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work once again. All the other colleagues are also acknowledged and sincerely thanked for the

often enlightening discussions. Among them, for sure a special mention goes to my office mate

Johannes Englsberger. His help during these years has gone way further than exchanging ideas
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Finally, I want to thank Bice, Massimo and Marco (the three people who had me around ev-
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was doing, turned out to be the perfect chance to keep an eye on the “big picture”, not to mention

the big motivation that it was. They have managed to stand both my relaxed and deadline stressed

version without any apparent problem. For that, they must be indeed very talented.

Munich, September 20 Gianluca Garofalo
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Abstract

Although at date humanoid robots are still not ready to be used alongside humans in everyday

life, clearly legged locomotion is a key feature for robot to posses if they are expected to exten-

sively interact in an environment designed for humans. Legged robots are challenging systems to

control due to their hybrid nature, underactuation and unilateral constraints. Additionally, highly

dynamic tasks as jumping and running require performant actuation principles. Elastic joints are,

therefore, often used due to their capability to store energy. The notion of elastic joint robots has a

long history in robotics. Nevertheless, while the joint elasticity was originally treated as a distur-

bance of the rigid-body dynamics and therefore it had to be minimized during both the mechanical

and control design processes, more recent drive concepts like series elastic actuators or variable

impedance actuators deliberately introduce elasticity for implementing torque control, increasing

physical robustness, or reaching high output velocities. As a consequence, legged robots which

use this type of actuation principle have another source of underactuation introduced in the system

model.

The main contribution of the thesis is the design of a dynamic state feedback to produce asymp-

totically stable limit cycles for an elastically actuated robot. The controller produces the desired

periodic motion recruiting directly the springs contained in the joints, as opposed to classic con-

trollers for elastic joint robots, which are designed to minimize the effects of the elasticity. To the

best of the knowledge of the author, this is the first controller to exploit the presence of elasticity.

In an ideal nominal case of frictionless system, the control law will stop the motors after a transient

and the oscillations are sustained by the springs. The controller is able to achieve this result by

regulating an energy function of the closed loop system to a desired constant value. The energy

function is defined using the stiffness of the real springs in the joints, beside the gravitational po-

tential energy and the kinetic energy of the links. The limit cycle of the closed loop system is itself

defined by the desired value of the energy function. As a consequence, another interesting feature

of the controller is the capability to regulate the robot to a desired equilibrium point (in alternative

to the limit cycle), by simply setting to a nonpositive value the desired energy.

The final structure of the controller is obtained after some intermediate steps. While a dynamic

state feedback is employed for the multi-joint case, a simple static state feedback is used for

regulating the energy of a single elastic joint. Nevertheless, the limitation to a single joint is not

required if the controller has to be used for regulation to an equilibrium point. The design of this

simpler controller represents another contribution of the thesis.

Before the design of the controllers for elastically actuated robots, the simpler, more common

case of rigidly actuated robots is considered. Also for this case, a control law is designed to
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solve the problem of orbital stabilization. Similarly, the controller produces the asymptotically

stable limit cycle by regulating an energy function. This time, a virtual potential introduced by

the controller is used in the definition of the energy, since no elastic elements are present in the

system. This contribution is also further extended to a robust version of the controller.

The stability analysis of all the energy based controllers relies on semidefinite Lyapunov func-

tions. A contribution is made concerning this topic by extending the theorems for the stability

analysis of equilibrium points to the case of generic bounded invariant sets, i.e. including also

limit cycles.

Elasticity specific to the case of legged locomotion is also considered. Several works can be

found in the biomechanics field in which the role of elasticity is shown to be crucial to obtain the

main features of a locomotion pattern. The spring loaded inverted pendulum (SLIP) is a very sim-

ple, yet powerful way to extrapolate center of mass trajectories and vertical ground reaction forces

profiles of a wide set of gaits. A contribution of the thesis is to map this simple one mass model

on a multi-body robot in order to obtain a walking pattern and insights on the use of elasticity in

locomotion. Using an even simpler version of the SLIP model, an energy based approach is shown

to be effective to produce a jumping pattern. Another contribution of this work is to incorporate

the dynamic state feedback for elastically actuated robots in a state of the art optimization frame-

work, originally designed for balancing humanoid robots. In this way, it is possible to command

the robot to initiate and stop a sequence of jumps.

Finally, the last contribution of the thesis is the design of a control law for regulating the end

effector of a floating based robot in presence of nonzero generalized momentum. Although the

controller is considered for a satellite with a robotic arm, it can be seen as a first result towards

improved control of the feet of a humanoid robot during the flight phase. A satellite, in fact, shares

the same structure of the dynamic model as a humanoid robot, but the absence of gravity simplifies

the problem. This results rely on the findings of this work on the structure of the dynamic model

of a floating base system.
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2(q). . . . . . . . . . . . . . . . . . . 62

5.1. Closed loop system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2. Flow of the argumentation used in the proof. . . . . . . . . . . . . . . . . . . . . 73

5.3. The DLR Hand Arm System (HASy), used to validate the theoretical results. . . 77

5.4. Link positions obtained applying the controller (5.12) to all the joints with Hd = 3J. 78

5.5. Visualization of the chaotic behavior through the phase plot of the second joint. . 78

5.6. Convergence of the energy error for limit cycle generation, case (a), and damping

of the oscillations, case (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.7. Motor positions in case of limit cycle generation (left) and regulation (right). . . . 80

5.8. Link position and velocities when an initial velocity perturbs the robot from the

equilibrium point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.9. Energy function (5.3) (black line) and its desired value (blue line). . . . . . . . . 81

5.10. Phase plot of the link side position and velocity of the first joint. . . . . . . . . . 81

5.11. Motor and link positions of the first joint when Hd is switched from Hd = 3J (black

line) to Hd = 0 (blue line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.12. Motor positions (black lines) and desired values (blue lines). . . . . . . . . . . . 82

5.13. Link velocities obtained after a step in the desired motor position, with Hd = 0. . 83

5.14. Starting configuration of the robot ed equilibrium configuration (lighter color). . . 83

5.15. Convergence to zero of the two components of the constraint function y(q). . . . 84

5.16. Energy function (5.29) (blue line) and desired value (black line). . . . . . . . . . 84

5.17. Total kinetic energy (green line) and its two components, i.e. kinetic energy in the

constraint space (black line) an in the nullspace (blue line), in case Kα = 0. . . . 85

5.18. Total kinetic energy (green line) and its two components, i.e. kinetic energy in the

constraint space (black line) an in the nullspace (blue line), in case Kα = 30Nms3/rad3. 85

5.19. Energy function (4.16) for Kτi
= 104 1/s2,Dτi

= 1601/s (green line), Kτi
= 108 1/s2,Dτi

=
163 1/s (blue line) and desired value (black line). . . . . . . . . . . . . . . . . . . 86

6.1. C-Runner: test-bed (left) and simulated model in the initial configuration (right). 90

6.2. Phase portrait of the toy model for Kh = 5 s/kgm2 (left) and Kh = 0.5 s/kgm2 (right). 93

6.3. Total energy and desired value for Kh = 5 s/kgm2 (left) and Kh = 0.5 s/kgm2 (right). . 93

6.4. Jumping height for Kh = 5 s/kgm2 (left) and Kh = 0.5 s/kgm2 (right). . . . . . . . . . 94

6.5. The weights in the cost function are switched depending on the contact phase. . . 97

6.6. Desired energy (blue) and actual value (black). . . . . . . . . . . . . . . . . . . 97

6.7. Vertical position zg of the CoM and height z f of one of the feet. . . . . . . . . . . 98

6.8. Values of φ for the height of one foot, the orientation of the trunk and the horizon-

tal position of the CoM (from top to bottom). The desired values are in blue and

the real in black. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.1. Scenario and reference frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2. Norm of the end effector position error for PD control and for proposed control. . 108

7.3. Joint angles with the proposed control. . . . . . . . . . . . . . . . . . . . . . . . 108

7.4. Attitude of the base. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.5. Nullspace velocity with the proposed control. . . . . . . . . . . . . . . . . . . . 109

7.6. Envelope of step response (norm) of the end effector for the proposed controller

for 20 uncertain models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

12



List of Figures

8.1. The adaptive Slotine - Li control. The matrix Ks is positive definite and diagonal. 112

8.2. Dynamic sliding PID control. The matrix Ks is positive definite and diagonal. . . 113

8.3. The proposed controller is given by three subparts. . . . . . . . . . . . . . . . . 116

8.4. Desired configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.5. Energy function (continuous line) and desired value (dashed line) without friction

compensation obtained in the experiment. . . . . . . . . . . . . . . . . . . . . . 118

8.6. Energy function (continuous line) and desired value (dashed line) with friction

compensation obtained in the experiment. . . . . . . . . . . . . . . . . . . . . . 118

8.7. Energy function (continuous line) and desired value (dashed line) with friction

compensation obtained in simulation. . . . . . . . . . . . . . . . . . . . . . . . 119

13





List of Tables

1.1. List of publications as first author. . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2. List of publications as coauthor. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1. SLIP model parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2. Multy-body robot parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1. Desired energy value and gains used for the simulation results in Fig. 4.4. When

only the i - th entry is shown, then the others have the same value. . . . . . . . . 61

4.2. Desired energy value and gains used for the simulation results in Fig. 4.5 - 4.6. . 62

5.1. Gains used for the simulation in Fig. 5.6, case (a). When only the i - th entry is

shown, then the others have the same value. . . . . . . . . . . . . . . . . . . . . 79

5.2. Gains used for the simulation in Fig. 5.6, case (b). . . . . . . . . . . . . . . . . . 79

5.3. Properties of one of the three modules of the manipulator in Fig 5.14. . . . . . . 82

5.4. Values of the gains. When only the i - th entry is shown, then the others have the

same value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1. Segment lengths and masses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2. Coefficients for the proportional action of the PD terms. . . . . . . . . . . . . . . 97

7.1. Parameters of the free-floating robot. . . . . . . . . . . . . . . . . . . . . . . . . 107

8.1. Gains used for one arm in the experiment. . . . . . . . . . . . . . . . . . . . . . 117

15





CHAPTER 1

Introduction

The interest of the robotic community in locomotion is already decades old, starting with the

pioneering works of Vukobratovic [VB05], Kato [KOK+73], Raibert [Rai86] as well as of McGeer

[McG90]. In some sense these authors laid down a dichotomy in the field: on one side fully

actuated robots based, for example, on the concept of the zero-moment point (ZMP) and on the

other purely passive mechanical systems or with very little actuation based on cyclic behavior and

orbital stability. Furthermore, in the biomechanics community Blickhan [Bli89] started proposing

template models which can reproduce locomotion patterns by means of elastic elements; not too

differently from the pogo stick principle used in the first hopping robots developed by Raibert at

the MIT. It was becoming quite clear that the role of the actuation is of paramount importance in

highly dynamical systems like legged robots; as intuition might suggest when thinking of tasks

like running or jumping.

It is not surprising then if legged robots have been both the application and motivation for the

design of innovative actuation systems. Even less of a surprise is that often these new actuator

designs include elastic elements in order to achieve efficiency through energy storage (which is

clearly inspired by the human capabilities of storing energy in tendons and muscles). Different

uses for springs in legged locomotion [Ale90] show that there are two main reasons for consid-

ering their presence: energy storage (which means less energy consumption and unwanted heat

production) and smaller force at the impact of the foot on the ground (which decrease the risk of

damages). The notion of elastic joint robots has also a long history in robotics. Nevertheless, while

in the seminal publications by Spong [Spo87] and De Luca [De 88] in the late 80s and early 90s,

the joint elasticity was originally treated as a disturbance of the rigid-body dynamics, more recent

drive concepts like series elastic actuators [PW95] or variable impedance actuators [WEH11] de-

liberately introduce elasticity for implementing torque control, increasing physical robustness, or

reaching high output velocities.

A common challenge to both fields is coping with the underactuation of the system, which

clearly increases the complexity of the controller design. A schematic of the problems can be

found in Fig. 1.1. For legged robots the underactuation is a direct consequence of their base free

nature, as opposed to the classical base fixed robot manipulators. Legged robots are free systems

in space subject to nonconstant unilateral contacts provided by the interaction with the floor. The

torques provided by the motors in the joints and the reaction forces exerted by the floor cannot be

all directly and arbitrarily chosen by the controller, from which the underactuation of the system
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M
B

τm
motor link

Figure 1.1.: Schematic of the sources of the underactuation.

arise. If the robot can be considered as having a foot motionless during a specific phase of its task,

then the model is that of a classical manipulator. The system can even become overactuated if more

than one foot is rigidly in contact with the floor, in which case a force distribution problem must

be solved. For elastic joint robots, on the other hand, the underactuation is due to the presence of

the elastic element itself, which couples the motor to the link. Although the goal is to control the

position of the link, the latter is affected by the action of the spring which cannot be directly and

arbitrarily chosen by the controller.

A short overview of the existing methods for dealing both with the underactuation problem in

legged robots and elastic joint robots is presented.

1.1. The underactuation in biped robots

Biped robots can be modeled as nonsmooth hybrid systems. The nonsmoothness arises from

the occurrence of the impacts, while the word hybrid refers to the mix of both a continuous and

discrete dynamics due to the presence of algebraic constraints modeling the restriction imposed

on the state by the floor. When any of the constraints is active, the model describing the system is

a differential-algebraic equation (DAE) [Bro99].

Taking into account the underactuation of a biped robot is a challenging task. Therefore, often

simplified model are used for the design of the controller. The linear inverted pendulum model is

often used in conjunction with the ZMP in order to prevent the robot from tilting. In [EOR+11],

for example, a ZMP controller provides the center of mass (CoM) reference trajectory using the

values of the measured and the desired ZMP. The latter is computed stabilizing the unstable part

of the CoM dynamics, referred to as capture point in [PCDG06]. Keeping the ZMP within the

support polygon ensures that the robot is not tilting over. Nevertheless, the limitations due to the

friction cone are not taken into account.

The best solution to deal with the unilateral constraint imposed by the floor is to set up an opti-

mization problem. The latter can be used just at the planning level, for parameterized trajectories

or in an online scheme. In the first case, the joint trajectories are expressed typically by splines,

whose coefficients are determined solving an optimization problem that guaranties the satisfac-

tion of all the equality and inequality constraints [DCA05,SYLM08]. A classic PD controller can

later be used to track these desired trajectories. The drawback of this approach is in the lack of

robustness since the feasibility constraints are only taken into account during the planning phase,

as well as the necessity of replanning in case of changes in the environment or in general when

modifications to the desired trajectories are required. Using parameterized trajectories partially

overcomes the latter problem. The idea of the method is to express the trajectories in terms of

a set of parameters. Changing the parameters allows to adapt the desired trajectory to achieve

different step lengths or walking speeds [WC06]. A similar idea is used in the context of hybrid
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zero dynamics of planar biped walkers [WGC+07]. In this case, the optimization provides the

parameters of the parameterized trajectories to stabilize the hybrid zero dynamics (HZD), once

suitable output functions have been chosen. The HZD is an extension of the zero dynamics [Isi95]

to a hybrid system. The additional requirement is that the invariant manifold, on which the zero

dynamics is defined, must be also invariant under the impact map of the system. If the convergence

of the virtual constraint is exponentially fast, then the asymptotic stability of the HZD implies the

asymptotic stability of the whole hybrid system.

The most robust way to use the optimization is to use it for both the planning and the on-

line control. The limitations of this approach are in the computation cost and the availability of

theoretical results for the stability analysis. For example, the nonlinear model predictive control

(NMPC) presents stability properties only for a particular class of nonlinear systems and under

certain assumptions [ABQ+99, APE04].

Finally, some balancing controllers, like those in [HOR14, HDO16], resort to an optimization

problem in order to obtain a solution to the force redistribution problem that arises when more than

one end effector is in contact with the environment. In this case, the controller aims at producing

desired contact forces, which are obtained by choosing the necessary torques at the joints.

1.2. Control of elastic joint robots

Elastically actuated robots, in contrast to robot with a flexible link structure, are modeled using a

spring connecting the motor to the link that it actuates.

Tomei [Tom91] in the early 90s already showed that elastic joint robots can be stabilized to a

desired configuration by a simple PD controller for the motor angle, provided also a compensation

of the gravity torque at the equilibrium. Since then, many other controllers have been proposed.

Loosely speaking, the gravity compensation was the only term fighting the underactuation, so to

achieve better results other authors started using additional feedback information.

In [GHS89], an approximate analysis based on the singular perturbation theory justifies the use

of torque measurements and link side positions. In [ASH01], the whole state of the robot (motor

position, torques and their first derivatives) is used in the feedback loop. The best performance

is theoretically given by decoupling based approaches, which provide a partially or even fully

linearized closed loop system and ensure global asymptotic stability also for the tracking case.

Nevertheless, passivity based approaches [ASOH07, OASKH08] do not require measurements of

the contact forces and therefore provide a high degree of robustness for contacts with unknown

environments. Static and dynamic feedback linearization were used in [Spo87, De 88, DL98] in

order to solve the tracking problem, both for the reduced and complete model of flexible joint

robots. These controllers, however, require as a state vector the link side positions up to their third

derivative and/or a very accurate robot model. The situation with backstepping based controllers is

similar to that of decoupling based approaches. Backstepping is based on the idea of considering

the torque produced by the springs [NT93] as an intermediate input to be used to control the link

equations. In a second step, the actual torque input to the motors are designed so as to follow the

reference behavior for the previous intermediate input. A comparison of the many works on this

topic can be found in [BOL95]. This design process is easily transformed into an adaptive version.

In order to cope with parameter uncertainty, adaptive control results for robots with elastic joints

include the high-gain (approximate) scheme [Spo89] and the global (but very complex) solution

obtained in [LB92]. Moreover, robust control schemes based on sliding mode techniques have

been proposed in [SRS88]. On the other hand, singular perturbation based controllers are easy to

implement, but their performance is theoretically and practically limited to the case of relatively

high joint stiffness. A nonlinear controller based on the two-time scale separation property was
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Figure 1.2.: Graphical overview of the thesis and the relation to the publications.

proposed in [KK85].

Finally, the case of Cartesian impedance for elastic joint robots was considered in [Ott08], were

singular perturbation, backstepping and passivity approaches are analyzed and compared.

1.3. Overview and organization of the thesis

From what has been said so far it is clear that the analysis and control of legged robots with,

additionally, elastically actuated joints are definitely not easy tasks. Even when adding numerous

simplifying hypothesis, the problem can be extremely difficult to solve. In this work, a passive

behavior of the system with respect to the contact forces is aimed at. The control action will be

designed avoiding as much as possible force measurements, which in such a highly dynamic task

are likely to be not reliable. At the same time, the periodicity of locomotion patterns is targeted

through regulation of an energy function of the system. The motivation behind this choice is the

presence of the elastic elements in the joints. Since energy will be stored in the deflected springs,

it is clear that taking directly this energy into account to establish a repetitive task of the robot

can be one way to exploit the presence of this type of actuation. To the best of the knowledge

of the author, this is so far the only approach that clearly shows how to take advantage of such

actuation principle. The final result of this work consists in achieving a sequence of jumps with

an elastically actuated biped robot. The designed control law does not rely on strong simplifying

assumptions, it uses the whole dynamic model of the robot and it is based on the asymptotically

stable controller for elastic joints presented in this thesis. Nevertheless, in order to achieve the

goal, several intermediate steps are taken. The simplification used in each step will consist in

removing one or both the sources of underactuation in the system. The organization of the thesis

is sketched in Fig. 1.2, where additionally the papers from Table 1.1 and Table 1.2, that constitute

the main references for the chapters, are indicated.

The chapters circled in gray are not directly related to the design steps followed to obtain the

controller responsible for producing a jumping sequence with an elastically actuated robot. In

chapter 2, the focus is on the dynamic model of the robot and its properties. The information

in there give directions for building a dynamic library, which is indispensable for testing and

implementing the controllers presented in this work. Chapter 7 and chapter 8, instead, provide
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solutions to improve the control of the end effector during the flight phase and increase the

robustness of the energy control in presence of disturbances.

In the chapters in red, all the sources of underactuation are removed and a rigidly actuated robot

with a fixed base will be considered. Chapter 3 focuses more on the legged robotics side of the

problem, providing a solution for mapping a simple template model on an actual robot. The

goal is to understand how to use the elasticity in locomotion through control strategies inspired by

the SLIP template model. In chapter 4 the focus is shifted on the energy regulation. There, the

problem of generating an asymptotically stable limit cycle for a rigidly actuated manipulator

is solved.

When the underactuation due to the elastic joints is considered, new controllers need to be

designed. The latter are presented in the chapter 5 (circled in brown) and allow to solve the

problem of orbital stabilization for elastic joint robots. The control laws are capable of both

establishing and damping out controlled oscillations and represents probably the main theoretical

contribution of the thesis.

Chapter 6 (circled in blue) takes into account all the forms of underactuation, and a jumping

controller for elastically actuated robots is presented.

Finally, chapter 9 summarizes the contributions of the thesis and provides directions for future

works.
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stabilization of mechanical systems through semidefinite Lyapunov

functions. In American Control Conference (ACC), pages 5735–

5741, Washington DC, USA, June 2013

Conference, [GOAS13b]
Gianluca Garofalo, Christian Ott, and Alin Albu-Schäffer. On the
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CHAPTER 2

Dynamics

As a result of the steady increasing complexity of robotic systems, researchers have constantly

analyzed the dynamic equations of motion of the robot to improve the computational efficiency

and gain insights that might lead to more effective control laws.

Some of the milestones are the results provided in [Uic65, SV76] where the recursive Newton-

Euler algorithm was formulated and in [OMVH79] where a more efficient version was presented.

In [Hol80] it was shown that not only the Newton-Euler approach, but also the Lagrangian formu-

lation could provide an equally efficient algorithm and in [Sil82] the equivalence of the two meth-

ods was provided. While the previous works deal with the inverse dynamics problem, in [Ver74]

the direct one is considered, so that in the end for both problems algorithms with O(n) complexity

are available. Other authors investigated the possibility of using more elegant and efficient tools

to write the dynamics. Important are the works of Featherstone [Fea87], Rodriguez [Rod87] and

Park et al. [PBP95], where spatial operator algebra and Lie groups are respectively used.

The remainder of this chapter strongly relies on screw theory, therefore in section 2.1 some of

the basic concepts are recalled. An influential textbook on this topic is [MLS94], to which the

reader is referred for the details. However, the goal of the section is to make the reader famil-

iar with the notation used and moreover to look at the problem from a point of view typical of

control theory. As insights about the structure of the equations have turned out to be of great

usefulness when dealing with floating base robots, section 2.2.2 collects some classic properties

and others introduced in this work. On the other hand, flexible joint robots have risen the need of

computing the derivatives with respect to time of all the matrices of the dynamic model, as it is

shown in [Spo87, DF11, Ott08]. The solution of other problems and analysis requires, instead, to

differentiate the matrices with respect to the state or the dynamic parameters. The controllability

analysis of underactuated manipulators motivated in [Mül07] to provide an efficient factorization

for the inverse of the inertia matrix, in order to compute its partial derivatives. The derivative with

respect to the state of the direct and inverse dynamic function, useful in optimization problems or

in state estimation problems, were provided in [SYLM08, SB01]. For these reasons, section 2.3

contributes to the differentiation with respect to time, state and dynamic parameters of the matrices

of the dynamic model.

For the reader not familiar with twists and wrenches, the expression of the matrices used in the

chapter are provided. To this end, let E3 ∈ R3×3 be the identity matrix, O3×3 ∈ R3×3 and 0 ∈ R3

have all the entries equal to zero, while Ik is the inertia tensor with respect to a frame oriented as
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Rp,k

op,k

p

k

rk

0

Figure 2.1.: Given the frame p and the frame k, op,k is the vector connecting their origins and Rp,k

the rotation matrix to go from p to k.

the body frame and with the origin in the CoM of the rigid body (indicated with rk). Finally, ǎ is

the skew symmetric matrix such that ǎb= a×b. Then, the homogeneous transformation matrix,

adjoint and Lie bracket matrices for a given rotation matrix1 Rp,k ∈ SO(3) and position vector

op,k ∈ R3 as in Fig. 2.1 are:

Tp,k =

[
Rp,k op,k

0
T 1

]

, Adp,k =

[
Rp,k ǒp,kRp,k

O3×3 Rp,k

]

, adjp,k =

[
ω̌k υ̌k

O3×3 ω̌k

]

,

where the convention for the twist coordinates uses the linear part for the top three rows and the

angular part for the bottom ones, i.e. νk =
[
υT

k ωT
k

]T
[MLS94]. All the other matrices are

defined accordingly, so the inertia matrix is:

Λk =

[
mkE3 −mkřk

mkřk Ik−mkř
2
k

]

.

Nevertheless, throughout the chapter the explicit expression of the matrices is avoided, so the

reader used to the opposite convention will have no problem to follow the equations.

2.1. Screw theory in a nutshell

The goal of this section is to show that a screw motion of a rigid body can be seen as the flow of

a special dynamical system. This gives an interpretation of a screw in terms of system analysis

theory. To this end, it is useful to recall that given the non autonomous linear system

χ̇(t) =A(t)χ(t) , (2.1)

the integral solution can be easily computed when A(t) =A0θ(t), where A0 is a constant matrix

and θ(t) is a scalar function of time. In this case it is possible to write

χ(t) = eA0

∫ t
0 θ (τ)dτχ(0) , (2.2)

where it is assumed that the initial time is t0 = 0.

1Since a rotation matrix has orthonormal columns and determinant equal to 1, it belongs to the special orthonormal

group SO(3) of the real (3×3) matrices.
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2.1.1. Screw motion

For a rigid body system the position of a point ps in the spatial frame, i.e. the fixed frame with

respect to which the motion of the body is considered, can be computed from the position of the

same point pb in the body frame, once it is known the homogeneous transformation matrix

T =

[
R o

0
T 1

]

, (2.3)

where R is the rotation matrix from the spatial to the body frame and o is the position vector of

the origin of the body frame in the spatial frame. When the body frame is moving in time, then

ps(t) = T (t)pb , (2.4)

which differentiated with respect to time leads to

ṗs(t) = Ṫ (t)pb = Ṫ (t)T−1(t)ps(t) . (2.5)

This has exactly the form of the non autonomous linear system in (2.1) with dynamic matrix given

by

Ṫ (t)T−1(t) =

[
ω̌(t) −ω̌(t)o(t)+ ȯ(t)
0 0

]

, (2.6)

where ω̌(t) = Ṙ(t)R−1(t) is a skew symmetric matrix. It is therefore of interest to consider the

case when Ṫ (t)T−1(t) = T0θ̇ (t), since using (2.2) and assuming that the reference is chosen in

such a way that θ(0) = 0, the solution is

ps(t) = eT0θ (t)ps(0) . (2.7)

Introducing the constants ω0 and d, from (2.6) it follows that the goal is to satisfy

ω̌(t) = ω̌0θ̇ (t) (2.8)

−ω̌(t)o(t)+ ȯ(t) = dθ̇ (t) . (2.9)

Using the identity −ω̌2
0 =

(
E3−ω0ω

T
0

)
, the decomposition of d along the direction of ω0 and an

orthogonal plane can be computed as

d=−ω̌2
0d+ω0ω

T
0 d=−ω̌0c+hω0 , (2.10)

being ω̌0d= c and ωT
0 d= h also constants. The final result is

Ṫ (t)T−1(t) =

[
ω̌0 −ω̌0c+hω0

0 0

]

θ̇(t) , (2.11)

where the well known expression of the constant twist associated to a screw motion with pitch h,

direction of the axis given by ω0 and passing through the point c can be recognized.
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2.1.2. The Newton-Euler equation in body coordinates

Consider a frame attached to a rigid body (which will be indicated with the index k) in movement

with respect to a spatial frame (which will be indicated with the index 0). Using the body twist νk

and the body wrench µk, the equation of motion can be written as

d

dt

(

Ad−T
0,k Λkνk

)

= Ad−T
0,k µk , (2.12)

where Λk is the constant body inertia matrix and Ad0,k is the adjoint matrix which uses an element

of the Lie group (the homogeneous transformation matrix from the inertial to the body frame) as

a linear mapping on the Lie algebra [MLS94]. Computing the time derivative in (2.12), leads to

Λkν̇k− adjT0,kΛkνk = µk , (2.13)

where d
dt

(

Ad−1
0,k

)

= −adj0,k Ad−1
0,k , being adj0,k the Lie bracket matrix which uses an element of

the Lie algebra (the body twist νk) as a linear mapping on the Lie algebra itself [MLS94]. Finally,

using the property adj0,kνk = 0, the term Λk adj0,k νk can added to (2.13) without changing the

equation, so that it can be rewritten as

Λkν̇k +Γkνk = µk , (2.14)

where Γk =
(
Λk adj0,k−adjT0,k Λk

)
. Thanks to this choice, Γk is skew symmetric (Γk = −Γ

T
k )

and being Λk constant, the property Λ̇k = Γk +Γ
T
k , known also as passivity property in robotics

[SSVO08, Ott08], is satisfied.

