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Abstract

With the growing success of 3D cinema, also 3D TV devices for home cinema have been
on the rise for several years. Yet, the majority of films and TV content historically is shot in
regular 2D, thus providers of e.g. 3D TV channels are lacking content for continuous 3D
broadcasting.
A solution to this issue is to transform the existing 2D films into 3D movies by adding

depth information. This procedure is called 2D to 3D conversion and consists of image
feature extraction, depth map generation, and depth based image rendering, thus creating
a second view from a slightly different viewpoint.
These two views lead to a 3D experience at a human viewer, due to an effect called

binocular disparity. The small horizontal distance between the left and right eye lets us
see two images of a scene that are slightly different, as coming from different angles. The
displacements of the perceived objects is directly related to the distance.
Yet, humans can also estimate the depth of a scene when viewing a single 2D image, by

utilizing various so calledmonocular depth cues, relations of objects and semantic features
in the image, from which humans can extrapolate the depth relying on their experience.
A number of these cues can also be analyzed computationally, and a depth estimation can

be created, yet with considerable variance in terms of quality and computational efficiency.
Existing state of the art 2D to 3D conversion systems often aim at very different goals,
varying from complex and costly human-interaction based systems for ultra high quality
solutions for 3D cinema to real-time conversion systems built in current 3D TV devices,
which can cause headache and sickness at the watcher after a short period of time.
Both variants are not perfect for providers, that wish to convert 2D films to 3D for broad-

casting, etc., as the first variant is too expensive, and the second suffers from too low quality.
Hence, the challenge is to create a fully automatic conversion system, which delivers con-
siderable quality at proper computational speed.
In this thesis, I tackle three subtasks of the task of the problem field of 2D to 3D conver-

sion. First I provide a concept for exhaustive image analysis. Its root consists of a novel
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image segmentation algorithm named SISeg, that is based on the principles of Swarm In-
telligence, making use of analogies from the biological phenomenon of self-assembly.
Second, I present a new contour tracking algorithm, which is called I-BRIEF. Therefore

the very efficient BRIEF interest point descriptor and matching algorithm is extended to
describe and match contour features.
Third I introduce a lightweight as proof of example for 2D to 3D conversion, which aims

on delivering results of proper quality fully automatic, with high computational efficiency.
All three algorithms are evaluated on using corresponding benchmarks and compared to

approaches from the literature, and their quality and computational performance are dis-
cussed. All three approaches deliver benchmark results of firm quality, at a considerably
high computational performance.
The results show, that utilizing Swarm Intelligence, and especially the principle of self-

assembly is well suited to the problem of image segmentation and analysis. Further, the
thesis illustrates, that an efficient image and image sequence analysis is a key factor to
allow for an efficient depth map generation and 2D to 3D conversion.
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Chapter 1.

Introduction

Creating three-dimensional impressions in films has been a desire of filmmakers, just almost
as old as the invention of film itself. In 1890, the first, yet impracticable system for 3D Films
was patented by British film pioneer William Friese-Greene. The earliest confirmed 3D
film shown to a public audience was “The Power of Love”, in 1922. However, due to the
enormous technical challenges and the accompanying issues in quality of experience, 3D
films led rather a niche existence in its first hundred years.

In the beginning of the 21st century, 3D found its way to mainstream productions, as devel-
opments in hardware and software made it more and more applicable.

In 2009 a global hype for 3D technology was started by James Cameron’s movie “Avatar”,
which is up to now the most successful movie of all time. Highly successful 3D productions
succeeded, e.g. “Transformers 3” in 2011, “Gravity” in 2013, the “Avengers” movies, and
“Jurassic World” in 2015. It seemingly starts to become almost the norm in Hollywood to
release movies, when it comes to blockbuster action productions or also animated movies.

As a coupled development, 3D TV surged into the home cinema market in the last decade
and has nowadays become a standard feature in almost any device. In course of this, pay
TV providers started to offer 3D channels for these devices.

However, as the vast majority of cinematic content produced in the last 100 years, is avail-
able in 2D only, providers of 3D TV channels are lacking content to fill the program slots.
Thus there exists a high interest in ways of adding depth to 2D films subsequently, which
also allows studios to convert their movies into 3D for theatrical, or DVD-re release. Such
a procedure is generally called 2D to 3D conversion.
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Chapter 1. Introduction

1.1. 2D to 3D Conversion

We humans perceive depth via the so-called binocular disparity. This means, that there is
a small horizontal distance between our left and right eye, which causes the left eye to see
the scene from a slightly different position than the right eye. Within these two “images”
of the two eyes, all object are slightly translated, relative to each other, the disparity. This
effect is depth dependent, the closer objects are to the eye, the more they are shifted to
each other between the two views. The human brain can estimate the depth of all objects
in the scene out of their shifts.

When creating new 3D movie content, a stereo camera system is regularly used, in which
the two cameras horizontally spaced to each other film the scene, thus imitating the human
eyes. This effect - also called stereopsis, or in case the eyes, or respectively cameras are
not parallel but turned towards each other, convergence - displays a so-called binocular
depth cue.

1.1.1. Monocular Depth Cues

Out of our experiences in the 3D world, we humans can also imagine the depth in scenes,
which we see as two-dimensional images or image sequences, where the displacement
between the two views logically cannot take effect.

In this case, the human brain estimates the depth of a scene via so-calledmonocular depth
cues. These cues display knowledge, or respectively patterns, that we humans learned,
which allow us to connect a perceived two-dimensional scene with a depth estimation.

Computational 2D to 3D conversion systems seek to utilize one or several of these depth
cues to estimate the depth in a 2D image. The most prominent monocular depth cues are
shortly introduced in the following. Further examples approaches are given for the cues.
For further information on literature, please also refer to section 5.1.

Linear perspective An image is the results of a perspective projection of the 3D world.
Perspective projection holds the property, that, depending on the viewpoint, parallel lines
converge at infinity, at the so-called vanishing points, out of which one can extract the po-
sitioning of objects in space. The assumption of parallel lines, the Vanishing lines makes
this depth cue prevalent in man-made environments, like houses, railroad tracks, etc. That
is why this cue is also called depth from geometry. Example implementations can be found
in e.g. [133, 110].

2



1.1. 2D to 3D Conversion

Size of objects There are several variants of cues concerning the depth ob objects. First,
humans know the size of a broad range of objects and from the size of such objects in their
retinal image, humans can deduce the distance to the object. This cue is called absolute
size of objects.

Second, we can recognize two identical or similar objects in a scene, e.g. two trees, and
from the size relative to each other, we can conclude their relative depth between them.
This cue thus relies on the relative size.

These cues strongly depend on reliable recognition of objects, plus knowledge on their
sizes. These necessary steps makes the cues very complex to obtain in computational
depth estimation systems. See [84, 99] for example approaches.

Atmospheric scattering This cue, also called Aerial perspective, relates to the fact, that,
due to the light scattering in the atmosphere, caused by small particles in the air, objects
in a great distance appear hazy and with low contrast or color saturation. Together with
knowledge of color heuristics of certain scenes, this is used to decide on depth estimation,
for example in scene of distant mountains. To do so, a certain colors and color saturation
is assigned a specific depth. Logically, this cue only holds for scenes, that hold a large
amount of depth. This cue is implemented in [80].

Occlusion/overlapping An object, which occludes another object is perceived as being
closer to the viewer than the other one. To decide, which object is the closer “occluding”
one, the regularity of the two boundaries is considered. This prerequisites that the more
distant objects is not fully occluded. For implementations see [47, 5].

Defocus and blur If an image or film is focused on an object of a specific distance, other
objects become more and more blurred, depending on how far away they are from the dis-
tance of the object in focus. Analyzing the amount of blur on object borders, one can thus
establish a relative depth map between the objects. To achieve depth estimates, the as-
sumption that the object in focus is close to the object and thus increasing blur resembles
growing distance, is often taken. Yet this assumption does not necessarily hold. Further,
the image of film must be shot with a considerably shallow depth of field, in order to have
a significant amount of blur in the defocused areas. See [135, 79, 44] for example imple-
mentations.

Texture gradient Eyes can recognize the fine details of textured objects easier if they are
nearby. The texture gets weaker if the same object is farther away from the viewpoint, which
gives a sense of depth. Examples are the perceptibility of bricks in a wall, or paving stones.
To a certain degree, this cue is related to depth from geometry. [70] relies on this cue.

3



Chapter 1. Introduction

Elevation, relative height Humans estimate objects that are close to the bottom of an im-
age as close, and objects which are near the horizon as distant. This corresponds to the
majority of perceived scenes, which base on a horizontal ground perceived from a parallel
viewpoint, which hits the horizon in some point. Simple computational approaches to 2D
to 3D conversion therefore use a so-called ramp, i.e. a horizontal ground plane, as this as-
sumption fits many scenes. Often, this ground plane is then simply adjusted to the detected
segments in the scene by adding depth jumps at top borders of objects, thus “erecting” the
segments from the ground plane. Nevertheless, the assumption of connecting image height
to depth causes misleading depth assignments in most typical film-shots other than outside
scenes, like e.g. close-ups. The method introduced in [83] utilizes the relative height cue
along with machine learning.

Statistical patterns The simplest approach to depth cues descending from statistical pat-
terns, are certain color heuristics. The best example is the color of the sky, as he sky can
always be regarded as of infinite distance. While there are more color based heuristics,
that can guide a simple classification, like grass and trees, skin color, roads, water, etc., a
connection to a depth statement is not that straight-forward or reliable for those. Also the
sky-depth relation can possibly lead to false depth assignments, in cases, where there is
only a reflection of the sky in a window.

A further color-based approach is closely linked to atmospheric scattering and bases upon
the fact, that via atmospheric scattering objects with “cool” colors, like blue and violet appear
to be distant, compared to objects with “warm” colors, like red and yellow. Yet, such a
link between colors and depth is very weak, holding mainly in scenes with e.g. far away
mountains. For example implementations see [112, 115]

In the recent years,machine learning algorithms have evolved to constitute a special variant
of obtaining depth maps via statistical patterns. Approaches in this field utilize a database
containing images plus ground truth depth. Any image is then analyzed, and visual pat-
terns that optically resemble patterns from the database images, are assigned with a simi-
lar depth. These approaches thus do no depend on predefined models, or cues, but learn
data-driven models instead. The variety of approaches arises from the choice of input fea-
tures on the one hand, and learning algorithms on the other hand [90, 53, 52]. Besides that,
machine learning algorithms are also used as a smart way to fuse depth cues.

In case of image sequences, there exist further depth cues, which seeks to especially uti-
lize the depth information descending from all appearing differences between consecutive
images.
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Motion parallax This cue relies on the circumstance, that object closer to the viewpoint
appear to move faster in the image, than objects further away. Thus, from the perceived
object movement in the scene, but also from the relative displacement of still objects per-
ceived from a moving viewpoint, one can assign a depth to the scene. Of course, this cue
inherits the assumption, that all objects in the scene move with a similar speed and it pre-
requisites movement of either the scene or the camera. The approach in [23] is based on
motion parallax.

Depth from motion This cue holds, when a rigid object moves towards - or away from -
the viewpoint. Out of the object’s “scaling” in the image, its change of size, humans can
estimate its depth.

Structure from Motion When rigid objects, still scene and moving camera, Structure from
Motion (SfM) algorithms allow to calculate simultaneously the three-dimensional positions
of feature points and the three-dimensional movement of the camera. Besides the com-
putational expense, the major drawbacks of SfM are the prerequisite to the scene being
static, and the constraints to the camera movement. The movement must inherit some
displacement, still cameras, pure rotational movements, or zoom are not sufficient.

Besides utilizing motion based depth cues, the information obtained via the time dimension
can also be employed to increase the robustness and accuracy by fusing the consecutive
single image depth maps. An overview on depth cues and 3D reconstruction can be found
in e.g. [125, 39, 111].

1.1.2. Modules of a 2D to 3D Conversion System

Just as the human brain, any computational system designed to calculate the depth in 2D
images or image sequences will rely on a subset of the depth cues introduced in 1.1.1.
Fig. 1.1 shows the modules, such a system consists of, which at the same time display the
necessary steps to be taken, to obtain stereo images from a single image.

Image and video analysis As stated above, all monocular depth cues require specific in-
put. Examples are, region colors, objects’ appearance, or segment shapes. Thus, image
segmentation represents the major pre-processing step necessary to utilize these depth
cues. Further cues rely on Further straight lines, or texture features, etc., which relies on
further image analysis step additionally to image segmentation.

In case of image sequences, or respectively of motion based cues, such pre-processing
usually consists estimating the differences, the movement of objects between frames. Such
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Figure 1.1.: This figure shows the modules and the procedural steps in 2D to 3D conversion. Input images
“tsukuba” taken from [101]

estimation techniques consist of e.g. optical flow plus clustering or classification of displace-
ment vectors. Alternatively, tracking techniques can be utilized.

Depth map generation A depth map is typically a 1-channel image of the same size as
the input image (unless scaled for processing-specific reasons). The estimated depth of all
pixels in the scene is mapped to a greyscale value, usually in 8 bit, i.e. between 0 and 255.
The encoding can be arbitrary, such that either dark pixels mean far depth and white pixels
are near, or vice versa.

The depth cues do not necessarily deliver an absolute estimation of depth, but a relative
estimation of depth distance between objects or regions in the scene. Therefore, some
mapping function must transfer the cues results to absolute depths.

As many depth cues deliver only sparse depth estimations, a further step represents calcu-
lating dense depths from these sparse estimations.

Each depth cue relies on specific assumptions about the input image, the displayed scene,
which shall be interpreted. Because of these assumptions, there is always a range of
scenes, where a cue is not applicable and reliable. To overcome these drawback of each

6



1.1. 2D to 3D Conversion

single depth cue, several cues are often combined to a final depth map. Combinations have
been realized in various ways, also dynamically, or via learning algorithms.

Depth image based rendering (DIBR) The final step of 2D to 3D conversion displays the
creation of the second view. Therefore, a virtual second viewpoint is defined and all objects
in the scene are displaced, i.e. horizontally shifted, corresponding to the depth map created
before. The appearance of all objects, their color and texture, is extracted from the original
image. The shift creates “holes” in the new view, as areas in the scene become visible,
which cannot be seen in the original image, and are thus unknown and must be estimated.
This task is usually called hole-filling or inpainting.

While these are the major modules for 2D to 3D conversion, there are usually further steps
necessary to obtain convenient 3D experiences in films. One example would be the de-
cision on the final depth assignment in scenes, which again depends on the display used
(film theaters or 3D TV). These steps are considered as outside of the scope of this work.
Interested readers may refer to [108] for further information.

Also, approaches in literature, often separate the two tasks, the depth map generation and
the rendering of a second view, tackling either the one or the other problem. As stated
above, both have tasks include a variety of issues to be solved by themselves. Also solutions
of both tasks can be arbitrarily combined, which makes a separation reasonable. Also this
thesis focuses on the first task, depth map generation, concentrating on the pre-processing
step.

1.1.3. The Perfect 2D to 3D Conversion System

A perfect 2D to 3D conversion system therefore must simply always calculate the perfect
depth map, and render perfect additional virtual views. This perfect system must

• be as generic, resp. adaptive, flexible as possible, i.e. be able to tackle any given
scenario.

• provide accurate high-quality results, in terms of object segmentation, assigned depth,
and rendering of the additional views.

• be robust, e.g. to weaknesses in image capturing, sub-optimal lightning conditions,
blur descending from motion or defocus, etc.

• be fast, i.e. have a low computation time. All of the three major tasks necessary for 2D
to 3D conversion, image and video pre-processing, depth map generation, rendering
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additional views, are are of high complexity. Algorithms to tackle these tasks thus
often include computationally expensive steps, like optimization, iterations, numerical
solutions etc.

• preferably be cheap - or at least optimizable in resource consumption. A lot of time
consumption can be minimized by using multi-platform computation e.g. server-farms,
resp. cloud based computing, or hardware accelerated, GPU-based computation or
parallelization, multi-threading.

1.2. Classificaton of Converson Systems

The perfect conversion system described above would unite all typical quality and efficiency
goals, which are always pursued in any software development to a certain extend, but with
varying focus. In the field of 2D to 3D conversion, it is interesting to see, that there is a clear
focus on the two extremes. In the following, I will describe a rough classification of existing
conversion approaches.

1.2.1. High Quality versus High-Speed

Technically, existing conversion systems can be broadly classified into manual, semi-
automatic, completely automatic approaches. Likewise, there are two major opposing di-
rections, into which the most approaches in literature can be classified. These directions
also imply their main field of application. Fig. 1.2 shows the classification of conversion
approaches and how they are connected to the field of application.

Automatic Real-Time Conversion

The first extremum, which many approaches focus on, displays the group of real-time con-
version approaches. One can find these directly implemented into 3D TV devices, or as
TV-set-top boxes, which allows watch original 2D content directly in 3D. These approaches
work logically completely automatic. To achieve real-time conversion including the render-
ing of a second view, these solutions rely on very simple conversion models and algorithms
(including hardware optimization) and deliver only a low quality experience. To achieve
such a low computation time, they usually utilize only one or two very simple depth estima-
tion models. In many 3D TV included conversions, a ramp is matched into an image, thus
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Figure 1.2.: Classification of 2D to 3D conversion approaches and the relation to their application fields. The
scheme follows the classification in [108] .

utilizing the relative height-cue in the way mentioned in section 1.1.1 [115, 129]. Addition-
ally, a simple and rough object segmentation is merely used to enforce discontinuities in
the depth map at object borders, leading to such objects being slightly “upstanding” com-
pared their background, and thus to a 3D effect. In some approaches, these depth maps
are combined with very simple additional depth maps calculated from motion parallax [23].
To increase computational efficiency for the segmentation of motion tracking step, 3D TV
conversions often use input existing from e.g. the MPEG [50] or H.264 [91] encoding, like
motion vectors. While such concepts can deceit the watcher for the first few minutes, their
main drawback is, that they create depth maps, which all base on the same height-depth
view, and are thus extremely wrong in a lot of situations.

Summing up, real-time can be regarded as a fun applications, but they do not provide con-
venient experience for more than few minutes, like watching a complete movie. Actually
these very simple real time systems cause headaches or sickness to many viewers after
longer consumption [108].

Manual Conversion

The opposing end on the range of conversion approaches depicts high quality conversion,
on highest quality used for 3D movies. Actually, even the production of 3D films does not
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exclusively shoot all scenes with stereo camera setups, but also relies heavily on 2D to 3D
conversion of 2D footage in post-processing for various feasibility reasons.

High end 2D to 3D conversion is still a process with high human involvement, which makes
it time-consuming and expensive, further the human operator has to be an expert to obtain
high quality results.

Corresponding to the already mentioned modules of conversion, the first step in manual
conversion is the rotoscoping. This term denotes the segmentation of all relevant objects,
or respectively fragments, that are important for modeling the 3D scene. For image se-
quences, rotoscoping must be executed frame by frame and all objects and fragments need
to be consistent over all frames. Besides the consistency, the exactness of the object bor-
ders displays a further quality criterion. This is the reason, why manual rotoscoping being
a very time-consuming process [108].

Second, the depth of all the objects in the scene has to be carefully assigned to all ob-
jects in the scene, and of course the background. This step is sometimes also called “3D-
compositing”. A simple approach create a disparity map is to shift all rotoscoped objects in
the scene. Yet this can cause objects in the scene to appear as flat segments. Depending
on the desired quality and the complexity of the objects, the objects themselves also have
to be modeled in 3D, which is called “internal object depth”. Dealing with transparent and
semi-transparent surfaces represents an additional difficult task [108].

The final step is logically the manual DIBR. Themost complex task within this represents the
hole filling. Compared to a machine, a human operator is better capable of estimating, what
an area of a hole will most probably look like. Contrary to that, filling, i.e. in-painting such
hole manually is again a very time consuming for humans, especially when high quality is
desired.

In the article “2D to 3D Conversions” in his blog “Effects Corner”, the famous visual ef-
fects expert Scott Squires gives the following e.g. states, that in the 3D released movie
“Transformers 3”, 77 minutes of the overall 156 minutes run-time were created by 2D to 3D
conversion techniques, which is almost half of it. The remaining 79 minutes of film were
made up of “true” stereo-shot scenes and entirely virtually composed scenes. The overall
process of manual 2D to 3D conversion took 4-5 months. This shows the huge amount
of effort to be taken in manual high-end editing, which till date only a limited number of
specialized companies offer world-wide.
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Offline and Semi-Automatic Conversion

Approaches, that position in the wide range between the two extremes mentioned above,
can be classified into offline and semi-automatic conversion.

The distinction between real-time and offline automatic conversion techniques is of course
floating, as - depending on their complexity - offline techniquesmight potentially be executed
in real-time, if sufficient computational power is invested. However, the major difference lies
in the goal of the approaches, that is primarily achieving reasonable quality, with less focus
on computational complexity or run-time.

In a high quality range, semi-automatic approaches often aim to assist the manual conver-
sion process, in order to make it more time efficient. They engage in one of the three
consecutive tasks in the conversion work flow, either requiring human input as starting
points, or delivering an initial result, which can be refined and corrected by humans, or
both [124]. For the latter case, logically any automatic algorithm’s output can be utilized via
post-processing steps. Generally speaking, semi-automatic approaches seek to automa-
tize the time-consuming steps, while the difficult - and quality-boosting - decisions are left
to the human operator

There exists a huge number of algorithms for the segmentation task. In case of image
sequences with none or compensated camera motion, objects can be computationally seg-
mented via background subtraction. Therefore the background must be statistically mod-
eled, via e.g. Gaussian Mixture Models, Kernel Density Estimation, or Optical Flow-based
techniques.

Single image segmentation algorithms mostly rely on concepts like clustering, graph the-
ory, edge-, contour-, or texture recognition, or statistical methods, as well as learning-based
classification. To achieve high quality, many image segmentation approaches require man-
ual input in terms of coarse marking of the segments. Active contour algorithms are one
example, which iteratively fit the contours the exact object boundaries, starting from given
starting points. The two segmentation approaches can also be combined to achieve a
further quality boost in term of consistency. Section 3.1 provides examples for different
segmentation approaches in literature.

To create reliable 3D or depth assignment, (semi-)automatic algorithms logically utilize
the depth cues introduced above, either monocular or binocular cues, or both. Basically,
approaches vary in the choice of cue they rely on, the way they create the input into the
cues, and also in the way, the create their final dense depth maps out of the cues.
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As already mentioned, no cue is universally applicable, but dependent on the scene. There-
fore, combining them can deliver a proper quality boost. A large number of solutions in
literature concern themselves with the combinations of depth cues to enrich the quality of
the final depth map. A variety of fusion algorithms were applied to this topic, from adap-
tive, weighted sums, via statistic-based fusions, to machine learning approaches. Also they
choice of cues to be combined influences the results, which in the end leads to a number
of variants for automatic 2D to 3D conversion.

Automatic and semi-automatic approaches can execute the basic part of the DIBR task,
i.e. shifting the objects and mapping their texture, leading to significant work speed im-
provements. Tackling the hole-filling problem represents a way higher barrier for automatic
approaches and is thus subject to vivid research, with methods based on image completion,
inpainting, occlusion-filling, etc. The main difficulty is, that the hole must be filled with an
estimation of the texture of the background only, and the borders of the foreground object
need to stay persistent. This is why for example simple interpolation of foreground and back-
ground leads to results, which are uncomfortable for the viewer, as the foreground-object’s
boundaries are blurry, and also not fitting the object’s boundaries in the depth dimension.
Automatic approaches thus not only need to estimate the appearance of the background,
they also need to estimate, which region around a hole belongs to background, which de-
notes two highly sophisticated subtasks.

All approaches to be found in literature are naturally positioned somewhere between these
two extremes. Yet one can categorize all approaches into optimizing into one of these two
directions. Therefore, the approaches cluster a lot around these two ends, with rather spare
variants, which seek to optimize both aspects, the quality and the computational efficiency.

Thus, the key challenge is to establish a conversion, that is both automatic, fast, and of
considerable quality.

1.2.2. Problems and Limitations

Estimating the depth information from a 2D image or image sequence computationally rep-
resents a complex and challenging task for a number of very general reasons.

Manifold scenarios The variance of scenarios and situations filmed can basically be re-
garded as infinitely high. Accordingly, estimating the 3D structure in all situations becomes
infinitely complex, or even close to impossible. Examples are surrealistic scenes, or also
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simply a white wall without any texture or features to be extracted. Naturally, such scenes
cannot fulfill the prerequisites of any depth cue.

Image and video pre-processing As explained above, depth cues rely on various pre-
processing steps. Some need appearance of regions, others straight lines, in some cases
point like features are used, or also flow features. Image processing steps. e.g. segmen-
tation itself is still a task that cannot be regarded as solved perfectly for all possible situa-
tions. The difficulty of the segmentation problem becomes evident over the fact, that not
even ground truth is uniquely identifiable. Two persons usually have two different opinions
on the ground truth segmentation of the same scene.

Limiting assumptions As already stated, any depth cue is based on certain model as-
sumptions. Depending on the scenario, any assumptions can logically fail. For example,
the depth from geometry expects the viewed objects to contain surfaces rectangular to each
other, which does not need to be the case. Also not every blue color in a scene will be sky,
and also the sky is not always blue. Prior knowledge, for example, the known size of objects
can also be mislead by the perspective. One can find such limits easily for the assumptions
of any cue.

1.3. Formulation of Research Problem

As stated above, approaches to 2D to 3D conversion found in literature usually tend more
or less to two opposing directions. They either focus on high-quality but costly and com-
plex solutions, often involving human interactions, or on automatic real time solutions of
expendable quality. Or they focus on computation speed, delivering output not satisfactory
for 3D experience over a longer time. Establishing a sufficiently fast automatic system that
achieves a certain quality level needs the combination of several depth cues, aiming on the
goal, that some cues can compensate the weaknesses of other in certain situations, and
vice versa.

