the exchange terms which are based on the solution of the interface interaction equations. The 

contributions to the interfacial exchange, relevant within the scope of this work, are discussed in section 3.2. Buoyant forces 
are accounted for by

S
i
[i, j] = 1

F r2

(
ρ i

[i, j] − 1
)[0

g

]
(13)

2.2.1. Discrete solution of the intercell fluxes
The governing equations of the individual fluids are discretized by a 5th-order WENO scheme [12] in combination with 

a Roe Riemann solver [13] adapted to weakly compressible fluids. Successful applications of Roe schemes to the solution 
of weakly compressible flows have been demonstrated by e.g. Marx [14], Elsworth et al. [15] and Schranner et al. [8] in 
combination with the artificial-compressibility approach (ACA) of Chorin and Temam [16,17] for closure of the systems of 
conservation equations.

Tait’s approach for weakly compressible fluids
A drawback of the ACA [8,16] is that for large density ratios the speed of sound of the less dense fluid is huge as (

ρa2
)1 = (ρa2

)2
, entailing an unphysically stiff gaseous phase and diminishing �t . Independent artificial sound speeds can 

be obtained with the Tait equation of state (EoS)

p = p(ρ) = p1

[(
ρ

ρ0

)ω

− 1

]
+ p0 , (14a)

a2 = p1

ρω
0

ωρ(ω−1) = ω

ρ
(p − p0 + p1) (14b)

with ω = 1 + 10−7. p0 = p (t = 0) is a free parameter and p1 is based on a targeted (artificial) speed of sound, chosen 
to constrain the Mach number well below 0.3, globally. Note that as long as M < 0.3 is maintained by proper choice of 
aα, α = 1, 2, the solutions are insensitive to variations of a.

Weakly compressible Roe Riemann solver
Tait’s EoS requires adaption of the compressible Roe [13] numerical intercell-flux function
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F[i+ 1
2 ] = 1

2

(
F(U

(l)
) + F(U

(r)
)
)

− 1

2

m∑
i=1

δ̃i
∣∣̃λi
∣∣ K̃(i). (15)

In Roe’s approach the linearization of the local flux Jacobian Ã = Ã
(

U
(l)

, U
(r)
)

is essential. (l) and (r) denote the high-order 

reconstructed conservative states at the left and right side of cell face [i + 1
2 ]. For reconstruction a 5th-order WENO scheme 

[12] with ε = 10−15 is employed. The Roe matrix Ã with the eigenvalues ̃λi , right eigenvectors K̃(i), and wave strengths δ̃i
is given in App. A.1.

2.2.2. Time integration and time-step constraints
The conservation equations (12) are integrated in time explicitly with a 2nd-order TVD Runge–Kutta scheme [18]. The 

time-step is determined according to the following considerations:

• The advective terms of the transport equations limit 	t according to

	tadv = min (	xα)

max|uα + a| (16)

where α represents one of the spatial directions.
• Furthermore, 	t may be limited due to buoyancy [19],

	tgrav = 2min (	xα)

max|uα + a| +
√

(max|uα + a|)2 + 4min(	xα)

F r2
ref

(17)

• as well as viscous stresses [19],

	tvisc = 3

14
min

(
ρ1

μ1
; ρ2

μ2

)
Reref (min (	xα))2 . (18)

• The explicit treatment of capillary stresses is stable when the chosen time step size allows to represent capillary wave 
motion on the computational grid, [20]. The maximum resolvable wave number is

kmax = 2π

λmin
= 2π

2min (	xα)
= π

min (	xα)
. (19)

The maximum advection speed of capillary waves is

ckap =
√

W eref kmax

ρ1 + ρ2
. (20)

Considering that two capillary waves with opposite direction of advection may concurrently enter the same cell, one 
obtains

	tcap = 1

2

min (	xα)

ckap
=
√

min (	xα)3 W eref (ρ1 + ρ2)

4π
. (21)

Consequently, the time step size is determined per iteration according to

	t = C F L · min
(	tadv;	tgrav;	tvisc;	tcap

)
, (22)

where C F L = 0.3 is chosen.
The intersection of the interface with the Cartesian grid may result in cells of diminishing volume fraction ζ i

[i, j] , denoted 
as “small cells”. Based on the time step constraints of cells with ζ i

[i, j] ≈ 1, denoted as “full cells”, spurious solutions may 
evolve for “small cells”. A more restrictive constraint on �t would be numerically too expensive. A conservative mixing 
procedure has been proposed by Hu et al. [5] as a remedy. In contrast to [5], where all mixing operations are gathered 
once to update Ũi,n+1

[i, j] , mixing between Ũi,n+1
[i, j] and the respective target cells is carried out consecutively. For this purpose, 

the mixing operations are ordered in descending magnitude of mixing fractions βm, m = 1, 2, 3. The sequential execution 
takes into account that Ũi,n+1

[i, j] has been altered by preceding mixing operations with target cells and larger βm . Only cells of 
ζ

i,n+1
[i, j] ≤ 0.3 need to be considered as small cells to obtain stable solutions, whereas in [5] cells of ζ i,n+1

[i, j] ≤ 0.5 are defined 
as small cells. In addition, a wavelet-based adaptive multi-resolution algorithm [21] is employed for improving computa-
tional efficiency. The adaptive grid-refinement follows a two-step procedure. Firstly, a multi-resolution representation of the 
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Fig. 3. Adaptive block structure due to wavelet-based adaptive multi-resolution algorithm [21]. Six refinement levels, each block contains 16 × 16 FVs. Test 
case: RTI.

interface and flow field at the interface is generated. Secondly, multi-resolution analysis within �1 and �2, starting at the 
coarsest level leads to successive grid adaption. Data are structured pyramidal, and block-based storage of data packages is 
disconnected from data operation. The algorithm is employed as described in [21]. Fig. 3 visualizes the resulting dynamically 
adapted block structure for the simulation of a RTI, see Sec. 4.1.

3. Modeling of the interface

3.1. Description and propagation of the interface

The interface is captured implicitly by a level-set function φ(x, t) [3,22] with |∇φ| = 1 such that φ(x, t) ≡ 0 at ϒ(x, t). In 
�2(x, t) φ(x, t) < 0, and φ(x, t) > 0 in �1(x, t). Based on φ(x, t), defined in a narrow band around ϒ(x, t) [23], a normalized 
interface normal vector, directed from �2 to �1,

nI (x) = ∇φ(x)

|∇φ(x)| (23)

can be constructed everywhere on ϒ(x, t). Second-order central approximations to ∂φ(x)
∂xα

are used within this work. For 
φ(x, t) = 0 the transport equation with the interface velocity uI = uI,⊥(x, t) [24] holds

∂φ(x, t)

∂t

∣∣
φ=0 + uT

I (x, t) · (∇φ(x, t))
∣∣
φ=0 = 0 . (24)

To propagate φ in time by Eq. (24) while maintaining its signed distance property, the integration of the transport equation 
for φ(x, t) has two substeps, advection and reinitialization, see e.g. [1,25]. Within the original reinitialization algorithm of 
Sussman et al. [1], a smoothed sign function serves to suppress reinitialization in cells containing the interface. In this 
work, we explicitly exclude such cells. Details on the algorithm are provided in App. A.2.

3.2. Interface exchange terms

We assume neither mass nor energy exchange across the interface, and a constant surface tension coefficient. According 
to Luo et al. [7] the interfacial momentum flux due to surface tension is naturally incorporated into the inviscid flux 

such that X
i
[i, j] =

(
X

+ + X
ν
)i

[i, j] , where X
+,i

and X
ν,i

denote the inviscid and viscous interface exchange of momentum, 

respectively, for fluid phase i.
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Inviscid interface exchange
At mechanical equilibrium, the interfacial stress balance in interface-normal direction leads to

� p�ϒ = p1 − p2 = − 1

W e
σκϒ = σc, (25)

where σ is the surface tension coefficient and κϒ = ∇ · nI denotes the interface mean curvature. Eq. (23) is evaluated at the 
cell center, where not necessarily φ[i, j] = 0. The 2D sub-cell corrected κϒ at the interface is

κϒ,2d =
(
|κ[i, j]| + κ2

[i, j]φ[i, j]
)

S
(
κ[i, j]
)

, (26)

where (φ) is the sign function. κ[i, j] is the local mean curvature and approximated with 2nd-order central differences 
according to

κ(φ)[i, j] =
[

Dc
x1

[φ]2 Dc
x2

[Dc
x2

[φ]] + Dc
x2

[φ]2 Dc
x1

[Dc
x1

[φ]] − 2Dc
x1

[φ]Dc
x2

[φ]Dc
x1

[Dc
x2

[φ]](
Dc

x1 [φ]2 + Dc
x2 [φ]2

)3/2

]
[i, j]

. (27)

Details on the derivation of Eq. (26) are provided in A.3. To impose the interface normal momentum exchange due to 
Eq. (25) a constrained Riemann problem [26] is solved with an acoustic Riemann solver [27] for

uI,⊥ = Z 1u1⊥ + Z 2u2⊥
Z 1 + Z 2

−
(

p1 − p2 − σc
)

Z 1 + Z 2
, and (28a)

pi
I = Z 2

(
p1 − σcδi2

)+ Z 1
(

p2 + σcδi1
)

Z 1 + Z 2
− Z 1 Z 2

Z 1 + Z 2

(
u1⊥ − u2⊥

)
, (28b)

where Z i = ρ iai are the acoustic impedances of the respective fluid i, δi j is the Kronecker-symbol. Note that the approxi-
mated interface values of Eq. (28) result from linearization of the primitive-variable Euler equations [28].

The inviscid exchange term is

X
+,i
[i, j] =

∫
�ϒ

F[i, j] · ni
I,[i, j] dϒ ′ = −pi

I,[i, j]�ϒ [i, j]

⎡⎣ 0
ni

I,1

ni
I,2

⎤⎦
[i, j]

, (29)

with the interface segment length

�ϒ [i, j] = ∣∣�ϒ[i, j]
∣∣ , (30)

and

�ϒ[i, j] = �ϒ [i, j]ni
I =

⎡⎢⎢⎣
(

Ai
[i− 1

2 , j] − Ai
[i+ 1

2 , j]

)
�x2(

Ai
[i, j− 1

2 ] − Ai
[i, j+ 1

2 ]

)
�x1

⎤⎥⎥⎦ . (31)

Viscous interface exchange
To account for the exchange of viscous momentum, Luo et al. [7] have constructed a viscous interface exchange term,

X
ν,i
[i, j] =

∫
�ϒ

(
F
ν,ϒ + G

ν,ϒ
)

[i, j] · ni
I,[i, j] dϒ ′ = �ϒ [i, j]

[
0

T
ϒ

]
[i, j]

·
[

0
ni

I

]
[i, j]

, (32)

that is continuous across the interface. The effective viscosity μϒ is defined as the harmonic mean of μ1 and μ2 with 
respect to the volume fractions of the two fluids,

μϒ = μ1μ2

μ1ζ 1 + μ2ζ 2
. (33)

The spatial derivatives of the velocities necessary to formulate the components of the shear-stress tensor are constructed 
from the fluid velocities on the respective side of the interface.
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Fig. 4. Initial setup and boundary conditions for the RTI, adopted from [29].

4. Numerical results

As benchmark configurations, a 2D Rayleigh–Taylor instability and several cases of single gas bubbles rising in a liquid 
due to the influence of gravity at different Reynolds numbers are considered. For all configurations we employ the non-
dimensional conservation equations (12) with the two-step algorithm for the interface propagation, see Sec. 3.1. In order to 
facilitate cross-method comparison and verification, we display and analyse results in non-dimensional form. E.g., RTI sim-
ulations have been performed with Lref = 1.0 m. With Eq. (14) we optain p1 ≈ 100 kg m−1 s−2 and p1 ≈ 180 kg m−1 s−2

for phase 1 and 2, respectively. We have chosen Lref = 0.5 m for the BLG and obtain p1 ≈ 144 kg m−1 s−2 and p1 ≈
2.5 kg m−1 s−2 for phase 1 and 2, respectively. Moreover, for the RTI and BLG case it is ρref = 1.0 kg m−3, Uref = 1.0 m s−1, 
p0 = 1000 kg m−1 s−2, and gref = 1 m s−2.

4.1. Rayleigh–Taylor instability

We investigate the evolution of a 2D Rayleigh–Taylor instability at a Reynolds number Re = 420. Two immiscible fluids 
are enclosed in a rectangular domain, Fig. 4. The interface is located at x2 = Lref [1 − 0.15sin 

(
2πx1
Lref

)
] . Fluid 2, with 

ρ2 = 1.8 ρref , is in the upper half of the domain while fluid 1, with ρ1 = ρref , is within the lower half. The kinematic 
viscosities are equal, ν1 = ν2. The system is under the influence of gravity with g = g (0,−1), σ(x, t) = 0. Furthermore, 
a = a1 = a2 = 10 Uref . Data is normalized with Tref .