2.2. Dynamic model

Floating base robots that are a tree structure of N articulated bodies are considered. The N equa-

tions of motions in the form of (2.14), one for each of the N bodies, can be written stacking

the twists in ν̄ = col (νk), the wrenches in µ̄ = col (µk) and using the block diagonal matrices

Λ̄ = blkdiag (Λk) and Γ̄ = blkdiag (Γk), where k = 1, ...,N. Since the bodies are constrained to

each other, it exists a mapping in the form νk = Jk(x)v, where v ∈ Rnv are the complete velocity

coordinates while x indicates the complete configuration coordinates of the robot. The latter is

given by the configuration of the base x1 and the joint position q ∈ Rnq and together with v con-

stitute the state of the robot. Note that in general x1 might not have necessarily all entries in R

and

ẋ 6= v ,

which is the case when, for example, the rotation matrix is used to represent the orientation of the

base. Another consequence of the constraints between the N bodies is the possibility to project

each of the equations in the form of (2.14) in the space orthogonal to the constraint reaction

wrenches. This is possible through JT
k (x), so that

J̄T (x)
[

Λ̄J̄(x)v̇+
(

Γ̄J̄(x)+ Λ̄
˙̄J(x)

)

v
]

= u− J̄T (x)Λ̄γ̄(x) , (2.15)

where J̄ = col(Jk) and each µk = µkc
−Λkγk +wk has been split in

• constraint reaction wrench (which disappears after the projection, i.e JT
k µkc

= 0),
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2.2. Dynamic model

• the weight (which is linear in γ̄ = col (γk), being γk the body gravitational acceleration),

• all the other external wrench (which after the projection correspond to u, i.e JT
k wk = u).

The terms γk can be expressed as the product of a configuration dependent part and a con-

stant part, i.e. γk = Ad−1
0,k(x)γ0, where γ0 is the constant spatial gravitational acceleration2 . The

dynamic model of the robot can be rewritten in a more compact way as

M(x)v̇+C(x,v)v+g(x) =QTτ +JT
1 (x)w1 , (2.16)

where

M = ∑
k

JT
k ΛkJk , (2.17a)

C = ∑
k

JT
k

[(
Λk adj0,k−adjT0,k Λk

)
Jk +ΛkJ̇k

]
, (2.17b)

g = ∑
k

JT
k Λk Ad−1

0,k γ0 , (2.17c)

k = 1, ...,N. In (2.16) M ∈ Rnv×nv is the symmetric and positive definite inertia matrix, C ∈
Rnv×nv is the Coriolis matrix and g ∈ Rnv is the vector of gravity torques. The input to the system

u is given by the wrench acting to the base w1 ∈R
6 (mapped through JT

1 ) and the torques provided

by the motors τ ∈ Rnq (mapped through QT ). The matrix Q ∈ Rnq×nv selects the joint velocities

q̇ ∈ Rnq out of all the velocity coordinates, i.e. q̇ =Qv. In this form, the matrices Jk, Ad−1
0,k and

adj0,k are state dependent and are the only quantities needed to compute (2.17). Algorithm 1 is

one way to obtain such quantities, propagating the matrices from the root to the leaves of the tree

structured robot. It is an iterative procedure equivalent to the outward recursion of the Newton-

Euler algorithm and, like the latter, it is based on the coordinate transformation for the velocities,

which can be formulated as

νk = Ad−1
p,k νp +ξk , (2.18)

where k and p are used to indicate a frame attached to the current link and its parent3, while ξk

gives the relative velocity between these two bodies. Writing (2.18) in terms of Jacobian matrices,

leads to an equality that, being true ∀v, allows to write

Jk = Ad−1
p,kJp +Ξk . (2.19)

where Ξk is a matrix determined by the type of interconnection between the bodies4, such that

ξk = Ξkv. This concept, as discussed in [RS87], allows the joints to be completely general, with

any number of degrees of freedom up to and including six, which is particularly important to

model floating base robots. For a 1 - DoF joint the expression of Ξk is constant and particularly

simple as ξk reduces to (2.11), where instead of θ̇ the correspondent joint velocity q̇k must be

replaced. As a consequence, the differentiation of (2.19) with respect to time, leads to

J̇k =Ad−1
p,k J̇p− adjp,k Ad−1

p,k Jp , (2.20)

which can be easily included in Algorithm 1.

2The angular part of γ0 is always zero, while assuming for example that the third axis is the vertical one, then the

linear part will be
[
0 0 g

]T
, where g is the gravitational acceleration constant.

3If the bodies are numbered according to a so called regular numbering scheme [Fea87], it is guaranteed that during

the iteration the parent’s quantities are computed befere those of its children.
4Notice how in (2.19) only “local” informations are needed, meaning that Ad−1

p,k and Ξk are given by the connection

between the link and its parent.
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2. Dynamics

Algorithm 1 Iterative computation of the kinematics

Require:

LABELING

q, v, Ξk for k = 1, ...,N.

J0, J̇0←O

Ad−1
0,0←E

for i = 1 to N do

Tp,k = HTM(q)

Ad−1
p,k = INVERSEOFADJOINT(Tp,k )

adjp,k = LIEBRAKETMATRIX(ξk )

Jk = Ad−1
p,k Jp +Ξk (and eventually its derivatives)

Ad−1
0,k = Ad−1

p,k Ad−1
0,p

adj0,k = adjp,k+Ad−1
p,k adj0,p Adp,k

end for

2.2.1. The reduced model for elastic joint robots

For the derivation of the model, the following assumptions are made [Spo87]:

Assumption 2.1. The rotors of the motors are rotational symmetric rigid bodies and the rotation

axis and the symmetry axis of each joint coincide.

Assumption 2.2. The electric part of the dynamics (i.e. the inner current control loop of the

motors) is sufficiently fast such that it can be neglected.

Assumption 2.3. The rotational part of the kinetic energy of the rotors is determined only by the

relative movement of the rotors with respect to the previous link.

When these assumptions are satisfied, underactuated robots with elastic joints can be modeled

as

M(x)v̇+C(x,v)v+g(x) =QTτ (φ)+JT
1 (x)w1 (2.21a)

Bθ̈+τ (φ) = τm , (2.21b)

where θ, θ̇ ∈ Rnq are also part of the state of the system being θ the motor position as compared

to the link position q. The deflections of the springs which connect the motors to the links are

φ = θ− q and τ (φ) = ∇φUk(φ) ∈ Rnq is the torque5 produced by the springs with Uk(φ) the

correspondent potential function. The gravity torque vector can also be expressed using a gravita-

tional potential Ug(x) as g(x) = ∇xUg(x). Finally, τm ∈ Rnq is the input to the system provided

by the motors.

In case the robot contains not only rotational joints, the subset X in which all the prismatic

joints are kept bounded will always be considered. In this case, it is well known that the following

proposition holds [CSB96]

Proposition 2.1. For every matrix norm there exists a β > 0 such that

∥
∥
∥
∥

∂ 2Ug(x)

∂x2

∥
∥
∥
∥
< β , ∀x ∈ X . (2.22)

5The symbol ∇x(·) is used to replace
(

∂ (·)
∂x

)T
, in order to ease the notation.
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2.2. Dynamic model

For the design of the control law, an additional assumption is required:

Assumption 2.4. The potential function Uk(φ) satisfies the following three conditions

• Uk(φ) is a nonlinear scalar function (A1)

• α1 ‖ξ‖
2 < ξT ∂ 2Uk(φ)

∂φ2
ξ < α2 ‖ξ‖

2 , ∀ξ ∈Q (A2)

• β < α1 (A3)

where, since β must be positive, clearly also α1,α2 > 0. Assumption (A3) in particular, as ex-

plained in [Ott08], states that the robot should be designed properly. Namely, the binding forces

should grow faster than the diverging forces between θ and q, meaning that the joint stiffness

should be sufficiently high to prevent the robot from falling down under the load of its own weight.

2.2.2. Properties of the dynamic model

As mentioned at the beginning of the chapter, the properties of the dynamic models can simplify

the design of control algorithms. In this section, the properties that will be used in the remainder

of the thesis are presented.

Passivity

Since in section 2.1.2 it was possible to add a term to (2.13) without changing the equation, it is

clear that the choice of the matrix C (whose derivation follows from that) is not unique. The term

Cv represents the centrifugal and Corioilis effects, which are quadratic velocity terms that can be

factorized in infinitely many ways. Between this multitude of choices, the one used satisfies once

again the passivity property. In fact, since each JT
k

(
Λk adj0,k−adjT0,kΛk

)
Jk is a skew symmetric

matrix, then

C+CT = ∑
k

J̇T
k ΛkJk +JT

k ΛkJ̇k = Ṁ ,

k = 1, ...,N, which is equivalent to say that Ṁ −2C is skew-symmetric. As a consequence, given

any a ∈ Rnq then aT
(

Ṁ − 2C
)

a = 0. The special case a = v is satisfied by any choice of C

since it is a result of the principle of conservation of energy [SSVO08]. The passivity property is

a stronger property than vT
(

Ṁ − 2C
)

v = 0, since the matrices themselves depend on v. Even

requiring to satisfy the passivity property there still exist infinite many C. Another way to obtain

such a matrix is to use, for example, the Christoffel symbols of the first type, or the factorization

used in [Nie90].

Generalized momentum and conservation laws

As it was firstly shown in [KKK+03], it is always possible to express the generalized momentum

h ∈R6, i.e. the linear and the angular momentum stacked together, as

h=A(x)v , (2.23)

where A(x) is called the centroidal momentum matrix in [OGL13] if the generalized momentum

is expressed in a frame attached to the center of mass (CoM) and with the axis aligned with the

inertial frame. In the following, the momentum will be always expressed in this frame.
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2. Dynamics

Since the linear momentum p∈R3 is directly related to the velocity of the center of mass (CoM)

ẋCoM, i.e. p = mẋCoM where m is the total mass of the robot, it is clear that a relationship must

exist between the centroidal momentum matrix A(x) and the Jacobian matrix JCoM(x) mapping

the velocity coordinates into the velocity of the CoM of the robot, i.e. ẋCoM = JCoM(x)v. To this

end, the centroidal momentum matrix is partitioned as A(x) =
[
AT

p (x) AT
l (x)

]T
, so that

p=Ap(x)v (2.24)

l=Al(x)v , (2.25)

where l ∈ R3 is the angular momentum. Equating the two expressions of p it follows that

Ap(x) = mJCoM(x) , (2.26)

since the equality must be satisfied for every possible choice of v. In view of (2.26) and knowing

that g(x) is obtained from the mapping of the force fg = mgeg through JT
CoM(x), the gravity

torques can be written as g(x) = gAT
p (x)eg, where g is the gravitational constant and eg a unit

vector pointing upwards.

For a system described by the dynamic model (2.16), it is well known that the following property

holds

Proposition 2.2 (Newton−Euler equations). Let µCoM be the total wrench acting at the CoM

obtained from the combination of all the external wrenches, then

ḣ= µCoM . (2.27)

From the previous property and the expression of the generalized momentum given in (7.2), the

following corollaries can be derived

Proposition 2.3 (Conservation of generalized momentum). Assume that the robot is free floating

(g(x) = 0) and no external wrenches are acting on it, then

A(x)v̇+ Ȧ(x,v)v = 0 . (2.28)

Proposition 2.4 (Conservation of angular momentum). Assume that the resulting total wrench at

the CoM is a pure force, then

Al(x)v̇+ Ȧl(x,v)v = 0 . (2.29)

Block diagonal structure

A consequences of these basic mechanical principles is that there exists a coordinate transforma-

tion that can inertially decouple the equations of motion of a floating base robot, i.e. it transforms

the inertia matrix into a block diagonal matrix. The transformation is based on orthogonality rela-

tionships between matrices. This result includes and extends those in [HHC07,ORH11], allowing

to separate the linear and angular centroidal dynamics from the joint dynamics. To easily derive

the results, special cases are considered, although the results are valid in general.

Consider a free floating rigidly actuated robot with no external wrenches acting on it, so that the

only input are the torques provided by the motors. Replacing v̇ from (2.16) into (2.28) and setting

g(x) and w1 to zero leads to

A(x)M−1(x)QTτ −
(
A(x)M−1(x)C(x,v)− Ȧ(x,v)

)
v = 0 . (2.30)
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2.2. Dynamic model

Equation (2.30) holds for every possible choice of v and τ , therefore it is clear that the following

conditions must be satisfied

A(x)M−1(x)QT = 0 (2.31)
(
A(x)M−1(x)C(x,v)− Ȧ(x,v)

)
v = 0 . (2.32)

Consider the velocity coordinate transformation, inspired by the one used in [OKN08],

ξ =

[
h

q̇

]

=AQ(x)v AQ(x) =

[
A(x)
Q

]

, (2.33)

with the inverse transformation given by6

v =A−1
Q (x)ξ A−1

Q (x) =
[
A+M(x) Q+M(x)

]
. (2.34)

Pre-multiplying (2.16) by A−T
Q (x), using

v̇ =A−1
Q (x)

(

ξ̇− ȦQ(x)A
−1
Q (x)ξ

)

(2.35)

and the orthogonality relationship expressed in (2.31) leads to the equations of motion in the new

coordinates
[
Λh(x) 0

0 Λq(x)

]

︸ ︷︷ ︸

Λ(x)

ξ̇+

[
Γhh(x,v) Γhq(x,v)
−ΓT

hq(x,v) Γqq(x,v)

]

︸ ︷︷ ︸

Γ(x,A−1
Q (x)ξ)

ξ =

[
0

τ

]

, (2.36)

where

Λh(x) =
(
A(x)M−1(x)AT (x)

)−1
(2.37)

Λq(x) =
(
QM−1(x)QT

)−1
(2.38)

Γ(x,v)ξ =Λ(x)

[
A(x)M−1(x)C(x,v)− Ȧ(x,v)

QM−1(x)C(x,v)

]

v =

[
0

Q+MT (x)C(x,v)v

]

. (2.39)

Equation (2.39) shows that, although the generalized momentum will influence the joint dynamics

through Γ(x,v) since in general −ΓT
hq(x,v)h 6= 0, the inverse is not true. As a matter of fact,

from (2.32) and (2.39) follows that

Γhh(x,v)h+Γhq(x,v)q̇ = 0 , (2.40)

which can be seen as a natural consequence of the conservation of the generalized momentum.

The structure can be further explored to show additional inertial separation. The condition

expressed in (2.31) can be interpreted in such a way that the torques produced by the motors are

internal forces for the free floating robot and therefore they produce no change in the generalized

momentum. Similarly, assume that the resulting total wrench at the CoM is a pure force fCoM,

which maps via JT
CoM(x). Replacing v̇ from (2.16) into (2.29) and setting g(x) and τ to zero

leads to

1

m
Al(x)M

−1(x)AT
p (x)fCoM−

(
Al(x)M

−1(x)C(x,v)− Ȧl(x,v)
)
v = 0 , (2.41)

6Given a matrix T , T+M denotes the dynamically consistent weighted pseudo inverse defined as T+M (x) :=

M−1(x)T T
(
TM−1(x)T T

)−1
.
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2. Dynamics

where, additionally, (2.26) has been used. This condition, holding for every possible choice of v

and fCoM, leads to

Al(x)M
−1(x)AT

p (x) = 0 . (2.42)

In view of this orthogonality relationship, Λh(x) is itself block diagonal. In particular,

Λh(x) =

([
Ap(x)
Al(x)

]

M−1(x)
[
AT

p (x) AT
l (x)

]
)−1

=

[
Λp(x) 0

0 Λl(x)

]

, (2.43)

with

Λp(x) =
(
Ap(x)M

−1(x)AT
p (x)

)−1
(2.44)

Λl(x) =
(
Al(x)M

−1(x)AT
l (x)

)−1
. (2.45)

This has an impact also on the pseudo-inverse of the centroidal momentum matrix A+M(x) and

consequently on the gravity term. The first can be expressed as

A+M(x) =M−1(x)
[
AT

p (x) AT
l (x)

]
[
Λp(x) 0

0 Λl(x)

]

=
[
A+M

p (x) A+M

l
(x)
]

, (2.46)

where (2.43) - (2.45) have been taken into account, from which immediately follows

A−T
Q (x)g(x) =





A+MT
p (x)

A+MT
l (x)

Q+MT (x)



gAT
p (x)eg =





geg

0

0



 . (2.47)

Combining all the previous results, (2.16) can be written in the new coordinates as





Λp 0 0

0 Λl 0

0 0 Λq



 ξ̇+





Γpp Γpl Γpq

−ΓT
pl Γll Γlq

−ΓT
pq −ΓT

lq Γqq



ξ+





geg

0

0



=





0

0

τ



+A−T
Q JT

1 w1 , (2.48)

which is still eligible of one last refinement. Assume, in fact, that no contact wrenches are acting

on the system (w1 = 0). Taking into account (2.40), the first three lines of the model are

Λp(x)ṗ =−geg . (2.49)

On the other hand, from (2.27) it follows that ṗ=−mgeg must hold. Comparing the two expres-

sions of ṗ, it can be concluded that

Λp =
1

m
E3 , (2.50)

where E3 is the 3×3 identity matrix. Note that, because of the passivity property, it also follows

that Γpp(x,v) is skew-symmetric.

It is important to notice that the physical units of the first six equations and the remaining ones

are not the same. This is not surprising, since a mix of velocities and generalized momentum is

used as part of the new state.

2.3. Further computations

The content of this section is intended for the reader who needs to differentiate the matrices of the

dynamic model.
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2.3. Further computations

2.3.1. Parameters differentiation

In order to compute the derivative of (2.17) with respect to the dynamic parameters, the linearity

of the matrices in the parameters themselves is considered.

Proposition 2.5. If υk and ωk are the linear and angular part of the twist νk respectively, then the

generalized momentum Λkνk can be written as

Λkνk =A′(νk)πk , (2.51)

where

πk =
[
mk mkr

T
k Ixxk

Iyyk
Izzk

Ixyk
Ixzk

Iyzk

]T
, (2.52)

and rk is the position of the center of mass of the k− th body with respect to its own frame (see

Fig. 2.1). Moreover, the rows of A′(νk) ∈ R6×10 for the linear momentum are

A′p =
[
υk ω̌k O3×6

]
∈ R3×10 , (2.53)

and the ones for the angular momentum are

A′l =
[
0 −υ̌k

ˇ̌ωk

]
∈ R3×10 , (2.54)

where O3×6 ∈R3×6 is a matrix of zeros and

ˇ̌a=





ax 0 0 ay az 0

0 ay 0 ax 0 az

0 0 az 0 ax ay



 . (2.55)

Proposition 2.6 (Parameters differentiation). Given the expression of the dynamic matrices in

(2.17) and the factorization presented in Proposition 2.5, then the derivatives of (2.17) with respect

to the dynamic parameters are

∂M j

∂πkh

=JT
k A

′(J j
k )

h , (2.56a)

∂C j

∂πkh

=JT
k

(

A′(adj0,kJ
j

k + J̇
j

k )
h− adjT0,k A

′(J j
k )

h
)

, (2.56b)

∂g

∂πkh

=JT
k A

′(Ad−1
0,k γ0)

h , (2.56c)

where the superscripts j and h indicate the j− th and h− th column of the corresponding matrix.

Proof. Only the computations for the inertia matrix will be considered, since the same can be

repeated for the other matrices. From (2.17) one can write

M j = ∑
k

JT
k ΛkJ

j

k . (2.57)

From the factorization in Proposition 2.5 it follows that ΛkJ
j

k = A′(J j
k )πk. Differentiating the

expression with respect to πkh
, the proposition is proven.
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From (2.17) and Proposition 2.5 is also possible to easily compute the Slotine-Li regressor

matrix Y (x,v,vr, v̇r). Using π = col (πk), the identity Mv̇r +Cvr + g = Y (x,v,vr, v̇r)π
holds, where

Y π = ∑
k

JT
k

(
A′(αk)− adjT0,kA

′(Jkq̇r)
)
πk , (2.58)

αk =Jkv̇r+adj0,kJkvr+J̇kvr+γk and k= 1, ...,N. Rewriting (2.58) in terms of stacking matrices

leads to the expression of the regressor matrix

Y = J̄T blkdiag
(
A′(αk)− adjT0,kA

′(Jkvr)
)
, (2.59)

k = 1, ...,N. Given the Slotine-Li regressor matrix, the classic regressor matrix can be obtained

replacing vr = v and v̇r = v̇.

2.3.2. State differentiation

Although quite involved, the key point for the computation of the derivatives with respect to the

state is to find a convenient factorization for adj0,k; similarly to what was done in Sec. 2.3.1 for the

momentum7. From (2.17), it follows that the derivatives of M , C and g can be computed if the

derivative of Jk, J̇k, Ad−1
0,k and adj0,k are available.

Proposition 2.7. Given the identity Jkq̇ = ∑hJ
h
k q̇h, it follows that

∂ Ad−1
0,k

∂qh

=− adjJh
k

Ad−1
0,k , (2.60)

∂ adj0,k

∂ q̇h

=adjJh
k
, (2.61)

where adjJh
k

is the matrix computed using Jh
k ∈ R6, instead of νk ∈ R6, while

∂ adj0,k

∂qh

= adj ∂Jk
∂qh

q̇
, (2.62)

where in adj ∂Jk
∂qh

q̇
this time νk ∈ R6 has been replaced by

∂Jk

∂qh
q̇ ∈ R6.

Proof. Firstly, it can be verified that the following identities hold

∂ Ad−1
0,k

∂q
q̇ = Ȧd

−1

0,k =−adj0,k Ad−1
0,k , (2.63)

adj0,k = ∑
h

adjJh
k q̇h

= ∑
h

adjJh
k
q̇h . (2.64)

Substituting (2.64) in (2.63), one obtains an equality that, being true ∀q̇ ∈Rnq , leads to (2.60). On

the other hand the differentiation of (2.64) with respect to q̇h results in (2.61), while the one with

respect to qh results in (2.62).

7The results of this section must be intended only for the cases when the differentiation with the respect to the state is

actually meaningful. This is always the case when a classical manipulator with 1 - DoF joints is considered.
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2.4. Summary

Proposition 2.8 (State differentiation). Given the expression of the dynamic matrices in (2.17)

and the factorization presented in Proposition 2.7, then the derivatives of (2.17) with respect to

the state are

∂M

∂qh

=∑
k

∂JT
k

∂qh

ΛkJk +JT
k Λk

∂Jk

∂qh

, (2.65a)

∂C

∂qh

=∑
k

∂JT
k

∂qh

(
ΨkJk +ΛkJ̇k

)
+JT

k Λk

∂ J̇k

∂qh

+JT
k

[(

Λk adj ∂Jk
∂qh

q̇
−adjT∂Jk

∂qh
q̇
Λk

)

Jk +Ψk

∂Jk

∂qh

]

,

(2.65b)

∂C

∂ q̇h

=∑
k

JT
k

[(

Λk adjJh
k
−adjT

Jh
k

Λk

)

Jk +Λk

∂ J̇k

∂ q̇h

]

, (2.65c)

∂g

∂qh

=∑
k

(

∂Jk

∂qh

T

Λk−JT
k Λk adjJh

k

)

Ad−1
0,k γ0 , (2.65d)

where k = 1, ...,N. In the previous relationships, C is the only matrix which depends on both q

and q̇. Notice that for the only term differentiated with respect to q̇, the following holds

∂ J̇k

∂ q̇
=

∂

∂ q̇

(
∂Jk

∂q
q̇

)

=
∂Jk

∂q
. (2.66)

2.3.3. Time differentiation

Obviously the derivatives of (2.17) with respect to time could be computed using the chain rule and

(2.65). Nevertheless, if the derivatives with respect to the state are not required for the considered

application, it is more efficient to directly differentiate (2.17) with respect to time. This is quite

clear considering that the derivative of a matrix with respect to a vector is an order three tensor,

while the derivative with respect to a scalar is also a matrix.

Proposition 2.9 (Time differentiation). Given the expression of the dynamic matrices in (2.17),

then the derivatives of (2.17) with respect to time are

Ṁ =∑
k

J̇T
k ΛkJk +JT

k ΛkJ̇k , (2.67a)

Ċ =∑
k

J̇T
k

(
ΨkJk +ΛkJ̇k

)
+JT

k ΛkJ̈k +JT
k

[(

Λk
˙adj0,k− ˙adj

T

0,kΛk

)

Jk +ΨkJ̇k

]

, (2.67b)

ġ =∑
k

(
J̇T

k Λk−JT
k Λk adj0,k

)
Ad−1

0,k γ0 , (2.67c)

where k = 1, ...,N.

From a computational point of view, roughly speaking, each additional differentiation of the

dynamic matrices with respect to time, requires the propagation of an additional derivative of J̇k

according to the Algorithm 1 and the knowledge of an additional time derivative of v.

2.4. Summary

In this chapter, the dynamic equations of a system of interconnected rigid bodies have been con-

sidered. The formulation of the Newton-Euler equation in terms of twists and wrenches was the

starting point to obtain a closed form expressions for the dynamic matrices. An algorithm using
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2. Dynamics

a “Newton-Euler like” outward recursion (whose computation is very efficient being the first step

of the Newton-Euler algorithm) was presented in order to compute the quantities of interest. Ad-

ditionally, the reduced model for elastically actuated robot was discussed, together with all the

assumptions leading to it. Finally, some properties of the dynamic model were introduced. It

has been shown that a coordinate transformation can produces a decoupled structure of the equa-

tions of motion of a floating base robot. The transformation is derived based on first principles of

mechanics and therefore has a clear physical interpretation.
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CHAPTER 3

The Spring Loaded Inverted Pendulum

The spring loaded inverted pendulum (SLIP) is a template model which, despite its simplicity,

has been proven to produce accurate CoM patterns and contact force profiles for different kind

of locomotions [SGGB02, GSB06]. In section 3.1.1 the biped variant of this model is presented,

which is also the one that will be considered throughout the chapter. As mentioned in chapter 1 the

underlying assumptions will be to have no underactuation at all in the system. As no flight phases

are allowed by the simplifying hypothesis, walking patterns will be considered, which motivates

the choice of considering the biped variant of the model.

The contribution of this chapter is to provide methods for mapping the simple SLIP model on

a multi-body robot, in order to obtain a walking pattern and insights on the use of elasticity in

locomotion. The goal is not to assume to have a robot designed to match the behavior of the SLIP

model [AS10, KKH10], nor to track the behavior of a passive walker [AB06], but to fully actuate

the robot in order to reproduce, via the controller, the behavior of a passive walker to obtain a

periodic gait, as sketched in Fig. 3.1. In this way, the benefits of an open loop stable limit cycle

are utilized for a robot not tailored to a specific set of periodic walking patterns, but capable of a

variety of motions. Additionally, predefined trajectory for the CoM and foot steps are replaced by

a target self stabilizing dynamics, i.e. the SLIP behavior.

Figure 3.1.: The input torques can reshape the dynamics of the robot in order to make it as close

as possible to the SLIP model.
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3. The Spring Loaded Inverted Pendulum
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Figure 3.2.: The controller is the interface between the virtual SLIP model and the real robot.
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Figure 3.3.: SLIP model in the vertical leg orientation (VLO) condition, double support phase and

single support phase.

On the other hand, due to its simplicity, the SLIP model is way far from a complete dynamic

description of the entire body motion. The effects of the swing leg are completely neglected in

this simple model, while they turn out to have a big influence on the torques of the robot. The foot

trajectory of the swing leg is considered in section 3.2, the double support phase in section 3.1.2.

