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1. Vortex matter: A playground for condensed
matter physicists

Superconductivity is one of the most fascinating and vivid research areas in con-
densed matter physics. For one thing, the strong interest in superconducting
material arises since it abruptly loses any electrical resistance below a critical
temperature [1] and is hence of high technological relevance. For instance, super-
conductors enable the non-dissipative transport of energy or the generation of
high persistent currents required to produce strong magnetic fields [2]. In order
to synthesize materials of high transition temperatures and of better technical
applicability, most experimental and theoretical work on this subject has focused
on the underlying mechanisms of superconductivity or on the processes which
hamper lossless current transport. As a result of this research, superconductors
are nowadays used for the generation of high magnetic fields [2], e.g. required for
magnetic resonance imaging, they serve as material for radio-frequency cavities of
high quality factor used in particle accelerators [3], replace conventional power
lines for the inner-city transport of electric currents [4], or enable Maglev trains
to reach velocities above 600 km h−1 [5].
However, owing to its unusual magnetic properties, the superconducting state is
also of fundamental interest: Superconductors show ideal diamagnetic behavior
for weak applied fields, called the Meissner effect [6]. For increasing field strength,
superconductors can reveal fundamentally different behaviors. In type-I materials,
to which most elemental superconductors belong to, superconductivity abruptly
breaks down once the magnetic field energy exceeds the condensation energy and a
first-order transition to the normal conducting state takes place. In contrast, in the
majority of superconductors (denoted as type-II), the sample gradually becomes
less diamagnetic above a first critical field while still preserving superconductivity.
In this way, the superconducting state is stabilized for distinctly higher fields,
which only enables its aforementioned technical applications. Intriguingly, the par-
tial field penetration is realized by the nucleation of magnetic, particle-like vortex
lines (commonly also denoted as flux lines) each carrying exactly one magnetic
flux quantum [7]. This flux quantization reflects the macroscopic coherence and
the quantum mechanical nature of the superconducting phase.
Once nucleated in the sample, the vortices in type-II superconductors are exposed
to a variety of interactions [8]: (i) a repulsive (in few cases attractive) inter-vortex
interaction promoting a vortex arrangement on a regular lattice, (ii) an interac-
tion with the crystal lattice, transferring the crystallographic anisotropy to the

3



4 1. Vortex matter: A playground for condensed matter physicists

vortex configuration, (iii) thermal activation which provokes liquid-like behavior,
(iv) an interaction with randomly distributed pinning centers which gives rise to
amorphous or glassy configurations, and (v) topological restrictions arising from
the sample geometry and its boundaries which induce an inhomogeneous spatial
distribution of the vortices1 [7]. This rich variety of interactions gives rise to
surprisingly complex phase diagrams within the vortex state, including e.g. liquid,
solid, glassy and amorphous phases. In order to describe this multitude, the term
vortex matter has been coined that emphasizes the strong analogy to condensed
matter formed by atoms [8].
However, unlike ‘common’ matter, whose density is primarily influenced by temper-
ature and pressure, the density of vortex matter is affected by the applied field and
the temperature, which can both be readily tuned. For this reason, vortex matter
is a simple and ideally suited model system to study questions of rather general
importance. For instance, vortex matter is frequently employed to study the
characteristics and dynamics of melting transitions arising in its phase diagram [9],
since the two-dimensional flux line structure eases an experimental observation and
theoretical modeling of such processes. Vortex matter is furthermore predestined
to investigate effects of random disorder on a regular crystalline arrangement,
since disorder is easily generated by introducing a small amount of impurities
to the material. In particular, the Bragg glass state [10], characterized by an
algebraic decay of the translational correlation function of the lattice, has been
firstly identified in the vortex state of (K,Ba)BiO3 [11]. This discovery disproved
long-standing speculations about the instability of this phase.

Domain structures in superconductors

Domain structures in the superconducting vortex lattice are a further example
emphasizing the generic aspect of vortex matter [12]. Such domain structures
arise if the inter-vortex interaction exhibits an attractive component, leading
to a bundling of vortices which are surrounded by the Meissner phase [13]. A
vortex attraction occurs in particular in the intermediate mixed state (IMS)
of superconductors with a low Ginzburg-Landau parameter like vanadium [14]
and niobium [15]. On these materials, the vortex attraction has been studied
extensively in the 1970s [16]. Since a similar vortex attraction has been found in
novel multi-band superconductors2, the interest in superconducting domains has
recently resurged.
A facet of vortex lattice domains, that has however not been addressed so far, is
their resulting morphology which shows a variety of different patterns, including

1 While vortex-vortex and crystallographic interactions act only individually on the vortices,
thermal activation, pinning and geometrical barriers act collectively on the vortex ensemble
on a larger length scale.

2 The most prominent representative might be MgB2. [17]
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laminar, dendritic and bubble phases. Domain structures of strong similarity are
frequently observed in various other physical systems on different time as well as
length scales [18]. Some representatives of these systems are presented in Fig. 1.1
which exemplarily shows bubble (top row) and laminar (bottom row) patterns
arising in Langmuir films, in confined ferrofluids, in solvent-cast films of block
copolymers and in ferromagnetic films. The figure also introduces their respective
equivalent found in the IMS of Nb. The superconducting domains are exceptional,
because their domain patterns can be tuned and even interconverted by the applied
magnetic field, which underlines the generic model character of vortex matter [19].
The similarity of the presented domain morphologies furthermore suggests that
findings on the domain nucleation and on the corresponding pattern formation in
superconductors could be generalized to other systems revealing phase separation.
Nonetheless, a comprehensive theoretical understanding of the domain nucleation
process in superconductors and how it is influenced by the vortex interactions
listed above has not been given so far. Especially the strong influence of the sample
geometry has been insufficiently examined due to a lack of adequate analytical
methods.

Figure 1.1.: Generic domain patterns. Comparison of different physical systems
revealing phase separation which leads to similar tubular (top row) and laminar (bottom
row) domain morphologies. Left and middle column taken from [18]. Reprinted with
permission from AAAS. Right column taken from [13] with permission of Springer.
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Figure 1.2.: Experimental methods probing vortex matter. Decoration (taken from
[20] with permission from Elsevier), Lorentz microscopy (reprinted by permission from
Macmillan Publishers Ltd: Nature [21], ©(1992)), scanning tunneling microscopy
(Reprinted with permission from [22], ©(2014) by the American Physical Society),
electron holography (Reprinted with permission from [23], ©(1994) by the American
Physical Society), scanning SQUID microscopy [24], scanning Hall probe microscopy [25],
magneto-optical imaging (Reprinted from [26] with the permission of AIP Publishing),
magnetic force microscopy (Reprinted figure with permission from [27], ©(2012) by
the American Physical Society), small-angle neutron scattering (Reprinted figure with
permission from [28], ©(2012) by the American Physical Society)).



7

Experimental approaches probing vortex matter

The interest in superconducting vortex matter is also reflected in the high number
of experimental methods available to examine its structure. An overview of these
techniques is given in Fig. 1.2. Although this list is not intended to be exhaustive,
most experimental results on the vortex structure are based on these approaches.
The available methods can be grouped in (i) techniques probing the magnetic
flux on the sample surface generated by the superconducting vortex (decoration,
scanning SQUID, Hall probe or magnetic force microscopy, and magneto-optical
imaging), (ii) approaches probing the superconducting order parameter (scanning
tunneling microscopy), and (iii) techniques which are sensitive to the magnetic field
distribution within thin samples (Lorentz microscopy and electron holography).
While, by means of these methods, vortex structures can be imaged with an ex-
ceptional spatial as well as time resolution, none of the aforementioned techniques
is capable of probing the vortex lattice within the bulk of the material. However,
parasitic effects as branching [29], surface pinning or geometrical constraints [7]
usually hamper an unambiguous determination of bulk behavior by means of
surface observations. The vortex configuration detected at the sample surface does
hence not necessarily reflect the situation within the material. All of the discussed
approaches imply furthermore restrictions on the sample shape, since mostly flat
samples (sometimes plane on the atomic scale) are required to distinctly focus on
the specimens’ surface. Thus, bulk behavior and effects arising from the sample
geometry cannot be sufficiently studied by the available methods.
In contrast, neutrons can easily penetrate even thick bulk samples and due to their
magnetic moment probe the magnetic field modulation within the vortex state
independently of the underlying sample shape. The crystallographic structure
of the vortex lattice, whose inter-vortex distance typically lies in the range of a
few 100 nm, is usually probed by means of small-angle neutron scattering (SANS)
[30] (see Fig. 1.2 on the bottom right). However, conventional SANS is inca-
pable of probing superconducting domain structures arising on the micron length
scale. Methods like ultra-small-angle [31] or very-small-angle neutron scattering
[32](USANS & VSANS) extend the accessible size-range to the micronscale, but
have not been used for the investigation of vortex domains so far. Neither of these
integral scattering methods probing the reciprocal space of the vortex lattice can
provide a spatial resolution and hence determine the real-space distribution of
vortices within the sample.

Outline of this thesis

In this thesis, it will be shown how a combination of the radiographic techniques
neutron grating interferometry (nGI) and diffractive imaging with the scattering
methods USANS, VSANS and SANS can provide novel insight into the bulk behav-
ior of vortex matter covering a length scale of 0.01 to 10 µm. By using the unique
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contrast mechanism of nGI, which maps reciprocal space scattering signatures in
real space, and the high angular resolution provided by USANS, the demonstrated
approach allows to cover the formerly existing gap between the minimal spatial
resolution obtained with neutron radiography and the maximal structure size
probed by SANS. A listing of the used techniques and their probed size ranges
is given in Fig. 1.3. Since the typical IMS domain size of a few micrometers lies
within this resolution gap, the presented approach enables a first determination of
the spatial distribution and morphology of vortex domains arising in the bulk of
type-II superconductors. Moreover, this approach allows to (i) image the domain
distribution within a sample during the nucleation of the IMS, (ii) study the
morphology of the resulting domain structure and how it is affected by pinning
and geometrical constraints, (iii) map the process of field penetration into the bulk
of superconducting material and finally (iv) obtain detailed information about the
vortex distribution and local distortion within a sample. It has to be emphasized
that the demonstrated experimental approach is not restricted to superconductors,
but can be applied to the variety of systems revealing a phase separation on the
micrometer scale [18, 33].

Figure 1.3.: Vortex matter beyond SANS. Comparison of neutron methods used in
this thesis for the investigation of vortex matter. Marked are the length scales which
can be probed by the respective method. Note that only neutron radiography can
directly resolve the probed structures. SkL: skyrmion lattice, VL: vortex lattice, IMS:
intermediate mixed state, IS: intermediate state.

The thesis is organized as follows: In Chap. 2, the theoretical fundamentals of
vortex matter are reviewed. It will be focused on the domain structures arising in
superconductors and on their generic properties. Furthermore, a brief summary
is given, highlighting the similarities of superconducting vortices with skyrmion
lines that arise in chiral magnets.
The theoretical basics of neutron scattering at large structures, which preferentially
scatter neutrons in forward direction, are derived in Chap. 3. Considerations of
this chapter result in relations allowing for the combined interpretation of SANS,
USANS and nGI within a common theoretical framework.
Chap. 4 is concerned with the principle and capabilities of neutron grating in-
terferometry (nGI). The information contained in the transmission, differential
phase contrast, and dark-field image, obtained by means of nGI, will be derived
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separately. In particular, the chapter focuses on the dark-field contrast modality
and explains (i) how the contrast is linked to the samples’ differential scattering
cross-section and (ii) how quantitative information about the samples’ microstruc-
ture, like texture directions and structure sizes, can be obtained by directional
and quantitative dark-field imaging. The chapter closes with a discussion of
complementary ultra-small-angle neutron scattering using a Bonse-Hart camera.
The details and characteristics of the experimental setups used for this thesis are
given thereafter in Chap. 5. Again, particular attention is paid to neutron grating
interferometry, since its implementation at the ANTARES beamline of the Heinz
Maier-Leibnitz Zentrum (MLZ) was one of the main objectives of this work.
The last chapter of this thesis presents the experimental results demonstrating
the capabilities of the combination of imaging and scattering methods. This
chapter is divided in five self-contained sections highlighting different aspects of
the presented study. In Sec. 6.1, the applicability of nGI to study superconducting
domain structures is verified. For this purpose, the domain nucleation of the
intermediate state (IS) in type-I superconducting lead is recorded. This example is
used since the IS morphology is closely related to the slightly smaller IMS domain
structure (compare Fig. 1.3), but has been studied more extensively. Hence, the
IS is better suited to verify results obtained via nGI by literature. Thereafter, it
will be focused on the IMS, particularly on (i) its nucleation in Nb samples of
ultra-high purity but non-ellipsoidal cross-section, which enhances the influence of
geometric effects on its domain distribution (Sec. 6.2), and on (ii) its formation
and morphology variation in the presence of strong pinning (Sec. 6.3).
The usage of the IMS domain structure as contrast agent in order to image the
field penetration into the bulk of a type-II superconductor showing significant
pinning is demonstrated in Sec. 6.4. The obtained data are thereafter discussed
in the framework of the critical state theory.
Finally, it will be demonstrated in Sec. 6.5 that diffractive neutron imaging based
on a micro-channel plate (MCP) collimator could have a high impact for future
investigation of vortex matter, since it allows a high resolution mapping of the
spatial distribution and direction of vortices within a bulk material. This potential
is demonstrated on the skyrmion lattice which is topologically similar to the vortex
lattice in superconductors but possesses a slightly smaller spacing leading to an
accordingly higher Bragg angle.





2. Theoretical principles of vortex matter in
superconductors

In this chapter, the theoretical principles of vortex matter are reviewed to allow
a comprehensive interpretation of the data presented in Chap. 6. At first, the
general magnetic properties of superconducting materials are discussed within the
framework of the Ginzburg-Landau theory (Sec. 2.1). This treatment directly
leads to the subdivision of superconductors into type-I and type-II materials, whose
differences are subsequently explained. Afterwards, in Sec. 2.2, the properties of
the magnetic vortex lattice arising in type-II superconductors are considered, and
its interplay with pinning forces and demagnetization effects is summarized. Sec.
2.3 treats the reasons for a domain nucleation in superconductors, followed by a
review of its theoretical fundamentals. A discussion about the similarities between
a vortex lattice of a type-II superconductor and the skyrmion lattice that occurs
in some chiral magnetic materials, concludes this chapter.

2.1. Magnetic properties of superconductors
Superconducting materials are characterized by two phenomena which arise below
a material specific critical temperature TC: (i) the complete loss of the electrical
resistance [1] and (ii) an expulsion of weak magnetic fields irrespective of the
magnetic history of the sample, known as Meissner effect [6]. While the microscopic
origin of superconductivity and its electrical properties can in most cases be
explained in the context of the BCS theory [34], its macroscopic magnetic properties
are interpreted by means of the Ginzburg-Landau-theory (GL-theory) [35]1, which
will be discussed below. However, only a brief summary of the results of the theory
is given. A more detailed derivation can be found e.g. in Ref. [37–39].
In the GL-theory, the superconducting state is described by a complex order
parameter ΨGL(r) which can vary spatially. The square of the order parameter
describes the density of superconducting electrons. In order to examine the spatial
behavior of ΨGL(r) within the GL-model, the free energy of the superconducting
state is expressed as a series expansion of the superconducting order parameter.
The ground state of the system is found by minimizing this free energy, which

1 It has been shown that the GL-theory directly follows from the BCS theory at T ≈ TC [36].

11



12 2. Theoretical principles of vortex matter in superconductors

leads to the GL-differential equations [40]:

0 = αΨGL(r) + β |ΨGL(r)|2 ΨGL(r) + 1
2m∗ (ih̄∇+ 2eA)2 ΨGL(r) (2.1)

J = − ieh̄
m∗

[Ψ∗GL(r)∇ΨGL(r)−ΨGL(r)∇Ψ∗GL(r)]− 4e2

m∗
A |ΨGL(r)|2 . (2.2)

Here, α and β are approximated by introducing the positive constants a and b:

α(T ) ≈ a(T − TC) (2.3)
β ≈ b , (2.4)

while J is the superconducting current density, m∗ the effective mass of the Cooper
pairs, and A is the magnetic vector potential. The introduced temperature de-
pendence of α(T ) guarantees that the superconducting order parameter vanishes
above TC. The first GL-equation has the form of a Schroedinger equation with a
nonlinear term which represents a repulsive potential of ΨGL(r) acting on itself
[37]. Hence, the order parameter generally favors a homogeneous distribution in
space.
For most applications, the set of GL-differential equations has to be solved nu-
merically. However, simple considerations reveal that the GL-equations generally
define two length scales which are characteristic for each superconductor: (i) the
length scale on which a magnetic field is screened from the interior of the super-
conductor, denoted as magnetic penetration depth λL, and (ii) the length scale
on which deviations in the order parameter are compensated, denominated as
Ginzburg-Landau coherence length ξGL.

2.1.1. The magnetic penetration depth
Assuming that only a weak magnetic field is applied to the superconducting sample,
the order parameter in Eq. 2.2 can be expressed by its homogeneous equilibrium
value ψ2

0 = −α
β

= 1
2ns. Here, ns is the density of superconducting electrons. By

applying the curl operation on Eq. 2.2, it can be transformed to the London
equation [41]:

µ0∇× J = −∇2B = −µ02e2ns

m∗
B = − 1

λ2
L
B . (2.5)

In the above equation, which is a partial differential equation for the magnetic
induction, µ0J was replaced using Ampere’s Law, and the magnetic constant µ0
was introduced. Near the edge of a superconductor, the solution of Eq. 2.5 is an
exponential decay of B from the surface to the interior of the sample, which is
illustrated in Fig. 2.1 (a). The field degradation takes place on the characteristic
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length scale λL:

λL =
√

m∗

2e2nsµ0
∝ (TC − T ) 1

2 . (2.6)

The origin of the field suppression are supercurrents J flowing near the surface of
the sample and generating an opposite field within the sample (Fig. 2.1 (b)).

Figure 2.1.: The magnetic penetration depth: (a) Magnetic field profile at the edge of
a thick superconductor. The magnetic field is exponentially extenuated with screening
length λL. (b) Illustration of the Meissner effect in a superconducting cylinder in an axial
magnetic field. The field is screened from the inside by circulating Meissner currents
which flow in the plane perpendicular to the field.

2.1.2. The Ginzburg-Landau coherence length
In absence of a magnetic field, Eq. 2.1 yields in one dimension:

− h̄2

2m∗
d2ΨGL

dx2 + αΨGL + β |ΨGL|2 ΨGL = 0 . (2.7)

If the order parameter is assumed to be real and is normalized to its equilibrium
value ψ2

0, the equation above reduces to [37]:

ξ2
GL(T )d

2ψ

dx2 + ψ − ψ3 = 0 , (2.8)

in which the Ginzburg-Landau coherence length ξGL is given by:

ξGL = h̄√
2m∗ |α|

∝ (TC − T )− 1
2 . (2.9)

Although the solution of Eq. 2.8 cannot be found analytically, the meaning of ξGL
can easily be deduced, considering the extremal cases of ψ ≈ 0 or ψ = 1− f ≈ 1.
In both limits, Eq. 2.8 reduces to a linear ordinary differential equation, whose
solution is an exponential decay. Hence, ξGL defines the length scale on which the
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order parameter can vary in space.

2.1.3. The importance of the Ginzburg-Landau parameter κ: type-I,
type-II/1 and type-II/2 superconductors

In the previous section, it has been discussed that the macroscopic behavior of a
superconductor is characterized by the two length scales λL and ξGL. Although both
quantities are temperature dependent, their ratio is in first-order approximation
temperature independent near TC. Hence, superconductors are routinely classified
in terms of a material specific Ginzburg-Landau parameter κ:

κ = λL(T )
ξGL(T ) ≈ const. (2.10)

The parameter κ can be interpreted by considering an interface which separates
a superconducting, field free domain from a normal conducting region with the
critical field BC. The interface should have an area ANS. The field can penetrate
the superconducting region on a length λL. Hence, a volume ANSλL within the
domain wall is penetrated by the magnetic field, saving a diamagnetic energy of
[42]:

E1 = −λLANS

2µ0
B2

C . (2.11)

At the same time, the superconducting state is suppressed within a volume of
approx. ANSξGL, leading to a lack of condensation energy of [42]:

E2 = ξGLANS

2µ0
B2

C . (2.12)

Thus, the surface tension of this interface γNS is given by:

γNS = ∆E
ANS

= B2
C

2µ0
(ξGL − λL) = B2

C
2µ0

δ , (2.13)

in which δ is defined as the wall-energy parameter [38].
Obviously, the sign of the surface tension can change, depending on the ratio κ.
However, the above considerations are only approximate solutions, as the magnetic
penetration volume and the volume of suppressed superconductivity was only
roughly estimated by means of λL and ξGL. A more advanced numerical evaluation
of γNS including the GL-equations showed that for κ ≤ 1√

2 , the surface tension
is positive and the system will avoid the formation of such interfaces. In this
case, the superconductor is denoted as type-I [35]. In contrast, for κ ≥ 1√

2 , the
surface tension is negative and the superconductor is unstable to the generation
of multiple interfaces. These superconductors are denoted as type-II.
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Figure 2.2.: Illustration of an interface between a normal conducting region (NS) and
a superconducting domain (SC) for (a): small (type-I), (b): for intermediate (type-II/1),
and (c) for large κ (type-II/2). Drawn is the magnetic field profile (black) as well as
the superconducting order parameter (blue) near an NS-SC interface.

The next section discusses that type-I and type-II superconductors considerably
differ in their magnetic properties. However, even within the type-II family, distinct
variations exist in the magnetic behavior of superconductors having λL ≈ ξGL.
Hence, type-II material is additionally subclassified according to [7]:

κ

< 1 type-II/1
� 1 type-II/2

(2.14)

A summarizing illustration of the differences between type-I, type-II/1 and type-
II/2 superconductivity near a normal conducting to superconducting boundary is
shown in Fig. 2.2.

2.1.4. Magnetic properties of type-I, type-II/1 and type-II/2
superconductors

In the following section, the magnetic behavior of the different types of supercon-
ductors is addressed, considering the example of a long superconducting cylinder
in a longitudinal magnetic field. In this case, demagnetization effects can be
neglected. A type-I superconductor will completely expel the field from its interior
until the critical value BC (T ) is reached. The situation corresponds to a diamag-
netic susceptibility of dM

dB
= χ = −1 and the superconducting phase is denoted as

Meissner phase (MS). Above BC, superconductivity breaks down via a first-order
phase transition and the sample becomes normal conducting. The corresponding
magnetic phase diagram is shown in Fig. 2.3 (a) [7].
The situation changes when the superconductor is of type-II. For low fields, the
sample is still in the MS. However, it has been shown in Sec. 2.1.3 that the
superconducting state becomes unstable for the generation of normal conducting /
superconducting interfaces above the lower critical field BC1. The consequence
of this instability is the transition to the Shubnikov phase (SH) [43]. It is char-
acterized by the emergence of magnetic vortices as has firstly been proposed by
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Figure 2.3.: Schematic magnetic phase diagrams for type-I, type-II/1 and type-II/2
superconductors which are not influenced by demagnetization effects. In type-I super-
conductors, only a Meissner state (MS) exists up to the field BC, while type-II material
additionally exhibit the Shubnikov phase (SH) between BC1 and BC2.

.

Abrikosov [44]. Each vortex line carries a magnetic flux quantum Φ0 = h̄
2e and,

hence, the magnetization −M of the sample is decreased. However, the sample
remains superconducting. An example decoration image of the typically formed
vortex lattice is shown in Fig. 1.2. The structure of a vortex line will be examined
in Sec. 2.2.1.
For superconductors with high κ (type-II/2), the transition at

BC1 ≈
Φ0

4πλ2
L

(ln κ+ 0.5) (2.15)

is of second order and the negative magnetization sharply drops down as a large
number of vortices can instantaneously enter the sample above the first critical
field [37]. When the distance of the vortices reaches the coherence length ξGL at

BC2 = Φ0

2πξ2
GL

, (2.16)

the superconducting state is no longer energetically favorable and the sample
becomes normal conducting via a second order phase transition (see Fig. 2.3 (c)).
The situation is slightly different in type-II/1 materials [7]. It has been shown
numerically that the theoretical magnetization curve of such superconductors has
an S-shape near BC1 as indicated in Fig. 2.3 (b) [45]. This peculiar shape is
not observed in an experiment. However, it links to an instability that is caused
by an unusual attractive interaction between the vortices. The origin of the
attractive vortex-vortex interaction is discussed in Sec. 2.2.2. The behavior of the
experimental magnetization is however found by a Maxwell-construction as shown
in the phase diagram. Consequentially, as soon as BC1 is reached, many vortices
penetrate the sample leading to a first-order drop in the magnetization of B0.
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2.2. Properties of vortex matter
In this section, the structure of a vortex line is reviewed (Sec. 2.2.1) and the
interactions acting on the vortices are briefly considered. This discussion includes
vortex-vortex interactions (Sec. 2.2.2), pinning forces (Sec. 2.2.3) as well as surface
and geometrical barriers (Sec. 2.2.4), whose interplay is responsible for a multitude
of vortex states found in type-II superconductors.

2.2.1. The structure of an isolated vortex line
In Sec. 2.1.3, it has been discussed that a type-II superconductor gains energy by
emerging multiple NS-SC interfaces. The basic unit in which the system can split
above BC1 is a single magnetic vortex carrying a flux of Φ0. A smaller structure
cannot be screened by the supercurrent while fulfilling its quantization condition.
The structure of such a single vortex line is illustrated in Fig. 2.4 (a). Its core
consists of a normal conducting region, in which the magnetic flux passes the
sample, surrounded by screening currents. In case of κ� 1, the order parameter
vanishes towards the center of the core as [7]:

|ΨGL (r)|2 ≈
(

1 + 2ξ
2
GL

r2

)−1

, (2.17)

whereas the magnetic field outside the normal core of radius ξGL is given by [7]
[37]:

B(r) ≈ Φ0

2πλ2
L
K0

(
r

λL

)
. (2.18)

K0 is the modified Bessel function of zeroth order. The characteristics of ΨGL and
B(r) near a vortex core are drawn in Fig. 2.4 (b) for the case κ = 10.
The structure of the vortex cores slightly differs in type-II/1 superconductors. The
reason is that the finite normal conducting core of radius ξGL can no longer be
neglected as it is done in the derivation of Eqs. 2.17 and 2.18 for high kappa [7].
Refined numerical simulations of a vortex structure in type-II/1 material can be
found in Refs. [45] and [46]. For our study, the differences are not relevant.

2.2.2. The interaction of vortex lines
The interaction force per unit length of two vortices A and B within a supercon-
ductor is given by [47]:

FA
L = JB ×Φ0 . (2.19)
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Figure 2.4.: The structure of a magnetic vortex. (a) Illustration of a magnetic vortex
in a superconductor. The vortex carries exactly one flux quantum Φ0 and is surrounded
by supercurrents J which screen the remaining superconductor from the magnetic flux.
(b) Calculated structure of a vortex with κ = 10 according to Eqs. 2.17 and 2.18. The
order parameter is zero at the vortex center, while the magnetic field is approximately
constant on a radius ξGL. Away from the center, ψ increases on the length scale ξGL,
whereas B decreases on a distance λL.

This means, the interaction arises due to the Lorentz force between the magnetic
flux within vortex A and the screening currents of vortex B. The situation is
illustrated in Fig. 2.5 (a). As seen in the sketch of the triangle of forces, this
interaction is purely repulsive for parallel vortices. Hence, the flux lines normally
align in a configuration where the inter-vortex-distance is maximal which leads to
the well known solution of a hexagonal vortex lattice [7, 44].

Figure 2.5.: Illustration of vortex interaction caused by the Lorentz force: (a) The
repulsive interaction between two vortices arises, as the Lorentz force pushes one vortex
in the direction perpendicular to its magnetic flux Φ0 and to the screening current of the
second vortex. (b) If a vortex has entered the sample from the edge, it is instantaneously
driven to its center by the Lorentz forces acting between the magnetic flux and the
Meissner screening current of the sample.

However, these considerations are only valid under the assumption that only
the magnetic fields of the vortices overlap, but not their cores. Although this is
certainly true in type-II/2 superconductors, in low κ materials (type-II/1), this
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approximation is no longer valid. In contrast, the order parameter alters on the
same length scale as the magnetic induction and the core regions of neighboring
vortices overlap. For B � BC2, the generalized interaction potential of two straight
flux lines separated by r has been derived as [48]:

V (r) = Φ2
0

2πλ2
Lµ0

[
K0

(
r

λL

)
−K0

(
r

ξGL

)]
. (2.20)

Therefore, by including the contributions of the vortex core, one achieves an
additional attractive part in the inter-vortex interaction. Its physical explanation
is that if the order parameter is suppressed on a length scale comparable to λL,
vortices will gain energy by overlapping their core regions since then, the overall
depression of ΨGL takes place in a smaller volume and condensation energy is
gained.
The attractive interaction discussed above explains the jump of the magnetization
found in type-II/1 superconductors at BC1 (Fig. 2.3 (b)) [49]: The formation
of two separated vortex lines requires more energy than the formation of a pair.
Thus, as soon as the first vortices enter the material, energy is released if the
vortices bundle and new ones can be formed. Consequentially, one detects a higher
BC1 upon increasing field than during field reduction [50] in type-II/1 materials,
because the final flux expulsion at BC1 requires to break the vortex-vortex bond
while flux penetration does not.
At last, the vortices not only interact with each other, but with all other external
and internal currents in the sample. Hence, vortices formed on the sample surface
are driven to the interior of the object by the Meissner currents which screen
the sample. This process is illustrated in Fig. 2.5 (b). Additionally, an applied
current will also accelerate the vortex lines perpendicular to the current direction
in accordance to Eq. 2.19. This flux motion dissipates energy [51] and, hence, has
to be prevented by vortex pinning in order to maintain the perfect conductance of
the material.

2.2.3. The pinning of vortices
Pinning arises, if the free motion of a vortex line is hampered and a specific
position within the sample is energetically more favorable than the others. If,
for instance, one of the material parameters as e.g. BC, TC, λL or ξGL differ
from its surrounding, this will lead to a gradient in the vortex energy landscape
which corresponds to a pinning force density FP. Possible pinning centers are
impurities within the material [52], indentations on the sample surface [53], and
crystallographic defects as grain boundaries or dislocations [54]. However, pinning
can be softened at high temperature, as the thermal energy allows to overcome
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the pinning potential [55]. Furthermore, any current density JC higher than:

JC = FP

B
(2.21)

will unpin the vortex, since the Lorentz force (Eq. 2.19) exceeds the pinning force
at this value.
Flux pinning is one of the mostly studied phenomena in superconductors, since
it has dramatic consequences on its magnetic as well as electric properties and
is thus of high technical relevance [2]. Prominent is the emergence of a strong
hysteresis in an M(B) measurement due to an inhomogeneous distribution of
magnetic flux within the sample. In the following section, this will be explained
within the framework of the critical state theory [40, 56].

The critical state

By introducing J = ∇×H in Eq. 2.19, the Lorentz force density on a vortex
line can be expressed in its vectorial form:

F = (∇×H)×B . (2.22)

Without loss of generality, the case that the field is applied along the x-direction
and the current is flowing along y can be considered. Under these assumptions,
one obtains [47]:

F = B

µ0

∂B

∂x
. (2.23)

Hence, the Lorentz force acting on the vortex lattice depends on the gradient of
B. The critical state theory assumes that this gradient adjusts everywhere in the
sample, so that the current density is either JC or zero. This approach is justified,
because if the gradient could increase further, the Lorentz force acting on the
vortices would exceed the pinning forces and the vortex lattice would be shifted
to reduce this gradient. A simple but realistic qualitative discussion on hysteretic
effects caused by pinning is possible within the Bean critical state model [56]. This
theory supposes that the critical current density is constant all over the sample
and independent of B and T .
In the following, the distribution of magnetic flux within a superconductor revealing
strong pinning is compared to a pinning free sample. Moreover, within the
framework of the critical state theory, it will be discussed how the flux distribution
causes the magnetic hysteresis observed in hard superconductors. A typical
hysteresis loop as expected in a type-II superconductor revealing significant pinning
is illustrated in Fig. 2.6 (a). Corresponding experimental example data can be
found e.g. in [57] or in Sec. 6.3. In the presence of strong pinning (blue curve), the
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Figure 2.6.: Magnetic hysteresis of a slab in the Bean model. The field is applied
parallel to the largest surfaces of the sample. (a) Magnetic hysteresis loop of a type-II
superconductor for strong (blue) and negligible (red) pinning. For strong pinning, the
magnetization is irreversible with a paramagnetic characteristic in the decreasing branch
of the hysteresis loop. (b) Cross sections of the magnetic field profile and the current
profile of the sample for the positions marked in (a). For explanations see below.

penetration of flux at BC1 is delayed compared to the case of a pinning free sample
(red curve), and the hysteresis loop is rounded. Additionally, in the decreasing
branch of the hysteresis loop, a paramagnetic signal arises. The magnetization is
thus strongly irreversible and remanent.
The hysteresis can be explained within the Bean model by an examination of
the flux distribution at different fields shown in Fig. 2.6 (b). In this illustration,
profiles of the magnetic induction (top row) and of the magnetic current density
(bottom row) within the sample are exemplarily shown for the points marked
in the hysteresis loop (a). To exclude demagnetization effects in this discussion,
a slab shaped sample of thickness 2ds in x-direction is assumed and the field is
applied parallel to the largest surface.
At point 1, the pinning free sample would already be in the Shubnikov phase. Hence,
the induction inside this sample is finite due to the homogeneously distributed
vortex lattice. In contrast, the macroscopic screening currents are zero, except in a
small layer on the samples surface, which is not visible on the scale (� λL) of the
figure. These screening currents are also present in the sample revealing pinning.
However, they are not high enough to unpin vortices formed at the surface. Hence,
in the presence of pinning, the induction and the flux within the sample are zero.
At point 2, the induction increased in the case of a pinning free sample, as the
vortex lattice parameter is reduced and more flux enters. Still, macroscopic
currents flow near the surface only. In the sample revealing pinning, the field had
penetrated as well, but a constant field gradient has been formed according to the
Bean model. The associated current density amounts the critical value all over
the sample. The drawn situation corresponds to the field BP at which the flux
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front firstly reached the center of the sample. This situation is denominated as
the ‘Bean critical state’ [37].
If the field is increased further above BC2, the induction within the sample
corresponds to Ba in both cases. A subsequent decrease of the fields will, however,
result in the profiles shown for point 3. In the case of a pinning free sample, the
induction is just reversibly reduced below Ba by the onset of diamagnetism. In
contrast, in the center of the sample that reveals strong pinning, the induction
remains approximately BC2, because vortices can only be removed on the distance
where the gradient between Ba and BC2 corresponds to the critical value. As in a
paramagnet, the induction inside the sample is strongly enhanced compared to
the applied one.
The assumption of the Bean model that JC does not depend on the field and
the position within the sample, is only a rough approximation. Different models
have thus been developed to treat a more realistic JC (B,T,x)1. However, the
qualitative aspects about the field penetration process in the presence of pinning
corresponds well to the actual situation.

Several remarks on the collective nature of pinning

At the end of this section, it has to be remarked that the critical current (Eq.
2.21) is not simply given by the summation of all individual pinning forces acting
on each vortex of the vortex lattice. If the lattice would be considered as rigid,
randomly distributed pinning forces acting on it would indeed add up to zero [37].
Nevertheless, as the vortex lattice is an elastic object, it can locally be bent to
align in a configuration which reduces the total energy. However, this involves an
increase of elastic energy of the lattice [7]. The final configuration of the vortex
lattice is hence given by the minimization of both energy contributions. The
influence of different pinning centers onto the vortices of the superconductor is
therefore a collective phenomenon [58]. Consequentially, the total pinning potential
depends also on the vortex-vortex interactions within the vortex lattice.

2.2.4. Surface and geometrical barriers
In Sec. 2.2.3, hysteretic behavior caused by pinning has been discussed. However,
even in pinning free samples, magnetic hystereses can be observed as e.g. reported
in Ref. [59]. Such irreversibilities occur, if the flux penetration into the sample
is hampered by a surface or edge barrier while flux expulsion is not. Brandt
[7] identified at least seven different mechanisms causing such a barrier, albeit
some of which additionally require the sample to reveal significant pinning [60–62].
Hereafter, the focus will lie on the geometrical barrier introduced by Zeldov [63]

1 A comprehensive listing of various other models is given in Ref. [40].
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and Indenbom [64], as its contribution is pronounced for the sample geometries
investigated. In contrast, surface barriers as e.g. the Bean-Livingston-Barrier [65]
require a surface smoothness of the order of the penetration depth, which is not
achieved for the samples used in this thesis.
The origin of the surface barrier is illustrated in Fig. 2.7 (a), where a supercon-
ducting sample with rectangular cross-section in a weak applied magnetic field
is shown. Magnetic flux is still expelled from the inside of the object, but the
screening currents partially enhance the field on its surface. The maximum of this
enhancement is found at the corners of the rectangular sample. This is why the
first penetration of a vortex line will take place at these positions, as indicated
in Fig. 2.7 (a). If the field is increased further, the penetrating vortex line will
be bound to the surface as long as it has not completely penetrated the sample.
This peculiar process of flux entrance goes along with an elongation of the flux
line within the sample. As the core of the vortex is normal conducting, this
stretched penetration requires more condensation energy than just the line energy
of one straight flux line of length d. Hence, the first flux penetration requires a
higher energy and is therefore delayed as in the case of pinning. Once a flux line
has entirely entered the sample, it is instantaneously pushed to its center by the
Lorentz forces (Fig. 2.7 (b)). A field free region between the center and the edge
develops [64].
The described geometrical barrier does not exist in decreasing fields, when flux
is repulsed from the interior of the sample. Hence, also the magnetic induction
and the magnetization of the sample will dramatically differ for increasing and
decreasing applied fields. As this magnetic hysteresis is not caused by pinning,
the term topological hysteresis has been introduced [66]. It can be unambiguously
distinguished from a hysteresis caused by pinning, as it must vanish at zero field.
The situation slightly differs in ellipsoidal samples. It has been shown that no
geometrical barrier occurs in this case. As sketched in Fig. 2.7 (c), the flux
lines penetrate the sample tangentially and no line elongation arises. However, in
contrast to rectangular samples, these vortex lines are not driven to the center of
the sample, but distribute homogeneously. The reason is that the Lorentz forces
acting on the vortices are compensated by the increase in line energy, which is
required to push the vortex into thicker regions of the sample [67].

Simulations of field penetration

The geometrical and pinning contributions driving the flux distribution in a
superconductor, were discussed separately in the previous sections to give an
overview of the various mechanisms determining the final magnetic state. An
exact treatment of the interplay of these processes requires numerical simulations
going beyond the scope of this thesis. Nonetheless, the discussed principles and
main features caused by pinning and sample geometry, are all well confirmed by
first principle calculations.



24 2. Theoretical principles of vortex matter in superconductors

Figure 2.7.: Origin of the topological hysteresis. (a) and (b) show the process of flux
penetration into a superconductor of rectangular cross-section. The field enhancement
due to the samples demagnetization field is highest at the corners of the slab, which
therefore corresponds to the positions of first flux penetration. As the vortex line has
to be elongated to completely penetrate the sample, the critical field BC1 is enhanced.
As soon as the vortex line has overcome this barrier, it is instantaneously driven to the
center of the sample by the screening currents J (b). The surface barrier does not exist
for field exit. In samples with an ellipsoidal cross-section (c), no surface barrier exists,
as the field can tangentially penetrate the sample and no initial elongation is required.

Fig. 2.8 presents results of continuum electrodynamics computations by Brandt
(Ref. [68, 69]) which show the field distribution in a superconductor. In (a), the
magnetic field lines during field penetration (top left and bottom) as well as during
field decrease (top right) are shown for a clean, strip shaped sample in the absence
of pinning. These simulations confirm the strong bending of the flux lines near the
corners of the sample and the connected geometrical barrier. Furthermore, they
clearly reveal the flux enhancement in the center of the sample, which provokes
a flux free region between the center and the edge. In contrast, the situation
for a sample revealing strong pinning is visualized in (b) using the example of
a thick disc in different applied fields. Shown are the field lines1 for the initial
penetration of a magnetic field into the sample. Clearly, in contrast to the pinning
free case, the free motion of flux lines to the center of the disc is hampered by
pinning. Furthermore, a flux gradient develops during the field penetration in
accordance to the critical state theory. However, as the applied model directly
takes the sample shape into account, the flux lines and the flux penetration front
are bent. The latter one is the contour where the current density drops from ±JC
to zero. It is indicated as bold line in (b). The presented simulations show that
even in complex objects, the field penetration can be qualitatively well understood
by the simple principles sketched in this section. Due to the lack of adequate
simulation results, discussions about the measured field distribution in this thesis
will be based on the given qualitative arguments.

