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Zusammenfassung
Um virtuelle Gegenstände in erweiterter Realität, englisch Augmented Reality (AR), wirklichkeitsge-
treu in die Ansicht der realen Umgebung einzublenden, werden Kenntnisse über diese Umgebung be-
nötigt: zum Beispiel die aktuelle Beleuchtungssituation, um virtuelle Gegenstände dementsprechend
zu beleuchten, und die Abmessungen der Umgebung in absoluten Einheiten wie Meter, um virtuel-
le Gegenstände korrekt zu skalieren. Wir schlagen vor, das Gesicht des Benutzers als ein bekanntes
Objekt zu verwenden und von Bildern des Gesichts die Beleuchtung und Skalierung der realen Welt
abzuleiten.

Aktuelle Methoden sind entweder auf zusätzlich in die Szene gestellte bekannte Objekte ange-
wiesen, benötigen Spezialausstattungen wie Tiefenkameras oder Fischaugenlinsen oder beinhalten
umständliche Aufnahmeschritte. Für den normalen Benutzer von tragbaren Geräten, wie z.B. Smart-
phones, stellen diese Methoden Hürden dar. Das Gesicht des Benutzers kann dagegen jederzeit be-
quem mit der Frontkamera aktueller tragbarer Geräte aufgenommen werden.

Form und Reflexionsvermögen von Gesichtern unterscheiden sich nur begrenzt zwischen verschie-
denen Menschen. Sie lassen sich daher mittels Durchschnittsmodellen approximieren. Diese Modelle
können im Voraus erstellt werden und ermöglichen Methoden, die in Echtzeit und mit einfachen mo-
nokularen Kameras aktueller tragbarer Geräte arbeiten.

Als erstes verwenden wir das Gesicht zur Lichtschätzung. Wir lernen unter Verwendung einer
Bilddatenbank mit verschiedenen Gesichtern unter verschiedenen bekannten Beleuchtungsituationen,
wie das menschliche Gesicht einfallendes Licht aus einer bestimmten Richtung zur Kamera hin re-
flektiert. Dies ermöglicht es uns, anschließend auf Basis eines Bildes des Gesichts des Benutzers in
Echtzeit das gegenwärtig einfallende Licht zu schätzen. Wir belegen die Leistungsfähigkeit unserer
Methode zur Lichtschätzung sowohl durch Vergleiche der Schätzung mit der tatsächlichen Beleuch-
tung als auch anschaulich durch Bilder und Videosequenzen, in denen die geschätzte Beleuchtung auf
die eingeblendeten virtuellen Gegenstände angewendet wird.

Als zweites verwenden wir die bekannte Größe des Gesichts, um die absolute Skalierung der
Rekonstruktion der realen Welt, die aufgrund einer monokularen Kamera nicht bekannt ist, zu be-
stimmen. Indem der Augenabstand des Benutzers, entweder als statistischer Mittelwert oder durch
einmalige Vermessung, in absoluten Einheiten wie Millimetern angegeben wird, kann auch die Pose
(Position und Orientierung) der Frontkamera bezüglich des Gesichts in absoluten Einheiten bestimmt
werden. Die Bewegung der Frontkamera kann auf die Bewegung der fest verbundenen Hauptkamera
übertragen werden, welche die reale Welt vor dem Benutzer verfolgt. Unter der Annahme, dass sich
das Gesicht bezüglich der Umgebung nicht bewegt, kann so die Skalierung der Rekonstruktion der
Umgebung bestimmt werden. Die bekannte Skalierung erlaubt neben der Darstellung virtueller Ge-
genstände in richtiger Größe auch die Vermessung von Strecken in der realen Umgebung. Wir werten
die Leistungsfähigkeit unserer Methode zur Skalierungsschätzung in Hinblick auf Genauigkeit und
Präzision aus und zeigen, dass die erzielten Ergebnisse viele Anwendungsfälle ermöglichen.

Die beiden vorgestellten Ansätze zur Bestimmung von Beleuchtung und Skalierung der realen
Welt stellen zum einen zwei neue Methoden dar, die auf den nicht professionellen Markt tragbarer
erweiterter Realität zugeschnitten sind und durch ihre einfache Ausführbarkeit ohne zusätzliche An-
forderungen an Hardware bisherige Einschränkungen existierender Ansätze beseitigen. Zum anderen
verdeutlichen die beiden Ansätze auch das generelle von dieser Dissertation aufgezeigte Konzept,
welches als Grundlage für zukünftige Forschung dienen kann: die Verwendung des Gesichts des Be-
nutzers als bekannten Gegenstand zur Gewinnung von Informationen über die reale Umgebung.



Abstract
In Augmented Reality (AR) knowledge about the real environment is crucial to realistically embed
renderings of virtual objects in the view of the real world. Knowledge comprises e.g. the illumination
present in the real world to light virtual objects coherently. It also comprises the dimensions of the
real environment in absolute units like meters to overlay virtual objects at proper size. We propose to
leverage the face of the user as a known object in order to deduce information about the illumination
and scale of the real environment based on images of the face.

State-of-the-art approaches either rely on additional known objects that have to be put into the
scene, they rely on specialized hardware like depth cameras or fisheye lenses, or they require cum-
bersome capture procedures. All of that poses barriers for nonprofessional users of handheld AR
applications. The face of the user in contrast can be conveniently captured by the user-facing camera
of current handheld devices at any time.

As the shape and reflectance of faces vary only moderately among different humans, the user’s
face can be approximated by average models of shape and reflectance. These models can be built in
advance and enable approaches that run in real time on images from simple monocular cameras of
current handheld devices.

Firstly we leverage the face as a light probe. Using an image dataset with different faces under
different known illuminations we learn how the average face reflects light incident out of a certain
direction towards the camera. This enables us to subsequently estimate the present real-world illu-
mination incident on the user’s face from an image of the face in real time. We demonstrate the
effectiveness of our light estimation method by comparing the estimated illumination against ground
truth as well as perceptually by presenting augmented image and video footage where virtual objects
are lit with the estimated illumination.

Secondly we leverage the face as an object of known size, which resolves the ambiguity in scale
stemming from the reconstruction of the real world by a monocular camera. By specifying the dis-
tance between the user’s eyes in absolute units – either by simply using the statistical mean value
or by once measuring that distance – the pose (position and orientation) of the user-facing camera
with respect to the face can be determined in absolute units like meters. In a handheld AR scenario,
the motion of the user-facing camera can be transferred to the motion of a rigidly connected world-
facing camera that is used to track the real world in front of the user. Under the assumption that the
face remains stationary in the real world, the absolute scale of the real-world reconstruction can be
determined. Knowing the scale of the reconstruction does not only allow rendering virtual objects
at correct size but also performing distance measurements within the real world. We evaluate the
performance of our scale estimation method in terms of accuracy and precision and demonstrate that
the results are sufficient for many use cases.

The two presented solutions for estimating the illumination and absolute scale of the real world do
not only enable new methods that are tailored to the nonprofessional handheld AR market, because
they overcome limitations of state-of-the-art approaches and are simple to perform without additional
hardware requirements. The two methods also showcase the much broader idea presented in this
thesis which may serve as a foundation for future research: to leverage the user’s face as a known
object to deduce information about the real world.
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1 Introduction

In Augmented Reality virtual content that is related to the real world is added to our
view of the real-world surroundings. For seamlessly integrating this virtual content
into the view of the real world a good understanding of the real environment, e.g. in
terms of geometry and illumination, is essential. If the environment, which also is
referred to as scene, is not already known in advance, a comprehensive on-the-fly
reconstruction of the environment is needed. When the scene is reconstructed
based only on images from a simple monocular RGB camera as it is available in
current handheld devices, some parts of the reconstruction problem however are
under-determined, e.g. appraising the absolute scale of the geometric reconstruction
or estimating the illumination present in the scene. Most existing approaches that
address these tasks in the context of Augmented Reality thus demand either
additional specialized hardware like for example a depth camera or they rely on
known objects that need to be captured by the camera. The latter thereby assume
that the special objects are at hand and often involve laborious extra set-up and
capture steps. We instead propose to leverage the face of the user as a known object,
which is part of the scene anyway. Many available set-ups in video see-through
Augmented Reality already feature a user-facing camera, so that taking an image of
the user’s face is straight forward. Additionally the human face is limited in its
variations, so that average properties can be used as approximation for a particular
user. With this idea we overcome common problems like the need for known special
objects and laborious extra steps while still keeping the hardware requirements low.

The goal of this dissertation is to explore the idea of employing the face of the user as a known object

in the context of scene reconstruction for Augmented Reality (AR) applications. Relying on the face

supersedes specialized hardware and additional objects that are required by current approaches. By
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that it enables new, light-weight, and easy-to-use methods for reconstructing the real world that are

especially well suited for non-professional users.

In this introductory chapter we will start in section 1.1 by giving the context for the conducted

research. We outline the idea of AR, to display virtual content, that is related with the real world,

directly within our view of the world. In section 1.2, we then will document the rationale why a

reconstruction of the real world is important for a seamless integration of virtual content into the

view of the real world and will bring up existing challenges. In this thesis we will in particular

pitch on two problems in scene reconstruction using a monocular camera: estimating the present

illumination, and estimating the absolute scale of the real-world reconstruction. In section 1.3 we

will convey our idea to leverage the face of the user as a known object to support the reconstruction

of the scene and will already provide a short preview on how we address the two problems of scale

and illumination estimation by using the face of the user as a known object. We sum up the main

contributions of this thesis in section 1.4, bring up involved collaboration partners in section 1.5, and

enumerate accompanying publications and filed patents in section 1.6. This introductory chapter then

concludes with section 1.7, which describes the organizational structure of this thesis.

1.1 Augmented Reality

In Augmented Reality (AR) our perception of the real-world surroundings is enriched by additional

digital content – ranging from purely textual information to complex 3-dimensional virtual objects.

Which digital content is augmented where depends on what is visible in the real world as virtual

content is spatially registered with the real world.

Technologically AR often is implemented as video see-through AR, where the view of the real-

world environment is provided in form of a live-video stream that is captured by a camera and that is

presented to the user on a display. The digital content is embedded by overlaying computer-generated

renderings of the content on top of the video stream.

The content often comprises virtual 3-dimensional objects which act as surrogates for real objects.

This can for example be used for product previews to give the user the impression how an actual object

would look like in the surroundings. Popular examples comprise placing furniture in your room or

virtually trying on jewelry or glasses. Other common applications range from games and advertising

to work-flow assistance and visualizations in the industrial and medical domain.

A platform that is well suited for enabling video see-through AR applications for the mass market

are smart phones. These devices have become very popular over the last decade. In 2015 for example

more than 90% of the population in Germany at the age between 14 and 24 used a smartphone on a

regular basis for mobile Internet access [Stat 16]. Smart phones thereby have become companions of

our daily life, that we tend to always carry with us, so that these devices are ubiquitously available.
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Being mobile computers equipped with camera, display, and mobile Internet, smart phones feature all

the basic hardware requirements for video see-trough AR.

Beside smart phones also mobile computers like notebooks or tablets have become more and more

popular. Most of these devices also at least feature a user-facing camera (web cam). This makes

them applicable for video see-through AR applications on the image of that camera for example in the

domain of virtual try-on or video chat.

While all these devices feature what is basically needed for AR, they are originally designed for

general purpose and not specifically targeted at AR applications. The majority of devices for example

only feature monocular intensity cameras and lack specialized sensors like depth or stereo cameras

that would simplify 3-dimensional data acquisition.

In order to support an as broad as possible audience of users for an AR application it is thus im-

portant to pay attention to the hardware components and processing power that are available to the

consumers and to tailor to that the particular approaches and techniques.

While with the predicted raise of AR in the future also the mass market devices will more and

more focus on AR and hence these restrictions will diminish, the raise of AR itself will depend on the

adoption by the market at present.

1.2 Scene Reconstruction in Augmented Reality

In traditional computer graphics all the definitions that are needed for generating an image are already

given. The definitions may comprise the camera pose (i.e. the position and orientation of the camera),

all the geometries (e.g. 3-dimensional triangle meshes) and materials (like textures and other rendering

parameters like specularity) of the virtual objects, as well as all the light source specifications. These

definitions thus can be directly used as input for the rendering stage.

In AR often, however, only the digital content is known in advance. The real-world part depends

on where and when the AR application is executed and all the information that is known about the

real world is provided by the captured images thereof. These images then shall be merged with

renderings of the digital content. Especially for applications where the virtual 3-dimensional objects

in the augmented view act as surrogates for real objects it is clearly beneficial when the renderings of

the virtual objects seamlessly integrate in the view of the real world. Thereby the augmented image

shall strongly resemble a fictitious real image, so that the user has the impression that the synthetic

objects are actually placed within the real world. To coherently and seamlessly compose renderings

of virtual objects with the view of the real world, knowledge about the surrounding environment is

crucial. As this information is not known in advance, it thus must be first acquired and reconstructed.
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1.2.1 Camera Pose Determination at Absolute Scale

The current camera pose in relation to the real world must for example be determined in order to

display the virtual objects under an adequate perspective that matches the background image of the

real world. Even when the real world, e.g. the room of a user, is unknown to the application at start

up, it still shall be possible to determine the camera motion with respect to this previously unknown

environment, in order to allow placing virtual objects into this environment. For that the geometry of

the real-world environment must be reconstructed during run time.

A famous method that allows for building a (sparse) 3-dimensional model of an unknown scene

while simultaneously delivering the current camera pose in relation to the scene is monocular

SLAM [Davi 07]. SLAM stands for Simultaneous Localization And Mapping. Monocular SLAM

runs on the image stream of a single intensity camera and thus is applicable even on standard smart

phones. The resulting reconstruction from monocular SLAM however is created at an arbitrary scale

factor with an unknown relation to real-world metrics like meters. This ambiguity in scale results

from the fact that images captured of the scene only measure a projection of the scene. A camera pose

that is determined from this reconstruction inherits the arbitrary scale factor of the reconstruction.

Therefore, when this pose is used for rendering virtual objects, also the augmentations will appear at

arbitrary size.

Very popular AR use cases include virtually placing a piece of furniture in the living room to test

if it would spatially fit in the room and how it would visually match its surroundings. Here it is

indispensable that the virtual objects are presented at correct scale. To display a virtual object in real

physical dimensions, the camera pose must be determined at absolute scale.

Different approaches exist to bring the reconstruction and thus also the augmentations to correct

size. Some rely on objects or markers of known size [Davi 07] that have to be put into the scene

and captured by the camera to determine the correct scale. Others employ additional sensors, e.g.

the accelerometer sensor of the smart phone [Tans 13] that is able to measure the linear acceleration

of the device in absolute units. This then allows to transfer the knowledge about the camera motion

to the reconstruction of the scene. Even other approaches rely on special cameras [Lieb 11, Kerl 13]

that deliver depth values at correct scale. All these approaches limit the convenience for the user

by adding additional requirements. Either in terms of available items like known objects, markers

or special hardware like depths cameras. Or in terms of requiring the user to perform specific tasks

like capturing the known objects or moving the device in certain unintuitive ways to e.g. exploit the

readings from the accelerometer sensors.

1.2.2 Augmentations Lit with Real-World Illumination

If the goal is not only to display the virtual objects at the correct spot, orientation, and size in the real

world but to photo-realistically embed the objects into the camera stream, also the illumination present
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in the real world must be considered and applied for the renderings, so that the virtual objects are

illuminated with the same lighting conditions visible in the real-world environment. If the scene is for

example lit by sun light from one specific direction, also the virtual objects should be lit accordingly.

Inconsistent illumination manifests for example in improper coloring as well as wrong positions of

highlights and cast shadows and thereby disrupts the realistic impression. The illumination present in

the real world however is unknown and thus first must be determined – preferably in real time at the

time of augmentation.

Some methods therefore acquire omni-directional images of the surroundings to capture the inci-

dent light. They either rely on mirror spheres [Debe 98] that need to be put into the scene and need

to be captured by the camera. Or they rely on an additional fish-eye camera [Sato 99] capturing the

surroundings, which however requires the user to either have a mirror sphere or an additional fish-eye

camera available. Other approaches stitch together multiple images [DiVe 08] taken of the surround-

ings. This however is a quite tedious and cumbersome process.

An alternative for determining the present illumination is to estimate the incident light from the

video image of the real world used for the augmented view. While this poses less duties on the user,

this problem in general is ill-posed and underdetermined. There is an ambiguity between the unknown

material and geometry of the scene and the unknown illumination. Some approaches try to reduce the

ambiguity by either using depth cameras [Grub 12] or by relying on known objects [Arie 12] that

have to be additionally put into the image of the camera. Like in the case of scale estimation, this

however adds additional requirements for the user either in terms of available hardware or in terms of

additionally required tasks.

1.2.3 Targeting the Mass Market

This thesis targets AR applications for non-professional users.

The proposed approaches for reconstructing the real world thus need to work on hardware which

is available at the mass market. In terms of cameras, we will only require simple monocular intensity

cameras without any depth sensor. Our developed algorithms also need to feature a low impact on

power consumption, which is especially important in the field of mobile AR.

Beside low hardware requirements, our focus lies on easy use. Unlike many existing methods, we

do not expect the user to carry with them any additional markers or objects. Also we strive to avoid

cumbersome and tedious set-up or calibration steps. We aim for fast and intuitive methods running in

real time.
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1.3 The Face of the User As a Known Object

As explained above, some problems in scene reconstruction are ill-posed and under-determined when

working only on the images of a monocular intensity camera. One popular way to tackle this hurdle

is the addition of known objects to the scene. The existing knowledge about these objects then can be

used to make the reconstruction problem solvable for example in the field of illumination estimation

or scale determination. We however do not want to add additional objects. We thus in section 1.3.1

have a look at what is already available in video see-through AR and identify the face of the user as

well suited known object.

In this thesis we will in particular leverage the user’s face as a known object to address two specific

problems in the domain of scene reconstruction: estimating the present illumination and estimating

the absolute scale of the real-world reconstruction. We provide short previews on our approaches in

section 1.3.2 and section 1.3.3 respectively. The two examples illustrate the broad field of possible

applications of our idea.

1.3.1 The Face of the User in Video See-Through AR

AR is a technology for human users. In video see-through AR we always have the user positioned

in front of a screen observing the presented augmented view. The user thus is always part of the

scene and is facing the screen. Many hardware set-ups like for example smart phones also comprise a

user-facing camera, so that an image of the user’s face can be acquired at any time.

Based on this awareness we will in this dissertation thesis aim at leveraging the user’s face as

a known object and we will in particular elaborate how images of the user’s face captured by the

user-facing camera can be exploited to deduce information about the real world in terms of present

illumination and absolute scale.

Two facts thereby allow us to treat the user’s face as a known object.

Firstly, even though the appearance of the human face varies significantly amongst different people,

which for example enables us to recognize people from an image of their face, all the faces of different

humans still have a lot in common. Human faces exhibit properties that vary only within a limited

range, e.g. the spatial dimensions of facial fiducials and their appearance or the reflectance properties

of human skin. This limited range over different humans allows generating models for the respective

properties which then can be applied for a multitude of humans. The human face thereby becomes

an (at least approximately) known object. Well-established applications thereof are face detection and

face tracking, where an algorithm locates a face within an image and even determines the pose of the

face with regard to the camera although the particular face is potentially unknown to the algorithm.

Secondly, the appearance of a particular user’s face can also be once calibrated and then reused

whenever this user is again running the AR application. The calibration can for example be stored on
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the user’s device. Also multiple calibrations of different faces can be stored either locally or online

and the correct calibration can be selected using a face detection for the current user. A calibration for

a specific face and its properties may increase the accuracy of the methods building upon.

In this thesis we will leverage the user’s face as a known object to address two particular problems

in the domain of scene reconstruction. First we will exploit limited variations in terms of shape and

reflectance properties of human faces to estimate the incident illumination based on a single image

of the user’s face which for AR enables a coherent illumination of the virtual objects. A preview

on our approach is given in section 1.3.2. Afterwards we will exploit limited variations in terms of

spatial physical dimensions between different human faces to bring a geometric reconstruction of

the real world from arbitrary scale to absolute scale using images of the user’s face. This enables

augmentations of virtual objects at correct size. A preview on our approach is given in section 1.3.3.

1.3.2 Light Estimation from the User’s Face

A highly realistic augmented view requires that the illumination of the virtual objects matches the

illumination of the real world. It thus is desirable to determine the present real-world illumination.

State of the art approaches for acquiring the real-world lighting conditions often either use extra

objects like markers or mirror spheres that need to be added to the scene as light probes or they

require special hardware like depth or fish eye cameras.

We in here present an alternative approach. We employ the user’s face, which is already located in

the scene, as a light probe and estimate the real-world lighting conditions in real time from a single

monocular image of the user’s face. This allows a coherent illumination of virtual objects in AR. We

thereby neither require that the user has available any additional markers, objects, or extra hardware

nor do we expect the user to perform any cumbersome and tedious set-up or calibration steps.

Our approach falls in the area of supervised machine learning and regression analysis. The limited

range in variations between different human faces allows to offline analyze their appearance under

lighting and thereby their reflection properties beforehand and to then apply the findings to new faces.

Our light estimation approach thereby is separated into two steps.

In a first step – a one-time offline training process – we learn radiance transfer functions for different

positions on the face, based on a dataset of images of faces captured under different known illumina-

tions from The Extended Yale Face Database B [Geor 01, Lee 05]. The radiance transfer functions

describe how incident light on the face coming from different directions is reflected at the particular

position on the face towards the camera. These functions enable us in a second step to estimate in real

time the real-world lighting conditions from measured reflections in a face.

Mathematically we encode these functions as well as the incident light using a Spherical Harmonics

basis (see section 2.4). In this thesis we provide and explain the needed mathematical fundamentals

like equations that specify the propagation of light or Spherical Harmonics that we use for modeling
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different kinds of functions. We describe the scenery in which we want to estimate the illumination

and we derive our particular method that estimates the illumination from a single image of a face.

Additionally we quantitatively evaluate our method by comparing estimated illuminations against

ground truth. We provide a way to select sub sets of the sample positions to reduce their number and

analyze the correlation between the employed number of sample positions and the achieved accuracy.

We furthermore extend our method to prevent solutions containing non-negligible amounts of neg-

ative intensities of light. In addition to that we present a way to make our method more robust against

deviations of a particular face from the learned average of faces. We also discuss what amount of

information about the illumination is contained in a single image of the face and indicate how to

combine the information from multiple images.

We show for a variety of lighting conditions, that by applying the lighting conditions estimated by

our method to the virtual content, the augmented scene is shaded coherently in the real and virtual

parts of the scene and thus demonstrate that our approach provides plausible results considerably

enhancing the visual realism in real-time AR applications.

1.3.3 Scale Estimation from the User’s Face

For a realistic preview of objects using AR it is also indispensable that the virtual objects are presented

at correct size. As described before the commonly used method of monocular visual SLAM however

delivers a camera pose with respect to the scene at an arbitrary scale factor. To determine the absolute

scale of the scene and the camera motion, state of the art methods rely either on known objects that

have to be added to the scene, on special hardware like depth cameras, or they demand the user to

perform longer calibration procedures and movements. All of that represents a barrier to a natural AR

experience for a mass-market audience. It assumes that the user either has the particular marker of

known size or a specialized hardware at hand or that the user is familiar with non-intuitive extra set-up

or calibration steps.

In this thesis, we present a method for estimating scale that requires no additional objects or special

hardware. Our developed approach works non-intrusive and allows estimating the absolute scale in

handheld monocular SLAM.

While a world-facing camera captures the scene and monocular SLAM maps the scene and esti-

mates the pose of the camera relative to the reconstruction, we detect the user’s face in the image of

the user-facing camera. Knowing the dimensions of the face in real-world metrics like meters allows

to determine the camera position relative to the face at absolute scale.

The dimensions of human faces, e.g. the interpupillary distances [Dodg 04], only vary moderately

between different people and are well described by statistics. We thus can employ – comparable to

the light estimation approach – the average over all human faces, e.g. the mean value of interpupillary
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distances. For an improved accuracy we however also support calibrating the interpupillary distance

for a particular user.

With face tracking at absolute scale, two images of the same face taken from two different view-

points hence enable estimating the translational distance between the two viewpoints in absolute units,

such as meters. The motion of the user-facing camera can be transferred to the rigidly connected

world-facing camera. Under the assumption that the face itself has not moved relative to the scene be-

tween taking the two images, this then allows determining also the motion of the world-facing camera

relative to the scene in absolute units, and in consequence also reconstructing and tracking the scene

at absolute scale.

In this thesis we will present a proof-of-concept implementation of this idea, which we will quan-

titatively evaluate against ground truth data with regard to the estimated scale. These evaluations

confirm that our approach works and that it provides absolute scale for the reconstruction by monoc-

ular SLAM at an accuracy that is sufficient for many AR applications.

We will show for different scenarios how our approach enables reconstruction and tracking at ab-

solute scale. Particularly, we show how our method enables various use cases in handheld AR, from

applications that rely on superimposing virtual objects at true size to interactive distance measure-

ments in the environment.

1.4 Contributions of this Thesis

This dissertation thesis proposes to leverage the user’s face as a known object in the context of AR in

order to deduce knowledge about the real world. The thereby gained knowledge enables a coherent

integration of the virtual content into the view of the real world in terms of illumination and scale.

One focus of this thesis lies on pointing out the fact that the face of the user is well-suited to be

leveraged as a known object. Firstly the face can be easily captured in common video see-through

AR scenarios. Secondly the limited range in variations of human faces allows to rely on average

models and pre-processed data. Finally the face of a particular user can also be calibrated once and

this calibration can be reused. This calibration is especially reasonable due to two facts. Most of the

times a particular user will employ one and the same device, so that the calibration could be stored on

the device. Additionally facial recognition allows to recognize a particular user which allows to select

the appropriate calibration out of many, that either are stored locally or distributed.

All of this makes the face of the user well-suited to be leveraged as a known object for deducing

information about the real world. We hope that this awareness will inspire further research building

upon these findings.

Beside the general idea, this thesis makes a series of contributions in the context of video see-

through AR. We introduce novel algorithms for determining absolute scale in monocular SLAM as
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well as for estimating and reapplying the real-world illumination to virtual objects in real time. A

key aspect of the developed methods thereby is the elimination of limitations of current state of the

art approaches that either require the user to add additional known objects or markers to the scene or

demand specialized hardware like depths sensors. Concept implementations of our methods show-

case the effectiveness of the presented algorithms together with evaluations of the quantitative results

against ground truth.

1.5 Collaborations

This thesis would not have been possible in its existing form without the outstanding work, assistance

and support from my colleagues at Metaio.

Especially the existing code base of the Metaio SDK [Meta 15] has proven to be a valuable tool

for many of the prototype implementations, experiments, and evaluations and has been used either as

state-of-the-art black box, e.g. for camera calibration, marker tracking, or monocular SLAM, or as

starting point for modifications, e.g. by adding Spherical Harmonics rendering on top of the existing

rendering pipeline.

In addition to leveraging the existing code base from Metaio, the ideas and implementations pre-

sented in here benefited from active discussions with multiple colleagues at Metaio, first of all to be

mentioned with Daniel Kurz, who is also the coauthor of all my involved publications. Being my

manager over the last three years, he rendered it possible for me to focus my work on topics relevant

for this thesis.

This work was also supported in part by BMBF grant ARVIDA under reference number

01IM13001L.

1.6 Publications

All major contributions that are presented in this thesis have either been published in the proceedings

of an international conference or are currently planned for submission in form of a journal article. The

following gives an overview of the existing publications.

SEBASTIAN B. KNORR AND DANIEL KURZ. “Real-Time Illumination Estimation from Faces
for Coherent Rendering”. In: Proc. Int. Symposium on Mixed and Augmented Reality (ISMAR),

2014. [Knor 14]

This publication has been selected as nominee for the best long paper award of the IEEE conference

ISMAR 2014. An extended journal version is planned for submission for publication in a special issue

of the journal IEEE Transactions on Visualization and Computer Graphics (TVCG).
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SEBASTIAN B. KNORR AND DANIEL KURZ. “Leveraging the User’s Face for Absolute Scale
Estimation in Handheld Monocular SLAM”. In: Proc. Int. Symposium on Mixed and Augmented

Reality (ISMAR), 2016. [Knor 16]

Besides the two peer-reviewed academic publications listed above, two patent applications have

been filed in the scope of this work.

1.7 Thesis Overview

This chapter 1 provided an introduction to the thesis, presenting the fundamental idea to analyze

images of the user’s face in order to overcome existing shortcomings in the reconstruction of the real

world for seamless Augmented Reality (AR).

In the next two chapters 2 and 3 we will zoom in on two particular realizations of this general

idea. Each of the two approaches and chapters is self-contained and begins with an introduction to

the respective topic as well as with a summary of the current state of art. In each case we show

how our idea of using the face of the user fits into this context. From that we derive a particular

method including a working implementation which we afterwards evaluate in terms of results and

performance. We conclude each topic with a discussion about the suitability, potential as well as the

shortcomings of our presented approach.

In chapter 2, we will employ the user’s face as a light probe for estimating real-world lighting

conditions. Estimating the incident light allows us to subsequently use this illumination for matching

the lighting of the virtual objects in an AR view.

In chapter 3, we will employ the user’s face as an object of known size, which will allow us to bring

a monocular SLAM reconstruction of the real-world surroundings performed on images of the back-

facing camera from arbitrary scale to absolute scale. By that also virtual objects can be embedded in

the augmented view at correct size.

Chapter 4 finally summarizes this thesis with a conclusion of the key findings.
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2 Coherent Illumination - The User’s Face as
a Light Probe

In this chapter we will employ the user’s face as a light probe for estimating the
lighting conditions present in the real world. We learn in an offline process, based on
an image dataset with different faces under different known illuminations, how the
average face reflects incident light. This knowledge then allows us to estimate in real
time the present real-world illumination incident on the user’s face from a single
image of the face. The estimated incident light is subsequently used for accordingly
illuminating virtual objects in an Augmented Reality view. We refer to illuminating the
virtual objects according to the illumination of the real world as coherent
illumination.

We present a method that achieves coherent illumination for virtual objects in Augmented Real-

ity (see figure 2.1) by employing the user’s face as a light probe for estimating real-world lighting

conditions in real time. This part of the thesis is structured as follows.

We start by giving an introduction to the topics of coherent illumination and illumination estimation

in the context of Augmented Reality in section 2.1. First we explain the motivation behind coherent

illumination (section 2.1.1) and also indicate existing challenges (section 2.1.2). We then give a brief

summary of our particular approach for light estimation in section 2.1.3. This short wrap-up allows

us to subsequently compare our method in section 2.2 more easily to other state-of-the-art approaches

that acquire the real-world illumination for coherent illumination in Augmented Reality. We will also

establish the relation of our particular method to existing work from other domains.

The approach we present in this thesis explicitly focuses on estimating incident light from a single

image of a human face captured by a simple monocular camera. We discuss benefits and drawbacks

of this specialization on the human face in section 2.3.
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(a) (b) (c) (d)

Figure 2.1: Our method enables coherent illumination of virtual augmentations (a, b) by estimating the
illumination present in the real world based on pixel intensity values at sample positions in
the image of a face (c) in combination with the corresponding radiance transfer functions
at the sample positions learned beforehand from a dataset comprising images of faces with
known illuminations (d).

After providing mathematical fundamentals relevant for our light estimation approach in sec-

tion 2.4, we elaborate our particular method in detail in section 2.5. We start by describing the scenery

in which we want to estimate the illumination and introduce the involved entities like the camera, the

face of the user and the light sources. From that we build up a model for the light interactions and from

that derive a simple method that estimates the illumination. Subsequently we identify shortcomings

of the simple method and propose improvements to overcome them.

In section 2.6 we evaluate the results of our method. We make a qualitative evaluation by presenting

the visual results achieved by our method in terms of the augmented view where the estimated light-

ing conditions are applied to the virtual content as well as a quantitative evaluation by numerically

comparing the estimated illumination to the ground truth illumination.

Finally we complete the light estimation part of this thesis with a discussion in section 2.7 and a

conclusion about our presented approach in section 2.8 .

Note on Publication All major contributions of this chapter have either already been published

by Knorr and Kurz [Knor 14] in the proceedings of the IEEE International Symposium on Mixed

and Augmented Reality (ISMAR) 2014 or are currently planned for submission by Knorr and Kurz

as an article to the IEEE journal Transactions on Visualization and Computer Graphics (TVCG). In

both cases, the fundamental research was conducted by the first author, Sebastian Knorr, under the

technical and project-administration guidance of the second author, Daniel Kurz. In particular, the

theory of the approach as well as the implementation was developed by the first author.

For the avoidance of doubt The term coherent illumination in this thesis does not refer to

the physics terminology coherent light, which implies a constant phase difference between two light

sources. Instead it refers to an illumination of the virtual objects in an augmented view that matches

appearance-wise the illumination present in the real world.
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2.1 Introduction to Coherent Illumination in Augmented Reality

In this section we will introduce the concept of coherent illumination in the domain of Augmented

Reality. We will explain why it is beneficial to strive for coherent illumination (section 2.1.1) as well

as what kinds of difficulties exist in achieving it (section 2.1.2). We then will give a short introduction

in section 2.1.3 onto how we approach the goal of coherent illumination with our method presented

in this thesis.