3.1. Modeling

Loosely speaking, the controller proposed in the next section plays the role of an interface between

the dynamics of the SLIP model and the one of the robot, making it possible to map the behavior

of the first onto the latter, as shown in Fig. 3.2. Before describing the two levels of which the

controller consists, it is therefore interesting to consider the dynamic model of the single not

interconnected levels.

3.1.1. Dynamic model of the SLIP

As it is shown in Fig. 3.3, the SLIP model is simply given by two massless linear springs connected

to each other at the hip, where all the mass m is concentrated. Due to this assumption the swing

leg can instantaneously change its configuration when it takes off from the ground, to reach the

desired angle of attack α for the next step.

Using fL(xG) and fR(xG) to denote the spring forces acting at the CoM xG due to the left and

right leg respectively, the dynamic equation of the system can be written as:

ẍG =
1

m

(

fL(xG)+fR(xG)
)

+g0 , (3.1)

where g0 is the gravitational acceleration of the Earth. Introducing xFi
with i = {Le f t,Right} for

the foot contact point, then:

fi(xG) = k
(

l0−‖xG−xFi
‖
) xG−xFi

‖xG−xFi
‖
, i = {L,R} , (3.2)
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3.1. Modeling

where, k is the stiffness constant and l0 the rest length of the springs. In the following, the foot

contact point will be simply referred to as xF , but obviously xF = xFL
or xF = xFR

depending on

the stance phase.

Depending on the values of the parameters in the dynamic model, it is possible to obtain self

stabilizing periodic walking patterns which, as it was already mentioned, exhibit CoM trajectories

and ground reaction forces remarkably similar to human data. Extensive works can be found

in the literature which provide methods to choose such parameters in order to modify walking

speed and step length, or to increase the basin of attraction of the asymptotically stable limit

cycle [EGB09, RBS10, KW11, MSC12].

The classic approach to study the stability of the SLIP model is to consider a Poincaré sec-

tion [Kha02] and check for the eigenvalues of the monodromy matrix. A particularly convenient

section is the one corresponding to the condition of vertical leg orientation (VLO) [RBS10], see

Fig. 3.3. In this case, the conservative nature of the SLIP model allows to reduce by one the di-

mension of the state space. It is sufficient to use the CoM height yp, its position along the forward

direction and the angle of the CoM velocity respect to the floor θp as coordinates, since the mag-

nitude of the velocity can be derived from the value of the constant total energy of the system (the

massless legs will not dissipate any energy at the impacts). Additionally, as the position along

the forward direction has no influence on the periodic behavior of the system, it will be neglected

in the analysis of the limit cycle. Therefore, the Poincaré section has dimension two instead of

dimension four of the original system.

3.1.2. Dynamic model of the multi-body robot

The dynamic model of the five revolute joints planar robot considered here can be obtained as in

chapter 2. The following simplifications will be considered:

Assumption 3.1. The stance foot is rigidly connected to the floor, until it is commanded to leave

the ground.

Assumption 3.2. The feet are massless.

Assumption 3.3. The impact of the foot with the floor is inelastic.

Due to the first assumption, the model of the robot is the one of a classic robotic manipulator

with a branched structure. It can be derived either from the free floating model (2.16) upon intro-

duction of the stance foot constraint, or using directly a minimal set of coordinates, i.e. the joint

angles represented in Fig. 3.4. The first method is completely analogous to what will be done in

section 3.2 in order to derived the model for the double support phase. For convenience, the model

is repeated here:

M(q)q̈+C(q, q̇)q̇+g(q) = τ , (3.3)

where in this case q,g(q),τ ∈ R5 and M(q),C(q, q̇) ∈ R5×5.

Due to the possibility of having either a single or double support phase, the model is complete

when also the transitions between these two are considered. These transitions are caused by the

two events touch down and take off of the legs, as shown in Fig. 3.5. Moreover, because of the

impact, an energy loss will occur at the touch down instants. This can be modeled considering

that, at these instants, also an impulsive force is acting on the system and that it will produce an

instantaneous change of the velocity (but not of the position) [MW06]. This means that the system

will exhibit a variation of the generalized momentum in the joint space that can be expressed as:

∆(M(q)q̇) =M(q)∆q̇ = JT
c (q)λ , (3.4)
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3. The Spring Loaded Inverted Pendulum

q1

q2

q3

q4

q5

β

Figure 3.4.: Multi-body robot and joint angles.

where Jc(q) ∈ R2×5 is the Jacobian matrix that maps the joint velocities into the velocity along

the constrained directions, while λ ∈ R2 is the reaction along the same directions. If the impact is

modeled as an inelastic impact, then the following relation must be considered:

Jc(q)q̇
+ = 0 ⇐⇒ Jc(q)∆q̇ =−Jc(q)q̇

− , (3.5)

where the superscripts − and + are used to express the quantities before and after the impact,

respectively. Solving the system of equations (3.4) and (3.5) leads to:

λ=−
(

JcM
−1JT

c

)−1

Jcq̇
− (3.6)

q̇+ =
(

E5−J+M
c Jc

)

q̇− , (3.7)

where E5 ∈R5×5 is the identity matrix and J+M
c =M−1JT

c

(

JcM
−1JT

c

)−1

. In (3.7), it is possi-

ble to recognize a nullspace projection matrix [SSVO08], which projects the joint velocities before

the impact into the null space of the Jacobian matrix Jc. Therefore, an impact modeled in this way

can be interpreted saying that only the component of q̇ that is causing zero velocity at the contact

point is kept after the impact. The energy loss is given by:

2∆H = q̇+
T

Mq̇+− q̇−
T

Mq̇−

= q̇−
T
[(

E−J+M
c Jc

)T

M
(

E−J+M
c Jc

)

−M
]

q̇−

=−q̇−
T

JT
c

(

JcM
−1JT

c

)−1

Jcq̇
− ,

(3.8)

where Jc(q)q̇
− is the velocity of the impact point right before the impact, in other words the

pseudo kinetic energy related to the impact point is the energy that will be lost in the impact.

The touch down event initiates the double support phase. Assuming to have no sliding between

the feet and the rigid floor, an additional constraint must be added to the model in this phase (just

like has been previously done for modeling the impact):

Jc(q)q̇ = 0 , (3.9)

which can also be expressed as:

JHL
(qL)q̇L = JHR

(qR)q̇R , (3.10)
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Single
Support

Double
Support

Take off

Touch down

Figure 3.5.: Automaton describing the evolution of the discrete part of the system.

where JHi
(qi), i = {L,R} gives the velocity of the hip with respect to the correspondent foot and

qi, i = {L,R} are the joint variables of the correspondent leg. Assuming that at least one of the

two Jacobian matrices is nonsingular1 , then:

q̇i = J−1
Hi

(

qi

)

JH j

(

q j

)

q̇ j, (3.11)

and is possible to write q̇ =Ψ(q)q̇a, being:

q̇ =





q̇i

q̇ j

q̇5



 Ψ(q) =





J−1
Hi

JH j
0

E 0

0 1



 q̇a =

[
q̇ j

q̇5

]

, (3.12)

where q5 is the joint angle of the trunk not affected by the change between single and double

support. A relationship for the joint acceleration can be obtained differentiating (3.12) with respect

to time. Substituting q̇ and q̈ in (3.3), and pre-multiply by Ψ
T (q), the model of the robot during

the double support phase is obtained:

Ma(q)q̈a +Ca(q, q̇)q̇a +ga(q) = τa , (3.13)

where Ma =Ψ
TMΨ, Ca =Ψ

T
(

CΨ+MΨ̇

)

, ga =Ψ
Tg and τa =Ψ

Tτ .

The flow maps, which describe the continuous dynamics of the system with a set of ordinary

differential equations together with the set of discrete states and their transition constitute the

complete model description of this switching system [Lib03].

3.2. Swing leg treatment

The presence of the swing leg is the element that clearly mostly differs between the SLIP model

and the considered planar robot. While the SLIP model defines the CoM trajectory and the target

angle of attack for the next step, it is still necessary to define a trajectory for the swing leg, since

this information is completely missing in the SLIP model. In order to be as close as possible

to the virtual system that the robot is trying to reproduce, a good choice could be to just plan

the relative position of the swing foot with respect to the CoM, ensuring that the foot will have

reached the desired relative position (defined by the desired angle of attack) before the touch down

event. Furthermore, the angle β (xG) related to the line from the stance foot to the CoM, shown

in Fig. 3.4, is used as a parameter for the trajectory. This is a standard choice for biped robots

1If both are singular the system is in a complete rest.
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3. The Spring Loaded Inverted Pendulum

Figure 3.6.: Consecutive steps of the robot. The red and blue lines are respectively the CoM and

swing foot trajectory.

based on hybrid zero dynamics as it guarantees a coordination between the forward movement of

the robot and the position of the swing leg [WGC+07]. Then the desired foot position is given by

xFd
= xG +Π(β (xG)) , (3.14)

where Π(β (xG)) is the interpolating function describing the shape of the foot trajectory relative to

the CoM. Since it is also necessary to ensure the continuity of the desired trajectory, a cubic spline

with desired initial and final values and two “virtual instants” is used [SSVO08]. The desired foot

position cannot be used as a desired value for a conventional trajectory tracking controller since

it depends on the current state. Instead, we formulate a virtual constraint [WGC+07] by defining

the error term

ξ = xF −xG−Π(β (xG)) , (3.15)

which should be kept equal to ξd = 0 by the controller. The angle β , instead of the time, is used

to parameterize the offset of the swing foot with respect to the CoM. As a result the swing foot

position is dependent on the CoM and no information about the time necessary to complete one

step is needed. Notice that, except for the swing leg, the planning in the control design process

has been replaced requiring a desired dynamic behavior rather than desired trajectories. Knowing

the actual position and velocity of the CoM of the robot, the expected acceleration is the one that

a SLIP model would have had in that state.

Figure 3.6 shows overlapped configurations of the robot during the path. The red line represent

the CoM trajectory, while the blue line the swing foot trajectory.

3.3. Control

The control action is acting both on the virtual SLIP model and the actual robot. In the following,

they will be referred to as upper level control and lower level control respectively. The upper level

control modifies the dynamics of the original SLIP model. The result of this action is to provide a

target dynamics for the lower level control. The latter represents the real control action, as it will

determine the torques that the motors need to provide in order to actuate the robot.

3.3.1. Upper Level: Total energy control

While the SLIP template is a conservative system, the multi-body robot will have energy losses

at the impacts, as computed in (3.8). The upper level control is responsible to cope with this

difference. The energy control law acts based on the state of the SLIP model and is not only
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3.3. Control

injecting energy in the system when the total level decreases, but it also dissipates energy when

the level increases. This is different from what was done in [HRHS10], where an energy correction

law is not continuously acting (based on the error between the desired level and the measured one),

but intervening before the impact based on a precomputed value of the energy loss.

The starting point is to consider the expression of the power:

Ḣ = ẋT
G

(

mẍG−fL−fR−mg0

)

. (3.16)

Since the power is the derivative of the energy and the desired value of the energy is constant, the

problem of regulating the energy to the desired value can be solved via an energy controller that

ensures:

Ḣ =−KH

(

H−Hd

)

, (3.17)

where KH is a positive gain and Hd is the desired constant total energy. This is possible if the

resulting acceleration on the CoM is the one of a pure SLIP model plus an additional term with

the following expression:

∆g =−
1

m

ẋG

‖ẋG‖
2

KH

(

H−Hd

)

. (3.18)

Because of this additional term, the SLIP model can be imagined as walking under the effect of a

virtual state dependent gravity field. The term ∆g is always in the direction of the CoM velocity,

increasing or decreasing the kinetic energy in order to keep the total energy to the desired value.

Equation (3.1) thus is modified to

ẍG =
1

m

(

fL(xG)+fR(xG)
)

+gv , (3.19)

with gv = g0 +∆g.

3.3.2. Lower level: Multi-Body Control

In the following two different approaches will be presented in order to make the robot behave

as close as possible to the simple virtual model (3.19). The first approach is based on an exact

feedback linearization of the robot dynamics and can be seen as an extension of the control law

presented in [HRHS10] from an hopper to a bipedal SLIP for walking. The second approach,

presented in section 3.3.2, aims at a simpler control law which requires less information about the

system.

Feedback linearization

The SLIP model can be mapped on the real robot dynamics at an acceleration level. The idea is

to ensure that the acceleration of the CoM of the real robot is the same as in the SLIP model. The

control law can be derived following the same steps needed to derive the classic impedance control

law with feedback linearization.

Three main tasks can be identified:

• CoM acceleration ẍG

• virtual constraint for the swing foot trajectory ξ

• trunk orientation θT = q1 +q2 +q5.
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3. The Spring Loaded Inverted Pendulum

The corresponding velocities can be computed from

ẋt = Jt(q)q̇ , (3.20)

where ẋt =
[
ẋT

G ξ̇T θ̇T
T

]T
is the velocity in the task space and Jt(q) =

[

JT
G JT

ξ JT
θ

]T

the

corresponding Jacobian matrix. Considering the time derivative of (3.20) and substituting q̈ from

(3.3), one gets:

ẍt = JtM
−1
(

τ −Cq̇−g
)

+ J̇t q̇ . (3.21)

At this point with the following choice of the torques2:

τ =MJ−1
t

(

ẍtd − J̇t q̇
)

+Cq̇+g , (3.22)

it is guaranteed that ẍt = ẍtd . Finally, choosing

ẍtd :=






1
m

(

fL(xG)+fR(xG)
)

+gv

−Kξξ−Dξ ξ̇

θ̈Td
−KT θ̃T −DT

˙̃θT




 , (3.23)

where KT ,DT > 0, Kξ ,Dξ ∈ R2×2 are positive definite matrices and θ̃T = θT −θTd
, ensures that

ẍG corresponds exactly to (3.19) and that ξ→ 0, θT → θTd
as t→ ∞.

Multi-priority control law

Since three different types of tasks are considered, one can separate them and use simpler control

laws to fulfill a single task. The required torques can be added using a null space projector. A

higher priority will be assigned to the CoM task, since the main goal is to reproduce a SLIP like

motion. A further simplification for this task is to just produce the forces of virtual springs attached

to the CoM. Once it has been understood from the SLIP model that the presence of compliant

elements is useful, it is convenient to design simpler control laws than the feedback linearization

while the self-stabilizing behavior will be augmented by the upper level SLIP stabilization. In

other words, the goal for this task is to map the virtual spring forces in joint torques accordingly

to the transpose of the Jacobian matrix that relates the joint velocity to the CoM velocity (without

compensation of the nonlinear terms):

τG = JT
G

(

fL(xG)+fR(xG)+m∆g
)

, (3.24)

where obviously also the extra component of the virtual gravity field must be taken into account.

Assuming, without loss of generality, that θ̇Td
= 0, for the other tasks simple PD control laws

with gravity compensation can be used:

τPD =
[

JT
ξ JT

θ

][ −Kξξ−Dξ ξ̇+gξ

−KT θ̃T −DT θ̇T +gθ

]

, (3.25)

where gξ and gθ are the projections of the gravity torques in the corresponding space.

This control law is known to be asymptotically stable and less sensitive to model uncertainties

than feedback linearization [PP88]. At this point adding the resulting torques will cause the two

2In the following it will be assumed to be far enough from the singular configurations. Further on in the section,

additional torques will be introduced in order to cope with this problem.
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tasks to interfere with each other. To avoid this, the torques computed for the second task will be

projected in the null space of the transpose of the Jacobian matrix of the higher priority task. This

means that the torques produced to fulfill the second task will produce no force on the CoM which

will mainly move under the effect of the gravity field and the virtual springs. Obviously this also

means that the second priority task will be fulfilled as long as it is not interfering with the other

one.

Before concluding this section it is worth to mention that also torques that push the robot away

from the singularity should always be considered. The classic approach is to consider the kine-

matic manipulability measure [Yos90]:

mkini
(q) =

√

det(JHi
JT

Hi
) i = {L,R} (3.26)

and then choosing a singularity avoidance potential. In addition it is possible to consider a damp-

ing term also for this task. The idea is that, considering a quadratic form for the singularity

avoidance potential, the corresponding torque will be similar to a spring like term where the trans-

pose of Jkin(q) =
∂mkin(q)

∂q is responsible for projecting the force from one space to the other. The

singularity avoidance torques are:

τSAi
=

{

−JT
kini

(

KSAm̃kini
+DSAJkini

q̇
)

mkini
6 m0

0 mkini
> m0

, (3.27)

where m̃kini
= mkini

−m0 and m0 is a threshold which indicates that the robot is close enough to

the singular configuration to activate the corresponding torques.

The final expression of the torques is then:

τ = τSAL
+τSAR

+τG +
(

E−JT
GJ

+MT
G

)

τPD . (3.28)

Double support and redistribution of torques

As seen in 3.1.2 the expression of the dynamic model during the double support is formally equal

to the one obtained for the single support. This means that the control laws computed before can

be directly applied also in this case provided to consider the matrices of the new dynamic model

instead of the old ones and to remove the swing foot coordinates from the task space. In this way,

it is possible to compute the torques τa in (3.13) and not all the torques τ . To obtain the latter the

relation τa =Ψ
Tτ between the torques is taken into account, from which:

τ =Ψ
+W Tτa +

(

E−Ψ
+W T

Ψ
T
)

τd

Ψ
+W T =W−1

Ψ

(

Ψ
TW−1

Ψ

)−1

,

where W is a positive definite matrix, which induces a weighted norm for the torques. It is useful

to penalize a big value of some torques (e.g. ankle torque) more than the others. In addition, the

associated null space projector is used to keep the torques as close as possible to some desired

value.

3.4. Simulations and stability analysis

In the following simulation study, the cyclic behavior of the SLIP model is compared with the

one of the multi-body robot using the two proposed controllers. The parameters of the SLIP are
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3. The Spring Loaded Inverted Pendulum

Table 3.1.: SLIP model parameters.

mass m = 80kg

angle of attack α = 1.2rad

rest length l0 = 1m

stiffness k = 15696N/m

total energy H = 824J

Table 3.2.: Multy-body robot parameters.

shank thigh trunk

mass 5kg 5kg 60kg

inertia 0.01kg m2 0.01kg m2 1kg m2

length 0.48m 0.48m 0.48m

adopted from the simulation results in [RBS10] and are shown in Table 3.1. The parameters of

the multi-body dynamics are shown in Table 3.2. The CoM of each segment was set to the center

of the segment. Moreover a closed loop inverse kinematic (CLIK) algorithm [SSVO08] is used

in order to ensure that both system will start with the same initial conditions and in the same

configuration (VLO configuration).

The simulation environment is implemented in MATLAB/Simulink R© using a sampling time of

0.1ms. Figure 3.7 shows the vertical motion of the CoM for the SLIP model and the controlled

multi-body system with the controllers from section 3.3.2. Even the feedback linearization based

controller deviates from the trajectories of the SLIP model due to the energy loss at each impact.

One can see that the deviation of the simpler control law is larger, but it still results in a quasi-

periodic walking motion.

The vertical ground reaction force for the SLIP model and the forces due to the virtual springs

for the two controllers are shown in Fig. 3.8 - 3.10, with higher variations in the force for the

multi-body model.

The effect of the energy control approach (3.18) is presented in Fig. 3.11 with the feedback

linearization based controller and different values of the controller gain KH . One can see that

without the energy controller (i.e. for KH = 0) the multi-body system instantaneously loses energy
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Figure 3.7.: Vertical motion of the CoM for the two multi-body controllers compared with the

SLIP dynamics.
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Figure 3.8.: Vertical ground reaction force of the SLIP model.
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Figure 3.9.: Virtual springs forces of the multi-body system with the feedback linearization based

controller.
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Figure 3.10.: Virtual springs forces of the multi-body system with the simplified control law.
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3. The Spring Loaded Inverted Pendulum
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Figure 3.11.: Energy control in the multi-body model using the feedback linearization based con-

troller.
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Figure 3.12.: Energy control in the multi-body model using the simplified controller.

at each step due to the impact. The red dash-dotted line and the green dashed line show the

total energy for two different controller gains. This evaluation verifies that the proposed energy

control method efficiently compensates for the energy loss and the energy is recovered according

to the time constant in (3.17). Figure 3.12 shows the results with the simpler control law from

section 3.3.2. Even if there is a larger variation in the total energy due to the uncompensated

nonlinear terms in the closed loop dynamics, also for this controller the energy loss at the impact

is compensated.

As the goal is to reproduce the SLIP behavior, also the stability analysis will be conducted

as it is usually done for the latter. In other words, the Poincaré map corresponding to the VLO

configuration will be considered for both systems. To be precise, it should be mentioned that a

more formally correct way to analyze the system is to consider a three-dimensional Poincaré map.

For the multi-body robot, in fact, the total energy is not exactly constant, but only controlled to

be constant. Therefore, it should be considered as the third coordinate on the Poincaré section.

Nevertheless, if the total energy control is fast enough to ensure that the total energy does not

deviate far from its desired value the approximation of considering a constant energy level is

reasonable. The behavior of the two controllers on the Poincaré section is shown in Fig. 3.13 and

Fig. 3.14. One can see that both controllers converge to a fixed point, which however is different

from the original fixed point of the SLIP model, represented with a red circle in the figures.
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Figure 3.13.: Poincaré section of the multi-body model with the feedback linearization based con-

troller. The red circle is the fixed point for the original SLIP model.
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3. The Spring Loaded Inverted Pendulum

3.5. Summary

In this chapter, the bipedal SLIP model was utilized as a template for the control of a multi-

body robot. The controller acts on two levels. In order to compensate for the energy loss that is

inherent to the impacts at the foot touch down, an energy control algorithm for the SLIP model was

proposed. In contrast to previous solutions in the literature, this controller is based on a continuous

regulation of the energy and does not need any prediction of the energy loss. The controlled SLIP

dynamics is then used as a desired dynamics for a lower level controller designed for the multi-

body robot. Two solutions of different complexity were proposed and compared. A multi-body

robot controller based on feedback linearization results in a very close emulation of the SLIP

behavior. Moreover, a simpler control approach was discussed, which avoids the computational

burden and parameter sensitivity problems of the feedback linearization based controller. The

proposed controllers were shown in simulations to produce an asymptotically stable limit cycle

behavior similar to the SLIP dynamics. Due to the energy loss at the foot touch down and the

nonlinearities in the dynamics, the fixed point on the Poincaré section, however, differs from the

original fixed point of the SLIP model. Assumptions were made in order to simplify the problem,

for example to avoid considering the zero moment point (ZMP) restrictions. Further on in the

thesis, these assumptions will be removed.
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CHAPTER 4

Energy regulation for rigidly actuated robots

In this chapter the hypothesis of removing the underactuation due to both the contact and the

elastic joints is still holding. As a result, the robot prototype to consider is that of a standard robot

manipulator with dynamic equation

M(q)q̈+C(q, q̇)q̇+g(q) = τ . (4.1)

The contribution of this chapter is the design of a control law for orbital stabilization of rigidly

actuated manipulators. The design concept of the controller is sketched in Fig. 4.1 and it is shared

with its elastic counterpart presented in chapter 5. It has the controller from section 3.3.1 as

a “predecessor” and it is based on the idea of forcing the system to reach a subset of the state

space and then producing a limit cycle by regulating an energy function to a desired value. In

some sense, the content of this chapter represents a first step towards the design of a controller

which can produce a limit cycle taking directly into account the energy stored by the springs of an

elastically actuated robot.

For repetitive tasks, it is usually more important to stay on a prescribed orbit in the state space,

rather than following the exact position in time along the desired curve. For these applications,

tracking a trajectory might not be the best solution and orbital stabilization might be instead con-

sidered. The problem of orbital stabilization for rigid joint robots has been addressed, for example,

A

Ldχ∗

χ0

constant energy set

state space

Figure 4.1.: Conceptual illustration of the idea behind the energy based controllers.
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4. Energy regulation for rigidly actuated robots

in [DS03, DS04, TF09, CEU02]. In [CEU02] the concepts of virtual constraint and feedback lin-

earization are used to obtain a closed loop system that generates its own periodic stable motion,

while in [DS03, DS04] a passive control action is designed which allows to decouple the mo-

tion along a vector field from the remaining one. The system is then forced to follow an integral

curve of this vector field via a passive control law. In case of a closed integral field, the system

thus converges to a closed orbit in the configuration space. In [TF09], additionally, a non-passive

control action was proposed to achieve regulation of the final velocity along the vector field. Com-

pared to [DS03, DS04, TF09], in the proposed approach the limit cycle is defined by a virtual

energy function and the problem is formulated based on the nullspace decomposition introduced

in [PCY99] and used for nullspace compliance control in [Ott08,OKN08]. The power-conserving

nullspace decoupling from [OKN08] generalizes the nominal control law in [DS03, DS04]. The

two can be shown to be equivalent in case of a 1 - dimensional nullspace, however, the ap-

proach from [OKN08] can also be applied in case of a higher-dimensional nullspace. Compared

to [CEU02] the passivity property of the system is used to avoid altering the original dynamics

of the system through feedback linearization. Moreover, the design is split in the generation of

the limit cycle and satisfaction of the virtual constraints. These, in turn, are responsible for the

subspace in which the system will oscillate.

The stability analysis of the limit cycle relies on semidefinite Lyapunov functions, which can be

found in appendix A. Using the conditional stability, the limit cycle can be designed for a lower

dimensional dynamical system describing how the original one evolves on a chosen submanifold

and the corresponding velocity space. Even if designed assuming a lower dimensional system, the

limit cycle is an asymptotically stable solution for the whole system.

4.1. Motivating example

The main idea behind the control laws based on the regulation of an energy function that are

proposed in this work can be easily exemplified considering a simple mass-spring system, whose

dynamic equation is given by

mq̈+ kq = u , (4.2)

with mass m > 0, stiffness constant k > 0, state χ= (q, q̇) and input u. Choosing u = 0, the system

has an equilibrium point in χ∗ = (0,0). This type of equilibrium point is called center [Kha02],

since for each initial condition χ0 = (q0, q̇0) the resulting trajectory will be a closed orbit around

the equilibrium point, that is the level set L0 of the Hamiltonian H(χ) = 1
2

(
mq̇2 + kq2

)
, defined

as L0 = {χ | H(χ) = H(χ0)}.

The difference between these closed orbits and limit cycles is that they are not isolated. Forcing

the system to reach always a desired value of the Hamiltonian, will result in the presence of a limit

cycle. This is possible by choosing u =−KH q̇H̃(χ), obtaining the closed loop system

mq̈+KH q̇H̃(χ)+ kq = 0 , (4.3)

where KH > 0, H̃(χ) = H(χ)−Hd and Hd > 0 is the desired value of the Hamiltonian.

Proof. Firstly, the invariance of the set Ld = {χ | H(χ) = Hd} is shown. To this end, the deriva-

tive of H̃(χ) along the flow of the system is computed, resulting in ˙̃H(χ) = −KH q̇2H̃(χ), which

proves that H̃ will not change when starting from Ld . As second step, the stability of Ld is

shown considering the Lyapunov function V (χ) = 1
2
H̃2(χ), with derivative V̇ (χ) = H̃(χ) ˙̃H(χ) =

−KH q̇2H̃2(χ)≤ 0. For the asymptotic stability, LaSalle’s invariance theorem [Kha02] is applied,
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4.2. Coordinate transformation

which allows to conclude that the positive limit set Ł+ is given by the largest positive invariant set

M within the set E = {χ | q̇ = 0 or H(χ) = Hd}, i.e. the set where V̇ (χ) = 0. Beside Ld , also

χ∗ is an invariant set contained in M. Invoking Chetaev instability theorem [Kha02] using the

function H(χ) and considering a neighborhood of the equilibrium point in which 0 < H < Hd, it

can be concluded that χ∗ is an unstable equilibrium point. Therefore every solution, except for

the trivial one χ(t) = χ∗, ∀t ≥ 0, approaches Ld as t→ ∞.

For multibody systems, ensuring that the Hamiltonian H(χ)→ Hd is not enough to conclude

the existence of a limit cycle. The difference is that for a 1 - DoF system the set Ld is an isolated

closed1 orbit in the state space (corresponding to a limit cycle), which is not true for a n - DoF

system. For this reason, in the following the system will be forced to evolve on a 1 - dimensional

submanifold of the configuration space.