Fig. 5 depicts the vorticity and interface for four consecutive times. The initial distortion entails vorticity generation at 
the interface. At the solid walls, a second shear layer evolves. Due to buoyancy and initiated by the distortion, fluid of 
phase 2 is directed downward penetrating fluid of phase 1 and vice versa. Fluid of the other phase is displaced. At the 
interface, momentum conservation holds and momentum is transfered from the fluid of higher momentum to the one of 
lower momentum. The acceleration of the less dense fluid 1 is larger than the deceleration of phase 2. In close proximity to 
the interface, phase 1 has a larger velocity gradient in interface normal direction and due to incompressibility, the velocity 
gradient in interface tangential direction is larger as well. This leads to broader plumes of phase 1.

In the interface-tangential direction, the no-slip boundary condition holds. The gradient of the interface-tangential veloc-
ity component in phase 1 in interface-normal direction is stronger, and vorticity magnitudes are higher. Due to the central 
vortex, the plumes are deflected counterclockwise. The formation of the roll-up in the lower left corner is primarily due to 
deflection of the plume of phase 2 at the solid walls. The roll-up in the upper right corner is due to viscous interaction of 
the two phases.

For a convergence study, we increase the refinement level until ϒ of two consecutive levels of refinement are identi-
cal. For at least t ≤ 5.0, the interface is adequately resolved with �x = 1

2048 , as data with �x = 1
2048 and �x = 1

4096 are 
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Fig. 5. Interface representation at maximum local resolution of �x = 1.0/2048 ( ) and vorticity contours.

Fig. 6. Interface representation at maximum local resolution of �x = 1.0/4096 ( ), �x = 1.0/2048 ( ), �x = 1.0/1024
( ).

indistinguishable, see Figs. 6 and 7. Intersections of the interface with x2 = Lref and x1 = Lref /2 for 0.5 ≤ t ≤ 7.0 and at a 
resolution of �x = 1

2048 are listed in Tables 1 and 2, respectively.
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Fig. 7. Details of the interface, at t = 5.0. �x = 1.0/4096 ( ), �x = 1.0/2048 ( ), �x = 1.0/1024 ( ).

Table 1
Intersections of the interface (x1) with x2 = Lref , �x = 1.0/2048.

t = 0.5 t = 1.0 t = 1.5 t = 2.0 t = 2.5 t = 3.0 t = 3.5

x1 0.503672 0.023899 0.058131 0.062492 0.019726 0.105964 0.000122
0.992432 0.500253 0.483937 0.452159 0.394785 0.388668 0.285265
0.000258 0.945981 0.910802 0.873745 0.836397 − 0.996961
0.999722 0.999877 0.999866 − − − −
t = 4.0 t = 4.5 t = 5.0 t = 5.5 t = 6.0 t = 6.5 t = 7.0

x1 0.232108 0.180109 0.137103 0.106934 0.089343 0.082465 0.083193
0.998339 0.996767 0.414494 0.314355 0.24333 0.205198 0.18961
− − 0.704767 0.448609 0.355729 0.333713 0.289151
− − 0.994631 0.499606 0.697146 0.763754 0.795402
− − − 0.854808 0.910221 0.935924 0.951385
− − − 0.995551 0.99749 0.999553 0.999756

Table 2
Intersections of the interface (x2) with x1 = Lref /2, �x = 1.0/2048.

t = 0.5 t = 1.0 t = 1.5 t = 2.0 t = 2.5 t = 3.0 t = 3.5

x2 0.981001 0.999164 1.09427 0.705403 0.516944 0.368138 0.244674
– – – 0.854852 0.850503 0.767477 0.713227
– – – 1.28075 1.39891 1.49877 0.865207
– – – – – – 0.891191
– – – – – – 1.59009

t = 4.0 t = 4.5 t = 5.0 t = 5.5 t = 6.0 t = 6.5 t = 7.0 t = 7.0

x2 0.151672 0.992232 0.078166 0.067884 0.055377 0.057976 0.044096 1.68286
0.333385 0.254584 0.232559 0.232921 0.242811 0.0634833 0.084999 1.7494
0.519346 0.521001 0.524987 0.554973 0.574103 0.172037 0.229264 1.7704
0.692652 0.670757 0.655282 0.653748 0.651787 0.28534 0.408715 1.81614
0.829705 0.808479 0.799878 0.800913 0.788599 0.580936 0.429772 1.82349
0.934364 0.971003 0.87513 0.863213 0.850494 0.642853 0.438751 1.87578
1.20807 1.18642 0.95689 0.999741 1.0262 0.746517 0.576227 1.89181
1.34565 1.30998 1.02671 1.08382 1.1258 0.817401 0.62762 1.94955
1.66868 1.4017 1.18062 1.18224 1.1905 1.0684 0.703288
– 1.46238 1.3067 1.29747 1.30818 1.1564 0.767833
– 1.73707 1.41169 1.48887 1.60779 1.20272 1.10399
– – 1.48369 1.54951 1.78855 1.5554 1.18155
– – 1.50752 1.61011 1.91721 1.70557 1.21844
– – 1.55593 1.66376 – 1.87531 1.52033
– – 1.80365 1.86803 – 1.94224 1.58119
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Fig. 8. Initial setup and boundary conditions for the BLG.

4.2. Air bubble submerged in a denser liquid and rising due to the influence of gravity

The evolution of a single bubble rising under the influence of gravity is studied, i.e. g = g (0,−1). The setup is depicted in 
Fig. 8. Following Sussman et al. [1], the density and viscosity ratios are ρ1

ρ2 = 1000, μ1

μ2 = 100 with ρ1 = ρref and Eo = 200. 
Two Reynolds numbers are considered, namely Rel = 100 and Reh = 1000. For Rel the corresponding capillary number is 
Cal = 2; Cah = 0.2 corresponds to Reh . Furthermore, a1 = 12 Uref and a2 = 50 Uref .

Low Reynolds number
Grid resolution is increased until ϒ(x, t) converges. Results for three consecutive grid resolutions are shown. Fig. 9

depicts the interface, the velocity magnitude and vorticity are shown in Fig. 10. Fig. 11 depicts the centroid,

yc = (y1, y2) =
∫

dV ζαx dV ′∫
dV ζα dV ′ ≈

∑
[i, j]{ζαx�V }∑
[i, j]{ζα�V } , (34)

and the degree of circularity,

C = Pa

Pb
= πda∫

�ϒ
1dϒ ′ ≈ πda∑

[i, j]{�ϒ} (35)

over time for �x = 2.5/2048 and �x = 2.5/1024. In Eqs. (34), (35) α, x, Pa denote the disperse phase, the Cartesian 
coordinate vector, and the perimeter of an area-equivalent circle, with diameter da ≈ 2

√∑
[i, j]{ζα�V }/π . Note that for 

a perfectly circular drop C is unity. The x1-component of the centroid, y1 considers half of the bubble. The degree of 
circularity, centroid, as well as the lower and upper axial position of the interface for 0.5 ≤ t ≤ 6 with �t = 0.5, �x =
2.5/2048 are tabulated in Table 3.

Primary bubble evolution from circular to cap shape occurs dominantly within 0 ≤ t ≤ 3, while for t ≈ 4 the bubble is 
ascending freely. From the beginning of bubble evolution, two counter-rotating vortices can be observed at the bubble flanks, 
one clock-wise (negative ω) and one counter clock-wise. With increasing time, their magnitude increases and the bubble 
flanks become thinner. At t ≈ 3.2 small, at first elongated, secondary bubbles shear off the flanks. The strong correlation of 
this incident to the discontinuity in y1(t), and C(t) is apparent. The bubble diameter of the secondary bubbles is d ≈ 0.01, 
implying Eo ≈ 0.02, and Re ≈ 0.1. Shortly after t ≈ 4 the primary bubble ascent is interrupted. As a consequence of high 
local shear rates and comparably low local surface tension, unstable bubble cusps form for t ≥ 4.5. In consequence a series 
of small bubbles sheads off, see Fig. 12.

Grid-independence of the results is observed for �x ≤ 2.5/1024. At lower resolutions sheading of small bubbles is not 
captured. The positions and shape of the primary and secondary bubbles are grid-independent for �x ≤ 2.5/512. For both 
resolutions C agrees perfectly for t ≤ 5. A relative error of δ = C |2.5/2048−C |2.5/1024

C |2.5/2048
≤ 3% is noted for the remaining time.

High Reynolds number
Results for three consecutive levels of grid refinement are reported. The evolving interface is depicted in Fig. 13, and the 

velocity magnitude and vorticity in Fig. 15. Fig. 14 illustrates the temporal evolutions of disperse-phase centroid and the 
degree of circularity for �x = 2.5/4096 and �x = 2.5/2048. Table 4 lists values for the degree of circularity, centroid, as 
well as the lower and upper axial position of the interface for 0.5 ≤ t ≤ 6 with �t = 0.5, �x = 2.5/4096.
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Fig. 9. Interface representation at maximum local resolution of �x = 2.5/2048 ( ), �x = 2.5/1024 ( ), �x = 2.5/512
( ), Re = 100, Ca = 2.

Viscous forces are subordinate to capillary forces in this low Ca bubble evolution. The initial bulk flow velocity is approx-
imately 35% larger than in the low-Re case. The bubble evolves its temporary horse-shoe shape faster and more pronounced. 
The small-scale interface evolution leads to a decrease of the degree of circularity. The final cap shape is rapidly obtained.

In contrast to the low-Re case the secondary bubbles, detaching from the flanks of the primary bubble, are much larger. 
Their rise velocity (u2) is negligible, indicated by a slower increase of y2(t). When resolution suffices, capillary waves of 
diminishing amplitude and high frequency revolve along the interface of the secondary bubbles. Time series 13 and 15
indicate grid-independence of the interface and dominant flow structures for �x ≥ 2.5/2048. For most of the time C(t) is 
identical at the two highest resolutions. For the remaining, intermediate time frame δ = C |2.5/2048−C |2.5/4096

C |2.5/2048
≤ 6%; yet, y2 is 
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Fig. 10. Interface ϒ (orange line), velocity magnitude |u| (left half), and vorticity ω (right half) at four time instances, resolutions of �x = 2.5/512, �x = 2.5/1024, �x = 2.5/2048 are shown. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Centroid and degree of circularity over time for a resolution of �x = 2.5/2048 ( ), �x = 2.5/1024 ( ). Re = 100, Ca = 2.

Fig. 12. Closeup of the cusp region at t = 5. Left side shows velocity magnitude, streamlines and ϒ . Right side shows vorticity; note that the vorticity is 
clipped from ωmin ≈ −220 and ωmax ≈ 130 to ωmin/max = ±80, �x = 2.5/4096.

Table 3
Circularity (C), centroid (y1, y2), lower and upper axial position of the interface (z1, z2) at selected times for BLG, Rel , Cal , �x = 2.5/2048.

t 0.5 1.0 1.5 2.0 2.5 3.0

C 0.96484 0.90594 0.73158 0.59405 0.50696 0.42901
y1 0.21239 0.24458 0.30381 0.36157 0.40194 0.40816
y2 0.67636 0.86401 1.06169 1.22438 1.39200 1.59781
z1 0.15302 0.56222 1.00058 1.28040 1.44658 1.55324
z2 1.18091 1.34463 1.52181 1.68068 1.87805 2.04024

t 3.5 4.0 4.5 5.0 5.5 6.0

C 0.4424 0.49915 0.48933 0.41254 0.36491 0.37145
y1 0.37935 0.38630 0.41932 0.49972 0.59390 0.66042
y2 1.78878 1.94309 2.07029 2.15381 2.20701 2.23577
z1 1.65767 1.78225 1.91655 2.04572 2.15483 2.22450
z2 2.18876 2.29845 2.36693 2.40350 2.42423 2.43710

identical and y1 differs with less than 1%. Moreover, the shape of the upper and lower side of the cap is resolved adequately 
at a resolution of �x = 2.5/512.