2.1.1 The Motivation

Augmented Reality combines our natural view of the real world with an overlay of computer-

generated content. The view of the real world in video see-through Augmented Reality is represented

by a live video stream that is captured by a camera. Digital contents, e.g. 3-dimensional virtual objects,

are rendered by means of computer graphics and their images are merged with the video stream.

This composite stream then is presented to the user on a display. By looking at the augmented

video, the user shall get the impression that the virtual objects are actually placed within the real

world.

To generate this illusion, the virtual objects are rendered using a virtual camera pose which con-

forms to the determined pose of the real video camera with respect to the real world. By that, the

perspective of the rendering of the virtual objects is changing along with the perspective of the real

world, when the real video camera is moved or rotated within the real world. This already generates

the rough impression that the virtual objects are placed within the scene.

For many Augmented Reality applications the goal is to make this illusion as realistic as possible,

such that a user who sees the augmented image cannot differentiate between the captured real-world

part and the rendered virtual part. Use cases that clearly benefit from realistic augmentations are,

for example, virtual try-ons of glasses, jewelry or clothes, as well as place-in-your-augmented-room

applications that let you preview e.g. a desired furniture in your home. Here the augmented view shall

offer the user a preview of how some object would look in reality. It thus is crucial to mimic how the

objects would look in reality as close as possible.

The whole composition of the real and the virtual world must look plausible. It is thus important that

the appearance of both the parts, virtual and real, match each other. The perceived realism however

is not only induced by the correct position, scale, and orientation of the rendering of a virtual object.

Also lighting has a big impact on the appearance of an object and plays a crucial role in how we

perceive an object living in the space.

The light incident on an object influences how bright different parts of the object appear. The human

vision system uses these differences in brightness, e.g. gradients in shading and reflections, as cues to

determine the orientation of surfaces and the overall shape of the object [Rama 88]. Furthermore cast
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shadows, which means absence of light, indicate that some other geometry is occluding the light. Cast

shadows from one object onto another thereby additionally support our visual system in determining

distances and spatial relations between multiple objects [Mama 98].

Simultaneously with determining the shape of the visible objects and their spatial constellation, our

mind thereby also builds up a model of the illumination present in the scene e.g. the main directions

and intensities of incident light.

For a plausible and convincing augmented image, it consequently is not enough to just render virtual

objects photo-realistically with some generic illumination. The lighting on the virtual objects must

match the real world. If there is for example strong lighting from the left in the environment, the

illumination of a virtual object should match this.

(a) (b) (c) (d)

Figure 2.2: An image of the real world (a) is augmented by a virtual object, e.g. an orange (b, c, d).
A coherent illumination (b) of the virtual object is needed so that the augmented image
looks plausible. If the illumination of the virtual object is dissonant (c, d), the shading,
directions of cast shadows, and positions of highlights are inconsistent with the real world,
which makes the augmented image look bogus.

A dissonant illumination of the virtual part and the real-world part manifests for example in incon-

sistent positions of highlights and cast shadows and disrupts the credibility of the presented augmented

view. This fact is illustrated in figure 2.2. A captured photograph showing a real table with a real apple

on top (a) is augmented with a virtual orange. A coherent illumination, where the orange is lit co-

herently to the apple, results in a quite credible and realistic augmented image (b), while a dissonant

illumination clearly breaks this illusion (c, d).

2.1.2 Challenges in Augmented Reality

Matching the illumination of virtual objects to the real world poses a challenge in Augmented Reality.

The shape, size, and material of a virtual object like, for example, the orange in figure 2.2 usually are

known in advance and therefore can be predefined e.g. by a modeler. The lighting, however, if it shall

match the real world, heavily depends on the place and time where and when the Augmented Reality

application is finally executed. One user for example executes the application in a room where there

is a lamp at the ceiling so that more light is incident from above. Another one uses the application

in a room, where more light is coming from one side, because there are several windows in the wall.

A third user executes the application in an outdoor scenario, such that direct sunlight dominates,
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combined with less strong ambient lighting from the sky. Furthermore even for a fixed location, the

illumination may change over time. For example when lights are switched on or off, or when the sun

is setting or is occluded by clouds.

In order to match the illumination of virtual objects to the real world the question thus remains:

What kind of illumination is present in the real world at the time the application is executed?

Currently Augmented Reality applications often simply ignore the issue of coherent illumination

and just pick one particular lighting condition for the virtual content. The intent is to choose a nondis-

ruptive illumination. This can for example be a simple uniform illumination, meaning the same light

intensity is coming from all directions. Or an illumination from the top is chosen such that the virtual

objects feature a cast shadow underneath. While this allows for a quite realistic look of the render-

ing of the virtual objects in separation, it does not account for the real illumination present in the

real world and thereby does not provide a seamless augmentation. Especially when there is a strong

dominant light source in the real world, the lack of coherent illumination becomes evident.

We want to do better. Our goal is to enhance the realism of the augmented view by really con-

sidering the real-world illumination for the rendering of the virtual objects. The acquisition of the

real-world illumination as well as the rendering of the virtual objects with the acquired real-world il-

lumination should be as fast as possible. Firstly, in order not to let the user wait until the illumination

is acquired and secondly to support a dynamically changing illumination in real time. In addition,

attention should be paid to the fact that the end-user is involved. The method should impose as few

challenges and requirements on the user as possible. A tedious set-up or the requirement of particular

markers thus should be avoided.

2.1.3 Preview on Our Approach

The method we propose estimates the lighting conditions present in the real world from a single

monocular image of a human face in real time. Augmented Reality (AR) applications always involve

a user and a lot of hardware setups feature a user-facing camera. In these cases an image of the user’s

face can be acquired at any time. Based on the visual appearance of this face we estimate the incident

light that led to the observed appearance. In an offline process we can learn beforehand with the aid

of a dataset containing images of different faces under different illumination how bright certain parts

of the average human face appear under certain illumination.

Our approach thereby is particularly beneficial in use cases where virtual objects are augmented di-

rectly on the image of the user-facing camera close to the face of the user. Common examples include

virtual try-on of glasses, jewelry, or hats, as in the example shown in figure 2.1 (a, b). Different setups

for AR experiences comprising a user-facing camera may take advantage of our method, from sta-

tionary ones like web-based shopping applications or AR kiosks to mobile ones running on handheld

devices such as smart phones and tablet PCs.
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The information gathered about the illumination from the user-facing camera however can also be

used in other scenarios, e.g. the dual camera set-up of a smart phone with one user-facing camera

and one world-facing camera. Knowing the transformation between the two cameras, the illumination

estimated on the user-facing camera can be transformed into the coordinate system of the world-facing

camera. Limitations and arising problems in this scenario are discussed in section 2.7.

Our method estimates the real-world illumination incident at the location of the user’s face in terms

of primary light directions, light colors, and light intensities encoded as Spherical Harmonics (sec-

tion 2.4). Running in real time the method is able to dynamically adapt to changes in the illumination

present in the real world, for example when a light is switched on or off, or when the user is walking

through a hallway.
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2.2 State of the Art and Related Work

In the following sections we will have a look at existing work regarding acquiring the real-world

illumination. We start by naming some fundamental work on merging real and computer-generated

images that also consider matching the illumination of the computer-generated part to the real image

(see section 2.2.1).

In section 2.2.2 we then give an overview of different existing techniques to acquire the illumina-

tion present in the real world. We divide the techniques into two main categories. Firstly, approaches

that directly measure the incident illumination by capturing images of the surroundings (see sec-

tion 2.2.2.1). And secondly, approaches that estimate the incident light at a certain location from

the appearance of that location itself (see section 2.2.2.2). Our approach thereby falls into the latter

category, as we estimate the incident light from the appearance of the user’s face.

After a generic overview on the topic of light estimation we pay additional attention to existing

work in the domain of estimating illumination from the image of a human face in section 2.2.3.

2.2.1 Fundamental Work in Merging Real and Computer-Generated Images
Considering the Real-World Illumination

In 1986, Nakamae et al. [Naka 86] present one of the pioneer works about combining virtual render-

ings with images of the real world where also the illumination of the computer-generated content is

semi-automatically matched to the illumination visible in the image of the real world. In their paper,

they demonstrate a method for architectural simulation, where a 3-dimensional computer-generated

image of buildings is superimposed on top of a digitized photograph of an outdoor environment. The

lighting of the virtual buildings is adapted to the real world by using information from the real back-

ground picture. Nakamae et al. use an illumination model consisting of two components, the sun and

the sky. They calculate the position of the sun based on the capture time and date, the longitude and

latitude coordinates of the camera position as well as the viewing direction of the camera. Once the

sun position is determined, the unknown parameter is the ratio between the intensity of the sun and the

sky light, which depends on the present illumination situation. They determine this ratio by comparing

pixel intensities and surface normals of two manually selected walls in the real image, where one wall

is facing the direct sun light while the other one is in shadow. If two such walls are not contained in

the image, they propose to position an additional white pilot box in the scene as a light probe. Other

approaches that also use information from the shading of real objects to deduce the light situation are

covered in section 2.2.2.2.

In 1993, Fournier et al. [Four 93] simulate indoor global illumination for a combined scene of a

real video image and a computer-generated image. The simulation is based on radiosity computations

[Cohe 93], which approximate the solution of the rendering equation using finite elements (surface tri-

angles), and calculate how much one element directly influences another one in terms of illumination.
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In their publication the real scene geometry is approximated by a virtual model built out of simple

geometry like boxes. For the manual creation of that model, photographs with orthographic views of

the objects are taken and used to manually define textures with transparency for parts not covered by

the object. The material of the real scene is assumed to be diffuse and reflectance values are estimated

based on average intensities in comparison to neighbouring image regions.

The authors demonstrate that when the real light positions are already known but the intensities

of the single light sources are unknown, the relative intensities of the light sources can be estimated

from radiosity solutions on the reconstructed real scene. Therefore they compute separate radiosity

solutions, one for each light source using unit intensity. The final radiosity value of an element is

the sum over the scaled solutions from the single lights. The intensity values for the different lights

thus can be optimized so that the final computed radiosity solution with all the lights best fits to the

"measured" radiosity values of the different finite basis elements.

Fournier et al. do not only estimate the illumination, but also take into consideration how an added

virtual object changes the illumination in the real world. With the known positions and estimated in-

tensities of all light sources, a second radiosity solution is calculated now containing the reconstructed

real scene and the virtual objects. The ratio between the old and new radiance per element is used to

modify the intensity of each pixel in the real video image belonging to the element. Thereby effects

like cast shadows from a virtual objects onto a real surface as well as light scattered from virtual

objects to the real surface are covered.

If light positions are also assumed to be unknown, every element of the reconstructed scene may

be considered a potential light source and the average image intensity per element from the real-

world image is used as initial surface radiosity. To calculate the influence of the virtual object on the

real environment, "negative" radiosity is emitted between the elements and subtracted, if the path is

blocked by the virtual content.

Fournier et al. [Four 93] note that the rough quantization in the global illumination computation

leads to artifacts and does not allow for modeling finely localized shadow. Still it shows, that a

rough approximation of the real scene already allows for satisfactory results concerning a matching

illumination including mutual influence between the real and virtual objects.

In 1996, Hirota et al. [Hiro 96] present a hybrid tracking method combining vision-based tracking

and magnetic tracking. In one of their sample applications they put a mirror sphere into the view of the

video camera and grab the image of the sphere, which shows the reflections of the real environment

and thereby the light incident at the location of the mirror sphere. They use the image as a reflection

map for a virtual teapot. They also let the virtual objects cast shadows onto the real scene, which has

been acquired beforehand.

In 1998, also Debevec [Debe 98] places a mirror sphere as light probe in the scene at the target

position of the virtual content for capturing high-dynamic-range panoramic measurements of the scene

radiance. His goal is to improve the mutual interactions of light between real and virtual objects in
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a composite scene. Similar to Fournier et al. [Four 93], Debevec calculates two global illumination

solutions, a first image with only a proxy model of the real scene and a second image with the proxy

model together with the additional virtual content. Debevec however then employs the difference

between the two solutions to calculate the differential effect that the added virtual objects have on

the appearance of the real scene and vice versa. He uses this differential effect to correct the final

augmented image. This incremental update is commonly known as Differential Rendering. The scene

is partitioned into three components: the (real) distant scene, the (real) local scene, and the synthetic

objects. Similar to our approach, Debevec uses the assumption that the distant scene only emits light

and is not influenced by the addition of synthetic objects. The local scene and the synthetic objects

in contrast influence each other in terms of light interactions and thus need to be modeled including

geometry and material. By only estimating the change in illumination, flaws in the reconstruction of

geometry and material of the real local scene parts have a much smaller impact.

2.2.2 Related Work for Determining the Real-World Illumination

Information about the illumination that is present in a real scene can be gained in multiple ways. Often

existing work and also the method we propose reduces the problem by assuming that the illumination

only needs to be estimated incident at a certain location in the scene. Preferably at the location where

the virtual objects will be added.

We will distinguish two fundamental ideas:

The most straight forward way to determine the light incident from the environment at a certain

location is to directly measure it by capturing an image of the environment from that location. While

our method itself does not directly capture the surrounding environment to determine the incident

light, this is a very popular approach. We will enumerate some work following this principle in

section 2.2.2.1.

An alternative to taking direct measurements of the surroundings is to deduce the incident light

from the appearance of the lit scene. Cues like highlights, shading, or cast shadows visible in an

image of the real world can be used to reconstruct the incident light. Applying various assumptions

and restrictions, the most plausible explanation for the observed effects can be found. The method

we propose falls into this category, as we deduce the incident light from the appearance of the user’s

face. We summarize various approaches that reconstruct the illumination from the appearance of the

lit scene in section 2.2.2.2.

2.2.2.1 Directly Measuring the Incident Light

A common approach for directly measuring the incident light at a location is the acquisition of an

omni-directional image which shows the real-world surroundings from that specific location. Such

an image is also referred to as environment map. Each pixel of the image corresponds to a certain
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direction of incident light. The intensity of a pixel describes the intensity of light incident out of that

particular direction. Due to non-linear effects in the capturing pipeline, e.g. the camera response curve,

also the mapping from light intensities to pixel intensities often is non-linear. A captured environment

map can either be directly used for simulating the incident illumination in the rendering process or

it can be further processed by, for example, extracting the main sources of illumination. Different

approaches exist to capture this kind of image.

Mirror Sphere One already mentioned approach to measure incident illumination is to capture an

image of a mirror sphere [Hiro 96, Debe 98, Gibs 00, Gibs 03, Supa 06, Pess 10], that is positioned

within the scene where the synthetic objects shall be placed at afterwards. The chrome sphere reflects

the illumination incident on the sphere from the surrounding scene towards the camera so that again

each pixel corresponds to a particular direction of incident light. As described in [Rein 10], special

care may be taken for the attenuation of light by the mirror itself by calibrating the reflectivity of the

sphere, as well as for blind spots in the captured directions by combining two images of the sphere

captured under two different orientations.

A drawback of this method is the need for a mirror sphere and the additional set-up step, as the

mirror sphere has to be actively added to the scene. By that also the original scene is altered. The

method, however, supports dynamic scenes and changes in illumination by continuously capturing

images of the mirror sphere. Also the resulting environment maps capture the illumination very well

at a high resolution.

By taking multiple low-dynamic-range images of the sphere with different exposure, De-

bevec [Debe 97, Debe 98] reconstruct a high-dynamic-range image capturing the full dynamic range

of the scene illumination. The author points out, that in order to produce photo-realistic lighting on

the objects, high-dynamic-range measurements of scene radiance are necessary.

The use of mirror spheres to capture the incident light at a specific spot nowadays is still state of the

art in many movie productions. In this professional domain the additional time and effort is clearly

outweighed by the exceptional quality delivered by this method. In case that lighting is dynamic,

multiple exposures that are needed to reconstruct the high dynamic range however are impractical.

Recently LeGendre et al. [LeGe 16] presented a set-up with two mirror spheres for multispectral

capturing of incident light. Additionally to a first chrome sphere, the set-up comprises – besides

color checker charts and markers – a second black acrylic sphere. This second black specular sphere

increases the dynamic range captured by a single shot of the set-up. It allows to take a single image

at an exposure level that captures both the light from the environment in the first chrome sphere as

well as the bright light sources in the black sphere. Both reflections then can be combined into a

measurement with high dynamic range.
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Fish-eye Lens Another way to create an environment map is used by Sato et al. [Sato 99]. They

employ a camera setup with a fish-eye lens to capture hemispherical images of the surroundings. This

so called inside-out method is used frequently [Frah 05, Supa 06, Gros 07, Knec 10, Knec 12, Kan 12,

Son 12, Kan 13, Niko 13, Fran 13] for determining the real-world illumination in AR.

The camera capturing the illumination is additional to the camera which is responsible for the

augmentation part. This additional requirement for an extra camera with a fish-eye lens as well as

the extra capture procedure are disadvantages of the method. For non high-dynamic-range cameras, a

wider dynamic range can again be recovered using multiple images following [Debe 97].

Combining Multiple Images Captured with Narrow Field of View In general, these kinds

of panoramic, hemispherical, or omni-directional images can also be created without a mirror sphere

or fish-eye lens by stitching together multiple images captured with narrow fields of view (FOV).

Problems arise in practice because the manual process of capturing all directions is quite tedious and

time consuming without proper equipment like a tripod (at the least). A varying focal point between

the different images results in parallax errors, which are especially bad for closer surroundings. Addi-

tionally the captured frames need to be stitched, and thus need to have enough overlap and distinctive

features.

DiVerdi et al. [DiVe 08] present an approach that constructs environment maps for Mixed Reality.

They apply vision based tracking on video streams to estimate the camera pose and optionally support

the pose estimation using the gryoscope / compass. Frame by frame they project the video image

into a cubemap. Additionally they provide feedback to the user about where there are still gaps in the

environment map. The finally remaining gaps are filled using texture diffusion.

To simplify the tedious capture process, Jung et al. [Jung 13] do not capture and reconstruct the full

environment map but only take images of the surrounding main light sources. They rely on a smart

phone offering two cameras - one facing front and one facing back. They capture pictures of the light

sources at the ceiling using the front-side camera while the back-camera and orientation sensor is used

for tracking. The captured images are mapped to the hemisphere and light sources in the image are

detected by binarizing and contour detection. This gives them intensity, color information, as well as

the dimension of the light sources.

A general disadvantage of the approaches that combine multiple images are the separate manual

capture process and the lack of support for dynamic scenes.

Processing the Environment Map A hemispherical or omni-directional image - whether cre-

ated by a mirror sphere or fish-eye lens - contains pixel-wise measurements of incident light at a high

angular resolution. For a real-time rendering process a fast approximation is needed. Therefore the

acquired environment map image is often further processed.
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For the shading of the virtual objects, pre-filtered versions of the environment map image can be

generated [Kaut 00a, Kaut 00b, Gibs 00, Supa 06, Pess 10], which range from fully diffuse irradiance

maps over glossy ones to fully specular ones. The shading of a virtual object then is performed by

simply sampling values from these maps. The specularity of the surface determines from which maps

to sample from. The surface normal of the virtual object determines the pixel position within the map.

Sometimes simpler light representations like the main light directions are preferred for the rendering

process especially for computing cast shadows. Different approaches exist for extracting light sources

from an environment map image.

Gibson and Murta [Gibs 00] for example determine up to 8 directional light sources in an offline

pre-processing step. They therefore first use the environment map to render a target reference im-

age showing the shadow cast by a simple virtual sphere onto a plane using Monte-Carlo ray-tracing.

Monte-Carlo ray-tracing uses Monte-Carlo integration [Hamm 64], a method for numerical integra-

tion using random numbers, for calculating integrals over light paths. Using the rendered target refer-

ence image, Gibson and Murta [Gibs 00] then use an optimization procedure to find the set of up to

8 directional light sources that create a cast shadow which fits best to the shadow visible in the target

reference image.

Supan et al. [Supa 06] down sample the cube map of the environment map to a low resolution (i.e.

to 4x4 pixels per face). For each of the remaining pixels, they create one light source according to the

position, intensity, and color of the pixel.

A more common approach to extract light sources from an environment map is applying pure im-

age processing techniques. The main directional light sources for example can be found by generating

samples on the environment map with probabilities according to intensity [Gros 07], by warping sam-

ples initially uniformly distributed over the hemisphere hierarchically based on relative luminance

within the mipmap levels [Knec 12], or by adaptively subdividing regions and minimizing the vari-

ances in the generated regions [Fran 13]. Alternatively, the main directional light sources can be found

by determining the center of gravity of image parts that are saturated in all channels [Frah 05], or by

applying thresholding on the image and detecting blobs on the resulting binary image using connected

component analysis with contour tracing [Kan 12, Kan 13].

Grosch et al. [Gros 07] also present a more complex approach for simulating the indirect illumi-

nation caused by direct incident illumination. For distinct regions of a hemispherical camera image,

which they use to capture the direct incident illumination, they precompute the resulting indirect il-

lumination. They compute so-called basis irradiance volumes using a radiosity simulation on the

manually created 3-dimensional model of the scene. This allows them to then represent an arbitrary

daylight situation by the linear combination of the distinct regions. The indirect illumination result-

ing from the daylight situation then can be calculated as a linear combination of the basis irradiance

volumes of the distinct regions.
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Relaxing the Distant Scene Assumption The environment map captured with a mirror sphere

or fish-eye camera is only valid for that particular location where the probe was taken, i.e. where the

mirror sphere or fish-eye camera was placed. A common assumption however is, that as long as the

surroundings are sufficiently far away, the environment map is still sufficiently correct in the close

neighborhood of that location.

This also assumes, that the incident illumination does not vary with location. In order to overcome

this limitation, some methods try to recover the 3-dimensional location of the light sources. The ac-

quired radiance information from the environment can for example be projected onto an approximate

geometrical model of the scene [Debe 98, Gibs 03].

Sato et al. [Sato 99] take a pair of omni-directional HDR images at two different locations using

fish-eye lenses and apply an omni-directional stereo algorithm to reconstruct a geometric model of

the scene from the two images. Feature points with high contrast in the images are considered as

direct light sources and their 3-dimensional coordinates are determined by the intersections of the

3-dimensional reprojection lines.

Frahm et al. [Frah 05] capture a sequence of hemispherical images with a moving fish-eye camera.

They recover the 3-dimensional position of the light sources detected in the images by tracking the

camera motion and triangulating the light source directions between the frames.

Pessoa et al. [Pess 10] use an omni-directional HDR image of the environment as a simple skybox.

The image has been pre-captured using a chrome sphere. For nearby real objects they employ pre-

modeled geometrical representations. From the center of each virtual object they then create a separate

environment map for that object, which shows the surroundings including the other virtual objects,

the pre-modeled representations of the nearby real objects, as well as the skybox in the background.

For each of these environment maps they also create a diffuse and two glossy versions for lighting the

virtual object.

Nikodỳm et al. [Niko 13] investigate the use of multiple live video environment maps, which are

captured simultaneously by smartphone cameras with fish-eye lenses at different locations within

the scene. They do not reconstruct the real 3-dimensional positions of light sources, but generate

directional light sources by merging the data from the multiple displaced cameras depending on the

position of the virtual object.

Meilland et al. [Meil 13] illuminate virtual objects by a 3-dimensional map of the scene created

by dense visual SLAM with a low-dynamic-range RGB-D camera. The 3-dimensional map of the

scene is extended over time by high-dynamic-range values recovered from low-dynamic-range images

taken with different exposure times. The image-based high-dynamic-range model of the scene allows

generating dense virtual images for a specific camera pose by blending nearby key-frames. By that

also virtual high-dynamic-range environment maps can be generated at the position of virtual objects.

The scene and illumination in this approach however is restricted to be static.
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2.2.2.2 Estimating the Incident Light

Directly measuring the incident light at a location by acquiring images of the surrounding environment

as described above comes with the burden of additional required equipment such as a mirror sphere

or fish-eye lens. It also involves an extra set-up step, e.g. putting the mirror sphere in the scene

or acquiring the fish-eye lens image. For professional installations this poses no big problem. The

benefit is a reliable and robust acquisition of the incident illumination at a high resolution.

For Augmented Reality applications that are used by non-experts, e.g. in the field of handheld

Augmented Reality or webcam-based virtual try-on, these methods however are too cumbersome and

thus not feasible. A less disruptive way to acquire the illumination, which preferably happens under

the hood, is favored in these cases.

An alternative approach for acquiring the incident illumination is to estimate the lighting conditions

from the appearance of the illuminated parts of the scene in the view of the camera. The method we

propose in this thesis also falls into this category, as we deduce the incident light from the appearance

of the user’s face. Instead of measuring the incident light at a specific location by directly capturing

the real-world surroundings with an omni-directional image taken at that location, information about

the incident light is derived from visible effects like highlights, shading or shadows cast. Applying

various assumptions and restrictions, the most plausible illumination for the observed effects is found.

Surface Reflectance Properties What is captured as pixel intensities by an image of the scene

is loosely speaking the intensity of light from the scene that is reflected towards the camera. Amongst

others the amount of reflected light also depends on the reflectance properties of the scene at that sur-

face position, for example whether the surface is smooth or rough. We also refer to these properties

as material. Approaches that estimate the lighting conditions from the appearance of the illuminated

parts of the scene often make assumptions about the reflectance properties of the scene. While re-

flectance properties can be quite complex in reality, they are commonly approximated in computer

graphics and computer vision using simpler basic reflectance types.

(a) (b) (c)

Figure 2.3: Basic reflectance types comprise diffuse (a), specular (b), and glossy (c) reflectance.
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Often surfaces are assumed to be so-called Lambertian surfaces, which means that their reflectance

property is purely diffuse. A diffuse surface reflects incident light equally into all directions like

depicted in figure 2.3 (a). In consequence a diffuse surface looks equally bright from all viewing

directions. The diffuse reflectance property for a specific wavelength of light can be specified by a

single value – the reflection coefficient – also known as albedo. How bright the surface appears under

illumination then depends on the albedo as well as the irradiance incident at the surface position,

which is the effective power of incident light. This power of incident light follows the Lambert’s

cosine law [Lamb 92], which states that the irradiance is directly proportional to the cosine of the

angle between the surface normal and the direction where the light is incident from.

On the other side the appearance of a surface with specular reflectance, which we know for example

from mirrors, heavily depends on the viewing direction. Light incident on a specular surface is not

equally spread into all directions. Instead the light incident out of one direction is also reflected in

one direction only. The angle of incidence thereby equals the angle of reflectance as depicted in

figure 2.3 (b).

Figure 2.3 (c) also shows a third type of reflectance, referred to as glossy reflectance. Similar to

the specular reflectance here again the main reflection direction depends on the incident light direc-

tion. However, light in this case is also spread in a range of directions around to the main reflection

direction. The appearance of surfaces with glossy reflectance thus also depends on the viewing direc-

tion. A material in computer graphics often is modeled by a linear combination of diffuse, glossy, and

specular reflection.

Inverse Lighting Deriving information about the incident light from visible effects like high-

lights, shading, or shadows cast in an image is also known as Inverse Lighting and was introduced

by Marschner and Greenberg [Mars 97]. They reconstruct lighting from a photograph and a 3-

dimensional model of the pictured object. In their approach incident light is modeled by uniformly

distributed directional basis lights. The incident light is determined by the linear combination of the

corresponding basis images (generated using the 3-dimensional model) that best matches the photo-

graph. Marschner and Greenberg demonstrate re-lighting, i.e. modifying the image according to a new

user-specified lighting configuration, for a diffuse rigid object as well as for a human face. In contrast

to their approach, we do not rely on an explicit 3-dimensional geometry model of a face but learn our

model from captured images of human faces. Furthermore, we have a sparse sampling approach while

Marschner and Greenberg use a dense projection of the geometry. Our approach is also different in

the employed illumination model and the method of resolution.

Note that there is a continuous spectrum between directly measuring the incident illumination by

capturing the surrounding environment and estimating the incident illumination from the appearance

of unknown arbitrary objects in the local scene. In some way, taking an image of a mirror sphere

in order to capture the surroundings by the reflections can already be seen as some kind of Inverse
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Lighting as we deduce the incident light from the appearance of the mirror sphere. The specular

reflectivity and simple shape of the sphere just make the problem of Inverse Lighting trivial to solve.

Knowledge about the objects that are visible in the camera image in terms of geometry and material,

i.e. reflectance properties, is needed for Inverse Lighting in order to derive the illumination reliably. A

theoretical framework for the general problem of Inverse Rendering, that estimates multiple kinds of

rendering attributes like lighting and reflectance properties of objects from images, is introduced by

Ramamoorthi and Hanrahan [Rama 01]. They analyze the mathematical foundation of the reflected

light field. By employing Spherical Harmonics representations (section 2.4), they demonstrate that for

a curved, convex, and homogeneous surface under distant illumination the reflected light field can be

described as a convolution of lighting and reflectance properties. Inverse Rendering accordingly can

be seen as deconvolution. Ramamoorthi and Hanrahan also explain why light estimation from diffuse

surfaces is ill-conditioned in contrast to light estimation from mirror-like surfaces. In a nutshell, the

illumination that can be recovered will be a filtered version of the real illumination. High frequencies

in the illumination can only be reconstructed from shading, if also the surface reflectance properties

contain high-frequency components, e.g. sharp specularities. Similar insights are presented by Basri

and Jacobs [Basr 03]. They show, that the set of reflectance functions for diffuse objects lies close

to a 9-dimensional subspace. Images of a diffuse (convex) object under variable lighting thus can be

represented using only nine basis functions. We also use Spherical Harmonics in our approach and

make use of some of the insights from Ramamoorthi and Hanrahan [Rama 01]. We however have

an object, i.e. the face, that is neither fully convex, nor homogeneous and that exhibits cast shadows,

multiple reflections and subsurface scattering of the light.

Also in the context of Augmented Reality (AR) multiple methods exist that apply Inverse Lighting

to recover information about the illumination. These methods often focus on a specific lighting cue

like cast shadows, specular or diffuse reflection and rely on known objects with predefined geometry

and reflectance properties that have to be placed additionally into the scene.

Specular Reflection Kanbara and Yokoya [Kanb 04] focus on specular reflections to estimate

the incident illumination by Inverse Lighting. They attach a small black mirror ball to a conventional

2-dimensional square marker. The 2-dimensional marker is used for camera tracking. The reflections

of the 8 brightest spots on the black ball are used to estimate directions, colors and intensities of the

light sources. This approach is very close to capturing an environment map using a mirror sphere

(section 2.2.2.1). The black color of the sphere however resolves the dynamic range problem and

simplifies the detection of the 8 brightest spots. On the other side the small size of the attached black

sphere ball results in a small pixel footprint in the captured image. This may cause discretization

artifacts such as discontinuities in shadows calculated from the extracted light sources.

The black mirror ball from Kanbara and Yokoya [Kanb 04] is intentionally designed to feature only

a specular reflection. Ordinary objects however often feature a combination of diffuse and specular

reflection. Klinker et al. [Klin 88] demonstrate that for many dielectric materials, like porcelain,
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paper, or plastic, the reflected light can be described as a linear combination of an object color and

a highlight color. They further show that by analyzing color pixels and their corresponding clusters

on a dichromatic plane in the color space, a single color image can be separated into two intrinsic

reflection images: one image showing the highlight reflection and the other image showing the matte

diffuse object reflection. The highlights then can for example be used to determine the color of the

illumination.

The separation of a light field into a diffuse and a specular component is used by Jachnik et

al. [Jach 12] who conduct inverse lighting from a planar surface which exhibits amongst others a

specular reflection component. In contrast to Klinker et al. [Klin 88] they however rely on a set of

multiple images and separate the light field into the diffuse and specular component by comparing

multiple measurements for a single surface point. For that they track the surface and take observations

of the surface from different angles. From these observations they create a surface light field, which is

a 4-dimensional function specifying the observed color depending on the location of the surface and

the viewing angle. In order to separate this light field into a diffuse and a specular component they

first set the diffuse component for a surface location to the median color of all the observations of that

location from different angles. The specular component then is the remaining part after removing the

diffuse component. By applying the distant illumination assumption, i.e. assuming that incoming light

is not varying with location but only with direction, the remaining specular component is collapsed

into a 2-dimensional function, corresponding to an environment map.

Uranishi et al. [Uran 16] propose some kind of exotic marker for estimating the direction of incident

light, which they name The Rainbow Marker. Their marker is composed of a conventional planar

marker for determining the camera pose with respect to the marker and an additional microscopically

structured surface. This surface produces structural color, i.e. the appearance of the surface varies

depending on viewpoint and direction of incident light. In a pre-process the authors collect referential

patterns by observing the surface under different known angles while it is lit from different known

directions. Afterwards the authors estimate the incident direction by finding the referential pattern

that best matches the present appearance of the marker for the current camera pose.