4.2. Coordinate transformation

Since the goal is to force the system to evolve on a submanifold of the configuaration space, a

function y = y(q) is used to describe the submanifold. In fact, assuming that the Jacobian matrix

J(q) ∈ R(n−1)×n of the mapping y : Rn → Rn−1 is a full rank matrix, then y(q) = 0 defines a

1 - dimensional submanifold of the configuration space [Fra04]. Accordingly, the dynamics of

the system can be written with a new set of coordinates, as in [PCY99, Ott08, OKN08]. First a

nullspace base matrix2 Z(q) ∈ R1×n is computed, allowing to obtain the directions orthogonal

to the submanifold, then Z(q) is used to compute a dynamically consistent3 nullspace projector

N(q) ∈ R1×n, which will be part of the extended Jacobian matrix JN(q) ∈Rn×n, such that

[
ẏ

v

]

= JN(q)q̇ =

[
J(q)
N(q)

]

q̇ , (4.4)

where N(q) =
(

Z(q)M(q)ZT (q)
)−1

Z(q)M(q) and v is an additional nullspace velocity. With

this choice, the extended Jacobian matrix JN(q) is non singular and the inverse is given by

J−1
N (q) =

[
J+M(q) ZT (q)

]
, (4.5)

where J+M(q) denotes the dynamically consistent weighted pseudo inverse defined as

J+M(q) =M−1(q)JT (q)
(

J(q)M−1(q)JT (q)
)−1

. (4.6)

The joint velocity can thus be computed from the Cartesian velocity and the nullspace velocity via

q̇ = J+M(q)ẏ+ZT (q)v . (4.7)

From (4.4) and (4.7) it is straightforward to rewrite (4.1) in the extended velocity coordinates as

Λ(q)

[
ÿ

v̇

]

+Γ(q, q̇)

[
ẏ

v

]

= J−T
N (q)

(

τ −g(q)
)

, (4.8)

1It is the level set of a positive definite and radially unbounded function.
2I.e. it fulfills the condition J(q)ZT (q) = 0.
3I.e. it fulfills the condition J(q)M−1(q)NT (q) = 0.
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4. Energy regulation for rigidly actuated robots

where the matrix Λ(q) is block diagonal, due to the use of a dynamically consistent nullspace

projector matrix, whose expression is

Λ(q) =

[
Λy(q) 0

0 Λn(q)

]

Λy(q) =
(

J(q)M−1(q)JT (q)
)−1

Λn(q) =Z(q)M(q)ZT (q)

while for Γ(q, q̇) (omitting the dependencies)

Γ(q, q̇) =

[
Γy(q, q̇) Γyn(q, q̇)
Γny(q, q̇) Γn(q, q̇)

]

Γy =Λy

(

JM−1C− J̇
)

J+M Γyn =Λy

(

JM−1C− J̇
)

ZT

Γny =−Γ
T
yn Γn = Λn

(

NM−1C− Ṅ
)

ZT .

The control input τ can be split accordingly in the components τy and τn along the two spaces

τ = JT
N (q)

[
τy

τn

]

= JT (q)τy +NT (q)τn , (4.9)

so that (omitting the dependencies) the system can be written in the form

q̇ = J+M ẏ+ZT v (4.10)

ÿ =Λ
−1
y

(
−Γyẏ−Γynv−J+MTg+τy

)
(4.11)

v̇ = Λ−1
n

(
Γ

T
ynẏ−Γnv−Zg+ τn

)
(4.12)

4.3. Control law

Loosely speaking, the control input τ will be chosen such that n−1 constraints are satisfied and,

at the same time, a limit cycle for the “remaining dynamics” is generated, i.e. designing the input

τy to keep the system on the submanifold and the corresponding velocity space and the input τn to

produce the oscillation on the submanifold itself. In addition, a power conserving term is included

to shift energy from the constraint space into the nullspace. The idea of having such an energy

shifting term is used also in the Port - Hamiltonian framework between subsystems [Str15].

4.3.1. Design

Since no elastic elements are present in the case under consideration a virtual potential U(q) is

introduced through the controller, which will clearly have an influence on the shape of the limit

cycle, as shown in section 4.4. The desired value Hd also influences the shape of the limit cycle.

As a rule of thumb, one can consider that when the regulation goal is achieved and the kinetic

energy is zero, the desired energy is equal to the virtual potential energy and therefore it directly

influences the maximum amplitude of the oscillations.

For a given desired configuration qd ∈ Rn, such that y(qd) = 0, let U(q) be a positive definite

C1 function on the 1 - dimensional submanifold defined by y(q) = 0 and having its minimum at

qd . In other words, qd , U(q) and y(q) are chosen such that U(q) has a unique constrained local

minimum at qd , i.e.

• y(qd) = 0
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4.3. Control law

• U(q)≥ 0, ∀q : y(q) = 0

• U(q) = 0⇐⇒ q = qd , ∀q : y(q) = 0.

Consequently, the configuration qd can be obtained as

qd = arg min
q

U(q)

s.t. y(q) = 0 .
(4.13)

The necessary condition for optimality of the minimization problem, obtained using the Lagrange

multipliers λ, is

∇qU(q)+JT (q)λ = 0 , (4.14)

so that pre-multiplying by the nullspace base matrix Z(q), the condition

n(q) := Z(q)∇qU(q) = 0 (4.15)

is obtained, where n(q) can be seen as a local nullspace coordinate [Bai85]. Concluding, qd is the

unique configuration with coordinates y(qd) = 0, n(qd) = 0.

At this point, similarly to section 4.1 where 1
2
kq2 had the role of U(q), the “energy - like”

function

H(χ) =
1

2
q̇TM(q)q̇+U(q) , (4.16)

is defined, which consists of the physical kinetic energy and the virtual potential energy. Defining

H̃ = H−Hd, the goal is to regulate H to the desired value Hd , i.e. H̃ → 0 as t→ ∞. Before that,

the system has to be forced to evolve on the submanifold. This can be achieved by choosing

τy = J+MTg+Γynv−Dyẏ−Kyy , (4.17)

since an opportune choice of Ky,Dy guarantees that the closed loop dynamics

Λyÿ+
(

Γy +Dy

)

ẏ+Kyy = 0 (4.18)

converges and stays on the submanifold. Computing the derivative of H(χ) along the flow of the

system, when it is evolving on the submanifold, leads to

Ḣ = v
(

−Z(q)g(q)+ τn +Z(q)∇qU(q)
)

. (4.19)

This motivates the choice τn = Zg−KHH̃v−Z∇qU in order to achieve a similar dynamics for

the energy as in section 4.1.

A precise formulation of the controller and its stability analysis is provided in the next section.

4.3.2. Stability analysis

Given the system (4.1) with input torque τ , let KH ,Kα ∈ R be positive scalars and Ky,Dy ∈
R(n−1)×(n−1) two symmetric and positive definite matrices, then the proposed nonlinear static state

feedback controller (omitting the dependencies)

τ = g+JT
N

([
−Dy Γyn−Kα ẏv

−ΓT
yn +KαvẏT −KHH̃

][
ẏ

v

]

−

[
Kyy

Z∇qU

])

, (4.20)

57



4. Energy regulation for rigidly actuated robots

leads to the closed loop system:

q̇ = J+M ẏ+ZT v (4.21a)

Λyÿ+
(

Γy +Dy +Kαv2E
)

ẏ+Kyy = 0 (4.21b)

Λnv̇+
(

Γn +KHH̃−Kα ẏ
T ẏ
)

v+Z∇qU = 0 (4.21c)

with state vector χ= (q, ẏ,v) and where E ∈ R(n−1)×(n−1) is the identity matrix.

Theorem 4.1 (Rigid case). The nonlinear autonomous system (4.21), depending on Hd, has an

asymptotically stable solution consisting of

(a) the equilibrium point χ∗ = (qd ,0,0), for Hd = 0

(b) the limit cycle defined by Ld =
{
χ | y(q) = ẏ = 0, H̃(χ) = 0

}
, for Hd > 0.

Proof. The proof is based on the theorems and lemmas collected in appendix A.

Consider the C1 function of the state

Vy(χ) =
1

2

(
ẏT

Λy(q)ẏ+yT (q)Kyy(q)
)

, (4.22)

such that

{

Vy(χ) = 0 ∀χ ∈A

Vy(χ)> 0 ∀χ /∈A ,

where A = {χ | y(q) = ẏ = 0}. Since Ld ⊂ A , Vy(χ) is a candidate semidefinite Lyapunov

function to prove the stability of Ld for the system (4.21). Computing its derivative along the flow

of the system, leads to V̇y(χ) = −ẏ
T
(

Dy +Kαv2E
)

ẏ ≤ 0. The set A is the largest positively

invariant set within Ey = {χ | ẏ = 0}, i.e. the set where V̇y(χ) = 0. In fact, from (4.21b) it is clear

that if y(q) 6= 0 then the system leaves Ey.

If Ld can be proven to be asymptotically stable conditionally to A , then all the requirements of

Theorem A.3 are satisfied and Ld will turn out to be asymptotically stable for the whole system

(4.21). The set Ld is invariant for (4.21), since it is conditionally invariant to A , which is itself

an invariant set. To verify that, consider the system

q̇ =ZT v (4.23a)

Λnv̇+
(

Γn +KHH̃
)

v+Z∇qU = 0 , (4.23b)

with y(q) = ẏ = 0, i.e. (4.21) conditionally to A . Remembering that n(qd) = 0, the invariance

is clear for χ∗, while for Ld the derivative of H̃(χ) along the flow of the system needs to be

computed. The latter results in ˙̃H(χ) = −KHv2H̃(χ) and proves that H̃ will not change when

starting from Ld . As in Section 4.1, the Lyapunov function Vn(χ) =
1
2
H̃2(χ), with derivative

V̇n(χ) = H̃(χ) ˙̃H(χ) =−KHv2H̃2(χ)≤ 0, shows the stability of Ld for (4.23). For the asymptotic

stability, LaSalle’s invariance theorem allows to conclude that the positive limit set Ł+
n is given

by the largest positive invariant set Mn within the set En = {χ | v = 0 or H(χ) = Hd}, i.e. the

set where V̇n(χ) = 0. Beside Ld , also χ∗ is an invariant set contained in Mn, but, given the

choice made for U(q), H(χ) is positive definite conditionally to A . Therefore, in case Hd = 0,

it can be easily verified that Ld coincides with χ∗, which becomes the only positive limit set and
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4.3. Control law

therefore result (a) is obtained. On the other hand, when Hd > 0, invoking Chetaev instability

theorem [Kha02] using the function H(χ) and considering a neighborhood of the equilibrium

point in which 0<H <Hd, it can be concluded that χ∗ is an unstable equilibrium point. Therefore

every solution, except for the trivial one χ(t) = χ∗, ∀t ≥ 0, approaches Ld as t→ ∞. The set Ld

is uniquely determined by one parameter, e.g. the value of n(q), and therefore it is a closed4 orbit

in the state space, i.e. a limit cycle, proving result (b).

Namely, decreasing the value of Hd, the asymptotically stable limit cycle collapses on the un-

stable equilibrium point, originating an asymptotically stable equilibrium point.

4.3.3. Controller discussion

The torque generated by the controller can be rewritten as

τ = g+JT
N

(

FΓ +Fα

)

+JTFy +NT
(

FU +FH

)

, (4.24)

where

FΓ =

[
0 Γyn

−ΓT
yn 0

][
ẏ

v

]

Fα =

[
0 −Kα ẏv

KαvẏT 0

][
ẏ

v

]

(4.25)

Fy =−Dyẏ−Kyy (4.26)

FU =Z∇qU FH =−KHH̃v . (4.27)

As shown in Fig. 4.2, three contribution can be distinguished: a dynamic reshaping of the system,

the torque responsible for forcing the system to evolve on a 1 - dimensional submanifold of the

configuration space and finally the one creating the asymptotically stable limit cycle. The last

two are dynamically decoupled between them, while the dynamic reshaping part of the controller

compensates for the gravity torque and the coupling terms in the Coriolis matrix and shifts energy

from the constraint space to the nullspace. It is worth to notice that the entry −ΓT
yn+KαvẏT is not

necessary for the stability analysis, since it has no influence when the system has reached the set

A . Nevertheless, in this way, a power conserving term5 is obtained, i.e. q̇TJT
N

(

FΓ +Fα

)

= 0.

Although FΓ compensates for the coupling terms in the Coriolis matrix, it does not decouple the

dynamics in the two spaces. The remaining blocks of the Coriolis matrix are, in fact, still function

of the whole state. Finally, through Kα the rate at which the energy Kαv2ẏT ẏ flows from the

constraint space to the nullspace can be controlled.

The problem of forcing the system to evolve along the constraint submanifold and the corre-

sponding velocity space can be reformulated as

M(q)q̈+C(q, q̇)q̇+g(q) = JT (q)τy +NT (q)τn (4.28)

s.t. Λy(q)ÿ+Γy(q, q̇)ẏ+Dyẏ+Kyy = 0 (4.29)

While substituting the dynamic equation (4.28) in the constraint (4.29) provides the input τy

needed to keep the system on the constraint submanifold and the corresponding velocity space,

as in (4.17), premultiplying (4.28) by Z(q) and using q̇ = ZT (q)v gives the dynamic of the sys-

tem when evolving along them6, as in (4.23). Since Z(q) has been used instead of the usual

nullspace projector directly a minimum set of equation describing the dynamics in the nullspace

4It is the level set of a positive definite and radially unbounded function.
5This is a generalization of the nominal control in [DS03, DS04].
6It is possible to show that Λn

(
NM−1C−Ṅ

)
ZT =Z

(
CZT +MŻT

)
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Figure 4.2.: Control law for rigidly actuated robots.
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Figure 4.3.: Simulation model in the start configuration.

are obtained, i.e. one equation instead of n in this specific case. In other words, requiring to have

dynamic matrices in (4.29) derived from the ones in (4.28) results in the proposed control law for

the constraints. On the other hand, if in (4.29) a constant inertia matrix is chosen and accordingly

Γy = 0, then the feedback linearization approach is obtained [CEU02]. The result is not surprising

at all since, in this way, the dynamics that describes how the system is forced on the constraint

submanifold and the corresponding velocity space is completely altered.

4.4. Simulation

In this section, a simulated 3-DOF planar robot, shown in Fig. 5.14 in the starting configuration,

is used to validate the results. The computation of all the components for the dynamics and kine-

matics was performed using the algorithm and formulas from chapter 2 in MATLAB/Simulink R©.

Two types of simulations have been performed. In the first, the problem of generating the limit

cycle in the joint space was analyzed, while in the second the Cartesian space was considered.
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0 5 10 15 20 25 30
-1

-0.5

0

0.5

1

1.5

2

t [s]

q
[r

a
d
]

 

 

q
1

q
2

q
3

0 5 10 15 20 25 30
-2

0

2

4

6

8

10

t [s]

H
−

H
d

[J
]

Figure 4.4.: While the last two joints reach the desired values, the first one will oscillate around

the equilibrium position. The energy error converges to zero as well.

4.4.1. Limit cycle in joint space

The goal is to make the arm oscillate around the axis of the first joint in a completely stretched

configuration. To this end, the constraint submanifold is defined as

[
q2−qd2

q3−qd3

]

= 0 , (4.30)

where qd2 = qd3 = 0 correspond to the strecthed configuration. The virtual potential function is

chosen as in [OKN08], i.e.

U(q) =
1

2
knq̃

T q̃ , (4.31)

since it satisfies the requirement of having a unique constrained local minimum at qd , if qd1 = 0

is chosen. In Fig. 4.4 it is possible to check that the system reaches the constraint submanifold

and at the same time oscillates as prescribed, with H → Hd. Table 4.1 provides the values of the

parameters used in the simulation.

Table 4.1.: Desired energy value and gains used for the simulation results in Fig. 4.4. When only

the i - th entry is shown, then the others have the same value.

Hd Kyi
Dyi

Kα KH kn

1J 0.25Nm/rad 0.75Nms/rad 0 8 s/rad 5Nm/rad

4.4.2. Limit cycle in Cartesian space

In this case, the robot is required to produce an oscillation along the vertical direction in the

Cartesian space while keeping the horizontal one and the orientation constant. For this case the

submanifold is chosen as
[

y1(q)− yd1

y3(q)− yd3

]

= 0 , (4.32)

where y1(q) is the horizontal position of the end effector, y2(q) the vertical, y3(q) the orientation

and the desired values are yd1 = yd2 = 0.85m, yd3 =
π
2

rad.
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4. Energy regulation for rigidly actuated robots
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Figure 4.5.: End effector coordinates, with U(q) = 0.05q̃T q̃.
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Figure 4.6.: End effector coordinates, with U(q) = 2.5ỹ2
2(q).

In order to show the effect of a different choice for the potential function in the energy con-

troller, first the one in (4.31) is used, where qd is computed from yd solving the inverse kinematics

problem, and then

U(q) =
1

2
knỹ2

2(q) , (4.33)

where ỹ2(q) = y2− yd2. The results are shown in Fig. 4.5 and in Fig. 4.6, respectively. Table 4.2

provides the values of the common controller parameters used in the simulation. Obviously, chang-

ing the potential function U(q) the shape of the limit cycle is changed.

Table 4.2.: Desired energy value and gains used for the simulation results in Fig. 4.5 - 4.6.

Hd Ky1
Dy1

Ky2
Dy2

Kα KH

0.1J 4N/m 3Ns/m 4Nm/rad 3Nms/rad 0 8 s/m2

Finally, the role of the energy shifting term has not been analyzed (Kα = 0) in this simulation

study since it will be considered already in the next chapter, where the extension of the controller

to the flexible case will be presented.
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4.5. Summary

4.5. Summary

In this chapter, the problem of generating asymptotically stable limit cycles for rigidly actuated

manipulators was addressed. To this end, it was first shown that for a 1-DoF system this can be

realized using a velocity dependent term proportional to the Hamiltonian of the system. The result

was then generalized to the multi-body case by forcing the system to evolve on a submanifold of

the configuration space. Usually, feedback linearization is used to enforce the virtual constraints,

while here a passivity based approach is proposed. Therefore, the dynamics of the system are not

completely altered by the control action. Finally, although the limit cycle was designed for this

reduced system (once again by energy regulation), it was proven to be an asymptotically stable

solution of the whole system. The energy based approach is crucial to exploit the benefits of

compliant actuator designs, as it will be shown in the next chapter.
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CHAPTER 5

Energy regulation for elastically actuated robots

In this chapter the first simplifying hypothesis is removed. The considered robot has elastic joints,

but a fixed base. The idea presented in the previous chapter is extended here in order to deal

with elastically actuated robots. Therefore, the contribution of this chapter is the design of a

dynamic state feedback to produce asymptotically stable limit cycles for an elastically actuated

robot. Following the same steps taken for the rigid case, first a single joint example is considered

and then the extension to a robotic manipulator. While, traditionally, the inevitable elasticity of the

joint has been seen as a disturbance to minimize both in the mechanical and control design phases,

here the goal is to exploit it to perform highly dynamical, explosive and cyclic motions. Although

appealing for their capability of storing energy, the mechanical design of such systems possibly

introduces additional nonlinearities in the system dynamics which, along with the underactuation

problem, make the controller design more challenging. This results in a more complex control law.

While for the single joint case a static state feedback still guarantees the regulation of the energy

and the existence of an asymptotically stable limit cycle, in order to achieve the same result for

an elastically actuated manipulator, a dynamic state feedback is used instead, i.e. the designed

controller is itself a dynamical system.

The method presented here solves the problem of orbital stabilization for elastic joint robots

without strong simplifying hypothesis, such as single perturbation hypothesis which overcome the

problem using one of the motor side states as a virtual input [GPB+11]. In the single joint case,

not even computation of higher order derivatives [De 88,NT88] or filtering and state estimation is

required, although in the more general case the higher order derivatives are necessary to guarantee

that the system reaches the prescribed submanifold. The control laws presented in the chapter

can be used also to regulate the robot to a desired configuration, independently on the number of

joints. Compared to classic results for elastic joint robots [ASOP12, Ott08] also a scaling of the

torque produced by the elastic elements is included.

All the assumption collected in chapter 2 are assumed to hold, so that the reduced model can be

used to describe the system, i.e.

M(q)q̈+C(q, q̇)q̇+g(q) = τ (φ) (5.1a)

Bθ̈+τ (φ) = τm . (5.1b)

Finally, also in this chapter, with an abuse of notation, the state of the system will be always

indicated with χ and with H(χ) the “energy-like” function which will be regulated to the desired
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5. Energy regulation for elastically actuated robots

value Hd. The same is valid also for the sets Ld , E and the function V (χ).

5.1. The energy function

Since the goal is to regulate the energy in order to produce a limit cycle, obviously the definition

of such an energy function plays a central role in the control design. To exploit the presence of the

spring, the potential energy that they store clearly has to be used in the energy function to regulate.

The simple substitution of the virtual potential used in chapter 4 with the physical one, will imply

that the minimum of the energy function will be attained when the springs are not deflected. This

condition is limiting and impossible to achieve at the equilibrium since there will be an inevitable

deflection of the springs due to the gravity. Considering the gravity as well in the definition of the

energy is indeed the right way to pursue.

In [Ott08] the problem of constructing an online gravity compensation for an elastic joint robot

based on the motor position was solved using a static mapping between motor and link positions.

The basic idea is to find, for any motor position, the link position which allows the elastic ele-

ments in the joints to compensate for the gravity term. Remembering from chapter 2 that Ug(q)
and Uk(θ− q) are the gravitational and elastic potential respectively, with Uk(θ− q) satisfying

assumption 2.4, the total potential function is U(θ,q) = Ug(q)+Uk(θ−q). The latter allows to

consider the function q̄ : Rn→ Rn defined by the implicit equation

∇qU(θ,q)
∣
∣
(θ,q̄(θ))

= g(q̄(θ))−τ (θ− q̄(θ)) = 0 , (5.2)

∀θ ∈Rn, which exists, is unique and a diffeomorphism [ASOP12]. Therefore, the desired equilib-

rium configuration of the robot can be indifferently given in terms of motor or link position, since

the two are uniquely related through the function q̄.

The function q̄ not only can be used to construct a gravity compensation term [Ott08], but also

the following “energy-like” function

H(θ,q, θ̇, q̇) =
1

2
q̇TM(q)q̇+U(θ,q)−U(θ, q̄(θ)) , (5.3)

which is a positive semidefinite function of the state and in particular

H(θ,q, θ̇, q̇) = 0⇐⇒ q = q̄(θ), q̇ = 0 (5.4)

∀θ ∈Q. The proof of this property is a direct consequence of the following Lemma 5.1.

Lemma 5.1. Given assumption 2.4, the total potential function U(θ,q) = Ug(q) +Uk(θ− q),
satisfies the conditions

{

U(θ,q)≥U(θ, q̄(θ)) ∀θ,q ∈Q

U(θ,q) =U(θ, q̄(θ)) q = q̄(θ),θ ∈Q .
(5.5)

Proof. Given any potential function U0(χ) it is always possible to write

U0(χ2)−U0(χ1)−
∂U0(χ)

∂χ

∣
∣
∣
∣
∣
χ1

(

χ2−χ1

)

= i0(χ1,χ2) , (5.6)

where i0(χ1,χ2) =
∫ χ2

χ1

(
∫ χ
χ1

∂ 2U0(χ)
∂χ2

∣
∣
∣
ξ
dξ

)T

dχ.
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5.2. Motivating example for the elastic case

Moreover, since i0(χ1,χ2) is path independent, one can choose in particular the paths ξ(λ ) :

[0,1]→Q and χ(γ) : [0,1]→Q

ξ(λ ) := χ1 +λ
(

χ−χ1

)

χ(γ) := χ1 + γ
(

χ2−χ1

)

such that, evaluating the integral along them, it follows

∫ 1

0

∫ 1

0

(

χ2−χ1

)T ∂ 2U0(χ)

∂χ2

∣
∣
∣
∣
∣
χ1+γλ(χ2−χ1)

(

χ2−χ1

)

γ dλ dγ . (5.7)

If U0(χ) =Ug(q), taking the absolute value and using Proposition 2.1 leads to

|ig(q1,q2)| ≤
∫ 1

0

∫ 1

0
sup
∀q∈Q

∥
∥
∥
∥

∂ 2Ug(q)

∂q2

∥
∥
∥
∥
‖q2−q1‖

2 γ dλ dγ <
1

2
β ‖q2−q1‖

2 , (5.8)

while if U0(χ) =Uk(φ), using assumption 2.4 (A2) it follows that

1

2
α1 ‖φ2−φ1‖

2 < ik(φ1,φ2)<
1

2
α2 ‖φ2−φ1‖

2 , (5.9)

where ig and ik are to be considered as the function i0 with the correspondent potential function in

it. Using ig(q̄(θ),q) and ik(θ− q̄(θ),θ−q) the following holds

U(θ,q)−U(θ, q̄(θ)) = ig(q̄(θ),q)+ ik(θ− q̄(θ),θ−q)+
(

g(q̄(θ))−τ (θ− q̄(θ))
)T(

q− q̄(θ)
)

,
(5.10)

which leads to the inequality

U(θ,q)−U(θ, q̄(θ))<
1

2

(

α1−β
)

‖q− q̄(θ)‖2 , (5.11)

if (5.2), (5.8) and (5.9) are used. From the last inequality and assumption 2.4 (A3) the conditions

on the total potential function U(θ,q) follow directly, since α1−β > 0.

5.2. Motivating example for the elastic case

The control law derived in this section is the base for the more general one in section 5.3. When

applied to a robot manipulator, it can be used to regulate the robot to a given configuration, while

when applied to a single joint setup can also be used to induce a controlled oscillation. The

oscillation, in the nominal case (i.e. absence of friction), is achieved since the motor pumps in the

required energy and then stops, letting the spring sustain the oscillation.

Theorem 5.1. Given the system (5.1) and the assumption 2.4, let KH be a positive scalar, Kθ

and Dθ two symmetric and positive definite matrices and finally let the tilde denote the difference

between a variable and the correspondent desired constant value, then the control input

τm = τ (φ)−KHH̃(θ,q, θ̇, q̇)
(

τ (φ)−g(q̄(θ))
)

−Kθ θ̃−Dθ θ̇ , (5.12)

will produce a closed loop system that will always reach the set

Ld =
{
(θ,q, θ̇, q̇) | θ = θd , θ̇ = 0,H(θd ,q,0, q̇) = Hd

}

and therefore:
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5. Energy regulation for elastically actuated robots

(a) for Hd = 0 has an asymptotically stable equilibrium point in χ0 = (θd , θ̇= 0, q̄(θd), q̇ = 0)

(b) for Hd > 0 and n = 1 has an asymptotically stable limit cycle defined by Ld .

Proof. The proof is a bit cumbersome and therefore split in multiple parts. The goal is to show

that H→Hd always. First a Lyapunov function that shows the stability of the invariant set Ld for

the closed loop system is considered. Using LaSalle’s invariance principle it is then proven that

the equilibrium point χ0 and the set Ld are the only positive limit sets for the solutions of (5.1)

with the control law (5.12). Finally, depending on the value of Hd, the results (a) and (b) naturally

arise.

Stability The C1 function of the state

V (θ,q, θ̇, q̇) =
1

2
KHH̃2(θ,q, θ̇, q̇)+

1

2
θ̃TKθ θ̃+

1

2
θ̇TBθ̇ (5.13)

is such that

{

V (θ,q, θ̇, q̇) = 0 ∀(θ,q, θ̇, q̇) ∈Ld

V (θ,q, θ̇, q̇)> 0 ∀(θ,q, θ̇, q̇) /∈Ld

and therefore a candidate Lyapunov function. Before computing its derivative along the flow of

the closed loop system, the same needs to be done for (5.3). To this end, it is useful to first notice

that

∇θU(θ, q̄(θ)) = ∇θU(θ,q)
∣
∣
(θ,q̄(θ))

= τ (θ− q̄(θ)) , (5.14)

since the term depending on ∇qU(θ,q)
∣
∣
(θ,q̄(θ))

disappears due to (5.2). From (5.2) it also follows

that g(q̄(θ)) = τ (θ− q̄(θ)), leading to

∇θU(θ, q̄(θ)) = g(q̄(θ)) , (5.15)

which finally is used to obtain respectively

Ḣ(θ,q, θ̇, q̇) = θ̇T
(

τ (φ)−g(q̄(θ))
)

(5.16)

V̇ (θ,q, θ̇, q̇) =−θ̇TDθ θ̇ . (5.17)

The latter, being a negative semidefinite function of the state, ensures the stability of Ld .