As already mentioned, the difference between the approaches from literature exists in the
way they create the input into the cues, and calculate their models, as well as the way, they
combine their results to a final depth map.

To allow for flexible combination of cues, one needs an image and image sequence analysis
concept, which is of preferably holistic nature.

As the different cues rely on various pre-processing input, such a module has to deliver
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• position, appearance and shape information of segmented regions,

• the shape of edges, or respectively region/object borders,

• position, length, and strength of straight lines,

• feature points,

• movement, or respectively tracking information,

to serve many cues at the same time.

In this thesis I focus on the task of creating an overall image analysis, which can serve
the varying input to different depth cues for a 2D to 3D conversion system. Such an image
analysis must extract the different types of image information in such way, that the types can
connected and also semantically related to each other. In this way, the image analysis would
allow for going from sparse to dense complete-pixel results. As many depth cues deliver
only sparse estimations, this represents another important step to obtain depth maps.

To establish such an image segmentation, which is at the same time fast and robust while
delivering considerable quality, I investigate the principles of Swarm Intelligence Swarm
Intelligence (SI). Algorithms based on SI principles have been discovered to be efficient
and gracefully degrading alternatives to classical approaches over a wide field of applica-
tions. Their distributed nature often greatly simplifies approaches compared to complex
centralized concepts. This feature provides the computational efficiency, further it makes
SI algorithms well-suited for optimization techniques, such as parallelization, GPU based
programming, etc.

To obtain movement information, I investigate a way to extend the matching between con-
secutive frames from feature point-based to complete edges and segments borders of arbi-
trary shape. This allows for a denser movement information extraction and easier coupling
to the segments extracted in the image analysis step. The additional goal is to create an
algorithm, which performs this tasks both fast and robust.

Generally many approaches in literature seek to create depth maps only, omitting the create
of the additional views as extra standalone-tasks. Also in this thesis I focus on the depth
cues and their input. An example for a light-weight 2D to 3D conversion concept is given in
the end, which obtains high computational speed via adaptive weighting of depth cues.
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1.4. Contributions

In the course of this thesis, I created novel and promising concepts and solutions to the
major tasks of 2D to 3D conversion. These are mentioned below.

1. I developed a unifying image analysis concept, which delivers region-based, edge-
based and point-based feature-representations of an image. Utilizing the principles of
Swarm Intelligence, this concept efficiently delivers the main input needed for the 2D
to 3D conversion step, yet facilitates a variety of other usage.

To the best of my knowledge, the SI-based image segmentation algorithm introduced
in this work is in this form a completely new realization of the SI-principles. It bases
mainly on the biological phenomenon of self-assembly. As part of its description, I also
relate its concepts to the various SI-principles.

2. Additionally, I present a novel matching concept and a matching strategy, which is
specifically tailored to the information extracted by the image analysis tool mentioned
above, and allows for finding dense correspondences in consecutive images at low
computational time. While being applied to the image analysis and matching concepts
introduced here are thus appropriate for a variety of typical tasks in image processing
and computer vision, like 2D-Matching and Object Tracking, etc.

3. Furthermore, I present an efficient automatic 2D to 3D conversion approach for the
fusion of various depth cues to a reliable depth map. The approach delivers depth
maps via an adaptive weighting scheme of the single cue outputs that is based on
confidence measures. It exceeds the quality of real-time conversion systems in terms
of correctness on a variability of input scenes and quality of details, while maintaining
a considerably low computational complexity.

1.5. Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2, describes the general idea
and principles of Swarm Intelligence, along with some prominent examples of algorithms
from this field.

In Chapter 3 I introduce the Swarm Intelligence based algorithm for image segmentation,
analysis and feature extraction, which I call SISeg.
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In Chapter 4 I derive the IBRIEF algorithm for describing and matching arbitrary edges,
which adapts the BRIEF point feature descriptor.

After that, in Chapter 5 I showcase an adaptive scene analysis and depth-cue fusionmethod
as a solution to the task of 2D to 3D conversion, which utilizes the outcomes of the image
sequence analysis introduced in the previous chapters.

Chapter 6 evaluates the quality and the computational performance of the algorithms intro-
duced in the chapters 3, 4 and 5, including a comparison to the competing algorithms in its
field.

Chapter 7 gives a short summary and concludes this thesis.
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Chapter 2.

Background on Swarm Intelligence

In artificial systems, the term Swarm Intelligence describes a special variant in the field of
artificial intelligence. It can be regarded as a special variant of multi-agent systems [13].

The main inspiration of artificial Swarm Intelligence is the nature itself, like bird flocks, fish
school, different types of social insects, like ants, bees, wasps, and termites, or even bac-
teria. For centuries, scientist have been fascinated by the complex structures of bee and
wasps hives or termite nests, as well as the cooperative movement of animals and the co-
active foraging of e.g. ants. Scientific observations implied that, while achieving highly
organized patterns, these swarm phenomena are not led by a centralized control. Instead,
simple agents interact locally with their neighbors, all following a set of rules. The basic
underlying assumption of cooperative rule-based behavior is that a single agent observes
its nearby environment, reacts on stimuli of the environment according to a simple “plan”
which it follows, and thereby changes its environment to a certain degree. This change
again induces reactions in other agents nearby - interactions -, which again leads to further
environment changes.

A proper design of such interaction schemes can lead to complex problem solving. This
phenomenon is called emergence. While, as stated above, social animals are the main
inspiration of Swarm Intelligence, one can observe swarm behavior even among groups of
humans, e.g. when they self-organize their movement into paths in crowded places.

One of the main advantages of this approach, i.e. of modeling complex processes by dis-
tributed locally interacting units can significantly simplify these processes of any kind, com-
pared to a centralized control. In his popular science book [37], Len Fisher gives an illustra-
tive example of this statement, using the following fictional scenario. Imagine an alien would
visit earth for the first time and hover over a big football stadium with its spaceship. Further
imagine, that right in this moment, the audience in the stadium would conduct the ”mexi-
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can wave”. To an alien watching from above, the stadium might appear like a huge single
creature, that coordinatedly moves its 70000 tentacles, which would constitute a very com-
plex procedure for a single centralized control instance. In contrast, the 70000 autonomous
agents - the audience - mainly must follow one simple basic rule:

If the person on your left stands up, rises his arms and sits down again, stand up,
raise your arms and sit down again.

This shows, how local rules and interaction can simplify, what would be considered a very
complex process from outside.

The first appearance of the term “Swarm Intelligence” in a technical context, was by Beni and
Wang [9], who applied SI in context of cellular robotic systems. They utilized several simple
agents, self-organized by nearest-neighbor interactions, to build patterns in a one-, two, or
three-dimensional environment. Since then researchers utilized the principles on various
applications, e.g. motion-planning and cooperate task-solving of multi-robot systems [95],
and used them for for optimization, and data analysis problems [130].

The distributed cooperative design of SI algorithms leads to implementations, which are
robust and adaptive to changes of the problem space.

In the following section, I present the theoretical background of Swarm Intelligence by il-
lustrating its major basic principles along with examples of their respective verification in
animal societies.

Afterwards, I give a rough overview on most popular existing Swarm Intelligence algorithms
and then review various applications of these algorithms, with a special focus on image
processing- and computer vision-related topics.

2.1. Principles of Swarm Intelligence

In this section an overview over the most prominent characteristics of Swarm Intelligence
is given. As Swarm Intelligence is directly inspired by biological phenomena, I will describe
each of the principles following below along with examples occurring in nature, i.e. in social
animals. For the sake of legibility, I will not specify the exact names of the respective insect
species, in which the phenomena described below occur. Instead I will give suggestions of
further reading material, in which also the biological names can be found.
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2.1.1. Self Organization

The term Self Organization originally descends from chemistry and physics and was used
to describe the emergence of macroscopic patterns from microscopic processes. In terms
of social insects or animals, Self-Organization constitutes “a set of dynamical mechanisms
whereby structures appear at global level of a system from interactions among its lower-level
components.” [13] and is thus the most essential principle. To achieve a self-organizing
emergent system, four basic notions are

• Positive feedback, which forces the establishment of structures, when nearby agents
amplify the best solution of a neighbor. It is often observed in recruitment and rein-
forcement. An illustrative example in nature is the foraging, i.e. the exploration of food
sources and the collective transport of the food to the ants’ nest. When an ant lies
a pheromone trail to the position of some prey or food source, which attracts further
ants, which again drop pheromones.

• Negative feedback, which counterbalances the positive feedback. This often comes in
form of a certain saturation or exhaustion and helps to establish stable structures after
a exploration phase. Continuing the example above, if a the food source decreases
over time and is depleted, less agents will be recruited, making way for discovering
new sources eventually.

• Fluctuations, which introduce some amount randomness into the behavior of agents.
In the ant example, this would at first glance mean, that an ant gets lost on the way to
the food source. However, this helps to properly explore the search space, as a lost
ant can happen to explore another food source. In terms of optimization algorithms,
randomness is one of the key mechanisms to overcome local minima.

• Multiple interactions between the agents, which all examples of Self Organization in-
here. While food in the foraging example might theoretically also be gathered by a
single ant, the process of iteratively forcing each other mutually to transport the food
makes the foraging effective and fast.

2.1.2. Communication and Stigmergy

As mentioned above, interactions between agents are a key feature in Self Organization,
or respectively in Swarm Intelligence. There are two basic types of interactions: direct and
indirect.
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In nature, direct interactions between agents happen via e.g. visual, sonic, chemical, by
mandibular contact, trophallaxis, or antennation. Contrary to that, indirect interaction hap-
pens via the environment, i.e. when one agent changes it, and the next agent reacts to the
change. This mechanism is called Stigmergy. In terms of the foraging example from the
section above, the ants communicate indirectly via the environment by dropping pheromone
trails to describe the way between the food source and the nest. Other ants can “read” the
pheromone information and follow the trail.

2.1.3. Self-Assembly

Besides the already mentioned principles, which can explain phenomena of collective ac-
tivities, like nest-construction, cooperative foraging, and collective decision making, Self-
Assembly denotes a further special behavior in social insect societies. In some situations,
insects build physical structures by grouping together and linking to each other.

These structures, called “self-assemblages”, are stated to be “intermediate”, as they do
neither occur on the level of a colony, nor on that of a single individual, but in between, i.e. in
subgroups of insects [3]. It follows, that within a colony or swarm, several self-assemblages
can occur simultaneously, and not necessarily all individuals of a colony must participate
within.

Insects like ants, bees and wasps connect themselves in structures for various purposes.
For example, ants can build bridges and ladders to overcome gaps, or plugs to block entries
to their nests in defense situations. Other species build living walls of defense. For survival
purposes, when a nest is flooded by heavy rain, insects link together forming a living raft
used to carry their brood and their queen.

As an example of a utilization of self-assemblies in technical applications, [126] published an
implementation of swarm-robots, which cooperatively build three-dimensional structures.

2.2. Swarm Intelligence Algorithms

After presenting the general principles along with examples from nature, this section shall
give a insight on how these mechanisms can be successfully applied in algorithms and ap-
plications in the field of Computer Science. Therefore, I will introduce some of the most well-
known state-of-the-art swarm-intelligence algorithms, along with remarkable areas, where
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they have been applied, like optimization, communication networks, simulations, coopera-
tive robotics.

The common ground of SI algorithms is, that they always follow the principles introduced
above to some degree i.e. being decentralized and interacting autonomous agents guided
by simple local rules. The big difference between them lies in the realization of these prin-
ciples. This again is closely connected to the biological phenomenon they are based on.
Yet, it has to be mentioned here, that not all SI algorithms are modeled after a distinct nat-
ural prototype. The following listing gives an overview on the most known optimization SI
algorithms, with a short view on the different realizations.

While the first of the example algorithms represents Swarm Behavior rather than Swarm
Intelligence and descends from the field of multi-agent-modeling or multi-agent-simulation
(e.g. for computer graphics), the rest of the given examples are optimization algorithms.

• The BOIDS algorithm [94] realistically simulates the movement of a bird swarm, where
each virtual bird follows three simple movement rules in each step, that align each
agent’s position and velocity to the swarm. The swarm behavior emerges naturally
from this, without centralized control. Methods of this kind were applied to crowd sim-
ulation experiments, computer games and movies, like Batman Returns or the Lord of
the Rings-Trilogy to create realistic mass scenes.

• In the Particle Swarm Optimization (PSO) [54] particles move through a search space,
and check and compare their candidate solutions, which in turn influences their move-
ment. They are thus guided by solutions of others (broadcast-type communication)
and their own best solution (memory). With no explicit function derivation of the search
space needed, PSO has proven to be an efficient solution to a variety of problems.

• The Ant Colony Optimization (ACO), introduced by Marco Dorigo in 1992, [32] simulate
ants finding the optimal way to a food, or likewise the optimal distances in a graph,
utilizing a stigmergic communication mechanism via a pheromone evaporation model.
These algorithms thus directly rely on the foraging mechanisms of real ants, which
were described in section 2.1.1.

• The Stochastic Diffusion Search (SDS) [12] represents an example of following the SI
principles without having a concrete archetype, just like PSO. It uses direct one-to-
one direct communication instead stigmergy. Agents create and evaluate hypotheses
in simple partial solutions and share information on hypotheses (diffusion). Complex
overall solutions then emerge from clusters of agents.
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• The Bacterial Foraging Algorithm (BFO) [86] follows mechanisms of e-choli bacteria,
movement mixes randomness and local hill climbing in order to effectively explore a
search space. Also the bacterias’ reproduction phases are simulated, randomly re-
initializing agents with low fitness values to reach a more exploratory search.

• Bees Algorithm The Bees Algorithm [88] is a search algorithm inspired by bees, where
the swarm’s movement is guided by scout bees, communication mimics the bees’ wag-
gle dance.

This listing is only an excerpt and by no means complete. There are further interesting
implementations and methods to be found in the literature, like e.g. the Glowworm Swarm
Optimization, the Intelligent Waterdrops Algorithm, the Swarm Contours, Firefly, the Swarm
Organized Projection, and many more.

Yet, it is to mention, that the huge variety of “metaphor-inspired” approaches based onmeta-
heuristics in recent years also caused criticism in the research community [109], claiming
that the novelty and intention of some approaches can overshadow a lack of efficiency. Nev-
ertheless, there is a subset of approaches, like PSO and ACO, which proved high efficiency
in a number of problems.

2.3. Related work on SI Algorithms in IP and CV Applications

In recent years, algorithms descending from the field of Evolutionary Computing, Genetic
Algorithms, and also Swarm Intelligence are increasingly applied to a variety of tasks in the
fields of Image Processing IP and Computer Vision CV.

When utilized in image segmentation, these optimization tools have mostly been used to
improve the performance of important steps of segmentation algorithms. In [42, 28], evo-
lutionary and genetic algorithms were used to enhance the clustering process in segmen-
tation. In [61], the authors combined high-level features generated with a visual attention
model with low-level features to guide region growing algorithm, where the optimal thresh-
olds of the region growing process were detected using the Particle Swarm Optimization
algorithm.

In [65], the PSO was applied to find the optimal fuzzy entropy thresholds to segment images
into foreground and background. A related approach was introduced in [36], where PSO
was used to tune thresholds in 2D-histograms, maximizing the entropy to segment infrared
images.
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SI was also utilized to improve Segmentation based on clustering approaches, which can
get stuck in local optima, depending on their initialization. In [96], the authors developed
a hybrid combination of the Ant Colony Optimization algorithm (ACO) and PSO to make
K-Means clustering and Single Competitive Learning more independent from their initial
cluster centers, and learning rate, respectively.

Besides deploying SI techniques to optimize specific steps in existing segmentation ap-
proaches, SI algorithms were also applied to the tasks of edge detection and contour de-
tection, akin to the proposed algorithm. The works in [57] and [58], which cope with contour
and straight edge detection, can actually be considered preliminary work of the SI algorithm
proposed in this thesis.

The authors of [34] proposed ant-based correlation for edge detection. Their method is
capable of performing feature extraction for edge detection and segmentation, generating
less distortion in the presence of noise, as compared to classical edge detectors, like Sobel,
Prewitt, and Canny.

In [105], a variant of the PSO algorithm is utilized for finding a proper edge detection filter
size in noisy images. While combining edge filters of different sizes can improve the edge
detection in noisy images, it is generally computationally expensive when applied to the en-
tire image. Thus, the heuristic capabilities of PSO were used to adaptively decide, where on
the image to use filters of various sizes. The evaluation of edge intensity and the proposed
movement principle in this approach have analogies to the algorithm presented in this the-
sis, as they divide the edge regions into sets and use averaged intensities. However, the
major difference is the usage of discrete PSO instead of the communication scheme used
in this theses, where the agents share their local information.

Besides image processing problems e.g. like edge detection [7], SI was also successfully
applied to other Computer Vision tasks, like feature extraction and object recognition [78,
77, 2, 59], and 3D tracking and sensor data fusion [56, 55].
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Chapter 3.

Swarm Intelligence-Inspired Image Analysis

This chapter is dedicated to first crucial step for the 2D to 3D conversion procedure, which
constitutes a tool for image analysis.

As stated in the introduction, all available depth cues prerequisite pre-analyzed various
image input, like e.g. color information of regions, the position and appearance of straight
lines, etc. One of the pivotal keys to depth map generation is the assumption, that image
boundaries and object boundaries most often coincide.

Hence the need of an image analysis, that is based on image segmentation - we want to
segment image content in order to be able to assign each segment, region, object a certain
depth, to achieve a dense depth map. Additionally, we want to be able to get all kinds of
image features, area based, edge based, or point-based, out of each image.

This chapter is organized as follows. After a review of the state of the art in image segmen-
tation, I introduce a Swarm Intelligence based boundary detection and image segmentation
framework, which I call SISeg. The successive section then details, how the boundary de-
tection is expanded to an image analysis tool to describe the shape and appearance of
regions, contours, lines, and points, coevally. This chapter is completed with a discussion
on how the SISeg-algorithm relates to the Swarm Intelligence principles and how the final
concept evolved.

3.1. Related Work on Image Segmentation

Image Segmentation is a central problem in computer vision that has been studied for years.
It constitutes an important initial step for high-level tasks in computer vision, like object
recognition, image analysis, and scene understanding. It pursues the goal of dividing an
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image into parts, regions, or objects, which are preferably self-consistent and of meaningful
content. Application examples include separating objects considered as foreground from
the background, or separating multiple objects from each other.

However, one of the main difficulties in evaluating boundary detection and image segmen-
tation arises from the fact, that not even human beings are able to uniquely and unambigu-
ously decide and agree over a correct segmentation [72]. Different persons are likely to have
different opinions on the correct solution to the segmentation problem of any image, espe-
cially involving natural images. This lack of an unique ground-truth complicates the com-
parison of results descending form different segmentation methods. Nevertheless, efforts
were taken to establish a framework for objective evaluation of segmentation algorithms. A
prominent example is the Berkeley Segmentation Dataset (BSDS) [72], which provides a
huge collection of natural images along with human-marked proposals of ground-truth, as
well as a precision-recall based measurement for comparison [73]. Figure 3.1 shows three
example images along with three different human ground-truth suggestions.

Figure 3.1.: Three sample images from the Berkeley Image Segmentation Dataset (BSDS 500) [6], each along
with three different human-marked ground-truth images.

The plenty of solutions to the segmentation problem proposed in the literature descend from
versatile fields, such as clustering [113], graph theory [35, 25], region growing [27], optimiza-
tion of an evaluation function like energy minimization [20], as well as image feature-based
methods [24, 21]. The majority of approaches found in the literature can be categorized into
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one or a subset of these fields, with each adding improved mechanisms to solve specific
tasks.

Many segmentation approaches focus on boundary or contour detection as an initial step,
as boundaries naturally correspond to borders between objects. Identifying and locating
sharp discontinuities in image regions closely relates this to the task of edge detection. Mere
edge detection, however, registers on the one hand any type of abrupt changes in image
brightness, and misses smooth or subtle transitions of image brightness on the other hand.
Regarding the goal of detecting boundaries, this causes false positives like textured regions,
or single highlighted spots and true negatives like region boundaries of low contrast.

One recipe to overcome these drawbacks is to combine edge detection techniques with
diverse soft computing approaches like Genetic Algorithms, or Fuzzy Logic, etc. [104, 93].
Other methods combine oriented local image cues, like brightness, color, and texture de-
scriptors with edge detection to get a global estimation. Such combination methods include
multi-scale cue combination [6], energy and probability weighting [69], or likelihood-methods
[120].

In recent years, methods including learning steps have taken the lead, and provide the
best results, when human segmentation displays the ground truth and a training dataset is
available.

In [66] the authors introduce a contour detection approach with contour patterns for local
image patches, that are clusters of hand-drawn sketches. Their input feature vector consists
of CIE-LUV color information along with oriented gradient information plus a self-similarity
measure computed over the pixels within the patch to tackle texture. For classification a
random forest approach is used, which turns out to represent an efficient solution to this
problem. The authors report a considerably efficient computational speed, using about 1
second per image. Most of the computation time is spent on the generation of the input
feature vector.

Similar to this, in [31] local image patches are learned to extract edge information by map-
ping all patches to a set of patterns, like lines, T-junctions, or Y-junctions. They also utilize
Structured Forests for classification combined with structured prediction. While delivering
high quality results, their approach makes the edge classification extremely fast compared
to the majority of other learning based edge detection or segmentation approaches. How-
ever, they make use of parallelization on four cores and optimization, to tackle the complex
input feature vector efficiently.
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The authors of [127] use sparse coding and oriented gradients to learn dictionaries of con-
tour patches, achieving excellent results at high computational costs.

In [51], the authors extract the point-wise mutual information from learned affinity functions
to decide, if pixels are within the same or different segments. The approach works extremely
well, yet the extraction of the affine functions is computationally expensive.

3.2. SI inspired Image Segmentation

In the subsequent sections, I will introduce a procedure for image analysis, which I de-
veloped in course of this thesis. It consists of a computationally efficient, low-cost image
segmentation algorithm called SISeg, which allows the extraction of regions by detecting
and cutting region borders of considerably large scales.

Additionally, the procedure provides the extraction of salient lines, as well as feature points,
along with the regions, and thus allows for establishing an appearance-based scene de-
scription.

As the image segmentation is conducted by a set of agents, which utilize the principles of
Swarm Intelligence, following a scheme that draws inspiration from “Self-Assembly”, the
acronym SISeg stands for “Swarm Intelligence based Segmentation”. The relation of the
mechanisms realized in the SISeg concept to the principles of SI and Self-Assembly are
discussed in the end of this chapter.

Generally speaking, a set of agents, which utilize a local view on the image and on their
neighbored agents, is distributed over the image under analysis. They examine the image
differences of their position to their neighbors’ positions to establish an estimate, or respec-
tively a model for a boundary in their respective regions. In an agent’s view, such a local
boundary model consists of the boundary direction, i.e. where it cuts through a segments,
and the boundary connection, i.e. the course, the boundary takes in the agent’s neigh-
borhood. The interaction with the local neighborhood, the mutual reacting and adapting to
models in the local surrounding causes the establishment of global boundaries. Likewise,
any segment as well as any boundary consists of a set of agents, which are distributed over
the image space and connected to each other. Fig. 3.2 shows an example of a progression
of a boundary between two regions established by the agents.
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Figure 3.2.: Example of SISeg-agents (blue) establishing a boundary chain on a pixel grid, with boundary
directions (red) and symmetric connection directions (green).

The following sections depict the SI-based approach of image segmentation in detail, fol-
lowed by a discussion on the realization of the SI-principles.

3.2.1. General Agent Configurations

This section describes the general setting of agents in this algorithm, their positioning, and
the local view they have on the image environment and to other agents. Further, the local
geometry they utilize and the appearance based measures they extract from the environ-
ment is explained. These principles are a prerequisite and the basics to the procedure of
the algorithm, which will be explained in the consecutive section.

Positioning and Environment View

To separate regions in an image from each other, SISeg utilizes a set of N agents, which
are equidistantly distributed over the input image I in a fixed distance of 3 pixels in each
direction. Therefore N = dh/3e × dw/3e, with h, w being the image height and width.

This means, that the agents form a grid in which each agent occupies a window Wpx
n of

3× 3 pixels centered at its position, with n = 1 ...N serving as the agents’ IDs. In order to
make sure, that all agents possess a window of equal size, an image is enlarged by either
one or two columns, or respectively rows on its right and bottom side if necessary. After the
algorithm execution, all results are transformed back to the original image size by omitting,
or respectively cutting the image columns and rows that were added before.
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The windowWpx
n represents both the agent’s directly accessible input as well as the image

space, an agent is “responsible” for. This means, that the agent decides for each pixel
inside the window, to which region it belongs, and if a boundary intersects the window,
which pixel-wise course it takes. For the distance metric introduced below, each agent also
decides, which pixels within the window are it considers as inside or outside its region. This
means, an agent sets a binary mask withinWpx

n , as will be explained in detail in subection
3.2.2

As stated in the introduction of this section, the algorithm establishes boundaries by local
interactions between the agents. Therefore, each agent possesses a communication win-
dow Wco

n , allowing each agent to collect information from its surrounding eight neighbors,
thus forming a Moore neighborhood, as shown in the middle of Fig. 3.3.

WithinWco
n , an agent can access indirect information about their environment and also see

the current models of its eight neighbors, which will - in combination with its own model and
environmental state - influence its own actions. Such an indirect way of communication is
called stigmergic (described in subsection 2.1.2). Thus, an agent can view, or sense the
environment within theWco

n window, but it can change, or act on the environment only within
itsWpx

n window.