Diffuse Reflection As already described above, diffuse surfaces reflect light equally in all direc-

tions. The brightness of a surface depends on the orientation of the surface towards the incident light,

according to Lambert’s cosine law [Lamb 92]. Aittala [Aitt 10] assumes a fully diffuse reflection for

the surfaces he uses, which are either a ping pong ball or a planar marker that is rotated in front of

the camera. Both objects are easy to track and have a known diffuse reflectance. The ping pong ball

exhibits different values of brightness for different surface orientations according to Lambert’s cosine

law. The planar marker changes his brightness accordingly when it is rotated. For a set of linearly

dependent basis lights, Aittala estimates the light intensities by minimizing the differences between

the image brightness observed for a surface orientation and the brightness resulting from the diffuse

reflection of the linear combined basis lights. Additionally he employs regularization and thereby
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favors sparse solutions, i.e. solutions where many coefficients for the basis lights are equal to zero.

Also Calian et al. [Cali 13] assume fully diffuse surfaces. Instead of first recovering the incident

illumination and afterwards using the recovered illumination to light the virtual objects accordingly,

Calian et al. [Cali 13] however use so-called shading probes. These 3D-printed objects consist of a

white diffuse kernel that is partitioned into different spherical sections by black walls. The shading of

the 3D-printed objects thus is parameterized by surface orientation and visibility of the hemisphere.

During rendering they directly use these captured shading values for shading the virtual objects. In

order to capture all the different kernel parts of the shading probe the user must however rotate the

camera around the probe.

Shadows Specular reflection and diffuse reflection depend on the orientation of a surface towards

the incident light. But also the absence of incident light at a specific location can be used as a cue.

If a surface point lies in shadow with respect to a light source, the direct connection line between the

surface point and the light source is occluded by other scene geometry. Shadows can thus be used

together with knowledge about the scene geometry to infer information about the position of a light

source.

Arief et al. [Arie 12] estimate the direction of one dominant light source based on the shadow con-

tour cast by a cuboid shaped 3-dimensional AR marker. They simultaneously use this marker for

tracking. The fix simple geometry of the cuboid marker and the assumption of a planar surface be-

neath the marker make the shadow contour analysis faster. Approaches that rely on detecting shadow

contours however require hard shadow borders to simplify the detection.

Some methods that consider shadows to derive information about the illumination assume that the

position or direction of the light source is already known. They then try to recover either only the

intensity and color of the primary light source or they even only investigate the visual effect of a

shadow cast by an object in order to reproduce this effect for a consistent shadow cast by virtual

objects.

Jacobs et al. [Jaco 05] present a real-time algorithm which allows for color-consistent virtual

shadow considering a single light source. The geometry of the visible real objects and the posi-

tion of the light source must be approximately known. Based on the geometry and the position of the

light source they determine the shadow regions and refine them with an edge detection procedure. The

average color within the shadow region divided by the average color nearby but outside the shadow

region gives them a scaling factor between the shadowed region and the lit region. Virtual shadows

then can be applied to a region that in reality is directly lit by scaling the colors in that region ap-

propriately. For different materials and orientations towards the light source different scaling factors

would need to be used, and thereby different shadow regions would need to be investigated.
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RGB-D Cameras for Arbitrary Geometry All the above mentioned approaches of inverse

lighting assume that the geometry of the captured object which is used for estimating the illumination

is already known. Recently, approaches employing an RGB-D camera like the Microsoft Kinect have

become more and more popular in the field of light estimation for Augmented Reality. Along with

the usual RGB color image, these RGB-D cameras deliver an additional depth image containing a

per pixel distance measurement. This means, these cameras provide by themselves already a partial

reconstruction of the scene geometry. Combined with an algorithm like Kinect Fusion [Izad 11],

which fuses information from multiple depth images taken at different view points, the complete scene

can be reconstructed geometry-wise. This scene reconstruction is a clear benefit, as it eliminates the

need of relying on predefined known objects.

Gruber et al. [Grub 12] present an approach of Inverse Lighting for Augmented Reality that sup-

ports arbitrary scene geometry by using an RGB-D camera for simultaneous geometry reconstruction

and camera pose estimation. They do not recover the color of the light but assume a white light color

and a diffuse reflectance model for the entire scene. Similar to our approach they make use of Radi-

ance Transfer Functions (RTFs). While we capture the RTFs in an offline process based on images

with known illumination and in doing so also take non diffuse reflections, subsurface scattering, and

indirect illumination into consideration, Gruber et al. calculate the RTFs for visible surface points

at run-time purely based on the occlusions by nearby scene geometry using raycasting on a voxel

representation of the scene. Similar to us they encode both the illumination as well as RTFs using

a low order Spherical Harmonics basis (see section 2.4). The illumination is specified by direction

only, meaning it does not depend on the location. Each visible surface point contributes an equation

between the observed pixel intensity, the RTF, and the unknown illumination. The unknown illumi-

nation is estimated by solving the system of linear equations of multiple observations by least squares

minimization. Calculating the RTFs creates a performance bottleneck, still Gruber et al. [Grub 12]

achieve interactive rates for the light estimation. Our light estimation method employs pre-learned

RTFs for a sparse set of sample positions, which significantly speeds up the process.

Boom et al. [Boom 13] also use an RGB-D camera for scene reconstruction and assume a diffuse

reflectance model. However, instead of only estimating the directional light distribution, they also

estimate the 3-dimensional position of one single point light source. For a captured image they build

regions of constant albedo based on the assumption that contiguous segments in the RGB image with

similar color have the same albedo. The surface normals for a pixel can be extracted from the recon-

structed scene. They then run an optimization procedure regarding the position of the light source. In

each step they use the current estimate for the position and intensity of the light source to compute

the albedo for each segment considering the surface normals and the observed brightness. Afterwards

they compute a reconstructed image based on the light position and albedo terms. Iteratively they

search for the light source position and intensity that minimize the error between the original image

and the reconstructed image. This search does not run in real time.

Similar to the work of Boom et al. is an approach presented by Neverova et al. [Neve 12], which
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uses specular and diffuse reflectance in combination to estimate the illumination from a single image.

Exploiting the surface normals delivered by the depth camera, the image is separated in an iterative

process into a specular image and a diffuse (i.e. specular-free) image. Simultaneously the light color

is estimated from the specular highlights. Initial light positions are estimated from the directions of

the specular highlights via the intersections from different reflections. Afterwards an optimization

framework refines the estimates for the light positions by minimizing differences between the original

diffuse and specular shading and the rendered solution. The authors show that accounting for the

specular reflection part improves the results. Yet their approach does not run in real time.

When considering specular reflection, multiple images of the scene captured from different view-

points can be helpful, as the specular reflection in contrast to the diffuse reflection depends on the

viewing direction.

Buteao and Saito [Bute 15] also make use of an RGB-D camera for light estimation. They are

able to estimate the position of multiple point lights. They run a plane separation algorithm ontop of

the 3-dimensional reconstruction of the scene from Kinect Fusion [Izad 11]. Using multiple images

of the scene with different camera poses, they separate the brightness of the walls into diffuse and

specular components. They identify the brightest spots in the diffuse component of a wall (which they

assume is uniformly colored), and claim that the location of the illuminating point light is located

along the ray starting at this spot in direction of the normal of the wall. Afterwards they use the

specular components to refine the position of the light sources.

Richter-Trummer et al. [Rich 16] use an RGB-D camera to estimate the incident lighting on objects

as well as to recover their surface materials. By that they both support relighting of the scanned ob-

jects as well as lighting virtual objects coherently to the real world. Their approach requires multiple

images of the objects that are captured from different viewpoints. From these images the geometry of

the objects as well as their lit texture is reconstructed. The lit texture is generated from the average

color of a surface point from multiple observations. Based on this lit texture the mesh is segmented

into parts sharing the same material. Although multiple separate materials for the objects are sup-

ported, each material needs to span a larger connected part. The radiance transfer functions (RTFs)

for the reconstructed geometry are computed in terms of Spherical Harmonics (see section 2.4) and

each material is initialized with a grey albedo. Starting from this, they estimate the incident lighting

(including light colors). They then calculate the error per material patch based on the estimated light-

ing and adequately adjust the albedo of that segment. They alternately estimate the illumination and

adjust the albedos. By that they are able to recover the diffuse albedo color for each material as well

as the lighting including light color. Additionally they then recover also the specularity of the mate-

rials based on the original observations of the surface, the reconstructed geometry, and the estimated

illumination. While they demonstrate that they are able to separate light color and material color, they

thereby rely on a scene with objects of different large uniformly colored regions.

All the mentioned approaches that work with an RGB-D camera levitate the need to have a known

31



2 Coherent Illumination - The User’s Face as a Light Probe

object available. They show good results in estimating the illumination. On the other side they require

the user to have an RGB-D camera available and involve a quite high computational complexity.

Additionally the approaches are unable to reliably solve the ambiguity between light and material for

arbitrary scenes.

An approach that similar to ours also focuses on a particular body part of the user is presented

by Yao et al. [Yao 13]. They use an RGB-D camera to capture the hand of the user as a shading

probe. While we however learn radiance transfer functions beforehand from a dataset of images, they

calculate the shading in terms of Spherical Harmonics based on the surface normal derived from the

depth images. In their process they neither consider occlusions nor non-diffuse reflections.

Intrinsic Images Aside from the above mentioned approaches that primarily target at estimating

the illumination in real time for a coherent illumination of virtual objects, a lot of research on the topic

of light estimation and simultaneous scene reconstruction from images has been done in the name

of recovering so called intrinsic images [Barr 78]. These approaches – e.g. the one by Barron and

Malik [Barr 13] – try to separate an input image into multiple parts like illumination, object geometry,

and object materials by defining additional constraints for the particular components. Often these

approaches employ non real-time optimization procedures. Recently, Meka et al. [Meka 16] however

presented a method which performs the intrinsic decomposition for a video sequence in real time.

Transferring models, restrictions, and findings from the domain of intrinsic images to the topic of

light estimation in AR seems promising.

Outdoor Scenarios with Sky and Sun Model A variety of methods for light estimation exist

which explicitly focus on the outdoor scenario. These methods try to determine the ratio between

sunlight and skylight from captured images based on regions in direct sun light and regions in the

shade.

Madsen and Nielsen [Mads 08] present a method to estimate the radiance values for the sky and the

sun in outdoor scenarios with changing illumination conditions. Their outdoor daylight illumination

model consists of a sky dome covering the entire hemisphere and a distant disk light source represent-

ing the sun. The position of the sun is determined using the position on earth together with compass,

date and time. Shadows are detected based on pixel statistics in the chromaticity plane combined with

a graph cut algorithm that estimates RGB values which can be blended on pixels in direct light to

mimic the effect of shadow. Thereby pixels are rated on a range from being directly lit by the sun to

being fully in shadow. This shadow detection method is based only on information from cast shadows

present in the image without any knowledge about the shadow casting geometry. For a diffuse surface

the reflected radiance is proportional to the irradiance. Appling the daylight illumination model, this

irradiance consists of two parts, irradiance from the sky and from the sun. The ratio of pixel values

between shadow and non shadow is independent of camera constants and surface albedo. It only de-

pends on the shadow to sun irradiance ratio. From the ratio between the irradiance within areas in
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shadow and the irradiance within direct sunlit areas the unknown radiance values of sky and sun can

be determined.

In [Mads 10] Madsen and Lal continue working on radiance recovery from cast shadow in outdoor

scenarios under daylight conditions. This time an image stream is acquired using a stereo camera,

additionally delivering dense 3-dimensional information. The camera position and orientation is fixed.

The shadow cast by moving objects is detected as those pixels where the color is changing without

a change in depth. Additionally these shadow candidates are verified using the fact, that sky light

contains a larger portion of blue light than direct sun light. Using per pixel information like the surface

normal, ambient occlusion value, and color information from verified shadow pixels they estimate the

unknown sky and sun irradiance values.

Liu et al. [Liu 09] focus on AR in a static outdoor scenario with a static point of view. They

derive illumination under different weather conditions (e.g. clouded) without knowledge of the scene

geometry, material, or texture and estimate the intensity of sunlight and skylight. In an offline learning

stage, they employ a set of sample images of the scene all taken from the same point of view under

the same sun position but different light conditions (like full sun and cloudy sky). From these images

they learn two basis images, where one image contains the appearance of the scene under sunlight,

while the other one contains the appearance under skylight. Different illuminations of the scene under

this sun position can then be represented as a linear combination of these two basis images. Within

the online registration stage, light parameters can be estimated for an input frame, by finding the

appropriate linear weight. The learning and estimation procedure is further extended to account for

different sun positions. The learning process requires at least two images per sun position which need

to be captured under two different weather conditions. The overall collection process however lasted

a whole year, so that all possible sun positions were sampled.

Lalonde and Matthews [Lalo 14] apply a model for sun and sky light too, however not in the context

of AR. They estimate the lighting conditions for images from outdoor image collections. Based on

image collections, structure-from-motion pipelines are able to reconstruct 3-dimensional models of

the captured buildings. Lalonde and Matthews build upon these 3-dimensional reconstructions to

additionally recover the outdoor illumination conditions for each of the original images using inverse

rendering. They use a model of sun position and intensity as well as sky color and intensity and

recover high-dynamic-range lighting environments ranging from overcast sky to full direct sunlight.

For their inverse rendering, they first create a database containing collections of images of 22 different

landmarks. For each image in these collections they at the same time also capture high-dynamic-

range images of the entire sky hemisphere using a fish eye lens and multiple exposures. They fit

their model for sun and sky light to the captured light probes. Additionally they compute priors for

lighting and reflectance from the captured database. Their inverse rendering then starts by estimating

reflectance for the vertices of a reconstructed 3D model based on automatically-detected overcast

images from the corresponding image collection for the 3D model. Additionally they pre-compute the

visibility of the hemisphere for each vertex of the mesh. Starting from there, they use an alternating
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approach to estimate and refine lighting and reflectance taking into consideration occlusions and cast

shadows. While their approach can only precisely recover the lighting conditions when an image

contains strongly visible effects like cast shadows or strong differences in shading due to orientations,

their estimated sky probes exhibit a high similarity to the ground truth light probes. For images with

bright sunlight they report a median error in estimated sun direction of 17◦.

2.2.3 Related Work on Illumination of the Face

Our method estimates the lighting conditions present in the real world from a single monocular image

of the user’s face. A publication which takes a similar direction in the context of Augmented Reality

as our approach is the one presented by Koc and Balcisoy [Koc 13]. They also capture an image of the

face to estimate the illumination. In contrast to our work their approach works offline and is limited

to a single dominant light direction as they focus on outdoor use and direct sunlight. For a captured

image of a face, they first align a geometrical face model to the image in an offline procedure and then

estimate the direction of sun light based on the reflection direction at the brightest spot. Our approach

in contrast does not have an explicit geometrical face model but learns in advance the whole radiance

transfer for a set of sparse sample positions based on a dataset of images. Additionally our approach

runs in real time and is able to estimate the whole directional distribution of incident light.

2.2.3.1 Face Relighting

Illumination of the human face is also studied in different domains. Beyond the area of AR, active

research regarding illumination of the human face has been performed e.g. in computer graphics,

particularly in the field of relighting, i.e. rendering of faces under new illumination. Debevec et

al. [Debe 00] acquire the light reflected from a human face by capturing images of the same face

under dense sampling of incident illumination directions using a so called Light Stage. From the cap-

tured images they construct a reflectance function for each image pixel. These reflectance functions

correspond to our Radiance Transfer Functions and capture the overall reflected light at a surface po-

sition for light incident out of a particular direction. By employing these functions Debevec et al. are

able to directly create new images of the face under any form of illumination.

In contrast to their work, we use the Radiance Transfer Functions to recover the incident light for a

particular image of a face. While Debevec et al. work with reflectance functions stored as images, we

project our Radiance Transfer Functions into Spherical Harmonics. As we do not aim at creating new

images of the same face under different illumination, we do not recover the functions for each image

pixel of a face but for a sparse distribution of appropriate locations on the face.

Fuchs et al. [Fuch 05] analyze spatially varying reflectance properties of a particular human face by

taking photos in calibrated environments under different poses and up to seven point-light conditions.

They estimate the geometry of the particular face using a 3-dimensional Morphable Model [Blan 99].
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Additionally they fit parameters of an analytic BRDF (Bidirectional Reflectance Distribution Func-

tion [Nico 77]) model to the measured reflectance for different regions in the face together with a

fine-grained locally varying diffuse term. This allows rendering the face under new poses and changed

complex lighting conditions. The authors also map the acquired reflectance properties of one face onto

another face based on facial features.

Nishino and Nayar [Nish 04] compute the environment map of the scene from the reflections of the

surrounding world visible in the image of an eye and use the result for light estimation, face relighting,

as well as for reconstruction of facial geometry. While they demonstrate good results for their light

estimation, they require a quite high camera resolution so that at least a clear image of the eyes is

captured. As we distribute samples sparsely over the face, our approach will work under less optimal

conditions. Also illumination incident from above the user is partly blocked by the frontal bone and

thus is not visible in the reflections on the eye balls.

2.2.3.2 Face Recognition

The illumination of faces is also highly relevant in the area of face recognition, as lighting has a

large impact on appearance and interferes with the goal to determine a person’s identity. Work in this

domain mostly targets at making a face recognition method invariant to changes in illumination.

In order to still recognize a face when the illumination has changed Georghiades et al. [Geor 01]

build the illumination cone, i.e. the set of all images of a face in a fixed pose, but under all possible

illumination conditions, by reconstructing shape and albedo for a particular face from seven images

of the same face and pose under different lighting directions.

Also Sim and Kanade [Sim 01] create new images of a face under changed illumination for better

face recognition. Their method requires only a single image of an unknown face under unknown

illumination. Their shading model is based on the diffuse Lambertian equation [Lamb 92] which

they extend by an additive per pixel error term. By that error term they account for cast shadows

and specular reflections which are not modeled by the Lambertian equation. From a set of images

of people under different known illumination directions, Sim and Kanade [Sim 01] learn a statistical

model for the normals as well as for the error term depending on the location on the face. The incident

light direction for a new image is simply estimated based on the difference between the image and

each training image using a Gaussian weighted sum over the corresponding known light directions.

For the images out of the training set itself, they demonstrate high accuracy on the recovered light

direction. While we, in our approach, also learn properties of the human face from a set of images of

people under different known illumination directions, we neither explicitly recover surface normals

nor assume diffuse reflection. Rather, we directly capture the overall radiance transfer. Furthermore

we also do not estimate the illumination by image comparison but by solving a system of equations

based on intensities and radiance transfer functions.
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Zhang and Samaras [Zhan 03] also create a statistical model for the illumination of the human

face. They however employ a collection of 3-dimensional face scans. Considering only the surface

orientations of the 3-dimensional scans for the illumination, and thereby assuming a convex diffuse

object, they compute per pixel means and covariances of Gaussian distributions for the influence of

different Spherical Harmonics (SH) basis functions on image brightness. Afterwards they estimate an

additional error term for the statistical model based on images of faces under known lighting. This

error term comprises deviations from the diffuse as well as the convex assumption. Based on this

model, Zhang and Samaras estimate the SH coefficients of the unknown illumination for a given face

image using kernel regression [Atke 97]. Our method also models the influence of the light using

SH basis functions and estimates SH coefficients of the unknown illumination. We however do not

rely on 3-dimensional models of human faces, but directly learn from images. We also do not first

assume convex diffuse objects and compensate for it later by an error term but directly capture the

real Radiance Transfer Functions.

Also Qing et al. [Qing 04] use 3-dimensional models of human faces and create a multitude of

images that show the influence of different SH basis functions, used to model the illumination, on

the brightness of the faces. Again only the surface orientations of the 3-dimensional models are con-

sidered. Average images for the influence of a particular SH basis function, obtained by a principal

component analysis, are used to estimate the unknown illumination for a given unknown face image.

In our approach, we also analyze the influence of different SH basis functions modeling the illumina-

tion on the appearance of the face. In contrast to Qing et al. we however use real images of illuminated

faces and thereby capture additional effects that are ignored by Qing et al. like cast shadow, specular

reflection, or subsurface scattering.

All the presented approaches above are interested in the entire area of the face. As we are only

interested in the lighting conditions and not in re-lighting or recognizing the whole image of the face

itself, we focus on identifying sparse sample positions in the region of the human face that are well

suited for estimating the illumination instead of using the whole image area of the face.

2.2.4 Related Work for Photo-Realistic Rendering in Augmented Reality

Once the real-world illumination has been acquired, we want to use it in order to create a plausible

photo-realistic augmented image. The focus in this thesis however lies on the acquisition of the

illumination present in the real world. Our particular simple implementation for rendering is described

in section 2.5.7.

Creating photo-realistic augmented images involves many steps. The virtual part and the real part

must fully interact in terms of light transport. Obvious examples are shadows cast from virtual ob-

jects onto the real ground plane, but also effects like the visiblity of virtual objects in mirrors of the

real world or light reflected from virtual objects onto the real world are part of the so called global

illumination problem.
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Special attention must be paid in Augmented Reality to the fact that the video image showing the

real world is already given and must be adjusted to mimic the impact of the added virtual objects,

while the part of the final image showing the virtual objects must be fully computer-generated in such

a way that it visually fits into the real scene. A common approach for combining the image of the

real world with computer-generated content is called differential rendering [Debe 97]. Two global

illumination solutions are calculated: one, where the scene only contains proxy objects for the real

world; and another one, where the scene contains both the proxy objects for the real world as well as

the to be added virtual objects. The difference between the two global illumination solutions then is

used to adjust the video image of the real world. Ideally, the real world has to be known in terms of

geometry and material properties, to provide realistic proxy objects. Differential rendering however

forgives some degree of inaccuracy.

The challenge in differential rendering for AR is to approximate the global illumination solution as

good as possible while still achieving real-time rendering frame rates. Knecht et al. [Knec 12] for ex-

ample present a method that combines differential rendering with instant radiosity by Keller [Kell 97]

to approximate the global illumination. Mehta et al. [Meht 15] use a two-mode path tracing approach

for calculating the mutual illumination between the real and virtual objects. Their approach operates

partially on GPU for the virtual geometry as well as in screen space for the real geometry which is

reconstructed using a Kinect camera. By filtering the image they eliminate the noise resulting from the

sparsely-sampled Monte-Carlo integration [Hamm 64], which is a method for numerical integration

using random numbers. For capturing the environment lighting, Mehta et al. [Meht 15] use images of

a mirror sphere.

For a photo-realistic augmented image and a coherent appearance of the virtual parts and the real

parts it is also important to simulate existing camera effects for the virtual content, as shown by Klein

and Murray [Klei 10], who model artifacts arising during the imaging process, such as distortions,

chromatic aberrations, blur, and noise.

Sophisticated rendering methods like these are outside the scope of this thesis, which focuses on

estimating the real-world lighting conditions.

2.2.5 Summary

Different approaches exist for acquiring the real-world illumination for AR applications – from direct

light source capturing to the reconstruction of the illumination from reflections or shadows visible in

the scene. A common approximation in most approaches is to model the light sources in terms of

directional light coming from a distant scene, although some approaches also aim at estimating the

position of point light sources.

While direct light source capturing is popular as it is straight forward and delivers a high resolution

of the light distributions at a location, it requires additional hardware such as a fish-eye camera or a

mirror ball, as well as an extra capturing or setup step.
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Reconstructing the illumination from shading or cast shadow, on the other hand, requires knowledge

about the scene geometry, so that existing approaches either rely on known objects or a reconstruction

of the scene. If a method is working with special known objects like markers, these objects need to be

available to the user and must be positioned in front of the camera, which both limits the convenience

for the user. With the increasing distribution of depth cameras, the requirement for pre-modeled

geometry will diminish. At the moment however most widely-used webcams and smartphones still

do not feature depth cameras. In addition current approaches with RGB-D cameras primarily focus

on texture-less materials because of the ambiguity between light and material. Another problem of

these approaches is the high computational cost which limits the real-time feasibility of the algorithms

especially on mobile devices.

2.2.6 Our Approach

Our approach, that we will present in the following, does not require a specialized depth camera but

works with a simple monocular intensity camera which nowadays is already an integral component

of current smart phones, tablets, and notebooks. We employ the face of the user as kind of a known

object. Therefore we learn in a pre-processing step how faces reflect incident light and then use this

knowledge to estimate the present illumination from the appearance of the user’s face. By focusing

on the face of the user we also overcome the need for additional special known objects like markers,

that have to be available and actively added to the scene. The user’s face can be conveniently captured

by a user-facing camera at any time.
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2.3 Benefits and Drawbacks of Using the Face as Light Probe

For consumer-targeted AR scenarios, employing the user’s face as a light probe in order to estimate

the present illumination has a number of benefits compared to other approaches. It however also

brings along some drawbacks. We want to discuss both in the following section.

In contrast to other light estimation methods that rely on special known objects which have to be

explicitly placed into the scene, our approach releases the user from both the duties to firstly have this

special object at hand and to secondly actively place the object into the scene. It also releases the user

of having to actively point the camera towards the particular known object, that is used for the light

estimation. When the user faces the display of a hand held device, the user’s face can be conveniently

captured by the user-facing camera located next to the display. Thus, as long as the user observes the

screen our method is able to immediately and continuously estimate the illumination. This estimation

procedure thereby can be performed unnoticed and becomes less disruptive for the AR experience.

Our method is a perfect fit for AR applications that present the user an augmented camera stream

of the user-facing camera, e.g. virtual fitting of clothes, jewelry, or glasses, or video chat applications

featuring augmentations. The closeness of the augmented virtual object to the face here loosens the

distant scene assumption, as we estimate the incident light near the virtual object’s location.

Another reason why the illumination estimated from the image of the user’s face is particularly

suited for illuminating virtual objects on the camera stream of the user-facing camera goes along with

a weakness of this approach. In the image of the user-facing camera we only see those surfaces of

the user’s face that are oriented towards the camera. In other words, we cannot see surfaces facing

away from the camera. Due to this limited visibility of surface orientations, the image of the user’s

face especially exhibits lighting effects caused by light incident out of directions in front or beside of

the user. Consequentially it is also this part of the incident illumination that can be estimated most

reliably from the image. When we render virtual objects onto the camera stream of the user-facing

camera, luckily for these objects the same applies as for the face. We again only see those surfaces

of the virtual objects that are oriented towards the camera. It is thus the same part of the incident

illumination that has the biggest impact on the appearance of the virtual objects.

The limited information contained in the image of the user’s face about the light that is coming out

of directions behind the user leads to an increased uncertainty in the estimation for light out of these

directions. This impacts the suitability of our light estimation for lighting virtual objects augmented

on the camera stream of the world-facing camera. We will get back to this problem in section 2.5.6.2,

where we will show that this problem can be partially addressed by capturing multiple images of the

face under different orientations and fusing the information contained in the different images. Note,

that light incident out of directions behind the user still has some influence on the appearance of the

face. Subtly in form of subsurface scattering but also more strikingly in form of diffuse and glossy

reflections. We plan to further address this limitation of our method in future work by extracting
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additional information about the light coming from behind the user from the background image region

around the user’s face. This information then could be fused together with our current estimation.

While at the moment directly using the estimated illumination one-to-one for renderings on the

back-facing camera is somehow limited, it is still possible to deduce information from the estimation,

as for example demonstrated in an on-stage presentation at the InsideAR 2014 conference, where we

used the illumination estimated from the user’s face captured by a user-facing camera to select from a

predefined set of illumination configurations for rendering augmentations for a world-facing camera.

Restricting our method to inverse lighting of the human face has some benefits compared to state-

of-the-art approaches that estimate the illumination by inverse lighting on arbitrary environments.

Except for some corner cases like fully tattooed faces or faces with a full beard, the suitability of

the human face for estimating the illumination is known in advance. Our algorithm is tailored to the

human face and we deduce information by exploiting the different surface orientations and concavities

present in all the human faces. For light estimation methods working on arbitrary scenes [Grub 12,

Bute 15], there is no guarantee that a particular scene is suited at all for the particular light estimation

method. Approaches that rely on diffuse geometry and exploit different surface orientations (e.g.

[Grub 12]) would fail for a very glossy scene or for a scene where the camera only sees the top of a

planar table. Approaches that rely on planar uniform scenes and point lights (e.g. [Bute 15]) on the

other hand would fail for scenes that do not feature these planar uniform surfaces.

While we have the guarantee that the human face is fairly suited to estimate the incident illumi-

nation, the face on the other hand has less ideal properties than objects that are specifically targeted

for light estimation like mirror spheres [Debe 98] or 3D-printed shading probes [Cali 13]. The face

is neither fully specular like a mirror sphere nor does it contain all these uniformly distributed con-

cavities of the 3D-printed shading probe. The specularities as well as the concavities both cut out and

separate the lighting effects of different parts of the illuminating hemisphere. The appearance of most

locations on the face however is strongly influenced by all of the light incident out of the upper hemi-

sphere of directions. As derived by Ramamoorthi and Hanrahan [Rama 01] this makes the problem of

inverse lighting, which can be seen as a de-convolution of the radiance leaving a surface into incident

illumination and radiance transfer properties of the surface, harder to solve. As a consequence our

method is only able to recover a low frequency approximation of the incident illumination.

A key benefit of our method is the low hardware requirement. Methods that estimate the illumi-

nation based on arbitrary scenes need to acquire and process the geometry of the scene on-the-fly,

e.g. using RGB-D cameras [Grub 12, Bute 15]. This imposes additional requirements with regard to

available hardware as well as with regard to processing time.

As human faces have a limited range of variations in geometry and reflectance properties between

different individuals, these properties can be determined beforehand in an offline pre-process. In this

offline process the properties can either be modeled manually or learned automatically e.g. from a

multitude of different example faces. Constraining the scene reconstruction problem on faces would
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also make it possible to fit a generic 3-dimensional face model [Blan 99] using a single image captured

by a standard RGB camera. With the face of the user staying the same over time, this fitting would

only have to be done once, compared to arbitrary parts of the scene geometry, which change while the

user is moving through the scene.

Splitting up the light estimation method into a pre-processing step and a live estimation step enables

algorithms that are optimized for faces based on valid assumptions and restrictions.

The live estimation part then can already be provided with information about the geometry and

reflectance, so that no special sensors like RGB-D cameras are needed to acquire the face. This makes

it feasible to run the estimation on images captured by a conventional monocular intensity camera,

e.g. a webcam or the camera of a smartphone. Removing the expensive scene reconstruction part

from the live estimation part also makes the estimation run more efficiently than generic approaches.

This is beneficial for mobile devices, which have limited processing power and where a low power

consumption is essential. Both these points, i.e. lower requirements in hardware as well as a lower

power consumption, are especially useful for AR applications for the consumer market.

The restriction to human faces also mitigates another problem that exists for approaches working

with arbitrary and unknown scenes, namely an ambiguity between light and material. While recon-

structing the geometry of a scene can be enabled by depth cameras, acquiring material properties

on-the-fly under unknown lighting conditions is difficult and typically hardly possible from a single

image. Therefore methods try to tackle this issue by making certain assumptions about the materials

in the scene, which however may be invalid. As we already know that we are working with a human

face, we are able to make stronger assumptions that hold true, like a specific model for skin reflectance

which constrains the physical problem of ambiguity between the surface material and the light in terms

of intensity and color. We even can predefine or pre-learn those regions of the human face that are

particularly suited for estimating the illumination and discard other regions that are unreliable.

In summary, focusing on the human face lets us tailor our algorithm on that specific object. It allows

us to make valid assumptions and to take pre-processing steps, which lower the requirements in terms

of hardware and processing power during run time. Selecting the face of the user as known object also

decreases the tasks the user has to perform, as it eliminates the need for an additional known object as

well as an additional set-up and capture step. While observing the face as light probe gives a certain

guarantee for the suitability for estimating the illumination it also limits the performance in recovered

lighting to low frequencies. It particularly is suited for estimating light incident from in front of the

user, and by that for enabling a coherent illumination of augmentations on the image of the user-facing

camera.
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2.4 Basic Knowledge of Spherical Harmonics

This section provides a short introduction to Spherical Harmonics (SH), an orthonormal function basis

that is defined over the surface of the unit sphere, which is equivalent to the domain of all directions

in R3. We will employ this basis throughout our light estimation approach, for modeling the incident

illumination as well as for modeling the reflection properties of the human face.

We provide mathematical definitions in section 2.4.1 and emphasize important properties that we

will rely on later. We then explain in section 2.4.2 how we align the SH functions to the coordinate

system of the human face. Finally, we show how to visualize functions that are defined over the

surface of the unit sphere in section 2.4.3.

Please refer to [Gree 03] and [Sloa 08] for a deeper insight on SH in the domain of computer

graphics and lighting.

2.4.1 Mathematical Definition

Spherical Harmonics (SH) are functions that are defined on the surface of the unit sphere. They form a

complete set of orthonormal functions, which makes them effective as basis for representing functions

on the sphere as linear combination.

2.4.1.1 Notations

Let S2 describe the set of points (x,y,z)> ∈ R3 with x2 + y2 + z2 = 1 [Fenn 01]. This set of points can

either be interpreted as the surface of the unit sphere or equivalently as the set of all directions in R3.

We thus synonymously also say that SH are defined over all directions. As each basis function is pa-

rameterized by direction, it can be both formulated in spherical and Cartesian coordinates. Depending

on the use case we will prefer either the former or the latter coordinate system.

We will only make use of the real part of the SH, while they are in fact functions in the complex

numbers. A particular SH function for us is defined as

Y m
` (θ ,φ) : S2→ R.

The radius of the spherical coordinates thereby is set fix to unity, θ ∈ [−π/2,π/2] corresponds to

the elevation angle or latitude, and φ ∈ (−π,π] to the azimuth angle or longitude.