In order to refine the result (i.e. show that Ld is asymptotically stable) one must look for the

largest invariant set M within the set E defined as

E =
{
(θ,q, θ̇, q̇) | V̇ (θ,q, θ̇, q̇) = 0

}
. (5.18)

By virtue of LaSalle’s invariance principle, then every solution of the system approaches M as

t → ∞. Since from (5.17) V̇ (θ,q, θ̇, q̇) = 0⇔ θ̇ = 0, the next goal is to show that the condition

θ̇ = 0 implies M = {χ0,Ld}.
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5.2. Motivating example for the elastic case

Invariant set Firstly, it can be shown that θ̇ = 0⇒ θ̃ = 0. In fact, θ̇ = 0 implies that θ = θ0,

g(q̄(θ)) = g(q̄(θ0)) = ḡ0 and, because of (5.33), also H(θ,q, θ̇, q̇) = H0, where θ0, ḡ0 and H0 are

constants. Moreover, from (2.21b) and (5.12) it follows that

−KH

(

H0−Hd

)(

τ (φ)− ḡ0

)

−Kθ

(

θ0−θd

)

= 0 , (5.19)

from which two cases are possible

{

H0 = Hd

H0 6= Hd

.

While from the first case it can be directly concluded that θ = θd , in the second case it can be

concluded that τ (φ) = τ0, with τ0 constant. It can be shown that also the latter condition leads to

θ = θd . From the definition of τ (φ) and the fundamental theorem of calculus for line integrals,

one gets

Uk(φ1)−Uk(φ2) = τ T
0

(

φ1−φ2

)

(5.20)

which holds, without contradicting assumption 2.4 (A1), ∀φ1,φ2 ∈ Rn if and only if φ1 = φ2.

This implies φ = φ0 and q = q0, where φ0 and q0 are constants. If q is constant, (2.16) implies

that g(q0) = τ0 and from the uniqueness of (5.2) that q0 = q̄(θ0). Concluding, if H0 6= Hd then

τ (φ) = ḡ0 and therefore also in this case θ = θd .

Now it can be proven that θ̇ = θ̃ = 0⇒ M = {χ0,Ld}. In fact, in addition to the previous

conditions also θ = θd holds, therefore from (2.21b) and (5.12) it follows that

−KH

(

H0−Hd

)(

τ (θd−q)−g(q̄(θd))
)

= 0 . (5.21)

If H0 = Hd one gets Ld by definition, while in case H0 6= Hd then τ (θd −q) = g(q̄(θd)), that is

τ (φ) is constant and, as it has been shown before, this implies that q = q̄(θd), q̇ = 0 or in other

words (θ, θ̇,q, q̇) =χ0.

Asymptotic stability For the case Hd = 0, using (5.4) it can be easily verified that the posi-

tively invariant set Ld coincides with χ0, which becomes the only positive limit set and therefore

result (a) is obtained. On the other hand, when Hd > 0, starting from a neighborhood of Ld which

does not contain the equilibrium the system will always converge to Ld . In case n = 1 the set Ld

is a closed orbit in the state space and therefore a limit cycle, proving result (b).

5.2.1. Controller discussion

The key feature of the proposed controller is in a torque feedback that, depending on the energy

error, can be either positive or negative and therefore intuitively able to either inject or dissipate

energy. The gain of the feedback can be additionally tuned if a generalization of the control law is

used

τm = τ (φ)−KHH̃m−1(θ,q, θ̇, q̇)
(

τ (φ)−g(q̄(θ))
)

−Kθ θ̃−Dθ θ̇ ,

obtained through the more general term 1
m

KHH̃m(θ,q, θ̇, q̇) in the Lyapunov function, with m= 2k,

k ∈ N+. Obviously, the case examined so far is retrieved when k = 1.

When used to produce an oscillation, the proposed controller is expected to be very efficient.

As it was shown, after a transient in which the motor brings the energy to the desired level no
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5. Energy regulation for elastically actuated robots

more power is provided by it since the velocity goes to zero. Basically, the oscillation will be

sustained by the springs indefinitely. Obviously, this can happen only in the nominal case while

in reality there will be always friction taking out energy that the motor will have to inject again in

the system.

Concerning the computational cost of the proposed control law (5.12) it is clear that the inertia

matrix M(q) and the total potential energy need to be computed in order to evaluate H(θ,q, θ̇, q̇).
In addition, the gradient of the potential functions and the function q̄ are required. The latter can

be computed using a fixed-point iteration or Newton method to solve (5.2), as shown in [ASOP12]

where also comments concerning the efficiency of the approach can be found. Finally, the Coriolis

and centrifugal terms (which are the most costly) are not required, as well as no higher order

differentiation of any of the involved expressions. This is instead often the case in many nonlinear

controllers, e.g. those based on feedback linearization.

5.3. Elastically actuated manipulator

As for the rigidly actuated case, the key point is to introduce enough constraints so that the “re-

maining dynamics” of the system is equivalent to the single joint case that has been just examined.

The designed controller is itself a nonlinear dynamic system. Loosely speaking, the motor dy-

namics is used to satisfy the virtual constraints, while the additional dynamics of the controller is

used to regulate the energy of the system. In chapter 4, the virtual potential energy was chosen

to have a constrained local minimum at the submanifold. This suggests that a modification of the

energy function defined in section 5.1 is necessary to take into account the presence of the virtual

constraints. Before presenting the control law, it is therefore necessary to extend some results to

take into account that the system will be forced to evolve on a submanifold.

For the derivation of the control law it will be additionally required:

Assumption 5.1.

• Uk(θ−q) =
1

2

n

∑
i=1

Ki

(

θi−qi

)2

(A’1)

• β < min
i

Ki i = 1, ...,n (A’2)

Notice that assumption 5.1 actually replaces assumption 2.4, since any such a Uk(θ− q) al-

ways fulfills assumption 2.4. Finally, the stiffness constants can be collected in the diagonal joint

stiffness matrix K ∈ Rn×n.

5.3.1. The link-side equilibrium configurations

The function q̄ can be generalized to take into account constraints on the allowed configurations

of the robot. This is exactly what happens when the system is forced to evolve on a submanifold.

To this end, firstly an alternative definition of the function q̄ is provided using Lemma 5.1

q̄(θ) = arg min
q

U(θ,q)−U(θ, q̄(θ))

= arg min
q

U(θ,q) ,
(5.22)

∀θ ∈Q. Notice that the necessary condition for optimality of the minimization problem coincides

with the definition of q̄(θ) in (5.2). At this point the constraint is taken into account by simply
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5.3. Elastically actuated manipulator

modifying the problem as

q̄y(θ) = arg min
q

U(θ,q)

s.t. y(q) = 0 ,
(5.23)

∀θ ∈Q. The necessary condition for optimality obtained using the Lagrange multipliers λ is

∇qU(θ,q)+JT (q)λ= 0 , (5.24)

so that pre-multiplying by the nullspace base matrix Z(q), the condition

n(q) :=Z(q)
[

g(q)−K
(

θ−q
)]

= 0 (5.25)

is obtained, where n(q) can be seen as a local nullspace coordinate [Bai85]. Concluding, for a

given θ ∈Q, q̄y(θ) is the unique configuration with coordinates y(q̄y(θ)) = 0, n(q̄y(θ)) = 0. This

suggests that, from a computational point of view, the optimization problem can be solved setting

up an inverse kinematic problem and finding q̄y(θ) with a standard closed loop inverse kinematic

scheme [SSVO08]. As it can be noticed, in this way, the definition of the function q̄y is very

similar to the desired configuration in chapter 4.

Proposition 5.1. The function q̄y(θ), in a similar manner to q̄(θ), satisfies the properties

• U(θ,q)≥U(θ, q̄y(θ)) ∀θ,q ∈Q : y(q) = 0

• U(θ,q) =U(θ, q̄y(θ))⇔ q = q̄y(θ) ∀θ,q ∈Q : y(q) = 0

• U̇(θ, q̄y(θ)) = θ̇TK
(

θ− q̄y(θ)
)

Proof. While the first two properties are a direct consequence of how the function is defined, for

the third the following must be taken into account. By definition y(q̄y(θ)) = 0 and therefore

J(q̄y(θ)) ˙̄qy(θ) = 0, ∀θ(t) ∈Q. Using the chain rule it is possible to write

U̇(θ, q̄y(θ)) = θ̇T ∇θU(θ,q)
∣
∣
(θ,q̄y(θ))

+ ˙̄qT
y (θ)∇qU(θ,q)

∣
∣
(θ,q̄y(θ))

.

The second term can be shown to be always zero rewriting it as

˙̄qT
y (θ)J

T
N (q̄y(θ))J

−T
N (q̄y(θ))∇qU(θ,q)

∣
∣
(θ,q̄y(θ))

=

[
0 ˙̄qT

y (θ)N
T (q̄y(θ))

][

∇T
qU(θ,q)

∣
∣
(θ,q̄y(θ))

J+M(q̄y(θ)) 0
]T

,

where J(q̄y(θ)) ˙̄qy(θ) = 0 and n(q̄y(θ)) = 0 have been used. The proof is concluded considering

that only the potential energy due to the springs depends on θ in the expression of the total potential

U(θ,q).

5.3.2. Controller design

This section provides an intuitive description of the controller design, while the next ones provide

a rigorous analysis of the closed loop system. The torque produced by the springs has to enforce

the virtual constraints and produce, at the same time, the desired oscillation. To this end, it is split

in two contributions as:

K
(

θ−q
)

=K
(

θ−η
)

+K
(

η−q
)

, (5.26)
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where η is part of the controller state. The latter will have to online adjust this value in order to

distribute the torques between the two tasks. To fulfill the constraints, the torques produced by

the springs should converge to the torques τx in section 4.3.1. The input to the motors τm have

to be chosen in such a way the the motors are driven in a position at which the desired torque is

produced, i.e. K
(

θ−η
)

→ τd . The contribution of the spring torque which does not interfere

with the constraints will be instead used to sustain the oscillation. Nevertheless, since the input to

the system is somehow already used to fulfill the constraint, the dynamics of the controller has to

be chosen to realize the regulation of the energy to the desired value. To this end, a dynamics that

mimics the one of the motors is assigned to the controller.

5.3.3. Closed loop system

Given the positive scalars KH ,Kα ∈R and the symmetric, positive definite matrices Kτ , Dτ , Kη ,

Dη ∈ Rn×n, Ky,Dy ∈ R(n−1)×(n−1), the proposed nonlinear dynamic state feedback controller is

Bη̈+K
(

η−q
)

= ρ (5.27a)

τm = ρ+τd +BK−1
(

τ̈d−Dτ ˙̃τ −Kτ τ̃
)

, (5.27b)

where η, η̇ ∈ Rn is the state of the controller, τm ∈ Rn is the controller output function and τ̃ =

K
(

θ−η
)

− τd being both τd ,ρ ∈ Rn the controller input functions. The latter are computed

based on the state of the system and of the controller itself and are given by

τd = JT
N

([
−Dy Γyn−Kα ẏv

−ΓT
yn +KαvẏT O

][
ẏ

v

]

+

[

J+MT
[

g−K
(

η−q
)]

−Kyy

0

])

(5.28a)

ρ=K
(

η−q
)

−KHH̃(χ)K
(

q̄y(η)−q
)

−Dη η̇−Kη η̃ , (5.28b)

where in this case

H(χ) =
1

2
q̇TMq̇+U(η,q)−U(η, q̄y(η)) . (5.29)

Interconnecting the system (5.1) with the controller (5.27) as in Fig. 5.1, produces the closed

loop system:

M(q)q̈+C(q, q̇)q̇+g(q) =K
(

η−q
)

+τd + τ̃ (5.30a)

¨̃τ +Dτ ˙̃τ +
(

Kτ +KB−1
)

τ̃ = 0 (5.30b)

Bη̈+K
(

η−q
)

= ρ , (5.30c)

which, using the state vector χ= (q, ẏ,v,τ , τ̃ ,η, η̇) and the input functions (5.28), can be rewrit-

ten as (omitting the dependencies):

q̇ = J+M ẏ+ZT v (5.31a)

Λyÿ+
(
Γy +Dy +Kαv2E

)
ẏ+Kyy = J+MT τ̃ (5.31b)

Λnv̇+
(
Γn−Kα ẏ

T ẏ
)

v+Zg =Z
[

K
(

η−q
)

+ τ̃
]

(5.31c)

¨̃τ +Dτ ˙̃τ +
(

Kτ +KB−1
)

τ̃ = 0 (5.31d)

Bη̈+KHH̃K
(

q̄y(η)−q
)

+Dη η̇+Kη η̃ = 0 . (5.31e)

The stability properties of the system are summarized in the following theorem.
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Figure 5.1.: Closed loop system.
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Figure 5.2.: Flow of the argumentation used in the proof.

Theorem 5.2 (Elastic case). Given assumption 5.1, the nonlinear autonomous system (5.31), de-

pending on the value of Hd, has an asymptotically stable solution consisting of

(a) the equilibrium point χ∗ = (q̄y(ηd), q̇ = 0,v = 0, τ̃ = 0, ˙̃τ = 0,ηd , η̇ = 0) for Hd = 0

(b) the limit cycle defined by Ld =
{
χ | y(q) = ẏ = 0, η̃ = η̇ = τ̃ = ˙̃τ = 0, H̃(χ) = 0

}
for

Hd > 0.

Proof. The proof is based on the theorems and lemmas collected in Appendix A and it is split in

three parts, since the conditional stability theorem will be used twice. The flow of the argumen-

tation used in the proof is shown in Fig. 5.2. A semidefinite Lyapunov function V3(χ) allows to

carry on the stability analysis of (5.31). Therefore, it is considered the system conditionally to the

largest invariant set within the set where V̇3 = 0, i.e. (5.38). Once again, a semidefinite Lyapunov

function V2 allows to carry on the stability analysis of (5.38). Therefore, it is considered the system

conditionally to the largest invariant set within the set where V̇2 = 0, i.e. (5.32). Starting from the

most inner system the proof proceeds outwards till (5.31) after two steps.
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5. Energy regulation for elastically actuated robots

Step 1 The nonlinear autonomous system

q̇ =ZT v (5.32a)

Λnv̇+Γnv+Zg =ZK
(

η−q
)

(5.32b)

Bη̈+KHH̃K
(

q̄y(η)−q
)

+Dη η̇+Kη η̃ = 0 (5.32c)

with χ ∈A2 =
{
χ | τ̃ = ˙̃τ = 0,y(q) = ẏ = 0

}
, will always reach the set Ld and therefore

• for Hd = 0 has an asymptotically stable equilibrium point in χ∗

• for Hd > 0 has asymptotically stable limit cycle defined by Ld .

This is proven showing invariance, stability and finally attractiveness of Ld , similarly to what has

been done in section 5.2.

Invariance Given the properties of q̄y, H(χ) is an “energy-like” function for (5.32). Addition-

ally, computing the time derivative of H̃ along the flow of (5.32), results in

˙̃H(χ) = Ḣ(χ) = η̇T
[

K
(

η−q
)

−K
(

η− q̄y(η)
)]

. (5.33)

Since η̇ = 0=⇒ ˙̃H = 0, it can be concluded that Ld is an invariant set for (5.32), because H̃ will

not change when starting from Ld .

Stability The C1 function of the state

V1(χ) =
1

2

(
KHH̃2(χ)+ η̇TBη̇+ η̃TKη η̃

)
, (5.34)

is such that
{

V1(χ) = 0 ∀χ ∈Ld

V1(χ)> 0 ∀χ /∈Ld

and therefore it is a candidate Lyapunov function to prove the stability of Ld for (5.32). Computing

its derivative along the flow of the system (5.32), leads to V̇1(χ) =−η̇
TDη η̇ ≤ 0, which ensures

the stability of Ld for the system (5.32).

LaSalle’s invariance principle allows to conclude that the positive limit set for the solutions of

(5.32) is given by the largest positive invariant set M1 within the set E1 = {χ | η̇ = 0}, i.e. the set

where V̇1(χ) = 0. Starting from the condition η̇ = 0, it will be shown in two subsequent steps that

M1 = {χ
∗,Ld}.

Invariant set Firstly, it can be shown that η̇ = 0⇒ η̃ = 0. In fact, η̇ = 0 implies that η = η0

and, because of (5.33), also H(χ) = H0, where η0 and H0 are constants. Moreover, from (5.32c)

it follows that

−KH

(

H0−Hd

)

K
(

q̄y(η0)−q
)

−Kη

(

η0−ηd

)

= 0 , (5.35)

from which two cases are possible

{

H0 = Hd

H0 6= Hd .
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While from the first case it can be directly concluded that η0 = ηd , in the second case it can be

concluded that q = q0, where q0 is constant, since all the quantities in (5.35) are constants. This

implies v = 0 and therefore from (5.32b) one gets

Z(q0)
[

g(q0)−K
(

η0−q0

)]

= 0 .

In addition, y(q0) = 0 holds, or in other words q0 = q̄y(η0) and therefore from (5.35) also in this

case η0 = ηd.

Now it can be proven that η̇ = η̃ = 0⇒ M1 = {χ
∗,Ld}. In fact, in addition to the previous

conditions also η = ηd holds, therefore from (5.32c) it follows that

−KH

(

H0−Hd

)

K
(

q̄y(ηd)−q
)

= 0 . (5.36)

If H0 = Hd one gets Ld by definition, while in case H0 6= Hd then q = q̄y(ηd) and consequently

ẏ = 0, v = 0 or in other words χ= χ∗.

Asymptotic stability For the case Hd = 0, since

H(χ) = 0⇐⇒ q = q̄y(η),v = 0 (5.37)

∀χ ∈ A2, it can be easily verified that Ld coincides with χ∗, which becomes the only positive

limit set and therefore result (a) is obtained. On the other hand, when Hd > 0, starting from a

neighborhood of Ld which does not contain the equilibrium point the system will always converge

to Ld . The set Ld is uniquely determined by one parameter, e.g. the value of n(q), and therefore

it is a closed1 orbit in the state space, i.e. a limit cycle, proving result (b).
Given this result, in the remainder of the proof it will be simply referred to the stability property

of the set Ld , with the conditions (a) and (b) naturally arising depending on the value of Hd.

Step 2 Given the nonlinear autonomous system

q̇ = J+M ẏ+ZT v (5.38a)

Λyÿ+
(
Γy +Dy +Kαv2E

)
ẏ+Kyy = 0 (5.38b)

Λnv̇+
(
Γn−Kα ẏ

T ẏ
)

v+Zg =ZK
(

η−q
)

(5.38c)

Bη̈+KHH̃K
(

q̄y(η)−q
)

+Dη η̇+Kη η̃ = 0 , (5.38d)

with χ ∈A3 =
{
χ | τ̃ = ˙̃τ = 0

}
, consider the C1 function of the state

V2(χ) =
1

2

(
ẏT

Λy(q)ẏ+yT (q)Kyy(q)
)

, (5.39)

such that
{

V2(χ) = 0 ∀χ ∈A2

V2(χ)> 0 ∀χ /∈A2 .

Since Ld ⊂ A2, V2(χ) is a candidate semidefinite Lyapunov function to prove the stability of

Ld for (5.38). Computing its derivative along the flow of the system, it can be shown that

V̇2(χ) = −ẏ
T
(
Dy +Kαv2E

)
ẏ ≤ 0. The set A2 is the largest positively invariant set within

E2 = {χ | ẏ = 0}, i.e. the set where V̇2(χ) = 0. In fact, if y(q) 6= 0 the system will leave E2

as it is clear from (5.38b). Finally, since Ld is asymptotically stable conditionally to A2 (which

is exactly what has been proven in the previous step), then by Theorem A.3 Ld is asymptotically

stable for (5.38).

1It is the level set of a positive definite and radially unbounded function.
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Step 3 Consider for the system (5.31) the C1 function of the state

V3(χ) =
1

2
˙̃τ T ˙̃τ +

1

2
τ̃ T
(

Kτ +KB−1
)

τ̃ , (5.40)

such that

{

V3(χ) = 0 ∀χ ∈A3

V3(χ)> 0 ∀χ /∈A3 .

Since Ld ⊂A3, V3(χ) is a candidate semidefinite Lyapunov function to prove the stability of Ld

for (5.31). Computing its derivative along the flow of the system, leads to V̇3(χ) =− ˙̃τ TDτ ˙̃τ ≤ 0.

The set A3 is the largest positively invariant set within E3 =
{
χ | ˙̃τ = 0

}
, i.e. the set where

V̇3(χ) = 0. In fact, if τ̃ 6= 0 then the system will leave E3 as it is clear from (5.31d). Finally,

since Ld is asymptotically stable conditionally to A3 (which is exactly what has been proven in

the previous step), then by Theorem A.3 Ld is asymptotically stable for (5.31).

A modification of the control law can be obtained by computing q̄y(η) using the current value

of y, instead of zero (i.e. instead of the desired one). In the proof, in fact, q̄y(η) is consider for

the analysis of the system upon convergence of the virtual constraints, so that the current value

of y coincides with the desired one. This modification results useful in case of interactions, as

the set-point is only reached in case of no external forces, otherwise a virtual equilibrium point is

reached.

5.3.4. Comparison to the rigid case

The input function τd has the meaning of a desired input to the link side equation. For this reason, it

is very similar to the control torque (4.24). Also for τd different contributions can be recognized:

the torque responsible for forcing the system to evolve on the constraint submanifold, the one

compensating for the coupling terms in the Coriolis matrix and the one shifting energy from the

constraint space to the nullspace. Only the part of the gravitational torque which cause the system

to go off the submanifold are compensated this time, since the gravitational potential energy itself

is used to produce the oscillation. The way the limit cycle is produced is also different. The

springs in the joints are directly involved in this task. The torque that they produce is split in the

one necessary to keep the system to evolve on the submanifold and the one that can be used to

produce the limit cycle. This is achieved via the control state, which by mimicking the motor

dynamics, is acting as a rest length adjustment.

The output function (5.27b) of the controller requires up to the second derivative of the input

function τd . Since the latter is a function of q, q̇ and η, in addition to the state, it is required

the knowledge of the link acceleration q̈, the jerk q(3) and η̈. While the signal η̈ is easily com-

puted, i.e. through (5.31e), since the model of the controller can be reasonably assumed to be

very well known, the same is not true for the link acceleration and jerk. One can compute these

signals based on the model equations or alternatively, directly through acceleration sensors and

appropriate filtering techniques. From an implementation prospective, this is a weak point, which

is although shared by all the control laws that use the motors to make the torque produced by the

springs track a desired one (i.e. using the rigid case as an intermediate design step [Ott08, Chapter

6]). This aspect is a bit less critical for the control law proposed in this section since the torque

τd that needs to be tracked is responsible only to guarantee the convergence to the invariant set of

the state space and not for the regulation of the energy, as it will be clear with the results shown in

section 5.4.3.
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Figure 5.3.: The DLR Hand Arm System (HASy), used to validate the theoretical results.

5.4. Validation

In this section, the controllers (5.12) and (5.27) will be tested. The first one will be apllied to

the robotic system in Fig. 5.3, both in simulation and experiments. The DLR Hand Arm System

(HASy) [GASB+11] is a highly integrated robot, which aims to imitate the whole human up-

per limb in terms of size, weight and range of motion. Variable stiffness actuators (VSA), whose

intrinsic nonlinear compliance can be adjusted by an additional motor, are used to replace the typi-

cally impedance controlled, mechanically stiff joints. As a result the robot can, for example, better

handle collisions with stiff objects since part of the impact energy, which changes too quickly for

an active controller, is temporarily stored in the elastic components. The system has more than

25 degrees of freedom, 50 motors and 100 position sensors. In the considered setup the stiffness

will not be adjusted on line, so that the system dynamics can be described as in (5.1). Moreover,

only the upper arm is used to focus the attention on the first four joints (which share the same

mechanical design), as indicated in Fig. 5.3. Since the HASy does not satisfy assumpiotn 5.1, the

second control law will be instead only tested in simulation.

In order to demonstrate the two possible application of the control law (5.12) as a way to excite

or damp out the oscillations, two tests will be conducted. In the first one, an oscillation is produced

in the first joint while the motion is damped out with a classic PD controller in the remaining ones.

In particular the axis are oriented in such a way that the effect of the gravity are negligible and

therefore the dynamic coupling between the joints can be approximately compensated with a high

gain motor PD controller. In the other, the control law is used to regulate the robot to a desired

configuration, which corresponds to ask for zero energy in the system. The two tests will always

be labeled as respectively (a) and (b) in all the figures. Fig. 5.3 sums up the first test, highlighting

the joints involved and their role. In addition, a conceptual interpretation of what happens in the

state space is provided. Imagining to have a three dimensional state space, the set of constant

desired energy can, for example, be thought as a sphere where the close loop system is bound to

evolve. The additional constraints introduced through the PD controller, render one of the infinite

many possible iso-energy orbits the one actually followed by the system. Basically the system can

be thought as a one joint robot for which the existence of an asymptotically stable limit cycle has

been proved. Fig. 5.4 supports this explanation. There the link positions of two trials obtained

applying the control law (5.12) to all the joints of the robot with a strictly positive desired energy

is shown. The only difference between the two trials is in the initial value of the link velocities.

Even though in both cases the same desired energy is reached, as it can be seen the orbit followed
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Figure 5.4.: Link positions obtained applying the controller (5.12) to all the joints with Hd = 3J.
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Figure 5.5.: Visualization of the chaotic behavior through the phase plot of the second joint.

by the system is different. The oscillation produced in this case is the consequence of a chaotic

behavior and not a periodic one, as the phase plot of the link variables of the second joint shows

in Fig. 5.5.

5.4.1. Simulations of the first controller

The simulations are carried out using MATLAB/Simulink R©, where the algorithm and formulas

from chapter 2 are implemented to compute all the quantities necessary for the control law and the

robot direct dynamics. In this section, all the plots will show with a blue line the performances of

the controller in presence of a non modeled link side friction −d q̇, with d = 0.5Nms/rad. While this

term is of course not harmful when the system is required to damp out the oscillations, it forces

the controller to re-inject the lost energy due to the unforeseen energy leak. This is especially clear

in Fig. 5.6 where the convergence of the error H̃(θ,q, θ̇, q̇) = H(θ,q, θ̇, q̇)−Hd is shown, both

for damping of the oscillations and limit cycle generation. The different behavior of the system is

simply due to a different value of Hd, which is Hd = 3J for limit cycle generation and Hd =−1J
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Figure 5.6.: Convergence of the energy error for limit cycle generation, case (a), and damping of

the oscillations, case (b).

for regulation to the desired configuration2 .

The value of the gains for the simulations are listed in Table 5.1 and Table 5.2 respectively. The

desired value for the motor position is θd =
[
0 0 π/2 0

]T
rad, as it can be seen in Fig. 5.7 for

the two tests. It is worth to mention that the robot is always initialized in the equilibrium position,

but with a nonzero initial link side velocity. The latter is always chosen to be 2rad/s for the joints

where the control law (5.12) is active, i.e. only the first joint in case of excitation and all the joints

in case of damping of the oscillations. This explains why in Fig. 5.7, after a transient, the motors

recover their initial positions.

Table 5.1.: Gains used for the simulation in Fig. 5.6, case (a). When only the i - th entry is shown,

then the others have the same value.

KH Kθi
Dθi

5J−1 20Nm/rad 20Nms/rad

Table 5.2.: Gains used for the simulation in Fig. 5.6, case (b).

KH Kθ Dθ

0.5J−1 20Nm/rad 20Nms/rad

In Fig. 5.7, for the case Hd > 0, a very small oscillation is present in the joints controlled with

the simple PD law. This is not surprising due to the dynamic effect of one link to the other. For

the same reason, also the link side positions will have a coupled oscillation and will qualitatively

look like the ones in Fig. 5.4, case q̇(0) =
[
2 0 0 0

]T
rad/s. To conclude, in Fig. 5.8 the link

positions, as well as the velocities, are shown from which it can be seen that the initial oscillations

are damped out using a non positive desired value for H(θ,q, θ̇, q̇).

