
TECHNISCHE UNIVERSITÄT MÜNCHEN
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Abstract

The amount of Earth Observation (EO) data is in constant growth due to the pro-
liferation of Earth Observation (EO) missions in space and the continuous evolution
of their instruments. The catalog of EO products is enriched by the high diversity
of the imaging sensors. Along with the imagery data, EO products accommodate
different metadata containing several parameters related to the image, the satellite
and the instrument. In addition, we can also consider as EO information the data
derived from third party systems not directly related with satellite EO products.
An example are the widely spread Geographical Information Systems (GIS), which
store map information that can be used for different purposes during EO image
analysis. In this heterogeneous Big Data scenario, the main challenge is not only
to provide better and more efficient algorithms, but also to design and implement
tools that allow a greater exploitation of the available information.

In line with the challenge, this thesis focuses on the integration, mining and
exploitation of a wide range of EO heterogeneous data in order to efficiently ex-
tract valuable information for a better understanding of EO image content. The
presented Heterogeneous Data Mining (HDM) system prototype overcomes the lim-
itations of previous systems by including multispectral images, Synthetic Aperture
Radar (SAR) images, and digital maps in an accelerated active learning algorithm.
The learning stage of the algorithm is based on naive Bayes Classifiers which make
use of posterior probabilities of a user-defined semantic label given a query image.
This accelerated algorithm opens new ways for knowledge-driven information min-
ing systems to Big Data scenarios. In conjunction with the learning algorithm,
the Heterogeneous Data Mining (HDM) concept also contains a probabilistic search
method based on the distances between the elements being used for the calculation
of the posterior probabilities and image Bag of Words (BoW) in the database.

Additionally, a multilayer system for heterogeneous geospatial data analytics
is introduced. The system manages data from the source and performs several
transformations in order to enable the integration of remote sensing, cartographic
and in-situ data. Specifically, we use as in-situ data the results from the Land
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Use/Cover Area frame Survey (LUCAS). This survey monitors the state and change
dynamics in land use and cover in the European Union. The system is tested in
different scenarios and used for the development of a data mining methodology to
filter and validate land cover changes recorded in multitemporal in-situ surveys.

Our final effort focuses on the visual exploitation of the integrated heterogeneous
EO data. By combining the results obtained from automatic analysis methodologies
with interactive visualization tools, one can navigate and understand the EO data
more efficiently.
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Zusammenfassung

Aufgrund der Zunahme von Erdbeobachtungsmissionen im Weltraum und der
ständigen Weiterentwicklung der zugehörigen Instrumente wächst die Menge an
verfügbaren Erdbeobachtungsdaten ständig. Das Spektrum der Erderkundungspro-
dukte wird dabei durch die groe Vielfalt von bilderzeugenden Sensoren bereichert.
Neben den eigentlichen Bilddaten umfassen die Datenprodukte der Erderkundung
verschiedene Metadaten mit mehreren Parametern bezüglich Aufnahme, Satellit und
Instrument. Darüber hinaus können wir als Informationen der Erdbeobachtung auch
Daten von Drittsystemen betrachten, die nicht direkt zu Erdbeobachtungsproduk-
ten von Satelliten gehören. Ein Beispiel dafür sind die weitverbreiteten Geographis-
chen Informationssysteme (GIS), die Kartierungen aufsammeln, die während der
Analyse von Erdbeobachtungsbildern für verschiedenen Zwecke genutzt werden
können. In diesem heterogenen Big-Data-Umfeld besteht die hauptsächliche Her-
ausforderung nicht nur darin, bessere und effizientere Algorithmen bereitzustellen,
sondern auch Werkzeuge zu entwerfen und zu installieren, die eine breitere Nutzung
der verfügbaren Daten erlauben.

Entsprechend dieser Herausforderung liegt der Schwerpunkt dieser Dissertation
auf der Integration, dem Mining und der Nutzung eines breiten Spektrums von un-
terschiedlichen Erdbeobachtungsdaten, um für ein besseres Verständnis des Inhalts
von Erdbeobachtungsbildern wertvolle Informationen effizient zu extrahieren. Der
hier vorgestellte Systemprototyp für Heterogenes Data-Mining (HDM) überwindet
die Einschränkungen früherer Systeme durch die Integration von multispektralen
Bildern, von Radarbildern mit synthetischer Apertur (SAR) sowie von digitalen
Karten in einem beschleunigten Algorithmus für Aktives Lernen. Die Lern-
phase des Algorithmus beruht auf Naiven Bayes-Klassifikatoren, die A-posteriori-
Wahrscheinlichkeiten eines nutzerdefinierten semantischen Labels nach einer Bild-
abfrage nutzen. Dieser beschleunigte Algorithmus eröffnet neue Optionen von wis-
sensbasierten Information-Mining-Systeme für Big-Data-Szenarien. Zusammen mit
seinem Lern-Algorithmus beinhaltet das HDM-Konzept eine probabilistische Such-
methode, beruhend auf den Abständen zwischen den Elementen, die für die Berech-

v



nung der A-posteriori-Wahr-scheinlichkeiten sowie der Bild-Bags-of-Words in der
Datenbasis benutzt werden.

Zusätzlich führen wir ein Mehrebenen-System zur Analyse von heterogenen
raumbezogenen Geo-Daten ein. Das System verwaltet Daten ab deren Quelle und
führt mehrere Transformationen durch, um die Integration von Fernerkundungs-,
von kartographischen und von In-situ-Daten zu ermöglichen. Insbesondere nutzen
wir als In-situ-Daten die Ergebnisse aus der LUCAS-Untersuchung. Diese Unter-
suchung überprüft den Stand und die änderungsdynamik der Landnutzung und
Landbedeckung in der Europäischen Union. Unser System wurde für verschiede-
nen Szenarien getestet und für die Entwicklung einer Big-Data-Strategie genutzt,
um änderungen der Landbedeckung aus aufgezeichneten multitemporalen In-situ-
Untersuchungen zu identifizieren und zu verifizieren.

Letztlich möchten wir die visuelle Nutzbarmachung von integrierten heterogenen
Erdbeobachtungsdaten erreichen. Durch die Kombination von Ergebnissen aus au-
tomatisierten Analysemethoden mit denen von interaktiven Visualisierungswerkzeu-
gen kann man Erdbeobachtungsdaten effizienter durchsuchen und verstehen.
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1

Introduction

1.1 Motivation

The amount of EO data is constantly increasing. This is due to the growing number
of EO missions in space and their instrument characteristics that have evolved con-
tinuously. In addition, a lot of the currently available EO instruments offer data with
very high spatial resolution. As for imaging sensors, the well-known panchromatic
and multispectral images have been complemented by hyperspectral images and
a wide range of Synthetic Aperture Radar (SAR) images generated with different
techniques such as Polarimetric SAR (PolSAR) or Interferometric SAR (InSAR).
Not only the nature of the imagery should be taken into account. EO products
also comprise metadata providing useful additional information such as satellite or-
bit state vectors, geographical coordinates and data acquisition times. In addition,
the access to very accurate cartographic data has been widely extended due to their
digitalization and posterior publication via Geographical Information Systems (GIS)
[1, 2]. Moreover, with the proliferation of digital photography and related media
it is possible to access diverse in-situ data that can be used for different purposes
during EO image analysis.

In this data diversity context, the research community faces a heterogeneous Big
Data scenario where the main challenges are not only to provide better and more
efficient algorithms, but also to design and implement tools that allow a greater
exploitation of the available information. In line with the challenge, this thesis
focuses on the development of new tools, techniques, algorithms and concepts which
rely on different research topics and disciplines to develop systems capable of quick
extraction of valuable information for a better understanding of EO data.
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1. Introduction

1.2 Goals

The main goal of the thesis is to develop new methods and tools that combine data
acquired from satellites with cartographic and in-situ resources in order to improve
the analysis, understanding and exploitation of the abundant and diverse EO data.
In the pursue of this general objective, it is possible to identify intermediate goals
including:

• The development of an active learning concept which relies on Bayesian prob-
abilities to fuse diverse EO images and maps in a performance environment
suitable for Big Data analysis.

• The definition and implementation of a system architecture capable of handling
the heterogeneity of EO, cartographic, and in-situ data in a seamless way.

• The implementation of visual representations of the information in order to
improve the analysis and understanding of the EO archives.

1.3 Scope

In contemplation of the goals, the scope of this thesis extends to different research
topics, represented in Fig. 1.1. We can wrap the presented work in two general
research topics which are: Data Analytics and System Engineering. The union link
between these disciplines is provided by Image and Data Processing which can be
seen as the keystone of this thesis for two reasons. First, it sets the course for the
System Engineering task. And second, it provides the means for the required data
analysis processes.

Data Analytics comprises a set of processes that filter and model the available
data with the purpose of discovering implicit information not easily identifiable.
This information can then be used to improve the understanding of the data and
support the decision-making. Under the wide umbrella of Data Analytics, this thesis
specifically focuses on the development of Data Mining concepts and methodologies
which depend on Machine Learning techniques to fuse and extract useful informa-
tion from the data. Beforehand, the data requires to be processed in order to obtain
a proper data integration, and useful analysis parameters. In addition, Visual An-
alytics exploit original data along with the results of the data mining processes to
represent the information via interactive visual interfaces.

System Engineering covers all the aspects required to design and implement
successfully a system capable of satisfying the needs of the user. In the context of
this thesis, the requirements are set by the diversity of the data to be integrated,
and by technical constraints, such as, data processing and visualization capabilities.
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1.4. Contributions

System 
Engineering 

Data 
Mining 

Visual 
Analytics 

Data 
Analytics 

Machine 
Learning 

Data 
Integration 

Data 
Fusion 

Image & 
Data 

Processing 

Figure 1.1: Research topics associated with the work presented in this thesis.

1.4 Contributions

The presented work focuses on the integration, analysis, and exploitation of wide
range of heterogeneous data. Specifically, the main contributions of this dissertation
are the following:

• Heterogeneous Data Mining Concept: We present an Heterogeneous
Data Mining (HDM) algorithm which is inspired by the main concept previ-
ously implemented in the Knowledge-driven Information Mining (KIM) system
[3]. The HDM enhances the original KIM system overcoming the limitations
related with the number of feature models used during the learning process.
HDM introduces a faster active learning algorithm modifying the required
statistical independence from the features to the posterior probabilities. The
obtained speed-up factor allows the introduction of new feature models in the
learning stage and the definition of more complex user semantics. The ac-
celeration can also open new ways for knowledge-driven information mining
systems to Big Data scenarios.

• Architecture for Heterogeneous Geospatial Data Analytics: We intro-
duce the architecture and a prototype of a multilayer system for heterogeneous
geospatial data analytics. The system implements a server-client architecture,
which integrates several web technologies. One of the benefits related to the

3



1. Introduction

server-client approach is the simplicity of the client. The server is responsi-
ble for the most complex processing tasks making possible to offer lightweight
clients for different devices. The presented architecture manages the data
from the source. The initial layers read the original data and perform trans-
formations to make viable the data integration. These heterogeneous data are
linked and stored in a geographical database or in a system repository. The
link among the data allows the User Oriented Web Functionality layer to ex-
ploit the database capabilities in order to perform geographical queries over
the stored data. This layer also implements all the communication protocols
to the linked third party services, and the server logic that interacts with the
user via Graphic User Interface (GUI).

• Methodology for Mining in-situ Land Cover Changes: We describe a
data mining methodology to filter and validate land cover change detections
obtained from multitemporal Land Use/Cover Area frame Survey (LUCAS).
Supported by the heterogeneous geospatial data analytics system, the data
mining procedure obtains a clear reduction of the false detection of land cover
changes. These results validate the proposed tools for the assurance of the
in-situ recorded land cover changes.

• Visual Analytics for EO Archives and In-Situ Data: We present sev-
eral interactive data visualizations that help end users to better understand
the stored information in different archives. The data to be visualized is de-
scribed by means of data models which are used for storing EO and in-situ
information. The information provided by the data models is combined to gen-
erate interactive visualizations that make possible to analyze massive amounts
of information in real-time.

1.5 Thesis Overview

The rest of the thesis is divided as follows. Chapter 2 deals with the heterogeneity
of the EO data and presents the state of the art. Chapter 3 introduces the archi-
tecture and a prototype of a multilayer system for heterogeneous geospatial data
analytics. Chapter 4 presents an architecture of a multilayer system for heteroge-
neous geospatial data analytics. Chapter 5 defines a data mining methodology to
filter and validate land cover change detections obtained from multitemporal LU-
CAS in-situ surveys. Chapter 6 shows different data visualizations that summarizes
and help to better understand the content of EO archives. Finally, Chapter 7 sums
up all the contributions presented in this dissertation.

4



2

Heterogeneity in EO Data and
Information Retrieval Systems

This chapter introduces the different types of Earth Observation (EO) data, from
satellite images to in-situ measurements. Moreover, state-of-the-art information
retrieval system are shortly presented, with special focus given to image retrieval
systems in EO.

2.1 Heterogeneity in EO Data

One of the most remarkable properties of remote sensing imagery and EO data in
general is the broad variety of products available that range from ancient carto-
graphic data to modern satellite imagery and in-situ data, see Fig. 2.1. Focusing
in remote sensing data, we can find imagery from two types of sensors: passive and
active. Passive sensors are designed to receive and measure the radiation emitted or
reflected by the observed objects. The intensity of the receive radiation is dependent
of the physical characteristics of the observed object or surface, e.g., temperature or
roughness. On the other hand, active sensors firstly transmit a signal to the object
or area to be observed and then they record the backscattered signals, i.e., signals
reflected back to the emitter.

The rest of this section introduces some of the most relevant remote sensing
imagery data along with cartographic and in-situ data used in the dissertation.

2.1.1 Optical

Optical data are obtained from passive sensors measuring the visible wavelengths of
the spectrum, i.e., the wavelengths visible to the human eye. The visible spectrum
goes from 390 to 700 nm and is represented in optical images by using three differ-
ent channels or bands, Red spectral band (R), Green spectral band (G), and Blue

5



2. Heterogeneity in EO Data and Information Retrieval Systems

Remote
Sensing Maps In‐situ

Data

Earth Observation

Figure 2.1: Representation of the three main EO data heterogeneity sources.

spectral band (B). Each band is recorded by independent sensors and represents the
intensity values of the observed surfaces. The combination of the three bands will
form an optical image. An image of Venice recorded by the satellite WorldView-2
(WV-2) with a 1.84 m spatial resolution is shown in Fig. 2.2.

2.1.2 Panchromatic

A panchromatic image is similar to an optical in the sense that it is generated only
using the visible spectrum. The difference lies in the way it is represented. While
in the optical image the visible spectrum is divided in three to match the human
perception, a panchromatic image takes the visual spectrum as a whole, resulting is a
gray level representation of it. Panchromatic sensors use of a wider wavelength range
in comparison to the smaller range used in optical images. This factor increases the
amount of energy received by the sensor which in consequence will offer a better
spatial resolution. An example of panchromatic image is shown in Fig. 2.3 and
corresponds to the panchromatic sensor of WV-2 with a spatial resolution of 0.46
m at nadir. The image shows the center of Washington D.C. with the presidential
White House at the top-right, the Lincoln memorial at the bottom-left, and the
Washington monument at the bottom-right.

2.1.3 Multispectral

Most of the in orbit satellites do not limit their sensors to panchromatic or R, G
and B bands. On the contrary, the operational multispectral sensors may include a
variety of other visual spectral bands (e.g., yellow or coastal blue) along with bands
covering different parts of the InfraRed (IR) spectrum. We can see the multispectral
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Figure 2.2: WorldView-2 optical image of Venice, Italy.

Figure 2.3: WorldView-2 panchromatic image of Washington D.C, USA.
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Figure 2.1: Concept of hyperspectral imaging. Hyperspectral images can be
represented as a stack of images taken at hundreds narrow adjacent bands over a
wide spectral range. As a consequence each spatial pixel from this image can be
represented as a reflectance spectrum.

in an image (Figure 2.1). Spectroscopy aims at studying interactions between

atoms and molecules, with the electromagnetic spectrum. These interactions

can be either absorption, reflection or transmission and can be represented

as a function of the wavelength.

2.1.1 Reflectance Spectrum

Reflectance is a unit-less ratio defined as the intensity of the reflected light

normalized by the intensity of the incident light (Bachmann, 2007; van der

Meer et al., 2001). A function of reflectance at various wavelengths is called

reflectance spectrum. Opposite to the reflectance spectrum is the transmit-

tance spectrum determined by the amount of light transmitted by the surface

normalized by the intensity of the incident light. Besides the transmitted and

reflected light, some portion is absorbed by a surface. The measure of the

light which has been absorbed with relation to the incident light is known as

absorption. The relation between the transmittance τλ, reflectance Rλ, and

absorption αλ can be written as

τλ +Rλ + αλ = 1. (2.1)

10

Figure 2.4: Hyperspectral cube characterization. A spectral signature of each pixel in the cube can
be represented by using reflectance values in the spectral range. Image courtesy of Jacub Bieniarz.
Firstly published on [4].

sensors as the opposite of panchromatic. While panchromatic sensors record the
total radiation received in each pixel, the multispectral sensor uses spectral filters
to divide the radiation in different bands and record them individually.

2.1.4 Hyperspectral

Hyperspectral follows the principles of the multispectral sensors but it records im-
ages using very narrow wavelength ranges over a wider spectral range. The output
produces a hyperspectral cube, i.e., a stack of hundreds of images from narrow ad-
jacent spectral bands. Subsequently, each spatial pixel of the hypercube image can
be represented by their reflectance values in the spectrum, see Fig 2.4. In other
words, the spectral reflectance plot shows the reflecting radiant energy of a pixel
as a function of the wavelength. Each material has an unique reflectance signature
which can be used in classification processes.

2.1.5 Synthetic Aperture Radar

A Synthetic Aperture Radar (SAR) usually operates in the microwave spectrum.
The use of microwaves allows the sensors to be reasonably independent on the
weather conditions. Moreover, as any active sensor, SAR systems can operate during
day and night. SAR images are obtained transmitting a signal which is backscat-
tered and received with a reduction in the intensity and a displacement in the phase.
SAR sensors benefit from the movement of the platform (i.e. aircraft or satellite)
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Figure 2.5: SAR image obtained by TerraSAR-X satellite over Venice, Italy.

to generate a large synthetic antenna aperture that makes possible to capture high
resolution images with relatively small antennas. In Fig.2.5 an example of amplitude
image generated from TerraSAR-X (TS-X) data is shown.