The index `∈ {0, ...,∞} specifies the degree or band ` of the particular SH function, while the index

m ∈ {−`, ..., `} indicates the order m within this band.

Parameterized in spherical coordinates, SH functions can be written as a tensor product between

so called Legendre polynomials and the Fourier basis. This formula however is out of scope for this
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work. What is important for us from that definition is that with increasing degree ` the SH functions

contain higher frequencies in their variation over the unit sphere.

Instead of the two indices ` and m we from time to time will also make use of a linearized single

index notation [Sloa 08], which lets us write Y m
` as Yn with:

n = `(`+1)+m (2.1)

Like mentioned above, instead of using spherical coordinates, a direction can also be written in

Cartesian coordinates: ~ω = (x,y,z)> ∈ R3 with |~ω|= 1. The two representations can be easily trans-

formed into each other:

x

y

z

=

−sinφ cosθ

sinθ

cosφ cosθ

 (2.2)

(
θ

φ

)
=

(
arcsiny

−arctan2(x,z)

)
(2.3)

The function arctan2 thereby describes a variant of the arc tangent function that additionally con-

siders the appropriate quadrant of the computed angle based on the signs of the two input variables.

Instead of Yn(θ ,φ) we thus can equally write Yn(~ω) and we can also transform the corresponding

formulas of the SH basis functions from spherical coordinates into Cartesian coordinates.

2.4.1.2 Spherical Harmonics as Function Basis

SH can be used to represent any real-valued square-integrable function f : S2→ R that is parameter-

ized by direction as a linear combination of the basis functions:

f (~ω) =
∞

∑
`=0

`

∑
m=−`

fm,` ·Y m
` (~ω) =

∞

∑
n=0

fn ·Yn(~ω) (2.4)

The coefficients fn that scale the different SH basis functions describe the particular function f .

If we cut the infinite sum by introducing a maximum degree of L for the SH functions, we get a sum

over (L+1)2 elements. We thereby omit all the higher frequencies, so that the linear combination of

the remaining basis functions approximates the function f :

f (~ω)≈
L

∑
`=0

`

∑
m=−`

fm,` ·Y m
` (~ω) =

(L+1)2−1

∑
n=0

fn ·Yn(~ω) (2.5)
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The higher the maximum degree L, the higher frequencies can be represented. In this work, we will

only use SH basis functions up to maximum degree L = 2. This low degree will limit our SH basis to

very smooth functions that do not contain abrupt changes like edges.

2.4.1.3 The First Nine SH Functions

The maximum degree L = 2 gives us nine SH basis functions Yn and correspondingly nine coefficients

fn for the approximation of a function f . These nine coefficients f0, f1, ..., f8 that describe the function

f can be written as a SH coefficient vector f̂ ∈ R9 with f̂ = ( f0, f1, · · · , f8)
>.

Using Cartesian coordinates, the functions in the first three bands of the SH that are relevant for us

can be compactly written as:

Y0(~ω) = Y 0
0 ( ~ω) = 0.5 ·

√
1
π

Y1(~ω) = Y−1
1 ( ~ω) =−0.5 ·

√
3
π
· y

Y2(~ω) = Y 0
1 ( ~ω) = 0.5 ·

√
3
π
· z

Y3(~ω) = Y 1
1 ( ~ω) =−0.5 ·

√
3
π
· x

Y4(~ω) = Y−2
2 ( ~ω) = 0.5 ·

√
15
π
· yx

Y5(~ω) = Y−1
2 ( ~ω) =−0.5 ·

√
15
π
· yz

Y6( ~ω) = Y 0
2 ( ~ω) = 0.25 ·

√
5
π
· (3z2−1)

Y7( ~ω) = Y 1
2 ( ~ω) =−0.5 ·

√
15
π
· xz

Y8( ~ω) = Y 2
2 ( ~ω) = 0.25 ·

√
15
π
· (x2− y2)

(2.6)

The first SH function Y0 with ` = 0 contributes the constant term, while the three SH functions

Y1,Y2,Y3 with ` = 1 represent a linear dependence. The five SH functions Y4, ...,Y8 with ` = 2 corre-

spond to quadratic terms.
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The constant scale factors of the functions take care of the normaliziation of each function, so that

for all functions Yn:

∫
S2
(Yn(~ω))2 d~ω = 1 (2.7)

2.4.1.4 Orthonormal Property

A big benefit of the SH basis is its orthonormal property. That means that the SH basis functions are

orthonormal to each other. The integral of the product of two SH basis functions Ya and Yb over all

directions thus is either 1 if the two functions are one and the same, or 0 otherwise.

∫
S2

Ya(~ω) ·Yb(~ω)d~ω =

{
1 if a = b

0 else
(2.8)

Thanks to the orthonormal property, we can determine the coefficients fn that best approximate a

function f (~ω) by simply projecting the function f onto each particular basis function Yn:

fn =
∫

S2
f (~ω) ·Yn(~ω)d~ω (2.9)

Another advantage of the orthonormal property becomes evident when we calculate the integral

over all directions of the product of two functions f and g that are both specified in the SH basis

approximation. By rearranging the terms and by applying equation (2.8) it becomes evident, that the

integral can be simply calculated as the dot product of the two SH coefficient vectors f̂ and ĝ.

∫
S2

f (~ω) ·g(~ω)d~ω =
∫

S2

8

∑
i=0

f̂i ·Yi(~ω) ·
8

∑
j=0

ĝ j ·Yj(~ω)d~ω (2.10)

=
8

∑
i=0

8

∑
j=0

f̂iĝ j

∫
S2

Yi(~ω) ·Yj(~ω)d~ω (2.11)

=
8

∑
n=0

f̂nĝn (2.12)

= f̂> · ĝ (2.13)
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2.4.2 Coordinate System with Respect to the Human Face

In this work we want to employ Spherical Harmonics to describe quantities that depend on directions

with respect to the human face. Figure 2.4 (a) illustrates how we embed the orientation of the human

face into the spherical coordinates system. The figure also shows the axes of the Cartesian coordinate

system that we define with respect to the face.

The coordinates (θ ,φ)>=(0,0)>, or (x,y,z)>=(0,0,1)>, correspond to the front-facing direction.

The rotation around yaw – the y-axis – is represented by angle φ , while θ describes the elevation.

The coordinates (θ ,φ)> = (π/2,0)>, or (x,y,z)> = (0,1,0)>, correspond to the up-facing direction.

Note that the representation in spherical coordinates is not always unique, as for example multiple

coordinates (θ ,φ)> = (π/2, ·)> correspond to the same direction to the top. The same is true for the

direction (θ ,φ)> = (−π/2, ·)> pointing down.

The presented embedding of the face into the coordinate systems will be used in the following both

to define the incident illumination with respect to the face as well as to define how light is reflected

by the face depending on the incident light direction.
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Figure 2.4: The human face is embedded into a spherical coordinate system (a), which enables us to
define functions in Spherical Harmonics with respect to the human face. Functions defined
over the set of unit directions can also be plotted in form of Latitude Longitude (Lat-Long)
images (b).
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2.4.3 Visualization

The order m ∈ {−`, ..., `} of the SH basis establishes a pyramidal structure of the functions, as each

band ` adds 2`+ 1 basis functions. We will use this structure when we plot the individual SH basis

functions or quantities related to them and we will refer to this ordering of the subplots as pyramidal

SH structure:

Table 2.1: Pyramidal SH structure induced by m ∈ {−`, ..., `}.
m

−2 −1 0 1 2
0 Y0

` 1 Y1 Y2 Y3

2 Y4 Y5 Y6 Y7 Y8

Let’s have a look at the different SH basis functions. Multiple ways exist to illustrate a function

that is defined over the domain of directions. We will use two of them.

Firstly we visualize the functions geometrically in 3-dimensional space, like for example in fig-

ure 2.5. This figure shows the nine SH basis functions with maximum degree L = 2. In this geomet-

rical visualization, the absolute value of the function for a direction (θ ,φ)> determines the extension

of the displayed shape in this direction. For a SH basis function Yn this results in surface points

(|Yn(θ ,φ)|,θ ,φ)> (specified in spherical coordinates). This is equivalent to the point |Yn(~ω)| · ~ω in

Cartesian coordinates, which represents the unit vector in direction ~ω scaled by the absolute value

|Yn(~ω)|. A higher absolute value of a function for a particular direction thus correlates in the figure

with a higher distance from the origin in that direction. In order to distinguish between positive and

negative values, positive values are encoded in green, negative ones in red.

While this illustration mode is quite demonstrative, it has the problem that not all directions can

be visualized at once as some are occluded. Also the projection of the 3-dimensional figure onto two

dimension is ambiguous.

We thus also employ a second way to plot a function defined over the domain of directions: Latitude

Longitude (Lat-Long) images. Figure 2.4 (b) illustrates the mapping in our Lat-Long images. A

coordinate (θ ,φ)> of a direction is simply interpreted as a 2-dimensional pixel coordinate. The center

pixel of the image corresponds to (θ ,φ)> = (0,0)>. Note that the longitude axis is positive to the left

for a consistent mapping from the spherical coordinates (figure 2.4 (a)). The projection from the

sphere onto the rectangle implies severe distortions especially at the poles.

Figure 2.6 shows again the nine SH basis functions with L = 2, this time plotted as Lat-Long

images. Like before positive values are encoded in green and negative ones in red. This time however

the absolute value |Yn(θ ,φ)| determines how bright the pixel is. A value of 0 results in a black pixel.
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Figure 2.5: The first nine SH basis functions plotted geometrically in pyramidal SH structure (in ac-
cordance with table 2.1).

Figure 2.6: The first nine SH basis functions plotted as Lat-Long images in pyramidal SH structure (in
accordance with table 2.1).

48



2 Coherent Illumination - The User’s Face as a Light Probe

2.5 Method of Estimating Light from the Image of a Face

In this section we present our particular approach for estimating the incident light based on a single

monocular image of a human face in real time.

We first outline in section 2.5.1 how to mathematically describe the distribution of light within a

scene as well as the propagation of light, as it emerges from light sources and interacts with the objects

in the scene.

In section 2.5.2 we then explain our specific setting in which we want to employ our method to

estimate the illumination. This setting involves the face of the user and a user-facing camera capturing

an image thereof. From this setting, we deduce a separation of the light in our scene into light incident

from the distant environment and light leaving a particular position on the face.

These two parts of the light obviously are linked, the more light is incident from the distant en-

vironment onto the face, the more light is leaving a particular position on the face. The correlation

between these two intensities can be described by Radiance Transfer Functions (RTFs), which we ex-

plain in section 2.5.3. We hereby are especially interested in light leaving the face towards the camera.

Loosely speaking in our case the RTFs encode the ratio between the intensity of light leaving the face

towards the camera and the intensity of light incident from the distant environment. An image of the

face captured by a camera will contain multiple measurements of the light leaving the face towards the

camera. Based on these measurements we finally want to estimate the distribution of incident light.

Our light estimation method consists of two steps, firstly an offline learning process and secondly a

real-time light estimation that relies on the previously acquired knowledge.

We make use of the limited range in variations between different human faces in terms of shape and

reflection properties. We thereby assume that the knowledge about how the human face in average

appears under a certain illumination can be also applied to the particular unknown face belonging to

the user. The face of the user then can be treated as an at least approximately known object and used

as a light probe for estimating the incident light.

The offline learning process, described in detail in section 2.5.4, only has to be executed once

in advance. In that step we analyze the appearance of human faces in terms of image brightness

under different known illuminations. For this purpose we employ The Extended Yale Face Database

B [Geor 01, Lee 05], which is publicly available. It contains a set of images of faces of different

humans under directional illumination out of different known directions. For these images we know

the reflected light provided by the pixel intensities as well as the incident light specified in primary

light direction by the dataset.

We select a set of sparsely distributed locations on the human face. Examining each of these sample

locations in separation of the others, we learn the average RTF per location over different humans. In

our method we model both RTFs as well as the incident illumination as 2-dimensional functions which
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depend on the incident light direction. This allows us to encode both of them in terms of Spherical

Harmonics basis approximations (see section 2.4).

After we learned the average RTFs in the offline learning process, we then apply the functions to

new images of an unknown face in section 2.5.5 in order to estimate the incident illumination present

in the image. In our use case, the unknown face more precisely is the face of the user of an Augmented

Reality application. We receive an image of the user’s face as input. We then align the set of sample

positions from the offline process to the new image by means of image-based face tracking. This

allows us to extract the intensity values at the sample positions which we subsequently use together

with the corresponding RTFs identified in the offline learning stage to estimate the most plausible

real-world lighting conditions in real time.

In section 2.5.5 we will start by presenting a straight forward unconstrained least-squares solution

for the real-time light estimation. We then will further improve our estimation by additionally model-

ing the physical restriction to positive light intensities in section 2.5.6. Here we also discuss remaining

limitations of our method and propose how to approach problems like ambiguity in the solution space

or deviations of the user’s face from the previously learned average face.

The fundamental goal why we want to estimate the illumination present in the real world is a

coherent illumination of the virtual objects in an Augmented Reality application. We demonstrate

how to use the estimated illumination for the rendering of virtual objects in section 2.5.7.

2.5.1 Foundations of Light Transport

Before we have a closer look at how our method estimates in detail the incident light from an image

of the human face, we in this section first provide well-established mathematical foundations for

describing light and the transport thereof.

Light is an electromagnetic radiation which can be specified by its wavelength and intensity. The

spectrum of light that is visible for humans roughly spans wavelengths in between 400 nm and 700 nm.

Depending on its wavelength, light appears to us in a certain – what we refer to as – color. Cones in

the retina of the human eye respond to incident light and transform the incident radiation into nerve

impulses. To distinguish between different wavelengths of incident light, the human eye possesses

three different types of cones, also referred to as color receptors. These three color receptor types

differ in how sensitive they are to particular wavelengths. The human brain interprets the difference

in the received signals from the different types of cones as color.

The way we perceive color allows us to make a simplification for our method which is common in

computer graphics and computer vision. We do not consider the continuous spectrum of wavelengths

for the light but instead only light at three discrete wavelengths corresponding to red, green, and blue.

We further assume that light does not change its wavelength on interactions with surfaces. By that we

neglect effects like e.g. fluorescence, where light is absorbed by a material and subsequently reemitted
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at a different wavelength. This simplification allows us to consider each of the three wavelengths in

separation of the others. We thus can also carry out our light estimation separately for each particular

wavelength. In the following, mathematical derivations and quantities will consequently consider

light of one specific wavelength. In order to later represent colored light, we will have one quantity

for each relevant wavelength.

Our method will employ inverse lighting, which means it will estimate the incident light on an

object from its appearance. Therefore it is important to understand how the appearance of an object is

influenced by light.

Light originates at light sources, which are objects or media that emit light with a specific spectrum

of wavelengths, intensities and directions. The emitted radiation then propagates through empty space

on straight lines, until it interacts with matter. For simplification we assume vacuum instead of a scene

filled with air, as we then can neglect marginal scatter and absorption effects in the empty space.

When light hits a surface it is either reflected, refracted or absorbed. The part of the light that is not

absorbed continues to propagate through space until it again interacts with matter. This propagation

goes on and on, until all light is absorbed. While we refer to as reflecting in case that the light is

bouncing back on the surface and thereby stays in the same medium, we refer to as refracting, when

the light is passing through a surface from one medium into another medium.

Refraction for example is happening, when light hits a surface like human skin and passes through

into the skin. Within the skin, light then interacts with the matter, is scattered once or multiple times

and potentially leaves the skin again at some other location. This process is called subsurface scat-

tering and substantially contributes to the characteristic soft look of human skin. The influence of

subsurface scattering is for example addressed by Weyrich et al. [Weyr 06] who present a skin re-

flectance model whose parameters can be estimated from measurements, as well as by d’Eon and

Luebke [dEon 07] in the field of realistic real-time skin rendering.

In the following mathematical derivation of light transport and radiance transfer in this section

we will for simplicity however deliberately omit the effects of refraction and subsurface scattering.

We will consider only reflection, as if the face would be a fully opaque object. This allows for a

simpler explanation of the main principle. Finally, for learning our Radiance Transfer Functions,

we will however take the full light transport into consideration by working on real captured images.

Consequently also our implementation for estimating light will itself automatically take refraction and

subsurface scattering into account. We will point this out again later when relevant.

As described above, emitted light propagates until it has been absorbed. At the same time light

sources will continue to emit light over time. For now we assume that the light sources in our scene

have a constant emission over time. The distribution of light in our scene, that arises from the contin-

uous emission of light by the light sources and the succeeding propagation of the light, then almost

instantly reaches an equilibrium state due to the high speed of light.
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This equilibrium solution can be mathematically formulated as an integral equation called Render-

ing Equation [Kaji 86]:

L : R3×S2→ R+
0

L(x, ~ω) = Le(x, ~ω)+Lr(x, ~ω) (2.14)

For one specific wavelength at one specific point in time, L(x, ~ω) specifies the radiance1, loosely

speaking power of light, at a surface point x ∈ R3 into direction ~ω ∈ S2. This radiance itself is

composed out of two parts: Le(x, ~ω), radiance emitted at location x into direction ~ω and Lr(x, ~ω),

radiance reflected at location x into direction ~ω . Le thereby corresponds to light directly emitted by

light sources, and is defined by characteristics of the particular light source at x. The radiance Lr

reflected at x on the other hand can be further disassembled, referred to as Reflection Equation:

Lr(x, ~ω) =
∫

Ω(x)
fr(x, ~ωi, ~ω)Li(x, ~ωi)(~ωi ·~n(x))d~ωi (2.15)

The radiance Lr reflected at a location x into direction ~ω originates from radiance Li incident at x

from all possible directions ~ωi ∈ Ω(x), with Ω(x) specifying the upper unit hemisphere with respect

to the surface orientation at position x. The surface orientation is represented by the outward-pointing

unit-length vector~n(x)∈R3. By integrating over Ω(x) we collect all the light that is incident at x from

above. Note that only considering the upper unit hemisphere at this point neglects refraction and thus

subsurface scattering, as we do not collect light coming from below the surface.

The incident radiance Li out of direction ~ωi is modulated by the cosine of the angle between ~ωi

and ~n(x), which is calculated by the scalar product of the two unit length vectors. This modulation

accounts only for the irradiance, i.e. the effective power incident on the unit area of the surface.

The resulting irradiance is multiplied by the so called Bidirectional Reflectance Distribution Func-

tion (BRDF) [Nico 77] fr(x, ~ωi, ~ω), which specifies the ratio of locally reflected radiance into outgoing

direction ~ω to locally incident irradiance out of direction ~ωi. The BRDF captures the reflectance prop-

erties of the material at surface location x. It depends on both incident and outgoing direction. Com-

pared to the Radiance Transfer Functions we will employ later, this function only models the local

effect of reflection at this specific spot, i.e. how light that arrives at the surface position is reflected.

Radiance along a ray does not change as long as light travels through empty space. We thus can

express the radiance Li incident out of direction ~ωi at position x in equation (2.15) as outgoing radiance

L into direction (−~ωi) at the surface point that is visible from x in direction ~ωi.

1radiance is measured in W · sr−1 ·m−2
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Given a function h(x, ~ωi) ∈ R3 which returns the surface point that is visible from point x in direc-

tion ~ωi, we get:

Li(x, ~ωi) = L(h(x, ~ωi),−~ωi) (2.16)

The reflection equation – which is part of the rendering equation (2.14) – thus can be rewritten as:

Lr(x, ~ω) =
∫

Ω(x)
fr(x, ~ωi, ~ω)L(h(x, ~ωi),−~ωi)(~ωi ·~n(x))d~ωi (2.17)

Note that in the overall rendering equation (2.14) the unknown function L thereby occurs twice:

firstly on the left and secondly inside of the integral of the reflection equation (2.17) on the right

side, which makes the rendering equation a so called Fredholm equation of the second type (see for

example [Poly 08]) which in general is hard to solve analytically.

A useful property of light worth noting lies in its linear nature - see the rules of superposi-

tion [Nime 95]. The radiance in a scene that is generated by two light sources is simply the sum

of the radiance that each particular light source would cause individually. Analogously scaling the

intensities of all the light sources by a certain factor causes the same scale in the radiance in the scene.

Given this basic knowledge about how to describe light mathematically we will now have a closer

look on the specific scenario, in which we want to estimate the illumination.

2.5.2 The Illuminated Face – Local and Distant Scene

Our method is specialized on estimating the illumination that is incident on a human face based on an

image thereof. In our target scenario, the face belongs to a person that is using an Augmented Reality

application within some environment, either outdoors or indoors. Light sources in the surroundings,

e.g. the sun, lanterns, or lamps, thereby illuminate the whole scene. While the user is looking at a

screen which displays the augmented view of the Augmented Reality application, his face is captured

by a user-facing camera.

We are interested in the overall incident light from the surroundings at the position of the user –

more specific at the position of the user’s face – in order to apply a coherent illumination for the

virtual content. The term overall incident light refers to the fact that at this point we do not care

whether the incident light at the position of the user is directly coming from a light source or whether

it has already been reflected in the surrounding environment towards the face. We however assume

that the surrounding environment as well as the light sources are located distant from the user, as this

will simplify our estimation.
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Similarly to Debevec [Debe 98] we partition the scene for our light estimation method into two

parts. The first part of the scene is called distant scene and comprises both the light sources as well as

the reflecting surrounding surfaces in the environment around. All we will care about of this distant

scene is the incident light.

The second part is the local scene, i.e. the face of the user. While the face does not emit light by

itself, the light incident out of the distant scene manifests itself by illuminating the face of the user.

By assuming that the distant scene is located far away from the face, the parallax effect regarding the

incident light from the distant scene can be neglected for locations on the face. Figure 2.7 illustrates

the concept behind. As long as a light source is close to the face (see the face on the left of figure 2.7),

the direction of incident light from the light source varies quite strong between different positions

on the face. With increasing distance between the light source and the lit object (see the face on the

right of figure 2.7), this variation diminishes and incident light rays become more and more parallel.

We thus treat light incident from the distant scene as only depending on the incident direction and no

longer depending on the particular location on the face.

Figure 2.7: Incident light from a light source has a stronger variation in direction for the close face
on the left than for the distant face on the right, where the light is incident nearly parallel.

The light incident from the distant scene can thus be specified as a 2-dimensional function

E(~ωi) ∈ R+
0 which depends on incident direction only (see figure 2.8). In the following we will

refer to E also as directional distribution of incident light. E is defined over the continuous range of

directions – mapping from direction to light intensity incident from that direction. Note that ~ωi refers

to the direction where light is incident from and not where it is heading in this case.

An obvious example where our assumption, that incident light does not vary with location, is not

valid is e.g. the illumination of the face by a video projector. Here every region of the face can be lit

individually. Another more natural example where the assumption does not hold is a shadow that is

cast by the surroundings on only a part of the face.

The light E incident out of the distant scene illuminates the face. For the face, which corresponds

to our local scene, we introduce R(x, ~ω) ∈ R+
0 , which represents the light leaving at a surface point x

of the local scene into the direction ~ω . As the face does not emit light by itself R depends on E. It

also depends on the material and geometry properties of the local scene. For a particular point on the

face some part of the distant environment may be occluded so that the surface point does not directly

receive light from this part of the environment. This occlusion may manifest as a cast shadow. See for

example figure 2.9 (a), where light incident on the face is occluded by the nose which casts a shadow

onto the right cheek. Light incident from the distant environment may however not only be occluded
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E(~ωi)

Figure 2.8: We model the light incident from the distant scene as a function E(~ωi) defined over the
range of directions.

by local geometry, but light from the distant environment incident on the local scene may also be

reflected from one surface point towards another one.

As we already know from section 2.5.1, the overall reflected light at a surface point x into direc-

tion ~ω can be specified according to the reflection equation (2.15).

Our separation of the scene into local and distant scene allows us to now rewrite this equation. We

divide the domain of integration in equation (2.15), the upper hemisphere Ω(x), into two disjoint sets

of directions. The first set ΩE(x) contains the directions into which from surface point x the distant

environment is visible – marked as green in figure 2.9 (b). The second set ΩR(x) contains those

directions into which the distant environment is occluded by the local scene – marked as red.

Ω(x) = ΩE(x)∪ΩR(x) (2.18)

When sampling the incident light Li at a surface point x in the reflection equation, we now can

distinguish whether from direction ~ωi either light is coming directly from the distant scene or light is

coming from the local scene itself.

We thus specify the incident light as:

Li(x, ~ωi) =

R(h(x, ~ωi),−~ωi), if ~ωi ∈ΩR(x)

E(~ωi), otherwise, i.e. if ~ωi ∈ΩE(x)
(2.19)

For the overall reflected light R at the surface point x on the face into direction ~ω we then have:
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x

~n(x)

(a) (b)

x

Figure 2.9: At a surface position x, e.g. on the cheek, some of the incident light out of the distant
environment may be blocked, e.g. by the nose (a). The upper hemisphere Ω(x) oriented
along surface orientation~n(x) at surface point x can be divided (b) into the set of directions
ΩE(x) (green) in which the distant environment is visible and the set of directions ΩR(x)
(red) in which the distant environment is occluded by local geometry.

R(x, ~ω) =
∫

ΩE (x)
fr(x, ~ωi, ~ω) ·E(~ωi) · (~ωi ·~n(x))d~ωi

+
∫

ΩR(x)
fr(x, ~ωi, ~ω) ·R(h(x, ~ωi),−~ωi) · (~ωi ·~n(x))d~ωi.

(2.20)

An image captured of the face will contain partial measurements of R: measurements for surface

points x that are visible for the camera with the direction ~ω pointing towards the camera. Our goal is

to find the most plausible directional distribution of incident light E for these measurements. For that

we will in the following section have a closer look at the function modeling the correlation between

E and R, which we refer to as Radiance Transfer Function (RTF).

56



2 Coherent Illumination - The User’s Face as a Light Probe

2.5.3 Radiance Transfer Function

By defining a linear operator B that represents the light transport by a single reflection step at a surface,

we can simplify equation (2.20) for the light leaving the surface in the local scene to:

R = B(E +R) (2.21)

The equation still contains its recursive part, which we can rewrite as an infinite Neumann series:

R = B(E +R) = B(E +B(E +R)) = · · ·=
∞

∑
i=1

Bi(E)

= T(E)
(2.22)

The introduced new operator T includes all the light transport – from direct illumination of the local

scene (B(E)), up to an infinite number of interreflections (B∞(E)) within the local scene. T maps

the directional distribution of incident light E to radiance R leaving the surface of the local scene.

Recovering the incident light would correspond to applying an inverse operator to R like T−1(R) = E.

Light incident from one direction We have modeled the incident light from the distant scene

as a function E which depends on direction ~ωi and we have modeled the light leaving the local scene

as a function R depending on location x and direction ~ω .

According to the linear nature of light (rules of superposition [Nime 95]) the radiance in the scene

generated by multiple light sources is simply the sum of the radiance that each particular light source

would cause individually. Let us thus start by considering that light would be incident out of the

distant scene only from one particular direction ~ωi with intensity E(~ωi), as depicted in figure 2.10.

The light incident out of ~ωi with intensity E(~ωi) distributes and propagates throughout the scene and

creates a certain radiance in the scene, which we denote as R~ωi(x, ~ω).

For every triple (x, ~ω, ~ωi) of location and directions we thus can calculate the ratio between

R~ωi(x, ~ω) and E(~ωi). This gives us a non-negative real-valued function T which describes – ana-

logically to the operator T – how radiance incident onto the local scene from the distant environment

out of direction ~ωi is transferred into radiance leaving the local scene at position x into direction ~ω .

T (~ωi,x, ~ω) =
R~ωi(x, ~ω)

E(~ωi)
(2.23)

On the one hand, this ratio depends on the surface orientation and the material properties at the

surface location x itself, similar to the BRDF fr(x, ~ωi, ~ω) in equation (2.20). On the other hand – in

contrast to that BRDF – this ratio however also incorporates the full light transport and not only a

single reflection step. It thus also depends on the geometry and material properties of the whole local

scene which can occlude light but also reflect light towards x.
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Such kind of function has been already studied in the past. In accordance to terminology in pre-

computed radiance transfer in computer graphics (e.g. [Sloa 02]) we refer to that function as Radiance

Transfer Function (RTF). Debevec et al. [Debe 00] for example denote it as reflectance function. Ac-

cording to [Liu 04], an RTF tabulates the linear response of a surface point in terms of exit radiance (R)

to source lighting (E).

R~ωi(x, ~ω)

x

E(~ωi)

Figure 2.10: The light E(~ωi) incident on the face from the distant scene out of direction ~ωi is trans-
ferred into radiance R~ωi(x, ~ω) leaving the face at a point x in direction ~ω .

We can rearrange equation (2.23) to get an equation for R~ωi(x, ~ω):

R~ωi(x, ~ω) = T (~ωi,x, ~ω) ·E(~ωi) (2.24)

Refraction and subsurface scattering effects In our previous mathematical derivations of

light transport and RTFs, we deliberately assumed for simplicity that surfaces are opaque. We thereby

neglected effects like refraction and subsurface scattering of the light and only considered reflection.

While the involved math in sections 2.5.1 and 2.5.2 would become a little bit more verbose, the

previous derivation of an RTF would still hold, when incorporating all these effects into the equations.

In the following we will employ captured images of real faces for measuring R, the light leaving

the local scene. These measurements of R thus contain all the effects existing in the real world. As

we will learn our RTF based on these measurements, we automatically account for all the effects like

reflection, refraction, and subsurface scattering that occur on the face.

Figure 2.11 illustrates different examples of light paths that contribute to R~ωi(x, ~ω). All these paths

have in common that the light originally comes out of the distant scene from direction ~ωi and finally

leaves the face at x into direction ~ω . The incident light from the distant environment may directly

hit the surface point x and be reflected towards the camera (figure 2.11 (a)). The distant environment

may however also be blocked at x in the direction ~ωi (figure 2.11 (b)). Additionally light that first

hits another surface point may then be reflected to x either directly or after multiple reflections (fig-

ure 2.11 (c)). Likewise the incident light may be scattered to x below the skin after first hitting another

surface point (figure 2.11 (d)). Obviously combinations of these effects contribute to R~ωi as well.
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~ω

(a) (b)

(c) (d)

x x

x

x

−~ωi−~ωi

−~ωi−~ωi

~ω

~ω ~ω

Figure 2.11: Possible light paths for light incident on the local scene out of direction ~ωi (red), which
finally leaves at surface point x into the direction ~ω towards the camera (blue). Beside
direct reflection (a) and occlusion (b), the light in-between (green) potentially is reflected
(c) or refracted and scattered (d) multiple times.

Light incident from multiple directions In the real environment, light usually does not come

from only a single direction, but from all directions with varying intensities. The incident light then

consists of a dense distribution of light intensities over the range of directions. Finally we want to

solve for this distribution of incident light E, based on an image of a face. This image will however

contain measurements of R, while our equation (2.24) at the moment is specified for R~ωi .

Based on the linear nature of the light transport, the overall reflected light, resulting from light in-

cident from the distant scene from multiple directions, is the sum over the reflected light intensities

corresponding to each single incident light direction. For the continuous range of incident light direc-

tions the sum becomes an integral of the reflected light for incident light from the distant scene over all

directions (specified as the unit sphere S2). The integrand is the product of the RTF T (~ωi,x, ~ω) and the

incoming light intensity E(~ωi) from the distant scene, both evaluated for the particular direction ~ωi.

R(x, ~ω) =
∫

S2
T (~ωi,x, ~ω) ·E(~ωi)d~ωi (2.25)
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How R(x, ~ω) relates to pixel intensity In our approach we employ real images of the human

face for measuring the light R leaving from the local scene, i.e. the face. By capturing an image of the

user’s face, we take measurements of that part of R, that is leaving the face towards the camera. We

use these measurements both for first learning the RTFs as well as for later estimating the illumination.

During image capturing, the radiance R coming from the local scene towards the camera first passes

the lens system of the camera and is projected onto the sensor plane of the camera. The resulting

irradiance incident on the sensor is proportional to radiance R for any particular position on the sensor,

the factor however may vary between different positions. Debevec and Malik [Debe 97] argue that

most modern camera lenses provide a nearly constant mapping factor over the sensor especially for

smaller apertures. The camera response function of the particular camera electronics then determines

how sensor irradiance is mapped to pixel intensities in the final image. For algorithms calculating with

intensities of light, an important pre-processing step often is a radiometric calibration of the camera

(see e.g. [Debe 97]), which determines the inverse mapping from pixel intensity to sensor irradiance

and thus permits calculating with linear intensities.

Currently we however do not employ any kind of radiometric calibration, neither for offline learning

nor for the online estimation. We however assume that images are encoded with a gamma correction

of γ = 1/2.2, for which we compensate by decoding with γ = 2.2. Beside that, we assume an ap-

proximately linear mapping of the camera between sensor irradiance and pixel intensity. While this

degrades the physical correctness of the estimation, it copes with the objective to run the algorithm

out of the box on diverse consumer hardware.

Sparse Sampling We will not recover the full RTF T (~ωi,x, ~ω) but instead we will investigate this

function at a discrete number of positions x and directions ~ω .