5.4.2. Experiments

Using the same values of the parameters as in simulation, two tests are conducted with the real

system. In the first one, the robot is initialized at the equilibrium point and the desired value

2Asking for a negative desired value for H(θ,q, θ̇, q̇) has the only effect to increase the convergence speed and

reduce residual small oscillations around the desired value due to numeric errors. The smallest possible value for

H(θ,q, θ̇, q̇) is zero, which is the one that will be reached. In Fig. 5.6 (b) the plot is shifted of 1J to take this effect

into account.
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Figure 5.7.: Motor positions in case of limit cycle generation (left) and regulation (right).
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librium point.
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Figure 5.10.: Phase plot of the link side position and velocity of the first joint.

Hd = 3J is chosen for the energy function (5.3). The latter is shown in Fig. 5.9 together with

its desired value. When the operator slightly pushes the robot, it starts moving away from the

equilibrium point and oscillating around the desired value of the energy. As expected, the system

does not exactly converge to the desired value, but it exhibits a behavior similar to the one observed

in simulation in case of unmodeled friction. Of course, due to noise and bigger model uncertainty

than the simulated case, a bigger deviation from the desired value is observed. When the desired

value is switched to zero, the energy converges to it without any residual oscillation.

Particularly interesting is the phase plot of the link variables involved in the generation of the

oscillation, shown in Fig. 5.10. There with a black line is shown the behavior when Hd = 3J

and with a blue line when Hd = 0. As it can be seen, despite the presence of noise and model

uncertainty, the system does reach a limit cycle. Basically, what will be perturbed is the shape of

the limit cycle itself. Adaptive techniques and tuning of the parameters can of course reduce these

effects. The spiraling convergence towards the asymptotically stable equilibrium point obtained

when the desired energy is set to zero is also shown in the same plot. It is worth to mention that the

damping behavior of the system can be tuned through Hd and KH , since they will influence how

quickly H(θ,q, θ̇, q̇) will converge to zero and therefore how quickly the link side oscillations will

be damped out.

In Fig. 5.11 both the motor and link positions of the first joint are shown. It is interesting to

notice that, although the motor is not fixed because of friction, the oscillations obtained on the link

side are still amplified compared to those required from the motor.
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Figure 5.11.: Motor and link positions of the first joint when Hd is switched from Hd = 3J (black

line) to Hd = 0 (blue line).
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Figure 5.12.: Motor positions (black lines) and desired values (blue lines).

In the second test3 all the joints are involved and the response of the system to a step in the

desired value of the motor positions is considered. The result is reported in Fig. 5.12, where it can

be noticed that the systems shows a good convergence behavior.

Concerning the link side, in Fig. 5.13 the link velocities are shown which prove that the robot

can reach the new desired equilibrium point and no unwanted residual oscillations of the links are

present.

5.4.3. Simulation results for the dynamic state feedback controller

As case study a 3 - link robotic arm is considered, with each link having the properties reported in

Table 5.3. The robot starts from the configuration shown in Fig 5.14.

Table 5.3.: Properties of one of the three modules of the manipulator in Fig 5.14.

Link Spring Motor

Length Mass Inertia Stiffness Inertia

0.4m 5kg 0.2kgm2 200Nm/rad 0.6325kgm2

The function y(q) is chosen as

y1(q) = z(q)−0.8

y2(q) = ψ(q) ,

3In this experiment, to show the high achievable performances of the system, Kθi
= 400Nm/rad.
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Figure 5.13.: Link velocities obtained after a step in the desired motor position, with Hd = 0.

Figure 5.14.: Starting configuration of the robot ed equilibrium configuration (lighter color).
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Figure 5.15.: Convergence to zero of the two components of the constraint function y(q).
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Figure 5.16.: Energy function (5.29) (blue line) and desired value (black line).

where z(q) is the vertical position and ψ(q) the orientation of the end - effector which, given the

definition of y(q), is required to stay at a height of 0.8m from the floor and to keep the orientation

parallel to it. The convergence of y(q) to zero is shown in Fig. 5.15.

The desired value of the energy is switched from Hd = 1J to zero in order to show how the

oscillation can be produced and then damped out. Given the definition of y(q), the resulting

motion will be an horizontal oscillation when Hd > 0 while the robot will stop at the equilibrium

when Hd = 0. The evolution of the energy function is shown in Fig. 5.16. As it can be seen, the

energy is effectively regulated to the desired value, whose sudden variation has no influence on

y(q).

In order to highlight the role of Kα , in Fig. 5.17 and Fig. 5.18 the total kinetic energy and

its two contributions (i.e. the kinetic energy in the constraint space and nullspace) are shown

for Kα = 0Nms3/rad3 and Kα = 30Nms3/rad3 respectively. As it can be noticed, in the second case

the kinetic energy in the constraint space converges more rapidly to zero, while the one in the

nullspace increases faster.

Table 8.1 collects the values of all the gains used in the simulation.

Before concluding the section, the control law proposed in section 5.3 is compared to a cascaded

design [Ott08, Chapter 6], in which the desired torque is chosen as in section 4.3. The goal

is to show that, in the latter case, similar performances can be achieved at the price of using

considerably larger gains Kτ and Dτ . Obviously, this can compromise the implementation on a
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Figure 5.17.: Total kinetic energy (green line) and its two components, i.e. kinetic energy in the

constraint space (black line) an in the nullspace (blue line), in case Kα = 0.
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Figure 5.18.: Total kinetic energy (green line) and its two components, i.e. kinetic energy in the

constraint space (black line) an in the nullspace (blue line), in case Kα = 30Nms3/rad3.
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Figure 5.19.: Energy function (4.16) for Kτi
= 104 1/s2,Dτi

= 1601/s (green line), Kτi
=

108 1/s2,Dτi
= 163 1/s (blue line) and desired value (black line).

real system. In order to obtain a fair comparison the virtual potential U(q) for the control law in

section 4.3 is chosen as

U(q) =Ug(q)+Uk(ηd−q)−Ug(qd)−Uk(ηd−qd) (5.41)

where qd = q̄y(ηd). With this choice, U(q) has a constrained minimum at qd as it is required in

section 4.3 and additionally the real potential of the system is used. The results, shown in Fig. 5.19,

can be interpreted as follows: in the control law proposed in section 5.3, it is not necessary to track

a desired torque to generate the limit cycle, but only to force the system to evolve on a submanifold.

The latter is not varying as rapidly as the one necessary to produce the limit cycle, therefore smaller

gains are sufficient. Additionally, the tracking of the desired torque in the cascaded design has a

more direct effect on the regulation of the energy, since an imperfect tracking will directly result

in the incapability for the system to reach the desired value of the energy.

Table 5.4.: Values of the gains. When only the i - th entry is shown, then the others have the same

value.

Ky1
Dy1

Ky2
Dy2

400N/m 36N/ms 400Nm/rad 36Nms/rad

Kτi
Dτi

Kηi
Dηi

KH

16001/s2 641/s 100Nm/rad 16Nms/rad 0.3 s2/kgm2
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5.5. Summary

5.5. Summary

In this chapter, new control laws for elastically actuated manipulators were proposed. First, a

single joint system was examined. In this case, a static state feedback was designed to allow (by

changing the desired value of an energy function) both regulation to a desired configuration of

the robot and generation of an asymptotically stable limit cycle. When this control law is used

for a multi-joints manipulator, only regulation to a desired configuration is possible. Therefore,

a dynamic state feedback was designed, which allows to produce an asymptotically stable limit

cycle also for a multi-joints manipulator. As the limit cycle is sustained, in both case, by the elastic

elements present in the joints themselves, efficient performances are expected by both control laws.

In the nominal case of frictionless systems, the motors stop once the energy reaches the desired

value, so no power is provided by the motors. On the contrary, classic approaches, being designed

to minimize the effects of the elasticity, aim at producing via the springs the torque disgned for the

rigid case. Finally, since elastically actuated manipulators are underactuated mechanical systems,

intuitively there are not enough control inputs to force the system to evolve on the submanifold and

regulate at the same time the energy to the desired value, as it was done in the previous chapter for

a rigidly actuated robot. Loosely speaking, introducing additional dynamics through the controller

allowed to solve this problem. Finally, the stability analysis made extensive use of the semidefinite

Lyapunov theory in order to reduce the system in subsystems easier to analyze.
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CHAPTER 6

Jumping control

In this chapter, the complete underactuated problem is considered. The robot is neither fixed to the

floor, nor rigidly actuated. A bipedal robot is used as case study (see Fig. 6.1). The only simplify-

ing hypothesis that will be used throughout the chapter is to assume that the torque control loop is

reacting fast enough so to not compromise the computations of the balancing part of the controller.

In other words, the torques provided by the balancer guarantee that the robot does not fall, but the

deviation of the torques produced by the springs from the desired ones computed by the balancing

controller must be small enough during the transient not to cause the robot to lose balance. The

assumption is reasonable since the spring torque is part of the state and cannot be instantaneously

changed by any controller. As it has been mentioned, the control law will be composed of a “bal-

ancing part”, whose goal is to guarantee the feasibility of the control law. Loosely speaking, in a

first stage the input to the system will be designed assuming to have full actuation, i.e. including

the wrench at the base. Next, the control forces computed in the previous stage are considered as

desired values and the new control forces are obtained through an optimization problem aiming at

keeping them as close as possible to the desired ones, while satisfying some opportune constraints.

In this second stage, the requirement of having no actuation at the base is included through one of

the constraints.

Although jumping robots are present on the robotic scene since a while (consider for example

ASIMO [SWA+02]), during the years this task has been mainly achieved by quadrupedal robots

for which, obviously, the balancing problem is simplified. Both bipedal and quadrupedal robots

usually use simplified models or offline optimization in order to design force profiles and reference

trajectories [SY05, PPK15]. Few of them include elastic elements in the legs [GCH+13], but it is

not clear how the controller is actively using the springs beside benefit from the improved shock

absorption at the impacts. These are exactly the points on which this chapter focuses.

The contribution presented here is a control law that directly uses the elasticity in the joints in

order to produce a sequence of jumps, while considering the whole dynamic model of the robot.

The resulting jumps are not pre-planned, but a dynamical result of the actions of the springs, whose

torques are shaped trough the control action. To this end, the energy controller for elastically

actuated robots presented in chapter 5 is combined with the balancing controller [HDO16]. As

the latter makes use of the task hierarchy controller [DOAS13,ODAS15], both of them are shortly

presented in the following.
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6. Jumping control

Figure 6.1.: C-Runner: test-bed (left) and simulated model in the initial configuration (right).

6.1. The task hierarchy controller in a nutshell

The task hierarchy controller introduced in [DOAS13, ODAS15] extends the results in [OKN08]

in order to cope with the different priorities that the tasks of a fixed base manipulator with rigid

joints can have. With an abuse of notation, let y(q) indicate the whole task coordinates, so that

y(q) ∈ Rn, and let yi(q) be one of the subtasks. Given the mapping

ẏi = Ji(q)q̇ 1≤ i≤ r , (6.1)

assume additionally that each of the Jacobian matrix Ji(q) ∈ Rmi×n is full rank, as well as each

Jacobian matrix obtained stacking any Ji(q), then a coordinate transformation similar to the one

in section 4.2 can be considered. Indicating with J̄N(q)∈R
n×n the new extended Jacobian matrix,

then

ζ =






ζ1

...

ζr




= J̄N(q)q̇ , (6.2)

where ζ1 = ẏ1, while the others are nullspace velocities ζi ∈R
mi . The latter are designed such that

they represent the original task as closely as possible, but are inertially decoupled from the tasks

with a higher priority level. This new extended Jacobian matrix is invertible, so that

q̇ = J̄−1
N (q)ζ =

r

∑
i=1

Zi(q)ζi , (6.3)

where Z1(q) = J+M(q), while for 2≤ i≤ r

Zi(q) = Ji(q)M
−1

Υi(q) , (6.4)

being Υi(q) the classical nullspace projector [SSVO08] defined as

Υi(q) =En−






J1

...

Ji−1






T 




J1

...

Ji−1






+MT

, (6.5)
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where En is the identity matrix.

Notice that the case examined in section 4.2 can be retrieved setting y(q) =
[
yT

1 · · · yT
r−1

]T

and given that yr ∈ R.

Using the new coordinate transformation the system can be written, similarly to (4.8), as

Λ(q)ζ̇+Γ(q, q̇)ζ = J̄−T
N (q)

(

τ −g(q)
)

, (6.6)

where this time the matrices Λ(q) and Γ(q, q̇) are still block diagonal, but with r entries on

the main diagonal. The same stability property as in [OKN08] holds for the closed loop system

obtained through the feedback control law

τ = g+ J̄T
N




Γ̄






ζ1

...

ζr




+






Z1J
T
1 φ1

...

ZrJ
T
r φr









 , (6.7)

where Γ̄ is obtained from Γ setting the blocks on the main diagonal to zero and φi is a PD term

regulating the task coordinates yi to their desired value ydi
. In addition to [OKN08], here the

transient response is guaranteed to have no inertial coupling between the different tasks.

6.2. The balancing controller in a nutshell

In [HDO16] a balancing controller based on the task hierarchy controller was proposed for a

humanoid robot. The goal is to have the CoM of the robot and the hip orientation (CoM task)

in a given configuration in space. The joint configuration should also be as close as possible

to a desired one (posture task). The CoM task together with the posture task completely define

the configuration of the floating base robot. Due to the restrictions imposed to the system by

the contact state, the posture task might not be fully fulfilled. Assuming to have some of the

end effectors of the robot in contact with the environment and some free to move in space, the

requirements are to produce balancing wrenches with the first (balancing task) and an impedance

behavior with the latter (interaction task). The balancing wrenches have to counteract the effects

of all the other task and compensate the gravity, in order to ensure that the base does not need to

be actuated. The four tasks are organized in the task hierarchy as

• balancing task (φ1)

• interaction task (φ2)

• CoM task (φ3)

• posture task (φ4)

where all the φi are chosen as PD terms, except for φ1. The latter is determined through an opti-

mization problem, which guarantees the feasibility of the control law, i.e. it makes sure that each

balancing end effector does not lift off, slip or tilt, as well as ensuring that no forces at the float-

ing base are commanded. In fact, the main difference compared to the task hierarchy controller

in [DOAS13] is that the input u to the system cannot be fully chosen, i.e. u =
[
0

T τ T
]T

. The

balancing controller in [HDO16] is designed using a frame attached to the CoM and orientation

given by the hip frame, so that with this coordinates the gravity torque simplifies to

[
mg0

0

]

. Using
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a quasi-static argument the controller (6.7) becomes
[
0

τ

]

=

[
mg0

0

]

+
[
JT

1 Υ2J
T
2 Υ3J

T
3 Υ4J

T
4

]
φ , (6.8)

where the property J̄Ni
ZiJi =ΥiJi [DOAS13] has been used and all the forces have been stacked

in φ. The optimization problem can then be formulated as

min
φ1

(

φ1−φd1

)T

W
(

φ1−φd1

)

(6.9a)

s.t. mg0 +Ξuφ= 0 (6.9b)

fmin,i ≤ fi,⊥ (6.9c)
∥
∥fi,‖

∥
∥≤ µi fi,⊥ (6.9d)

CoPi(fi) ∈Si (6.9e)

τmin ≤Ξaφ≤ τmax , (6.9f)

where the cost function minimizes the deviation from a default wrench distribution φdi
with W

a symmetric positive definite weighting matrix. The equality constraint is derived from the first

equation in (6.8), where
[
Ξu

Ξa

]

=
[
JT

1 Υ2J
T
2 Υ3J

T
3 Υ4J

T
4

]
, (6.10)

from which it also follows

τ =Ξaφ , (6.11)

that is the control law applied to the robot. The last inequality constraint is, therefore, ensuring that

the resulting joint torques stay within the limitations of the hardware. Finally, the other constraints

take into account the contact model. There, fi,⊥ and fi,‖ denote the components of the contact

force fi perpendicular and parallel to the contact surface Si. The unilaterality of the contact is

taken into account by limiting the normal component to fmin,i ≥ 0. To prevent the end effector

from slipping, fi,‖ is limited via the friction coefficient µi, while tilting is avoided restricting the

center of pressure (CoP) of each end effector to Si.

6.3. A toy model for jumping

The controllers designed in chapter 4 and chapter 5 have been proved to produce an asymptoti-

cally stable limit cycle for a robotic manipulator. The results have been validated in simulations

and experiments (see also chapter 8). Although not formally proven in the stability analysis, the

experiments show that periodicity is achieved even in case of oscillations around the desired value

of the energy, due to unmodeled disturbances. On the other hand, in chapter 3, it was shown that

a form of energy regulation was able to produce a periodic walking pattern for a simulated biped

robot with impacts. The idea behind the use of energy regulation for a jumping robot can be ex-

emplified using a modified 1 - dimensional SLIP model, i.e. the simplest scenario in which the

elasticity and the energy regulation can be combined to obtain a jumping behavior. The system is

represented by a single massless spring connected to a mass constrained to move along the vertical

direction. The model of the system is:
{

ÿ+g =−KhH̃ẏ− k
(

y− l0

)

y≤ l0

ÿ+g = 0 y > l0
, (6.12)
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Figure 6.2.: Phase portrait of the toy model for Kh = 5 s/kgm2 (left) and Kh = 0.5 s/kgm2 (right).
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Figure 6.3.: Total energy and desired value for Kh = 5 s/kgm2 (left) and Kh = 0.5 s/kgm2 (right).

where H is the total energy of the system, l0 the rest length of the spring, k the stiffness constant

and g the gravitational acceleration. In addition, it is assumed that the velocity before and after the

impact are related by a certain coefficient of restitution α , i.e. ẏ+ = α ẏ−.

Depending on the values of α and Kh, the different phase portraits are reported in Fig. 6.2.

Firstly, in both cases, the strong asymmetry with respect to x is due to the switching of the dynam-

ics. The discontinuity, instead, is due to the impact. Finally, while with a high Kh (left) the system

is able to reach the desired value of energy before the next take off, this is not the case with a small

value of Kh (right). Nevertheless, a limit cycle is reached for which the energy lost at the impact

balances the one injected before the take off. The energy for the two cases is plotted in Fig. 6.3.

Controlling the energy is therefore not only beneficial to exploit the presence of the elastic

joints, but it also provides some kind of robustness against the interaction with the floor. In this

simple example, when the energy is quickly regulated to the desired value, the latter is also directly

responsible for the jumping height. In Fig. 6.4, the actual and desired height are plotted, with the

latter obtained from the desired energy value. For a given energy loss, the maximum reachable

height is limited by the speed at which the energy can be reinjected in the system.

6.4. The jumping controller

The main idea behind the jumping controller is to use the regulation of the energy to produce

the desired oscillatory behavior of a jumping motion, but without taking into account any specific
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Figure 6.4.: Jumping height for Kh = 5 s/kgm2 (left) and Kh = 0.5 s/kgm2 (right).

limitations due to the contact model, similarly to what was done in the previous section. The latter

will be ensured by an optimization problem as in the balancing controller, which redistributes φ

in order to have feasible contact forces.

As a first step, a dynamic state feedback controller as in section 5.3 is used for the robot, leading

to

M(x)v̇+C(x,v)v+g(x) =QTK
(

η−q
)

+QTτd +QT τ̃ +JT
f (x)w f (6.13a)

¨̃τ +Dτ ˙̃τ +
(

Kτ +KB−1
)

τ̃ = 0 (6.13b)

Bη̈+KHH̃K
(

q̄y(η)−q
)

+Dη η̇+Kη η̃ = 0 , (6.13c)

where, the input function τd will be designed through an optimization based approach similar

to the one used in the balancing controller [HDO16]. The details of this optimization problem

will be presented later on. For now assume that τd has been computed and consider the system

conditionally to the convergence of the torque error. Additionally, during the design phase external

wrenches are not taken into account. Therefore, the system to consider for the design of τd is

M(x)v̇+C(x,v)v+g′(x) = u′ (6.14a)

Bη̈+KHH̃K
(

q̄y(η)−q
)

+Dη η̇+Kη η̃ = 0 , (6.14b)

where u′ =
[
0

T τ T
d

]T
and

g′(x) = g(x)−

[
0

K
(

η−q
)

]

. (6.15)

Similarly to (5.28), u′ is chosen as

u′ = J̄T
N










Γ̄ζ+










Z1

(

g′+JT
1 φd1

)

...

Zr−1

(

g′+JT
r−1φdr−1

)

0



















, (6.16)

where φdi
is a PD term regulating the task coordinates yi to their desired value ydi

, both still

to be defined in order to make the robot jump. For the last task, φdr
= 0 since the projection
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of the spring and gravity torque (which have not been compensated) will be responsible for the

oscillatory behavior. In order to facilitate the derivation of the controller input function τd , it is

possible to rewrite u′ as

u′ =

[
Ξu

Ξa

]

φd +

[
bu

ba

]

, (6.17)

with

[
Ξu

Ξa

]

=
[
J̄T

N1
Z1J

T
1 · · · J̄T

Nr
ZrJ

T
r

]
[
bu

ba

]

= J̄T
N







Γ̄ζ+








Z1g
′

...

Zr−1g
′

0















. (6.18)

Finally, τd can be obtained solving the following optimization problem

min
φ

(

φ−φd

)T

W
(

φ−φd

)

(6.19a)

s.t. Ξuφ+bu = 0 (6.19b)

fmin,i ≤ fi,⊥ (6.19c)
∥
∥fi,‖

∥
∥≤ µi fi,⊥ (6.19d)

CoPi(fi) ∈Si (6.19e)

τmin−ba ≤Ξaφ≤ τmax−ba (6.19f)

and setting τd =Ξaφ
∗+ba, where φ∗ is the optimal solution.

Two aspects still need to be considered: the definition of the constraints and the treatment of the

flight phase. The exact definition of the constraints is strongly related to the robotic system under

consideration and therefore in the next subsection the case of the robot in Fig. 6.1 is considered.

Nevertheless, the choice is always based on similar tasks as in section 6.2, i.e. a task for the

end effectors in contact with the environment, one for those free to move, one for the CoM and

a posture task. Concerning the flight phase, it is important to remember that the CoM dynamics

cannot be influenced by the motors until the next touch down. Similarly, not all the velocity

coordinates can be freely influenced since they have to satisfy the conservation of the angular

momentum. The strategy consists, therefore, in switching the weights of the different tasks used

in the cost function. Depending on the contact situation, a bigger deviation from the desired values

is allowed for one or more tasks in order to satisfy the constraints of the optimization problem.

6.4.1. The C-Runner

The C-Runner, Fig. 6.1, is a two-legged planar robot with linear series elastic actuation. Both legs

are attached to a common trunk and all the segments are connected by revolute joints. The trunk,

thighs and shanks carry the electric servomotors which actuate through a cable drive transmission

system the correspondent joint. The drive axis of the motor and the one of the joint are, therefore,

not coincident. The system is scaled to approximately match the dimensions of a 1.65m tall

human. Table 6.1 shows the segment lengths and masses.

The robot is additionally equipped with torque and position sensors to provide a full state mea-

surement. Also, a ground force sensor is integrated into each of the two silicone half domes

representing the contact points of the foot. They give the possibility to roll over during heel strike

or ball push off. The silicone domes provide elasticity, damping and a high coefficient of friction.

This results in shock absorption and improved traction.
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6. Jumping control

The trunk is connected to a boom, which constrains the robot to move in the sagittal plane.

Therefore, the link-side configuration of the robot is defined by nine parameters, three for the

trunk and one for each joint. The first task defines the pose of the feet (6 parameters), the second

the horizontal position of the CoM and the trunk orientation (2 parameters), the third and last one

the vertical position of the CoM (1 parameter). A unique link-side configuration exists, which

fulfills all the tasks.

Task one: feet pose The feet pose task is responsible for keeping the feet on the floor during

the contact phase and to reach the landing pose during the flight phase. Inspired by the results

of chapter 3, a constant offset from the CoM can be used for the desired feet position, while

the desired orientation is parallel to the floor. The weights of this task are the lowest during the

contact phase and increase during the flight phase. In this way, during the contact phase, the feet

are mainly used to provide the necessary reaction forces by pushing in the floor. Moreover, note

that since the unilateral constraints in the optimization only allow the feet to press against the floor,

the feet will not lift even if the desired position is above the ground. This task is equivalent to the

balancing task in [HDO16] when there is a contact, or the interaction task when the foot is above

the floor.

Task two: CoM horizontal position and trunk orientation While in [HDO16] the CoM

task was taking into account also the vertical position of the CoM, in this case the latter is used

to produce the oscillatory behavior and therefore removed from the CoM task. The horizontal

position of the CoM is chosen to be in the middle of the support polygon, in order to maximize

the stability margins during static balancing. The weights of this tasks are the highest during the

contact phase, as it is fundamental to prevent the robot from falling. During the flight phase,

instead, the weights are lowered since only the relative position between the CoM and the feet

can be influenced, which is already tackled by the previous task. Finally, the trunk orientation is

equivalent to the posture task in [HDO16], since it is the only part of the link-side configuration

space left free by the other tasks.

Task three: CoM vertical position As in the last task the oscillatory behavior will be pro-

duced, clearly using the CoM height is a good choice for achieving a jump. Assuming that all the

other tasks are perfectly satisfied, it means that the floor will exert a net force on the robot which

is in line with the weight. This is easily justified by the fact that a movement of the CoM along the

horizontal position would be otherwise produced. Therefore, the vertical oscillation will continue

until the energy is high enough to produce the lift off.

A graphical representation of how the weights are updated can be found in Fig. 6.5. Notice that

while the number associated to the task defines how they are organized in the task hierarchy, i.e.

defines the inertial decoupling of the tasks, the weights define which forces the optimization is

more likely to modify from the desired values in order to satisfy the constraints of the problem.

Table 6.1.: Segment lengths and masses.

Segment Trunk Thigh Shank Foot Total

Length [m] 0.276 0.40 0.40 0.07 1.15

Mass [kg] 24.96 5.46 5.42 1.31 49.34

96



6.4. The jumping controller

Task 1

Task 1 Task 2

Task 2

Task 3Task 3

touch down

take off

In
cr

ea
si

n
g

w
ei

g
h
ts

Figure 6.5.: The weights in the cost function are switched depending on the contact phase.
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Figure 6.6.: Desired energy (blue) and actual value (black).

6.4.2. Evaluation

The proposed control law is evaluated in simulation. An elastic contact is used to model the

interaction with the floor. Notice that, as a small non constant deflection of the floor will always be

present, this is a challenging condition for the controller. The contact is detected by the controller

when the vertical component of the reaction force is bigger than 4N. Moreover, in order to match

the implementation of the real system, the torque control loop is replaced by a motor position

loop with high gains ( KP = 8000Nm/rad, KD = 250Nms/rad), as at the current stage the drive unit

only allows to control the motor in position. This means that the torque τd , is translated into a

desired position θd by inverting the joint stiffness (set to K = 260Nm/rad), i.e. θd = q+K−1τd .

The values Kx for each PD term are listed in Table 6.2, while the correspondent coefficient of the

derivative action was always chosen using a damping ratio of 0.7.

Table 6.2.: Coefficients for the proportional action of the PD terms.

Task one Task two

Linear 625N/m 2025N/m

Angular 4Nm/rad 100Nm/rad

Starting from the initial configuration shown in Fig. 6.1, corresponding to the equilibrium, the

desired energy is ramped up and then down as shown in Fig. 6.6. The plot also shows the real value

of the energy. Notice how, although a negative value is asked for the energy, the minimum reached

value is zero. The computation of q̄y(η), as mentioned in section 5.3.3, is performed using the

current value of y(q), which ensures that there are no offsets in the energy due to the interaction

with the floor.

Concerning the evolution of the energy, an imperfect convergence to the desired value was

expected if for no other than the presence of the impacts, as seen in section 6.3. It should be
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Figure 6.7.: Vertical position zg of the CoM and height z f of one of the feet.

mentioned that there is no special requirement of reaching the exact desired energy, as long as the

desired jumping behavior is obtained. If a higher jumping height is requested, one might increase

the desired value of energy and/or the gain Kh, within the limits set by the hardware.