Free ascent at high Reynolds number
The domain height is increased to Lx2 = 7.5r0, permitting free ascent of the cap-shaped primary bubble at stationary 

rise velocity after pinch-off of the secondary bubbles. The data are plotted alongside the underresolved results of Suss-
man et al. [1] for rough comparison whenever applicable. The resolution is chosen as the one necessary for a converged 
ascent-trajectory and interface-shape at this Re, i.e. �x = 2.5/2048. Interface representations agree until t ≈ 3.2. For later 
stages the shape and ascent-velocity of the primary cap-bubble as well as the centre of mass of the secondary bubbles 
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Fig. 13. Interface representation at maximum local resolution of 2.5/4096 ( ), 2.5/2048 ( ), 2.5/1024 ( ) , 2.5/512
( ), Re = 1000, Ca = 0.2.

Fig. 14. Centroid and degree of circularity over time for a resolution of 2.5/4096 ( ), 2.5/2048 ( ). Re = 1000, Ca = 0.2.

agree well with reference data, compare Fig. 16. In Ref. [1] another pair of bubbles is shown to form at pinch-off of the 
secondary bubbles. These are much smaller, which is in agreement with the observations of Grenier et al. [30]. The tertiary 
bubbles revolve around the rotating secondary ones until these are elongated and washed upwards in the wake flow of the 
cap. Furthermore, capillary waves of significant amplitude propagate from the rim to the symmetry axis of the cap. These 
waves, originating at the small bubble pinch-off, diminish over time. The shape of the top of the cap depends only on the 
stationary bulk fluid, at later stages on the upper domain boundary.

5. Summary and conclusion

In this work, a mass and momentum conservative, weakly compressible, fully Eulerian, sharp-interface method for the 
simulation of immiscible, viscous, incompressible two-phase flows has been presented. Coupled with a fifth-order WENO 
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Fig. 15. Interface ϒ (orange line), velocity magnitude |u| (left half), and vorticity ω (right half) at four time instances, resolutions of �x = 2.5/512, �x = 2.5/1024, �x = 2.5/2048 are shown, Reh , Cah . Note that 
the vorticity is clipped to allow better visualization. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 4
Circularity (C), centroid (y1, y2), lower and upper axial position of the interface (z1, z2) at selected times for BLG, Reh , Cah , �x = 2.5/4096.

t 0.5 1.0 1.5 2.0 2.5 3.0

C 1.00590 0.86603 0.67626 0.55569 0.47028 0.38298
y1 0.20957 0.254647 0.32057 0.39158 0.45008 0.46473
y2 0.67768 0.88282 1.05422 1.18032 1.30818 1.46945
z1 0.15592 0.68508 1.19529 1.51325 1.67713 1.74718
z2 1.17103 1.34681 1.53050 1.70633 1.88737 2.05435

t 3.5 4.0 4.5 5.0 5.5 6.0

C 0.37962 0.43251 0.44821 0.42045 0.38834 0.35624
y1 0.41410 0.40977 0.43658 0.49392 0.57798 0.67336
y2 1.67867 1.78190 1.88685 1.92863 1.98145 1.97809
z1 1.78529 1.87601 1.96079 2.06080 2.13882 2.22732
z2 2.19664 2.30306 2.36565 2.39881 2.41757 2.42944

reconstruction, a low-dissipative, weakly compressible Roe Riemann solver has been utilized for computing the finite volume 
fluxes within each phase. Sub-cell correction for interfacial viscous and capillary stresses improves spatial accuracy as these 
are applied exactly at the interface. In combination with an adaptive multi-resolution algorithm numerical cost are low, 
while near interfaces sufficient resolution has been guaranteed and accuracy is maintained.

We have investigated complex, two-dimensional two-fluid configurations that comprise numerically challenging flow 
features of immiscible two-fluid flows. Local resolution has been increased until grid independence of the interface and 
integral quantities has been observed. In the first test case, a two-dimensional Rayleigh–Taylor instability, viscous shearing 
at the interface controls the interface evolution. Simulating the RTI to late stages has shown grid-independent evolution of 
very fine scale structures.

The second example is an isolated air bubble submerged in water and evolving under the influence of buoyancy. Differ-
ent physically dominant phenomena have been observed at sufficient spatial resolution. Firstly, a low-Reynolds/supercritical 
(for cusp formation) capillary number configuration has been studied. Unsteady cusp formation and sheading of bubbles has 
been observed thereby, when the bubble is subjected to large shear rates as viscous forces dominate over capillary forces. 
Secondly, a high Reynolds/low capillary number setup has been considered. Viscous effects are subordinate and the interface 
develops complex structures. The interface shape and the location of secondary bubbles can be resolved adequately at mod-
erate grid resolution. However, further refinement is necessary to capture capillary waves and to achieve grid-independent 
secondary-bubble sizes. For freely ascending high-Re bubbles high-resolution illustrations of the interface are provided. 
These may serve as a reference for cross-method comparison of two-phase models incorporating interfacial capillary and 
viscous effects.
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Appendix A

A.1. Details of the Tait weakly compressible Roe solver

Details of the Roe solver adapted to Tait’s EoS are provided in this appendix.

Roe averaged states

ρ̃ =
√

ρ(l)ρ(r) , ũ1 =
√

ρ(l)u(l)
1 +√ρ(r)u(r)

1√
ρ(l) +√ρ(r)

,

ũ2 =
√

ρ(l)u(l)
2 +√ρ(r)u(r)

2√
ρ(l) +√ρ(r)

and ũ2 = ũ2
1 + ũ2

2

(36)

Furthermore,

p̃ = p1

[(
ρ̃

ρ0

)ω

− 1

]
+ p0,

ã =
√

p1

ρω
0

ωρ̃(ω−1).

(37)
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Fig. 16. Interface representation at maximum local resolution of 2.5/2048 FV. If available, the data is compared to those of Ref. [1], Re = 1000, Eo = 200.

Given the cell normal vector n = (n1,n2) which is n = (1,0) for computing F1, and n = (0,1) for F2 the cell-face tangent 
vector t(1) is:

t(1) = (−n2,n1) . (38)

The wave strengths are found by evaluating �U = U(r) − U(l) =∑m
i=1 δ̂iK̂(i):
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Fig. 16. (continued)

�U =
⎡⎣	w0

	w1
	w2

⎤⎦=
⎡⎣ 	ρ

	 (ρu1)

	 (ρu2)

⎤⎦=
⎡⎣ ρ(r) − ρ(l)

(ρu1)
(r) − (ρu1)

(l)

(ρu2)
(r) − (ρu2)

(l)

⎤⎦ (39)

δ̃1 = 1
2̃a [	w0 (̃a + n · ũ) − 	u · n − ãδ2] ,

δ̃2 = (	u − ũ	w0) · t1,

δ̃3 = 1
ã [	u − ũ	w0] · n + δ̃1

(40)
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The right eigenvectors corresponding to the eigenvalues ̃λ1 = ũ − ã, λ̃2 = ũ, and ̃λ3 = ũ + ã are

K(1) =
⎡⎣ 1

ũ1 − ã · n1
ũ2 − ã · n2

⎤⎦ , K(2) =
[

0
t(1)

]
,

K(3) =
⎡⎣ 1

ũ1 + ã · n1
u2 + ã · n2

⎤⎦ .

(41)

A.2. Description of the procedure for advancing the level-set field

A.2.1. Advection of the zero level-set
For advection, the level-set transport equation (24) is solved numerically not only for φ(x, t) = 0, but within a narrow 

band of 3 cells around the interface. The discrete φn
[i, j] is advanced in time from time-step n to n + 1 according to

φn+1
[i, j] = φn

[i, j] − �t
[

F 1[φ][i, j] + F 2[φ][i, j]
]

, (42)

where

F α[φ][i, j] = {uα Dα[φ]}[i, j] ,α = 1,2 (43)

The differential operator Dα[φ] represents a directed difference operator such that

Dα[φ] =

⎧⎪⎨⎪⎩
D−

α [φ] if uα > 0

D+
α [φ] if uα < 0

0 if uα = 0

(44)

We follow the line of [25,26] and employ a 5th-order upwind WENO scheme with ε = 10−6 for evaluating the fi-
nite difference fluxes (44) numerically. For consistency Eq. (42) is integrated in time with a 2nd-order TVD Runge–Kutta 
scheme [18].

A.2.2. Reinitialization
The transport equation (24) is only valid for φ = 0. Solving (42) may perturb any φ �= 0 and, in the course of time, lead 

to an irregular φ(x, t), [1]. In order to ensure that within � the exact distance to the interface is maintained, φ(x, t) is 
reinitialized regularly by the following equation [1]:

∂φ

∂t
= S (φ0) (1 − |∇φ|) (45)

with φ0 = φ (x, t = 0). Thereby, φ = φ0 remains unchanged as the sign of S (φ0) is zero for φ0 = 0. In contrast to Sussman 
et al. [1] we do not require the use of a smoothed sign function as within the framework [5] the exact interface position is 
at hand. For further implementational details refer to Ref. [5].

A.3. Constructing the sub-cell corrected interface curvature

In a two-dimensional plane, the radius of a circle that approximates a line segment locally is r, hence, the curvature of 
this circle is defined as the reciprocal of its radius,

κ(r) = 1

r
. (46)

By Taylor-series expansion of (46), one obtains a first-order accurate approximation to the interface curvature

κϒ = κ(r) + dκ(r)

dr
	r + O2 = κ(r) − 1

r2
	r + O2 = κ(r) − κ(r)2	r + O2 . (47)

Considering that κ(r) may also be negative, Eq. (47) is modified as

κϒ,2d = κ(r + 	r) ≈
(
|κ(r)| − κ(r)2	r

)
S(κ(r)) . (48)

Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.jcp.2016.07.037.
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In this paper we extend the conservative interface-interaction method of Hu et al. 
(2006) [34], adapted for weakly-compressible flows by Luo et al. (2015) [37], to include the 
effects of viscous, capillary, and Marangoni stresses consistently as momentum-exchange 
terms at the sharp interface. The interface-interaction method is coupled with insoluble 
surfactant transport which employs the underlying sharp-interface representation. Unlike 
previous methods, we thus achieve discrete global conservation in terms of interface 
interactions and a consistently sharp interface representation. The interface is reconstructed 
locally, and a sub-cell correction of the interface curvature improves the evaluation of 
capillary stresses and surfactant diffusion in particular for marginal mesh resolutions. For 
a range of numerical test cases we demonstrate accuracy and robustness of the method. In 
particular, we show that the method is at least as accurate as previous diffuse-interface 
models while exhibiting throughout the considered test cases improved computational 
efficiency. We believe that the method is attractive for high-resolution level-set interface-
tracking simulations as it straightforwardly incorporates the effects of variable surface 
tension into the underlying conservative interface-interaction approach.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Flows of two incompressible, immiscible, viscous fluids with surface tension frequently are encountered in industry and 
nature [1–5]. At their interface the fluids exchange mass, momentum, and energy. The presence of surface active agents
(surfactants) effects capillary phenomena and needs to be taken into account [3,6,7]. In many classical two-phase flows, 
such as viscous fingering [8], drop break-up and coalescence [9], tip-streaming [10], and buoyancy-driven bubble-motion 
[11], surfactant related effects are significant.

Surfactants accumulate at fluid interfaces [12]. They are transported along, adsorbed to or desorbed from the interface. 
Their distribution along the interface modulates surface tension: higher concentration of surfactant implies lower surface 
tension. Inhomogeneous surface tension entails interfacial stresses in interface-normal and tangential directions, denoted as 
capillary and Marangoni stresses, respectively.

Numerical methods for solving interfacial flows with surfactants may be categorized into interface tracking and interface 
capturing methods. Interface tracking methods either use an interface-adapted grid or marker particles to represent the 
interface. Boundary integral methods employ a surface mesh to track the interface. In the context of surfactants, a boundary 
integral method for studying the effect of insoluble surfactants on drop deformation was developed in [13,14]. Another 

* Corresponding author. Fax: +49 89 289 16139.
E-mail addresses: felix.schranner@aer.mw.tum.de (F.S. Schranner), Nikolaus.Adams@tum.de (N.A. Adams).
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interface-tracking method is the front-tracking method [15], where a fixed grid is used to compute the flow, while a set 
of connected marker particles tracks the interface and surfactant on the interface. A front-tracking method for insoluble 
surfactant was developed in [16]. A related front tracking method is the immersed boundary method [17], which was used 
to simulate interfacial flows with insoluble surfactants by the surfactant-conserving marker- and cell (MAC) algorithm [18]. 
A ghost-cell immersed boundary method was introduced in [19], and employed to study the effects of diffusion-controlled 
surfactant on a viscous drop injected into a viscous medium [20].