For the images of the faces that we use, we restrict ourselves to a fixed pose. Without loss of

generality we pick the frontal head pose. Due to the fixed pose of the face in front of the camera a

certain position x= x j on the face, for example on the right cheek, also implicates a fixed direction ~ω =

~ω j from x j towards the camera in relation to the coordinate system of the face (see figure 2.12). The

position x j on the right cheek is projected along direction ~ω j onto a pixel position in the captured

image. The brightness of the pixel at that position thus contains information about R j = R(x j, ~ω j), the

radiance leaving at the surface point x j into the direction ~ω j, i.e. towards the camera.

Associated with x j and ~ω j we define Tj : S2→R+
0 with Tj(~ωi) = T (x j, ~ωi, ~ω j). This partial function

of the RTF T describes the ratio of radiance leaving at position x j into direction ~ω j, i.e. towards the

camera, to radiance incident out of the distant scene from ~ωi. As j fixes x j and ~ω j, Tj(~ωi) only depends

on the direction of incident light from the distant environment. Note that we will again refer to Tj itself

simply as a Radiance Transfer Function, although we now have a discrete set of these partial RTFs.

60



2 Coherent Illumination - The User’s Face as a Light Probe

R j
x j

E(~ωi)

Figure 2.12: The light distribution E incident from the distant scene is transferred by the face into
radiance R, where R j is that part of R that is leaving at sample position x j into direction
~ω j towards the camera.

Pinning x = x j and ~ω = ~ω j also reduces equation (2.25) to:

R j =
∫

S2
Tj(~ωi) ·E(~ωi)d~ωi (2.26)

Spherical Harmonics approximation Equation (2.26), which describes the radiance R j leaving

at x j into direction ω j, contains the two functions E : S2→ R+
0 and Tj : S2→ R+

0 . Both map from the

domain of unit directions to real (non-negative) numbers.

In order to cope with the learning of the RTFs and the estimation of the illumination, we reduce

the dimensionality of the function space for E and Tj. We therefore model all RTFs Tj as well as the

distribution of incident light E from the distant environment using a linear combination of real-valued

Spherical Harmonics (SH) – orthonormal basis functions Yn(~ω) defined over the domain of directions

(see section 2.4). We restrict the SH basis functions to maximum degree L = 2 resulting in nine SH

coefficients describing a particular linear combination. The low maximum degree limits our function

space to very smooth functions.

Let T̂j ∈ R9 be the SH coefficient vector that describes the RTF Tj(~ωi) at location x j. Tj then is

approximated by:

Tj(~ωi)≈
8

∑
n=0

T̂j,nYn(~ωi) (2.27)
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Similarly, let Ê ∈ R9 be the SH coefficient vector that describes E(~ωi), a particular directional

distribution of incident light. E then is approximated by:

E(~ωi)≈
8

∑
n=0

ÊnYn(~ωi) (2.28)

Following equation (2.26) the reflected light R j can be expressed as an integral of the product

of RTF and particular distant illumination over all directions, where we now can plug-in our SH

approximations.

R j =
∫

S2
Tj(~ωi) ·E(~ωi)d~ωi

≈
∫

S2

8

∑
n=0

T̂j,nYn(~ωi) ·
8

∑
n=0

ÊnYn(~ωi)d~ωi (2.29)

With both the RTF as well as the distant illumination expressed in SHs, we can exploit the orthonor-

mal properties (see equation (2.8)) of the SH basis functions. The integral of the product of RTF and

incident illumination over all directions then becomes a simple dot product of the SH coefficient

vectors T̂j and Ê and thus can be evaluated much more efficiently.

R j ≈ T̂>j · Ê (2.30)

This equation (2.30) is fundamental for all the following calculations, from learning the RTFs

(section 2.5.4) to estimating the illumination (section 2.5.5).

In the following we loosely write = instead of ≈ also when we refer to SH approximations.
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2.5.4 Offline Learning of the Impact of Light on the Appearance of Faces

In this section we elaborate our training procedure to determine the Radiance Transfer Function (RTF)

Tj for a particular position x j on the human face. This offline learning process for an RTF only has to

run once in advance.

We refer to a position x j as sample position. Later we will use a whole set of sample positions dis-

tributed over the face. In this phase we however look at each particular sample position x j separately

and for each location x j learn its own RTF Tj.

As already indicated we model our RTFs Tj(~ωi) using Spherical Harmonics (SH) basis approxima-

tions, so that a specific function is described by the SH coefficient vector T̂j ∈ R9. With regard to this

representation, learning an RTF Tj means determining the nine SH coefficients of T̂j.

We later want to use the learned RTFs to estimate the illumination from images of arbitrary human

faces, without the need to do a separate learning step for every new person. Therefore we want to

determine for a particular sample position x j on the human face the average RTF Tj(~ωi) that best

approximates all the various RTFs from different faces at position x j .

2.5.4.1 Input Training Data

In the offline learning stage, we learn how illumination impacts the appearance of a face. For that

purpose we employ images from The Extended Yale Face Database B [Geor 01, Lee 05], which is

publicly available. This database contains a set of grayscale images of faces with frontal head pose

from 38 human subjects each under 64 different illumination conditions. We additionally include

horizontally flipped versions of the images, which overall gives us 4864 images.

Our goal is to determine the RTF Tj for a sample position x j based on the intensities of the pixels

where x j projects to in the images of different persons under different known directional illuminations.

Coordinate system and sample positions We loosely use the term x j for both the position on

a face in 3-dimensional space, as well as for the 2-dimensional projection x j on the image of the face.

In order to specify the sample positions on an image of a face, we define a 2-dimensional coordinate

system based on the two pixel positions of the eyes. For that we manually labeled the positions of the

eyes for each person in the training images. The origin of the 2-dimensional coordinate system is set

to the center between the two eye positions, the unit vector in x-direction pointing to the image-wise

right eye, and the unit vector in y-direction pointing perpendicular in upwards direction.

Relative to this coordinate system, we specify a set of sparse sample positions x j. We try to select

the set so that positions are uniformly distributed over regions of the face which most likely correspond

to skin e.g. cheeks, forehead, and nose. Details on the sample selection procedure are provided in
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section 2.6.2.2. Let J be the set of selected samples with j ∈ J specifying a particular sample with

position x j. The same set J of sample positions is used for all images.

Known directional illuminations The images of The Extended Yale Face Database B [Geor 01,

Lee 05] are each taken under light from one particular direction only. This direction is specified in the

database by azimuth and elevation angle, so that we know the illumination condition for each of the

images.

The dataset thereby comprises light incident out of 64 different directions, which are marked in

figure 2.13. The light directions range from frontal illumination, to illumination from the side and

even partially from behind the face with a maximum longitude of 120◦. Additionally light directions

vary with latitude, some light is incident from below as well as some from above.

Figure 2.13: The employed dataset comprises 64 different directions of incident light which are
marked in green in this Lat-Long image.

Let K be the set of different directional illuminations with k ∈ K specifying a particular distant

illumination Ek, that contains only directional light incident from direction ~ωk. As a directional light

only contains intensities for a single specific direction, it can be modeled as a Dirac delta function

δ (·), also known as Impulse symbol [Brac 99]. The directional distribution Ek then can be written as:

Ek(~ωi) = δ (~ωi−~ωk) (2.31)

This function equals to 0 for all directions ~ωi except for ~ωi = ~ωk. Integrating over this function

results in 1. Being unaware of the real physical intensities, we assume some unit intensity for the light

sources from the database.

We want to approximate Ek using our SH approximation. To determine the SH coefficient vector

Êk we project Ek onto the SH basis functions (see equation (2.9)). Due to the properties of the Dirac

delta function the integral in equation (2.9) to determine the coefficients becomes a simple evaluation

of each basis function for ~ωk.
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Êk,n =
∫

S2
Ek(~ωi) ·Yn(~ωi)d~ωi = Yn(~ωk) (2.32)

Note that, albeit a directional light is locally defined in angular space, it contains all frequencies

when defined in angular frequency space. An accurate representation by an SH expansion would need

degree L = ∞. Our limitation to L = 2 hence involves a coarse approximation.
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Figure 2.14: Each row illustrates one illumination condition: column (a) and (b) contain light specifi-
cations and images from The Extended Yale Face Database B [Geor 01, Lee 05], column
(c) and (d) illustrate the corresponding SH approximation of the directional lights.

Figure 2.14 shows three images from the used dataset with corresponding directional illuminations,

as well as our SH approximation for the directional light. The errors introduced by the SH approx-

imation become apparent. While the original illumination only contains a peak in intensity for the

particular direction ~ωk, the Lat-Long illustrations (figure 2.14 (c)) of the SH approximations show a

fair amount of blur around ~ωk. The 3-dimensional plots in column (d) of figure 2.14 additionally show

two other artifacts introduced by the approximation: some amount of intensity out of the opposite di-

rection of ~ωk, as well as small negative light intensities perpendicular to ~ωk – plotted in red.
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2.5.4.2 Per Person Albedo Factor

We target at finding the RTF Tj for a sample position x j that best approximates the radiance transfer for

all different people. Different people however have different skin colors and thus obviously different

RTFs. We make the assumption that the RTF for a particular sample position x j mainly varies between

different persons by a uniform scale. The scale can be considered as a per person albedo term that

corresponds to the difference in the BRDF of the persons’ skin. As skin reflectance is not fully diffuse,

but also exhibits gloss, this assumption is not fully valid.

We want to compensate for the different skin colors before learning the average RTFs. From equa-

tion (2.30) we deduce that a scale in the RTF goes along with a scale in R, the radiance leaving the

face, which we extract from the pixel intensities in the images. Let F be the set of the different faces in

the dataset with f ∈ F specifying a particular face. Before determining the average RTF for multiple

people, we thus first normalize the pixel intensities of all training images of a face f by dividing by

the albedo a f of a respective face. We determine the albedo by the median over the intensities of all

sample points in the frontal lit image of the particular face. For all these calculations we consider a

gamma encoding of γ = 1/2.2.

After compensating for the per person albedo factor a f , we assume that for a particular position x j

in the human face a single RTF Tj can be used to approximate the RTFs for all different persons.

The Extended Yale Face Database B [Geor 01, Lee 05] that we use for learning the RTFs only

contains grayscale images. For estimating colored light, we will later assume in the online light

estimation (section 2.5.5) that we can also reuse the RTF, that we learned from grayscale images, for

different wavelengths of light by simply scaling the RTF by an albedo factor specific to the particular

wavelength.

2.5.4.3 Setting up the System of Equations

As already indicated above, we examine – in the offline learning stage – each sample position x j and

its corresponding RTF Tj in separation of the other positions and RTFs.

Let p specify a particular picture from the dataset. The captured face in picture p then shall be

denoted as fp, as well as the distant illumination corresponding to picture p as Ep.

Let I j,p furthermore be the intensity of the pixel corresponding to sample position x j in image p. The

pixel intensity is related to the intensity of the reflected light R j,p (at surface point x j into direction ~ω j

by face fp under illumination Ep). According to section 2.5.4.2 we account for the albedo a fp of a

person fp when deducing R from pixel intensities I in image p:

R j,p = I (γ)
j,p · 1

a fp

(2.33)
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We rearrange equation (2.30) and for each image p form an equation Ê> · T̂j = R j between the

known illumination Ep, the unknown RTF Tj at position x j in the face , and the corresponding mea-

sured known reflected light intensity R j,p.

We thus can use the set of |K| · |F | images to build a system of equations (2.34) for a particular

sample position x j where each image contributes one row.


Ê>p=1

Ê>p=2
...

Ê>p=|K|·|F |

 · T̂j =


R j,(p=1)

R j,(p=2)
...

R j,(p=|K|·|F |)

 (2.34)

Given on the left in this system of equations is the matrix of dimension |K| · |F |×9 where each row

contains the 9 coefficients specifying an illumination. Given on the right in this system of equations

is the |K| · |F |-dimensional column vector where each row contains the intensity of the reflected light

(compensated by albedo).

Only the 9-dimensional vector T̂j on the left side is unknown. Containing nearly2 |K| · |F | = 4864

equations, this system of equations is clearly overdetermined. The coefficients T̂j thus can be calcu-

lated as the least squares solution of equation (2.34), which gives us our estimation for the average

RTF for the particular location x j.

We repeat this learning procedure for each x j from the set of selected sample positions. Each time

we build up this system of equations and estimate T̂j, so that in the end of the offline stage we have

learned an average RTF for each sample position.

Figure 2.15 illustrates the learned average RTFs for six different sample positions on the face. Like

before, the green intensity in the Lat-Long images corresponds to a positive value of the function for

that direction. As you can see, sample position 2 on the left cheek responds to a greater extent to light

coming from the left direction than to light coming from right, while for sample position 5 on the right

cheek it is the other way round. Sample position 1 in figure 2.15 lies quite close to the nose, so that

especially light coming from the right is occluded. The fact that the sample position is barely affected

by light from the right is reflected by low intensities of the corresponding RTF for those directions.

2.5.4.4 Limitations

The assumptions and restrictions that we chose until here will enable a well performing light esti-

mation that allows for coherent illumination of virtual objects in Augmented Reality. Still they will

however also introduce some kind of imprecision, which we think is important to mention.

2Some images of the dataset are defective and have been removed.
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Figure 2.15: Six sample positions distributed over the area of the face with their corresponding RTFs
that have been recovered in the offline learning procedure.

We already saw above, that the low degree we chose for the Spherical Harmonics approximation,

introduced some degree of unsharpness for the ground truth illumination. The same unsharpness also

becomes apparent in the recovered RTFs. These RTFs are also approximated by Spherical Harmonics

of maximum degree L = 2, so that they hardly can model sharp edges from occlusions or specular

reflections. While e.g. sample position 1 of figure 2.15 already reproduces the occlusion effect of

light by the nose to some extent, it only does so in a very smoothed out version, which does not fully

cope with the harsh occlusion and shadow edge.

Also adapting to different skin colors by simply scaling intensity values and RTFs respectively by

a single albedo value is a coarse approximation that is not completely valid for objects which are not

both fully convex and fully diffuse. Human skin exhibits a significant amount of glossy reflection and

subsurface scattering as well as the geometry of a human face contains concavities, too. We may want

to improve this approximation in future work.

Another potential shortcoming at that point are the neglected differences in head shape between

different people. The way we currently define the coordinate system for the sample positions is

simple. In a future implementation, a more elaborate way to specify the coordinate system could

improve the accuracy in registration over multiple persons, and by that would make averaging over

multiple persons more accurate. Options range from simple improvements like including the position

of the nose to define the scale in y-direction, to more sophisticated approaches where sample positions

could be defined in an elastic coordinate system that adapts to the head shape of a particular person

e.g. by exploiting the facial fiducials all over the face instead of only the position of the eyes and nose.
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2.5.5 Online Illumination Estimation

This section describes the online light estimation stage, where we want to estimate in real time the

unknown directional distribution of incident light E(~ωi) for a particular single image showing the face

of the user. For this purpose we will apply the set of Radiance Transfer Functions (RTFs) Tj, that we

learned beforehand in the offline learning stage (see section 2.5.4).

2.5.5.1 Face Tracking

The input for the online light estimation stage is an image of the user’s face from a live video stream

captured by a user-facing camera. We align the sample positions from the offline process to the image

of the face by means of face tracking.

We use an image-based face tracking prototype as a black box. For an input image of a human

face we obtain a pose with six degrees of freedom (6DoF pose) comprising 3-dimensional translation

and 3-dimensional rotation. Note that in our prototype implementation we beforehand projected the

2-dimensional sample positions from the offline learning stage onto a 3-dimensional face model for

the sake of simplicity, which results in 3-dimensional sample positions registered to the human face.

We now use the 6DoF pose from the face tracker to project the sample positions x j defined on the

3-dimensional face model back onto pixel positions of the captured camera image.

Figure 2.16 shows a set of projected sample positions during live tracking. For now, our light

estimation algorithm assumes that the head pose is close to frontal in order to work properly.

Figure 2.16: Visualized sample positions on the face during live tracking.

2.5.5.2 Setting up the System of Equations

Now that we know the pixel positions of the sample positions in the current image of the face, we can

extract the intensity values of the pixels. To roughly linearize the mapping between pixel intensities
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and radiance, we again assume a gamma encoding by the camera of γ = 1/2.2, for which we compensate

by decoding with γ = 2.2. Like in the offline learning stage this is only a very coarse approximation

of the real camera response curve.

This time we work on a single image. Let I j now be the intensity of the pixel corresponding to

sample position x j in the current image.

Once again we rearrange equation (2.30) and form an equation for every sample position x j in the

current image:

T̂>j · Ê = R j (2.35)

= I (γ)
j /a (2.36)

This time, the RTFs T̂j for the different sample positions are known from the offline estimation step,

but Ê is unknown. R j, the intensity of reflected light (at surface point x j into direction ~ω j towards the

camera), is provided by the intensity I j of the pixel corresponding to sample position x j. The albedo

of the specific user is taken into account by factor a. This factor a at the moment is manually defined.

In contrast to the offline learning stage, where we use the median intensity from a frontal lit image of

the person, we at that point do not have a frontal lit image for the specific user available. In the offline

stage we also assumed a normalized intensity of the illumination, this time we want to be able to also

distinguish between dimmer and brighter illuminations.

Using the set J of sample positions we can again set up a system of equations similar to the pre-

vious one (system of equations (2.34)). Note that while in the offline stage we learned the RTF for a

particular sample position independent of the other sample positions using a whole set of images, this

time we use only one image but all sample positions at once. Each of the sample positions thereby

contributes one row to the system of equations.


T̂>j=1

T̂>j=2
...

T̂>j=|J|

 · Ê =


R j=1

R j=2
...

R j=|J|

 (2.37)

This gives us a |J|-dimensional vector on the right side for the reflected light intensities, with |J|
being the number of employed sample positions. On the very left side of the system of equations,

this time the different RTFs of the sample positions build the rows of a matrix of dimension |J|× 9.

Unknown are the 9 SH coefficients of Ê specifying the directional distribution of incident light E.

By again solving this overdetermined system of equations by least squares we obtain our estimation

for the illumination. We present visual results of this simple unconstrained least-squares solution in
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section 2.6.1 as well as quantitative evaluations against ground truth in section 2.6.2. We there also

examine the performance of our method for different numbers of sample positions.

In the next section 2.5.6 we will identify and address weaknesses of our so far presented method.

Estimating Colored Illumination Our training set from The Extended Yale Face Database

B [Geor 01, Lee 05] only contains grayscale images. When we are only interested in a grayscale

illumination, we simply convert the pixel intensities of the input image in the online estimation stage

from color to grayscale.

For estimating colored illumination we work on each color channel of the input image individually.

We make the assumption that the RTF for a particular light frequency can be approximated by just

scaling the grayscale RTF from the offline stage by an albedo factor specific to the particular user

and frequency, i.e. color channel. The three albedo factors a{r,g,b} for the red, green and blue channel

thereby correspond to the components of the albedo color of the person.

In our prototype implementation we at the moment manually specify the albedo factors a{r,g,b} of the

user. We support this by allowing to pick a color from the current video frame under the assumption

that the face at this moment is lit under a white illumination of unit intensity. Future approaches could

e.g. work with active lighting using flash to once automatically determine the user’s albedo factors or

employ a method that estimates the illuminant color based on highlights [Klin 88, Stor 00].

We make three separate light estimations, one on each color channel of the input image. We thus

receive three separate SH coefficient vectors Ê{r,g,b} of the directional distribution of incident light.

According to equation (2.37) it is equivalent whether we thereby scale all the |J| RTFs T̂j by the albedo

factor for the respective color channel or simply inversely scale the corresponding coefficients of the

estimated colored illumination Ê{r,g,b}.

Visual results of our estimation of colored illumination from the face of the user are depicted in

figure 2.27 in the evaluation part (section 2.6.1).
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2.5.6 Improving the Online Light Estimation

The online light estimation part as presented in section 2.5.5 corresponds mainly to the original ap-

proach that we introduced in [Knor 14]. This approach already provides plausible visual results when

the estimated illumination is applied to virtual content for coherent rendering – see section 2.6.1.

However some limitations have been noted. In the following we will first address the problem of the

algorithm tending to also estimate negative light intensities (section 2.5.6.1). We then will explain how

measurements from multiple frames can be combined for a more reliable estimation (section 2.5.6.2).

Parts of the averaged RTFs learned from the dataset may misfit for a particular person, e.g. because

of a moustache or a macula, which falsifies the results of the light estimation. In section 2.5.6.3 we

approach this problem proposing an outlier detection and removal procedure.

2.5.6.1 Constraining the Solution

The system of equations (2.37), as presented above and originally proposed in [Knor 14], is solved via

unconstrained least-squares minimization. As there are no constraints, the solution space also contains

SH coefficient vectors Ê, which correspond to directional distributions of incident light that contain

negative light intensities for some parts of the directions. Whereas a certain amount of negative in-

tensities may arise from the low dimensional approximation of light sources by SHs, the least-squares

solver in here finds a solution that uses negative lighting in combination with over-estimated posi-

tive lighting to reproduce harsh variations in intensities. The issue is supported by under-determined

knowledge about light intensities coming from behind the user, which leaves some freedom for the

light estimation solver.

Figure 2.17 illustrates this problem. On the left of figure 2.17 we have the input image (a) with

its corresponding SH approximation of the ground truth illumination (b). This illumination contains

mainly positive intensities. The estimated illumination in terms of the unconstrained least-squares

solution (c) based on the system of equations (2.37) resembles the ground truth illumination in terms

of the primary light direction, it however clearly contains over-estimated negative as well as over-

estimated positive intensities.

(a) (b) (c) (d) (e)

Figure 2.17: Side-by-side comparison of the illumination estimated by the unconstrained solver (c) as
well as the new constrained solver with ε = 0 (d) and ε = −0.14 (d) for the image of a
face (a) with ground truth illumination (b) projected to SHs.
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Negative light intensities especially cause problems when we e.g. afterwards apply the illumination

to surface regions of virtual objects that predominantly receive light with negative intensities, as well

as when we want to compute shadow cast from a virtual object onto the face. The overestimated

light intensities cause trouble when we extract conventional lights like the primary light directions.

The errors in the estimation also become problematic when we want to rotate and combine multiple

measurements, as well as when we estimate colored illumination on separate channels.

In the real world, there are no negative light intensities, so a natural approach is to try to restrict

the space of solutions to physically plausible ones, i.e. only positive light intensities. Ideally we thus

would like to only allow solutions for the system of equations (2.37), where E(~ωi)>= 0 ∀ ~ωi ∈ S2.

The incident light E in our approach is modeled as a SH approximation described by the SH coef-

ficient vector Ê ∈ R9. To restrict the illumination E to positive intensities, we cannot directly apply

bound (box) constraints on the components of Ê individually. The intensity of light that is incident

from a particular direction ~ωm is evaluated in our model by a linear combination of the SH basis

functions Y0 to Y8 each evaluated for that direction ~ωm and weighted by the coefficients of Ê:

E(~ωm)≈
8

∑
n=0

ÊnYn(~ωm) (2.38)

Constraining the solution space Ê ∈R9 in terms of a constraint on E(~ωm) thus is possible by linear

constraints modeled by SH basis functions Y0 to Y8 evaluated for ~ωm.

We reformulate the objective function from the least-squares minimization of equation (2.37) as a

quadratic programming problem. Let T ∈R|J|×9 be the matrix on the left of equation (2.37) containing

all the stacked RTF coefficients and i ∈ R|J| be the vector on the right of equation (2.37) containing

all the stacked intensities. When can rewrite the objective function as:

1
2

∥∥T Ê− i
∥∥2

=
1
2
(T Ê− i)>(T Ê− i)

=
1
2
(Ê>T>T Ê−2Ê>T i+ i>i)

(2.39)

We now can estimate the illumination as a quadratic programming problem with linear constraints

modeled by a matrix A:

minimize
Ê∈R9

1
2

Ê>QÊ− c>Ê

subject to AÊ ≥ ε

(2.40)

where Q= T>T , c> = iT , and A ∈ RM×9.
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Equation (2.40) allows us to define a lower bound3 of ε for intensities of the estimated illumination

Ê for a finite number of directions ~ωm over S2. This constraint is modeled by setting Am,n = Yn(~ωm).

Each row m of A then contributes a constraint for one direction ~ωm:

E(~ωm)≈
8

∑
n=0

ÊnYn(~ωm)≥ ε (2.41)

In our current implementation we use M = 100 uniformly distributed directions. We solve for the

illumination Ê employing the Goldfarb-Idnani active-set dual method [Gold 83].

An intuitive approach would be setting ε = 0 to only allow physically plausible positive light in-

tensities. Estimating the real-world illumination restricted by ε = 0 works well in an environment

where the light distribution is quite smooth and light is coming from everywhere. For illuminations

with a very dominant light direction like in the dataset which is also used for the ground truth eval-

uation, the method however fails to well represent the dynamics in the illumination like depicted in

figure 2.17 (d). Restricting solutions to only positive intensities in this case results in a flattened solu-

tion. This shows, that due to the low dimensional approximation some amount of negativity is needed

for SHs to efficiently model the illumination.

We thus modify the constraints in (2.40) to ε = −0.14. This number was chosen based on the

maximum negative intensity arising by projecting a directional light source of unit intensity into SHs.

In future work, we want to investigate determining this constraint value on-the-fly based on the esti-

mated solution. The effectiveness of the constrained solver with the new lower bound is illustrated in

figure 2.17 (e), showing that the estimated illumination now features a high similarity to the ground

truth illumination. Figure 2.18 additionally provides a visual comparison between the unconstrained

and constrained estimation in a live sequence and demonstrates that negative intensities are clearly

mitigated.

In section 2.6 we give quantitative results for the light estimation, compare the unconstrained solu-

tion to the constrained solutions with ε = 0 as well as ε =−0.14 and show that the latter one strongly

outperforms the two others.

2.5.6.2 Combining Multiple Measurements

Our light estimation method only requires a single image to estimate the incident light which allows

the estimation to always be up-to-date for a sequence of frames even during rapid changes in illumi-

nation. Sometimes it is however beneficial to combine the measurements from multiple images.

3Precisely ε ∈ RM , but we at the moment use the same lower bound value for all directions.
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Figure 2.18: Comparison between the unconstrained solution (top row) and the constrained solution
with ε =−0.14 (bottom row).

Temporal smoothing Albeit in many cases the estimation from a single image already provides

stable results when running on a sequence of images, in some scenarios the estimated illumination

changes a little bit from frame to frame which is noticeable in a flickering illumination of the augmen-

tations. A simple temporal smoothing over the estimations from consecutive frames eliminates this

problem without introducing any noticeable delay, e.g. by simply taking the average vector over the

estimated SH coefficient vectors Ê of the last 4 frames.

Combining different orientations We deduce information about the illumination from the im-

age of a face. A single image however contains only roughly one half of all possible surface ori-

entations – those that are facing the camera. Ramamoorthi [Rama 02] has analyzed this fact and

demonstrated that the variation within a single image of a convex diffuse object under arbitrary illu-

mination can be even modeled by only 5 basis functions. He showed that orthogonality of the SH

basis functions is no longer given for the restricted domain of visible surface orientations in one im-

age. We investigate how far cast shadow from concavities and non-diffuse reflectance in faces as well

as multiple images with different orientation in the world reduce this phenomenon.

For that purpose we analyze the correlation between the coefficients of the different SH basis func-

tions over the set of learned RTFs. We use a particular set of 758 sample positions which we refer to

as N758. Details on this set of sample positions can be found in section 2.6.2.2. Figure 2.19 illustrates

the learned SH coefficients of the RTFs at the different sample positions of N758. Each image shows

the coefficients of one particular SH basis function.
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Figure 2.19: For each sample position x j we learn a SH coefficient vector T̂j = (T̂j,0, T̂j,1, · · · , T̂j,8)
> ∈

R9 representing the RTF at that position. The resulting coefficients of the particular SH
basis functions are illustrated in pyramidal SH structure (in accordance with table 2.1).

From the set of learned RTFs we build the correlation matrix, i.e. matrix of Pearson product-moment

correlation coefficients [Pear 95]. Each coefficient measures the linear dependence between two vari-

ables, in our case between two SH basis functions. A value of 0 corresponds to no linear dependence,

while a value of 1 corresponds to a total positive linear correlation. A high correlation between two

functions indicates in our case, that the two SH basis functions that model the illumination have a

similar impact onto the appearance of the face under illumination, which in reverse makes it hard to

attribute the appearance of the face to exactly one of the two functions.

The resulting correlation matrix for the set of learned RTFs is displayed in figure 2.20 (a). We can

see a non negligible amount of ambiguity especially between Y3 and Y7, with a coefficient of 0.88.

This similarity is also directly visible from the visualization of the RTFs in figure 2.19. From a single

image it is thus hard to distinguish how the energy in illumination is distributed between Y3 and Y7.

Y3 corresponds to a simple linear variation in light intensities from left to right, while Y7 contains an

additional variation from front to back – see the SH basis functions in figure 2.5.
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If the user however is turning around in the world while keeping the camera in front of their face,

the multiple frontal face images at different orientations in the real world contribute different parts of

the information about the illumination. Hence combining these measurements allows creating a larger

set of observations and may tackle those ambiguities.

In order to combine the observations at different orientations into one system of equations, we need

to rotate the once learned RTFs of the sample positions according to the current orientation of the face

in the real world. The rotation of the RTFs can be performed by rotating the SH coefficient vectors T̂j

as presented in [Gree 03]. To estimate the illumination based on multiple orientation, we then stack

the new RTFs as well as the extracted light intensities from multiple images row-wise to augment

matrix T and vector i for equation (2.40).

(a) (b)

Figure 2.20: Some of the SH basis functions of the RTFs are correlated when using only a single
image of a face (a). Combining multiple (4) images of a full 360◦ rotation around the
yaw (b) axis dissolves this correlation.

In order to investigate how far combining information from multiple orientations mitigates the

correlation between the RTF coefficients, we recalculate the correlation matrix for the RTFs in such

an augmented matrix T .

We focus in here on the most natural case, a turn of the user around the yaw axis. We combine the

RTFs from three rotations of the user, at 90◦, 180◦, and 270◦, with the original ones and recalculate

the correlation matrix, which is depicted in figure 2.20 (b). The resulting matrix points out that the

correlation between the basis functions can be effectively overcome by including multiple images

taken at different rotations around the yaw axis.
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2.5.6.3 Deviations in the RTFs from the Learned Model

Our method for estimating the illumination relies on a limited range in variations between different

human faces and the assumption that the learned RTF for a particular position is valid for all humans.

In reality of course all faces are different, but small unbiased deviations in the RTFs are averaged out

over the number of sample positions.

If for some person however a whole region of the face is very different from the learning dataset e.g.

because of a macula, tattoo, beard, or bangs covering that region, the RTFs of sample positions in this

region may heavily deviate from the learned ones. The resulting image intensities that are strongly

inconsistent with the learned model thus may falsify the results of the estimated illumination.

In figure 2.21 (a) we for example see a black stick hold in front of the face covering part of the

left cheek. The face exhibits light mainly incident from the upper left. Without the stick, our light

estimation would create a coherent illumination of the virtual mask as demonstrated in figure 2.21 (b).

The black stick however influences the estimation, the dark intensity values in this region vote against

light incident from the left and thus lead to an inadequate result depicted in figure 2.21 (c).

(a) (b) (c) (d)

Figure 2.21: Parts in the image of the face, that do not comply with the learned model – simulated
by a black stick in image (a) – falsify the estimation of incident light (c) compared to
the estimation (b) without the stick. Detecting compromised sample positions as out-
liers (marked red in (a) and (d)) and removing them from the estimation counteracts this
corruption in the estimation and recovers a solution (d) close to the true illumination.

To make the algorithm more robust for cases where the majority of the sample positions of the face

is in accordance with the learned model but certain positions strongly deviate, we implemented an

outlier detection step and exclude inconsistent sample positions from the light estimation.

To detect outliers, we multiply the estimated illumination onto each RTF and determine the residual

in intensity between the predicted intensity and the actual intensity at the image position. Sample po-

sitions with residuals higher than the third quartile plus three times the interquartile range are labeled

inconsistent and outliers respectively.
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The estimation then can either be redone on the same frame this time without the outliers, or the

outliers can be excluded for the next frame. Excluding the sample positions from the light estimation

is equivalent to removing the corresponding rows from the system of equations 2.37 or respectively

in the constrained case from matrix T and i in equation 2.40.

Sample positions labeled inconsistent by our experimental outlier detection are marked red in fig-

ure 2.21 (a), the resulting estimation after removing the respective outliers from the system of equa-

tions is illustrated in figure 2.21 (d) and indicates the effectiveness of the approach. Our experimental

outlier detection works best for a small number of well-defined outliers but fails for too many outliers.

An initial random sample consensus (RANSAC) [Fisc 81] that estimates the illumination on different

smaller subsets of sample positions could perform better in finding the biggest consensus set of sample

positions for a particular user. This iterative method however would also be a much more expensive

process.

Even with the outlier detection, our approach still requires that the overall appearance of the par-

ticular face complies with the learned model RTFs. The outlier detection will fail in its current im-

plementation, when the face shape is too different. Here in the future facial fiducial tracking could be

employed, so that the sample positions better match the particular face shape. Our method will also

deliver bad results when a person is for example wearing a cap which casts a shadow on the face, as

this would violate the distant scene assumption. Multiple models for different faces and conditions

could be learned instead of averaging over the whole training set and the most appropriate model for

a user could be selected.

