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Abstract

Conventional techniques for transcriptional profiling quantify average ribonucleic

acid (RNA) abundance levels in large populations of cells. Emerging technolo-

gies for singe-cell profiling offer unique opportunities for understanding core cellular

processes such as cell differentiation, which cannot be resolved using the conven-

tional ensemble measurements. Typical studies of differentiating cells involve pro-

filed cells form multiple time-points of the differentiation process, thus resulting in

snapshot-data of largely unsynchronised cells. To gain insights into the transcrip-

tional dynamics that drive cell differentiation we propose adapting diffusion maps

for single-cell data analysis. Our first motivation is benefiting from general prop-

erties of diffusion maps such as robustness to noise and taking non-linearities into

account when generating a latent space. Second, cell differentiation is a diffusion-

like process where starting from a pluripotent stage, cells move smoothly within the

transcriptional landscape towards more differentiated states, with some stochastic-

ity along their path. Thus diffusion maps are especially relevant for the analysis of

such data intrinsically generated from a biological diffusion-like process. Third, it

was previously not clear how to handle missing values and technical uncertainties

inherent in the experimental technique such as detection limits or low sensitivities.

We encourage application of density-normalized diffusion maps, hence accounting

for the non-uniform density of sampled cells in the gene expression space. Moreover,

we account for measurement noise and missing values. We further extend the ge-

ometric diffusions approach for pseudotime ordering of cells rather than mere data

embedding and visualisation via diffusion maps. Our proposed method for diffusion

pseudotime ordering of cells (DPT) can also separate several cell fates (branchings)

in the data. We demonstrate the application and capabilities of DPT on several

single-cell differentiation experimental data sets from various labs. We also clarify
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the relationship between pseudotime and actual time measurements through the no-

tion of universal time. That is the deterministic part of the dynamics all cell of the

same fate take in the transcriptional space despite their asynchrony and stochasticity

in the course of development.



Zusammenfassung

Herkömmliche Techniken zur Messung des Transkriptoms messen die durchschnit-

tliche Konzentration von Ribonukleinsäuren (RNA) in großen Populationen von

Zellen. Neue Technologien der Einzelzell-Messung bieten erstmalig Möglichkeiten für

ein Verständnis von zellulären Prozessen, wie Zelldifferenzierung, die mit herkömmlichen

Messtechnicken nicht adressiert werden können.

Typische Einzelzell-Messungen von differenzierenden Zellen enthalten das Transkrip-

tom von Zellen aus unterschiedlichen Stadien des Differenzierungsprozesses. Es liegt

dann eine ’Momentaufnahme’ von weitgehend unsynchronisierten Zellen vor. Um

Einblicke in die Transkriptionsdynamik während der Zelldifferenzierung zu gewin-

nen, schlagen wir die Anwendung der ‘diffusion map‘ Methode vor und leiten deren

Anpassung für die Einzelzell-Datenanalyse ab. Die primäre Motivation für die An-

wendung von diffusion maps liegt in deren allgemeinen Eigenschaften: sie sind

robust bei Rauschen und sie berücksichtigen Nichtlinearitäten bei der Erzeugung

eines latenten Raums. Eine weitere Motivation stammt aus folgender Überlegung.

Die Zelldifferenzierung ist ein diffusionsartiger Prozess, bei dem, ausgehend von

einem pluripotenten Zustand, sich Zellen innerhalb der Transkriptionslandschaft

stochastisch in Richtung differenzierter Zustände bewegen. Somit sind diffusion

maps besonders relevant für die Analyse von Daten, die von einem biologischen

diffusionsartigen Prozess erzeugt werden. Schließlich war es bisher nicht klar, wie

fehlende Werte und technische Unsicherheiten zu behandeln sind, die in Einzel-

daten relevant sind, weil Messtechniken Nachweisgrenzen oder niedrige Empfind-

lichkeit haben. Wir verwenden Dichte-normierte diffusion maps um heterogenen

Samplingbedinungen Rechnung zu tragen, die nur auf experimentelle Bedingun-

gen zurückzuführen sind. Weiterhin berücksichtigen wir Messrauschen und fehlende
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Werte. Wir erweitern diffusion maps um Zellen anhand einer ‘Pseudozeit‘ ordnen

zu können und führen dazu ein Ähnlichkeitsmaß —’diffusion pseudotime’ (DPT)

—ein. Zuvor waren diffusion maps als bloßes Dateneinbettungsverfahren und zur

Visualisierung in Verwendung. Mit unserem DPT basiereten Verfahren können wir

Verzweigungen des Differenzierungsprozess in mehrere Zellsubtypen auflösen. Wir

zeigen die Anwendung und die Möglichkeiten von DPT auf mehreren Datensätzen

zur Einzeldifferenzierung. Wir klären auch die Beziehung zwischen Pseudozeit und

der tatsächlichen Zeit durch den Begriff der ’universal time’. Diese kann mit dem

deterministischer Teil der Zelldynamik in Verbindung gebracht werden, der durch

DPT oder ’universal time’ trotz Asynchronität und Stochastizität abgeleitet werden

kann.
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Chapter 1

Introduction

In this dissertation the goal was to find the hierarchy of developmental stages in

cell differentiation. We wanted to reconstruct the trajectories that cell lineages take

in transcriptional space from the pluripotent stem cell to their fully differentiated

fate stage. For this, we proposed the use and extension of geometric diffusions. In

this chapter characteristics of single-cell differentiation data and existing methods

(ranging from preprocessing to clustering and differential gene expression analysis)

for their analysis are described as well as our motivation for adaption and application

of geometric diffusions.

1.1 Single-cell differentiation data and its analysis

The life of several multicellular organisms including plants and animals starts from

solely a single cell called zygote. The zygote divides several times to produce more

and more cells which constitute the embryo. Going through multiple divisions and

a hierarchy of several developmental stages, developing cells acquire their specific

functional specialisation to make up the complex system of tissues and cell types

in a mature organism. Such a process that roots in the same single cell (called the

pluripotent cell) and results in several cells each with a specific fate, is called differ-

entiation. Throughout the differentiation process, the whole genome of the original

pluripotent cell is passed to all the later progeny cells. The rate of accumulating
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mutations through cell proliferation (in healthy cells) is too low to affect anything on

the gene expression level. It is thus merely by changing the gene expression profile

that different cells acquire different fates.

Differentiation is generally known as a directed process. Differentiated cells do not

naturally revert to earlier stages of development (with few exceptions [1, 2]). An

important property of cell differentiation is the asynchrony of development among

individual cells. Reaching the same state of development can take long for one cell

and short for the other. This makes conventional ensemble gene expression measure-

ment techniques such as bulk RNA-Seq and bulk qPCR measurements as used in [3]

and [4] inefficient, as these techniques average out all the heterogeneity of expression

present among single cells [5, 6]. It was only in the last decade that the advent of

new technologies enabled gene expression measurements at the single-cell level [7, 8],

thus the heterogeneity of expression in a population of cells can be resolved. Typical

single-cell measurement techniques provide gene expression profiles for several cells

(the number of cells and genes measurement capacity depends on the specific tech-

nique being used) that are captured on one or few time points, hence providing one

or few snapshot data sets. A challenging property of single-cell data is the high level

of noise. Because of low copy numbers of messenger RNA (mRNA) and proteins in

single cells, such measurements are very imprecise and suffer high levels of noise and

missing values as usually several amplifications of the gene product are required for

detecting its expression [9, 10, 11]. This amount of inaccuracy and noise is specific

to single-cell measurements does not exist in classical bulk measurements, as there

the expression from many cells is pooled together resulting in sufficient amount of

molecules for detection. In single-cell data however, it is quite common that several

genes expression levels fall below the sensitivity and thus the limit of detection of the

single-cell measurement technique, leading to prevalence of undetected and missing

values.

Single-cell measurement technologies fall into five major categories described below:

i. Microscopy and cell imaging [12, 13]

By integration of genetically encoded fluorescent proteins to specific genes of

interest, gene expression level can be measured by fluorescent intensities ob-

served by cell microscopy. A popular cell imaging technique, fluorescent in situ
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hybridyzation (FISH) [13] uses fluorescently tagged oligonucleotide probes to

mark expressed mRNA molecules in single cells. Microscopy and cell imaging

technologies provide the opportunity to measure gene expression of single cells in

the course of actual time hence obtaining expression time-series. Microscopy is

in fact the only single-cell technology in which the actual time resolution of mea-

surements is not lost. In certain types of experiments cells are not fixed in their

location. To obtain the expression time-series of a lineage thus requires compu-

tational tools for image processing and cell tracking. Cell imaging techniques

are currently very limited in the number of proteins they can monitor (maxi-

mum four proteins). Cell tracking [14, 15] is also a computationally challenging

task especially in presence of cell proliferation. Nonetheless, the field of cell

tracking methodologies is developing rapidly. Furthermore, the asynchronous

development during cell differentiation necessitates further computational effort

for analysis of time-lapse data from imaging techniques since naive averaging

over time points is not suitable (see the Suppl. Note 6 in [16]).

ii. Flow (and mass) cytometry [17, 18]

In these technologies cell surface proteins (i.e. proteins that are bound to the

cell membrane) are marked, either by fluorescent antibodies (in flow cytometry)

or isotopically pure heavy elements (in mass cytometry). The abundance of

the surface protein in a cell is then inferred from the signal intensity of each

marker . An immediate limitation of cytometry technologies is that only surface

proteins can be probed. The number of markers that can be measured with flow

cytometry is rather limited in a single experiment (typically below 20) due of

interference of signals from different fluorescence channels [17]. Mass cytometry

does not suffer this kind of signal leakage and can therefore measure a larger

number of markers (around 100). The number of single cells measured by this

technique can be up to millions.

iii. Single-cell quantitative polymerase chain reaction (sc-qPCR) [19]

This technique amplifies copies of pre-specified nucleic acids (gene products such

as messenger RNAs and microRNAs) across several orders of magnitude, which

facilitates the measurement of relative gene expression on the single-cell level.

The number of genes probed with this technique is typically below a hundred,

because pre-targeting of the sequence of nucleic acids to be amplified is needed
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which is time consuming and rather expensive. The number of cells that can be

profiled with this technique ranges between hundreds to few thousands of cells.

iv. Single-cell RNA sequencing (scRNA-Seq) [20]

Single-cell RNA sequencing technologies include a wide range of protocols and

teqniques such as Fluidigm [21], inDrops [22], SMART-Seq [23], MARS-Seq [24],

etc. In scRNA-Seq, the whole mRNA content of single cells is amplified using

PCR to reach the level of detection necessary for the subsequent sequencing.

Each sequenced read is then aligned to the genome and gene expression levels

are inferred from this alignment [25]. RNA-Seq techniques enable measurement

of thousands of genes as no it a priori selection of genes is needed. The gen-

eral drawback of scRNA-Seq approaches is the low accuracy and prevalence of

non-detected genes (usually termed drop-outs). The accuracy as well as cell

number capacity is quite variable among several protocols. For a discussion on

computational challenges of scRNA-Seq analysis see [26, 27].

Despite the variation in sensitivity, accuracy and capacity in the number of cells and

genes they can monitor, all the techniques listed above (except single-cell microscopy

which can track back the ancestry tree for cell and thus provide measurements on

the course of actual time) supply a n by G matrix (n being the number of cells and

G being the number of probed genes) data, for which the actual time development

history of each cell is lost.

Figure 1.1 shows a general scheme for the analysis of single-cell snapshot data.

First, a preprocessing of the noisy expression profiles is required [27]. [28] and [29]

are instances of single-cell data preprocessing which apply control measures for the

amount of noise in each measurement and therefore identify very noisy genes to be

excluded from the downstream computational analysis. Algorithms such as scLVM

[30] and OEFinder [31] are commonly used for removing confounding sources of

variation (cell-cycle, batch effect between several days of measurement, etc.) from

the data. Other statistical methods such as BASiCS [32] provide normalisation

methods for single-cell data. After preprocessing, a clustering algorithm is applied

to resolve the heterogeneity of gene expression among the cells monitored in the

snapshot(s). Application of hierarchical clustering algorithms [33], k-means [34],

partitioning around medoid (PAM) [35] on low-dimensional embeddings of data
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the human genome is transcribed, as several 
studies have identified very rare transcripts 
(for example, those present in one copy 
per 10,000 cells)20. These transcripts could 
either be expressed at high levels in rare cells 
(for example, ten copies in one of 100,000 
cells) or have low (leaky) expression in a 
larger subset of cells. Analyses across hun-
dreds or thousands of individual cells will 
likely resolve these questions and improve 
our understanding of cellular transcriptional 
landscapes and regulatory networks.

RNA-seq analyses across human tissues 
and cell populations have demonstrated the 
pervasive use of RNA processing to diversify  
the transcriptome and the proteome21. A 
large fraction of differences are subtle when 
comparing tissues, but it is possible that pat-
terns of alternative splicing, polyadenylation 
and transcription start-site usage will have 
a more bimodal (on or off ) distribution 

from biases, such clustering can reveal all cell 
types present, including new ones. All cells 
in a cluster can also be used to derive robust 
cell-type expression profiles, again in a data-
driven manner and without previous knowl-
edge of which marker genes define a tissue 
or cell type. Single-cell profiling of RNAs 
is therefore the first method that could lay 
a foundation for a quantitative, data-driven 
classification of cell types.

Single-cell transcriptomics will also enable 
high-resolution transcriptional maps of both 
stable and transient cellular states during dif-
ferentiation or reprogramming. Important 
for these aims is to sample sufficient indi-
vidual cells that span the entire process, so 
that analyses can later zoom in on the subset 
of cells at critical bifurcation points of dif-
ferentiation. The sample size should reflect 
how often cell types or events are expected 
to occur. Also, it is debated to what extent 

high in a given cell because of random fluc-
tuations. Such variability may be explained 
by models that describe transcription as 
occurring in discrete bursts16 driven by sto-
chastic molecular processes. The stochastic 
nature of transcription has been studied in 
greatest detail in prokaryotes and unicellu-
lar eukaryotes16, but more and more lines 
of evidence point to similar phenomena 
in mammalian cells17,18. We must there-
fore take into account such transcriptional 
behavior in our strategies for analyzing 
single-cell transcriptome data and in our 
biological interpretation of the results. For 
example, standard differential expression 
tests might not be suitable for single-cell data 
that contain a fair number of cells with no 
detectable expression. Indeed, new tests have 
been proposed19 that combine differences in 
transcript abundance with differences in the 
fraction of cells with expression.

Single-cell transcriptome studies to date 
require cells in suspension (for example, 
dissociated tissues or cultures) so that the 
spatial organization of the population is 
often lost, unless cells had been picked from 
defined areas. Spatial information can be 
recovered to some extent through RNA  
in situ hybridization analyses of marker 
genes for identified cell types, allowing 
cell type–specific expression profiles to be 
projected onto complex tissue structures. 
However, methods that simultaneously cap-
ture spatial structures and transcriptome-
wide profiles at single-cell resolution are 
being developed but have yet to be described 
(for example, building on in situ sequencing 
or array-based multiplexing strategies). The 
ability to perform spatial single-cell tran-
scriptomics on developing, adult or patho-
logical tissues promises to dramatically ele-
vate our understanding of life and disease, 
revealing the transcriptomes related to spe-
cific states of intercellular communication, 
polarity formation and local gradients.

Implications for biology
The measurement of gene expression in 
single cells will revolutionize our under-
standing of gene regulation and resolve 
many longstanding debates in biology. Cells 
cluster by cell type or developmental state 
when grouped according to their expression 
profiles7–10. Thus, expression-based clus-
tering allows for the unbiased reconstruc-
tion or ‘reverse engineering’ of cell types in 
any population or tissue after sequencing 
enough individual cells (Fig. 1). If the sam-
pling of cells is extensive and sufficiently free 
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Figure 1 | Single-cell transcriptome analyses of tissues and cell types. Cells from a healthy or 
pathological tissue are dissociated, analyzed independently with single-cell RNA-seq and clustered 
based on their gene expression profiles. Clustering of cells reveals a cell-type map that can be used to 
assess the composition of the tissue including the identification of new cell types or subtypes. These 
rich data can be used to address many questions of gene expression and regulation within or between 
cell types and between tissues.

(i) Preprocessing of 
expression profiles

(ii) Clustering and 
visualisation

(iii) Differential 
comparison

(iv) Integration with 
biological knowledge 

(phenotype)

T	cell

B	cell

Unknown

Gene	name

Ce
ll	
ID

Tissue	

Single-cell	RNA-Seq	

Figure 1.1: A general scheme of single-cell data analysis. A snapshot of a hetero-
geneous collection of cells (e.g. from a tissue) is captured providing the expression
profiles (e.g. single-cell RNA-Seq) of the sampled cells. Preprocessing is essential for
bringing experimental measurements into a useful and interpretable form. Prepro-
cessing includes a variety of algorithms for sequence alignment, data normalisations,
denoising etc. In the next step data visualisation and clustering is applied. Next,
the set of differentially expressed genes between each pair of clusters is identified
and matched to the phenotype those genes are associated with. The phenotype
might include a wide range of biological knowledge such as genes function or disease
association. With this biologists can address the biological functionality of each of
the identified clusters (for example T cells, B cells, etc.).

obtained by low-dimensional embedding tools such as principle component analysis

(PCA) [36], t-SNE [37] and gaussian process latent variable models (GPLVM) [38]

are commonly used for this purpose. Once several clusters of cells are identified,

differential gene expression analyses can elucidate the set of genes whose expression

characterizes each cluster [39]. Finally, by studying the functionality (or phenotypic

associations) of the differentially expressed genes, biologists can infer differences in

function between cell clusters. Typically gene ontology and annotation data bases

[40, 41] are used for understanding such phenotypical association.
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Snapshot	T2

Snapshot	T1

Snapshot	T3

Cell	fate	1

Cell	fate	2

Pluripotent	
state

(Each	colour	indicates	a	specific	
transcrip;onal	state	of	the	cell)

Figure 1.2: Pseudotime ordering of cells from snapshot single-cell expression data.
Each time point snapshot measurement consists of a highly heterogeneous collec-
tion of cells with respect to their progression along the differentiation hierarchy
(each colour indicates a specific transcriptional state of the cell) and hence their
expression profiles. The heterogeneity at each time point is due to the asynchronous
development among individual cells as well as branching events. As a result, there
is little biological relevance in the capture time of each cell (i.e. at which time point
snapshot it was collected). Instead, it is desirable to arrange the cells according to
the progression stage providing a pseudotime ordering that also recovers the data
branching events.

This work focuses on the clustering/visualisation step. Given the continuous nature

of developmental processes including differentiation, one might assume the existence

of a continuous gene expression manifold as opposed to separate clustering. Thus

our goal was to arrange each cell present in the snapshot data (as if a piece of a

puzzle) in its correct place with respect to other measured cells in the hierarchy

of development. As a result we wish to get a complete and correct picture of the

differentiation tree through such ordering, commonly termed pseudotime ordering

(Figure 1.2).
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1.2 Previous methods for cluster analysis and pseu-

dotime ordering of single-cell differentiation

data

In the recent years several methods have been proposed for cluster analysis of single-

cell differentiation data [42, 43, 44, 45, 46, 47]. Comparison to all proposed methods

is not in the scope of this work. For reviews over several methods please see [26, 27,

48]. We compared the proposed method of this work in [49] (Appendix A) and [16]

(Appendix B) to the most popular ones which are discussed as follows.

The first method which was proposed for cluster analysis and pseudotime ordering

of single-cell differentiation data is SPADE [50]. It was originally developed for the

analysis of single-cell flow cytometry data of 13 surface markers in 2011. SPADE uses

a hierarchical clustering on cells in the high-dimensional space and then constructs a

minimum spanning tree on the clustered data. Hierarchical clustering however, has

a highly varying random component which changes in each run of the algorithm.

Furthermore, putting a minimum spanning tree on the few clusters in the high-

dimensional transcriptional space is very frail and prune to curse of dimensionality

effects [51]. In fact the higher the number of dimensions in the data, the more badly

affected SPADE is by curse of dimensionality effects. Thus SPADE fails to perform

reliably and robustly on high dimensional data to the extent that each run of the

algorithm results in a completely different differentiation tree (see Fig. S17 in [49]

(Appendix A) and Fig. M14 in [52] for instances).

viSNE [53] is another algorithm applied for analysis of single-cell data published

in 2013. It is an extension of the t-distributed stochastic neighbours embedding

(t-SNE) [37] to deal with large cell numbers as obtained by several single-cell tech-

nologies (e.g. cytometry, scRNA-Seq). t-SNE is a powerful clustering algorithm,

however it does not preserve the global structure of the data which is definitely of

interest in the case of differentiation data where one wishes to detect the (contin-

ues) developmental trajectories that several cell lineages have taken. t-SNE instead

breaks the data into separate clusters for which the geometrical/developmental re-

lations are not clear. See Figs. 4-8 in [49] (Appendix A).
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In 2014 Monocle [54] was published for the analysis of few hundreds of single

cells’ RNA-Seq expression. Monocle first performs independent components analysis

(ICA) for dimensionality reduction. Next, it builds a minimum spanning tree and

computes the PQ tree [55] for the reduced dimensions. Pseudotime order and the

branchings of the data are then reported by the organization of the cells along the

PQ tree. Unlike SPADE, Monocle overcomes the curse of dimensionality effects by

building its minimum spanning tree on the reduced dimensions. However the dimen-

sion reduction method it uses (ICA) is linear, whereas nonlinearities are crucial for

reconstruction of differentiation paths especially with relatively few measured genes

(e.g. sc-qPCR data). Furthermore, as we discuss in [16] (Appendix B), minimum

spanning trees are not robust to noise. On the computational aspect, Monocle can

only handle approximately (depending on the complexity of the hierarchy structure

that needs to be captured by the PQ tree) 1000 cells. These features make Monocle

inappropriate for analysis of several single-cell technologies data with rather few

probed genes or large cell numbers.

Another method introduced in 2014 for analysis and pseudotime ordering of single

cells is Wanderlust [52]. It first builds the nearest neighbours graph on the data

in high dimensions and then tries to compute a geodesic distance (by summing the

distances on the nn-graph) of cells with respect to a pre defined root cell. To build

this geodesic distance, Wanderlust relies on the assumption of non-branching data.

For the analysis of branching data, Wanderlust was extended to Wishbone [56] in

2016. In contrast to the coherent structure of Wanderlust, Wishbone is a complex

collage of several unrelated algorithmic steps (including denoising by diffusion maps,

pseudotime ordering by Wanderlust, branch finding through normalised cut graph

segmentation [57] on the disagreement of Wanderlust pseudotimes from several runs,

refinement of pseudotime after branch finding and visualizing on t-SNE plots), which

in the end leaves the algorithm ad-hoc and error prone. We show the comparison of

results from our method (DPT) to Wishbone in Suppl. Note 7 [16](Appendix B).

Suppl. Note 7 in [16] also includes detailed methodology comparisons of Wishbone

and Monocle to DPT.

As discussed in this section, none of the discussed methods deals with all features

of single-cell differentiation data (e.g. high level of noise, non-linearity, continuity

of trajectories, etc.) properly. Although these methods have shown to be useful for
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specific data sets, they lack the general applicability to other data sets.

1.3 Geometric diffusions approach for cluster anal-

ysis and pseudotime ordering of single-cell dif-

ferentiation data

Because of the demand for a clustering method which deals with single-cell differ-

entiation data properly, in 2015 we published [49] proposing that diffusion maps

provide a suitable dimension reduction and data visualisation tool for such data

(see Appendix A). Diffusion maps are based on random walks (diffusion), a concept

that is intrinsically related to the biological process of differentiation, where starting

from the pluripotent state cells follow a stochastic (directed) random-walk like tra-

jectory until the fully differentiated fate. Thus, Euclidean distances on the diffusion

map provide a biologically relevant measure for the affinities cells experience be-

tween several states in the transcriptional space. An important feature of diffusion

maps which makes them suitable for single-cell differentiation data analysis is the

robustness to noise. While single-cell data is in general too noisy for several ma-

chine learning algorithms (minimum spanning tree, principal component analysis,

etc.), diffusion maps provide considerable robustness to noise by considering sev-

eral random walk paths between each pair of cells. In the main and supplementary

text of [49] (Appendix A) we demonstrate superiority of diffusion maps to several

other approaches including other Laplacian eigenmaps. Since then diffusion maps

and other Laplacian eigenmaps have been implemented in several later appearing

methods e.g. [56] and [58].

In 2016 we extended our application of diffusion maps from just mapping and vi-

sualisation of data to pseudotime ordering and branch identification [16]. By con-

sidering all possible connecting paths between each pair of cells, we built a robust

on-manifold distance (we called it the diffusion pseudotime metric, dpt), which was

used for pseudotime ordering, branch finding and data visualization (the dpt dis-

tance has the same low-dimensional embedding as diffusion maps, see Suppl. Note

1.2 in [16]). We also clarified the relation of the dpt distance, hence our pseudotime,
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to actual time measurements ([16] online methods), whereas such a relationship was

not clear for previous methods.



Chapter 2

Methodology

Laplacian eigenmaps set up the groundwork for this dissertation, on which the dif-

fusion maps is built. Thus, this chapter begins with theoretical basis for Laplacian

eigenmaps with highlighting the properties that are important for this specific work.

Then, it is described how we can use a diffusion metric for learning the geometry

and branching events of a data manifold. We also describe our definition of univer-

sal time [16] which makes a connection between actual time measurements and the

pseudotime we infer using geometric diffusions.

2.1 The Laplacian and transition matrices

Consider the directed connected weighted graph G = (V,E) , where V and E denote

the nodes and the edges of the graph. The adjacency matrix W is defined such that

Wxy shows the directed weight of edge xy. The laplacian matrix L is defined as:

L = D −W (2.1)

where the degree matrix D is diagonal with Dxx =
∑

yWxy. One can define a

normalised version of the laplacian matrix in two ways:

i. The random-walk normalized Laplacian matrix defined as: Lrw = D−1L =

I −D−1W
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ii. The symmetric normalized Laplacian matrix defined as: Lsym = D−1/2LD−1/2 =

I −D−1/2WD−1/2

We also define the respective transition matrices T rw = D−1W and T sym =

D−1/2WD−1/2 for later use in the diffusion maps frame work. As different only by

the unity matrix, it is clear that the transition matrices share the same eigenvectors

with their respective normalised Laplacian matrix and their eigenvalues (λi) are re-

lated to the eigenvalues of the normalised Laplacian matrix (γi) through: γi = 1−λi.
Relation of graph Laplacians with the Fokker-Planck equation allows their applica-

tion for describing the probability distribution p of a random walk on the set of the

graph nodes [59]. The Fokker-Planck equation describes the probability distribution

p of a random walk on the set of the graph nodes . The Fokker-Planck equation has

the following general form:

∂

∂t
p = ∇ · (∇ 1

β
p+ p∇U) =

1

β
∆p+∇ · (p∇U) (2.2)

where β is a thermal factor describing the swiftness of diffusion and U is the potential

energy of the nodes. The first term describes the diffusion of the probability distri-

bution p, and the second term corresponds to the (deterministic) forces acting on p.