1 Exactly, the contour lines of the vector potential rA are plotted non-equidistantly. However,
their direction corresponds to the direction of B.
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Figure 2.8.: (a) Field lines of the induction B (x,y) in strips with aspect ratio of 2
(top) and 0.3 (bottom) in the case of negligible pinning. The simulations show the
situation in increasing field shortly before the field of first flux entry is reached (top
left) and in decreasing field at H = HC1/2 (top right). Furthermore, for the smaller
sample (bottom) a situation in increasing fields is shown, just above the field of first flux
penetration. Reprinted from [68] with the permission of AIP Publishing. (b) Magnetic
field lines during flux penetration into a thick disc with aspect ratio of 0.25 that reveals
significant pinning. Reprinted figure with permission from [69] Copyright (2016) by the
American Physical Society

2.2.5. The influence of demagnetization effects on the phase diagram
The effect of the sample geometry has so far only been treated as the origin of
irreversibilities within the magnetic properties of a superconductor. Its phase
diagram was supposed to be unaffected by the sample shape. However, this is an
oversimplification of the real situation. In the following part, the effects of the
sample geometry on the magnetic properties of type-I and type-II superconductors
are examined. To get an illustration, consider the spherical superconducting
sample in a homogeneous applied magnetic field H sketched in Fig. 2.9. In
its superconducting state, the sample expels the field by the aforementioned
superconducting screening currents J which generate a magnetization M inside
the sample equal to M = −H. The magnetic flux density B = µ0(H + M)
consequentially vanishes inside the superconductor. However, these screening
currents running along the latitudes of the sphere create a magnetic dipolar field
outside the sample [40]. Hence, the magnetic field in the exterior of the sphere is
given by the superposition of this demagnetization field with the applied one. The
field that is created in this way is sketched in Fig. 2.9. Obviously, the field close
to the sample surface is strongly enhanced in the equatorial plane. It amounts
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Figure 2.9.: Illustration of demagnetization effects on a superconducting sphere in
an applied magnetic field. The field is screened from the inside of the sphere by
superconducting screening currents. However, these currents create a dipolar field
outside the sample, which is superposed to the applied one, and enhances the field on
the surface of the superconductor.

[38, 70]:

Bsurface = 3
2B = (1−D)−1B . (2.24)

The quantity D is referred to as the demagnetization coefficient, which numbers the
maximal amplification of the external field caused by the sample. D is tabulated
for different sample geometries [71–73]. However, the demagnetizing field within
the sample is only homogeneous for elliptical shapes [72].
The illustrated behavior implies dramatic consequences on the magnetic phase
diagram of a superconductor (Fig. 2.3): An applied field will partially exceed
the critical values BC or BC1 on the surface of the sample already at (1−D)BC
and (1−D)BC1, respectively. Hence, above these fields, the sample can no longer
maintain a homogeneous Meissner state. The consequential variations of the phase
diagrams of type-I, type-II/1 and type-II/2 superconductors are shown in Fig.
2.10 (a-c):
In type-I materials, the Meissner phase is already disturbed at (1−D)BC, and a
transition to the intermediate state (IS) takes place, which evolves into the normal
conducting state at the critical field BC. The IS is characterized by a coexistence
of Meissner phase and normal conducting state in form of a magnetic domain
structure.
The situation is similar in type-II/1 superconductors, where the intermediate mixed
state emerges in fields (1 −D)BC1 < B < (1 −D)BC1 + DB0. An explanation
of these IMS phase boundaries is given in Ap. A.1. Similar to the IS, the IMS
is characterized by a domain structure of Meissner and Shubnikov phases. The
morphology and the theoretical fundamentals of the IS and IMS are extensively
discussed in Sec. 2.3.
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Figure 2.10.: Schematic magnetic phase diagrams for type-I, type-II/1 and type-II/2
superconductors if they are influenced by demagnetization effects. In contrast to the
phase diagram shown in Fig. 2.3, the Meissner phase is already suppressed at (1−D)BC
(type-I) and (1−D)BC1 (type-II/1), respectively. Furthermore, in type-I materials, the
MS-NS transition is accompanied by the emergence of an intermediate state (IS) while
in type-II/1 superconductors an intermediate mixed state nucleates.

Finally, the impact of demagnetization is less pronounced in type-II/2 materials.
Here, the transition from the Meissner to the Shubnikov phase is shifted to
(1−D)BC1, but only the slope of M for B ≥ (1−D)BC1 is decreased.

2.3. Domain nucleation in superconductors
It has been discussed in Sec. 2.2.5 that in samples having a non-zero demagnetiza-
tion coefficient, the Meissner state (MS) is partially suppressed already in fields
below the critical values BC or BC1. The reason for this behavior is the inhomoge-
neous field distribution at the sample surface. How the remaining Meissner phase
is distributed within the sample is addressed in the following section. At first,
it will be reasoned that a dispersion of the Meissner state in form of a domain
structure is indeed the equilibrium configuration of the superconductor in the IS
and IMS. Thereafter, the main theories on the IS domain structure will briefly be
reviewed: The laminar model of Landau [74] (Sec. 2.3.2) and the hexagonal model
of Goren and Tinkham [75] (Sec. 2.3.3). Afterwards, in Sec. 2.3.5, these models
will be generalized to the case of the IMS. The goal will be to define the expected
domain morphology and to set the limits for its typical length scales. In Sec. 2.3.6,
the evolution of the IMS morphology and its interference by pinning is discussed
based on molecular-dynamics simulations of the magnetic vortices. Finally, in
Sec. 2.3.7, the IS and IMS nucleation is shortly discussed as a manifestation of a
modulated phase which is caused by competing interactions.

2.3.1. Reasons for the domain nucleation in superconductors
At first glance, it seems reasonable to assume that the MS suppression will take
place near the edges where the enhancement of the applied field is strongest. For
a type-I superconductor, this situation is illustrated in Fig. 2.11 (a). However,
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in the configuration shown, the outer field is still strongly distorted. The total
energy of the system can further be reduced by a regular distribution of the
normal conducting regions all over the sample, because this decreases the energy
associated with the field distortion. Such a configuration is shown in Fig. 2.11
(b). As a similar fraction of the sample stays in the Meissner phase, the consumed
condensation energy is equal in both cases (a) and (b). However, the spatial phase
distribution of (b) requires the creation of multiple MS-NS interfaces whose energy
has been estimated in Sec. 2.1.3. Hence, the emergence of a domain structure
in the intermediate state is the consequence of an energy minimization between
condensation, interface and field energy in samples with D > 0.

Figure 2.11.: Energy minimization via domain nucleation in superconductors with
a non-zero demagnetization coefficient D. In the figure, the distribution of normal
conducting regions within the sample is shown for a field slightly higher as (1−D)BC.
The volume fraction of the normal conducting state (NS) is similar in (a) and (b).
However, the formation of a domain structure (b) strongly reduces the disturbance of
the applied field and lowers the total energy.

2.3.2. The Landau model
The IS domain structure has firstly been treated by Landau [38, 74]. He assumed
an infinitely expanded plate of thickness t (larger than the magnetic penetration
depth λL) in an applied magnetic field. The domain structure was supposed to
consist of straight laminar regions of normal conducting phase embedded within
the Meissner phase. An illustration of the domain structure in the Landau model
is given in Fig. 2.12.
In the Landau model, the parameter describing the IS is the periodicity length
a of the structure. It is given as the sum of the width of the normal conducting
lamellae an and of the lamellae in the Meissner phase as:

a = an + as . (2.25)

Since it is assumed that the field within the NS domains is BC, the ratio of normal
conducting regions at a specific applied field must amount to:

an

a
= B

BC
. (2.26)
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Figure 2.12.: Illustration of the Landau model. (a) The Landau model assumes a
flat superconducting plate of thickness t in a perpendicular applied magnetic field B.
(b) The structure of the IS is given by an arrangement of NS and MS laminar domains
of width an and as repeating on the distance a. It has been shown that a fanning of
the NS domains near the surface further reduces the total energy of the IS.

The actual domain configuration is found by minimizing three energy contributions:
(i) the interfacial energy between NS and MS domains, which prefers few large
domains, (ii) the energy of the distorted magnetic field outside the sample, which
favors many small domains, and (iii) the energy contribution arising due to a
fanning of the NS domains near the surface that further advances smaller domains.
Landau’s derivation yields for the periodicity a [74]:

a =
 δt

fL
(
B
BC

)
 , (2.27)

in which δ is the wall-energy parameter introduced in Sec. 2.1.3 and fL is a
numerical function tabulated in Ref. [76].
The Laudau model was later modified by assuming that the normal domains
branch into several threads near the surface [29]. In this way, the outer field can
be homogenized further, while the field within the NS domains is not strongly
disturbed. It has been predicted that branching near the surface should occur for
t ≥ 800δ [38, 77].

2.3.3. The Goren-Tinkham model
A second model was introduced by Goren and Tinkham [75] in order to explain the
observation of tubular magnetic domains within the IS [78]. Their model assumes
a triangular arrangement of hexagonal normal conducting spots (diameter an)
surrounded by Meissner phase. It is illustrated in Fig. 2.13 (a). The hexagonal
spot structure is introduced as to guarantee close packing of the domains for high
fields.
Again, the preferred repetition length a is found by minimizing the three energy
contributions discussed in Sec. 2.3.2 with respect to a. However, this time, the
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Figure 2.13.: Illustration of the Goren-Tinkham model. (a) This model assumes a
flat superconducting plate of thickness t in a perpendicular applied magnetic field B.
(b) The structure of the IS is a triangular array of hexagonal normal conducting spots.
Here, an is the diameter of the spots, while a is the repetition length of the pattern.

normal conducting ratio is given by:

an

a
=
√
B

BC
, (2.28)

since it is defined by an area ∝ a2
n and not by a distance as in the Landau model.

Finally, minimizing the free energy results in:

a =
√√√√ 2δt

B
BC

(
1− B

BC

) (
1−

√
B
BC

) . (2.29)

2.3.4. Comparison of the models
The models of Landau and Goren-Tinkham clearly differ in their domain patterns.
However, comparing the repetition lengths of the models, only small deviations
exist. This is shown in Fig. 2.14, where the repetition length a of the domain
structure (a) and the size of the normal conducting domains (b) is plotted against
the reduced field B/BC. For this graph, typical experimental parameters found
for lead were used (t = 1 mm, δ = 55 nm [79]).
Clearly, the domain structure is coarser within the Landau model, but the differ-
ences vanish as the field approaches BC, at which a diverges. At low inductions,
though, a is distinctly smaller in the tubular Goren-Tinkham model. This suggests
that a tubular domain structure as proposed by Goren and Tinkham is, at least
in small fields, energetically preferred, since its field distortion is considerably
smaller. Indeed, such a behavior has recently been predicted [80] and observed [19].
Nonetheless, it has already been mentioned in Ref. [75] that the energy difference
between the two domain structures is marginal and not sufficient to unambiguously
determine an equilibrium configuration. Hence, the domain structure is drastically
influenced by small additional interactions as geometrical barriers (see Sec. 2.2.4)
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Figure 2.14.: Comparison of the domain repetition length and domain size according to
the Landau and the Goren-Tinkham model. (a) Domain repetition length a as function
of the normalized field B/BC. (b) Inverse of the domain size as function of the reduced
field. This reciprocal space representation corresponds to the information which can be
gained by a neutron scattering experiment.

and pinning forces (see Sec. 2.2.3), which makes a modeling of the IS and IMS
structures a difficult task. Additionally, this fact promotes complex phase diagrams
of superconducting domain structures [80, 81]. An extensive discussion of this
topic can be found in [82].
The consequences of the small energy difference between the Landau and the
Goren-Tinkham models on the IS structure have been demonstrated e.g. in Ref.
[19] by means of magneto-optical imaging on lead samples of different shapes.
It has been found that the geometrical barriers in disc-shaped samples provoke
a tubular (Goren-Tinkham) domain structure when the field is increased from
the Meissner state, whereas a laminar (Landau) morphology is stabilized when
the field is decreased from the normal conducting state. Corresponding data are
depicted in Fig. 2.15.

2.3.5. Modification of the models for the IMS
The models introduced in Secs. 2.3.2 and 2.3.3 seem inapplicable to the intermedi-
ate mixed state as the wall-energy parameter is negative for type-II superconductors
(Sec. 2.1.3). However, although δ was originally introduced to describe an NS-MS
interface, a redefinition which allows the application of the two models on the IMS
structure is possible [83, 84].
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Figure 2.15.: Structure of the intermediate state in a disc-shaped Pb single crystal at
5 K. The left column shows magneto-optical images of the IS structure for increasing
fields, while the situation for decreasing fields is depicted in the right column. Black
regions correspond to the superconducting phase, whereas the sample is normal con-
ducting in the bright regions. Reprinted figure with permission from [19] ©(2007) by
the American Physical Society.

The wall-energy parameter

The wall-energy parameter which is associated to the surface tension γ via Eq.
2.13, can be defined as analogous to the calculation of the cleavage energy in a
solid [85]. For this, consider the hexagonal vortex lattice illustrated in Fig. 2.16. If
this two-dimensional lattice is split along a specific direction, one must expend the
energy that is necessary to break all the vortex-vortex bonds along the cleavage.
The surface tension of the generated interfaces is hence given by:

γ = 1
2
Nr. of broken bonds× energy per unit length of the bonds

length of the interface . (2.30)

The factor one half derives from the fact that a cut produces two interfaces.
Moreover, this discussion only considers next nearest neighbor interactions. Using
this redefinition of the surface tension, the wall-energy parameter can be defined
as in Eq. 2.13 and be used with the models of Landau and Goren-Tinkham.
However, as the vortex lattice is strongly anisotropic, the interfacial energy will in
general depend on the direction of the cleavage. Decoration images of the IMS
confirm this assumption, as the domain boundaries form along specific directions
within the lattice [7, 83].
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Figure 2.16.: Cutting through a vortex lattice. The sketched shows the top view on a
hexagonal vortex lattice of lattice parameter aVL as well as the cuts of lowest (〈10〉)
and highest (〈11〉) interfacial energy. If the lattice would be split along the plotted lines,
2 (〈10〉) and 4√

3 (〈11〉) bonds (yellow points) have to be broken per length a.

In order to estimate the effect of anisotropy on the surface tension, the cuts along
the 〈10〉 and 〈11〉 directions, which are marked in Fig. 2.16, are considered. Using
Eq. 2.30, their interfacial energy is determined to [84]:

γ〈10〉 = 1
2

2Ubond

a
= Ubond

a
(2.31)

and

γ〈11〉 = 1
2

4Ubond√
3a

= 2√
3
Ubond

a
≈ 1.2γ〈10〉 , (2.32)

respectively. Ubond is the energy per unit length of a single bond which can be
estimated using the interaction potential given in Eq. 2.20. The cuts along 〈11〉
and 〈10〉 are distinguished, since the interfacial energy along them is maximal
and minimal, respectively. The reason is, that if the vortex lattice is cut along an
inclined angle to the 〈10〉 direction, the resulting surface is vincinal and composed
of {11} planes with steps whose number increases with increasing inclination until
a {10} plane is reached. Hence, the surface tension increases with the inclination
angle until a maximum is reached at 30° and the interfacial energy is reduced
again. As this process repeats with 6-fold symmetry, the surface tension within a
hexagonal vortex lattice must lie between the limiting values γ〈11〉 and γ〈10〉.
In a rough approximation, the wall-energy parameter can hence be supposed to
be isotropic. It can be defined in a similar way as in Eq. 2.13:

δ = 2µ0γ〈10〉

B2
0
≈ 2µ0Ubond

B2
0aVL

. (2.33)

The magnetic field within the domains

For the IS structure, the induction within the normal conducting domains has
been assumed to be BC. In contrast, the field within the IMS domains corresponds
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to the value B0 which is connected to the vortex lattice parameter via:

aVL =
√

2Φ0√
3B0

. (2.34)

Consequentially, the ratio B
BC

in Eqs. 2.27 and 2.29 must be replaced by B
B0

in
order to obtain a sufficient description of the IMS structure.

Expansion for D 6= 1

The original models of Landau and Goren-Tinkham assume a slab shaped sample
which is infinitely expanded perpendicular to the applied field (D = 1). This
corresponds to a complete suppression of the Meissner state. In order to account
for the IMS boundaries (see Ap. A.1) under realistic conditions (D 6= 1), the
models can be generalized by replacing:

B

B0
→ B − (1−D)BC1

DB0
(2.35)

in Eq. 2.27 and 2.29. This change considers the unsuppressed Meissner phase and
guarantees a linear growth of the domain size ratio within the IMS, while it still
includes the limit B/B0 for D = 1. However, this simple expansion will only be
valid as long as the influence of the sample edge can be neglected. Deviations
might thus be expected for D � 1.

2.3.6. IMS formation as a self organization process of particles
interacting through competing range interactions

Recently, the IMS structure has again gained a high interest, as similar complex
vortex structures have been observed in superconducting MgB2 [17]. As in type-
II/1 superconductors, the deviations from the ideal hexagonal vortex lattice in
MgB2 have been attributed to the superposition of a short range repulsive and a
long range attractive interaction. Although the physical reasons for the vortex
attraction are different in MgB2 and linked to two energy bands involved in the
superconductivity, its observation has motivated a multitude of studies treating
the alignment of partially attracting vortices [81, 86–90]. In all these studies,
the evolution of the vortex structure was investigated by molecular-dynamics
simulations.
In principle, such simulations start with a random arrangement of N vortices in
a squared box where periodic boundary conditions are applied. In the following
simulation loops, the forces acting on each individual vortex are calculated and
translated into the vortex acceleration as well as into its velocity. The vortex
lattice is then rearranged according to the velocities, and the reached vortex
configuration is used as initial arrangement for another simulation loop. The
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equation of motion of a vortex i is supposed to be [88]:

ηvi = F i =
∑
j6=i
F ij + F p

i + F T
i + fd , (2.36)

in which η is the Bardeen-Stephen friction coefficient [51], F ij is the interaction
of the vortices i and j, F p

i is the pinning force acting on the vortex, F T
i is a

temperature dependent thermal stochastic force, and fd is a potentially applied
driving force. Usually, a vortex-vortex interaction as in Eq. 2.20 is assumed
[86, 88, 90], but different types like hyperbolic repulsive and exponential attractive
potentials have been used as well [81, 89, 91]. However, it has been stated in Ref.
[81] that the results are in qualitative agreement for both types of interaction
potentials. The stochastic force introduces random thermal fluctuations to the
system, which drive the vortex arrangement out of metastable configurations.
Molecular-dynamics simulations can neither account for any demagnetizing effects,
nor do they include the specific shape of the sample. Using this approach, the most
stable vortex configuration in the absence of pinning is hence a single droplet [87].
Consequently, when predicting the IMS structure, molecular-dynamics simulations
will fail in estimating the domain size and its repetition length. The multiple and
non-local vortex interactions which should be treated within the Ginzburg-Landau
theory are moreover oversimplified by the used point-like interaction potential.
Molecular-dynamics simulations are nonetheless very helpful in estimating the
effects of pinning and thermal activation on the domain structure. Furthermore,
the nucleation of the domains out of a regular or random vortex arrangement
into a bundled configuration can solely be investigated by means of this method,
since it allows to study the time evolution of the vortex formation [81]. For such
processes, it can be assumed that the demagnetization effects are weak, since small
shifts of the vortex positions do not distort the macroscopic field much outside of
the sample. Hence, results of molecular dynamics simulations provide at least a
hint to the microscopic behavior of the vortices which underlie the IMS domains.
Different works focused on the field and temperature dependence of the vortex
alignment within the IMS [81, 90]. They have shown that for low inductions, the
vortices will bundle in small bubbles, which are aligning in an ordered or random
structure depending on the used interaction potential [81, 90]. In intermediate
fields, the bubbles coalesce to elongated, more striped domains. Finally, for high
applied fields, the vortices arrange in the hexagonal lattice configuration. A
B-T -phase diagram deduced from molecular-dynamics simulations is shown in Fig.
2.17. Notice that a similar sequence of domain structures is expected within the
IS [80].
The effect of pinning onto the vortex configuration has been explicitly treated
in Ref. [87], [89] and [90]. They all reason that pinning strongly influences the
domain structure: For few pinning centers, the surface of the vortex clusters and
stripes gets fuzzier, and the domain shape becomes more irregular. Furthermore,
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Figure 2.17.: Phase diagram of vortex matter as a function of field and temperature,
deduced by molecular-dynamics simulations in the presence of pinning. Different vortex
phases could be identified. A disordered phase (I), a hexagonally ordered superlattice
(II), a superlattice of vortex stripes (III), and the usual hexagonal vortex lattice (IV).
Reprinted figure with permission from [81]. Copyright (2016) by the American Physical
Society.

a reduction of the cluster size has been deduced in Ref. [90], but has not been
stated elsewhere. In the case of an increasing number of pinning sites, the domain
structure finally breaks down, since the pinning prevents a bundling of the vortices
[87, 89]. This behavior is shown in Fig. 2.18, in which the simulated equilibrium
configuration of bubble and stripe domains is shown for an increasing amount
of pinning centers. As seen from these calculations, pinning strongly affects the
domain shape, and a high density of pinning centers can even prevent a nucleation
of an IMS domain structure.

2.3.7. Concluding remark: IS and IMS nucleation as a pattern
formation problem

The considerations of this section on domain nucleation in the IS and IMS seem
very unique to superconductors at first glance. However, they can be put into a
wider and more general framework as manifestation of modulated phases caused
by competing interactions [18]. From this viewpoint, domain nucleation is always
caused by a competition of interactions that favors a homogeneous ground state
with nonlocal interactions that prefer spatial variation. While the surface tension
and the energy associated with the field distortion, are the source of competition in
superconductors, diverse interactions can cause similar behavior in other systems
(best known might be the interplay of domain wall and stray field energy in
ferromagnets [92]). A comprehensive listing can be found in Ref. [18].
As a main consequence of competing interactions, the free energy of the systems
exhibits a minimum for a finite repetition length, independent of the particular
type of interactions. The periodicity of the pattern is generally controlled by
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Figure 2.18.: Effects of pinning on the IMS structure, deduced from molecular-
dynamics simulations. In the top row, a position in the phase diagram (2.17) of a
tubular equilibrium configuration was studied, while the simulations in the bottom row
applied parameters leading to a laminar phase. The density of pinning centers (black
open circles) increases from left to right. The vortices are shown as magenta, solid
circles. In both cases, pinning strongly smears the ordered vortex superstructure and
finally leads to a disappearance of the IMS domains. Reprinted figure with permission
from [89]. Copyright (2016) by the American Physical Society.

the ratio of competing interactions. However, it turned out that the developed
domain pattern can mostly be classified as generic bubble, laminar, or dendritic
structures (see Ref. [18] and references within). All these morphologies have
been reported for the IS and IMS structure. However, as extensively discussed
in this chapter, domains in superconductors stand out due to the fact that the
competing interactions can be tuned in strength. This can either be achieved by a
variation of the field and temperature (Sec. 2.1.3 and 2.3.5), a modification of the
sample shape (Sec. 2.2.4), a variation of material parameters (Sec. 2.1), or by the
introduction of disorder (Sec. 2.2.3). A detailed investigation of the IS and IMS
structure therefore allows to address several question of general significance: (i) the
evolution of the patterns during the domain nucleation, (ii) the metamorphose of
the different domain morphologies, (iii) the influence of fixed boundary conditions
on the domain nucleation, and (iv) the reaction of the systems to arbitrary types
of disorder.
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2.4. Similarities of the vortex lattice to the skyrmion lattice
in MnSi

A skyrmion lattice is a non-trivial magnetic structure which has firstly been
identified in the itinerant helimagnet MnSi [93]. This novel type of magnetic
ordering has recently received strong interest, since it has been established in
various systems, e.g. in different other members of the B20 crystal structure
family [94, 95], in centrosymmetric ferromagnets with uniaxial anisotropy [96], or
on surfaces of ferromagnetic monolayers [97]. For this thesis, skyrmions in chiral
magnets are of interest, since they show a topological similarity to the vortex lines
found in type-II superconductors that will be discussed below.

Figure 2.19.: The skyrmion lattice in MnSi. (a) Real space depiction of the spin crystal
in a plane perpendicular to the magnetic field H. Taken from [98], with permission from
S. Mühlbauer. (b) Magnetic phase diagram of MnSi. Below the critical temperature TC,
magnetic ordering arises. In zero field, a helical ground state is formed. In increasing
applied fields, it successively transforms into a conical and finally into a ferromagnetic
state (FP). Near the transition temperature, the A-phase is formed that is characterized
by emergence of a skyrmion lattice. Data with courtesy of A. Bauer.

A graphical representation of the skyrmion lattice in MnSi is shown in Fig. 2.19
(a): Skyrmions can be considered as whirls in the local magnetization of the
material, which are translationally invariant along the applied field. The structure
of the skyrmion lattice can be described as a superposition of three helical spin
modulations under 120°, aligned perpendicular to the magnetic field [99]. This
spin alignment is accompanied by a topological winding number of Φw = −1,
which means that a skyrmion cannot be continuously transformed into a more
trivial ferromagnetic or helical spin structure and is hence topologically protected
[93]. Due to this stability, skyrmions possess particle-like properties similar to the
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vortices in superconductors1. Like the flux line lattice, the skyrmion lattice is a
two dimensional structure which can arise in various different symmetries [101],
and is affected by pinning interactions as well as demagnetizing effects. Moreover,
both lattices introduce a periodic modulation to the local magnetization of the
sample. When using scattering methods that probe the local magnetic scattering
length density contrast, similar results are obtained for the skyrmion and the
vortex lattice.
The formation of a skyrmion lattice is caused by a competition of different interac-
tions which is further examined on the example of MnSi: The magnetic structure of
MnSi is determined by three hierarchical energy scales: (i) a strong ferromagnetic
exchange, (ii) an intermediate Dzyaloshinskii-Moriya (DM) interaction, and (iii)
a weak crystalline field interaction [93]. These interactions induce a complex
magnetic phase diagram which is shown in Fig. 2.19 (b): As the ferromagnetic
exchange and the DM interaction favor parallel and perpendicular alignment of
neighboring spins, respectively, the ground state is given by a helical alignment of
the magnetic moments. It is denominated as the helical state. However, due to
the considerably stronger ferromagnetic exchange, these helices have a wavelength
of λh = 18 nm, which is much larger than the atomic lattice parameter. Finally,
the crystal field interaction initially pins the direction of propagation of the helices
to the 〈111〉-directions.
In an applied field, the directional degeneration of the helical modulation is firstly
removed, as it is unpinned from the 〈111〉-axis. In the conical state above HC1,
the helices begin to align in direction of the applied field, forming a conical spin
alignment until a ferromagnetic phase is stabilized in fields above HC2.
Finally, the skyrmion lattice is formed in a small phase pocket close to the transi-
tion temperature of 29.5 K in fields between 100 and 200 mT, named the A-phase.
In this region, the normally metastable skyrmion structure [102] is stabilized,
since thermal fluctuations suppress its energy below that of the conical state [93].
Hence, the A-phase is a distinct thermodynamic phase which is separated from
the conical state by a first-order phase transition.

1 Indeed, a systematic manipulation of single skyrmions has been demonstrated recently, which
provides the possibility to use skyrmions as bits for data storage [100].





3. Theoretical fundamentals of neutron imaging
and scattering

The formulas which are necessary to interpret neutron data obtained at supercon-
ducting domain structures will be derived in this chapter. Since the micrometer
length scale of the domains strongly exceeds the neutron wavelength of a few
angstrom, scattering takes place primarily under small angles. This imposes special
requirements on the instrumental design, which will be discussed in Chap. 4, but
also changes the theoretical treatment of the scattering process. Therefore, starting
from the fundamental interactions of neutrons and matter (Sec. 3.1), the differen-
tial and total scattering cross-sections are introduced and extended to describe
forward scattering (Sec. 3.2). Finally, the differential scattering cross-section is
linked to a real space correlation function of the scattering length density and a
geometrical explanation is given for both (Sec. 3.2.6). Only the derived relations
allow for a quantitative description of (ultra-) small-angle neutron scattering data
and neutron grating interferometry results in a common theoretical framework
and hence enable their combined interpretation presented in this thesis. At the
end of this chapter, the differential scattering cross-section of the superconducting
vortex lattice is derived.

3.1. The interaction of neutrons and matter
The wave properties of the neutron (mass m = 1.675× 10−27 kg [103]) and its
interaction with matter are described by the stationary Schroedinger Equation:

EΨ(k,r) =
[
− h̄2

2m∇
2 + V (r)

]
Ψ (k,r) (3.1)

which is a scalar wave equation for the wave function Ψ of the particle with energy
E. As neutrons are neutral particles, their interaction with matter is not an
electrostatic Coulomb interaction with the electron shell or the positively charged
cores. Instead, neutrons essentially interact with the nuclei via the strong nuclear
force or via magnetic interactions within the material. The first interaction is well
described by the point-like Fermi pseudo-potentials at positions ri:

Vnuc(r) = 2πh̄2

m

N∑
i=1

biδ (ri) (3.2)

41
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in which bi is the scattering length of the nuclei at position ri [104]. This
approximation is valid as the wavelength λ of the considered thermal and cold
neutrons is much larger than the interaction range of the strong nuclear force.
The magnetic interaction between the magnetic dipole moment µ of the neutron
and an internal or external magnetic fieldB is expressed by the Zeeman interaction:

Vmag(r) = −µ ·B (r) . (3.3)

The nuclear and magnetic interactions lead to absorption, refraction and scatter-
ing of a neutron beam within a sample, which will be discussed below. Other
interactions like spin-orbit interactions and gravitational forces occur as well, but
can be neglected in most cases, due to their weak interaction potential.

3.1.1. Neutron absorption and refraction
In free space (V = 0), the solution of the Schroedinger Eq. 3.1 is a plane wave
Ψ ∝ exp (ikx) with wavevector:

k2 = 2mE
h̄2 . (3.4)

However, the wavevector is modified under the influence of an interaction potential:

K(r)2 = 2m [E − V (r)]
h̄2 . (3.5)

Hence, in analogy to classical optics, an index of refraction n can be defined as
[104]:

n(r) = K(r)
k

=

√√√√[1− V (r)
E

]
. (3.6)

This index of refraction describes the change of the neutron wave function within
a material and is used to quantify neutron refraction and absorption.
To find an expression for the neutrons’ index of refraction within a sample, the
interaction potential has to be averaged over a macroscopic ensemble of nuclei
with density N . For the Fermi pseudo-potential (Eq. 3.2), this results in:

V nuc = 2πh̄2

m
bN , (3.7)
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while an averaging of the magnetic interaction yields [104]:

V mag = ±µB , (3.8)

because the neutron spin of 1
2 allows only two possibilities for its orientation to

the magnetic field: parallel and anti-parallel.
Finally, the scattering length defined in Eq. 3.2 is not a real, but a complex
number. The index of refraction is therefore composed of the nuclear δnuc and
magnetic real part δmag which are responsible for refraction, and an imaginary
part β describing neutron attenuation:

n ≈ 1− 1
2
V

E
= 1− δnuc + δmag + iβ (3.9)

= 1− bcNλ
2

2π ± mλ2

h2 µB + i(σabs + σinc)Nλ
4π . (3.10)

Here, bc = b is the coherent scattering length, while σabs and σinc are the absorption
and the incoherent scattering cross-section per atom, respectively [104].
By means of the definitions derived above, the modulation of an initial neutron
wave function Ψi within a sample of thickness t can be described entirely. In the
absence of a magnetic field, the final state Ψf is given by:

Ψf = exp (−ikδnuct) exp (−kβt) Ψi . (3.11)

Hence, the neutron phase is shifted by:

∆Φ = −λNbct , (3.12)

while the intensity is reduced according to the Lambert-Beer law, leading to a
neutron transmission T :

T = If

Ii
=
∣∣∣∣∣Ψf

Ψi

∣∣∣∣∣
2

= exp [− (σabs + σinc)Nt] . (3.13)

The modulation of the neutron wave function within a sample is sketched in Fig.
3.1.
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Figure 3.1.: Illustration showing the modulation of the neutron wave function within a
sample (yellow). The final wave function is phase shifted and degraded according to
Eqs. 3.12 and 3.13.

3.2. Description of the scattering process
Besides refraction and absorption, a neutron beam can be scattered off the sample.
In the following part, it will be explained how structural information about the
interior of the sample can be deduced from the angular distribution of the scattered
intensity. The scattering process is sketched in Fig. 3.2: A neutron with wavevector
ki and wave function Ψi is scattered at an arbitrary structure defined by a non-zero
interaction potential V (r) 6= 0.

Figure 3.2.: Illustration of the scattering process. An incoming neutron Ψi is scattered
by the potential at position R. In first-order approximation, the outgoing wave Ψf is a
superposition of the initial plane wave with a spherical wave, emanated from R.

Again, the final state of the neutron Ψf is described by the stationary Schroedinger
equation 3.1, and the incoming neutron can be described as plane wave Ψi ∝
exp (ki · r). The solution of the scattered wave function is given by the Lippmann-
Schwinger equation [105]:

Ψf (kf ,r) = Ψi (ki,r)− m

2πh̄2

∫ exp (ikf |r −R|)
|r −R|

V (R)Ψf (kf ,R) dR . (3.14)

This equation can be solved iteratively by a successive inserting of Ψf(kf ,r) into
the right hand side of Eq. 3.14. However, in most cases, this expansion can be
interrupted after the first integral term, which leads to the Born approximation
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for Ψf . For |r| >> |R|, this approximation yields:

Ψf (kf ,r) = exp (iki · r) + exp (ikf · r)
r

f(q) . (3.15)

Most scattering experiments can be evaluated within the Born approximation,
even though it does not account for multiple scattering.
The introduced scattering amplitude f(q) depends on the momentum transfer
q = kf−ki of the neutron and is derived as the Fourier transform of the interaction
potential:

f(q) = − m

2πh̄2

∫
V (R) exp (−iq ·R) dR . (3.16)

The scattered wave is approximately given as the superposition of the incident
plane wave and a spherical wave, weighted by f(q).

3.2.1. The differential and total scattering cross-section
A neutron scatting experiment, as e.g. small-angle neutron scattering, measures
the differential scattering cross-section dσ/dΩ of the sample, which is defined by
[106]:

dσ = Number of neutrons deflected into dΩ
Number of incoming neutrons per unit area = |f(q)|2 dΩ . (3.17)

The measured differential cross-section of a neutron scattering experiment is hence
related to the Fourier transform of the interaction potential. The total scattering
cross-section is obtained by integration over all solid angles:

σtot =
∫ dσ

dΩdΩ . (3.18)

Coherent and incoherent scattering cross-section

For pure nuclear scattering at N nuclei, the differential cross-section (Eq. 3.17)
results from the Fermi pseudo-potential (Eq. 3.2):

dσ(q)
dΩ = |f(q)|2 =

N∑
i=1

N∑
j=1

bibj exp [iq · (ri − rj)] . (3.19)

Any regular arrangement of the nuclei will result in a regular (coherent) scattering
pattern. However, in a realistic situation, the scattering lengths can randomly
differ, which disturbs this regularity. The deviations in b can either be caused by
different spin configurations or different isotopes located at ri. In this case, the
above potential can be split into the coherent part and its irregular deviations by
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a fragmentation of bi into its mean value b = bc and its fluctuation ∆bi. Therefore,
the differential scattering cross-section is derived as:

dσ(q)
dΩ = b

N∑
i,j=1
〈exp [iq · (ri − rj)]〉+

N∑
i,j=1

(∆bi)2 =
[
dσ(q)
dΩ

]
coh

+
[
dσ(q)
dΩ

]
inc

, (3.20)

where 〈...〉 represents the averaging over the ensemble [107]. Hence, the measured
differential scattering cross-section splits into a coherent part, producing a scatter-
ing pattern and an incoherent contribution which provides a constant background
signal in all solid angles.

3.2.2. The scattering length density and its autocorrelation function
This thesis covers structures, whose sizes lie in the range of some 0.01 to 10 µm.
The definition of the differential scattering cross-section via a discrete set of
Fermi pseudo-potentials (Eq. 3.2) is therefore no longer reasonable. Instead,
the scattering length density ρ is introduced which is the total scattering length
per unit volume. Its spatial variation is expressed as scattering length density
distribution ρ (r). By using this definition, the differential scattering cross-section
can be rearranged to:

dσ(q)
dΩ =

∣∣∣∣∣∣
∫
V

ρ(R) exp (−iq ·R) dR
∣∣∣∣∣∣
2

(3.21)

=
∫
V

∫
V

ρ(R)∗ρ(R2) exp [−iq · (R2 −R)] dRdR2 (3.22)

=
∫
V

∫
V

ρ(R)∗ρ(R+ r)dR
 exp (−iq · r) dr . (3.23)

The ∗ denotes complex conjugation, as the definition implicitly includes the
possibility that ρ is a complex number. Furthermore, the relation R2−R = r has
been used in Eq. 3.23. The term in square brackets is the autocorrelation function
of the scattering length density distribution, often denoted as Patterson function.

3.2.3. The autocorrelation function of the scattering contrast
Only isolated particles were considered so far. However, in most cases, the
investigated structures are not surrounded by vacuum, but by a second phase or a
solvent having a different scattering length density. For a given scattering length
density distribution, the scattering length contrast ∆ρ is thus defined as:

∆ρ (r) = ρ (r)− ρ , (3.24)
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in which ρ is the mean value of ρ (r). If this definition is inserted into Eq. 3.23,
the differential cross-section as function of the scattering contrast is derived:

dσ(q)
dΩ =

∫
V

∫
V

∆ρ(R)∆ρ(R+ r)dR
 exp (−iq · r) dr (3.25)

=
∫
V

γ (r) exp (−iq · r) dr . (3.26)

Here, the inner integral can be identified as the autocorrelation function of the
scattering length density contrast:

γ (r) =
∫
V

∆ρ(R)∆ρ(R+ r)dR . (3.27)

From the perspective of the scattering length density contrast, the measured
intensity at the detector is simply the Fourier transformation of its correlation
function. Its geometrical interpretation is given in Sec. 3.2.6.

3.2.4. Quantities measured by scattering off large objects
In this section, the relations introduced above will be developed to the quantities
which are measured by means of the neutron techniques (ultra-)small-angle scat-
tering and grating interferometry which all analyze scattering in forward direction.
Accordingly, the small-angle-approximation sinϑ ≈ tanϑ ≈ ϑ is used in what
follows.
Without loss of generality, the neutron beam can be directed along the z-axis,
which leads to qz = 0 in this approximation. The differential cross-section might
henceforth be rearranged to:

dσ(qx,qy,0)
dΩ =

∫
V

γ (r) exp [−i (qxx+ qyy)] dr (3.28)

=
∫

x,y

G (x,y) exp [−i (qxx+ qyy)] dxdy . (3.29)

The introduced G(x,y):

G(x,y) =
∞∫
−∞

γ (x,y,z) dz (3.30)
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is the projection of the autocorrelation function in beam direction. Its inverse is
given by:

G(x,y) = 1
4π2

∫
qx,qy

dσ(qx,qy,0)
dΩ exp [i (qxx+ qyy)] dqxdqy . (3.31)

By means of these definitions, the total scattering cross-section of Eq. 3.18 can be
rearranged to:

σtot =
∫ dσ(qx,qy,0)

dΩ dΩ = λ2

4π2

∫
qx,qy

dσ(qx,qy,0)
dΩ dqxdqy = λ2G(0,0) . (3.32)

At the first equality, dΩ = λ2

4π2dqxdqy was introduced.
An integration of Eq. 3.28 in y-direction results in the slit-smeared differential
scattering cross-section

(
dσ
dΩ

)
slit

, which is given by:

(
dσ(qx)
dΩ

)
slit

=
∞∫
−∞

dσ(qx,qy)
dΩ dqy (3.33)

= 2π
∞∫
−∞

G(x,0) exp (−iqxx) dx . (3.34)

Its back transform results in the correlation function G(x) and is given as:

G(x) = G(x,0) = 1
4π2

∞∫
−∞

∞∫
−∞

dσ(qx,qy,0)
dΩ dqy exp (iqxx) dqx (3.35)

= 1
4π2

∞∫
−∞

(
dσ(qx)
dΩ

)
slit

exp (iqxx) dqx . (3.36)

In Chap. 4, it will be shown that the differential scattering cross-section (Eq. 3.28),
the slit-smeared differential scattering cross-section (Eq. 3.33), and the correlation
function (Eq. 3.31) are the quantities measured by small-angle neutron scattering
(SANS), ultra-small-angle neutron scattering (USANS) and neutron grating inter-
ferometry (nGI), respectively. Therefore, the derived relations mutually link the
results of these methods via different integrations and Fourier transformations,
which are illustrated in the circle of SANS methods shown in Fig. 3.3 (a). The
validity of these relations will be proven in Chap. 6.
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Figure 3.3.: Correlation of the different SANS methods. (a) Illustration showing how
the quantities measured by SANS, USANS and nGI are mutually connected in the
general case. (b) The relations of γ, G(x),dσ/dΩ and (dσ/dΩ)slit) for an isotropic
scatterer.