Local Geometry and Communication

To interpret the local environment, the agents need a local coordinate system and a number
geometrical operators to describe their local geometry, which shall be introduced in the
subsequent paragraphs. Directly resulting from the Moore neighborhood the agents’ basic
geometry consists of a set of D = {1, 2, ... , 8} directions. In this chapter the variable d ∈ D
will denote a direction 1 ... 8. As shown in Fig. 3.3, d = 1 is defined to point into negative
x direction and the numbers increase in clockwise direction. As stated above, an agent n
can access all model information of its surrounding eight neighbors, which is notated by
the subscript d added to the respective model information. In this case, d represents the
’relative’ agent ID, i.e. the neighbor’s ID relative to agent n.

In addition to the absolute direction d, the agents need to describe relative directions, which
depend on an initial direction, as they interpret their environment depending on the direction,
in which they hold a boundary. Following the definition of d, the clockwise relative direction
is denoted as ’+’ and the counter-clockwise direction as ’-’. Going x steps from a direction d
into a relative direction ± is thus notated as d±x , so if e.g. d = 1, then d+3 = 4, and d−2 = 7.
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The relative direction opposing d is notated as o, such that do = d±4, so for example, if
d = 2, then do = 6.

To sum up the notation principles of the agents’ geometry, a relative direction is marked as
superscript on an absolute direction, while any direction as subscript of a variable allows
an agent n to access the variable of its neighbor of in that corresponding direction.

In order to analyze its local environment, each agent calculates the distances, or respec-
tively differences of its governed image patch Wpx

n to the patches of its eight neighbors,
which is denoted Dn(d). There are two important aspects concerning the image input,
which are tightly connected to each other. The first one is the choice of the color space,
and the second is the choice of a proper metric or distance measure Dist(agent, neighbor)
in order to describe the relations of image values. In case of a standard Euclidean distance
measure on a RGB-color image, the distance denotes to

Dn(d) = Dist(Wpx
n ,Wpx

d ) =

√∑
ch(µ(Ich(Wpx

n ))− µ(Ich(Wpx
d )))2

|ch| , (3.1)

with Ich being the color values of channel ch = R, G, B, and thus µ(Ich(Wpx
n )) being the

mean pixel values of an agent n’s input window Wpx
n , and |ch| the number of image color

channels.

The general concept of SISeg does not limit the usage of spaces and distance metrics as
input for Dn(d) in any way. However, during the remains of the description of the concept,
Dn(d) denotes a distance measure between agents and their eight neighbors, with a high
value indicating a potential segment boundary, and a low value imposing the likeliness of a
connection between the agents, or respectively, the absence of a boundary.

As an additional metric, Do
n(d) denotes the difference or distance between the agents’

window values of two opposing neighbors of an agent, ie. Dist(Wpx
d ,Wpx

do ), as shown in
Fig. 3.3b.

Via the eight neighbors, the communication windowWco
n thus enables an agent to indirectly

view its surroundings within a 9 × 9 pixel field, which together with the 3 × 3 input patch
allows for both accurate localization as well as robustness against local image disturbances
caused by aberrations or noise.

The fixed-grid Moore neighborhood further facilitates the agents to cooperatively model ar-
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Figure 3.3.: Left figure shows the definition of relative directions in clockwise, counter-clockwise, and opposing
directions for d = 1. The middle figure shows Moore neighborhood d = 1 ... 8, the input window Wpx

n (blue)
and the communication window Wco

n (red) of an agent n. The right figure shows, between which agents the
measures Dn(d) and Do

n(d) are calculated.

bitrary boundary structures while maintaining manageable complexity regarding the variety
of basic models and the rule-set, that defines the agents’ behavior.

Memory: Agent Environment and Boundary Model

Besides communication, a further typical feature of SI algorithms is the memory of each
agent. In the SISeg algorithm, the memory of an agent n consists of two models, Agent
Environment Model ME

n and the Agent Boundary Model MB
n . The two memory models are

updated in each iteration and influence all decisions, each agent takes.

Every agent keeps all of the input it extracts from its environment in its Agent Envi-
ronment Model ME

n , which consists of the agent’s ID, distance metrics, and window
information described above, plus the the line condition Ln defined in 3, i.e. ME

n =
{n,Wpx

n ,Wco
n ,Dn,Do

n,Ln}.

The result of the SISeg-algorithm, from the perspective of an agent, will be its Agent Bound-
ary Model MB

n , which describes its estimate on the course and strength of the boundary
segment the agent governs in its image patch.

During the procedure, each agent establishes its boundary model, which formally consists
of MB

n = {Bn,Back
n ,Cn,Bpot

n }, and comprises of sets introduced in the following.

The set Bn holds all boundary estimation directions, i.e., the directions d, in which an agent
estimates a boundary between itself and its neighbor in that direction. The set Back

n holds all
acknowledged boundary directions, i.e. those directions d, which are boundary estimates
of an agent and also of the neighbor in this direction. Back

n is thus a subset of Bn.
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The set Cn stores boundary connections to neighbors. For any boundary direction guess
in Bn, an agent searches in clockwise and in counter-clockwise direction for the neighbors
that are connect to for evolving the boundary. Thus the set Cn holds a set of relative IDs.To
some degree, this set holds redundant information, which could also be extracted from the
acknowledged boundary set. Yet, storing it explicitly is more efficient in terms of computa-
tional speed, as the extraction would need a geometrical analysis in each iteration, for each
neighbor.

Agents that are not part of a boundary thus have an empty set Cn = ∅, agents within regular
boundaries (around large regions) possess two connected neighbors, and agents in special
scenarios, like line-alike boundaries, or can have one to four connections. As the set Cn

stores only connections that share a boundary, all neighbors to an agent, which are not
within its Cn set or within Back

n set, lie in the same region and are thus connected.

Having defined the agents view, geometry, andmodels, I now want to explain the procedural
steps, that each agent takes to decide on its model and to successively obtain the final
segmentation result. The geometrical operators defined above allow an agent to examine
the Bn,Cn sets of itself, as well of its neighbors, via a set of behavioral rules, which will be
defined in the different phases, each agent is going through.

3.2.2. Initialization-Phase

The algorithm starts with the initialization phase, in which the agents first utilize the initial
distances to their neighbors to estimate an initial boundary direction. This phase sets the
initial seed for all boundaries, and at the same time offers a mechanism to suppress local
suboptimal boundary guesses.

Initial Boundary Direction Guess

In order tomake the initial boundary guessmore robust, the agents do not simply choose the
direction of maximum distance. Instead, each agent searches its initial boundary direction
based on a weighted sum of distances. For all directions, the direct distance is weighted
with the two distances of the directly neighbored distances. The sum is thus calculated by

Ds
n(d) = 1

ws
1 + 2 · ws

2
× (ws

1 ×Dn(d) + ws
2 ×Dn(d−1) + ws

2 ×Dn(d+1)), (3.2)
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with ws
1, ws

2 being arbitrary weighting factors. Empirical evaluation indicates, that a general
weighting fulfilling ws

1 > ws
2, i.e. the direct direction, provides both robustness and a proper

localization.

Each agent searches its initial boundary direction Bn,0, which is marked by the subscript
index 0. The initial boundary direction is chosen to be the direction d with the highest
summed distance Ds,max

n (d) to the respective neighbor, thus

Ds,max
n (d) = max

d∈D
Ds

n(d) (3.3)

and
Bn,0 = arg max

d∈D
Ds

n(d). (3.4)

Non-maximum suppression (NMS)

Equation 3.4 applies to all agents on an image. However, to reduce the effects of over-
segmentation, some boundary segments describing boundaries of low saliency should be
suppressed. To achieve this, it is straight forward to examine the agents’ maximum summed
distance values Ds,max

n .

For natural images of arbitrary complexity, it is not easy to find one single absolute threshold
for suppressing the boundary building, even if setting this value would be done adaptive. An-
alyzing natural images, one can instead see, that there is a certain minimum distance value,
below which boundaries do not make sense, as well as a maximum distance value, above
which a boundary should definitely be accepted. But there is also a considerable gap be-
tween those values, in which a thresholding must be realized, which takes the neighborhood
into account. An agent should possess a maximum distance, which is considerably higher
than its neighbors - yet, as the agents search elongated boundaries, not single maximum
points, the threshold must not be set too high. Comparing an agent’s detected maximum
distance to maximum distances of its neighbors allows adapt to the local image content. In
a highly textured image area, an also agent needs higher distance values than in smooth
regions.

Thus, I apply a scheme, which divides the range of distances into three subareas, estab-
lishing a hysteresis-like threshold function. Agents with distance values below τmin are sup-
pressed, while agents with values higher than τmax always pass. For the range in between,
the threshold τ rel constitutes the factor, by which an agents maximum distance must be big-
ger than the mean of all maximum distances of its eight neighbors. Thus, the agent’s value
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Bpot describes, if an agent is allowed to set a potential boundary, it’s condition is calculated
by

Bpot
n = Ds,max

n ≥ τmax ∨ (Ds,max
n ≥ τmin ∧ Ds,max

n
µ(Ds,max

D )
≥ τ rel), (3.5)

with µ(Ds,max
D ) being the mean of the maximum distances of all neighbors in D.

Experiments showed, that values between 1.1 ... 1.5 for τ rel deliver reasonable results.

Then equation 3.4 adapts to
Bn = arg max

d∈D∧Bpot
n

Ds
n(d). (3.6)

Figure 3.4 shows an example for acknowledged boundaries of agents in the end of the
initialization phase, when using (from (a) to (d) ) no NMS, only absolute NMS with a consid-
erably high (green) and a low (red) threshold, only the relative part of the condition in 3.5,
and the complete condition of 3.5.

Once initialized, all agents, that form a single boundary segment, will in the consecutive
phase try to connect to greater segments, inducing growth of boundaries, if necessary.
From this, it is plain to see in this example, that omitting NMS will lead to over-segmentation.

Acknowledge Boundaries

A key step to establish boundaries in this algorithm is the interaction between the agents.
The root of this is, that any agent wants any of its boundary estimations acknowledged.
This means, that the neighbor lying in the boundary direction of an agent needs to have
a boundary direction estimation pointing either towards or ’nearby’ the agent, with ’nearby’
meaning towards one of the direct neighbors. This condition is mathematically given by the
rule
Ruleset 1. Acknowledge boundaries update

∀ d ∈ D :
{d ∈ Back

n | d ∈ Bn ∧ (do ∈ Bd ∨ do+1 ∈ Bd ∨ do−1 ∈ Bd )} (R 1.1)

where Back
n is the subset of Bn holding all acknowledged boundary directions.

In order to synchronize their views, agents then check if they have caused acknowledged
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(a) Agents initialized without NMS (b) Absolute threshold based NMS, with τmin = 6 (red),
and τmin = 20 (green)

(c) Relative threshold based NMS, with τ rel = 1.1 (d) Relative and absolute thresholds combined, τ rel =
1.1, τmin = 6, and τmax = 20

Figure 3.4.: Sub-figures (a) to (d) show the all initialized agents holding acknowledged boundaries after apply-
ing various approaches for non-maxmimum suppression (NMS).

boundaries at neighbors via this ’nearby’ scenario, and if so, they adapt to them by adding
the directions to those neighbors in their boundary list. This is expressed by the rule
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Ruleset 2. Adapt to nearby boundaries

∀ d ∈ D :
{d ∈ Back

n | do ∈ Bd ∧ (d+1 ∈ Bn ∨ d−1 ∈ Bn)} (R 2.1)

which means, the agents check the direct neighbors to their own boundary directions, and
if these neighbors hold an acknowledged boundary towards the agent, it also sets it.

Set Line-alike Agents

The most regular boundaries belong to regions that are considerably big compared to the
agents’ window size. Thus, agents, which describe such boundaries usually have the
boundary estimations lying mainly on one side of their window.

However, in order to make the algorithm capable of describing small, fine-grained regions,
whose extent is similar to the agents’Wpx

n -window size, the agents must be able to establish
two different boundaries on opposing sides. Such boundaries are called line-alike, contrary
to the regular boundaries. The agents must be able to distinguish such line scenarios from
e.g. smooth boundary transitions. To prevent agents from setting false line-alike estima-
tions, each agent evaluates all directions in its neighborhood via a line condition, which
compares an agent’s distance to each direction Dn(d) to the distance in the opposing direc-
tion Dn(do), as well as to the direct distance between the two opposing neighbors Do

n(d).
The line condition, which is stored in the set Ln, is denoted as
Ruleset 3. Line condition

∀d ∈ D :

{d ∈ Ln |
Do

n(d)
min(Dn(d),Dn(do)) < τO ∧ Dn(do)

Dn(d) > τo} (R 3.1)

with τO and τo being thresholds in a range between [0 ... 1].

As the final step of the initialization phase, all agents, whose initial boundary estimation
Bn,0 got acknowledged by Ruleset 1, set themselves as line-alike agents, if the direction
opposing their initial boundary direction is part of the set Ln, as described in
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Ruleset 4. Set line-alike agents

∀ d ∈ D :
{d ∈ Bn | do ∈ Back

n ∧ d ∈ Ln.} (R 4.1)

After adding these additional boundary estimations, the agents update the boundary ac-
knowledgement using Ruleset 1. This is the starting point for the Boundary Grow-Phase
described in the next section, in which all agents decide on their further neighborhood, if
they are connected or not.

3.2.3. Boundary Grow-Phase

Having obtained initial estimates for the boundary directions, the SISeg-algorithm now exe-
cutes the boundary grow-phase. In this phase the agents with acknowledged initial bound-
aries, that fulfilled the non-maximum suppression condition, decide on the exact course of
the boundaries between them and their neighbors.

Therefore, they check the neighborhood next to a boundary, which are the three neighbors
on each side rectangular to the boundary direction.

Basically, within this area, an agent can either find at least one neighbor with acknowledged
boundaries, that are in a direction aligned to the agents’ own, or no neighbor with a fitting
boundary segment. In the first case, an agent can decide on the connection of its own
segment to the neighbored segment, taking the best suited one in case of multiple choices,
and thus step iteratively from loose segments to a globally connected boundary. In the
second case agents examine, which neighbors would be most suited to their segment and
thus induce boundary growth, by communicating the wish of a boundary direction to those
neighbors. Those neighbors can then decide on growing such a boundary, and in the next
iteration, case one will be fulfilled.

As already stated, an acknowledged boundary direction prerequisites, that an agent holds
a boundary estimate in a certain direction, and the neighbored agent in this direction holds
an estimate in the opposite direction, i.e. towards the agent. Thus any boundary segment is
formed by a pair of agents. This again leads to a symmetry, which allows agents to search
the continuity of their boundary in the neighborhood of only one side. Thus, agents have
an active and a passive area for growing the boundaries. Their passive side is again the
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active side of the neighbors in that area, or in case of growing boundaries, it lies in the
responsibility of the opposing neighbor, i.e. the partner of the boundary segment pair.

In terms of efficiency, exploiting this symmetry leads to halving the computational efforts.

Figure 3.5 displays examples for the three neighbors in clockwise direction, which an agent
checks for boundary growth or respectively boundary connection, depending on its bound-
ary direction.
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Figure 3.5.: Example of the three neighbors in clockwise direction, an agent checks for boundary growth, de-
pending on the direction of its acknowledged boundary. The left image shows an example of a straight direction
(d = 1), the right image for a diagonal direction (d = 2).

The agent’s means for all the cooperate decisions stated above consist of a set of behavioral
patterns, realized as condition-action rulesets. These patterns force the agents to react
specifically on various scenarios they sense in their local environment. The agents’ view
on the local environment is composed of the distances to the neighbors, but also of the
boundary models of the neighbors. This is what the agents sense and what - combined
with their own current boundary model - determines their behavior, leading to cooperate
decisions on a basis of an indirect, stigmergic communication. From the Swarm Intelligence
perspective, the agents’ local environmental view also represents their search space or
solution space.

In the following, these patterns, which are conducted sequentially over a number of itera-
tions, are described and explained in detail.

Alignment Check

As a first step to get from the single estimates to closed boundaries, agents with acknowl-
edged boundaries examine the boundary models of the three neighbors in clockwise direc-
tion, as shown in figure 3.5 above. They therefore check if one or more of the three neigh-
bors hold acknowledged boundaries in a direction, that is aligned to the agents’ boundary.
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For regular, i.e. not line-alike agents, alignment basically means, that one of the three
neighbors hold an acknowledged boundary in the same or similar direction as the agent
itself, which is shown in figure 3.6.
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Figure 3.6.: Required boundary directions at three neighbors, in case of a not line-alike agent. At least one of
the displayed direction must be an acknowledged boundary, such that the neighbor is considered to be aligned
to the agent. The left image shows an example of a straight direction (d = 1), the right image for a diagonal
direction (d = 2).

As described in Ruleset 4, agents can also establish a line-alike boundary model, i.e. with
two boundaries in opposing directions. For any agent investigated in the alignment check,
the logical operator l implies, that an agent holds a line-alike model that is aligned to the
direction d under investigation. This alignment-condition slightly differs from the regular
case, as can be seen in image 3.7.
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Figure 3.7.: Required boundary directions for an agent, its boundary neighbor and the three neighbors for
potential connection, to be considered a line-alike agent. At least one of the displayed direction must be an
acknowledged boundary on each side of the border shown in black. The left image shows an example of a
straight direction (d = 1), the right image for a diagonal direction (d = 2).
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Mathematically, the alignment-condition for each neighbor d+1,2,3, denoted as ad+1,2,3 , is
evaluated by checking if the neighbors acknowledged boundary setsBack

d+1,2,3 hold boundaries
in the alignment directions d, d−1 and so on, as described above. This is expressed by the
following ruleset
Ruleset 5. Check alignment of neighbors

∀ d ∈ D :
an = d ∈ Back

n ∧ d+1 /∈ Back
n (R 5.1)

ad+1 = an ∧ (d ∈ Back
d+1 ∨ d+1 ∈ Back

d+1 ∨ d−1 ∈ Back
d+1 ∨ d−2 ∈ Back

d+1 ) (R 5.2)

ad+2 = an ∧ (d ∈ Back
d+2 ∨ d+1 ∈ Back

d+2 ∨ d−1 ∈ Back
d+2 ) (R 5.3)

ad+3 = an ∧ (d ∈ Back
d+3 ∨ d+1 ∈ Back

d+3 ) (R 5.4)
ldn = an ∧ (do ∈ Back

dn ∨ do+1 ∈ Back
dn ∨ do−1 ∈ Back

dn ) (R 5.5)

ld+1 = (d ∈ Back
d+1 ∨ d+1 ∈ Back

d+1 ∨ d−1 ∈ Back
d+1 ) ∧ (do ∈ Back

d+1 ∨ do+1 ∈ Back
d+1 ) (R 5.6)

ld+3 = (d ∈ Back
d+3 ∨ d+1 ∈ Back

d+3 ) ∧ (do ∈ Back
d+3 ∨ do−1 ∈ Back

d+3 ) (R 5.7)

ad+1 = ¬(ad+1 ∧ an ∧ ld+1 ∧ ¬ldn ) (R 5.8)

ad+3 = ¬(ad+3 ∧ an ∧ ld+3 ∧ ¬ldn ) (R 5.9)

where the rule R 5.1 represents a precondition to obtain all agents, that need to be checked,
depending on the direction d. Rules R 5.2 to R 5.4 evaluate the alignment condition for
regular boundaries, and rules R 5.5 to R 5.7 for line-alike boundaries. Further, if neighbors
d+1 and d+3 are line-alike, while the agent n is not, rules R 5.8 and R 5.9 block the alignment
condition to those.

Connecton Decision

The logical operator a defined in the paragraph above establishes the alignment information
for each neighbor d+1,2,3 individually. In the next step, an agent has to decide, to which
potential neighbor it then eventually connects, which is stored in the operator c+1,2,3.

In the simplest case, an agent has detected only one aligned neighbor. In this case, it
logically connects to this neighbor, which is shown in the following ruleset,
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Ruleset 6. Connection decision - single neighbor

∀ d ∈ D :

c+1 = an ∧ ad+1 ∧ ¬ad+2 ∧ ¬ad+3 (R 6.1)

c+2 = an ∧ ¬ad+1 ∧ ad+2 ∧ ¬ad+3 (R 6.2)

c+1 = an ∧ ¬ad+1 ∧ ¬ad+2 ∧ ad+3 (R 6.3)

If more than one of the three neighbors appears to fulfills the alignment condition, an agent
has to decide, which one of them fits best to its own boundary. While agents seek for the
highest distanceDs(d) to determine the initial (and later the growing) direction of the bound-
aries is, relying on the highestDs(d) of the aligned neighbors is actually a sub-optimal choice
for seeking the optimal boundary connection. In scenarios, where two different boundaries
join, the higherDs of one aligned neighbor would bring an agent to establish the connection
to it, while the ’true’ boundary might actually continue towards another aligned agent. In a
nutshell, the strongest boundary segment an agent can see, must not necessarily be part
of the same boundary it describes.

Deciding on the course of the boundary based on the distances D towards the aligned
neighbors turns out to be a better choice to follow the correct boundary course. This en-
sures, that it tracks its own boundary. The prerequisite, that a boundary should occur in the
direction of the highest distances Ds(d) of an agent is still given implicitly, as the aligned
neighbors already set their aligned boundaries according to that rule.

Due to the symmetry mentioned above, all agents seek the boundary connection in clock-
wise direction, which fits overall best to themselves and their respective boundary neigh-
bors d. Therefore, the agents do not simply connect to the aligned neighbor with minimum
distance towards themselves. Instead they also take the distance between their boundary
neighbor d and the aligned neighbor’s boundary neighbor into account and seek for the low-
est sum out of these two distances, calledDpair

n . This paired distance additionally increases
the robustness, as it becomes harder for an agent to choose a local minimum based on the
distance.

The condition to choose the best connection c from multiple aligned neighbors is expressed
by the following ruleset
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Ruleset 7. Connection decision - choose best neighbor

∀ d ∈ D :
Dpair+1

n = Dn(d+1) +Dd (d+1) (R 7.1)
Dpair+2

n = Dn(d+2) +Dd (d+2) (R 7.2)
Dpair+3

n = Dn(d+3) +Dd (d+2) (R 7.3)
c+1 = c+1 ∨

(an ∧ ad+1 ∧ ad+2 ∧ ¬ad+3 ∧ Dpair+1
n < Dpair+2

n ) ∨

(an ∧ ad+1 ∧ ¬ad+2 ∧ ad+3 ∧ Dpair+1
n ≤ Dpair+3

n ) ∨

(an ∧ ad+1 ∧ ad+2 ∧ ad+3 ∧ Dpair+1
n < Dpair+2

n ∧ Dpair+1
n ≤ Dpair+3

n ) (R 7.4)
c+2 = c+2 ∨

(an ∧ ad+1 ∧ ad+2 ∧ ¬ad+3 ∧ Dpair+1
n ≥ Dpair+2

n ) ∨

(an ∧ ¬ad+1 ∧ ad+2 ∧ ad+3 ∧ Dpair+2
n ≤ Dpair+3

n ) ∨

(an ∧ ad+1 ∧ ad+2 ∧ ad+3 ∧ Dpair+1
n ≥ Dpair+2

n ∧ Dpair+2
n ≤ Dpair+3

n ) (R 7.5)
c+3 = c+3 ∨

(an ∧ ad+1 ∧ ¬ad+2 ∧ ad+3 ∧ Dpair+1
n > Dpair+3

n ) ∨

(an ∧ ¬ad+1 ∧ ad+2 ∧ ad+3 ∧ Dpair+2
n > Dpair+3

n ) ∨

(an ∧ ad+1 ∧ ad+2 ∧ ad+3 ∧ Dpair+1
n > Dpair+3

n ∧ Dpair+2
n > Dpair+3

n ) (R 7.6)

which is executed complementary to ruleset 6.

While rulesets 6 and 7 cover a broad range of scenarios, there are two cases, which
require a special treatment by the agents, including additional rulesets.

Both cases display situations, which mark the transition between the boundary connection
scenarios, and the boundary grow scenarios. This means, that an agent can detect some
neighbored boundary segments, but the boundary model of the neighbors is likely to be
incomplete.

In the first scenario, shown in figure 3.8, the agent’s neighbor in boundary direction d is a
line-alike agent and neighbor d+1 is aligned. Following ruleset 6, the agent would connect
to d+1. However, as the boundary neighbor is a line-alike agent, it could potentially also be
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connected to d+1. This would imply agent n being connected to either d+2 or d+3, which then
would need to grow the corresponding boundaries. The decision, whether the neighbor d+1

is connected to n or its neighbor d again depends on a comparison of the paired distances
Dpair

n , and is displayed in the following ruleset
Ruleset 8. Connection decision - line-alike boundary neighbor

∀ d ∈ D⊕ :
clnb = (c+1 ∧ ld ∧ Dpair+1

n > Dpair+2
n ∧ Dpair+1

n > Dpair+3
n ) (R 8.1)

{c+1 = FALSE | clnb} (R 8.2)

which negates the connection c+1, thus inducing boundary growth, if the paired distance
towards d+1 is not the minimum one.
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Figure 3.8.: This figure shows an example of a line alike neighbor in direction (d = 1), with the agent n deleting
the connection to d+1 and inducing boundary growth instead. The left figure shows growing between d+1 and
d+2, the right figure between d+2 and d+3.