In presence of potential energies (i.e. second term), Equation 2.2 defines a directed

flow of probabilities and generates an asymmetric transition (as well as Laplacian)

matrix. Coifman et al. [59] defined geometric diffusions using the relation

∂

∂t
p = pLrw (2.3)

as the asymmetric Lrw defines a proper random walk on the graph G with con-

servation of (outflow) probabilities. In contrast to Lrw, the symmetric normalised

Laplacian Lsym does not define a random walk with conserved probabilities as the

row of T sym do not sum to one. However it still defines a time evolution process

which allows creation and annihilation of probability p′ on the graph, thus:

∂

∂t
p′ = p′Lsym = Lsymp′ (2.4)

Eventhough Lsym does not preserve the outflow probabilities, as we will see is section

2.3, it brings a level of clarity in the mathematics and interpretations of geometric
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diffusions. Also in cases where keeping the probability conservation property is a

big concern, one can still keep the symmetric form of T sym and only compensate the

deviance of the row (and column) sums from one on its diagonal as potential energy

of the nodes.

It is interesting to note that Lrw and Lsym are related to each other by a rotation:

Lsym = D−1/2LD−1/2 = D1/2(D−1L)D−1/2 = D1/2(Lrw)D−1/2 (2.5)

This shows that Lrw and Lsym have the same eigenvalues. However, unlike the

symmetric Lsym, the set of right and left eigenvectors differ from each other for Lrw.

This implies slight variation for some of the calculations when using either form. We

take care of such differences with detailed discussion in such necessary occasions.

2.2 Laplacian eigenmaps as a valid data embed-

ding tool

Laplacian eigenmaps use the Laplacian matrix of a graph built on a set of uni-

formly sampled data from a manifold for providing an approximation to the Laplace-

Beltrami operator. It has been shown that transformation of data to the first eigen-

vectors of the Laplacian provides a valid data embedding tool [60]. Later in [59]

Coifman et al. showed that Euclidean distances between data points in the coordi-

nates of the first eigenfunctions, indeed show us the low-dimensional (i.e. embedded)

approximation of a metric they defined as diffusion distance (see [59] or [49] (Ap-

pendix A) for details). In this section we overview the optimal embeddings proof

from [60]:

Consider the connected wighted graph G = (V,E) with edge weights given by the

matrix W again. If we want to map the graph nodes to f in k dimensions, a valid

objective function (which penalizes falling apart of close-by nodes on the mapped

space) would be:

∑

x,y

(fx − fy)
2Wxy (2.6)
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where fx represents the map of node x. The objective function in 2.6 implies that

the pair of nodes with larger transition weight, stay closer to each other in the map,

hence will have smaller distance ||fx− fy||. The objective function can be written as

2fTLf , because:

∑

x,y

(fx − fy)
2Wxy =

∑

x,y

(f2x + f2y − 2fxfy)Wxy =

∑

x

f2xDxx +
∑

y

f2yDyy − 2
∑

x,y

fxfyWxy = 2f(D −W ) = 2fTLf (2.7)

Given that all weights Wxy are non-negative, the relation
∑

x,y(fx−fy)
2Wxy = 2fTLf

proves that L is positive semidefinite. To remove an arbitrary scaling factor in the

embedding, an additional constraint fTDf = 1 is needed. This constraint together

with equation 2.7 reduces the minimization of the objective function to solving for

fi in:

Lfi = γiDfi (2.8)

Thus the right eigenvectors of Lrw = D−1L (call them ψi corresponding to the

ordered eigenvalues 0 = γ0 ≤ γ1 ≤ ... ≤ γn−1) provide a valid data embedding.

We only need to take especial care for the zeroth eigenvector which corresponds

to the trivial eigenvalue γ0 = 0. This eigenvector is a constant vector equal to 1.

Thus it is non-informative and we need to excluded it from the minimization. In

fact this is why we start counting the eigenvalues/eigenvectors from zero; the zeroth

eigenvector ψ0 has to be excluded from several calculations through this work as it

is noninformative.

Diffusion maps [59, 61] are a special case of Laplacian eigenmaps where the adja-

cency matrix on the graph is built using Gaussian kernels. Furthermore in [59] the

authors also show how density normalisation can be applied to diffusion maps to

approximate the Laplace-Beltrami operator in spite of non-uniformly sampled data

from a manifold.
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2.3 The kernel in the Laplacian and transition

matrix

In [49] (Appendix A), based on that the Gaussian kernel is the product of two Gaus-

sian distributions, we generalised the form of the kernel K on which the Laplacian

and transition matrices are built to more general forms keeping the distributions

product structure:

K(x,y) =

∞∫

−∞

Yx(x′)Yy(x′)dx′ (2.9)

where Yx and Yy can be any (even distinct from each other) distribution functions

around the position of cells x and y in the gene expression space with the condition

that:

∞∫

−∞

Y 2
x (x′)dx′ = 1 and

∞∫

−∞

Y 2
y (x′)dx′ = 1.

This normalisation condition is chosen such to satisfy K(x,x) = 1 for self-transition

weights. While Gaussian kernels are in general a suitable choice because of their

localised property (e.i. exponential drop) and the computational advantages, imple-

mentation of the general form of a kernel in the construction of the Laplacian and

transition matrices can provide advantages in some cases for instance in dealing with

missing values as we proposed in [49] (Appendix A). There we propose integration of

a uniform distribution over the range of all possible expression values whenever any

missing value is encountered. One may also consider any other a priori estimated

distribution for the missing values. An alternative sensible choice for the missing

values might be a Gaussian distribution with its mean and variance calculated from

a group of nearest neighbours of the cell (with the missing value for a gene) in the

genes space. Furthermore in [16] Suppl. Note 1.1 we use the general kernel form of

equation 2.9 to allow interference (i.e. product) of two Gaussian distributions with

distinct kernel widths, hence constructing a locally scaled Laplacian and transition

matrix.
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2.4 Construction of diffusion distances

Coifman et al. [59, 61] used T rw with the corresponding right and left set of eigen-

vectors ψi and φi, i = 0, .., n − 1, to define a metric called diffusion distance. In

their work the relation ψi(z) = φi(z)/φ0(z) holds between the right and the left

eigenvectors because:

∑

i

aie
−λitφi = e−U

∑

j

e−λjtbjψj, (2.10)

ai and bj being constant coefficients, which means φi = e−Ubiψi up to a normalisa-

tion constant and e−U = limt→∞ p = φ0 is the steady state solution of equation 2.3.

The normalisation of the eigenvectors is chosen such that
∑n

z=1φ
T
i (z)ψi(z) = 1.

Consequently Coifman et al. define a distance measure in such a way that it can be

expressed by the right eigenvectors of T rw. This distance measure depends on a time

scale parameter (or length of a random walk) t. Using the spectral decomposition

of T rw,

(T rw)t(x, y) =
n−1∑

i=0

λtiψi(x)φTi (y) (2.11)

and the diffusion distance Drw
t is defined as:

(Drw
t )2(x, y) = ||(T rw)t(x, .)− (T rw)t(y, .)||21/φ0

=
n∑

z=1

(T rw)t(x, z)− (T rw)t(y, z)

φ0(z)

=
n∑

z=1

φi(z)2

φ0(z)

∑

i

λ2ti (ψi(x)−ψi(y))2 =
n∑

z=1

φi(z)ψi(z)
n−1∑

i=0

λ2ti (ψi(x)−ψi(y))2

=
n−1∑

i=0

λ2ti (ψi(x)−ψi(y))2, (2.12)

which reduces to

(Drw
t )2(x, y) =

n−1∑

i=1

λ2ti (ψi(x)−ψi(y))2 (2.13)

because ψ0(x) = 1 for all x.
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Similarly, it is possible to build a version of diffusion distance based on the T sym

matrix, for which ψi(z) = φi(z). In this case we do not need the 1/φ0 normalisation

of the norm anymore as now we simply have
∑n

z=1φ
2
i (z) = 1:

(T sym)t(x, y) =
n−1∑

i=0

λtiφi(x)φTi (y) (2.14)

(Dsym
t )2(x, y) = ||((T sym)t(x, .)− (T sym)t(y, .)||2 =

n∑

z=1

(T rw)t(x, z)− (T rw)t(y, z)

=
n∑

z=1

φi(z)2
∑

i

λ2ti (φi(x)− φi(y))2

=
n−1∑

i=0

λ2ti (φi(x)− φi(y))2. (2.15)

In [49] we used the random-walk normalized Laplacian matrix as proposed by Coif-

man et al. [59]. Later on (as in [16]) we recognised it is worth to simplify the

calculations and help clarity of interpretations from our method by using the Lsym

version. The transition matrix we define on a graph of snapshot cells is merely based

on the geometrical positions of cells and their proximity in the genes space and thus

is completely symmetrical. In other words establishing a random walk interpreta-

tion and a Fokker-Planck equation on the graph, based on our symmetric adjacency

matrix is completely redundant (See Suppl. Note 1.1 in [16] for more details). Fur-

thermore using Lsym for the current geometrically built symmetric adjacency matrix

allows us to reserve the random-walk version for the true temporal biological pro-

cess of cell development to be described by an appropriate Fokker-Planck equation

considering cell differentiation as an un-equilibrium process generating a directed

(asymmetric) adjacency matrix.

Similar to the calculations in equation 2.15, where we have built a distance measure

on the symmetric version of the transition matrix, in [16] we define another distance

measure which we call dpt. In short, we first remove the zeroth eigenvector from

T sym and call it T̃ sym, then we sum (T̃ sym)t over all possible time scales t to make
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the so called accumulated transition matrix M . The dpt distance is then defined as:

dpt2(x, y) = ||M(x, .)−M(y, .)||2 = xM2x+ yM2y − 2xM2y (2.16)

which can be expressed in terms of the eigenvalues and eigenvectors of T sym (see

Suppl. Note 1.2 in [16]):

dpt2(x, y) =
n−1∑

i=1

(
λi

1− λi
)2(φi(x)− φi(y))2 (2.17)

Interestingly, using the first power of M instead of M2 in equation 2.16 would

provide another distance measure known as ”commute time” [62, 63]. Unlike the

dpt distance, when the number of nodes in the graph is large, commute time does

not provide information about the geometry of the graph but only about the node

densities as shown by von Luxburg et al. in [64]. Therefore commute time is not a

useful metric for pseudotime ordering and we put forward dpt for this purpose. To

read more about dpt distance please refer to Suppl. Note 1.2 in [16].

2.5 Learning the geometry of the data

Learning the structure of cell differentiation hierarchy was on of major goals of this

dissertation. A proper metric on the differentiation data manifold (as defined in

the previous section) almost solves the problem. However, we still would need to

separate different branching events in the data. Having an on-manifold metric in

hand, the triangle inequality in Euclidean space can easily be generalised to distances

on a manifold . Imagine two cells x and y on the data manifold. If a third cell is

picked at the same branch connecting x and y, the sum of the its distances from x

and y is a constant. If the third cell is picked on a separate branch than the one

connecting x and y, sum of its distances from x and y is greater than that constant.

(see Suppl. Note 1.3 and Suppl. Fig. N1 in [16]). Thus the triangle inequality can

be used for separation of several branches of a manifold. With the scattered (noisy)

pattern of single-cell data however, instead of a sharp constant we get a distribution

around it. This requires thresholding for telling it apart from the sum of distances

on other branches. To avoid such a thresholding parameter which might be tricky
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d(x,_) d(y,_)Order           vs           :

Figure 2.1: Branching points is defined as where the correlation between cell dis-
tances from x (d(x, ) in turquoise) with cell distances from y (d(y, ) in magenta)
changes to anticorrelation.

to choose, we turned to correlation based branch assignment as illustrated in 2.1

(and Fig. 1a in [16]). For more details of the branch separation method see Suppl.

Note 1.3 in [16] (Appendix B).

2.6 Universal time

In [16] (Appendix B) we introduce the concept of universal time which clarifies

the relation of pseudotime to actual time trajectories measurements. As described

in section 1.1, cell differentiation is a largely asynchronous process. Even if we

consider a single-fated lineage, due to the stochastic nature of the system, a het-

erogeneous population of cells coexists at any given time. Although each single cell

takes a different trajectory in actual time (due to the stochasticity in the differen-

tial equation), all these trajectories lie on a common manifold in the transcriptional

space (C ⊂ RG), where G denotes the number of genes measured. The manifold C

presents the average or deterministic part of the developmental trajectory and (if

one dimensional) can be parametrized by the arc length s along C. For a single cell

trajectory along this manifold we can assign a velocity v(t) to each time point t that

is approximately tangent to the manifold C. If we consider an equidistant temporal

sampling of the single cell trajectory, the tangent velocity is inversely proportional
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to the density ρ(t) of the cell states on the trajectory at that time point, that is

|v(t)| = 1/ρ(t). In other words, the longer the time points of the single cell trajec-

tory happen to be in a region of RG, the slower the single cell has passed through

that region. Because v(t) is tangent on C we can write

ds = |v(t)|dt =
1

ρ(t)
dt. (2.18)

Integrating ds, starting at the root cell, along C up to actual time t yields the arc

length, which we refer to as universal time

s(t) =

∫

C:[s(0),s(t)]

ds =

∫ t

0

|v(t′)|dt′ =
∫ t

0

1

ρ(t′)
dt′. (2.19)

This assigns a universal time s(t) to every actual time single cell trajectory as mea-

sured in time-lapse microscopy. However, for snapshot data there is no relevant time

measurement and the time integration step is not possible. Instead in the context

of snapshot data we can calculate the pseudotime. In the ideal case, pseudotime

can also be defined as an arc length measure over the reconstructed manifold in RG

of differentiation. While some algorithms like Wanderlust [52] try to measure the

pseudotime as the arc length in RG (with the cost of nonbranching data assumption

however), because of the high level of noise in single-cell data, the common practice

is to first map the data to a new space, where noise is diminished and thereby the

manifold becomes more pronounced. Then in general one can define pseudotime as

the distance (arc length) to the root cell on some mapped manifold C ′. In our com-

putation of pseudotime DPT (if one chooses to keep all diffusion dimensions) this is

a mapping from RG to Rn−1, where n is the number of cells, and distances on C ′ are

characterized by the dpt metric. For more details about universal time see Suppl.

Note 6 in [16]. Thus, we established a unified framework which can be used to

bring time-lapse microscopy data and single-cell snapshot expression data together

and make them comparable. The connection of universal time with pseudotime as

established here is only valid if cells from different developmental stages are present

in a snapshot sample. However, we do not make any assumption of stationary sam-

pling (as e.g. used in [65]). This is especially helpful in the context of single-cell

snapshot data where sampling densities are usually far from any stationary state

and influenced by cell division rates, noise, and the design of the experiment.
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Summary of contributed articles

This chapter provides a summary of all my contributed articles during the period

of doing my doctoral studies. The publications are sorted by date of publication so

that the history and sequential connection between them becomes comprehensible.

A more detailed summary is provided for my (two) first-author contributed articles.

Also please note that the first listed publication is not related to the general theme

of this dissertation.

i) Bongini, M., Fornasier, M., Fröhlich, F. and Haghverdi, L. Sparse stabiliza-

tion of dynamical systems driven by attraction and avoidance forces.

NHM, 9(1), pp.1-31(2014).

Summary: (This publication is not related to the general theme of this disser-

tation.) We studied sufficient conditions for sparse control of a system of agents

interacting with each other by attraction and avoidance forces.

My contribution: I contributed to literature screening and several discussions

for this article.

ii) Moignard, V., Woodhouse, S., Haghverdi, L., Lilly, A.J., Tanaka, Y., Wilkinson,

A.C., Buettner, F., Macaulay, I.C., Jawaid, W., Diamanti, E. and Nishikawa,

S.I. Decoding the regulatory network of early blood development from

single-cell gene expression measurements. Nature Biotechnology, 33(3),

pp.269-276 (2015).
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Summary: In this article we studied the development of early blood cells ap-

plying diffusion maps to single-cell data for the first time. A branching event

was detected in the data and a boolean regulatory network was synthesized ac-

cording to nearest neighbour state transitions in the data, which made compu-

tational simulation of gene perturbation experiments possible. The predictions

from the synthesized network concerning the role of Sox and Hox genes in early

blood development were validated experimentally.

My contribution: I performed the nearest-neighbours diffusion maps for this

data set which enabled the detection of the endothelial versus epithelial branches.

iii) Haghverdi, L., Buettner, F. and Theis, F.J. Diffusion maps for high-dimensional

single-cell analysis of differentiation data. Bioinformatics, 31(18), pp.2989-

2998 (2015).

Summary: In this article we describe in detail the advantages of diffusion maps

over several other machine learning methods for single-cell data analysis. Our

two major points are that first, developing cells take a random-walk like path

in the transcriptional space. As diffusion maps are based on random-walks

they are relevant to the biological process of development under study. This

gives diffusion maps superiority for single-cell differentiation data analysis over

other more general machine learning embedding/clustering approaches. Second,

diffusion maps also accommodate the nonlinearity of differentiation manifold.

Third, diffusion maps are very robust to noise and which proved to play an

important role in the analysis of single-cell data. Arguing that the effects of

sampling density in single-cell experiments on the embedding are undesirable,

we encourage the use of density normalised transition matrix which is facilitated

in the Laplace-Beltrami framework of diffusion maps [59]. As the Gaussian

kernel can be decomposed to multiplication of two Gaussian distributions, we

propose a new approach for integration of missing values that are ubiquitous

in single-cell data. The idea being that any prior distribution (as indicated

by our biological knowledge about the missing value gene) can be used for

constructing the kernel in the same distributions multiplication framework. We

also propose heuristics for determination of the kernel width in diffusion maps

based on the calculated intrinsic dimensionality of the data manifold. Our

intrinsic dimensionality calculation in this article takes an averaging approach
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because of computational considerations. Therefore our proposed kernel width

in this article is global and not locally adjusted.

My contribution: First author.

iv) Ocone, A., Haghverdi, L., Mueller, N.S. and Theis, F.J. Reconstructing gene

regulatory dynamics from high-dimensional single-cell snapshot data.

Bioinformatics, 31(12), pp.i89-i96 (2015).

Summary: This article is one of the earliest demonstrations on how pseudotime

ordering can be used for inference of the gene regulatory network. There we

use the reconstructed pseudotime series of gene expressions for an ODE based

model selection over several possible regulatory network structures.

My contribution: I performed the pseudotime ordering and contributed to sev-

eral discussions.

v) Angerer, P., Haghverdi, L., Büttner, M., Theis, F.J., Marr, C. and Buettner,

F. Destiny: diffusion maps for large-scale single-cell data in R. Bioin-

formatics, 32(8), pp.1241-1243 (2016).

Summary: In this article we developed an efficient R package of diffusion maps

adaptation for large-scale single-cell data. The package includes several useful

features for single-cell data applications including data projection, use of cosine

distances, handling of missing values, preselection of a set of less noisy genes,

etc.

My contribution: I contributed to development of the code and several discus-

sions.

vi) Haghverdi, L., Büttner, M., Wolf, F.A., Buettner, F., Theis, F.J. Diffusion

pseudotime robustly reconstructs lineage branching. Nature Methods,

13(10), pp.845-848 (2016).

Summary: In this article we propose a new method DPT (diffusion pseudotime

ordering tool) for pseudotime ordering of cells along the differentiation mani-

fold. We define a new metric dpt based on geometric diffusions and used it to

calculate the distance of cells from a specified root cell on the data manifold. We

demonstrate that such an on-manifold distance is appropriate for pseudotime

ordering of cells even in presence of branching events and identifying the cells at
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the tip of each branch. We then propose a new solution for separating branch-

ing events using the correlation versus anticorrelation relations of dpt distances

from several cells at the tip of several branches. DPT also allows identification

of metastable states. That is states on the manifold in which cells spend more

more before escaping to the next developmental state. Metastable states are

thus distinguished by relatively high densities of cells under the assumption

of unbiased or close to stationary state cell sampling conditions. In this work

we applied DPT to simulated data as well as several experimental data sets.

Through detailed differential gene expression analysis we demonstrate that DPT

successfully finds pseudotime and branching events in all cases. In an sc-qPCR

data set (with 42 monitored genes) from mouse early blood development we

also studied the sequential activation/deactivation of genes through the course

of pseudotime. Such activation/deactivation study was not possible for the sc-

RNA-Seq data sets due to the large number of genes and higher level of noise

in sc-RNA-Seq techniques. For those however, we identified the set of impor-

tant genes in several developmental stages i.e. over pseudotime by differential

gene expression analysis. Furthermore we show how our pseudotime is related

to actual time measurements such as those provided by time-lapse microscopy

measurements. That through the deterministic part of the dynamics all cell of

the same fate take in the transcriptional space despite their asynchrony and

stochasticity in the course of development. We call the deterministic path and

its parametrisation respectively universal path and universal time.

The supplementary notes of this article include detailed mathematical back-

grounds of the DPT method. For example in Suppl. Note 1 we show how one

can use locally adjusted kernel width in the construction of the diffusion transi-

tion matrix and describe the use the symmetric version of the transition matrix

instead of the asymmetric random-walk version that was classically introduced

in [59]. In Suppl. Note 6 we describe in detail our proposition of universal time.

My contribution: First author.
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Discussion and perspectives

In this dissertation, we showed the application and adaptation of diffusion maps for

analysis of single-cell differentiation data and further adapted its diffusion approach

for pseudotime ordering and branch detection. The method DPT has several ad-

vantages over other existing algorithms namely its robustness to noise, scalability

for application to large number of cells and efficiency of calculation because of the

mathematical closed form which does not require any simulations. We introduced a

new metric dpt, in which we omit the time (random-walk length) dependence that

was present in the diffusion distance introduced by Coifman et al. [59] by summing

the diffusion distances over all time scales. Furthermore, we have eliminated the

redundant time direction in diffusion maps by using the symmetric Laplacian (and

transition) matrix instead of the random-walk (asymmetric) versions. This way, we

reserve the directed transition matrix for the true cellular developmental process

for later work. This allows us to make distinction between the directed (naturally)

irreversible dynamics of differentiating of cells towards more differentiated cell states

and the artificial diffusion dynamics we construct by the merely geometrically built

transition matrix which is used in calculation of the diffusion maps or the diffusion

pseudotime. This work opens up new questions and perspectives some of which we

discuss in the following sections. In [66], [67] and [16] we also inferred for each espe-

cial case, several regulatory relations between the genes by using the reconstructed

dynamics we obtain from pseudotime ordered data.
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4.1 Actual directed dynamics of cell differentia-

tion versus the geometrically constructed dif-

fusion transitions

The gene regulatory network governing cell differentiation dynamics produces a po-

tential landscape (also known as Waddington ladscape) in the transcriptional space

[68, 69], in which cells are pushed towards more differentiated states. The directed

cell differentiation dynamics over this landscape can be described by a Fokker-Planck

equation consisting of diffusion and potential terms. One might also consider addi-

tional source and sink term in this equation corresponding to the biological process

of cell proliferation and cell death. Such an actual biological dynamics creates a

manifold in the genes space which we tried to learn in this work using geometric

diffusions. The Laplacian we constructed in this work explains the same manifold

only by considering geometrical diffusions or transition probabilities among neigh-

bouring cells. In other words, it misses the potential part of the Fokker-Planck

equation in any biologically meaningful sense. This Laplacian is thus different from

the actual time dynamics Laplacian which would be far from symmetric because of

the directed nature of cell differentiation. It is quite intuitive that different types of

time evolution dynamics can take place on the same manifold, giving rise to ”equiv-

alent Laplacians”. For more mathematical details about equivalent Laplacians, i.e.

different Laplacians explaining the same manifold, please see section 4.3 in [70] and

[71]. In several differentiation data sets —for example in [22, 72] —snapshots of sin-

gle cells are available in more than one experimental time point. Until now in this

project, we always disregarded this temporal information in the data by appending

all the data from several measurement time points into a single input data matrix.

It is though interesting to use such time information as well for reconstruction of

the actual time Laplacian. Consequently one could learn the potential landscape

and sink/source terms (i.e. cell death, cell proliferation rates) over it. A crucial

question to address for doing this study is how finely and over what number of cell

states would it be possible to resolve the potential and the sink/source terms in the

corresponding Fokker-Planck equation, given only a few measurement time points

(typically 3 to 5) as it is usually given in single-cell differentiation experimental data

sets.
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4.2 Integration of time-lapse and snapshot data

One possible approach to gain insight about the actual time dynamics and tran-

sition rates, is combination and integration of pseudotimes with actual time-lapse

microscopy measurements. The current technology for time-lapse microscopy does

not allow simultaneous measurement of more than three or four proteins which is

too few for gaining insight over the full dimension dynamics. However, the integra-

tion of time-lapse microscopy data with pseudotime obtained from high-dimensional

snapshot data may resolve this issue. Up to date, we did not have access to a dif-

ferentiation system where snapshot data and time-lapse measurements were both

available. However, we have facilitated doing such data integration through intro-

duction of universal time (see Online methods and Suppl. Note 6 in [16]) which can

be applied once such data is at hand.

4.3 Quality control and uncertainity of pseudo-

time

As any other physical measure, calculation of pseudotime also includes estimation of

the error and uncertainty in it. As we discuss in Suppl. Note 7.5.5 of [16] (Appendix

B), pseudotime ordering of cells in the metastable states (i.e. potential wells in the

gene expression landscape where cells tend to spend a longer time before escaping

those states), is less meaningful and the uncertainty of pseudotime is expected to be

larger in these regions. Bootstrapping of samples is a possible way for estimating this

error. For demonstration, we calculated the pseudotime for 1000 sampled cells from

a toy regulatory gene network (see Fig. S5 in [49]). Next we performed pseudotime

calculation on 100 runs of bootstrap samples. For the pseudotimes to be comparable,

we scaled the pseudotime from each run between zero and one. Panel A in Figure 4.1

shows the gene expression over pseudotime on the complete set of 1000 sample cells.

Panel B shows the standard deviation of pseudotime for each cell over the multiple

bootstrap samples. We clearly observe that the standard deviation (i.e. uncertainty)

of pseudotime varies along the x axis, indicating two pronounced metastable state

in the beginning and at the end of the pseudotime.
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Figure 4.1: A) A toy regulatory gene network (see Fig. S5 in [49] and Fig. N8 in [16]
for details about the toy model). B) Gene expression versus diffusion pseudotime of
a single fate corresponding to G+

2 G
+
6 branch in A. C) Standard deviation of diffusion

pseudotime across 100 bootstrap samples, implies two pronounced metastable states
marked by curly brackets on the pseudotime axis.