A hybrid level-set/front-tracking approach was used to study the dynamics of capillary waves with insoluble surfac-
tant [21]. Another front-tracking method which combines a finite element methodology with adaptive body-fitted meshes 
served to simulate the deformation and breakup of axisymmetric liquid bridges [22] and thin filaments [23] with insoluble 
surfactants. Interface tracking methods are very accurate, yet, especially for topological changes and in three dimensions, 
the implementation-effort can be overwhelming. Possible drawbacks of marker Lagrangian approaches include difficulties 
with evaluating topological changes, the need to remove parts of the evolving front (delooping) to characterize the viscosity 
solution correctly, the need to adaptively add and remove points, and complexities in three dimensions [24].

With interface capturing methods the interface is implicitly defined by an auxiliary function, such as a level-set, color 
or phase-field function. This simplifies gridding, discretization and handling of topological changes. For example, a volume-
of-fluid (VOF) method [4], for insoluble surfactants was developed in [25]. Hameed et al. [26] have used the Arbitrary 
Lagrangian–Eulerian (ALE) method combined with a coupled level-set and volume of fluid method to simulate flows con-
taining fluid interfaces with insoluble surfactant.

With the diffuse-interface, or phase-field method the interface of a multi-fluid domain is represented by a phase-field 
function, which is an approximation of the characteristic function of the bulk fluid domain [27]. In [28] Teigen et al. develop 
and apply the diffuse interface approach to simulate flows in the presence of soluble and insoluble surfactants.

A level-set method [5,29] for solving the surfactant transport equation has been presented by Adalsteinsson et al. [30]
and Xu et al. [31], and coupled with the immersed-interface method (IIM) [32] in [33]. With the IIM, the interface jump 
conditions are handled explicitly by modifying the discretization stencils near the interface. As a simple and robust alter-
native to IIM Xu et al. have modeled interface forces within the level-set framework by a continuous surface force (CSF). 
A common property of these incompressible level-set methods, which they share with phase-field methods, is the smooth-
ing of material properties, such as density and viscosity, at the interface across several grid points. This implies their main 
drawbacks, the lack of discrete conservation and ineffectiveness at large density and viscosity ratios.

A fully conservative level-set based sharp-interface method (SIM) for compressible flows [34], robust even for large topo-
logical interface changes [35], has been applied to two-phase flows where each phase may obey different equations of state, 
and large density and viscosity ratios [36]. It has been further developed to model viscous, incompressible two-phase flows 
[37] by incorporating a weakly compressible fluid model [37,38]. High accuracy has been demonstrated for the buoyancy 
driven motion of viscous, immiscible flows [39].

Key idea of the SIM framework employed in our model, where the Navier–Stokes equations are solved on a Cartesian 
grid, is the modification of finite volumes that are cut by the interface in order to allow explicit application of interface-jump 
conditions, including interactions due to capillary and Marangoni stresses. In Ref. [37] Luo et al. propose interaction terms 
that consider capillary forces for a constant surface-tension coefficient and viscous interactions. This formulation of the 
viscous momentum exchange, however, does not allow for a jump condition in interface-tangential direction, occurring in 
the general case of non-vanishing Marangoni stresses [40,41].

In this paper we develop a robust and consistent interface interaction model, incorporating inviscid, viscous, capillary, 
and Marangoni stresses into the SIM framework. The resulting interface flux is derived from an interface Riemann problem. 
The model is simpler than the CSF approach and the IIM-based approach of [28,33]. Explicit time integration is applied 
for the evolution of surfactant concentration, level-set, and fluid phases. Efficiency is enhanced by a multi-resolution (MR) 
algorithm [35]. Level-set transport and surfactant-concentration transport are evaluated only within a narrow band near the 
interface. Within the SIM framework, local interface-segment lengths/areas are computed, avoiding the need for a smoothed 
delta-function, for approximation of the interface length. We show that surfactant mass and interface fluxes are generally 
predicted more accuratly than in previous works [28,31]. Costly propagation of the interface area as an additional variable, 
as proposed in [25], also is avoided.

In Section 2, the governing equations are given. Section 3 describes the numerical discretization. In Section 4 we present 
simulation results demonstrating the capability of the method. Validation simulations for passive transport of surfactant are 
presented in section 4.1. A thermocapillary flow is considered for demonstrating the correct prediction of Marangoni and 
viscous stresses at the interface, Sec. 4.2. For demonstrating robustness and performance of the method when also inviscid 
and capillary stresses are present at the interface, a two-dimensional and a three-dimensional test configuration is selected, 
Sec. 4.3. A drop in a shear-flow serves to demonstrate the performance of the model for interfaces evolving under external 
shear forces, Sec. 5.

2. Basic equations

Consider the system of two immiscible fluid phases, as sketched in Fig. 1. The fluid phases occupy two non-overlapping 
subdomains �ξ1 (t) and �ξ2 (t). � is bounded by � = ∂�, corresponding boundaries exist for the subdomains. For each 
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Fig. 1. Two-dimensional schematic of the multi-fluid configuration.

phase, �ξi (t), i = 1, 2 the system of conservation equations for weakly compressible fluids in differential, non-dimensional 
form

∂ρ

∂t
+ ∇T · (ρu) = 0 ,

∂ρu

∂t
+ ∇T · [ρu ⊗ u − �] = 0

(1)

holds [42], where ρ denotes the non-dimensional density, and u = (u1, u2, u3)
T the vector of non-dimensional Cartesian 

velocities. The non-dimensional states are the dimensional states divided by a reference density and velocity, respectively, 
such that ρ = ρ�

ρref
, uα = u�

α
Uref

. Furthermore, the stress tensor is defined as

� = −1p + T , (2)

p is the static, non-dimensional pressure, which relates to the dimensional pressure according to p = p�

U 2
ref ρref

. With Stokes’ 

hypothesis for a Newtonian fluid the viscous stress tensor is

T = T(u) =
⎡⎣τ 11 τ 12 τ 13

τ 21 τ 22 τ 23

τ 31 τ 32 τ 33

⎤⎦ . (3)

μ = νρ is the non-dimensional dynamic viscosity, which relates to the dimensional dynamic viscosity according to μ = μ�

μref
. 

The components of T(u) are

ταβ = μ

Re

(
∂uα

∂xβ

+ ∂uβ

∂xα
− 2

3

∂uγ

∂xγ
δαβ

)
. (4)

Herein, α, β, γ = 1, 2, 3. Note that μref = μ�,ξ1 , νref = ν�,ξ1 , ρref = ρ�,ξ1 . Moreover, Re = Uref Lref
νref

, Ca = μref Uref
σ0

, and 

W e = ρref Lref U 2
ref

σ0
denote the Reynolds, capillary, and Weber number. If not noted otherwise, Uref = Lref u′ , where u′ = ∂u1

∂x2
,

Lref = r0.

2.1. Tait’s equation for weakly compressible fluids

For low Mach number flows, Tait’s equation of state (EoS),

p = p(ρ) = p1

[(
ρ

ρ0

)ω

− 1

]
+ p0 , (5)

can be used to model fluids as weakly compressible, i.e. 1
ρ

∂ρ
∂ p � 1, and close Eq. (1). The (artificial) speed of sound is

a2 = p1

ρω
0

ωρ(ω−1) = ω

ρ
(p − p0 + p1) , (6)

where ω = 1 + 10−6, p0 = p(t = 0). p1 is found from Eq. (6) by constraining Ma = ||u||/a < 0.1.

2.2. Transport of surfactant concentration

The amount of surfactant within an interface segment �ϒ , see Fig. 1, is the interfacial surfactant concentration γ (x, t). 
It evolves according to the non-dimensional surfactant advection–diffusion equation
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∂γ

∂t
+ ∇T · (uIγ ) − γ ((nI ⊗ nI ) · ∇) · uI = 1

Pes
∇2

s γ . (7)

The subscript s indicates transport along the interface-tangential plane. Pes = Uref Lref
Ds

denotes the interface diffusion Peclet 
number, Ds is the diffusivity of γ along ϒ . The advection term is

∇T · (uIγ ) = uT
I · (∇γ ) + γ ∇T · uI . (8)

The third term on the left side of Eq. (7), accounts for transport due to variations in interface shape. The interface diffusion 
of γ can be decomposed as

∇2
s γ (x) = �γ (x) −

(
nT

I · ∇γ (x)
)(

∇T · nI

)
− nT

I · Hγ · nI , (9)

with Hγ being the Hessian of γ (x, t).

2.3. Constitutive equation for the surface tension coefficient

The dependence of σ on γ follows the non-linear Langmuir equation [25,43]

σ(γ ) = 1 + E ln(1 − ζγ ) . (10)

To avoid negative values of σ(γ ), Eq. (10) has been implemented in a modified form

σ(γ ) = max{0.01,1 + E ln(max{0.01,1 − ζγ })} . (11)

For small ∇sγ , σ(γ ) can be approximated as [25,43]

σ(γ ) = 1 − Eζγ . (12)

E = RTγ∞
σ0

and ζ = γeq
γ∞ are the surfactant elasticity and coverage. R , T , and σ0 denote the ideal gas constant, the tempera-

ture, and the surface tension coefficient for a clean interface (γ = 0). γ∞ is the concentration of surfactant in the maximum 
packing limit, and γeq = 1

�ϒ

∫
�ϒ

γ dϒ ′∣∣
t=0 is the initial average surfactant concentration.

3. Numerical method

3.1. Discretization of conservation equations for fluid transport

Applying Gauss’ theorem, the integral form of Eq. (1) becomes∫
�

Ut dV +
∮
�

(
FT

1 ,FT
2 ,FT

3

)
· n�d�′ = 0 (13)

where

U = (ρ,ρu1,ρu2,ρu3)
T , (14)

n� is the normal on �, see Fig. 1. The flux vectors include advective and viscous components Fβ = Fa
β − Fν

β , β = 1, 2, 3.
The advective (superscript a) and viscous (superscript ν) fluxes are

Fa
β(U) =

⎛⎜⎜⎜⎝
ρuβ

ρuβu1 + pδβ1

ρuβu2 + pδβ2

ρuβu3 + pδβ3

⎞⎟⎟⎟⎠ , Fν
β(u) =

⎛⎜⎜⎜⎝
0

τβ1

τβ2

τβ3

⎞⎟⎟⎟⎠ . (15)

In a neighborhood of the interface the conservation equations for mass

d

d t

∫
�ϒε

ρdV −
∫

�ϒξ1

ρξ1 nT ,ξ1
I · (uξ1 − uI

)
d ϒ ′ −

∫
�ϒξ2

ρξ2 nT ,ξ2
I · (uξ2 − uI

)
d ϒ ′ = 0 , (16)

and momentum

d

d t

∫
�ϒε

(ρu)dV −
∫

�ϒξ1

ρnT ,ξ1
I · (uξ1 − uI

)
d ϒ ′ −

∫
�ϒξ2

ρnT ,ξ2
I · (uξ2 − uI

)
d ϒ ′ =

=
∫

�ϒξ1

nT ,ξ1
I · �(u)ξ1d ϒ ′ +

∫
�ϒξ2

nT ,ξ2
I · �(u)ξ2d ϒ ′ + 1

W e

∮
s

m σds′ ,

(17)
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Fig. 2. Three-dimensional schematic of a small interface element.

hold. Note that nξ1
I = nI and nξ2

I = −nI with nI being the interface-normal vector. An interface segment of perimeter s, 
surface area �ϒξ1 and �ϒξ2 is sketched in Fig. 2. For an infinitesimally thin interface, i.e. ε → 0, it follows that �ϒξ1 =
�ϒξ2 = �ϒ . The interface itself has no mass nor momentum [2], and phase changes do not occur. Continuity at the 
interface thus implies

nT
I · uξ1

∣∣
ϒ

= uξ1
I,⊥ = nT

I · uξ2
∣∣
ϒ

= uξ2
I,⊥ = uI,⊥ . (18)

The interface acts as a no-slip boundary [44], hence, the interface-tangential velocity is continuous [40]∣∣uξ1
I,‖
∣∣= ∣∣uξ2

I,‖
∣∣= ∣∣uI,‖

∣∣ , and uI,‖ · uI,⊥ = 0 . (19)

At the interface, the velocity is uI = uI,⊥ + uI,‖ , with uI,⊥ = uI,⊥nT
I , and uI,‖ = u(1)

I,‖ + u(2)
I,‖ = u(1)

I,‖t(1)
I + u(2)

I,‖t(2)
I , respectively. 