The second scenario, which needs a special treatment is shown in figure 3.9 (left). It can
occur, when an agent holds only one single acknowledged boundary in diagonal direction
(i.e. d ∈ D⊗) and is thus connected to its two neighbors d+1 and d+1. Yet, if these two
neighbors hold an acknowledged boundary between them, a connection conflict occurs,
as they are at the same time indirectly connected via the agent n. The agent n solves this
conflict by setting a boundary grow request to one of the two neighbors, and the agent
logically again chooses the one with the higher distance Dn, as shown on the right of figure
3.9.

The symmetry in all rulesets again allows an agent to only take care of a boundary request
towards its neighbor d+1 in clockwise direction. If the comparison between the distances
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Figure 3.9.: The left figure shows an example of the connection conflict for direction (d = 2). The right figure
shows the solution of this conflict by adding grow-boundaries to d+1.

induces a boundary towards neighbor d−1, it will be this neighbor taking care of it, forced
by the same rule.

Mathematically, the detection and solution of this connection conflict is described in the
following ruleset:
Ruleset 9. Connection decision - connection conflict

∀ d ∈ D⊗ :
cconf = c+1 ∧ d−1 /∈ Back

n ∧ d−2 ∈ Back
d+1 ∧ Dn(d+1) > Dn(d−1) (R 9.1)

{c+1 = FALSE | cconf} (R 9.2)
{d+1 ∈ Bgrw

n , do+1 ∈ Bgrw
d+1 | cconf} (R 9.3)

All agents that successfully detected connections via the rules stated above, have to update
their models, i.e. the sets for boundary and boundary connections.
Ruleset 10. Connection decision - update Bn and Cn sets

∀ d ∈ D :
{d ∈ Bn, d+1 ∈ Cn | c+1} (R 10.1)
{d ∈ Bn, d+1 ∈ Bn, d+2 ∈ Cn | c+2} (R 10.2)
{d ∈ Bn, d+1 ∈ Bn, d+2,∈ Bn, d+3 ∈ Cn | c+3} (R 10.3)

The boundaries are afterwards acknowledged by repeating the corresponding rule 1.
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Boundary Grow Inducement

As already mentioned, in some scenarios agents force their neighbors to grow boundaries
in certain directions, so they can connect to it afterwards. I call this procedure boundary
inducement.

Two such scenarios were already stated above in rulesets 8 and 10. The general case
takes place, if an agent cannot connect to any neighbor by executing the already mentioned
rulesets.

To select the best suited neighbor for inducing boundary growing, the agents search for the
highest ’paired´ sum of distances Ds,pair (d+1,2,3). Once detected, they place a request or
suggestion for the corresponding boundary direction in the neighbors’ set Bgrw

d+1,2,3 . As shown
in figure 3.10, agents set their growing boundary requests in their corresponding direction
the best suited of their 3 potential connection neigbhors plus the neighbor opposing in this
direction.
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Figure 3.10.: The figure shows all potential boundary grows an agent can set to its connection neighbors and
their respective potential boundary neighbors. The left image shows an example of a straight direction (d = 1),
the right image for a diagonal direction (d = 2).

Using Ds,pair instead of Ds again happens for the reasons of symmetry. For the same
reason, an agent sets the boundary suggestion to both its neighbor and the respective
neighbor opposing it.

Mathematically, the following ruleset expresses this procedure:
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Ruleset 11. Boundary grow - induce best pair

∀ d ∈ D :
gn = an ∧ ¬c+1 ∧ ¬c+2 ∧ ¬c+3 (R 11.1)

Ds,pair
d+1 = Ds

d+1 (d) +Ds
dd+1 (do) (R 11.2)

Ds,pair
d+2 = Ds

d+2 (d) +Ds
d+1 (do) (R 11.3)

Ds,pair
d+3 = Ds

d+3 (d) +Ds
d+2 (do) (R 11.4)

{Ds,pair
d+1 = 0 | clnb} (R 11.5)

g+1 = gn ∧ Ds,pair
d+1 > Ds,pair

d+2 ∧ Ds,pair
d+1 ≥ Ds,pair

d+3 (R 11.6)
g+2 = gn ∧ Ds,pair

d+1 ≤ Ds,pair
d+2 ∧ Ds,pair

d+2 ≥ Ds,pair
d+3 (R 11.7)

g+3 = gn ∧ Ds,pair
d+1 < Ds,pair

d+3 ∧ Ds,pair
d+2 < Ds,pair

d+3 (R 11.8)
{d ∈ Bgrw

d+1 , do ∈ Bgrw
dd+1 | g+1} (R 11.9)

{d ∈ Bgrw
d+2 , do ∈ Bgrw

d+1 | g+2} (R 11.10)
{d ∈ Bgrw

d+3 , do ∈ Bgrw
d+2 | g+3} (R 11.11)

with dd+1 marking the neighbor in direction d of the agent’s neighbor dd+1. By setting the
distance value to 0, rule R 11.5 respects the special decision ruleset 8, which assigns the
neighbor d+1 to the boundary neighbor if the condition clnb is met.

Boundary Grow Decision

In the last mentioned rulesets, agents possibly communicated boundary suggestions in
certain directions to their surrounding neighbors. Consequently, all agents now have to
check their Bgrw sets to see if they received one or multiple boundary requests from their
neighbors. If so, they choose the best suggestion and add the direction in the set Bn. To
find the best boundary, the agents take the highest summed distances Ds, which is shown
in the following ruleset
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Ruleset 12. Boundary decision -choose best

b = arg max
d∈D ∧ d∈Bgrw

n

Ds
n(d). (R 12.1)

∀ d ∈ D :
{d ∈ Bn | b} (R 12.2)

Once the agent have set new boundaries this way, ruleset 1 is again executed to update
their acknowledged boundary set Back

n .

Iteration stop break condition

During the growing phase consists of rulesets 1 to 12 are successively executed for a num-
ber of iterations. The stop condition for the growing phase needs one of the following two
conditions fulfilled. Either no more growing takes place, i.e. no boundary suggestions are
set in Bgrw at any agent. Or a maximum number τ t of iterations t is reached.

Mathematically, the stop condition q is expressed by
Ruleset 13. Iteration break condition

q = Bgrw = ∅ ∨ t > τ t (R 13.1)

Boundary Model Finalization

To prepare the consecutive image information extraction phase, all boundary agents exe-
cute a final update of their model. To this point, an agent is either entirely within a segment,
or it is part of a boundary, and then holding at least one boundary direction and two con-
nection directions in the corresponding model sets Back

n and Cn. For the majority of agents,
their model can already be considered finalized.

The remaining scenario missing is the one of boundary intersections. While the agents
usually solve most of such intersections already in the growing phase, at some points, it can
occur, that an agent has already fixed its model and does not react on a further adaption
request in the growing phase.
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To detect and adapt to such unfinished boundaries, each agent first has to check, if any
relevant neighbor holds a boundary connection estimate pointing in direction of the agent,
i.e., do ∈ Cd . A neighbor is considered relevant, when it lies in the connection region of the
agent, i.e. when the agent does not hold a boundary or a boundary connection in direction
of the neighbor, thus d /∈ Bn ∧ d /∈ Cn.

Once an agent detects such a neighbor, it has to adapt its own boundary model to it, by
setting its boundary connection model in the neighbor’s direction in Cn and filling all open
directions towards it with boundaries in Bn. Hence, an agent also has to find out, whether
to enlarge the boundary model in clockwise, or in counter-clockwise direction. It does so
by checking the boundaries in the neighbor’s model in a clockwise and counter-clockwise
direction. Figure 3.11 shows an example for this step.

Figure 3.11.: Left figure shows an example of an intersection scenario, that is treated in the model finalization
step. The right figure shows the adaption of the two agents in the middle.

3.2.4. Image Information Extraction - Phase

Once the boundary growing phase has finished, all boundary agents have encountered
models holding a boundary description which is aligned and embedded in global bound-
aries.

In the subsequent image information extraction phase, the algorithm now is to extract image
information out of the agents’ set, i.e. the appearance, location, and shape of image seg-
ments, their boundaries and the positions of distinguished image points. To achieve this,
agents group themselves into ”swarms” according to the segments and their boundaries.
This procedure will be detailed in the following.
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Region Swarms

To extract such region- or respectively segment-based information, agents that lie inside the
same region must connect to each other and build a group, or respectively swarm. They do
so by sharing the same id, which is called the region-swarm ID sw reg.

To achieve this, they utilize the following procedure consisting of sequential connecting and
a region-fusion step:

1. First, all agents connect to each other, which have at least one neighbor, that neither
lies in direction of a boundary, nor of a boundary connection, i.e. d /∈ Back

n ∧ d /∈ Cn.
This step includes all non-boundary agents. All now connected agents then share a
swarm ID sw reg, which computationally can be achieved by an 8-neighbor connected
component algorithm.

2. All agents, that did not obtain an ID from the previous step, use their boundary con-
nection information to connect and spread a sw reg. This way, all agents in line-alike
scenarios receive an ID.

3. Now the sw reg and the agents pixel window information is used to calculate the mean
region image appearance I reg = µ(I(sw reg)) of each region.

4. Neighboring regions are then fused, if the difference between their mean region ap-
pearance is smaller than a threshold τ reg. The region IDs of agents in fused regions
are then adapted accordingly and the mean region appearance I reg is re-calculated.

This procedure first leads to a slightly over-segmented result, which is then compensated by
the fusion step. This has an advantage over the naive straight-forward approach of simply
connecting all agents in directions that are no boundaries: in the fusion step, the potentially
over-segmented regions are compared using the overall mean appearance of the regions
considered, not only the local window information of the corresponding neighbored agents.
This makes it more robust against blurry region borders. Thus it can prevent from under-
segmentation.

Once all agents have allocated themselves to a swarms in this way, extracting region-based
image information is straight forward.

• The most relevant segment information is the segment’s appearance. It can be ex-
tracted as mean of the color information by calculating the mean over all windows
Wpx

n of the agents belonging to that segment, like already stated above as I reg. This
can of course happen in any image color space. Alternatively also histogram based
information can be extracted, based on all pixels inside the agents’ windows.
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• Analog, as position information, the centroid of each region calculates as mean from
the positions of all agents belonging to the swarm.

• Accordingly, any other geometrical information, the segment’s shape or orientation,
i.e. the image or Hu moments [48], can easily be obtained using the positions of the
grouped agents.

• Further, the exact shape of a segment is described by the course of its boundary.
Extracting this information is subject-matter of the following section.

Thus, the region swarms allow for a description of regions, which is both effective and
comprehensive.

Boundary Swarms

Additionally to the region swarm ID, the boundary agents share a boundary swarm ID swbnd .
This ID allows to describe all segment boundaries detected by the agents.

With the establishing of sw reg, building boundary warms is relatively simple: Each agent that
holds an acknowledged boundary, i.e. Back

n 6= ∅ connects to all agents in its neighborhood,
which themselves are boundary-agents and possess the same sw reg as the agent.

Then one can again utilize each swarm of agents to extract information from the region
boundaries, or respectively the edges in an image. The boundary or edge information can
be appearance based, i.e. referring to the strength of a boundary, or geometry based, i.e.
regarding an edges shape, length, and localization.

To obtain an effective measure of the boundary appearance or strength, the mean Distance
of a boundary to the neighbored boundary is calculated, in terms of the agent distances as
well as in terms of the mean region differences.

Similarly, the length of a boundary is simply the number of agents’ pixels that form the
boundary.

Curvature

To describe the course or shape of a boundary, each agent estimates the local curvature
of its location by taking into account the relative positions of its connected neighbors. The
approach follows [4], which also delivers dominant points on the boundaries, based on high
curvature values. These dominant points can then also used to split a boundary, which
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entails an entire region of arbitrary size, into interconnected boundary sub-segments, thus
describing meaningful edges. The subsequent subsection will detail, how to attain and use
these dominant points, as well as the boundary splitting. Yet before this, I explain, how to
calculate the curvature, as well as how to utilize it in the context of boundaries.

The curvature κ(ag) of an agent at point (x, y) on the swarm is defined as the rate of change
of the slope angle of the tangent at point (x, y), with respect to the arc length. The method
in [4] applies prior smoothing to the planar curve, represented by sw, by convolving a one
dimensional Gaussian kernel with x and y coordinates along t independently, such that

X (t) = x(t) ∗ g(t,σ), (3.7)

where g(t,σ) = 1
σ
√

2π exp(−t2

2σ
2

) with σ as the kernel size. The same is applied to the y-
coordinates to obtain Y (t). The curvature κ of the smoothed curve is now defined as

κ(t,σ) = Ẋ Ÿ − Ẏ Ẍ
(Ẋ 2 + Ẏ 2)3/2

, (3.8)

where t is the path length along the curve, σ is the width of the Gaussian Kernel and
Ẋ , Ẍ , Ẏ , Ÿ are the first and second derivatives of X (t) and Y (t) with respect to t. The deriva-
tives can be approximated by finite differences as

Ẋ = X (t + 1)− X (t − 1) (3.9)
Ẍ = X (t + 1) + X (t − 1)− 2X (t). (3.10)

The same counts for Y . Traversing the curve along t a positive curvature means a concavity
on the left, and negative curvature means concavity on the right in an image.

Using the curvature as shape descriptor of boundary segments, one can easily obtain all
straight edges or lines as a subset, by ’filtering’ for curvature values, that are below a thresh-
old, i.e. |κ(t,σ)| < τ sl . The threshold τ sl allows for a certain tolerance in defining, which
edges are considered straight lines.

Anchorpoints

An important goal of the image description concept introduced in this thesis is to coevally
enable extraction of region-based, edge-based, and interest point-based information. In
the following, the key step in extracting interest points from the edge information introduced
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in the previous chapters is displayed. I call the interest points that obtained in this work
anchorpoints.

To obtain an efficient description and matching strategy, geometrical, or respectively struc-
tural anchorpoints are utilized to additionally subdivide an extracted feature swarm, or re-
spectively salient edge, as will be explained in the next chapter. These anchorpoints are
located at distinct positions on an edge, describing prominent changes of the curse of an
edge.

Finding points with local maxima and minima in the curvature will result in a structural in-
teresting points. To discard anchor points, that are in a almost straight line segment, I
therefore set a threshold τap for the curvature, thus an anchor point is defined if κ(t,σ) is a
maximum or minimum and |κ(t,σ)| > τap. For example, having a anchor points in a swarm
swi , the edge-swarm can now be split into sub-swarms, such that a single swarm swi is
now represented by a set of sub-swarms swi = {swi1, swi2, ... , swib}, where each swarm
swij = {ag1

ij , ag2
ij , ... , agλij } and b = a− 1 as the number of sub-swarms.

Figure 3.12 shows an example result for the image information extraction, the input image,
the segmented regions’ mean appearance, and the contours, plus detected straight lines
and anchorpoints. Figure 3.13 details the concept of edge curvatures and anchorpoints.

3.3. Interpretation of SI Principles in SISeg

In this section, I will introduce the general idea of how the SISeg concept follows Swarm
Intelligence. Further, I will categorize the concept’s main mechanisms in terms of SI-key
paradigms and state, how they were applied and realized, and how the principles where
weighted to each other in terms of importance and applicability to this problem field.

Self-Assembly

As mentioned in chapter 2, the two major Swarm Intelligence application fields are opti-
mization algorithms and swarm robotics. While the first are mainly driven by foraging and
similar concepts, realizations of the concepts of Self-Assembly are predominantly found in
swarm-robotics. Mostly, optimization algorithms result in a single location in a search space
as final solution, with the Ant Colony Optimization depicting a prominent exception, where
the pheromone concentrations after a certain number of iterations, often being binarized
via a threshold, is regarded as the global solution.
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Chapter 3. Swarm Intelligence-Inspired Image Analysis

Figure 3.12.: This figure shows an example of SISeg extraction steps. Top left: original image with agent
models including boundary directions (red) and boundary connection (green) models. Top right: segmented
regions’ appearance. Bottom left: extracted contours, bottom right: final boundaries on pixel level (blue), ex-
tracted straight lines (green) and anchor points (red). Image taken from [29]

However, the nature of the task of image segmentation inherently demands a sort of dis-
tributed solution, where a segment, or respectively its boundary in one location of an image
can be completely independent of a different segment in another position, while just as well,
segments that span over the entire image can occur.

Thereby, I decided to apply the concept of Self-Assembly to the segmentation task, as it
allows for agents to locally cooperate to establish a boundary, while coevally being either
completely unaffected in their behavior by the actions of agents in more distant locations or
indirectly connected in the same boundary. Dependence between all the agents in a swarm
must therefore be possible but not compulsory.

This composition relates to the statement introduced in section 2.1.3, that Self-Assembly
takes place in an intermediate level between the level of a single individual and the level of
the whole colony.

Considering examples from the nature, the formation of boundaries can for instance be
compared to the phenomenon of ants defending the entries of their hill from intruders by
interlacing with each other, building a living wall. Likewise, the agents in the SIseg con-

54



3.3. Interpretation of SI Principles in SISeg

0 50 100 150

0

50

100

150

x

y

(a) Curve

0 50 100 150

0

50

100

150

x
y

(b) Smoothed Curve

 

 

(c) Anchor points

0 100 200 300 400 500 600
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

index

cu
rv

at
ur

e(
κ

)

(d) Curvature

Figure 3.13.: (a) shows the detected (single) swarm by SISeg. Start and end point are depicted as black
diamond. (b) shows the curve smoothed by a Gaussian kernel with σ = 3.85 and a window size of 21. (c)
depicts the image with the detected anchor points. (d) gives the resulting curvature with the found anchor
points overlayed as green rectangles with τ ap = 0.01.

cept sort of fold their “arms” with connected neighbors and disconnect to neighbors of the
separated regions.

Autonomy and Cooperation

Instead of a centralized control, boundaries establish by the interplay of the influence of
the surrounding environment (including the neighboring agents), and each agent’s desire
to choose the optimal possible model. While the first aspect represents cooperation, the
latter part causes each agent decide its contribution to the structure autonomously.
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Chapter 3. Swarm Intelligence-Inspired Image Analysis

Communication

The agents operate in a search space, which consists of the localized image distances plus
the current boundary model estimations of the neighbors. Both the image input and the
surrounding estimates trigger reactions in each agent.

Thus, the algorithm does not follow a direct communication scheme, which would mean
a request-answer structure between the agents, but a loop of observing, reacting and by
reaction influencing the environment again. This clearly makes the communication stigmer-
gic.

Memory

In Swarm Intelligence based approaches, each agent usually possesses a kind of limited
memory, which often consists of a solution experienced in the past and influences an agent’s
future decisions. In the SISeg algorithm each agent memorizes the state of its boundary
models in loop growing phase, which it utilizes to establish a final boundary connection.
The memory is thus crucial for decisions and constantly updated.

Iterative Structure

An element which is inherent in all realizations of SI based concepts is the iterative structure,
as any agent is to adapt to its environment in course of finding a optimum or equilibrium,
or simply convergence. The iterative structure in SISeg is found in the growing-loops, i.e.,
when agents adapt their boundary models to connect to global boundary estimates.

Randomness

In optimization algorithms, randomness is often added into decision processes in form of
noise or random weights. This represents a key factor to overcome local minima while ex-
ploring the search space. In this approach, randomness does not add a benefit to decisions
on models. Instead, a deterministic approach at initialization and growing, which depends
merely on comparison of the distances allows for optimal and repeatable results. Therefore,
randomness was not integrated in this concept.
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3.4. SISegConcept Evolution

When I first considered to utilize Swarm Intelligence on the image segmentation problem,
there were logically merely the basic principles, and thereby nearly endless possibilities to
realize these concretely in an application. Section 2.2 might give a hint on how diverse the
principles can be carried out. In the following I want to give only a few examples on the
variants I created in course of creating the SISeg algorithm. This list is by far not complete.

Movement

Besides several movement approaches, a main approach was to initially let agents per-
form a local steepest descend search, forcing agents to position at local maximum distance
values. After this positioning, agents used communication to establish the contour descrip-
tions. This method was part of the method published in [57]. As an opposing approach
introduced in this thesis, agents stay on a fixed grid and thus do not apply movement on
the image. This significantly simplifies the local geometry and communication structure to
a eight-neighborhood method, which then increases efficiency. Yet, it shall be made clear,
that movement in Swarm Intelligence based optimization approaches refers to movement
in an arbitrary search space. The iterative adaption of the boundary models in SISeg cor-
responds to a movement in a discrete space of possible boundary and connection model
combinations.

Connection Strategy

In course of this work, I created diverse concepts for boundary generation and boundary
connection strategies, utilizing the differences between agents in various ways. Finding the
correct neighbor to connect to at a boundary demands two important aspects. First, the
agent to connect to shall have a preferably minimum difference or distance to the agent
Dn(d), and second, it shall have a high boundary fitness FB

n , i.e. the distance of the neigh-
bor towards the boundary. Basically, these two values are to ensure coevally, that an es-
timated boundary follows the real region boundary by sticking to high differences between
regions, and that it also does not switch over to other regions. Further, the boundary model
geometrically have to suit to each other.

To decide the boundary course, I thus tried different combinations of the values of FB
n and

Dn(d). My intuitive approach were weighted sums, which I tested with different combina-
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tions of weights, including also the two extremes of weighting one term zero, i.e. to rely
either on the difference value, or on the boundary fitness exclusively. A notable variation
of the weighted sums is an approach, that utilized Harmonic Mean of the two values. This
gave allowed a “natural” dynamic way to weight the two values to each other. Additionally I
introduced a lower boundary, below which the Harmonic Mean was replaced by a minimum
value threshold, as it turned out to work best within a certain range of boundary strength.

Further variants included combinations with normalizing the values in order to get rid of
the influence of absolute values, as local maxima could distract form the correct boundary
course. Yet, getting rid of this is preferable in some but not all situations. Another variant,
which worked fair enough, consists of a test, which compares the distances in boundary
and connection candidate directions simply in a binary manner. This led to both stable
estimations of a wide range and high computational efficiency.

The second aspect, on which I implemented and tested a whole variety of approaches, was
the connection strategy, which tells an agent, which neighbor(s) to choose for connection.
All variations included the aspects of 1) connecting to neighbors with high (maximum) gradi-
ents, 2) avoiding degenerate, or respectively obtaining smooth boundary shapes if possible
by constraining the local geometry, and 3) meeting the real image segment boundary course
as good as possible.

Summarizing, all approaches worked well to estimate the boundary course in most image
scenarios. The different variants allowed to push performance in some ambiguous situa-
tions. Yet, one can always find scenarios in real world images, which caused the fitness
value to deliver false detection.

All variants eventually led to the final strategy of SISeg, which separates the two aspects
of high boundary distances plus low connection distances simply into separate rules, each
taking care on its own.
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Image Correspondence Matching

In the previous chapter I introduced an image analysis concept, which delivers exhaustive
image information of region-, edge-, and point-based type. However, in case of image
sequences also temporal information is available. For depth map generation, the temporal
information can be utilized for movement-based depth estimation on the one hand, and for
increasing robustness by tracking image depth content and checking its consistency over
time on the other, thus removing outliers.

4.1. Background on Feature Description and Matching

In this section I give an overview of recent feature description and matching paradigms,
concerning Point, Curve, Line and Shape Matching. Let it be noted, that this overview is by
no means a complete survey, but rather an excerpt of algorithms rather similar to the prob-
lem statement. For exhaustive reviews and evaluations of feature detectors and descriptors
take a look at following works: For point-based features [75, 116, 40] and for Shape-based
features [119, 131, 76]. In [17] a thorough review of all visual tracking, including line-based
features, is conducted. Related work related to narrow- and wide baseline matching is
introduced in the next section.

4.1.1. BRIEF Feature Descriptor and Matching

The Inter-Point-BRIEF (I-BRIEF) Matching algorithm, which I describe in Section 4.3, is
an extension of the Binary Robust Independent Elementary Features (BRIEF) concept to
describe and match line-features. Therefore the original BRIEF, descriptor is introduced in
the following.
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Point based descriptor and matching strategies have been extensively investigated over
decades and logically there exists a broad spectrum of approaches (see e.g. [102]). Since
its introduction in 1999, the famous SIFT (Scale Invariant Feature Transform)-operator can
be regarded as the spearhead in terms of robustness, being able to match points in complex
wide baseline scenarios. It uses multi-scale extrema detection by Difference of Gaussian
and histogram based extraction of edge orientation. The main - or only - drawback of the
SIFT approach is its computational complexity. One of the most prominent alternatives to
SIFT is the SURF (Speeded Up Robust Features) approach. It was developed as an ap-
proximation to the SIFT descriptor. It reduces computations by utilizing the Hessian matrix
and box filters, which significantly speeds up its execution while introducing a considerably
small quality loss.

There exists a variety of approaches in literature, which aim to obtain high robustness and
quality while restraining the computation time. The concepts usually vary in the ways and
parametrizations of calculation steps like scales, feature extractions, handling transforma-
tions, and the distance functions for matching.

In 2010, Calonder et al. in [16, 15] presented the BRIEF, which reduces calculations to
binary operations, thus obtaining very high efficiency. They represent a image patch directly
by a binary string of 128, 256 or 512 bits, while Scale-Invariant-Feature Transform (SIFT)
needs 4096 bit and SURF-64 needs 2048 bit. The binary representation can be matched
very efficiently using the Hamming Distance, which basically breaks down to a bit-wise XOR
followed by a bit count. The hamming distance hd(a, b) between two binary strings a and
b of the same length n is mathematically expressed as

hd(a, b) =
∑
ai 6=bi

1, i = 1, ... , n. (4.1)

As an example, the Hamming distance of the binary strings a = 0010 and b = 0110 results
in hd(a, b) = 1.