Other measures might also be proposed for quality control of pseudotime. Whereas

pseudotime measurements are usually obtained through a specific objective function,

it would be useful to fix a series of biological or statistical tests for the quality control

of the obtained pseudotime. Recently, Bayesian methods have been applied as an

alternative for assessing the uncertainty of pseudotime [73]. Comparison of results

from Bayesian approaches to the bottom-up approaches of pseudotime construction

(e.g. DPT, Monocle, Wanderlust) which try to reconstruct possible trajectories of

cell development through a specific objective function would be interesting.
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4.4 Inference of gene regulatory network

One of the main goals of pseudotime ordering is observation of how gene expression

profiles change over the hierarchy of stages in cell development. Thus pseudotime

can be useful for inferring the gene regulatory network (GRN) governing the devel-

opment. Nevertheless GRN inference based on pseudotime is a challenging task due

to several reasons. The highly noisy expression over pseudotime is one to name.

Moreover, it is very common that several important genes of the regulatory network

are missing in the measurements. This makes the reconstruction of the complete

GRN challenging if not impossible. On the contrary, in experiments where (almost)

all genes are measured, the complexity of the big gene network is the challenging

part. In [66] the inference of regulatory network of the genes was synthesised on one-

gene Boolean state-changes assumption for transitions in neighbouring cells. For a

qPCR data set from mouse early blood development system in [16] (Appendix B) we

ordered the genes by their activation/deactivation on-set over the pseudotime, hence

suggesting the sequential role of genes in cell differentiation. In [67] we proposed a

solution for inference of small GRNs using pseudotime using model selection from

systems of ordinary differential equations (ODE). Proposition of a more general and

efficient approach to tackle this problem requires a deeper study which remains for

future work.

4.5 Building the transition matrix on other noise

models

Classically, the diffusion transition matrix is built using a Gaussian kernel. In section

2.1 of [49] (Appendix A), we showed that the Gaussian kernel implies a multiplica-

tion of Gaussian noise models. There we argued that the same multiplication pattern

can be adapted to non-Gaussians models. We also used the uniform distribution as

a model for missing gene expression values (section 2.2 in [49]) and demonstrated

that the kernel created by such distribution can provide a proper diffusion map in

presence of missing expression values (see for example Fig. 6 and Fig. S1 in [49]).

Gaussian distribution provides a good approximation for several other distributions
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including binomial or Poisson distributions [74] around the centre (i.e. peak of the

distribution). Especially, when a large number of sampled cells are at hand, one can

cut the distribution at a certain distance from the peak to keep the approximation

local and valid. However in several cases (in particular when the number of sampled

cells is so few to impose a wide Gaussian for obtaining a connected graph) Gaussian

distributions are not the optimal noise model choice. It is known that negative bino-

mial distributions explain the expression data quite well [75]. Therefore it would be

worth to adapt e.g. a negative binomial distribution in the construction of the kernel

and compare its performance to the classical Gaussian kernel construction through

quality control of the obtained pseudotimes. One advantage of approximating the

noise by isotropic Gaussians is the reduced computational cost of integration in

RG which reduces to a one dimensional integration (in isotropic polar coordinates).

Use of anisotropic noise models requires taking a complete G dimensional integral

for building up of the kernel. Because of this high computational cost, in practice

adaptation of anisotropic noise models might be limited only to relatively low di-

mensional data sets (e.g. single-cell qPCR, cytometry) rather than high dimensional

data with large number of measured genes (scRNA-Seq techniques).
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clustering with background knowledge,” in ICML, vol. 1, pp. 577–584, 2001.

[35] L. Kaufman and P. J. Rousseeuw, “Partitioning around medoids (program

pam),” Finding groups in data: an introduction to cluster analysis, pp. 68–

125, 1990.

[36] I. Jolliffe, Principal component analysis. Wiley Online Library, 2002.



BIBLIOGRAPHY 35

[37] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of

Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[38] F. Buettner and F. J. Theis, “A novel approach for resolving differences in

single-cell gene expression patterns from zygote to blastocyst,” Bioinformatics,

vol. 28, no. 18, pp. i626–i632, 2012.

[39] G. Finak, A. McDavid, M. Yajima, J. Deng, V. Gersuk, A. K. Shalek, C. K.

Slichter, H. W. Miller, M. J. McElrath, M. Prlic, et al., “MAST: a flexible

statistical framework for assessing transcriptional changes and characterizing

heterogeneity in single-cell RNA sequencing data,” Genome Biology, vol. 16,

no. 1, p. 1, 2015.

[40] F. D. Gibbons and F. P. Roth, “Judging the quality of gene expression-based

clustering methods using gene annotation,” Genome Research, vol. 12, no. 10,

pp. 1574–1581, 2002.

[41] G. O. Consortium et al., “The gene ontology (GO) database and informatics

resource,” Nucleic Acids Research, vol. 32, no. suppl 1, pp. D258–D261, 2004.

[42] J. Shin, D. A. Berg, Y. Zhu, J. Y. Shin, J. Song, M. A. Bonaguidi,

G. Enikolopov, D. W. Nauen, K. M. Christian, G.-l. Ming, et al., “Single-cell

RNA-seq with waterfall reveals molecular cascades underlying adult neurogen-

esis,” Cell Stem Cell, vol. 17, no. 3, pp. 360–372, 2015.

[43] E. Marco, R. L. Karp, G. Guo, P. Robson, A. H. Hart, L. Trippa, and G.-C.

Yuan, “Bifurcation analysis of single-cell gene expression data reveals epigenetic

landscape,” Proceedings of the National Academy of Sciences, vol. 111, no. 52,

pp. E5643–E5650, 2014.

[44] N. Leng, L.-F. Chu, C. Barry, Y. Li, J. Choi, X. Li, P. Jiang, R. M. Stew-

art, J. A. Thomson, and C. Kendziorski, “Oscope identifies oscillatory genes

in unsynchronized single-cell RNA-seq experiments,” Nature Methods, vol. 12,

no. 10, pp. 947–950, 2015.

[45] J. E. Reid and L. Wernisch, “Pseudotime estimation: deconfounding single cell

time series,” bioRxiv, p. 019588, 2015.



36 BIBLIOGRAPHY

[46] J. D. Welch, A. J. Hartemink, and J. F. Prins, “SLICER: inferring branched,

nonlinear cellular trajectories from single cell RNA-seq data,” Genome Biology,

vol. 17, no. 1, p. 1, 2016.

[47] Z. Ji and H. Ji, “TSCAN: Pseudo-time reconstruction and evaluation in single-

cell RNA-seq analysis,” Nucleic Acids Research, p. gkw430, 2016.

[48] C. Trapnell, “Defining cell types and states with single-cell genomics,” Genome

Research, vol. 25, no. 10, pp. 1491–1498, 2015.

[49] L. Haghverdi, F. Buettner, and F. J. Theis, “Diffusion maps for high-

dimensional single-cell analysis of differentiation data,” Bioinformatics, vol. 31,

no. 18, pp. 2989–2998, 2015.

[50] P. Qiu, E. F. Simonds, S. C. Bendall, K. D. Gibbs Jr, R. V. Bruggner, M. D.

Linderman, K. Sachs, G. P. Nolan, and S. K. Plevritis, “Extracting a cel-

lular hierarchy from high-dimensional cytometry data with SPADE,” Nature

Biotechnology, vol. 29, no. 10, pp. 886–891, 2011.

[51] D. L. Donoho et al., “High-dimensional data analysis: The curses and blessings

of dimensionality,” AMS Math Challenges Lecture, pp. 1–32, 2000.

[52] S. C. Bendall, K. L. Davis, E.-A. D. Amir, M. D. Tadmor, E. F. Simonds,

T. J. Chen, D. K. Shenfeld, G. P. Nolan, and D. Pe’er, “Single-cell trajectory

detection uncovers progression and regulatory coordination in human B cell

development.,” Cell, vol. 157, no. 3, pp. 714–725, 2014.

[53] E.-a. D. Amir, K. L. Davis, M. D. Tadmor, E. F. Simonds, J. H. Levine, S. C.

Bendall, D. K. Shenfeld, S. Krishnaswamy, G. P. Nolan, and D. Pe’er, “viSNE

enables visualization of high dimensional single-cell data and reveals phenotypic

heterogeneity of leukemia,” Nature Biotechnology, vol. 31, no. 6, pp. 545–552,

2013.

[54] C. Trapnell, D. Cacchiarelli, J. Grimsby, P. Pokharel, S. Li, M. Morse, N. J.

Lennon, K. J. Livak, T. S. Mikkelsen, and J. L. Rinn, “The dynamics and

regulators of cell fate decisions are revealed by pseudotemporal ordering of

single cells.,” Nature Biotechnology, vol. 32, pp. 381–6, 4 2014.



BIBLIOGRAPHY 37

[55] K. S. Booth and G. S. Lueker, “Testing for the consecutive ones property,

interval graphs, and graph planarity using PQ-tree algorithms,” Journal of

Computer and System Sciences, vol. 13, no. 3, pp. 335–379, 1976.

[56] M. Setty, M. D. Tadmor, S. Reich-Zeliger, O. Angel, T. M. Salame, P. Kathail,

K. Choi, S. Bendall, N. Friedman, and D. Pe’er, “Wishbone identifies bifur-

cating developmental trajectories from single-cell data,” Nature Biotechnology,

2016.

[57] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transac-

tions on pattern analysis and machine intelligence, vol. 22, no. 8, pp. 888–905,

2000.

[58] K. Campbell, C. P. Ponting, and C. Webber, “Laplacian eigenmaps and princi-

pal curves for high resolution pseudotemporal ordering of single-cell RNA-seq

profiles,” bioRxiv doi: 10.1101/027219, 9 2015.

[59] R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and

S. W. Zucker, “Geometric diffusions as a tool for harmonic analysis and struc-

ture definition of data: Diffusion maps,” Proceedings of the National Academy

of Sciences of the United States of America, vol. 102, no. 21, pp. 7426–7431,

2005.

[60] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for

embedding and clustering.,” in NIPS, vol. 14, pp. 585–591, 2001.

[61] R. R. Coifman and S. Lafon, “Diffusion maps,” Applied and Computational

Harmonic Analysis, vol. 21, no. 1, pp. 5–30, 2006.

[62] C. D. Meyer, Jr., “The role of the group generalized inverse in the theory of

finite markov chains,” SIAM Review, vol. 17, pp. 443–464, 7 1975.

[63] F. Fouss, A. Pirotte, J. Renders, and M. Saerens, “A novel way of computing

dissimilarities between nodes of a graph, with application to collaborative fil-

tering and subspace projection of the graph nodes (technical report no. iag wp
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ABSTRACT
Motivation: Single-cell technologies have recently gained popularity
in cellular differentiation studies regarding their ability to resolve
potential heterogeneities in cell populations. Analysing such high-
dimensional single-cell data has its own statistical and computational
challenges. Popular multivariate approaches are based on data
normalisation, followed by dimension reduction and clustering to
identify subgroups. However, in the case of cellular differentiation,
we would not expect clear clusters to be present but instead expect
the cells to follow continuous branching lineages.
Results: Here we propose the use of diffusion maps to deal with the
problem of defining differentiation trajectories. We adapt this method
to single-cell data by adequate choice of kernel width and inclusion
of uncertainties or missing measurement values, which enables
the establishment of a pseudo-temporal ordering of single cells in
a high-dimensional gene expression space. We expect this output
to reflect cell differentiation trajectories, where the data originates
from intrinsic diffusion-like dynamics. Starting from a pluripotent
stage, cells move smoothly within the transcriptional landscape
towards more differentiated states with some stochasticity along their
path. We demonstrate the robustness of our method with respect
to extrinsic noise (e.g. measurement noise) and sampling density
heterogeneities on simulated toy data as well as two single-cell
quantitative polymerase chain reaction (qPCR) data sets (i.e. mouse
haematopoietic stem cells and mouse embryonic stem cells) and an
RNA-Seq data of human pre-implantation embryos. We show that
diffusion maps perform considerably better than Principal Component
Analysis (PCA) and are advantageous over other techniques for non-
linear dimension reduction such as t-distributed Stochastic Neighbour
Embedding (t-SNE) for preserving the global structures and pseudo-
temporal ordering of cells.
Availability: The Matlab implementation of diffusion maps for single-
cell data is available at https://www.helmholtz-muenchen.de/icb/single-
cell-diffusion-map.
Contact: fbuettner.phys@gmail.com,
fabian.theis@helmholtz-muenchen.de

∗To whom correspondence should be addressed
†Current address: European Molecular Biology Laboratory, European
Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus,
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1 INTRODUCTION
The advantages of single-cell measurements to various biological
research fields have become obvious in recent years. One example
is the stem cell studies for which population measurements fail to
reveal the properties of the heterogeneous population of cells at
various stages of development. Purifying for a certain cell type
or synchronising cells is experimentally challenging. Moreover,
stem cell populations that have been functionally characterised
often show heterogeneity in their cellular and molecular properties
(Huang, 2009; Dykstra et al., 2007; Stingl et al., 2006). To overcome
these barriers, on the one hand researchers conduct continuous
single-cell observation using time-lapse microscopy (Park et al.,
2014; Rieger et al., 2009; Schroeder, 2011), accompanied by single-
cell tracking and analysis tools. However this approach is still
limited as the expression of very few genes (typically one to three)
could be observed. On the other hand, with the advent of new
technologies, such as single-cell qPCR (Wilhelm and Pingoud,
2003) or RNA-Seq (Chu and Corey, 2012) and flow or mass
cytometry (Chattopadhyay et al., 2006; Bandura et al., 2009), it
is now possible to measure hundreds to thousands of genes from
thousands of single cells at different specific experimental time-
points (time course experiments). However, several single cells
measured at the same experimental time point may be at different
developmental stages. Therefore, there is a need for computational
methods which resolve the hidden temporal order that reflects the
ordering of developmental stages of differentiating cells.

While differentiation has to be regarded as a nonlinear continuous
process (Buettner and Theis, 2012; Bendall et al., 2014), standard
methods used for the analysis of high-dimensional gene-expression
data are either based on linear methods such as Principal Component
Analysis (PCA) and Independent Components Analysis (ICA) (e.g.
used as part of the monocle algorithm, (Trapnell et al., 2014))
or they use clustering techniques that groups cells according to
specific properties. Hierarchical clustering methods as used in
SPADE (Qiu et al., 2011) and t-SNE (Van der Maaten and Hinton,
2008) as used in viSNE (Amir et al., 2013) are examples of
clustering methods. However, as these methods are designed to
detect discrete sub-populations, they usually do not preserve the
continuous trajectories of differentiation data. A more recently
proposed algorithm Wanderlust (Bendall et al., 2014) incorporates
the nonlinearity and continuity concepts but provides a pseudo-
temporal ordering of cells only if the data comprise a single branch.
Furthermore, in gene expression measurement techniques, there

c© Oxford University Press 2014. 1
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Fig. 1: Schematic overview of diffusion maps embedding. A) The n×G matrix representation of single-cell data consisting of four different
cell types. The last column on the right side of the matrix (colour band) indicates the cell type for each cell. B) Representation of each cell
by a Gaussian in the G-dimensional gene space. Diffusion paths (continuous paths with relatively high probability density) form on the data
manifold as a result of interference of the Gaussians. The Probability density function is shown in the heat map. C) The n × n Markovian
transition probability matrix. D) Data embedding on the first two eigenvectors of the Markovian transition matrix (DC1 and DC2) which
correspond to the largest diffusion coefficients of the data manifold. The embedding shows the continuous flow of cells across four cell types,
however it does not suggest the putative time direction.

is usually a detection limit at which lower expression levels and
non-expressed genes are all reported at the same value. Buettner
et al. (2014) suggested the use of a censoring noise model for PCA,
whereas for the other methods it is unclear how these uncertain or
missing values are to be treated. A variety of other manifold learning
methods including (Hessian) Locally-Linear Embedding (HLLE)
(Donoho and Grimes, 2003) and Isomap (Tenenbaum et al., 2000)
exist in the machine learning community and are discussed in detail
in the discussion and conclusion section.

Here, we propose diffusion maps (Coifman et al., 2005) as a
tool for analysing single-cell differentiation data. Diffusion maps
use a distance metric (usually referred to as diffusion distance)
conceptually relevant to how differentiation data is generated
biologically, as cells follow noisy diffusion-like dynamics in the
course of taking several differentiation lineage paths. Diffusion
maps preserve the nonlinear structure of data as a continuum
and are robust to noise. Furthermore, with density normalisation,
diffusion maps are resistant to sampling density heterogeneities and
can capture rare as well as abundant populations. As a nonlinear
dimension-reduction tool, diffusion maps can be applied on single-
cell omics data to perform dimension-reduction and ordering of
cells along the differentiation path in a single step, thus providing
insight to the dynamics of differentiation (or any other concept with
continuous dynamics). In this article, we

• propose an adaptation of diffusion maps for the analysis of
single-cell data which is less affected by sampling density
heterogeneities and addresses the issues relating to missing
values and uncertainties of measurement,

• propose a criterion for selecting the scale parameter in a
diffusion map,

• evaluate the performance of the diffusion map and its
robustness to noise and density heterogeneities using a toy
model that mimics the dynamics of differentiation,

• apply the adapted diffusion map algorithm to two typical
qPCR and one RNA-Seq data sets and show that it captures
the differentiation dynamics more accurately than other
algorithms.

2 METHODS

2.1 Diffusion maps
Let n be the number of cells and let G be the number of genes measured for
each cell. Denote the set of all measured cells by Ω. We allow each cell x to
diffuse around its measured position x ∈ RG through an isotropic Gaussian
wave function,

Yx(x
′) =

(
2

πσ2

)1/4

exp

(
−||x

′ − x||2
σ2

)
(1)

The normalisation of Yx(x′) is such that
∞∫
−∞

Y 2
x (x′)dx′ = 1. The

Gaussian width σ2 determines the length scale over which each cell can
randomly diffuse. The transition probability from cell x to cell y is then
defined by the interference of the two wave functions Yx and Yy . One can
easily show that this interference product is another Gaussian (all prefactors
cancel out):

∞∫

−∞

Yx(x
′)Yy(x

′)dx′ = exp

(
−||x− y||

2

2σ2

)
(2)

Hence, we can construct the n× n Markovian transition probability matrix
P for all pairs of cells in Ω as follows:

Pxy =
1

Z(x)
exp

(
−||x− y||

2

2σ2

)
(3)

Z(x) =
∑

y∈Ω

exp

(
−||x− y||

2

2σ2

)
(4)

At the position of each cell, Z(x) is the partition function which provides
an estimate of the number of neighbours of x in a certain volume defined
by σ. Hence it can be interpreted as the density of cells at that proximity.
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Fig. 2: A) Toy model of a differentiation regulatory network consisting of three pairs of antagonistic genes simulated by the Gillespie
algorithm. The arrows show activation or inhibition interactions between genes. The toy model employs two classes of gene regulation: B)
Gi is connected to an inhibitor, its production rate αi is proportional to a Hill function of the concentration of the inhibitor Proteini′ , C) Gi
is connected to an inhibitor Gi′ and an activator Gi”, its production rate αi is proportional to product of an inhibiting and an activating Hill
function. The degradation rate γ is constant for all proteins.

Consequently, we redefine the density normalised transition probability
matrix P̃ as:

P̃xy =
1

Z̃(x)

exp
(
− ||x−y||

2

2σ2

)

Z(x)Z(y)
, P̃xx = 0 (5)

Z̃(x) =
∑

y∈Ω/x

exp
(
− ||x−y||

2

2σ2

)

Z(x)Z(y)
(6)

Because we are only interested in the transition probabilities between cells
and not the on-cell potentials imposed by local densities, we set the diagonal
of P̃ to zero and exclude y = x from the sum in the partition function Z̃.
For a large enough σ, the matrix P̃ defines an ergodic Markovian diffusion
process on the data and has n ordered eigenvalues λ0 = 1 > λ1 ≥ ... ≥
λn−1 with corresponding right eigenvectors ψ0...ψn−1.

The t-th power of P̃ will present the transition probabilities between cells
in a diffusion (random walk) process of length t. Noting that P̃ t has the
same eigenvectors as P̃ , one can show that this transition probability can be
represented as follows:

P̃ txy =

n−1∑

i=0

λtiψi(x)ψi(y)Z̃(y) (7)

Each row of P̃ t can be viewed as a vector, which we represent as pt(x, ·)
and consider as the feature representation (Shawe-Taylor and Cristianini,
2004) for each cell x. By computing the weighted L2 distance in the feature
space, the diffusion distance D2

t between two cells x and y is defined as
follows:

D2
t (x,y) = ||pt(x, ·)− pt(y, ·)||21/Z̃ =

∑

z

(P̃ txz − P̃ tyz)
2

Z̃(z)
(8)

This diffusion distance can be expressed in terms of the eigenvectors of P̃
such that:

D2
t (x,y) =

n−1∑

i=1

λ2ti (ψi(x)−ψi(y))2 (9)

The corresponding eigenvector to the largest eigenvalue λ0 is a constant
vector ψ0 = 1. Therefore, it only contributes a zero term to D2

t and
is excluded from the spectral decomposition of D2

t in Equation 9. That
means the Euclidean distance of the cells in the first l eigenvector space
represents an approximation of their diffusion distance D2

t . Moreover, the

eigenvalues of P̃ determine the diffusion coefficients in the direction of the
corresponding eigenvector. As real data usually lie on a lower dimensional
manifold than the entire dimensions of space G, these diffusion coefficients
drop to a noise level other than a few first (l) prominent directions. Therefore,
if there is a significant gap between the l-th and (l+1)-th eigenvalue, the sum
up to the l-th term usually determines a good approximation for diffusion
distances. Thus, for data visualisation we select these eigenvectors and
instead of the mathematical notationψ, we call them Diffusion Components
(DCs).

Figure 1 presents a summary of diffusion map embedding. Each cell is
represented by a Gaussian wave function in the G-dimensional gene space.
On an adequate Gaussian width, the wave functions of neighbouring cells
interfere with each other and form the diffusion paths along the (nonlinear)
data manifold in the high-dimensional space. Hence, we construct the
Markovian transition probability matrix, the elements of which are the
transition probabilities between all pairs of cells. The eigenfunctions of the
Markovian transition probability matrix (DC1 and DC2) are then used for
low-dimensional representation and visualisation of data.

2.2 Accounting for missing and uncertain values
The data generated from qPCR, RNA-Seq or cytometry experiments are
very often prone to imperfections such as missing values or detection
limit thresholds. It is important to properly treat such uncertainties of data
(McDavid et al., 2013; Buettner et al., 2014). Our probabilistic interpretation
of diffusion maps allows a straightforward mechanism of handling missing
and uncertain data measurements. First, we have to decompose the kernel
into G components. Then, instead of a Gaussian, we can use any other
wave function that best represents our prior knowledge on the probability
distribution of the missing or uncertain values, which then should be
square-normalised to ensure equal contribution of the G components. For
example, for missing values and non-detects (measurements below the limit
of detection), one might choose a uniform distribution over the whole range
of possible values.
In the following we describe how to account for the uncertainty of non-
detect measurements in qPCR data. The statistical subtleties of non-detect
values in qPCR experiments have been systematically studied by McDavid
et al. (2013) for univariate models. In addition, for a multivariate PCA
analysis, Buettner et al. (2014) proposed that different kernels be allowed
in each dimension. For the diffusion map implementation, we assume any
value between the detection limit (M0) and a completely non-expressed
(off) state of genes valued as M1, is equally possible for the non-detect
measurements. Considering the kernel width formulated in the diffusion map
wave functions, we assume an indicator wave function betweenM0−σ and
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M1 + σ normalised by (M1 −M0 +2σ)−1/2. Thus, we have to calculate
three different kinds of interference of wave functions:
The interference of two cells with definite measured values for gene g is the
standard Gaussian kernel (see section 2.1):
∞∫

−∞

Yx(x
′
g)Yy(x

′
g)dx

′
g = exp

(
− (xg − yg)2

2σ2

)
,

the interference of two cells both with non-detect values for gene g is 1 (due
to the square-normalisation constraint):
∞∫

−∞

Yx(x
′
g)Yy(x

′
g)dx

′
g = 1,

the interference of a missing (non-detect) value to a definite measured value
xg is:
∞∫

−∞

Yx(x
′
g)Yy(x

′
g)dx

′
g =

∫ M1+σ

M0−σ

1√
M1 −M0 + 2σ

(
2

πσ2
)1/4 exp

(
−
(x′g − xg)2

σ2

)
dx′g

=
1√

M1 −M0 + 2σ

(
πσ2

8

)1/4

·
(
erfc

(
M0 − σ − xg

σ

)
− erfc

(
M1 + σ − xg

σ

))
.

For data with missing or uncertain values, we need to check the pairwise
interference of the wave functions for each gene. The computation time is
thus proportional to the number of genes G for a fixed number of cells n.
Therefore, it might be preferable (especially in the case of largeG) to choose
the wave function of the missing (or uncertain) value also in the form of a
Gaussian such that the multiplication of the G components of interference
can be expressed as the sum of the exponents and the exponentiation step
can be performed only once at the end of the algorithm for computation of
the transition matrix. An implementation of this fast version of the censoring
algorithm is also provided in the codes package. Figure S1 in the supplement
provides an illustration of our approach for accounting for missing and
uncertain values.

2.3 Determination of Gaussian kernel width
The parameter σ in Equation 1 determines the scale at which we visualise
the data. If σ is extremely small, most elements of the transition probability
matrix P̃ will tend to be zero and we do not get an overall view of a
connected graph structure. In fact, when σ is too small, the number of
degenerate eigenvectors with eigenvalue equal to one, indicates the number
of disconnected segments that P̃ defines on the data. For too large σ

however, the transition probability sensitivity on the distance between the
cells blurs. There is a certain range of σ variations for which P̃ defines
an ergodic diffusion process on the data as a connected graph and still the
diffusion distances between the cells are informative.

The un-normalised density at each cell (Z(x) in Equation 3) is
proportional to the number of cells in a fixed volume in its neighbourhood
and depends on σ. At scales of σ close to zero, cells do not have any
neighbours and their average density is 1 (because of the 1s on the diagonal
of P ). By increasing σ, the average density gradually increases as more
cells find other cells in their neighbourhood. There is a density saturation
point where σ reaches the system size and all cells form part of one
neighbourhood. At this point, for every cell x ∈ Ω, the density Z(x) will
be equal to the entire system size n.

Assuming that the density gradient is not extremely sharp along the data
manifold, the number of neighbours of cell x in the neighbourhood σ will
be proportional to the volume of a hypersphere of radius σ, hence:

Fig. 3: The average dimensionality of the data 〈d〉 as a function of
log10(σ) for the balanced and imbalanced toy data sets.

Z(x) ∝ σd(x,σ) (10)

where d(x, σ) is the dimensionality of data manifold at the position of cell
x and at the scale σ. By differentiating both sides with respect to log(σ), we
find that the average dimensionality of the manifold can be estimated by the
slope of the log-log plot of the number of neighbours versus the length scale:

〈d(σ)〉x =
∂ 〈log(Z(x))〉x

∂ log(σ)
(11)

where we compute the average of log(Z(x)) with consideration of density
heterogeneities such that:

〈log(Z(x))〉x =

∑
x(log(Z(x)) · (1/Z(x)))∑

x(1/Z(x))
(12)

It is worth noting that this average density underestimates the real
dimensionality of the structure due to the contribution of the cells lying on
the surface of the manifold. However, this does not affect our heuristic since
the variation of 〈d〉 is our main interest rather than 〈d〉 itself.