During the last decades several technologies have been developed for SAR data.
Among them, we can remark Interferometric SAR (InSAR) [5]. Using an interfer-
ometric configuration, i.e., two or more SAR sensors observing the scene through
different viewing geometries, it is possible to retrieve information about the terrain
topography.

2.1.6 Cartographic

The use of cartography goes back to ancient times. Historically cartographic data
have been treated as one of the most important secret documents among the coun-
tries due to their strategic relevance. In more modern times the access to very
accurate cartographic data extended but it was not until the digitalization of carto-
graphic data that the use of maps was tightly integrate in our daily life activities.
We use precise maps and location services in every aspect of our life, from the clas-
sical travel planning to recording our workout paths. Nowadays, it is possible to
access and reuse map information from two main different sources. The first one
comes from official entities like national governments, government agencies, or supra
national organisms. This kind of source is everyday more abundant due to Open
Data and Open Government initiatives. In particular, the INSPIRE directive [6],
promoted by the European Commission (EC) in 2007, established an infrastructure
for spatial information in Europe to support policies or activities which may have an
impact on the environment. The second source is made available by open collabora-
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Figure 2.6: LUCAS in-situ images of a survey point in Germany. The images are composed of one
photo of the exact survey geographical point of the acquisition and four images pointing to the
main cardinal directions.

tive projects like OpenStreetMap [7], where the platform users upload geographical
information every day and worldwide.

2.1.7 LUCAS In-situ Survey

Since 2006, EUROSTAT carries out a Land Use/Cover Area frame Survey (LUCAS)
every three years to monitor the state and change dynamics in land use and cover in
the European Union (EU). The survey comprises on ground observations that can be
divided in three types: 1) micro data of the land cover, land use and environmental
parameters associated to the single surveyed points; 2) in-situ photos of each point
and landscape photos in the four cardinal directions, see Fig. 2.6; and 3) statistical
tables with aggregated results by land cover/use at geographical level. LUCAS
2009 includes 234.561 points visited in-situ by 500 field surveyors on 23 countries,
defining 77 different land cover classes. LUCAS 2012 survey includes 270.389 points
visited in-situ by 594 field surveyors on 27 countries, defining 83 different land cover
classes. In 2015 between March and October EUROSTAT carried out the LUCAS
2015 survey. Surveyors from 28 Member States visited a total of 273.401 points.
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2.2. Information Retrieval Systems

2.2 Information Retrieval Systems

Initial Information Retrieval Systems (IRS) were originally developed for structured
collections as the ones stored in relational databases [8, 9]. Parallel to the growth
of the Internet and its worldwide adoption as main communication medium, the
amount of data and at the same time its variety increased. The available IRS which
provided search and retrieval functions for structured text document collections were
not designed for the new unstructured multimedia data. Thus, different research
fields evolved or were born to develop solutions to classify, index and retrieve un-
structured data. The developed system can be classified by their target data type:

• Text-based Information Retrieval Systems: In the nineties an estimated
90% of digital data was in the form of text documents [10]. Due to the pre-
dominant text quantity in the web, great effort and resources were focused
on Text-based Information Retrieval. The effort put into the development
and improvement of indexing and retrieval algorithms for unstructured text
resulted in the modern Web search engines. One of the most famous and
successful developments is the PageRank algorithm [11].

• Image Information Retrieval Systems: Large image collections require
an effective system for image indexing and retrieval. Image data is composed
of the digital image and the associated descriptive metadata. Therefore, image
retrieval systems follow two different strategies in order to retrieve the visual
documents [12]:

– Based on metadata: Image metadata are divided in: 1) technical in-
formation about the device that captures the image along with date and
location information; 2) annotations describing the content/context of
the image which can be generated either manually, automatically or or
even by a semiautomatic procedure.

– Based on image content: Commonly known as Content-Based Image
Retrieval (CBIR), this approach is based on the statistical and mathe-
matical analysis of the image. The objective of these analysis is to extract
different low level features, e.g. color and textures, in order to compute
the similarities of these features.

• Multimedia Information Retrieval Systems: The Multimedia Informa-
tion Retrieval Systems (MIRS) are the natural evolution of the retrieval sys-
tems in environments where an integration of the newly available data types
will improve the system response and usability. Thus, the initially indepen-
dent retrieval systems converge merging the capabilities to query heteroge-
neous data, such as text, image, spatial data, audio or video [13]. Extensive
surveys of this research area can be find in [14, 15].
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The research work of this thesis is focused on the development of algorithms
and tools to improve the navigation, retrieval and usability of EO image archives.
Consequently, in the following Section 2.3 a more detailed explanation of CBIR is
presented.

2.3 Content-Based Image Retrieval

CBIR as defined in [16] is the union of technologies which aim to help in the man-
agement of image and video digital archives by means of their visual content. Thus,
anything ranging from a simple image similarity function to more complex image
annotation engines can be seen as part of CBIR.

During the early 1990s, the CBIR term was coined in [17] and [18]. In these
years different experiments to retrieve images from a image collection by different
mechanisms based on image features were presented. Nowadays, CBIR community
has increased and expanded to different fields of study. Good examples of these
research fields are multimedia information retrieval, machine learning or computer
vision which share common goals and challenges with CBIR [19].

Initial CBIR systems, summarized in [20, 21, 22], relied mostly in visual similar-
ity. The main types of visual similarity measures were listed in [23]:

• Color Similarity: Humans use color as one of the main features to char-
acterizes objects. In CBIR color was the first choices due to its simplicity
and reliability. Different studies evaluated the color perception and proposed
the use of different color spaces [24, 25, 26]. Red-Green-Blue (RGB) space
is widely used because it simulates the input of the human eye and its per-
formance is good under non changing conditions. A variation of RGB was
presented in [27], where a combination of the RGB channels offered better
retrieval results in images with shadows and brightness changes. Other color
spaces like Munsel [28], the Lab color spaces [29], or Hue-Saturation-Lightness
(HSV) [30] among others have been widely use for their invariant properties
to different changes.

The color histogram has been the most widely used color representation tech-
nique which statistically describes the probability distribution of the color
channels. In [27] the histogram intersection was proposed as metric to measure
the sum of absolute distance between images. The authors of [31] proposed
to use the mean-squared error to measure the similarities among not exactly
identical colors. One common property of the color histograms is their spar-
sity. Sparse histograms have been shown to be more sensitive to noise and the
use of cumulative histograms offer more robust results [32]. More recently, an
evaluation of different color descriptors for object and scene recognition was
presented in [33].
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• Texture Similarity: An image texture is defined by a set of metrics via image
processing which quantifies the perceived texture of an image and offers infor-
mation about its spatial arrangement of color or intensities [34]. Initial image
texture analysis focused on grey level spatial dependencies, i.e., orientation
and distance, extracting meaningful statistic and constructing a co-occurrence
matrix [35, 36]. Other popular texture representation methods rely on the
modeling of the images via stochastic random processes. Remarkable exam-
ples of model based texture features are the Gaussian Markov Random Fields
(GMRF) [37] and the Wold models [38]. In [39] a multiresolution gray scale
rotation invariant method for representing the local image patterns via Local
Binary Pattern (LBP) was presented.

In the beginning of the 90’s Wavelet transform was introduced in the image
retrieval context and became one of the most adopted image texture repre-
sentation in a wide number of studies [40, 41]. In [42, 43] Wavelet transform
was combined with co-occurrence matrix exploiting the statistical and trans-
formation based analysis. Among the Wavelet transforms it is remarkable the
performance of the Gabor filters [44, 45, 46] . A comparison study of several
texture feature extraction methods was presented in [47].

• Shape Similarity: A shape descriptor is defined in [48] as a set of numbers
which aims to quantify and represent a specific shape feature of a given object
in ways that agree with the human perception. There are two main shape rep-
resentation methods: 1) contour-based methods, and 2) region-based methods.
If the shape representation method defines the shape as a whole, it follows a
global representation approach. On the other hand, if the method describes
the shapes by using segments or sections, it follows a structural approach. The
methods based on contour make use only of the boundary information. Global
contour-based methods include simple shape descriptors, such as perimeter, ec-
centricity or major axis orientation, convexity, compactness or elliptic variance
[49, 50]. In the same category we find more complex descriptors like Hausdoff
distance [51], the widely used Fourier descriptors [52], Wavelet descriptors [53],
or elastic matching [54] among others. Some structural region-based methods
are: chain codes [55, 56], polygon decompositions [57, 58], and invariant sig-
natures [59]. The region-based methods describe shapes by using all the pixels
inside the shape boundary rather than just the contour. Some global rep-
resentation methods include the use of shape matrices [60] or grid methods
[61]. Other methodologies rely on the calculation of different orthogonal mo-
ments. A comparison of the existing orthogonal moments can be found in
[62]. In particular, Zernike moments [63] showed very promising results and
were adopted by the MPEG-7 [64] standard as region-based shape descrip-
tors. Generic Fourier Descriptors (GFD) were proposed aiming to deal with
some of the problems related to the Zernike moments, such as computational
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complexity, and some inconsistencies in the radial and circular features [65].
Among structural region-based methods, we highlight the medial axis trans-
form [66] and core [67]. A wide survey on shape representation and description
techniques is presented in [68].

• Spatial Similarity: Spatial information in the image can be used in conjunc-
tion with color or texture descriptors to improve the general retrieval accuracy.
Initial approaches focused in the generation of layouts dividing the images in
sub-blocks [69, 70]. A strategy based on quadtree data structure was pre-
sented in [71]. In [72] color correlograms were proposed for image indexing.
Color correlograms demonstrated a certain tolerance to changes in the viewing
point and zoom. More complex segmentation approaches focus on identifying
meaningful regions or objects to improve the retrieval [73, 74].

We can find prominent examples of CBIR systems using a different combination
of visual similarities. One is IBM’s Query By Image Content (QBIC) system [75, 76],
which was able to retrieve images from the catalogue based on color percentages,
texture and shape. For the shape representation QBIC used circularity, eccentricity,
major axis orientation and algebraic moment. The Virage image search engine
[77, 78] offered an open framework for building a CBIR systems which rely on
primitives, such as global and local color, different shape characterization techniques,
and texture primitives very sensitive to high frequency features which were used to
represent patterns within the image. The VisualSEEk image search engine allowed
joint queries based on color information, region sizes and absolute and relative spatial
locations [79].

By the second half of 90s, along with the World-Wide Web (WWW) blossoming,
the image similarity search was implemented in several web image search engines.
Examples of initial web image search engines are: WebSEEk [80, 81], Webseer [82],
and PicToSeek [83]. With the appearance of new CBIR systems and the develop-
ment of feature-based retrieval methods it became patent that the systems were
not intuitive or user friendly for a non-expert users. This fact would certainly limit
the adoption and usability of the CBIR systems unless a regular user could operate
them in a more natural way. Thus, new research works focused in the development
of new user friendly systems focusing in the use of semantics in the querying process
which would bridge the so called ”semantic gap”.

2.4 Semantic Gap

In [16] the semantic gap is defined as ”the lack of coincidence between the information
that one can extract from the visual data and the interpretation that the same data
has for a user in a given situation”. Fig. 2.7 represents the semantic gap in image
analysis. The computers are able to analyze the digital data in the form of low level
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Figure 2.7: Semantic Gap between low level visual features and higher level semantics understood
by humans.

features, such as color or texture, but human perceives only high level features in
the form of concepts or keywords. The gap between the low level and high level
features manage by humans is the semantic gap.

During the last decades, the research community has considered different ap-
proaches in order to bridge the semantic gap. One of the first approaches was
introduced in the Multimedia Analysis and Retrieval System (MARS) [84] where
they proposed a Query by Keyword (QbK) method which links the low level visual
features with the high level semantic features. The use of the QbK was possible
thanks to an automatically constructed Semantic Index (SI) which contained the
concepts to query the multimedia content. More modern works [85] rely on machine
learning algorithms like Latent Dirichlet Allocation (LDA) [86], Latent Semantic
Indexing (LSI) [87] or probabilistic Latent Semantic Analysis (pLSA) [88]. The use
of association rules has proven a valid tool to bridge the semantic gap in different
domains [89]. Other approaches focus on the exploitation of the image visual con-
tent and the related available metadata. In [90] a methodology to fuse weighted
graphs generated from the analysis of the visual features and the related tags is
presented. One last way to effectively bridge the semantic gap is by including the
user interaction [91].

2.5 User Feedback and Interaction

The user feedback via different interactions is a very important factor refining the
retrieval data offered by CBIR search engines. Application wise, the search engines
can be divided into three main categories according to their functionality and the
role of the user in the querying process. The three main search engine categories are:
Query by Example (QbE), Relevance Feedback (RF), and Active Learning (AL).
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• QbE: In QbE engine the user introduces an image as a query, the system
extracts the visual features and, based on them, returns similar images from
the database ranked by their similarity. Examples of these engines are the pre-
viously mentioned QBIC [75, 76] or more modern systems focused on medical
application like the one presented in [92].

• RF: In contrast, RF systems allow the user to refine a given query by it-
eratively specifying a set of relevant and a set of non-relevant images. A
multimedia application of this type of search engines is IKONA [93].

• AL: AL engine requires interactive user action in order to refine the query
parameters to obtain the desired results. A classical AL scenario contains an
iterative loop composed of three main steps: user interaction, machine learning
and retrieval. The loop starts with the user introducing a query to the system.
The system based on the initial query parameters applies the machine learning
processes and later returns initial results. Back on the user side, it is possible
via user interface to point out positive examples (i.e., satisfactory results) and
negative examples (i.e., results not matching the user requirements). This user
feedback will update the machine learning algorithms which at the same time
will improve the next computed results. If the results are not fully satisfactory,
the user can refine the feedback and resume the loop once again. On the other
hand, if the results are satisfactory, the interaction ends. More information
about AL scenarios and a complete literature survey can be found in [94].

2.6 Image Retrieval in EO

So far the main general state of the art of CBIR has been presented. In this section
we will extend its scope to EO. Thus, the following will describe the most commonly
implemented features and descriptors in the EO field, along the existing systems and
their capabilities.

2.6.1 Colour Composites and Spectral Indexes

The real difference between remote sensing color features and regular multimedia
CBIR comes from the wide range of spectral bands available, see Section 2.1. The
existence of multiple bands offers great flexibility regarding 1) representation of the
images, and 2) generation of derived spectral indexes which can be also seen as new
bands.
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2.6.1.1 Color Composites

Also in the EO context, the RGB color space is widely used because it simulates
the input of the human eye. The human visual system contains three different cone
types that can discriminated three different wavelengths: R around 600-690 nm, G
around 515-600 nm, and B around 450-515 nm. Mixing these three primary colors in
different proportions, it is possible to represent any color in the visible spectrum. In
EO it is a common practice to associate the available spectral bands to the primary
color which results in color composites.

• True Color Composite: This composite is the normal composite produced
when assigning the red band to R, green band to G and blue band to B. Fig.
2.8a shows a true color composite obtained from the Sentinel 2 multispectral
satellite.

• False Color Composite: A false color composite is produced when the visual
bands RGB are substituted by any combination of bands resulting in a dif-
ferent display of colors while comparing to the true color composition. While
any band combination is certainly possible, certain combination schemes have
shown remarkable results in improving the detection of certain objects. The
use of the Near-InfraRed (NIR) is widely extended because of the high re-
flectance of the vegetation to this band. A classical false color composition
is formed substituting RGB visual bands with NIR-R-G, Fig. 2.8b. This
composite shows vegetation in different red tonalities, water can vary from
dark-blue for clear water to cyan in the case of water containing sediments. In
Fig. 2.8c we can see a composite using a Short-Wavelength Infrared (SWIR)
in the band of 2.19µm, the NIR band and the visual G band. This particu-
lar composite is very used in the fire management applications since it makes
possible a clear differentiation between the burned and non burned forested
areas. The composition highlights the fires with a bright red, shows vegeta-
tion in green, with can be particularly bright for healthy vegetation in growing
seasons. Dry vegetation will appear in orange and it can discriminate different
composition soils with several colors. Urban areas like the one in the image
appear in different magenta tonalities. The composite shown in Fig. 2.8d
shows no visible bands that are substituted by two SWIR bands (i.e., 2.19µm
and 1.61µm) and one NIR band. It provides very efficient atmospheric pen-
etration and its main use is in geological studies to discriminate texture and
moisture characteristics of the soil. Another possibility offered by false color
composites is the introduction of spectral indexes, see the following Section
2.6.1.2. The Fig. 2.8e shows the grey scale representation of the Normalized
Difference Vegetation Index (NVDI), while Fig. 2.8f shows a false color com-
posite mixing NIR band, the NVDI and the G band. In there, high density
of trees or vegetation canopy is bright green, yellow areas correspond to less
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dense vegetation, grass is represented with golden yellow, and non-vegetated
areas with dark blue and magenta.

• Natural Color Composite: This composite is used in EO products which
lack one or more of the primary color bands and a true color style representa-
tion is required. Using different combinations of the available spectral bands,
which might not be in the visible spectrum, it is possible to simulate a real
photograph colors, i.e., water in blue, vegetation in green, etc.

There are many possible composite combinations with different outcomes de-
pending the application purpose. In addition, in remote sensing as in general CBIR
applications it is common the use of different colorimetric transforms (e.g., HSV,
Cie Lab or Luv) because of their ability to enhance differentiation between some
classes. Multiple research works have focused on the enhancement of the visualiza-
tion of multiband EO products [95, 96]. A remarkable example is the work presented
in [97] which tries to automatize the selection of optimum spectral features.