The binary description of a image patch ψ is achieved as follows. The patch is first pre-
smoothed by a Gaussian Kernel reducing noise-sensitivity. The smoothing can be achieved
efficiently by using integral images without loosing significant accuracy. For the BRIEF
descriptor, a normal distributed subset of pixel pairs (128, 256, 512 pairs) in the patch is
chosen and pixel intensities are compared between the pixel positions x1 and x2, such that

τ (ψ; x1, x2) =
{

1 if I(ψ, x1)) < I(ψ, x2)
0 else.

(4.2)
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This method is similar to evaluating the sign of the derivatives within a patch. Four different
sampling distributions drawn from random sampling (uniform and normal distributed) and
a symmetrical and regular distribution are considered for determining the test positions in
the patch. The random distributed intensity tests clearly outperform the regularized one.
The original BRIEF is also called Upright-BRIEF (U-BRIEF), since no rotation is considered
explicitly . While U-BRIEF is of course not rotation invariant, it achieves acceptable results in
up to 15◦ of rotation. Scale changes are only considered by pre-smoothing, but the authors
and conducted experiments suggest that U-BRIEF is robust to small and intermediate scale
changes. For larger changes in scale a drop in accuracy can be observed. The results are
promising and comparable to Upright-SURF (U-SURF) in terms of recognition rate. The
achieved speed-up over SURF is tremendous. For descriptor computation a 35- to 41 fold
and for matching 12- to 45 fold gain in computation time can be achieved, resulting from
the utilization of binary operations.

4.1.2. Line- and Edge-based Features

Matching wide-baseline images is often based on local features. In scenes with low-textures
these often fail due to the lack of distinctive information. Low-textured scenes, for exam-
ple scenes showing human-made environments (houses, cities), most certainly will contain
edges and therefore line segments in the form of approximated object boundaries, which
can be used as correspondences instead. Matching methods for line- and edge-based
methods can be categorized into three different types of approaches occurring in the litera-
ture [103, 132]

1. Match individual line segments with

a) the nearest neighbor in image- or feature-space.

b) feature Matching using some matching strategy.

2. Match point correspondences with

a) uniform or arbitrary distributed points.

b) apriori knowledge of the epipolar geometry.

3. Match groups of line segments with

a) graph Matching, interpreting lines of an image as a graph and partially match
different nodes.

b) topology, use the spatial relations between feature-pairs in an image.
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Figure 4.1.: Different matching concepts for line-and edge-based features

This categorization scheme is also depicted in Fig. 4.1. Edges and lines contain struc-
tural information of the scene and are especially important in low-textured scenes, since
local features need a certain variance in image properties such as color or gradients to
be reasonable discriminant. Additionally, edges and lines can be used in conjunction with
point-based and region-based features, because they usually contain complementary in-
formation. As local features suffer from low contrast environments, edge- and line-based
feature detection and description techniques suffer from inherent problems too, such as

1. inaccurate locations of line endpoints,

2. fragmentation of lines,

3. lack of disambiguate geometric constraints,

4. lack of distinctive appearance in low texture scenes.

In the following I will give a short overview of state-of-the-art narrow- and wide-baseline
methods utilizing edge- or line-based features.

4.1.3. Matching Strategies for Features

Once features are detected and described, they need to be compared to other features for
similarity. The similarity is measured using a distance function or a similarity measure, in
most cases the Euclidean distance in the feature space is taken as the measure. Usu-
ally a matching strategy is applied to find the best match in one or more images having
the best similarity or smallest distance. The matching strategy depends on the application
itself. Since certain conditions are assumed, which will often not hold outside of the spe-
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cific application. For example, assumptions about the spatial proximity of features between
consecutive images in video sequences will not hold in general wide-baseline image pairs.

Often image degradation in different image pairs can vary a descriptor. Even if the same
feature is located at the same correct pixel position in a different image the descriptor may
not stay exactly the same as in the image it originates. Often these perturbations are caused
by noise, image discretization, or because another part of an object is now detailed in the
vicinity of the feature. These changes lead to a variation in the descriptor itself. A match-
ing strategy alone is not able to match all features to their corresponding correct features,
but rather reduce the number of false matches. These false matches, i.e. outliers, often
correspond to image parts which are not shown in both images, e.g. background clutter
or occlusion and cannot be matched anyway. To tackle this problem different matching
strategies emerged in the literature. In the following I will discuss them shortly [111].

Nearest spatial neighbor Especially in feature tracking applications it can be assumed,
that context between images is quasi-constant, as the captured movement is usually low
compared to the frame rate of the sequence. Therefore it can be applicable to take the
spatially nearest feature between two images as correspondence.

Thresholding - Another strategy is to take the feature below some threshold ε as a match,
but it is difficult to find a threshold, which is generally applicable. Additionally, the useful
range of thresholds can vary a lot in different parts of the feature space.

First Nearest Neighbor (1NN) - To overcome the problems of using a threshold directly
on the matches, one attempts to find the nearest neighbor in the feature space. A threshold
is still used to reduce outliers and the needed threshold can still vary for different parts in
the feature space. This strategy is most common in visual tracking applications.

Nearest Neighbor Distance Ratio (NNDR) Another more capable strategy is to take a
look at the ratio of the first and the second nearest neighbor in feature space. This is called
the NNDR and is defined as NNDR = d1

d2
with d1 and d2 as the first and second nearest

neighbor distance in feature space. This usually reduces the number of outliers and has
become the de-facto standard for wide-baseline matching.

4.1.4. Discussion

In the following, I will explain and discuss various approaches. Starting with point-based
features, which have become the de-facto standard for finding image correspondences. A
lot of research has been conducted in this area in the last decades. Point-based concepts,
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such as SIFT or SURF, are relatively stable under all possible image transformations, but
directly rely on image data for describing patches or regions. Binary point-based features
are related to aforementioned approaches, but are more computationally efficient in means
of extraction and description while giving similar performance. Point-based features will
most likely fail for image sequences, which lack descriptiveness by image properties alone.

Therefore more robust features can be introduced using edge- or line-based features,
which contain significant structural information. Line segments can be tracked in image
sequences with the nearest neighbor in image or feature space within a search region
propagated in a prediction-observation scheme such as a Kalman Filter [26, 30, 81]. Other
approaches exist, where control points facilitate the reestablishing of a line [43, 103]. Line
segments can also be matched across wide-baseline images with different approaches,
such as gradient-based [122], appearance-based [8, 132], topology-based [121], or via ge-
ometric constraints [103]. These concepts often rely on feature matching or costly graph
matching techniques. The authors in [74] introduce an interesting edge-based description
and matching approach for wide-baseline image pairs relying on gradient histograms, but
fail to give specifics about computational complexity. These methods are usually capable
to describe and match a large number of features across views and can be made robust to
most occurring distortions. There already exist methods, which can inherently match edge-
based contours like Mean and Standard Deviation Curve Descriptor (MSCD) from [122] and
[74].

Approaches in the context of shape matching are rather found in applications related to
object recognition, than finding arbitrary correspondences between images. Furthermore
shape-based features try to find similar shapes in different images, rather than the same,
possibly transformed, feature in different images. Active contours are used to either detect
shape-based features with a evolution mechanism or are applied to (multi-) object tracking
[128]. Either way, they need additional input for initialization. Due to their iterative nature
they have high computational cost and are hardly applicable to the goals.

None of the above listed approaches can achieve fast matching for many edge based fea-
tures in narrow- and wide-baseline image pairs. Using SISeg as input allows for arbitrary
curves to match, instead of restricting to straight lines or line segments. Additionally I do
not want to use a priori knowledge in the form of contour-models to stay applicable for the
general case. The approach introduced in section 4.3 utilizes the concepts specified in this
section.
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4.2. Related Work on Narrow and Wide Baseline Maching

This section gives an overview on line and contour matching algorithms in narrow- and
wide-baseline applications.

Narrow-baseline

Narrow baseline tracking of line and edge features is a rather well studied subject, as its
inherent constraint of locality of image content also applies to video sequences. For the
same reason it allows for prediction with Kalman Filter sets. The approach in [26], and an
advancement of it in [30], are examples for applying a Kalman Filter, feeding with a special
set of parameters of the edges of interest, like their lengths and positioning and orientation
angles, in relation to a fixed origin, the movement of midpoints, etc., and matching using
the Mahalanobis distance.

In [43] the authors proposed a line tracking algorithm called Real-time Attitude and Position
Determination (RAPID). It assigns control points to a line and predicts these with an α− β
filter or with a Kalman Filter. Afterwards a one dimensional search for gradient maxima,
perpendicular to the according contour, is applied. The found control points are used to
reestablish the position of a three dimensional model. The authors of [81] use an adapted
RAPID tracker with a new way of handling multiple line hypotheses. Lines are extracted via
Canny edge detector, the contours get linked and polygonized. A simple line segment is
providedfor RAPID as model input and hypothetical lines are proposed in the neighborhood
of the line segment.

In [33] the authors use edge landmarks in monocular Simultaneous localization and map-
ping (SLAM), which enables them to handle edges of arbitrary location and orientation.
Therefore they define the edge features as a local portion of an edge, small, locally straight
segments, which they call edgelet. Description and matching is then done utilizing local
windows centered around the edgelet and creating small description vectors.

The authors of [103] utilize prior knowledge of the epipolar geometry to establish the line
correspondence for narrow as well as wide-baseline matching. They first project the line
i.e. the set of points with the known fundamental matrix F into the second image. Corre-
spondences can be found by utilizing the fact that a point x on line l corresponds with a
point x′ on line l′ when x′ = l′ × (Fx). To measure the similarity between line segments the
average of the individual correlation score between common line pixels is used. A match
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for l can then be found by calculating the matching score with all segments in an epipolar
constrained search space and taking the best one results in a correspondence.

Wide-baseline

Scenarios, in which the viewpoint, rotation, or camera parameters differ significantly from
one image to the other, are generally referred to as wide-baseline scenarios. Practical
applications to wide-baseline matching is image stitching to create a single image with a
panoramic view from multiple images taken from different viewpoints. Recently, line-based
feature approaches emerged for wide-baseline images. In the following I will review some
of these concepts.

Wang et al. [122] present a descriptor for line matching, which borrows some ideas from
SIFT, called Mean and Standard Deviation Line Descriptor (MSLD). Lines are extracted
with Canny edge detector and split at high curvature points to acquire line segments. They
center a rectangular Pixel Support Region (PSR) at each such segment, which is oriented
to the average gradient dl to achieve rotation invariance. After Gaussian weighting, and
division in subregions, a Gradient Description Matrix (GDM) is formed, which contains all
the structural information of the line neighborhood. Since the GDM still depends on the line
length, the mean and standard deviation from each column vector are extracted, which are
then again normalized for further scale invariance and used to form the descriptor. For a
robust matching they apply Left-Right Checking (LRC) and NNDR. Initially, the method is
for line segments, but using each pixel gradient instead of the mean gradient of the line
to determine the PSR, the authors were able to extend their approach for general curves,
called MSCD.

In [8] the authors introduce a combined line and region wide-baseline stereo matching al-
gorithm, which is tailored to poorly textured scenes. After detecting lines using the Canny
edge detector, they initially match them between images by the neighboring color profiles
on both sides of the line, represented as histograms. For robustness against illumination
changes, a quantized HSV color space is used. The dissimilarity of two segments is ex-
pressed by the square root of the mean of the histogram dissimilarities for both sides. The
authors allow for one to many correspondences and store the best 3 matches. These so
called soft matches help to match weakly distinctive line segments. After first correspon-
dences are established, the matches (segments and regions) are iteratively refined with a
topological filter, based on the semi-local spatial arrangements in two views. Subsequently,
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more matches are found by iteratively reintroducing unmatched line segments, which re-
spect the topological structure of the current set of matches. The algorithm performs better
than SIFT when confronted with poorly textured, such as indoor, wide-baseline image pairs.

The authors of [121] cluster detected line segments into local groups, according to spatial
proximity and relative saliency between segments. Edge pixels are extracted and linked into
connected curves and split into straight lines at dominant points in a multi-scale fashion.

These groupings of line segments is called a Line Signature. The grouping mechanism, is
based only on surrounding lines and is therefore scale invariant. The line segment pairs
are described by a set of length and angles and the ratio of mean gradient magnitudes
between line segment pairs, which allows for measuring affine as well as general similarity.
Line signature similarity now remains the sum of the similarity between their corresponding
segment pairs, which can be found by maximizing the segment mapping with respect to the
similarity measure. Matching is then speeded up by a codebook approach.

In [132] lines are detected in a scale space approach using the EDLine [1] algorithm to each
octave producing a set of lines in the scale space. Detected lines are initially grouped by
spatial and directional extent. Through a histogram comparison made from the line direc-
tions, the global rotation can be approximated, which serves as a correction for perspective
transformation in the case of global rotation. For describing the local appearance simi-
larity between the remaining groupings a proprietary Line Band Descriptor (LBD) is used,
which is quite similar to MSLD. Further pruning of matches is applied, based on a local
appearance dissimilarity tolerance. Nodes in the relational graph consist of potential cor-
respondences and the weighted links represent the pairwise consistencies much like the
similarity measure in [121]. To solve the matching problem efficiently, a spectral technique
is employed.

In [74] Meltzer et al. proposed a wide baseline correspondence algorithm based on edges,
that are extracted via a scale space approach. Edgels are ordered via a linking mechanism
in location and scale. Then for each side of the edge a support region is estimated, called
the scale envelope. This envelope is determined by evaluating the integral of the Laplace-
Operator along each edgel on both sides independently. Anchor points are then selected
at extrema points of the envelope on both sides and are therefore depending only on image
statistics, rather than edge geometry. Similar to SIFT, gradient histograms are extracted
and weighted for each region. Matching is then achieved by a derivate of Dynamic Time
Warping (DTW) the so called Smith-Waterman Algorithm, which was developed for protein
sequence alignment [107]. To feed the edge descriptor to the Smith-Waterman matching,
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the histograms are transformed into letters in a fixed alphabet by clustering all histograms
with k-means clustering. The authors state, that the algorithm outperforms SIFT in domains
where occluding boundaries are dominant, but no measure for computational efficiency is
given.

4.3. Inter-Point-BRIEF Descriptor

In this section I introduce an approach for edge-based matching, which relies on inter-point
relations. It utilizes Anchorpoint extraction from section 3.2.4 as input, but can cope with
other edge detection algorithms as well. In this chapter, I will explicate the general idea of
the concept, detail important sub-components and verify certain decisions with experiments
on video sequences, taken from the dataset in [40]. A detailed description of the dataset
can be found in subsection 6.2.2, along with a comparison with a state-of-the-art approach
in the evaluation chapter.

The general pipeline for feature matching contains four steps

1. feature extraction using e.g. SISeg, as shown in detail in Section 3.2,

2. feature description,

3. feature matching.

The detection and extraction of salient contours in the SISeg-concept, which is described
in Section 3.2 serves as input into this algorithm.

4.3.1. Inter-Point-BRIEF Descriptor Concept

I propose a novel description approach, which is based on BRIEF [16]. The point-based
BRIEF descriptor is already described in Section 4.1.1. I call this concept the Inter-Point-
BRIEF (I-BRIEF). It establishes a relation between two anchor points on an edge-based
feature. Instead of evaluating intensity parameters inside of an image patch, as in BRIEF,
the intensity tests are distributed between two patches. For two points on an edge, the
I-BRIEF results in a correspondence-based edge descriptor. In the case, that both points
coincide this method falls back to a BRIEF-like descriptor.

After stating the general idea, I now derive the approach in a similar manner as BRIEF.
Equation Eq. 4.2 is extended with another patch around another point. That is, the test τ
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between two patches ψ1 and ψ2, both of size S × S, point x1, x2 in the coordinate system
of ψ1 and ψ2 respectively, is now defined by

τ (ψ1,ψ2; x1, x2) =
{

1 if ψ1(x1) < ψ2(x2)
0 otherwise

}
(4.3)

where ψ1(x1) and ψ2(x2) are the smoothed pixel intensity of patch ψ1 and ψ2 at coordinate
x1 = (x1, y1)T and x2 = (x2, y2)T respectively. Next, a nd-dimensional set of (x1, x2)-location
point pairs is chosen. The choice of location point pairs is for now arbitrary and is further
defined in Section 4.3.2. To form a nd-dimensional binary string relating the two patches,

fnd (ψ1,ψ2) =
N∑

1≤j≤nd

2j−1τ (ψ1,ψ2; xj
1, xj

2) (4.4)

is evaluated.

This builds a unique descriptor for a set of point pairs. I use the binary string fnd (ψ1,ψ2) as an
efficient descriptor between two anchor points and for a feature pi the descriptor becomes
di = fnd (ψ1,ψ2). Like in the original paper [16] I use nd = 128, 256, 512 test pairs, which I
call I-BRIEF-k with k = nd

8 and therefore name the descriptor by its size in bytes. To create
such a descriptor some design choices need to be made

1. choice of smoothing kernel,

2. how to cope with rotation between patches,

3. the geometric ordering of the image patches,

4. concerning endpoint stability.

I will discuss these in detail in the subsequent chapters. To find the best sub-components of
the I-BRIEF for the purpose, I test them in video sequences displaying unconstrained mo-
tion over 500 frames with different plain textures, related by a homography. The approach
is rated with the mean precision, which relates the correct matches with all established
matches and gives the probability of a randomly selected match being correct. The dataset
and metrics employed here are further shown in section 6.2.2. For stability reasons, the
edges that serve as input to I-BRIEF are filtered, to retain only those with a high saliency.
The edges are re-projected via a homography for each frame, thus the end points to the
I-BRIEF stay the same over the whole sequence, only the image is perturbed by motion
blur and projective transformations.
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Figure 4.2.: Mean precision of continuous video images for different smoothing kernels ranging from
[0.65, 2.75] with a window size of 9 and a box-filter with a window size of 9.

4.3.2. Inter-Point-BRIEF Descriptor Design

Smoothing Kernel

The tests in Eq. 4.3 takes only intensity comparisons between single pixels into account.
Since measuring single pixels against each other is very noise sensitive, pre-smoothing is
crucial to the system, which increases the stability and repeatability [16]. Since the intensity
tests can be seen as evaluating the sign of the intensity difference between two points, it
accentuates high frequencies and hence amplifies noise [111]. Fig. 4.2 shows the rela-
tion between several Gaussian kernels with different variances ranging from 0.65 to 2.75
and the same using a box-filtering technique. These results reflect the findings in [16, 15].
The box filtering using integral images provides at least the same performance by lower
computational cost, therefore I will use it for all following experiments.

Rotation

For point based features rotation needs to be estimated roughly. Contrary to that, edge-
based features inherently have a orientation. To align the patch ψi to the edge, one can
pre-rotate the patch accordingly. This step makes the descriptor rotation invariant. I use
the angle between the anchor point and the centroid xAP of the next c points on the curve
that lie between the starting point and the end point. Setting c = S

2 aligns the patch with the
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4.3. Inter-Point-BRIEF Descriptor

line segment inside of the patch for any smooth curve. The angles for the rotation of the
image patch can now be defined by the vector

dAP = xAP − xAP, (4.5)

where dAP is the direction of the patch and xAP is the anchor point. With this directional
vector dAP one can define the rotation of a patch by the angle θAP between dAP and the
x-axis. A sample point x of a patch ψ is now rotated, using

x′ = RθAPx, (4.6)

where

RθAP =
(cos(θAP) − sin(θAP)

sin(θAP) cos(θAP)

)
(4.7)

is the corresponding rotation matrix. Fig. 4.3 shows the rotation scheme of the image patch,
according to the centroid.

ψi

dAP

xAPxAP

(a)

ψi

dAP
xAP

xAP

(b)

Figure 4.3.: (a) shows the upright I-BRIEF. In (b) a possible rotation of a single patch is displayed.

Spatial Distribution of Test Pairs

To build a string of nd binary intensity tests between two patches, the set of nd test pairs has
to be selected properly. The point x1 is defined to be always within the patch ψ1 and x2 is
taken from ψ2. The approach used differs slighty from the original BRIEF, as since an edge
splits two regions, pixels, that fall within a certain distance of the edge are not considered.
In BRIEF the immediate area around the key point is important opposed to edges where
the properties of the surroundings are of major interest. Consider the intensities of pixels
along an edge, evaluating the sign of the derivative between two edge pixels may not be
stable and might result in flips in the descriptor in different images. Therefore I employ a
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Chapter 4. Image Correspondence Matching

Figure 4.4.: Basic layout of the upright descriptor with two patches, each having two regions, and line area
where no intensity tests are conducted.

suppression area with length ls on each side of the edge, where no tests can be located,
much like it is done in [8]. To make sure to not comparing edge pixels with each other, the
area delimitation is set to the size of the Gaussian kernel used for edge detection. The
distribution scheme is now defined locally for both regions of each patch r j

ψi
with i ∈ {1, 2}

and j ∈ {1, 2}.

The following distributions assume a straight line that lies on the x-axis. Let it be stated that
no rotation of the patches is considered here. In this case, one can define region r1

ψi
to be

the region with positive y values and therefore r2
ψi

with negative y values. In Fig. 4.4 this
setup is shown. The geometric ordering of the (x, y) locations is defined by the following
distributions.

• G I – Uniformly distributed U(a, b), with lower bound a and upper bound b:

r1
ψi

(xi) ∼ i.i.d. U(−S
2 , S

2 ), i ∈ {1, 2}

r1
ψi

(yi) ∼ i.i.d. U(ls, S
2 ), i ∈ {1, 2}

r2
ψi

(xi) ∼ i.i.d. U(−S
2 , S

2 ), i ∈ {1, 2}

r2
ψi

(yi) ∼ i.i.d. U(−S
2 ,−ls), i ∈ {1, 2} (4.8)

where ∼ i.i.d. means independent and identically distributed.
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• G II – Normal distributed N (µ,σ2) with mean µ and variance σ2

r1
ψi

(xi) ∼ i.i.d. N (S
4 , 4S

25 ), i ∈ {1, 2}

r1
ψi

(yi) ∼ i.i.d. N (0, 4S
25 ), i ∈ {1, 2}

r2
ψi

(xi) ∼ i.i.d. N (−S
4 , 4S

25 ), i ∈ {1, 2}

r2
ψi

(yi) ∼ i.i.d. N (0, 4S
25 ), i ∈ {1, 2} (4.9)

If a value lies outside of the patch or within the line area, it is redistributed, choosing
σ = 2S

5 to provide a more decentralized distribution.

• G III – Combination of U(a, b) and N (µ,σ2). y values are normal distributed, whereas
x values are uniformly distributed:

r1
ψi

(xi) ∼ i.i.d. U(−S
2 , S

2 ), i ∈ {1, 2}

r1
ψi

(yi) ∼ i.i.d. N (ls, S
100), i ∈ {1, 2}

r2
ψi

(xi) ∼ i.i.d. U(−S
2 , S

2 ), i ∈ {1, 2}

r2
ψi

(yi) ∼ i.i.d. N (−ls, S
100), i ∈ {1, 2} (4.10)

Again, values lying outside the patch or within the line area are redistributed, choosing
σ to be S

10 to examine how intensity tests close to the line behave.

In Fig. 4.5 the different distributions and the relation between two patches are depicted.
To find the best geometric ordering, I compute the mean precision over all five different
video sequences for I-BRIEF-{16, 32, 64} and plot the results in Fig. 4.6. Distribution G II
provides slight advantages over both remaining distributions and therefore the distribution
G II was used for everything introduced in the following.

Endpoint Stability

Since it is well known, that endpoints are not a stable feature for reliable correspondence
estimation, the stability of the approach is evaluated in an artificial imperfect situation. The
location of endpoints is varied by truncating the curve by a new Gaussian modeled start-
and endpoint. A feature pk

i with the point set {x1, x2, ... , xn} is truncated by discarding all
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(a) G I (b) G II (c) G III

(d) G II relations

Figure 4.5.: (a), (b) and (c) show the different distributions of the ψ1 patch with 512 tests (64 byte). (d) depicts
the relations between two patches with G II distribution, showing 32 (4 byte) test pairs for the sake of clarity.
Colors differentiate the regions in which the binary test fall. Region-pair 1-1(red), 1-2(green), 2-1(blue) and
2-2(yellow).

points with a lower index for start point alteration and a higher index for endpoint alter-
ation. Thus the new point set becomes {xa, xa+1, ... , xb−1, xb}, with a, b ∼ i.i.d. N (µ,σep).
Fig. 4.7a shows the results for this experiment. It is evident that alteration of the endpoints
perturbs the descriptor and especially in non-trivial situations this can lead to disastrous
performance, indicated by the high variance for strong variations. Although I-BRIEF seems
stable against small endpoint perturbations, one cannot rely on endpoints per se, instead
more robust points for inter-point relations are needed.

Therefore anchor points, as discussed in Section 3.2.4 are used. To measure robustness
of points I use the ε-repeatability criterion [102, 40]. Here, the repeatability r compares the
geometric stability of an endpoint or an anchor point in different images. It can be com-
puted by projecting a single point with the according homography into the new frame and
measuring the distance between the original point and the projected point. If the Euclidean
distance between those points is smaller than some threshold εep, the point is considered
to be successfully ”repeated”. The repeatability is the rate of the total observed endpoints
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Figure 4.6.: Mean precision and variance in several videos with unconstrained motion, using I-BRIEF-
{16, 32, 64} descriptor each with distribution {GI, GII, GIII} and nearest neighbor matching.

or anchor points in both images, thus r = 1 means a perfectly repeated point. In Fig. 4.7b
an experiment was conducted, which evaluates the mean repeatability r̄ of endpoints and
anchor points averaged over all frames in five different videos. I employ the SISeg edge
extractor in every frame of a sequence and measure the εep repeatability of endpoints and
anchor points separately. The results suggest that anchor points are more stable than end-
points by means of repeatability.