The resulting jumping height of the CoM is reported together with the height of one of the two

feet in Fig. 6.7. As it can be noticed, the robot starts from the equilibrium configuration, then the

jumps are performed according to the increased desired energy and finally stops again when the

energy goes back to zero.

Finally, in Fig. 6.8 one can see three entries of the input and output of the optimization problem.

All the desired values of the PD terms are well tracked when the robot is at a rest or making small

oscillations, except for the vertical force of the foot. The mismatch is actually the sign that the

optimization is working properly, although one might think exactly the opposite. When the robot

is at rest on the floor, the desired PD term is zero since the foot is exactly stopped at the required

height. Nevertheless, the optimization “knows” that the gravity needs to be compensated and, as

the foot task has a low weight in the cost function, commands the robot to push into the floor. On

the other hand, when the robot starts jumping, in all the plots there are phases with big deviations.

This is again a consequence of the constraints; in particular the PD terms for the trunk orientation

and the CoM horizontal position (bottom two plots in the figure) are well tracked only during the

contact phase, while the one for the height of the foot (top plot in the figure) is tracked better

during the flight phase. This is in accordance with how the weights are chosen in Fig. 6.5. The

touch down events can be easily recognized by the jumps in the plots.

6.4.3. Discussion and limitations

The main differences between the control law presented in this chapter and the ones in chapter 5

consist in the presence of the reaction wrench due to the interaction with the floor and the use

of the optimization problem to guarantee the feasibility of the control action. The latter, although

necessary from a practical point of view, is clearly limiting the possibility of considering a stability

analysis. A possibility to still ensure the stability of the system might be to only scale the desired

forces without changing their direction and orientation, although this increases the complexity

of the optimization problem itself. Nevertheless, the use of optimization has been proven to be

effective in practise and it is the state of the art for legged robotics (see section 1.1). If the result

of the optimization is close enough to the desired values and at least for one foot the contact

with the floor can be considered rigid with good approximation, similar passivity arguments as

in [DOAS13] hold.
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in black.

Finally, the jumping controller can be used as core for developing additional locomotion pat-

terns. Crucial in these cases becomes the role of planning and the presence of a higher level

supervisor. The position of the feet not in contact with the floor is, in fact, paramount for a suc-

cessful stride. Chapter 7 provides some preliminary results for this aspect. At the same time,

a state machine has to orchestrate the sequence of different phases, i.e. double support, single

support or flight phase. This topic has not been covered in this work. In the current state, only

the horizontal position of the CoM relative to the feet is controlled and, therefore, the robot can

change position with respect to the inertial frame.

6.5. Summary

In this chapter, the energy controller for elastically actuated manipulators presented in chapter 5

was incorporated in an optimization framework (originally thought for balancing porpoises), in

order to realize a jumping pattern. A toy model was used to motivate the use of energy regulation

to achieved the desired jumps, showing that energy regulation is not beneficial just to exploit the

presence of the elastic joints. The controller was evaluated in simulation using a planar biped

robot, which shows the effectiveness of the controller and a behavior similar to the toy example.
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CHAPTER 7

Improving the flight control

The content of this chapter is devoted to provide directions for designing ad hoc controllers to be

used during the flight phase. As a consequence the considered robot model is the one of a rigidly

actuated robot with a free floting base and no contacts. This kind of scenario is typical in space

robotics. In that field, the results presented in [UY87, UY89], where the generalized Jacobian

matrix was introduced for the first time, are often used. The idea is to replace the floating base

velocity in the computation of the end-effector Jacobian matrix with the generalized momentum

of the system which, in case of space operations, is often zero or at least constant. This allows to

obtain a simpler expression, i.e. the generalized Jacobian matrix. Therefore, controller based on

the generalized Jacobian matrix rely on the assumption of no generalized momentum in the system,

which is easily fulfilled in space operation but unrealistic for humanoid robots due to the gravity.

On the other hand, even during space operations momentum is accumulated in on-orbit servicing

scenarios where contacts are involved. Additionally, typically humanoid robots are also redundant

for the prescribed task. Strategies to cope with the presence of both a varying momentum and

a nullspace need, therefore, to be considered. Although the proposed controller takes explicitly

into account the dynamics of the generalized momentum, inevitable limitations are present due

to the impossibility to influence such dynamics. The presence of dynamic singularities is another

limiting factor. Unlike for the fixed based case, these singularities are path dependent [PD93] and

further complicate the trajectory planning phase.

The controller can be applied, for example, to guarantee the convergence of the feet to the de-

sired poses before the next impact with the ground or in a space mission where a robot manipulator

is attached to a satellite in order to perform some manipulation task. The latter case is considered

in a simulation study in section 7.3 and depicted in Fig 7.1. The contribution of this chapter is

the design of a control law for regulating the end effector of a floating based robot in presence

of nonzero generalized momentum. Although the controller is considered for a satellite with a

robotic arm, it can be seen as a first result towards improved control of the feet of a humanoid

robot during the flight phase. A satellite, in fact, shares the same structure of the dynamic model

as a humanoid robot, but the absence of gravity simplifies the problem.

101



7. Improving the flight control

Figure 7.1.: Scenario and reference frames.

7.1. The generalized Jacobian matrix

Since the generalized Jacobian matrix relies on the conservation of the momentum for its deriva-

tion, it is clear that using the transformation presented in section 2.2.2 can easily lead to its expres-

sion. That formulation, in fact, implicitly contains the concept of generalized Jacobian matrix. Let

νe be the end-effector body twist and Je(x) the associated Jacobian matrix, so that using (2.33) it

follows

νe = Je(x)v = Je(x)A
−1
Q (x)ξ ,

expressed in terms of both the old and new coordinates. If h= 0, taking into account the expres-

sion of A−1
Q (x), the previous expression simplifies to

νe = J̆e(x)q̇ J̆e(x) = Je(x)Q
+M(x) .

Partitioning the inertia matrix and the end-effector Jacobian matrix to separate the role of the

floating base from the joints, i.e.

M(x) =

[
Mb(x) Mc(x)
MT

c (x) Mq(x)

]

Je(x) =
[
Jeb(x) Jeq(x)

]
,

the following expressions are obtained by direct computation

Q+M(x) =

[
−M−1

b (x)Mc(x)
Enq

]

J̆e(x) = Jeq(x)−Jeb(x)M
−1
b (x)Mc(x) , (7.1)

where Enq
is the nq × nq identity matrix and (7.1) is the well know definition of generalized

Jacobian matrix introduced in [UY87, UY89].

7.2. Momentum decoupling control

The regulation problem of the end - effector of a free floating base robot is addressed, although the

control law is not aiming at providing a solution for an indefinitely long flight phase, as it will be

made clearer in section 7.2.4. Throughout the derivation of the controller it will be assumed that:

Assumption 7.1. The generalized Jacobian matrix J̆e has no singularities for q ∈Q.

The design of the controller also relies on the coordinate transformation presented in the fol-

lowing.
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7.2. Momentum decoupling control

7.2.1. Coordinates transformation

The generalized momentum h, as it was introduced in section 2.2.2, can be expressed in any frame

once it has been transformed by the appropriate adjoint matrix. In particular, using the partitioning

of the matrices in section 7.1, the generalized momentum can be factorized as

h=A(x̃,q)v = Ad−T
c,e (x̃)J

−T
eb

[
Mb Mc

]
v , (7.2)

where x̃ is a local set of coordinates [Ott08] for the position pc,e of the origin of the end effector

frame e expressed in the CoM frame and the rotation matrix Rc,e of the end effector frame w.r.t.

the CoM frame (i.e. a frame attached at the CoM with orientation given by the spatial frame).

Consider first the case of a not redundant manipulator attached to a floating base. The matrices

A and Je can be used to perform a change of coordinates that, as in section 2.2.2, highlights the

dynamics of the generalized momentum. Assuming to have no singular configurations and using
[
h

νe

]

=

[
A

Je

]

v =Ψv , (7.3)

the coupled end effector/momentum dynamics is
[
Λh Λhe

Λ
T
he Λe

][
ḣ

ν̇e

]

+

[
Γh Γhe

Γeh Γe

][
h

νe

]

+

[
γh

γe

]

=Ψ
−TQTτ . (7.4)

In section 2.2.2 the joint dynamics was shown to be inertially decoupled from the generalized

momentum, while in (7.4) the end effector/momentum dynamics is fully coupled. However, it can

be proven that inserting the second equation of (7.4) into the first, the momentum equation results

in ḣ = 0. This is in agreement with the physical fact that any internal forces τ cannot cause an

increase in the generalized momentum of the total system.

In the more general case of a redundant manipulator, a nullspace velocity vn can be introduced

in order to get a square transformation matrix ΨN :




h

νe

vn



=

[
Ψ

N

]

v =ΨNv , (7.5)

where N is a dynamically consistent nullspace matrix defined using a nullspace base matrix Z.

Partitioning the latter as Z =
[
Zb Zq

]
, from the condition ΨZT = 0 follows that

[
Ad−T

c,e J−T
eb Mb Ad−T

c,e J−T
eb Mc

Jeb Jeq

][
ZT

b

ZT
q

]

= 0 =⇒ J̆eZ
T
q = 0 , (7.6)

i.e. Zq is a nullspace base matrix for the generalized Jacobian matrix J̆e. The inverse transfor-

mation Ψ
−1
N =

[
Ψ

+M ZT
]

can be obtained by direct computation of the weighted pseudoinverse

as

Ψ
−1
N =

[

J−1
eb JeqJ̆

+M̆
e JebM

−1
b JT

eb AdT
c,e −M

−1
b McJ̆

+M̆
e ZT

b

−J̆
+M̆
e JebM

−1
b JT

eb AdT
c,e J̆

+M̆
e ZT

q

]

, (7.7)

being J̆
+M̆
e = M̆−1J̆T

e

(

J̆eM̆
−1J̆T

e

)−1

the weighted pseudo-inverse1 of the generalized Jacobian

matrix J̆e with a weight matrix M̆ = Mq−MT
c MbMc. This inertia matrix is commonly in-

dicated as generalized inertia matrix of the free-floating arm [YSKU92] and, as the generalized

Jacobian matrix, can be obtained with the coordinates transformation used in section 2.2.2. Indeed,

it coincides with the matrix Λq defined there, as it can be shown by direct computation using the

block partitioned matrices.

1Notice that for not redundant robot the pseudo-inverse matrices reduce to the inverse matrices.
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7. Improving the flight control

7.2.2. Design of the momentum decoupling control

Given the expression of Ψ
−1
N in (7.7), one can introduce the generalized nullspace matrix N̆

defined as N̆ =
(

ZqM̆ZT
q

)−1

ZqM̆ , so that the choice

τ = J̆T
e fe + N̆Tfn , (7.8)

leads to a closed loop system that after the coordinate transformation, can be written as

Λ





ḣ

ν̇e

v̇n



+Γ





h

νe

vn



+γ =





−Adc,eJebM
−1
b JT

ebfe

fe

fn



 , (7.9)

where

Λ=





Λh Λhe 0

Λ
T
he Λe 0

0 0 Λn



 Γ=





Γh Γhe Γhn

Γeh Γe Γen

−ΓT
hn −ΓT

en Γn



 γ =





γh

γe

γn



 .

For a free-floating robot the transposed of the generalized Jacobian matrix and the transposed

of the generalized nullspace matrix are used for the end effector force and the nullspace force

respectively. In (7.9) the nullspace dynamics is inertially decoupled from the rest, which is a

consequence of choosing a dynamically consistent nullspace matrix. However, the system is still

fully coupled in the Coriolis/centrifugal matrix. Finally, similarly to the not redundant case, by

rearranging the equations it is possible to show that the generalized momentum changes only due

to the gravity.

The control objective is to define the new control inputs fe and fn in order to cancel the effects

of the generalized momentum h and further decouple the end effector and nullspace dynamics

in order to show convergence of the end effector to the target pose and damping of the internal

motion. Given the hypothesis of considering the robot only during the flight phase, the expression

of ḣ can be considered known without requiring measurements of the external forces and torques.

It is enough to know the total mass of the robot and the direction of gravity. The generalized

momentum can also be assumed to be known once the complete velocity coordinates of the robot

are measured. A momentum decoupling law is given by

fe = Γehh+Γenvn−JT
x̃ωKxx̃−Dxνe (7.10a)

fn = Γnhh+Γneνe−Dnvn , (7.10b)

where Kx,Dx are symmetric positive definite matrices and Jx̃ω(x̃) is the representation Jacobian

[Ott08] which correlates the error derivative ˙̃x and the end effector twist νe, i.e. ˙̃x= Jx̃ω(x̃)νe.

7.2.3. Analysis

The closed loop end-effector and nullspace equations are

Λe(q)ν̇e +
(

Γe(q,ξ)+D
)

νe +JT
x̃ω(x̃)Kx̃= 0 (7.11a)

Λn(q)v̇n +
(

Γn(q,ξ)+Dn

)

vn = 0 , (7.11b)

where for brevity ξ = [hTνT
e v

T
n ]

T .

With the aid of the results in [MM07] and given the expression of the dynamic matrices in

(2.17), the following proposition is given
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7.2. Momentum decoupling control

Proposition 7.1. There exist positive constants λΛ,min, λΛ,max, γΓ, γΓ̇1
, γΓ̇2

such that for all q ∈Q,

ξ ∈ Rnv

λΛ,min ≤ ‖Λ(q)‖ ≤ λΛ,max (7.12a)

‖Γ(q,ξ)‖ ≤ γΓ‖ξ‖ (7.12b)

‖Γ̇(q,ξ)‖ ≤ γΓ̇1
‖ξ‖+ γΓ̇2

‖ξ̇‖ . (7.12c)

In order to analyze the asymptotic stability of the system (7.11), it is useful to rewrite it as the

time-varying system:

˙̃x= Jx̃ω(x̃)νe (7.13a)

Λe(t)ν̇e +
(

Γe(t)+Dx

)

νe +JT
x̃ω(x̃)Kxx̃= 0 (7.13b)

Λn(t)v̇n +
(

Γn(t)+Dn

)

vn = 0 , (7.13c)

where the dependency on q has been replaced in favor of an explicit time dependency, with state

variable χ=
[
x̃T νT

e vT
n

]T
.

The analysis will be conducted using the function

V (t,χ) =
1

2

(

νT
e Λe(t)νe +vT

n Λn(t)vn + x̃TKxx̃
)

, (7.14)

which is positive definite and decrescent, since it is lower and upper bounded respectively by two

positive definite functions Vmin(χ) and Vmax(χ). Denoting by λA,min and λA,max the minimum and

maximum eigenvalue of a matrix A, the latter functions are given by:

Vmin(χ) =
1

2

(

λΛe,min ‖νe‖
2 +λΛn,min ‖vn‖

2 +λKx,min ‖x̃‖
2
)

(7.15)

Vmax(χ) =
1

2

(

λΛe,max ‖νe‖
2 +λΛn,max ‖vn‖

2 +λKx,min ‖x̃‖
2
)

. (7.16)

Differentiating V (t,χ) w.r.t. time, one gets V̇ (t,χ) =−νT
e Dνe−vT

n Dnvn≤ 0, i.e. it is a negative

semidefinite function. The function V (t,χ) is used to show the stability property and convergence;

furthermore allows to define a region in which quantities of interest are bounded. This is formal-

ized in the following lemma.

Lemma 7.1. If q ∈Q, then there exists a set Ω such that the state χ, the accelerations ν̇e, v̇n and

the matrices Λ(t), Γ(t), Jx̃ω , J̇x̃ω are all bounded.

Proof. Given the positive definite function V (t,χ) in (7.14) and a constant V0 > 0, define the set

Ω = {χ : V (χ)≤V0}. Considering that V̇ (t,χ) ≤ 0, it follows that there exist c1,c2,c3 > 0 such

that ∀χ ∈Ω

‖x̃‖ ≤ c1 ‖νe‖ ≤ c2 ‖vn‖ ≤ c3 . (7.17)

Without loss of generality, assume to use a quaternion representation for the rotational part of

the error x̃, then

‖Jx̃ω(x̃)‖ ≤ µ1 ‖J̇x̃ω(x̃)‖ ≤ µ2‖νe‖ , (7.18)

with µ1,µ2 > 0.
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Using (7.18) and (7.17), the bounds for the end-effector and nullspace accelerations ν̇e and v̇n

are:

‖ν̇e‖= ‖−Λ
−1
e

(

Γe +Dx

)

νe−Λ
−1
e JT

x̃ωKxx̃‖ ≤ c4 (7.19a)

‖v̇n‖= ‖−Λ
−1
n Γnvn−Λ

−1
n Dnvn‖ ≤ c5, (7.19b)

with c4,c5 > 0.

The bounds for Λ̇e and Γ̇e are obtained considering (7.17), (7.19)

‖Λ̇e‖= ‖Γe +Γ
T
e ‖ ≤ c6 ‖Γ̇e‖ ≤ c7 .

To show the convergence, Barbalat’s Lemma is used and it is reported here for convenience

[SL91].

Lemma 7.2 (Barbalat’s Lemma). If a differentiable function f (t) has a finite limit as t→ ∞, and

is such that f̈ exists and is bounded, then ḟ (t)→ 0 as t→ 0.

Proposition 7.2. If χ ∈ Ω and Assumption 7.1 holds, then χ = 0 is an asymptotically stable

equilibrium point for the system (7.13).

Proof. Using the time-varying Lyapunov function V (t,χ), with V (t,0) = 0, one concludes that

χ = 0 is (uniformly) stable. Convergence can be proved by means of a double application of

Barbalat’s lemma. The first time, Barbalat’s lemma is applied on V (t,z) to show the convergence

of the velocity. To this end, it is necessary to show that V̈ (t,χ) is bounded along the flow of the

system. Applying Lemma 7.1, it exists a set Ω where νe, ν̇e, vn, v̇n are bounded and, accordingly:

|V̈ (t,z)| = |−2νT
e Dxν̇e−2vT

n Dnv̇n| ≤ 2c2c4λDx,max +2c3c5λDn,max , (7.20)

where c2,c3,c4,c5 > 0 are respectively the bounds of νe,vn, ν̇e, v̇n, as derived in the proof of

Lemma 7.1. Applying Barbalat’s lemma on V (t,z) it results V̇ (t,z)→ 0 and accordingly νe→ 0

and vn→ 0, i.e. the end effector and nullspace velocities converge to zero.

The second time, Barbalat’s lemma is applied on νe to show the convergence of ν̇e, which is

then used to show the convergence of the error x̃. To this end, consider ν̈e, which can be obtained

differentiating (7.13b):

Λeν̈e +
(

Λ̇e +Γe+Dx

)

ν̇e +
(

Γ̇e +JT
x̃ωKxJx̃ω

)

νe + J̇T
x̃ωKxx̃= 0 . (7.21)

Considering Lemma 7.1, also ν̈e is shown to be bounded

‖ν̈e‖ ≤ ‖Λ
−1
e ‖(‖Λ̇e +Γe+Dx‖‖ν̇e‖+‖Γ̇e +JT

x̃ωKxJx̃ω‖‖νe‖+‖J̇
T
x̃ωKx‖‖x̃‖)≤ c8 ,

(7.22)

with c8 > 0. Applying Barbalat’s Lemma on νe, it follows that ν̇e→ 0. The convergence of the

end-effector error x̃ can be finally shown considering the limit of (7.13b)

lim
t→∞

[

Λe(t)ν̇e +
(

Γe +Dx

)

νe +JT
x̃ω(x̃)Kxx̃

]

= 0 , (7.23)

from which it follows that x̃→ 0. Therefore, after using Barbalat’s Lemma twice, the whole state

χ converges to zero.
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Table 7.1.: Parameters of the free-floating robot.

l [m] m [kg] Ix [kgm2] Iy [kgm2] Iz [kgm2]

Base 1.17 375 165 280 250

Link 1 0.17 5.1 0.03 0.03 0.03

Link 2 1.3 18.8 1.65 0.64 1.65

Link 3 0.17 8.9 0.15 0.03 0.14

Link 4 1.3 12.0 0.25 0.03 0.25

Link 5 0.17 11.7 0.26 0.03 0.26

Link 6 0.1 5.5 0.02 0.02 0.03

Link 7 0 4.7 0.02 0.01 0.01

7.2.4. Limitation of the control law

From the inverse of the momentum transformation (7.5) it is possible to see that, while the end

effector and nullspace velocities go to zero, the coupled base-joints motion continues to evolve as

a consequence of the nonzero generalized momentum h:

νb→ J−1
eb JeqJ̆

+M̆
e JebM

−1
b JT

eb AdT
c,eh (7.24a)

q̇→−J̆
+M̆
e JebM

−1
b JT

eb AdT
c,eh . (7.24b)

Additionally, the convergence of the end effector is guaranteed only when the singularities of

J̆e(q) are avoided. However, in presence of initial momentum, the singularities could be encoun-

tered also when the end effector has converged, due to the highlighted persistent joint motion.

Considering, for example, the case when the system has a linear momentum, the joints will nec-

essarily reach after a certain time a singular configuration. This result, observed also in [NP11],

is a natural consequence of the fact that it is not possible to control the end-effector in the inertial

frame for an indefinite time if the whole system is moving in space with a linear velocity. On

the other hand, in the case of only angular momentum, singularities could be less problematic,

however the robot will likely converge to joint limits, due to the persistent joint motion induced

by the angular momentum.

In conclusion, until a singularity is reached, the error will continuously decrease due to the

proven convergence properties. In this way, in a space mission, the required end-effector precision

could be ensured during the time of the gripper closure. Additional measures need to be taken

to avoid entering the singularities, for example by activating the satellite thrusts. For a humanoid

robot, instead, the next contact phase will be used to readjust the uncontrolled variables. From a

theoretical point of view, the controller has no assumption on the maximum amount of momentum

that can be handled, however the higher the momenta, the shorter the time to singularity will be.

7.3. Simulation results

In order to verify the proposed control method, a seven degrees-of-freedom free-floating robot in

presence of linear and angular momenta is simulated. The kinematics and dynamics parameters

of the robot are defined in Tab. 7.1.

The initial joints configuration is q(0)=
[
0 1.047 0 −1.047 0 0.52 0

]T
rad, as schemat-

ically depicted in Fig. 7.1. The initial linear and angular momenta are due to the initial linear veloc-

ity vb =
[
−2 1 53

]T
10−3 m/s and angular velocity ωb =

[
−3.5 −57.6 3.5

]T
10−3 rad/s of the

base. The desired pose of the end-effector differs from the initial one of ∆p= [−0.035,0,−0.03]m
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7. Improving the flight control

for the position and of ∆φ = [0,0.087,0] rad for the orientation. The proposed controller is com-

pared against [MMA89]:

τ =−J̆T
e

(
JT

x̃ωKxx̃+Dxνe

)
, (7.25)

where no compensation of the generalized momentum is used. The stiffness and damping values

are respectively Kt = 165N/m, Dt = 175Ns/m for the translation, Kr = 20Nm/rad and Dr = 20Nms/rad

for the rotation. The norm of the end-effector position error is shown in Fig. 7.2 for both con-

trollers. The results show that for the proposed control the end-effector converges to the desired

position. On the other hand, a deviation on the end-effector is induced in case that the momentum

compensation is not used. In general, this deviation is time-varying and its magnitude depends

on both the initial momentum and on the particular maneuver commanded to the robot, since

Γeh = Γeh(q(t)).
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Figure 7.2.: Norm of the end effector position error for PD control and for proposed control.

The joint angles and base attitude are shown for the proposed control respectively in Fig. 7.3

and Fig. 7.4, where it is possible to notice that the joints and base motion continues to evolve while

the end-effector remains fixed, as a consequence of the presence of momentum.
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Figure 7.3.: Joint angles with the proposed control.

The convergence of the nullspace velocity vn can be observed in Fig. 7.5, showing the effec-

tiveness of the nullspace control.
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Figure 7.4.: Attitude of the base.
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Figure 7.5.: Nullspace velocity with the proposed control.

Since the proposed control is based on the online dynamic model of the space robot, uncer-

tainties in the dynamics parameters are introduced, in order to test the robustness. The proposed

controller has been tested with 20 randomly generated models, considering for each body 10%

uncertainty in the mass and 40% uncertainty in the inertias and in the CoMs. Fig. 7.6 shows

an envelope of norm of the step response of the proposed controller with the uncertain models.

The results show that the controller is robust considering dynamics parameters uncertainties and a

worst-case deviation of 3.5 mm from the nominal behavior is obtained.

7.4. Summary

In this chapter, the dynamics of a free-floating system in presence of linear and angular momenta

was investigated. It was shown that the presence of the momentum introduces a drift on the end

effector with standard methods, therefore a torque control law has been proposed in order to com-

pensate this effect without feedback linearizing the system. For the proposed controller, a the sta-

bility proof was given under the hypothesis of non-singularity of the generalized Jacobian matrix.

The effectiveness of the control has been tested in simulation considering model uncertainties.
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Figure 7.6.: Envelope of step response (norm) of the end effector for the proposed controller for

20 uncertain models.
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CHAPTER 8

Improving the robustness

The problem of coping with uncertain models has been widely studied in robotics both from a

robust control point of view [SLT92, CX99, PF99, PVAL+03] and from an adaptive control point

of view [SL87, OS88, SH90]. The contribution of this chapter is the design of a feedback control

law to produce closed attractive orbits for fully actuated robots with unknown disturbances, which

can be modeled using a regressors matrix, e.g. torques due to friction. This extends the results of

chapter 4 where the ideal frictionless case was considered. The idea is once again to impose n−1

constraints to the system and generate an attractive path for the “remaining dynamics”. Since the

design of the controller is carried on in two independent steps, the friction compensation cannot

be achieved with standard techniques. As for the control design, also the friction compensation

will be taken into account in two different steps. To this end, the part of the controller responsible

for forcing the system to evolve on a 1 - dimensional submanifold of the configuration space is

modified using a sliding mode approach as in [PVAL+03], which is robust to model uncertainty

and guarantees asymptotic convergence. For the “remaining dynamics”, on the other hand, it is

not as straightforward to apply a sliding mode approach. For this reason, in the nullspace an

adaptive approach is used to compensate for the disturbance as in [SL87]. Crucial for the analysis

is the concept of conditional attractiveness with semidefinite Lyapunov functions to show the

attractiveness of the closed orbit of the whole system.

8.1. The adaptive control in a nutshell

The adaptive tracking control law presented in [SL87] is given by a feedback term proportional to

the sliding variable s (which is a linear combination of the velocity and position tracking errors)

and a feedforward term which uses an estimation of the unknown parameters. Given a positive

definite matrix P , the estimation is computed using an adaptive law which renders the positive

definite function

Vπ =
1

2

(
sTM(q)s+ π̃TP−1π̃

)
, (8.1)

a Lyapunov function, where π̃ = π̂−π is the error between the estimated and real parameters. In

particular, the estimation is updated as

˙̂π =−P Y T
r (q, q̇, q̇r, q̈r)s , (8.2)
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Yr

−Ks

(8.2)

(8.6)

π̂

s

τ

Controller

Robot

Figure 8.1.: The adaptive Slotine - Li control. The matrix Ks is positive definite and diagonal.

where Yr is the Slotine - Li regressor and q̇r = q̇−s. The control scheme is as in Fig. 8.1.

8.2. The dynamic sliding PID control in a nutshell

The dynamic sliding PID control [PVAL+03] uses, as the control law in [SL87], a sliding variable

s. Nevertheless, unlike in [SL87], the control input is not chosen in order to obtain an asymp-

totically stable dynamics for the sliding variable, but to obtain a stable dynamics in terms of the

output sr of the dynamic system

ṡd =−κsd (8.3a)

σ̇ = sgn(s̃) (8.3b)

sr =Qsσ+ s̃ , (8.3c)

with s̃= s−sd, being s the input and sd ,σ the state. The latter is initialized as sd(t0) = s(t0), i.e.

the value of s at the initial time t0, and σ(t0) = 0. Finally, κ > 0, Qs is a positive definite diagonal

matrix and sgn(a) =
[
sgn(a1) . . . sgn(an)

]T
, for a ∈ Rn. Using a control input proportional to sr,

as it is shown in Fig. 8.2, and given some bounds for the terms present in the dynamic model of

the robot, it is possible to prove the boundedness of sr and ṡr. The latter allows to conclude that a

sliding mode is established for all time on the error variable s̃. To this end, the following second

order dynamical system defined by (8.3)

˙̃s=−Qssgn(s̃)+ ṡr , (8.4)

together with the Lyapunov function

Vs =
1

2
s̃T s̃ , (8.5)

are used, since they imply the sliding mode condition s̃T ˙̃s ≤ −µ |s̃|, µ > 0 [Utk92]. In this way,

the tracking errors are constrained to evolve on a submanifold that has an exponential solution

toward zero [PVAL+03].
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−Ks (8.3)

(8.6)

sr

s

τ

Controller

Robot

Figure 8.2.: Dynamic sliding PID control. The matrix Ks is positive definite and diagonal.