Each time 〈d〉 reaches its maximum and starts to decrease, one can deduce
that an intrinsically lower-dimensional structure is emerging from the noise-
enriched distributed cells in the original high-dimensional space. Therefore
several characteristic length scales of the data manifold (i.e. width of its
linear parts, radius of its curves, etc.) give rise to several local maxima in 〈d〉.
Such characteristic scales indeed make our choice for the Gaussian width σ
since they indicate the scale at which the Euclidean distances used in the
Gaussian kernel are sensible in an assumed Euclidean tangent space to the
manifold. Although Euclidean distances are also valid for smaller σs than the
characteristic length scale, they are not recommended because smaller kernel
width would mean less connectivity in the cells graph which in turn results
in an increased sensitivity to noise. Figures S2 and S3 in the supplement
illustrate the resulting diffusion map on optimal kernel width and several
other kernel widths values for a U-shaped toy data. Also the performance of
diffusion map at the optimal kernel width when there is no distinguishable
pattern in the data (e.g. normally distributed data in all dimensions or sparse
data) is illustrated in the supplementary Figure S4.

2.4 Toy model for differentiation
As toggle switches are known to play a role in differentiation branching
processes (Orkin and Zon, 2008), we designed a regulatory network of
three pairs of toggle genes to evaluate the performance of our method on
a toy data set that mimics a differentiation tree (Krumsiek et al., 2011).
Assuming a genetic regulatory module as presented in Figure 2A, we
simulated the stochastic differentiation process by the Gillespie algorithm
(Gillespie, 1977) with the reactions as shown in 2B and 2C (Strasser et al.,
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2012). More details about the chemical reactions and the reaction rates used
in the Gillespie algorithm model can be found in the supplement (Figure
S5 A and B). Genes G1 and G2 are antagonistic to each other through an
inhibiting Hill function. Therefore, starting from an initial undifferentiated
state where G1 and G2 are both in a very low expression level, single
samples may end up in either of the states where G1 or G2 is exclusively
expressed. At this stage, the next pair of toggle genes in the differentiation
hierarchy is activated (through an activating binding Hill function), which
are again antagonistic to each other. This model generates four different
types of fully differentiated cells in the six-dimensional space of genes.

To establish a steady state in the cell population, once a cell hits the end of
each branch, we remove it from the population and initiate a new cell at the
original undifferentiated state. This approach maintains the population size
of cells. After an extended simulation run, the steady state of the population
is established and resembles the haemostatic state of (e.g. haematopoietic)
stem cells in natural organisms.

We sampled cells from this toy model in two different sets, a balanced
toy data set, wherein 600 samples serve as a a snapshot of the steady state of
the system with no additional extrinsic noise, and an imbalanced toy data set,
wherein 1800 sample are derived from a non-steady-state density distribution
with heavier sampling density on the G+

1 G
+
3 branch. We also added an

extrinsic Gaussian noise with a variance of 25% maximum expression to
each gene. The gene expression plot for a simulated single cell as it proceeds
from the initial pluripotent state to a fully differentiated state is presented in
the supplement (Figure S5 C and D).

2.5 Experimental data
2.5.1 qPCR data of mouse haematopoietic stem cells. We
calculated a diffusion map embedding for the haematopoietic and progenitor
stem cells data set from Moignard et al. (2013). In this experiment, 597
cells from five different haematopoietic cell types, namely, haematopoietic
stem cell (HSC), lymphoid-primed multipotent progenitor (LMPP),
megakaryocyte-erythroid progenitor (PreMegE), common lymphoid progenitor
(CLP) and granulocyte-monocyte progenitor (GMP) were gated by FACS
sorting. Single-cell qPCR expression level measurement was then performed
for 24 genes. Housekeeping genes were only used for cell-cycle
normalisation, where for each cell, all expression values were divided by
the average expression of its housekeeping genes. Furthermore we excluded
the five housekeeping genes, as well as c-Kit, which is a stem-cell receptor
factor expressed on the surface of all analysed cells, from the diffusion map
analysis.

2.5.2 qPCR data of mouse stem cells from zygote to blastocyst.
To understand the earliest cell fate decision in a developing mouse embryo,
Guo et al. (2010) conducted a qPCR experiment for 48 genes in seven
different developmental time points. The gene expression levels were
normalised to the endogenous controls Actb and Gapdh. The authors also
identified four cell types, namely, inner cell mass (ICM), trophectoderm
(TE), primitive endoderm (PE) and epiblast (EPI) using characteristic
markers. The total number of single cells used in the diffusion map analysis
was 429.

2.5.3 RNA-Seq of human preimplantation embryos. For the data
set published by Yan et al. (2013), RNA-Seq analysis was performed on
90 individual cells from 20 oocytes and embryos. The sequenced embryos
were picked at seven crucial stages of preimplantation: metaphase II oocyte,
zygote, 2-cell, 4-cell, 8-cell, morula and late blastocyst at the hatching stage.

3 RESULTS
In this section we evaluate the performance of the diffusion map on
each of the data sets described in the Methods section and compare it
to the performance of two other dimension-reduction methods PCA
and t-SNE. Data embeddings with several other methods including
ICA, SPADE, kernel-PCA (Schölkopf et al., 1998), isomap and

Hessian Locally-Linear Embedding (HLLE) are provided in the
supplementary Figures S16-S20.

3.1 Diffusion maps cope with high noise level and
sampling density heterogeneity for toy data

3.1.1 Gaussian width determination of the toy data. We
demonstrate the heuristic determination of σ on balanced and
imbalanced toy data sets. The average dimensionality of the
structure of some chosen characteristic length scale can be estimated
by Equation 11. Figure 3 shows the average dimensionality 〈d〉
for balanced toy data (red) and imbalanced toy data (black) as
a function of log(σ). The balanced set exhibits two maxima.
The first one arises at the length scale of the thickness of the
differentiation branches which include only a few cells. At this σ
several subpopulations form at the more densely populated stages
of the steady state. The second maximum appears at a larger length
scale when several subpopulations become visible to each other
and the continuous branches form. We picked the σ at the second
maximum for visualisation (data visualisation at the first maximum
is provided in the supplementary Figure S6). For the imbalanced set,
however, due to the high noise level, the first maximum vanished
and we only detected one maximum which we then used for the
visualisation.

3.1.2 Performance of the diffusion map on the toy data as
compared to the other methods. Definition of diffusion distance
(Equation 8) based on probability of transition between cells
through several paths renders diffusion maps very robust to noise.
Figure 4 presents a comparison between the performance of the
diffusion map and the other two methods PCA and t-SNE on the
balanced toy data set. The eigenvalues of the diffusion map (Figure
4D) suggest that there are four leading dimensions that explain the
data structure and the higher dimensions present noise rather than
the intrinsic structure of the data manifold. The complete set of two-
by-two projections up to the fourth eigenvector can be found in the
supplementary Figure S7. PCA of this data set generated results
that were similar to the diffusion map, where all four branches
of the data could be distinguished. However, standard t-SNE did
not preserve the data structure continuity. Visualisation using t-
SNE with non-standard perplexity values are also provided in the
supplementary Figure S8. To determine how additional extrinsic
noise and density heterogeneities affect each method, we also
applied the three methods on imbalanced toy data (Figure 5). The
eigenvalues plot of the diffusion map in this figure suggests the
same order of significance for the third and fourth eigenvectors as
λ4 almost equals λ3 and that the higher-order eigenfunctions mostly
present noise. We chose two projections (DC, DC2, and DC3) and
(DC1, DC2, and DC4) for illustration in Figure 5. The complete set
of two-by-two projection can be found in the supplementary Figure
S9. From Figure 5A, one can infer the same size for all four branches
of differentiation despite different sampling densities. This figure
also suggests that the diffusion map clearly shows four branches of
the imbalanced toy data, whereas PCA and t-SNE produce noisier
visualisation and represent the two rarer branches as smaller. For
additional t-SNE visualisations with non-standard perplexity values
for the imbalanced toy data see Figure S10 in the supplement.
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Fig. 4: Visualisation of the balanced toy data on A) the first three eigenvectors of the diffusion map, B) PCA and C) t-SNE. The colours (heat
map of blue to red) indicate the maximum expression among all genes. Eigenvalues sorted in decreasing order for D) diffusion map and E)
PCA.

Fig. 5: Visualisation of the imbalanced toy data on A) the first three eigenvectors of the diffusion map, B) the first, second and fourth
eigenvectors of the diffusion map, C) the first three components of the PCA D) the first, second and fourth components of PCA and E)
t-SNE. The colours (heat map of blue to red) indicate the maximum expression among all genes. Eigenvalues sorted in a decreasing order for
F) diffusion map and G) PCA.

3.1.3 Refinement of the transition matrix by density normalisation,
zero diagonal and accounting for missing values. In order to
adapt the standard diffusion map algorithm to the properties of
single-cell gene expression parameters, we refined the transition
matrix in different ways. First, we set the diagonal of the transition
matrix to zero (Equation 5) since the (non-zero version) diagonal
carries information about local sampling densities. Unlike many
other applications where the information about local densities has
some value, the sampling density in the context of single-cell data
is somewhat arbitrary (e.g. only specific cell types are monitored,
different proliferation rates in several stages of differentiation alters
the sampling density, outlier cells show lower density, etc.). For
a demonstration of how zero diagonal improves the quality of the
diffusion map see supplementary Figure S11. Second, we refined
the Markovian transition matrix by density normalisation (Equation
5) since the number of diffusion paths between two cells depends
on the density of cells connecting them and more densely sampled
regions of the data would seem to have smaller diffusion distance
to each other on a diffusion map without density normalisation.
Supplementary Figure S12 demonstrates how density normalisation
improves the quality of the diffusion map. The third refinement that

we used in our implementation of diffusion maps is accounting for
missing and non-detect values (section 2.2). Generally speaking as
the proportion of missing and non-detect values increases, there is a
decrease in the quality of the diffusion map. However the magnitude
of this effect depends highly on the architecture of the gene
regulatory network and the role of the corresponding gene in the
network. For example, for a toggle switch, low expression of a gene
would always imply high expression of the other gene. Therefore,
increasing the detection threshold (i.e. increasing number of non-
detects) does not have a major influence on the analysis, as the
information is still present in the other gene with high expression.
We evaluate the performance of diffusion map in several proportions
of missing values for the balanced toy data in supplementary Figure
S13.

3.2 Diffusion map allows identification of
differentiation trajectories on experimental data

3.2.1 Performance on haematopoietic stem cells qPCR data as
compared to the other methods. The diffusion map embedding
for the haematopoietic stem cells (Figure 6A) indicates a major
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Fig. 6: Visualization of haematopoietic stem cells data on the first three eigenvectors of A) diffusion map, B) PCA and C) t-SNE. Eigenvalues
sorted in a decreasing order for D) diffusion map and E) PCA. F) The hierarchy of haematopoietic cell types.

branching of HSCs to PreMegE and LMPP cell types and a further
branching of LMPPs to CLP and GMP cells. The branching
structures are less clear in the PCA plot (Figures 6B). Moreover,
PCA produces artificial planes of data in the embedding because
of the non-detect measurements in the qPCR data. The t-SNE plot
(Figure 6C) almost separated the cell types (except for LMPPs)
into different clusters. However, the notion of temporal progress is
less clear compared to the diffusion map embedding. In addition,
since uncertainties in the values of non-detects were not considered,
a widening within the clusters is observed. Detailed visualisation
using the three methods and the Gaussian width determination for
diffusion map embedding are provided in the supplementary Figure
S14. The ordered eigenvalues plot for the diffusion map and PCA
are shown in Figures 6D and 6E. The ordered eigenvalues plot
of the diffusion map suggests that there is no clear separation
between the eigenvectors of the diffusion map that captures the
intrinsic low-dimensional data manifold and those characterising
noise for this data set. However, what makes the diffusion map
embedding of this data set more plausible is the concordance
between the branching structure as suggested by the diffusion map
and the recently established hierarchy of haematopoietic cell types
(Moignard et al., 2013; Arinobu et al., 2007) illustrated in Figure
6F.

3.2.2 Performance of the diffusion map on mouse embryonic stem
cells qPCR data as compared to the other methods. For the mouse
embryonic stem cells, diffusion map visualisation using the first
three eigenvectors indicated a branching at the early 16-cell stage to
the ICM and TE cell types, and further branching of the ICM at the
late 32-cell stage into the EPI and PE (Figure 7A). The branching
structure is unclear in the PCA and t-SNE plots (Figure 7B and 7C).
The ordered eigenvalues plot for the diffusion map and PCA are
shown in Figures 7D and 7E. The branching structure indicated by
the diffusion map is in agreement with the results of previous studies
on this data set (Guo et al., 2010; Buettner and Theis, 2012), which
suggests a branching into the two cell types, ICM and TE, after the

8-cell stage and further branching of the ICM into EPI and PE cells
(Figure 7F). More information on Gaussian width determination and
two-dimensional projections of data on each pair of the first to fourth
eigenvectors of the diffusion map are provided in the supplementary
Figure S15.

3.2.3 Performance on human pre-implantation embryos RNA-
Seq data compared with other methods. The performance of the
diffusion map on this RNA-Seq data set is comparable (although
slightly sharper with respect to pseudo-time ordering) to the other
two methods, PCA and t-SNE (Figure 8). The number of single cells
measured in RNA-Seq is currently limited due to high sequencing
costs. A low number of sampled cells could not meaningfully
indicate a complex structure. Hence, PCA and t-SNE performance
is almost as good as that of the diffusion map. However, with
the expected development of new and cheaper RNA sequencing
technologies, we propose a diffusion map that could be used as a
powerful dimension-reduction tool the computation time of which
is only linear with respect to the number of genes.

4 DISCUSSION AND CONCLUSION
In this manuscript, we have demonstrated the capabilities of
diffusion maps for the analysis of continuous dynamic processes,
in particular, differentiation data in a toy data set and a few
experimental data sets. Using a biologically relevant distance
metric (i.e. diffusion distance), the adapted diffusion map
method outperforms other dimension-reduction methods in pseudo-
temporal ordering of cells along the differentiation paths and could
capture the expected differentiation structure in all cases. Table
1 provides a general comparison of several dimension-reduction
methods, detailing capabilities and limitations in application to
single-cell omics data. Among these methods, isomap and (H)LLE
have not been applied for the analysis of single-cell differentiation
data and pseudo-time ordering so far, mainly because they do
not meet the specific requirements for the analysis of such data
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Fig. 7: Visualisation of mouse embryonic stem cells on A) the first three eigenvectors of diffusion map, B) PCA and C) t-SNE. Eigenvalues
sorted in a decreasing order for D) diffusion map and E) PCA. F) The hierarchy of cells for mouse embryonic stem cells.

Fig. 8: Visualisation of human preimplantation embryos data on A) the first three eigenvectors of the diffusion map, B) PCA, and C) t-SNE.
Eigenvalues sorted in a decreasing order for D) the diffusion map and E) PCA.

including capability to handle high levels of technical noise,
sampling density heterogeneities, detection limits and missing
values. Figures S19 and S20 in the supplement demonstrate the
poor performance of these methods for finding the differentiation
manifold in presence of noise and density heterogeneity for our
toy data set as well as the three experimental single-cell data sets.
For any data set, it is important to consider the advantages and
disadvantages of each method with respect to the data properties
and the purpose of the analysis, in order to make a suitable choice
for applying to that data set.

In our diffusion maps implementation, by performing density
normalisation and setting the diagonal of the transition probability
matrix to zero, we propose a mapping technique wherein the
closeness of cells in the diffusion metric is unaffected by density
heterogeneities in data sampling (see supplementary Figures S9
and S10). This feature can be crucial for the detection of rare
populations, which is one of the main challenges in the analysis of
differentiation data.

By breaking the diffusion kernel (Mohri et al., 2012) to
its multiplicand wave functions, we also propose a method in
accommodating the uncertainties of measurement and missing
values into the wave function. Consequently, we have successfully
addressed uncertainties in the value of non-detects in qPCR data.

Tuning the scale parameter σ is also important for generating
insights into the structure of the data, for which we proposed
a criterion on the basis of the characteristic length scales of
the data manifold. Because of computational limitations, for our
criterion we compute the average intrinsic dimensionality and
hence the average characteristic length scale. However, when
density heterogeneities are extremely large, or the data manifold
has many sharp changes and several scales, a single σ may not
provide a globally optimal scale for data embedding. Therefore,
implementation of an efficient and cost-effective method for several
locally valid σs determinations, instead of a single global value is of
interest.

It is worth noting that the mathematical ergodicity in diffusion
maps reached by adequate kernel width selection does not
necessarily imply biological ergodicity. If there appears a trace of
transitory cells between two clusters, we conclude the two clusters
are also biologically connected to each other in an ergodic sense.
However this trace might be not present if the transition is too fast or
switch-like abrupt, so that no transitory cells have been caught in the
finite set of sampled cells of snapshot data. Thus it has to be proven
with dedicated biological experiments (e.g. as used by Buganim
et al. (2012) and Takahashi and Yamanaka (2006)) whether the data
is biologically ergodic or not.
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ref. methodology
linear/ 
non-
linear

structure 
faithfulness

robustness to 
noise / density 
heterogeneities

no. of dims 
needed for 
embedding

handles 
missing /
uncertain 
values?

keeps 
single-cell 
resolution?

clustering 
/ keeping 
continuity

tuning
parameters

best performance

PCA
Hotteling, 

1993

orthogonal 
transformation

linear global + / -
depends on 
eigenvalues

+ (Buettner

et al., 2014)
+ - / + none

linear data 
subspace

ICA Stone, 2004
orthogonal 

transformation
linear global + / - arbitrary - + - / + none

linear data 
subspace, 

known no. of 
sources

SPADE
Qui et al., 

2011

agglomerative / k-
means clustering, 

minimum spanning
trees

non-
linear

local and 
(weak) 
global

- / + 2D - - + / +

-outlier density
-target density
-desired no.of

clusters

low noise,
desired no. of 

clusters ≿O(2d*)

t-SNE
Van der 

Maaten and 

Hinton, 2008

attraction /
repulsion balance 

non-
linear

local + / ++ 2 or 3D - + + / - perplexity

clustering to 
separate groups,
presence of noise 

and density 
heterogeneities

kernel-
PCA

Scholkopf et 

al., 1998 kernel methods
non-
linear

global + / -
depends on 
eigenvalues

+ (Buettner

et al., 2014)
+ + / +

depends on the 
used kernel

physically relevant 
kernel

Isomap
Tenenbaum et

al., 2000
spectral clustering, 
geodesic distance

non-
linear

global - / +
depends on 
eigenvalues

- + - / +
no. of nearest 
neighbours

low noise or a 
priory known

geodesics 

(H)LLE
Donoho and 

Grimes, 2003

weighted linear 
combination of 

nearest neighbours

non-
linear

global - / - arbitrary - + - / +
no. of nearest 
neighbours

continuos data 
manifold,
low noise,

uniform sampling

Diffusion 
map

Coifman et al., 

2005

spectral clustering, 
diffusion distance

non-
linear

global ++ / +
depends on 
eigenvalues

+ (our 
implementat

ion)
+ - / + kernel width

continuos data 
manifold, presence 

of noise and 
density 

heterogeneity

* d is the intrinsic dimensionality of the data manifold

Table 1: Comparison of several dimension-reduction algorithms in the view of single-cell omics data application.

A possible strategy for enhancing the capacity of capturing
details of the structure of rare populations using diffusion maps
is to limit the transition possibility of each cell only to its closest
neighbours. In this scenario, we could render the diffusion map
more local by building the transition matrix P̃ in Equation 6
for k nearest neighbours only. This method, however, might
end up with several disconnected sub-graphs of cells when the
sampling density along the intrinsic data manifold is extremely
heterogeneous. Furthermore, P̃ (without the row normalisation) will
not be symmetric any more and we cannot ensure real eigenvalues
for the transition probability matrix. However, as long as the graph
is connected and eigenvalues are real, we can benefit from a more
locally detailed map.

One caveat in the current version of diffusion map is the n2 ×G
computation time which can be prohibitive for large cell numbers
(> 104) as generated from cytometry experiments. Choosing the
k nearest neighbours version of diffusion map can therefore be
a solution to this problem. Diffusion distances are based on a
robust connectivity measure between cells which is calculated over
all possible paths of a certain length between the cells. Thus, a

diffusion mapping obtained by accounting for a smaller fraction
of all possible paths (namely those going through each cells’
nearest neighbours) can still provide a good approximation of
the diffusion distance between the cells and yet avoid computing
all n2 elements of the transition probability matrix. With such
modifications, diffusion maps prevail as a promising method for the
analysis of large cell numbers omics data.

Another issue is the number of embedding dimensions. The
number of significant dimensions of the diffusion map is determined
where a remarkable gap occurs in its sorted eigenvalues plot. This is
not intrinsically bound to the conventional visualisable dimensions
two or three. In contrast, for some other methods such as t-SNE,
one can pre-determine the number of visualisation dimensions for
the embedding optimisation to two or three dimensions.

We conclude that diffusion maps are appropriate and powerful
for the dimension-reduction of single-cell qPCR and RNA-Seq cell
differentiation data as they are able to handle high noise levels,
sampling density heterogeneities, and missing and uncertain values.
As a result diffusion maps can organise single cells along the
nonlinear and complex branches of differentiation, maintain the
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global structure of the differentiation dynamics and detect rare
populations as well.
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Figure S1: A) A toy ”true” data with two genes expression. The limit of detection is assumed
at the value 3 for both genes (red lines). B) ”Measured” toy data, where any ”true” value
below the detection limit in A is measured as zero (non-detects). C) Diffusion map obtained
by assuming uniform prior distribution between 0 and 3 (limit of detection value) for the
non-detects in the ”measured” data recovers the two independent clusters of ”true” data.
Cells with non-detect values for gene1 are indicated by a green circle around them and cell
with non-detect values for gene2 by a blue circle. Red circle indicates the cells with both
genes as non-detects (i.e. [0,0] in B).
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Figure S2: Kernel width determination for a U-shaped data. A) A U-shaped toy data.
B) The average intrinsic dimensionality of the data over kernel with variations. The two
maximums of the average dimensionality indicate two characteristic length scales of the
data, namely the width of the strip and the diameter of the curves of the U (≈ 0.2). C)
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Figure S4 (preceding page): A) A normal distribution (zero mean, variance one) toy data
with 300 cells and five dimensions (i.e. genes), illustrated on three arbitrary dimensions. B)
The diffusion maps eigenvalues plot of the normal distributed toy data set over several kernel
widths (σ) (black lines) shows the separation of five signal eigenvalues from the rest noise
eigenvalues. The intrinsic dimensionality curve (green) has an optimum in the signal/noise
distinction region at log10(σ) = 0. C) The diffusion map at the optimum kernel width
log10(σ) = 0 shows the correct pattern of data. The right plot shows the eigenvalues of the
diffusion map at log10(σ) = 0. D) The diffusion map at a smaller kernel width log10(σ) = 0.2
shows some pattern which is not true, because of the wrongly chosen kernel width. The right
plot shows the eigenvalues of the diffusion map at log10(σ) = 0.2.
E) A sparse toy data with 50 cells and 100 dimensions (i.e. genes), where two genes (X1 and
X2) are centred around the dashed line, and the 98 other genes are from a normal distribution
with zero mean and variance one, illustrated on the X1 and X2 dimensions. F) Diffusion
maps eigenvalues plot of the sparse toy data set over several kernel widths (σ) (black lines).
The intrinsic dimensionality curve (green) has an optimum at a region which indicates the
signal/noise eigenvalues are not well separated. G) The diffusion map at the optimum kernel
width log10(σ) = 0.7 shows the correct pattern of data. The right plot shows the eigenvalues
of the diffusion map at log10(σ) = 0.7. H) The diffusion map at a smaller kernel width
log10(σ) = 0.3 shows some pattern which is not true, because of the wrongly chosen kernel
width. The right plot shows the eigenvalues of the diffusion map at log10(σ) = 0.3.
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Figure S5: A) The corresponding protein of each of the six genes in the regulatory network
the toy model is produced at rate αi and degraded at a rate γ constant for all proteins. B)
The reaction (production and decay) rates for all proteins. The simulated gene expression
levels for a sample cell initiated from the pluripotent state at time zero which finally ends up
in the G2+G6+ fully differentiated state from the C) balanced toy data set and D) imbalanced
toy data set.
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Figure S11 (preceding page): A) Eigenvalues plot over several kernel widths (σ) for the
original version of diffusion maps applied on the imbalanced toy data set. B) Eigenvalues
plot over several kernel width (σ) for the diffusion maps with zero diagonal transition matrix.
The eigenvalue plot of the zero diagonal transition matrix version gives better separation
between noise and signal eigenvalues.
C) The original version diffusion map over eigenvalues 1,2,3 (top) and 1,2,4 (bottom) for
several σ. For relatively low σ, the map produces some anomalies marked with red arrows.
D) The diffusion map with zero diagonal transition matrix over eigenvalues 1,2,3 (top) and
1,2,4 (bottom) for several σ. The zero diagonal transition matrix does not produce anomalies
at low σ and allows more robust diffusion mapping at a wider range of kernel width variation.
Zero diagonal becomes important when a large density heterogeneity is present and results
in the non-noise eigenvectors being easier to distinguish from the signal eigenvectors. In
the original version of diffusion maps, the diagonal of the transition matrix corresponds to
the local density at each cell’s position. Thus density heterogeneities cause more diffusion
barriers (at cells with low density) and a bumpy diffusion space, which has a similar effect to
increased noise. While in many applications these local densities are meaningful, sampling
density in single-cell data is somehow arbitrary (e.g only specific cell types are monitored,
different cell proliferation rates in several stages of differentiation alters the sampling density,
etc.). Thus omitting any asymmetries (e.g. by setting the diagonal to zero) among the cells
caused by this arbitrary sampling density can improve the quality of the mapping and its
robustness in respect of varying kernel width σ.
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Figure S12: The effect of density normalisation for diffusion maps. A to C) The diffusion
map of the imbalanced toy data set obtained without density normalisation is shown on the
top row (A, B and C) in three different views of the four dimensional map. Without the
density normalisation, diffusion between cells in more densely sampled regions is alleviated
simply because more diffusion paths exist between them. Thus, these cells are assigned a
smaller diffusion distance to each other (marked with the red arrow) and are placed densely
in the same location on the map (crowding problem). D to F) The diffusion map of the
imbalanced toy data set obtained by density normalisation is shown on the bottom row
in three different views (D, E and F) of the four dimensional map. The cells near the
multipotent state are correctly distributed close to each other on the map (region marked
with the red arrows), since the effect of heterogeneous sampling density has been cancelled.
For a further demonstration of the density normalization effect see [1].
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Figure S13: The effect of increasing the proportion of non-detects strongly depends on the
architecture of the underlying regulatory network of the genes. While for real qPCR data the
fraction of censored values is usually about 30%, diffusion map recovers the data manifold for
the balanced toy data (see Figure S5) when up to 83% of the data is censored (all expression
values below 800 where censored to zero). However not even diffusion map helps when the
fraction of the censored values is too high (94% in this case, where all expression values
below 950 where censored to zero).
A) PCA performance on the 83% censored data. B) t-SNE with perplexity= 30 performance
on the 83% censored data. C) Diffusion map without accounting for missing values at the
optimum kernel width applied on the 83% censored data. D) Diffusion map with accounting
for missing values at the optimum kernel width applied on the 83% censored data. E)
Diffusion map with accounting for missing values applied on the 94% censored data.
In general, when increasing the proportion of non-detects, the quality of the map depends on
whether with the provided measured genes and the prior distributions for the missing genes,
a cell can still find the neighbourhood where it originally belonged to or not. If the answer
is yes the cell will be put close to them on the diffusion map, irrespective to the number of
cells which have missing values imperfections. If there is a degeneracy in a cell’s minimum
diffusion distance to several neighbourhoods, the cell will be put on a separate cluster on
the map.
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Figure S14: A) The average dimensionality 〈d〉 for the haematopoietic stem cells data set, B)
Visualisation on the four first eigenvectors of diffusion map at σ = 100.9, C) Visualisation on
the four first eigenvectors of PCA, D) Visualisation on the first three eigenvectors of t-SNE
[9].