Note that for the following evaluations we did not use the outlier removal step.
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2.5.7 Rendering of Virtual Objects

The goal why we estimate the real-world illumination is to match the lighting of virtual objects in

Augmented Reality to the appearance of the real world. Now that we have estimated the present

illumination and also have the pose of the camera relative to the face determined by face tracking, we

are able to render the augmented image.

Not only the estimation of the incident light but also the rendering of the augmented scene (real

plus virtual content) using the estimated illumination must run in real time. For that we pre-compute

the radiance transfer of incident light for the virtual objects, as described in section 2.5.7.1. During

real-time rendering (section 2.5.7.2) this pre-computed data then is combined with the live estimated

directional distribution of incident light, which allows shading the virtual objects coherently with the

appearance of the real world.

2.5.7.1 Offline Pre-Computation for Rendering

For the shading of our virtual objects, we at the moment only support direct lighting without inter-

reflections as well as only diffuse materials. The incident light for the rendering stage is specified as

before in form of the 2-dimensional function E(~ωi) modeled as a Spherical Harmonics (SH) approx-

imation with maximum degree L = 2. We pre-compute the influence of the incident light from the

distant environment on the virtual geometry as described in [Sloa 08, Gree 03]. For every vertex x of

the triangle mesh of a virtual 3-dimensional model we compute 9 coefficients cn which describe the

influence of SH basis function Yn of the incident light on the intensity of the vertex:

cn =
∫

Ω(x)
V (x, ~ωi) ·Yn(~ωi)(~ωi ·~n(x))d~ωi (2.42)

This influence cn depends on the surface orientation ~n(x) at the vertex as well as on the occlusion

of the distant environment by the local scene itself. The occlusion by the local scene is represented

by the visibility function V (x, ~ωi), which evaluates to 1 in case that the distant environment is visible

into direction ~ωi, and to 0 otherwise. Besides the virtual object, the local scene in these computations

also contains a proxy geometry for the human head which may also occlude parts of the environment,

depicted in gray in figure 2.22.

The calculation of the integral is done using Monte-Carlo integration [Hamm 64] by casting rays

starting from the vertex position x on the mesh randomly into all directions. For ray casting we make

use of the ray-tracing based rendering system pbrt [Phar 10]. When a direction is unoccluded, which

means that the distant environment is visible in that direction, the value of the SH basis function is

evaluated and compensated by the cosine of the angle between the sample direction and the surface

orientation. All values are summed up and multiplied by 4π divided by the number of cast rays.
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For each vertex we thus obtain a SH coefficient vector Ĉ ∈ R9, which is supplied as a per ver-

tex attribute in the rendering stage. Figure 2.22 illustrates the obtained coefficients of the SH basis

functions over the surface of the virtual geometry model of a helmet. Each image corresponds to the

influence of one SH basis function.

Figure 2.22: The pre-computed radiance transfer (shadowed, no interreflections) for the real-time ren-
dering stage describes the influence (green symbolizes positive, red negative influence;
the brighter the greater the influence) of each SH basis function (plotted in pyramidal SH
structure in accordance with table 2.1) on the particular surface point.

In order to also simulate shadow cast by virtual objects onto the real face (see figure 2.24), we

additionally pre-compute the differential change in the radiance transfer Ĉ with and without the virtual

content for vertices of the proxy head model. As we at the moment use a generic proxy head model,

the shadow contours from time to time are not perfectly aligned to the real face. We plan to address

this problem by better adjusting the generic model to the particular user’s face by fitting facial fiducials

using a deformable face alignment framework like the one presented by Asthana et al. [Asth 14].

2.5.7.2 Real-Time Rendering using Pre-Computed Radiance Transfer

Our implementation for the real-time rendering part is based on the Metaio SDK [Meta 15] using

OpenGL and GLSL. Thanks to the image-based face tracking, virtual geometry can be rendered in a

fixed spatial relationship to the face.
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The pre-computed SH coefficient vectors Ĉ from section 2.5.7.1 are supplied as per vertex attributes

to the rendering stage. The estimated SH coefficients Ê of the directional distribution of incident light

from section 2.5.5 are supplied in form of uniform arrays, with 9 coefficients each for red, green and

blue light. The final irradiance for a vertex is determined by the dot product of Ĉ and Ê.

Note that SH coefficients pre-computed for the geometry and SH coefficients estimated for the

lighting are already in the same coordinate system as long as the virtual geometry is fixed with regard

to the face. In order to support rotations of virtual objects, we can simply inversely rotate the illumi-

nation instead of rotating all the different SH coefficient vectors Ĉ of the geometry. The pre-computed

shadow cast by the virtual objects onto the face however is invalidated when the objects are moved or

rotated.
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(a) (b) (c)

Figure 2.23: Coherent rendering with estimated light in different environments, where light sources
are lamps on a ceiling (a), the sun and sky in an outdoor scene (b) as well as a combination
of sky and lamps (c).

2.6 Results and Evaluations

In this section we will evaluate our light estimation method. Firstly we present visual results in

section 2.6.1 in form of screenshots from an Augmented Reality application, which estimates the

real-world lighting conditions using our method and then shades the virtual objects coherently. Sec-

ondly we compare our estimated illumination against the ground truth in section 2.6.2. Therefore we

again employ images from The Extended Yale Face Database B [Geor 01, Lee 05] that we already

know from the offline learning stage. Besides visually comparing estimated illuminations against

ground truth, we also quantitatively evaluate our method in that section by measuring the difference

between the estimated incident light and the ground truth. Here we also examine how the quality of

the estimations correlates with the number of employed sample positions.

2.6.1 Qualitative Results on Webcam Sequences

For producing the visual results presented in here, we ran our light estimation method on live video

sequences that either are captured by a webcam connected to a PC or by the user-facing camera of

a tablet computer. The illuminations are estimated from the faces of two different users that both
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have not been part of the training dataset. In most of the sequences the simple unconstrained solver

variant with 294 sample positions has been employed. As described in the online estimation part

(section 2.5.6), the pose of the camera relative to the face is determined by image-based face tracking.

This pose is used for projecting the sample positions onto the camera image as well as for rendering

virtual geometry in a fixed spatial relationship to the face ontop of this camera image. The geometry

has been beforehand pre-processed (see section 2.5.7.1), so that once the illumination is estimated, it

can be applied to the virtual content in real time.

Figure 2.23 depicts our method running under a variety of scenarios, indoor as well as outdoor. In

figure 2.23 (a) the user is walking down a hallway. The light is coming from lamps at the ceiling.

When the user is passing through below a lamp, the virtual helmet accordingly features a moving

highlight on the top. In figure 2.23 (b) the user stands in a patio. On the image at the top the user

is facing a wall in a corner of the patio and thus nearly no light is reaching the face and accordingly

the virtual mask. On the image at the bottom the user has turned around. Now sky light is reaching

the face, primarily from the right side, which adequately is reproduced on the mask. Figure 2.23 (c)

shows a mixture of outdoor and indoor illumination. While the user itself is located outside and some

amount of sky light falls onto his face, mainly artificial light from indoor lits the local scene through

a window front at the right side. The image at the top shows the resulting illumination of the face,

while the image at the bottom shows the final augmented image, where also the virtual helmet receives

primarily light from the right, and casts itself a shadow onto the face.

The synthetic shadow cast from virtual objects onto the face, which is calculated using a proxy

geometry for the face, is also spotlighted in figure 2.24.

Figure 2.24: The left two images show simulated shadow cast by a virtual helmet on the user’s face
based on pre-computed differential radiance transfer using a generic 3-dimensional head
model. The right subfigures show the differential shadow in front of a uniform back-
ground for better visualization of the change in cast shadow according to the estimated
real-world illumination.
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Figure 2.25: To illustrate the adapting illumination of the virtual objects, the user illuminates his
face from different directions (from left, from above/below, and from the right) using a
synthetic light source.

Figure 2.26: Examples showing a face under four different light directions and the coherent shading
of a virtual cap. Note that the shading assumes that the virtual cap is positioned on the
user’s head – it has been moved and rotated for better visibility of the illuminated face.

In order to exaggerate how the estimated illumination adapts to changes, the person in figure 2.25

and figure 2.26 uses an artificial light source in order to illuminate his own face from different direc-

tions. Note, that this use case strictly speaking does not fully comply with the distant scene assump-

tion. Still it is clearly visible, that the virtual helmet is illuminated consistently with the position of

the light source and therefore with the illumination apparent in the face.
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(a) (b) (c)

Figure 2.27: Based on separate estimations on the red, green, and blue image channels, we are able
to reconstruct the color of the illumination, demonstrated in column (c), where the color
of the virtual illumination of the white mask matches the appearance of an illuminated
white paper sheet that is hold into the camera for ground truth comparison.

Our approach is also capable of estimating the color of the incident light by performing three

separate estimations, one on each color channel (i.e. red, green, and blue). This is demonstrated in

figure 2.27 where we use a light source with controllable color to illuminate the face of the user.

Visible particularly well in the insets showing the virtual white clown’s nose (i.e. sphere) attached

to the user’s nose in figure 2.27 (a, b), the estimation of color and direction succeeds and provides

plausible illumination of the virtual contents. In the three images of figure 2.27 (c) another user is

illuminated by the light source with controllable color. The user additionally holds a white sheet

of paper, which is also illuminated by the colored light, into the view of the camera. The images

demonstrate the ability of our approach to reproduce the colors of the illumination.

Further examples and visual results including real-time performance on image sequences can be

found in the supplemental materials of [Knor 14].

All these examples show for a variety of lighting conditions that by applying the estimated illu-

mination to the virtual content, the augmented scene consisting of real and virtual parts is shaded

coherently. It demonstrates that our approach provides plausible results considerably enhancing the

visual realism in Augmented Reality applications.

Timing Our algorithm thereby is able to run in real time. The simple unconstrained per frame il-

lumination estimation for example takes less than 1 ms for grayscale and less than 2 ms for RGB

estimation on a Lenovo ThinkPad Helix i7-3667U (Windows 8.1 Pro) using a set of 294 sample posi-
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tions. The constrained quadratic solver with M = 100 constraints and 758 sample positions performs

similarly fast with a runtime of less than 2 ms for both grayscale and RGB estimation.

Our full pipeline including camera tracking, light estimation, and rendering achieves real-time fram-

erates. Rendering of the helmet (60k vertices) including cast shadows is for example performed at a

framerate throttled at 30fps on a Lenovo ThinkPad Helix i7-3667U (Windows 8.1 Pro).

2.6.2 Comparison against the Ground Truth Illumination

Besides inspecting the resulting augmented images from live video sequences in order to visually

examine the output of our algorithm in terms of coherent illumination, we additionally evaluate the

performance of our light estimation method on the images from The Extended Yale Face Database B

[Geor 01, Lee 05], the dataset we also use for training the RTFs. Because the directional illumination

for these images is given, we can directly compare the estimated illuminations against ground truth.

For all the evaluations on the images from the database, we beforehand divide the set of images into

one part for training and a separate part for the evaluation.

In the following, we first visually compare the estimated incident light against the ground truth

illumination in section 2.6.2.1. We then in section 2.6.2.2 also quantitatively evaluate our method by

measuring the difference between the estimated incident light and the ground truth. We additionally

investigate how the quality of the estimations correlates with the number of employed sample positions

and compare the results from the unconstrained and the constrained solver.

2.6.2.1 Visual Comparison of the Estimated Illumination against Ground Truth

Our estimation of the illumination employs sparse sample positions that are distributed over the area

of the face. Our methods thereby works for different numbers of sample positions. The first set of

sample positions that we will use in our following evaluation is a set of 294 sample positions. This set

is illustrated in figure 2.28.

Figure 2.28: Set N294 of sample positions.

For creating this set we started by distributing 512 sample positions by hand uniformly as possible

over the image area of a frontal face. We then learned for all those sample positions their RTFs
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according to section 2.5.4. Afterwards we selected a subset of the initial 512 sample positions, namely

those ones with an influence, i.e. absolute coefficient, above the 90-th percentile for at least one SH

basis function of the learned RTFs. By that we tried to guarantee, that every basis function is still

represented after reducing the number of samples.

We refer to the resulting 294 sample positions in the following as N294. Unless stated otherwise,

the subsequent visual comparisons of the estimated illumination against ground truth in this section

are produced using this set of sample positions N294 in combination with the unconstrained solver.

Figure 2.29 illustrates different parts of the original 512 sample positions that have an influence

above a certain threshold. In this illustration the parts are chosen based on the 75-th percentile for each

particular SH basis function while the final set N294 was chosen according to the 90-th percentile in

order to further reduce the number of sample positions.

Figure 2.29: Parts of a set of original 512 sample positions, where sample positions in each part have
an influence above the 75-th percentile in the particular SH basis function – illustrated in
pyramidal SH structure (in accordance with table 2.1).

Figure 2.30 illustrates the results in estimated illumination by the unconstrained solver with 294

sample positions for a number of images from the database, comprising different faces under different

directional illuminations.

The figure is structured as a grid, where each estimation is illustrated by 6 parts. Part (a) displays the
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Figure 2.30: Comparisons between ground truth SH lighting and estimated SH lighting; Part (a) dis-
plays the input image of a face used for estimating the incident illumination. Part (b)
illustrates the ground truth illumination. Part (c) illustrates the estimated illumination
based on the image shown in part (a). Parts (d) and (e) show renderings of a virtual face
geometry using the illumination from part (b) and part (c) respectively. Part (f) shows a
difference image between parts (d) and (e).
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input image of a face used for estimating the incident illumination. Part (b) shows a Lat-Long image

depicting the ground truth illumination resulting from projecting the known directional illumination

into SHs. The brightness of a pixel in this image represents the light intensity out of the direction cor-

responding to the pixel. Green values symbolize positive light intensities, while red values represent

negative light intensities. These physically non reasonable negative values for particular directions

arise from the approximation of the directional light source by projecting it into the low dimensional

space of SHs and cutting off higher frequencies of the SH expansion. Part (c) shows the same kind

of Lat-Long image, however depicting the estimated illumination based on the image shown in part

(a). Part (d) and (e) show renderings of a virtual face geometry using the illumination from part (b)

and (c) respectively for a better visual comparison of the effect of the illumination. The renderings do

not consider occlusions (accounting for the surface orientation only) and use fully diffuse reflectance.

Part (f) finally shows the difference image between the images from part (d) and (e).

The results demonstrate that the estimated illumination from the unconstrained solver with the set

of sample positions N294 in general is already comparable to the ground truth illumination also under

harsh illumination from the side. The unconstrained solver however tends to overestimate intensities

and compensates in return using also higher negative intensities like also illustrated in figure 2.17 (c).

The constrained solver with ε =−0.14 introduced in section 2.5.6 overcomes this problem as shown

in figure 2.17 (e). We suspect, that using negative intensities allows the unconstrained estimator to

reproduce higher frequency effects visible in the input image like cast shadow and specularities, which

could not be modeled by the low frequency RTFs.

The estimated albedo for different faces of the database seems to work reasonable well, visible in

the similar scale of illumination of parts (d) and (e) in figure 2.30.

All the images from the dataset however only contain a single directional light source. For real-

world applications, light is coming from all directions. To still have a valid ground truth illumination

but not only a single directional light source, we create new images by blending two images of the

same person under different illuminations similar to Zhang and Samaras [Zhan 03]. For that, we create

a new image as linear combination of the two images with factors of 0.5 each considering gamma

correction. Let Ê1 and Ê2 be the SH coefficient vectors representing the ground truth illumination

of the first and the second image. Following the linearity of light, we calculate the ground truth

illumination for the new blended image: ÊB = 0.5 · (Ê1 + Ê2).

Figure 2.31 illustrates some of these blended images. Column (a) contains a first image of a face,

column (c) a second image of the same face with the corresponding ground truth illuminations Ê1

and Ê2 for the two images depicted in column (b) and (d). Column (e) contains the blended image

resulting from the two original images with its corresponding combined ground truth illumination ÊB

in column (f). The last column (g) shows the estimated illumination, this time using the constrained

solver with ε =−0.14.

For different people and illuminations the estimated solution from the blended images in most cases
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(a) (b) (c) (d) (e) (f) (g)

Figure 2.31: We blend together images under different illumination to overcome the limitation of only
a single directional light source in the ground truth dataset.

nicely reproduces the ground truth illumination and recovers the two main directions of incident light

as far as they are representable by the low frequency SH approximation. Yet for example in row

4 of figure 2.31, the estimated illumination joined the two separate clusters from the ground truth

illumination into one.

2.6.2.2 Quantitative Evaluation of the Estimated Illumination against Ground Truth

In addition to the previous analyses, which have been visual inspections of the estimated illuminations,

we also quantitatively evaluate the results of our light estimation method. For that we again employ

the images from The Extended Yale Face Database B [Geor 01, Lee 05], so that we have ground truth

illumination available. Like before we divide the set of images from the used database into one part

for training and a separate part for the evaluation.

Selection and Reduction of Sample Positions In the following quantitative evaluations we

also want to analyze the influence of the number of sample positions on the quality of the light esti-

mation in more detail. We therefore this time start with an even higher number of sample positions

than for set N294, namely 1000. For an easier initialization as well as a more uniform distribution

compared to the manual picking procedure applied for set N294, we this time employ Poisson disk

sampling [Cook 86]. We will refer to the resulting set of 1000 sample positions as N1000. In a first

step we remove, similar like for set N294, those sample positions from the initial set that are not
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well-suited for estimating light. We this time do not rate sample positions based on the learned co-

efficients of the RTFs, but instead directly look at the variance in image intensity at the particular

sample positions over the different images as we think this is more demonstrative while results are

comparable.

Firstly, an informative sample must change its appearance when the illumination changes. Per

sample location, we calculate for each person the variance in (albedo-corrected) image intensity over

the different incident light directions from the dataset and then take the median of the variances from

the different persons. The resulting values are plotted in figure 2.32 (a). Sample positions with

good values are framed in green, bad ones in red. We consider values as bad, when below a certain

threshold, which we set to half the maximum. As we can see, the mouth, eye and eyebrow regions are

rated bad because their appearance does not change a lot depending on illumination.

Secondly, a reliable sample should behave consistently over the plurality of people. Per sample

location, we calculate for each light direction the variance in (albedo-corrected) image intensity over

different persons from the dataset. We then take the median of the variances from the different light

directions. The resulting value per sample position is plotted in figure 2.32 (b). This time values are

considered as bad if above half the maximum value, which identifies regions at the bottom part of the

nose as well as above the eyebrows, most probably because of glossiness as well as differences in the

face shape in these regions. Samples on the most lower left and right side are also labeled bad because

of differences in the face shapes.

(a) (b) (c) (d)
0.00 0.03 0.06 0.09 0.12 0.00 0.01 0.02 0.03 0.04

Figure 2.32: 1000 sample positions (set N1000) are distributed over the face region by Poisson disk
sampling. The grey value of a sample corresponds to the variance in intensity over differ-
ent light directions (a) or rather over different persons (b). Based on (a) and (b) a subset
(c) of 758 sample positions (set N758) is selected which then is successively reduced (d).

Sample positions rated informative and reliable build the final set of 758 selected sample positions,

shown in Figure 2.32 (c), which we refer to as N758. In figure 2.19 we already illustrated the corre-

sponding learned RTFs for the set N758. Each image displays the coefficients of one particular SH

basis function – negative coefficients are plotted in red, positive ones in white, the background is set

to the median value of the coefficients. T̂j,0 for example depicts the response in intensity to ambient
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illumination, T̂j,1 to T̂j,3 illustrate the response to linear parts of the SH illumination, T̂j,4 to T̂j,8 the

response to the quadratic terms.

Starting from N758 we now successively further reduce the number of sample positions by remov-

ing in each step the sample position which we consider most redundant. We therefore find two sample

positions that are spatially close to each other and have a similar RTF. We then remove that one of the

two which we consider less reliable based on the offline RTF estimation step.

By repeating this procedure we incrementally reduce the number of sample positions. Fig-

ure 2.32 (d) for example depicts a set of 30 remaining sample positions. Within the following quantita-

tive evaluation of our light estimation method we also provide an analysis regarding different numbers

of employed sample positions.

Angular Error in the Estimated Primary Light Direction We consult two quantities for our

quantitative evaluation. The first one is the angular error δ between the ground truth light direction

specified by the dataset and the primary light direction of our estimation. We determine the estimated

primary light direction as the optimal linear direction [Sloa 08] extracted from the estimated SH

illumination vector Ê. Note that the extraction of the optimal linear direction and consequently the

comparison thereof only utilizes the linear coefficients of the estimated lighting environment.

We evaluate the angular error δ for the different solvers described in section 2.5.6.1 as well as for

the different sets of sample positions. The results thereof are depicted in figure 2.33 (a,b). Albeit

there is some imprecision in the estimated primary direction, the estimations show a high degree of

reliability. Note that the set of images that we used for the evaluation also contains images with

lighting under extreme angles.

The candle stick diagram in figure 2.33 (a) compares the angular error δ for the three different

solvers and the sets of sample positions N294, N758, and N1000. The diagram reveals that the different

sets of sample positions perform comparably well, and that the number of sample positions in these

higher dimensions has no major influence on the quality of the estimation.

The different solvers however make a difference. The unconstrained solver delivers a median error

of ≈ 9◦ with an upper quartile of around ≈ 14◦. The constrained solver with ε = 0 performs notably

worse with a median error of ≈ 14◦ and an upper quartile of ≈ 21◦. The constrained solver with

ε = −0.14 finally performs best with a median error of ≈ 8◦, an upper quartile of ≈ 12◦ and a 95th

percentile of ≈ 20◦.

Figure 2.33 (b) shows the angular error δ plotted against the number of employed sample positions

(starting from N758 and successively removing a sample position) for the unconstrained solver (dotted

lines) and the constrained solver with ε = −0.14 (solid lines). We in this figure omitted the under-

performing constrained solver with ε = 0. The results indicate that our light estimation method still

performs well for very sparse sampling, especially with the constrained solver, but also reveals a

steady loss of accuracy with decreasing number of sample positions.
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Figure 2.33: We evaluate the angular error δ in the estimated primary light direction (a,b) as well as
the L2 Norm between the ground truth illumination and the estimated illumination both
in SHs (c,d) for different solvers and numbers of sample positions.

L2 Norm between Estimation and Ground Truth Illumination To not only evaluate the pri-

mary light direction based on the linear coefficients but the whole directional distribution of incident

light, we employ a metric induced by the L2 norm over the domain of directions as a second quan-

tity for our evaluation, which measures the distance between the estimated illumination EEst and the

ground truth illumination projected to SH EGT :

D(EEst ,EGT ) =

√∫
S2
(EGT (~ω)−EEst(~ω))2 d~ω (2.43)

Note that while integrating the SH approximation of a directional illumination Ek of unit intensity

over all directions results in a value of ∼ 1, the L2 norm of that SH approximation equals ∼ 0.85.
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Figure 2.33 (c,d) shows the distribution of distance D(EEst ,EGT ) for light estimations using differ-

ent solvers and sets of sample positions. The constrained solver with ε =−0.14 clearly outperforms

the two other solver variants. The overestimated intensities as well as the negative intensities in the

unconstrained solutions (see e.g. figure 2.17 (c)) produce a high discrepancy between the ground truth

directional distribution of incident light and the estimation. In the case of the constrained solver with

ε = 0 the flatted solutions (see figure 2.17 (d)) lead to a high median error of 0.52 with a narrow

interquartile range.

Figure 2.33 (d) plots the performance in terms of distance D(EEst ,EGT ) against the number of

employed sample positions. Similar to before the results demonstrate that especially the constrained

solver still achieves good performance even for a much lower number of sample positions.

Summary This evaluation indicates, that already a smaller number of sample positions suffices in

many use cases to estimate the illumination from the image of a face. A higher number however still

performs adequately fast and delivers a more accurate, precise, and robust estimation.

Additionally the results clearly point out the superiority of the constrained solution over the un-

constrained one. The constrained solver with ε = −0.14 does not only deliver the smallest distance

D(EEst ,EGT ) but also achieves the highest accuracy with regard to the estimated primary light direc-

tion. The much improved quality resulting from the constrained solver with ε = −0.14 compared to

the constrained solver with ε = 0 is a remarkable finding.

A quantitative evaluation of our method on images with environment light incident from all direc-

tions instead of only one directional light source is part of our future work.
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2.7 Discussion

In the following we give a short summary and discussion about identified shortcomings of our current

implementation. We also give pointers to open potential improvements that we see.

The results that we presented in section 2.6 demonstrate that our method lives up to the expectations

we initially had. It accomplishes a coherent illumination of virtual objects in real time and consid-

erably contributes to a plausible augmented view. Still for the future we see plenty of strategies for

further improving the results.

First of all, the implementation of our method at the moment is restricted to a frontal view of

the human face. This limitation could be loosened up and the method could be extended to other

views. For different head poses different sets of RTFs could be learned based on images with known

illumination showing faces under the relevant pose. For the online estimation the learned sets of RTFs

that match best to the current head pose of the user could be applied for estimating the illumination.

A restriction that we chose deliberately is the approximation of the RTFs and the incident light by

only nine SH basis functions. This low dimensional representation would be sufficient for lighting of

convex diffuse geometries [Rama 01, Rama 06, Basr 03]. Like Ramamoorthi [Rama 02] analyzed, the

variation within a single image of a convex diffuse object under arbitrary illumination could be even

modeled by only five basis functions – as only roughly one half of all possible surface orientations

is visible. These studies however deliberately disregard cast shadow. A human face is not fully

convex, especially the region around the nose exhibits concavities. Skin also does not feature fully

diffuse reflection. According to Epstein et al. [Epst 95] modeling variations by illumination with only

a certain number of eigenvectors results in residuals, which indicates that the image contains more

information about the illumination. Albeit our RTFs at the moment are recovered from real images and

thereby try to capture occlusion effects within concave regions as well as skin specularities, the low

dimensional approximation does not well model those higher frequent features. To better capture and

evaluate effects like cast shadows and glossy reflections, we plan to investigate higher degrees of SHs

as well as different function bases like (haar) wavelets [Okab 04] and sparse representations [Mei 11].

A reflectance model tailored to skin like the one presented by Weyrich et al. [Weyr 06] could be

consulted.

Another limitation of the current approach is the way we align the sample positions to the faces.

In the current implementation we align them using a coordinate system that is based on the positions

of the eyes only. This approach does not well describe differences in facial proportions between

different humans. Instead defining the positions on the face using additional facial fiducials like e.g.

the positions of mouth and nose [Sim 01, Asth 14] or employing a full Morphable Model [Fuch 05],

could result in a more accurate alignment of the sample positions and their RTFs.

A related limitation lies in the fact, that our goal was to find a single compact model for the RTFs

that fits on different humans. We thus calculated the average RTFs over all persons from the train-
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ing dataset. The intention to equally fit for all people however introduces imprecision. For higher

precision, alternatively separate sets of RTFs could be learned for different persons from the training

dataset and during the real-time light estimation the best fitting set of RTFs could be selected for the

user e.g. based on similarities regarding the facial fiducial characteristics. A similar approach could

also be used to learn different sets of RTFs for different conditions like when a person is wearing a

mustache, hat, or a cap.

Another deficit of the current implementation is our simplified model of the camera response curve.

We took this decision to easily support all different kinds of cameras without requiring the user to

calibrate a particular camera. For physically meaningful estimations of the incident light a radiometric

calibration of the camera however would be crucial. At the moment we only apply a standard gamma

correction and beside that neglect non-linearity of the camera response function as well as parameters

such as exposure, contrast or color saturation settings. By that our approach however mimics some of

the camera effects because the effects are directly included into the light estimation. An underexposure

of the imaged face for example leads to an estimation of very low light intensity and to coherent

underexposure of the virtual objects.

Another related remaining challenge is an (online) albedo estimation for the user’s face which

becomes especially important for estimating colored (RGB) illumination and physically meaningful

values. Here e.g. approaches based on active lighting using the camera flashlight or approaches that es-

timate the illuminant color based on highlights [Klin 88] – in our case highlights on the skin [Stor 00]

– could be investigated.

Finally our work until now mainly focuses on coherent illumination for augmentations on the image

of the user-facing camera. Here the virtual objects are close to the face which acts as light probe.

Exploiting the knowledge about the illumination gained from the image of the user-facing camera

also for augmentations on the world-facing camera image would make the method considerably more

versatile in use.

Here however the limited knowledge about light coming from behind the user would need to be

considered. It is actually exactly this light that is coming from behind the user which has a big

impact on the objects visible in front of the user, while it is hard to estimate this relevant information

about the illumination from the image of the user’s face due to the visible surface orientations of the

face. Potentially making use of the image intensities in the background region around the user visible

in the image of the user-facing camera could help defining constraints onto the light estimation for

light intensities incident from behind similar to the constraints used to enforce non-negativity in the

constrained solver variant.

For an onstage demonstration of our light estimation approach with a dual camera set-up of user-

facing camera and word-facing camera at the Augmented Reality conference InsideAR 2014 (see

figure 2.34), we addressed this problem differently by restricting the possible real-world illuminations

to a very small predefined discrete set. Spotlights above the stage could either be switched on or off.
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We then employed our light estimation method to first estimate the present illumination in Spherical

Harmonics. From this representation we then extracted the main directional light directions. Based

on these directions we selected the best matching illumination for the virtual objects from a set of pre-

defined configurations. For shading the virtual objects we picked a corresponding pre-baked texture

including a shadow plane.

Figure 2.34: InsideAR 2014: The illumination present on stage is estimated from the image of a face
captured by the user-facing camera and the augmentation – a virtual armchair – on the
image of the world-facing camera is shaded accordingly.

Figure 2.34 shows two photographs of the onstage presentation. The person in the back is holding

a tablet PC. This tablet PC features two cameras, a user-facing camera and a world-facing camera.

The two video streams captured by the both cameras are shown on the screen in the background of

the persons. The image of the user-facing camera – shown as smaller image on the right of the screen

– which captures the face of the user is used to estimate the illumination. The world-facing camera

captures the scene in front of the user – shown as larger image on the left of the screen. Here the

estimated illumination is used to coherently shade an augmented virtual armchair. Between the two

images in figure 2.34 a different set of spotlights is switched on, so that the illumination changes.

The shadow direction and illumination of the virtual armchair augmented on the world-facing camera

image adapts to the illumination visible in the real world, visible at the coherent direction of the

shadow cast by the other person.

In future work we plan to further investigate the suitability and expandability of our light estimation

approach for augmentations on the image of the world-facing camera.
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2.8 Conclusions

In this chapter, we presented an approach for coherent illumination of virtual objects in Augmented

Reality applications. We proposed to leverage the user’s face as a light probe for estimating the

lighting present in the real world. We will in this section conclude the light estimation part of this

thesis with a short wrap-up of the main findings and contributions of our approach.

We demonstrated a real-time method for estimating the illumination within a scene that is particu-

larly suitable when augmentations are rendered directly into the image of the user-facing camera, like

e.g. in virtual try-on applications or augmented video conferences. For these kind of AR applications

our method enables a coherent illumination for the virtual content.

By discovering and exploiting the fact that the face of the user is always within the scene and can be

conveniently captured in many cases by a user-facing camera, we eliminated the need for a separate

illumination estimation step present in many state-of-the-art approaches without us demanding any

special hardware. We also overcame the requirement of additional known objects or markers. Hidden

from the user, the estimation can be performed without the user even taking notice.

The algorithm thereby runs in real time even on mobile devices. The limited range in variations

between different human faces makes it possible to create a two-step algorithm.

In a first step we learn the correlation between the light intensity incident on the face and the light

intensity leaving the face for a set of sample positions on the human face. The learning is based on a

set of images showing frontal views of different human faces under different known illuminations.

The gained knowledge subsequently is used in a second step for estimating in real time the incident

light from a single image of a potentially unknown face. The more expensive learning process thereby

has been extracted into the offline part, allowing a fast estimation at run time with low impact on

power consumption.

We intentionally started by designing our light estimation approach as simple as possible employing

an unconstrained least squares solution [Knor 14]. We showed that this simple approach already

achieves pleasing results in a variety of cases.

Afterwards we identified weaknesses of the existing approach and extended our original method by

a constrained solver in order to overcome negative light intensities in the solutions. We demonstrated

effectiveness of the improved method in a quantitative evaluation against ground truth and pointed out

that it is important to allow for some amount of negative light intensities.

Additionally we analyzed how our method performs for a varying number of sample positions. We

could show that a small number of sample positions suffices, which underlines the suitability of the

sparsity of our approach.

We also touched upon inherent limitations of our chosen approach and gave pointers to solutions

e.g. by using multiple images or an outlier removal procedure.
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The effectiveness of our method has been demonstrated in ground truth comparisons as well as

under a variety of scenarios presented in image and video footage. Realistically showcasing products

to the user will be a major requirement for successful AR kiosks and web- or mobile-based shopping

applications. Estimating the present illumination is an important step for coherent rendering and is

achieved by the method presented in here without posing any additional challenge to the user.