3.2.5. Approximation of an isotropic scattering length density
distribution

In the case of an isotropic scattering length density distribution, γ (r) only depends
on the modulus of r. The radial symmetry is transferred to the differential
scattering cross-section (Eq. 3.28), and reduces the three-dimensional integration
to a one-dimensional [108]:

dσ(q)
dΩ = 4π

∞∫
0

sin (qr)
qr

γ(r)r2dr . (3.37)

The sinc function in the equation above results from the orientational averaging
of the exponential function in Eq. 3.28. The inverse transformation is given by
[108]:

γ(r) = 1
2π2

∞∫
0

sin (qr)
qr

dσ(q)
dΩ q2dq . (3.38)

The correlation function G (Eq. 3.30) can be expressed as an Abel transformation
of γ :

G(x) =
∞∫
−∞

γ (x,0,z) dz = 2
∞∫
0

γ (x,0,z) dz = 2
∞∫
x

γ(r)r√
r2 − x2

dr . (3.39)

To establish a connection between dσ(q)
dΩ and G(x), the Fourier-Hankel-Abel cycle

can be used. It states that the two-dimensional Fourier transform of an Abel
transform is the zeroth order Hankel transform. Hence, G(x) and dσ

dΩ (q) are related
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via [108]:

G(x) = 1
2π

∞∫
0

J0(qx)dσ(q)
dΩ qdq (3.40)

dσ(q)
dΩ = 2π

∞∫
0

J0(qx)G(x)xdx , (3.41)

in which J0 is the zeroth-order Bessel function of the first kind.
At last, the slit-smeared differential scattering cross-section is derived in terms of
dσ(q)
dΩ :

(
dσ(qx)
dΩ

)
slit

= 2
∞∫
0

dσ

dΩ
(√

q2
x + q2

y

)
dqy = 2

∞∫
qx

q√
q2 − q2

x

dσ(q)
dΩ dq (3.42)

which results again as an Abel transform of dσ(q)
dΩ .

In summary, for an isotropic scatterer, the real space correlation functions γ and
G(x) are mutually connected by an Abel transformation, while they are linked to
the differential scattering cross-sections by a Fourier transformation (see Fig. 3.3
(b)).

3.2.6. Interpretation of γ, G(z), and dσ/dΩ using the example of
diluted spheres

In this section, a geometrical interpretation of the correlation functions introduced
in Sec. 3.2.4 is given for the case of diluted hard spheres. Although this particular
example is one of the simplest, it illustrates the physical meaning of the correlation
functions and their interpretation in general. For sake of simplicity, the scattering
length contrast between particles and solvent is set to one.
For strongly diluted particles, most of the sample will consist of the solvent. Hence,
the scattering length contrast of Eq. 3.24 can be approximated by:

∆ρ(r) =
1 r < R

0 otherwise
(3.43)

In this case, γ is derived as [109]:

γ(r) = 4
3πR

3

1− 3
4
r
R

+ 1
16

(
r
R

)3
r < 2R

0 otherwise
(3.44)



3.2. Description of the scattering process 51

in which R is the radius of the spheres.
Clearly, γ(0) corresponds to the volume of the particles. For r > 0, γ(r) matches the
volume of intersection of two spheres whose centers are separated by the distance
r. As soon as the inter-particle distance reaches the diameter of the sphere, the
correlation function equals zero. The intersection volume is schematically sketched
in Fig. 3.4.

Figure 3.4.: Interpretation of the real space correlation function for diluted spheres.
γ(r) corresponds to the yellow volume shared by two spheres separated by r. In contrast,
the correlation function G(z) is the integration of this volume along the z-direction
(marked as black arrow). Both correlation functions drop to zero at the diameter of the
spheres 2R.

The correlation function G(x) is derived from Eq. 3.39. Spherical particles are
one of the few examples in which a solution can be obtained analytically [110]:

G(x) = 2πR4<

[1− ( x

2R

)2
] 1

2
[
1 + 1

2

(
x

2R

)2
]

+ 2
(
x

2R

)2 (
1− x

4R

)2
ln


x

2R

1 +
[
1−

(
x

2R

)2
] 1

2


 .

(3.45)

The restriction to the real part of the equation above ensures that G(x) equals
zero for x > 2R, as the function becomes thoroughly imaginary for larger x.
G(x) is the integration of the intersection volume, defined by γ, along a direction
perpendicular to the neutron beam. Hence, similar to the correlation function γ,
G(x) drops to zero at 2R (see Fig. 3.4). Both correlation functions are plotted as
function of the distance x in Fig. 3.5.
The differential scattering cross-section follows by inserting Eq. 3.44 into Eq. 3.37
to:

dσ(q)
dΩ = 16π2

[
sin (qR)− qR cos (qR)

q3

]2

. (3.46)
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Figure 3.5.: Real space correlation and reciprocal space scattering functions of diluted
spheres. (a) Normalized correlation functions γ(x) and G(x). While γ amounts the
shared volume of two spheres separated by x, the correlation function G(x) is the
projection of γ(r) along the z-axis. Hence, both functions drop to zero at r = 2R.
(b) Differential scattering cross-section and slit-smeared differential scattering cross-
section of the spheres as function of the wavevector transfer q. Both curves follow a
Porod law for large q [111]. However, for

(
dσ
dΩ

)
slit

, the Porod exponent is reduced by
one, due to the one-dimensional integration along qy.

This differential scattering cross-section is plotted in Fig. 3.5 (b). It is a quickly
decreasing, oscillating function. In the low q-limit, the function behaves as −q2,
while the function follows a Porod law dσ

dΩ ∝ q−αP with αP = 4 in the high-q limit
[111]. This is a characteristic of three dimensional structures having a smooth
surface. The slit-smeared intensity of the diluted spheres according to Eq. 3.42, is
additionally shown in Fig. 3.5. Its values were numerically calculated. Due to the
one-dimensional integration along the qy-direction, the morphology of the curve
changed slightly in comparison to the differential scattering cross-section. General
features of a slit-smeared curve can be observed: (i) The curve became smoother,
(ii) the position of the maxima shifted to smaller q, and (iii) the Porod exponent
αP is reduced by one.
Finally, the macroscopic scattering cross-section Σ = σtot

V
can be calculated based

on Eq. 3.32. In the case of a diluted two phase system, this equation has been
reduced to [112]:

Σ = (∆ρ)2λ2φv
G(0)
γ(0) , (3.47)

in which φv is the volume fraction of the particles in solution to the total volume
of the sample.
By introducing Eqs. 3.44 and 3.45, the total scattering cross-section of diluted
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spheres is finally calculated to:

Σ = 3
2R(∆ρ)2λ2φv . (3.48)

3.3. Coherent scattering off the superconducting vortex
lattice

It has been extensively discussed in Sec. 2.4 that the vortex lattice is characterized
by a spatial variation of the local induction within the sample. Since the magnetic
moment of the neutron interacts with the corresponding internal field distribution,
this gives rise to neutron scattering.
The scattering amplitude of a vortex lattice, which is aligned parallel to the
neutron beam, can be calculated by introducing the magnetic potential of Eq. 3.3
into Eq. 3.16:

f (q) = − m

2πh̄2µ ·
∫
B (R) exp (−iq ·R) dR (3.49)

= γn

4Φ0

∫
B (R) exp (−iq ·R) dR . (3.50)

Here, the magnetic moment µ of the neutron was replaced by:

µ = γn
eh̄

2m , (3.51)

in which γn is the gyromagnetic ratio of the neutron and e the elementary charge.
The differential scattering cross-section is consequentially given by:

dσ

dΩ (q) = |f(q)|2 = γ2
n

16Φ2
0

∣∣∣∣∫ B (R) exp (−iq ·R) dR
∣∣∣∣2 . (3.52)

The magnetic field within the lattice is periodic in two dimensions, and can
therefore be expressed as a sum of individual contributions B̃:

B(R) =
∑
Rj

B̃(R−Rj) , (3.53)
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where the summation is performed over all lattice translation vectors Rj. By
inserting the sum, Eq. 3.52 can be rearranged to:

dσ

dΩ (q) = γ2
n

16Φ2
0

∣∣∣∣∫ B̃ (R) exp (−iq ·R) dR
∣∣∣∣2
∣∣∣∣∣∣
∑
Rj

exp (−iq ·Rj)
∣∣∣∣∣∣
2

(3.54)

= γ2
n

16Φ2
0

∣∣∣B̃(q)
∣∣∣2 S(q) . (3.55)

Hence, as for a classic crystal, the differential scattering cross-section splits into
a form factor B̃(q), given as the Fourier transform of the local magnetic field
within a vortex, and a structure factor S(q) describing the periodicity of the
two-dimensional lattice.
The form factor of the magnetic field profile has been calculated within different
approximations of the vortex core structure. Examples are given in Ref. [113] or
[114]. As a common result, the form factor decreases with λ−2

L , which complicates
the application of neutron scattering for the investigation of vortex matter in high
κ superconductors.
As in crystallography, the structure factor in Eq. 3.55 can be expressed by two-
dimensional delta functions S(q) ∝ ∑

G δ (q −G), if one assumes a perfectly
ordered lattice. Hence, diffraction spots will only occur, if the momentum transfer
q corresponds to a reciprocal scattering vector G of the vortex lattice. In the case
of a hexagonal flux line arrangement, the spacing of the reciprocal lattice is given
by:

gVL = 2π
dVL

= 4π√
3aVL

=
√

8π2B√
3Φ0

, (3.56)

whereas the symmetry of the reciprocal lattice corresponds to the symmetry of
the flux line lattice rotated 90° around the beam axis. Since the vortex lines
are translationally invariant along the direction parallel to the field lines, the
reciprocal lattice is furthermore a point lattice in the plane that is perpendicular
to the magnetic induction.
The scattering geometry and the reciprocal lattice are depicted in the Ewald
construction of Fig. 3.6 (a): Obviously, for B perfectly parallel to the neutron
beam, the scattering condition is only fulfilled for forward scattering as no other
reciprocal lattice point than (0,0) intersects the Ewald sphere. Consequentially,
an experimental determination of the vortex alignment requires a slight rotation
of the vortex lattice around the angle ϕR, denoted as rocking scan (See Fig. 3.6
(b)). In this way, further vortex lattice planes fulfill the Bragg condition as the
corresponding reciprocal lattice points pass through the Ewald shell. The total
integrated intensity due to scattering at one specific reciprocal lattice point G
is obtained by integrating Eq. 3.55 over all possible angles ϕR and subsequently
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Figure 3.6.: Scattering at a vortex lattice. (a) Ewald construction for neutrons scattered
at a vortex lattice. In order to fulfill the scattering condition, the vortex lattice has to
be rotated by the angle ϕR, until a reciprocal lattice vector intersects the Ewald sphere.
The corresponding cases for scattering at a (10) and (-10) plane are shown green and
red, respectively. Consider that typically ki/gVL ≈ 1× 102. Hence, the Ewald sphere
near (0,0) is approximately a plane. (b) To obtain the entire structural information,
the sample (yellow) has to be successively rotated around ϕR and the corresponding
scattering patterns have to be added together. The produced scattering pattern has
the same symmetry as the vortex lattice (blue), but is rotated 90° around the neutron
beam axis.

normalizing to the incident neutron flux. It has been derived to [16]:

I(G) =
(
γ

4Φ0

)2 2πλ2

|G|
∣∣∣B̃ (G)

∣∣∣2 V ηIMS , (3.57)

in which V is the sample volume and ηIMS is the volume fraction of vortex lattice
domains. The last quantity is used to describe the intensity variation within the
IMS as well, since in this phase the vortex form factor is constant but the volume
fraction changes. In the usual case, ηIMS equals one.





4. Neutron methods investigating the micrometer
range

The goal of this chapter is to provide an extensive overview of neutron grating
interferometry and ultra-small-angle neutron scattering, both capable of probing
vortex matter on the micrometer range. Therefore, based on the theoretical
considerations of Chap. 3, it will be shown which information can be obtained by
these two methods and how the data acquisition and evaluation are performed.
The main focus will lie on the radiographic nGI method, as its implementation for
investigations of vortex matter is one of the main objectives of this thesis. Hence,
its contrast mechanism, which allows to study the distribution of micrometer
structures in a sample, is explained. Furthermore, it will be discussed, how and
to which extent structural information, like the size and the anisotropy of a
microstructure, are gained by means of nGI. The chapter will close with a brief
discussion of the USANS method based on a Bonse-Hart camera. Technical and
experimental details of the nGI and USANS setups are however not reviewed until
Chap. 5.

4.1. Neutron radiography
Neutron radiography is a non-destructive imaging method which provides infor-
mation about the interior of a sample with high spatial resolution. In contrast
to x-rays, neutrons are particularly sensitive to several light elements such as
hydrogen or lithium, while heavier elements such as aluminum or lead can still be
penetrated. Hence, neutron imaging is routinely applied whenever x-rays fail to
generate sufficient imaging contrast or lack of penetration. Typical applications
can be found in e.g. material science [115], cultural heritage research [116], geology
[117], and engineering [118].
Standard neutron absorption radiography is neither sensitive to magnetic struc-
tures nor allows an investigation on the micrometer scale. However, since nGI is
implemented into a neutron radiography instrument and its resolution is governed
by the beamline, a prior general discussion on radiography allows a comprehensible
introduction into grating interferometry.
A neutron imaging beamline is based on the principle of a pinhole camera [119].
Its basic setup is sketched in Fig. 4.1: The neutron source (e.g. the moderator of
a nuclear reactor or a spallation source) is in line with an aperture pinhole, the
sample, and a position sensitive detector with a high spatial resolution. In this

57
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Figure 4.1.: Illustration of a neutron imaging beamline. The neutron source is in line
with an aperture pinhole, the sample and a positional sensitive neutron imaging detector.

configuration, the attenuation of the neutron beam within an object generates an
imaging contrast.
Different kinds of neutron imaging detectors exist, however in most cases a com-
bination of a scintillator screen and a scientific CCD or CMOS camera is used.
The spatial resolution of the obtained neutron images is limited to a few 10 µm
by the divergence of the beam hitting the sample [119], the blurring within the
neutron-to-light conversation process [120], and the optical resolution of the imag-
ing recording system. The divergence of the beam projects a single point within
the object plane into a sphere of radius dR on the image plane (see Figure 4.2). By
introducing the pinhole diameter DR, the distance of the sample to the pinhole
LR and the sample-to-detector distance LS, dR can be expressed as:

dR = DR

LR
LS. (4.1)

Hence, the geometrical resolution can be increased by reducing the sample-to-
detector distance LS or the "L/D"-ratio LR/DR

1.
Strictly speaking, the final imaging resolution is a convolution of the three afore-
mentioned contributions. However, in the presented study, the resolution is mostly
limited by the geometrical resolution of the beamline, and contributions of the
detector can be neglected. The reason is the bulky sample environment required
for the vortex matter investigations, which highly increases the sample-to-detector
distance and consequently reduces the geometrical resolution.

1 The subscript R was introduced to distinguish the "L/D"-ratio used to describe the geometrical
resolution of the beamline from a similar term used in neutron grating interferometry (Sec.
4.2).
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Figure 4.2.: Geometrical resolution of a pinhole camera. A point in the object plane is
projected on a circle of radius dR in the imaging plane.

4.2. Principle of neutron grating interferometry
Neutron grating interferometry (nGI) is an advanced neutron imaging technique
which allows the simultaneous recording of the neutron transmission image (TI),
the neutron differential phase contrast image (DPC), and the dark-field image
(DFI) [121]. It is based on two neutron absorption gratings and one neutron
phase grating implemented into a neutron imaging beamline [122]. A schematic
depiction of its main components is shown in Fig. 4.3.

Figure 4.3.: Illustration of an nGI setup. The setup consists of the source grating
G0, the phase grating G1, the analyzer grating G2, and a neutron imaging detector.
Optionally, a neutron velocity selector can be introduced between G0 and G1. The
sample may either be placed between G0 and G1 or G1 and G2.

In principle, a neutron grating interferometer is a realization of a Talbot-Lau in-
terferometer for neutrons [123]. The absorption grating G0 (periodicity p0 ∼ mm),
which is located right behind the neutron pinhole, generates an array of coherent
but mutually incoherent line sources. At a distance L (∼ m) downstream, the
phase grating G1 (p1 ∼ µm) imprints a periodic phase modulation of ∆Φ ≈ π onto
the neutron wave front. Thereby, G1 acts as the beam splitter of the interferometer,
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which mainly splits the beam into the first orders whereas the zeroth order is
suppressed. The introduced periodic phase modulation of the neutron wave front
generates a complex intensity modulation of the neutron beam behind the grating.
This pattern, often called ‘Talbot carpet’, is shown in Fig. 4.4.

Figure 4.4.: Calculation of the Talbot carpet taken from Ref. [124]. Shown is the
distribution of the intensity I as function of the propagation distance. The initial phase
modulation is transferred into an intensity modulation which is maximal at the fractional
Talbot distances dn (Eq. 4.2) having an odd n. At the Talbot distance dT, the phase
modulation is recovered (Talbot self-imaging effect).

The original pure phase modulation is recovered at the Talbot distance dT, whereas
the intensity modulation is maximal at the fractional Talbot distances dn with an
odd n, but vanishes at even n [125]:

dn = n

16dT = n
p2

1
8λ . (4.2)

The interference pattern generated by this Talbot effect, has approximately half
the periodicity of the phase grating. It is hence not directly accessibly by an
imaging detector as its pitch is well below the detector resolution. Therefore, the
analyzer grating G2 (p2 ≈ p1/2) is introduced at a distance d ∼ cm from G1, right
in front of the detector [126]. As the periodicities of the interference pattern and
G2 match, the transmitted intensity I is minimized if the grating lines cover the
interference maxima and vice versa. A translation xg of one of the gratings Gi
(i = 1,2,3) perpendicular to the beam and to the grating lines will thus result in
an intensity oscillation in each detector pixel (j,l) as illustrated in Fig. 4.5.
The intensity oscillation can be approximated by:

I(xg,j,l) = a0(j,l) + a1(j,l) cos
(

2πxg

pi
− ϕ(j,l)

)
, (4.3)

in which a0, a1 and ϕ are the offset, amplitude and phase of the oscillation,
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Figure 4.5.: Illustration of an nGI stepping scan. An x-translation of G0 perpendicular
to the neutron beam will result in a translation of the interference pattern and hence in
an intensity oscillation in each detector pixel. By taking neutron images at different
positions of G0, the parameters a0, a1 and ϕ can be extracted.

respectively [122].
An nGI scan measures the change of I(xg,j,l) due to the influence of the sample
onto the interference pattern. Therefore, neutron images are taken with (s) and
without (f) a sample introduced to the interferometer for different positions xg of
the grating G0. A typical data set is shown in Fig. 4.6 consisting of 8 samples (a)
and 8 open beam images (b), respectively. Additionally, a dark image (d) has to
be recorded with the same exposure time. This dark image is taken with closed
camera shutter to amount the dark current and offset in each detector pixel of the
CCD chip.
In order to calculate the TI, DPC, and DFI, the recorded sample and open beam
images taken at different G0-positions xg are filtered for gamma spots [127] and
subtracted by the dark image in order to correct for the dark-current of the CCD
chip. Thereafter, a0, a1 and ϕ can be extracted for each detector pixel. This
evaluation can be conducted pixel-wise by a least squares fitting of I(xg,j,l) to
Eq. 4.3. Alternatively, a Fast Fourier Transformation (FFT) of the oscillation
[128] can be conducted, in which a0 and a1 are the zeroth and first order Fourier
coefficient, and ϕ is the first order phase. A fast routine for the least squares
approach was given in Ref. [129], in which the chi-square minimization is reduced
to a matrix operation acting on the whole image. The results of this thesis were
evaluated using this algorithm. However, the differences in the a0, a1 and ϕ for
the three data evaluation procedures are marginal.

4.2.1. The transmission image
As illustrated in Fig. 4.7 (a), neutron absorption leads to an attenuation of
the whole interference pattern and therefore to a reduction of the mean value
of I(xg,j,l), which is a0. Hence, the neutron transmission image is calculated
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Figure 4.6.: Typical nGI dataset which consists of 8 sample images (a), 8 open beam
images (b) and a dark image (d). Additionally, in panel (c), the intensity oscillation for
the positions marked in (a) and (b) are shown as functions of the stepping distance xg.

according to:

TI(j,l) = as
0(j,l)
af

0(j,l) . (4.4)

The TI evaluated from the data set shown in Fig. 4.6 is presented in Fig. 4.7
(b). The neutron attenuation is similar for all materials with the exception of
brass, which reveals a slightly higher transmission. The TI corresponds to the
transmission image measured by standard neutron radiography. Hence, its contrast
depends exponentially on the local absorption and incoherent scattering cross-
section σabs and σinc of the material, which were defined in Eq. 3.13 and 3.20. For
an inhomogeneous solid, the TI is given by the integration of the cross-sections
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Figure 4.7.: The transmission image: (a) Illustration of the TI contrast modality.
Neutron attenuation within the sample reduces the average intensity hitting the detector.
Hence, the intensity oscillation measured by a stepping scan is diminished by a constant
factor as

0(j,l)/af
0(j,l). (b) Evaluated TI of the dataset shown in Fig. 4.6. Experimental

details are given in Sec. 5.1.2.

along the neutron path through the sample:

TI = exp

−
∫

path

[σabs(z) + σinc(z)]Ndz

 . (4.5)

However, in the case of strong coherent neutron scattering within the material,
the TI can also provide a scattering contrast, which is demonstrated in Sec. 6.2
and explained in A.5.

4.2.2. The differential phase contrast image
The differential phase contrast image is defined as the phase shift of the interference
pattern which is caused by the presence of the sample in the interferometer:

DPC(j,l) = ϕs(j,l)− ϕf(j,l) . (4.6)

Fig. 4.8 (a) illustrates the DFI contrast modality. If the sample has an index
of refraction higher (lower) than unity, the neutron phase will be shifted by Φ
within the sample. The neutron wave front profile will then be advanced (delayed)
behind the sample, and a gradient is introduced to the neutron wave front. This
gradient is connected to the phase of the interference pattern ϕ by [130]:

ϕ = −λd
p2

∂Φ
∂x

, (4.7)

in which λ is the neutron wavelength. Hence, the DPC maps the gradient of the
neutron phase introduced by the sample. However, due to the one-dimensionality
of the gratings, only phase shifts in x-direction perpendicular to the grating lines
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Figure 4.8.: The differential phase contrast image: (a) Illustration of the DPC contrast
modality. Neutron refraction within the sample distorts the neutron wavefront. A
gradient in the neutron wavefront causes a neutron deflection that is proportional to
the phase shift ϕs(j,l)− ϕf(j,l) of the interference pattern. (b) Evaluated DPC of the
dataset shown in Fig. 4.6. Experimental details are given in Sec. 5.1.2.

can be detected.
The evaluated DPC for the data of Fig. 4.6 is shown in Fig. 4.8 (b). The arising
contrast is attributed to the refraction within the rods (n < 1) that leads to a
delay of the neutron wave front downstream the samples. This is illustrated in
Fig. 4.9 (a). Horizontal line profiles of the DPC are presented in Fig. 4.9 (b):
For the bronze, brass and copper samples, the DPC is extremal at one edge, but
gradually changes its sign to the other edge leading to a vanishing signal in the
center. The peculiar shape of the DPC is caused by the spherical cross-sections of
the rods, as the thickness t of the sample in beam direction gradually increases to
the center of the samples (compare Fig. 4.9 (a)). For a sphere, Φ(x) and DPC(x)
can be easily calculated by introducing the thickness profile t(x) into Eq. 3.12:

Φ(x) ∝ t(x) =
√

(r2 − (r − x)2 (4.8)

DPC(x) ∝ −dt(x)
dx

= r − x√
(r2 − (r − x)2

. (4.9)

A fit of the line profile to Eq. 4.9 is exemplarily shown in Fig. 4.9.
The determination of the phase shift, however, requires a finite intensity modulation
within the stepping can. If this modulation is too small, the phase determination
becomes imprecise and the DPC noisy. This is the case for the brass, and in
particular for the steel rod, which both reveal a low DFI contrast (see Sec: 4.2.3).
The phase contrast image that shows the phase profile of the sample can be
received by a one-dimensional integration [126]:

Φ(j,l) = −
∫
ϕ
p2

λd
dx . (4.10)
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However, although the DPC has a high significance in x-ray radiography due to
its high contrast for soft tissue, only minor applications have been identified for
neutrons so far. This is why the rest of this thesis will focus on the TI and DFI
contrast modalities.

Figure 4.9.: The origin of the DPC contrast in Fig. 4.8 (b). (a) Illustration of the
neutron wave front before and after passing the sample. Due to an index of refraction
smaller than one, the neutron wave front is delayed after the rod shaped sample. The
negative gradient of the wave front is mapped in the DPC. (b) Horizontal profile of the
DPC. The peculiar shape of the DPC profile is caused by the spherical cross-section of
the rods. The red curve is a fit to Eq. 4.9. The position of the samples is indicated by
the rectangular areas in the background of the graph.

4.2.3. The dark-field image
The dark-field contrast is caused by scattering within the sample that degrades
the visibility of the interference pattern, but does not influence the absorption
image (Fig. 4.10 (a)). In analogy to optical interferometry, the visibility in nGI is
defined as:

V = Imax − Imin

Imax + Imin
= a1

a0
, (4.11)

and therefore quantifies the ratio of neutron intensity forming an interference
pattern to the average intensity.
The dark-field image maps the local relative degradation of the visibility due to
the sample in the interferometer:

DFI(j,l) = V s(j,l)
V f(j,l) = as

1(j,l)af
0(j,l)

as
0(j,l)af

1(j,l) . (4.12)

Because of the normalization with a0, the DFI is not affected by pure neutron
absorption. Instead, only processes reducing the visibility cause such a contrast.
The evaluated DFI for the data presented in Fig. 4.6 is shown in Fig. 4.10 (b).
The most striking detail is the strong DFI contrast reduction in the brass and steel
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Figure 4.10.: The dark-field image: (a) Illustration of the DFI contrast modality.
Scattering under ultra-small angles smears the interference pattern, but does not change
the average intensity that reaches a detector pixel. (b) Evaluated DFI of the dataset
shown in Fig. 4.6. Experimental details are given in Sec. 5.1.2.

rod, compared to bronze and copper, where only the sample edges contribute to
the DFI. This contrast degradation in copper and steel can be linked to scattering
at small precipitations [131] and magnetic domain walls [132], respectively. A
more quantitative discussion of the DFI contrast is given below.

Nomenclature used in this thesis

In explaining the DFI modality, confusion may arise when the term ‘contrast’ is
being used. The reason is that the DFI can be described in terms of an imaging
contrast, where a lower DFI value would correspond to a higher contrast, but also
in terms of the reduction of the intensity modulation, in which a low DFI signal
implies a small contrast1. In this thesis, the latter nomenclature is used. Hence, a
high DFI contrast corresponds to a high DFI value close to 1.

The origin of the DFI scattering contrast

The following section discusses how the DFI contrast is linked to the setup
parameters and the microstructural properties of the sample. For x-ray grating
interferometry, the DFI contrast has been treated by rigorous wave propagation
calculations in Ref. [134] and [135]. Their results demonstrate a connection
between the DFI contrast and the autocorrelation function of the refraction index
within the microstructure of the sample.
A complementary, but more general theoretical approach given in Ref. [136] will
be followed and further developed. In this approach, it has been assumed that
scattering within the sample, involving a momentum transfer qx perpendicular to
the grating lines, leads to a fractional deflection of the neutron beam. Hence, the

1 The nomenclature is for example used in the Modulation of Intensity with Zero Effort
(MIEZE) technique [133].
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scattering is accompanied by a phase shift ∆ϕ of a part of the interference pattern,
generated by G1. Consequently, the DFI reduction results from a superposition of
the undisturbed and the deflected parts of the interference pattern, and thus from
scattering within the sample.
At first, the simplest case of a sample which elastically scatters all neutron
under the same angle ϑ will be considered. In the small-angle approximation
(tanϑ ≈ ϑ ≈ sinϑ), the scattering angle is proportional to a momentum transfer qx:

ϑ ≈ qxλ

2π . (4.13)

This scattering angle is directly connected to the phase shift ∆ϕ of the interference
pattern: It has been derived in Ref. [137] that ∆ϕ depends on the position of the
sample in the interferometer, according to:

∆ϕ =


2πϑ
p2

d
L

(L+ d− Ls) if sample is placed between G0 and G1
2πϑ
p2
Ls if sample is placed between G1 and G2

(4.14)

In defining an effective sample-to-detector distance Leff
S

Leff
s =

(L+ d− Ls) dL for Ls > d

Ls for Ls < d
(4.15)

the connection of the interference phase shift ∆ϕ (Eq. 4.13) and qx (Eq. 4.14)
can be expressed in an elegant way:

∆ϕ = λLeff
s

p2
qx = ξGIqx . (4.16)

Hence, the phase shift of the interference pattern caused by neutron scattering
is proportional to the momentum transfer qx and a setup specific constant ξGI
denoted as autocorrelation length of the setup:

ξGI = λLeff
s

p2
. (4.17)

For most nGI setups, ξGI typically amounts a few micrometers [122, 138–140].
If one assumes scattering in equal parts to ±qx, the visibility is degraded as:

V s = V f cos (∆ϕ) = V f cos (ξGIqx) , (4.18)

since 1
2 [cos (ϕ+ ∆ϕ) + cos (ϕ−∆ϕ)] = cos (ϕ) cos (∆ϕ). The discussed degrada-

tion of intensity modulation caused by a single qx scattering event is illustrated in
Fig. 4.11.
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Figure 4.11.: The origin of the DFI contrast. Shown is a sample which perfectly
scatters neutrons involving only a single momentum transfer qx. In this case, the
original open beam intensity modulation is splitted into two oscillations (blue and green)
revealing a phase shift ±∆ϕ. The resulting intensity oscillation is their superposition
(orange). It is again a sinusoidal modulation, but with reduced amplitude.

The assumed approximation of symmetric scattering is commonly used in small-
angle scattering, where the scattering pattern is mostly influenced by the form
factor instead of the structure factor. However, it excludes the description of
Bragg scattering within this approximation.
If the assumption of a single q-transfer is rejected, the whole scattering distribution
S(qx) has to be taken into account:

V s = V f
∞∫
−∞

S(qx) cos (ξGIqx) dqx . (4.19)

The introduced function S(qx) can be interpreted as the probability that a neutron
is scattered in the direction qx. This probability is independent of the scattering
parallel to the grating lines1. Hence, S(qx) will be proportional to the slit-smeared
differential scattering cross-section

(
dσ
dΩ

)
slit

defined in Eq. 3.42. In order to fulfill
the probability condition

∫
S(qx)dqx = 1, the scattering cross-section has to be

scaled by

S(qx) = 1
4π2G(0)

(
dσ

dΩ

)
slit

, (4.20)

1 In Sec. 4.5, it will be shown that the same holds true for USANS using a Bonse-Hart camera.
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since according to Eq.3.32, the integral of
(
dσ
dΩ

)
slit

is given by:

∞∫
−∞

(
dσ

dΩ

)
slit
dqy = 4π2G(0) . (4.21)

Inserting S(qx) into Eq. 4.19 rearranges the DFI signal to:

DFI = V s

V f = 1
4π2G(0)

∞∫
−∞

(
dσ

dΩ

)
slit

cos (ξGIqx) dqx (4.22)

= 1
G(0)

1
4π2

∞∫
−∞

(
dσ

dΩ

)
slit

exp (ξGIqx) dqx (4.23)

= G(ξGI)
G(0) . (4.24)

The cosine function was replaced by an exponential function, as this does not
change the transform for a symmetric argument. In the last line, the correlation
function G(ξGI) of Eq. 3.36 has furthermore been identified. Hence, the DFI
contrast is directly linked to the real space correlation function G(x) evaluated
at the setup correlation length x = ξGI. Therefore, the nGI is closely related to
spin-echo small-angle neutron scattering, which also measures G(x) directly [108].
In a realistic scenario, some neutrons will pass the sample without scattering,
and only a fraction 1− Σt of the beam might be scattered within the sample of
thickness t. In this case, Eq. 4.24 expands to:

DFI = (1− Σt) + ΣtG(ξGI)
G(0) . (4.25)

Finally, according to the idea introduced by Schelten and Schmatz [141], multiple
(n-fold) scattering in a sample can be handled as an n-fold convolution integral
of the reciprocal space differential scattering cross-section. These convolutions
elegantly reduce to a multiplication of the real space correlation functions. Applied
to the DFI contrast, multiple scattering can be included to Eq. 4.25 by [136, 142]:

DFI = exp
[
Σt
(
G(ξGI)
G(0) − 1

)]
(4.26)

which is the final equation defining the DFI contrast1.
Four distinct conclusions can be drawn from the derivation above: (i) The DFI

1 Note that Eq. 4.25 is the expansion of Eq. 4.26 for small Σ or t, and high G (ξGI).
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contrast depends exponentially on the sample thickness in beam direction. To-
mographic DFI reconstructions can therefore be based on the same algorithms as
attenuation based tomography [143]. (ii) A variation of ξGI via a wavelength or
distance scan allows to directly measure the real space correlation function of the
material within the boundaries given by the accessible wavelength band or setup
distances. Hence, the deduction of quantitative information is possible, even in
combination with high spatial resolution (Sec. 4.4). (iii) As the dark-field signal is
generated by the microstructure of the sample, a material specific dark-field extinc-
tion coefficient can be defined [131] which differs from the attenuation coefficient
and provides additional imaging contrast. (iv) The DFI is insensitive to scattering
contributions parallel to the grating lines. Consequently, if the scattering function
and hence the underlying microstructure of an object are anisotropic, its DFI
will depend on the rotation angle ω of the grating lines around the beam axis.
Detailed information about the microstructural orientation can thus be obtained
by a DFI(ω) scan (Sec. 4.3).

4.3. Directional dark-field imaging
Directional dark-field imaging evaluates the variation of the DFI signal with the
rotation angle ω of the grating lines around the beam axis. The DFI is insensitive
to the scattering components parallel to the grating lines. Hence, this rotation of
the gratings will result in an oscillation of the DFI contrast if the microstructure of
the sample is anisotropic. From the shape of the oscillation, detailed information
about the microstructural orientation within a sample can be obtained. Depending
on the scattering strength and the number of predominant scattering directions,
different evaluation procedures have been published [144–146]. However, it will be
shown that all of them naturally arise from the dependence of the DFI signal on
the correlation function G(x) which was derived in Sec. 4.2.3. A direct connection
to results from scattering experiments can consequently be established.
The DFI contrast of an arbitrary differential cross-section depends on its autocor-
relation function G(x,y = 0). As shown in Sec. 3.2.4, G(x) is simply given as the
Fourier transform of the slit-smeared differential scattering cross-section. If the
setup or the sample is rotated by an angle ω around the beam, the slit-smearing
has to be performed along a different path in the reciprocal space to calculate
the correlation function G. This situation is sketched in Fig. 4.12, in which an
arbitrary differential scattering cross-section dσ

dΩ (q) is shown together with the
integration path to perform the required slit-smearing (red line). However, for
this consideration, it is non-relevant if the sample or the gratings are rotated, as
only their relative rotation matters. The discussion is therefore restricted to the
case where the sample is turned relative to the gratings.
If the sample is rotated at an angle ω around the beam axis, the scattering function
is given by dσ

dΩ

(
q′x,q

′
y

)
(Fig. 4.12 (b)). The correlation function then changes to
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GR(x), according to:

GR(x,y = 0) = 1
4π2

∫
qx,qy

dσ(q′x,q′y,0)
dΩ exp (iqxx) dqxdqy . (4.27)

Here, q′x and q′y are coordinates in the rotated coordinate system. The two-
dimensional Fourier transform of a rotated function equals the Fourier transform
rotated by the same angle which is why Eq. 4.27 can be rewritten as:

GR(x,y = 0) = G(x′,y′) = G(x cosω,− x sinω) , (4.28)

in which x and y were substituted according to:

(x′,y′) = (x cosω + y sinω,− x sinω + y cosω) (4.29)
= (x cosω,− x sinω) . (4.30)

Finally, the ω dependence of the DFI contrast results as:

DFI (ω) = exp
[
Σt
(
G(ξGI cosω,− ξGI sinω)

G(0) − 1
)]

. (4.31)

The DFI(ω) variation under the simplified assumptions of a bi-gaussian scattering
distribution is derived in Ap. A.2. Corresponding data are e.g. published in Ref.
[147].

Figure 4.12.: Directional dark-field imaging of an anisotropic sample: (a) The correla-
tion function measured by the DFI depends on the differential scattering cross-section of
the sample (yellow) integrated along the direction of the grating lines qy (red line). If the
sample is rotated, the coordinate system of the differential scattering cross-section (q′)
is rotated against the system of the grating setup (b) and the integrated, slit-smeared
differential scattering cross-section as well as G(x) change. Hence, information about
the anisotropy within the sample can be gained by a DFI(ω) scan.
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4.4. Quantitative dark-field imaging
It has been shown in Sec. 4.2.3 that the DFI contrast depends on the correlation
function G evaluated at a setup specific correlation length ξGI. A single nGI
measurement only provides information in form of a single point of the correlation
function, which is insufficient in order to link the contrast to any structural
parameters. However, ξGI depends on the neutron wavelength, as well as on the
sample-to-detector distance Leff

s . A variation of these quantities allows to measure
the correlation function on a wider range and to draw microstructural conclusions
on the morphology of the sample. This approach is denoted as ´quantitative
dark-field imaging’. Its feasibility and potential has been demonstrated in Refs.
[147], [148] and [149]. The accessible parameter space is however restricted, since
the visibility of nGI also depends on the wavelength and the setup geometry. In
the following section, the limits on V set by λ and Leff

s will be discussed.

4.4.1. The effects of the wavelength onto the visibility
An nGI setup is normally tuned to one specific wavelength, as the analyzer grating
G2 is fixed at the wavelength dependent first fractional Talbot distance d1 = p2

1/8λ
(Eq. 4.2) behind G1. A variation of λ for quantitative DFI will result in a detuning
of the G1-G2-distance d and d1 and therefore in a diminishing of the visibility1.
However, a variation of the wavelength will also change the phase modulation of
the neutron wave front introduced by G1, which influences the visibility as well,
and leads to a complex V (λ) dependence.
For x-rays, this problem has been treated numerically in Ref. [125], in which the
visibility of a perfectly coherent grating interferometer was calculated as function
of the reduced propagation distance ηd = d

dT
and the phase shift Φ introduced by

G1. While not explicitly stated in Ref. [125], their data clearly suggest that the
visibility VT of a perfectly coherent setup is well described by:

VT(Φ,ηd) = 1
2 (1− cos Φ) |sin(8πηd)| . (4.32)

Applied to neutrons, both ηd as well as Φ linearly depend on the wavelength [122]:

Φ = nsldh1λ (4.33)

ηd = d

2p2
1
λ , (4.34)

1 For a visualization compare the Talbot carpet shown in Fig. 4.4. The amplitude modulation
of the interference pattern is maximal only at the fractional Talbot distances.
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in which nsld = Nbc = 2.079× 1014 m−1 (Eq. 3.12) is the scattering length density
of the G1 material Si [150] and h1 is the height of the grating lines of G1. Hence,
the wavelength dependence of the visibility can be evaluated by combining Eq.
4.32, 4.33 and 4.34 in order to yield:

VT(λ,d) = 1
2 [1− cos (nsldh1λ)]

∣∣∣∣∣sin
(

4πd
p2

1
λ

)∣∣∣∣∣ . (4.35)

The above equation models the wavelength dependence of the visibility in an ideal
setup. However, in a real nGI, the absorption within the absorption gratings G0
and G2 will be wavelength dependent, too. The associated visibility degradation
will be derived in Ap. A.3. For the gratings Gi (i = 0,2), it is given by:

VGi(λ) = DCi

DCi +
[
exp(hiσt

λ
1.8 Å)− 1

]−1 , (4.36)

in which DCi is the duty cycle of the grating i, hi is the height of the grating lines
and σt is the macroscopic absorption cross-section of the grating material at 1.8Å.

Figure 4.13.: Quantitative DFI by a variation of the neutron wavelength. Shown is
the wavelength dependence of the visibility caused by the modifications of the Talbot
carpet VT(λ,d) as well as by the finite transmission through the grating lines VG0(λ)
and VG2(λ). The red curve is the product of these single contributions and corresponds
to the total visibility variation. A quantitative DFI measurement is possible within the
green wavelength band in which the visibility did not drop below 20 % of its maximum
value Vmax.