The two interface-tangentials t(1)
I and t(2)

I are computed according to [45]. Together with nI they build an orthonormal basis 
on the interface. Note that in 2D t(2)

I is obsolete. In close proximity to ϒ both fluids take on the interface velocity [46]. 
Considering Eq. (18) the interface momentum equation (17) becomes

0 = Rξ1�ϒ − Rξ2�ϒ + 1

W e

∮
s

m σds′ , (20)

where Rξi (x, nI ) = �(u)ξi · nI represents the surface stresses, [40]. The term 1
W e

∮
s m σds′ denotes the surface tension force 

exerted in direction of the unit vector tangential to the free surface of area �ϒ and normal to the perimeter s. One finds 
that [47,48]∮

s

m σds′ =
∫

�ϒ

∇sσ(x, t)dϒ ′ =
∫

�ϒ

∇ (σ (1 − nI ⊗ nI ))dϒ ′ =
[
−σnI

(
∇T · nI

)
+ (∇sσ)

]
�ϒ . (21)

∇s = (1 − nI ⊗ nI )∇ denotes the interface-tangential gradient operator.
Consequently, the stress balance at the interface segment is

�R�ϒ = −Rξ1 + Rξ2 = 1

W e

[
−σnI

(
∇T · nI

)
+ (∇sσ)

]
. (22)

The first term on the right of equation (22),

σ c(γ (x, t)) = − 1

W e
σ(γ (x, t))nI

(
∇T · nI

)
= σc(γ (x, t))nI (23)

is the capillary stress, balancing the jump in normal stress

�r�ϒ,⊥ = nT
I · �R�ϒ = −nT

I · Rξ1 + nT
I · Rξ2 =

= −rξ1
⊥ + rξ2

⊥ = σc(γ (x, t)) .
(24)

Note that rξi⊥ = nT
I · Rξi = nT

I · �ξi · nI = nβ�
ξi
βγ nγ = (nI ⊗ nI ) : �ξi = P⊥�ξi , which is the projection of the stress tensor of 

phase ξi normal to the interface by the normal-projection operator P⊥ , compare [49]. The second term,

σ M(γ ) = 1

W e
∇sσ(γ ) , (25)
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is the Marangoni stress. It balances the discontinuity of the interface-tangential stresses

�r�ϒ,‖ = −rξ1
‖ + rξ2

‖ = |σ M(γ )| = σM(γ ) , (26)

where rξi‖ = �
ξi
δδ − nβ�

ξi
βγ nγ = (1 − nI ⊗ nI ) : �ξi = P ‖�ξi is the interface-tangential projection of the shear stress tensor 

of phase ξi . Decomposed into the respective surface-tangential directions (δ), one obtains

�r�(δ)
ϒ,‖ = t(δ),T

I · �R�ϒ = −t(δ),T
I · Rξ1 + t(δ),T

I · Rξ2 = −rξ1
‖,(δ) + rξ2

‖,(δ) = t(δ),T
I · σ M (27)

where rξi
‖,(δ) = t(δ)

I,β Rξi
β = t(δ)

I,β�
ξi
βγ nγ .

To impose the interface-normal and tangential momentum exchange due to Eqs. (24) and (27) a constrained Riemann 
problem is solved with an acoustic Riemann solver [50] for

uI,⊥ = Z ξ1 uξ1
⊥ + Z ξ2 uξ2

⊥
Z ξ1 + Z ξ2

+ rξ1
⊥ − rξ2

⊥ + σc

Z ξ1 + Z ξ2
(28a)

rξi
I,⊥ =

Z ξ2

(
rξ1
⊥ + σcδi2

)
+ Z ξ1

(
rξ2
⊥ − σcδi1

)
Z ξ1 + Z ξ2

+ Z ξ1 Z ξ2

Z ξ1 + Z ξ2

(
uξ1

⊥ − uξ2
⊥
)

(28b)

and

u(δ)
I,‖ = Z ξ1 uξ1,(δ)

‖ + Z ξ2 uξ2,(δ)
‖

Z ξ1 + Z ξ2
+
(

rξ1,(δ)
‖ − rξ2,(δ)

‖ + t(δ),T
I · σ M

)
Z ξ1 + Z ξ2

(29a)

rξi ,(δ)
I,‖ =

Z ξ2

(
rξ1,(δ)
‖ + t(δ),T

I · σ Mδi2

)
+ Z ξ1

(
rξ2,(δ)
‖ − t(δ),T

I · σ Mδi1

)
Z ξ1 + Z ξ2

+ Z ξ1 Z ξ2

Z ξ1 + Z ξ2

(
uξ1,(δ)

‖ − uξ2,(δ)
‖

)
(29b)

where Z ξi = ρξi aξi are the acoustic impedances of the respective fluid and δi j is the Kronecker-symbol.
Global momentum conservation is ensured by considering the numerical interface-momentum flux in normal and tan-

gential direction

X⊥,ξi = rξi
I,⊥�ϒ

[
0

nξi
I

]
, (30)

and

X‖,ξi = X‖,ξi ,(1) + X‖,ξi ,(2) . (31)

The tangential fluxes in direction of t(δ)I are

X‖,ξi ,(δ) = rξi ,(δ)
I,‖ �ϒ

[
0

t(δ)I

]
. (32)

Note that Aξi
n = nξi

I �ϒ = [Ax1 , Ax2 , Ax3

]T
. Employing the algorithm of [51] without normalization, leads to Aξi ,(δ)

t = �ϒt(δ)I .
Within finite volume (FV) cells containing only a fraction ζ ξi (t) = 1

V

∫
�∩�ξi

dV of fluid phase ξi , the system of conservation 

equations

tn+1∫
tn

dt

∫
�∩�ξi

∂Ũξi

∂t
dV +

tn+1∫
tn

dt

∫
�

(
FT ,ξi

1 ,FT ,ξi
2 ,FT ,ξi

3

)
· n�d�′ =

tn+1∫
tn

dt Xξi (33)

holds for Ũξi = ζ ξi Uξi , where Fξi
α = Fα(Uξi ) and Xξi = X⊥,ξi + X‖,ξi . Within �, ζ ξ1 + ζ ξ2 = 1 must be satisfied. For a time 

interval �t ≤ �x
sn

max
, where sn

max denotes the maximum wave speed within the domain at time tn , the cell-face and interface 
fluxes are

Fα = lim
�t→0

1

�t

tn+1∫
tn

Fα dt , X = lim
�t→0

1

�t

tn+1∫
tn

X dt . (34)

In discrete Cartesian space, for each FV of �V [i, j,k] = [�x1�x2�x3][i, j,k] the cell-averaged vector of conservative states 
at time tn is Ũξi ,n

[i, j,k] = 1
�V [i, j,k]

∫
�V [i, j,k]∩�

ξi
[i, j,k]

Uξi ,n
[i, j,k]dV = Ûξi ,n

[i, j,k]ζ
ξi ,n
[i, j,k] with Ûξi ,n

[i, j,k] = 1

�V
ξi ,n
[i, j,k]

∫
�V

ξi ,n
[i, j,k]

Uξi ,n
[i, j,k]dV . To consider the 
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Fig. 3. Two-dimensional schematic of conservative discretization of a cut cell. Red, green indicate phase ξ1, ξ2, respectively. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

fluxes for the respective phase across the cell-faces, cell-face apertures are computed. Apertures are that part of �ξi
[i, j,k](t)

not coinciding with ϒ[i, j,k](t), yet with the cell face �[i, j,k](t), [42]. At the right and upper cell face these are defined 
as depicted in Fig. 3. For single-fluid cells, which are those not cut by the interface, the apertures of phase ξ1 are unity 
within �ξ1

[i, j,k] and zero within �ξ2
[i, j,k] , and vice versa for phase ξ2. �ϒ [i, j,k] , A

ξi

[i+ 1
2 , j,k] , A

ξi

[i, j+ 1
2 ,k] , A

ξi

[i, j,k+ 1
2 ] , and ζ ξi

[i, j,k] are 
reconstructed geometrically.

To advance each phase in time, the discrete conservation equations

Ũξi ,n+1
[i, j,k] = Ũξi ,n

[i, j,k] + �t

⎡⎣ X
ξi
[i, j,k]

�V [i, j,k]
+
[

AF1
]ξi

[i− 1
2 , j,k] − [AF1

]ξi

[i+ 1
2 , j,k]

�x1
+

+
[

AF2
]ξi

[i, j− 1
2 ,k] − [AF2

]ξi

[i, j+ 1
2 ,k]

�x2
+
[

AF3
]ξi

[i, j,k− 1
2 ] − [AF3

]ξi

[i, j,k+ 1
2 ]

�x3

⎤⎦
(35)

are solved within each �ξi for each fluid phase ξi individually. The advective fluxes for fluid transport are solved with 
the weakly compressible high resolution approach of Schranner et al. [38,52]. The viscous fluxes for fluid transport are 
discretized with 4th-order accuracy.

3.2. Description and propagation of the interface

The interface is captured implicitly by a level-set function φ(x, t) [5,29,53] with |∇φ| = 1 such that φ(x, t) ≡ 0 at ϒ(x, t). 
In �ξ2 (x, t) φ(x, t) < 0, and φ(x, t) > 0 in �ξ1 (x, t).

Based on φ(x, t), defined in a narrow band in the vicinity of ϒ(x, t) [24], geometrical quantities of ϒ , such as the 
normalized outward pointing normal vector and the mean curvature, which corresponds to the divergence of the interface 
normal vector according to

κM =
(
∇T · nI

)
in 2D and

2κM =
(
∇T · nI

)
in 3D,

(36)

can be obtained. Numerically, the 1st and 2nd spatial derivatives are approximated with 2nd-order central differences. The 
curvature is evaluated at the cell center, where not necessarily φ[i, j,k] = 0. The sub-cell corrected κϒ is obtained directly at 
the interface by

κϒ =
(
|κ[i, j,k]| + κ2

[i, j,k]φ[i, j,k]
)

sgn
(
κ[i, j,k]

)
. (37)

Details on the derivation are provided in App. 7.1. For φ(x, t) = 0, the transport equation with the interface velocity uI (x, t)
[40] holds

∂φ(x, t)

∂t

∣∣
φ=0 + uT

I (x, t) · (∇φ(x, t))
∣∣
φ=0 = 0 . (38)
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To propagate φ in time by Eq. (38) while maintaining its signed distance property, the integration of the transport equation 
for φ(x, t) has two sub-steps, advection and reinitialization, see e.g. [54,55]. Within the original reinitialization algorithm of 
Sussman et al. [54], a smoothed sign function serves to suppress reinitialization in cells containing the interface. In this 
work, such cells are excluded explicitly [39].

3.3. Discrete evolution of the surfactant concentration

Insoluble γ evolution is confined to the interface so that ∇nγ (x, t) = (nI ⊗ nI )∇γ (x, t) vanishes, which is ensured by 
extending γ off the interface prior to solving Eq. (7). Note that τ is a pseudo-time. Details of the algorithm for γ -extension 
and transport are provided in Apps. 7.2 and 7.3 respectively.

3.4. Time integration and time-step constraints

Time integration of the fluid, level-set, and surfactant transport equations is conducted with a 3rd-order Runge–Kutta 
scheme [56]. The time-step is set by the following constraints:

• Advection limits �t according to

�tadv = min (�xα)

max|uα + a| (39)

where α represents one of the spatial directions.
• Viscous stresses entail �t to be [57],

�tvisc = 3

14
min

(
ρξ1

μξ1
; ρξ2

μξ2

)
Re (min (�xα))2 . (40)

• The explicit treatment of capillary stresses is stable when the chosen time step size allows to represent capillary wave 
motion on the computational grid, [58]. The maximum resolvable wave number is

kmax = 2π

λmin
= 2π

2min (�xα)
= π

min (�xα)
. (41)

The maximum advection speed of capillary waves is

ckap =
√

W e kmax

ρξ1 + ρξ2
. (42)

Considering that two capillary waves with opposite direction of advection may concurrently enter the same cell, one 
obtains

�tcap = 1

2

min (�xα)

ckap
=
√

min (�xα)3 W e
(
ρξ1 + ρξ2

)
4π

. (43)

• The diffusion of surfactant concentration γ restricts �t by

�tD = 1

6
Pes (min (�xα))2 . (44)

Consequently, the time-step size is determined according to

�t = CFL · min
(
�tadv ,�tvisc,�tD ,�tcap

)
, (45)

CFL = 0.3 is chosen for all validation and application examples in this paper.
The intersection of the interface with the Cartesian grid may result in cells with small ζ ξi

[i, j,k] , denoted as “small cells”, 

for which the time step constraints of cells with ζ ξi
[i, j,k] ≈ 1 may generate spurious solutions. Application of a CFL condition 

for small cells may result in very small �t . As remedy, a conservative mixing procedure similar to the one in Ref. [59] is 
employed. In contrast to [59], where all mixing operations are summed up to update Ũξi ,n+1

[i, j,k] and respective target cells 

at once, mixing between Ũξi ,n+1
[i, j,k] and the respective target cells is carried out consecutively, i.e. the mixing operations are 

ordered by descending magnitude of the mixing factors βm . Such a sequential execution takes into account that Ũ[i, j,k] has 
been altered by preceding mixing operations. Furthermore, cells of ζ ξi

[i, j,k] ≤ 0.3 are considered as small, in [59] cells of 

ζ
ξi
[i, j,k] ≤ 0.6 are small. To improve computational efficiency, a wavelet-based multi-resolution algorithm [35] is employed.
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4. Numerical validation and application examples

4.1. Transport mechanisms of surfactant concentration

In this section, the accuracy of our scheme for γ (x, t)-transport by advection, diffusion and interface evolution is inves-
tigated. A test case proposed by Xu and Zhao [31] is considered. An analytical solution exists in the case of pure advection 
or diffusion.