2.6.1.2 Spectral Indexes

The availability of bands allow to combine them to generate several spectral indexes
which aim to convert the spectral reflectance into biophysical information. The
following shows some of the most used spectral indexes:

• RVI: The Ratio Vegetation Index (RVI) or Simple Ratio (SR) was firstly
introduced in [98, 99]. Healthy vegetation absorbs most of the visible R spec-
trum falling while reflecting a large portion of the NIR. On the other hand,
unhealthy, dry or sparse vegetation reflects more R spectrum and less NIR.
The RVI is defined as

RV I =
NIR

R
. (2.1)

• NDVI: The Normalized Difference Vegetation Index (NVDI) was presented
in [100, 101] as a transformation of the SR to simplify the computations and
reduce the possible value range which for RVI is [0,∞). NVDI is defined as

NDV I =
NIR−R
NIR +R

(2.2)

where NVDI values are in the range of [-1,1]. Several research works have
proven a direct relationship between the NVDI and the energy absorption of
the plant canopies related to the photosynthetic processes [102] [103]. Thus,
positive values over 0.3 show dense vegetation regions while lower positive
values represent sparse vegetation or bare lands. Water lands present small
negative values while clouds and snow areas have bigger negative values. NVDI
has been used for monitoring the evolution of the vegetation growth [104].
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(a) True Color (b) NIR-R-G

(c) SWIR(2.19µm)-NIR-G (d) SWIR(2.19µm)-SWIR(1.61µm)-NIR

(e) NVDI (f) NIR-NVDI-G

Figure 2.8: Color Composites using different Sentinel 2 multispectral bands.

19



2. Heterogeneity in EO Data and Information Retrieval Systems

• SAVI: The Soil Adjusted Vegetation Index (SAVI) was proposed to minimize
the effect of the soil background [105] affecting the NVDI index. In this way a
soil adjustment factor was introduced, reducing the impact of soil variations,
background, and backscattering. The formula to compute the index is given
below:

SAV I =
NIR−R

NIR +R + Lcba

(1 + Lcba) (2.3)

being Lcba the canopy background adjustment factor which take usually value
0 for high vegetation cover, 0.5 for intermediate vegetation cover, and 1 for
low vegetation cover.

• EVI: The Enhanced Vegetation Index (EVI) introduced in [106] as vegetation
product of the Moderate Resolution Imaging Spectroradiometer (MODIS).
EVI improves the measurement quality of the high biomass regions while min-
imizes the soil and atmosphere influence:

EV I = G
Natm −R

Natm + Caero1R− Caero2B + Lsoil

(1 + Lsoil) (2.4)

where G is a gain factor, R and B are the red and blue bands; Natm the
atmospherically corrected surface reflectances in NIR; Caero1 and Caero2 are
aerosol resistance coefficients; and Lsoil is a soil-adjustment factor similar to the
one defined in SAVI. The coefficients used in the EVI algorithm are, Lsoil = 1,
C1 = 6, C2 = 7.5, and G = 2.5 [107]. Great variety of studies have used EVI
with different purposes from land cover change detection in time series [108]
to Gross Primary Production (GPP) studies [109].

There are also many Atmospherically Resistant Vegetation Indexes (ARVI) [110]
like the Green Atmospherically Resilient Index (GARI), Vegetation Index green
(VIg) or Visible Atmospherically Resistant Index Green (VARIgreen) all described
in [111], or Global Environmental Monitoring Index (GEMI) [112].

A very complete list of vegetation spectral indexes can be find in [113] and many
other thematic spectral indexes can be find in [114].

2.6.2 Texture Features

A great variety of texture features have been introduced along the years for analyz-
ing and classifying EO images. Basic texture models include the use of statistical
moments over regions or windows. Due to the nature of SAR images, many research
works have focused on the use of features from the transform domain. There are
several feature descriptors based on Fourier transform such as, Fractional Fourier
Transform (FrFT) [115, 116] or Short Time Fourier Transform (STFT) [117]. Also
in the frequency domain the Quadrature Mirror Filter (QMF) has been used for EO
image retrieval in [118].
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Wavelet based texture descriptors are common for EO images. In [119] an eval-
uation of GMRF and Gibbs Random Fields (GRF) over TS-X images is presented.

In the following some of the most significant features in the context of this thesis
are presented.

2.6.2.1 Haralick Features

The basis for the Haralick Features (HF) is the Gray Level Co-occurrence Matrix
(GLCM) [35] which is a second-order texture measure, i.e., it considers the spatial
linear relationship between groups of two neighboring pixels in four different direc-
tions. More specifically, GLCM generates matrices for pixels adjacent to each other
horizontally (0◦), vertically (90◦) and for the two possible diagonals (45◦, 135◦).
The co-occurrence matrices C are always square with a size of NGxNG being NG the
number of the gray levels defined in the image. Each element C(i.j) of the matrix
represents the number of times a pixel with value i is adjacent to a pixel with value
j, divided by the total number of comparisons made. Four GLCMs are constructed
one for each direction and since the elements in the matrices represent the amount
of specific gray level relationships in the image and for each direction both possible
senses are taken into account, the GLCMs are symmetric. The HF are the statistical
features extracted from the GLCM and due to the high computation costs there are
several practical approaches that try to improve the computation efficiency of the
statistical features [120]. Another possibility to make the computation of the HF
more efficent is to reduce the textural parameters used. GLCM originally proposed
14 textural parameters [35], but in [121] the six most relevant were considered to
be: energy, contrast, variance, correlation, entropy and inverse difference moment.
In [122] a study of those statistical parameters was presented in the EO scope and
proposed a solution based on Gray Level Difference Histograms (GLDH) that offer
a better compromise between texture accuracy and computation costs. The use of
HF as texture parameter on SAR applications is extensive specially in sea ice stud-
ies [123, 124] and forestry [125, 126] but also as contextual descriptors in very high
resolution SAR [127].

2.6.2.2 Gabor Feature Descriptor

Gabor Feature Descriptor (GFD) reduces the feature computation time compared
with other texture features while maintaining a good retrieval performance. Further-
more, Gabor features are rotation and scale invariant. A successful implementation
of Gabor wavelets for texture analysis and description in image retrieval applica-
tions was presented in [46], where the descriptors are formed using a mother Gabor
wavelet which is tuned using different values of orientations K and scales S. The
feature vector is then constructed concatenating the means and standard deviations
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for every combination of orientations and scales,

GFD = [µ11σ11µ12σ12...µSKσSK ] (2.5)

In the last year different publications have used Gabor descriptors in EO ap-
plications. In [128] Gabor filters are used for hyperspectral image classification.
Regarding SAR images, [129] introduces an unsupervised change detection method
of multitemporal SAR images based on Gabor features. Also working with SAR
images, the work presented in [130, 131] introduces a feature descriptor modifica-
tion based on second-kind moments, i.e., log-mean and log-variance, for performing
image classification. The performance of GFD in very high resolution SAR patch
classification was tested against other feature descriptors in [118] where it scored
very high accuracy values.

2.6.2.3 Weber Local Descriptor

The Weber Local Descriptor (WLD) is developed in [132, 133] and it offers a robust
edge extraction capabilities even in heavy noise images. WLD is based on Webber’s
Law which is a psychological law quantifying the perception of change in a given
stimulus. It states that a human will only perceive the changes just in a constant
ratio of the original stimulus [134]. Therefore, WLD uses the intensity difference
in the image to detect the salient variations and simulate the human perception of
patterns. This is performed by generating a series of histograms that represent the
differential excitations ζ in various dominant orientations Φ. The WLD descriptor
is formed afterwards by: 1) dividing the histograms in M segments, 2) construct-
ing a new series of sub-histograms that contain the same M division of the initial
histograms for the different Φ orientations, and 3) concatenating the reorganized
sub-histograms. The length of the WLD descriptor is the product of ζ and Φ while
M defines only the interleaving of the different Φ orientations M times. In remote
sensing modifications of the WLD have been successfully implemented in [135] for
indexing SAR image patches.

2.6.3 Scale-Invariant Feature Transform

The Scale-Invariant Feature Transform (SIFT) extracts the distinctive invariant
features of the images which can be used later for object or scene matching tasks
even with different view angles [136]. This is possible due to the ability of the
features to be invariant to scale and rotation. The SIFT method comprises four
different steps. First, the image is analyzed looking for the scale-invariant features
using a Diference of Gaussians (DoG) functions [137]. DoG generates two different
Gaussian blurs of the analysis image and subtracts them to highlight the image
edges and propose potential interest points. Second, an analysis of the proposed
interest points is made to select the most robust ones and discard the ones more
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sensitive to noise. Third, based on the local image gradient directions, one or more
orientations are assigned to the keypoints, this step removes the effects of rotation
and scale. And forth, for each keypoint location the descriptor is generated by: 1)
computing the magnitude and orientation of the gradient in a region around the
keypoint and weighting it using a Gaussian window; 2) accumulating the results in
R×R pixel subregions; and 3) generating histograms of the regions with bins equal
to the number of selected θSIFT orientations. Consequently, the SIFT descriptor is
a vector containing the values of all the orientation histogram entries with a length
equal to the product of the subregions by the number of orientation used, i.e.,
R×R×θSIFT . In [136] the most robust results were obtained using a region around
the keypoint location of 16x16 pixel, a subregion of 4x4 and 8 different orientations.
As result the descriptor length was a vector of 128 elements.

EO applications of SIFT can be found in urban-area and building detection
[138], multispectral image registration [139, 140] or SAR image registration [141].
Also related to SAR image registration a modification of the original SIFT was
proposed in [142].

2.6.4 Semantic Level Descriptors

The use of semantic level descriptors is one of the attempts from the research com-
munity to bridge the semantic gap. These descriptors link the low level features
extracted directly from image analysis processes, with semantics/concepts used by
humans by means of different machine learning approaches. The more relevant ap-
proaches for this thesis are Bag of Words (BoW) and Latent Dirichlet Allocation
(LDA).

2.6.4.1 Bag of Words

BoW was originally proposed as a model for text document classification and initial
references to the model go back to the 50s [143]. Basically, BoW just takes into
account the multiplicity of words appearing in a document for which it constructs
an histogram. BoW was posteriorly used in computer vision applications [144]
where instead of words, the image visual feature vectors were used. Due to the
high dimensionality of the visual features it is necessary to generate a codebook or
dictionary. There are different alternatives for generating codebooks but all of them
rely on Vector Quantization (VQ) techniques, from the simplest regular division
of the dimensional space to more complex clustering methods, e.g., k-means [145].
Thus, the computed codebook, composed of a small subset of descriptors, is used
to encode all the extracted visual features. There are different coding algorithms
which define how the codewords are activated. A state of the art study of the
existing coding techniques used in BoW applications can be found in [146]. The
last step in the BoW generation encompass a pooling process [147], which typically
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involves mean or max pooling, and results in the final signature representation of
the image, i.e., the identification of the image by a BoW vector.

The use of BoW models in remote sensing can be found in applications for land
use scene classification [148, 149], but also to annotate large satellite scenes [150],
where the BoW is used as input for a LDA model.

2.6.4.2 Latent Dirichlet Allocation

Initially proposed for text corpora analysis, LDA has the goal to find short descrip-
tions of the members of discrete data collections, enabling efficient processing of
tasks like classification, summarization or novelty detection, among others. LDA
makes use of generative probabilistic models to describe the underlying topics in a
document as a probability distribution over a set of words in the existing vocabu-
lary, which can be seen as an explicit representation of a document. Consequently,
a corpus or collection can be defined as a finite set of latent set of topics. It is
possible to extent the application scope of LDA by defining an analogy between
the text corpora analysis and image collection analysis. Experiments of LDA in EO
applications are numerous. In [150] LDA is used to classify QuickBird panchromatic
image patches, using concepts defined by the user. Other example is presented in
[151] where LDA is used to map heterogeneous pixels with similar intermediate-level
semantic meaning into land cover classes of various mapping products. A complete
description of LDA modeling can be found in [86].

2.7 Image Information Mining Systems

Image Information Mining (IIM) seeks solutions for automatizing the extraction
of information from EO archives via interdisciplinary approaches comprehending
computer vision, image retrieval, machine learning, data mining and database man-
agement among others [152]. The new information obtained from processes can
result in a better image understanding or even in the discovery of knowledge [153].
Specifically, IIM systems offer the possibility to navigate and browse large archives
and obtain implicit knowledge or patterns from images and/or between image and
other alphanumeric data which are not explicitly stored [154].

A remarkable example of IIM system is the KIM system presented in [3]. KIM
as any other AL system requires interaction of the users who provide semantic inter-
pretation of the image content, which is internally linked to a hierarchical Bayesian
network. The user can query the database for relevant images and obtains a proba-
bilistic ranking of the entire image archive as an intuitive information representation.
The KIM system is specially meaningful in the context of this thesis, and a more
detailed description of it is introduced in Chapter 3.

During the last years, several IIM systems have been developed with different
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technology approaches in order to handle EO image heterogeneity and its charac-
teristics. Different QbE paradigms have been proposed to retrieve multispectral
images like the region based image retrieval system developed at Oak Ridge Na-
tional Laboratory in [155] and the Multi-sensor Evolution Analysis (MEA) [156].
We can also find in the literature systems like the Geospatial Information Retrieval
and Indexing System (GeoIRIS) [157] and the Intelligent Interactive Knowledge Re-
trieval (I3KR) system [158] that try to retrieve images by means of semantics. In
particular, GeoIRIS includes automatic feature preprocessing and indexing of EO
images. Furthermore, it implements a complex query system that merges heteroge-
neous geospatial databases making possible to retrieve objects using different visual
features which can be later semantically link to higher concept descriptors. There
are also systems for the retrieval and analysis of SAR and corresponding image time
series. Selected examples of these systems are Image Information Mining in Time Se-
ries (IIM-TS) [159], and the PicSOM system based on Self-Organizing Maps (SOM)
[160]. Recently, different research projects like EOLib [161] or TELEIOS [162] have
introduced the use of EO image metadata and linked data as query parameters in
order to improve the results. Linked data can be seen as a collection of best practices
for publishing semantically structured and interrelated datasets on the Web [163].
A review of current EO image information mining systems can be found in [164].

2.8 Visual Analytics

Image information retrieval systems have provided a wide variety of tools for inter-
active exploration of big image archives based on different metadata, keywords or
visual descriptors. Regardless their outstanding performance, different sets of tools
are required to successfully analyze and present the obtained results in a way that
facilitates their understanding. In this sense, visual analytic techniques try to com-
bine automatic analysis methodologies with interactive visualization tools in order
to improve the understanding and analysis on Big Data scale datasets [165]. Visual
analytic research goal is to provide the decision makers with tools which exploit
the information abundance offering the opportunity to examine massive amounts of
information in real-time situations [166]. Summing up, visual analytics is perceived
as a conglomerate of interactive visualizations analysis techniques, which exploit
different automatic analysis techniques, to facilitate the understanding, reasoning
and decision making over large and complex datasets.

An example of the implementation of visual analytic techniques can be found in
[167] where the available geographical tags and the underlying geographical context
were exploited with image retrieval purposes. Moving the focus to EO, [168] suc-
cessfully applied visual analytic techniques on large geospatial datasets with data
mining purposes. Another example is LandEx GeoWeb tool [169] which provides
a visual search engine to retrieve similar tiles based on pattern inputs and similar-
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ity maps. Finally, the work in [170] introduces the Immersion Information Mining
system that uses advanced visualization techniques to enable knowledge discovery
from EO archives.
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Knowledge-driven Heterogeneous
Data Mining

This chapter presents an accelerated probabilistic learning concept and its proto-
type implementation for mining heterogeneous Earth Observation (EO) images, e.g.,
multispectral images, Synthetic Aperture Radar (SAR) images, image time series,
or Geographical Information Systems (GIS) maps. The system prototype combines,
at pixel level, the unsupervised clustering results of different features, extracted
from heterogeneous satellite images and geographical information resources, with
user defined semantic annotations in order to calculate the posterior probabilities
that allow the final probabilistic searches. The system is able to learn different se-
mantic labels based on a newly developed Bayesian network algorithm and allows
different probabilistic retrieval methods of all semantically related images with only
a few user interactions. The new algorithm reduces the computational cost, overper-
forming existing conventional systems, under certain conditions, by several orders
of magnitude. The achieved speed-up allows the introduction of new feature models
improving the learning capabilities of knowledge-driven image information mining
systems and opening them to Big Data environments.

The chapter is organized as follows: Section 3.1 describes the main aspects be-
hind a classical knowledge-driven information mining system. Section 3.2 introduces
the Heterogeneous Data Mining (HDM) concept followed by the sections presenting
the elements that composed the HDM system. Specifically, Section 3.3 describes
the feature extraction processes and Section 3.4 the feature clustering and the gen-
eration of the Bag of Words (BoW). Continuing with the HDM modules, Section
3.5 introduces the machine learning methods implemented. Section 3.6 explains the
available retrieval methods followed by the introduction of the user interface, Section

The content of this charter has been published in: K. Alonso and M. Datcu, ”Accelerated Prob-
abilistic Learning Concept for Mining Heterogeneous Earth Observation Images,” IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing, vol. 8, no. 7, pp. 3356-3371,
July 2015.
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3.7, and the description of the user interactions, Section 3.8. Section 3.9 demon-
strates the system capabilities for different application scenarios, while Section 3.10
presents the most important system performance parameters. Finally, Section 3.11
contains general conclusions.

3.1 Knowledge-driven Information Mining

A classical knowledge-driven information mining system, like the one presented in
[171], represents the managed information via a multilevel hierarchical model, as
shown in Fig. 3.1. Its initial level is formed by the data sources D, for instance,
different EO image data. The second level of the hierarchical model contains the
first processed information, θ, extracted from the EO products via statistical or
mathematical analysis. For pixel-wise analysis, and being usually θ high dimen-
sional, this stage generally increases the amount of managed data by various orders
of magnitude. The third information level is composed of clustered θ features. The
resulting cluster identifiers can be interpreted as words, ω. In this stage the data
quantity is reduced from the highly dimensional features to an easily manageable
single layer of words. At this point, it is possible to represent D by a normalized
histogram of word occurrences. Finally, in the last level of the hierarchical model,
the user attaches semantic labels, L, to the existing words.

In KIM the user introduces semantic interpretation of a selected image (sub-
)scene via AL, by giving positive and negative examples, which are interactively
linked with a hierarchical Bayesian network [172] (not shown in Fig. 3.1) to a
content-index formed by a combination of different ωi, where i is an index for the
available words. Using the different words, ωi, for all extracted features θ, one can
identify an image uniquely by means of the probabilities p(ωi|D), which express
the occurrences of the words within the given image. These words will result in
forming a BoW [146]. The Bayesian network allows the user to interactively define
a link between a specific semantic label L with the existing words ωi known as the
stochastic link p(ωi|L). Once the stochastic link is defined, it is possible to calculate
the posterior probability p(L|D), which is used to query the database for relevant
images, obtaining a probabilistic ranking of the entire image archive as a semantic
information representation. A brief description of the theoretical aspects is given in
Section 3.5.