The overall wavelength dependence of the visibility is finally given by:

V (λ) = V0VT(λ,d)VG0(λ)VG2(λ) . (4.37)
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V0 can be interpreted as maximal achievable visibility of the setup, which depends
on the quality of the gratings [151], the coherence of the beam hitting G1 [152],
and the smearing of the interference pattern due to the beam divergence [121].
The visibility V (λ) as function of the wavelength is plotted in Fig. 4.13 for a set
of actual setup parameters (see Sec. 5.1.2). Additionally, the single contributions
VT(λ,d), VG0(λ), VG2(λ) are shown. The resulting visibility is a peaked function
with a maximum around 4Å and a fast degradation towards higher and lower
wavelengths. Compared to VT, the resulting visibility V is reduced and slightly
shifted to higher wavelengths by the finite transmission through the absorption
gratings. If one assumes that the visibility should not drop below one fifth of its
maximum value in order to obtain a sufficient signal-to-noise ratio in the DFI [128],
a quantitative DFI investigation is only reasonable between 2 and 6Å. Hence,
wavelength-dispersive dark-field imaging allows to map the correlation function
only in the range of ( ξGI

2 ,
3ξGI

2 ) around its value ξGI of maximum visibility.

4.4.2. The effects of the setup distance onto the visibility
The second possibility to change the correlation length, is by tuning the effective
sample-to-detector distance Leff

s . However, for the configuration that is mostly
used, where the sample is positioned between G0 and G1, an increasing of Ls only
slightly reduces Leff

s and hence ξGI (compare Eq. 4.15). A stronger influence on
the correlation length ξGI arises from the total length of the grating setup L+ d.
This parameter cannot be arbitrarily changed, though, because: (i) L and d have
to fulfill the theorem of intersecting lines [126]:

p0
d

L
= p2 , (4.38)

to guarantee that the interference pattern originating from different slits of G0 are
constructively superimposed onto the detector (See. Fig. 4.14 (a)), and (ii) L and
d have to be scaled according to:

d

L
=
(

2p2

p1
− 1

)
= const. , (4.39)

since otherwise the interference pattern would be magnified onto the grating G2,
which would result in vertical Moiré-fringes at the detector (see Fig. 4.14 (b) and
caption within)1. Therefore, L and d have to be scaled equally.
In Fig. 4.15, the visibility according to Eq. 4.37 is plotted for arbitrary wavelengths
and distances under the condition that d/L remains constant. The orange line

1 Moiré-fringes are periodical patterns that develop when periodic objects are overlaid in a
slightly misaligned way. If the reader is interested in a visualization, he might take a look
onto a curtain nearby.
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Figure 4.14.: Geometrical restriction on an nGI. Illustrated are the nGI setup, consisting
of the source, phase and analyzer grating. (a) The distances L, d, p0 and p2 have to
fulfill the theorem of intersecting lines 4.38 to ensure that the interference patterns from
different slits are constructively added together. (b) The neutron wave front emanating
from the slits of G0 is slightly spherically distorted, leading to a cone beam geometry.
The interference pattern produced by G1 will be consequentially magnified and the
periodicity of the intensity modulation behind this grating (black waved lines) increases
with the distance. Therefore, if the magnification relation 4.39 is not fulfilled, the
periodicity of the interference pattern and p2 will not match, resulting in Moiré patterns
at the detector.

again surrounds the parameter space with V > 0.2Vmax and thus marks the region
where an nGI scan is possible.
Clearly, the distance d can be varied between 5 and 25 mm and hence, the total
length of the setup is fairly adjustable as well. However, for a given fixed LS, the
correlation length will vary according to

ξGI (d) = λ

p2

[
2p2d

p1 + Ls(1−
2p2

p1 )
]
, (4.40)

and in this way, a distance variation can only provide a moderate extension of the
probed correlation length.
The above results implicate that a general structure determination is limited in
grating based methods by the restrictions on the probed correlation length ξGI.
Nonetheless, the quantitative DFI approach provides spatially resolved information
which are strongly complementary to results from scattering methods such as
SANS and USANS. Structural information obtained by means of these scattering
techniques can be used to determine an averaged correlation function [108] of the
microstructure, which can then be checked by means of nGI for local deviations
in e.g. shape, concentration or structure size. In addition, an nGI is surprisingly
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stable to a variation of the setup parameters and can flexibly be adjusted to
different experimental conditions.

Figure 4.15.: Visibility as a function of the wavelength and the G1-G2-distance d. Data
were calculated using Eq. 4.37 for typical setup parameter (see Sec. 5.1.2). It was
assumed that d/L is kept constant. The maximum accessible distance d within the nGI
setup has been assumed to be 25 mm. The orange dotted line corresponds to a visibility
reduction to 20 %. Within the line, the visibility is sufficient for an nGI measurement.
Hence, an nGI can be flexibly adopted to various setup geometries.

4.5. Ultra-small-angle neutron scattering using a Bonse-Hart
camera

A conventional pinhole SANS instrument is not capable of probing the micrometer
length scale of superconducting domains, since the corresponding neutron scat-
tering angles of a few 0.1 mrad (momentum transfer qmin ≈ 1× 10−4 Å−1) cannot
be resolved without the use of additional focusing neutron optical devices [107].
Instead, ultra-small-angle neutron scattering using a Bonse-Hart camera [153] has
become the standard tool for the investigation of such low scattering angles and
allows to cover a q-range down to 1× 10−5 Å−1.
As shown in Fig. 4.16, a Bonse-Hart camera is a double crystal diffractometer:
Neutrons are Bragg reflected by a monochromator crystal onto the scattering
sample. Behind the sample, the angular distribution of the neutron beam is
measured by rotating an analyzer crystal, which is known as ‘rocking scan’. The
difference in the angular intensity variation without (a) and with (b) a sample
introduced to the diffractometer correlates with its neutron scattering function.
For an infinitely thick and transparent single crystal, the reflectivity function RD

around a nuclear Bragg peak is given as [154]:

RD(y) =
1 |y| ≤ 1(
|y| −

√
y2 − 1

)2
|y| > 1

(4.41)
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Figure 4.16.: Illustration of a Bonse-Hart camera. (a) Top view of the empty setup. In
principle, a Bonse-Hart camera is a double crystal diffractometer, but with channel-cut
crystals that scatter the neutron beam multiple times. Neutrons that were initially
Bragg scattered at an angle ϑB within the first monochromator crystal, will be deflected
by the analyzer into the detector if the crystals are oriented perfectly parallel. (b) If a
sample is introduced between the crystals, a part of the neutrons will be scattered and
the analyzer has to be rotated by the corresponding scattering angle to deflect these
neutrons into the detector.

in which y = (ϑ− ϑB)/δϑD is the angular parameter depending on the incidence
angle ϑ and the Bragg angle ϑB of the corresponding crystal plane. The Darwin
width δϑD depends on the Debye-Waller factor, the structure factor and the angle
of the corresponding Bragg reflection. It typically lies in the range of 1× 10−2 mrad.
The reflectivity curve of a crystal according to Eq. 4.41 is shown in Fig. 4.17 (a).
Clearly, the Darwin width can be interpreted as half the angular range of total
reflection. However, the single reflectivity curve RD is not a perfect rectangular
function, but has broad wings outside the Darwin plateau. If the finite thickness
of the monochromator and analyzer crystals is additionally taken into account,
the angular distribution will be smeared out further, due to successive scattering
at the back and front faces of the crystal. The necessary corrections of Eq. 4.41
have been derived in Ref. [155] to:

RE(y) = 2RD(y)
1 +RD(y) . (4.42)

This result corresponds to the reflectivity curve for thin crystals originally derived
by Ewald [156]. It is additionally plotted in Fig. 4.17 (a).
The angular resolution of a double crystal diffractometer is given by the width of
the rocking curve. It is calculated as the convolution of the reflectivity curves of
the monochromator (M) and analyzer (A) crystal [157]:

I(∆ϑ) =
∞∫
−∞

RM
E (y(ϑ))RA

E(y(ϑ−∆ϑ))dy . (4.43)
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Figure 4.17.: Reflectivity of a single crystal and rocking curve of a double crystal
monochromator. (a) Reflectivity curve for a single Bragg reflection at an infinitely thick
crystal RD, a single Bragg reflection of a thin crystal RE, and a triple Bragg reflection
at a thin crystal R3

E. (b) Rocking curves of a double crystal diffractometer consisting of
single and triple-bounce crystals, respectively.

Here, ∆ϑ is the angular difference between the crystal orientations. The rocking
curve of a double crystal monochromator with a single Bragg reflection I1

E is shown
in Fig. 4.17 (b). Clearly, the angular resolution of the diffractometer is influenced
by the Darwin width, but, more importantly, by the wings of the reflectivity curves
outside the Darwin plateau. Consider e.g. an angle of ≈ 10δϑD that corresponds
to typical scattering angles measured by USANS. The rocking curve only drops
down to 1 % of its maximum value, which is highly insufficient to measure weakly
scattering samples.
In a Bonse-Hart camera, the single reflecting crystals are replaced by channel-
cut crystals in which the neutron beam is reflected m-times. In this way, the
reflectivity curve of the crystals is given by Im

E . As shown for the case m = 3 in
Fig. 4.17, the manifold reflection suppresses the wings in the reflectivity curve
(a) and strongly reduces the background in the rocking curves (b), which finally
enables the measurement of USANS. However, in a realistic Bonse-Hart camera,
the simple channel-cut crystals have to be carefully surface treated and slightly
modified by additional shielding in order to reduce parasitic effects by surface
induced, air and thermal diffused scattering. Details can be found in Ref. [31]. A
typically used, modified crystal geometry is shown in Fig. 4.18 (a), in which it is
tried to block all neutron trajectories that deviate from the triple-bounce path.
In a USANS experiment, rocking curves have to be measured for the empty beam
(IEB) and for the sample inserted to the diffractometer (ISA). The scattering curve
is then calculated according to [158]:

I (qx) = ISA (qx)− TrockIEB (qx) , (4.44)

as the rotation angle of the analyzer corresponds to the measured scattering angle
(compare Fig. 4.16 (b)). Trock is the measured transmission of the sample.
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Figure 4.18.: Details of USANS. (a) Top view of a typical analyzer crystal. Several
modifications are necessary on a simple channel-cut design to reduce parasitic effects
increasing the background in a rocking scan. Cadmium and Gadolinium shielding on the
back faces and the edges of the crystal, prevent neutrons which were scattered in the
surrounding air or which were thermally diffused scattered (TDS) within the crystals to
reach the detector. Reprinted from [157] with permission of the International Union
of Crystallography. (b) The effect of slit-smearing in a USANS experiment. Shown is
the differential scattering cross-section of a system of diluted spheres of radius 1 µm.
The rocking curve of a Bonse-Hart camera is insensitive to scattering components in
vertical direction y. Hence, the measured rocking curve for a given qx is the integral of
the differential scattering cross-section along the qy-direction (dashed white line).

The Bonse Hart technique strongly decreases the measurable momentum resolution
to the 1× 10−5 Å−1 regime, while still providing sufficient counting rates. This is
caused by three reasons: Firstly, a rather polychromatic neutron spectrum can be
used, as the reflection on the monochromator introduces an angular-wavelength
correlation to the neutron beam that is completely canceled by the analyzer
[159]. Secondly, contrary to SANS, the resolution in USANS is independent
of the aperture size. Finally, the high momentum resolution in horizontal qx-
direction is reached at the expense of resolution in vertical direction. Hence, a
point of a USANS rocking curve corresponds to the integration in qy-direction
of all scattering vectors that have the same qx-component (see Fig. 4.18 (b)).
Consequently, the scattered intensity is proportional to the slit-smeared differential
scattering cross-section defined in Eq. 3.33.
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In the following chapter, the technical details of the experimental methods used in
this thesis are considered with a focus on the neutron grating interferometer that
has been newly implemented at the ANTARES beamline at Heinz Maier-Leibnitz
Zentrum (MLZ). The experimental setup is introduced, the manufacturing of the
gratings is discussed and the instrument is extensively characterized in terms
of visibility and particle size sensitivity. A comparison to the nGI of the ICON
beamline at the Paul-Scherrer-Institut (PSI) is given, since parts of this thesis
are based on results obtained with this instrument. Furthermore, the sample
environment, which has been used in most of these studies, will be presented.
The section will close with a brief summary of the (ultra-)small-angle neutron
scattering instruments BT-5 at the National Institute of Standard and Technology
(NIST), SANS-1 and KWS-3 at the MLZ, and TPA at the Laboratoire Léon
Brillouin (LLB), where experiments were conducted during this thesis.
Parts of this chapter have been already published in [147].

5.1. The neutron grating interferometer at the ANTARES
beamline

5.1.1. The ANTARES beamline
ANTARES is a multi-purpose imaging beamline located at the beam port 4a
of the FRM II reactor [160]. It provides a mixed spectrum of cold and thermal
neutrons, peaked at λ = 1.3Å [161]. The pinhole diameter can be varied between
2 and 36 mm to adjust the geometrical resolution of the instrument (Sec. 4.1).
A drawing of the beamline is shown in Fig. 5.11. The beamline is separated in
three chambers. The first chamber (a) contains various beam shaping devices:
a neutron velocity selector (Astrium NVS) providing a minimum wavelength of
2.95Å with a wavelength spread ∆λ/λ of 10 %, a double crystal monochromator
(1.4Å -6.0Å, ∆λ/λ ≈ 3 %), and a neutron filter wheel which includes a bismuth,
a lead, a sapphire and a beryllium filter.
Helium filled flight tubes transport the neutron beam to the remaining chambers

1 Furthermore, a Cartesian coordinate system is defined in this figure, which will be used in
the remainder of this thesis. The z-axis corresponds to the direction of the neutron beam,
while the y-axis defines the vertical direction.

81



82 5. Experimental details

(b & c), each of which contains a sample position equipped with a neutron imaging
detector, which is composed of a 6LiF/ZnS scintillator and a CCD camera (Andor
IkonL 4Mpix). The maximal achievable neutron flux amounts to 1× 108 cm−2s−1

at L/D = 400.

Figure 5.1.: The nGI-setup at ANTARES: Drawing of the ANTARES beamline, showing
the main components of the nGI. a: Beam formation chamber, b: Chamber 1, c:
Chamber 2, 1: Neutron wavelength selector, 2: Horizontal z-rotation stage of G0, 3:
Linear x-translation stage, 4: Vertical y-rotation stage, 5: Grating G0, 6: Mounting of
G2, 7: Grating G1, 8: z-Euler cradle of G1 and G2, 9: z-translation stage of G1 and 10:
z-goniometer head for G1.
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5.1.2. The nGI setup
For the absorption grating G0, a polished, single crystalline quartz wafer (diameter
= 102 mm, thickness = 1 mm) was used as substrate. An adhesive layer of 25 nm
chromium followed by a neutron absorbing layer of 20 µm gadolinium and a
protective cover layer of 50 nm aluminum was deposited onto the wafer by Ar
sputtering. Gd has been chosen as absorbing material, because it has the highest
absorption cross-section for thermal and cold neutrons [150]. The grating lines
were subsequently incorporated into the layers by laser ablation. The resulting
absorption grating has a periodicity of pG0 = 1.6 mm and a duty cycle DC0 of
0.4. It is shown in Fig. 5.2 (a). The grating is mounted in a rotation stage (see
Fig. 5.1), allowing for 360° rotation around the beam axis. Furthermore, the
grating can be rotated around y by an angle χG0 to change its effective periodicity
p0 = pG0 cos(χG0) seen from the detector. The whole G0 setup is mounted on
an x-translation stage, allowing a high precision movement perpendicular to the
neutron beam.

Figure 5.2.: Gratings G0 and G1. (a) Picture of the absorption grating G0 which has
been incorporated into a 50 nm Al/20 µm Gd/25 nm Cr layer by laser ablation. (b)
Picture of the phase grating G1 which has been structured into an Si single crystalline
wafer. (c) Cross-sectional SEM image of the grating structure of G1 (by courtesy of
Micromotive Mikrotechnik [162]).

The phase grating G1 is made from Si, since this material reveals negligible
attenuation for neutrons [150]. The grating was commercially obtained from
Micromotive Mikrotechnik [162]. The rectangular grating lines were dry etched
into the surface of the Si wafer (diameter = 127 mm, thickness = 0.5 mm), leading
to a grating periodicity of p1 = 7.98 µm, a duty cycle of 0.5 and a structure height
of h1 = 43 µm. A picture as well as a scanning electron microscope (SEM) image
of the grating are shown in Fig. 5.2 (b) and (c), respectively.
The fabrication of the analyzer grating G2 is most challenging, since it has the
smallest periodicity. So far, these gratings were produced following the method
described in [122], in which Gd is sideways evaporated onto a Si grating with
the required periodicity p2. However, especially for large wafers, this procedure
results in an inhomogeneous distribution of Gd on the substrate. To avoid this
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inhomogeneity, a different approach based on Ar sputtering has been followed,
which is illustrated in Fig. 5.3 (a): A collimator was introduced between the Gd
sputtering target and the substrate grating, which is continuously moved back
and forth during the sputtering. The substrate grating has been structured on top
of a 127 mm diameter Si wafer similar to G1, and has a periodicity of p2 = 4 µm,
a height of 6 µm, and a grating line thickness of 1 µm. The collimator consisted of
thin brass lamellae inclined at ε = 25°. In this geometry, only Gd atoms leaving
the target at an angle of ε = 25 ± 2.5° can reach the substrate, allowing for a
specific sidewall deposition. An SEM image of the resulting grating is shown in
Fig. 5.3 (b). The image was recorded on the cross-section of a small 1 cm× 2 cm
test piece of the grating covered with 3 µm of Gd. A well defined absorption
grating was obtained. On top of the Si lines, the angle ϑ is recovered as the
diagonal of the Gd deposition. The height of the Gd lines amounts to h2 = 9 µm
resulting in a maximal neutron transmission of 7 % at λ = 3.5Å. The sputtered G2
revealed a total neutron transmission of 59 % at λ = 3.5Å with an inhomogeneity
of ±1.5 % over the whole grating. Hence, an effective duty cycle can be calculated
by DC2 = 59 %−7 %

1−7 % = 0.56. The gratings G1 and G2 are mounted together on a
large Euler cradle, which is situated in the second chamber right in front of the
detector (compare Fig. 5.1). This setup allows a simultaneous rotation of both
gratings around the beam axis. Furthermore, G1 is fixed on a goniometer head
and a linear stage, which enables to tune the distance d of the gratings and to
rotate G1 against G2, which is necessary to adjust the setup.

Figure 5.3.: The fabrication of G2 by Gd sputtering on an Si grating: a: Schematic
of the sputtering geometry (dTC = 29 mm, dC = 10 mm and s = 4.1 mm) b: SEM
cross-sectional image of the obtained Gd absorption grating.
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5.1.3. Geometry of the nGI setup at ANTARES
In x-ray grating interferometry, especially at a synchrotron source, the setups
are mostly optimized to exhibit a maximum visibility. This is guaranteed as
long as the geometric relations of Sec. 4.4.2 are fulfilled and d corresponds to a
fractional Talbot distance [122]. However, neutron radiography suffers from the
low neutron flux available, even at high brilliance neutron sources. Therefore,
the setup optimization cannot be based on visibility considerations only, as a
reduction of the setup length will strongly increase the neutron flux (∝ (L+ d)2)
at the sample position. Based on these considerations, the setup length L+ d has
been reduced. As discussed in Sec. 4.4.2, this is possible, as long as the ratio L/d
is kept constant. The setup parameters were subsequently adjusted according to
Eq. 4.37 to maximize the visibility for this setup length. In Tab. 5.1, the actual
parameters are shown and compared with the parameters calculated according to
Ref. [122] in which the neutron flux has not been considered. By using Eq. 4.37,
the maximum visibility reduction caused by these improvements can be quantified
to only 1.5 %. However, this is compensated by a flux enhancement of 24 % at the
detector, due to a reduced distance to the pinhole.

parameter value according to Ref. [122] actual value
λ 3.5Å 4.0Å
p0 1.596 mm 1.596 mm
DC0 0.4 0.4
p1 7.98 µm 7.98 µm
p2 4.00 µm 4.00 µm
d 22.7 mm 18.0 mm
L 9.10 m 7.19 m

Table 5.1.: Parameters of the nGI setup: λ neutron wavelength, pi periodicity of
grating Gi, DC0 duty cycle of G0, L distance between G0 and G1 and d distance from
G1 to G2.

5.1.4. Visibility of the nGI setup at ANTARES
Fig. 5.4 (a) shows the wavelength dependence of the visibility of the setup. As the
neutron velocity selector is unable to reach wavelengths below 2.95Å in its default
configuration (wavelength spread ∆λ/λ = 0.1), the NVS was tilted by 5° to access
lower λ [163] in a second scan. However, this is accompanied by an increase of
∆λ/λ to 0.2. The visibility was determined for each pixel from a stepping scan
over one period in 9 (∆λ/λ = 0.2) or 8 steps (∆λ/λ = 0.1), respectively, and
subsequently averaged over the whole image. The exposure time was set to 80 s
per step. The maximum of the visibility is found between λ = 3.9Å and λ = 4.0Å.
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Figure 5.4.: Characterization of the nGI: Visibility of the current setup (a) and
normalized intensity at the detector (b) vs. wavelength for two different ∆λ/λ. The
visibility was extracted by averaging the visibility of the full field of view. Error bars
correspond to the standard deviation of the visibility. The intensity was determined at a
scintillator position next to the gratings and normalized to the exposure time. Error
bars correspond to the statistical counting error.

The data were fitted using Eq. 4.37 and the setup parameters defined in Tab. 5.1
and Sec. 5.1.2. The maximal achievable visibility V0 has been determined to be
28.2 %1, 2.
The trend of the visibility is very well described by the derived relation 4.37,
although the wavelength was not purely monochromatic. Deviations from the
monochromatic visibility V are, however, expected to be smaller than 1 % for
∆λ/λ = 0.1 and 1.7 % for ∆λ/λ = 0.2 in the particular wavelength range [147].
Hence, the deviations caused by the finite wavelength spread of the NVS lie well
below the error bars obtained in Fig. 5.4. Therefore, especially below λ = 3.3Å,
it is preferable to perform experiments with a higher wavelength spread, as the
gain in the detected intensity is a factor of 2 in the case of increasing ∆λ/λ from
10 % to 20 % (see Fig. 5.4 (b)).

1 V0 is the parameter defined in Eq. 4.37 which describes V (λ,d), not the maximum of the
curve shown in Fig. 5.4 (a), in which V (λ,d = const.) has been measured.

2 Note that a theoretical limit of 0.5 exists for the visibility of the ANTARES setup [121].
This value is not reached, since the transmission profile of the analyzer grating is not binary.
However, this visibility is comparable to values reached at other facilities [120].
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5.1.5. The sensitivity of the DFI to structures of different sizes
In order to define the sensitivity of the DFI contrast to different structure sizes, it
has been proposed to use diluted spherical particles as reference material [134].
Although the DFI contrast might be slightly different for arbitrarily shaped mi-
crostructures, this referencing has general significance for diluted systems. The
reason is the discussed property of the correlation function G (Eq. 3.39) to decay
to zero at the longest distance characterizing the microstructure, which is the
diameter for spheres (see e.g. Ref. [108]). The DFI sensitivity to different structure
sizes can be calculated via Eq. 4.26 with the correlation function and macroscopic
cross-section of spheres already given in Eq. 3.45 and 3.48.
Following the discussed approach, nGI experiments were performed on different,
diluted mono-dispersed polystyrene particles, similar to the ones used in Ref. [148].
The spherical particles with a diameter of 110 nm, 510 nm, 740 nm, 1.0 µm, 2.0 µm,
3.0 µm, 4.0 µm and 5.0 µm, respectively, were dissolved in a mixture of 56 % H2O
and 44 % D2O, and each sample was filled in a 5 mm thick quartz cuvette. The
particle volume concentration φV was set to 9 % for each particle diameter. ∆ρ
has been calculated to be 1.082× 1014 m−2 [164]. nGI scans (16 steps, 1 period
p0, exposure time per step = 60 s) were performed on all of the colloides and on
three cuvettes filled with H2O, D2O and the H2O/D2O solvent, respectively.

Figure 5.5.: DFI sensitivity to different particle sizes. TI (a) and DFI (b) of cuvettes
filled with diluted spherical colloids of different diameters, an empty cuvette and three
cuvettes filled with H2O, D2O and H2O/D2O, respectively. The particle diameters in
the figure are given in units of µm. The images were merged from different TIs and
DFIs recorded at λ = 3Å. Clearly, the DFI contrast depends on the diameter of the
spheres, whereas the TI contrast is not influenced by the particle size.

Fig. 5.5 (a) and (b) show the TIs and DFIs of all the samples, respectively, taken
at a wavelength of 3Å. The images were merged from three TIs (DFIs), recorded
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separately. The TI contrast is identical for all colloids, as their chemical composi-
tion and concentration is equal. In contrast, the DFIs shown in Fig. 5.5 (b) reveal
strong deviations in the signals of the different colloids: the high contrast for the
0.1 µm particles strongly decreases with enhanced particle sizes. To quantify the
contrast degradation, Fig. 5.6 (a) shows the average DFI of the colloids as function
of the particle diameter dcol = 2R for a neutron wavelength of 3.9Å, corresponding
to the value generating maximal visibility (see Sec. 5.1.4). To eliminate the DFI
contrast contribution arising from incoherent scattering at the hydrogen within
the solvent [148], the DFI values were normalized to the DFI within the H2O/D2O
mixture taken to the power of 91 %. This fractional normalization accounts for
the fact that in the colloids 9 % of the solvent are replaced by polystyrene but is
slightly different to the normalization performed in Ref. [148]1.

Figure 5.6.: Quantitative evaluation of the DFIs vs. wavelength. (a) DFI versus
particle diameter of the colloids at λ = 3.9Å. The averaged DFI within each colloid
was normalized to the contrast of the H2O/D2O mixture. The solid curve represents
the theoretical sensitivity calculated for spherical particles. Error bars are calculated by
error propagation from the DFI standard deviation in the probed areas. (b) Wavelength
dispersive imaging of the colloids. The DFI signal was averaged within the regions
marked in Fig. 5.5 (b), normalized to the DFI contrast of the H2O/D2O mixture (yellow
box) and plotted against the wavelength. The data were fitted according to Eq. 3.45
and 3.48. The dfit values are given in the legend. Error bars are calculated by error
propagation from the DFI standard deviation in the probed areas.

The DFI contrast clearly decreases from nearly unity at a particle diameter of

1 As the effective thickness of the incoherently scattering solvent is reduced by 10 %. However,
the correct normalization of DFI data is still a question of debate that is currently investigated.
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0.11 µm towards 0.2 at 3 µm, in agreement with the theory curve calculated by
introducing Eqs. 3.45 and 3.48 into 4.26. The expected increase of the DFI for
large dcol cannot be deduced from the presented data of colloids with dcol < 5 µm,
but has been observed for larger particles in Ref. [148]. The data clearly confirms
that the DFI is insensitive to structures smaller than 0.1 µm and is mostly sensitive
to particles in the micron range generating USANS scattering.
As discussed in Sec. 4.4, structural information about the samples’ microstructure
can be obtained by quantitative dark-field imaging. The accuracy of this approach
is demonstrated in Fig. 5.6 (b) which shows the wavelength dependence of the DFI
signal for colloids with particle diameter of 0.51 µm, 0.74 µm, 1.0 µm and 3.0 µm,
respectively. The DFIs were normalized to the solvent as discussed above. The
evaluated regions within the cuvettes are marked in Fig. 5.5 (b). The DFI data
was fitted using Eq. 3.45 and 3.48, and the particle diameters of the colloids dfit
were determined. The resulting diameters are given in the figure.
In conclusion, the presented model describes the contrast variation well and
provides a good estimate of the particle diameters. The data confirms the the-
oretical consideration on the DFI contrast and shows the potential of the nGI
method. However, this size determination is based on the a priori knowledge of
the underlying structure (shape, concentration and chemical composition).

5.1.6. Magnetic sample environment
For the investigation of superconducting samples, the nGI was combined with a
cryomagnetic sample environment. The setup consists of a water-cooled electro-
magnet, reaching a maximal field of 0.4 T, and a cryostat (Fig. 5.7). The magnet
was specially constructed to perform nGI experiments. It is characterized by a
central bore of 84 mm to allow a large field of view, a compact design to reduce
the sample-to-detector distance, and a passive magnetic shielding to avoid any
influences of the magnetic field onto the mechanics of the grating interferometer.
The inhomogeneity of the magnetic field is smaller than ±1.0 % over a sample
volume of 2× 2× 2 cm3. Its maximum remanence has been determined to 0.6 mT.
A hysteresis of the magnetic field can hence be excluded as origin of any hysteretic
behavior observed in the sample1.
Two kinds of cryostats were used: (i) a closed cycle cold head cryostat (Sumitomo
SHI-RDK-2025D), and (ii) a closed cycle refrigerator cryostat. Both provide a
base temperature smaller than 3.7 K. The sample temperature was monitored
either by a Lakeshore Cernox CX-1030-CU or a CX-1050-CU, mounted near the
sample. If not stated otherwise, the temperature stability amounted ±0.1 K.
The cryomagnetic sample environment was mounted on a sample stage, allowing
for automated translation in y and x direction and vertical rotation around the

1 Further details on the magnetic homogeneity are given in App. A.4.
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Figure 5.7.: nGI combined with a cryomagnetic setup at the ANTARES beamline. 1:
Neutron imaging detector, 2: nGI (compare Fig. 5.1), 3: Water-cooled electro magnet,
4: Cold head cryostat, 5: Cryo-manipulator. For an nGI measurement, the magnet is
placed immediately in front of the grating setup.

y-axis.
Although the magnet is shielded, the cryomagnetic setup slightly interferes with
the grating setup mainly due to the heat which is caused by the magnet and the
compressor of the cryostat. A small thermal drift in the grating alignment occurs
as a consequence which can lead to weak Moiré-streaks in the nGI data. This
effect is most pronounced for long exposures or a long time span between the data
and the open beam images. In fact, this effect defines an upper boundary for the
exposure time.

5.2. The neutron grating interferometer at the ICON
beamline

The first nGI setup has been implemented at the ICON beamline [165] of the Swiss
Spallation Neutron Source (SINQ) at the Paul-Scherrer-Institut [121, 122, 126].
Parts of the measurements included in this thesis were conducted at this setup.
Compared to the ANTARES beamline, the neutron flux at the sample position of
ICON is approximately eight times smaller for equal L/D=400. Its nGI parameters
are given in Tab. 5.2. Although the setup length is slightly shorter, the sensitivity
curves (Fig. 5.6 (a)) of both setups are nearly equal since similar correlation lengths
are probed (ξICON

GI (Ls = 90 mm) ≈ 1.1× ξANTARES
GI (Ls = 90 mm)). Measurements

revealed an only slightly higher visibility of approx. 25 % at the ICON setup,
probably caused by the thicker analyzer grating. Yet, the setup has a smaller
field of view of 64 mm×64 mm. Furthermore, as the neutron flux at the spallation
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source is not constant over time, all images obtained at the ICON beamline have
to be normalized to a region of the image, where neither G1 nor G2 are in the
beam.

parameter value parameter value
d 19.4 mm L 5.23 m
λ 4.1Å ∆λ/λ 15 %
p0 1.076 mm h0 20 µm
p1 7.97 µm h1 37 µm
p2 4.00 µm h2 11 µm
DC0 0.4 DC1 0.5
DC2 ≈ 0.25

Table 5.2.: Setup parameters of the nGI at the ICON beamline, taken from Ref. [121]

All experiments performed at PSI used the same sample environment as described
in Sec. 5.1.6. Images of the grating setup and the sample position are shown in
Fig. 5.8 (a) and (b), respectively. A drawback of the ICON beamline compared to
ANTARES for investigations at low temperature is that the sample position was
not decoupled from the grating setup. Hence, vibrations of the cold head cryostat
strongly influenced the nGI performance and degraded the image quality.

Figure 5.8.: The experimental setup at ICON. 1: Detector box including the scintillator
and a mirror, 2: Electromagnet, 3: CCD-camera Andor DV434, 4: Grating G1, 5:
Grating G2, 6: Goniometer heads and linear stage of G1 and G2, 7: Rotation stage for
the cryomagnetic setup, 8: Holder for the cold head cryostat
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5.3. The USANS beamline BT-5 at NIST
USANS experiments (compare Sec. 4.5) were performed on the BT-5 beam-
line at the Center for Neutron Research at the National Institute of Standards
and Technology (NIST) [157]. Fig. 5.9 (a) depicts the instrument layout. The
beamline is designed for a wavelength of 2.38Å. To optimize both the neutron
flux at the sample position and the signal-to-noise ratio, different beam shaping
devices are implemented in the neutron beam: An Al2O3 sapphire filter (SF) is
located close to the beam port to reduce the flux of fast neutrons. Higher order
contamination of the beam is reduced by a pyrolytic graphite filter (GF). The
neutron beam is focused onto the beam position by a doubly curved graphite
(002)-oriented pre-monochromator (PM). The focusing leads to a peak neutron
flux of 17 300 cm−2s−1 in the center of the beam at the sample position. The
monochromator (M) and analyzer (A) consist of channel-cut Si crystals, grown
by the float-zone technique. Each crystal uses a triple reflection at a (220) plane.
The wavelength distribution of the reflected beam amounts ∆λ/λ = 5.9 % at
the sample position. To prevent a misalignment of the crystals due to external
vibrations, the whole Bonse-Hart camera is placed on a vibration isolated table
(T), decoupled from the sample position. The detector composed of 5 counting
tubes is shielded by 0.5 m high-density polyethylene. In total, a noise-to-signal
ratio of 1× 10−7 is achieved for q > 5× 10−4 Å−1 with a horizontal and vertical
beam divergence of 7.4× 10−6 rad and 0.023 rad per wavelength1, respectively.
For USANS measurements, the sample was placed in a Janis closed cycle refriger-
ator reaching a base temperature of approximately 3.0 K. The temperature was
controlled using a similar equipment as described in Sec. 5.1.6. To reduce USANS
scattering at the aluminum tail, the cryostat possessed silicon single crystalline
windows. The cryostat was placed in a water-cooled electromagnet reaching a
maximum field of 0.5 T. The magnet revealed a high remanence of 5 mT, which
necessitated a careful demagnetization after every field sweep.
The raw data were evaluated to the USANS scattering curves by using the Igor
Pro USANS macro provided by NIST [158].

1 Since the crystals entangle the wavelength with the angle of reflection, the total divergence at
the sample position is larger. This does not influence the resolution of the USANS method.
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Figure 5.9.: The BT-5 USANS beamline at NIST. Drawing (a) and picture (b)
of the beamline. SF: Sapphire filter, GF: Pyrolytic graphite filter, PM: Graphite
premonochromator, M: Silicon monochromator, BM: Beam monitor, S: Sample position
with cryostat and magnet, A: Silicon analyzer, TD: Transmission detector, T: Vibration
isolation table, AP: Beam apertures, MD: Main detector. (a) is reprinted from [157]
with permission of the International Union of Crystallography.

5.4. Small-angle neutron scattering at SANS-1, KWS-3 and
TPA

Small-angle neutron scattering results discussed in this thesis were obtained at
the SANS-1 [166] and the KWS-3 [32] instruments of the Maier-Leibnitz-Zentrum
(MLZ), and the TPA beamline [167] at the Laboratoire Léon Brillouin (LLB).
SANS-1 is a pinhole instrument. Its setup is schematically sketched in Fig. 5.10:
The neutrons are monochromatized by a neutron velocity selector providing a
wavelength spread of 10 % in its standard configuration. The sample is placed
downstream a 20 m collimation distance which can be adjusted by the insertion
of neutron guides. A 128 x 128 pixel position sensitive 3He tube detector which
provides a resolution of 8 mm, detects the neutron scattering pattern. The distance
between detector and sample can be increased from 1.2 m up to 20 m, which allows
to access a minimum q-range of 5× 10−4 Å−1. Further information on the beamline
can be found in Ref. [168]. All SANS-1 experiments presented in this thesis were
performed using a wavelength of λ = 11.9Å and the maximum sample-to-detector
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distance of 20 m. The cryomagnetic sample environment corresponded exactly to
the one described in Sec. 5.1.6. Scattering data were evaluated using the software
package Grasp 6.9 [169].

Figure 5.10.: Schematic view of the SANS-1 instrument at MLZ (Taken from Ref.
[170]).

The minimal accessible wavevector on a pinhole SANS machine depends on the
aperture size, as well as on the collimation and sample-to-detector distances. It is
hence mainly limited by the neutron flux and the total setup length. A further
expansion of the q-range can be obtained by the use of neutron focusing devices.
At KWS-3, a toroidal focusing mirror is used for this purpose. A schematic sketch
of the instrument is presented in Fig. 5.11: The neutron beam is shaped by
an entrance aperture after passing the neutron velocity selector (∆λ/λ = 20 %).
Afterwards, these neutrons are focused on a position sensitive detector by the
toroidal mirror. The shape of this 1.2 m long neutron mirror covered with 80 nm
65Cu is approximately elliptic, with the aperture and the detector located in its
focal points (total focal distance 22 m). In this way, the q-resolution is expanded
down to the 1× 10−4 Å−1 range. Further information on the instrument is sum-
marized in Ref. [171].

Figure 5.11.: Layout of the VSANS experiment KWS-3 at the MLZ (reproduced from
Ref. [32] with permission of the International Union of Crystallography).

In the presented KWS-3 experiments, the sample environment described in Sec.
5.1.6 was placed in 8.5 m distance in front of the detector. With a neutron wave-
length of 12.8Å, the instrument was sensitive to length scales up to approximately
3 µm.
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A different approach to decrease the accessible scattering angle is pursued at the
TPA instrument. A scheme of the instrument is presented in Fig. 5.12: At TPA,
neutron focusing is not achieved by mirrors or lenses. Instead, the initial beam
is split into multiple beams by a pinhole mask. The individual beam fragments
are each further collimated downstream by six successive masks, having pinhole
diameters between 1.6 and 1.0 mm. These masks are arranged in a way that the
multiple beams are superimposed in a single spot on the image plate detector.
Hence, the neutron beam is not focused by reflection, like at the KWS-3 beamline,
but filtered of all neutrons which would not have hit the detector in the focal point.
In this way, a minimum momentum transfer of 2× 10−4 Å−1 can be reached. The
advantage of the multibeam collimation design is a high flexibility in the choice of
the neutron wavelength.
The experiments discussed in this thesis were performed using a neutron wavelength
of 6Å which has been selected via a double reflection supermirror (∆λ/λ = 11 %).
The instrument was combined with a 7 T 4He bath cryomagnet providing a base
temperature of 3.5 K. The temperature was regulated by the usual combination
of a cernox temperature sensor attached to the sample volume, and a Lakeshore
340 temperature controller for the resistive heating of the sample stick. The data
evaluation has been performed using Grasp [169].

Figure 5.12.: Scheme of the spectrometer TPA at LLB (units in mm, drawing not to
scale). The figure was reproduced from Ref. [167] with permission of the International
Union of Crystallography.





6. Results

In this chapter, the impact of the combination of neutron grating interferometry,
diffractive neutron imaging and (ultra-)small-angle neutron scattering is demon-
strated by studying three model systems for vortex matter: (i) the intermediate
state in type-I superconducting Pb, (ii) the intermediate mixed state in type-II
superconducting Nb and (iii) the A-phase in MnSi. By combining integral scat-
tering techniques which provide structural information about the vortex phase
with imaging methods that map its spatial distribution, comprehensive pictures
about the nucleation, distribution, and destruction of the domain structure in the
IS and the IMS as well as of the skyrmion lattice in MnSi are obtained, covering a
length scale of 0.01 to 10 µm.
This chapter is structured as follows: In Sec. 6.1, the nucleation of the intermediate
state in the bulk of a pure lead sample is recorded by means of neutron grating
interferometry. This example provides an ideal introduction as the obtained
results on the IS distribution in the bulk can be compared to a multitude of
magneto-optical data published in the literature. Afterwards, in Sec. 6.2 and 6.3,
the nucleation and morphology of the IMS phase in Nb are extensively studied
in the case of an ultra-pure sample and for a sample showing significant pinning.
Thereafter, it is demonstrated how the IMS phase can be used as contrast agent
to observe the field penetration in the critical state of a type-II/1 superconduc-
tor by means of nGI (Sec. 6.4). The chapter closes with a demonstration of a
new experimental approach to study the spatial distribution and distortion of a
skyrmion lattice by diffractive imaging. In the future, this approach might be
used for the spatially resolved investigation of vortex matter in arbitrary type-II
superconductors.
Parts of this chapter have been already published in [33] and [172].