We thus have presented a method, that can already be employed as is, in order to enhance the realism

of the augmented view in Augmented Reality applications by providing a coherent illumination of the

virtual objects. We however hope that our findings are just the starting point for future research

based on the idea to employ the user’s face as a known object to gain knowledge about the real-world

surroundings.
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In this chapter we will employ the user’s face as an object of known size to resolve
the ambiguity in scale of the reconstruction of an unknown environment by images of
a monocular camera. We target the use case, where the scene is reconstructed with
a handheld device which features two cameras: a first camera that is facing the world
and that is used to reconstruct the unknown environment using monocular SLAM,
and a second camera that is facing the user. When we know the distance between
two points on the user’s face in absolute units like meters – e.g. the distance
between the user’s eyes – we can also determine the motion of the user-facing
camera with respect to the face in absolute units using face tracking. As long as the
face remains stationary in the real world, the motion of the user-facing camera with
respect to the face can be transferred to the motion of the rigidly connected
world-facing camera with respect to the world. Knowing the latter motion at absolute
scale allows us to bring the reconstruction of the unknown environment that is
purely based on images of the world-facing camera from arbitrary scale to absolute
scale. Tracking the world at absolute scale enables us to superimpose virtual objects
in an Augmented Reality view at true size. The reconstruction at absolute scale also
allows us to directly perform distance measurements in the reconstruction.

We present an approach to estimate absolute scale in handheld monocular SLAM by simultaneously

tracking the user’s face with a user-facing camera while a world-facing camera captures the scene for

localization and mapping (figure 3.1). This chapter is structured as follows.

We start by giving an introduction to the topic of absolute scale in the context of Augmented Reality

(AR) in section 3.1, where we first introduce monocular SLAM, a popular technique broadly used
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Figure 3.1: In monocular visual SLAM the structure of a scene as well as the motion of the (world-
facing) camera are only estimated up-to-scale but can be brought to absolute scale by
simultaneously capturing and tracking the user’s face in the user-facing camera (left). This
enables superimposing virtual objects, e.g. the green wire frame model of a parcel, at
absolute scale (right).

for camera localization for handheld AR in unknown environments. After pointing out the inherent

ambiguity in scale in monocular SLAM we explain why this ambiguity presents a problem for AR.

We then give a brief summary on how we will overcome this problem by estimating the scale using

an additional user-facing camera.

After this short wrap-up of our own method, we subsequently compare our method in section 3.2

to existing state-of-the-art approaches for obtaining absolute scale in monocular SLAM.

We further elaborate the idea behind our particular method in detail in section 3.3, before we then

provide details on the actual implementation in section 3.4. Quantitative evaluations of the accuracy

and precision of our method are presented in section 3.5, where we examine the performance of the

absolute scale estimation both for an idealized case using marker tracking (section 3.5.1) to explore

the future potential, as well as for the real-world scenario using face tracking (section 3.5.2).

On grounds of the evaluated performance, section 3.6 illustrates multiple applications that are en-

abled by our approach.

Finally we conclude this chapter, which is targeted on absolute scale estimation, with a discussion

and conclusions about our presented approach in section 3.7 .

Note on Publication All major contributions of this part of the thesis have already been published

by Knorr and Kurz [Knor 16] in the proceedings of the IEEE International Symposium on Mixed

and Augmented Reality (ISMAR) 2016. The fundamental research was conducted by the first author,

Sebastian Knorr, under the technical and project-administration guidance of the second author, Daniel

Kurz. In particular, the theory of the approach as well as the implementation was developed by the

first author.

102



3 Absolute Scale - The User’s Face as an Object of Known Size

3.1 Introduction to Absolute Scale in Augmented Reality

In this section we will introduce the concept of absolute scale in the context of scene reconstruction

and camera localization for AR. We first will give a brief summary about basic principles of camera

localization for AR in unknown environments in section 3.1.1, with an emphasis on the commonly

used technique called monocular SLAM in section 3.1.2. From that we will point out in section 3.1.3,

that there is an inherent ambiguity in scale when we reconstruct an unknown scene with a monocular

intensity camera without having additional knowledge about either the dimensions of the scene or

the dimensions of the camera motion. We also will point out why this ambiguity in scale presents

a problem for AR, where we want to use the scene reconstruction and camera localization to embed

virtual objects into the real world. In section 3.1.4 we then will give a short introduction to how our

particular approach overcomes the problem of ambiguity by estimating the scale of the environment

using an additional user-facing camera that captures the user’s face.

3.1.1 Camera Localization for Augmented Reality

Augmented Reality (AR) enriches our perception of the environment by additional digital content

that is spatially registered to the real world. Technologically AR often is implemented as video see-

through AR. Here the visual view of the real-world environment is provided in form of a live-video

stream which is captured by a camera and then is presented to the user on a display. The digital content

thereby is embedded into the view of the real world by overlaying computer-generated renderings of

the digital content on top of the video stream. Digital content may comprise virtual 3-dimensional

objects which act as surrogates for real objects. AR thus can for instance be used for product previews

allowing the user to see how some furniture would look like in the own living room.

To generate the illusion for the user that the virtual objects are actually placed within the real world,

the virtual objects must be rendered into the augmented video in a way that they are spatially registered

with the real world. That means they must stay at the same position with respect to the real world.

When the real video camera is moved or rotated, the perspective of the rendering of the virtual objects

must adapt accordingly to the changed perspective of the real world visible in the video stream.

The pose of the camera with respect to the real world thus must be determined, in order to use

the same pose for the virtual camera during rendering the virtual objects. The terminology pose used

inhere refers to both the position and the orientation of the camera. In 3-dimensional space, this pose

comprises six degrees of freedom (6DoF): three modeling the position, three modeling the orientation

in space. These parameters are also referred to as the extrinsic parameters of the camera because they

are independent – i.e. no intrinsic properties – of the camera itself.

Beside the extrinsic parameters of the camera, additional parameters influence how the 3-

dimensional world is projected onto a 2-dimensional representation during image formation. A com-

monly used model to describe the projection by a camera in a simplified way is called central projec-
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tion (see e.g. [Hart 03]) or pinhole camera model. In this model, all the rays of light that are captured

by the camera pass through a common point – the pinhole, which is the center of projection of the

camera. The direction of each ray determines the position where the ray of light hits the image sen-

sor. In the simplest case, a point in the 3-dimensional world is imaged at the position where the ray

from that 3-dimensional point through the center of projection of the camera intersects with the im-

age plane. The light intensity along a ray incident on the sensor creates the intensity of the image

pixel located at that position. Each location of the 2-dimensional image that is created by the camera

thus corresponds to a ray through the center of projection of the camera into some direction in the 3-

dimensional world. How directions are mapped to image locations in particular depends on intrinsic

parameters of the camera like focal length, sensor format, and principal point and may additionally

be influenced by lens distortion which alters the optical path of light through the lens system. The

intrinsic parameters of a camera can for example be calibrated using images of a checkerboard by the

method of Zhang [Zhan 00]. Commonly in camera localization the intrinsic parameters of the camera

are considered to be fixed and calibrated in advance. In the following we also will assume that the

intrinsic parameters of the employed cameras have already been calibrated, and we will focus on the

estimation of the 6DoF pose of the camera within 3-dimensional space.

As mentioned earlier, the current camera pose with respect to the real world is needed to superim-

pose virtual objects under the adequate perspective that matches the perspective of the real world in

the camera image. Determining the camera pose with respect to the real world is often also referred to

as camera tracking. Tracking the pose of a moving object like the camera can be performed in various

ways, e.g. using GPS [Fein 97], magnetic sensors [Livi 97], Wi-Fi-based signals [Ferr 07, Liu 07],

inertial measurements [Harl 13], or some combination thereof [Miro 13]. These approaches however

lack accuracy. In order to track the pose of an object with a very high accuracy and precision of-

ten OptiTrack1, an optical outside-in tracking method, is used. For this technology, small reflective

marker balls are attached to the object to be tracked. These reflective balls are captured and tracked

by a calibrated array of cameras which emit invisible infrared light. While this method delivers very

high accuracy, it involves expensive hardware and set-up steps and thus is not reasonable for the mass

market. For handheld video see-through AR instead inside-out camera tracking, i.e. vision-based lo-

calization of the handheld device using the camera stream that is captured anyway for the augmented

view, is an effective and commonly used way. It allows for determining the current camera pose at an

accuracy that is adequate for AR without posing additional requirements. Inside-out tracking thereby

determines the camera pose with respect to the captured environment.

If we already have a 3-dimensional model of the real world and are able to identify parts from this

model in our images, the 6DoF pose of a (calibrated) camera can be estimated relative to the real

world based on a set of correspondences between 3-dimensional points of the model and their corre-

sponding projected 2-dimensional image locations in the captured image. Beside establishing the cor-

respondences, estimating the camera pose involves solving a system of equations that is constructed

1http://optitrack.com/
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based on the observed correspondences – a problem known as Perspective-n-point (PnP). Methods

solving the PnP-problem come in various flavors, from methods that work on the minimal set of three

correspondences (P3P) like the ones presented by Gao et al. [Gao 03] or Kneip et al. [Knei 11], to

approaches that work with a higher number of point correspondences like e.g. EPnP from Lepetit et

al. [Lepe 09], which is applicable for any number of correspondences greater than three. This prin-

ciple of estimating the camera pose from correspondences between 2-dimensional image locations

and 3-dimensional points of the model of the scene is also used for planar object tracking, where the

3-dimensional world is restricted to a planar known object like an image or specialized marker.

In many scenarios of handheld AR, the environment around the user however is unknown, e.g. when

the user is executing the AR application in their own living room. Image-based camera tracking thus

also has to work in generic and unknown environments where no initial predefined model of the real

world and its 3-dimensional structure is available. In this case also the model of the world must be

estimated from the 2-dimensional images of the environment which are captured by the camera from

different views, while the user is moving through the environment. This technique, to infer structure

from sequences of projections, is referred to as structure from motion (SfM). Generally speaking, SfM

approaches find a model of the world that best explains the observations in the multiple images. The

environment thereby often is also referred to as the scene, and the model of the scene is called map.

Mapping accordingly refers to the process of creating the map of the environment.

3.1.2 Monocular SLAM for Camera Localization in Unknown Environments

Visual Simultaneous Localization and Mapping (SLAM) is a real-time variant of SfM. It describes

the process of observing a scene with at least one camera from different viewpoints, and over time

building a consistent 3-dimensional model of the scene, as well as simultaneously estimating the poses

of the camera at the observations. The incremental creation of the map during runtime in combination

with the real-time estimation of the current camera pose make this process an ideal candidate for

camera tracking for AR, where the current camera pose is needed instantaneously for rendering the

virtual objects on top of the current camera image.

Various methods of visual SLAM exist for different types and setups of cameras. In the simplest

case only a single (intensity) camera is used to observe and reconstruct the scene. This is referred to

as monocular SLAM, see e.g. Davison et al. [Davi 07]. The benefit of monocular SLAM for handheld

AR lies in its low hardware requirements. Nowadays the required kind of camera is already an integral

part of nearly all available handheld devices.

The consecutive images from the video stream that is captured by the camera are also referred to as

frames. When the moving camera captures images of the scene from different viewpoints, and thereby

observes the same scene location multiple times (see figure 3.2), the 3-dimensional position of that

location can be recovered by triangulation using the parallax, i.e. the angle between the ray directions
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(a) (b) (c)

Figure 3.2: Two images (b, c) of a table are captured from two different camera poses (a). Four cor-
respondences for corners of the table are depicted with stitched lines. The displacements
of the correspondences between the first (b) and the second image (c) are visualized as
arrows (b).

associated with the image locations of the observations, to estimate the depth for the scene location.

This however requires knowledge of the camera poses.

Over the past years, various implementations of monocular SLAM have been presented. Our

method, which estimates the scale of the reconstruction that is created by monocular SLAM, treats

the particular implementation as a black box. Our method directly works on the estimated camera

poses. By that it is agnostic of the particular algorithm that estimates the poses and thus would even

work in combination with methods like visual odometry (VO), see e.g. Nistér et al. [Nist 04] and

more recently Engel et al. [Enge 13, Enge 16]. These methods do not necessarily create a global map,

but primarily sequentially estimate the motion of the camera over time. For VO, our method could

determine the scale in which the trajectory of the camera is estimated.

An implementation of a visual SLAM system consists of several building blocks, and every build-

ing block can be designed in various ways. While an exhaustive overview is beyond the scope of

this thesis, we will in the following shortly review some of the main differences between popular

approaches of monocular SLAM.

Filter-Based versus Keyframe-Based Visual SLAM One main characteristic of a visual

SLAM implementation is the way how the history of observations as well as the current state of

the process is kept and updated over time.

Earlier methods of visual SLAM like MonoSLAM by Davison et al. [Davi 07] often employed a

filter-based approach. Here the information gained from the images over time is sequentially fused

into probability distributions for the observed features and the camera pose.

More recently, visual SLAM methods switched to a different approach, where for a subset of the

captured images, the camera poses as well as the observations from the images are stored as so called

keyframes. While camera tracking still can be performed frame by frame, the stored keyframes allow

for a global optimization of the reconstructed map that is decoupled from the tracking thread. This
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idea was introduced by Klein and Murray [Klei 07] in their Parallel Tracking and Mapping (PTAM)

framework. The global optimization in this case is done using Bundle Adjustment [Trig 99], a tech-

nique where the 3-dimensional features in the map are refined simultaneously with the estimated

camera poses at the keyframes. The refinement is realized by minimizing a cost function e.g. the

reprojection error of the 3-dimensional map features onto the 2-dimensional keyframe observations.

Based on simulating a number of experiments with camera motion in local scenes, Strasdat et

al. [Stra 12] concluded that typically Bundle Adjustment is more efficient (in terms of accuracy per

computational cost) for visual SLAM than filtering. Bundle Adjustment over 6DoF camera poses

however is not the only solution for a global map refinement. In Large-scale direct monocular SLAM

(LSD-SLAM), Engel et al. [Enge 14] for example optimize over a pose graph of keyframes which

additionally considers scale between different poses by using similarity transformations instead of

rigid transformations.

The global map of keyframes and the reconstructed 3-dimensional map features that are generated

over time can also be used to recover the camera pose with respect to the world when tracking has

been lost. The camera pose then can be reinitialized from the map. Even when tracking is not lost,

the global map can be used to detect areas that have already been visited. The connection between

the current camera pose from sequential tracking and the estimated camera pose based on another

keyframe stored in the past can be used to compensate drift in the camera pose estimation that was

accumulated over time and to again refine the global map. This correction to the map and to the

camera poses is known as loop closure. The detection of already visited areas can for example be

performed using the extracted 3-dimensional features of the map [Clem 07] or by searching for stored

keyframe images that are similar to the current frame [Ange 08].

Direct versus Indirect, Dense versus Sparse Monocular visual SLAM recovers the 3-

dimensional structure of the scene based on multiple observations of the scene from different view-

points. It thereby relies on identified correspondences between multiple 2-dimensional images. These

correspondences are pairs of 2-dimensional locations within different images which correspond to the

same part of the scene. Where the part of the scene is projected to in each image thereby depends on

the particular camera pose with respect to the scene part. The observations thus build up constraints

on both the unknown structure of the scene and the unknown camera poses.

To identify correspondences between images, some methods of visual SLAM directly work on

image intensities and minimize the photometric error. These methods are referred to as direct methods.

Often direct methods thereby recover the relative pose between images by aligning the whole images

through minimizing the photometric error between the images over all the pixels. Methods that take

the full images into consideration, and by doing that exploit all information present in the image, are

referred to as dense methods. Dense Tracking and Mapping (DTAM) by Newcombe et al. [Newc 11]

is an example for a direct and dense method. Also LSD-SLAM by Engel et al. [Enge 14] aligns
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two images by directly minimizing the photometric error between the two images. The small per-

pixel disparities between consecutive frames are used to successively build and filter a (inverse) depth

map along with corresponding variances. Each keyframe that is created over time stores the captured

camera image as well as the corresponding (inverse) depth map including variances. The depth map

however only is defined for those image regions close to large intensity gradients, i.e. regions where

the per-pixel disparities are more reliable. Due to this selective non-dense information, LSD-SLAM

can be described as direct and semi-dense.

The alternative to dense methods are so called sparse methods, that only establish correspondences

for a sparse set of image locations. In a first processing step, small image regions are identified in

the image that are well-suited for finding the corresponding image region in other images. Regions

with high texture obviously are easier to match than uniform areas. The identification of well-suited

image regions is called keypoint or (salient) feature detection. Famous examples of keypoint de-

tection methods comprise the Harris corner and edge detector by Harris and Stephens [Harr 88],

difference-of-Gaussian (DOG) by Lowe [Lowe 99], as well as the Features from Accelerated Segment

Test (FAST) method by Rosten and Drummond [Rost 06], which is a computationally efficient cor-

ner detector. Good features are regions in the image that look similar in different images while each

feature looks distinct. A good feature detector (e.g. FAST) is repeatable and invariant. It detects the

same features under different illumination, viewpoint, blur, etc.

Sparse methods often do not directly minimize the photometric error to find the perfect match for an

image region in the other image, like direct methods do. Instead, before matching, the features (image

regions) identified as well-suited are first further processed into a different representation. In this case

the method is referred to as indirect. After processing, an image region is described by a so-called

feature descriptor, e.g. a 128-dimensional vector. The algorithm that transforms the image region into

its new representation in a particular way is called feature descriptor method. Two widely used feature

descriptor methods are the Scale Invariant Feature Transform (SIFT) by Lowe [Lowe 04] as well

as the Binary Robust Independent Elementary Features (BRIEF) from Calonder et al. [Calo 10]. A

feature descriptor method does not only define the processing of image regions into feature descriptors

but also provides a similarity measure on the feature descriptor space for matching. While SIFT for

example considers the Euclidean distance between two feature descriptors, BRIEF uses the Hamming

distance [Hamm 50]. A good feature descriptor method is invariant and distinctive. It describes one

and the same feature under different illumination, viewpoint, blur, etc. with a similar feature descriptor

but describes two different features with preferably distant descriptors.

While sparse methods are only able to reconstruct a sparse 3-dimensional point cloud of the scene,

dense methods can recover a much denser 3-dimensional model.

Motion Model Visual SLAM tracks the camera motion over consecutive images. The small motion

assumption implies that the change in camera pose between the last frame and the current frame is

relatively small and as a consequence also the images are quite similar. The camera pose for the
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current frame needs to be estimated by either aligning the current image to the model or by tracking

sparse features. For both of these matching procedures the camera pose of the last frame can be used

as an initialization: either for the image alignment or for the feature locations in the current frame.

Using directly the camera pose of the last frame as initial guess for the current pose is referred to

as constant position model. Starting from this initialization, the alignment then can be successively

optimized.

Some methods incorporate a more elaborate motion model than simply starting from the previous

frame: PTAM [Klei 07] for example uses a constant velocity model, which includes the velocity of

the camera into their prediction for the current camera pose that then is used as initialization for

the optimization. This allows for a better initialization and thus smaller search area for the feature

locations in the images even for larger camera motion between two consecutive frames, but imposes

the assumption of a smooth camera motion.

Initialization The map in SLAM is extended incrementally. Camera poses are estimated with

respect to the map and new map features are integrated based on estimated camera poses. At the very

beginning however both the scene as well as the camera pose with respect to the scene are unknown.

An important aspect for an implementation of monocular SLAM thus is the initialization phase.

MonoSLAM [Davi 07] for example is restricted to only initialize with the camera facing a planar

known initialization target, e.g. a black rectangle. The features of the target, i.e. the corners of the

rectangle, need to be already predefined in the map, and the camera has to be held in a certain known

location relative to the target. MonoSLAM uses this restricted set-up to directly estimate a camera

pose for the first frame.

In order to not rely on a specific predefined target, more recent methods of monocular SLAM try to

initialize by exploiting information from multiple frames captured by the moving camera to establish

the first initial map.

PTAM [Klei 07] for example adds an initialization phase, where the user has to capture the scene

while performing a smooth translation with the camera. The user explicitely marks the start and end

frames of the captured initialization sequence. These frames are considered to be the first two initial

keyframes. Features detected in the images are tracked frame to frame. By that, image correspon-

dences between the first and last frame are established. These 2D-2D correspondences then are used

to calculate the relative camera rotation and translation between the first and the last keyframe and to

determine the 3-dimensional coordinates of the tracked features by triangulation. This triangulation of

features only works well when the baseline, i.e. the translational offset, between the camera positions

of the two initial keyframes is sufficiently large, depending on the distance of the observed features

from the camera.

In the original version of PTAM [Klei 07], the matched 2D-2D correspondences are fed into a

five-point-algorithm [Stew 06] that estimates the essential matrix, which is a matrix that describes the
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relation between image coordinates of a 3-dimensional point captured in two different images by a

calibrated camera. From this essential matrix the relative camera pose between the two keyframes can

be extracted and the 3-dimensional coordinates of the features can be determined.

In a later version, the initialization for PTAM is limited to planar scenes, and instead of the more

general essential matrix, the homography matrix is estimated, which is a transformation matrix that

relates two projective mappings of points on a plane in 3-dimensional space. Again the relative cam-

era pose between the two keyframes can be extracted from this homography, and the 3-dimensional

coordinates of the points on the plane relative to the camera poses can be determined.

In PTAM, the first frame and the last frame of the initialization sequence have to be manually spec-

ified by the user. Some implementations of monocular SLAM try to replace this manual specification

with some heuristic that automatically determines when the baseline between the first camera position

and the current one is sufficient. To be more robust against mostly rotational motions during inital-

ization as well as during map extension, Gauglitz et al. [Gaug 12] combine visual SLAM tracking,

which requires parallax-inducing camera motion for feature triangulation, with panoramic mapping

and tracking. Their method is able to switch between the two modes depending on the detected camera

motion and thus can take advantage of both the approaches.

The initialization of LSD-SLAM by Engel et al. [Enge 14] also requires a translational camera

movement for the first seconds. The system is initialized by filling the depth map of the first keyframe

with random values and large variance. Updating the depth map of the keyframe successively based

on the estimated per-pixel disparities resulting from the translational camera movement lets the depth

map converge to a correct depth configuration.

3.1.3 The Problem of Ambiguity in Scale for Augmented Reality

Having in mind the challenge to initialize monocular SLAM and the preference for a solution that

works in an arbitrary environment without the need for a predefined model of the scene, this leads us

to a well-known shortcoming of monocular visual SLAM. The reconstruction of the scene as well as

the estimation of the camera trajectory purely from images is ambiguous in its scale.

This means that it is unknown what absolute distance (e.g. in meters) corresponds to a unit of the

coordinate system in which the reconstructed scene model and the estimated camera poses are defined

in. This scale ambiguity results from the projective nature of image capturing with a monocular

camera, which means that images captured by the camera only measure a 2-dimensional projection of

the 3-dimensional scene.

Figure 3.3 demonstrates this ambiguity in scale for a single image. When we capture an image

of a table, a pixel captures the intensity of light incident through the aperture of the camera along a

certain ray direction. No information however is captured about the distance to the pictured surface.

The same image could for example also have been generated by smaller versions of the table that are
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Figure 3.3: An image taken with a monocular camera captures light intensities incident through the
aperture of the camera as pixel intensities. Thereby only a 2-dimensional projection of
the scene is captured, that contains no information about the real dimensions. Tables of
different sizes may for example lead to identical images.

B
C
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(c) (d)
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Figure 3.4: Images (b-f) captured with a monocular intensity camera (a) do not contain information
about the absolute dimensions of the pictured scene. A scaled version of the scene with
an equally scaled camera motion would result in identical images, as illustrated by the
identical appearance of the two virtual characters of different size in images (c) and (e) as
well as (d) and (f).

closer to the camera or larger versions further away. As we have no information about the distance to

the surface, a single image does not even tell us if we really captured a 3-dimensional object or if we

for example are just viewing a 2-dimensional image showing the table.

Besides scale, the 3-dimensional structure of the scene can however be recovered from multiple

images showing the scene from different view points as we do in monocular SLAM, by exploiting

correspondences between the images as shown in figure 3.2.

The remaining ambiguity in scale is demonstrated in figure 3.4. The example scene shown in

figure 3.4 (a) contains two virtual characters, that are identical except for their size. One character is

twice as large as the other one.

We observe the scene through a camera from multiple point of views B-F. First the camera is moved

on a small circle around the smaller character covering camera positions B, C, and D while pointing

at the smaller character. In a second run the camera again starts at position B, but then is moved on

a circle twice as large around the larger character. While pointing at the larger character it thereby
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covers camera positions B, E, and F. The larger camera motion path together with the larger character

thus is just a scaled, twice as large, copy of the smaller camera motion path together with the smaller

character.

The camera captures three images at the positions B, C, and D. The images are shown in fig-

ure 3.4 (b, c, d). The camera also captures three images in the second run at the camera positions B,

E, and F. These images are shown in figure 3.4 (b, e, f). When we compare the corresponding images,

i.e. image (c) to image (e) as well as image (d) to image (f), we see that the appearance of the smaller

character in the images (c) and (d) is identical to the appearance of the larger character in the images

(e) and (f). Without knowledge about the dimensions of a character or the camera motion, the absolute

scale of scene and camera motion thus cannot be recovered.

Methods that simultaneously reconstruct a scene and estimate the camera poses therefore usually

assign an arbitrary scale to the 3-dimensional reconstruction and camera poses.

Many applications, however, require a scene reconstruction or camera poses at absolute scale, e.g.

vision-based navigation or Augmented Reality (AR) applications that superimpose virtual objects (e.g

furniture) at absolute scale in a previously unknown real environment.

Our method will specifically target the use case of handheld AR. Imagine that we create an appli-

cation that lets you preview how an armchair from a furniture catalogue would look like in your own

living room. The dimensions of the armchair are specified by the furniture catalogue in meters (see

figure 3.5 (a)) and obviously the goal is to preview the armchair in its real dimensions, as shown in

figure 3.5 (b). As the living room of the user is unknown to the application, we will use monocular

SLAM for camera tracking. The arbitrary scale of the reconstruction now leads to the problem that we

do not know at what size we must render the virtual object that it is consistent with the real world. The

arbitrary scale of the reconstruction thus results in an arbitrarily scaled superimposed virtual object

as shown in figure 3.5 (c). This makes the augmented image inappropriate as a preview for how a

particular object, in this case the armchair, would fit into the surroundings. We thus need to know the

absolute scale of the reconstruction, so that we can render virtual objects at correct size.

Sometimes it is not necessary to recover the absolute scale, i.e. the relation to real-world distances,

but still it is beneficial to perform SLAM at repeatable scale, e.g. to overcome scale drift or to obtain

a consistent scale of separately mapped parts of a scene. Many of the existing monocular SLAM

solutions however assign a new arbitrary scale factor with each initialization.

3.1.4 Preview on Our Approach

The method we propose to address the problem of scale ambiguity in monocular SLAM leverages the

user’s face as an object of known size.

We specifically target handheld Augmented Reality applications. Many handheld devices feature a

camera setup which consists of a world-facing camera and a user-facing camera.
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Figure 3.5: The dimensions of an armchair are specified in absolute units like meters (a) and the goal
is to superimpose virtual objects onto the camera image at correct size (b) to provide a
realistic preview. The unknown arbitrary scale of the real-world reconstruction however
leads to superimposed virtual objects that are evenly arbitrarily scaled (c).

This hardware setup firstly allows us to reconstruct and track the unknown environment using im-

ages of the world-facing camera. The estimated camera motion then is used to augment the video

stream of this camera with virtual objects and the augmented stream is displayed to the user.

Secondly the hardware setup allows us to simultaneously capture the user’s face with the user-

facing camera. Given face tracking at absolute scale, two images of a face taken from two different

viewpoints enable estimating the translational distance between the two viewpoints in absolute units,

such as millimeters.

Under the assumption that the face itself stayed stationary in the scene while taking the two images,

the motion of the user-facing camera relative to the face can be transferred to the motion of the rigidly

connected world-facing camera relative to the scene. This allows determining also the latter motion

in absolute units and enables reconstructing and tracking the scene at absolute scale.
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3.2 State of the Art and Related Work

Methods of monocular SLAM are widely used for 3-dimensional scene reconstruction and camera

tracking in unknown environments based on a sequence of images captured by a single moving cam-

era. The inherent ambiguity in scale as described in section 3.1.3 thereby is a well-known shortcom-

ing. Additional information must be provided to overcome the fact, that reconstructing an unknown

environment purely on images of a monocular camera is under-determined. Different ways to achieve

absolute scale in monocular SLAM have been proposed in the past.

Davison et al. [Davi 07] propose to add stationary calibration objects of known size into the scene.

From these calibration objects they determine the absolute scale of the camera motion and scene

structure. As the scene and the calibration objects are both captured by the same camera, the added

objects however change the appearance of the scene to be reconstructed. Additionally the user needs

to have the specific calibration objects at hand, needs to actively position them in the scene, and needs

to capture them with the camera.

Alternatively scale information can also be provided by defining the baseline between two cam-

era poses in absolute units. Klein and Murray [Klei 07] for example manually provide the absolute

distance between the two camera positions where the two images for the initial 3-dimensional trian-

gulation are captured. The user can for example be instructed to capture a second image of the scene

at a certain distance like half a meter apart from the camera location of the first image. Obviously this

task is cumbersome for the user and may lead to errors.

Apart from monocular SLAM, the same idea of a known baseline however is used for rigidly con-

nected stereo camera systems (i.e. two cameras with overlapping frusta). Here the baseline between

the two cameras is fixed and can be calibrated offline as proposed by Lemaire et al. [Lema 07]. The

two cameras of handheld devices, i.e. the world-facing camera and the user-facing camera, which

we will employ for our method however have no overlapping frusta, they rather point in opposite

direction.

Clipp et al. [Clip 08] describe how to estimate the absolute scale using a multi-camera setup with

non-overlapping camera frusta. They also leverage the known fixed baseline between the cameras

together with an additional single point correspondence within the images of the second camera. To

estimate the scale they exploit the fact that rotations will induce differences in translation between the

motions of the two cameras. Clipp et al. [Clip 08] however use their method for camera set-ups where

the cameras are placed on each side of a vehicle, so that they have a large inter-camera distance of

1.9 meters. As the inter-camera distance correlates with the difference in translation induced by rota-

tions, this approach most probably is unsuitable for handheld devices, e.g. mobile phones, where the

displacement between the cameras obviously is much smaller, so that noise in the motion estimation

likely will corrupt the scale estimation.

Information about the absolute scale can also be provided by cameras that are equipped with depth
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sensors – sensors that measure the distance of an imaged surface from the camera in physical units,

such as meters. These cameras are also referred to as RGB-D cameras, as they deliver an additional

depth (D) channel. Depth information from an RGB-D camera is for example integrated into vision-

based SLAM by Lieberknecht et al. [Lieb 11] as well as Kerl et al. [Kerl 13]. Such kind of sensors,

however, are currently not commonly available in handheld devices. Additionally active depth cam-

eras projecting and measuring infrared light do not work reliably outdoors during daylight.

Sensor fusion of vision with an Inertial Measurement Unit (IMU) is used by Nützi et al. [Nutz 11]

to estimate absolute scale in monocular SLAM for moving vehicles by double integrating acceleration

measurements over time yielding a position in meters.

Also Weiss and Siegwart [Weis 11] employ an IMU to recover the metric scale for camera pose

estimation with a monocular camera. They mount a camera on an IMU and perform handheld move-

ments. Similar to our approach they treat the particular visual pose estimation method as a black box,

which makes their approach more versatile for different tracking approaches. The decoupling of pose

estimation and scale estimation also leads to a constant computational complexity for their Extended

Kalman Filter (EKF), which estimates the scale over time solely based on camera poses and corre-

sponding uncertainties from the pose estimation method as well as acceleration and rotational velocity

from the IMU. While Weiss and Siegwart [Weis 11] show good results for the estimated scale after

filtering over a time of 80 seconds, such a long initialization time with continuous motion is unsuit-

able for our use cases, as a user wants to have the overlay of virtual objects at correct size nearly

instantaneous. Additionally Weiss and Siegwart note that a good initial guess of the scale is important

for their EKF approach.

Tanskanen et al. [Tans 13] employ inertial sensors in off-the-shelf handheld devices for estimating

metric scale. Those IMUs tend to be somewhat inaccurate resulting in an error of about 10-15% in

scale estimates.

For our use case in handheld AR, the main drawback of all these IMU-based approaches however

is the non-negligible amount of motion required over a longer period of time (e.g. 15-30 seconds

[Nutz 11, Tans 13]) to estimate the scale.

A problem that is related with the ambiguity in scale is the drift in scale over time during monocu-

lar SLAM, which leads to inconsistently scaled parts in larger reconstructions. Engel et al. [Enge 14]

present an approach, that still tracks at an arbitrary scale but explicitly takes drift in scale into con-

sideration in its pose graph, a global map of keyframes, which is built along with tracking the motion

of the camera. In this global map, keyframes are connected by similarity transformations instead of

rigid transformations. This new formulation takes scale between keyframes into account and thereby

significantly enhances the performance of monocular SLAM for large scenes and scenes with large

variations in scale.

Our proposed method lies in between methods relying on objects of known size, a determined base-

line between two camera poses, and sensor fusion. We employ the user-facing camera of a handheld
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device as an additional sensor. Even though we are using two rigidly connected cameras with non-

overlapping camera frusta, we do not directly utilize baseline information between the two cameras

like [Clip 08] to estimate absolute scale, as this baseline in most handheld devices is negligibly small.