3.2 Heterogeneous Data Mining Concept

The HDM conceptual design, as any Bayesian inference system, is composed by
two main stages: a data-driven initial stage and the final user-driven stage. In Fig.
3.2 the conceptual stages, their independent modules and connections are shown.
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Figure 3.1: System hierarchical levels. The initial level is formed by the data sources D. The
second level refers to the information extracted via mathematical analysis, θ. Third information
level represents the clustering results ω of the features θ extracted in the previous level. The last
level consists of the user’s specific concept L, and its relationship with the existent words.

The initial modules of the data-driven stage represent the different heterogeneous
EO databases or GIS repositories. From these online linked repositories, HDM gets
the data to be analyzed. The analysis stage itself is performed offline. In the first
analysis step, different types of features can be extracted at pixel level. In addition,
the information available in the GIS repository in form of a vector map is rasterized
to the EO image resolution. All the extracted features are clustered automatically
using any kind of unsupervised clustering, e.g., k-means. The clustering results, i.e,
cluster identifiers, are used for the generation of BoW signatures. At the end of the
analysis processes, the word maps, that defines the cluster or word assigned to every
pixel in the image, and the calculated BoW signatures, p(ωi|D), are stored into a
database.

In the second stage, the user interaction enters in scene and guides the processes
inside an active learning loop. This loop is composed by three steps: machine
learning, probabilistic retrieval and user interaction. This stage is real time from
the point of view of the user, who expects a relatively fast response of the system to
the required actions. Inside the loop, the user interacts via user interface introducing
positive examples of the label, L, and negative examples for ¬L, allowing the learning
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Figure 3.2: The Heterogeneous Data Mining (HDM) conceptual design is composed by two main
stages, a data driven initial stage and the final user driven stage. The initial modules of the data
driven stage represent the different heterogeneous EO data bases, or GIS repositories, where the
data are obtained. The data driven stage extracts the features, clustering them and generating the
BoW for each image. The user driven part is composed by the user interaction, the learning and
the probabilistic retrieval processes. The user can introduce positive and negative examples about
specific semantics that will allow the system learning. After the learning step, the user driven cycle
will end with a probabilistic retrieval query to obtain the desired images.

of the system. After the interaction step, the user can perform a probabilistic
retrieval. If the results are not satisfactory, the user can refine the learning and
retry the probabilistic retrieval. On the other hand, if the results are satisfactory,
the interaction ends.

Following, a more detailed HDM prototype review is presented, explaining the
main functionalities and algorithms used in each module.

3.3 Feature Extraction

This module extracts at pixel level the image analysis features and map features
required by the system to uniquely identify an EO image. For the posterior as-
sumptions of the probabilistic retrieval, the generation of unambiguous stochastic
links are required. To achieve this, a full statistical independence of the extracted
features θ would be optimal. Thus, a careful selection of features and their coding
is necessary to provide sets of descriptors that are as statistically independent as
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possible.
In this case the features used are spectral parameters, such as multispectral fea-

tures or intensity values; and texture features, as the Weber Local Descriptor (WLD)
[132]. The system modular design allows to easily add new feature descriptors.

HDM system prototype also relies on the information extracted from existing
maps stored in GIS platforms. It is possible to access map information from two
different sources. The first one comes from official sources like national governments,
government agencies, or supra national organisms. This kind of source is everyday
more abundant due to Open Data and Open Government initiatives. The second
one is made available by open collaborative projects like OpenStreetMap [7], where
the platform users upload geographical information every day and worldwide.

For this prototype implementation, we have used the information available in
OpenStreetMap. The layer extraction for this particular initial experiment has been
manually done using open source Quantum GIS program [173], but it can be easily
automatized in future implementations.

At the end of feature extraction operations we have available different feature
sets.

3.4 Clustering and Bag-of-Words

The statistical independence of the features will help obtaining non correlated BoW
dictionaries, which in theory, provide more meaningful results when combined. The
features obtained from the Feature Extraction module are used as input for the
Clustering and Bag-of-Words module. This module produces two different outputs
for every image and analyzed feature. The first output is the word map that defines
the cluster or word assigned to every pixel in the image. The second output is the
probability of every word in the image, which is built using the previously calculated
word maps. At the end of the data driven part the word maps and BoW probabilities
are linked together with the analyzed heterogeneous EO images defining a query
object in a database.

For the EO images, the clustering of the features relies on the unsupervised
K-means clustering algorithm. Clustering processes can take from days to weeks
depending on the size of the dataset and the feature length. In the case of GIS
maps, the selected layers from OpenStreetMap will represent the cluster identifiers
of the map model in the system. In this case, we have chosen seven different classes:
water bodies, roads, railways, buildings, urban areas, sport areas and green areas.
The map information is in vector form and, hence, a vector-to-raster conversion is
needed. The map rasterization is done using the GDAL library. In order to do the
conversion, the raster image must have the same resolution of the EO images with
which it will be fused. The resulting raster image is composed by simple integers
losing all the semantic meaning of the OpenStreetMap classes. The integer layer is
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now treated like the output of a clustering process required to generate a word map.
Using the word map the BoW probabilities are calculated. Finally the word map
and the BoW probabilities are stored into the database and linked to the existing
query objects created with the EO image analysis.

As stated before, a single feature is in general not enough to generate a meaning-
ful representation of a semantic label. For this reason, even if initially the feature
dictionaries are calculated independently, when running the system a combination
of the independent feature dictionaries are used for the learning,

ωi = ωf1,j ⊗ ωf2,k ⊗ ...⊗ ωfc,z (3.1)

where ωi is the combined dictionary, the different f values represent each of the
independent feature used in the learning and the subscripts associated to them
(j, k, ..., z) represent the length of that specific dictionary. The length of ωi will be
the product of the independent dictionary lengths.

3.5 Machine Learning

In the following, we present a brief summary of the theoretical concepts of the
learning stage based on a naive Bayes Classifier [172, 174]. The learning is based
on the posterior probabilities of a user-defined semantic label L given an image D
expressed as,

p(L|D) =
∑
i

p(L|ωi) · p(ωi|D). (3.2)

As an alternative, one can apply the Bayesian theorem:

p(L|D) = p(L) ·
∑
i

p(ωi|L) · p(ωi|D)

p(ωi)
(3.3)

where p(L) is the prior probability of the semantic label L, p(ωi|D) are the proba-
bilities of the words in a given image, p(ωi|L) denotes the probabilistic links of the
words with a label, which can be expressed as the probability of the words updated
with the examples defined by the user. Finally, p(ωi) is the prior of the words ωi

given by:

p(ωi) =
∑
L

p(ωi|L) · p(L) (3.4)

where the labels are restricted to L and ¬L and the probabilistic link p(ωi|L).
At this point, the computation of p(ωi|L) and p(ωi|¬L) should be considered.

Once these terms are known, p(L|D) can be calculated using (3.3) and (3.4). In
order to calculate these probability links we will make use of the user inputs by
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means of training samples. The training samples can be positive, represented by
the presence of the label L, or negative referring to the absence of L and defined
as ¬L. For sake of simplicity, the next equations present the calculation of p(ωi|L),
but they are applied to p(ωi|¬L) in the same way. Therefore, we define T as a
set of user provided positive training data in the form of T = {N1, ..., Nr} with
Ni as the number of occurrences of ωi and r as an index of the existing words. T
presents a multinomial distribution that can be parametrized via φ = {φ1, ..., φr}.
As introduced in [3], and widely described in, [175] and [176], we can express our
desired probability as,

p(ωi|L) = E[φi] =

∫
φip(φ|T )dφi, (3.5)

where p(φ|T ) is modelled as a Dirichlet distribution,

p(φ|T ) = Dir(φ|α), (3.6)

and α is a hyperparameter vector which represents the user interaction (i.e., intro-
duction of training examples by the user). It has the same dimension as the used
BoW dictionary, and is initialized to one, α = {1, 1, 1, ..., 1}. One of the Dirichlet
model characteristic is the property to perform the learning incrementally. More-
over, a Dirichlet distribution is the conjugate prior of a multinomial distribution in
Bayesian statistics. Thus, new user interactions can update the posterior probability
by means of,

p(φ|T ) ∼ Dir(αk
1 +Nk+1

1 , ..., αk
r +Nk+1

r ) = Dir(αk+1), (3.7)

where k refers to the user interaction, Nk+1
i are the new training examples and the

updated hyperparameters αk+1
i are defined by the following expression,

αk+1
i = αk

i +Nk+1
i . (3.8)

Once the hyperparameters and the update procedures are defined, we can rewrite
(3.5) as,

p(ωi|L) =
αk+1
i∑
αk+1
i

. (3.9)

Since p(ωi), expressed in (3.4), is the sum of L and ¬L, using the negative
samples introduced by the user we define another hyperparameter vector set for the
required p(ωi|¬L) calculation. With these hyperparameter sets we are finally able
to calculate the posterior probabilities p(L|D), defined in (3.3), and proceed to the
probabilistic search.
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3.5.1 Assumption of Feature Probability Independence

The original KIM implementation assumes the full statistical independence of the
features and the resulting clusters. Thus, the calculation of the stochastic link can
be performed by a simple multiplication of probabilities

p(ωi|L) = p(ωf1,j|L) · p(ωf2,k|L)... · p(ωfc,z|L) (3.10)

where c is the number of feature models used in the learning, f identifies the fea-
ture model and the associated subscript represents its length. The same statistical
independence assumption is made for the joint probability of the words in a given
image p(ωi|D).

This approach was already computationally fast, with the imposed restriction
of the use of only two different feature models in the learning stage: spectral and
texture features were used to ensure the required statistical independence. The re-
striction was imposed due to the computational complexity from the calculations of
p(ωi|L) and p(ωi|D) which can be represented as multidimensional matrices where
each element refers to the probability of occurrence of a certain word combination.
Therefore, every additional feature model increases the dimensionality of these ma-
trices by one. As a consequence, the number of operations are multiplied by the
number of words of each feature model. Defining n as the number of operations
required for the independent calculation of the posterior probabilities for each fea-
ture model, and c being the identifier of the model, we obtain the computational
complexity as,

O = n1 · n2 · ... · nc. (3.11)

The different sizes of the dictionaries in ωi are relatively small in comparison
with the total amount of operations needed for the calculation of the posterior
probabilities. Therefore, the different numbers of operations nc can be equalized to
nc = n. This results in a final polynomial complexity of the algorithm, increasing
with c,

O(nc). (3.12)

3.5.2 Assumption of Posterior Probability Independence

The complexity of the KIM algorithm should be reduced since its algorithm, based
on the statistical independence of the features (3.10), is not fast enough in a high
resolution EO Big Data scenario. Our proposed approach extends the statistical
independence assumption from the features, which has been proved valid in [177]
and [178], to the posterior probabilities. The proposed approach is derived from the
belief that the statistical independence can be inherited if the extracted features from
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the original data are independent. In this case, the proposed statistical independence
assumption is defined as,

p(L|D) = p(L|D)1 · p(L|D)2 · p(L|D)3 · ... · p(L|D)c (3.13)

where p(L|D) is the product of the individual posterior probabilities of each feature
model, and c is the total number of feature models used.

As stated in (3.3) the posterior probability calculation requires the knowledge of
p(ωi|L) and p(ωi|D). Assuming the posterior probability independence, we will treat
each feature model dictionary independently. Furthermore, we avoid the calculations
of the joint probabilities and the iterations over multidimensional representations of
p(ωi|L) and p(ωi|D). Thus, it is possible to greatly reduce the number of operations
required for the calculation of p(L|D). Moreover, the computational complexity of
the new algorithm is simplified. With our new statistical independence assumption
the complexity can be determined as the addition of the different feature model
complexities,

O = n1 + n2...+ nc. (3.14)

Simplifying the different complexities to n, as in the previous case, and assuming
c is not meaningful when compared with n, the complexity changes from polynomial
to linear as follows,

O(n · c) = O(n). (3.15)

The complexity reduction due to the new statistical independence assumption
results in a huge acceleration of the required computational effort. This acceleration
can be used for the inclusion of new features models in the learning stage. Since
more feature models mean an extension of the possible combinations of words ω,
and in consequence extended discrimination capabilities, this will be useful in more
complex user semantics definition processes.

3.6 Probabilistic Retrieval

For the last decades the machine learning community has used multiple feature
distances for the classification and retrieval of different multimedia assets [179]. In
[20], once the information from images is captured in a feature set, two different
ways to endow images with meaning are presented. The first compares the feature
set with the elements in a training set, leading to conditional probabilities that
sketch an interpretation of the image, but does not determine it completely. This
approach is described in Section 3.6.1. The second approach relies exclusively on
the feature set to generate visual signatures and compute the similarities. Examples
of this approach can be found in [16]. In Section 3.6.2 we propose a modification
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of the classical approach, consisting in the calculation of the similarity between the
elements contributing to the posterior probability of the query image and the image
signatures obtained with the BoW.

3.6.1 Retrieval Based on the posterior Probability Value

This retrieval method is the one originally implemented in KIM. The method pro-
posed a probabilistic retrieval that relies on the p(L|D) value of the images in the
database. Thus, the p(L|D) of every image in the database is calculated and ranked
by its value. The images with a higher probability of containing the user requested
semantic label, L, appear in the initial positions of the ranking.

3.6.2 Retrieval Based on Similarity Metrics

A classical retrieval by similarity relies on the image signatures computed exclu-
sively from features. In our system the visual signatures are represented by the
BoW probabilites p(ωi|D). Thus, a classical similarity retrieval would include the
similarity calculation between the stored p(ωi|D).

Our contribution to the probabilistic retrieval modifies the classical approach
calculating the similarity distance among the p(ωi|DDB), BoW signature, of each
element in the database, and the elements used for the calculation of p(L|DQ) in
the query example according to (3.2). By doing so, we introduce the user-specific
semantics into the similarity computation.

The use of similarities or distances for the retrieval allows us to introduce a new
parameter in the retrieval process, namely the distance metrics. We have imple-
mented a set of different metrics to calculate distances, d:

• Euclidian:

dE =

√∑
i

((p(L|ωi) · p(ωi|DQ))− p(ωi|DDB))2 (3.16)

• Kullback-Leibler:

dKL =
∑
i

p(L|ωi) · p(ωi|DQ) · ln
(
p(L|ωi) · p(ωi|DQ)

p(ωi|DDB)

)
(3.17)

• Kullback-Leibler symmetric variant:

dKLS =
∑
i

p(L|ωi) · p(ωi|DQ) · ln
(
p(L|ωi) · p(ωi|DQ)

p(ωi|DDB)

)

+
∑
i

p(ωi|DDB) · ln

(
p(ωi|DDB)

p(L|ωi) · p(ωi|DQ)

) (3.18)
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• Jensen-Shannon Divergence:

dJSD =
1

2
·
∑
i

p(L|ωi) · p(ωi|DQ) · ln

(
p(L|ωi) · p(ωi|DQ)

M

)

+
1

2
·
∑
i

p(ωi|DDB) · ln

(
p(ωi|DDB)

M

) (3.19)

where M = 1/2 · (p(L|ωi) · p(ωi|DQ) + p(ωi|DDB))

• Manhattan:

dM =
∑
i

| (p(L|ωi) · p(ωi|DQ))− p(ωi|DDB)| (3.20)

• Chebychev:

dCh = maxi {| (p(L|ωi) · p(ωi|DQ))− p(ωi|DDB)|} (3.21)

The availability of different metrics is another resource that the user can exploit
in order to improve the image retrieval. As we will present in Section 3.10, the use
of a specific distance metric can be useful for certain user concepts.

3.7 User Interface

The User Interface (UI), shown in Fig. 3.3, is presented as a QbE interface where
the user can load an image from the repository. The user can select the example
image directly navigating the repository or simply by selecting one of the 20 images
that randomly are shown in the right part of the UI. These random images can be
refreshed at any time just pressing the ”Random” button. The first main canvas is
used to represent the query example. Depending on the dataset and the features
selected for the learning, it is possible that the query element contains more than one
analyzed EO image, see Section 3.3. In these cases, the query canvas representation
can be switched between these source images. The second main canvas, located in
the center of the UI, represents a Posterior Probability Map (PPM) defined as the
posterior probability ratio of each pixel in the image,

PPM =
p(L|dn)

p(L|dn) + p(¬L|dn)
(3.22)

where dn are the individual pixels in D, p(L|dn) is the posterior probability of the
label L given a pixel dn and p(¬L|dn) the posterior probability of ¬L in the pixel.

The PPM is updated with every user input providing an useful interactive tool
to check the validity of the learning process. Moreover, the UI also implements
different drop lists where the user can select:
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3. Knowledge-driven Heterogeneous Data Mining

Figure 3.3: System UI. The first main graphical canvas represents the query image example, the
second one the posterior probability, p(L|dn), values of each pixel. On the right, a group of random
images from the database are shown. At the bottom under the main canvases the query results are
shown. On the right, under the random images, the parameter selection drop lists, label load/save
and search buttons are shown.

• System Algorithm: The user can select between KIM or HDM algorithm.

• Retrieval Method: It is possible to select the probabilistic retrieval method
based on posterior probability value or the one based on similarity metrics.

• Feature Models: The user can choose different combinations of feature mod-
els which will be used in the learning-retrieval processes.

• Similarity Metric: In case of the probabilistic retrieval based on similarity
metrics is selected, a list for selecting the desired metric is enabled. The
available metrics are listed in section 3.6.2.

• Image Source: Certain feature model combinations have different EO image
source. For this cases the user can switch at any moment the image source
shown in the main canvas. This option can be helpful during the learning
process in order to improve the quality of the input introduced by the user.

After every query, the retrieved images are ranked under the main canvas. Those
ranked images can be clicked so they can be loaded as example image for continuation
of the training. Finally there is the option to save, load and update the user defined
labels, L and the associated training hyperparameters.
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3.8 User Interaction

In a common search procedure, the posterior probability map starts all in grey,
representing the unknown state of every pixel in the image due to the lack of positive
or negative examples. With every provided example, Nk+1

i , the hyperparameters
αk+1
i and the stochastic link, p(ωi|L), are updated. As a consequence, the posterior

probabilities, p(L|di), are also updated and with them the PPM, defined in (3.22),
that is shown to the user. Black pixels will represent low probability and white ones
high probability. Once the probability of a pixel is over 0.9, the pixel is highlighted
in red.