4.1.1. Example 1 – Diffusion along a stationary interface with uniform curvature
We assess the spatial convergence behavior of the surfactant concentration diffusion discretization by simulating diffu-

sion of γ along a stationary, circular interface with radius r0 = 1.0 located at the center, (x1,0, x2,0) = (2; 2) of a periodic do-

main of length and height L = 4. The surface diffusion operator (9) becomes ∇2
s γ (x) = 1

r2
0

∂2γ (x)

∂θ2 , where θ = arcsin

(
x2√

x2
1+x2

2

)
denotes the angle with the x1-axis. The initial γ distribution is given by

γ0(θ) = sin(nθ) + c . (46)

The surface diffusion equation reduces to the standard diffusion equation in cylindrical coordinates⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂γ (θ,t)

∂t = 1
Pes

1
r2

0

∂2γ (θ,t)
∂θ2 ,0 ≤ θ ≤ 2π,

γ (θ,0) = γ0(θ) ,

γ (0, t) = γ0(2π, t) ,

and the solution is

γ (θ, t) = γ (x, t) = e
− 1

P es
n2t
r2 sin(nθ) + c , (47)

with r =√(�x1)2 + (�x2)2 − r0. Since we employ the level-set function φ(x) = r to represent the interface, Eq. (47) is the 
solution to the surfactant concentration diffusion equation

∂γ (x, t)

∂t
= 1

Pes
∇2

s γ (x, t). (48)

n = 1, c = 2 and Pes = 1. Reinitialization of γ is omitted. Extension of the surfactant concentration is not applied, instead 
the diffusion equation is solved within a band around the interface. The time step is �t = 7 · 10−6, satisfying the stability 
criterion (45) at a resolution of �x1 = �x2 = 1/80. According to Tornberg et al. [60,61] one may assess the quality of 
interfacial γ (x, t) transport when a Cartesian grid is used and the interface curvature is generally nonzero on basis of

||ε||1 =
∑

M

{ε}[i, j] , (49a)

||ε||2 =
(∑

M

{ε2}[i, j]

)1/2

, (49b)

||ε||∞ =maxi∈M{|εi|} . (49c)

M are cells for which |φ| ≤ 4
√

�x2
1 + �x2

2, and

ε = |γ (x, t) − γanaly.(x, t)|δε1δε2 , (50)

δεi = δ(φi/�xi) = δ(y) = �xi

⎧⎪⎪⎨⎪⎪⎩
1 − 1

2 |y| − |y|2 + 1
2 |y|3 if 0 ≤ |y| ≤ 1,

1 − 11
6 |y| + |y|2 − 1

6 |y|3 if 1 < |y| ≤ 2,

0 else ,

(51)

where (φ1, φ2) = φ nI . Fig. 4 shows the errors and convergence rates for ||ε||1, ||ε||2, and ||ε||∞ . With increasing resolution 
||ε||1, ||ε||2, and ||ε||∞ diminish with convergence rates within 1.5 and 2.5.
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Fig. 4. Grid dependent errors for surfactant concentration at times t2 = 2.0 with �t = 7 · 10−6.

Fig. 5. Grid dependent errors for surfactant concentration at times t2 = 2.0 with �t = 7 · 10−6.

4.1.2. Example 2 – Advection with a circular interface in an uniform flow field
A circular interface represented by the zero level-set of the level-set field φ(x) = r = √

(x1 − x1,0)2 + (x2 − x2,0)2 − r0
with r0 = 1.0, (x1,0, x2,0) = (2; 2) within a domain of [0; 6] × [0; 4] is considered. As in Example 1, the initial surfactant 
concentration distribution follows Eq. (46). Furthermore, n = 1 and c = 2. The interface and γ (x, t) are subjected to an 
uniform velocity field u = (1; 0).

Within a narrow band of three cells around the interface, the surfactant transport equation (7), with Ds = 0 is solved, 
where uγ = uφ = uξ1 = uξ2 is set. Advection is the only transport mechanism, hence, γ (x, t) = γ (x, 0). The time-step size is 
�t = 7 · 10−6 = const. for consistency with Example 1. ||ε||1, ||ε||2, and ||ε||∞ are evaluated at different levels of uniform 
grid refinement, the results are shown in Fig. 5. While the errors are of the same magnitude as for pure diffusion, the rates 
of convergence are higher.

4.1.3. Example 3 – Advection and diffusion with and along a circular interface in an uniform flow field
With Ds = 1, γ (x, t) evolves now by advection and diffusion. The setup and �t are as in Sec. 4.1.2. Fig. 6 shows the error 

evolution with grid refinement. For ||ε||1, ||ε||2, and ||ε||∞ the convergence rates remain within an order of approximately 
1.4 to 2.3.

4.1.4. Example 4 – Transport of surfactant concentration along a deforming interface
In this example, γ , initialized according to Eq. (46), n = 1 and c = 2, evolves on a deforming interface given by φ(x) =

r =√(x − x1,0)2 + (x − x2,0)2 − r0, r0 = 1 and (x1,0; x2,0) = (3; 2). The interface is subjected to a shear flow with

u(x,0) =
{(

(x2 − x2,0)
2,0
)

if x2 ≥ x2,0(−(x2 − x2,0)
2,0
)

if x2 < x2,0.
(52)

At the lower and upper boundaries of the domain, with [0; 6] ×[0; 4], symmetry conditions are applied and in flow direction 
the domain is periodic, �t is according to Eq. (45). Due to the large interface deformation, this test case serves to assess 
the effect of grid resolution on area- and surfactant-conservation.

The improvement of disperse phase area conservation and surfactant mass conservation due to grid refinement is signifi-
cant, see Figs. 7 and 8. The observed relative change of area and surfactant mass is 0.4% and 3% respectively, for �x = 4/256
at t = 4. The convergence rates are 1.5 and 1.3 respectively.
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Fig. 6. Error evolution with grid refinement for surfactant concentration at times t2 = 2.0 with �t = 7 · 10−6.

Fig. 7. Grid dependent relative change of area.

Fig. 8. Grid dependent relative change of surfactant mass with (dashed lines) and without (solid lines) surfactant-conservation correction.

Improving surfactant-conservation
To improve surfactant mass conservation, i.e. ensuring G(t) = ∫

�ϒ
γ (x, t)dϒ ′ = ∫

�ϒ
γ (x, 0)dϒ ′ = G0, the procedure of Xu 

et al. [33] is employed. Therefore the surfactant concentration is renormalized after each time step according to γ (x, t) = βγ̃

where β =
∫
�ϒ γ̃ dϒ ′∣∣0∫

�ϒ γ dϒ ′∣∣n+1 . In our framework, the interface segment length �ϒ [i, j,k] is computed in each cell containing a 

portion of the interface.
The surfactant-conservation correction suppresses variations of G(t) as intended, which can arise due to interface defor-

mation, see Fig. 8. Fig. 9 visualizes β(t) − 1 within 0 ≤ t ≤ 4. Grid refinement leads to a significant decrease in |β(t) − 1|, 
hence, improvement in surfactant mass conservation. Nevertheless, |β(t) − 1| is less than 0.002 for �x = 4/48. On the finest 
grid, 1

T

∫ 4
t=0(β(t) − 1)dt is approximately 1.0 · 10−6. Fig. 10 depicts γ (t) at t = 0.5 and t = 2.5 for Example 4 without (left 

column) and with (right column) surfactant-conservation correction. The evolution of γ (ϒ, t) as predicted within 0 ≤ t ≤ 3.0
as well as a grid of MR blocks are visualized in Fig. 11.
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Fig. 9. β(t) − 1 at different grid resolutions.

Fig. 10. Comparison of γ (ϒ(x), t) for surfactant evolution without (left column) and with (right column) surfactant-conservation correction, �x = 4/512.

Fig. 11. Evolution of γ (�(x), t) on a deforming interface with AMR of maximum resolution �x = 6/1024 and surfactant-conservation correction.
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Table 1
CPU time required for 1000 time steps of the sharp interface (SI) and diffuse interface 
(DI) algorithms at t0 = 0, t1 = 1, t2 = 2, t3 = 3, and ratio of execution times.

Time Grid size �tD I [ms] �tS I [ms] �tD I /�tS I

0 48 × 32 47.473 17.392 2.73
96 × 64 137.547 67.572 2.04
192 × 128 445.701 256.307 1.74
384 × 256 1550.36 1000.57 1.55

1.0 48 × 32 50.052 18.092 2.77
96 × 64 146.589 69.717 2.10
192 × 128 466.455 259.931 1.79
384 × 256 1595.52 1002.81 1.59

2.0 48 × 32 56.793 19.899 2.85
96 × 64 169.625 73.711 2.30
192 × 128 517.664 272.107 1.90
384 × 256 1707.25 1018.57 1.68

3.0 48 × 32 64.758 20.502 3.16
96 × 64 192.397 76.943 2.50
192 × 128 570.996 284.686 2.06
384 × 256 1835.19 1059.53 1.73

Fig. 12. Geometric setup of two immiscible fluids in a micro channel. The temperature of the lower and upper walls are T (x1, −δ1) = Th + �T cos(x̃1) and 
T (x1, δ2) = Tc , respectively, Th > Tc > �T > 0, and ω = 2π

l is a wave number. The gravity is zero.

Increase of efficiency due to sharp-interface formulation
The surfactant-conservation correction method of [33] employs the diffuse interface (DI) framework [31]. Our sharp-

interface (SI) framework reduces the execution time by a factor of up to about 3 for coarse grids or large interface 
deformation, and by about 2 for very fine grids or small interface deformation, see Table 1, using Example 4 and uni-
form grids. For the timings, the interface and surfactant-concentration restart data have been stored every �t = 1. The 
simulations have been (re)started on a single core of an Intel Xeon E5620 at times t0 = 0, t1 = 1, t2 = 2, t3 = 3 and the 
SI and DI algorithms were advanced each by 1000 time steps. �tS I and �tD I denote the wall-clock times necessary for SI 
and DI.