One can now define for a arbitrary curve si with NAP anchor points, in addition to both
endpoints, NAP + 1 sub features as pi = {pi1 , pi2 , ... , piNAP +1}, with each subset having its own
curve representation sij and descriptor dij . In the next chapter I will discuss how one can
match these sub-features for arbitrary edges or respectively contours.

4.4. Inter-Point-BRIEF Matching

In this chapter I will further explain the matching process for features between two frames.
To cope with split and merged edges, I propose an alternative method, in addition to those
in section 4.1.3. One can still apply a 1NN matching strategy for video sequences or a
NNDR based matching strategy for wide-baseline matching, as will be described here.
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Figure 4.7.: (a) shows I-BRIEF mean precision p̄ vs. endpoint stability varying endpoints with a Gaussian
distribution N (0,σep) for I-BRIEF-{16, 32, 64}. (b) displays the mean repeatability and variance in several
videos with unconstrained motion

1NN Matching Strategy

One can use the 1NN matching strategy based on entire edges by finding matches, that
are only described by the relation between the endpoints. This matching thus happens at
feature level. For each feature in Pk I seek the first nearest neighbor in the feature-set Pk−1

within a spatially reduced neighborhood by using a gated search region rsr . The search
region, see Fig. 4.8b, is based on the minimal area rectangle rminArea spanned by si of
feature pi ∈ Pk . I neglect the dependency of a search region to si in the notation, because
it should be clear from the context, that it is centered around some feature. some offset lsr

is added to the width and height of rsr , such that if si consists of a single point, it is centered
around this point. Thus each feature is matched to a nearest feature in feature space with
some spatial restrictions. In video sequences this might work, as shown in Section 6.2.2,
but matching endpoints will most certainly fail with increasing baseline.

NNDR Matching Strategy

The NNDR matching strategy is therefore applied to wide-baseline scenarios, which were
introduced in 4.2. Due to the endpoint instability and varying content in the case of wide-
baseline, I split edges at high curvature points into shorter and smooth curves and employ
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4.4. Inter-Point-BRIEF Matching

all subsequent description andmatching steps on these features. This matching happens at
sub-feature level. Before describing each (sub-) feature I filter out edge segments, which are
shorter than some threshold, as it is applied in wide-baseline approaches [123]. Matching
is now achieved between all possible remaining features in Pk and Pk−1, either described
by the relations between endpoints or anchor points or a combination of both.

I-BRIEF Matching Strategy

The strategy is based on edges which are split at anchor points and hence, a feature is
subdivided into several sub-features, but a match is established on the entire feature pi ∈
Pk . The underlying matching is based on the 1NN matching strategy with the gated area
rsr around some feature pi , but I use mode statistic in the sub-feature level to attain a match
based on the feature level. The mode of a discrete distribution is the most frequent value.
For example, in a set t = {1, 1, 2, 2, 2, 3, 5, 7}, I define the mode m0(t) = 2 as the most
frequent with |m0(t)| = 3 occurrences and m1(t) = 1 as the second most frequent.

Match in
sub-feature level

Find match in feature level
with mode statistics

Postprocess

(a)

rminArea

rsr

si

lsr

lsr

(b)

Figure 4.8.: (a) Outline of proposed matching scheme for a single feature. (b) shows the search region for an
arbitrary curve.

The outline of this approach is depicted in Fig. 4.8a. For the matching, features that are
split at anchor points into a subset are utilized. At first for sub-feature pk

ij with i as feature
ID and j as sub-feature ID, the corresponding sub-feature pk−1

lm with feature ID l and sub-
feature ID m are found. The distance of sub-features between descriptors dk

ij and dk−1
lm can

be efficiently calculated with the hamming distance, described in Section 4.1.1.

The sub-feature, that minimizes the hamming distance inside the search region rsr around
the feature pi , is taken as the sub-feature correspondence. For the sake of readability I
neglect the dependency on frame k and k − 1 and only use pij and plm . Thus each feature

77



Chapter 4. Image Correspondence Matching

pi will have several matches according to the sub-feature matches, which will be referred
to as µi = {µ1

i ,µ2
i , ... ,µNAP+1

i } where µ1
i ,µ2

i , ... represent the according feature ID l of the
feature plm . I now apply mode statistics on µi to determine a match. Therefore I find the
most m0(µi) and second most m1(µi) frequent IDs occurring |m0(µi)| and |m1(µi)| times, with
|m0(µi)| ≥ |m1(µi)|. The mean distance d(m0(µi)) and d(m1(µi)) of all sub-feature matches,
which contributed a m0(µi) or m1(µi) ID to µi is calculated. To determine a feature match
I consider both m0(µi) and m1(µi) sub-feature matches. The correspondence scheme can
be formulated as follows:

• If |m1(µi)| = 0 I instantly set m0(µi) as a match

• If d(m0(µi ))
d(m1(µi )) < τ I use m0(µi)) as a match

• If |(m1(µi)| ≥ r × |m0(µi)| and d(m1(µi)) < d(m0(µi)) I use m1(µi) as match

• If nothing fits, reject match

I exemplify the proposed matching scheme with an illustrative example in Fig. 4.9. This
example consists of two features pk−1

2 , pk−1
4 in frame k − 1 and in frame k only pk

5. The
goal is to establish a match for pk

5. The example results in m0(µi) = 4 and m1(µi) = 2, with
distances d(m0(µi)) = 10+11+3

3 = 8 and d(m1(µi)) = 30. Going through the correspondence
scheme, a match between feature pk

5 and pk−1
4 can be found.

p41
p42

p43

pk−1
4

p51

p52 p53

p54pk−1
2

p21

pk
5

(a) Illustrative example

Feature µ1
5 µ2

5 µ3
5 µ4

5
pk

5 4(10) 4(11) 4(3) 2(30)

(b) Matching result

Figure 4.9.: (a) displays an example of the matching approach, where similar colors depict actual correspon-
dence. Along with sub-feature matches and distances in brackets in (b).

With this matching scheme it would inherently allow multiple entries, which only makes
sense if the edges split at some point. To additionally filter matches that do not result from
split edges the matches are post processed. The distance between each start and endpoint
of the features is measured and only multiple entries are kept, if the closest distance is within
3 pixels.
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Chapter 5.

2D to 3D Conversion

This chapter first explains the most common depth cues and reviews the current state-
of-the-art approaches in generating depth information from either single images or image
sequences. Then a lightweight adaptive fusion scheme is introduced, which utilizes the
delivered by the SISeg algorithm. Additionally, a formal scheme to integrate motion infor-
mation provided by the Inter-Point-BRIEF is given.

5.1. Related Work on Depth Map Generation

As stated in section 1.2 of the introduction chapter, 2D-3D conversion can be classified in
manual, semi-automatic and fully automatic approaches, ranging from low-quality real-time
approaches to highest quality approaches demanding high computational effort plus often
human interaction. As the approach introduced in this chapter, this related work section
concentrates on examples for semi-automatic and fully automatic concepts, focusing on
the computational complexities of the various methods.

The Depth Director [124] denotes a system, that allows for semi-automatic segmentation,
rotoscoping, and depth assignment. The approach supports automatization at all steps, but
needsmanual interaction finalization and for starting points. For an initial depth assignment,
it utilizes a set of depth heuristics and complex depth templates and Structure from Motion,
if applicable - which is generally not always the case, as also mentioned in the introduction.

In recent years, many semi-automatic and offline approaches, which prioritize high quality
over computational speed, rely on machine learning techniques.

In [97], the authors created a database of images of outdoor scenes including depth and
used supervised learning to model depth as a function of the image. They applied a Markov
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Random Field and a multi-scale feature vector including both local and global image fea-
tures. The feature vector is based on the cues of texture gradients and color haze.

In [53], the authors assign depths learned from a RGBD dataset via a methods called non-
parametric sampling and depth transfer. This includes finding candidate matches in the
database using GIST features, and warping the depth via SIFT-Flow features, followed by a
global optimization step. In case of image sequences, they can include temporal information
for increasing accuracy. The approach is fully automatic and outperforms other approaches
on benchmarks, however, it has a certain binding to the database. It takes one minute per
640 × 480 image to process on a 3.2 GHz Quad Core using parallel implementation. The
authors extended their approach to videos, calling it depth transfer [52]. In [90] the authors
use machine learning in a random forest based approach to fuse various depth cues.

In the field of automatic approaches, there is also a strong connection between the compu-
tational complexity and the cue that is used. Some approaches using various cues will be
shortly introduced in the following. For an introduction of the main monocular cues, please
also refer to section 1.1.1.

Depending on the imagery, depth from blur, or defocus can result in very sound depth maps.
Yet, it is rather complex and thus computationally expensive to obtain the blur amount
properly. Further, a number of additional steps are necessary to get to a final result, like
transforming from sparse to dense image information, moving from relative To estimate the
blur, various methods are utilized, like Gaussian Kernels plus gradient ratios [135], inverse
diffusion[79], or a focal stack method [44].

An example of a texture based approach is given in [70]. Such methods also demand
significant computation time, as they prerequisite the description of texture features, the
extraction of the textured surfaces, plus affine transformations to estimate the orientation of
these surfaces, which then leads to the depth map estimate.

Methods relying on the depth from shading cue, utilize a Lambertian reflection model to
establish a relation between the reflections of light on surfaces and the orientation of these
surfaces. Such estimates thus try to analyze the image brightness, which can be conducted
via e.g. minimization [134], propagation [11], local [62], or linear [87] approaches. All of
those methods imply very high computational complexity.

The major task to obtain depth from linear perspective, is to correctly detect the vanishing
points by correctly grouping and classifying the detected lines in the image. In [133], the
authors therefore use a RANSAC approach, while [110] apply the graph cut algoririthm for
grouping. Subsequently, methods to get from sparse to dense maps need to be applied.
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Depending on the approaches, this results in still increased computational effort, yet not as
high as the cues mentioned above.

Cues, which can be calculated with considerably low complexity, are for example the color
based statistical patterns, as well as approaches based on gradients.

Contrary to the approaches mentioned above, the authors of e.g. [115] strongly focus on
computational performance. They combine an edge histogram-based global depth gradient
with a local color and luminance-based refinement. With these low-complexity cues they
achieve 30fps on 1080p video including the DIBR calculation, making heavy use of multicore
CPU and GPU optimization.

In [49], the authors combine depth from motion cue with depth from geometry. For com-
putational efficiency they obtain a moving segmentation utilizing the H.264 flow information
and create a Gaussian Mixture Model for modeling the background, which is the masked.
The vanishing lines are obtained via Hough Transform and a depth gradient is assigned
to only one major vanishing point. The fusion module simply takes the depth from motion
where motion was classified and the geometry-depth map else. The authors show a set of
result depth maps, but don’t provide any evaluation results, or computation times.

In [129], the authors combine global depth gradients with local depth refinements to achieve
a real-time conversion for videos.

5.2. A Light-Weight Adaptive Depth Map Generation

To achieve a speed-efficient 2D to 3D conversion that achieves a certain quality, there is no
single technique or respectively cue to rely on exclusively. Instead, an adaptive combination
of known techniques, which are again stripped down to increase computational efficiency,
is the key factor. The following listing provides an overview on the four basic depth modules
that are the input to the fusion module, which are then detailed in the succeeding sections.

• Texture based depth, section 5.2.1

This module lends components of an edge detector to calculate gradients hardened
against noise. The gradients are further accumulated in small blocks used to estimate
surface orientation which is then used by a propagation algorithm to get a depth esti-
mate. Compared to classical texture-based approaches, the method introduced here
is rather an approximation of depth from texture.
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Figure 5.1.: Overview and computational flow of the light-weight adaptive depth map generation module.

• Linear Perspective based depth, sections 5.2.6, 5.2.7 and 5.2.8

This module first calculates an estimation for a vanishing point. The presence and
position of a dominant vanishing point is further used for a general classification of the
scene, and derived from this, the choice of scene-based global depth map types.

• High frequent detail based depth, section 5.2.5

High frequency components of the input image’s intensity channel serve as a local
refinement input, which is complementary to the global depth map. Fusion of both can
enhanced image details and thus the quality.
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• Segment wise assignment of sky areas, section 5.2.3

Utilizing the segmentation outcome, this module decides for each segment whether
or not it belongs to the sky and creates a stencil map from this information. This color
based depth module is to obtain and provides a significant quality boost for outdoor
images.

Section 5.2.9 details the adaptive fusion to join the results of the four modules. The workflow
of the overall procedure is shown in figure 5.1.

5.2.1. Construction of a Texture Based Depth Map

A texture based depth map can be approximated using the absolute value of the intensity
gradient’s vertical component can be tackled, if the following idealized assumptions are
considered.

In the most common depth scenario, the ramp, the captured scene has a ground which is
close at the bottom and far away at the top of the image. If there are objects in the scene,
they are usually considered upright, i.e. each object has a more or less ’single’ depth value.
The borders of these objects, and consequently the image gradients, also coincide often
with color gradients in the image and coevally with depth discontinuities. This idea can be
expressed as

zy,x = z0 + a
y∑

k=y0

|∇Gy,x |, (5.1)

where Gy,x is the intensity of the light at the position (x, y)T and zy,x the depth at this point.
z0 is a preset distance to the closest point and a is a tuning parameter.

Under some basic assumptions, this concept similarly holds for textured surfaces viewed
in different orientations.

Again one can assume the basic shape of a ramp, many scenes feature an elongated
horizontal surface in the lower part of the image, e.g. water, streets, grasslands, or floors.
Furthermore, the optical axis of the camera is assumed to be horizontally aligned and there
are no areas where the ground elevation decreases with increasing distance to the camera.
Moreover, the image shall be uniformly illuminated and void of specularity or shadows.

The general idea is that under these assumptions, the surface texture looks different when
viewed from different angles. In [70] an approach is presented where local surface orienta-
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tion is obtained by comparing Fourier-spectra of the same texture at different locations and
determining shortening and stretching of the texture pattern. However, if as simplification
the surface color intensity has a similar pattern all over the image, the shortening can be
determined by integrating the absolute magnitude of the intensity gradient in vertical direc-
tion, leading to a higher frequency in intensity change, if the textured surface lies in a more
horizontal angle and is thus viewed from a steeper angle, as displayed in figure 5.2.

Figure 5.2.: The same surface pattern viewed from two different angles. Features are closer to each other
when viewed from a steeper angle.

Figure 5.3.: Texture based depth map of a beach scene. There are visible vertical stripes caused by error
propagation. Sky removed by the sky detector. Left to right: original, unfiltered, filtered.

However, real world patterns are rarely as even as shown in figure 5.2. Thus the blockwise
vertical integration gradients can lead to vertical bars in the depth map with their intensity
increasing to the upper end of the image, as displayed in the middle subfigure of 5.3.

To obtain a smooth depth map, the intermediate result of the texture map has to be post-
processed. As a standard approach, Gaussian smoothing was applied in the right subfigure
of 5.3. Yet, a joint bilateral filter night be a better suited choice, as it does not wash out the
depth horizontally over object borders. The filtering step is detailed in section 5.2.2.
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5.2.2. Improvement by Post Processing Filter

The smoothing operation applied to the texture image shown in the right of figure 5.3 is a
simple Gaussian filter. The gaussian filter holds the drawback that it blurs depth discontinu-
ities. Thus it shall be evaluated in this section, if a joint bilateral filter [114] is able to improve
the results. A Gaussian filter is defined as

h(x) =
∫ ∞
−∞

∫ ∞
−∞

f (ξ)c(ξ, x)dξ, (5.2)

with
c(ξ, x) = 1

2πσ2 e−
‖x−ξ‖2

2σ2 , (5.3)

where f (x) is the input image, h(x) the output image, c(ξ, x) is a measure of geometric
closeness between x and the expectation value ξ, defined as two-dimensional Gaussian
curve with standard deviation σ.

In the bilateral filter, each pixel is assigned with a weighted sum of neighboring pixels, so in
contrast to the Gaussian filter, each weight is not only determined by the relative distance
to the target pixel, but also by the similarity of pixel values. This way, a smoothing that
preserves contour information can be achieved, because pixels on opposing sides of an
edge do not influence each other. The bilateral filter is defined as

h(x) = k−1(x)
∫ ∞
−∞

∫ ∞
−∞

f (ξ)c(ξ, x)s(f (ξ), f (x))dξ, (5.4)

with

k(x) =
∫ ∞
−∞

∫ ∞
−∞

c(ξ, x)s(f (ξ), f (x))dξ, (5.5)

where additionally s(f (ξ), f (x)) is called photometric closeness and k(x) is a normalization
term.

While the joint bilateral filter itself is applied on the depth map, the input for s(f (ξ), f (x))
descends from the brightness information of the original image, to govern the weighting.
Thus, edges that are present in the distinct image are preserved in the depth image. In
[135] this scheme is implemented to fill a sparse depth map in a way, that locates depth
discontinuities near edges and smooths out areas.

85



Chapter 5. 2D to 3D Conversion

Figure 5.4.: Image filtered using a Gaussian filter (left) and a bilateral filter (right). Note, that the contours on
the right are less blurry than on the left.

In this implementation, the weighting of neighboring pixels in s(f (ξ), f (x)) is based on the
output of the segmentation, so borders of segments are retained. Experiments confirmed,
that while the plain Gaussian filter produces reasonable smoothing output when applied
a wide range of texture depth images, it weakens the result in some scenes due to the
smoothing. Here, the contribution of the joint bilateral filter compensates this weakness
and thus justifies its usage.

5.2.3. Sky Color Detector

For depth images created from outdoor scenes, sky detection is an important task, as image
regions identified as sky need to be assigned an infinite depth, being infinitely far away from
the viewer. Clear blue sky has a high probability of being blue and bright. This case thus
can be captured using a simple color heuristic.

Yet, there are more ambiguous scenarios. One is the view of the rising sun, where sky
colors range from orange and red over purple to blue, while the sun itself can range from a
bright white when saturating the image sensor to more saturated reddish, orange or yellow
colors. Another case is a cloudy sky, in which case the clouds can maintain all shades of
gray and appear colored in any hue the atmosphere or the sun provide by translucence
and reflection. In a naive approach, grey sky can also easily be mistakenly detected, for
example in an indoor scene that shows grey concrete walls. A mere color detection over all
these ranges would thus logically lead to manifold false positives. Effectively the only color
that would never appear in a sky segment is green.

A color normalization as detailed in [118] is one solution to tackle the cloud problem.

If several criteria are applied, one can construct a heuristic that yields good decisions in
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many situations. In this implementation, five distinct normalized indicators are calculated
on each segmented region, which are introduced in the following:

• Ibright : The first one is a brightness indicator which uses the average value in the HSV
color space [38] of all pixels. If the average value is is below a given threshold, the
indicator is 0 and then increases linearly to 1.0 at the brightest value. Having a value
range from 0 ... 255, the minimum brightness threshold is set to 100.

• Ismooth: The second indicator is a measure of smoothness within a patch, as usually
clouds do not hold sharp edges. Therefore the gradients of each patch are accumu-
lated and thresholded, similarly to the brightness indicator. If the sum of gradients is
above a threshold, the indicator is set to 0. If the sum is 0, the indicator is set to 1.0 and
decreases linear to 0 at the threshold. The edge detector generates statistics of the
gradients, so one can define a significance threshold based on the expectation value
and variance of the gradient magnitude.

• Igradient : The third indicator is supplementary to the smoothness indicator, and defined
by a simple heuristic based on the significance of the gradient magnitudes. A segment
is divided into 8 × 8 pixel blocks, each of which is thresholded to judge the gradient
magnitude significance. Then for each segment, the ratio of marked to non-marked
pixels. If less than a third of the pixel blocks is marked, the gradient indicator is set to
0, for more than two thirds 1.0. In between, it rises linearly.

• Ielevated : The next indicator operates on the vertical position of the segment in the
image. If the center of area is located in the lowest third of the image, the indicator
assumes 0, in the upper third 1.0, again using linear interpolation in between. This
indicator accounts for the assumption, that the sky in a (regular) image is supposed to
be in the upper of the image.

• Iblue: Finally, the most basic indicator is the color indicator. In principle, an arbitrarily
complex probability density function based on the color distribution of the whole scene
would be required to capture all aspects of the color problem.

Yet, in combination with the other four indicators, the color heuristic can be utilized
in a more simplified manner. Working in HSV-color space, the color indicator in this
implementation generally assumes 0 if the hue is outside the range of 170 to 260
degrees. These hue values relates to a range from cyan to blue and captures sky well
in the most probable kinds of outdoor scenes, when the sun is not close to the horizon.
The indicator is set to 0.5, if the saturation value is above 10. This is necessary, as the
hue value becomes very sensitive to image noise for low saturation or low value, as

87



Chapter 5. 2D to 3D Conversion

the color-space conversion has singularities. If saturation rises above 20 % and value
above 40 %, the indicator is assigned 1.0. Linear progression is difficult to justify as it
would capture brightness and not how “blueish” the color appears. However, saturation
and value are also rather crude, as the sky parameters can vary strongly depend on
weather, daytime and exposure. Thus no special tone can be defined as a reference
for a sky color in order to obtain a simple univariate indicator law. Basically, the ranges
are set in a way, that in combination with all indicators, a proper trade-off between true
negative and false positive sky detection is achieved.

To decide if a patch is considered to be sky or not, a weighted average of the indicators
is calculated. If the sum is greater than 0.5, a patch is considered to show sky. For the
weighted average, all indicators are weighted equally, except for the blue indicator, which
gets a double weight,

segment is

sky if 1
6 (Ibright + Ismooth + Igradient + Ielevated + 2 · Iblue) > 0.5,

no sky else.
(5.6)

5.2.4. Reduction of Segment Interference

As the texture approach is based on a per column accumulation of depth increments, it pro-
duces visible artifacts in scenes where an object is located in front of an erect background
surface. In such a scene, the ramp assumption does not hold.

The object border between background and the object’s top creates a discontinuity of the
estimation, that "blends" into the background’s estimation and deforms it. If one considers
the depth assigned to the background’s bottom-most pixels as correct, one views depth
information, that is transferred into a segment by the vertically cumulative formula increas-
ingly critically, as the transfer location is more elevated with respect to the "correct" base
pixel. With a given segment height of h and base y-coordinate yB, one can define a blend-in
value b on a pixel with coordinates x and y as

bx,y =

0 if S(x, y) = S(x, y + 1),
y−yB

h else,
(5.7)

with S(x, y) being the segment index of the pixel. Note that y +1 refers to the pixel below the
current pixel. Applied on the entire image yields to a accumulated blend-image B holding
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values between 0 and 1, which is a model for howmuch each pixel is influenced by the depth
at a border that is not at the bottom-most elevation of each segment. This information is
utilized to ’deform’ the pixel’s depth value in the direction of the segment’s estimated depth
value. The estimation dest of segment i, is calculated by

dest,i = 1∑
(x,y)∈Si

bx,y

∑
(x,y)∈Si

dx,y bx,y , (5.8)

where Si is the set of all pixels in segment i and dx,y is the initial, blend affected depth
estimation at location x, y. The deformation is formulated as

dunblend,x,y = c Bx,ydest,S(x,y) + (1− c Bx,y) dx,y , (5.9)

where c is an extra factor to control the amount of unblending.

Figure 5.5 shows the blending issue at an upright wall with an object in front of it (left), the
occuring blending error that evolves from it (middle), and the correction by the unblending
step (right).

Figure 5.5.: Left to right: uncorrected depth map, uncorrected depth with blend amount overlayed red and
corrected version.

5.2.5. Retrieval of High Frequency Depth Features

To add local details to the depth image, a difference of Gaussians method, described in
[71] is applied. It isolates an image with higher frequencies, which are located strongly at
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high contrast edges. As a normalization step, the result is divided by the brightness value,
which effectively shifts the derivative’s peak value closer to the dark zones.

Figure 5.6.: Plot of brightness at a blurred step edge, the gradient and gradient divided by brightness.

In cases, when for example objects edges occlude parts of the sky, this method greatly
improves the depth estimation. This step adds a large amount of detail to borders in such
cases because of a sound contrast between sky and the foreground objects.

5.2.6. Computation of Vanishing Points

The implementation used as vanishing point detector is based on [133] and [110]. It uses a
RANSAC based method to find three mutually orthogonal vanishing points from all detected
lines while excluding some lines as noise. Besides the positions of each vanishing point,
their strength is also evaluated, measured as the number of detected lines associated with
the vanishing point.

5.2.7. Scene Classification by Vanishing Point Constellation

Once the vanishing points are known, one can use their position and number of associated
edges to get a basic understanding of the dominant scene geometry. Analogue to the de-
cision whether a segment is part of the sky, five indicators, which characterize the scene
are calculated. For the final choice of global basic scene patterns, the Indicators are ad-
ditionally combined by some rules introduced below. These rules compare the indicators
with each other and further improve the estimates by some logical reasoning.

• ImuchSky,raw : The first indicator takes into account how much of the image area was
classified as sky by the algorithm in section 5.2.3. From the no sky condition up to
where the sky covers 30% of the image, the indicator grows linearly from 0 to 1.0 and
stays there if there is more sky.
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Figure 5.7.: Vanishing points are sorted by the distance to the image center.

• IvalidCenterVP,raw : This indicator captures the existence of a central vanishing point. If the
vanishing point closest to the image center has no more than four associated edges,
the indicator is assigned to 0. Despite this, if it is positioned in a range between four
times the image diagonal and 80% the diagonal, the indicator is a linear interpolation
between 1.0 and 0, with zero at the outer rim and 1.0 to the middle. Inside of the circle
at 80% of the image diagonal, it is set to 1.0.