Figure S15: A) The average dimensionality 〈d〉 for the mouse embryo stem cells data set, B)
Visualisation on the four first eigenvectors of diffusion map at σ = 101.05.
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Figure S16: Monocle [8] a recent algorithm for pseudo-temporal ordering of single cells, uses
Independent Components Analysis [6] for its dimension reduction step. However ICA as a
linear dimension reduction tool performs same as PCA except for rotation and rescaling of
the embedding, hence it does not capture the nonlinear trajectories of differentiation. For
demonstration here we are representing the ICA embedding for A) balanced toy data set,
B) imbalanced toy data set, C) haematopoietic stem cells qPCR data set, D) mouse embryo
qPCR data set, F) human preimplantation embryos RNA-Seq data set.
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Figure S17 (preceding page): SPADE [4], a clustering algorithm proposed for flow and mass
cytometry single-cell data analysis was run on the five differentiation data sets used in this
manuscript. In all plots the number of desired clusters was set to the number of cells in each
data set as it was possible to do so due to the relatively low number of cells in our data
sets and in order to keep single-cell resolution. A) For the balanced toy data set SPADE
finds the appropriate tree structure on the data. B) For the imbalanced toy data set the
SPADE tree can not properly show all four branches because of high noise level. C) For the
haematopoietic stem cells qPCR data set the SPADE tree does not properly match the know
hierarchy of cell types (as in Figure 6 F in the main document). D) For the mouse embryo
qPCR data set the SPADE performance relatively well. F) For the human preimplantation
embryos RNA-Seq data set, the 2-cell and 4-cell states are wrongly separated with the
Zygote state in between, since minimum spanning trees (the methodology used by SPADE)
are quite sensitive to curse of dimensionality effects in high dimensions and low number of
desired clusters (i.e. single cells in this plot).
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Figure S18: Kernel-PCA [5] with a Gaussian kernel for A) balanced toy data set (Gaus-
sian kernel width=1000), B) imbalanced toy data set (Gaussian kernel width=1000), C)
haematopoietic stem cells qPCR data set (Gaussian kernel width=50), D) mouse embryo
qPCR data set (Gaussian kernel width=50), F) human preimplantation embryos RNA-Seq
data set (Gaussian kernel width=50).
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Figure S19: Isomap [7] is a dimension reduction tool based on geodesic distances between
the cells, and is highly sensitive to noise and outliers. Isomap embedding for A) balanced toy
data set (no. of nearest neighbours=50), B) imbalanced toy data set (no. of nearest neigh-
bours=100), C) haematopoietic stem cells qPCR data set (no. of nearest neighbours=50),
D) mouse embryo qPCR data set (no. of nearest neighbours=80), F) human preimplantation
embryos RNA-Seq data set (no. of nearest neighbours=50).
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Figure S20: In hessian locally linear embedding (HLLE) [2] the coordinate of each cell is
estimated by a linear combination of the coordinates of its neighbours and is especially
sensitive to sampling density heterogeneities. HLLE embedding for A) balanced toy data set
(no. of nearest neighbours=50), B) imbalanced toy data set (no. of nearest neighbours=100),
C) haematopoietic stem cells qPCR data set (no. of nearest neighbours=50), D) mouse
embryo qPCR data set (no. of nearest neighbours=100), F) human preimplantation embryos
RNA-Seq data set (no. of nearest neighbours=50).
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Single-cell	 gene	 expression	 profiles	 of	 differentiating	 cells	 encode	 their	 intrinsic	 latent	
temporal	order.	We	describe	an	efficient	way	to	robustly	estimate	this	order	according	to	
a	 diffusion	 pseudotime,	 which	 measures	 transitions	 between	 cells	 using	 diffusion-like	
random	walks.		This	allows	us	to	reconstruct	the	cells’	developmental	progression	and	to	
identify	transient	or	metastable	states,	branching	decisions	or	differentiation	endpoints.	
	 	
Cellular	 programs	 are	 driven	 by	 gene-regulatory	 interactions,	 which	 due	 to	 inherent	
stochasticity	 and	external	 influences	often	exhibit	 strong	heterogeneity	 and	asynchrony	 in	
the	 timing	 of	 program	 execution.	 Time-resolved	 bulk	 transcriptomics	 averages	 over	 these	
effects	and	obscures	the	underlying	gene	dynamics.	Instead,	single-cell	profiling	techniques	
allow	 a	 systematic	 observation	 of	 a	 single	 cell's	 regulatory	 state1	 as	 they	 capture	 cells	 at	
various	 developmental	 stages2,3.	 Since	 cells	 are	 destroyed	 during	 measurement,	 gene	
dynamics	 and	 hence	 the	 sequence	 of	 cellular	 programs,	 have	 to	 be	 inferred	 from	 static	
snapshot	data.	This	is	generally	achieved	by	ordering	cells	according	to	expression	similarity,	
which	is	known	as	`pseudotemporal	ordering`.	It	was	initially	proposed	for	bulk	expression4,	
and	 has	 later	 been	 extended	 to	 single-cell	 data	 as	 measured	 in	 RNA-seq	 and	 mass	
cytometry5-7.	However,	existing	pseudotime	algorithms	face	problems	regarding	robustness	
and	 scalability	 when	 applied	 to	 data	 with	 branching	 lineages,	 which	 makes	 a	 reliable	
application	 in	 many	 generic	 experimental	 settings	 questionable.	 The	 problems	 are	
particularly	 severe	 in	 the	 light	 of	 the	 increasing	 importance	 of	 novel	 experimental	
techniques	such	as	Drop-seq8,9	or	MARS-seq10,	which	are	able	to	profile	tens	of	thousands	of	
cells,	albeit	at	high	noise	rates.	
	
To	 overcome	 these	 problems,	 we	 introduce	 a	 pseudotime	 measure	 we	 call	 ‘diffusion	
pseudotime’	 (DPT).	 Diffusion	 pseudotime	 is	 a	 random-walk-based	 distance,	 which	 is	
computed	 based	 on	 simple	 Euclidian	 distances	 in	 the	 so-called	 diffusion	 map	 space.	 The	
diffusion	 map	 is	 a	 non-linear	 method	 for	 recovering	 the	 low-dimensional	 structure	
underlying	 high-dimensional	 observations11.	 It	 organizes	 data	 by	 defining	 coordinates	 as	
dominant	eigenvectors	of	a	 transition	matrix	𝑻	that	describes	 random	walks	between	data	
points	–	here	between	cells	in	distinct	stages	of	the	differentiation	process.	A	diffusion	map	
strongly	reduces	noise	and	is	able	to	represent	branching	data,	but	so	far	has	only	been	used	
for	visualization12,13.	Our	main	contribution	here	is	to	derive	a	measure	on	this	space	(DPT)	
that	 is	 suitable	 for	 recovering	 the	dynamics	of	biological	processes	underlying	 the	data,	 in	
particular,	 developmental	 trajectories	 from	 single-cell	 data.	 The	 definition	 of	 DPT	 (Online	
Methods,	 eq.	 (1))	 amounts	 to	 ordering	 cells	 by	 comparing	 their	 probabilities	 of	
differentiating	towards	different	cell	fates.		
	



Diffusion	 pseudotime	 is	 computed	 as	 follows.	 Given	 single-cell	 gene	 expression	 data,	 we	
build	 a	 transition	 matrix	 by	 convolving	 Gaussians	 centered	 at	 nearby	 cells;	 thereby	
effectively	constructing	a	weighted	nearest-neighbor	graph	of	the	data,	see	Figure	1a(1).		For	
each	cell,	we	then	determine	the	probabilities	of	transitioning	to	each	other	cell	in	the	data	
set	using	random	walks	of	any	length	on	this	graph,	which	can	be	seen	as	a	proxy	for	each	
cell’s	probabilities	of	differentiating	towards	different	fates.	We	store	these	probabilities	in	a	
vector.	 The	 DPT	 between	 two	 cells	 then	 is	 the	 Euclidian	 distance	 between	 these	 vectors,	
Figure	 1a(2).	 Supplementary	 Note.	 1.	 Provided	with	 a	 known	 `root	 cell`,	 we	measure	 the	
developmental	progression	of	each	cell	in	the	dataset	by	computing	its	DPT	with	respect	to	
the	 root	 cell.	 Importantly,	 the	 definition	 of	 DPT	 benefits	 from	 the	 favorable	 properties	 of	
diffusion	maps	such	as	robustness	to	noise		and	sampling	density11.	The	latter	facilitates	the	
application	 of	 DPT	 to	 experiments	 where	 the	 number	 of	 profiled	 cells	 varies	 between	
different	 developmental	 stages	 (Online	 Methods).	 In	 addition,	 DPT	 is	 computationally	
efficient	 as	 the	 involved	 expressions	 are	 all	 available	 in	 closed	 form,	 so	 that	 DPT	 can	 be	
applied	 to	 large	 datasets	 comprising	 tens	 of	 thousands	 of	 cells.	 DPT	 does	 not	 rely	 on	
dimension	 reduction	 and	 thereby	 accounts	 for	 subtle	 changes	 in	 high-dimensional	 gene	
expression	patterns.	
	
The	DPT	based	analysis	then	proceeds	by	identifying	branching	points	that	occur	after	cells	
progress	 from	 a	 root	 cell	 x	 through	 a	 common	 `trunk	 trajectory`,	 see	 Figure	 1a(3).	 We	
determine	 the	 branching	 of	 the	 trunk	 by	 measuring	 the	 correlation	 of	 two	 pseudotime	
sequences	along	trajectories	that	start	 from	the	root	cell	x	and	from	a	cell	y	with	maximal	
DPT	 with	 respect	 to	 x.	 Whereas	 these	 sequences	 are	 anti-correlated	 on	 their	 direct	
connection,	 in	 a	 separate	 branch	 leading	 to	 a	 third	 cell	 z,	 they	 become	 correlated,	 as	
illustrated	in	Figure	1a(3).	Cells	that	belong	to	branching	points	then	are	determined	as	cells	
for	which	the	two	sequences	switch	from	anti-correlated	to	correlated	behavior	(see	Online	
Methods	and	Supplementary.	Note	1).		
	
After	 branch	 identification,	 we	 propose	 to	 determine	metastable	 (e.g.	 quiescent)	 cells	 by	
density	analysis:	Cell	ordering	by	diffusion	pseudotime	is	not	affected	by	a	changed	sampling	
density	 (see	 Online	 Methods).	 We	 assume	 that	 the	 progression	 speed	 of	 cells	 through	
developmental	 states	 is	 inversely	 proportional	 to	 their	 density,	 which	 means	 that	 at	
pseudotimes	 where	 many	 cells	 accumulate,	 progression	 of	 cells	 is	 slow.	 Under	 this	
assumption,	metastable	cells	are	identified	as	regions	of	high	density	when	plotting	density	
versus	pseudotime.	
	
In	a	first	example,	we	performed	a	DPT	analysis	 for	single-cell	qPCR	data	focusing	on	early	
blood	development	in	mouse13.	Early	hematopoietic	cells	branch	to	become	either	red	blood	
cells	 or	 endothelial	 like	 cells.	 DPT	 ordered	 cells	 along	 their	 developmental	 trajectory	 and	
identified	 two	branches	 (Fig.	 1b),	which	 correspond	 to	 the	 reported	blood	 (branch	1)	 and	
endothelial	 branches	 (branch	 2)13.	 Plotting	 gene	 expression	 versus	 pseudotime,	 we	 find	
patterns	 in	 the	 developmental	 stages	 that	 are	 known	 to	 be	 characteristic	 for	 blood	
progenitors	(Fig.	1c,d),	namely	the	hemangioblast-like	sequence14	(subsequent	up-regulation	
of	Cdh1	to	Tal1	and	Cdh5)	in	the	trunk13	and	the	endothelial	differentiation	route13	in	branch	
2	(elevated	levels	of	Pecam1,	Erg	and	Sox17	amongst	others).	In	branch	1,	we	find	sequential	
expression	of	Etv2,	Tal1,	Runx1	 and	Gata115,	 a	 sequence	of	gene	activations	characteristic	
for	erythroid	development.	DPT	 further	allows	 to	distinguish	early	 (cf.	 Ikaros	expression	 in	
Fig.	1c)	from	late	transitions	(cf.	Erg	in	Fig.	1c)	as	well	as	a	number	of	intermediate		



	
Figure	1:		
Diffusion	pseudotime	reveals	temporal	ordering	and	cellular	decisions	on	the	single	cell	level.	(a)	The	diffusion	
transition	matrix	𝑻!"	is	constructed	by	computing	the	overlap	of	local	kernels	at	the	expression	levels	of	cells	x	
and	y	(1).	Diffusion	pseudotime	dpt(x,y)	approximates	the	geodesic	distance	of	x	and	y	on	the	mapped	manifold	
(2).	 Branching	 points	 are	 identified	 as	 points	 where	 anti-correlated	 distances	 from	 branch	 ends	 become	
correlated	 (3).	 (b)	 Application	 of	 DPT	 to	 single-cell	 qPCR	 of	 42	 genes	 in	 3934	 single	 cells	 during	 early	
hematopoiesis13,	 sorted	 from	5	different	populations:	primitive	streak	 (PS),	neural	plate	 (NP),	head	 fold	 (HF),	
four	somite	GFP	negative	(4SG-),	four	somite	GFP	positive	(4SG+).	DPT	identifies	the	endothelial	branch	1	(4SG-
)		and	the	erythroid	branch	2	(4SG+).	(c)	Dynamics	of	genes	Erg	and	Ikaros	 in	both	branches.	Black	lines	show	
the	moving	average	over	50	adjacent	cells.	The	 red	vertical	 line	depicts	 the	branching	point.	 (d)	Heatmap	of	
gene	expression	(smoothed	over	50	adjacent	cells),	with	cells	ordered	by	DPT	and	branching	and	genes	ordered	
according	 to	 first	major	change	 (see	Supplementary	Note.	2.2).	The	pie	charts	 (bottom)	show	the	 fraction	of	
cells	 in	 the	 four	 metastable	 states	 (metastable	 state	 populations	 are	 indicated	 by	 the	 black	 horizontal	 line	
above	the	pie	charts).			
	
	
regulatory	events13	until	 the	onset	of	Hbb-bH1	expression	(cf.	Fig.	1d,	black	triangles).	This	
information	 is	crucial	 for	 the	understanding	of	 regulatory	 interactions:	genes	 that	undergo	
transitions	(Supplementary	Note	2)	earlier	than	others	are	candidates	for	regulators	of	the	
differentiation	process.		
	
By	plotting	cell	density	versus	pseudotime,	we	 identify	metastable	cells	via	regions	of	high	
density	(Fig.	1d,	top	and	Supplementary	Fig.	1).	We	found	four	such	states:	precursor	cells,	
hemangioblast-like	 cells	 at	 the	 decision	 state,	 erythroid-like	 and	 endothelial-like	 cells.	
Notably,	 both	 decision	 and	 precursor	 states	 consist	 of	 cell	 mixtures	 from	 two	 or	 three	
different	 stages,	 stressing	 the	 asynchrony	 of	 developmental	 stages	 that	 could	 not	 be	
resolved	without	pseudotemporal	ordering.		
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To	 identify	 key	 decision	 genes,	 we	 quantified	 expression	 differences	 for	 DPT	 inferred	
subgroups	and	experimentally	sorted	cells	using	MAST16,	respectively	(Supplementary	Fig.	2).	
Testing	differential	gene	expression	for	the	`decision`	versus	`precursor`	groups	inferred	by	
DPT	 resulted	 in	 32	out	of	 42	 significant	 genes,	 including	Cbfa2t3h	and	 Pecam1,	which	 are	
known	 to	 indicate	 hematopoietic	 and	 endothelial	 development14,	 respectively	
(Supplementary	 Fig.	 2a).	 Comparing	 this	 with	 differentially	 expressed	 genes	 between	 the	
experimental	groups	head	fold	(HF)	and	primitive	streak	(PS)	(Supplementary	Fig.	2b)	results	
in	a	less	clear	picture:	in	the	latter	case,	the	log-fold	change	is	consistently	lower	than	in	the	
former	 case	 (Supplementary	 Table	 1).	 Also,	 differential	 gene	 expression	 between	 HF	 and	
4SG-	cells	fails	to	identify	endothelial	differentiation	but	brings	up	erythroid	factors	(Runx1,	
Ikaros	and	Gfi1b	amongst	others,	see	Supplementary	Fig.	2c-e	and	Supplementary	Table	2).	
In	 summary,	 when	 comparing	 differentially	 expressed	 genes	 between	 metastable	 states,	
DPT	resolves	the	developmental	patterns	more	clearly	than	the	experimental	sorting	of	cell	
populations	 (Supplementary	 Fig.	 2).	 This	 suggests	 that	 heterogeneous	 marker	 expression	
across	 the	 sorted	 populations	 is	 more	 likely	 to	 be	 due	 to	 cells	 being	 in	 different	
developmental	stages	than	to	mere	stochasticity	of	gene	expression.	
	
In	a	second	example,	we	demonstrate	DPT	on	scRNA-seq	combined	with	droplet	barcoding9.	
Klein	 et	 al.	 monitored	 the	 transcriptomic	 profiles	 and	 heterogeneity	 in	 differentiation	 of	
mouse	embryonic	stem	(ES)	cells	after	 leukemia	 inhibitory	factor	(LIF)	withdrawal	(Fig.	2a).	
After	 cell-cycle	 normalization	 (Supplementary	 Figs.	 3-4),	 using	 DPT	 we	 find	 a	 single	
differentiation	path	from	which	two	small	populations	branch	off.	As	a	striking	example,	we	
can	 resolve	 upregulation	 of	 epiblast	 markers	 (Krt8/18/19)	 and	 downregulation	 of	
pluripotency	 factors	 (Nanog,	 Fig.	 2b)	 on	 a	 sub-day	 resolution	 in	 contrast	 to	 Klein	 et	 al.9,	
Figure	 7B.	 The	 first	 population	 (151	 cells)	 that	 branches	 off	 in	 Figure	 2c	 is	 enriched	 in	
apoptosis-related	genes	(e.g.	Clu,	Cd63,	Supplementary	Fig.	5).	The	second	branching	event	
in	Figure	2c	gives	rise	to	a	population	(27	cells)	with	increased	primitive	endoderm	markers	
(e.g.	Serpinh1,	Sparc	 in	Fig.	2c),	and	a	population	(67	cells)	with	increased	epiblast	markers	
(Krt8,	Actg1	 in	 Fig.	 2c,	 Krt8,	Actb	 in	 Fig.	 2b).	 Clustering	 of	 the	 gene	 expression	 dynamics	
(Supplementary	Note	3)	 identified	three	major	clusters,	which	we	observe	to	differ	both	in	
their	pseudotemporal	behaviors	(Fig.	2c	and	Supplementary	Fig.	4)	and	biological	functions	
(Fig.	2d).	For	example,	the	purple	cluster	consists	of	pluripotency	factors,	which	we	find	to	
be	active	in	early	pseudotime	and	then	to	decrease	gradually.	Altogether,	DPT	analysis	leads	
to	 an	 accurate	 high	 resolution	 reconstruction	 of	 early	 embryonic	 stem	 cell	 differentiation	
events	and	transcription	factor	dynamics.		
	
In	 a	 third	 example,	 a	 scRNA-seq	 data	 set	 for	 adult	 hematopoiesis10,	 DPT	 identifies	 the	
dominant	branching	into	different	myeloid	lineages.	It	additionally	finds	a	subpopulation	of	
lymphoid	outliers	and	a	graded	transition	 reflecting	erythroid	differentiation,	which	differs	
from	previously	stated	cluster	sequences10	(Supplementary	Note	4).	
	
Diffusion	pseudotime	overcomes	problems	regarding	robustness	and	scalability	of	previous	
algorithms5-7	 that	prevent	the	 latter	to	find	new	biology	 in	many	relevant	settings	 (Fig.	2e,	
Online	Methods,	Supplementary	Note	5),	and	is	in	addition	more	accurate	(Fig.	2f).	We	also	
clarify	the	general	relation	between	any	pseudotime	and	actual	time	measurements	(Online		



	
	
Figure	2:	
Diffusion	pseudotime	identifies	differentiation	dynamics	 in	droplet-based	scRNA-seq	experiments9.	(a)	Mouse	
ESCs	after	LIF	withdrawal	were	harvested	at	T=0,	2,	4	and	7	days	and	profiled	with	the	inDrop	protocol,	yielding	
2717	 cells	 with	 24175	 observed	 unique	 transcripts9.	 Visualization	 using	 diffusion	 maps	 shows	 temporal	
dynamics	 across	 the	 four	 days.	 (b)	 Pseudotemporal	 dynamics	 of	 the	 expression	 of	 selected	 genes.	 Compare	
with	 Figure	 7B	 of	 Klein	 et	 al..	 (c)	 Heatmap	 of	 gene	 expression,	 with	 cells	 ordered	 by	 DPT	 and	 branches	
(separated	by	white	vertical	bars)	and	genes	ordered	according	to	hierarchical	clustering.	The	heatmap	depicts	
gene	dynamics	after	hierarchical	clustering	(cf.	Supplementary	Fig.	4b):	The	clusters	(indicated	by	color	bar	on	
the	 right)	 consist	 of	 upregulated	 epiblast	 markers	 such	 as	 Krt8/18/19,	 Sfn,	 Tagln	 (orange),	 gradual	
downregulated	 pluripotency	 factors	 such	 as	 Pou5f1	 (Oct4),	 Sox2,	 Trim28,	 Nanog	 (purple)	 and	 upregulated	
primitive	 endoderm	 markers	 such	 as	 Col4a1/2,	 Lama1/b1,	 Serpinh1,	 Sparc	 (yellow).	 (d)	 Gene	 ontology	
enrichment	 shows	 a	 cellular	 reorganization	 signature	 (orange),	 a	 metabolic	 signature	 for	 differentiation	
(purple)	 and	 a	 cell	motility	 signature	 (yellow).	 (e)	 Comparisons	 of	 robustness	 of	 DPT,	Wanderlust/Wishbone	
and	Monocle	by	self-concordance	measure	on	bootstrap	samples	for	several	data	sets	(Supplementary	Note	5).	
DPT	consistently	shows	higher	robustness	(self-concordance)	across	all	data	sets	(all	2-sided	t-test	significance	
levels	 p<0.001,	 except	 for	 the	 non-significant	 (“n.s.”)	 comparison	 to	Wishbone	 in	 the	 artificial	 data.	 In	 the	
boxplot	 center	 line	 marks	 the	 median,	 edges	 the	 first	 and	 third	 quartile,	 whiskers	 extend	 to	 ±1.5×	 the	
interquartile	 ratio	 divided	 by	 the	 square	 root	 of	 the	 number	 of	 observations,	 and	 single	 points	 denote	
measurements	 outside	 this	 range.	 (f)	 Boxplots	 of	 Kendal	 rank	 correlation	 of	 pseudotime	with	 experimental	
days.	 DPT	 orders	 cells	 (Online	 Methods)	 significantly	 better	 than	 pseudotemporal	 ordering	 by	
Wanderlust/Wishbone	 (Kendal	 rank	 correlation	 0.77±10-3	 versus	 0.70±10-3).	 Center	 line	 marks	 the	 median,	
edges	the	first	and	third	quartile,	whiskers	extend	to	±1.5×	the	interquartile	ratio	divided	by	the	square	root	of	
the	number	of	observations,	and	single	points	denote	measurements	outside	this	range.	
	
	
methods	 and	 Supplementary	 Note	 6).	 In	 the	 future,	 robust	 computation	 of	 pseudotimes	
could	allow	inferring	regulatory	relationships	without	perturbations13,	where	DPT	allows	to	
scale	this	to	genome-wide	models.	Recently,	pseudotemporal	ordering	has	been	applied	to	
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cell	 morphology	 to	 identify	 cell	 cycle	 states17	 –	 here	 diffusion	 pseudotime	 would	 allow	
inclusion	 of	 branching	 for	 example	 to	 identify	 cells	 switching	 into	 a	 quiescent	 state.	 In	
summary,	 diffusion	 pseudotime	 provides	 a	 robust	 and	 scalable	 tool	 to	 infer	 cellular	
trajectories	from	snapshot	data	in	high-dimensional	single-cell	expression	profiles.	
	
Software	availability	
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Online Methods 

Details	of	the	diffusion	pseudotime	analysis	
 
Overview	of	algorithmic	steps	in	the	diffusion	pseudotime	analysis.	 

0. Initialization	using	the	following	user-provided	parameters:	
a. A	data	matrix	of	dimension	number	of	cells	times	number	of	genes.	
b. The	index	or	indices	of	one	or	several	root	cells.	
c. Diffusion	maps	options	“classic”	with	a	single	parameter	kernel	width	or	

“locally	scaled”	with	a	single	parameter	number	of	nearest	neighbors	that	we	



use	for	adjusting	a	local	kernel	width	for	each	cell.	
1. Computation	of	the	transition	matrix	𝑻.	
2. Computation	of	the	accumulated	transition	matrix	𝑴	and	of	diffusion	pseudotime	

with	respect	to	the	specified	root	cells.	
3. Iterative	assignment	of	cells	to	branches.	
4. Identification	of	metastable	states.	