At any moment, the user can perform a query to check the retrieved results.
By checking the results, it is possible to refine the learning process introducing, for
instance, negative examples over an image retrieved in the first positions, but which
does not contain the label L. As a direct response of this negative example, the
image will be penalized in the next search appearing in a lower ranking position.

During the learning retrieval process, the user can decide to try one of the dif-
ferent approaches implemented for probabilistic retrieval. Using the probabilistic
retrieval method based on similarity metrics, it is also possible to try one of the
several implemented distance metrics described in Section 3.6. Once the user agrees
with the semantic label definition, it can be stored in the database to be reused in
further analysis.

3.9 Application Scenarios

In order to test the applicability of the system and the implemented new algorithms,
we present three different scenarios. The analysis of these scenarios is only possi-
ble due to the speed-up achieved with the new learning algorithm which allows
the introduction of a higher number of feature models. In the first scenario, called
Multispectral-SAR fusion, the goal is to demonstrate the system speed-up and per-
formance in comparison with the original KIM implementation for urban assessment.
The second scenario, Multitemporal-SAR fusion, uses the system with image time
series for change detection applications. And, in the final scenario, Multispectral-
SAR-Map fusion, we combine the classical image analysis feature models with a
model extracted from map information stored in a GIS server.

3.9.1 Case: Multispectral-SAR Fusion

For validating the system we have chosen Munich city multispectral images from
WorldView-2 (WV-2) and SAR images from TS-X both with 1.25 meter pixel spac-
ing, covering an area of 24 km2, as shown in Fig. 3.4. The size of the total scene is
4890x3202 pixels cut into tiles of 200x200 pixels, with a total number of 500 tiles.
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Search Proc. 1 Model 2 Model 4 Model

Feature
Independece

(KIM)

Posterior
Probability

0.62 s 6.39 s 2354 s

Sim. Metric
JSD

0.045 s 0.15 s 43.5 s

Posterior
Independence

(HDM)

Posterior
Probability

0.155 s 0.196 s 0.31 s

Sim. Metric
JSD

0.042 s 0.126 s 34.61 s

Table 3.1: System query run-time for different statistical assumptions, query ranking types and
feature model numbers. The first row is used as a threshold and corresponds to an emulation of
the original KIM implementation. The difference among the four models using the new statistical
assumption is four orders of magnitude.

The clustering and BoW generation of this dataset resulted in 256 words for the in-
tensity feature and 19 words for the WLD texture feature in the multispectral image,
along with 124 words for the intensity and 8 words for the texture features of the
SAR image. Summarizing, each database object is composed by one multispectral
patch, one SAR patch, four word maps and the associated probabilities.

The evaluation of the system and algorithm performance is done by measuring
the time required for the completion of a query and the quality of the query results.
We compare the execution time of the original KIM algorithm with the modified
HDM algorithm presented in Section 3.5.2.

The first experiment of this scenario calculates the query processing speed of the
system for KIM and HDM algorithms using the two available retrieving methods,
presented in Section 3.6. The feature model combination used are: multispectral
intensity for the unique model case, multispectral intensity and texture when two
models are used; and multispectral and SAR intensity and texture in the four model
tests. Table 3.1 summarizes the obtained results. In the case of the KIM algorithm,
the improvement of speed using similarity metric retrievals amounts to one or two
orders of magnitude compared with the posterior probability approach. When com-
paring KIM and HDM algorithm performances, HDM turns out to be faster. The
HDM similarity metric retrieval method performs faster than KIM but in the same
order of magnitude. In contrast, using the posterior probability retrieval method,
the HDM performs four orders of magnitude faster than the original KIM imple-
mentation for the four feature model case.

In a second experiment we define a fixed learning process based on positive and
negative examples over the same pixels in the same images. The first stage of this ex-
periment, A.1 in Table 3.2, shows the initial results and the first error, (i.e., the first
misclassification result), of the similarity metric based retrieval versus the posterior
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(a) WorldView-2

(b) TerraSAR-X

Figure 3.4: Multispectral-SAR case scenario of Munich, Germany.
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Exp. Label
Query

Example
Alg.

Retrieval
Method

Posterior
Map

Retrieved Patches
Error

Position
Error

A.1 River

HDM
Posterior

Probability
1

HDM
Sim. Metric

KL
11

A.2 Railway

KIM
Posterior

Probability
10

HDM
Posterior

Probability
13

Table 3.2: System query results. First experiment shows a better performance of the similarity
metric retrieval method in initial learning stages. The second experiment shows how the simplifi-
cation of the calculation processes obtained with the HDM algorithm does not affect the quality
of the retrieved results. Moreover, for some cases the query results are even better.

probability ranking methods when looking for the user query river. The four-feature
models are used in the learning stage. After a few user interactions the query output
shows an improvement of the results using the similarity metric retrieval method.
For this case, the patches shown in the initial positions match the query image;
meanwhile, the posterior probability retrieval method is still insufficiently trained
to provide correct results.

In the second part of this experiment we evaluate the final query response using
the feature statistical assumption implemented in KIM and the new HDM algorithm.
We show the first ranked images and the first misclassified element, with its position
in the rank. In the results, shown in A.2 of the Table 3.2, the user searches for
railways. We can observe how the HDM algorithm provides also good results.
Moreover, in some cases, like in the one shown in the experiment results, the first
error appears even later, at position 13th.

3.9.2 Case: Multitemporal-SAR Fusion

For the second application scenario a sequence of two TS-X images has been chosen
in order to show the system capabilities to detect changes in an image time series. In
this case, the query example involves at the same time feature models generated from
both SAR images. The images cover a part of the Elbe river course in Germany, see
Fig. 3.5. This region suffered a severe flood during 2013. The images correspond to
an initial acquisition on June 26, 2008 and a second one during the flooding on June
15, 2013. Both images have the same characteristics, they correspond to a stripmap
level 1B product with horizontal polarization and 5.88 meter azimuth and ground
range resolutions. The size of the scene is 11453x20528 pixels with a pixel spacing of
2.75 meters and a covered area of 1778 km2. Each image has been cut in small tiles
of 200x200 pixels, resulting in a total of 5814 patches. Like in the previous case,
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the system manages pixel based feature clustering results. The four features used
are the intensities, from which we obtain 56 words, and WLDs, 31 words, from both
SAR images. For this dataset each database object is composed by two SAR image
patches, four word maps and the associated probabilities. In this case we assume
the statistical independence based on the large time interval between acquisitions, 5
years. To verify the statistical independence, we computed a similarity map based
on the Normalized Compression Distance (NCD) [180], obtaining high dissimilarity
values. This experimental approach was employed since the analytical verification
of statistical independence is a highly complex problem [181]. In the next three
experiments we retrieve all the patches in the database. The ranking is done by
using the posterior probability value in order to get first the patches with a higher
probability of containing the semantic concept defined by the user.

The first experiment, B.1 in Table 3.3, aims the search of flooded areas in the
scene, where a flooded area is represented as an object in the database containing
areas with no water in 2008 and which are covered by water in 2013. After giving just
one positive example, the first error (i.e., the one corresponding to an image with no
flooding) appears at position 132nd. Continuing with the training, misclassifications
start to be common only after position 1300th.

The second experiment of the multitemporal scenario, B.2, aims to retrieve non
flooded patches. This includes images with no change at all (e.g., permanent course
of the river) and images with changes not related with the flooding (e.g., crop
changes). The first patch with severe flood appears at position 338th just with a
unique positive example. Following the tuning of the learning process with more
positive and negative examples, the error proliferation starts at 1771st position and
they start to be regularly ranked after position 4600th.

In the third experiment, B.3, the user retrieves images with agricultural fields
that have changes in the the crop. The initial query, with only one positive exam-
ple, provides correct results until position 33rd. Continuing the learning, the first
misclassification goes backwards to position 364th and their appearances become
more regular after position 1200th.

3.9.3 Case: Multispectral-SAR-Map Fusion

In this scenario the system is tested with the same dataset used in Section 3.9.1,
i.e., optical bands of a multispectral image (WV-2) and a SAR (TS-X) image (see
Fig. 3.4). Additionaly, as GIS map feature model, we generate a raster image using
information from the OpenStreetMap collaborative project (see Fig. 3.6). From
this map feature model we obtain 7 different words corresponding to the extracted
classes in Section 3.3. Thus, the database objects are composed by one multispectral
patch, one SAR patch, four word maps with the associated probabilities from the
EO images and a word map with the associated probabilities from the GIS map.

The first experiment intends to demonstrate the acceleration of the learning
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(a) June 26, 2008 (b) June 15, 2013

Figure 3.5: TerraSAR-X images of Elbe river years before and during the 2013 flooding. The
flooded areas can be seen in black.
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Exp. Label
Query

Example
Year

Retrieval
Method

Posterior
Map

Retrieved Patches
Error

Position
Error

B.1 Flood

2008
Posterior

Probability 1300
2013

B.2
No

Flood

2008
Posterior

Probability
1771

2013

B.3
Crop

Change

2008
Posterior

Probability
1200

2013

Table 3.3: Multitemporal-SAR fusion case scenario. B.1 experiment shows the case where the user
searches for flooded regions. The experiment B.2 shows the case in which not flooded images are
requested. In the last experiment of this case scenario, B.3, images with crop change during the
time series are requested.

Roads RailwaysSport Areas Buildings Water bodies Green Areas Urban Areas

Figure 3.6: Raster map with several classes extracted from OpenStreetMap. Munich city, Germany.
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process due to the insertion of a generic map feature model. The features used in
this experiment are intensity and WLD features from both images, and the GIS map.
The retrieval method is the one based on the total sum of the posterior probabilities.
In this experiment, the user looks for tiles with small paths in parks or gardens.
The first stage, C.1.1 in Table 3.4, shows the speed-up of the learning process since
the first positive example. The first row presents unsatisfactory results obtained
without the inclusion of the map feature model. By contrast, including the map,
the first ranked images contain the user-defined concept. Here, due to the optical
intensity feature model, white pixels are highly pushed up in the ranking. The use of
the posterior probability based retrieval method, brings the tiles containing a bigger
amount of white pixels (e.g., tiles containing clouds or places under construction) to
the top of the ranking. Nevertheless, for the query including a GIS feature model,
the inclusion of extra information related with roads, adds an extra discrimination
capability. This enables, from the very beginning, the retrieval of positive matches
in the top of the rank.

C.1.2, in Table 3.4, shows the first top four positions of the rank after adding one
more positive and one more negative examples. The initial results are good in both
cases. However, in the case without a map feature model, the first error appears at
the 5th position. Meanwhile, in the case with a GIS feature model, it appears at
position 17th.

The second experiment shows the system performance for the discovery of more
complex classes like dry river borders with and without the addition of the feature
model from OpenStreetMap. The query method in the two first stages, C.2.1 and
C.2.2, is based on the posterior probability. The third stage, C.2.3, uses the similar-
ity metric retrieval in order to show the importance of the chosen retrieval method
after the same learning process.

As in the previous experiments, C.2.1 shows the response of the system after
one initial positive example. Only the experiment with a GIS map feature model
shows initial good results. Continuing the active learning, C.2.2, the case without
the map feature model is unable to learn the concept, providing only a correct tile in
position 16th of the rank. However, for the query including the map feature model,
the learning improves. After three positive and two negatives additional examples,
the first wrong result moves from the initial 6th position, in the C.2.1, to the 22nd.

In the last stage of this experiment, C.2.3 in Table 3.4, we compare the retrieved
results following the same learning process of C.2.2, but using now the similarity
metric retrieval method. In contrast to C.2.2, even not using a GIS feature model, it
is possible now for the system to learn the user concept and obtain positive results.
The first error appears in this case at the 9th position. In the second query, a map
feature model is used, obtaining results with the same quality with a smaller number
of interactions.
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Exp. Label
Query

Example
GIS

Retrieval
Method

Posterior
Map

Retrieved Patches
Error

Position
Error

C.1.1
Small
Path

No
Posterior

Probability

1

Yes 1

C.1.2
Small
Path

No
Posterior

Probability

5

Yes 17

C.2.1
Dry

River
Border

No
Posterior

Probability

1

Yes 6

C.2.2
Dry

River
Border

No
Posterior

Probability

1

Yes 22

C.2.3
Dry

River
Border

No
Similarity

Metric
KL

9

Yes 22

Table 3.4: Multispectral-Map fusion case scenario. In the first experiment C.1, the user searches
for smallpaths surrounded by vegetation. C.1.1 shows the results after the first user example.
C.1.2 shows the results after two positive and one negative example. The last experiment, C.2,
aims to search for the user defined concept dryriverborder. In C.2.1 and C.2.2 the system is
unable to learn the user concept if the map model is not used. For the case with map layer the
retrieved images contains the defined label. C.2.3 shows that when using matrix distance search,
even without the map model, the concept learning is possible and for the case with map model the
learning process tends to be faster.

3.10 Performance Evaluation and Discussion

More general system results can be extracted by manually annotating the previously
introduced datasets. The annotation process involved the generation of a record
with the presence of different semantic concepts over the whole datasets. Due to the
highly time consuming nature of the annotation task, it was possible to calculate
quantitative statistical parameters only for the concepts presented in this section.

Extending the first experiment of the Multispectral-SAR case scenario, we can
see in Fig. 3.7 the system response with different configurations retrieving several
dataset sizes. It is possible to detect that for an unique model and for the fusion
of two models, the retrieval based on similarity metrics performs faster than the
posterior probability retrieval. The reasons are two: first, we avoid the calculation
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of the posterior probability on the entire database and compute it just on the query
image; and second, the dictionary sizes for the distance calculations are short enough
to ensure a fast computation over all the elements of the database. However, this
tendency changes when the number of feature models to fuse is more than four. In
this case, the number of elements in the dictionary increases to a point where the
cost of calculating the posterior probabilities in comparison of the computation cost
to calculate the distances is trivial. This is exactly the reason why the computation
times for four feature models using similarity metric retrieval are alike for both KIM
and HDM.

Summarizing, we can say that the distance metric retrieval method is the most
efficient one up to the combination of two models. If more feature models are
used, the posterior probability value based retrieval performs faster. This can be
explained, first, due to the simplification in the posterior probability calculation over
the whole database. And second, because the subsequent ranking of scalar values is
less expensive than the one based on similarity metrics.

To validate the introduced probabilistic retrieval based on similarity metrics,
different queries were performed using the distance metric as a parameter instead
of using a fixed unique metric. Table 3.5 shows a summary with the best query
results for two different semantic labels with different combination of feature models.
Specifically Table 3.5 provides precision, recall, accuracy and F1 measures, i.e, the
equally weighted harmonic mean of precision and recall. A detailed explanation of
the measurements can be found in [182].

In the first test we define the user concept river using the four feature model
employed for the experiment in Section 3.9.1 in the learning process. The first
ranked 25 tiles are retrieved using all the implemented metrics. The results show
the Chebychev metric outperforming the rest of the metrics. The precision, 80%,
and recall, 83%, are at least a 4% better than the rest of the metrics. The obtained
accuracy is 97% with a value of F1 measure of 81%, three percent better than
the second best metric. The second experiment presents the query results for a
turquoise roof user concept using in the learning stage the two feature models
from the multispectral image, intensity and WLD texture. The number of images
retrieved using the similarity metric method is 100. It is remarkable how Kullback-
Leibler and Jensen-Shannon divergence outperform greatly the rest of the metrics.
In this case, Kullback-Leibler provides an 84% of precision, 74% of recall.

Finally, we have extended the Multitemporal-SAR case scenario to present more
exhaustive quantitative measures of the retrieved results. In Fig. 3.8 we provide
precision, recall, accuracy and F1 measure for different user defined concepts. The
graphics show how the different measures vary depending on the number of retrieved
tiles from the database. In almost all the cases, the precision of the system for
retrieved tiles from 1 to 1000 remains over the 90%. The recall increment varies
depending on the amount of images in the database annotated with the concept.
The total amount of tiles is 5814, from which 1409 are annotated with the flooded

48



3.10. Performance Evaluation and Discussion

10
1

10
2

10
3

10
4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

Number of Images

T
im

e 
(s

)

 

 

KIM Post.Prob. 1 Model
KIM Post.Prob. 2 Model
KIM Post.Prob. 4 Model
HDM Post.Prob. 1 Model
HDM Post.Prob. 2 Model
HDM Post.Prob. 4 Model
KIM Sim. Metric 1 Model
KIM Sim. Metric 2 Model
KIM Sim. Metric 4 Model
HDM Sim. Metric 1 Model
HDM Sim. Metric 2 Model
HDM Sim. Metric 4 Model

Figure 3.7: Query computation time curves. It is clearly visible the difference in orders of magni-
tude between retrieval time using KIM and HDM algorithms. The complexity of the KIM algorithm
limits in practice the number of feature models in the learning stage. The used of HDM allows us
to convert the learning process into a linear complexity problem. This enables a real time response
to every user interaction and for the database querying process. The similarity metric retrieval
method is the most efficient one up to the combination of 2 models. After that, the posterior
probability retrieval method performs better.
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User
Concept

Feature
Models

Images
Retrieved

Metric Precision Recall Accuracy F1 measure

River

Multispectral
Intensity & WLD,

SAR Intensity,
& WLD

25

Euclidian 44% 45% 92% 45%
Kullback-Leibler 72% 75% 96% 73%

Kullback-Leibler S. 76% 79% 97% 78%
Jensen-Shannon 72% 75% 96% 78%

Manhattan 76% 79% 97% 78%
Chebychev 80% 83% 97% 81%

Turquoise
Roof

Multispectral
Intensity,

WLD
100

Euclidian 45% 40% 66% 42%
Kullback-Leibler 84% 74% 88% 79%

Kullback-Leibler S. 53% 47% 70% 50%
Jensen-Shannon 80% 70% 85% 74%

Manhattan 50% 44% 69% 47%
Chebychev 41% 36% 64% 38%

Table 3.5: System query results. First test defines the user concept river using a four feature
models in the learning process ranking 25 tiles and using all the implemented metrics. The results
show the Chebychev metric outperforms the others in overall. The precision, 80%, and recall, 83%,
are at least a 4% better than the rest of the metrics. The second experiment presents the first one
hundred query results for a turquoise roof user concept using in the learning stage the two feature
models from the multispectral image, intensity and WLD texture. Kullback-Leibler and Jensen-
Shannon divergence outperform greatly the rest of the metrics. In this case, Kullback-Leibler
outperforms the rest of the metrics with an 84% of precision, 74% of recall.

label, 4405 tiles with the non flooded label, 1930 tiles annotated as non changed and
2474 tiles as crop change.