4.2. Evaluation of Marangoni and viscous stress modeling

To verify the sharp-interface model for the viscous and Marangoni stresses, a thermocapillary driven flow in a heated 
micro channel with two superimposed planar fluids, as proposed by Pendse and Esmaeeli [62], is considered. The geometric 
setup is shown in Fig. 12. The heights of the fluid layers ξ1 and ξ2 are δ1 and δ2, respectively. The domain is periodic in hor-
izontal direction, the no-slip boundary condition applies to the upper and lower walls. Uniform temperature T (x1, δ2) = Tc
is imposed to the upper wall. At the lower wall, the temperature follows the sinusoidal distribution T (x1, −δ1) = Th +
�T cos(x̃1) (which is higher than that of the upper wall). Th > Tc > �T > 0 and ω = 2π

l is a wave number with l being a 
length scale. The temperature boundary conditions establish a periodic temperature field in the horizontal direction with a 
period length scale of l. At steady state the temperature field follows [62]:

T ξ1 = χ (Tc − Th) y + χ Tcδ1 + Thδ2

χδ1 + δ2
+ �T f

(
δ̃2, δ̃1,χ

) [
sinh(δ̃2)cosh(x̃2) − χsinh(x̃2)cosh(δ̃2)

]
cos(x̃1), (53a)

T ξ2 = (Tc − Th) y + χ Tcδ1 + Thδ2

χδ1 + δ2
+ �T f

(
δ̃2, δ̃1,χ

)
sinh(δ̃2 − x̃2)cos(x̃1) , (53b)

where •̃ = •ω, f
(
δ̃2, δ̃1,χ

) = 1.0/ 
[
χsinh(δ̃1)cosh(δ̃2) + sinh(δ̃2)cosh(δ̃1)

]
. Let Th = 20, Tc = 10, �T = 4, μξ1 = μξ2 = 0.2, 

(ρ, a, p0)
ξ1 = (ρ, a, p0)

ξ2 = (1.0, 1.0, 0), and the ratio of thermal conductivity χ = 1.0, see [63]. We set γ (x) = T (x).
σ depends linearly on γ , i.e. Eq. (12) holds, ζ E = 1/60, and σ0 = 0.03.
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Initially, the fluids are at rest. Due to ∂γ
∂x1

�= 0 along the non-deforming interface the fluids are accelerated. The tangential 
(viscous and Marangoni) interface interaction establishes a velocity field of

uξ1
1 = Umax{

[
C ξ1

1 + ω
(

C ξ1
2 + C ξ1

3 y
)]

cosh(x̃2) +
(

C ξ1
3 + C ξ1

1 x̃2

)
sinh(x̃2)}sin(x̃1), (54a)

uξ1
2 = −ωUmax

[
C ξ1

1 y cosh(x̃2) +
(

C ξ1
2 + C ξ1

3 y
)

sinh(x̃2)
]

cos(x̃1) (54b)

within �ξ1 , and of

uξ2
1 = Umax{

[
C ξ2

1 + ω
(

C ξ2
2 + C ξ2

3 y
)]

cosh(x̃2) +
(

C ξ2
3 + C ξ2

1 x̃2

)
sinh(x̃2)}sin(x̃1), (55a)

uξ2
2 = −ωUmax

[
C ξ2

1 y cosh(x̃2) +
(

C ξ2
2 + C ξ2

3 y
)

sinh(x̃2)
]

cos(x̃1), (55b)

within �ξ2 , see [62], for which the system is at equilibrium. The constants in Eqs. (54), (55) are:

C ξ2
1 = sinh2(δ̃2)

sinh2(δ̃2) − δ̃2
2

, C ξ2
2 = −δ2δ̃2

sinh2(δ̃2) − δ̃2
2

, C ξ2
3 = 2δ̃2 − sinh(2δ̃2)

2
[

sinh2(δ̃2) − δ̃2
2
] ,

C ξ1
1 = sinh2(δ̃1)

sinh2(δ̃1) − δ̃1
2

, C ξ1
2 = −δ1δ̃1

sinh2(δ̃1) − δ̃1
2

, C ξ1
3 = sinh(2δ̃1) − 2δ̃1

2
[

sinh2(δ̃1) − δ̃1
2
] ,

Umax = −�Tσ0ζ E

μξ1
g
(
δ̃2, δ̃1,χ

)
h
(
δ̃2, δ̃1, λ

)
,

where

g
(
δ̃2, δ̃1,χ

)= sinh(δ̃2) f
(
δ̃2, δ̃1,χ

)
,

h
(
δ̃2, δ̃1, λ

)=
[

sinh2(δ̃2) − δ̃2
2
][

sinh2(δ̃1) − δ̃1
2
]

λ
[

sinh2(δ̃1) − δ̃1
2
] [

sinh(2δ̃2) − 2δ̃2
]+ [sinh2(δ̃2) − δ̃2

2
] [

sinh(2δ̃1) − 2δ̃1
] .

Note that λ = μξ2

μξ1
. With Lref = δ1 = 1.0, l = 4δ1, Uref = σ0ζ E�T

l
δ1

μξ1
= 2.5 · 10−3, it follows that Re = 0.0125 � 1 and 

W e = 1/4800 � 1. The computed u1, u2 velocity fields at a resolution of �x = 1/80 agree well with the analytical solutions, 
Fig. 13. Fig. 14 shows the average errors

L1 =
∫

�V

|ε|dV ′ ≈
∑

M

{|ε|�V }[i, j] , (58a)

L2 =
⎛⎝∫

�V

|ε|2dV ′
⎞⎠1/2

≈
(∑

M

{|ε|2�V }[i, j]

)1/2

, (58b)

of u1 and u2 between the computed and exact solution at different grid resolutions at steady state. M is the number of 
cells within �. An at least linear convergence rate is observed for the L1 and L2 errors with grid refinement. We note that 
already at a resolution of �x = 1/40 the difference to the analytical solution is barely noticeable.

4.3. Evaluation of interface stress modeling

Young et al. [64] have investigated the motion of cylindrical drops under the influence of a linear temperature gradient 
and gravity experimentally. As temperature gradients alter the local surface tension the implementation of the Marangoni 
and capillary stresses may be validated by applying an interfacial surfactant concentration field that varies linearly in x2 di-
rection. E.g. Teigen et al. [28] have consulted a comparable axisymmetric configuration, Herrmann et al. [65] have compared 
results obtained with different methods for 2D and 3D configurations.

Following Young et al., our setup consists of a two-dimensional, planar channel of width 5r0 and height L = 15r0 con-
taining a cylindrical drop of radius r0. The interfacial surfactant concentration is

γ (x2)

γ∞
= x2

L
. (59)

The surface tension coefficient is obtained from Eq. (12) with ζ E = 1 and σ0 = 1. The bulk and the disperse phase are 
characterized by (ρ,a, p0)

ξ1 = (0.2,5.0,0) and (ρ,a, p0)
ξ2 = (0.2,40.0,0), μξ1 = μξ2 = 0.1, g = 0. According to Young et al. 

[64] the stationary ascent velocity for a cylindrical drop is
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Fig. 13. u1 and u2 contours at steady state ( ), t = 20 has been chosen, as compared to the analytical results ( - - - - - - ). Resolution: �x = 1/80.

Fig. 14. Errors for velocity fields u1, u2 with grid refinement for a thermocapillary flow at steady state, t = 20.

u2,Y BG =
2

(
ζ E r0

L − �ρr2
0 g

(
μξ1 +μξ2

)
μξ1

)
9μξ1 + 6μξ2

. (60)

With these parameters, (60) gives u2,Y BG ≈ 0.088, hence, Re ≈ 0.088. This is well within the creeping flow regime for which 
Eq. (60) is valid. The �2-average ascent velocity is determined from

uξ2
2 = 1

V

∫
�ξ2

u2(x)ζ ξ2dV = 1

�V ξ2

∑
[i, j,k]∈�2

{u2(x)ζ ξ2}[i, j,k] . (61)

AMR is used with resolutions from 5r0/32 to 5r0/512. The time step is set according to Eq. (45).
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Fig. 15. (a) Normalized ascent velocity over time, and (b) pressure at centerline of the bubble at t = 10 as compared to the theoretical expected ones.

Fig. 16. (a) σc(x, t) and (b) σM (x, t) at t = 10 in a narrow band of five cells around ϒ .

The ascent velocity reaches the theoretical value approximately independent of grid refinement, see Fig. 15a, the average 
uξ2

2 /u2,Y BG , for t ≥ 5 is 98%. Note that results obtained on a grid with �hmin,AM R = 2.5/512 are not shown, as they agree 
with the ones with �hmin,AM R = 2.5/256. Our results for uξ2

2 are in very good agreement with those depicted in Fig. 1
of [65] and obtained on basis of the conservative level-set/ghost fluid method as well as the volume of fluid method on 
same grid resolutions. Fig. 15b shows the pressure along the centerline of the drop at t = 10 as compared to the analytical 

pressure p(x2) = σ(x2)
r0

=
(

1− x2
L

)
r0

, which is the internal pressure according to Eqs. (12), (22). The agreement is excellent 
and grid-independent. The capillary and Marangoni stresses within a narrow band around ϒ , at t = 10, are shown in 
Fig. 16 along with streamlines indicating the approximate centers of the driving vortices. The normalized ascent velocity 
of a 3D drop in a linear surfactant gradient, with identical parameters as in 2D is shown in Fig. 17a. It is found that 
uξ2

2 /u2,Y BG = 93%. The velocity components in the other two spatial directions, with zero surfactant gradient, are on the 
order of 10−10 within the simulation time interval T = 10. The pressure along the symmetry axis of the 3D drop at t = 10

is compared to the analytical pressure p(x2) = 2σ(x2)
r0

= 2
(

1− x2
L

)
r0

in Fig. 17b. At the upper side the relative error of p to the 
theoretically expected is +4%, at the lower side it is −2%.

5. Single drop in linear shear flow

In this section we study the evolution of a drop in shear flow, similar to [66], as a demonstration application of our 
method. The interest is on the transient deformation behavior. We initialize a circular drop of r0 = 1 and (ρ,a, p0)

ξ2 =
(1.0,40,1000) at the center of a computational domain, � = [−4; 4] × [−4; 4], immersed in a bulk fluid of (ρ,a, p0)

ξ1 =
(1.0,5,1000). If not noted otherwise, μξ1 = μξ2 = 0.1, which corresponds to Re = 10, also γ (ϒ, t = 0) = 1, and σ0 = 1, 
i.e. W e = 1 or Ca = 0.1, and Pes = 1. The domain boundaries are periodic in x1 direction. In x2, the no-slip boundaries 
move at constant speed u = (x2; 0). At t = 0, the flow field is initialized with a shear flow u′ = ∂u1

∂x2
= 1. Based on Sec. 4.1, 

�x1 = �x2 = 1/32 is chosen. A grid refinement study, see App. 7.5, shows that results do not further improve with higher 
resolutions.
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Fig. 17. (a) Normalized ascent velocity over time, and (b) pressure at symmetry axis of the bubble at t = 10 as compared to the theoretical expected ones.

Fig. 18. Degree of circularity over time.

5.1. Effect of surfactant coverage

The qualitative effect of surfactant coverage (ζ ) on dynamic and steady drop deformation is studied. At four characteristic 
stages of drop development, drop morphologies and the interface quantities γ , σ , σc , and σM are shown in Figs. 19a–19d. 
The ζ -dependent degree of circularity,

C = Pa

Pb
= πda∫

�ϒ
1dϒ ′ , (62)

where Pa denotes the perimeter of a circle with diameter da and same area of the drop. For a perfectly circular drop the 
circularity is equal to unity, due to deformation C decreases. The degree of circularity is shown as a function of time in 
Fig. 18.

Due to the flow, γ is washed from the flanks towards the drop tips, see first and second row, second column 
of Figs. 19a–19d. Higher ζ lead to a stronger effect of γ (x) onto σ according to Eq. (12), compare third column of 
Figs. 19a–19d. The early stages of drop development, are characterized by large drop deformations, see Fig. 18. As |σc |
is smaller for higher ζ at early stages, the drop elongates more. Due to the strong elongation around t ≈ 5, κ and |σc | di-
minish at the flanks. For higher ζ , κ is larger at the tips, yet, σ and thus |σc | are much lower. In conjunction with |σM | �= 0, 
due to the large ∇sγ between the tips and the flanks, the drop recontracts. Recontraction is delayed for larger ζ , as these 
entail “larger gradients in Marangoni stresses that retard the motion of the drop interface and the drop behaves as though it 
is more viscous” [67], see therefore the intermediate state Fig. 19c. At steady-state, capillary stresses are higher for lower ζ , 
lowering circularity, see Fig. 18. Where Marangoni stresses are non-negligible the interface-displacement is identical, see 
Fig. 19d. The qualitative observations on the effect of surfactant coverage are in full agreement with e.g. Refs. [13,67,68].

5.2. Effect of capillary number

The capillary number relates viscous stresses to capillary stresses. Increasing Ca decreases stabilizing surface tension in 
favor of viscous stresses, and stretching of the drop. The capillary number is Ca = W e

Re , demonstrating interaction of viscous, 
inertial and capillary forces. Hence, the effect of Ca, W e, and Re in conjunction with σ = f (γ (x, t) is studied.
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Fig. 19. Drop morphologies, ζ = 0 γ , σ , σc , and σM over the azimuth as dependent on surfactant coverage, ζ = 0 ( ), ζ = 0.3 ( - - - - - - ), ζ = 0.6 ( − · − · − · ).
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Fig. 20. Temporal evolution of degree of circularity, and drop morphologies at two characteristic times for Re = 20 (Ca = 0.05) ( - - - - - - ), Re = 10
(Ca = 0.1) ( ), Re = 5 Ca = 0.2 ( − · − · − · − · ). W e = 1, E = 0.2, ζ = 0.3.

Fig. 21. Evolution of degree of circularity for W e = 1 (Ca = 0.1) ( ), W e = 2 (Ca = 0.2) ( − · − · − · ), W e = 4 (Ca = 0.4) ( - - - - - - ). Square 
symbols indicate ζ = 0.3, and circles ζ = 0.6. E = 0.2, Re = 10.

The Reynolds number relates inertial to viscous stresses. To test the effect on drop deformation, W e = 1, E = 0.2, ζ = 0.3, 
and variable μξ1 = μξ2 is assumed. At lower Re, implicating higher Ca, temporary and steady-state drop deformation is 
larger, and the time to reach steady-state extends, see Fig. 20.