	
Definition	 of	 diffusion	 pseudotime.	 At	 the	 core	 of	 diffusion	 pseudotime	 is	 a	 transition	
matrix	 𝑻 	that	 approximates	 the	 dynamic	 transitions	 of	 cells	 through	 stages	 of	 the	
differentiation	process.	 This	 transition	matrix	 is	 computed	using	 a	 nearest	 neighbor	 graph	
whose	edge	weights	have	a	Gaussian	distribution	with	respect	to	Euclidian	distance	in	gene	
expression	space:	transition	probabilities	correspond	to	edge	weights.	The	eigenvectors	of	𝑻	
are	known	as	diffusion	components11	and	have	been	used	 in	diffusion	maps	 for	 visualizing	
single	cell	RNA-seq	data12,18.	While	using	only	few	diffusion	components	yields	interpretable	
visualizations	 and	 amounts	 to	 a	 common	 dimensionality	 reduction	 method,	 important	
information	 may	 be	 lost	 by	 removing	 the	 remaining	 components.	 Consequently,	 DPT	 is	
based	on	the	full	rank	𝑻	rather	than	a	low	rank	approximation,	i.e.	we	do	not	use	diffusion	
maps	as	a	dimensionality	reduction	method	but	as	a	method	for	representing	and	organizing	
the	single-cell	data.	
	
We	 define	 diffusion	 pseudotime	 dpt(x,y),	 our	 novel	 distance	 measure,	 for	 two	 cells	 with	
index	x	and	y	as		

dpt(𝑥,𝑦) =  𝑴 𝑥, . −𝑴 𝑦, . ,    𝑴 = 𝑻! .          (1)
!

!!!

 	

Here,	 … 	denotes	 the	𝐿!	norm.	 Instead	 of	 the	 probability	(𝑻!)!"	for	 a	 random	walk	 of	
fixed	 length11	 t	 from	x	 to	y,	 in	Eq.	 (1),	we	compute	 the	accumulated	 transition	probability	
(𝑴)!"	of	visiting	y	when	starting	from	x	over	random	walks	of	all	lengths	t	by	summing	over	
t.	This	is	done	using	the	modified	transition	matrix	𝑻,	which	is	defined	as	𝑻	without	the	first	
eigenspace.	The	first	eigenspace	can	be	associated	with	the	steady	state,	and	the	transition	
matrix	𝑻	can	be	thought	of	encoding	information	about	how	this	steady	state	is	approached.	
We	note	 that	 the	main	contribution	 to	𝑴	is	 the	pseudoinverse	 of	𝑻		 (it’s	 inverse	being	not	
defined),	which	is	a	standard	object	in	the	theory	of	Markov	Processes,	but	also	in	spectral	
clustering19.	It	is	a	strong	computational	advantage	that	𝑴	can	be	obtained	in	closed	form;	it	
reads	

M = 𝑻! = (𝐼 − 𝑻)!! − 𝐼   where     𝑻 =  T - ψ!ψ!! ,   
!

!!!

	

where	ψ! 	denotes	 the	 eigenvector	 corresponding	 to	 the	 largest	 eigenvalue	 of	𝑻 	(see 
Supplementary	 Note	 1).	 Fixing	 a	 known	 root	 cell	 x	 as	 start	 of	 the	 biological	 process	 of	
interest,	the	diffusion	pseudotime	of	cell	y,	with	respect	to	the	root	cell	x,	is	dpt(x,y).		

We	 point	 out	 that	 diffusion	 pseudotime	 is	 a	 measure	 of	 distance	 over	 random	 walks	 of	
arbitrary	length,	and	can	hence	be	considered	``scale-free”	in	contrast	to	diffusion	distance,	
as	 introduced	by	Coifman	et	al.11.	 Characterizations	of	distance	using	diffusion	maps	have	
mostly	relied	on	diffusion	distance,	which	involves	as	scale	parameter	t,	the	fixed	length	of	
random	walks	that	occur	in	the	definition	of	diffusion	distance.	In	DPT,	by	summing	over	all	



random	walk	lengths,	t	 is	no	longer	present.	DPT	therefore	has	contributions	from	random	
walks	of	 all	 scales.	 Further	mathematical	 details	 on	 the	definition	of	diffusion	pseudotime	
are	given	in	Supplementary	Note	1.	

Effects	of	sampling	density.	We	point	out	that	the	diffusion	pseudotime	ordering	of	cells	is	
(almost)	 independent	 of	 cell	 sampling	 density.	 Coifman	 et	 al.11	 show	 that	 this	 can	 be	
achieved	by	normalizing	the	transition	matrix	T 	with	a	proxy	for	sampling	density.	The	result	
is	 that	 one	 can	 sample	more	 (or	 less)	 cells	 in	 a	 specific	 region	 of	 the	 data	manifold,	 but	
distances	 on	 the	manifold,	 such	 as	 DPT	 or	 diffusion	 distance,	 do	 not	 change.	We	 provide	
numerical	 evidence	 for	 this	 in	 Supplementary	 Note	 7.5.3	 for	 simulated	 data.	 For	 this,	 we	
compute	DPT	using	 the	original	 simulated	data	 (related	 to	 a	 toggle	 switch),	 for	which	 the	
sampling	density	versus	DPT	is	strongly	inhomogeneous,	i.e.	cells	accumulate	at	certain	DPT	
intervals	(Supplementary	Fig.	N13	A).	We	then	subsample	from	this	original	data	set	with	the	
constraint	of	enforcing	an	 (almost)	homogeneous	sampling	density	of	cells	with	respect	 to	
DPT.	As	shown	in	Supplementary	Figure	N13	A,	the	sampling	density	of	this	subsampled	data	
differs	 strongly	 from	 the	 original	 data,	 whereas	 the	 DPT	 ordering,	 as	 shown	 in	
Supplementary	Figure	N13	B,	stays	almost	the	same.			

Metastable	 states.	Although	diffusion	pseudotime	ordering	 is	 (almost)	 independent	under	
sampling	 density	 changes,	 our	 definition	 of	 metastable	 states	 is	 not.	 As	 explained	 in	 the	
main	 text,	 our	 definition	 of	 metastable	 states	 is	 based	 on	 the	 assumption	 that	 sampling	
densities	reflect	how	fast	cells	are	passing	through	differentiation	states.	Hence,	factors	such	
as	cell	creation	and	death	processes	(e.g.	when	having	a	transit-amplifying	set	of	cells)	or	a	
subjective	choice	of	cells	that	are	screened	in	the	experiment,	influence	our	identification	of	
metastable	states.	

Branching	points.	Branching	points	are	determined	by	comparing	two	independent	diffusion	
pseudotime	orderings	over	cells,	one	starting	at	the	root	cell	x	and	the	other	at	its	maximally	
distant	cell	y.		The	two	sequences	of	pseudotimes	are	anticorrelated	until	the	two	orderings	
merge	 in	 a	 new	 branch,	 where	 they	 become	 correlated.	 This	 criterion	 robustly	 identifies	
branching	points	 as	we	 illustrate	 for	 simulation	data	 for	which	 the	 ground	 truth	 is	 known	
(Supplementary	 Fig.	 N9).	 The	 procedure	 is	 sketched	 in	 Figure	 1a(3).	 One	 can	 repeat	 the	
procedure	of	branch	finding	iteratively	in	each	of	the	found	branches	to	identify	further	(i.e.	
more	 than	 three)	 sub-branches	 in	 the	data.	Further	details	are	provided	 in	Supplementary	
Note	1.		

Comparison	of	diffusion	pseudotime	to	previous	algorithms	
	
Numerical	experiments.	When	applying	Monocle5	and	Wishbone7	to	the	qPCR	data	from	our	
first	example,	both	fail	to	identify	the	endothelial	branch	(Supplementary	Fig.	N10).	Similarly,	
for	the	scRNA-seq	data	from	our	second	example,	neither	of	the	two	methods	identifies	the	
important	split	between	epiblast	and	primitive	endoderm	(Supplementary	Fig.	N11).	Also	for	
our	 third	 example,	 without	 extensive	 preprocessing,	 only	 DPT	 identifies	 the	 dominant	
branching	 (Supplementary	 Fig.	 N12).	 	 A	 detailed	 simulation	 study	 on	 robustness	 (Fig.	 2e,	
Supplementary	Note	5)	and	comparisons	on	artificial	data	 (Supplementary	Fig.	N9)	 further	
confirm	the	superior	robustness	of	DPT.	Finally,	even	when	previous	algorithms	are	able	to	
obtain	 qualitatively	 meaningful	 results,	 we	 observe	 DPT	 to	 yield	 a	 higher	 quantitative	
accuracy	 of	 e.g.	 the	 ESC	 differentiation	 process	 in	 the	 scRNA-seq	 data	 from	 our	 second	



example	 in	 the	main	 text:	while	 the	Kendall	 rank	correlation	of	 the	DPT	ordering	with	 the	
true	time	ordering	is	𝜏	=	0.77±10-3,	the	one	of	Wanderlust/Wishbone	is	0.70±10-3,	see	Figure	
2f.	Kendall	rank	correlation	𝜏	is	defined	as:	
	

𝜏 = 2 (𝑚 −𝑚!)/𝑛(𝑛 − 1) 
where	m	 is	the	number	of	concordant	pair	of	cells	(between	pseudotime	and	experimental	
day),	m’	is	the	number	of	disconcordant	pair	of	cells	and	n	is	the	total	number	of	cells.	
	
Methodological	 comparison.	 The	 high	 robustness	 of	DPT	 can	 theoretically	 be	 understood	
from	 its	 random-walk	 based	 formulation.	 In	 comparison	 to	Monocle,	which	 is	 based	 on	 a	
minimum	spanning	tree	approach,	DPT’s	average	over	random	walks	[eq.	(1)]	is	significantly	
more	robust	(Fig.	2e).	Furthermore,	DPT	is	scalable	to	high	cell	numbers	whereas	Monocle	is	
not.	 In	 comparison	 to	 Wanderlust	 and	 Wishbone,	 which	 rely	 on	 an	 approximate	 and	
computationally	 costly	 sampling	 of	 shortest	 paths	 on	 graphs,	 DPT’s	 average	 over	 random	
walks	 [eq.	 (1)]	 is	 exact	 and	 computationally	 cheap.	 Regarding	 in	 particular	 the	 recently	
published	Wishbone:	Although	Wishbone	–	 in	 contrast	 to	Wanderlust	 –	 is	 able	 to	 identify	
branching	 events,	 it	 does	 this	 using	 a	 number	 of	 preprocessing	 steps	 and	 independent	
algorithms	 (preprocessing	by	dimension	 reduction,	manual	 selection	of	components	 in	 the	
dimension	 reduction).	 Furthermore,	 its	 pseudotime	 distance	 is	 based	 on	 a	 shortest-path	
distance	between	so-called	`way-point`	cells,	which	in	the	presence	of	branching,	has	to	be	
computed	in	a	rather	complicated,	iterative	way	and	then	does	not	constitute	a	good	proxy	
for	 geodesic	 distance	 any	more.	 By	 contrast,	DPT	 consists	 in	 a	 single	 clean	definition	 of	 a	
pseudotime	 measure	 and	 a	 simple	 algorithm	 for	 its	 computation.	 We	 believe	 that	 this	
fundamental	difference	in	method	design	is	responsible	for	the	practical	advantages	of	DPT	
over	Wishbone,	as	discussed	in	Supplementary	Note	7.	
			

Data	analysis	and	experiments	
 
Detecting	 transcriptional	 changes.	 To	 identify	 the	 succession	of	 switch-like	 transcriptional	
changes	revealed	by	the	pseudotemporal	order	in	qPCR	data,	we	computed	an	approximate	
derivative	 of	 the	 smoothed	 gene	 expression	 level	 along	 branch	 1.	 A	 switch-like	 change	 is	
defined	as	the	maximum	in	the	derivative	(details	in	Supplementary	Note	2.2).	
 
Differential	 expression	 analysis.	 We	 employed	 a	 generalized	 linear	 model	 that	 allows	 to	
quantify	 the	proportion	of	 cells	 expressing	 a	 certain	 gene	 as	well	 as	 the	mean	expression	
level,	a	modified	Hurdle	model16.	Briefly,	the	model	has	two	parts:	A	discrete	part	to	decide	
whether	a	gene	 is	expressed	and	a	continuous	part	using	a	normal	distribution	to	quantify	
expression	of	a	gene.		Then,	a	likelihood	ratio	test	is	used	to	identify	differentially	expressed	
genes	(details	in	Supplementary	Notes	2.3	and	3.4	and	Finak	et	al16).		
 
First	 example:	 early	 blood	development	data	 (ESC	qPCR).	We	analyzed	a	single-cell	qPCR	
dataset	 (normalized	 version	 with	 3934	 cells,	 42	 genes)	 focusing	 on	 early	 blood	
development13.	For	each	gene,	the	limit	of	detection	(LOD)	was	the	average	Ct	value	for	the	
last	dilution	at	which	all	six	replicates	had	positive	amplification.	The	overall	LOD	of	25	for	
the	gene	set	was	the	median	Ct	value	across	all	genes.	Raw	Ct	values	and	normalized	data	
can	be	found	in	supplemental	table	7	of	Moignard	et	al13.	Gene	expression	was	subtracted	
from	the	limit	of	detection	and	normalized	on	a	cell-wise	basis	to	the	mean	expression	of	the	



four	 housekeeping	 genes	 (Eif2b1,	Mrpl19,	Polr2a	 and	Ubc)	 in	 each	 cell.	 Cells	 that	 did	 not	
express	all	four	housekeeping	genes	were	excluded	from	subsequent	analysis,	as	were	cells	
for	which	the	mean	of	the	four	housekeepers	was	±3	s.d.	from	the	mean	of	all	cells.	A	dCt	
value	of	−14	was	then	assigned	where	a	gene	was	not	detected.	85–90%	of	sorted	cells	were	
retained	for	further	analysis.	Gata2	did	not	amplify	correctly	and	HoxB3	was	not	expressed	
in	any	cells,	so	these	factors	have	been	excluded	from	the	analysis.		The	analyses	were	done	
on	the	dCt	values	for	all	transcription	factors	and	marker	genes,	but	not	housekeeping	genes.	
For	more	details,	see	Supplementary	Note	2		
 
Second	 example:	 InDrop	 differentiation	 data.	We	analyzed	a	 single-cell	RNA-seq	data	 set	
using	 the	 inDrop	protocol	 from	Klein	et	 al9.	Here,	 single	 cells	 along	with	a	 set	of	uniquely	
barcoded	 primers	 were	 captured	 in	 tiny	 droplets	 and	 sequenced.	 The	 capabilities	 of	 this	
technique	 were	 demonstrated	 using	 an	 undirected	 differentiation	 process	 of	 mouse	
embryonic	 stem	 cells	 upon	 leukemia	 inhibitory	 factor	 (LIF)	 withdrawal.	 The	 data	 set	 is	
publicly	available	under	the	GEO	accession	number	GSE65525.	Count	data	were	normalized	
by	 library	size	and	 log10	 transformed	 (see	Supplementary	Note	3.1).	We	corrected	 for	cell-
cycle	and	batch	effects	using	scLVM20	on	2047	highly	variable	genes	(see	supplemental	table	
3	 in	 Klein	 et	 al9).	 Hierarchical	 clustering	 was	 performed	 in	 R	 (http://www.r-project.org/)	
using	 the	 hclust	 package	 on	 quantile-normalized	 data	 (Supplementary	 Note	 3.2)	 and	
displayed	with	ComplexHeatmap	package,	where	the	distance	was	defined	as	1	–	correlation	
between	all	samples	(Supplementary	Note	3.3).	In	addition,	we	performed	a	rank	sums	test	
on	 the	 first	 side	 branch	 that	 identified	 apoptotic	 genes	 as	 being	 significantly	 differently	
expressed	 as	 compared	 to	 the	 initial	 pluripotent	 and	 the	 late	 epiblast-like	 cells	
(Supplementary	Note	3.4).	For	more	details,	see	Supplementary	Note	3.	
	

Relation	of	pseudotime	in	snapshot	data	to	actual	time	
	
In	contrast	to	measurements	in	actual	time,	e.g.	from	time-lapse	microscopy	measurements,	
high-throughput	snapshot	experiments	only	encode	the	progression	stage	of	development,	
but	not	 the	stochastic	 trajectories	of	single	cells.	We	measure	this	progression	stage	using	
the	 geodesic	 distance	 on	 the	 data	 manifold	 and	 refer	 to	 it	 as	 ‘universal	 time’.	 Here,	 the	
assumption	 is	 that	 the	 data	 manifold	 is	 representative	 for	 the	 deterministic	 program	
underlying	 stochastic	 cellular	 processes.	 For	 time-lapse	 data,	 universal	 time	 can	 be	
constructed	by	estimating	the	velocity	𝑣(𝑡)	tangential	to	the	manifold	(C)	from	each	single-
cell	trajectory.	Universal	time,	i.e.	the	geodesic	distance	

𝑠 𝑡 =  𝑑𝑠
!: ! ! ,! !

=  𝑑𝑡!
!

!
 𝒗 𝑡! ≈ 𝑑𝑡!

!

!

1
𝜌 𝑡! 	

then	quantifies	 the	arc	 length	along	 the	manifold,	where	𝜌 𝑡 	denotes	 the	 local	density	of	
samples	on	a	single	cell	trajectory	(see	Supplementary	Note.	6).	Pseudotimes	are	proxies	for	
universal	time	(Supplementary	Figs.	N6-N8).	Our	proposed	DPT	approximates	universal	time	
better	 than	 other	 pseudotime	 schemes	 as	 it	 does	 not	 involve	 dimension	 reduction,	 and	
better	than	diffusion	distance11	as	it	accounts	for	random	walks	on	all	length	scales.	
	
	
	
	



 

Supplementary Figure 1 

metastable states of mouse early blood development qPCR data 

a) Diffusion map plot illustrating four metastable states along pseudotemporal ordering. 
Lower right: Precursor state. Left: Tip branch 1. Upper right: Decision state (light gray) 
and tip branch 2 (dark gray). b) Histogram plot of the cell density along the branches. 
Blue bars: branch 1, black bars: branch 2. Both branches share the precursor branch up to 
the decision state (gray bars).  
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Supplementary Figure 2 

Differential expression analysis using MAST on mESC inDrop data 

Log-fold change (lfc) analysis of the DPT inferred ‘decision’ group vs. all other groups 
(a,c,e) and head fold cells vs. primitive streak and 4SG- cells (d, e). The displayed genes 
were filtered for an lfc > 1 and a Bonferroni-adjusted p-value< 0.01. Plots are ordered by 
absolute lfc between the states. a) Decision area (red) vs. Precursor area (blue), b) Head 
fold (red) vs. Primitive streak (blue), c) Decision area (red) vs. branch 2 end point (blue), 
d) Head fold (red) vs. 4SG negative cells (blue), e) Decision area (red) vs. branch 1 end 
point (blue). 
 



 

Supplementary Figure 3 

Influence of cell-cycle correction on data clustering and GO enrichment 

a,b) The total count of transcripts from 2047 heterogeneous genes per day. a) log-
normalized counts before cell-cycle correction. b) log-normalized counts after cell-cycle 
correction. c) Fit the CV2-mean relation according to Brennecke et al [11] to a pure RNA 
control and d) superimpose these technical genes with endogenous genes. e) Variance 
decomposition according to the identified latent variables. f) Detailed variance 
decomposition sorted by technical noise contribution.  
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Supplementary Figure 4 

Expression profiles of highly variable genes before and after cell-cycle correction 
and pseudotime ordering of mESC inDrop data 

Heatmap displaying the expression profiles of 2047 highly variable genes before a) and 
after cell-cycle correction and pseudotime ordering (b,c), time courses of gene expression 
along batch (d) and pseudotime (e,f), GO enrichment analysis of the clusters in (a,c). The 
colored top bar (a-c) indicates the time after LIF withdrawal (dark blue: day 0, light blue: 
day 2, yellow: day 4, red: day 7). a) Gene expression with strong day-to-day variability. 
b) Cell-cycle corrected gene expression and additional quantile normalization. c) Cell-
cycle corrected gene expression and additional Z-score normalization. Pseudotemporal 
ordering is indicated by mixed colors in the top annotation bar. In the time courses, the 
respective genes are indicated in grey, the black curve is the smoothed mean. d) log-
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transformed gene expression counts. e) Cell cycle correction, log transformed gene 
expression counts, quantile normalization (cf. Fig. 2d in main text). f) As in E), with Z-
score normalization. All clusters share the same temporal behavior. The green cluster GO 
terms are not shown. For each cluster, five representative GO terms are displayed. g) GO 
terms before cell-cycle correction, h) after cell-cycle correction and Z-score 
normalization. i) Distribution of cells along pseudotime labeled by time after LIF 
withdrawal.  



 

Supplementary Figure 5 

p-values of Wilcoxon rank sum test applied to the first population that branches off 
the main branch in mESC inDrop data 

Shown are the 20 apoptosis-related genes (GO:0006915) among the 108 genes identified 
by Wilcoxon rank sum test. The test compares cells from the early state population (see 
text) with cells from the first population that branches off the main branch.  
 

	



Supplementary Notes for:

Di↵usion pseudotime robustly reconstructs lineage branching

Laleh Haghverdi, Maren Büttner, F. Alexander Wolf, Florian Buettner, Fabian J. Theis

Supplementary Note 1: DPT formulation

1.1 Locally scaled transition matrix (and di↵usion map)

Some of us proposed di↵usion maps as a visualization and dimensionality reduction method for single-
cell data in Ref. [1]. For the present work, we developed the approach further, introducing a more
robust version of di↵usion maps. We refer to the original version of [1] as “classic” and to the new
version as “locally scaled”. The improved “locally scaled” version of di↵usion maps is not a necessary
basis for the construction of di↵usion pseudotime, which can be used with the “classic” version as well.
Nevertheless we recommend using the improved version. In the following, we provide a self-contained
presentation of di↵usion maps, and note di↵erences between the “classic” and the “locally scaled”
version. The major change amounts to using a local Gaussian kernel width for each cell, estimated as
the cell’s distance to its th nearest neighbor, instead of a fixed global Gaussian kernel width.

To motivate this major change, it is worth noting that in gene expression space, Euclidean distance
is not necessarily a useful quantification of similarity between cells. In some parts of gene expression
space even very small Euclidean distances might imply a large biological dissimilarity while in some
other parts large Euclidean distance is merely an artifact of human designed measurements. In many
cases viewing the data in a di↵erent scale (e.g. using a log transformation, arcsinh transformation)
is helpful, still a log (or arcsinh) transformation is often not adequate. Instead, we assume that cell
adjacency relations are a better measure of biological similarity at least when a su�ciently large sample
of single cells is considered. Adjusting the kernel width for each cell to the cell’s distance to its th
nearest neighbor can be intuitively thought of accounting for each cell’s “accessible space”.

In our previous work [1], we used a globally fixed kernel width and suggested a method for choosing
it. This global kernel width selection method can be useful for mono-scale data. However, di↵erentiation
in general can have several branching events with several scales, possibly including both densely and
sparsely sampled branches. A locally adjusted kernel width as we present here is able to resolve such
data better.

In Ref. [1] we suggested an interpretation of the Gaussian kernel in terms of interfering wave
functions. In other words, the Gaussian kernel can be decomposed into its multiplicand wave functions.
This interpretation turns out to be useful when the di↵usion wave function varies (because of varying
noise models) at the position of each cell. Concretely, we assume the Gaussian kernel width (�x) is
di↵erent for each cell x, and given by the cell’s distance to its th nearest neighbor. The Gaussian
wave function associated with cell x reads

Yx(x0) =

✓
2

⇡�2
x

◆1/4

exp

✓
� ||x0 � x||2

�2
x

◆
. (1)

1



The interference of two cells at x and x0 allows to define a locally-scalled kernel K, which reads

K(x,y) =

1Z

�1

Yx(x0)Yy(x0)dx0 =

✓
2�x�y

�2
x + �2

y

◆1/2

exp

✓
� ||x � y||2

2(�2
x + �2

y)

◆
. (2)

We proceed by normalizing K with a proxy for the sampling density of cells Z(x) at position x [2], to
obtain a matrix W

Wxy =
K(x,y)

Z(x)Z(y)
(3)

Z(x) =
X

y2⌦
K(x,y) (4)

Using the “row normalization”

Z̃(x) =
X

y2⌦
W (x,y), (5)

one can define a (right-stochastic) transition matrix T asym
xy as

T asym
xy =

1

Z̃(x)
Wxy. (6)

Here, rows sum to one and T asym
xy can be interpreted as the probability of transitioning from x to y.

The right eigenvectors of T asym are referred to as di↵usion components, and taken together, they
constitute a di↵usion map [2]. As described in [1] for the case of single-cell data, the lowest eigenvectors
(those associated with the largest eigenvalues) provide a low dimensional map of the original data
manifold that is suitable for visualization.

The original di↵usion map publication [2], but also literature on spectral clustering [3], pointed out
that there exists a matrix T sym that has the same eigenvalues as T asym and whose eigenvectors relate
in a simple way to T asym: � is an eigenvalue of T asym with eigenvector u if and only if � is an eigenvalue
of T sym with right eigenvector w with elements wx = Z̃(x)

1
2 ux. T sym is defined as follows

T sym
xy = Z̃(x)�1/2WxyZ̃(y)�1/2. (7)

Whereas the eigenvectors of T asym are asymmetrical (left and right eigenvectors di↵er), the eigenvectors
of T sym are symmetric (left and right eigenvectors are equal).

For the present work, we choose to use T sym
xy together with its eigenvectors as a basis for all further

analysis instead of the “traditional” di↵usion components (the right eigenvectors of T asym). With slight
abuse of notation, we use the term “di↵usion components” also for the eigenvectors of T sym

xy , and refer
to T sym

xy as the “transition matrix”, usually dropping the superscript sym, when there is no danger of
confusion.

We note that regarding interpretation of results, it is not of importance whether the symmetric
T sym
xy or the asymmetric T asym version is used (this is known in the literature, see e.g. [3]). There is

though a simplification when interpreting T sym
xy : all one learns about data using di↵usion maps is about

the geometry of the manifold and not about directions on the manifold. It therefore seems unnatural to
have asymmetric (directed) transition probabilities, i.e. px!y 6= px y, as in the asymmetric transition
matrix T asym. Also, using the symmetric version provides some computational advantages in the eigen
decomposition.



1.2 Di↵usion pseudotime

The t ’th power of the transition matrix T represents a random walk of length t on the data graph.
The transition matrix enables us to simulate the time propagation of a wave function (or probability)
that has been localized to some specific region of the graph (e.g. a wave function that resides on the
pluripotent cells only) at time zero.