3.11 Conclusions

We have presented an HDM prototype inspired by and following the main concept
summarized in Section 3.1 and previously implemented in the KIM system in [3].
The HDM enhances the original KIM system overcoming the two-model limitation.
HDM introduces a faster active learning algorithm modifying the required statistical
independence from the features to the posterior probabilities. The obtained speed-
up allows the introduction of new feature models in the learning stage and the
definition of more complex user semantics. The acceleration can also open new
ways for knowledge-driven information mining systems to Big Data scenarios.

For comparison purposes we re-implemented the original KIM method, and based
on it, we introduced new search methods and theoretical probabilistic assumptions
which may outperform in speed the previous one by various orders of magnitude.
The proposed probabilistic search method based on the distances between the el-
ements used for the calculation of the posterior probabilities and image BoW in
the database performs better for weakly defined labels. However, for two different
reasons, this search approach cannot replace completely the approach based on to-
tal posterior probabilities. First, the posterior probability based retrieval yields the
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(a) Retrieval of flooded images
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(b) Retrieval of non flooded images
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(c) Retrieval of images with no changes

0 1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Images Retrieved

Pr
ob

ab
ili

ty

 

 

Precision Recall Accuracy F1 measure

(d) Retrieval of images with crop changes

Figure 3.8: System quantitative results for the retrieval of different user-specific semantics.

tiles with a higher probability of containing the required user semantics. Second,
due to the simplicity of the scalar ranking of posterior probabilities, this approach
performs faster for scenarios with a feature model number greater than two. The
latter fact is due to the increase of the computation cost of the similarity distances
with each extra feature model.

We experience a considerable speed-up of the learning algorithm by introducing
the assumption of posterior probability statistical independence, which does not
seem to introduce biases in the learning processes. Moreover, for some cases, it
outperforms the original concept when looking at the first misclassification in the
ranking.

Furthermore, we have demonstrated the system performance in a time series case
scenario. The system did detect successfully different types of image changes, such
as flooded areas or even the crop rotation in agricultural fields. The system is also
able to retrieve efficiently unchanged patches.
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3. Knowledge-driven Heterogeneous Data Mining

Finally, we have implemented a link to an external data infrastructure which
allows us to include a feature model in the learning processes based on information
independent of the image content (e.g., information extracted from GIS maps). This
link provides a new tool for the improvement of the active learning processes and the
posterior search and retrieval operations. Our tests have shown promising results,
allowing the definition of more complex semantic concepts.
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4

Multilayer Architecture for
Heterogeneous Geospatial Data

Analytics

The constantly growing process of the Earth Observation (EO) data and their het-
erogeneity require new systems and tools for effectively querying and understanding
the available data archives. In this chapter we present the system architecture of
a tool for heterogeneous geospatial data analytics. The system implements differ-
ent web technologies in a multilayer server-client architecture allowing the user to
visually analyze satellite images, maps and in-situ information. Specifically, the in-
formation managed is composed of EO multispectral and Synthetic Aperture Radar
(SAR) products along with the multitemporal in-situ Land Use/Cover Area frame
Survey (LUCAS). The integration of these data provides a very useful information
during the EO scene interpretation process. The system also offers interactive tools
for the detection of optimal datasets for EO multitemporal image change detec-
tion, providing at the same time ground truth points for both, human and machine
analysis.

The chapter continues with Section 4.1 where the importance of data in integra-
tion in EO is pointed out. Section 4.2 deeply describes the architecture of the system
and the multiple layers that compose it. Section 4.3 shows the performance evalua-
tion of the system in multiuser and multidevice environments. Section 4.4 presents
different functionalities of the system, such as capabilities for a better understand-
ing of EO images (Section 4.4.1) and tools for optimum dataset selection (Section
4.4.2). Finally, Section 4.5 contains the conclusions summing up the chapter.

The content of this charter will be published in: K. Alonso, D. Espinoza-Molina, and M. Datcu,
Multilayer Architecture for Heterogeneous Geospatial Data Analytics: Querying and Understand-
ing EO Archives, IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 10, no. 3, pp. 791-801, March 2017.
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4. Multilayer Architecture for Heterogeneous Geospatial Data Analytics

4.1 Heterogeneous EO Data Integration

The EO data heterogeneity as described in Section 2.1 has different sources where
sensor diversity, which includes a different variety of imagery and related meta-
data; digital cartography; and in-situ data are very prominent elements. Regarding
data integration, Geographical Information Systems (GIS) play a key role. GIS
are defined in [183] as ”computer-based information systems that enable capture,
modeling, storage, retrieval, sharing, manipulation, analysis, and presentation of
geographically referenced data”. From the initial standalone GIS architectures, the
internet development has promoted the intercommunication among GIS specially
via Web services [184].

In the same way, plenty of the scientific community work has been focused in the
link of information sources by means of integration and fusion of the different infor-
mation sources. Regarding the information integration, implementations with EO
data have been presented for security and hazard decision makers like GEODec [185]
or the system introduced in [186] which aims to support the Earthquake research
and disaster response. On the same subject, the work in [187] presents a geospatial
data processing functionality to support collaborative and more efficient emergency
response. This is achieved by integrating distributed in-situ data with very high
resolution optical EO images providing: geospatial data queries, on demand im-
age processing, and fast map visualizations. We also find projects like EOLib [161]
or TELEIOS [162] where EO image metadata and linked data are used as query
parameters in order to improve EO image retrieval results.

The heterogeneous data integration brings new possibilities for data representa-
tion and visualization. The value of data integration in geospatial infrastructures
was shown in [188] where the correct design of data and information models was
mandatory in order to assure the interoperability at metadata, data and semantic
levels.

4.2 Architecture

This system is designed to support EO analysts and expert users through analyt-
ical processes. Thus, it is meant to provide tools for data visualization, statistical
analysis and data management, with the objective to improve the EO image un-
derstanding and help in the dataset selection for multitemporal change detection.
Another technical requirement is the capability to handle multiple users accessing
simultaneously the system from different devices running different Operative Sys-
tems (OS). Aiming to offer such an ubiquitous tool, the system is based on web
technologies following a server-client philosophy. The architecture of the system has
been designed using a multilayer approach, see Fig. 4.1. The main server side is
composed by: the data source layer, data ingestion layer, database management
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4.2. Architecture

system, and user oriented web functionality layer. The system is also specifically
designed to rely all the computational complexity over the server, making the client
side lightweight. In this way, the client is only composed by the Graphic User In-
terface (GUI) layer, which can be accessed from any electronic device capable of
running a web browser with HTML-5 compatibility.

4.2.1 Data Sources

One of the system’s main feature is the possibility to work with heterogeneous
information sources. The heterogeneity on the data offers big possibilities to the
researchers, allowing them to analyze specific scenarios from different perspectives.
The presented system is able to manage and process information from the LUCAS
survey, introduced in Section 3, and different satellite imagery, optical (Section 2.1.1)
and SAR (Section 2.1.5).

Despite of the actual implementation, the designed system architecture, based
on well-known standards, makes possible to easily integrate more data sources, e.g.,
hyperspectral images (Section 2.1.4).

4.2.2 Data Ingestion

The Data Ingestion layer performs one time non iterative processes in order to popu-
late the system data repositories. Two main processes can be differentiate: metadata
ingestion, and tile generation. The first process extracts the LUCAS survey meta-
data, in CSV format, to be ingested into the system geographical database. The
ingestion is made by parsing the extracted metadata to series of Standard Query
Language (SQL) queries that insert and submit the information to the geographi-
cal database. The second process of the ingestion module produces tiles of the EO
products at different zoom levels in order to make more efficient the visualization of
those via Tile Map Services (TMS) [189]. The system base projection is WGS-84. If
the data source has a different projection, a reprojection process can be performed
before the tile generation. A TMS only provides access to the geographical map
representation of the EO data, not to the data. Additionally, thumbnails of the
LUCAS images are generated in order to optimize server-client communications.

4.2.3 Database Management System

The Database Management System is composed by the main geographical database
and a data repository in the system archive. The geographical database rests
on PostgreSQL (object-relational database) technology [190, 191] with the spatial
database extension PostGIS. The extension adds support for geographic objects al-
lowing location queries to be run in SQL. PostGIS also enables the creation of a
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Figure 4.1: System architecture. Following a server-client philosophy, the system is designed to
rely all the computational complexity over the server making the client side lightweight.
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Figure 4.2: Compact relationship of the Lucas database scheme

database schema defining spatially the content of LUCAS survey of different years,
and in consequence, allowing spatio-temporal queries.

A compact scheme of the geographical database for the LUCAS data is shown in
Fig. 4.2. The Point table contains all the geographical locations of the points where
the survey was performed. In addition, this table stores information about the date
of survey, latitude and longitude coordinates, and geometry. The Patch table stores
the information of the photos taken on the observed points. This table provides an
URL to each picture in the data repository, thus linking the survey metadata with
the multimedia images. The table Lucas-Patch consists of the relation between the
point and path tables. Label table comprises the semantic labels, which describe
the land use and land cover categories. The labels are stored following a hierarchy,
which is specified in the level field of the table. The Annotation table stores the
annotation of one patch with several semantic labels, that is the relation between
patch and semantic labels.

4.2.4 User Oriented Web Functionalities

The User Oriented Web Functionalities module processes every user request. This
layer implements all the server logic procedures required. It is divided in three
main logic blocks: 1) Geo-Information Visualization, 2) Metadata and Statistic
Visualization, and 3) Image analytics.

The first logic block, the Geo-Information Visualization block, performs the com-
munication protocols with third party service providers and/or the Database Man-
agement System in order to retrieve the required visual information. Going into
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detail in the communication with the third party service providers, the system im-
plements in parallel an instance of MapServer [192]. The system centralizes all the
communication with the third party providers through the MapServer, who works
as a proxy. In this way the user and the system main logic remain isolated and avoid
cross-domain communications. Furthermore, MapServer already implements most
of the standardised protocols for communication and publication of spatial data on
the web, e.g., Web Map Service (WMS) [193], allowing an easy connection between
the main server, acting as a client, and the third party service providers which serve
the data. WMS is the most spread geographical map producer standard on the
web. WMS providers generate on-live map representations in a pictorial format,
e.g., PNG, of the geographic information to every request. In this sense, one last
useful functionality of MapServer is the data caching. Mapserver implements tile
caching capabilities through the MapCache project which can improve the system
performance in an multi-user environment by reducing the data request number to
WMS providers. All the obtained visual content can be used in the analytical block
or just be directly presented to the user.

The Metadata and Statistic Visualization block is composed by a set of functions
and procedures to collect the data from the database required to generate the re-
quired data visualization. It is important to point out that the visualization is done
in the user machine and this block functionality is limited to the data acquisition,
processing and parsing. There are two types of data to handle: 1) raw data, and 2)
statistical data. The raw data comprises the information of a single LUCAS point
using direct metadata retrieval from the database without any processing step. On
the other hand, the statistical data generally involves the retrieval and statistical
processing of a group of LUCAS points in a geographical region. Both data are
finally parsed to the structure required by the GUI.

The products generated by the previous processes are presented together to the
user by the Image Analytic block. This process collects the interaction of the user
with the data and sends the required instructions to Geo-Information and statistical
visualization processes in case an update is required.

4.2.5 Graphic User Interface

The computational complexity relies on the server making the client lightweight and
operational in any electronic device capable of running a web browser with HTML-5.
Through the user interface, shown in Fig. 4.3, the user interacts with the system.
The main map canvas, upper-center, is developed using WebGLEarth library [194]
[195], which takes advantage of the Web Graphic Library (WebGL) [196] technology
to render a 3D Earth globe on the browser without any external plug-in requirement.
The canvas supports several WMS or TMS layers simultaneously, which can be
enable/disable at will. Thus, the user is able to visualize simultaneously or to
switch from OpenStreetMap to the EO SAR layer just by clicking a button. The

58



4.2. Architecture

Figure 4.3: Graphic user interface of the system.

communications required to obtain the WMS layers from third party services are
transparent to the user, who receives all the information from the Image Analytics
module.

Another feature of the map canvas is the capability to use a polygon based region
selection tool, which allows to focus the analysis in an specific area of interest. Once
a region is selected, it is possible to: 1) query all the points inside the region, 2) get
the survey points with land cover changes among the surveys or even 3) ask for the
points with a specific land cover. While the first two options are done by pressing
the buttons over the map canvas, the specific land cover query is done using the
hierarchical land cover tree in the upper-left of the GUI. Besides the preconstructed
queries, the users can produce more tailored queries by selecting specific combination
of land cover changes, survey dates or even maximum distances between points.

The points are displayed on the map by using markers. Marker generation is a
build-in feature of WebGLEarth library, which we customized in order to introduce
Scalable Vector Graphic (SVG) markers with the capability to include a variety of
color codes to represent different information of the data.

Along with the region points, interactive statistical charts with the point infor-
mation are presented, lower-center in Fig. 5.2. The charts are generated using D3JS
[197] library which provides a wide variety of interactive visualization components.
It is also possible to click over each point for checking its specific information. This
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information is shown under the map canvas in a table form, in which the user can
check specific details about the location, land cover or acquisition times. While
the table is generated, the in-situ images of the different surveys are loaded for
comparison and analysis in the right side of the GUI.

4.3 Performance Evaluation

The performance of the system is evaluated on a development workstation with
an Intel Core i7-2760QM CPU, 8 Gigabyte of RAM memory, Gigabit Ethernet
network adapter and Ubuntu 12.04 as operative system. We present two different
performance evaluations: 1) multiuser evaluation, and 2) multidevice evaluation.

The multiuser tests have been performed on an Ethernet Local Area Network
(LAN) with a total of ten simultaneous users running Ubuntu or Windows7 as OS
with Firefox or Chrome as Browser. During the tests the loading of main page of
the system turned out to be the mayor bottle neck in the system performance. The
initial HTML file links all the required libraries and has a size of 4.15 Megabyte.
This initial loading is unique per user session but it is the most data intensive request
the server must handle. The rest of the requests consist mainly of tiles and specific
data requests which are numerous but small in size. Typical loading time for the
main page is 4 seconds, but it goes up to 12 seconds when al the users start a session
synchronized. The multiuser tests also show that once this initial data transmission
peak is over the system can handle the user interactions seamlessly. The users are
able to use the system with a mean latency around 250 ms with spikes of 700 ms
when requesting high amount of tiles.

The multidevice test is carried out on a Wireless Local Area Network (WLAN)
using the following devices: laptops running Windows 7, Windows 10 and Ubuntu;
a smartphone running Android; and two different tablet devices running Android
and iOS. As mentioned in Section 4.2 by relying on web technologies the system is
independent of the OS and it only requires a web browser supporting HTML-5 and
WebGL. Thus the system has been successfully tested in the most used browsers in
the market: Chrome, Firefox, Microsoft Edge, Safari and Opera.

Nevertheless, before the system enters into production state, a precise study of
the user community and server requirements will be performed.

4.4 Case Studies

This section aims to show the potential of the system. We present three different
use cases. First, we show how the system helps the user to understand the image
content. Second, we present a case of study where the system is used for optimum
dataset recognition and selection. Both cases exploit the integration of LUCAS
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(a) WorldView-2 (b) TerraSAR-X

Figure 4.4: Image understanding case scenario of Munich, Germany.

survey data in order to enhance or improve the analysis and work performed with
EO data.

4.4.1 Image Understanding

Image understanding refers to the capability of the users to interpret the content
of the image they are studying. For the purpose of introducing the image under-
standing capabilities of the system we present three different scenarios in different
cities.

4.4.1.1 Munich

This initial case of study is placed in the city of Munich, Germany. The system is
ingested with the LUCAS information of Germany, linked with an OpenStreetMap
layer; and two EO products of Munich: a multispectral image from WorldView-2
(WV-2) and a SAR image from TerraSAR-X (TS-X). Both EO images have pixel
spacing of 1.25 meter, covering an area of 24 km2. The size of the total scene is
4890x3202 pixels. The EO images used are the same used in Section 3.9.1. Due
to readability the data set is shown again in Fig. 4.4, but a higher resolution
representation is available in Fig. 3.4

In this case we present a scenario where the availability of heterogeneous data
sources from a same location allows a better understanding of the EO scene by
expert and non-expert users. The data used on the experiment are shown in Fig.
4.5. Analysing just the SAR image, Fig. 4.5a, it is possible for both users to deduce
that the main vertical structures of the image correspond to bridges. Moreover,
an expert user most probably would interpret, due the intensity of the surrounding
pixels, that the bridges are over several lanes of railways.
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(a) SAR (b) Multispectral (c) OpenStreetMap (d) LUCAS

Figure 4.5: Munich EO scene understanding. From the (a) SAR image an user can recognize two
different bridge structures. When adding (b) Multispectral image to the scene interpretation it is
clear that the left structure, because of the small width, can be at most a gangway for pedestrians
but the resolution of the image does not allow a correct identification. Adding the (c) Map layer the
user realises that the structure is not appearing what practically discard the gangway. Including
the in-situ information from (d) LUCAS surveys the user can finally recognise the unidentified
structure as a main overhead line supporting infrastructure for the trains.

For the second step of the experiment, the users have also available a multispec-
tral image, shown in Fig. 4.5b, for the scene interpretation. In this case the railway
assumption would be clear. With the multispectral image the initial assumption
about the bridges can be modified. The right structure of the image corresponds
clearly to a bridge, but a question rises concerning the element on the left. Due to
its width the left structure can not be a bridge where the cars can transit, but it
could still be a gangway for pedestrians.

In the next step of this experiment we add one more data source to the scene
interpretation process, the map layer with the OpenStreetMap information, Fig.
4.5c. The map clearly identifies the railways and the big bridge, providing at the
same time more detailed information about the surrounding buildings, street names,
etc. On the other hand, it does not help with the interpretation of the unidentified
structure clearly visible in the SAR image.

The last step uses the remaining source integrated by our system, the LUCAS
surveys. Going back to Fig. 4.5c it is visible a blue marker pointing out the avail-
ability of information from the LUCAS survey. Retrieving this information and
adding it to the scene interpretation, the users would know that the survey point is
classified as non built-up area inside the artificial land land cover category. More-
over, analysing one of the available photos, see Fig. 4.5d, the users can finally get
an interpretation of the unidentified structure. The structure corresponds to a main
overhead line supporting infrastructure for the trains.