The W e-, and time-dependent circularity for Re = 10 = const. is shown in Fig. 21 for E = 0.2, ζ = 0.3 and clean in-
terfaces. For the case of W e = 2, results for E = 0.2, ζ = 0.6 are included. Larger W e imply lower σ , hence, larger drop 
deformation, see also Sec. 5.1. At a critical W ec , the drop shape oscillates harmonically with a distinct frequency instead of 
returning to an elliptical steady-state. For even higher W e, the drop elongates continuously. The observations of e.g. Lai et 
al. [18], and Lee et al. [69] that increasing Ca at Re = const. implies smaller surface tension, and larger drop deformation is 
confirmed.

Increasing Re and W e, while maintaining Ca = 0.1, entails a stronger dynamic and steady-state drop elongation, see 
Fig. 22. Based on Figs. 22 and 20a, one finds that for small Re, potentially leading to strong initial drop elongation, a low 
W e ensures that an approximately circular drop shape is maintained. At high W e, the initial drop deformation is large due 
to the initial momentum. For high Re, the lack of viscous straining allows the drop to return to a steady-state ellipsoidal 
shape.

5.3. Effect of Peclet number

Small Pes implies small diffusion time scales for γ . Rapid diffusion of γ reduces both, gradients and magnitudes of γ , 
σ , σc , and σM , which in turn suppresses drop deformation, see Fig. 23b. At steady-state, independently of ζ (not shown), 
drop deformation increases slightly with increasing Pes . For the steady-state, we thus confirm the observation of Lai et al. 
[18] that Pes has an insignificant effect on drop deformation.

5.4. On the choice of constitutive equation and the effect of E and ζ

Variation of elasticity E and surfactant coverage ζ have the same effect when modeling the dependence of σ on γ with 
a linear Langmuir constitutive equation (12). For small ζ , Eq. (10) and Eq. (12) lead to the same results. When modeling 
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Fig. 22. Evolution of degree of circularity for W e = 0.5 (Re = 5) ( − · − · − · ), W e = 1 (Re = 10) ( ), W e = 2 (Re = 20) ( - - - - - - ). Symbols 
indicate E = 0.2, ζ = 0.3.

Fig. 23. Pes = 10: ( ), Pes = 1: ( - - - - - - ), Pes = 0.1: ( − · − · − · ), Pes = 0.01: ( − − − − − ). W e = 1, Re = 10, ζ = 0.6.

σ(γ ) non-linearly, reducing E has a similar effect as increasing W e, the same holds for linear modeling and reduction of 
Eζ . For W e = 1, Re = 10, E = 0.6 and ζ = 0.6 and employing Eq. (10), a harmonically oscillating drop may be observed, 
refer to the discussion of Fig. 21.

6. Concluding remarks

In this paper, we have developed and validated a conservative interface-interaction method for viscous flows with sur-
face tension and insoluble surfactant based on an interface-interaction method of Hu et al. [34]. We employ a level-set 
sharp-interface formulation to include inviscid, viscous, capillary and Marangoni stresses at the interface. Surfactant mass 
conservation is reproduced even for low resolution and severe interface deformation. Embedding the surfactant-conservation 
correction algorithm, originally formulated within a diffuse interface framework, into the sharp-interface framework further 
improves efficiency. Overall we observe a speed-up by a factor of about 2 to 3 compared to a typical diffuse-interface model 
implemented into the same background code. Moreover, we observe error-decay rates for surfactant concentration with 
grid refinement of about 1st to 2nd-order. The simulation results of a thermocapillary flow [62] and drops ascending due 
to a surfactant gradient [64] are in excellent agreement with analytical and experimental data. A single, two-dimensional 
drop in a shear flow is an application demonstration. Our observations are in agreement with previous numerical and ex-
perimental studies. These verification and validation studies demonstrate the robustness and accuracy of the conservative 
interface-interaction model for Marangoni and shear flows.

7. Appendix

7.1. Constructing sub-cell corrected of the interface curvature

Let the radius of the osculating circle at a point on the interface be r. Its curvature, the reciprocal of its radius, k(r) = 1
r , 

equals the principal curvature of the local interface segment. In two-dimensional space the mean curvature is κM (r) = k(r). 
By Taylor-series expansion of κM , one obtains a first-order accurate approximation to the interface curvature

κϒ = κM(r) + dκM(r)

dr
�r + O2 = κM(r) − 1

r2
�r + O2 = κM(r) − κM(r)2�r + O2 . (63)
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Considering that κM(r) may also be negative, Eq. (63) is modified as

κϒ,2d = κM(r + �r) ≈
(
|κM(r)| − κM(r)2�r

)
S(κM(r)) . (64)

In 3D the local mean curvature relates to the radii of the maximal and minimal osculating circles as

κM = 1

2
(k1 + k2) = 1

2

(
1

r1
+ 1

r2

)
. (65)

Assuming an osculating sphere of k1 = k2 = k, Eq. (65) becomes κM(r) = k = 1
r , and it can readily be seen that κϒ,3d = κϒ,2d . 

Note that φi, j,k < 0 corresponds to �r > 0 and vice versa. Generally, the local mean curvature κ(x, t) of the interface is 
obtained from the local level-set according to

κM,2D(φ) = |∇φ|2 tr
(

Hφ

)− (∇φ)T · Hφ · (∇φ)

|∇φ|3 =

=
∂φ
∂x1

2 ∂2φ

∂x2
2

+ ∂φ
∂x2

2 ∂2φ

∂x2
1

− 2 ∂φ
∂x1

∂φ
∂x2

∂2φ
∂x1∂x2(

∂φ
∂x1

2 + ∂φ
∂x2

2)3/2

(66)

in 2D and with

κM,3D(φ) = |∇φ|2 tr
(

Hφ

)− (∇φ)T · Hφ · (∇φ)

2 |∇φ|3 =

=
∂φ
∂x1

2
(

∂2φ

∂x2
2

+ ∂2φ

∂x2
3

)
+ ∂φ

∂x2

2
(

∂2φ

∂x2
1

+ ∂2φ

∂x2
3

)
+ ∂φ

∂x3

2
(

∂2φ

∂x2
1

+ ∂2φ

∂x2
2

)
2
(

∂φ
∂x1

2 + ∂φ
∂x2

2 + ∂φ
∂x3

2)3/2
−

−
2
(

∂φ
∂x1

∂φ
∂x2

∂2φ
∂x1∂x2

+ ∂φ
∂x1

∂φ
∂x3

∂2φ
∂x1∂x3

+ ∂φ
∂x2

∂φ
∂x3

∂2φ
∂x1∂x2

)
2
(

∂φ
∂x1

2 + ∂φ
∂x2

2 + ∂φ
∂x3

2)3/2
,

(67)

in 3D, where tr
(

Hφ

)
denotes the trace of the Hessian of φ.

7.2. Details of the algorithm on extending surfactant off the interface

Within the sharp-interface framework [34], full cells are not cut by the interface. They are determined once per time 
step for advancing the fluid phases, hence, it is unnecessary to compute these separately within the off-interface exten-
sion algorithm, which, in contrast to using a smoothed sign function as e.g. in [31,70], reduces computational costs. The 
numerical approximation of the off-interface extension equation ∂γ

∂τ + nζi ,T
I · ∇γ = 0 , γ (x, τ = 0) = γ0(x) is

γ m+1
[i, j,k] = γ m

[i, j,k] − �τ

⎡⎣ 3∑
β=1

F xβ [γ ]m
[i, j,k]

⎤⎦ , (68)

where F xβ [γ ]m
[i, j,k] = {ni

I,β Dβ [γ ]}[i, j,k] , with β = 1, 2, 3. �τ = 0.5�x is the pseudo-time step size. The differential operator 
is

Dβ [γ ] =

⎧⎪⎪⎨⎪⎪⎩
D−

β [γ ][i, j,k] if nζi
I,β,[i, j,k] > 0

D+
β [γ ][i, j,k] if nζi

I,β,[i, j,k] < 0

0 if nζi
I,β,[i, j,k] = 0

(69)

D− and D+ are approximated with 1st-order biased differences. Twenty pseudo-time iterations guarantee ∇nγ = 0 in 
proximity to the interface.
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7.3. Discrete surfactant concentration transport equation

Within a narrow band around the interface, γ[i, j,k] is advanced in time by

γ n+1
[i, j,k] = γ n

[i, j,k] + �tL[γ ][i, j,k] , (70)

where

L[γ ][i, j,k] = L[γ ]adv
[i, j,k] + L[γ ]di f f

[i, j,k] + L[γ ]evol
[i, j,k] (71)

denotes the numerical flux. The evolution of surfactant due to advection with the interface velocity uI is accounted for by

L[γ ]adv
[i, j,k] = −

⎛⎝ 3∑
β=1

Fxβ [γ ][i, j,k] + γ
[

Dc[uIα]β
]
[i, j,k]

⎞⎠ , (72)

where

F xβ [γ ][i, j,k] = {uI,β Dβ [γ ]}[i, j,k] , β = 1,2,3 (73)

with

Dβ [γ ] =

⎧⎪⎪⎨⎪⎪⎩
D−

β [γ ] if uI,β > 0 ,

D+
β [γ ] if uI,β < 0 ,

0 if uI,β = 0 .

(74)

A 5th-order upwind WENO scheme [71] is employed for Dβ [γ ]. The surface diffusion flux is

L[γ ]di f f
[i, j,k]

1

Pes
{∇2

s γ }[i, j,k] =

= 1

Pes
{�γ (x) −

(
nT

I · ∇γ (x)
)(

∇T · nI

)
− nT

I · Hγ · nI }[i, j,k] =

= 1

Pes

[
∂2γ

∂x2
α

−
(

nI,α
∂γ

∂xα

)
κ −

(
nI,α

∂2γ

∂xα ∂xβ

nI,β

)]
[i, j,k]

≈

≈ 1

Pes

[
D2,c[γ ]α − (nI,α Dc[γ ]α

)
κ − (nI,α Dc[Dc[γ ]α]β nI,β

)]
[i, j,k] .

(75)

Herein, κ = |∇φ|2tr
(

Hφ

)−(∇φ)T ·Hφ ·(∇φ)

|∇φ|3 .

The deformation of the interface entails transport of γ[i, j,k] in the form of

L[γ ]evol
[i, j,k] = {γ ((nI ⊗ nI ) · ∇) · u}[i, j,k] =

= {γ
(

nT
I · (∇u) · nI

)
}[i, j,k] =

= {γ nI,α
∂uα

∂xβ

nI,β}[i, j,k] ≈
≈ {γ nI,α Dc[uα]βnI,β}[i, j,k] ,

(76)

where Dc[uα]β denotes the central approximation to the local derivative of the component uα in direction β , which are 
approximated by a 2nd-order central scheme.

7.4. The influence of the order of spatial differentiation

Surfactant may be transported due to interface evolution, advection and diffusion. The latter has been identified as 
the dominant source for discretization errors, see Sec. 4.1. The first and second derivatives in the numerical surfactant 
surface diffusion flux, i.e. Eq. (75), have been approximated with central finite differences of 2nd-order accuracy. We find 
that increasing the order of difference approximation decreases all three error norms, see Fig. 24. Moreover, except for the 
highest resolution, the convergence rates increase with the order of accuracy.
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Fig. 24. Errors and convergence rates with grid refinement for diffusion of γ along ϒ 2nd-order: ( − − − − − ), 4th-order: ( - - - - - - ), 6th-order:
( − · − · − · ), 8th-order: ( ), Pes = 1, t = 2.

Fig. 25. Interface at t = 5 for grids of �h = �x1 = �x2 with �h1 = 1/32 (red line), �h2 = 1/64 (green line), �h3 = 1/128 (black line) and three different 
surfactant coverages. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

7.5. The influence of grid-refinement on the interface of a single drop in shear flow

The dependence of our results of the flow-problem of a single drop in shear flow is illustrated by visual inspection of 
the interface at three resolutions. We chose grids with �x1 = �x2, that are adaptively refined with a maximum resolution 
of �h1 = 1/32, �h2 = 1/64, �h3 = 1/128. Deformation is found to be most significant for t ≈ 5, see e.g. 5.1. To account for 
the influence of surfactant, ζ is varied; Pes = 1, and a linear dependence of σ on ζ is chosen. Fig. 25 shows that for �h2

and �h3 the interfaces are almost perfectly identical, and results for �h1 differ only insignificantly. Furthermore, our results 
are independent of surfactant concentration.

We note that for other Pes , surfactant constitutive equations, as well as for other parameters discussed in section 5, grid 
refinement does not influence the results.
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