The time evolution of a probability density f(t) 2 Rn is described by the graph Laplacian matrix
L = I � T as follows:

f(t) = f(t � 1) + f(t � 1)(�L) (8)

or in terms of T :

f(t) = f(t � 1)T = f(0)T t. (9)

To account for the asynchrony of di↵erentiating cells present in snapshot data, one may study the
term

P1
t=1 f(t) which provides the (time independent) “path integral” for reaching each cell from f(0):

1X

t=1

f(t) = f(0)

1X

t=1

T t (10)

The su�cient constraint for the convergence of the sum above is that all eigenvalues of T t are smaller
than one. However, a stationary state of f exists for t ! 1 which means that T has an eigenvalue equal
to 1. The corresponding eigenvector equals the cells density  0(x) = Z̃(x). The equal to one eigenvalue
implies that the sum in equation (10) diverges. As already mentioned, the stationary state contains
information only about the cells’ sampling density and not about the consecutive states of temporal
evolution (i.e. no pseudotime information). Thus, we can reduce the stationary component of T and
perform the sum in equation (10). Subtracting the stationary component (eigenvalue 1 contribution)
amounts to the same standard calculation as done when using the pseudoinverse of the transition matrix
in the study of Markov processes or spectral clustering (see e.g. Sec. 6.2 of [3]). We call the new matrix
M :

M =
1X

t=1

(T �  0 
T
0 )t (11)

= (I � (T �  0 
T
0 ))�1 � I, (12)

which shares the same eigenvectors with T (except for  0):

M(x, z) =

1X

t=1

�
T (x, z) �  0(x) T

0 (z)
�t

=

1X

t=1

n�1X

i=1

�t
i i(x) T

i (z)

=

n�1X

i=1

�i

1 � �i
 i(x) T

i (z). (13)

If f(0) is chosen localized at cell x (i.e. if f(0) = �(x)), f(0)M will be a row of M which we present
by M(x, .) . Moreover, we consider M(x, .) as the feature representation for cell x to define the di↵usion



pseudotime distance measure dpt(x, y) as follows:

dpt2(x, y) = ||M(x, .) � M(y, .)||2 (14)

=
X

z

(M(x, z) � M(y, z))2

=

n�1X

i=1

✓
�i

1 � �i

◆2

( i(x) �  i(y))2 (15)

The measure dpt is a (weighted L2 norm) distance metric. Due to the favorable properties of
di↵usion maps, it is robust to noise and yet does not utilize low-dimensional approximations usually
applied for visualization. This robustness allows to apply di↵usion pseudotime also in settings, in which
Euclidean distances in the original RG gene expression space are too much a↵ected by noise.

The di↵usion pseudotime of a cell x with respect to a single defined root cell r is:

dpt(r, x) (16)

We are also able to define di↵usion pseudotime with respect to more than one root cell. This is useful
when a root belongs to a population (metastable state) of cells with large variance in their expression
state. We then assign a di↵usion pseudotime to the cells as follows:

||f(0)M � XM ||, (17)

where f(0) is a vector equal to one on all root cells and zero everywhere else, and X being a vector
equal to one on cell x and zero everywhere else.

The idea of developing a graph-based distance measure that includes contributions from all length
scales of random walks (e.g. average first passage time [4], average commute time) for data clustering
has been studied before [2, 5]. In practical comparisons, we found those measures to be inferior to
DPT. The average first passage time is not a metric and its symmetrized form, the average commute
time, does not provide information about the geometry of the graph, but only about the node densities
as shown by von Luxburg et al. in [6].

1.3 Branch assignment

As a robust and biologically relevant (in the context of cell development) metric on the data manifold,
DPT can be used to identify the cells at the tip of the branches of data using the triangle inequality.
This is illustrated in Supplementary Figure N1. However, using the triangle inequality for scattered
manifolds as obtained from single-cell snapshot data requires setting a threshold for the uncertainty of
distances. For a robust automatic branch identification algorithm we would like to avoid setting such a
threshold. Thus we use an alternative method based on correlation versus anti-correlation of distances
on the manifold (Fig. 1a of the main text).

The detailed procedure is as follows. Let us consider a manifold with only three branches. Picking
a random cell r0 we identify the first cell at a tip r1 which maximizes the dpt distance to r0. We
then identify the second cell at another tip r2 that maximizes dpt(r1, r2). For any cell residing on
the (direct) connecting path between r1 and r2, the triangle inequality holds at its lower bound, i.e.
dpt(r1, x) + dpt(x, r2) is equal to (or only slightly higher than) dpt(r1, r2). It is only for cells residing
on the third branch that dpt(r1, x) + dpt(x, r2) becomes significantly bigger than dpt(r1, r2). Thus the



Supplementary Figure N1: A) Triangle inequality in Euclidean space. For any point on the green line
dr1 + dr2 is a constant. For any point o↵ the green line dr1 + dr2 is larger than that constant. B)
Triangle inequality on a manifold. For any point on the green line dr1 + dr2 is almost a constant, leading
to anti-correlation between dr1 and dr2 on the green line and correlation of dr1 and dr2 on any of the red
branches.

third tip cell r3 can be identified as the cell maximizing the sum of distances to r1 and r2. In brief:

r1 = arg max
x

dpt(r0, x) (18)

r2 = arg max
x

dpt(r1, x) (19)

r3 = arg max
x

⇣
dpt(r1, x) + dpt(x, r2)

⌘
(20)

Now we can perform a pseudotime ordering where the initial probability f(0) is chosen zero everywhere
except at the tip of a branch (either r1, r2 or r3). The ordering on every two branches will correlate with
each other only on the third branch and anti-correlate on the two branches themselves (see Fig. 1a(3)
in the main text). We use this property to find a cuto↵ x for each branch. More precisely, to separate
branch 1, we first do three independent orderings O1, O2, O3 with assigning r1, r2 and r3 as the
root of ordering correspondingly. Then, based on Kendall-tau correlations we build a new measure of
concordance between the O2 and O3 orderings from s1 until x and their anti-concordance for the rest
of cells:

K2,3(x) = Kendall.tau(O2(r1 : x), O3(r1 : x))

� Kendall.tau(O2(x + 1 : end), O3(x + 1 : end). (21)

Finally, we find the cuto↵ x such that

xO1 = arg max
x

⇣
K2,3(x) � K2,3(x � 1)

⌘
. (22)

Such finite di↵erence optimization choice is to avoid influence of densities on where the cuto↵ should
be. Note that we used this formulation to enhance clarity. The implementation to compute K2,3(x)

uses a more e�cient, recursive form: K2,3(x) = K2,3(x) + �K2,3(x) and xO1 = arg maxx

⇣
�K2,3(x)

⌘
.

After this procedure there usually remains set of cells cannot be assigned to a single branch. We
refer to these cells as undecided cells or as cells in the decisions state. See, for example the group of
cells marked in light grey in Supplementary Fig. 1a. Once the three major branches in data have
been found as described above, we can repeat the same procedure in each of the three branches to find
further sub-branches.



Supplementary Note 2: Mouse early blood development qPCR data

In the main text around Fig. 1, we discuss a DPT analysis of single-cell qPCR data set focusing on
early blood development [7]. This supplementary note provides further details of the discussion in the
main text. The data is publicly available in GEO with accession number GSE61470.

2.1 Pre-processing

We followed the normalization procedure suggested in Ref. [7]. Normalization was done by subtraction
of gene expression from the limit of detection and normalization on a cell-wise basis to the mean
expression of the four housekeeping genes (Eif2b1, Mrpl19, Polr2a and Ubc) in each cell. Cells that
did not express all four housekeeping genes were excluded from subsequent analysis, as were cells for
which the mean of the four housekeepers was ±3 s.d. from the mean of all cells. A dCt value of �14
was then assigned where a gene was not detected.

Pseudotime ordering allows to stress the succession of di↵erent transcription factors in the qPCR
data set. For this purpose, we computed the derivative of the expression along branch 1 and detected
the most significant changes. In particular, we used the smoothed version of the data: a sliding window
on the gene expression of 50 adjacent cells along the respective branch, where non-detected expression
values were modeled with a Gaussian distribution with mean -14 and variance 3 (cf. Fig. 1d in the main
text, a non-smoothed version is displayed in Supplementary Fig. N2). Then, we computed an adjusted
Z-Score of the expression value with cut-o↵ variance of 3 (in order to prevent largely non-detected
genes to increase their noise-level, we used this cut-o↵ in concordance to the noise introduced during
smoothing). In addition, the derivative was approximated by a linear regression model over 500 values,
largely reducing false positive peaks from noise (see Supplementary Fig. N3).



Supplementary Figure N2: The non-smoothed version of Fig. 1d in the main text. The colored top bar
indicates the embryonic stage of origin for each cell (blue: PS, green: NP, orange: HF, red: 4SG+, purple:
4SG-). The top histogram bar indicates the cell density (high values correspond to a metastable state, low
values correspond to transitions).



Supplementary Figure N3: Determination of switch-like transitions along the pseudotemporal ordering.
The first derivative of the pseudotime series is approximately determined by a linear regression coe�cient on
a sliding window of size 500 along the pseudotime index of the smoothed gene expression. The smoothing
is crucial to reduce noise-induced changes of the derivative. Only transitions above the threshold of 0.0028
were considered. A selection of first derivatives is displayed. Notably, there are sharp on- and o↵-switches
(Kdr, Sox17) and weak or slow transitions (Notch on switching and Etv6 expression).



2.2 Detecting transcriptional changes

Transcriptomic data sets at the single-cell level are usually accompanied by non-negligible levels of
noise. Moreover, the heterogeneity of cell populations shown in bimodal expression patterns needs to
be addressed. We employed a two-part, generalized linear model that allows to quantify the proportion
of cells expressing a certain gene as well as the mean expression level, a modified Hurdle model [8].
Briefly, let Yig the gene expression level of gene g in cell i. Then, an indicator variable Zig determines,
whether gene g is expressed in cell i and the expression level of gene g given it is expressed, is determined
by a normal distribution:

logit (P(Zig = 1)) = Xi�
D
g

P(Yig = y|Zig = 1) = N
�
Xi�

C
g ,�2

g

�

We have two regression components, the discrete D and the continuous C component.
In order to compute a likelihood-ratio on two di↵erent populations, [8] developed a combined log-fold
change defined as follows. For each gene g, let u(x) the expected value of the continuous component,
as u(x) = hC, xi, and let v(x) = (1 + exp(�hD, xi))�1 the expected value of the discrete component.
The log-fold change from population p1 to population p2 is then defined as

lfc(p1, p2) = u(x|x 2 p2) · v(x|x 2 p2) � u(x|x 2 p1) · v(x|x 2 p1).

2.3 Di↵erential gene expression analysis

We employed the following analysis strategy. First, we introduced metastable states along the pseu-
dotemporal order of the cells (see Supplementary Fig.1), where highly similar cells have approximately
the same distance to the root cell. We separated three distinct states in branch 1 and two states in
branch 2 by an appropriate threshold. The decision state is defined by the branch assignment method
and is a site of cell accumulation. We highlighted and labeled metastable states in di↵erent grey shades
(Supplementary Fig. 1).

Having defined these areas of interest, we fit a modified hurdle model to the gene expression data,
calculated the log-fold change of the decision state to all other states (Supplementary Fig. 2) and used
a likelihood-ratio test statistic to compute the significance level.

Furthermore, we repeated the di↵erential gene expression analysis by the cell types. We compared
the gene expression of head fold cells vs. primitive streak cells and 4SG negative cells, respectively. The
comparison of head fold and primitive streak is supposed to correspond to the comparison of precursor
and decision state. MAST detected 29 di↵erentially expressed genes (cf. Supplementary Table 1) and
most of these genes showed bimodal expression, Cdh1 has even three levels (cf. Supplementary Fig.
2). The log fold-change of the detected genes has the same sign except for Tbx20 and the absolute
values are almost always lower in the cell type comparison than in the metastable state comparison.
Comparing the results from the test decision state vs. terminal branch 2 and head fold vs. 4SG- cells
gives a more contradictory picture. The di↵erential analysis of head fold cells and 4SG negative cells
detected Cdh5 as a marker of the endothelial lineage but did not find other markers as Itga2b, Mecom or
Etv2 that were found in the metastable state setting (decision state vs. branch 2) (cf. Supplementary
Fig. 2 and Supplementary Table 2). Both sets of di↵erentially expressed genes share only Cdh5, Myb
and Sfpi1. The sign in log fold-change is only consistent in Myb, whereas Cdh5 and Sfpi1 expression
is higher in terminal branch 2 than in the decision state (positive lfc) and lower in 4SG- cells than in
head fold cells (negative lfc).



Supplementary Note 3: Mouse embryonic stem cells inDrop data

In the main text around Fig. 2, we discuss a DPT analysis of single-cell RNA-seq data set using the
inDrop protocol [9]. This supplementary Note provides further details of the discussion in the main
text. In the experiment, single cells along with a set of uniquely barcoded primers were captured in
tiny droplets and sequenced. The capabilities of this technique were demonstrated using an undirected
di↵erentiation process of mouse embryonic stem cells upon leukemia inhibitory factor (LIF) withdrawal.
The data set is available under the GEO accession number GSE65525.

3.1 Pre-processing

There are various sources of variation in single-cell RNA-seq data, beginning with the tiny amounts
of RNA molecules to detect to capturing e�ciency and amplification bias. The authors in this data
set applied both unique molecular identifiers (UMIs) and technical genes to determine a set of 2047
genes with cell-to-cell variance above the technical noise level and normalized by the total amount of
transcripts:

m̂ = m · E(M)

M
, (23)

where M =
P

i mi is the total amount of UMI-filtered reads mi per cell and E(M) is the average of
totals over all cells (cf. [9], supplement). We concentrated our analysis on the heterogeneous genes only.
A biological source of variance in single-cell transcriptomics is the influence of the cell cycle genes. In
particular, di↵erentiating cells are very actively dividing. Recently, [10] introduced the scLVM approach
to detect the estimate and correct for hidden biological e↵ects as the cell cycle. The method is also
capable to reduce batch e↵ects (see Supplementary Fig. 3). We used the scLVM method to account
for both technical and cell-cycle induced noise (see Supplementary Fig. 3).
First, we fit the noise model according to Brennecke et al [11] to a pure RNA control sample provided
in the data set to estimate the technical noise of the protocol (Supplementary Fig. 3). For cell-cycle
correction, we used the log10(m̂ + 1) expression values of the 2044 highly variable genes in 2717 cells
measured at 0, 2, 4 and 7 days after LIF withdrawal and corrected for cell-cycle genes.

3.2 Clustering of genes

To determine the similarity among genes, we computed the gene-to-gene correlation and define 1� cor
as a similarity measure. Next, we performed a hierarchical clustering on this similarity measure and
highlighted four clusters (cf. Supplementary Fig. 4). We used three di↵erent types of normalization to
compare the data. First, we have the log10(m̂ + 1) normalization we used for the cell-cycle correction.
Unfortunately, we observed a very high variance in gene expression after the correction and decided to
regularize the cell-cycle corrected data.

First, we used a quantile normalization for the expression yig as follows: We compute the 0.02- and
0.98-percentiles (pg,0.02, pg,0.98) for each gene g and calculate

ỹig =
yig � pg,0.02

pg,0.98 � pg,0.02
(24)

Then, all expression values within the [p0.02, p0.98]-interval are normalized to the [0, 1]-interval and
outliers are found outside this interval.

Second, we applied a Z-Score-normalization with zero mean and unit variance for the expression
yig. Both normalizations regularize the cell-cycle corrected gene expression. Though, the quantile
normalization is more robust to outliers and alleviates their detection. First, batch and cell cycle
correction decreased the day-to-day variability of the samples and by pseudotemporal ordering, the



di↵erentiation process was resolved in greater detail. We are able to spot a single di↵erentiation
path in this data set as well as di↵erent subpopulations (cf. Supplementary Figs. 3 and 4). The
di↵usion pseudotime embedding resolves the heterogeneity of the measurement days (top annotation
in Supplementary Fig.4 A-C and I). As we consider pseudotime as a measure of di↵erentiation in this
case, small pseudotimes correspond to a low degree of di↵erentiation and a high degree of pluripotency,
respectively. We observe an increasing degree of heterogeneity with time passed since LIF withdrawal
and as reported in [9], we observe large variability at day 7 ranging from pluripotent cells to strongly
di↵erentiating cells. A detailed interpretation regarding gene expression patterns is conducted upon
gene clusters.

3.3 GO enrichment analysis

To assess the reasonability of the hierarchical clustering, we performed a GO enrichment analysis using
Genomatix software suite (www.genomatix.de) before and after cell-cycle correction (Supplementary
Fig. 4). For illustration, we picked five GO terms for each cluster. Clustering of the non-cell-cycle
corrected data revealed strong di↵erences compared to the GO enrichment after cell-cycle correction.
Indeed, the GO terms of the Z-score and quantile normalized data are very similar in all clusters.
To demonstrate the di↵erences arising with cell-cycle and batch correction, we compared GO terms
given in the purple cluster (Supplementary Fig. 4). The p-value of GO:0008152 (metabolic process) is
1.37 · 10�52 indicating a strong metabolic signature. The other displayed terms range among the top
400 GO terms in this list where we also have key factors of pluripotency promoting endodermal cell fate
specification (GO:0001714) (Pou5f1, Sox2, Nanog) with a p-value 3.5 · 10�4. However, in the yellow
cluster is also a strong metabolic signature (p-value 4.08 · 10�18), but deviates from the terms in the
cell-cycle corrected data as we do not find GO enrichment for cell migration (GO:0016477) or regulation
of cell motility (GO:2000145). Hence, in order to recover cellular events with GO enrichment, we need
to consider a robust data normalization.

3.4 Di↵erential gene expression analysis

We found several branches corresponding to subpopulations of di↵erentiating ES cells. We found a
first population branching o↵ mainly consisting of day 2 cells and at the late state another split into
epiblast-like and primitive endoderm-like cells. To test which genes are di↵erentially expressed in the
first side branch, we performed rank sums tests of 250 cells from the early state cells, the side branch
cells and the epiblast-like cells, respectively (see Fig. 2b of the main text). We only considered those
genes that have approximately the same expression level in the early state and epiblast-like state cells
and a significantly di↵erent level in the side branch cells (three tests between the three groups, p-values
Bonferroni adjusted, Supplementary Fig. 5 shows the p-value for test between the early state cells and
the side branch cells). Considering p-values < 0.01, we identified 108 genes with a strong variation
along the pseudotemporal order which were relevant in apoptosis (GO:0006915) and single-organism
developmental process (GO:0044767).

Supplementary Note 4: Mouse myeloid progenitors MARS-Seq data

In addition to the data sets discussed in the main text, we here perform a DPT analysis for the data of
Paul et al. [12], who combined index FACS sorting and transcriptomic profiling of single-cells to assess
heterogeneity in myeloid progenitors. Data sets are publicly available in GEO with accession numbers
GSE72857, GSE72858 and GSE72859.



4.1 Pre-processing and clustering

We focused on sorted c-Kit+ Sca1� lineage (Lin)� bone marrow cells, a data set of 2730 single cells
with 3461 informative genes. The selection of genes and batch-correction is described in detail in the
supplement of [12]. DPT was performed on the log10-transformed data (adding pseudocount of 1).

Paul et al performed an elaborate clustering approach to identify 19 distinct progenitor classes with
di↵erent degrees of di↵erentiation. Roughly, cluster 1 to 6 represent the erythroid fate, clusters 7 to
10 correspond to the common myeloid progenitor (CMP), cluster 11 reflects the dendritic cell fate,
clusters 12 to 18 exhibit a granulocyte-macrophage progenitor (GMP) fate. Cluster 19 is a lymphoid
outlier class with 31 cells. In our analysis, we pick up the distribution of cells into branches and their
association with the previously defined clusters.

For visualizing expression profiles, we normalized the count data through dividing by the 0.98-
percentile of each gene and converted the result to the log-scale (adding pseudocount of 0.01), similarly
to [12]. Then, a sliding window mean of 20 adjacent data points was used to account for the large
number of displayed cells.

4.2 Data analysis

DPT identifies seven di↵erent, clear branches with a start cell in one of the CMP clusters (Supple-
mentary Fig. N4A). DPT was run twice to find the branches (further iterations would only reveal
noise, i.e. branches with negligible cell numbers). In Supplementary Fig. N4B, we show that two major
branches correspond to the most common lineages with 41.8 % of cells (branch 2, erythroid lineage,
marked in red) and 48.7 % of cells (branch 3, GMP fate, marked in light green). Most common myeloid
progenitors (CMP) distribute in branch 1 and branch 4 with 1.9% and 5.6 % of cells and reflect the
group of undecided cells (in Supplementary Fig. N4B, each column is associated with a branch, and
shows the fractions of cells in di↵erent clusters). Branch 5 (28 cells) coincides with cluster 11 and is
well separated from the other branches.

Transcriptomic profiling of single cells resolves the heterogeneity of myeloid progenitor cells in
contrast to classical FACS gating (Supplementary Fig. N4C). Cells assigned to branches 1 and 4
spread largely in CD34 expression. Using hierarchical clustering of 1�correlation of gene expression
with Ward’s distance, we identified four major groups in the informative gene set (Supplementary Fig.
N4D), for which we performed a gene set enrichment analysis (GSEA, www.genomatix.de). The yellow
set contains a number of lowly expressed genes with slightly higher levels in branches 1 and 4. Genes
of this group are associated with immune response (e.g. Gab2, Klrk1, Rap1b) as well as regulation
of developmental processes (e.g. Apoe, Pbx1, Serpina3f ). Also Gata2 has the highest expression
level in branch 1 and 4. The gene expression of Gata2 is preceding Gata1 in erythroid development
(Supplementary Fig. C). We conclude, that branch 1 and 4 consist of progenitors for both the GMP
and erythroid fate, mainly in concordance with the clustering results of Paul et al (Supplementary Figs.
N4D top bar and N5A-B).

In the major branches 2 and 3 we observe a continuous increase in metabolic processes characteristic
for immune system development (highlighted by green side bar in Supplementary Fig. N4D. For
example, Arpc2, Bst2, Calr, Sec61a1 ) are substantially lower expressed in branch 1 and 4 than in
branch 2 or 3. Genes corresponding to erythroid cell fate condense in the purple set (e.g. Gata1,
Hba-a2, Car1/2, Gfi1b) whereas granulocyte-monocyte specific genes agglomerate in the orange set
(e.g. Mpo, Gfi1, Elane, Runx1, Etv6 ).

DPT allows us to draw several conclusions. First, DPT identifies multiple branches without exten-
sive pre-processing. Specifically, we find the outlying groups of dendritic cells and natural killer cells.
Their presence in the data does not perturb the branching results - manual removal from the input data
set does not change the DPT distances. Also, branching complements the concept of classification as
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Supplementary Figure N4: A) Di↵usion map plot of myeloid progenitors. Branches and DPT trajectories
are highlighted. B) Clusters identified in [12] and their distribution into branches identified by DPT given
as percentages. Branch 1 is the initial branch, while branch 2 and 3 comprise the erythroid (marked red in
the left bar) and GMP cell fate (marked light green in the left bar), respectively. Branch 4 resembles branch
1. Branches 5, 6 and 7 consist of clusters 11 and 19 which where identified as dendritic cell and natural
killer like cells [12]. DPT recognized these as loosely related to myeloid progenitor cells. The CMP cells are
marked in yellow in the left bar. C) FACS-measured FcgR and CD34 protein expression levels for all cells
grouped by branch. Clusters 1 and 4 distribute between GMP-like and erythroid-like populations. D) Gene
expression of 3451 informative genes along branches 1 to 4. Genes are sorted via hierarchical clustering.
Four groups of genes (side bar) distinguish roughly stem cell genes (yellow side bar), metabolic processes
in bone marrow cells (green side bar), GMP cell fate regulators (orange side bar), erythroid cell fate genes
(purple side bar).



presented by Paul et al.. With DPT, we find a set of cells being “undecided” (branch 1 and 4), whereas
all cells on branch 2 and 3 (erythroid or GMP fate) are more likely to develop into the respective fate.

Second, branches do not correspond to a single cell type, but to a set of distinct cells in devel-
opmental progression. For both erythroid and granulocyte-monocyte development, we find a single
continuous di↵erentiation process by exploiting the transcriptional profiles from this particular snap-
shot. Clustering of cells does not necessarily lead to groups of homogeneous cells (Supplementary Figs.
N5A-B). Paul et al proposed a consecutive pattern of clusters 1 - 7 on the erythroid branch, but the
cells mix strongly in DPT. On the other hand, GMP fated cells (clusters 12-19) are summarized in
a single branch implying a single process of di↵erentiation instead of a split-up into distinct clusters.
The main evidence for this is that we clearly observe upregulation of lineage specific, but not cell type
specific gene sets.

Third, upon using a pseudotime analysis, we observe sequential upregulation of genes (e.g. purple
cluster in Supplementary Fig. N5C), which is a promising indicator for regulatory events. As illus-
tration, Klf1, Zfpm1 and Gata1 are essential for the development of erythrocytes and they increase
successively on the erythroid branch. Lateron, the protein heterodimer Gata1-Zfpm1 represses Klf1
expression, but the sequential increase starting with Klf1 could imply a negative feedback loop. In this
sense, cell ordering by DPT provides a basis to suggest gene interactions.
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Supplementary Figure N5: A,B) Concordance of cluster labels on branch 3 (GMP fate) and branch 2
(erythroid fate). C) Transcriptional expression profiles of key genes along branches 1 to 4. Genes are sorted
by hierarchical clustering. Three main gene sets (side bar) are identified and show erythroid marker genes
(purple side bar), GMP lineage marker genes (orange side bar) and stem cell marker genes (yellow side bar).



Supplementary Note 5: Simulation study of robustness

We performed pseudotime ordering of 100 bootstrap sets for each data set with all previous algorithms:
DPT, Monocle [13] and Wanderlust/Wishbone [14, 15]. Because Monocle fails to run for large numbers
of cells, we used a smaller bootstrap sample size (700 cells).

After running each algorithm on all bootstrap sets, we calculated Kendall-tau correlation of two
pseudotime ordering runs on the intersection (i.e. common cells in two bootstrap sets) of each pair
of bootstrap sets. This resulted in a 100 by 100 (lower triangular) matrix for each method that we
call self-concordance. We then calculated the mean µi and variance �2

i of the elements across the self-
concordance matrix for method i. A 2-sided t-test was performed on the self-concordances to specify the
significance of di↵erence in robustness of the Monocle and Wanderlust/Wishbone orderings compared
to the di↵usion pseudotime (DPT) ordering:

t =

r
m2

2m
· |µ1 � µ2|

s
(25)

where m denotes the number of bootstrap runs with each method (100) and the index i labels the
method (i = 1 for DPT, i = 2 for Monocle or Wanderlust/Wishbone). The weighted variance s is
computed as

s =

s
(m � 1)�2

1 + (m � 1)�2
2

2m � 2
, (26)

where 2m equals the degrees of freedom (df). The p-values were then computed using the tcdf function
in Matlab as p = 2 · (1 � tcdf(t, df)).

Supplementary Note 6: Actual time, universal time, pseudotime

Cell di↵erentiation is a largely asynchronous process. Even if we consider a single-fated lineage, due to
the stochastic nature of the system, a heterogeneous population of cells coexists at any given time. Al-
though each single cell takes a di↵erent trajectory in actual time (due to the stochasticity in the di↵eren-
tial equation), all these trajectories lie on a common manifold C in the gene expression space (C ⇢ RG),
where G denotes the number of genes. The manifold C (if one dimensional) can be parametrized by
the arc length s along C.