4.4.1.2 Karlsruhe

The second case of study is located in the city of Karlsruhe, Germany. The users
have available the LUCAS data, OpenStreetMap information and a TS-X image.
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Figure 4.6: Image understanding case scenario of Karlsruhe, Germany.

The EO image, Fig. 4.6, is a spotlight image with 1.25 meter pixel space and a size
of 4343x5741 pixels covering an area of 60 km2.

Starting again from the SAR image, Fig. 4.7a, the users are able to identify a
slightly brighter striped element in the middle of the street that diagonally crosses
the image. Generally streets present a low and homogeneous back-scatter coefficient
in SAR images, since the flat surface of such targets favours specular reflection.
Moving now to the OpenStreetMap layer, Fig. 4.7b, it is possible to identify clearly
two separate roads on the street probably one for each traffic direction. However
there is nothing that gives us an explanation to the stripped element in the middle
of the street. As in the previous case there is available in-situ information on that
street, Fig. 4.7c, where you can clearly see a tram line. The more intense back-
scatter then is explained by the track ballast that are used to level and hold the
rails in place. The ballast is made of crushed stone with sharp edges which increase
the back-scatter coefficient in comparison with the road explaining the increase of
brightness and, therefore, the unidentified stripped element.
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(a) SAR (b) Map - OpenStreetMap (c) LUCAS

Figure 4.7: Karlsruhe EO scene understanding. From the (a) SAR image an user can recognize
a slightly brighter striped element in the middle of the street that diagonally crosses the image.
When adding (b) OpenStreetMap image to the scene interpretation it is possible to identify clearly
two separate roads on the street probably one for each traffic direction. Nevertheless the striped
element still remains unknown. Adding the in-situ information from (d) LUCAS surveys the user
can finally recognise the unidentified structure as the ballast made of sharp stones and used to
keep the rails in place.

4.4.1.3 Stuttgart

The third image understanding scenario is based on Stuttgart, Germany. The avail-
able data are composed of the LUCAS survey, OpenStreetMap information and a
TS-X image. The EO image, Fig. 4.8, is a spotlight image with 1.25 meter pixel
space and a size of 6472x3617 pixels covering an area of 56 km2.

Focusing our analysis in Fig. 4.9a, the SAR image shows several low back-
scattering rectangular elements, some of them surrounded by high back-scattering
elements. The low back-scattering, as explained in the previous example, is nor-
mally due to a flat surfaces, e.g., streets, water bodies or sport courts. In this case
such amount of small water bodies can only be explained due to agri/aqua-cultural
exploitation. Aquaculture exploitation can be discarded because these type of in-
stallations are usually along river/lake borders. The agricultural use matching this
kind of SAR pattern is related with flooded crops like rice. In this case the probabil-
ity of the image to contain rice fields is very low but nevertheless the use of the map
information can help discarding totally this hypothesis. Analysing the map, Fig.
4.9b, we can see that the element corresponds to the legend of sportpitch in Open-
SteetMap. Finally analysing the LUCAS in-situ information we can know that the
small pitches correspond to tennis courts and the surrounding high back-scattering
is probably due to the metallic fences and light poles.

4.4.2 Optimum Dataset Selection

In this case of study we intend to show the possibilities of the presented tool for the
selection of optimal datasets and ground truth information. This capabilities can
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Figure 4.8: Image understanding case scenario of Stutgart, Germany.

(a) SAR (b) Map - OpenStreetMap (c) LUCAS

Figure 4.9: Stuttgart EO image understanding. The (a) SAR image shows several low back-
scattering rectangular elements, some of them surrounded by high back-scattering elements. By
means of (b) OpenStreetMap image it is possible to discard agri/aqua-cultural exploitation and
to know the actual use of unidentified elements as sport pitches. Finally, analysing the in-situ
information from (d) LUCAS surveys, it is possible to know that at least some of them are tennis
courts.
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Figure 4.10: Optimum dataset selection example for sunflower fields. If EO analysts would like
to look for EO images containing sunflower crops in Germany, the system will show them the
location of this type of field. The EO analysts would notice the proliferation of sunflower fields in
the north-east of Germany, surrounding the capital, Berlin.

be proved useful for the EO analyst in different contexts such as change detection
on EO image time series or during new EO analyst training activities.

With this purpose we define a region that encloses the whole Germany and
make use of the in-situ information provided by LUCAS surveys of 2009 and 2012.
Moreover, taking advantage of the query capabilities described in Section 4.2.5 we
present different hypothetical scenarios where the presented system can be useful.

In the initial scenario EO analysts need to define a location for the acquisition of
EO products for sunflower crop analysis and change detection in time series. Oper-
ating the system, it is possible to easily retrieve the existing points with Sunflower
crop. The procedure is as follows: 1) define a region, 2) deploy the tree showing
the land cover classes in order to find the Sunflower crop, and 3) double-click to
perform the request and visualize the results. The obtained results presented in Fig.
4.10 show the distribution of sunflower fields in Germany. Additionally, it is clearly
visible a bigger concentration of sunflower fields in the north-east, in the region
surrounding the capital, Berlin. Taking into account this results, the EO analysts
should delimit their analysis region around Berlin and order EO products of this
zone. They could also take advantage of the information from the LUCAS points
to classify the fields to which the GPS coordinates correspond to a sunflower field.

In the second scenario two EO analysts need to generate a data set for vineyard
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(a) LUCAS vineyards (b) German wine regions [Orig. Author: DalGo-
bboM]

Figure 4.11: Optimum dataset selection, vineyard crop detection. Two EO analyst look for vine-
yards using the system and in parallel, for comparison purposes, a search engine. The first EO
analyst obtains (a) using the system feed with the LUCAS information. The second EO analyst
obtains (b), a map from wikipedia.org which identifies the main German wine regions. It is vis-
ible the resemblance with the result shown in (a) with the main regions shown in (b). The use
of the system supports the users with ground truth data and offers results in accordance to the
information available on the internet.

crop detection. One of them has available our system and the other will make use
of traditional web search tools.

The EO analyst using the system follows a procedure similar to the one explained
in the previous example, but now selecting the land cover Vineyard. The results,
see Fig. 4.11a, show a concentration of vineyards in the west and south-west, with
a bigger concentration around the west. The bigger density area corresponds to
the Baden-Württemberg and Rhineland-Palatinate region and the fields appear to
be along the Rhine river. Hence, the EO analyst should focus the efforts on these
regions.

The procedure of the second EO analyst is also very simple. Open a web browser
and using any of the available search engines type German wine regions. In most of
the cases, the three first search results include the Wikipedia entry, where you can
get access to the map shown in Fig. 4.11b. This map shows the 13 most important
German wine regions, providing the answer to the second EO analyst.

Comparing the obtained results, we can see how both of them are consistent. Our
system, making use of the in-situ information provided by LUCAS survey, shows
points belonging to the most of the wine regions. It is clearly visible a similarity in
the form of the map with the distribution of the LUCAS points. Nevertheless, our
system does not provide any result from the smaller regions located in the upper
top of the map. This is probably related with the 2 km2 grid between survey points,
which make it difficult to register smaller wine regions.
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Ending this case scenario we can sentence that the use of our system is reliable
and mostly in accordance with the information obtained from the web. Moreover,
as mentioned previously the use of our system also provides with the additional
information that can be used as ground truth in posterior analysis.

Finally, we can state that using these query capabilities and the interactive
statistical graphic representations it is possible to detect regions with generic land
cover changes or even specific changes, e.g., crop changes. Some examples of specific
crop changes are crops moving from barley to potato or from common wheat to rape.
The land cover detectable changes are the combination of the classes registered
in LUCAS. After locating a region with the desired change type, or a big change
diversity, the user can easily get the region coordinates and acquisition dates. With
them the user could contact the data suppliers in order to get the desired EO data
and proceed with the change detection analysis using available LUCAS information
as ground truth in the validation processes.

4.5 Conclusions

We have presented the architecture and a prototype of a multilayer system for het-
erogeneous geospatial data analytics. The system implements a server-client archi-
tecture, which integrates several web technologies. One of the benefits related to
the server-client approach is the simplicity of the client. The server is responsible
of the most complex processing tasks making possible to offer lightweight clients
for different devices. The presented architecture manages the data from the source.
The initial layers read the original data and perform transformations to make viable
the data integration. These heterogeneous data are linked and stored in a geograph-
ical database or in a system repository. The link among the data allows the User
Oriented Web Functionality layer to exploit the database capabilities in order to
perform geographical queries over the stored data. This layer also implements all
the communication protocols to the linked third party services and the server logic
that interacts with the user via the GUI.

The presented case studies show the system capabilities managing heterogeneous
EO and in-situ data sources. In the first case of study the system proves its utility
helping to get a better understanding of EO images for expert and non-expert users.
The second case of study use the presented system as a tool for the selection of
optimal datasets. Exploiting the in-situ information of LUCAS survey it is possible
to use the surveyed point data as ground truth information for change detection on
EO image time series.

68



5

Data Mining Methodology for the
Assurance of in-situ Recorded

Land Cover Changes

This chapter presents a data mining methodology to filter and validate land cover
change detections obtained from multitemporal in-situ surveys. As in-situ data we
use the measurements from the European Land Use/Cover Area frame Survey (LU-
CAS), which provides images with standardized metadata about land cover and
land use within the whole territory of the European Union. Multitemporal LU-
CAS surveys present an anomaly in the amount of land cover changes that disagree
with the estimated by experts. Therefore, our methodology analyses the available
data in order to explain the existing irregularities in them. The initial step of our
methodology is based on database query refinements. The data mining methodol-
ogy continues with an image analysis process. This analysis calculates similarity
measures of the multitemporal images which are used to identify the potential mis-
classifications. The final step involves a GIS based on web technologies. By defining
different color codes assigned by the similarity measures, the system represents the
examined points on a digital Earth globe. There, a user can easily discriminate
potentially misclassified points for subsequent detailed analysis or corrections. The
final output of the methodology shows remarkable results for detecting misclassified
land cover changes.

The rest of the chapter continues with Section 5.1 where the motivation for the
presented data mining methodology is described. Section 5.2 presents the archi-
tecture of the system. Section 5.3 explain the data mining methodology which is
composed by three different steps: Section 5.3.1 describes the data refinement step,

The content of this charter will be published in: K. Alonso, D. Espinoza-Molina, and M.
Datcu, Mining Multitemporal in-situ Heterogeneous Monitoring Information for the Assurance of
Recorded Land Cover Changes, IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 10, no. 3, pp. 877-887, March 2017.
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Section 5.3.2 the image analysis and similarity computation step, and Section 5.3.3
presents the last step composed by data visualization and filtering processes. After
the methodology presentation, each step is evaluated independently in Section 5.4,
Section 5.5, and Section 5.6. Finalizing with a full methodology evaluation, Section
5.7 and conclusions, Section 5.8.

5.1 LUCAS Anomaly

As described in Section 2.1.7, every three years since 2006 a survey campaign has
been carried out to monitor, in a standardized way, the state and change dynamics in
land use and cover in the European Union. The amount of information collected until
now reaches tens of Terabytes. This volume of information is already big enough to
make it impossible for the data to be supervised at small scale. In consequence, the
task of collecting and supervising the data relies exclusively on the field surveyors.

Analyses of the acquired multitemporal data have shown a very high variability
in the land covers, exceeding the expectations of the experts. Using this peculiarity
as motivation we started a deeper analysis of the LUCAS surveys aiming to identify
the real land cover changes from the potential inaccuracies introduced during the
recording or annotation of the data. Table 5.1 shows two LUCAS survey points.
While the first point shows a clear example of land cover change, the other one
shows a point with a non-visible land cover change. In reality, both points are
marked as land cover changes. In our understanding, the latter point is an example
of the aforementioned anomalies, where the recorded land cover change is uncertain.

With this study we aim to provide tools for the quality assurance of the exist-
ing and future LUCAS surveys. Furthermore, we aim to improve the impact and
integration of the in-situ observations in EO applications. Consequently, the fol-
lowing presents a data mining methodology to filter and validate land cover change
detections obtained from multitemporal LUCAS in-situ surveys.

5.2 Data Mining System Architecture

The base of the presented mining methodology is the system for heterogeneous
geospatial data analytics described in Chapter 4. The system, as shown in Fig. 3.2,
follows a server-client philosophy. The server side is composed of four different
layers: (1) the raw data layer, (2) data ingestion layer, (3) database management
system, and (4) user oriented web functionality layer. The raw data layer contains
the original information sources that are analyzed and processed in the data inges-
tion layer in order to pass the obtained information to the database management
system layer which will store it in a more accessible way, facilitating the querying and
visualization operations performed by the user oriented web functionalities layer. In
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2009 2012

Real Land
Cover Change

Uncertain Land
Cover Change

Table 5.1: Multitemporal LUCAS survey points. The first point shows a clear example of land
cover change. In contrast the second point presents a non visible land cover change. In the
LUCAS survey records both points contain land cover changes. In this way, the second point could
be considered an example of the existing irregularities.

this last layer, the Geo-Information Visualization block performs the communica-
tion protocols with third party geographical information providers using a parallel
instance of MapServer [192]. Mapserver centralizes all the communication with the
third party providers working as a proxy for the main system which remains isolated
and avoids cross-domain communications. The client is constituted of the Graphic
User Interface (GUI) layer accessible from any electronic device capable of running
a HTML-5 compatible web browser.

The data mining methodology requires new or modified system modules, rep-
resented with a darker color in Fig. 5.1. The Feature Extraction module is newly
introduced in the architecture and it is responsible of the in-situ image analysis
processes. The geographical database, the Metadata and Statistical Visualization
module, along with the Image Analytics module were already part of the system
architecture but their functionalities were upgraded considering the requirements of
the presented data mining methodology. The PostGIS [198] is a community devel-
oped open source spatial database extender which allows the geographical query-
ing of the spatial data and it is based on PostgreSQL technology [190, 191]. The
Metadata and Statistic Visualization module collects the data from the database to
generate the required data visualization. The Image Analytics module manages the
interaction of the user with the data and sends the required instructions to Geo-
Information and statistical visualization processes in case an update is required. In
Section 5.3 the specific functionalities of each module are described in detail.
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Figure 5.1: System architecture. Following a server-client philosophy, the system is designed to
rely all the computational complexity over the server making the client side lightweight.

5.3 Data Mining Methodology

A preliminary study of the survey methodology shows small improvements in the
survey protocol with the pass of the years. One remarkable change is the increase
number of the surveyed points. Consequently, different amounts of information are
available in the database for each surveyed point. Although it is important to be
aware of this fact, it does not impact the change detection procedures. A second
change, the one that could explain at a certain level the high multitemporal land
cover changes, is the update in the land cover hierarchical class structure between
the surveys done in 2009 and 2012. The multilevel hierarchy starts with general land
cover classes at the lower level and extends to more specific classes with each higher
level. The hierarchy changes were limited to the inclusion of third hierarchical level
classes inside the first level classes Woodland and Bare Land. Nonetheless, even this
hierarchy structure change solely has produced a non-realistic increase in the de-
tected changes. In order to quantify the non-realistic land cover changes due to the
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Common Hierarchy Hierarchy Update 2012

Woodland

Broadleaved -

Coniferous
Spruce Dominated
Pine Dominated

Other

Mixed
Spruce Dominated
Pine Dominated

Other

Bare Land

Rocks and Stones
Sand

Lichens and Moss
Other

Table 5.2: Land cover class hierarchy modifications between 2009 and 2012 LUCAS surveys. The
Woodland second level hierarchy members Coniferous Woodland and Mixed Woodland were ex-
tended to a third hierarchical level formed by: Spruce Dominated, Pine Dominated and Other.
Furthermore, the first hierarchical level Bare Land was extended with a second level hierarchy.

hierarchy modifications and detect other possible misclassification sources we intro-
duce a data mining methodology which comprises three different steps: 1) database
query refinement, 2) in-situ image analysis and similarity measure computation, and
3) on map data visualization and filtering.

5.3.1 Database Query Refinement

The data mining methodology for land cover change detection starts with the map-
ping of the hierarchical structure changes. The objective of the mapping is to exclude
the points that only present land cover changes due to the land cover class hierarchy
modification. The changes are shown in Table 5.2. The changes were limited to
only two of the first hierarchical level classes Woodland and Bare Land. Woodland’s
second level hierarchy members Coniferous Woodland and Mixed Woodland were
extended with a third hierarchical level formed by: Spruce Dominated, Pine Dom-
inated and Other. In 2009 Bare Land was just defined as a first hierarchical level,
but in 2012 it’s definition was extended with a second level hierarchy formed by:
Rocks and Stones, Sand, liches and Moss and Other.

The mapping of these hierarchy changes is implemented at the Metadata and
Statistic Visualization module. There, it is possible to refine the database requests
in Standard Query Language (SQL) [199]. As a result, the queries to the database
requesting points containing land cover changes will exclude the points whose land
cover change was among the mapped ones, and hence it will avoid the introduction
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of false-positives.

5.3.2 In-situ Image Analysis and Similarity Measure Com-
putation

After the query refinement, the methodology exploits the available point images.
Our integration of the Feature Extraction module in the architecture offers valuable
new data obtained from image analyses which extend the LUCAS information. In
this way, our PostGIS database is extended to link and store the results from two
different image analyses. The first one corresponds to the Bag of Words (BoW)
[146] generated using a common dictionary of Red-Green-Blue (RGB) colors. The
second analysis extracts at image level the texture information using the Weber
Local Descriptor (WLD)[132].

Being D a given image for analysis, the first image processing step results in
an image color quantization based on a predefined color map. The assigned color
map is created by dividing uniformly the color space in 256 elements. Once the D
is quantized the BoW is generated defining p(ωRGB|D) as the probabilities of the
words in a given image. Where ωRGB represents the 256 words in the dictionary and
the index RGB the identifier of each word.

The second analysis takes again an image D as input for our WLD algorithm that
generates as output a WLD histogram that we will use as a second BoW dictionary,
p(ωWLD|D). In this case the words ωWLD represent the different combinations of
excitation levels and orientations taken into account in the WLD algorithm. In our
implementation we decided to use 18 different excitation levels and 8 orientations.