• Icoplanar,raw : This indicator detects a scenario consisting of a coplanar backrgound, i.e.
an upright surface with a more or less single depth value. This scenario occurs, if two
vanishing points far away from the image center are detected. It has a linear increase
from 0 to 1.0, if the second most far away vanishing point is between three and five
times of the image diagonal from the center, with being 0 inside and 1.0 outside this
area. On some image databases this indicator should be suppressed, if it contains no
scenes fitting the coplanar category.

• InoVPs,raw : Another indicator describes scenes, where no vanishing points could be
detected. It is assigned to 0.01 if the outermost or the second outermost have at least
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four associated edges or the most central vanishing point has at least five associated
edges. Otherwise, it is calculated by

InoVPs,raw = 1− 0.99
13 (NVP1 edges + NVP2 edges + NVP3 edges), (5.10)

where 0.99 compensates for the residual weight of 0.01 and the denominator normal-
izing the sum of the three counts of associated edges, the Ns are numbers of lines
associated to a vanishing point.

• InearVPs,raw : The last indicator holds in scenes, where there are two similarly distant
vanishing points that are relatively close to the center. If the detected vanishing points
are orthogonal, or at least close to, it is sufficient to know that there is no central
vanishing point and themost central vanishing point is not too far away. So the indicator
is defined to be set to 1.0, if the distance of the most central vanishing point is two times
the image diagonal, while it decreases at both sides to 0 at 60% and four times the
diagonal, respectively.

As mentioned above, additional rules for combining the given indicators can further improve
the selection of the base scenario, respectively the scene classification. These rules are
displayed in the following.

The first rule improves the estimation of coplanar indicators,

Icoplanar,rawB = IcoplanarVPs,raw (1− 0.8ImuchSky,raw )(1− 0.8IvalidCenterVP,raw ), (5.11)

which leads to a prioritization of scenes, such that “much sky” excels ‘coplanar”, and “central
vanishing point” again excels “coplanar". Further

InoVPs,rawB = 0.8InoVPs,raw + 0.2ImuchSky,raw (5.12)

weights the sky indicator into the no vanishing points indicator.

All indicators are normalized over their overall sum. For a sum smaller than 0.1, a correction
is introduced by

IsumA = IvalidCenterVP,raw + Icoplanar,rawB + InoVPs,rawB + InearVPs,raw , (5.13)
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with

IlowConfidence =

 1
0.1 (1− IsumA) if IsumA < 0.1,

0 else.
(5.14)

Thus, the vanishing point based branch gets less weight, if it detects poor confidence in its
results.

Finally, the indicators are normalized by

IsumB = IvalidCenterVP,raw + Icoplanar,rawB + InoVPs,rawB + InearVPs,raw + IlowConfidence, (5.15)

with
IvalidCenterVP = IvalidCenterVP,raw

IsumB
,

Icoplanar =
Icoplanar,rawB

IsumB
,

InoVPs = InoVPs,rawB + IlowConfidence
IsumB

,

and
InearVPs = InearVPs,raw

IsumB
. (5.16)

5.2.8. Generation of Vanishing Point Dependent Geometry

The indicators interact to describe aspects of the general scene layout, as shown in 5.2.8.

Indicator tunnel ramp fixed depth
IvalidCenterVP + − −
Icoplanar − − +
InoVPs − + −
InearVPs − + −

Figure 5.8.: Listing of how each indicator influences weights of different depth maps. + means: a higher I
means increased weight of the map, − means: a higher I means decreased weight of the map
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Figure 5.9.: Example image with different basic shapes applied. Upper row, left to right: original, texture based
approach, final depth (including high frequency details). Lower row, left to right: coplanar, ramp, tunnel. Sky
stencil is always applied.

Ramp and Tunnel Pattern

To generate initial global depth scene estimates based on the indicators calculated in the
previous section, a set of three basic shapes is used. In scenes with a central vanishing
point present, the global map consists of a rectangular tunnel centered around this point. If
no such central vanishing point is present. If there is no central vanishing point, the second
basic map is a ramp to the horizon and the third fixed distance map for coplanar scenes.

Thus, a geometrically derived estimation of depth dx,y for each location with coordinates
x, y and image height h can be defined by

dx,y = IvalidCenterVP dx,y,tunnel + 100 IcoplanarVPs + (InoVPs + InearVPs) dx,y,ramp, (5.17)

where dx,y,ramp is defined as

dx,y,ramp =


255(h−y)
h−hhorizon

if y > hhorizon,

255 else.
(5.18)

Note, that for these formula, the depth map is mapped to a byte, thus 255 is the maximum
value dx,y can hold. Also, the distance for the coplanar pattern is arbitrarily set to 100, but
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the absolute distance will be subject to scaling in consecutive steps anyway, when rendering
additional views. The tunnel pattern is generated with a similar formula,

dx,y,tunnel = 255



x
xvp

left triangle,
xwidth−x

xwidth−xvp
right triangle,

y
yvp

upper triangle,
yheight−y

yheight−yvp
lower triangle,

(5.19)

with the tunnel centered around (xvp, yvp)T and the image has the dimensions xwidth, yheight .
The image is thus divided in four triangles, each spanning from two neighboring image
corners to the central vanishing point. While the nearest pixels are located at the edge of
the image, all lines parallel to their own triangle’s side which touches the image’s rim within
such a triangle that are iso-distant, thus have an equal value of dx,y,tunnel .

Estimation of Horizon

The horizon’s elevation hhorizon is calculated adaptively. An initial estimate is the sky pixel
spotted at the lowest elevation by the pre-marking algorithm as detailed in 5.2.3. Addition-
ally, in the scenario with two nearby vanishing points, both are located on the horizon. This
information might be used to detect a horizon that appears sloped due to camera rotation.
However this approach shall be limited to sufficiently upright camera scenarios. Thus, the
second estimate is the average height of the two nearest vanishing points. Note that even
in scenes where the tunnel pattern applies, individual sky pixels always override the tunnels
ceiling, so it is appropriate for scenes that consist of e.g. a street and buildings to its left
and right. In such scenes the optimal estimate for the horizon is just the y-coordinate of the
central vanishing point.

As the indicators are normalized in equation 5.16, the final estimate again is a weighted
average of the initial estimates, given by

hhorizon = IvalidCenterVPyVP1 + (IcoplanarVPs + InoVPs)ypreMark + InearVPs
1
2(yVP1 + yVP2), (5.20)

where yVP1 and yVP2 are the y-Coordinates of the vanishing points, ypreMark is the lowest
elevation by the pre-marking algorithm as detailed in 5.2.3.
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5.2.9. Adaptive Fusion of Depth Maps

At this point, four separate depth maps are created, which now have to be fused to a final
depth map:

• texture based map (5.2.1)

• perspective based map (5.2.6, 5.2.7 and 5.2.8)

• high frequency map ( 5.2.5)

• sky stencil map (5.2.3)

As first step, the two global depth maps, the texture based depth dtex and perspective based
depth dpersp are fused using following adaptive weighted sum, based on the corresponding
indicators

dx,y,estA = IvalidCenterVP + IcoplanarVPs)dx,y,persp + (1− IvalidCenterVP − IcoplanarVPs)dx,y,tex . (5.21)

In the second step, the final depth map gets created by fusing the sky stencil and the high
frequency local details, via

dx,y,final = 255 bx,y,sky + (1− bx,y,sky)(dx,y,estA − dx,y,highFreq), (5.22)

where dx,y,final is the final depth value, bx,y,sky is the result of the sky detector and either 0
or 1. dx,y,highFreq is the value of the high frequency map.

Remember, the indicators are normalized first, so they add up to 1. The high frequency map
is then added to the result. Finally, pixels marked as sky are set to the maximum distance.

Note that the Texture based approach tends to fail in coplanar scenes, so it is attenuated
if such a scene is detected. Also, if a scenario with a valid center point was detected, the
perspective info with the tunnel pattern overpowers it. However, if the perspective module
detects a situation where it s not useful, the texture based approach takes over.

The high frequency information complements the sky stencil in particular as it greatly im-
proves resolution and precision of borders between sky and silhouettes of objects.
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Evaluation

This chapter presents the evaluation of the three major contributions of this work. First,
the introduced SISeg image segmentation algorithm will be compared with existing state of
the art segmentation algorithms described in section 3.1 using the Berkeley Segmentation
Dataset [72]. In the subsequent section, both the image information extraction scheme and
the IBRIEF image-sequence correspondence matching concept are evaluated utilizing the
video benchmark dataset from [40] for narrow baseline and the dataset from [75] for wide
baseline matching. Third, results of 2D to 3D depth assignment algorithm of chapter 5.2
are presented and evaluated on the basis of the make3D dataset [97, 98].

6.1. Experiments and Results of SISEG

In this section I evaluate the performance of the SISeg algorithm by applying it to an image
dataset plus evaluation benchmark, which I introduce in the following section. I further
present and discuss a collection of examples in detail. The outcome is then compared to
various approaches from the literature. Further I evaluate the algorithm’s computational
performance.

6.1.1. Evaluation Dataset and Metrics

As described in section 3.1, a major problem when it comes to evaluating boundary de-
tection or image segmentation algorithms, is the need of a ground truth, and at the same
time the lack of uniqueness of such. One of the most extensive and widely used image
collections for this purpose is the Berkeley Segmentation Dataset (BSDS) [72], which pro-
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vides a set of 500 natural images of size 481×321, each along with 5-10 human-generated
segmentations, which serve as ground-truth.

General evaluation metrics for image segmentation are for example the Probabilistic Rand
Index [117], the Jaccard index, or the Object-level Consistency Error OCE [89]. Such met-
rics are usually based on the amount of overlap between ground-truth segments and seg-
ments detected by the algorithm. They differ for example in the used distancemeasures, the
punishment for under- or over-segmentation, or the way the overlap is weighted with regard
to the segment sizes. However, the metrics mentioned above demand image regions with
closed boundaries that are fully separated from each other, so any pixel in the image can be
assigned to one segment exclusively. Therefore, those metrics cannot easily be applied to
the topic of boundary detection, as many of those algorithms produce potentially non-closed
contour estimates rather than segmented regions. Nevertheless, boundary based evalu-
ation metrics exist, like Pratt’s Figure of Merit (FoM) [92], Precision-Recall Curves (PRC)
[72], and Receiver-Operator-Characteristics (ROC) [14], whereas the PRC-based bench-
mark system in [72] allows for comparison of region-based segmentation and contour de-
tection methods in the same framework. Those methods usually measure the coincidence
and the accuracy of boundary or edge pixels compared to ground-truth boundaries.

Along with the BSDS image database, [72] delivers a benchmark, in which the ground-truth
data is compared to machine generated output using Precision-Recall Curves. Precision
measures the probability that a machine-generated boundary pixel is a true boundary pixel,
while Recall gauges the probability that a true boundary pixel is detected, i.e. the amount
of ground-truth captured by an algorithm. Again, in order to obtain binarized edge maps
from the algorithm’s edge saliency output, Precision and Recall are calculated for a set of
varied thresholds, which captures the trade-off between the accuracy and noise, i.e. the
false-positives and the true-negatives.

To approximate the Precision-Recall Curves’ optimal trade-off, the F-Measure is calculated
for each threshold. The F-measure is the harmonicmean ofPrecision andRecall, calculated
by

F = 2 · Precision · Recall
Precision + Recall .

Another well-known metric in image evaluation is the Receiver-Operator-Characteristic, or
ROC-Curves, whose axes are called Fallout and Recall. These metrics are comparable
to the Precision-Recall metric. The Recall is defined identically in both metrics. Fallout
measures the probability that a true negative was labeled a false positive. Just as the PR-
Curve, theROC-Curve is a graphical plot that displays the performance of a binary classifier
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system with a varied binarization threshold. However, the definition of the Fallout makes the
ROC-Curves dependent on the image resolution, while the Precision-Recall Curves have
the advantage of being scale-invariant [85] and are therefore preferred.

The BSDS benchmark delivers three major quantities: first the Optimal Dataset Scale
(ODS), which is best F-measure on the dataset for a fixed scale or threshold, second the
Optimal Image Scale (OIS), which is the aggregate F-measure on the dataset for the best
scale in each image, and third the Average Precision (AP) on the full Recall range, which
is equivalently the area under the Precision-Recall Curve.

6.1.2. Examples and Discussion

The BSDS image dataset is partitioned in images for training, testing, and validation. For
the evaluation, I ran the algorithm on the test- and validation-set of 300 images overall.

I used the training set to empirically find the optimal parameters for the thresholds used in
SISeg for non-maximum suppression and region fusion. The parameter values, that were
set when generating the provided outcome, are given in the appendix A.

Initial experiments also revealed a minor drawback of the Berkeley evaluation measure F ,
as the outcome of evaluation can be influenced by adding some post-processing steps to
the initial outcome, like e.g. scaling, or thinning the boundaries. Such steps improve the
result, although the initial result of the algorithm is untouched.

Figures 6.1 to 6.4 present example images categorized into four different categories, each
along with the ground-truth, boundary images resulting from SISeg, and the corresponding
Precision-Recall Curves with the optimal F-measure. Figure 6.1 shows example images,
where the algorithm performs well, as the picture content is quite distinguishable and con-
sists of salient regions. The performance on the images displayed in the introduction (see
Figure 6.2) is similar to the average performance over the entire image set. The image
content includes a balanced mixture of strong edges, salient regions, and also cluttered or
textured regions.

The three example images of Figure 6.3 contain a considerable amount of textured regions,
which leads to a significant performance loss of the SISeg-algorithm. This is due to the fact,
that textures are not explicitly considered when calculating the region boundary estimates.
An improvement is to expect, when the agents are extended to incorporate texture cues
like Textons, or Local Binary Patterns into the agent distance value formula. Furthermore,
examining the image information inside an agent’s neighborhood for repeating patterns
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texture-like structures seems promising. This could be subject to investigation in future
work.

In [85] the authors argue that contour detection, while being closely related, is not perfectly
the same as boundary detection. They state that contours, which might be important in
terms of the image content do not necessarily have to be region boundaries, and might thus
be excluded in boundary detection. The three example images in Figure 6.4 illustrate the
difference between boundaries in a semantic segmentation context, and contours between
both objects and object parts. It is obvious that my algorithm detects contours rather than
boundaries, e.g. the single windows in the left picture, or the black and white stripes of the
zebras. While extracting these salient contours might be desirable in some applications, it
significantly degrades the performance of my algorithm with regard to boundary detection,
as can be seen in the PR-Curves. To a certain extent, these misleading detections might
supposedly be alleviated by considering textures, as stated above. For further elimination,
additional information, e.g. in form of object or appearance models, knowledge, or training
might become necessary.

Further, one must regard, that the ground truth of the Berkeley evaluation benchmark fol-
lows the purpose of semantic segmentation, like segmenting a complete human from the
background, or one house as a whole from the others. Yet, taking into account my initial
purpose to find all segments relevant for 2D to 3D conversion, the slightly over-segmented
output of the SISeg algorithm can fulfill this condition better than the goals of the Berkeley
dataset evaluation. For a proper result of a depth map, having a complete house as one
segment might be too coarse, as one might want to add different depths to parts of the
house. Thus, what is an error in semantic segmentation is possibly a desired image detail
in depth map generation. However, a segmentation benchmark for the context of depth map
generation does currently not exist, and as already mentioned the Berkeley Segmentation
Dataset is widely utilized and allows for comparing a variety of approaches.
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Figure 6.1.: Three sample images with distinctive content from the Berkeley Image Segmentation Dataset
(BSDS 500) [6]. From top to bottom: the original images, the summed ground-truth images, the result images
and the precision-recall curves of the SISeg-algorithm.
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Figure 6.2.: Three sample images from the introduction Section, which yield to average performance with re-
gard to the overall results. Taken from the Berkeley Image Segmentation Dataset (BSDS 500) [6]. From top
to bottom: the original images, the summed ground-truth images, the result images and the precision-recall
curves of the SISeg-algorithm.

6.1.3. Comparison

Table 6.1 shows the evaluation results of the SISeg-algorithm from the BSDS, compared
to a variety of approaches from literature. One can generally state, that learning based
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Figure 6.3.: Three sample images containing strong texture. Taken from the Berkeley Image Segmentation
Dataset (BSDS 500) [6]. From top to bottom: the original images, the summed ground-truth images, the result
images and the precision-recall curves of the SISeg-algorithm.

approaches [51, 31, 127, 6, 66] outperform non-learning based approaches, like [24, 25,
35, 106] as well as the SISeg method introduced in this thesis, yet mostly at the price of a
high computational complexity overhead.

Similarly, most of the methods compared in Table 6.1 utilize further image cues than simple
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Figure 6.4.: Three sample images containing strong contours that are not boundaries. Taken from the Berkeley
Image Segmentation Dataset (BSDS 500) [6]. From top to bottom: the original images, the summed ground-
truth images, the result images and the precision-recall curves of the SISeg-algorithm.

single scale window patches. Applying various other appearance distance measures, plus
analyzing additional image information, like for example texture information is very likely to
also improve the SISeg results.
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ODS OIS AP
Human 0.80 0.80 −

Crisp Boundaries (MS) [51] 0.74 0.77 0.78
SE (MS, T= 4) [31] 0.74 0.76 0.78
SCG (global) [127] 0.74 0.76 0.77

gPb-owt-ucm [6] 0.73 0.76 0.73
Sketch tokens [66] 0.73 0.75 0.78

gPb [6] 0.71 0.74 0.65
Mean Shift [24] 0.64 0.68 0.56

NCuts [25] 0.64 0.68 0.45
Felz-Hutt [35] 0.61 0.64 0.56

Canny-owt-ucm [6] 0.60 0.64 0.58
Canny [18] 0.60 0.63 0.58
SWA† [106] 0.56 0.59 0.54

SISeg 0.64 0.66 0.60
(Precision, Recall) (0.72, 0.57) (0.74, 0.60)

Table 6.1.: Boundary benchmark results on the BSDS500 test dataset (†:BSDS300 dataset) [6], different seg-
mentation methods, or respectively contour detectors plus the SISeg algorithm in the lower Table. The val-
ues represent the F-measures using an optimal scale for the entire dataset (ODS) or per image (OIS). The
area-precision is expressed in (AP). For SISeg also the values of Precision and Recall corresponding to the
F-measure are given.

6.1.4. Computation time

Two parameters have principal influence on the computation time of the SISeg-algorithm.
The first is the number of agents N, which in turn depends on the image size, resulting in
1
3×H×W as worst case, and the second factor is themaximum number of iterations τ t . With
these two, the computation time of the algorithm is linearly dependent as O(N ·M). Further
I must state, that this worst case is highly theoretical, as it would imply, that all agents pass
the non-maximum suppression and iterate until the maximum number of iterations. Both
conditions are unlikely to happen.

I ran the algorithm on an Intel Core 4 CPU, 3.30 Ghz and 16 GB of RAM. The algorithm
was scripted in MATLAB., with mex-file based C implementations for single parts of the
algorithm. Besides that no further code optimization was utilized. The algorithm ran with
about 0, 275 seconds per image of size 481 × 321, averaged over the 200 images of the
BSDS test dataset.

The overall run-time splits into several phases, which all use a certain amount of time, i.e.
calculating the distances, initializing the agents’ models, running the boundary grow phase,
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and finally execution the image analysis steps. So the algorithm’s core from a Swarm Intelli-
gence point of view would be reached in less time. Also, for mere segmentation or boundary
detection like in the benchmark shown above, one can skip the time used for calculating
the boundaries curvature and anchorpoints. For image sequences, all windows for indices
of course need to be calculated only once for all consecutive images. Besides that, this
approach with its nature of distributed agents is extremely well suited for parallelisation. In
each iteration, each agent senses its envidronment and the executes its model updates in-
dependently of all others, thus all agents can update parallel. After this each agent of course
needs the updated view on its environment again. In fact, the way it is treated in MATLAB
already points in this direction, as agents can easily be stacked in matrices, demanding
mainly element-wise operations. Table 6.2 shows an overview of mean computation time
for the images of the dataset, split into the consecutive phases. Keeping in mind, that the
computation time of C++ implementations usually outperform MATLAB implementations by
magnitudes, the computational speed of SISeg can be regarded as promising.

Preparation SISeg calculation Postprocessing Sum
Windows distances calculation, Extraction phase

initialization initialization & loop phase
0, 029± 0, 002 0, 151± 0, 011 0, 096± 0, 009 0, 275± 0, 019

Table 6.2.: Mean calculation times plus standard deviation, in seconds. Measured on a workstation with 3.30
Ghz, 16 GB RAM. Matlab script-based implementation aided with mex files for some parts of the algorithm.

For comparison, the gPb-method from [6] demands around four minutes of computation
time for one image of the dataset using a regular C implementation, as stated by the authors.
As stated in [19], the computation time of the gPb-method was reduced to 1.8 seconds
utilizing parallelized GPU implementation. Thus, I believe that the computational speed of
this method is advantageous when it comes to time-dependent applications, which holds
compared to the majority of approaches that use machine learning.

However, there is also one exception [31], which obtains extraordinary results with amazing
computation time reported. Yet it must be mentioned, that they achieve this by utilizing
massive performance optimization, including multi-core and GPU-based parallelization to
reach this. Also, considering merely the high complexity of the input features they utilize,
makes optimization steps necessary.

While a Matlab implementation performs considerably slowly compared to a C++ imple-
mentation, its matrix structure shows, that the SISeg algorithm is well suited for a speeded
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up GPU based variant. Also the agent’s distributed nature allows for parallelisation, basi-
cally each agent could run in an extra thread in each iteration. This makes the concept of
SISeg suited to perform in real-time.

If one compares SISeg’s evaluation results to the introduced machine learning-based ap-
proaches one can see, that there is a considerable gap in the results. However, the ap-
proaches from literature are specifically tailored to the problem of semantic segmentation
proposed in the Berkeley benchmark. The SISeg segmentation initially has a slightly dif-
fering focus delivering a segmentation that is the base for further image analysis providing
input to depth conversion. This leads to over-segmented results in terms of the semantic
segmentation. As an example, while semantic segmentation defines a human or a house
as one segment, this can mean a loss of details if that segment shall be input to depth
conversion.

Nevertheless, there is a number of extensions to the current implementation possible, which
promise qualitative performance boost. First, there is a variety of alternatives for window
based feature extractions and distance metrics, like histograms, texture based features, ori-
ented gradient, alternative image spaces, and so on. Some of these require input windows,
that are considerably bigger than the currently used 3×3 windows. This would lead to over-
lapping agent windows, but it would not represent a problem for the succeeding calculations
in the concept, as long as they result a distance measure for each of the eight neighboring
directions of each agent.

Further, the concept is feasible to be combined with machine learning concepts. As an
example, the image training set plus ground truth within their windows could be used to
guide the agents in their boundary and connections decisions, for example by introducing
weights in the decisions. Like this, boundaries detected by the agents could be reinforced,
if they correspond to boundaries in the ground truth, and weakened, if they don’t.

Summarizing, utilizing the principles of SI with focus on self-assembly in my view seems a
very promising solution to the segmentation, or respectively contour detection problem. As
already stated, the SISeg concept with its fixed grid is only one variant, one can think of.
A hill climbing-alike movement step, as introduced in [57], which leads to a warped agent
grid, is another reasonable variant.
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6.2. Experimental Results of IBRIEF

In this section I show the results of the proposed algorithm and compare it with a state-of-
the-art approach, called MSCD, which was introduced in section 4.2. I introduce video se-
quences as a narrow-baseline dataset and different image sets as a wide-baseline dataset
to examine the performance in both use cases. Additionally I introduce the performance
measures and how I applied them for edge correspondences. I conduct thorough exper-
iments with different approaches and discuss the results. The results presented in the
following are part of the work in [10], which holds further details on results.

6.2.1. Experimental Setup of IBRIEF Results

All of the used software is implemented in C + +. OpenCV 1 was used for handling and
accessing all image and video related data.The test system was a workstation with an Intel
Q6600 processor and 4GB RAM. As the operating system Windows 7 was used. OpenCV
was used with version 2.41 and was configured to make use of Intels Threaded Building
Blocks (TBB) 2.

All parameters for the experiments were established beforehand empirically. This might
not correspond to the best matching results, but the parameters do not change throughout
all experiments and are thus comparable and reproducible. The used parameters for the
experiments in this chapter, and for all other conducted in this work, are listed in appendix
A.

6.2.2. Results for Video Sequences

In this section I introduce the dataset for video sequences. The IBRIEF method is evaluated
with the dataset of [40], since it covers tracking from frame to frame, it is publicly available
and contains thorough motions and context, which mirror most of the effects encountered in
tracking. The dataset in [40] is aimed for visual tracking. The authors evaluate several state-
of-the-art interest point feature extractors and descriptors and adapt their measurements to
the case of visual tracking. The evaluation is based on a planar acrylic object that embeds
different textures and is filmedwith different motion and lightning patterns. Effects in tracking
that can be evaluated with this dataset are:
1http://opencv.org/
2http://threadingbuildingblocks.org/
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• in-plane rotation

• scale change

• varying light conditions (static, dynamic)

• motion blur

Effects that can not be evaluated by this dataset are thus not evaluated in this work either.
These effects are extreme local non-planarity and occlusions and should be considered in
follow up work.

Figure 6.5.: Textures for evaluation from left to right and used abbreviation in brackets: wood(wd),bricks(br),
building(bu), paris(pa), mission(mi), sunset(su). Images taken from [40]

To measure the performance of feature detectors and descriptors, ground truth needs to
be established, relating one point xk at frame k with point xl at frame l. This is not possi-
ble in general for 3D scenes [41]. In this dataset planar scenes, that can be related by a
homography Hkl(q) ∈ R3×3, such that

xk = Hkl(q)xl . (6.1)

Both xk and xl refer to frames in which distortion, introduced by camera imperfections, are
already removed, i.e. undistorted frames. Both coordinates are in homogeneous coordi-
nates, that is xk = (x, y, 1)T . The homography is estimated by a set of markers placed
on a precisely milled acrylic glass frame, which are tracked with a semi automatic tracking
process using an adaptive color model.