Let us study a single cell trajectory along the manifold. For this, we can assign a velocity v(t)
to each time point t that is approximately tangent to the manifold C (Supplementary Fig. N6).
If we consider an equidistant temporal sampling of the single cell trajectory, the tangent velocity is
inversely proportional to the density ⇢(t) of the cell states on the trajectory at that time point, that is
|v(t)| = 1/⇢(t). In other words, the more the time points of the single cell trajectory happen to be in
a region of RG (black circle in Supplementary Fig. N6B), the slower the single cell has passed through
that region. Because v(t) is tangent on C we can write

ds = |v(t)|dt =
1

⇢(t)
dt. (27)

Integrating ds, starting at the root cell, along C up to actual time t yields the arc length, which we
refer to as universal time

s(t) =

Z

C:[s(0),s(t)]
ds =

Z t

0
|v(t0)|dt0 =

Z t

0

1

⇢(t0)
dt0. (28)



This assigns a universal time s(t) to every actual time single cell trajectory as measured in time-lapse
microscopy. However, for snapshot data it is often di�cult to learn the original manifold C and obtain
universal time.

In the context of snapshot data, the common practice is to first map the data to a new space,
where noise is diminished and thereby the manifold becomes more pronounced. Then in general one
can define pseudotime as the distance (arc length) to the root cell on the mapped manifold (call it C 0).
Such notion of pseudotime as an arc length has also previously been used in [16, 17, 18] and [14]. In
the present work, the mapping is from RG to Rn�1, where n is the number of cells, and distances on C 0

are characterized by a new metric we term “di↵usion pseudotime”.
Supplementary Figure N7 illustrates the three concepts (actual time, universal time and pseudotime)

and how they are related to each other. Thus, we established a unified framework which can be used
to bring time-lapse microscopy data and single-cell snapshot expression data together and make them
comparable (e.g. the data from [19]). The connection of universal time with pseudotime as established
here is only valid if cells from di↵erent developmental stages are present in a snapshot sample. However,
we do not make any assumption of stationary sampling (as e.g. used in [18]). This is especially helpful
in the context of single-cell snapshot data where sampling densities are usually far from any stationary
state and influenced by cell division rates, noise, and the design of the experiment.

As a demonstration for asynchrony among single cells (even though from a single lineage), we
simulated 100 cells (with a gene regulatory network of 6 genes [1]), starting from the same state at time
zero (Supplementary Fig. N8A). Supplementary Fig. N8B shows that, when plotting gene expression
versus universal time, all expression trajectories of these asynchronous single cells are brought to a
unique expression curve, which we refer to as the “universal gene expression trajectory” for that lineage.

Supplementary Figure N8D shows the Wanderlust pseudotime for the toy data and Figures N8E
to G) show di↵usion pseudotime on several mappings C 0 depending on the choice of the used di↵usion
map method and its respective parameter (see caption of Supplementary Fig.N8) .

We mention that distances on manifolds have been discussed in several other publications, but only
for snapshot data, and without realizing the connection to actual time trajectories as measured in
time-lapse microscopy. In Note 7.5.2, we discuss this in detail.



Supplementary Figure N6: A) A single cell trajectory for a toggle switch.The color indicates actual time.
The trajectory is adjacent to a manifold C (dashed line) which we hypothesize is the same for all single cell
trajectories following the same dynamics model. B) For any single cell trajectory with equidistant sampling
of time steps, a velocity v(t) is defined for each time point t that is approximately tangent to the manifold C
and |v(t)| is approximately equal to the diameter of a circle centered at time point t divided by the number
of time points inside the circle. That is |v(t)| is inversely proportional to the density of trajectory points at
t. For each single cell trajectory, we calculate the universal time as

R t
0 |v(t0)|dt0. C) Expression of G1(blue)

and G2(green) for several single cell trajectories versus actual time exhibit large asynchrony between the
single cells because of the stochasticity in the dynamics model. D) The asynchronous trajectories in C fall
on top of each other when plotted against universal time.



Supplementary Figure N7: A) Two (red and green) actual time single cell trajectories in gene expression
space(RG). Each jump on a trajectory happens in an (equidistant) unit of actual time. B) Universal time
is defined as arc length on the data manifold starting from the root. This manifold C ⇢ RG remains the
same for several single cell trajectories, as well as for snapshot samples of single cells. C) Pseudotime (in
general) is defined as arc length on a more pronounced mapped manifold C 0 (with respect to noise). In case
of di↵usion pseudotime this mapping is from RG to R(n�1) where n is the number of sampled cells.



Supplementary Figure N8: A) A toy gene regulatory network with 6 genes. B) Actual time simulation of
expression for the single-fated lineage for which G2 and consecutively G6 win the toggle-switch competitions.
C) Expression time series versus universal time. D) Expression of snapshot sampled data vs. Wanderlust
pseudotime. E) Expression of snapshot sampled data vs. di↵usion pseudotime (locally rescaled di↵usion
map,  = 10). F) Expression of snapshot sampled data vs. Di↵usion pseudotime (classic di↵usion map,
� = 1000). G) Expression of snapshot sampled data vs. Di↵usion pseudotime (locally rescaled di↵usion
map,  = 200).



Supplementary Note 7: Comparison of DPT with previous algo-
rithms

We compared the performance of DPT with Monocle [13] and Wanderlust/Wishbone [14, 15] on several
generic single-cell data sets;

• artifical data

• early blood development qPCR [7], as discussed in Fig. 1 of the main text and Supplementary
Note 2.

• mESC inDrop [9], as discussed in Fig. 2 of the main text and Supplementary Note 3,

• Myeloid progenitors MARS-seq data [12], as discussed in Supplementary Note 4.

We show that DPT finds pseudotime ordering and branching structures across all of the data sets
independent of the data size and the experimental technique used for generating them. The performance
of Monocle and Wanderlust/Wishbone, by contrast, strongly depends on the dataset: both algorithms
yield qualitatively wrong results for the branch detection on all experimental data sets. To assess the
performance of Wishbone, we used the default input parameters as set in the Wishbone package [15],
except for the number of di↵usion map components (“kEigs”) which we set to zero, meaning that all
di↵usion map components are considered, as is the case in DPT. If we set this parameter to another
value, we were not able to obtain meaningful results at all. To assess the performance of Monocle, we
set the “num-path” parameter in the package [13] to the number of branches we expected for each data
set.

7.1 Comparisons on simulated data

For the six dimensional toy model generated by simulation of a stochastic toggle switch with downstream
gene activation as shown in Supplementary Figure N8A, we applied a nonlinear transformation of data
points to increase the complexity of the data. For this, we applied Eq. (29) to each data point component
wise.

y =
1

1 + exp (�x)
(29)

Then a Gaussian random matrix was multiplied with transformed data matrix in order to add noise
and project data into three dimensions.

The branching structure of the resulting data is clearly visible on independent component analysis
(ICA) plots in Supplementary Fig. N9. We further observe that only DPT is able to identify the
branches correctly. DPT also shows the highest concordance of pseudotime ordering to the actual time
ordering of the artificial data. Wishbone finds the pseudotime trajectory relatively well but does not find
the branching correctly. It identifies a branching event rather in the trunk of the data manifold. A root
cell cannot be specified in Monocle which explains the negative Kendall-tau correlation (concordance) of
pseudotime with actual time. Whereas for nonbranching data one could simply reverse the pseudotime
ordering, for branching structures it requires more e↵ort to put Monocle’s order in place. Moreover,
the minimum spanning tree approach used in Monocle produces a shortcut on the left branch which
leads to wrong pseudotime ordering in that region.

7.2 Comparisons on mouse early blood development qPCR data

Figure N10 shows how DPT, Wishbone and Monocle perform on the early blood cells qPCR data set.
Wishbone does not find the correct branching which corresponds to the four somite GFP negative
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Supplementary Figure N9: Comparison for artificial data. Shown are pseudotime ordering (left column)
and branch detection (right column) of previous algorithms visualized using independent component analysis
(ICA) plots. In the left column, the coloring reflects pseudotime values. In the right column, colors correspond
to distinct branches. In contrast to Wishbone and Monocle, DPT additionally identifies undecided cells,
which we mark in dark blue. The Kendall-tau correlation of pseudotime ordering to actual time ordering is
indicated by “K.corr”. Only DPT yields a good agreement of pseudotime and actual time orderings (top left
panel), and detects the branches correctly (top right panel). Wishbone fails to correctly detect the branches
(center right panel), and Monocle fails to recover the true ordering (bottom left panel).



Supplementary Figure N10: Comparison for single-cell qPCR for early hematopoiesis [7]. A) Cells are
sorted according to 5 di↵erent populations [7]: primitive streak (PS), neural plate (NP), head fold (HF),
four somite GFP negative (4SG-), four somite GFP positive (4SG+). B) The 5 populations visualized
using the first two di↵usion components. Note the endothelial branch in the upper right corner of the
panel. C) Comparison of pseudotime ordering (left column) and branch detection (right column) visualized
using the first two di↵usion components. In the left column, the coloring reflects pseudotime values. In
the right column, colors correspond to distinct branches. In contrast to Wishbone and Monocle, DPT
additionally identifies undecided cells, which we mark in dark blue (only very few of them are visible here).
The pseudotime ordering provided by all three methods is similar. But only DPT detects the endothelial
branch, which consists of cells from the 4SG- population (B), whereas Wishbone and Monocle fail to detect
it.

(4SG-) population. Instead it finds a branching a region which has no overlap with 4SG- cells. DPT
and Monocle find this branch in the correct place. To run Monocle on this data set as well, we had to
subsample down to 700 cells.

7.3 Comparisons on mouse embryonic stem cells inDrop data

Comparison for mESC drop-Seq data [9]. We computed the pseudotime of cells by merging the exper-
iments from the four di↵erent days (Supplementary Note 3) for all previous algorithms. Figure N11
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Supplementary Figure N11: Comparison for mESC drop-Seq data [9]. We computed the pseudotime of
cells by merging the experiments from the four di↵erent days (Supplementary Note 3). A) Expression of Krt8
for each single cell visualized using the first two di↵usion components. Krt8 is highly expressed in epithelial
cells. The plot therefore allows to identify the epithelial branch. B) Comparison of pseudotime ordering
(left column) and branch detection (right column) visualized using the first two di↵usion components. In
the left column, the coloring reflects pseudotime values. In the right column, colors correspond to distinct
branches. In contrast to Wishbone and Monocle, DPT additionally identifies undecided cells, which we mark
in dark blue. Pseudotime ordering is similar for all three previous algorithms, although DPT shows a higher
concordance with the actual time labels (also see Fig. 2f in the main text). But only DPT correctly finds
the epithelial branch associated with high expression of Krt8, light brown coloring in the upper right panel.

shows how DPT, Wishbone and Monocle perform on inDrop mESC cells. In N11A high expression of
Krt8 indicates the location of Epithelial cells. While DPT identifies these cells as a branch, Wishbone
and monocle do not find this branch correctly.

7.4 Comparisons on Mouse myeloid progenitors MARS-Seq data

We compared the three methods DPT, Wishbone and Monocle on a Myeloid progenitor cells data set
[12] gathered by the single-cell technique called MARS-seq [20]. For this data set the authors were able
to identify 19 distinct cluster. N12 shows the di↵usion map for this data with CMP (corresponding to



clusters 7 and 8), GMP (clusters 9 to 19) and erythroid (clusters 1 to 6) subpopulations. N12 shows
the 19 clusters on di↵usion maps. We performed DPT and Wishbone analysis on a debatched data
matrix of 2730 cells and 3461 informative genes that the authors provide in [12]. For Monocle however
we randomly subsampled 700 cells because of the algorithm’s cell number limitations. For DPT and
Wishbone we picked a random cell from the CMP population as the root cells. Monocle however does
not allow inputting a root cell as the start point of the pseudotime.

DPT successfully finds the erythroid and GMP branch as well as two more small branches corre-
sponding to clusters 19 and 11 in [12].

Although authors in [15] find the erythroid and GMP branches, we find that they achieve this
by massive preprocessing of data which we were unable to reproduce due to unavailability of their
preprocessing code. Thus the Wishbone result we present here shows Wishbone’s performance on the
whole debatched (2730 cells, 3461 genes) data matrix (the same input for DPT). Wishbone only finds
few cells at the tip of each major branch as assigned to the GMP and erythroid branch.

Monocle performs well on this data set separating the GMP and erythroid as well as three more
branches (states as called in monocle) when number of paths (an input parameter of monocle) is set to
4.

7.5 Methodological comparison of previous algorithms

In this section we discuss the methodical di↵erences of the previous algorithms (DPT, Monocle [13] and
Wanderlust/Wishbone [14, 15]), focussing on several challenges related to single-cell. These theoretical
arguments allow to understand the superior performance of DPT, for which we provided numerical
evidence in the previous section. Supplementary Table N1 provides an overview of the methodological
comparison.

7.5.1 Basic working principle

Here we give a simplified and brief explanation of the Monocle and Wanderlust/Wishbone methods.
Monocle orders cells on the Minimum Spanning Tree built on a few Independent Component Analysis
(ICA) embedding dimensions. Note that ICA is a linear method and cannot capture the non-linearity
of di↵erentiation manifolds present in many experimental data sets. Wishbone is an extended version of
Wanderlust for branch finding. Wishbone performs Wanderlust on a few di↵usion map components and
introduces a new algorithm for finding branches in the data. Wanderlust first builds nearest neighbors
graph on cells. Assuming a nonbranching manifold, Wanderlust allows treating relative distances as a
scalar (referred to as “displacement”), where addition or reduction of the displacements (i.e. orientation
of the 1D manifold with respect to the root cell) is decided by a number of (random) landmarks on
the data. It then averages the displacement of each cell relative to the root cell for a finite number
of sampled paths on the graph. Wishbone’s branch detection is then based on disagreements of the
wanderlust distances of cells to several landmark cells (also termed “way-points”).

7.5.2 Definition of pseudotime

Monocle defines pseudotime as distances on a single path of a minimum spanning tree that is constructed
on an ICA dimension reduced embedding of the data.

If performed on data in the original gene expression space (RG), Wanderlust aims to recover the
geodesic distances from the root cell on the original manifold C ⇢ RG, which would exactly be the
same as universal time (see Supplementary Figs. N7 and N8C in Note 1.1). However, Wanderlust’s
path sampling approach hinders the reliable recovery of such geodesics for more complicated manifold
structures (e.g. sharp turns, branching) and in presence of large noise in the data. Wanderlust, when



Supplementary Figure N12: Comparison for MARS-seq data for myeloid progenitor cells [12]. A) Common
myeloid progenitor (CMP), granulocyte-macrophage progenitor (GMP) and erythroid (ery.) populations with
labels from from Ref. [12] visualized using the first two di↵usion components. B) The 19 clusters identified
in Ref. [12]. C) DPT, Wishbone and Monocle pseudotime orderings (left column) and branch detection
(right column). In the left column, the coloring reflects pseudotime values. In the right column, colors
correspond to distinct branches. For DPT, we additionally mark undecided cells in light green and root cells
in dark blue. Pseudotime ordering is similarly good for all previous algorithms. But, only DPT finds the
GMP and erythrocyte branches as well as two smaller branches corresponding to clusters 12 and 19 in (B).
Wishbone and Monocle fail to detect the true branch structure.



performed on reduced dimensions as in the case of Wishbone, performs better, though at the cost of
neglecting information in higher dimensions.

DPT uses a path integral approach to account for all possible paths between cells. Di↵usion pseu-
dotime is finally defined as Euclidean distance to the root in a mapped R(n�1) space with �i

1��i
 i, i =

1, ..., n � 1 coordinates, as discussed in Supplementary Note 1.2.

7.5.3 Robustness to noise and subsampling

Monocle’s pseudotime order is based on only one single connecting path in the minimum spanning tree.
This does not consider the possibility of reaching to a state through multiple paths, which is in principle
possible in di↵erentiation systems. Whereas a single path might provide a reasonable pseudotime order
for clean data, as soon as there is more noise in the data, biologically non-relevant short cuts come into
play and biologically relevant information of alternative paths get neglected because the pseudotime
measure based on a single path is not robust to noise.

Wanderlust provides considerable robustness to noise by sampling multiple paths to connect each
cell to the initial cell (rather than choosing only one single path). However the path sampling approach
is dependent on sampling density of several cell subpopulations and the algorithm lacks any correction
for density heterogeneity e↵ects on the paths sampling.

DPT’s path integral (considering all possible paths) approach renders it quite robust to noise. Fur-
thermore in the implementation of the di↵usion map (used by DPT), we correct for density heterogeneity
e↵ects [1].

To demonstrate DPT’s robustness to sampling density, we performed DPT once on the complete
artificial data (see Supplementary Note 7.1). The red curve in Figure N13A shows the nonuniform
original sampling density and presence of metastable states in the original data. We then performed
DPT on a rather uniformly subsampled set from the original data set (blue bars). Figure N13B shows
that the DPT computed from the original data is strongly correlated with DPT computed from the
subsampled data in spite of strongly di↵erent density distributions.

Furthermore we present self concordance of each method’s pseudotime ordering over 100 bootstrap
sets of data as a measure of robustness of performance. DPT generally shows a higher mean and smaller
variance of self concordance across several data sets (see figure 2e in the main text).

7.5.4 Branch finding approach

If a reliable and robust measure of on manifold distance is in hand, to distinguish whether cells lie on a
specific path or lie o↵ the path reduces to a simple triangle inequality question (see Note 1.3). However
for a scattered manifold as we get from single-cell di↵erentiation data, one should set a threshold for
separating the in-road from o↵-road cells. To avoid such selection of threshold and to be able to find
the branches automatically without manual supervision, in DPT we use the correlation versus anti-
correlation relations of dpt distances from the branch tips for branch finding. This can be viewed
as a milder version of the triangle inequality which does not need defining a threshold (see Note 1.3).
Monocle and Wishbone however, in lack of such robust on-manifold distance measure rely on less robust
and more randomly a↵ected (either by data sampling structure or random components in the algorithm
itself) ways of finding a branch which is PQ-tree [21] and disagreements of distances to the landmarks
correspondingly.

7.5.5 Dealing with metastable cell states

There is barely any biological meaning to ordering cells in metastable states. Although in actual time
dynamics there is such an order even in the metastable states for a single cell trajectory, the order in
a metastable state can be shu✏ed in another di↵erentiating single cell’s trajectory. That is, all the
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(Kendal-tau correlation=0.983) in spite of strongly di↵erent density distributions.

states belonging to the same metastable state will have almost the same universal time value. Thus we
suggest that pseudotime should be measured as the distance to the initial cell on a reconstruction of
di↵erentiation manifold. That is no matter how long in actual time a single cell trajectory is trapped in
one of the metastable states, there is almost no progression on neither the original manifold (C ⇢ RG) or
any mapping of it (C 0). Hence one should expect almost the same pseudotime for cells in a metastable
state.

Monocle however provides an absolute order of cells based on the constructed MST, which is less
reliable in metastable states.

For non-branching data, Wanderlust provides a valid pseudotime measured on the manifold by
adding up Euclidean distances of neighboring cells for a sampled path that connect each cell to the
initial cell. Wishbone’s pseudotime correspondence to an on-manifold distance however, relies on how
well it has performed on branch identification level as it refines the pseudotime to its non-branching
version (from Wanderlust) after branch identification. Thus if the process of branch finding goes
successful in Wishbone, one can assure that it is providing proper pseudotime in metastable states as
well.

DPT measures pseudo-time on a mapped manifold such that cells from the same metastable state



are correctly places on the same neighborhood on the manifold and a have a similar distance relative
to the root cell.

7.5.6 Applicability to large cell numbers and run time

Monocle fails to find the MST solution (generates an error message) when applied on a large body of
cells (> 103) that do not show a simple structure in the ICA embedding. This tends to happen more
often if a very large set of genes are used for ordering. ICA runs in computation time of order Gn and
MST’s run time scales with the number of edges, thus O(n2). Thus the total computation time for
monocle is O(n(G + n)).

With appropriate choice of the tuning parameters Wanderlust preforms well for large cell numbers.
The computational time for finding nearest neighbors is O(log(n)). Thus wanderlust performs in
O(log(n) + n⇥ num.landmarks). Wishbone first calculates the di↵usion map and performs Wanderlust
on its reduced dimensions. Several more steps also integrated in the Wishbone algorithm thus total
performance time is at least O(nk2) + O(log(n) + n ⇥ num.landmarks), k being the number of nearest
neighbors used in di↵usion maps.
The computational time needed for DPT using the complete transition matrix is O(Gn2). However
the transition matrix T is sparse, most entries are close to zero. Therefore constructing the transition
matrix on k nearest neighbours graph is very e�cient, which we provide as an option in the package
to be used with large cell numbers. In the next step, sparse matrix diagonalization of the transition
matrix needs a computation time of O(nk2) . Inversion of the transition matrix is then trivial. Further
steps only require O(nk).

7.5.7 Allowing for multiple root cells

The heterogeneity of di↵erentiating cell populations can also hold for the pluripotent state. Very often
all the pluripotent cells reside on a close neighborhood on the di↵erentiation manifold. In this case
even with a single chosen root cell, the pseudotime measured on the manifold would automatically
account for the metastable state of pluripotency. However one could expect larger variability among
the pluripotent cells or even existence of several sources for pluripotent cells which could consequently
take di↵erent probabilities for paths of development depending on the state of the root cell. DPT
thus provides the possibility of choosing multiple root cells. Neither Monocle or Wishbone provide this
feature.

7.5.8 Data embedding and visualization

Monocle visualizes the ICA embedding of data, which is the same reduced dimension space that mon-
ocle perform pseudotime ordering . Wanderlust does not provide any specific visualization of the
data manifold as the assumption is dealing with one dimensional (i.e. nonbranching) data manifold.
Wishbone handles branching and uses t-SNE for data visualization. However this visualization is not
intrinsically related to the underlying pseudotime measure used in Wishbone which is Wanderlust. DPT
measures pseudotime on a space that shares the same eigenvectors with di↵usion maps except for the
non-informative (zeroth) eigenvector (see Equation 13). Consistently, the non-informative eigenvector
is left out in di↵usion maps embedding as well. Thus di↵usion map embedding provides a consistent
reduced dimension visualization for DPT.
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Supplementary Table N1: Comparison of several single-cell pseudotime ordering algorithms.
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Supplementary Table 1: Di↵erential expression results in precursor vs. decision state and PS vs HF cells

decision state vs. HF vs. PS
precursor state

Gene name lfc padj lfc padj

Cbfa2t3h �9.60 1.78 · 10�146 �4.26 8.50 · 10�61

Cdh1 14.53 5.07 · 10�219 5.15 3.05 · 10�58

Cdh5 �15.63 3.28 · 10�195 �8.10 2.66 · 10�119

Egfl7 �7.47 2.66 · 10�234 �3.19 4.21 · 10�131

Erg �9.77 3.31 · 10�151 �5.66 1.32 · 10�112

Ets1 �9.82 3.95 · 10�178 �3.18 1.12 · 10�57

Ets2 �2.77 5.66 · 10�123 �1.89 3.26 · 10�127

Etv2 �12.21 1.44 · 10�187 �4.81 5.00 · 10�71

Etv6 �5.10 4.33 · 10�133 �2.36 1.12 · 10�126

Fli1 �16.36 4.61 · 10�273 �6.99 6.59 · 10�118

FoxO4† 1.79 2.01 · 10�46 0.60 4.19 · 10�17

Hhex �8.53 4.82 · 10�78 �3.41 1.84 · 10�38

HoxB4 �6.78 1.60 · 10�68 �4.10 5.27 · 10�56

Ikaros �1.95 8.51 · 10�16 �1.40 2.67 · 10�8

Itga2b �5.46 5.85 · 10�62 �4.34 1.07 · 10�70

Kdr �14.78 8.21 · 10�299 �5.29 3.77 · 10�92

Kit �5.97 8.95 · 10�80 �4.08 1.07 · 10�120

Ldb1† �1.52 8.86 · 10�8 �0.39 2.58 · 10�6

Lmo2 �6.46 1.45 · 10�98 �2.39 6.10 · 10�23

Lyl1 �11.43 5.32 · 10�144 �5.42 1.52 · 10�78

Mecom �2.61 1.83 · 10�10 �1.91 5.75 · 10�22

Meis1 �4.91 4.26 · 10�74 �4.05 2.04 · 10�122

Mitf† 1.23 3.20 · 10�3 0.36 1
Myb �2.59 1.15 · 10�13 �1.55 1.19 · 10�7

Notch1 �7.23 3.76 · 10�137 �3.13 1.18 · 10�73

Pecam1 �11.86 4.72 · 10�185 �6.35 8.32 · 10�151

Procr �3.99 3.83 · 10�31 �2.16 2.26 · 10�17

Sfpi1 �3.30 2.53 · 10�34 �2.33 1.59 · 10�20

Sox7 �10.75 1.72 · 10�190 �4.17 1.05 · 10�65

Sox17 �3.09 8.58 · 10�13 �2.63 4.41 · 10�24

Tal1 �13.80 4.73 · 10�194 �5.66 3.90 · 10�76

Tbx20 �4.14 5.58 · 10�44 1.51 7.45 · 10�9

Results of the likelihood-ratio test for the gene expression levels in two di↵erent states (decision state and
precursor state) and cell types (head fold and primitive streak), respectively. We considered a gene expression
significant, if the absolute log fold-change was above 1 and the Bonferroni adjusted p-value was below 0.01.
† indicates genes being significantly di↵erential in two metastable state comparison but not in cell type
comparison.



Supplementary Table 2: Di↵erential expression results in terminal branch 2 vs. decision state and 4SG-
vs HF cells

decision state vs. HF vs. 4SG-
terminal branch 2

Gene name lfc padj lfc padj

Cbfa2t3h⇤ 0.54 0.54 �2.50 4.15 · 10�22

Cdh5 1.36 3.46 · 10�17 �2.66 1.36 · 10�12

Erg 1.43 8.32 · 10�13 �1.92 9.36 · 10�21

Etv2† 2.16 1.19 · 10�17 �0.45 0.76
FoxH1⇤ �0.97 1.23 · 10�5 �2.17 2.97 · 10�117

Gfi1b⇤ 0.28 1 �2.65 2.35 · 10�40

Ikaros⇤ �0.42 1 �4.02 1.99 · 10�87

Itga2b† 2.47 2.69 · 10�12 �1.5 3.36 · 10�13

Mecom † 2.77 2.43 · 10�12 0.77 5.61 · 10�15

Meis1 1.13 7.41 · 10�8 2.40 2.06 · 10�20

Myb �1.53 2.50 · 10�3 �3.29 5.28 · 10�42

Runx1⇤ �0.11 1 �4.20 2.50 · 10�94

Sfpi1 1.75 1.17 · 10�6 �2.65 1.02 · 10�26

Results of the likelihood-ratio test for the gene expression levels in two di↵erent states (decision state and
terminal branch 2) and cell types (head fold and 4SG- cells), respectively. We considered a gene expression
significant, if the absolute log fold-change was above 1 and the Bonferroni adjusted p-value was below 0.01.
† indicates genes being significantly di↵erential in two metastable state comparison but not in cell type
comparison. ⇤ indicates genes being significantly di↵erential in cell type comparison, but not in metastable
state comparison.
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