8.3. Energy regulation with friction compensation

As in chapter 4, a function y(q) is introduced that defines a 1 - dimensional submanifold. Addi-

tionally, a virtual potential function U(q) is chosen, such that it posses a constrained local mini-

mum at qd on the submanifold. In section 4.3.1, it has been shown that in this case y(qd) = 0 and

n(qd) = 0, where n(q) := Z(q)∇qU(q). The control law derived here relies on the coordinate

transformation presented in section 4.2. As a consequence, a perfect knowledge of the system

matrices is required. The main reason for this is that the inertia matrix of the robot is required in

order to compute the nullspace projector N(q). Therefore, the considered uncertain model is

M(q)q̈+C(q, q̇)q̇+g(q) = τ +τ f , (8.6)

where τ f ∈R
n are unknown torques acting as a disturbance. Additionally, the following properties

are assumed

Assumption 8.1.

τ f = Y (q, q̇)π (8.7)

where π ∈ Rp is a constant vector of unknown parameters and Y (q, q̇) ∈ Rn×p is the so called

regressor matrix, whose entries, on the contrary, are assumed to be known.

Assumption 8.2.

∥
∥τ f

∥
∥≤ β1 ‖q‖+β2 ‖q̇‖+β3 (8.8)

where β1,β2,β3 ∈ R are positive scalars.

Viscous and Coulomb friction, as well as constant torques and Cartesian forces, are classical

examples of disturbances that can be modeled in this way.

According to the dynamic sliding PID control, the sliding variable is defined as

s= ẏ+Dsy , (8.9)

and the nominal reference as

ẏr = ẏ−sr =−Dsy+sd−Qsσ , (8.10)

being sr the output of the system (8.3). Given the system (8.6) with Assumption (8.1) - (8.2), let

KH ,κ ∈ R be positive scalars, Ds,Ks,Qs ∈ R(n−1)×(n−1) positive definite diagonal matrices and
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8. Improving the robustness

P ∈Rp×p a symmetric positive definite matrix, then the proposed nonlinear controller is (omitting

the dependences)

τ = g+JT
N

([
0 Γxn

−ΓT
xn 0

][
ẏ

v

]

+

[
fx

fn

])

, (8.11)

where

fx =Λxÿr +Γxẏr−Kssr (8.12)

fn =−KHH̃v+Z
(

Y π̂−∇qU
)

. (8.13)

Using the state vector χ= (q, ẏ,v,sd ,σ, π̂), the closed loop system is:

q̇ = J+M ẏ+ZT v (8.14a)

Λxṡr +
(

Γx +Ks

)

sr = J+MTY π (8.14b)

Λnv̇+
(

Γn +KHH̃
)

v+Z∇qU =ZY π̃ (8.14c)

ṡd =−κsd (8.14d)

σ̇ = sgn(s̃) (8.14e)

˙̂π =−PY TZT H̃v , (8.14f)

where the signals sr, ṡr and s are functions of the state only.

Theorem 8.1. For any Hd > 0, the nonlinear autonomous system (8.14) has bounded solutions

locally converging to a closed attractive orbit defined by

Ld =
{
χ | H̃ = 0, y(q) = ẏ = 0,sd = 0,σ = σ∗, π̂ = π̂∗

}
,

for some constant σ∗, π̂∗ satisfying the conditions

•
(

Γx +Ks

)

Qsσ
∗ = J+MTY π

• vZY
(

π̂∗−π
)

= 0 .

Proof. The proof is based on Theorem A.3 formulated in appendix A.

Using the positive semidefinite C1 function of the state (8.5), it is shown in [PVAL+03] that

A = {χ | y(q) = ẏ = 0,sd = 0,σ = σ∗} is the largest invariant set within E =
{
χ | V̇s = 0

}
. In

the proof the derivative of Vs along the flow of the system is computed, leading to

V̇s = s̃T ˙̃s=−s̃TQssgn(s̃)+ s̃T ṡr . (8.15)

Given Assumption (8.2) and choosing Ks big enough it is possible to show that ṡr is bounded.

If the minimum eigenvalue of Qs is also chosen big enough, then the sliding mode condition

s̃T ˙̃s≤−µ |s̃|, with µ > 0, is enforced for all time. From that the convergence of s̃ to zero follows

and, given its expression, also the convergence of y(q) and ẏ. Therefore, A will be the largest

invariant set within E , with
(

Γx +Ks

)

Qsσ
∗ = J+MTY π.

If Ld can be proven to be invariant for (8.14), attractive conditionally to A and that the solutions

are bounded, then all the requirements of Theorem A.3 are satisfied and Ld will turn out to be

attractive for the whole system (8.14). To show the invariance of Ld , it is enough to show that it
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8.3. Energy regulation with friction compensation

is invariant conditionally to A , since the latter is itself an invariant set. To this end, consider the

system

q̇ =ZT v (8.16a)

Λnv̇+
(

Γn +KHH̃
)

v+Z∇qU =ZY π̃ (8.16b)

˙̂π =−PY TZT H̃v , (8.16c)

with y(q) = ẏ = 0, i.e. (8.14) conditionally to A . Computing the derivative of H̃ along the flow

of (8.16), results in

˙̃H =−KHv2H̃ + vZY π̃ , (8.17)

which, together with (8.14f), shows that H̃ and π̂∗ will not change when starting from Ld . To

prove the attractiveness, the following positive definite function is used

Vn =
1

2

(
H̃2 + π̃TP−1π̃

)
, (8.18)

with derivative V̇n = H̃ ˙̃H = −KHv2H̃2 ≤ 0. Boundedness is therefore satisfied by the use of non-

increasing functions. From LaSalle’s invariance theorem, one can conclude that the positive limit

set Ł+
n is given by the largest positive invariant set Mn within the set En =

{
χ | v = 0 or H̃ = 0

}
,

i.e. the set where V̇n = 0. Beside Ld , Mn contains also equilibrium points satisfying the condition

n(q∗) =ZY π̃. Starting close enough to Ld so that the solutions are bounded in a neighborhood

of Ld that does not contain any equilibrium points, they will approach Ld as t → ∞. Finally,

Ld is uniquely determined by one parameter, e.g. the value of n(q), and therefore it is a closed1

attractive orbit in the state space.

8.3.1. Controller discussion

The proposed control law, as the methods it is based on [PVAL+03, SL87], cannot guarantee

asymptotic stability because no stationary value can be known a priori for σ and π̂. These variables

are part of the state of the closed loop system together with the original state of the robot. The

latter will always locally converge to a state satisfying the conditions: H̃ = 0 and y(q) = ẏ = 0,

as expressed in Theorem 8.1. As a result, the physical states of the closed loop system, i.e. the

state of the robot, will always converge to the same values.

The torque generated by the controller, as shown in Fig. 8.3, is due to three contributions: a

dynamic reshaping of the system, the torque provided by the sliding mode part of the controller

and finally the one generated by the adaptive part. The last two are dynamically decoupled and

responsible for forcing the system to evolve on a 1 - dimensional submanifold and for creating the

attractive closed orbit respectively. The dynamic reshaping part of the controller compensates for

the gravity torque and the coupling terms in the Coriolis matrix.

In the analysis it is required that y(q) and ẏ converge to zero. Therefore, a chattering free

sliding mode approach is a perfect candidate for the task. On the other hand, a sliding mode control

cannot be used for the zero dynamics. Although the energy error can be used as sliding variable

with relative degree r = 1, after differentiation the control input would not appear multiplied by the

sliding variable itself, as it is for example in [SL87]. An adaptive method can be used in this case.

It is also clear that, once it has been chosen to adapt the parameters in such a way that convergence

is guaranteed for the zero dynamics, the same parameters cannot be adapted with a different law

1It can be seen as the level set of a positive definite and radially unbounded function.
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Figure 8.3.: The proposed controller is given by three subparts.

to guarantee the convergence to the constraint submanifold. In other word, it is possible to design

the adaptation law for one of the two subparts of the controller. This explains why an adaptive

approach has not been used also to enforce the constraints.

8.4. Experiment

The proposed control law is evaluated in an experiment with the humanoid robot TORO described

in [EWO+14] and developed at the German Aerospace Center (DLR). The robot has 27 degrees

of freedom with a height of 1.7m and a mass of about 77.5kg.

Friction model It is assumed that the unknown torques τ f in (8.6) can be expressed as

τ f = diag(fv)q̇+diag(fs)sgn(q̇) , (8.19)

where fv,fs ∈R
n are the vectors of the unknown coefficients of the viscous and Coulomb friction

respectively. The previous torques can be expressed using

Y =
[
diag(q̇) diag(sgn(q̇))

]
, π =

[
fT

v fT
s

]T
.

Desired configuration and constraint function In this example the constraint submani-

fold is given directly in the joint space. TORO is using its legs to maintain balance, while the 12

joints of the arms are forced on a 1 - dimensional submanifold defined by the constraint function

yi(q) = qi−qdi
−qci

i = 2, . . . ,12 , (8.20)

where qc is used to couple the elbow joint of the right arm to the first joint of the shoulder of

the same arm, i.e. qc4
= 5q1 while the rest of the entries are zero. Finally qd is chosen to be

the desired configuration shown in Fig. 8.4. It is worth to notice that choosing qd1
= 0, then the

condition y(qd) = 0 is satisfied.

Potential function A simple choice for the virtual potential is given by

U(q) =
1

2
kn ‖q−qd‖

2
, (8.21)

where kn = 40Nm/rad. U(q) so defined is clearly positive definite on the 1 - dimensional submani-

fold and with its minimum at qd .
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Figure 8.4.: Desired configuration.

Results Given the definition of y(q), the resulting motion will be an oscillation similar to a

handshake in which the first shoulder joint works as limit cycle generator with the elbow joint

coupled to it, while the remaining ones will keep the desired position.

In order to highlight the role of the friction compensation the gain KH is set very low (KH =
5s/rad2). Because of that, the convergence of the energy error is poor and, in case of no compen-

sation, the friction is the predominant effect and no oscillation is achieved, although the robot is

pushed three times by the experimenter. The plot of the energy is shown in Fig. 8.5, where the

three high peaks correspond to the three interactions between the robot and the experimenter. On

the other hand, using the friction compensation, the energy is oscillating around the desired value

after few seconds, as shown in Fig. 8.6. In both cases the value of the desired energy is Hd = 0.2J.

Table 8.1.: Gains used for one arm in the experiment.

Parameter Value Unit

κ 30 1/s

Qs 0.07 1/s

DS diag(32,60,50,66,51,51) 1/s

Ks diag(5,2.5,2,1.5,1,1) Nms/rad

P diag(10, . . . ,10,1, . . . ,1) rad2/Nms2

The values of the gains used for the experiment are listed in Table 8.1.

Discussion In Fig. 8.6 the energy oscillates around its desired value, although convergence was

theoretically expected. Measurement noise, flexibility of the structure and model uncertainties are

a possible cause for this phenomenon. The mismatch between the real model and the one used

by the controller is supposed to be the main reason for the oscillations in the recorded signal.

The behavior can, in fact, be reproduced in simulation when using an incorrect model for the

controller and disappears when the model is perfectly known, as it can be seen in Fig. 8.7. In

the simulation the robot starts with a higher deviation from the submanifold compared to the
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8. Improving the robustness
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Figure 8.5.: Energy function (continuous line) and desired value (dashed line) without friction

compensation obtained in the experiment.
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Figure 8.6.: Energy function (continuous line) and desired value (dashed line) with friction com-

pensation obtained in the experiment.
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8.5. Summary

t[s]

H
[J
]

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

Figure 8.7.: Energy function (continuous line) and desired value (dashed line) with friction com-

pensation obtained in simulation.

experiment. This causes the big overshoot2 in the plot, since the total kinetic energy is used in

the definition of H(q, q̇), but still a perfect convergence is achieved. The friction model used is

as in (8.19), where the values of the parameters are unknown for the same controller used for the

experimental setup. Uncertainty in the dynamic matrices are not considered by the current state

of the controller. Nevertheless, the experiment gives the opportunity to test the robustness of the

proposed approach. Although it was not formally shown, the behavior results to be periodic even if

the energy error does not converge exactly to zero, showing that the effect of the model uncertainty

is a distortion of the expected attractive closed orbit.

8.5. Summary

In this chapter, the problem of generating attractive closed orbits for rigidly actuated manipula-

tors in presence of unmodeled disturbances was addressed. In order to cope with friction always

present in real systems, the results presented in chapter 4 were extended using a combination of

state of the art approaches for uncertain models. Conventional friction compensation techniques

cannot be applied directly if the design of the control is required to be kept separated in two steps,

as in the frictionless case. The reason is that no interference between the two parts of the controller

is allowed when compensating the friction. The approach has been validated in simulation and

experiment using the humanoid robot TORO, confirming the improvement in the performances

compared to the previous approach.

2During this phase the term proportional to the energy error is acting like a damping, so no unexpected oscillations

will be produced.
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CHAPTER 9

Conclusion

The last decades have seen a steadily increasing attention from the robotic community into the

design of innovative drive concepts, that can allow the systems to perform highly dynamical tasks.

Elastically actuated robots changed how elasticity has been usually considered in robotics. While

the classical mechanical and control design processes tended to reduce the elasticity to a minimum

in order to simplify the analysis and control of the robots, the new actuation principles intentionally

include elastic elements to profit from the possibility of storing energy and protect the motors from

abrupt interaction between the links and the environment. As legged locomotion is demanding

in terms of performant actuation, often the design of legged robots tends to include elastic joints.

Numerous works in the biomechanics field have shown, additionally, that the presence of elasticity

in the structure can explain the principles of locomotion. Therefore, the goal of this work was to

propose a solution for exploiting the presence of elastic joints when used in a legged robots.

The contributions of this thesis can be summarized as:

• insights on the dynamic model of a free floating robot leading to a partially decoupled

structure of the model

• methods to map a single mass template model (SLIP) on a multi-body robot

• design of a static state feedback control for orbital stabilization of rigidly actuated robots

and extension to a robust version

• design of a dynamic state feedback control for orbital stabilization of elastically actuated

robots

• adaptation of an existent optimization based approach for balancing in order to obtain a

jumping pattern via energy regulation

• design of a control law for regulation of the end effector of a free floating robot via momen-

tum decoupling

• extensions of the applicability of semidefinite Lyapunov functions, which are used in the

stability analysis.
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9. Conclusion

Although on the robotics scene since many years, it is still not clear how to use the full potential

of elastic joints. The typical control strategies adopted are still the ones developed when the

elasticity in the joints was an unwanted effect, i.e. this control laws tend to compensate for the

presence of the spring, which is a disturbance to the desired perfectly rigid actuation. The main

focus of this work was then to design control laws aware of the benefits that can be provided by the

energy stored in the springs. With the mind on possible applications to the field of legged robotics,

the requirement for the controller was to generate an asymptotically stable limit cycle, such that

a periodic task could be realized. Jumping, running and walking can be seen, in fact, as periodic

tasks. Once again, elasticity is intuitively helpful for producing an oscillation.

The SLIP template model is capable of extrapolating the main features of different gaits of

humans and many different other animals. Methods to map this template model on a robot were

considered, in order to realize a walking pattern. Already in this first stage it was required to

provide the robot with a mechanism to recover from the energy loss at the impacts.

Starting from the simpler case of a rigidly actuated robot, a static state feedback was designed

to produce an asymptotically stable limit cycle defined as the level set of an energy function. This

is realized by the controller enforcing a set of virtual constraints and regulating at the same time

the energy to the desired value. A version of the controller capable of compensating for a class

of unmodeled disturbances was also considered. As in the rigid case there are no elastic elements

in the joints, the energy function was defined as the sum of the kinetic energy and of a virtual

potential introduced by the controller. When using elastically actuated robots, the virtual potential

is replaced by the physical elastic energy and the gravitational potential energy. Nevertheless,

aiming at keeping the same design idea to produce the limit cycle, i.e. using a combination of

virtual constraints and energy regulation, the complexity of the controller had to be increased. The

goal in this case is achieved by a dynamic state feedback, meaning that the controller is itself a

dynamic system. Precisely, the controller dynamics are mimicking the motor ones. To the best of

the knowledge of the author, this control law is the first one to show how the torques produced by

the springs themselves can be directly used to fulfill the task. Classic approaches, instead, require

that the torques produced by the springs track desired ones designed assuming to have rigid joints

(e.g. backstepping), or assume to have sufficiently high joint stiffness in order to use the motor

position directly as a control input (e.g. singular perturbation).

The validation of the controllers requires a dynamic library, implemented based on the close

form expression and the iterative algorithm presented in the thesis. As a good understanding of the

model is always helpful for the design of the control laws, the properties of the dynamic model of

the robot were carefully examined. Particular attention was dedicated to the structure of the model

of a free floating base robot, as biped robots are clearly not fixed on the floor. The conservation of

generalized momentum was used to derive a block-diagonal structure of the model. This concepts

were used to design a feedback law to control the end effector of a free floating robot to a desired

pose. The case of a robotic arm mounted on a satellite was considered as application scenario,

highlighting the similarities in the objectives and modeling between the field of legged and space

robotics.

The capability of the energy controller to enforce oscillations was used to obtain periodic jumps

with a biped robot. A toy model illustrated the principle behind the idea of having a jumping

pattern based on an energy argument. To take into account the underactuation and the unilateral

constraints inherent with the definition of a locomotion task, an optimization problem was set

up. In particular, an optimization framework designed for balancing control was adapted in order

to incorporate the energy controller and produce the desired jumping pattern. Loosely speaking,

the idea is to use the energy controller assuming to have full actuation, while the optimization

problem takes care of redistributing the interaction forces with the environment in order to ensure
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the feasibility of the control action. Although resorting to the solution of an optimization problem

prevents to carry on an analytic stability analysis of the closed loop system as it was done for all

the other designed control laws, the use of optimization is the state of the art in legged robotics

and it has been shown to be very effective in practice.

As the biggest part of this work dealt with the design of innovative control laws to exploit elastic

joints, future works will focus on applications of the developed controllers for other locomotion

patterns beside the already implemented jumping controller. The latter can be used, for example,

as core for a running controller. Obviously, in this case particular attention must be dedicated to

the planning phase. Footsteps have to be designed in order to guarantee the success of the control

strategy. At the same time, a state machine has to orchestrate the sequence of different phases, i.e.

double support, single support or flight phase. Finally, a model predictive control approach could

be used to improve the optimization problem. Instead of manipulating the current values of the

desired torques, one might consider using their time derivatives to guarantee the feasibility of the

future values.
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APPENDIX A

Stability theorems

In this appendix, some useful notations are recalled. Moreover, the theorems presented are a

contribution to the analysis of dynamical systems with semidefinite Lyapunov functions, as they

extend known results for equilibrium points to the case of generic bounded invariant sets, i.e.

including also limit cycles.

A.1. Definitions

Consider the system

χ̇= f(χ) , (A.1)

where χ∈X ⊂Rm and f : X →Rm is a Lipschitz continuous function, so that a unique solution

exists. The solution of (A.1) starting at χ0 and evaluated at the time instant t is denoted with

χ(t;χ0), so that χ(0;χ0) = χ0.

In case f : X → Rm is only a Lebesgue measurable function, then (A.1) is understood in the

sense of Filippov [Fil88], i.e. (A.1) is replaced by the equivalent differential inclusion obtained

using its convex regularization [Fil88]. Existence of solutions can be guaranteed with the no-

tion of upper-continuity of set-valued functions [Fil88]. Additionally, χ(t;χ0) is the absolutely

continuous solution satisfying the differential inclusion almost everywhere.

The following definitions apply to a bounded, invariant set Ω of the system (A.1).

Distance d(χ,Ω), miny∈Ω ‖χ−y‖

Open ball Bε (Ω), {χ ∈X | d(χ,Ω)< ε}

Closed ball B̄ε (Ω), {χ ∈X | d(χ,Ω)≤ ε}

Sphere Sε (Ω), {χ ∈X | d(χ,Ω) = ε}

Stability Ω is stable if ∀ε > 0, ∃ δ = δ (ε)> 0 such that ∀χ0 ∈ Bδ (Ω)⇒ χ(t;χ0) ∈ Bε (Ω),
∀t ≥ 0
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A. Stability theorems

Asymptotic stability Ω is asymptotically stable if it is stable and ∃ δ > 0 such that ∀χ0 ∈
Bδ (Ω)⇒
limt→∞ d(χ(t;χ0) ,Ω) = 0

Conditional stability Ω is conditionally stable to A if Ω ⊂A and ∀ε > 0, ∃ δ = δ (ε) > 0

such that ∀χ0 ∈ Bδ (Ω)∩A ⇒ χ(t;χ0) ∈ Bε (Ω) , ∀t ≥ 0

Conditional attractiveness Ω is attractive conditionally to A if Ω ⊂ A and ∃ δ > 0 such

that ∀χ0 ∈ Bδ (Ω)∩A ⇒ limt→∞ d(χ(t;χ0) ,Ω) = 0

Conditional asymptotic stability Ω is conditionally asymptotically stable to A if Ω⊂A is

stable conditionally to A and ∃ δ = δ (ε)> 0 such that ∀χ0 ∈Bδ (Ω)∩A ⇒ limt→∞ d(χ(t;χ0) ,Ω)=
0

A.1.1. Semidefinite Lyapunov functions

The results presented here extend those for equilibrium points that can be found in [IKO96,SJK97].

Theorem A.1 (Stability). Let Ω be a bounded, invariant set for (A.1), and let V (χ) be a C1

function such that V (χ)≥ 0, V (Ω) = 0 and V̇ (χ)≤ 0. If Ω is asymptotically stable conditionally

to A = {χ | V (χ) = 0}, then Ω is stable.

Proof. Suppose by contradiction that Ω is unstable. Then exist an ε such that ν > ε > 0, a

sequence (χ0n)n∈N ⊂ Bε(Ω), limn→∞ d(χ0n,Ω) = 0, and a sequence (tn)n∈N ⊂ R+ in such a way

that

{

d(χ(t;χ0n),Ω)< ε 0≤ t < tn

d(χ(tn;χ0n),Ω) = ε ∀n ∈ N .
(A.2)

Since Sε (Ω) is compact, a convergent subsequence y′n can be extracted from yn =χ(tn;χ0n) such

that y′n→ y ∈ Sε(Ω) as n→ ∞. Moreover because of the continuity of the solutions of (A.1) and

the invariance of Ω, tn→ ∞ as n→ ∞.

Now, V (χ(−t;y)) = 0 has to be shown. Let τ < 0 and N ∈N be such that 0 < tn+τ < tn, ∀n≥
N. Because V is not increasing along the solutions of (A.1), it follows that

0≤V (χ(tn + τ ;χ0n))≤V (χ0n) . (A.3)

From limn→∞ d(χ0n,Ω) = 0, V (Ω) = 0 and the continuity of V , it follows

V (χ(τ ;y)) = lim
n→∞

V (χ(τ ;χ(tn;χ0n))) = lim
n→∞

V (χ(tn + τ ;χ0n)) = 0 . (A.4)

It remains to prove that χ(−t;y) ∈A and d(y,Ω) = ε cannot hold if Ω is asymptotically stable

conditionally to A . Since Ω is asymptotically stable conditionally to A , ∃ T = T (ε) > 0 such

that d(χ(T ;χ0),Ω)≤ ε
2
, with χ0 ∈A . If one chooses χ0 = χ(−T ;y) ∈A , then

ε

2
≥ d(χ(T ;χ0),Ω) = d(χ(0;y),Ω) = d(y,Ω) = ε .

Since this is a contradiction, it can be concluded that Ω must be stable.
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A.1. Definitions

Thanks to the properties of positive semidefinite functions it is possible to ensure not just the

stability, but also the asymptotic stability of an invariant set Ω. To this end, first two results are

recalled.

Lemma A.1 ( [IKO96]). Let V be a nonnegative function with V̇ (χ)≤ 0, then A = {χ | V (χ) = 0}
is a positively invariant set and A ⊂ E =

{
χ | V̇ (χ) = 0

}
.

Lemma A.2 ( [Kha02]). If a solution χ(t;χ0) of (A.1) is bounded and belongs to X for t ≥ 0,

then its positive limit set Ł+ is a nonempty, compact, invariant set. Moreover, χ(t;χ0) approaches

Ł+ as t→ ∞

Theorem A.2 (Asymptotic stability). Let Ω be a bounded, invariant set for (A.1), and let V (χ)
be a C1 function such that V (χ) ≥ 0, V (Ω) = 0 and V̇ (χ) ≤ 0. If Ω is asymptotically stable

conditionally to the largest positively invariant set M within E =
{
χ | V̇ (χ) = 0

}
, then Ω is

asymptotically stable.

Proof. In order to prove asymptotic stability one has to show stability and attractiveness.

From Lemma A.1 it follows that A is a positively invariant set and A ⊂ E , so since Ω is

conditionally stable to M and V (Ω) = 0 i.e. Ω ⊂ A , then it must be conditionally stable to A ,

hence Ω is stable by Theorem A.1.

Attractiveness is proven by contradiction. Since Ω is stable then ∀ε > 0, ∃ δ = δ (ε)> 0 such

that ∀χ0 ∈ Bδ (Ω)⇒ χ(t;χ0) ∈ Bε(Ω), ∀t ≥ 0. This means that using also Lemma A.2, then

Ł+ is a positively invariant set and Ł+ ∈ Bε(Ω)∩M . Now, assume by contradiction that Ł+ is

not Ω. Since Ω is asymptotically stable conditionally to M , then limt→∞ d(χ(t;χ0),Ω) = 0 if

χ0 ∈ Bε(Ω)∩M . Choosing χ0 = y ∈ Ł+ 6= Ω one reaches a contradiction.

Theorem A.3 (Convergence with semidefinite functions). Let Ω be a bounded, invariant set for

(A.1), and let V (χ) be a differentiable function such that V (χ) ≥ 0, V (Ω) = 0 and V̇ (χ) ≤ 0. If

Ω is attractive conditionally to the largest positively invariant set M within E =
{
χ | V̇ (χ) = 0

}

and the solutions are bounded, then Ω is attractive.

Proof. Let α = minχ∈Sν (Ω)V (χ) , α > 0, and take β such that 0 < β < α . Then the set Ωβ =
{χ ∈ Bν(Ω) | V (χ)≤ β} is a compact positively invariant set and by virtue of LaSalle’s invari-

ance theorem then every solution starting in Ωβ approaches M as t→ ∞. Since the solutions are

bounded, then ∃ δ = δ (χ0)> 0 such that χ(t;χ0) ∈ Bδ (Ω), ∀t ≥ 0. Using Lemma A.2, the posi-

tive limit set Ł+ is such that Ł+ ∈ Bδ (Ω)∩M . Additionally, since Ω is attractive conditionally to

M , then limt→∞ d(χ(t;χ0),Ω) = 0 if χ0 ∈ Bδ (Ω)∩M . Now, assume by contradiction that Ł+ is

not Ω. Choosing χ0 = y ∈ Ł+ 6= Ω one reaches a contradiction.

129





Bibliography

[AB06] Mojtaba Ahmadi and Martin Buehler. Controlled passive dynamic running experi-

ments with the ARL-Monopod II. IEEE Trans. on Robotics, 22(5):974–986, 2006.
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Eiberger, Werner Friedl, Robin Gruber, Sami Haddadin, Ulrich Hagn, Robert

Haslinger, Hannes Höppner, Stefan Jörg, Mathias Nickl, Alexander Nothhelfer,

Florian Petit, Josef Reill, Nikolaus Seitz, Thomas Wimböck, Sebastian Wolf, Tilo
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