The test bed consists of 96 video streams, which include six different textures strapped onto
the acrylic glass frame and 16 different motion patterns. The motion patterns are built up
from the following scenarios:

• unconstrained (uc): except that image plane is inside the field of view, smooth motion
(6× 500 frames)

• panning (pn): camera is about 1m away from object and camera pans sideways (6×50
frames)
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• rotation (rt) : camera is located about 1m away from object and camera rotates around
the optical axis from [0, 90◦] (6× 50 frames)

• perspective distortion (pd): camera is located above the object (perpendicular) and
camera goes down in an arc (6× 50 frames)

• zoom (zm): camera moves from 60cm to 130[±10]cm

• motion blur (m1-m9): camera with pan-tilt unit set to 9 different camera-pans each
having increased speed. (6× 9× [13− 89] frames)

• static lightning (ls): static camera, for different lightning setups (6× 4× 20 frames)

• dynamic lightning (ld): static camera with a lightning transition from bright to dark and
back to bright. (6 frames)

In total 6889 frames for the complete dataset.

Figure 6.6.: Some example frames displaying the different motion patterns. From left to right: the first two
images show a scale change, rotation, perspective distortion, motion blur and lightning. The evaluation uses
only the area inside the black-and-white border pattern.

For video sequences I use the nearest neighbor precision, since for most tracking applica-
tions the nearest neighbor is the most important one [40]. The Precision of the first nearest
neighbor is calculated by evaluating

Precision1NN = # correct matches
# correct matches + # false matches , (6.2)

which gives the probability, that a random chosen match was correct. A correct match can
be verified by projecting the feature sk

i = Hk ∗sk−1
i from frame k−1 into the new frame k and

compare it with the best correspondence, having the smallest distance in feature space.
The projection is executed for each pixel coordinate in sk

i = {x1, x2, x3, ...}. Due to noise
perturbations and image discretization a feature will mostly never lie on the same exact
pixels, therefore the closest feature in Euclidean space which fulfills some overlap criteria
is considered the correct match.

Since the features are represented as a set of image points and are of arbitrary shape, one
can not simply use the Euclidean distance between the feature pk

i and the projected feature
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pk−1
j to verify a correct match. To cope with this problem, a feature that has an overlap of at

least τ with the projected feature, is declared to be a correct match. I measure the distance
between each point of the feature pk

i with the nearest point of the projected feature pk−1
j and

if it is lower than some threshold ε pk
i is considered to be the correct match of pk−1

j . A pixel-
in-polygon test is used, where the distance between the feature point and the query point
is measured. Additionally, a search area for the best candidate is defined as the extended
minimum area rectangle containing all points of the feature by adding a fixed value lsr to its
width and height, as it is already detailed in the I-BRIEF matching strategy in Section 4.4.
The rectangle size is set to lsr = 100 for all experiments over all algorithms.

To make the descriptor independent of the feature extractor, features are detected once
in the first frame and then re-projected into the subsequent frames using the ground truth
warps that are given for each frame k by Hk . This technique is already applied to tune
I-BRIEF in Section 4.3.2. To evaluate the feature descriptors in a real-life environment, the
same extracted features pk are passed to each descriptor.

The proposed edge-based description and matching concept is compared with those pro-
posed in [122], especially with the more general applicable MSCD algorithm discussed in
Section 4.2. MSCD is the closest algorithm to this work, since it can handle arbitrary shapes
and utilizes feature matching based on distance functions. Additionally, both descriptors
have a similar memory footprint. A single MSCD descriptor in the following experiments
occupies 72 ∗ 4 bytes = 288 bytes with I-BRIEF using only 64 bytes.

The major difference between the two concepts is, that MSCD can cope with varying length
of the edge segments inherently, whereas IBRIEF needs anchor points. The effects of this
difference shall be outlined by employing four different algorithm combinations.

IB64 1NN - I-BRIEF only making use of endpoints with a 1NN matching strategy. It is
further described in Section 4.4.

IB64 IBMatcher - I-BRIEF making use of the proposed matching, see Section 4.4.

MSCD 1NN - MSCD descriptor is calculated between endpoints of a feature, similar to
IB64 1NN. As the matching strategy 1NN from Section 4.1.3 is used.

MSCD 1NN AP - MSCD descriptor is calculated for all sub-features, which result from
splitting features at high curvature points. The same matching strategy as for MSCD 1NN
is applied.
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Results

In this experiment, the behavior of MSCD and I-BRIEF are examined in a tracking scenario,
using two different environmental settings. In the first, the input is detected only once and
the detected contours are projected into subsequent frames. In the second, the edges
are detected in each frame and passed to all descriptors under test. The first setting thus
represents a theoretical scenario with perfect repeated edge extraction as input, while the
second displays a more realistic, “imperfect” input. The results for the first and second
setting are presented in Fig. 6.7 and Fig. 6.8.

In the first setting I-BRIEF outperforms MSCD in each category. It is notable that IB 1NN
and IB IBMatcher achieve almost perfect results throughout the testbed, while MSCD-1NN
outperforms the use of anchor points in MSCD. The reason for this might be, that the anchor
points can split contours with a similar appearance, confusing the matching inside of the
search region. This first setting proves, that I-BRIEF is able to achieve the task of matching
arbitrarily shaped edges with high precision.

In the second setting, which is intended to test the algorithms under more realistic con-
ditions, I-BRIEF still achieves good results. The distance between MSCD and I-BRIEF
methods shrunk and is now bounded by the fidelity of the input, especially by the endpoint
stability. In the case of increasing speed, as given in the scenes of {m1 − m9}, MSCD
can outperform I-BRIEF. Since in the ”perfect” setting I-BRIEF achieves nearly stable re-
sults throughout all different speeds, it stands to reason, that in these cases of high motion
blur, end points and anchor points vary too heavily for I-BRIEF. IB64 IBMatcher stands out
in means of nearest neighbor precision against all others, which can be explained by the
more profound use of anchor points. Taking a closer look at the recall of IB64 IBMatcher,
which gives the probability that a randomly chosen feature is correctly matched, it can be
observed that the recall is lower than for the other algorithms. This stems from the post
processing step of the matching. This additional step here seems too restrictive to handle
the events of split edges. On the one hand it rejects false matches correctly resulting in
high precision, but on the other hand it prunes possible further correct matches. A more
improved detection of split edges is therefore needed. Even without the specially tailored
matching, it achieves slightly better results in terms of mean precision throughout all the
averaged sequences and in the dynamic lightning sequence, but performs worse in the
motion blur scenes {m1−m9}.

112



6.2. Experimental Results of IBRIEF

br bu mi pa su wd
0

0.2

0.4

0.6

0.8

1

Texture

Pr
ec

is
io
n
of

1N
N

(a)

ld ls pd pn rt uc zm0

0.2

0.4

0.6

0.8

1

Motion

Pr
ec

is
io
n
of

1N
N

IB64 1NN
IB64 IBMatcher
MSCD 1NN
MSCD 1NN AP

(b)

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

speed

Pr
ec

is
io
n
of

1N
N

(c)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Frames

Pr
ec

is
io
n
of

1N
N

(d)

Figure 6.7.: Results for narrow-baseline with perfect edge detection. (a) and (b) show the mean precision and
variance-averaged over all motion sequences and textures respectively, except {m1 − m9}. (c) depicts the
mean precision and variance for increasing speed sequences {m1−m9} (d) distributes the mean precision in
each frame for the dynamic lightning sequence.

6.2.3. Results for Wide-baseline Image Pairs

Although not of primary research in the task of image sequence correspondences, as in reg-
ular image sequences, the baseline can be considered as small, the I-BRIEF performance
was also evaluated for wide-baseline-matching, which was introduced in section 4.2.

For the wide-baseline matching I use a subset of the dataset, which was introduced in [75]
to measure the performance of local descriptors and has become a de-facto standard for
this purpose.

I will only focus on three image pairs of this dataset, which are called ’boat’, ’graf’, and
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Figure 6.8.: Results for narrow-baseline with the edge feature extractor introduced in this thesis. (a), (b), (c)
and (d) depict the same testbed as in Fig. 6.7, but with as input.

’wall’, because image blurring and light change are already covered by the narrow baseline
evaluation. Figure 6.9 shows example images of the three sets. Additional aspects will
thus come from the scenes depicting zoom+rotation (boat) and view point change (graf,
wall). The subset contains three different scenes (boat, graf, wall) from different angles
with significant viewpoint change as can be seen in Fig. 6.9.

The first image is always used as the reference and compared to the remaining image,
which results in 3× 4 image pairs (1− 2, 1− 3, 1− 4, 1− 5) for evaluation, with increasing
baselines between the images in order of the images. The evaluation process is carried out
manually, since not all images are near-planar and display 3D scenes, which might lead to
incorrect behavior of the ground truth estimation. This results in a list of correct and incorrect
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 6.9.: Showing 4 images of each dataset. Images shown of each sequence (boat, graf, wall) {1, 2, 3, 5}

matches, using the same performance criteria as in [122]. The first is the count of correct
matches (CM) and the correct ratio (CR) of total matches of an entire image sequence as

CR = # correct matches
# total matches . (6.3)

In this experiment, the results of IBRIEF are again compared to MSCD, using the NNDR
matching strategy for both approaches. The general process is the same as explained
in Section 4.4 for both algorithms, using a minimal length of 20 pixels. The remaining
edge segments are then described with either I-BRIEF-64 or MSCD, with both I-BRIEF and
MSCD given their best possible parameter setting. The NNDR ratio is set to rNNDR = 0.8
for the boat and graf sequence, and ratio of rNNDR = 0.6 is applied to the wall sequence,
where the lower ratio for the wall sequence is chosen to keep the manual evaluation labor
a reasonable task.

Results

Results for the image pair of the three sequences are given in Table 6.3, giving the correct
and false matches in brackets for each image pair and the results by the means of Correct
Match and Correct Ratio for all image pairs in each scene. The first row provides the number
of detected input features.

The results of CM are very similar in the graf and wall sequence. For the boat sequence
MSCD clearly outperforms I-BRIEF. Here, I-BRIEF can only find a reasonable amount of
correct matches in the first image pair. The overall bad performance of both approaches
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can be explained by the high change in viewpoint and rotation, which is not appropriately
handled in the edge extraction. This could be improved via a multi-scale edge extraction.
In the graf and wall sequence, where viewpoint change is not as extreme as in the boat
sequence, both do reasonably well and are of similar quality by means of CR.

MSCD is able to establish more CM in all sequences. This might be a hint, that it is more
distinctive for wide base-line matching, since the NNDR ratio are the same for both algo-
rithms. This higher distinctiveness is achieved by evaluating the entire surrounding region
of the edge-based feature opposed to evaluating only regions around two points.

Method 1-2 1-3 1-4 1-5 CM CR
I-BRIEF 508,459 285 218 186 - -
MSCD 216(24) 23(55) 2(58) 6(44) 268 0.597
IB64 103(10) 0(23) 0(24) 1(12) 104 0.375

(a) boat

Method 1-2 1-3 1-4 1-5 CM CR
I-BRIEF 499,512 555 557 661 - -
MSCD 199(32) 70(41) 33(51) 6(44) 308 0.647
IB64 56(12) 37(11) 4(9) 1(12) 98 0.690

(b) graf

Method 1 1-3 1-4 1-5 CM CR
I-BRIEF 542,507 465 389 395 - -
MSCD 121(1) 66(0) 29(0) 5(0) 308 0.995
IB64 129(4) 82(1) 32(0) 4(0) 247 0.980

(c) wall

Table 6.3.: Results of wide-baseline matching using NNDR for each sequence. Tables ((a)), ((b)) and ((c)) give
the number of correct and false matches in the form correct(false). Additional the retrieved number of features
are given in the row called I-BRIEF.

6.2.4. Computation Time

This section presents the execution times of the evaluated approaches from Section 6.2.2.
Let it be noted that both implementations might not be optimal and that there might be still
some optimization potential. Nevertheless, the results here indicate that the introduced ap-
proach is superior to MSCD by means of execution time for description and matching. The
results were taken from all six unconstrained video streams of the narrow-baseline dataset,
resulting in an average of 2500 frames for each algorithm. In addition to the IB-64 1NN

116



6.3. Experiments and Results of Depth Assignment

variant, the results for the 16 and 32 bytes based I-BRIEF are given, showing the averaged
computational time over all six image sequences. The results of the used implementation
MSCD are of the same magnitude as in [132], where only values for MSLD are given. The
execution of MSCD is directly proportional to the length of a features, since for all pixels on
a curve the gradient must be extracted, where as I-BRIEF execution time is only depend-
ing on the number of anchorpoints used. Table 6.4 shows the computation times for each
method, along with the mean number of correspondences used in this experiment, plus the
detailed share of the computational time for description and matching, given per feature in
milliseconds. As can be seen the all I-BRIEF methods are very similar and are computa-
tionally efficient while occupying only small sizes of memory. The advanced IBMatching
scheme, where many additional steps are conducted and matching is actually done with
sub-features, takes twice the time 1NN matching does per feature. The slowest, but best
performing, I-BRIEF description and matching concept achieves a 6 − 13 fold speed up
compared to MSCD.

0 100 200 300 400

IB16 IBMatcher
IB16 1NN

IB32 IBMatcher
IB32 1NN
IB64 1NN

IB64 IBMatcher
MSLD 1NN

MSLD 1NN AP

time [ms]

Description
Matching

Figure 6.10.: Mean execution time of six different unconstrained sequences from the narrow-baseline dataset.
The average correspondences used for {1NN, IBMatcher, 1NNAP} are {57, 26, 130}

6.3. Experiments and Results of Depth Assignment

As stated in the state of the art section 1.2 of the introduction, depth map generation ap-
proaches can be categorized into manual, semi-manual, and automatic approaches, with
the latter including both in offline as well as real-time variants. Generally speaking, the
quality of results decrease in this order, as well as the computational effort to be utilized.
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Method tD[ms] tM [ms] #corresp tf [ms]
IB16 1NN 5.1322 3.0530 55.5952 0.1472
IB16 IBMatcher 4.1167 5.2242 25.9218 0.3603
IB32 1NN 4.5100 5.2206 55.5952 0.1750
IB32 IBMatcher 6.5444 3.1148 26.4269 0.3655
IB64 1NN 5.7565 5.2468 55.5952 0.1979
IB64 IBMatcher 9.4276 3.2411 26.3607 0.4806
MSCD 1NN 358.1339 5.0384 55.9158 6.4950
MSCD 1NN AP 358.3864 21.1687 130.8858 2.9000

Table 6.4.: Computational time in milliseconds for description time tD, matching time tM and overall time per
feature tf , plus the average number of correspondences #corresp

Attempts to objectively evaluate the quality of approaches in this field of research suffer from
the fact, that to this date there are not exactly many well working possibilities for objective
evaluation, like datasets of reasonable size along with universally valid proper benchmark
measures.

The second, more substantial issue is, that although there are at least some evaluation
datasets available, the majority of publications do not evaluate their approaches using a
framework. Instead, usually only some example result images are given for subjective eval-
uation. This makes objective comparison impossible in many cases. Further, it seems that
publications delivering high-quality approaches, which might include e.g. learning and of-
fline methods are more likely to consider evaluation frameworks, than approaches which
aim into low-cost and real-time approaches.

However, for the evaluation of the lightweight depth map converter, I will try to give both an
objective result of an evaluation dataset (though this can also not be regarded as perfect,
as stated in the next section), as well as a number of result images for subjective evaluation
by the reader, showing good and bad cases. The results presented in the following are part
of [45], which holds further details on results.

6.3.1. Experimental Setup of Depth Assignment Results

All depth related computation is implemented in C++ ad a single threaded implementation,
using the open source computer vision library OpenCV for filtering and image segmentation.

The vanishing point detector is introduced in [82].
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Make 3D dataset

To achieve an objective comparison of the lightweight 2D to 3D conversion to related pub-
lications to some extend, I apply the Make 3D dataset, which provides color images with
corresponding depth data. It was introduced alongside the depth learning technique pre-
sented in [97, 98] and [100].

It has also been used to compare results of monocular depth estimation algorithms to the
original work in [47, 99, 46, 67, 64, 63], and [53]. It consists of several hundred of color
images with ground truth depth data. All images are 1704 × 2272 pixels in size, while all
ground truth maps are 360× 472 in size.

However, it comes with limitations. The depth serving as ground truth is measured by a
separate laser ranging device, which is not perfectly aligned with the camera. Thus, some
edges that are in a neighborhood of strong depth discontinuities, for example trees against
the sky, show up as errors in an evaluation of an estimation, even if a hypothetical estimation
was completely correct. Furthermore, on some surfaces the laser reflection is not picked
up, leading to inconsistent ground truth maps. Moreover, the employed laser range finder
is limited to a maximum range of 81 meters, so higher distances are also not depicted
correctly in the ground truth. Further, the focus of this conversion approach is to provide
a depth map, which produces a credible and comfortable visual effect after depth-image-
based rendering. Related to the dataset, this means, as pointed out in [60], using current
3D display devices, objects with large convergence distances are displeasing to the viewer.
Because of this, depth ranges have to be limited anyway so the subjective loss in effect
quality is not as severe as it might seem at first, if the precision is not entirely verified at a
range of 81 meters.

6.3.2. Depth Assignment Results

The make3D dataset provides results for two error measures. The first is the root mean
square error (RMSE), defined by

RMSE =

√∑n
t=1(ŷt − yt)2

n , (6.4)
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where n is the number of measurements, yt is a measurement and ŷt is the ground truth
value. The second is the relative error δx, defined by

δx = ∆x
x , (6.5)

where ∆x is the absolute error and x is the ground truth value.

Additionally, the results for the signal to noise ratio SNR are given, which is defined as

SNR =
Psignal
Pnoise

, (6.6)

plus the Estimation error relative to value range exE, which denotes

exE = ∆x
xmax − xmin

. (6.7)

In order to compare the results of the conversion approach introduced in this work, table
6.5 shows state of the art results that are reported for the Make 3D dataset.

Algorithm Main contribution Relative Error RMSE
Data baseline Predict Average 0.698 –
Saxena et al. [97] Learn Depth: MRF 0.530 16.7m
Saxena et al. [99] Pointwise MRF 0.458 –
Saxena et al. [99] Superpixel MRF 0.370 –
Hoiem et al. [47] Surface Layout 1.423 –
Heitz et al. [46] Cascaded Models – 15.4m
Cherian et al. [22] Ground Plane – 22m
Liu et al. [67] Semantic Labels 0.375 –
Li et al. [63] Feedback Cascades – 15.2m
Li et al. [64] theta-MRF – 15.0m
Karsch et al. [53] depth transfer 0.361 15.1m
Proposed method Combination of cues 1.2 20m

Table 6.5.: Results of the approach of this work on the make 3D dataset, compared to the results reported on
the make 3D dataset website, if they were reported.

Each row in figure 6.11 show an example result, where the lightweight converter performed
considerably good (first and second row), or respectively rather bad (third and fourth row).
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Qualitative measures for these examples are given within the left most images. As one can
see, the algorithm is clearly limited to scenes, where the basic scenarios of either ramp or
tunnel apply. If the image consists of e.g. upright walls, or trees, as in the bad examples,
the algorithm falsely chooses the best base scenario out of those it has. This shows one
clear starting point for future work, to extend the basic models, it can choose from.

6.3.3. Computation Time

On a standard desktop PC Intel Core i7 with 3.40GHz and 16.0 GB RAM, the adaptive
lightweight depth map generation takes 31± 5 milliseconds in average.

These roughly 40 millisceconds of computation time correspond to a conversion framerate
of 25 Hz. For HD or even 4k or 8k movies, which additionally utilize a higher framerate as
well as higher image resolutions as the ones computed here, the conversion thus cannot
entirely run in real-time, at least for a standard desktop PC. Yet, it comes close.

The focus of the lightweight depth conversion introduced in this thesis was clearly set on
delivering reasonable quality with a high computational efficiency. Nevertheless, there are
extensions thinkable, which are likely to boost the qualitative performance.

The most obvious extension is to add motion information based on the I-BRIEF results
into the concept, as there exist computationally efficient motion depth cues. Unfortunately,
benchmarks for qualitative depth conversion evaluation to this point are mainly image-
based. Besides that, further cues are promising, as well as the extension of the information
gain of the used cues. In [68], we introduced an elaborate version of vanishing point-based
global depth map generation, considering all three points as well as the image objects they
are related to. Additionally this work presents concepts for recognizing further image infor-
mation, like human skin color, grass, sea, and mountains. As further cue, the segmentation
results could also be used for an efficient depth from blurr concept. Extending the concept
towards learning, the ground truth depth images could be used to used to learn weights for
the indicators in the adaptive fusion formula.
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Figure 6.11.: Figure shows two examples from the make 3D dataset, where the lightweight depth map gener-
ation delivers proper results (first two rows), respectvely performs rather bad (last two rows). The input images
are shown in the left column, the resulting depth maps in the middle, and the right column shows the error of
the depth map related to the ground truth (blue being low to red being high error).
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Conclusion

In this thesis, I investigated the problem 2D to 3D conversion, which aims at the creation
of 3D images or image sequences from originally 2D content. Therefore I classify and
analyze current approaches in terms of quality and computational efficiency, which range
from low quality real time conversion to highest quality and high-priced manual conversion
for cinema. Focusing on the task chain of depth map generation, which is the crucial issue
in 2D to 3D conversion, I designed three modules, which allow for boosting the quality of
automatic real-time conversion systems, while remaining fully automatized and keeping the
increase of computational effort low.

The major component is an image analysis algorithm. It utilizes the principles of Swarm
Intelligence to provide an image segmentation framework, which delivers an exhaustive
image analysis including region appearance, a description of shape and position of object
borders, an extraction of straight lines, and of meaningful feature points. Swarm Intelli-
gence algorithms rely on distributed interacting agents, which achieve complex solutions via
emergence. Their decentralized structure makes them robust and efficient in computation.
Compared to Swarm Intelligence algorithms from the field of optimization, the approach in-
troduced in this thesis is unique in utilizing the principles of Self-Assembly, in which agents
link themselves into temporary physical structures. The thesis proves, that this concept is
very well suited to the task of image segmentation.

As second module, a description and matching algorithm is established, which allows track-
ing arbitrarily shaped edges at high computational efficiency. It extends the efficient BRIEF-
feature point matching to edges, keeping the principle of extracting binary relations. With
this, it achieves very high quality results for image sequences and small baseline scenar-
ios, and reasonable results for wide-baseline scenarios. Combined with the image analysis
framework it allows for a dense image matching description at high computational speed.
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The third module serves as a proof of concept for efficient depth map generation. I utilize
this input for various depth cues and propose a light-weight concept for depth-map creation.
The efficiency of the approach results from the combination and approximation of cues,
like color statistics, texture, high frequency details, etc., plus a global scene classification
allowing for a wide range of scenes. The introduced concept works at a computational
speed close to real time and allows for considerable depth map quality.

Moreover, I present example results, analyze all three modules comprehensively in various
evaluation frameworks, and compare each module as standalone solution to approaches
from the literature. I Further, I give an exhaustive discussion on the results in context of the
evaluation benchmarks, as well as in context of the overall task, the depth map generation.

This thesis proves, that Swarm Intelligence principles are well-suited to the problem of com-
prehensive image analysis. The framework suits the various inputs of depth cues. Yet, it
can also be utilized for a number of computer vision applications, which demand segments,
edges, lines, or point-like features as input, like e.g. object and shape recognition, SLAM
algorithms, or robot vision. The combination of the image analysis with the matching al-
gorithm further allows for arbitrary dense tracking algorithms, or stereo image matching as
input to triangulation.
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Appendix A.

Test Parameters

The following are the standard parameters used for all experiments for each individual com-
ponent. Except a difference is concretely mentioned in the experiment description, then
these values are employed instead of the ones mentioned here.

A.1. SISeg

1. Gaussian prior image smoothing variance σ = 1.5,

2. Gaussian prior image smoothing Kernel size = 3,

3. Line-condition threshold 1 τO = 0.5

4. Line-condition threshold 2 τo = 0.7

5. Distance sum weight 1 ws
1 = 2

6. Distance sum weight 2 ws
2 = 1

7. NMS maximum threshold τmax = 20,

8. NMS minimum threshold τmin = 6,

9. NMS relative threshold τ rel = 1.1,

10. Region fusion threshold τ reg = 0.25.

11. Maximum number of iterations τ t = 25.

A.2. Anchor Points

1. Gaussian standard deviation is fixed to σAP = 3.65.
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2. Gaussian Kernel size is fixed to 21.

3. Curvature threshold set to εAP = 0.01.

A.3. I-BRIEF

1. Smoothing is done via integral images,

2. Kernel size of box filtering is set to 9,

3. Descriptor size in bytes k = 64,

4. Method is set to GII,

5. Patch size S = 48,

6. Suppression area height ls = 3.

A.4. MSLD and MSCD

1. number of sub-regions is set to 9,

2. size of the sub-region is set to a window of size (5, 5),

3. threshold for maximal values is set to 0.4 .

A.5. Matching Strategies

1. 1NN lsr = 100,

2. IB Matching lsr = 100, τ = 0.9, r = 0.5,

3. NNDR only used in Section 6.2.3. For boat and graf sequences rNNDR = 0.8, for wall
sequence rNNDR = 0.6.
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