6.1. Domain structure of the intermediate state in a pinning
free type-I superconductor

The formation of the intermediate state in type-I superconductors and how it is
provoked by an interplay of condensation and field energy has been addressed
in Chap. 2. As an extensively studied problem [19, 66, 80], the nucleation of
the intermediate state in pure lead is a well suited starting point to demonstrate
the capabilities of nGI for µm domain investigations. Although first decoration
and magneto-optical observations of the IS structure reach back to the 1960s (see
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e.g. [173]), measurements of the IS distribution in the bulk of a sample have not
been reported so far. However, the expected size range of the IS structure in lead
(see Fig. 2.14 (a)) corresponds well to the sensitivity of nGI (Fig. 5.6 (a)). In
the following section, it will be shown that nGI can be used as a complementary
technique for IS investigations, since (i) it probes the bulk of the sample and
is hence not influenced by parasitic effects like Landau branching (Sec. 2.3.2)
or surface pinning (Sec. 2.2.3), and (ii) it has little restrictions on the shape of
the investigated sample compared to the aforementioned methods which mostly
require flat surfaces.

6.1.1. Experimental setup
The nGI measurements were performed at the ICON imaging beamline (Sec. 5.2)
using the equipment described in Sec. 5.1.6. Each DFI was calculated from a
stepping sequence of grating G0 over one complete period in 8 steps. The total
exposure time for one DFI was set to 1080 s. The spatial resolution of the setup
was approximately 0.5 mm caused by the sample environment leading to a LS of
300 mm.
The studied sample was a single crystalline Pb disc (diameter d = 20 mm, thickness
t = 1.9 mm). A picture and a neutron image of the Pb sample mounted in its
holder is shown in Fig. 6.1 (a) and 6.2, respectively. The sample was cut from
a large single crystal by spark erosion and subsequently etched in a mixture of
acetic acid and hydrogen peroxide to remove surface impurities introduced by the
cutting process. A crystallographic 〈100〉 axis was perpendicular to the disc face.
A small piece of the same crystal (a× b× c = 3.5× 2.5× 1.5 mm3) was used for
magnetization measurements along the c-axis in 〈100〉 direction using a Quantum
Design Physical Properties Measurement System (PPMS).

6.1.2. Neutron grating interferometry on the IS
The phase diagram of the Pb disc deduced from magnetization measurements on
the small cuboid is shown in Fig. 6.1 (b). Typical magnetization data for T = 5 K
are depicted in Fig. 6.1 (c). At first, the initial magnetization curve is considered.
Hysteretic behavior will be discussed in Sec. 6.1.4. All superconducting phases
sketched in Fig. 2.10 (a) were identified: The IS to NS transition at BC(T ) was
determined by the vanishing of the diamagnetic magnetization in M(B,T = const)
and M(B = const,T ) measurements. The solid line in the phase diagram is a fit of
BC(T ) according to the standard BCS theory [34], providing BC(T = 0 K) = 83 mT
and TC = 7.3 K in agreement with literature [174]. In contrast, the MS-IS transition
depends on the sample geometry. For the cubic test piece, it corresponds to the
triangular minimum in the M(B,T = const) data shown in Fig. 6.1 (c). Note that
the drawn IS boundary at (1−D)BC(T ) was calculated using the demagnetization
coefficient of the disc D = 0.84 (dashed line in Fig. 6.1 (b)).
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Figure 6.1.: Properties of the lead sample. (a) Picture of the sample in its holder. The
staining might be caused by a reaction of the sample and its holder during the rewarming
after the nGI measurement. (b) Phase diagram of the superconducting Pb disc deduced
from magnetization measurements. The solid line is a fit to the BCS predictions whilst
the dashed line shows the calculated MS to IS transition for the disc geometry. (c)
Typical magnetization loop of Pb at 5 K. Its minimum marks the transition from the
MS to the IS in the cuboid sample. Since the hysteresis closes in zero field, it is of
topological nature and not caused by pinning.

DFIs of the Pb disc were taken at various fields between 14 mT and 46 mT as
marked in the phase diagram. In a first set of measurements, the field was applied
after zero field cooling (ZFC) to 5 K in order to exclude hysteretic effects. These
are addressed in the following section. The DFI results are presented in Fig.
6.2. Stepping scans taken in zero field were used as reference data, hence, only
additional contributions caused by magnetic scattering at the IS domain structure
are visible. Fig. 6.3 (a) shows radial profiles of the DFI data depicted in Fig.
6.2. To extract these data, the DFI were median filtered and radially averaged.
The averaging was performed over circular rings with a width of 6 pixel. A pixel
corresponds to 0.44 mm.
At 14 mT, no DFI contrast is seen. At 22 mT, a ring-like feature is visible at
the edge of the disc that has moved inwards at 30 mT. This feature is also seen
as pronounced dip in the radial profiles at r = 16 mm (22 mT) and r = 14 mm
(30 mT), respectively. Additionally, a small signal in the center of the sample
arises for 22 mT and 30 mT leading to a minimum at r = 0 in the DFI profiles.
At 38 mT, the ring feature has vanished. However, a reduced averaged DFI signal
is still detectable at the sample position as revealed by the radial profiles in Fig.
6.3 (a). Finally, at 46 mT (above BC) the DFI contrast is completely lost.
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Figure 6.2.: Left: Neutron image (nI) of the Pb disc. It was normalized to unity since
due to the experimental setup no open beam correction was possible. Right: DFI of
the Pb disc in different fields applied after ZFC to 5 K. The data were normalized to
zero field. A DFI contrast smaller than one marks the IS domain structure. The sample
position is drawn as white circle in each DFI.

Figure 6.3.: Radial DFI profiles of the sample. The solid lines are guides to the eye.
(a) Profiles for different fields applied after ZFC to 5 K. (b) DFI profiles at 22 mT after
ZFC and HFC to 5 K. The error bars are estimated errors of 3 %.

.

6.1.3. Field penetration after zero field cooling
In the following, a consistent picture of how the magnetic field penetrates the
sample at the MS to IS border is deduced from the data. At 14 mT, the amount
of domains is either too small to generate significant DFI contrast or the sample
is still in the MS. The field begins to penetrate the disc at 22 mT via a domain
structure which nucleates at the edge of the disc, causing the ring in the DFI.
However, the domains are partially driven to the center of the disc by Lorentz
forces acting on closed flux structures (Sec. 2.2.4), causing the additional DFI
signal in the middle of the sample. For increased fields of 30 mT, the domain front
is shifted inwards and a much coarser domain structure is left behind, which causes
a higher DFI contrast. At 38 mT, the whole sample is filled with an IS domain
structure as a higher, but homogeneous DFI contrast arises all over the disc. The
general tendency of increasing DFI contrast for increasing fields is attributed to a
coarsening of the IS structure. At 46 mT, the entire sample is in the NS and thus
the DFI contrast equals one all over the sample.
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6.1.4. Hysteretic behavior
The hysteretic behavior is finally addressed as a general hallmark of systems
forming domains. The hysteresis loop presented in Fig. 6.1 (c) only deviates
in fields between 8 and 33 mT from the initial magnetization, as the decreasing
magnetization branch lies below the increasing one. No signs of trapped flux are
found at B = 0 mT . Hence, the crystal used for the nGI experiments reveals
neglectable pinning and hysteretic effects seen with nGI cannot be linked to an
insufficient sample quality (Sec. 2.2.3), but to a changed IS morphology.
Fig. 6.3 (b) compares DFI profiles taken at 22 mT and 5 K, following i) ZFC to
5 K and subsequent field ramp (white), and ii) high field cooling (HFC) at 46 mT
> BC to 5 K and subsequent field decrease (orange). The profiles show a constant
DFI inside of the sample after HFC, whereas the sample reveals two minima after
ZFC. At first glance, this behavior seems reasonable as the field has to penetrate
the sample from the edges after ZFC. However, as no pinning hampers the sample
to reach the IS configuration of minimal energy, the differences in DFI distribution
can only be caused by the additional topological barrier described in Sec. 2.2.4,
which inhibits the field penetration into the Pb disc [7, 63, 67]. Furthermore, the
DFI signal averaged over the entire sample is lower after ZFC than after HFC.
As the DFI contrast is immediately linked to the neutron scattering function of
the IS domain structure (Sec. 4.4), this suggests a change of the IS domain size
or/and the domain morphology during a hysteresis loop, which is also seen in the
magnetization data of the cubic sample (Fig. 6.1 (c)). An analogous behavior has
also been observed in surface sensitive magneto-optical observations on a similar
Pb sample by Prozorov [19] (compare Fig. 2.15).

6.1.5. Conclusion
The results of the previous section demonstrate the potential of nGI. The domain
distribution during field penetration into a single crystalline Pb sample could
be recorded. Moreover, a change of the IS from a domain front behavior to
a homogeneous distribution within a hysteresis loop has been observed. All
data are in agreement with literature [19, 66]. Moreover, because of its unique
contrast mechanism, nGI probes the domain structures in the bulk of a type-I
superconductor on a length scale which has not been accessible so far by neither
neutron scattering nor neutron imaging.

6.2. Domain structure of the intermediate mixed state in a
pinning free type-II superconductor

Like the intermediate state of type-I superconductors treated in Sec. 6.1, the inter-
mediate mixed state of type-II superconductors has been extensively investigated,
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both theoretically [45, 46, 175] as well as experimentally [16, 49, 50, 176]. However,
early studies mostly concentrated on the reasons for an attractive vortex-vortex
interaction and the associated changes of the thermodynamic observables. In
contrast, examinations on the morphology of the vortex lattice within the IMS
domains are rare. To the authors’ knowledge, they are exclusively based on local
decoration pictures [83, 177] and small-angle neutron scattering [16, 178]. The
details of the IMS domain nucleation, i.e. the change of the IMS distribution
and the domain morphology, have not been addressed so far. This problem is
considered in the following sections by studying the low-κ superconductor niobium.
As a prototype of a type-II/1 material, the vortex lattice in this classical, phonon
mediated superconductor has already been studied in detail [16, 93, 178].
In this section concerned with the IMS, it will be shown how neutron grating
interferometry combined with small- and very-small-angle neutron scattering yields
detailed information on the vortex lattice and its domain structure in the interme-
diate mixed state of a Nb sample of ultra-high purity and non-ellipsoidal shape.
The results prove the capability of nGI to resolve the IMS domain distribution,
but also to obtain information about the vortex lattice morphology. Furthermore,
they reveal strong indications of a topological hysteresis in the structure of the
IMS.

6.2.1. Experimental setup
For the experimental study of the IMS phase distribution, SANS, VSANS and
nGI results obtained at the SANS-1, the KWS-3, the ICON and the ANTARES
beamline were combined. Their experimental setups are extensively described in
Sec. 5.4, 5.2 and 5.1.2. To exclude effects arising from slightly different magnetic
field or temperature conditions, the same sample environment described in Sec.
5.1.6 was used for all measurements.
For SANS, a Cd aperture mask with a small diameter of 3 mm was placed in front
of the sample position after a collimation distance of 20 m. In previous studies, the
aperture was chosen so that most of the sample was illuminated [93]. Hence, an
integral signal over the whole sample was obtained. The use of the 3 mm aperture
permitted to perform locally resolved SANS investigations. The position of the
neutron spot on the sample could be determined with an accuracy better than
1 mm.
The DFI and TI results were calculated from a stepping sequence of grating G0
over one complete period in 8 (ICON) or 26 (ANTARES) steps. The total exposure
time for one DFI was set to 1080 s (ICON) and 780 s (ANTARES). However, whilst
at ICON a wavelength of 4.1Å was used, the measurements at ANTARES were
performed using the white beam. In both cases, the spatial resolution of the setup
was approximately 0.5 mm, caused by the restriction on LS to 300 mm due to the
bulky sample environment.
A cylindrical rod of ultra-high purity niobium (κ ≈ 0.74, TC = 9.2 K) with a length
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Figure 6.4.: The high purity niobium sample. Pictures of the sample in its holder for
the measurements at ICON (a) and at ANTARES (b).

of 20 mm and a diameter of 4.5 mm had been selected (Fig. 6.4). The residual
resistivity ratio (RRR) was measured with an eddy current decay method and was
found to exceed ≈ 104, underlining the exceptional crystallographic quality. In
previous neutron scattering experiments [93, 179], no signs of volume pinning and
trapped flux have been found. The cylinder axis of the sample corresponds to a
crystalline [110] direction. Unless stated otherwise, the magnetic field was applied
in the (110) plane, parallel to the incident neutron beam and perpendicular to
the cylinder axis. The demagnetizing factor was calculated to be D = 0.47.

6.2.2. Experimental results
Small-angle neutron scattering

Fig. 6.5 shows typical SANS patterns measured in magnetic fields 75 mT ≤ µ0H ≤
153 mT after ZFC to 4 K. Each data set corresponds to a sum over a rocking scan
with respect to the vertical sample axis. The data was corrected for background
using the zero field pattern. By introducing a small aperture mask of only 3 mm
in diameter, two different sample positions were probed, as indicated in Fig. 6.5.
Data, originating from the position close to the upper sample edge (blue marker),
is shown in the top row, data from the center of the sample (red marker) is shown
in the bottom row in Fig. 6.5, respectively. The six-fold symmetry of the vortex
lattice along this field direction agrees with literature [93].
The direct comparison of the two measurement positions reveals that the scattering
patterns of the vortex lattice strongly depend on their position. A clear sixfold
pattern is observed in the middle of the sample already at 75 mT. In contrast,
there is no sign of a vortex lattice from the SANS pattern determined at the edge
of the rod until the field reaches a value of 89 mT.
The q-spacing of the vortex lattice gVL (Eq. 3.56) extracted from the SANS data
is presented in Fig. 6.6 (a) as a function of the applied magnetic field. The
hallmark of the IMS, a constant spacing of the vortex lattice [16] corresponding
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Figure 6.5.: Local SANS patterns of an ultra-high purity Nb rod vs. magnetic field.
The data were obtained after ZFC to 4 K. Measurement positions at the upper edge
(top row) and in the center (bottom row) of the sample were selected using a 3 mm Cd
aperture as shown in the TI images on the left side. The scale bar corresponds to 5 mm.

to gVL = 3.9× 10−3 Å−1 is obvious for both positions. The data reveal that the
spacing of the vortex lattice in the IMS is independent of the position on the
sample. However, the field regions of the IMS phase differ: For the center position,
the IMS domain nucleation sets in at 75 mT and persists up to 112 mT. At the
edge position, the vortex lattice appears first at 89 mT and is constant until µ0H
reaches 123 mT. The IMS field span corresponds well to the expected value of
DB0 ≈ 32 mT (see Ap. A.1). In higher fields, both data sets follow a (µ0H−Boff) 1

2

[16] behavior. The parameter Boff describes an offset to the local induction and
reveals a difference of 14 mT for the two positions.
It has to be emphasized that the delay in appearance of the vortex lattice at the
top of the sample cannot be explained by an inhomogeneity of the magnetic field
(compare Ap. A.4). After a careful examination of different rocking angles, a
missing scattering signal at the edges due to a bending of the vortex lines can be
ruled out as well.
Fig. 6.6 (b) shows the integrated intensity of the first order Bragg peaks as
extracted from rocking scans for both positions indicated in the inset. A well-
defined maximum marks the transition from the IMS-phase to the Shubnikov
phase at HC1. Again, the shift in magnetic field in between the two positions is
clearly visible. The maximum is found between 105 and 112 mT for the middle
position and between 123 and 133 mT for the upper edge of the sample. The
I (µ0H) trend as well as gVL(IMS) are in agreement with previous measurements
[93].
However, a closer inspection of the intensity curve of the middle position reveals a
nonlinear behavior with a downward dip at 90 mT. This dip was not observed in
former experiments, where the entire volume of the sample was probed using a
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Figure 6.6.: Quantitative analysis of the SANS data from the Nb rod. The two
measurement positions are indicated in the inset of (a). The scale bar in the inset
corresponds to 5 mm. (a) q-position of the first order Bragg peak of the vortex lattice
gV L as function of the applied magnetic field. The grey line indicates the field dependence
(µ0H −Boff) 1

2 at high fields. The dashed lines are a guide to the eye of the constant
q behavior in the IMS. (b) Integrated intensity of the first order Bragg peak versus
magnetic field. The error bars correspond to the standard error of the mean (s.e.m.).
The lines are guides to the eyes. The evaluated Bragg peaks are exemplarily shown in
the inset of (b) for µ0H = 153 mT.

larger aperture. If the intensities of the top and center positions are added, the
dip is washed out leading to close agreement with literature [93].
In Fig. 6.7 (a), the integrated intensity of the first order Bragg peak for the center
position of the sample is complemented by data measured after high field cooling
(HFC) at the same temperature. The ZFC and HFC intensity coincide well, unless
in a small field interval between 89 and 112 mT, where the ZFC data reveal the
described kink, whereas the HFC data show a nearly linear behavior up to the IMS-
SH transition. A similar hysteresis has been observed in former measurements [93].
Its emergence at the upper boundary of the IMS is an indication of a topological
hysteresis.
Typical SANS rocking curves of the vortex lattice are exemplarily shown in Fig.
6.7 (b) for the center position. The curves belong to the peak 1 shown in the inset
of Fig. 6.6 (b). The curves were normalized to the maximal intensity found in the
data. The rocking curves of the rod reveal an unusual, asymmetric double peak
structure in small fields. However, the peaks slowly converge in increasing fields.
The strong positional dependence of the gVL(µ0H) and the I(µ0H) curves indicates
a strongly inhomogeneous domain distribution in the IMS of non-ellipsoidal sample
that additionally shows some signs of history dependence. Furthermore, SANS
revealed an unexpected broad variation of rocking angles within the IMS, indicating
a distortion of the flux line lattice in longitudinal direction. Both assumptions are
further investigated by means of nGI.
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Figure 6.7.: Details of the SANS results. (a) Integrated intensity of the first order
Bragg peak versus magnetic field for the center position. The data were obtained
after ZFC (filled circles) and high field cooling (open circles) to 4 K. At high and low
fields, the intensities perfectly match. However, in between 89 and 112 mT, a strong
hysteretic behavior is observed. (b) Rocking curves for the center position in fields of
81 mT, 89 mT, 96 mT, 101 mT, 105 mT, 112 mT, 123 mT, 133 mT, 143 mT, 153 mT
and 163 mT, respectively. The rocking curves have the shape of a double peak which
slowly evolves into a singly peak for increasing fields. The zero-point of the rocking
angle is arbitrarily defined.

Neutron grating interferometry on the IMS

Results of the nGI experiments performed at ICON are presented in Fig. 6.8. The
nGI data are grouped in the TI in the top row and DFI in the bottom row. Their
contrast modalities are explained in Ap. A.5 and Sec. 4.2.3, respectively. At 0 mT,
the contrast seen in the TI is caused by the attenuation of the beam by the sample
and its holder. In the DFI, residual background scattering from the sample holder
and the edges of the sample is seen. All TIs and DFIs for finite magnetic fields
were normalized to the data for 0 mT, thus, the shown TI- and DFI- contrasts for
µ0H ≥ 75 mT are caused by the appearance of the vortex lattice only, and are of
purely magnetic origin.
If the magnetic field is increased after ZFC to 4 K, the sample passes through the
different superconducting phases. At 75 mT, the sample enters the IMS phase since
a vortex lattice is present in the sample as indicated by the SANS experiments
from Fig. 6.5. However, the scattered intensity is too weak to produce sufficient
contrast in the TI and DFI. At 89 mT and above, both DFI and TI show a clear
contribution caused by the vortex lattice and its IMS domains inside the sample.
The TIs show a line shaped contrast persisting up to the highest field of 205 mT,
with its maximum at 112 mT. A pronounced signal in the DFIs originating from
the IMS domains exists for magnetic fields between 89 mT ≤ µ0H ≤ 123 mT with
a maximum at 101 mT. For 89 mT and 101 mT, a homogenous DFI contrast is
observed except for the top and bottom ends. At 112 mT, a homogenous contrast
is formed where also the top and bottom ends contribute to the DFI. The variation
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Figure 6.8.: Transmission and dark-field images of an ultra-pure niobium rod as a
function of magnetic field. The magnetic field was successively increased after ZFC to
T = 4 K. The contour of the sample is indicated by the yellow dashed boxes. The scale
bar corresponds to 5 mm. The TI (top row) and DFI (bottom row) results for B > 0 are
normalized to the results at µ0H = 0 mT, hence, only the pure magnetic contribution
from the vortex lattice is visualized. The TI and the DFI provide information about the
flux line lattice within the vortex domains and the domain formation in the IMS phase,
respectively.

of the contrast of the DFI with increasing magnetic field inside the IMS phase is
attributed to the increasing filling factor of the sample leading to an enlargement
of the domain sizes beyond the sensitivity range of the nGI setup (compare Fig.
5.6 (a)). At 123 mT, the sample is characterized by a phase coexistence of IMS
and Shubnikov phase. The interpretation of the TI signal together with DFI and
SANS indicates that the bottom and top part are still in the IMS phase causing a
DFI signal, whereas in the central part of the sample, only a weak indication for a
domain structure is detected.
At high magnetic fields µ0H ≥ 143 mT, the Shubnikov phase completely fills
the sample and contrast is seen in the TI only. Similar to the SANS data,
the decreasing intensity observed with increasing field is explained by the field
dependent form-factor of the vortices [16]. The remaining contribution in the DFI
is attributed to the crosstalk originating from a TI signal greater than unity. A
detailed quantitative explanation of the crosstalk is given in Ap. A.5, in which
also its influence on the DFIs of Fig. 6.8 is visualized.
The crosstalk can be avoided by choosing a geometry with the field perpendicular
to the beam direction, aligned along the grating lines1. In this case, the vortex
lattice is rotated out of the Bragg condition preventing SANS scattering which

1 Notice that magnetic scattering arises perpendicular to the magnetic field [103]. Hence, the
field cannot be applied perpendicular to the beam direction and the grating lines, since in
this geometry the scattering is not detected by nGI.
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Figure 6.9.: TI and DFI results of an ultra-pure niobium rod as a function of increasing
magnetic field after ZFC to T = 4 K. The field was applied perpendicular to the neutron
beam. The contour of the sample is indicated by the yellow dashed boxes. The TI (top
row) and DFI (bottom row) results are normalized to µ0H = 0 mT, hence, only the
pure magnetic contribution is visualized. As the vortex lattice is rotated away from
the Bragg condition, no TI contrast arises. However, USANS scattering at the IMS
domains still causes a pronounced DFI contrast. The scale bar corresponds to 5 mm.

influences the TI and causes the crosstalk effect. However, the isotropic USANS
signal of the IMS, which is largely invariant under this rotation, will still cause
a DFI contrast. nGI measurements in this geometry were performed at the
ANTARES beamline and are shown in Fig. 6.9. This time, the magnetic field was
applied in vertical direction along 〈100〉 and perpendicular to the neutron beam
along 〈110〉. Again, the data for finite magnetic fields are normalized to the data
for 0 mT and grouped into the TI in the top row and the DFI in the bottom row.
As discussed, no magnetic TI contrast arises apart from small contributions due
to a slight displacement of the sample holder in higher magnetic fields. However,
a pronounced DFI contrast is still visible. Moreover, the field dependence of the
DFI contrast variation on the magnetic field is in complete agreement with Fig.
6.8. Especially at 123 mT, the delayed IMS to Shubnikov phase transition near the
cylinder faces is clearly visible as remaining DFI contrast at the left and right edge
of the sample. The presented data further supports the proposed peculiar IMS
distribution, since other contributions to the DFI contrast than USANS scattering
are ruled out.
Although not systematically investigated, it should finally be noted that after
HFC, a residual DFI signal has been detected in the center of the sample for small
fields of 75 mT, whereas no signal occurs after ZFC. However, in both cases, the
TIs lack any scattering contributions. Corresponding data are shown in Fig. 6.10
(a).

Very-small-angle neutron scattering

Fig. 6.10 (b) shows typical VSANS data. Normalized, radially averaged scattering
curves are shown as a function of the momentum transfer q for magnetic fields
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Figure 6.10.: DFI hysteresis and VSANS scattering curves. (a) TI and DFI of the rod
at 4 K in a field of 75 mT, applied after ZFC and HFC. The data were normalized to
0 mT. In contrast to the ZFC, a remaining DFI signal is found after HFC, while no
signal is detected in the TI. The unnormalized, zero field TI and DFI are shown in order
to compare. (b) VSANS scattering curves of the ultra-high purity Nb rod. The data
were obtained after ZFC to 4 K in different magnetic fields. The Cd aperture mask
is depicted as the yellow area seen in the inset. The scale bar corresponds to 5 mm.
Error bars are calculated from the propagation of uncertainty of the sample transmission
and the s.e.m. of the scattering curves measured at B = 0 and in the corresponding
field, respectively. The high q regime can be approximated via a power law behavior
I ∝ q−4±0.2, which is shown as solid lines in the graph.

between 75 mT and 123 mT after ZFC to 4 K. The radial averaging was performed
over two 30° sectors in horizontal direction. For each magnetic field, the sample
transmission was obtained by normalization to the direct beam. The scattering
curves were extracted by normalization of the scattering pattern measured in
an applied field to its transmission and subsequent subtraction of the zero field
scattering pattern. Consequently, the data presented in Fig. 6.10 (b) show only
magnetic scattering contributions.
Likewise in the DFI in Fig. 6.8, no additional scattering is observed at 75 mT.
In the field region between 81 mT and 112 mT, a scattering signal is found which
vanishes in fields above 123 mT. The VSANS signal in intermediate fields is
caused by neutrons scattered off the IMS domains and precisely coincides with
the DFI contrast seen with nGI. Moreover, as seen in Fig. 6.10 (b), the scattering
curves decrease as a power law q−αp for q > 6× 10−4 Å−1 in this field range. The
exponent αp slightly varies between 4.1± 0.1 for fields from 81 mT to 101 mT and
3.9± 0.1 at 112 mT. In higher fields, the scattering vanishes again as the sample
enters the Shubnikov phase. SANS scattering off the vortex lattice still exists but
the scattering angles are too large to hit the VSANS detector. The scattering
shows up as a correction to the transmission of the sample. The domain structure
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at the edges of the sample seen with DFI at 123 mT is not detectable by VSANS,
because it is not covered by the Cd aperture placed in front of the Nb rod as
shown in Fig. 6.10 (b) (yellow box seen in the inset).
The VSANS signal in the IMS phase cannot be explained by neutrons scattered off
the vortex lattice itself or by a large distribution of the vortex lattice parameter
dVL, as the complementary SANS data reveals well defined Bragg peaks with high
intensity at much larger q-values (q ≈ 4× 10−3 Å−1). The high transmission of
the sample of 0.9 even in the IMS phase indicates that multiple scattering can
be neglected as source of the VSANS signal. The q-resolved VSANS data hence
clearly reveal µm sized magnetic scattering contributions for field values attributed
to the IMS via nGI and indirectly by SANS.

6.2.3. IMS nucleation in the absence of pinning
The spatial distribution of the IMS

A comprehensive interpretation of the domain structure of the IMS and its evolu-
tion with increasing field based on the combination of nGI, SANS and VSANS
data is given in the following paragraphs. The visualization of the IMS domain
distribution obtained by means of nGI is in perfect agreement with the SANS
and VSANS results. Hence, this study clearly demonstrates the capability of
nGI to image the IMS nucleation and to determine the phase boundaries in the
superconducting phase of Nb. For the case of the IMS nucleation in a cylindrical
specimen, it could be shown that (i) the IMS domain nucleation starts in the center
of the rod and the IMS region propagates along the cylinder axis to the edges, (ii)
the IMS lastly evolves into the Shubnikov phase at the edge of the sample, (iii) the
induction at the top and bottom part of the sample reveals a considerably delay
with respect to the central part, and (iv) a coexistence of pure Shubnikov phase
and IMS is possible due to demagnetization effects in non-ellipsoidal geometries.
Note that after ZFC, the vortices can only penetrate the sample from the outside
of the superconducting sample. Therefore, the observed IMS nucleation in the
middle is peculiar. However, in the absence of pinning, the Lorentz force pushes
the vortices to the middle of the sample once the flux lines have penetrated the
sample and overcome the geometrical barrier at the top and bottom edges of the
rod (Sec. 2.2.4) [69, 180, 181]. As the vortex lattice nucleation in the middle of
the sample generates a dipolar field opposed to the applied one, the induction
at the edge of the samples is reduced. Hence, the IMS nucleation as well as the
IMS to Shubnikov transition is delayed at these positions. For the presented Nb
sample with cylindrical geometry, this delay could be quantified to be 14 mT.
Besides these qualitative arguments, it has to be pointed out that the process of the
IMS nucleation is not well understood. A successful theory for IMS modelling has
to include the detailed nature of the vortex-vortex interaction, the disturbance of
the applied field by the IMS structure, the surface tension between Shubnikov and
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Meissner domains (similar as in the case of the IS (Sec.2.3)) and the geometrical
constrains in the rod. Here, the presented results can be directly compared to
theoretical models, and the nGI method provides unique access to the bulk domain
distribution in this pinning free, cylindrical sample. This study hence may serve as
nucleation point to stimulate further detailed experimental and theoretical work.
Quantitative information obtained by VSANS can serve as further input parame-
ter. In flat samples, magneto-optical investigations [12, 13] as well as numerical
calculations [84] suggest the existence of a preferred thickness-dependent IMS
domain size similar to the case of the IS [38]. However, for this sample it was
not possible to extract an exact size distribution of the IMS domains from the
VSANS scattering curves. Although a clear magnetic scattering signal is present
between 81 and 112 mT in the I(q) data, no sign of a preferred domain length
is observed. Domain sizes larger than the VSANS sensitivity or a too broad
domain size distribution due to the cylindrical shape of the sample may explain
this behaviour. However, the Porod q−4 [111] dependence of the scattering curve
at large q indicates that regularly shaped domains exist, having a smooth surface
on a sub µm scale. Furthermore, the high scattered intensity and deviations from
the power law behavior at small q, give a hint that the domain sizes are slightly
larger than the range probed by VSANS.
Finally, some effects arising in the data have not been addressed so far. The
upward kink in the I(B) SANS dataset (Fig. 6.6 (b)) recorded at the middle
position of the sample is unexpected. The form factor of the vortex lattice is
independent of the field due to a constant magnetic induction B0 in the IMS.
Hence, according to Eq. 3.57, the integrated intensity of a vortex lattice Bragg
peak inside the IMS phase only depends on the volume fraction of the IMS and
increases linearly with the applied magnetic field [178]. The presence of an upward
kink of the integrated intensity recorded at the center position of the sample
reveals that a changing local distribution of IMS domain regions is required in
addition to the linear increase of volume fraction to explain this behaviour.

The distortion of the vortex lattice

The peculiar contrast variation in the TI of Fig. 6.8 requires special attention
as it directly links to a distortion of the vortex lattice in the horizontal plane of
the sample. Considering the TI for 101 mT, the vertical, high and low intensity
streaks are roughly separated by 0.7 mm. With an Ls of approximately 300 mm,
the scattering angle can be estimated to 0.13° which corresponds to the Bragg
angle of the vortex lattice taken from Fig. 6.6 (a) to be 0.14° for λ = 4.1Å. Hence,
the TI contrast is clearly caused by the SANS signal of the vortex lattice. However,
for the case of a vortex lattice which is aligned strictly parallel to the external
magnetic field direction over the entire sample volume, a TI signal different than
unity would only arise if the vortex lattice is rotated to the Bragg angle. In this
case, the TI would decrease at one sample edge and increase at the other, since
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the intensity is just slightly shifted in the horizontal plane. This is obviously not
the case for the TI of the Nb rod presented in Fig. 6.8. In order to generate
the distinct TI contrast variations of high and low intensity streaks seen between
89 and 112 mT, a spatial variation of the vortex lattice orientation (mosaic) is
additionally required.

Figure 6.11.: On the origin of the TI contrast. (a): Schematic sketch, explaining how
the curvature of the vortex lattice generates a line-shaped contrast variation in the TI.
(b): Top view sketch of the forces acting on a vortex line upon field penetration.

The TI pattern can concisely be explained by introducing a symmetrical bending of
the vortices in the Nb rod within the horizontal plane, as schematically indicated
in Fig. 6.11. In this case, neutrons are Bragg scattered twice inside the sample.
This leads to the observed arrangement of high and low intensity streaks separated
by twice the Bragg angle. For this effect to occur, a bending in the range of the
vortex lattice Bragg angle (≈ 0.1°) is sufficient.
The existence of a small curvature of the vortices can be understood by simplified
arguments based on the sample geometry and the balance of forces acting on a flux
line penetrating a superconducting sample (Fig. 6.11 (b)): Due to the cylindrical
geometry of the sample, magnetic flux lines can enter the sample in the horizontal
plane without being hampered by a geometrical barrier at the edge of the sample
(compare Fig. 2.7 (c)). However, as explained in Sec. 2.2.4, a further penetration
of the flux line into the bulk of the sample requires an elongation of the vortex
lines and hence a loss of condensation energy, which results in an outward directed
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force FV. On the other hand, the flux line is directed to the center of the sample
by the Lorentz forces FL acting on the vortex lines. As discussed in Sec. 2.2.2,
these forces are proportional to the local screening current density js which is
maximal in the vertical mirror plane of the rod perpendicular to the applied field.
Hence, they do not act homogeneously on the vortex line, but their magnitude
increases towards the center of the sample which gives rise to the observed flux
line distortion.
The proposed bending of the vortex lattice is directly confirmed by the SANS
rocking curve shown in Fig. 6.7 (b). Normally, the rocking width is reciprocally
linked to the longitudinal correlation length of the vortex lattice. Hence, for
the ultra-pure bulk sample, one would expect a single Gaussian-shaped rocking
curve which corresponds to the instrumental resolution function. However, in the
presented case, the rocking curve of the vortex lattice shows a peculiar double
peak structure which can only be explained by a distribution of vortex lattice
orientations (mosaic) and hence of Bragg angles. Nonetheless, a smooth spherical
distortion of the vortex lines cannot account for the double peak structure as will
be demonstrated in Sec. 6.5.
The rocking curves can be modeled accurately by two Lorentzian profiles as
exemplarily shown in Fig. 6.12 (a) for fields of 101 mT and 123 mT, respectively.
Here, the intensity of the right diffraction peak (Nr. 1 in Fig. 6.6 (b)) has been
plotted against the vertical rocking angle. By fitting these data, one obtains the
center position of each peak which is plotted against the magnetic field in Fig.
6.12 (b). However, in fields higher than 143 mT, the rocking curve can also be
reproduced by a single Lorentzian, since the peaks have nearly merged. The error
bars in Fig. 6.12 (b) correspond to the numerical error of the fit, but might be
underestimated due to the high amount of fit parameters.
As seen in Fig. 6.12 (b), the angular peak distance is reduced in increasing fields.

Figure 6.12.: Double peak structure of the rocking curve. (a) Rocking curves for 101
and 123 mT which were fitted by two Lorentzians. (b) Center position of the Lorentzian
peaks as function of the magnetic field after ZFC and HFC. The dashed line is a guide
to the eye. The zero-point of the rocking angle is arbitrarily defined.
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This behavior can be expected, since the rigidity of the vortex lattice strengthen
in increasing fields [7]. However, the rate of convergence changes in between 105
and 123 mT where the IMS (orange)-SH (blue) transition takes place. Hence, the
orientational distribution of the vortex lattice in beam direction clearly changes
as the Meissner domains are filled with the vortex lattice. The same morphology
change is seen in Fig. 6.8 as a variation of the TI contrast between 112 and
143 mT, where the streaked pattern is replaced by a more homogeneous one. The
most likely explanation for the correlation between the vortex distortion and the
IMS is that Shubnikov domains in small applied fields, which can be visualized as
a bundle of vortex lines, are deformed easier by the Lorentz forces than larger ones
formed in high applied fields. As the field approaches the border to the Shubnikov
phase, the domain structure is replaced by a rigid vortex lattice which is to a
lesser extent influenced by the screening currents.

Hysteretic behavior

Finally, the hysteretic behavior has to be considered. Like in former measurements,
no sign of vortex pinning could be detected in the Nb rod, since (i) the I(q) curve
shows no difference after HFC compared to ZFC in small fields, and (ii) the
longitudinal orientation of the flux lines in the sample is not influenced by HFC,
as the peak position of the rocking curves is unaffected by the magnetic history
(see Fig. 6.12 (b)). However, the sample reveals a higher integrated intensity
in fields between 89 and 112 mT after HFC, which directly indicates that the
ratio of Meissner domains is smaller on the downward hysteresis branch. As
this ratio shows a different field characteristic in tubular or laminar domain
structures (compare Eq. 2.26 and 2.28), this is an indication for a changed domain
morphology after HFC. The remaining DFI signal at 75 mT can be seen as a
second evidence of a structural transition, since the DFI contrast is directly linked
to the morphology of the vortex lattice on the micrometer scale. Unfortunately,
VSANS failed to provide information on the detailed microstructure of the IMS.
Hence, the proposed domain metamorphosis is only based on indirect evidences.
However, as the nGI data strongly suggest a penetration of the vortices from
the top and bottom end of the cylinder, the same geometrical barrier causing a
hysteresis in the IS [66] might be responsible for a similar behavior in the IMS of
the cylindrical sample.

6.2.4. Conclusion
In summary, the previous part of this thesis presented a systematic approach
to study the properties of the vortex lattice of the bulk type-II superconductor
niobium in the absence of pinning. The combination of nGI, SANS and VSANS
coherently merges the spatial resolution of real space methods with the quantitative
statistical information obtained by reciprocal space techniques. In this way, a wide
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length scale from 10 nm to 10 µm could be covered. Furthermore, the applicability
of nGI to image the IMS domain distribution in the bulk has been proven. Indeed,
the shown nGI measurements provide the first direct visualization of the IMS
domain nucleation in bulk samples.
As a main finding of this investigation, an unconventional domain volume filling
of the sample within the bulk IMS phase could clearly be identified and explained
by geometrical barriers discussed in Sec. 2.2.4. Furthermore, a hysteretic behavior
was found, which is most likely linked to a topological hysteresis. The rocking
data moreover reveal a peculiar distribution of Bragg angles within the sample,
caused by a bending of the vortex lines. This bending is most pronounced within
the IMS and quickly reduces within the Shubnikov phase. These data raised the
questions, if it is possible to directly measure and quantify the local distortion of
the vortices within the sample, which will be readdressed in Sec. 6.5.
Finally, the results presented in this section have an important impact on the
general interpretation of SANS data of type-II superconductors: these data show
that the geometry of the sample influences the local vortex lattice configuration
even far away from the sample edges. Hence, both the sample shape as well as its
illuminated region should always be carefully considered for the interpretation of
SANS data.

6.3. Domain structure of the intermediate mixed state in a
type-II superconductor in the presence of pinning

The results discussed in Sec. 6.2 have shown the importance of geometrical effects
to understand the nucleation of the IMS in a pinning free material: On the
microscopic scale, the IMS formation is caused by the crossover of a repulsive to
an attractive vortex-vortex interaction. In contrast, the spatial distribution of the
domains is strongly determined by the macroscopic geometrical constraints. As
a next step, it will be examined, how the IMS nucleation will change if effects
of vortex-pinning (Sec. 2.2.3) are taken into account that collectively act on an
intermediate length scale on the vortex lattice. Based on the considerations of
Sec. 2.3.6 and 2.2.3 a disordered or suppressed final IMS state [87, 89, 90] as well
as the appearance of strong magnetic irreversibilities [56] are expected.
In the following section, the structure and the formation of the IMS in the presence
of pinning is addressed by combining results of SANS, USANS and nGI with bulk
magnetization measurements. For the sake of clarity, these considerations are split
into three parts.
Firstly, the process of the IMS nucleation is discussed with a special focus on the
procedure of field cooling, since it turned out that in the ZFC and HFC cases, an
IMS formation is completely suppressed by pinning and no sign of vortex lattice
domains could be detected by either of the used methods. Previous works on this
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topic are rare. The IMS stabilization during field cooling has only recently been
studied using SANS in Ref. [182], in which a phase coexistence of vortex (IMS)
clusters and vortex lattice has been reported.
In the second part 6.3.3, the field dependence of the IMS domain structure, which
is stabilized during field cooling, is examined. Although the IMS morphology
has been investigated several times (e.g. in [83] and [177]), these studies are
rather old. Consequentially, the data are usually based on the decoration method
which neither allows a comprehensive investigation of the field dependence nor
a recording of the situation within the whole sample. Again, the role of pinning
has not been tackled so far. Finally, in Sec. 6.3.4, the distribution of the IMS
structure within a wedge shaped sample is examined for different fields by means
of nGI.