Instead, we capture images of the user’s face and use the face as kind of a known object providing us

with camera poses relative to the face at absolute scale.

By that we substitute the extra object of known size by a body part of the user, comparable to

Lee and Höllerer [Lee 09] who derive scale information for their markerless tracking approach by an

initial camera pose estimation from the user’s outstretched hand captured by the world-facing camera.

While their approach uses a single camera and requires the user to reach out, such that their hand

becomes visible in the image of the camera, our approach in contrast relies on the user-facing camera

in which the user’s face is automatically present most of the time.

Our approach uses the camera pose relative to the user’s face to induce information of the abso-

lute scale. Face tracking algorithms work universally over almost all humans because the appearance

of facial fiducials can be well approximated by a limited range of variation. Many methods for de-

tecting facial fiducials [Cao 14] and for determining the pose of a face [Murp 09] exist. Often these

methods however deliver a pose at arbitrary scale. For unknown subjects, Flores et al. [Flor 13] es-

timate the absolute distance of a face from the camera using the perspective distortion visible in the

2-dimensional images in combination with knowledge about how facial fiducials are distributed across

people, learned from a small training set of exemplary 3-dimensional models of human faces. Sim-

ilarly, Burgos-Artizzu et al. [Burg 14] estimate the distance of the camera from an unknown person,

based on training in image space on a dataset of frontal portraits of 53 individuals each captured from

seven distances. They also investigate which facial landmarks are suitable for the estimation.

We establish face tracking at absolute scale by combining a standard 6DoF face tracking method

with knowledge about the absolute dimensions of some part of the particular face. For this purpose

we employ, in our current implementation, the human interpupillary distance (IPD). The IPD of a

particular user can be configured in two ways. Firstly, we can rely on statistics and simply take the

mean IPD of an adult person. Dogson [Dodg 04] analyzed multiple studies regarding the IPD with the

key results, that the mean adult IPD is around 63 mm, with a standard deviation around 3.8 mm, which

is about 6%. The vast majority of adults has an IPD within the range of 50 mm to 75 mm. A generic

face model with mean IPD thus can be used for the user introducing some degree of uncertainty.

Alternatively, for improved accuracy, the dimensions of the face of a particular user, in this case the

IPD, can also be calibrated.

The method we propose in this paper takes advantage of the ability to estimate camera poses rela-

tive to human faces at absolute scale. It further makes use of commonly available handheld devices

comprising a world-facing camera and additionally a user-facing camera, which captures the user’s

face. Our method works non-intrusively, not affecting the appearance of the scene to be reconstructed,

and works well even in outdoor scenarios during daylight. It neither requires a separate calibration
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object, such as a marker, to be available and added to the scene, nor does it rely on dedicated sensing

hardware, such as depth sensors, stereo cameras with overlapping frusta, or IMUs.

A similar handheld set-up like ours, where the user-facing camera is tracking the head of the user

while the world-facing camera captures the scene, is also used in the context of user perspective AR,

for example by Hill et al. [Hill 11] and by Grubert et al. [Grub 14]. Grubert et al. also uses the video

stream from the world-facing camera to estimate the camera pose with respect to the world.
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(a) (b) (e) (f)

(d)(c)

Figure 3.6: Simultaneous capturing with the world-facing camera W and the user-facing camera U
(a) of a mobile phone (b) delivers a sequence of image pairs of the scene S (c,e) and the
face F (d,f).

3.3 Approach

In order to enable monocular SLAM at absolute scale, our proposed method requires a handheld

device comprising a world-facing camera and a user-facing camera as shown in figure 3.6 (a).

Instead of adding a marker of known size to the scene and capturing both – scene and marker –

with the world-facing camera, we propose to use the user’s face as scale reference, which is usually

visible in the user-facing camera. Taking advantage thereof renders any instrumentation of the scene

unnecessary.

The absolute dimensions of the user’s face can be calibrated once as described in section 3.5.2.3

and can then be re-used subsequently. If no calibration data is available, a generic average face model

can be selected instead as a fallback since facial dimensions, such as the IPD, vary only moderately

among different adult humans [Dodg 04].

With the face model defined at absolute scale, the pose of the user-facing camera relative to the

face can be determined at absolute scale in real time based on the image of the user-facing camera by

means of a 6DoF face tracking method [Murp 09].

Since the world-facing camera and the user-facing camera are rigidly connected to each other and

the 6DoF transformation in between them is at least approximately known, also the pose of the world-

facing camera can be determined at absolute scale relative to the face, as derived in section 3.3.1.

Under the assumption that the face has not moved relative to the scene over a period of time, the

meanwhile determined absolute poses relative to the face are also valid relative to the scene, which

enables reconstructing the scene at absolute scale. Analogously it enables transforming an existing

reconstruction of the scene from arbitrary scale to absolute scale.

We introduce the following notation. At a time t the user-facing camera captures the image U(t)

and the world-facing camera captures the image W (t). The pose of the user-facing camera relative

to the coordinate system of the user’s face is referred to as UF(t), see figure 3.7 (a). The pose of
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(a)

(b)

Figure 3.7: Face tracking (a) allows to determine poses relative to the face at absolute scale for the
user-facing and the world-facing camera, which then (b) can be used to transform poses
from monocular SLAM relative to the scene from arbitrary to absolute scale.

the world-facing camera in the coordinate system of a reconstruction of the scene at arbitrary scale is

called WS(t) (figure 3.7 (b)) while the pose of this camera in the coordinate system of the user’s face

is referred to as WF(t) (figure 3.7 (a)).

3.3.1 Absolute Scale from two Keyframes

At a first keyframe t1, we store the image W (t1) of the world-facing camera (figure 3.6 (c)), and the

corresponding image U(t1) of the user-facing camera (figure 3.6 (d)). After moving the camera to a

different viewpoint, a second keyframe t2 with images W (t2) (figure 3.6 (e)) and U(t2) (figure 3.6 (f))

is stored. We then use image U(t1) to determine pose UF(t1) and image U(t2) to determine pose

UF(t2) using a face tracking method at absolute scale (figure 3.7 (a)). Given the extrinsic rigid body

transformation E (see section 3.4.1) between the user-facing and the world-facing camera we can

determine WF(t1) as EUF(t1) and WF(t2) as EUF(t2).

Under the assumption that the face stayed stationary in the scene, the poses WF(t1) and WF(t2) are

valid relative to the scene, which enables reconstructing the scene at absolute scale using triangulation.

It further allows to compute the scale factor a from the arbitrary units of the coordinate system of an

up-to-scale model of the scene S to the absolute units of the coordinate system of the user’s face F as

a =
‖τ(WF(t1))− τ(WF(t2))‖
‖τ(WS(t1))− τ(WS(t2))‖

(3.1)

where the operator τ extracts the translation vector of a pose and WS(t1) and WS(t2) are determined

using visual camera localization relative to the model of the scene at arbitrary scale (figure 3.7 (b)).
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3.3.2 Absolute Scale from Multiple Keyframes

While in theory two keyframes t1 and t2 suffice, a longer sequence of keyframes of user-facing and

world-facing camera images lets us compute one scale factor ai for each pair of keyframes (ti, t j),

which gives us a set of scale factors. Some of them are more accurate than others. It is important

to keep in mind that the calculation of the factor only works reliably, if the keyframes ti and t j differ

sufficiently in terms of translation of the cameras. To determine a more reliable and robust overall

scale factor based on more than two keyframes we randomly select from the sequence a set of N

pairs of keyframes (each keyframe comprising of an image of the user’s face and an image of the

scene) such that the user-facing camera moved at least a distance of dmin between the two keyframes

of each pair and compute a scale factor ai per pair of keyframes using equation (3.1). Finally we

compute a factor ã = Median(A) of the set of all scale factors A = {a1,a2, ...,aN} and use ã to scale

the reconstruction.

Figure 3.8 plots the distribution of scale factor estimates ai and the median ã for an example se-

quence. In section 3.5 we quantitatively evaluate how accurate our proposed method estimates the

absolute scale of a scene based on the median scale estimate over a sequence.
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Figure 3.8: Distribution and median of estimated scale factors for a set of 1000 pairs of keyframes
capturing a scene and a face.
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3.4 Implementation

To proof our proposed method, we implemented it based on an HTC One M8 mobile phone (fig-

ure 3.1), which allows simultaneous capture from the world-facing camera and the user-facing cam-

era. We use a resolution of (640×480) pixels for both cameras and determine intrinsic parameters of

each camera using images of a checkerboard [Zhan 00].

3.4.1 Extrinsic Inter-Camera Calibration

(b) (c) (d)

(a)

Figure 3.9: The marker setup (a) was calibrated with the help of a mechanical measurement arm. We
then determined the extrinsic parameters (b) between the two cameras using a set of image
pairs (c,d).

The user-facing camera on the front and the world-facing camera on the back of a handheld device

are not located at the exact same spot. For evaluation purposes we calibrated the extrinsic parameters

E, i.e. translation and rotation, between the two cameras of the employed phone.

For that we first accurately determined the positions and rotations of two markers (figure 3.9 (a))

by touching their respective corners with the tip of a mechanical measurement arm. We then moved
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the mobile phone between the two markers such that the user-facing camera captures the first marker

(figure 3.9 (c)) while the world-facing camera sees the second marker (figure 3.9 (d)). For each image

pair, the camera poses were determined in a common coordinate system based on marker tracking, and

the resulting 6DoF transformation between the two cameras was computed (figure 3.9 (b)). Finally

we computed the median of the coordinates of the translation vector and the rotation expressed as

quaternion to determine the extrinsic parameters E transforming from the coordinate system of the

user-facing camera to world-facing camera coordinates.

The results of the extrinsic calibration show that the two cameras are facing exactly in opposite

direction. The translational offset between the cameras is nearly orthogonal to their optical axes, with

a length of 26 mm.

3.4.2 Offline Evaluation

Our experiments – both for evaluation and real-time applications – are based on a proprietary monoc-

ular SLAM system from the Metaio SDK [Meta 15]. The SLAM system is capable of running in

real time on the mobile phone mapping a real scene and tracking the pose WS(t) of the world-facing

camera relative to it at arbitrary scale. Besides poses, the SLAM system provides the 3-dimensional

coordinates of the reconstructed points.

We use two approaches in our evaluations for determining the pose UF(t) of the user-facing camera

relative to the user’s face. To simulate perfect 6DoF face tracking at absolute scale we place, in

section 3.5.1, a square marker where the user’s face would usually be and track it using the marker

tracking framework of the Metaio SDK. In section 3.5.2 we further use a proprietary face tracking

method which provides the 6DoF pose of a camera relative to a face given an image of it. This

method is based on a generic face model which can be adjusted by one parameter, the IPD, to account

for the faces of different users.

For the quantitative evaluations in section 3.5 we merely use the phone as a capturing device. A

custom app allows to store synchronized video sequences of the world-facing camera and the user-

facing camera to files at a framerate of∼30 Hz. All the further processing then is performed offline on

a PC. This enables repeatable evaluations and systematically testing the impact of different parameters

on the estimated absolute scale.

3.4.3 Real-Time Applications

In addition to the quantitative offline evaluations we present in section 3.6 different applications that

are enabled by our proposed method. These applications run in real time on the mobile phone without

any additional PC. The deployed SLAM system is the same as in the offline evaluation, while we use

a mobile-specific proprietary method for the face tracking. In the real-time application the scale is
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estimated using equation (3.1) for the first and last keyframe of the sequence instead of the median

over the whole sequence.

3.4.4 Stationary Face Assumption

Our current implementation assumes that the user’s face remains static with respect to the environment

during the scale estimation.

In the real-time application, the user at the moment manually triggers the scale estimation procedure

by holding down a button at the lower left of the user interface, see figure 3.12 (a). The first keyframe

for the scale estimation is taken when the user presses the button down, the second keyframe is taken

as soon as the user releases the button. By performing a motion with the smartphone towards or away

from the face, the face stays intuitively stationary. Before and after the scale estimation procedure,

which roughly takes a second, the user can again freely move around.

If the user’s face does not remain stationary in the scene during the procedure, the estimate will be

inaccurate. The relative error in measuring the distance traveled by the user-facing camera relative to

the world falsifies the estimated scale factor a proportionally.
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(a) (b) (c) (d) (e)

Figure 3.10: We create multiple reconstructions of two spherical scenes (a) with different known ra-
diuses. To each reconstruction at arbitray scale we fit a virtual sphere and determine its
radius (b). When then apply our proposed scale estimation method to each reconstruction
and by that bring each radius to absolute scale. The distribution of estimated radiuses at
absolute scale (mm) is shown for an idealized case using marker tracking (c) and for the
real-world case using face tracking (d) in comparison with ground truth. The influence of
inaccurate interpupillary distance calibration is plotted in subfigure (e) for both scenes.

3.5 Evaluation

We quantitatively evaluate the accuracy and precision in estimated scale achieved by our method in

order to assess which use cases it enables. We compare the dimensions of the reconstructed maps of a

scene, which we brought to absolute scale using our method, against ground truth information about

the dimensions of the scene. The scenes we use in our evaluation are spherical because this allows for

an easy and reliable evaluation against ground truth. Our proposed method itself supports scenes of

any shape.

We use two styrofoam spheres (figure 3.10 (a)) at two different sizes pasted up with newspaper. The

large sphere has a radius of 102 mm, while the small sphere has a radius of 61 mm. By moving the

world-facing camera around the respective sphere, we obtain a 3-dimensional reconstruction using

monocular SLAM at arbitrary scale. We then track the sphere based on this reconstruction and in

parallel track the user’s face in the user-facing camera. This enables us to determine the scale factor ã

(see section 3.3.2 with N = 1000 and dmin = 120 mm) between the arbitrary scale of the reconstruction

and the real dimensions of the scene in millimeters.

The device in these sequences is moved mainly along the optical axes of the cameras as illustrated

in figure 3.7. This movement makes it more convenient for the user to not move the head relative

to the scene as opposed to sideways motions. The predominant translational motion also reduces

the influence of the transformation E between user-facing and world-facing camera on the covered

distances of the respective cameras.

To measure the accuracy of the scale estimation, we fit a virtual sphere to each set of recon-

structed 3-dimensional points (figure 3.10 (b)), finding the best sphere using random sample con-

sensus (RANSAC) [Fisc 81]. We scale the fitted radius by the estimated scale factor and compare it
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against the ground truth radius. To evaluate on as much data as possible, we created for each of the

two real spheres six reconstructions using SLAM. The radiuses of these arbitrarily scaled reconstruc-

tions vary between 95.9 and 718.2 for the large styro sphere and between 68.6 and 454.5 for the small

styro sphere. Additionally we captured ten sequences of a few seconds each with the respective sphere

being tracked with the world-facing camera while the user-facing camera captures a face or marker.

All combinations of reconstructions and sequences result in 60 radius estimates per sphere.

3.5.1 Under Perfect Conditions – Marker Tracking

To get an idea of the accuracy and precision achievable under perfect conditions, i.e. without any

motion between face and scene and with very accurate 6DoF face tracking, we first replace the user’s

face with a square marker on a tripod at the position where the user’s face would usually be and use

6DoF marker tracking instead of face tracking.

3.5.1.1 Results

The resulting estimated radiuses for the two spherical scenes based on all combinations of six recon-

structed maps and ten camera sequences are plotted in figure 3.10 (c). For each scene, a candlestick

chart shows minimum, first quartile, median, third quartile, and maximum value of the estimated ra-

diuses. A dashed horizontal line shows the ground truth radius for the reader’s reference. We see that

in this configuration our method achieves to estimate the radiuses of the two spheres with both high

accuracy and precision. The median of 102.17 mm over all estimates for the large styro sphere corre-

sponds to a relative error of 0.16 % (equivalent to 0.17 mm) with a standard deviation of 1.20 mm over

all estimates. For the small sphere the median of 60.17 mm corresponds to a relative error of 1.36 %,

(equivalent to 0.83 mm) with a standard deviation of 2.59 mm over all estimates.

3.5.1.2 Influence of the Extrinsic Inter-Camera Calibration

For all the estimations evaluated above as well as plotted in figure 3.10 (c) we considered the extrinsic

rigid body transformation E between the user-facing and the world-facing camera, determined in

section 3.4.1. E can be assumed to vary between different handheld devices, and potentially there is

not always a calibration available. We therefore separately run the estimations on the same sequences

ignoring the extrinsic calibration, i.e. using a generic extrinsic calibration E assuming that the two

cameras are located exactly at the same position. Note that the rotation between the two cameras is

irrelevant for the distances used in the scale calculation.

The simplification of ignoring the extrinsic rigid body transformation E only slightly affects the

results with a median of 102.87 mm for the large and 60.49 mm for the small styro sphere with com-

parable standard deviations. This negligible influence of E has multiple reasons.
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IPD

Figure 3.11: We determine the IPD (depicted in red) in a captured image, by using the average position
(green) of four detected fiducials around the eye contour (depicted in blue) instead of the
pupils in order to be invariant against eye convergence.

First of all, the scale estimation using equation (3.1) only considers the covered distance between

two poses. This distance is not affected by the rotational part of E, which expresses the difference in

viewing directions between the two cameras.

The translational part of E, which is the baseline between the two cameras, however has an impact

on the distances covered by the cameras when the smartphone is moved. As long as the smartphone

is moved purely translational, both cameras cover the same distance. A rotation of the smartphone

around some axis however induces a translation for all the points of the smartphone, that do not lie

on this axis of rotation, e.g. the positions of the cameras. The induced translation thereby varies for

different points. The length is directly proportional to the perpendicular distance of a point from the

rotation axis. The additional translation falsifies the scale estimation, when we do not compensate

for the extrinsic rigid body transformation E. As in our sequences the smartphone however is moved

mainly translational, and the baseline between the cameras is small with less than 3 cm compared to

the covered distance between time t1 and t2, the impact of the extrinsic rigid body transformation E
becomes negligible.

The results demonstrate, that our method works well even without an extrinsic calibration for a

particular device.

3.5.2 Under Realistic Conditions – Face Tracking

We then evaluate our method using face tracking instead of marker tracking. To enable face tracking

at absolute scale we provide the IPD of the particular person to the face tracking method. Note, that in

our implementation we always refer to the distant IPD, which is the IPD when the person is focusing

at infinity. As eyes turn inward (converge) to focus on closer objects, the IPD changes. We thus do

not track the pupils directly but rely on fiducials on the eye contour, as depicted in figure 3.11.

3.5.2.1 With Calibrated Interpupillary Distance

For this part of the evaluation the IPD of the user has been calibrated manually using a ruler and a

mirror. During capturing the sequences used for the scale estimation the user tried to avoid moving

their head but we can assume that small motions occurred.
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The distribution of radiuses of reconstructed spheres in 60 runs per scene are plotted in figure 3.10

(d). We observe that in this case estimations are less accurate and the radiuses, and hence the scale of

the scene, are mostly underestimated.

The median of 95.81 mm over all estimates for the large styro sphere corresponds to a relative error

of 6.07 % (equivalent to 6.19 mm), the median of 55.65 mm over all estimates for the small styro

sphere corresponds to a relative error of 8.78 % (equivalent to 5.35 mm). With a standard deviation

of 2.35 mm for the large styro sphere and 2.60 mm for the small one, the estimates however are only

slightly less precise than those obtained with marker tracking.

3.5.2.2 Influence of the Interpupillary Distance

We use the IPD to enable face tracking at absolute scale. If for a user the exact IPD is not available the

mean IPD of an adult person, which is about 63 mm [Dodg 04], could be assumed. Hence we evaluate

the impact of an inaccurately calibrated IPD on the absolute scale estimate. Therefore we estimate

the radiuses of the two spheres based on sequences of a user with an IPD of 68 mm while configuring

the face tracking method to use an IPD between 48 mm and 77 mm in steps of 1 mm which covers the

vast majority of adults [Dodg 04].

Figure 3.10 (e) plots the radius of the reconstruction at absolute scale as a function of the assumed

IPD. We observe a linear dependency between the two parameters. The introduced percental error

in scale estimation is linearly coupled to the error between real and assumed IPD. Statistically the

potential lack of accuracy from relying on statistics for this distance instead of calibrating it for a user

follows the same distribution as the IPD. According to the Ansur database mentioned in [5], the IPD

(age 17 to 51) follows a normal distribution with mean 63.4 mm and standard deviation of 3.8 mm,

corresponding to < 6 %.

Interestingly the most accurate reconstructions were achieved with an IPD 71 mm for both the large

and the small styro sphere, while the manually measured IPD for the subject is 68 mm. This suggests

some bias in our applied face tracking method.

3.5.2.3 Per User Calibration of the Interpupillary Distance

The IPD may be calibrated manually using e.g. a ruler. People with glasses may also already have

their IPD measured by an optician.

Beside that, a semiautomatic calibration of the IPD or other facial features can be performed us-

ing the dual camera setup presented in here by inverting the scale transfer. Camera motion can be

estimated at absolute scale by means of e.g. marker tracking using the world-facing camera. By si-

multaneously tracking the facial features to be calibrated on the user-facing camera, the absolute scale

can be transferred to the facial features as long as the user’s face stays static with respect to the marker.
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We implemented a prototype of this semi automatic approach and performed 8 calibration runs for a

person with an IPD of 68 mm. The resulting estimates for the IPD had a mean value of 68.9 mm with

a standard deviation of 2.3 % (corresponding to 1.6 mm). The deviation towards an overestimated

IPD is to a certain extent consistent with our observation of the underestimated sizes for the small and

large styro spheres based on face tracking in section 3.5.2.1. Enhancements with regard to the face

tracking method could in future eliminate this bias and additionally lower the standard deviation for

improved accuracy and precision in IPD calibration as well as scale estimation.

The calibration procedure for a particular user only needs to be performed once. If multiple users

share a device, visual face recognition could be employed to select the stored calibration correspond-

ing to the particular user from the set of available calibrations.
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(a) (b) (c)

(d) (e) (f)

Figure 3.12: Examples of the various applications which our proposed method enables. Performing
SLAM at absolute scale enables superimposing virtual objects at absolute scale (a-c) as
well as measuring distances at absolute scale, e.g. in centimeters (d-f).

3.6 Applications

Our proposed method enables a variety of handheld AR applications, which require camera pose

estimation or mapping of a real environment at absolute scale, e.g. superimposing virtual objects at

absolute scale, or interactive distance measurements in the scene.

3.6.1 Superimposition at Absolute Scale

When virtual objects in AR act as a substitute of a real object, it is beneficial to superimpose them

at absolute scale. Common examples include virtually placing a piece of furniture, e.g. an armchair

(figure 3.5), in the living room to test if it would fit in the room and how it matches with the remaining

(real) furniture. Here it is crucial that the armchair is superimposed at correct size (b), compared to a

superimposition at arbitrary scale (a), which provides a wrong visual feedback to the user about the

potential real appearance.

Virtually placing canvas prints on the wall to pick the right size out of the available selection (fig-

ure 3.12 (a,b)) is another example when superimposition of virtual 3-dimensional objects requires

absolute scale.

Absolute scale is also needed when not visual appearance within the surroundings but the physical

dimensions themselves matter, see e.g. figure 3.12 (c) where the size of a parcel is visualized so that

the user can visually decide which parcel size is needed for a particular shipment.
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3.6.2 Measurements at Absolute Scale

Additionally to augmentations of virtual objects at correct size, the reconstruction of a scene at abso-

lute scale enables measuring distances within the scene.

Conventionally, different tools are needed for measuring depending on the use case and scale, from

rulers to tape measures. It is even harder to measure when either the direct connection between

measurement points is not possible e.g. the length of a wall occupied in between by furniture or when

measurement points are visible but out of reach.

Our proposed method enables using the same measurement tool – the smartphone – to perform all

these measurements – from a few millimeters to many meters – in a convenient non-contact manner.

By simply clicking on the touch screen which shows the scene captured by the world-facing camera,

the corresponding 3-dimensional locations in the scene are selected and the distance between suc-

cessively selected scene locations is provided to the user. This allows a convenient way to perform

measurements for a large variety of settings and objects. It for example makes it possible to measure

a longer path (figure 3.12 (e)) through a building telling you the needed length for a cable, as well as

measuring the total length over multiple path segments (figure 3.12 (f)). It further allows to measure

the linear distance between 3-dimensional points (figure 3.12 (d)) that cannot be directly measured

with a ruler or a measuring tape.

Depending on the particular use case, scene locations can be selected on a plane aligned to either

the ground or a wall or on an arbitrary object in 3-dimensional space.

For selecting locations on a plane we project a touch position in the camera image onto the respec-

tive plane and thus obtain the 3-dimensional coordinates of the corresponding scene point. For general

3-dimensional scenes, we project all 3-dimensional features of the reconstructed SLAM map into the

camera coordinate system and select the feature which projects closest to the touch position.

We evaluate the accuracy of distance measurements performed with the tool explained above. Note

that this evaluation includes the accuracy of the SLAM system and the user’s ability to select points

on the screen. Results are listed in table 3.1. Except for the outcome for the envelope, the achieved

measurements have a relative error below 7 % over the whole range of small scale measurements of a

stamp up to large scale measurements of a whole room. While the achieved accuracy is sufficient for

many use cases we plan to further improve it in the future.
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Table 3.1: Measurement results in comparison with ground truth distances.

Distances (cm)
Object GT Measurement Relative Error (%)

Stamp (diag.) 3.6 3.8 5.6
Envelope (diag.) 24.4 27.3 11.9
Book (diag.) 30.0 31.7 5.7
Barbell 34.7 35.8 3.2
Newspaper (diag.) 69.5 72.3 4.0
Table 122.6 131.0 6.8
Room 898.0 902.6 0.5

3.7 Conclusions and Future Work

In this part of the thesis, we presented the first approach to take advantage of the world-facing and user-

facing camera in current handheld devices to estimate absolute scale in handheld monocular SLAM.

In combination with leveraging the face of the user as trackable object of known size this brings

multiple benefits over common approaches. It supersedes the need to place an additional marker or

object of known size into the scene and is non-intrusive to the scene to be reconstructed. Our method

enables a variety of AR applications from displaying virtual objects superimposed onto a scene at the

correct size (figure 3.12 (a-c)) to distance measurements (figure 3.12 (d-f)).

Our experiments showed for different scenes, that scale could be estimated with a relative median

error of less than 9 % which outperforms the IMU based approach by Tanskanen et al. [Tans 13] who

report an error of 10-15 %. However direct comparison to alternative approaches is hard to achieve.

In order to estimate scale, the IMU based approach requires stronger movements of the camera over

a longer period of time of about 30 seconds, while the scale estimation in our implementation can

be performed within a second using only a simple translational motion. Our implementation on the

other hand would fail at the moment if the head is not kept static and delivers a higher error when face

dimensions are not calibrated.

Our method is largely independent of the particular employed systems for monocular SLAM and

face tracking as it uses both as black boxes that provide poses. It however depends on the quality of

the poses and hence will immediately benefit from any improvements in both the SLAM system or

the face tracker in terms of precision, accuracy and robustness. Potential for high accuracy has been

demonstrated in section 3.5.1 where we substituted face tracking with marker tracking and achieved

a median relative error <1.4 %.

We showed that using a generic IPD still results in reasonable estimates which are slightly inac-

curate but still precise, i.e. repeatable. This allows to map parts of a larger scene separately at a

consistent scale. For several applications, e.g. playing (augmented) games, approximate information

on the absolute scale of a scene may suffice.
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Our method requires the user’s face to be stationary in the scene during the scale estimation, which

in practice takes about a second. In our evaluations, the user was instructed to not move their face.

In future work, we will look into methods to automatically determine when the face did not move

relative to the scene for a set of keyframes and then automatically perform (re-)estimation of the

absolute scale as a background process of a SLAM system. Continuous scale estimates can not only

be combined into a more robust scale factor but also prevent scale drift – an important problem to

address in monocular SLAM.

Evaluating if the face remained stationary could be done based on a similarity transforma-

tion [Umey 91] between the two camera trajectories from SLAM and face tracking (considering the

extrinsic parameters E). This would deliver the wanted scale factor, and remaining inconsistencies

would indicate a motion of the face. Motions of the face could also be identified by transforming

epipolar constraints from one camera to the other and evaluating if the constraints hold for the mov-

ing features of the respective tracked target. For both these approaches however there remain certain

motions of the face that cannot be identified, which we plan to address in future work.
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4 Conclusion

This thesis proposed to employ the image of the user’s face captured by a
user-facing camera in order to deduce information about the real world – information
that is needed for plausible augmentations consistent with the real world. By relying
on the fact that faces from different people exhibit a lot of similarities in appearance,
we leveraged the face as a known object. We showed in particular how this idea can
be implemented to reconstruct the real world in terms of illumination and absolute
scale, two topics that especially in the domain of Augmented Reality on handheld
devices are not completely solved until now. We believe that our idea to focus on the
image of the user’s face will also inspire future research in this area and thereby will
further advance the realism in consumer Augmented Reality applications.

Seamlessly integrating virtual content into the view of the real world requires information about the

real-world environment. If this information is not yet given, the environment must be reconstructed

on-the-fly. Throughout this thesis we addressed two different challenges existing in the context of

scene reconstruction for Augmented Reality (AR) applications, namely a coherent illumination of

virtual objects that matches the illumination present in the real world as well as the reconstruction of

an unknown environment at absolute scale for augmenting virtual objects at correct size with regard

to the real world.

We already presented specific conclusions and future work for both areas of research at the end

of their respective chapters, namely in section 2.8 (Illumination Estimation) and section 3.7 (Scale

Estimation). In this last part, we place emphasis on what both proposed approaches have in common

and by that highlight the broader idea and potential we see in employing the user-facing camera and

the image of the user’s face for deducing information about the real world.

In order to be successful, AR applications targeting the mass market need to consider which hard-

ware components and processing power is available to the consumers. As smart phones became
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companions of our daily life these devices represent the ideal tool for enabling ubiquitous AR appli-

cations for everybody. Hardware requirements for handheld AR applications thus should be tailored

to the existing devices. Besides low hardware requirements, the used methods need to be simple and

fast to perform, and should not depend on additional tools.

In both our approaches we proposed to employ the face of the user as a known object. The face

of the user which is already part of the scene can conveniently be captured by the user-facing camera

of current mobile devices. We employed the face of the user as a known object, firstly by leveraging

known reflectance properties to estimate the incident illumination, and secondly by leveraging the

known size of the user’s face to estimate the dimensions of the environment. Our presented solutions

hereby were able to overcome limitations of state-of-the-art methods, which either require special

hardware like depth cameras or special known objects like e.g. markers or mirror spheres.

For both our presented approaches we demonstrated that the limited variations over different hu-

mans make it possible to rely on pre-learned knowledge, either in terms of Radiance Transfer Func-

tions or in terms of spatial dimensions. By taking advantage of this additional knowledge we were

able to eliminate the need for acquiring geometry or absolute depth during run-time using special

depth sensors. Instead our approaches run on simple monocular intensity cameras, so that they are

ready for use on most of the commonly available mobile devices.

Utilizing pre-learned knowledge thereby does not only reduce hardware requirements with respect

to sensors, but it also allows to shift expensive calculations, e.g. the computation of Radiance Transfer

Functions, from run-time into an offline process. This allows us to improve the processing time as

well as power consumption, which is especially crucial for mobile AR.

Our approaches also meet the second key requirement for methods targeting nonprofessional users

of handheld AR: ease of use. The light estimation can be performed completely unnoticed to the user,

the scale estimation procedure only requires a short and straight-forward user interaction.

For both the presented topics we first provided the context as well as the related work in this di-

rection. We then derived our particular idea and presented a working implementation thereof. Our

subsequent evaluations of our implementations have proven the effectiveness of our approaches.

Still both the presented methods must be seen as proof-of-concept implementations, where our fo-

cus was on demonstrating the idea and feasibility. Both implementations were realized in a quite

straight-forward manner, and we already pointed out different directions for further improvements in

the respective chapters. Throughout the derivations of the algorithms we put an emphasis on bring-

ing up the various assumptions that we made, so that future work can specifically address resulting

limitations.

We believe that our proposal to employ the user-facing camera and the image of the user’s face for

deducing information about the real world revealed its potential and will give rise for future work in

this domain.
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Abbreviations

6DoF Six Degrees of Freedom

AR Augmented Reality

ARVIDA Angewandte Referenzarchitektur für virtuelle Dienste und Anwendungen

BMBF Bundesministerium für Bildung und Forschung

BRDF Bidirectional Reflectance Distribution Function

DoF Degrees of Freedom

EKF Extended Kalman Filter

FOV Field Of View

GT Ground Truth

HDR High Dynamic Range

IMU Inertial Measurement Unit

IPD Interpupillary Distance

ISMAR International Symposium on Mixed and Augmented Reality

Lat-Long Latitude-Longitude

RANSAC Random Sample Consensus

RGB Red, Green, and Blue; usually refers to color channels of an image

RGB-D Red, Green, and Blue with additional Depth; usually refers to channels of an image

RTF Radiance Transfer Function

SDK Software Development Kit

SfM Structure from Motion

SH Spherical Harmonics

SLAM Simultaneous Localization And Mapping

VO Visual Odometry
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