6.3.1. Experimental setup
The experimental study on the IMS formation was performed on the SANS
instruments SANS-1 and TPA, the USANS beamline BT-5 and the nGIs at the
ANTARES and ICON beamlines. The setups are described in Sec. 5.4, 5.3, 5.1.2
and 5.2, respectively. Exactly the same sample environment has been used at
SANS-1 and for nGI.
At SANS-1, the experimental configuration was the same as described in Sec.
6.2.1. Again, different positions of the sample were probed by a 3 mm Cd aperture.
However, as the results are similar for all positions, the attention is restricted to the
center position of the specimen. At BT-5 and TPA, the beam size has been reduced
to an area of 14 mm diameter in the center of the sample by using a Cd aperture.
Hence, only the edges of the samples were masked in these measurements.
The nGI results were calculated out of a stepping sequence of grating G0 over
one complete period in 15 (ANTARES) or 21 (ICON) steps, respectively. The
total exposure time for one DFI was set to 3000 s (ANTARES) and 3780 s (ICON).
Wavelengths of 4.0Å (ANTARES) and 4.1Å (ICON) were used. Additionally,
quantitative dark-field imaging has been performed on one sample. For this
purpose, nGI scans (17 steps, 60 s exposure time per step) have been conducted
for different wavelengths between 3 and 6Å. In all cases, the spatial resolution of
the setup was approximately 0.5 mm.
Four Nb samples were investigated. All samples were prepared from the same
single-crystal commercially obtained from MaTeck [183]. The sample was of lower
crystallographic quality (RRR ≈ 100) than the one examined in Sec. 6.2. A list
summarizing the shapes, sizes and demagnetization coefficients of the investigated
samples is given in Tab. 6.1. The samples were cut with a diamond wire saw and
subsequently polished. Three of the samples were finally etched in a mixture of
50 % HF and 50 % HNO3 for 30 s in order to reduce surface impurities introduced
by the cutting and polishing. A 〈110〉 direction was found to correspond to the
normal vector of the discs and of the largest face of Nb 5. In all measurements,
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the magnetic field was applied parallel to this crystallographic direction.
The demagnetization coefficient of the cuboid was calculated using the equation
given in Ref. [184], while for the disc samples, it was estimated by approximating
the discs as flat ellipsoidals (i.e. D = 1 − πt/(4r) [40]). A definition of the
demagnetization coefficient of the wedge is difficult, as an elliptical approximation
is technically speaking not possible, due to the non-parallel surfaces. However,
the coefficient should lie between the values of discs with thickness 0.6 (D = 0.95)
and 2.8 mm (D = 0.76).
The Nb wedge, Nb 2 and Nb 3 have been used for neutron investigations, while
Nb 5 was solely cut for magnetization measurements on a Quantum design PPMS.

sample shape dimensions (mm) etched D
Nb wedge disc shaped wedge r = 9.3, t = 0.6− 2.8 no 0.76 - 0.95
Nb 2 disc r = 9.3, t = 2.0 yes 0.83
Nb 3 disc r = 9.3, t = 0.6 yes 0.95
Nb 5 cuboid 1.9× 3.7× 4.0 yes 0.50

Table 6.1.: List of niobium samples. D demagnetization coefficient for the studied
field geometry, r radius and t thickness of the sample. Nb 2 and Nb 3 originate from
adjacent parts, while the Nb wedge was cut from the other side of the 5 cm long original
crystal. Nb 2 and Nb 3 are slightly flattened which leads to an error of the radius of
approx. 0.1 mm.

6.3.2. The IMS nucleation during field cooling
Magnetization

The magnetic characterization of niobium is presented in Fig. 6.13. In (a), the
magnetization of the sample Nb 5 is shown as function of the applied magnetic
field for various temperatures between 2 and 9 K. The field was applied after
ZFC to the required temperature. A half hysteresis loop has been measured,
hence, the data show the initial magnetization curve and the first branch of the
irreversible magnetization. The second branch results from an inversion at the
origin. As predicted by the critical state theory (Sec. 2.2.3), the magnetization is
diamagnetic after the initial field ramp and paramagnetic in decreasing fields. For
all temperatures, the remanent magnetization at 0 T is roughly half the maximum
M(B) value. The magnetization loop decreases with increasing temperature, as
the sample becomes less diamagnetic. The signal completely vanishes above 9 K.
The upper critical field BC2 is marked by the disappearance of the magnetization,
since normal conducting niobium is only slightly diamagnetic. At 4 K, BC2
is determined to 420 mT which is considerably higher than values reported in
literature for pure niobium (e.g. BLit

C2 (4.2 K) = 275 mT [15] or BLit
C2 (4.1 K) =

278 mT [185]). A determination of BC1 is not possible from the kink in the M(B)
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Figure 6.13.: Magnetization data of the cuboid sample Nb 5. (a) Magnetization as
function of the applied magnetic field, measured for different temperatures between
2 and 9 K. Shown are the initial magnetization curve after ZFC and half a hysteresis
loop. (b) Temperature dependence of the magnetization at B = 25 mT. The curve was
measured once for increasing temperatures, after ZFC to 2 K, and successive application
of the magnetic field, and once for decreasing temperature in an applied field (FC).

dataset, as the field of first flux penetration is typically strongly increased by
pinning. The critical temperature can be determined to TC = 9.1 ± 0.1 K by
extrapolating the upper critical field BC2 (T ) to zero [186]. This value is only
slightly reduced compared to pure samples (T Lit

C = 9.3 K [50]). Although the
impurity composition and concentration of the crystal have not been investigated,
the critical field and temperature correspond well to values of T Lit

C = 9.03 K and
BLit

C2 = 415 mT, found for a contamination with 0.14 atomic percent of interstitial
oxygen [187].
Typical M(T ) data are exemplarily presented in Fig. 6.13 (b) for an applied field
of 25 mT. The red curve has been measured for increasing temperatures after the
sample had initially been cooled down in zero field. In contrast, the blue curve has
been measured field cooled i.e. for decreasing temperature in an applied field. In
a pinning free sample, both curves would overlay (neglecting geometrical barriers),
since the thermodynamic equilibrium is reached independently of the used cooling
path. Moreover, the magnetization would continuously decrease with decreasing
temperature, since the sample becomes more diamagnetic. In contrast, the
presented Nb sample is less diamagnetic after FC, as pinning prevents a complete
expulsion of magnetic flux during cooling. Furthermore, the magnetization is
temperature independent in most of the superconducting phase. Deviations from
a constant magnetization firstly emerge above 6.3 K and 7.8 K for ZFC and FC
measurements, respectively. Interestingly, a reversible state where both curves
coincide, is not found below TC (25 mT) = 8.8 K underlying that the studied
situation does not correspond to the thermodynamic equilibrium.
The presented data strongly suggest that the vortex configuration is frozen below
6.3 K at 25 mT, as the macroscopic magnetization experiments do not show any
further temperature dependence. In particular, no sign of an IMS nucleation
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is seen in the data. These predictions are tested in the following by means of
small-angle scattering which probes the vortex lattice on the sub-micrometer scale.

Small-angle neutron scattering

Typical SANS results obtained on the Nb wedge are presented in Fig. 6.14 (a).
Each scattering pattern corresponds to the sum of a rocking scan performed after
the sample had been cooled down in an applied field of 26 mT (top row) and
41 mT (bottom row), respectively. The data have been normalized to the zero field
pattern, hence, only magnetic contributions are visible. The hexagonal symmetry
of the vortex lattice along the 〈110〉 direction is in agreement with the results of
Sec. 6.2 and with literature [93].

Figure 6.14.: SANS results of the niobium wedge. (a) Typical SANS pattern of the
vortex lattice in Nb for different fields and temperatures. The vortex lattice parameter
is temperature independent for 41 mT (bottom row). In smaller fields, however, a
shrinking of the vortex lattice is observed for decreasing temperatures. (b) Quantitative
evaluation of the reciprocal vortex lattice spacing gVL which corresponds to the position
of the horizontal first order Bragg peaks. gVL is drawn as function of the temperature
for three different field values. The error bars correspond to the differences of the
spacing extracted from the left and the right peaks. These errors are slightly larger than
the errors associated with the determination of the peak position.

Comparing the data for 26 and 41 mT shows that the reciprocal vortex lattice
spacing gVL is temperature dependent only for the lower field, where gVL increases
for decreasing temperature. In contrast, gVL is constant in higher field.
This can be seen in Fig. 6.14 (b), where gVL is plotted as function of the
temperature for three different field values. At 55 and 41 mT, gVL takes a constant
value of 3.4× 10−3 and 2.8× 10−3 Å−1, and no variation of the lattice parameter
could be detected between 4 and 7 K. This observation is in agreement with
magnetization data which suggested a freezing of the vortex lattice below 7 K.
However, cooling in a field of 26 mT is accompanied by a continuous increase of gVL
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from 2.2× 10−3 Å−1 to 2.8× 10−3 Å−1 below 6 K. The local magnetic induction
within the flux line lattice, as given in Eq. 3.56, hence, dramatically increases
from 22 mT to 36 mT. As the macroscopic magnetization at 25 mT, shown in
Fig. 6.13 (b), did not change in this temperature range, the data clearly indicate
a microscopic rearrangement of flux below 6 K. Although the development of a
vortex lattice superstructure in form of microscopic IMS domains seems most likely
at this point, the SANS data alone could not exclude a macroscopic redistribution
of flux. However, the typical field independence of the vortex lattice parameter in
the IMS is found at 4 K for 26 and 41 mT.

Ultra-small-angle neutron scattering

The formation of IMS domains can be directly verified using ultra-small-angle
neutron scattering. Typical USANS rocking curves are shown in Fig. 6.15 and
6.16 for a magnetic field of 20 and 17 mT, respectively. Presented is the scattered
intensity as function of the wavevector transfer q. The data were taken during FC
to 4 K. Only magnetic scattering is presented in the data, as the scattering curves
are normalized to the curves above TC using Eq. 4.44.

Figure 6.15.: USANS scattering curves at B = 20 mT for various temperatures after
FC. The data are normalized to curves above TC. B was applied along 〈110〉, parallel
to the neutron beam, while the crystallographic 〈100〉-direction was rotated into the
horizontal plane. Pronounced scattering can only be detected below 6 K. The red curve
is a fit to Eq. 6.4, whose underlying model will be discussed in Sec. 6.3.3.

Considering the data taken at 20 mT, pronounced USANS scattering is not found
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for temperatures above 5 K. Only at high q, a weak scattering signal appears that
might be a signature of the vortex lattice Bragg peak, observed slightly above the
probed q-range in Ref. [182]. The situation changes at smaller temperatures. Here,
a scattering curve develops that is characterized by a peak around 1.2× 10−4 Å−1

and a decreasing intensity following a power function for high momentum transfers.
The position of the peak remains nearly constant in the probed temperature range.
However, the scattered intensity strongly increases with decreasing temperature.

Figure 6.16.: USANS scattering curves at B = 17 mT for various temperatures after
FC. The data are normalized to curves above TC. The crystal was oriented as in Fig.
6.15. The red curve is a fit to Eq. 6.4, whose underlying model will be discussed in Sec.
6.3.3.

A quite similar behavior is found in an applied field of 17 mT which has been mea-
sured with smaller temperature steps. Again, the scattered intensity significantly
increases for decreasing temperature. Furthermore, the width of the peak seems to
decrease moderately by lowering T . Note that the position of the scattering peak
at approximately 2.8× 10−4 Å−1 is shifted to higher values compared to 20 mT.
Although the origin of this scattering curve will be discussed extensively in the
next Sec. 6.3.3, the shift of the peak position to lower q for increasing field directly
confirms that micrometer-sized magnetic structures in the sample act as scattering
centers, which grow in size with increasing field. Hence, in agreement with SANS,
the USANS data can only be interpreted as a second indication of a nucleating
IMS structure below 6 K.
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Neutron grating interferometry

The results of magnetization and SANS have revealed that below 6 K, the vortex
lattice seems to rearrange on the microscopic level, overcoming pinning, while
macroscopically no flux is expulsed. At the same time, a peak shows up in USANS
indicating a further correlation length of a few micrometer. These observations give
a strong hint for a build up of the IMS structure. Neutron grating interferometry
can provide further insight into the IMS nucleation process, as it visualizes how
the IMS is distributed within the sample during domain formation.

Figure 6.17.: Results of nGI on the Nb wedge in a field of 20 mT. The measurements
were performed at ICON. (a) Shown is a picture of the sample in its holder, a neutron
radiography as well as DFI results. The DFI data were taken after field cooling to the
specified temperature. The sample position is marked by the white circle. The crystal
has been aligned following the procedure described in Ap. A.6. (b) Radial profiles of
the DFI at various temperatures. Averaging was performed over the segment of a circle
marked for the DFI at 7.0 K. The lines are a guide to the eye. The DFI contrast strongly
decreases for decreasing temperature and is characterized by two minima corresponding
to the contrast degradation in the center of the sample and to the ring near the edges.

In Fig. 6.17 (a), the nGI results obtained at the Nb wedge are presented. Shown
is a picture of the sample in its holder, a neutron radiography of the sample, and
DFI for various temperatures between 7.0 and 3.8 K. The sample was cooled down
in an applied magnetic field of 20 mT. The data were normalized to the normal
state at 10 K. The DFI at low temperatures are superimposed by weak vertical
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streaks which are an experimental artifact, arising due to a slight thermal drift in
the setup during the long time of the field cooled measurement.
The presented data are in complete agreement to the USANS results: No contrast
in the DFI is seen at 7.0 K, while in between 6.0 and 5.0 K a distinct contrast
develops that further decreases with cooling to the base temperature of 3.8 K.
The contrast variation within the sample at 3.8 K is characterized by a contrast
minimum in the center of the wedge and a ring-shaped contrast decrease near the
edge of the sample1. These two features are observed as dips in the radial DFI
profiles of Fig. 6.17 (b). In order to obtain these profiles, the DFIs of (a) have been
radially averaged within the segment of a circle marked for 7.0 K. For the sake of
clarity, error bars have been skipped. The errors lie in the range of 10 % besides for
low radii below 2 mm, where they strongly increase due to the reduced averaging
area. Both the DFI and the corresponding profiles reveal that the contrast does
not suddenly drop down at the sample edge (dashed line in (b)), but a region of
slowly decreasing DFI signal is formed at the sample boundary. The observed
spatial variation in the DFI and hence in the IMS domain distribution already
seems to have developed during the IMS nucleation below 5.0 K.

A comprehensive picture of the IMS nucleation out of a homogeneous, pinned vortex
lattice

Based on the experimental results of the Nb wedge at B ≈ 20 mT, a coherent
picture about the FC nucleation of the IMS is obtained. The FC process is
schematically illustrated in Fig. 6.18 and can be summarized as follows: For 10 K ≥
T ≥ 7 K, the sample enters the Shubnikov phase from the normal conducting state
(1-2). With decreasing temperature, the magnetic field is macroscopically expelled
from the sample as seen by magnetization measurements. Microscopically, the
vortex lattice distance is expected to increase.
In the region 6 K ≤ T ≤ 7 K = TF, the expulsion of flux is stopped, as M(T )
has reached a constant value and the vortex lattice parameter probed by SANS
remains constant. In this temperature range, the magnetic flux is trapped inside
the sample (3), since the material has been cooled below the temperature TF at
which the vortex lattice is pinned by imperfections within the material. Hence,
the magnetic properties of the sample have to be described using the critical state
model [56] (Sec. 2.2.3) which assumes that the flux lines can only be further moved
along a field gradient sufficiently high to overcome the pinning forces. The effects
of field cooling on the macroscopic field distribution have been treated in terms of
the critical state theory in Ref. [188] and [189]. Although, geometric effects have
been neglected in these works, it has been shown that during field cooling, the
induction within a superconductor, and hence the vortex lattice parameter, is only

1 Hence, the contrast distribution is comparable to the one obtained during the nucleation of
the IS (Sec. 6.1).
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Figure 6.18.: Ilustration of the IMS nucleation during FC. For decreasing temperature,
the sample first becomes superconducting at TC and the vortex lattice is formed (1-
2). Further cooling initially decreases the vortex lattice parameter (3). When the
temperature is sufficiently reduced to pin the vortices, the vortex lattice configuration
is frozen in the center of the sample, but flux is still expelled on the edges (4). At
TIMS, the crossover to an attractive vortex interaction takes places. Consequently IMS
domains are formed and a peculiar ring shaped IMS distribution arises (5). Further
cooling of the sample only slightly influences the domain morphology and distribution.
However, the vortex lattice parameter within the domains is further decreased (6).

reduced along a small area near the edge of the sample, whereas it is completely
unaffected in its center. This peculiarity arises, since a magnetic gradient, which
is sufficient to deplete the vortex lattice, can only be generated in a small region
near the surface of the sample (4).
For T ≤ 6 K = TIMS, the characteristics of the microscopic vortex lattice change.
(i) Its lattice parameter is reduced as indicated by SANS, and (ii) a magnetic
µm domain structure nucleates as shown by USANS and nGI. The sample has
hence entered the IMS (5). This change of the vortex configuration is remarkable,
since the macroscopic magnetization is unaffected. Obviously, the pinning within
the sample prevents a further expulsion of the vortex lattice, but not an internal
rearrangement of it. This might be expected, since it has been discussed in Sec.
2.2.3 that pinning forces act collectively on an elastic vortex lattice and not on
individual vortices. The presented data suggest that below 6 K the crossover
from a repulsive to an attractive vortex-vortex interaction occurs. While for pure
niobium this crossover has been observed [190] and predicted [46] very close to TC,
it can be considerably shifted to lower temperatures in impure samples, because
of their higher κ [46]. This seems to be the case in the presented study. The
crossover is accompanied by a strong influence on the elastic properties of the
vortex lattice, as has already been proven by means of stroboscopic SANS [191],
allowing for the observed rearrangement of the vortex lattice.
The spatial distribution of the IMS phase, as recorded by means of nGI, exhibits
three distinctive features (5). (i) A diminished DFI contrast in the center of
the sample, (ii) a reduced DFI contrast on a ring, and (iii) a smooth increase of
DFI contrast to the edges of the sample. While the latter simply seems to be
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a manifestation of the discussed macroscopic flux depletion at the sample edge
during FC [188, 189], the other two observations cannot be definitely explained.
They contradict the simple assumption of the critical state theory which supposes a
frozen vortex configuration in most of the sample. This problem might be clarified
by numerical simulations as such calculations (e.g. Fig. 7 of Ref. [69]) showed
that field decreasing after initial penetration of a disc shaped sample results in a
similar ring-like structure.

Figure 6.19.: Quantitative evaluation of the USANS data shown in Fig. 6.16 and
6.15. (a) Maximum of the scattering curves qmax as function of the temperature. The
maximum is nearly temperature independent, only for 17 mT, the peak is slightly shifted
to lower q at 5.5 K. The error bars for 20 mT lie within the symbols. (b) Temperature
dependence of the parameter Imax for 17 and 20 mT, extracted from the USANS
scattering curves. The solid lines are fits to ∝ T 4 + const. Additionally plotted are the
mean values of the DFI shown in Fig. 6.17. For comparison they are drawn as 1-DFI.
Clearly the data agree qualitatively well.

Further structural information can be obtained from an evaluation of the USANS
data presented in Fig. 6.16 and 6.15. Fits of the data to Eq. 6.4 are shown as
red lines in theses figures. From such a fit, the peak position qmax

1, which is a
measure of the average domain size and the maximal scattered intensity Imax that
quantifies the magnitude of scattering, can be obtained. While the regression
seems to be inaccurate at low q, the fit succeeds in determining the peak position
and the maximal peak intensity. These parameters are presented as function of
the temperature in Fig. 6.19 (a) and (b), respectively. The details of the fitting
and a physical motivation of the used model will be shifted to Sec. 6.3.3 since at
this point only a qualitative discussion is necessary.
The peak position remains nearly constant for decreasing temperature. Hence,
as the sample enters the IMS, stable domains of the energetically preferred size

1 Note that qmax cannot be directly extracted from the data, as USANS scattering curves are
slit-smeared. Hence, the fitting is necessary.
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(see Sec. 6.3.3) are formed. On the other hand, the scattered intensity strongly
increases with decreasing temperature, suggesting either (i) a scattering contrast
enhancement of the domains, (ii) an increase of the domain number, or both. The
increase of scattering length density contrast can be easily estimated: According
to Eq. 3.50, the scattering amplitude f will depend on the averaged magnetic
induction B0 ∝ g2

VL (Eq. 3.56) within the domains. Consequentially, the scattered
intensity should behave as: Imax ∝ f 2 ∝ B2

0 ∝ g4
VL. Assuming a linear behavior

of gVL as suggested by SANS (Fig. 6.14), the scattered intensity should reveal
a T 4-temperature dependence. In Fig. 6.19 (b), Imax is accordingly fitted by
Imax (T ) ∝ T 4 + const. As can be seen, this simple relation qualitatively describes
the data. Hence, USANS suggests that the morphology of the formed IMS domains
is not strongly changed after initial nucleation, but the density of the vortex lattice
within the domains is continuously increased (6).
Finally, the close agreement of USANS data and quantitative DFI observations
should be mentioned. As USANS indicates a rather constant domain structure
during FC, the corresponding IMS correlation function G(x) (Eq. 3.36) should
not strongly vary with temperature. Hence, 1− DFI should be proportional to
Imax as:

(1−DFI) = 1− exp
[
Σt
(
G(ξGI)
G(0) − 1

)]
(6.1)

≈ 1− 1 + Σt
(
G(ξGI)
G(0) − 1

)
(6.2)

= const× Σ ∝ Imax (6.3)

The average DFIs of the data presented in 6.17 are additionally plotted against
the temperature in 6.19 (b). According to Eq. 6.3, the (1−DFI) trend is in good
qualitative agreement with Imax.

6.3.3. Field dependence of the IMS morphology
The previous section has revealed that the IMS nucleation in a sample showing
significant pinning only takes place during field cooling. Hence, IMS domains are
formed out of the regular vortex lattice of the Shubnikov phase. This transition,
which arises below 6 K, is characterized by the appearance of a broad peak in the
USANS scattering curve indicating that a domain structure of a preferred domain
size has developed. In the following, the morphology of this domain structure and
its field dependence is studied by means of SANS and USANS.

Small-angle neutron scattering

The field range of the IMS within the different samples can be deduced by SANS.
In Fig. 6.20, results obtained at TPA are presented for Nb 2 and Nb 3, respectively.
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In (a) and (c), the scattered intensity of the samples is plotted versus the modulus
of the wavevector transfer q for different magnetic fields between 10 mT and
180 mT. The sample has been field cooled to 4 K. Only magnetic scattering is
present in the graphs, since the data have been normalized to zero field. The curves
correspond to radial profiles of the scattering pattern achieved by integrating a
SANS rocking scan. The maximum marks the position of the first order Bragg
peak of the vortex lattice gV L. Its value has been determined by a Gaussian
approximation of the scattering curves and is plotted against the applied field in
(b) and (d). The errorbars correspond to the FWHM of the Gaussian distribution.
The hallmark of the IMS, a constant gVL and an increasing scattered intensity for
increasing field, is observed in both samples. In higher fields, gVL is proportional
to
√
B as indicated by the red fits shown in Fig. 6.20 (b) and (d), while the

intensity of the Bragg peaks slowly decreases with increasing field (compare (a)
and (c)).
Various sample parameters can be obtained from the gVL(B)-curves: The field
of transition from the IMS to the Shubnikov phase B2 can be deduced from the
intersection of the high field curve with the constant q value of the IMS. This
constant value gV L(IMS) is furthermore connected to the induction within the
Shubnikov domains B0 via Eq. 3.56. Finally, the lower critical field BC1 can
be calculated from these quantities (Eq. A.7). Values for B2, gVL, B0 and BC1
are summarized in Tab. 6.2 for both samples. All values depend on the sample
geometry and are considerably reduced compared to pure Nb (Sec. 6.2). The
latter fact underlines that the vortex lattice configuration is frozen at higher
temperatures where BC1 and B0 are smaller. In pure Nb, comparable BC1 values
are found around T = 7 K [185].

Nb 2 Nb 3
B2(mT) 45± 1 34± 1
gVL(IMS)(10−3Å) 3.0± 0.1 2.6± 0.1
B0(mT) 41± 2 32± 1
BC1(mT) 65± 4 72± 20

Table 6.2.: Field of the IMS to Shubnikov transiton B2, reciprocal lattice parameter
gVL of the vortex lattice within the IMS, induction within the Shubnikov domains B0
and lower critical field BC1 of the Nb samples.

Ultra-small-angle neutron scattering

The domain structure nucleated during FC was probed by means of ultra-small-
angle neutron scattering. Typical USANS rocking curves for different applied
fields between 1 and 34 mT are shown in Fig. 6.21 on the example of the Nb 2
disc. Corresponding data of Nb 3 and Nb wedge are given in Ap. A.7. All data
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Figure 6.20.: SANS results of Nb 2 and Nb 3 for different applied fields after FC to
4 K. In (a) and (c), the scattered intensity is plotted as a function of the wave vector
transfer q. The data were normalized to zero field and scaled to the maximal intensity.
The position of the peaks corresponds to the vortex lattice parameter gVL which is
plotted against the magnetic field in (b) and (d). In low fields, the sample is in the IMS,
and the typical constant q behavior is observed. In higher fields, gVL is proportional
to
√
B. The field range of the IMS varies for the two samples due to their different

thicknesses. The parasitic offset for 80 mT in (c) is most probably caused by a small
displacement of the cryomagnetic setup during He filling. It does not influence the
determination of gVL.

were obtained after field cooling to 4 K. Presented is the scattered intensity as
function of the wavevector transfer q. The data were normalized to zero field.
For 1 mT, the scattering curve of Fig. 6.21 is characterized by weak and diffuse
scattering representing background. In increasing fields between 9 and 26 mT,
a distinct scattering signature, indicating the nucleation of IMS domains, has
developed. As in Fig. 6.15 and 6.16, the scattering curve is distinguished by a
broad peak at low q, followed by a power law decrease at higher q. With enhanced
field, the peak position moves to lower q-values, while the overall scattered intensity
increases. Finally, the intensity strongly drops down at B = 34 mT and no peak
is observed in the scattering curve. A qualitatively similar behavior is found in all
investigated samples (Fig. A.7 and A.8).
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Figure 6.21.: USANS scattering curves of the Nb 2 sample for different magnetic
fields. The sample has been field cooled to 4 K. B was applied along 〈110〉, parallel to
the neutron beam, while another crystallographic 〈110〉-direction was rotated into the
horizontal plane. The red curves are fits to Eq. 6.4.

The IMS domain morphology

Two distinct characteristics of the scattering curve arise already from the fact
that USANS particularly probes the micrometer range: (i) The field modulation
within the vortex lattice of the IMS domains takes place on a smaller length scale
of 100 nm. The IMS structure can hence be described as a two phase system
characterized by a homogeneous scattering length density within the domains.
(ii) Since the coherence length of the neutron beam is comparable to the IMS
size of a few microns, USANS particularly probes the form factor, but is largely
insensitive to the structure factor of the IMS.
A description of the IMS domains as cylindrical objects seems likely from Fig. 1.1.
However, the corresponding form factor [192] does not reproduce the obtained
USANS data. A more satisfactory approximation is reached by the empirical
formula given in Ref. [193]:

Iunsmeared(q) = Imax

(
1 + γs

2

) (
q

qmax

)2

γs
2 +

(
q

qmax

)2+γs
, (6.4)

in which qmax is the position of the peak and Imax is the corresponding intensity.
The parameter γs, describing the power law decrease at high q values, is connected
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to the dimensionality of the system [193]. This scattering function is typically
used to describe phase-separating mixtures [193] that develop during spinodal
decomposition [194]. Hence, the underlying model describes an irregular, isotropic
two-phase system which is however characterized by a preferred correlation length.
In order to obtain consistency with the data, a smearing of Eq. 6.4 is required
(compare Sec. 4.5 and Eq. 3.42). The shown data are thus fitted according to:

I(q) = 1
qv

qv∫
0

Iunsmeared
(√

q2 + q2
y

)
dqy . (6.5)

The integration is performed up to qv = 0.117Å−1 which is an instrumental
parameter describing the maximal vertical scattering angle under which neutrons
can reach the detector [158].
Fits of the data to Eq. 6.5 are shown as red lines in Fig. 6.15, 6.16, 6.21, A.7, and
A.8. For Nb 2 and Nb 3, the scattering curves are well approximated by the fit.
Small deviations only arise for the wedge shaped sample in the low q range. The
parameter γs is deduced to γs ≈ 3 for sample Nb 2 and Nb 3, which is expected
for scattering at a two dimensional structure below the percolation threshold
of multiple domains [194]. For the Nb wedge, γs ≈ 4 is found, but an accurate
determination of γs is hampered by the arising vortex lattice Bragg peak. In all
samples, γs slightly decreases for high fields. Since the high q behavior usually
arises from the surface of the scattering structure [111], this either indicates an
elongation or a coalescence of the domain structure in higher fields.

Figure 6.22.: Field dependence of the domain size. The graphs show the parameter
qmax, extracted from USANS, as a function of the magnetic field for the samples Nb 2,
Nb 3 and Nb wedge. Error bars correspond to the uncertainty of the fit. The red and
blue dashed curves correspond to fits to the Landau (Sec. 2.3.2) and the Goren-Tinkham
(Sec. 2.3.3) model. A reasonable fitting of the wedge data was not possible, since
neither the sample thickness nor the demagnetization coefficient are homogeneous over
the sample volume.
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The correlation length increases with increasing field and is hence attributed to
growing Shubnikov domains. Consequently, even without any assumptions on
the domain morphology, the position of the peak qmax provides a measure of the
domain size that can be compared to theoretical predictions. The parameter qmax,
extracted by fitting the data to Eq. 6.5, is plotted against the applied field in
Fig. 6.22. For all samples, a qualitatively similar decrease of qmax with the field
is found. In agreement to SANS, the IMS nucleation takes place in a slightly
different field range for the different samples.
In order to compare the data to the models given by Landau, as well as by Goren
and Tinkham (compare Sec. 2.3.2 and 2.3.3), the assumption qmax = 2π

aSH
is

reasonable1. In Fig. 6.22, qmax has been fitted to the Landau (blue) and Goren-
Tinkham (red) model by means of Eq. 2.27, 2.29 and 2.35. Values of B0, BC1, D
and t were taken from Tab. 6.1 and 6.2, respectively. Thus, only the wall-energy
parameter δ remained undefined. Its values, extracted via the Landau and the
Goren-Tinkham approaches, are given in the graphs and are denoted by δL and
δGT, respectively.
In the case of Nb 2 and Nb 3, both models approximate the data well. In contrast,
a meaningful fitting of the Nb wedge data was not possible as neither D nor t
were homogeneously defined. However, the trend of the data is comparable to Nb
2 and Nb 3, but the IMS is slightly shifted to lower fields. Since USANS scattering
already arose at 9 mT in the Nb 2 sample, which is not expected using the IMS
borders determined by SANS, BC1 might have been slightly overestimated, or a
small offset existed in the calibration of the magnetic field. Interestingly, qmax
remains approximately constant for 30 and 34 mT in Nb 3 and for 27 and 35 mT
in the Nb wedge.
A further determination of the domain morphology from the field dependence of
the domain size is not possible, since (i) the errors in qmax are too large as to allow
for an unambiguous attribution of the domain size behavior to a specific model, and
(ii) the IMS morphology does not seem to be characterized by either of the pure
laminar or tubular patterns underlying the models. Nonetheless, the determined
wall-energy parameter δ ≈ 12± 4Å is rather independent of the used model. Via
Eq. 2.33, this value can be further used to provide a rough estimation of the
vortex-vortex interaction energy per unit length Ubond ≈ (2± 1)×10−13J/m. This
result corresponds well to the binding energy of 0.6× 10−13 - 3× 10−13 J m−1 given
in Ref. [83] for lead-thallium alloys with a similar Ginzburg-Landau-parameter
0.71 < κ < 0.82.
The good agreement of the USANS curves to Eq. 6.4 rather suggests an irregular
but isotropic mixture of Shubnikov and Meissner domains within the IMS than
pure tubular or laminar morphologies given by the Goren-Tinkham (Sec.2.3.3)
and the Landau model (Sec. 2.3.2), respectively. Although USANS does not allow

1 Notice that aSH replaces an in Eq. 2.26 and 2.28.
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any conclusions on the isotropy of the scattering structure, the assumption of an
approximately isotropic IMS domain morphology seems reasonable in the present
case: (i) The scattering curves are of similar shape for Nb 2, Nb 3 and Nb wedge
although the latter one has been measured in a different crystalline orientation,
and (ii) molecular-dynamics simulations [87, 89, 90], discussed in Sec. 2.3.6, have
shown that the anisotropy of the vortex domains can be considerably reduced by
pinning (compare Fig. 2.18).
In summary, even though the presence of strong pinning distorts the IMS domain
structure, it is still characterized by a single correlation length. Since the qmax
variation follows the prediction of both the Landau and the Goren-Tinkham model,
and realistic values of the wall-energy parameter are obtained by means of these
methods, the (macroscopic) correlation length of the IMS is still governed by
the energy minimization between the interfacial energy of the domains and the
energy attributed to the distorted magnetic field (Sec. 2.3). Compared to pinning
free Nb at 4 K, the upper critical field is enhanced for the samples revealing
pinning due to a higher amount of impurities [186]. In contrast, both the lower
critical field and B0, which are relevant for the IMS nucleation, seem considerably
reduced. This discrepancy occurs, since the configuration studied on the samples
revealing pinning, does not correspond to the thermodynamic equilibrium reached
in the pinning free samples (Fig. 6.23 (a)). Instead, pinning freezes the vortex
configuration at higher temperatures. The probed vortex structure is hence in a
metastable state which has been frozen at higher temperatures, where all field
scales are accordingly reduced (b).

Figure 6.23.: Schematic phase diagram of Nb for the pure and pinning free sample
(a), and for the samples revealing significant pinning (b). In the absence of pinning, the
vortex lattices reaches the thermodynamic equilibrium independently of the field and
temperature history (under the assumption that geometrical barriers are negligible). In
contrast, pinning prevents the sample from reaching equilibrium and metastable states
are frozen during FC. This is exemplarily sketched by the orange and blue streaks in (b).
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6.3.4. Distribution and local variations of the IMS structure
In the subsequent section, spatial variations of the IMS structure are examined
by means of quantitative dark-field imaging. In particular, the focus will lie on
the wedge shaped sample, since both the Landau as well as the Goren-Tinkham
model derived a distinct dependence of the domain size on the sample thickness.
Moreover, the consistency of nGI and USANS as well as their high complementarity
will be demonstrated.

Neutron grating interferometry

DFIs obtained on the Nb wedge, field cooled to 5 K in different magnetic fields
between 0 and 35 mT, are presented in Fig. 6.24. The data were acquired at the
ANTARES beamline. In contrast to Fig. 6.17, the DFIs were normalized to the
open beam. Hence, the IMS signature is superimposed by some weak residual
contrast arising from the sample, its holder, and the tail of the cryostat. In order
to obtain a quantification, the mean DFI value is plotted against the magnetic
field in Fig. 6.26 (a). The DFI values correspond to the average DFI contrast
within the circle marked in Fig. 6.24, normalized to 0 mT.
In zero field, only a small contrast is seen within the sample, since only very weak
USANS and incoherent scattering arises in Nb [164]. In between 7 and 35 mT,
neutron scattering at the IMS generates an additional magnetic contrast. The
mean DFI strongly decreases for increasing fields, until a minimum is reached at
25 mT. For 29 mT, the contrast has reincreased. No further change is observed
for 35 mT.
For low and high fields, the DFI contrast homogeneously decreases from left to
right in the sample, while between 17 and 25 mT, a contrast variation develops
that is characterized by a diminished DFI in the center, as well as on a ring near
the edge of the sample. The same peculiar contrast modulation has already been
observed in Fig. 6.17.
In order to eliminate the implicit dependence of the DFI contrast on the sample
thickness t, the dark-field images presented in Fig. 6.24 have been corrected for
each pixel (j,l) according to:

DFIcor(j,l) = DFI(i,j)
1

t(j,l) , (6.6)

in which t(j,l) is the local thickness of the sample in beam direction. Results of
this correction are shown in Fig. 6.25. These data were additionally normalized
to zero field.
The thickness correction completely removes the horizontal DFI gradient apart
from the region close to the left edge, where the low signal-to-noise ratio hampers
an unambiguous interpretation of the data. The DFI for 22 mT even suggests
that the ring-like contrast degradation is sustained in the thinnest parts. On
first glance, both observations contradict the predictions of a distinct thickness
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Figure 6.24.: Results of nGI on the Nb wedge at a temperature of 5 K in different
magnetic fields applied before cooling. The wedge thickness increases from left to right.
A wavelength of 4Å has been chosen. The shown DFI were normalized to the open
beam. Hence, the DFI are superimposed by residual contrast arising from the sample,
the sample holder and the tail of the cryostat. The circular region of lower contrast
on the right side of the sample is caused by edge refraction at the thicker side of the
wedge.

dependence of the IMS morphology, since the DFI contrast is directly linked to the
autocorrelation function of the IMS structure. However, a comparison of USANS
and nGI, performed in the following, will show that such a conclusion can indeed
not be drawn from the nGI data.

Consistency of nGI and USANS

According to Eq. 4.26, the DFI contrast depends on the macroscopic scattering
cross-section Σ, the autocorrelation function of the microstructure G(ξGI), as well
as on the sample thickness t. For isotropic scattering, the autocorrelation function
G can be obtained from the differential scattering cross-section via Eq. 3.40. In
principle, Σ can be calculated from the differential scattering cross-section as well.
However, since a USANS measurement provides the neutron transmission of the
sample, denoted as Trock in Eq. 4.44, Σ can be directly obtained. The neutron
transmission is solely reduced by the scattering and not by the absorbing part of
the macroscopic cross-section, since zero field data have been used as reference in
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Figure 6.25.: DFI from Fig. 6.24, corrected for the sample thickness according to Eq.
6.6 and normalized to zero field.

the presented study. Consequentially, Trock provides a measure of Σ via:

Trock = exp [−Σ (λ1) t] . (6.7)

The different wavelengths used for USANS (λ1) and nGI (λ2) are accounted for
by:

Σ (λ1) =
(
λ1

λ2

)2

Σ (λ2) , (6.8)

because Σ ∝ λ2 (Eq. 3.32). Consequentially, Trock can be identified in the DFI
formula:

DFI = exp
[
Σ (λ2) t

(
G (ξGI)
G (0) − 1

)]
(6.9)

= exp
−Σ (λ1) t

(
λ2

λ1

)2 (
1− G (ξGI)

G (0)

) (6.10)

= T

(
λ2
λ1

)2(
1−G(ξGI)

G(0)

)
rock . (6.11)

The procedure to calculate a DFI contrast value from the USANS data based on
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Figure 6.26.: Comparison of USANS and nGI on the example of the field cooled Nb
wedge sample. (a) Mean value within the DFI shown in Fig. 6.24 as function of the
applied magnetic field. The averaging was performed within a 14 mm circular area in
the center of the sample (see Fig. 6.24), which corresponds to the aperture used for the
USANS investigations. Additionally, the DFI values calculated by means of Eq. 6.11
from the USANS scattering curves are plotted. For low fields, the values coincide well.
At high fields, the calculated values (in parentheses) deviate, since the accuracy of the
USANS fit is degraded. Notice that the nGI and USANS experiments were obtained at
4 K and 5 K, respectively, which explains the small deviations in the DFI. The dashed
curve is a guide to the eye. (b) Wavelength dependence of the measured and calculated
DFI values. Error bars are skipped for the sake of clarity. Notice the slightly different
field values for USANS and nGI.

the above considerations, is demonstrated on the example of the Nb wedge in Fig.
6.27. The data corresponds to the scattering curve presented in Fig. A.8, which
has been taken at 22 mT after field cooling to 4 K. Firstly, the scattered intensity
I is fitted to the model presented in Eq. 6.5. This fit is shown as red curve in
(a). The obtained unsmeared scattering intensity Iunsmeared (Eq. 6.4) is given in
(b). In order to obtain the correlation function G, Iunsmeared is Hankel transformed
according to Eq. 3.401. The autocorrelation function shown in (c) is a damped
oscillating function, since Iunsmeared describes a modulated two phase system with
a defined correlation length. Finally, using Eq. 6.11, the DFI value at a specific
neutron wavelength can be obtained via insertion of Trock and ξGI(λ) (Eq. 4.17).
DFI values calculated from the USANS scattering curves are additionally marked
in Fig. 6.26 (a). In low fields, the calculated DFIs (blue triangles) agree well with
the measured values (black squares). Considering that nGI scans were conducted
at 5 K, a slightly smaller DFI would be expected for 4 K, further reducing the
difference of the measured and calculated DFI values at low fields. At high fields,
the calculated values strongly differ from the measured ones (points in parentheses),

1 In principle, the USANS data could be directly Fourier transformed to obtain G (Eq. 3.34).
Nonetheless, this would increase the noise in the correlation function.
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Figure 6.27.: Transformation of USANS results into DFI values on the example of
Nb wedge, field cooled to 4 K at B = 22 mT. (a) USANS scattering curve and
corresponding fit to Eq. 6.5. (b) Unsmeared scattered intensity according to Eq. 6.4.
(c) The normalized autocorrelation function G results as the Hankel transform of the
scattering function shown in (b). (d) Calculated DFI(λ) curve according to Eq. 6.11.

since the correlation peak in the USANS data vanished. The accuracy of the fit is
hence strongly reduced, which hampers the data evaluation.
The nGI scans shown in Fig. 6.24 have been repeated for different wavelengths
between 3 and 6Å. The wavelength dependence of the DFI is presented in Fig.
6.26 (b). As in (a), the DFI has been normalized to 0 mT and averaged over the
circular region shown in Fig. 6.24. Additionally, DFI curves calculated from the
USANS data are shown. They were evaluated similarly to the example shown in
Fig. 6.27 (d).
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For increasing wavelength, a continuously decreasing signal is obtained in all studied
applied fields between 7 and 35 mT. Comparing the wavelength dependence of the
measured DFI, a good agreement with the calculated curves is found. Only for
26 mT, the calculated DFI values strongly differ from the measured ones (25 mT).
On the one hand, this results from the beginning disappearance of the correlation
peak and the accompanying increase in the error of the DFI calculation. On the
other hand, the small field difference of the USANS and nGI data might have a
higher impact, since the DFI contrast variation with the field is highest near the
DFI minimum.
The presented data demonstrate the good consistency of USANS results and nGI.
Apart from the colloid data shown in Sec. 5.1.5, these data provide a second
verification of the quantitative dark-field imaging approach and the underlying
theory of the DFI contrast.
Moreover, the complementary USANS results enable the correct interpretation of
the above nGI data. The correlation length ξGI probed by the nGI setup varies
from 1.3 to 2.6 µm for 3Å ≤ λ ≤ 6Å (Eq. 4.17). At these correlation lengths,
the autocorrelation function G is nearly zero (compare marked interval in Fig.
6.27 (c)). Although the correlation function becomes broader for higher fields,
G is only marginally changed near ξGI. Consequentially, any field and position
dependence of the contrast variation seen in Fig. 6.25 is particularly attributed
to the variation of Σ and not to the changes of G. The peculiar DFI contrast
variation within the sample (Fig. 6.25) thus rather maps differences in the local
domain number than in the domain size, since particularly Σ is probed. In order
to probe the local domain size, a reconfiguration of the nGI would be required to
access a slightly smaller correlation length.

Spatial variations of the domain structure

The previous considerations have revealed that the DFI results of Fig. 6.25 do
not allow a conclusion on the spatial variation of the domain size. Instead, an
interpretation of the DFI contrast variation as manifestation of an inhomoge-
neously distributed domain structure seems more likely. The peculiar ring-shaped
contrast variation arising between 17 and 25 mT cannot be explained based on the
simple principles introduced in Chap. 2. However, the occurrence of this contrast
modulation for intermediate fields underlines the complex interplay of demagne-
tization fields, pinning interactions and vortex-vortex interactions governing the
IMS nucleation during field cooling.

6.3.5. Conclusion
In summary, the systematic approach to study the IMS nucleation in the bulk
of type-II superconducting niobium presented in Sec. 6.2 has been expanded to
study the effects of pinning. Furthermore, the morphology of the IMS has been
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systematically studied by means of USANS and SANS. The nucleation of the
IMS is hampered by pinning and is only possible via field cooling. In this case,
the IMS formation takes place in different stages: (i) a partial expulsion of the
magnetic field accompanied by the nucleation of the vortex lattice, (ii) freezing
of the vortex lattice and trapping of the magnetic flux within the sample, and
(iii) rearrangement of the vortex lattice into the IMS domain structures. Based
on the presented data, the nucleated IMS is given as an irregular but isotropic
mixture of Shubnikov and Meissner domains, which is characterized by a single,
field dependent correlation length.
The presented data reveal that both the IMS structure as well as the IMS dis-
tribution within the sample are strongly influenced by the magnetic field. The
correlation length of the IMS increases with the field, following the predictions of
both the Landau and the Goren-Tinkham model. Although pinning influences the
morphology of the IMS, its correlation length is still governed by the competition
of surface tension and the magnetic field energy. Intriguingly, for low and high
fields, the IMS seems to be rather uniformly distributed within the sample, while
in intermediate fields, a strongly inhomogeneous distribution is suggested by nGI.
This unconventional volume filling of the IMS is not expected form existing theo-
retic models [188].
The nature of the transition from the Shubnikov to the IMS is yet unclear and
should be further addressed in a subsequent study. Normally, pinning acts collec-
tively on the vortex lattice and freezes its configuration in the sample. However,
since the elasticity of the vortex lattice is strongly changed by the occurrence of
the attractive part in the vortex-vortex interaction [191], this should also strongly
influence the collective pinning of the vortex lattice. How this process promotes or
even only enables the IMS formation is still unclear. The experimental approach
necessary for such further investigations has been introduced in this section.

6.4. Imaging the critical state: field penetration into a
niobium superconductor

The magnetic properties of superconductors are strongly influenced by the strength
of vortex pinning within the material, which has already been discussed and demon-
strated in Sec. 2.2.3 and 6.3. An understanding of the various pinning mechanisms
and their impacts on the superconducting properties is hence of high scientific
relevance, e.g. to differentiate intrinsic properties of a material from impurity in-
duced. However, vortex pinning is also one of the most important effects governing
the technical applicability of superconducting materials, since a non-dissipative
electrical transport is only possible as long as pinning prevents a motion of the
flux line lattice [37]. Vortex pinning and the associated phenomena do thus belong
to the most studied fields in superconductivity: (i) microscopic vortex imaging
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techniques are utilized to observe and even quantify the interaction of a single
vortex with different pinning potentials [195], (ii) transport measurements are
employed to identify and investigate different regimes of the voltage-current charac-
teristics (flux creep, flux jump and flux flow) [54], (iii) magnetization and magnetic
susceptibility measurements are employed to determine the penetration field and
the critical current density [196], and (iv) magneto-optical methods are used to
directly observe the field penetration into a superconductor [197]. With this large
number of experimental methods, the simple predictions of the critical state model
introduced in Sec. 2.2.3 have been extensively reviewed and extended. However,
it has also been realized that flux penetration is a full three-dimensional problem
[198], and the sample shape as well as the attributed demagnetization coefficient,
which are not considered in the original Bean model [56], play a significant role
for its understanding [60, 69].
By use of imaging approaches, the field penetration process is now believed to be
caused by a complex interplay of the sample geometry and pinning [69]. However,
while advanced numerical simulations allow to study the field distribution in
the whole bulk of an arbitrarily shaped sample (see e.g. [68, 69, 181]), all listed
techniques fail to verify them, except in thin specimen. The reason is that in
thick samples, the applied field not only penetrates the specimen from the edges
parallel to the field, but also from the perpendicular edges (see Fig. 2.8). Hence,
the measured surface induction does not necessarily reflect the penetration front
in the center of the sample [69].
Neutron methods could provide novel insight into the field penetration and distri-
bution within a superconductor, but studies addressing these questions are rare.
Most approaches to obtain bulk information on the magnetic field distribution are
based on polarized neutron radiography [3, 199, 200]. However, due to the stray
field of the sample, which rotates the neutron polarization vector, the acquired
data require a complex evaluation and are difficult to interpret.
In the following section, it will be demonstrated that at least for type-II/1 su-
perconductors, nGI can be used for the direct observation of field penetration
into a bulk superconductor. The presented approach is based on the conclusion
drawn in Sec. 6.2 and 6.3 that nGI is capable to directly measure the IMS domain
distribution. Since the IMS can be frozen by field cooling, if pinning cannot be
neglected, the idea arose to use the IMS domain structure as contrast agent to
visualize the critical state (Sec. 2.2.3).
The principle of this experiment is illustrated in Fig. 6.28 (a). The sample is
cooled down in an applied field sufficient to nucleate and freeze an IMS structure at
point (1). Afterwards, the field is successively increased (2,3,4). Further magnetic
flux can only enter the sample from the edges, which locally fills up the voids in
the IMS structure (compare Fig. 6.28 (b)). Since the magnetic USANS scattering
contrast is lost in these filled regions, they will vanish in the DFI.
Within the Bean critical state theory, the phase front separating the frozen IMS
from the penetrated flux, corresponds to the flux front which would be expected
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Figure 6.28.: Experiment scheme to observe the field penetration into a type-II/1
superconductor. (a) Schematic phase diagram of type-II/1 material. Shown is the
cooling path into the phase diagram that freezes the IMS structure and allows an
observation of field penetration. (b) Illustration how the IMS structure acts as contrast
agent. If the field is increased after FC to the IMS, flux can only penetrate the sample
from the edges by filling the domain structure. As this is accompanied by a loss of DFI
contrast, the field penetration can be studied by nGI. Notice that in a realistic scenario,
the vortex lattice of the penetrating flux does not equal the one within the IMS.

for initial field penetration into the Meissner state of the superconducting sample.
This is due to the fact that in the Bean model [56], the final vortex configura-
tion is generated by gradients in the magnetic induction only (Sec. 2.2.3). The
macroscopically homogeneous flux distribution within the field cooled IMS will
thus not strongly influence the field penetration, besides adding a constant offset
to all relevant field scales.

6.4.1. Experimental setup
The investigation of field penetration into a niobium superconductor is based on
USANS experiments performed at the BT-5 instrument and nGI performed at
the ANTARES beamline. The experimental setups are described in Sec. 5.3 and
5.1.2. The same samples as introduced in Sec. 6.3.1 have been studied. The
nGI experiments were performed either at a wavelength of 4.0Å (Nb 2, 10 steps,
total exposure time: 3000 s) or in the white beam (Nb 3 and Nb wedge, 20 steps,
total exposure time: 1200 s). The crystals were aligned following the procedure
described in Ap. A.6. In order to guarantee a high DFI quality, the open beams
were taken above TC , individually for every field. Hence, the nGI experiments
were conducted via the following protocol: (i) Set temperature to T = 10 K > TC,
(ii) set required field, (iii) perform open beam nGI measurement, (iv) set field to
24 mT, (v) field cooling of the sample to the IMS, (vi) set required field, and (vii)
execute nGI data measurement.
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6.4.2. Experimental results
Ultra-small-angle neutron scattering

The suggested experiment assumes that the field cooled IMS structure in the
center of the sample is not modified by a subsequent field enhancement. This
assumption is verified in the following. For this purpose, a USANS investigation
has been performed on the sample Nb 2, in which the IMS scattering pattern has
been recorded once after initial field cooling to 4 K in a field of 26 mT, and once
after a subsequent field increase to 60 mT. In the latter case, the sample is not
expected to be in the IMS anymore, as seen from from SANS results in Fig. 6.20
(b). Corresponding USANS rocking curves are presented in Fig. 6.29 (a), in which
the scattered intensity I is plotted against the momentum transfer q. Clearly,
doubling the applied field has no impact on the scattering curve (and hence on
the IMS morphology) after the domain structure has been field cooled.

Figure 6.29.: Preconsideration of the nGI experiments. (a) USANS rocking curves
of the Nb 2 at 4 K once measured after cooling in a field of 25 mT, and once after
successive field enhancement to 60 mT. Clearly, the curves are identical within the
error bars. (b) Comparison of nGI measurements on Nb 2 performed during different
beam times. The DFI images are quite similar, which reveals that the field penetration
pattern is not random but defined by the sample and linked to the crystal lattice, since a
slight rotation of the crystal turned the DFI pattern as well. Different applied fields are
required for the same pattern due to the weaker pinning strength at higher temperatures.
White circles mark the sample position.

Neutron grating interferometry

In Fig. 6.30, DFIs of the sample Nb 2 are presented for fields between 73 and
225 mT taken at 5 K following the cooling procedure discussed in Sec. 6.4.1. In
fields between 24 and 73 mT no change in the DFI pattern has been detected. As
verified in Sec. 6.1, a contrast in the DFI marks the presence of IMS domains.
If the DFI has locally increased to one, the IMS structure has consequentially
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Figure 6.30.: DFI mapping of the field penetration into Nb 2. The sample was initially
cooled to 5 K in a field of 25 mT. Afterwards, the field was ramped to the specified
values. Regions of low DFI contrast correspond to positions which have not been
penetrated by the applied field so far. The white circle marks the sample position.

been filled with penetrating flux. In increasing fields, the region of contrast in
the DFI continuously shrinks until at 225 mT only three isolated small areas of
DFI 6= 1 remain. The flux does not penetrate circular as expected from the disc
shape of the sample, but plenty of spikes are formed during field entrance which
are directed outward (seen e.g. at 108 mT). Furthermore, a clear anisotropy in
the flux front develops and flux penetration along the 〈100〉 direction is distinctly
delayed compared to the 〈110〉 direction.
The observed ‘inkblot’-pattern is not random, but linked to the crystal lattice
of the sample as demonstrated in Fig. 6.29 (b). Shown are the DFI for 168 mT
taken from Fig. 6.30 and a DFI obtained in a previous beam time, measured using
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the same experimental procedure, but at a slightly lower temperature1. Although
the applied field necessary for a similar penetration distance is higher at lower
temperature, the observed flux front patterns are quite similar in both cases. The
samples were aligned slightly differently, but the flux front pattern clearly follows
this misalignment. Therefore, it can be concluded that the spikes preferentially
formed along the 〈100〉 and 〈110〉 directions.

Figure 6.31.: DFI mapping of the field penetration into the Nb wedge. The thickness
of the wedge decreases from left to right. The sample was initially cooled to 5 K in a
field of 25 mT. Afterwards, the field was ramped to the specified values. Regions of low
DFI contrast correspond to positions which have not been penetrated by the applied
field so far. The white circle marks the sample position.

1 Notice that the data from 2014 are also 2× 2-binned.
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Corresponding nGI data for the Nb wedge are shown in Fig. 6.31. The DFI were
obtained at 5 K in fields between 24 and 170 mT. The flux-depleted region at
the edge of the sample, discussed in Sec. 6.3, is clearly seen at low fields. In
increasing fields, the flux front becomes irregular as well, but preferably penetrates
the sample from the thinner side of the wedge. Again, emerging spikes in the flux
front are primarily aligned along 〈100〉 and 〈110〉. The field of full penetration is
reached around 170 mT, which is considerably lower than in the Nb 2 sample.

Figure 6.32.: Field penetration into Nb 3. The sample was initially cooled to 5 K in a
field of 25 mT. Afterwards, the field was ramped to the specified values. Shown are DFI
data which mark the non-penetrated IMS phase and TI data marking the IMS-Shubnikov
boundary. The white circle marks the sample position.

The Nb 3 sample is addressed hereafter. Corresponding nGI results are shown in
Fig. 6.32. This time, the dataset is grouped into the TI and DFI taken at 5 K in
fields between 41 and 128 mT. As Nb 3 is the thinnest sample, the DFI contrast
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degradation is considerably reduced compared to Fig. 6.31 and 6.30, and the TI
can be consulted to obtain additional information on the flux front position.
The region of DFI contrast smaller than one shrinks isotropically for increasing
fields and vanishes above 114 mT. As expected from the higher demagnetization
coefficient, the thinnest sample has the lowest field of full penetration. However,
details at the flux front are strongly blurred caused by the weak scattering.
As discussed in Sec. 6.2, the TI is influenced by small-angle scattering at the vortex
lattice itself and marks regions on the detector, where neutrons are scattered to or
scattered away from their original trajectory. As seen in Fig. 6.32, a TI contrast
that is different to one only appears at the edges of the IMS region within the
sample, which therefore allows a clearer determination of the penetrated flux front.
The observed flux penetration is isotropic, but the flux front is strongly irregular.
In small fields below 99 mT, the observed spikes cannot unambiguously be linked
to a crystallographic axis, in contrast to the thicker samples. Only near the field
of full penetration, at 99 mT, the IMS boundary seems to coincide with 〈100〉 and
〈110〉 directions.

Figure 6.33.: An nGI rocking scan. (a) TIs of the Nb wedge at B = 106 mT after
the sample has been cooled down to T = 5 K, following the procedure described in
Sec. 6.4.1. The TI, hence, corresponds to the DFI for 106 mT shown in Fig. 6.31. The
magnetic setup was rotated together with the sample around the vertical axis and TIs
were recorded for various rocking angles ϕ. (b) Standard deviation σTI of the TIs shown
in (a) as function of the rocking angle.

The arising TI contrast needs to be considered in more detail, since it is still
undefined why it marks the penetrating flux front. Further information can be
obtained by a rocking scan of the vortex lattice. Hence, in analogy to SANS, the
cryomagnetic sample environment was rotated with the sample, and TIs were
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acquired at different vertical rotation angles ϕ. Results of an nGI rocking scan are
shown in Fig. 6.33 (a) on the example of the niobium wedge at 106 mT. The field
has been applied after field cooling to 5 K, following the procedure described in Sec.
6.4.1. The observed state of the sample thus corresponds to the one shown in Fig.
6.31 at 106 mT. Since the TI is sensitive to SANS scattering off the vortex lattice,
a distinct dependence on the rocking angle arises. A maximum contrast variation
occurs for ϕ = 0°, while the TI contrast slowly vanishes to higher (positive as well
as negative) rocking angles. In the TI, the penetration front is characterized by
a line of lower intensity at the inside surrounded by a halo of high intensity. As
the sample is rotated from ϕ = −0.2° to 0.2°, the halo becomes less intense on
the left side and more intense on the right side. Outside of the flux front, no TI
contrast variation exceeding the noise level is detected.
The presented TI can be interpreted as a second strong indication that the vortex
lattice inside the penetrating flux front is frozen. The ordered vortex lattice within
the IMS generates strong coherent scattering. The corresponding scattering image
seen on the detector is a mapping of the IMS region. However, this image is
slightly deflected by a horizontal distance of 0.5 mm which corresponds to the
scattering vector of 2.8× 10−3 Å−1 found within the IMS (see Fig. 6.20). The
resulting TI contrast is the superposition of this scattering image (TI> 1) with the
attenuation image (TI< 1) of the sample showing the local intensity degradation
due to absorption and scattering. As the TI has been normalized to zero field, and
the vortex lattice is homogeneously distributed on a macroscopic scale within the
IMS region, the attenuation and scattering contrast completely cancel each other
besides on the edges of the IMS. Depending on the preferential scattering direction,
determined by the rocking angle of the vortex lattice, one side of the sample thus
shows the halo, while the other one reveals the line of lower TI contrast. Only if
the sample is rotated to φ = 0°, scattering into both directions arises equally, as
the beam divergence of approximately 0.2° is comparable to the Bragg angle of
the vortex lattice.
No TI contrast is found at the edge of the sample. This suggests that the
penetrating vortex lattice is not sufficiently ordered to produce a high amount
of coherent scattering, most probably due to the expected gradient in the vortex
lattice parameter (Sec. 2.2.3).
In order to quantify the TI information in terms of scattered intensity, its mean
value is inappropriate as the averaged scattering and attenuation signals cancel
each other. However, the scattered intensity can be quantified by the standard
deviation σTI of the TIs measured over the full image size. This is demonstrated
in Fig. 6.33 (b), in which σTI is plotted as a function of the rocking angle ϕ.
As shown by the dashed line, the standard deviation can be approximated by a
Lorentzian function. Its peak marks the position where the field is completely
parallel to the neutron beam. In principle, such an evaluation of the rocking scan
should provide similar information as a SANS rocking scan. This is suggested
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by the Lorentzian shape of the curve, which has been found in SANS data on
the same sample as well. The full width at half maximum of 0.6° is comparable
to twice the Bragg angle. However, in contrast to SANS, σTI (i) includes the
scattering information of all horizontal Bragg peaks, (ii) is convolved by a broader
resolution function, defined by the beam divergence, and (iii) is influenced by
a strong background signal, defined by the signal-to-noise ratio of the TI. This
problem will be readdressed in Sec. 6.5, where a complementary approach to
obtain rocking data by neutron imaging is demonstrated.

6.4.3. Flux penetration into a bulk niobium sample
The discussed results prove the validity of the presented method for the observation
of flux penetration into type-II/1 superconductors: (i) USANS has shown that
the field cooled IMS morphology is not influenced by a subsequent field variation
(Fig. 6.29 (a)) and (ii) during the field enhancement, a clear boundary between a
well ordered vortex lattice inside the IMS and a distorted one develops, as seen
in the TI (Fig. 6.33). Consequentially, the penetration of flux can be evaluated
quantitatively based on the presented data.

Figure 6.34.: Radial profiles to determine the flux front radius. Shown is the radially
averaged DFI signal as function of the radius for sample Nb 2 (a) and Nb 3 (b). The
data were calculated from the DFI in Fig. 6.32 and 6.30. rp is determined as the radius,
where the DFI signal firstly deviates from the constant background. For the lowest
fields, it is exemplarily marked with arrows.

The flux penetration is usually quantified in terms of the radius of penetration rp
of the flux front [201]. Its extraction from the data presented in Fig. 6.32 and 6.30
is possible via a radial averaging of the DFI signal. In Fig. 6.34, radial profiles
for both Nb 2 (a) and Nb 3 (b) are presented. Shown are the radially averaged
DFIs as a function of the radial position r on the sample. In both cases, the DFI
is strongly degraded inside the penetrated flux front, while the DFI equals one
outside. Obviously, in increasing field, a continuous decrease of the penetrated
flux front radius is detected. However, the DFI value inside this front, remains
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mainly unaffected. For Nb 2, a peak develops in high fields above 206 mT, which
marks the emerging islands of residual IMS phase, seen in Fig. 6.30.
An average flux front radius might be determined from the middle position of
the sharp drop in the DFI(r) curves. However, especially for low fields, a high
error is to be expected due to the fringed penetration front. Hence, for the sake of
simplicity, rp is defined as the radius of first deviation from the background DFI,
as exemplarily marked in Fig. 6.34.
In Fig. 6.35, rp is drawn against the applied magnetic field for both samples. As
the flux penetration is highly anisotropic for the thicker Nb 2 sample, the flux
front position has been determined separately along the 〈100〉 and 〈110〉 direction.
For the latter one, rp (〈110〉), has been calculated from a radial averaging over a
40° sector along 〈110〉, only. However, its value is also found in Fig. 6.34 (a), as
the position of the kink which develops in the data above 118 mT. Along 〈100〉,
rp corresponds to the value deduced from Fig. 6.34 (a).

Figure 6.35.: Quantitative evaluation of the flux front radius. Shown is rp as a function
of the magnetic field. The data were extracted from the profiles presented in Fig. 6.34.
Error bars are visual estimations on how well rp is defined in the radial profiles.

The flux penetration into a cylindrical sample has been studied e.g. in Ref. [202–
204]. It has been derived that in a cylindrical sample (radius r, thickness t, critical
current density Jc), the field of full penetration Bp is generally given by [203]:

Bp = µ0Jct

2 ln
2r
t

+
√

1 + 4r2

t2

 (6.12)

A complete flux penetration is thus expected at 2.9µ0Jc (for Nb 2) and 1.2µ0Jc
(for Nb3). Therefore, under the assumption of an equal Jc, the penetration field of
the thicker Nb 2 should approximately be twice as high as in the thin Nb 3. This
prediction is in rough agreement to the presented data. In contrast, regarding
the partially penetrated state, analytic expressions for the magnetic field profile
within the sample only exist in limited cases which can be simplified to only one



150 6. Results

dimension. E.g. for thin discs (r � t), the flux front radius is given as [204]:

rp (B) = r

cosh
[

2ζ(B)
µ0Jct

] (6.13)

in which ζ (B) = B. An applicability of Eq. 6.13 on discs with t
2r � 0.25 has

been numerically verified in Ref. [202]. Sample Nb 3 ( t
2r ≈ 0.03) clearly fulfills

this condition, while slight deviations might be expected for Nb 2 ( t
2r ≈ 0.1).

However, for a usage of Eq. 6.13 in the presented case, several modifications are
required, since (i) the formula has been derived under the assumption HC1 = 0,
and (ii) the magnetic flux, frozen in the IMS phase, has to be accounted for. An
appropriate correction to Eq. 6.13 can be implemented by empirically introducing
ζ (B) = B −Bf . Here, Bf is the field, at which the flux penetration sets in.
In Fig. 6.35, the flux front position rp has been fitted to the modified model 6.13.
The fit parameters are included in the legend of the figure. Bf was fixed to the
value where a first penetration of flux had been observed. Although, the flux
front is not unambiguously defined due to the multitude of spikes that arose near
the boundary, the general trend of the data is well described by Eq. 6.13. Small
deviations exist in high fields. However, the possible requirement to introduce a
cut-off at high fields to describe the field penetration in thicker samples has already
been recognized by Brandt [202]. The estimated values of Jc between 30× 106

and 90× 106 Am−2 have been reported for slightly impure Nb single crystals [205].
The physical content of Bf is still unclear, but a connection to the demagnetization
coefficient D, the lower critical field BC1, and the frozen magnetic induction B0
seems obvious. However, no correlation of Bf to these data could be established
so far. An in depth investigation would require samples that are better defined in
terms of impurity content and homogeneity. However, this was beyond the scope
of this thesis.
Finally, the deviations from a circular penetration front should be considered.
The observed anisotropy of the flux front in Nb 2 might be caused by its slightly
flattened edge along the 〈100〉 direction, which privileges a field penetration
perpendicular to it. A similar ellipsoidal cross-section is found for Nb 3, but
the small thickness of the sample might reduce its effect on the field penetration.
Spikes in the flux front are routinely observed by means of magneto-optical imaging
[198]. They might be caused by crystallographic dislocations or grain boundaries
[47]. The orientation of the spikes along crystallographic directions might support
the first assumption. However, also textured normal precipitations could link the
flux penetration boundary to crystal directions. Another explanation might even
be small indentations on the sample edge [203] which arose since the used Nb
discs were primarily produced for the investigations of Sec. 6.3, where such effects
were of minor importance for the data interpretation.
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6.4.4. Conclusion
In the previously discussed experiment, it has been clearly demonstrated that nGI
can be used to image the field penetration of superconducting vortices. In contrast
to all other investigation techniques, solely nGI is capable of probing the bulk of
the material. Furthermore, the method allows for a tomographic reconstruction
of various different DFI projections and hence for a one-to-one comparison of
numerically obtained data on the bulk flux distribution and experimental results.
The presented approach might also trigger studies on the extension of the Bean
model for a finite HC1. This problem has been sparsely considered, since in thin
samples, normally studied by magneto-optics, the Meissner phase is strongly
suppressed due to demagnetization.
Moreover, although the focus of this first study lies in the demonstration of the
imaging capability of this approach, also quantitative information in form of a
rough estimation of the critical current density could be obtained. Finally, it has to
be stressed that the chosen approach is not restricted to type-II/1 superconductors.
Its general idea, to prepare a sample in a metastable state, which provides a
scattering contrast, and to observe the subsequent spatial degradation of this
phase due to changing external conditions, might be useful for other physical
problems. Examples include the spatial degeneration of ferromagnetic domain
structures, skyrmion lattices or multiferrorics.

6.5. Distribution and morphology of the skyrmion lattice in
MnSi: A case study for further vortex matter
investigations

The skyrmion lattice in MnSi, introduced in Sec. 2.4, has been intensively
investigated during the last years [101]. Most of these studies focused either on the
nucleation, stability [206], dynamics [207, 208] and elasticity [209] of the skyrmion
lattice, or on its influence on electrical properties of the material [210, 211]. In
contrast, the impact of geometric effects on the skyrmion distribution has not been
addressed so far. Since the skyrmion lattice bears some strong resemblance to the
vortex lattice found in type-II superconductors, a similar impact of the sample
shape might also be expected. Hints of the influence of demagnetization effects
have already been mentioned in the first experimental observation of skyrmions
[98] by means of SANS. In this work, the SANS rocking width has been found
to strongly depend on the sample shape. A similar correlation has been reported
in Ref. [212], in which magnetization data have revealed that the A-phase is
surrounded by a region of phase coexistence whose extent crucially depends on
the sample geometry. Neither a quantification nor a further discussion on how
demagnetization influences the skyrmion lattice and its nucleation could be given
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in the aforementioned studies.
Diffractive neutron imaging can be used to shed some light on the impact of
demagnetization effects on the distribution of the skyrmion lattice within the
sample. The idea and motivation of the presented study resulted from experimental
observations on type-II/1 superconductors, discussed in Sec. 6.2 to 6.4. In these
examinations, it has been verified that coherent small-angle neutron scattering off
the vortex lattice can cause a significant scattering contrast in the transmission
image (compare e.g. Fig. 6.8 or 6.33). A similar contrast variation will occur
for the skyrmion lattice, as its small-angle scattering signature solely differs by a
ten times larger reciprocal lattice spacing. However, a distinct interpretation of
the SANS signal within the TI was hampered so far by the fact that (i) the TI
is the superposition of the attenuation image and the diffracted image, (ii) the
diffracted image itself can be composed of scattering contributions arriving from
various directions, and (iii) the TI only reveals contrast at positions where the
angle enclosed by the neutron beam and the skyrmion (vortex) lattice fulfills the
Bragg condition.
An easy experimental approach to overcome these limitations can be based on the
usage of a borated micro-channel plate (MCP). An MCP is a neutron collimator
consisting of several million micro-channels which are fused together (see Fig. 6.37
(a))[213]. In this way, the obtained collimator can provide a high collimation
ratio LC/DC exceeding 200, whereas its thickness in beam direction amounts
only a few millimeters. In contrast to the usually used Soller slit collimators, the
MCP collimation is obtained in vertical as well as in horizontal direction, and the
structure of the MCP is too fine to be directly resolved by neutron radiography.
The obtained images are consequentially not interspersed with streaks as in the
case of Soller slits, and a high resolution can be reached.
MCP have been discussed for a long time as neutron collimators or lenses [214].
Recently, they have been utilized in neutron radiography to increase the spatial
resolution [215, 216] via a decrease of the beam divergence. They have been used
additionally to suppress scattering contributions arising in the transmission image
[161].
In the following section, the capabilities of MCPs in selecting particular scattering
directions by absorbing the direct beam are demonstrated. Hence, the MCP is
used for diffractive [217] instead of transmission imaging. In this way, a mapping of
the skyrmion lattice distribution with high spatial resolution is possible. Moreover,
it will be shown how the local directional distortion and in principle also the
local lattice parameter of a skyrmion lattice can be deduced. The demonstrated
approach thus provides information complimentary to the usually used small-angle
neutron scattering.
The presented experiment can be seen as a proof-of-principle. For the sake of
convenience, this capability test has been performed on the skyrmion lattice of
MnSi, because its Bragg angle is comparably large and could be studied by the
available MCP with L/D = 250. An adaption of the presented approach to the
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vortex lattice in type-II superconductors is simple and straightforward. It only
requires a better collimation ratio of the MCP. However, it has to be emphasized
that the manufacturing of MCPs with LC/DC up to 2000 has been considered
to be feasible [218] and a verification of their applicability to various different
physical problems should trigger further developments.

6.5.1. Experimental setup and its alignment
A setup for diffractive imaging has been implemented at the ANTARES beamline
(Sec. 5.1.1). It is illustrated in Fig. 6.36: The sample was positioned at a distance
of LR = 8.3 m to the instruments’ pinhole and of LS = 54 cm to the detector. A
pinhole diameter of DR = 18 mm was chosen, leading to a LR/DR-ratio of 460.
The sample was placed in the cryomagnetic setup described in Sec. 5.1.6. This
setup could be vertically rotated by the angle ϕ which enabled rocking scans of
the sample. By placing absorbing beam limiters in front of the entrance to the
magnet, the neutron beam could be restricted to the sample area.

Figure 6.36.: Schematic of the setup used for diffractive imaging on the skyrmion
lattice. The illustration is not to scale. The direct neutron beam is blocked by an MCP,
while neutrons scattered at the skyrmion lattice can pass and reach the detector if
ϑMCP = 2ϑBragg. The intensity transmitted through the setup to the detector strongly
depends on the rocking angle ϕ which regulates the fulfillment of the Bragg condition.
The spatial resolution depends on the convolution of the geometrical resolution of the
beamline (Sec. 4.1) and the mosaicity of the skyrmion lattice.

The MCP was placed in front of the detector. A schematic of this collimator which
measures 5 cm in diameter and LC = 2 mm in thickness, is shown in Fig. 6.37 (a).
The MCP consists of glass fibers enriched with a mixture of Gd2O3 and B2O3 that
were hexagonally packed, leading to a center-to-center distance of 10 µm. Within
the fibers, pores of 8 µm diameter had been etched forming the micro-channels.
Due to the composition of the glass, the MCP reveals a high absorption for cold
neutrons outside the pores. The same MCP has been used in Ref. [161], in which
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its peak transmission has been deduced to 56 % [161] for a white beam spectrum.
A picture of the experimental setup is shown in Fig. 6.37 (b): The MCP was
placed in an aluminum holder and mounted on the sample manipulation stage
of the ANTARES beamline that allowed for a vertical rotation around the angle
ϑMCP as well as for a tilting of the MCP in beam direction by the angle χMCP.

Figure 6.37.: The experimental setup for diffractive imaging at ANTARES. (a) Il-
lustration of an MCP (not to scale), which consists of several micro-channels which
were fused together. Reprinted from Ref. [213] (©2004 IEEE). (b) Photography of the
experimental setup at ANTARES (compare Fig. 5.7): 1: Detector, 2: Micro-channel
plate in aluminum holder, 3: Magnet, 4: Cryostat and 5: Sample manipulator.

An MnSi disc (thickness t = 2.1 mm, diameter d = 9.3 mm) had been chosen
to demonstrate the performance of the MCP approach. A photography of the
sample is shown in Fig. 6.39. The sample was cut from a single crystal which had
been grown by the floating zone method. The flat faces of the sample have been
polished to remove impurities introduced by the cutting. A crystallographic 〈100〉
direction corresponds to the normal of the disc.

Characterization of the multi-channel plate

Prior to any investigation on MnSi, the MCP was characterized. For this pur-
pose, the sample and the sample environment were moved out of the beam, and
the transmitted intensity of the MCP was measured as function of the vertical
rotation angle ϑMCP and the tilt angle χMCP in 0.05° and 0.1° steps, respectively.
Corresponding results are presented in Fig. 6.38. In (a) the transmitted intensity
is plotted against ϑMCP and χMCP. The intensity has been averaged over the MCP
and is specified in CCD gray levels per second. The data points are interpolated
to obtain the presented intensity map. This measurement has been performed in
the white beam.
The intensity map is strongly peaked and approx. of radial-symmetry around
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Figure 6.38.: Empty rocking curve of the MCP. (a) Neutron transmission of the used
MCP as function of the vertical rocking angle ϑMCP and of the horizontal inclination
angle χMCP. The Bragg angle of 0.2° (λ = 4Å) found for the vortex lattice in Nb
(white inner spots) is too small to enable a separation of the scattered beam from the
direct beam using the MCP. In contrast, the feasibility of the presented approach can be
demonstrated on the skyrmion lattice in MnSi (white outer spots), as its Bragg angle of
1.2° (λ = 4Å) is much larger than the width of the rocking curve. (b) Profile along the
gray line in (a). The full width of half maximum has been determined to amount 0.43°
by fitting of the data to a Voigt profile.

the origin1 (considering the different scaling of the axes). Outside the peak, the
background intensity amounts to 5 % of the peak value. This constant background
is mostly caused by epithermal neutrons, as the MCP absorption strongly decreases
for increasing neutron energy [161]. A line profile for constant χMCP along the gray
line in (a) is presented in Fig. 6.38 (b). The peak shape could be accurately fitted
by a Voigt profile which yields a full width at half maximum (FWHM) of 0.43°
in accordance to former measurements [161]. The distinct form of the intensity
curve results as the convolution of the transmission function of the MCP [213]
and the divergence of the neutron beam which is estimated to about 0.4° over
the whole area of the collimator. The FWHM directly shows that in the case of
a superconducting vortex lattice (2ϑBragg ≈ 0.2° at λ = 4Å), it is impossible to
separate the first order Bragg peaks from the direct beam with the used setup,
since the Bragg angle lies within the angular range that passes the MCP. In
contrast, the Bragg peak of the skyrmion lattice (2ϑBragg ≈ 1.2° at λ = 4Å)
can be well separated. For a visualization, the Bragg angles for both cases are
additionally marked in Fig. 6.38 (a). The Bragg angles could be increased further
by an increase of the neutron wavelength, however, this would strongly diminish
the neutron flux.

1 Indeed, a closer inspection reveals a slightly hexagonal symmetry, which is however irrelevant
for the present study.
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Alignment of the skyrmion lattice

In order to align the setup, the MCP had to be rotated exactly to the Bragg angle
of the skyrmion lattice: Firstly, the rocking angle ϕ revealing maximal scattering
(i.e. ϕ = ϑBragg) had to be determined, and secondly, the angle ϑMCP had to be
scanned to maximize the transmission for scattered neutrons (i.e. ϑMCP = 2ϑBragg).

Figure 6.39.: Small-angle neutron scattering signatures in neutron radiography.
(a) Picture of the used MnSi disc. (b) Neutron image of the sample in its sample
holder taken at 28 K in a field of 200 mT. (c) Corresponding transmission image that
is the average of 20 single TIs which were recorded for different rocking angles between
−2.5° and 1.3° and normalized to above TC. The six diffracted images of the skyrmion
lattice are seen around the sample position. (d) Corresponding integrated SANS pattern
of the skyrmion lattice in MnSi for a similar orientation. As the detector is further away
in a SANS instrument and of lower resolution, the diffraction images of (c) degenerate
to diffraction spots. Hence, the real space information is lost for the gain of reciprocal
space resolution. Picture taken from [219] with courtesy of T. Adams.

In the initial step, the MCP had been removed from the beam and neutron images
of the sample were taken at a neutron wavelength of λ = 4.0Å. In order to
nucleate the skyrmion lattice, a magnetic field of 200 mT had been applied after
zero field cooling to 28 K. In Fig. 6.39 (b), a corresponding neutron radiography of
the sample is presented. The holder and the MnSi disc are clearly visible, however,
no sign of a diffractive contribution is seen, since (i) the scattered intensity is
very weak, and (ii) the sample has to be rotated around ϕ to obtain the complete
scattering information.
In Fig. 6.39 (c), results of a ϕ-rocking scan are presented. The shown TI is the
average of 20 single TIs taken at different equidistant angles ϕ between −2.5 and
1.3°. Each TI has been corrected for the dark current and has been normalized
to a neutron image taken above TC and at the same ϕ. Hence, all non-magnetic
contrast contributions have been eliminated. Some residual contrast at the screws
and the border of the sample holder arose, which might be the result of thermal
expansion, a slight movement of the sample in the magnetic field and a weak
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afterglow of the scintillator. A distinct hexagonal scattering pattern occurs around
the sample, which is separated by a distance of 12 mm from the center of the
disc. The corresponding diffraction angle can be calculated to 1.3° which closely
correlates to the Bragg angle of the skyrmion lattice in MnSi. The hexagon is
aligned horizontally along an 〈100〉 direction of the crystal, in agreement with
former SANS results. In Fig. 6.39 (d), a SANS pattern of the skyrmion lattice in
MnSi is shown for comparison. The data have been taken from Ref. [219] and had
been obtained on a similar sample in the same B|| 〈100〉-geometry of the crystal.
Clearly, the orientation of the SANS Bragg peaks and the diffractive images match.
The presented TI can hence be seen as a near field image of the SANS pattern
which reveals a better real space, but a lack of reciprocal space resolution.
In Fig. 6.40 (a), the mean TI values within the areas marked in Fig. 6.39 (c) are
plotted versus the rocking angle ϕ. Hence, the shown curve is the analogy of a
SANS rocking scan of the horizontal first order Bragg peaks. The peaks of the
rocking curves were fitted by a Gaussian peak function to obtain their angular
distance of 1.51± 0.05°. The value roughly corresponds to the expectation value
of 2ϑBragg, but its determination is defective since the small scattered intensity is
overlaid by the direct beam.
Afterwards, the MCP has been aligned by turning ϕ to the maximum of the TI
at the right peak position (ϕpeak = 0.7°) and subsequent scanning of ϑMCP from
0.5 to 2.0°. In Fig. 6.40 (b), the mean intensity reaching the detector during this
scan is plotted as a function of ϑMCP. Towards low angles, the intensity increases,
since the direct beam begins to pass the MCP. In contrast, the peak emerging at
1.3° corresponds to the desired configuration with ϑMCP = 2ϑBragg.

Figure 6.40.: Sample and MCP rocking curves at 28 K and 200 mT. (a) Mean TI
value for the right (black) and left (red) areas of Fig. 6.39 (c) as function of the rocking
angle ϕ. Error bars are estimated errors. (b) Intensity within the right area marked
in Fig. 6.39 (c) as function of the MCP rocking angle ϑMCP. The sample has been
rotated to ϕ = 0.7° to scatter maximal intensity. Error bars correspond to the statistical
error. In both cases, the dashed lines are Gaussian fits.
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Recording diffractive images of the skyrmion lattice

The distribution of the skyrmion lattice within the MnSi disc has been studied
in various magnetic fields between 150 and 260 mT, applied after the sample had
been zero field cooled to 28 K. A neutron wavelength of λ = 4Å has been selected.
For each field, 41 single neutron images have been obtained at different rocking
angles1 ∆ϕ = ϕ − ϕpeak between −2 and 2°. The MCP was fixed at the angle
revealing maximal transmission for the scattered beam, which has been deduced
above. The exposure time per image was set to 300 s. Although the MCP filtered
most of the direct beam, a number of epithermal neutrons could still pass the
collimator. Therefore, a similar open beam scan has been conducted in fields above
the A-phase. All subsequently shown data were filtered for gamma spots, corrected
for the CCD dark current and normalized to this open beam measurement. Hence,
although the consideration is restricted to the diffracted image of the sample,
marked by the right box in Fig. 6.39 (c), the presented results are evaluated in a
similar way as the transmission images and are consequentially also denoted TIs.

6.5.2. Diffractive imaging of the skyrmion lattice distribution
Proof-of-principle

Results of the diffractive imaging of the skyrmion lattice are exemplarily shown in
Fig. 6.41 for B = 200 mT which lies deep in the A-phase of the material. In (a),
single diffractive images of the MnSi disc are presented for different rocking angles
∆ϕ between −1.9 and 1.9°. For the sake of clarity, only a part of the 41 single TIs
is shown. For low and high ∆ϕ, these diffractive images are sickle shaped on the
left and right edge of the sample. If the rocking angle nears zero, the two sickles
become broader, converge, and increase in intensity until one single broad vertical
streak remains close to ∆ϕ = 0°. Clearly, the overall intensity of the diffractive
images dramatically increases towards the origin of ∆ϕ.
The peculiar shape of the TIs is attributed to a distortion of the skyrmion lattice:
In the center of the disc, the lattice is aligned strictly parallel to the applied field.
Hence, the Bragg condition is only fulfilled within a small angular range and once
Bragg’s law is satisfied, neutrons are scattered with high intensity. In contrast,
the Bragg condition is partially fulfilled in a much broader angular range on the
edge of the sample, which directly confirms that the skyrmion lattice is locally
distorted.
The aforementioned distortion can be easily quantified from the dataset. In Fig.
6.41 (b), the TI values of the pixels marked in (a) are plotted as a function of
∆ϕ. This time, all 41 images were evaluated. The presented data correspond to

1 For sake of clarity, the rocking angle is defined with respect to the angle of maximal scattered
intensity ϕpeak.
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Figure 6.41.: Results of diffractive imaging on the MnSi sample at 28 K in a field
of 200 mT. (a) Single diffractive images of the skyrmion lattice for different rocking
angles ∆ϕ between −1.9 and 1.9°. (b) TI value as function of the rocking angle for the
positions marked in (a). The lines correspond to Gaussian fits. Clearly, these rocking
curves become broader from the center (1) to the edge (3) of the sample. Outside of
the diffracted image (4), no contrast variation is observed and the TI equals one. Error
bars correspond to the statistical error, but mostly lie within the symbols. (c) Average
TI of the images shown in (a) which maps the distribution of the skyrmion lattice. The
sample position is marked as white circle.

a SANS rocking scan, however, instead of the whole sample, only the scattering
arising from one particular sample position is evaluated. In all cases, the rocking
curves could be approximated by a Gaussian distribution.
In the center of the sample (1), the rocking curve is strongly peaked, revealing a
maximal TI of 2.3 and a FWHM of 0.46± 0.01°. The width of the rocking curve
gradually increases towards the edge of the disc from 1.1± 0.1° at position (2) to
3.9± 0.2° at position (3), while the maximum decreases accordingly. Furthermore,
the peak position seems to be slightly shifted towards the edge. The rocking width
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in the center approximately corresponds to the FWHM of the MCP rocking curve
presented in Fig. 6.38 (b), and is hence limited by the instrumental resolution. In
contrast, positions (2) and (3) clearly reveal a broadening above the instrumental
curve. Outside of the diffractive image (4), no intensity modulation arises and the
TI signal equals one.
In Fig. 6.41 (c), the average TI is presented, which corresponds to the mean of all
41 diffracted images of a rocking scan. It displays from which positions within
the sample neutrons are scattered under the Bragg angle of the skyrmion lattice
and, therefore, maps the distribution of the A-phase. Due to the MCP setup, the
scattered intensity within the averaged TI could be increased drastically compared
to Fig. 6.39 (c), since the background has been strongly reduced.
Clearly, for 200 mT, the skyrmion lattice is homogeneously distributed over the
sample. A small drop in intensity is only found near the edge. This TI decrease
is caused by the fact that, due to limited beam time, the rocking scan could not
be extended until the TI contrast completely vanished. Some residual scattered
intensity would still have appeared near the edges, as seen from the unsaturated
rocking curve of position (3).

The nucleation and suppression of the skyrmion lattice near the boundaries of the
A-phase

Figure 6.42.: Distribution of the skyrmion lattice for different fields. Shown are
averaged TIs (compare Fig. 6.41), for different fields. The data were normalized to
B = 260 mT, at which the scattering contrast has already vanished. The data evaluation
which is required to calculate these images is explained in Sec. 6.5.2.

After the capacity of diffractive imaging has been demonstrated above, the nucle-
ation and suppression of the skyrmion phase in the disc-shaped sample is studied
in the remainder of this section. For this purpose, diffractive images have been
obtained for different fields between 150 and 250 mT. Averaged TIs which mark
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the skyrmion lattice are presented in Fig. 6.42. These images have been obtained
in a similar way to the one shown in Fig. 6.41 (c).
At 150 mT the skyrmion lattice begins to nucleate at the edges of the sample,
where a small sickle-shaped contrast arises. In increasing fields, the A-phase fur-
ther penetrates the sample from the edge, which generates a ring-shaped contrast
variation in the averaged TI for 160 mT. The connected penetration front has
moved further inwards at 170 mT. In between 180 and 230 mT, the whole sample
is in the A-phase, since a homogeneous contrast arises all over it. Above 240 mT,
the skyrmion lattice shrinks and the A-phase only occupies the center of the disc.
No scattering occurs at the region near the edge, where the sample is already in
the conical state. At 260 mT, no scattering contrast could be detected anymore.
These data have been used as reference (open beam) scan.

Figure 6.43.: Quantitative evaluation of the TI. (a) Rocking curves of the whole sample
for different magnetic fields between 150 and 250 mT. (b) Mean TI of the rocking
curves (black) shown in (a) and full width at half maximum (FWHM) of these curves
(yellow). The dashed lines are guide to the eyes.

The diffractive images are quantitatively evaluated in Fig. 6.43. In (a), rocking
curves of the sample are shown for all investigated fields. In each rocking curve,
the mean TI value within a single diffractive image (compare Fig. 6.41 (a)) is
plotted against the respective rocking angle ∆ϕ. Since the scattering is averaged
over the whole sample volume, these data correspond to a SANS rocking scan of
the first order Bragg peak. In fields below 170 mT, the rocking curves are very
broad and do not drop to one in the examined angular range. In contrast, above
170 mT, the rocking curves are strongly peaked around ∆ϕ = 0, reveal a higher
TI, and could be approximated by a Lorentzian distribution. The reason of this
particular line shape will be discussed below.
The mean value TImean of the averaged TIs, shown in Fig. 6.42, is plotted against
the magnetic field in Fig. 6.43 (b). Additionally, the FWHMs obtained from
Lorentzian fits of the rocking curves in (a) are plotted. TImean is a measure for
the overall scattered intensity and is hence analogous to the integrated intensity
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measured in SANS. In contrast, the FWHM corresponds to the SANS rocking
width.
Above 150 mT, the intensity increases with the field, since the volume of the
A-phase within the sample grows. In contrast, a strong decrease is observed in
the FWHM. In both quantities, a plateau develops between approximately 180
and 230 mT, which marks the field region in which the whole sample is filled by a
skyrmion lattice. This plateau is routinely observed in the integrated intensity
measured for the A-phase [220]. In high fields above 230 mT, the volume fraction
of the A-phase again decreases leading to a diminishing TImean. The FWHM
simultaneously drops down, until the contrast vanishes at 260 mT.
Taking advantage of the imaging approach, the mean TI value and the FWHM of
the rocking scan can be extracted for each detector pixel. In this way, the local
distortion and scattering power of the skyrmion lattice can be mapped. For this
purpose, every detector pixel within a rocking scan has been fitted to a Gaussian
function:

TI(∆ϕ) = 1 + AG

σG
√

2π
exp

[
−(∆ϕ−∆ϕcenter)2

2σ2
G

]
(6.14)

Here, ∆ϕcenter is the position of the peak, while the integrated intensity is given
as the area AG of the Gauss peak and the FWHM is defined as 2σG

√
2 ln 2. It has

already been demonstrated in Fig. 6.41 (b) that this Gaussian approximation fits
the data quite well.

Figure 6.44.: Quantitative evaluation of the diffracted images for B = 200 mT and
T = 28 K. Shown are the average TI and results of a pixelwise fitting of the diffracted
images to Eq. 6.14. These results are separated into maps of the area AG, the
FWHM, and the center ∆ϕcenter. The white dashed line and the red dotted-dashed
lines correspond to the sample area and the area within which the error of the fits is
smaller than 20 %.

Results of the pixelwise fitting of the diffracted images are presented in Fig. 6.44.
The data are grouped in the averaged TI, maps of the area AG, the local FWHM,
and the local center of the rocking scan ∆ϕcenter. Within the red dashed-dotted
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Figure 6.45.: Evaluation of the parameter maps. Shown are horizontal line profiles
through the parameter maps for all investigated fields. A pixel corresponds to 76 µm.
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line, the error of the fit parameters is smaller than 20 %. The oval shape of the
parameter maps is a consequence of the fact that rocking scans could only be
conducted around the vertical axis. Therefore, only distortions in the horizontal
direction are probed, but similar ones are expected in the vertical direction, due
to the cylindrical symmetry of the sample.
The averaged TI has already been discussed in Fig. 6.41 (c). The map of AG is
flat in the center of the sample, suggesting a homogeneous skyrmion lattice at
this field. Deviations are only observed near the edge. They are caused by the low
scattered intensity at these positions which diminishes the fit accuracy. The center
position ∆ϕcenter varies within the sample and shows a zero-point in the middle of
it. Finally, the FWHM shows that the rocking curve is strongly smeared out at
the edges of the samples and the rocking width continuously decreases towards
the center of the sample. In the interior of the disc the instrumental resolution is
reached at a value of 0.4°.
The cylindrical symmetry of the sample allows to restrict the attention on a
horizontal profile. Therefore, in Fig. 6.45, the variation of AG, FWHM, and
∆ϕcenter along the blue line in Fig. 6.44 is presented for fields between 160 and
250 mT. Data obtained for 150 mT could not be evaluated due to the low scattered
intensity.
In the first column, the area AG under the rocking curve is plotted against the
horizontal position. At 160 mT, scattering arises only near the edge of the sample
where AG gradual decrease towards the middle. In the center of the disc, AG equals
zero. At 170 mT, the skyrmion lattice has completely penetrated the sample but
a V-shaped profile is observed. For increasing fields, the profile is homogenized
and AG is finite as well as approximately constant all over the disc. The local
degradation of the skyrmion lattice is seen at 250 mT as a reduction of AG near
the sample edge. All data (including the averaged TIs of 6.42) reveal a slight
horizontal gradient in the integrated intensity. It could not be decided from these
first measurements if this effect is parasitic and caused by the setup or an intrinsic
property.
The FWHM of the rocking curves are presented in the middle column. Except
for the smallest field, where no contrast arises in the center, the profiles show
a pronounced U-shape with a FWHM variation between 0.4 and 3°. Once the
skyrmion lattice has covered the whole sample above 180 mT, this profile does
not change significantly. Only at 170 mT, a small reincrease occurs in the center.
However, it has to be emphasized that no conclusions can be drawn about the
angular distortion of the skyrmion lattice in the center of the sample, since the
angular resolution limit of 0.4° is reached.
The center position of the rocking curves is shown in the right column. At the
lowest field, an exact determination of ∆ϕcenter is hampered by the low intensity.
In higher fields, the trend of the rocking curve width and area is confirmed since
no deviations occur above 180 mT. However, the center of the rocking curve is
clearly increasing throughout the disc from −0.1 to 0.1° (−0.3 to 0.3° at 170 mT)
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and a linear slope arises in its center. This variation in the center position can
be partially explained by the pinhole geometry of the setup sketched in Fig. 6.46
(b). The maximal divergence at each position within the sample is approximately
given by DR/LR = 0.12° as sketched by the dashed lines. However, the mean
direction of the neutron beam (red) changes throughout the sample and is only
zero in its center. The maximal variation over the sample diameter d is given
by d/LR ≈ 0.07°. The value can only partially account for the discrepancy in
the data. However, a slight radial component of the magnetic field at the sample
position of about 2× 10−3B might already explain the further ∆ϕcenter variation.
This effect is most likely, as the sample was positioned approximately 3 mm out of
the center of the magnet in the direction of the beam.
To conclude, it has to be noted that a similar investigation has been performed
for decreasing fields. None of the determined quantities has shown a clear sign
of hysteretic behavior. A topological hysteresis as arising in superconductors
seems hence absent in the A-phase. However, a final assessment requires further
investigations.

6.5.3. The influence of demagnetization effects on the skyrmion lattice
Nucleation of the skyrmion lattice

The nucleation of the skyrmion lattice is usually accompanied by several signatures
which suggest a temporary coexistence between the A-phase and the conical state,
underlining the first-order character of the phase transition: (i) In small-angle
neutron scattering [98, 220], the transition to the A-phase takes place in a finite
field interval, where the integrated intensity simultaneously increase for the Bragg
peak related to the skyrmion lattice1 and decrease for the peak connected to the
conical state. (ii) The phase coexistence is also seen in magnetization data, as broad
peaks in the field dependence of the real and imaginary magnetic susceptibility
of the sample which develop at the A-phase boundary [101, 212]. Whether this
coexistence is of microscopic or macroscopic nature cannot be detected by either
of the methods. However, a distinct correlation of the width of the transition
region to the sample shape has been verified in Ref. [212], which points to a
strong influence of demagnetization effects. The imaging approach presented in
this section allows to naturally address the influence of demagnetization on the
skyrmion nucleation, since it allows to map the spatial distribution of the A-phase
in the coexistence region.
A connection of the data presented in Fig. 6.42 to magnetization results is
established in Fig. 6.46 (a) in which the phase diagram of MnSi near the A-
phase is shown. The data are taken from Ref. [101] in which a cuboid sample of

1 In Ref. [220], the skyrmion Bragg peak was still believed to be cause by a reoriented helical
structure.
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Figure 6.46.: Discussion on the skyrmion distribution. (a) Magnified phase diagram
of MnSi near the A-phase (compare Fig. 2.19 (a)). Yellow circles mark the positions
studied by diffractive imaging. Data with courtesy of A. Bauer [101]. (b) Illustration
how the pinhole geometry influences the local center position of a rocking scan. (c)
Illustration how the skyrmion lattice is distorted in the disc shape geometry.

comparable quality has been studied. The originally presented internal field µ0Hint
(compare Fig. 2.19 (a)) has been translated to applied fields by scaling according
to B = (1 +Dχcon)µ0Hint [99]. Here, D = 0.65 is the demagnetization coefficient
of the disc and χcon = 0.34 is the magnetic susceptibility within the conical state
[99]. The following discussion is based on these data, since no measurements on
the MnSi disc were available, due to its large size.
The helical, conical and A-phase are seen in the phase diagram. The latter one
has been subdivided into (i) a core region (dark red) where no signatures of a
phase coexistence are found by magnetic bulk measurements and (ii) a boundary
region (light red) in which broad peaks in the susceptibility arise and a phase
coexistence is likely. Positions, at which diffractive images of the MnSi disc have
been obtained, are marked by yellow circles. The onset of scattering within the
TIs at 150 mT coincides well with the lower boundary of the A-phase. In contrast,
the scattered intensity vanishes already at 260 mT slightly below the skyrmion
suppression expected by magnetization data. In the A-phase, both data are in
qualitative agreement. The region of phase coexistence found between 150 and
180 mT (dark yellow) and of pure A-phase between 180 and 230 mT (bright yellow)
corresponds well to the phase diagram. The slight deviations in the absolute values
might be caused by the different sample shape [212].
The presented coincidence of neutron and magnetization data suggests that the
observed phase coexistence is mostly macroscopic and the A-phase nucleates via a
skyrmion penetration from the sample edges. This behavior can be qualitatively
well understood from the demagnetization field Hd = −DM within the disc,
which decreases from the interior to the edge. The local field H = B/µ0 +Hd
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is consequentially enhanced near the sample boundary, which provokes the local
transition to the A-phase already in smaller applied fields.
It cannot be excluded that the skyrmion nucleation in the center takes place
by the spontaneous formation of skyrmions out of the conical continuum. The
opposite process has been observed in doped Fe0.5Co0.5Si, in which neighboring
skyrmions have been shown to randomly merge, leading to a successive transition
to the conical state [206]. However, the presented data strongly suggest that
most of the signatures seen at the magnetic phase transition can be explained by
demagnetization.

Bending of the skyrmion lattice

The observed broadening of the rocking curves of a few degrees clearly exceeds the
experimental resolution of 0.4° which, contrary to ∆ϕcenter, does not depend on
the position on the sample. A widening of the rocking curve is usually connected
to a loss of the longitudinal coherence of the skyrmion lattice. However, due to the
strong spatial dependence of the rocking width, a local bending of the skyrmion
lines seems to be more likely, since demagnetizing fields will provoke a distortion
towards the sample edge. If one assumes a smooth variation of the skyrmion line
direction, an alignment as sketched in Fig. 6.46 (c) seems most likely based on the
presented data. The skyrmions are bent along the internal field which is directed
outward, towards the corners of the sample, but is homogenized towards the center
of the disc. From the rocking FWHM of more than 3°, typical radii of curvatures
can be deduced to lie in the centimeter range at the sample edge.

The geometrical influence on SANS data

The presented spatially resolved data directly demonstrate how a SANS rocking
curve is influenced by demagnetization effects. In Fig. 6.47 (a)-(f), the averaged
TI taken at 200 mT is shown. Additionally, rocking curves evaluated only for the
marked area in the associated TIs are presented. These data would correspond to
SANS rocking scans with an aperture placed in front of the sample that has the
shape of the particular white square. Clearly, the FWHM of the rocking curve,
written above each graph, strongly increases once the aperture covers the edge
of the sample (d). Furthermore, a peculiar transition in the line shape can be
observed. For a demonstration, each rocking curve is fitted by a Gaussian (red)
as well as a Lorentzian (blue) peak shape. The means of the squared residuals
are denoted R2

Gauss and R2
Lorentz, respectively. While the data of (a) and (b) are

more accurately described by the Gaussian shape ((a) R2
Gauss = 0.6R2

Lorentz, (b)
R2

Gauss = 0.3R2
Lorentz), a better fit is reached by the Lorentzian, once the aperture

covers the edge of the sample ((d) R2
Gauss = 16R2

Lorentz). If the whole sample is
included, small deviations from the Lorentzian line shape arise, as well. Although
this behavior seems remarkable, it has been directly observed in Ref. [98] where
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Figure 6.47.: The geometric influence on the rocking curve. Presented are the results
of diffractive imaging for B = 200 mT. Each of the subfigures (a)-(f) shows a rocking
curve evaluated for the area marked by the white square in the corresponding averaged
TIs. Each rocking curve is fitted by a Gaussian and a Lorentzian distribution. The line
shape remarkably changes if one extends the probed sample area to the edge of the
sample. Error bars corresponds to the statistical error.

an approximately Lorentzian shape of the rocking curve was found for a cuboid
sample, whereas a thin plate covered by a small aperture produces a distinct
Gaussian shape. The transition in the line shape arises, as the rocking curve is
the convolution of the Gaussian resolution curve, the Gaussian mosaicity of the
skyrmion lattice [219] and the orientational distribution of the skyrmion lattice,
which seems to be more of Lorentzian nature if the edges of the sample are
included.

6.5.4. Conclusion and outlook
In conclusion, the presented approach using an MCP provides a simple way to
use small-angle scattering arising from magnetic structures to obtain diffractive
images. On the example of the skyrmion lattice in MnSi it could be recorded
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how magnetization and scattering data are influenced by the sample shape. The
demagnetization fields associated with the disc shape of the sample, (i) give
rise to an inhomogeneous penetration of the skyrmion lattice and (ii) locally
misalign the direction of the skyrmion lines from that of the applied magnetic
field. Both effects have to be considered in the interpretation of SANS data. The
presented study substantiates the necessity to always consider the sample shape
in the interpretation of scattering data, either by the use of ellipsoidal samples
which generate a homogeneous demagnetization field or by a simulation of the
internal field distribution in non-elliptic samples. The approach to just mask the
edges of a sample in a scattering experiment is obviously insufficient to exclude
demagnetization effects.
Considering type-II superconductors, the presented study illustrated the potential
of diffractive imaging to investigate the bulk distribution and alignment of magnetic
vortices. A further technical improvement of the MCPs to higher collimation
ratios will enable to directly test several of the theoretical prediction on the
vortex distribution within superconductors of different shapes [68]. On the first
glance, these problems seem quite academic. However, results of such theoretical
computations are extensively applied in the interpretation of e.g magnetization or
magneto-optical data, although their experimental verification is so far restricted
to the sample surface.





7. Conclusion: New toys conquer the playground

In this thesis, a novel approach to study the bulk structure of vortex matter has
been developed, which is based on the combination of neutron grating interferome-
try, diffractive imaging, small-angle neutron scattering, as well as ultra-small-angle
neutron scattering. This approach enables to probe a broad range of length scales
of 0.01 to 10 µm, which is not accessible by ordinary small-angle neutron scattering.
By combining SANS and USANS, the differential scattering cross-section of the
sample can be probed over an extended q-range, while nGI allows for a mapping of
its local deviation. Hence, detailed information about the sample’s microstructure
are combined with high resolution images of its spatial distribution. By means
of this approach, the properties of three different generic types of vortex matter
have been investigated: (i) the intermediate state (IS) in type-I superconducting
lead, (ii) the intermediate mixed state (IMS) in type-II superconducting niobium,
and (iii) the skyrmion lattice in chiral magnetic MnSi.
This thesis consists of a methodical as well as an experimental part. In order to
establish nGI as a tool for quantitative investigations of emergent micrometer
structures, arising e.g. in the IS and IMS, a major goal of the present work
was the implementation of a grating interferometer as user instrument at the
ANTARES beamline of the Heinz Maier-Leibnitz Zentrum. The capability of the
setup to perform novel experimental approaches like directional and quantitative
dark-field imaging has been demonstrated. Since the developed setup allows for
an easy insertion of additional sample environments, it can be generally adapted
to investigate systems revealing a scattering length density that varies on the
micrometer scale. Due to its good interferometric visibility, its comparatively high
neutron flux and its discussed flexibility, the nGI at ANTARES provides a strong
alternative to the few setups existing world wide1.
As a further important point, a common theoretical framework covering nGI,
SANS and USANS has been derived and experimentally verified within this thesis.
It allows to extract detailed information about the sample’s microstructure (like
structure size and textures) by quantitative and directional dark-field imaging.
The developed relations furthermore enable a coherent interpretation of USANS
and nGI results which permits the combination of different techniques performed
in this work.

1 Further nGI setups are available at the Paul-Scherrer-Institut (PSI), the Helmholtz Zentrum
Berlin (HZB), the National Institute of Standards and Technology (NIST), and the High
Flux Advanced Neutron Application Reactor (HANARO).
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By applying nGI to the intermediate state in a type-I superconducting lead sample,
its capability to image the nucleation of superconducting domain structures has
been verified. In agreement with literature, a strong hysteretic behavior of the
domain morphology has been found, which is of pure topological nature.
The impact of pinning and geometrical barriers on the IMS formation in type-II
superconductors has been examined on niobium samples of different qualities and
shapes. In the case of a pinning free Nb rod, an unconventional domain volume
filling, which is accompanied by a strong variation of the internal field, has been
found. It could be explained in terms of geometrical barriers arising due to the
non-ellipsoidal sample shape. Furthermore, a first hint for a topological hysteresis
in the morphology of the IMS has been detected.
The situation dramatically differs for samples revealing significant pinning. In
this case, an IMS can only be nucleated via field cooling. Unlike in the pinning
free sample, the IMS is formed out of the Shubnikov phase. It could be shown
that the total flux is trapped in the sample already above the temperature at
which the IMS nucleates. The observed rearrangement of the vortices to form
domains is hence purely microscopic and linked to the changed lattice elasticity
accompanying the onset of vortex attraction. Further investigations are required
to uncover the nature of this transition.
The resulting IMS domain morphology is rather irregular due to the presence of
pinning, but still characterized by a preferred domain size which increases with
the field according to theoretical predictions of the Landau and Goren-Tinkham
models. As for the pinning free case, the IMS is not homogeneously distributed
within the sample after field cooling.
By using the IMS as contrast agent for nGI, the process of field penetration into
the bulk of a Nb type-II superconductor has been studied. Actually, these results
provide the first direct visualization of the critical state within the bulk of a type-II
superconductor. The observed flux penetration can be described qualitatively by
the existing theory. However, a quantitative treatment requires a modification of
the existing models to account for the finite thickness of the samples and for a
finite lower critical field. Since an additional signature of the flux front has been
observed in the transmission image, the presented approach could be expanded to
investigate also type-II superconductors not forming an IMS.
Finally, the potential of diffractive imaging using an MCP collimator has been
demonstrated by imaging the nucleation of the skyrmion lattice phase in an MnSi
disc. A strong influence of demagnetization effects on the magnetic phase diagram
of MnSi has been visualized, since the observed skyrmion nucleation from the
edge of the disc to its center correlates to the demagnetization field within the
sample. As a second consequence of demagnetization, the skyrmion lattice is
strongly distorted, even deep within the A-phase.
Besides providing detailed information about the morphology and nucleation of
the vortex phase in the bulk of superconductors and chiral magnets, the presented
study demonstrated the dramatic influence of the sample shape on vortex matter:
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In particular, (i) an inhomogeneous distribution of vortices, (ii) a strong bending
of vortex lines, as well as (iii) a macroscopic phase separation have been iden-
tified as common manifestations of geometrical effects. This strong impact of
the sample shape onto vortex matter is rarely considered in literature. Instead,
observations which cannot be satisfactorily explained are often only vaguely linked
to demagnetizing effects. The methodical approach presented in this thesis now
allows for a detailed quantification of such geometric effects. The additional usage
of radiographic methods might hence be considered whenever the influence of the
sample geometry is not sufficiently understood, and prevents an unambiguous
interpretation of scattering data.
At last, it has to be emphasized that the presented general approach is by no means
limited to vortex matter. It could be extended in order to investigate the rich
variety of modulated phases appearing in densely packed, liquid and dilute physical,
chemical or biological systems and systems near phase transitions (in particular
first order phase transitions), as well as in emerging magnetic systems. All of them
share the macroscopic domain formation on the micrometer or sub-micrometer
scale as a common feature.
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A. Appendix

A.1. The phase boundaries of the IMS
The phase diagram of the intermediate mixed state was given in Fig. 2.10 (b). It
has been stated that the IMS is characterized by a coexistence of Shubnikov and
Meissner domains in the field region (1−D)BC1 ≤ B ≤ (1−D)BC1 +DB0. In
the following section, these boundaries are shortly justified [15, 178].
The magnetization within the sample is given by the magnetic induction B and
the magnetic field H :

M = 1
µ0
B −H , (A.1)

in which the magnetic field is composed of the applied field Ha and the demagne-
tization field Hd = −DM :

H = Ha +Hd = Ha −DM . (A.2)

In the Meissner state B = 0, hence, Eq. A.1 simplifies to M = −H. Therefore,
the field H reaches the critical value already at an applied field:

Ha = (1−D)HC1 , (A.3)

which corresponds to the transition field to the IMS. Within the IMS, Shub-
nikov domains are formed. These domains are characterized by a constant, field
independent vortex lattice parameter of:

aVL =
√

2Φ0√
3B0

. (A.4)

The local induction of the domains is given byB0 that is defined by the equilibrium
spacing of the vortices within the interaction potential of Eq. 2.20. In the IMS,
B0 remains constant and only the filling factor of the domains increases. The
magnetic fieldH , consequently corresponds to the critical valueHC1 as otherwise,
the IMS would become unstable.
Clearly, the sample is entirely filled with vortex lattice, when the macroscopic
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induction B is given by B0. This is the case at:

Ha = HC1 +DM = HC1 +D

(
1
µ0
B0 −HC1

)
(A.5)

= (1−D)HC1 + D

µ0
B0 . (A.6)

The corresponding applied magnetic field Ba is given by:

B2 = (1−D)BC1 +DB0 . (A.7)

Above this value, the sample is in the Shubnikov state and completely filled with a
vortex lattice. A further increase of the field reduces the vortex lattice parameter.

A.2. Directional DFI on a bi-gaussian scattering distribution
The formula for the ω-dependence of the DFI is derived under the assumption of
a bi-gaussian differential scattering cross-section:

dσ(qx,qy)
dΩ = A exp

[
−
(
q2

x
2σ2

x
+

q2
y

2σ2
y

)]
. (A.8)

By using Eq. 3.31, the correlation function G(x,y) can be calculated to:

G(x,y) = A

4π2

∫
qx,qy

exp
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−
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x
2σ2

x
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q2
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2σ2
y
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exp [i (qxx+ qyy)] dqxdqy (A.9)

= A
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= A
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∞∫
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−
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2σ2
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)
cos (qyy) dqy .

(A.11)
(A.12)

In the last step, the fact that the differential scattering cross-section is an even
function has been used, which allows to skip the imaginary part of the exponential
function. The resulting integral is tabulated [221] and is solved to:

G(x,y) = Aσxσy
2π exp

[
−
(
x2σ2

x
2 +

y2σ2
y

2

)]
. (A.13)
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Hence, the correlation function is again a Gaussian distribution. The ω dependence
of the DFI is connected to the correlation function through Eq. 4.31. Here, the
normalized correlation function is given by:

G(x cosω,− x sinω)
G(0,0) = exp

[
−x

2

2
(
σ2
x cos2 ω + σ2

y sin2 ω
)]

, (A.14)

which can be rearranged to:

G(x cosω,− x sinω)
G(0,0) = exp

[
−x

2

2
{
σ2
x +

(
σ2
y − σ2

x

)
sin2 ω

}]
. (A.15)

Neglecting multiple scattering (Eq. 4.25), the DFI dependence on ω is given by:

DFI(ω) = 1− Σt+ Σt exp
(
−ξ

2
GI
2
[
σ2
x +

(
σ2
y − σ2

x

)
sin2 ω

])
. (A.16)

Under the assumption, that most neutrons are scattered (Σt ≈ 1) the visibility is
finally given by:

DFI(ω) = exp
(
−ξ

2
GI
2
[
σ2
x +

(
σ2
y − σ2

x

)
sin2 ω

])
. (A.17)

Note that Eqs. A.16 and A.17 exactly correspond to the results given by Jensen et
al. [144] and Revol et al. [145]. The only difference is that here the starting point
was a scattering distribution in reciprocal space, whereas in the aforementioned
works, DFI(ω) has been calculated starting from a real space gaussian intensity
distribution at the detector. The variance is hence once defined in reciprocal
space and once as the variance of the resulting scattering pattern at the detector.
However, the translation is given by:

σx = 4π2

ξGIp2
2

σm Revol et al.
σ1 Jensen et al.

(A.18)

σy = 4π2

ξGIp2
2

σM Revol et al.
σ2 Jensen et al.

(A.19)

A.3. The influence of finite grating transmission on the nGI
visibility

The effect of the finite grating line transmission on the visibility can be estimated by
the following considerations: The absorption gratings Gi (i=0,2) having periodicity
pi and a duty cycle of DCi will have a transmission profile as illustrated in Fig.
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Figure A.1.: Reduction of visibility caused by finite transmission through the grating
lines: (a) Simplified transmission profile of the absorption gratings. (b) If the transmission
through the grating lines T is non-zero the intensity oscillation at the detector is reduced
and superimposed by a constant background.

A.1 (a). In the case of a perfect grating, the transmission through the slits is unity,
whereas the transmission of the grating lines, denoted as T , is zero. Therefore, the
visibility will have an initial value VGi(T = 0) = a1(T = 0)/a0(T = 0), in which
a0(0) is given as DCi multiplied by the neutron intensity incident on the grating
IG. However, if T is non-zero, the transmitted intensity will increase according to:

a0(T ) = [DCi + T (1−DCi)] IG (A.20)

On the other hand, the intensity oscillation measured at the detector will corre-
spond to the initial one, reduced by a factor of (1− T ), which is superimposed by
a constant offset given as T · IG (compare red curve in Fig. A.1 (b)). Hence a1(T )
scales as (1− T ):

a1(T ) = (1− T )a1(0) = (1− T )VGi(0)DCiIG (A.21)

For low neutron energies, the wavelength dependence of the neutron transmission
T can be approximated by:

T (λ) = exp
[
−hiσ

λ

1.8Å

]
(A.22)

where σ = 1502.645 cm−1 is the macroscopic absorption cross-section of Gd at 1.8Å
[150]. By combining Equations A.20,A.21 and A.22, the wavelength dependence of
the visibility caused by the finite transmission through the grating lines is derived
as:

VGi(T (λ))
VGi(0) = 1

VGi(0)
a1(T (λ))
a0(T (λ)) = DCi

DCi +
[
exp(hiσ

λ
1.8 Å)− 1

]−1 . (A.23)
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A.4. Magnetic field profiles of the ANTARES magnet
A brief characterization of the magnet used for most of the presented studies is
given in Fig. A.2. Shown are profiles of the x-component of the field inside the
magnet for different applied currents. By means of a Hall probe, the profiles were
measured along the radial (a) and axial (b) cut through the center of the magnet
(see inset in (a)). The sample position is marked by a dashed vertical line in each
of the graphs.

Figure A.2.: Characterization of the electromagnet used for most of the presented
studies. Shown are radial (a) and axial (b) Bx profiles through the center of the magnet.
The x-axis corresponds to the axial direction of the magnet.

The magnetic field profiles reveal a homogeneous region in the center of the magnet
of at least 20 mm in length. For 100 mT, the inhomogeneity of the field amounts
only 0.05 mT in this region. With increasing current, the region of constant field
slightly shrinks, caused by deviations from the linear M(B) characteristics of the
iron yoke. However, even at a field of 300 mT the inhomogeneity amounts less than
1 mT. Unfortunately, the radial components of the magnetic field could not be
quantitatively determined with the used Hall probe, since the axial component is
distinctly larger and only a slight misalignment of the probe results in an exlusive
measurement of this component. Nonetheless, up to 120 mT, no clear sign of a
radial component has been detected at the sample position.

A.5. Scattering contrast in the TI and its crosstalk to the
DFI

If the sample shows strong coherent scattering, the TI signal might not only be
influenced by the neutron attenuation of the specimen but also by its scattering
contributions. Positions in the sample where neutrons are scattered away, result
in a reduced intensity at the detector, whereas additional intensity occurs in the
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detector pixels where the neutrons are scattered to. In the case of the investigated
vortex lattice, this implies that the TI locally shows where the angle enclosed by
the incoming neutrons and the orientation of the vortex lattice fulfills the Bragg
condition. Hence, neutrons that are locally scattered away from their original
direction lead to a decrease of the intensity at the corresponding position on the
detector (TI < 1) and an increase of the general background of diffuse scattering.
Thereby, the TI contrast is complementary to integral scattering techniques such
as SANS, as a localization of the scattering positions is possible.
For purely absorbing samples the TI shows contrasts smaller than unity. However,
due to the discussed coherent scattering, the TI signal of the vortex lattice locally
shows values larger than unity as shown in Fig. 6.8 (white lines). Referring to
Eq. 4.12, the DFI remains smaller than unity as long as af

0 is smaller than unity,
which is the case if no coherent scattering is present in the sample. However, it is
obvious that coherently scattered neutrons locally lead to a larger amplitude af

0.
This larger value directly influences the calculated DFI signal as seen in Eq. 4.12.
Under the assumption that the absorption of the sample is negligible, which holds
in the presented case as the data are zero field normalized, as well as no USANS
scattering in the sample is present (af

1 = const.) , the TI and the DFI signals are
related by :

DFI(j,l)Crosstalk = as
1(j,l)af

0(j,l)
as

0(j,l)af
1(j,l) = 1

TI
(A.24)

The crosstalk of the TI to the DFI can therefore be quantified as the inverted
signal of the TI. An illustration of the crosstalk contrast mechanism is given in
Fig. A.3.
In case of the nGI data as presented in Fig. 6.8, the crosstalk from the TI to the
DFI can be better seen by taking horizontal line profiles through the individual TI
and DFI images for each magnetic field. These line profiles show that the crosstalk
can be directly compared as shown in Fig. A.4.
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Figure A.3.: Illustration of the crosstalk of the DFI and the TI. If the sample reveals
strong SANS scattering, neutrons are deflected in a different pixel when reaching the
detector, which generates a scattering contrast in the TI. However, the additional
neutron flux offsets the intensity oscillation in the corresponding detector pixel which
leads to a DFI signal. In contrast, at the detector pixels where the intensity is reduced,
the whole oscillation is degraded, which reduce the TI but leaves the DFI contrast
unaltered.

Figure A.4.: Profiles of the TI and DFI signals of the nGI data from Fig. 6.8. The TI
(black) and DFI (gree) profiles were measured along a horizontal section in the center
of the rod. The red dashed vertical lines indicate the boundary of the sample. Profiles
measured along the top edge of the Nb rod are additionally shown for 123 mT. They
illustrate the delayed IMS to Shubnikov transition at the sample edge compared to the
center of the sample.
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A.6. Alignment of the vortex lattice for nGI
Experiments on superconductors require the precise knowledge how the magnetic
field and, hence, the vortex lattice is aligned to the neutron beam. In small-angle
scattering, this information is easily obtained by a rocking scan. A parallel field-
to-beam configuration is reached at the middle of two opposite first order rocking
peaks. However, in neutron radiography, the scattering pattern is hardly accessed,
due to the low sample-to-detector distance.
In order to still allow an optimal orientation of the sample to the field, the used
magnet has been constructed in a way that an asymmetrical operation of the two
Helmholtz coils is possible. In this mode, the field at the sample position (and
consequentially also the vortex lattice) is slightly spherically distorted as shown in
the top view of Fig. A.5 (a). If the angle enclosed by the direction of the vortex
lattice and the neutron beam fulfills Bragg’s law, the neutrons will be scattered.
As seen in Fig. A.5 (a), due to the spherical distortion, a peculiar scattering
contrast at the detector develops which is characterized by a high intensity in the
center where neutrons have been scattered to, surrounded by positions of lower
intensity in which neutrons have been scattered away. As the vortex lattice has
a hexagonal symmetry, this pattern repeats every 60°. Hence, at the detector, a
six-fold star structure arises which is sketched in Fig. A.5 (b). The scattering
vectors k1,k2 and k3 found in the hexagonal SANS pattern of the vortex lattice
(see e.g. Fig. 6.5), are recovered as the scattering directions perpendicular to the
low and high intensity streaks forming the star. They are drawn in Fig. A.5 (b),
too.

Figure A.5.: Vortex lattice orientation using an asymmetric magnetic field. (a) Top
view of a sample in an asymmetric operated Helmholtz geometry. (b) View on the
detector. A peculiar star-shaped transmission image arises due to the vortex lattice
distortion Further explanation see text.

If the magnetic field and the sample are rotated by an angle φ around the vertical
axis (rocking scan), the positions where the Bragg condition is fulfilled change
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and hence the star moves along the sample. Fig. A.6 demonstrates this behavior
on the example of the Nb wedge sample. The magnetic field is perfectly parallel
to the neutron beam, if the center of the star coincides with the center of the
sample. In the presented case, the sample was situated slightly below the middle
position of the magnet. Furthermore, from the alignment of the star, one can
perform a crystallographic fine orientation of the sample: As demonstrated in
Fig. 6.14 (a), the scattering takes place along the 〈100〉 direction and hence, the
nearly vertical streak must correspond to the perpendicular 〈110〉 direction. All
Nb samples, probed by nGI were prealigned using this approach.

Figure A.6.: Sample alignment on the example the Nb wedge in a field of 140 mT and
at a temperature of 5 K. The data are open and dark image corrected. Additionally, a
neutron radiography is shown.
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A.7. Data substantiating the drawn conclusions

Figure A.7.: USANS scattering curves of the Nb 3 sample for different magnetic
fields. The sample has been field cooled to 4 K. B was applied along 〈110〉, parallel to
the neutron beam, while another crystallographic 〈110〉-direction was rotated into the
horizontal plane. The red curves are fits to Eq. 6.4.
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Figure A.8.: USANS scattering curves of the Nb wedge sample for different magnetic
fields. The sample has been field cooled to 4 K. B was applied along 〈110〉, parallel
to the neutron beam, while a crystallographic 〈100〉-direction was rotated into the
horizontal plane.The red curves are fits to Eq. 6.4. The increased intensity around
1× 10−3 Å−1 is attributed to the first order Bragg peak of the vortex lattice expected
at 1.35× 10−3 Å−1.
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