The described analyses procedures are done over all the available LUCAS im-
ages. The obtained results are stored in a database, linking the source images and
the corresponding surveyed point. After the information extraction and analysis
phase comes the result ranking process. This process is implemented in the Meta-
data and Stastic Visualization module following a classical approach used by the
image analysis community. We use the extracted feature sets as visual signatures
to compute similarities among images. Examples of these uses can be found in [16]
and [200]. In this specific scenario we use the stored p(ωi|D) to compute similar-
ity distances and generate a ranking of the LUCAS points, where i is the index
indicating the length of the used dictionaries. The available dictionaries are the pre-
viously described p(ωRGB|D), p(ωWLD|D) and the joined dictionary obtained from
the concatenation of these two p(ωRGB|D) ∪ p(ωWLD|D).

For the calculation of the similarities of the images from the multitemporal survey
we decide to use Kullback-Leibler distance

d =
∑
i

p(ωi2009|D) · p(ωi2012|D) · ln (p(ωi2009|D)) (5.1)
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where p(ωi2009 |D) is the probability vector of a given image from 2009 survey and
p(ωi2012 |D) it’s equivalent in the 2012 survey.

As mentioned in the Section 2.1.7, each LUCAS point is composed of five different
images. The main image shows the exact GPS (p)oint that has been surveyed and
the other four photos cover the surroundings of the location by showing the different
cardinal directions: (N)orth, (E)ast, (S)outh, and (W)est. Here, we define each
LUCAS point as a five element vector P ,

P = [dp, dN , dE, dS, dW ] (5.2)

where the distances d∗ are computed according to (5.1) for each pair of multitemporal
images available in the original LUCAS point.

For the sake of posterior visualization simplicity we aim for an unique similarity
value for each LUCAS point. Thus, we calculate a similarity value as a weighted
mean of the elements in P . To that end, we define a weight vector

W = [wp, wN , wE, wS, wW ] (5.3)

where the different weights w∗ are assigned as follows: wp = 0.3 given that it always
contains the analyzed land cover; and the remaining weights are set to 0.175 in
contemplation of possible changes of the surroundings which also affect the analyzed
land cover. The similarity can then be computed as

Similarity =

5∑
n=1

wn · dn
5∑

n=1

wn

. (5.4)

Finally, by means of the calculated point similarity values it is trivial to generate
a ranking, listing the points in order of image similarity between their images among
surveys.

5.3.3 On Map Data Visualization and Filtering

The implementation of the on map visualization and filtering procedures requires
modifications in the user oriented web functionalities layer. The Metadata and
Statics Visualization module capabilities are extended in pursuance of a better and
faster visual discrimination of the data differences. The approach followed includes
a redefinition of the markers used to represent the survey points. The markers
implement a color codification which allows us to represent the results obtained
from the similarity rankings which we use as confidence value of the annotation.
Additionally, we are able to include another color indicators to visually represent
the time span and the distance between the survey acquisitions. The time of the year
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when the information of the point was collected in each survey can be meaningful
to explain some of the dissimilarities in the images.

Regarding the Image Analytics module, different User Interface (UI) elements
have been introduced in order to help the data filtering process and the annota-
tion modification. Furthermore, new server-client and inter-module communication
processes have been implemented to support the new functionalities required. Fig.
5.2 shows part of the user interface during the visualization and filtering step. The
points shown are the result of the previous two steps. In this specific case the color
intensity from brighter to darker indicates the similarity between the images of the
multitemporal survey points. The black color indicates high similarity while the
brighter tonalities represent lower similarity. The slider-bar over the map can be
used to filter the points drawn over the map. It can set different distance thresholds
which are used in the querying process as condition that the points must fulfill in
order to be retrieved. The slider-bar has three different operation modes. It can
retrieve the points: 1) under the threshold, 2) over the threshold, and 3) in the range
between to thresholds. The specific point information is visualized individually by
showing a table summarizing the most relevant data (under the map frame), and
the acquired multitemporal images (right). The multitemporal images are group by
survey year. The top image corresponds to the top the exact Global Positioning
System (GPS) point surveyed and it is followed by the images pointing to the dif-
ferent cardinal directions, starting with the north and continuing clock-wise. The
selection of a specific point can be done in three different ways. First, by selecting
the markers over the map. Second, by using the buttons in the last column of the
information table. And third, by using the pagination roulette at the bottom of the
UI. This roulette indexes all the points represented on the map.

5.4 Query Refinement Evaluation

For the evaluation of the query refinement processes we use the LUCAS data of
Germany and Spain from the surveys of 2009 and 2012. A summary of the evaluation
is presented in Table 5.3.

5.4.1 Case Study Germany

Germany’s LUCAS data sum a total of 46084 surveyed points. The initial points
are reduced to the points that share the same geolocation, 37504. The difference in
points, as explained in Section 5.3, is due to the increase of the surveyed points in
the 2012 survey. Hence, we have a total of 18752 pairs of points in which we can
perform the temporal land cover change detection. Querying only by the change on
land cover will return a total of 9240 geographical points with land cover changes,
the 49.35% of the total. The query refinement, described in 5.3.1, implements the
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Figure 5.2: User interface used during the step three of the data mining methodology. The tool
allows the visualization of the degree of reliability of the detected land cover changes. It also
implements capabilities of filtering, selection and correction of annotations.

modifications of the land cover hierarchy and detects 2496 points annotated as land
cover changes, the 13.31%, which should not be marked as land cover change. These
points can be differentiated by the hierarchy change type. Thus, an 8.67% corre-
spond to Coniferous Woodland hierarchy change, a 4.43% to the Mixed Woodland
change and a 0.21% to the Bare Land change. Examples of the points that are
discarded are shown in Table 5.4. At this stage, the number of points with possible
land cover changes has been reduced to 6744, a 35.96% of the total. Comparing
the number of points discarded with the originally annotated as change, we can say
that in Germany the 27.01% of the detected land cover changes were related to the
modification of the class hierarchy and not real land cover changes.

5.4.2 Case Study Spain

The LUCAS data for Spain contains a total of 65290 surveyed points. The number
of multitemporal points available is 25016. The initial query for the retrieval of
the land cover changes returns 12172 points, the 48.66% of the total. After the
query refinement procedures we can discard 2020 points, the 8.07%. Looking at the
hierarchy change type, the 5.43% corresponds to Coniferous Woodland hierarchy
change, a 1.60% to the Mixed Woodland change and a 1.04% to the Bare Land
change. Therefore, the number of points with possible land cover changes can be
reduced to 10152, a 40.59% of the total. In this case, the number of points discarded
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Germany Spain

Number of Points Percentage Number of Points Percentage

Multitemporal Points 18752 100 25016 100

Annotated Changes 9240 49.27 12172 48.66

Detected Hierarchy Changes 2496 13.31 2020 8.07

Coniferous Woodland 1625 8.67 1360 5.43

Mixed Woodland 832 4.43 400 1.60

Bare Land 39 0.21 260 1.04

Changes After Refinement 6744 35.96 10152 40.59

Discarded vs. Annotated - 27.01 - 16.60

Table 5.3: Evaluation of the query refinement step using LUCAS data of Germany and Spain
from 2009 and 2012. The annotated land cover changes in both cases are around 50%. Applying
the query refinement procedures to filter the class hierarchy modifications between 2009 and 2012
LUCAS surveys the points discarded as land cover change are 13% for Germany and 8% for Spain.
The ratio of the discarded land cover changes relative to the annotated changes is of a 27% in
Germany and of a 16% in Spain.

versus the initially annotated with land cover change is the 16.60%.

5.5 Image Analysis and Similarity Measure Eval-

uation

The methodology’s second step generates the similarity measures used for ranking
and color coding the multitemporal points. The system implements the possibility
to generate three different rankings based on the analysis described in Section 5.3.2.
The rankings obtained by using the RGB dictionary and the join dictionary present
a better results comparing with the WLD dictionary. The ranking of the former
two shows a higher visual coherence clearly ranking the most similar and dissimilar
point at the extremes of the ranking. The ranking obtained with the WLD dictionary
presents less consistent results, interleaving high similarity points with low similarity
ones.

Table 5.5 presents the information of different points with high and low simi-
larities using the join dictionary. The first four examples correspond to the high
similarity values. High similarity points are marked as low certainty of containing
land cover changes. While most of the high similarity points annotated with multi-
temporal change do not seem to have any land cover change, there are some of the
points, e.g. middle-left point in Table 5.5, that even showing a high similarity also
contain a land cover change. The last row shows points with low image similarity.
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Year
Land
Cover

Point Images

Point North East South West

2009
Coniferus
Woodland

2012
Other

Coniferous
Woodland

2009
Mixed

Woodland

2012

Spruce
Dominated

Mixed
Woodland

2009
Bare
Land

2012
Other
Bare
Soil

Table 5.4: Examples of the points affected by the land cover hierarchy modifications: Conifer-
ous Woodland, Mixed Woodland, and Bare Land. Similar points are discarded during the query
refinement step of the methodology because they do not contain a real land cover change.

At this side of the ranking, the majority of the points correspond to agricultural
lands where the change in the crop type is clearly visible. These points with low
image similarity are the ones that should be marked with the higher certainty of
land cover change.

5.6 Data Visualization and Filtering Evaluation

At this point of the methodology we will focus our evaluation on the usability of
the developed tools for the data visualization, filtering and correction. To evaluate
the performance of the complete methodology and the usability of the developed
tools we focused our analysis in the LUCAS data of Germany. At this stage the
user will exploit the outputs of the previous methodology steps. The initial step
provided the query refinement, as described in Section 5.4.1, where the number of
points containing land cover changes was reduced a 27.01%, from the initial 9240 to
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Similarity Year
Land
Cover

Point Images
Land
Cover

Point Images

2009
Coniferous
Woodland

P N

Non built-up
Linear

Features P N

High

2012

Spruce
Dominated

Mixed
Woodland P N

Grassland
without

Tree Cover
Woodland P N

Distance 0.13 0.16 Distance 0.43 0.64

2009 Barley

E W

Grassland
without

Tree/Shrub
Cover P N

2012 Maize

E W

Spontaneous
Re-vegetated

Surfaces P N

Distance 0.18 0.20 Distance 0.25 0.26

Low

2009 Barley

S N

Sugar
Beet

N E

2012
Spontaneous
Re-vegetated

Surfaces S N

Common
Wheat

N E

Distance 11.04 11.37 Distance 10.38 10.00

Table 5.5: Image analysis and similarity measure evaluation. The points shown correspond to
the opposite extremes of the ranking using the join dictionary described in Section 5.3.2. High
similarity points are marked as low confidence annotation points to contain a land cover change.
We can appreciate that most of the high similarity points don’t really contain a real land cover
change. On the other hand, the annotations of low similarity points are marked as highly reliable
considering most of them contain land cover changes.

6744. The second step generated the similarity ranking of the points that are used
here to represent the confidence level of the land cover change annotation.

The developed tools allowed a user to review effectively the remaining points in
around one working day. At the end of the data visualization and filtering process
all the points were reviewed. The land cover changes of the 72.2% of the points were
validated. The multitemporal changes of the other 27.8% were discarded.

5.7 Data Mining Methodology Evaluation

After evaluating independently each of the methodology’s steps we proceed to evalu-
ate the performance of the entire methodology. It is clear to us the query refinement
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step is a valuable process in order to initially narrow down the number of points
to be analyzed. The image analysis and similarity computation step can be re-
evaluated by using the results obtained in the evaluation of the third step in Section
5.6. Thus, using the corrected annotation of the land cover changes as a ground
truth, a quantitative analysis of the quality of the similarity ranking for land cover
change detection can be computed. In other words, we use the validated results of
the land cover changes, obtained from the data mining methodology, to measure the
performance of similarity rankings for detecting real/non-real land cover changes.
The analysis is performed using the ranking generated by the RGB dictionary. For
the case of retrieving the points with a real land cover change, the obtained results
are presented in Fig. 5.3a. Here, there are represented the precision, recall, accu-
racy and F1 measures, i.e, the equally weighted harmonic mean of precision and
recall. A detailed explanation of the used measurements can be found in [182]. The
results show very high precision values, over 90%, when limiting the ranking up to
2000 points. The accuracy and F1 parameters start at lower values but they values
increase with the amount of retrieved images and the improvement of the recall.
While retrieving around 5000 points the maximum performance is offered obtaining
a precision of 83.67%, a recall of 81%, an accuracy rate of 74.8% and a F1 value of
82.3%.

On the contrary, if we inverse the approach and analyze the performance of the
ranking for retrieving the points with a non-real land cover change, the obtained
results are not so promising. The Fig. 5.3b shows how the precision value rapidly
decays to 75% when limiting the retrieved points to 500. When trying to retrieve the
same amount of points annotated as non-real land cover change, 1875, the precision
value is just a 55.25% with a recall of 55.9%, an accuracy of 75.27% and a F1 value
of 55.57%. These poor results are explained by the points similar to the one shown
in Table 5.5, where even having high visual similarity, the land cover changes exist.

In our opinion the results obtained with the similarity ranking for the case of low
similarity points could offer good enough results for some kind of automatization.
On the other hand, the results with the high similarity points are not good enough.
Hence, we think the data visualization and filtering tools play an important role in
the proposed data mining methodology. This last step uses the generated ranking
result in order to facilitate the user task of reviewing, filtering and correcting the
land cover annotations. The entire process can be performed with an affordable time
investment, offering better final results than any possible automatization. Thus, at
the end of the three steps of the data mining methodology we reduce the original
49.27% of the points annotated as land cover changes, to only the 25.97%.

Additionally, the data visualization tools have helped to identify and understand
the most common land cover misclassifications. Some of the examples of the errors
are listed in Table 5.6. One of the most common misclassification mistakes are
related to the linear features, i.e., roads. The first case shows a point of a road inside
a forest. The landscape did not change but in 2009 the surveyors decided to classify
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Figure 5.3: Quantitative results for the retrieval of points using the similarity metric for retrieving:
(a) real land cover changes and (b) non-real land cover changes.
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it as Non Built-up Linear Feature while in 2012 they preferred to focus more on the
surroundings assigning the point the Broadleaved Woodland class. Another common
mistake is the one shown in the second case where the criteria for the definition of a
Non Built-up Area Feature or Non Built-up Linear Feature is not totally clear. Case
3 and Case 4 show errors in the classification due to small distance differences in
the surveyed points. We have also noticed different criteria when classifying grass
fields. Specifically troublesome appear to be the land covers Grassland without
Tree/Shrub Cover, Grassland with Sparse Tree/Shrub Cover, Temporary Grassland,
and Spontaneous Re-vegetated Surfaces. Examples of these class misclassifications
are shown in the Cases 5 to 7. Inland Running Water class also appears to have
classification problems, see Case 8. Here, as in previous cases, the error is due
to small distance differences between the points. Some less common classification
errors include Apple Tree and Cherry fruit classes. Finally, there are two common
misclassifications that appear to happen inside residential areas. In the first one, the
surveyors usually change the classification criteria. In the initial survey they decided
to annotate a building while in the second survey they decided to annotate the
garden of the building. The second classification error in residential areas involves
the classes Buildings with 1 to 3 Floors and Buildings with more than 3 Floors,
example of this error is shown in Case 10.

5.8 Conclusions

We have presented a data mining methodology that is able to successfully filter
false land cover changes from the real land cover change detections in multitempo-
ral LUCAS in-situ surveys. As base for the data mining methodology we use the
heterogeneous geospatial data analytics system presented in Chapter 4. We have
described the three methodology steps and evaluated them independently. The
database query refinement step maps the changes in the class hierarchy in order to
exclude the points that only present land cover changes due to the hierarchy’s mod-
ification. The evaluation of this step has shown relevant land cover change filtering
capabilities. The query refinement was able to discard the 27.01% of the data anno-
tated as land cover changes in Germany and a 16.6% in Spain. The second step, the
image analysis and similarity computation step, showed big capabilities generating
similarity rankings with the point images. In the third step, the visual evaluation
of the ranking is very good. It clearly positions at the extremes the most similar
and dissimilar points. Unfortunately, a correct ranking based on similarity does not
ensure a good discrimination of the land cover changes. This fact can be seen in
the quantitative analysis performed in Section 5.5 where the dissimilar images offer
a very good land cover change detection but failed to detect the changes in more
similar images. The data visualization step takes advantage of the previous results
in order to offer simplicity and efficiency to the users in their data reviewing tasks.
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5. Data Mining Methodology for the Assurance of in-situ Recorded Land Cover
Changes

The developed tools allow the reviewing task with a small investment in manpower
and time. The final data mining results show a clear reduction in the total number
of land cover changes which go from the initial 49.27% to only the 25.97%. Addition-
ally, the data mining methodology has improved our knowledge of the data and has
helped us to identify common mistakes done during the surveying campaigns. In our
understanding the final quality of future surveys could be improved in two different
ways. First, the surveyor training could be improved by presenting the detected
common mistakes during the training sessions. Second, the developed system can
easily be accessible to the surveyors on the field which will provide fast information
of the previous surveys reducing the uncertainty and the subjective criteria in the
decision making process.
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Year Case Land Cover Point Images Case Land Cover Point Images

2009

1

Non Built-up
Linear Features

P N
2

Non Built-up
Area Features

P E

2012
Broadleaved
Woodland

P N

Non Built-up
Linear Features

P E

2009

3

Maize

P S
4

Non Built-up
Linear Features

P W

2012
Grassland
without

Tree/Shrub Cover P S

Vineyards

P W

2009

5

Grassland
without

Tree/Shrub Cover P E
6

Temporary
Grassland

P W

2012
Grassland

with Sparse
Tree/Shrub Cover P E

Grassland
without

Tree/Shrub Cover P W

2009

7

Spontaneous
Re-vegetated

Surfaces P S
8

Broadleaved
Woodland

P E

2012
Temporary
Grassland

P S

Inland
Running
Water P E

2009

9

Apple
Tree

P S
10

Buildings
with 1 to 3

Floors P E

2012
Cherry
Fruit

P S

Buildings
with more

than 3 Floors P E

Table 5.6: Common misclassification patterns encountered after concluding the data mining
methodology over the German 2009 and 2012 LUCAS surveys. Some of the most common mis-
classification mistakes are related to the linear features, i.e., roads (Cases 1-2). Other errors are
due to small distance differences between the surveyed points (Cases 3-4 and 8). Also, grass fields
and different type of fruit trees are difficult to classify (Cases 5-7 and 9). Finally, the residential
areas have shown common misclassifications (Case 10).
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6

Visual Analytics for EO Archives
and In-Situ Data

In conjunction to image information retrieval systems that provide a wide variety
of tools for interactive exploration of big image archives, visual analytic techniques
can offer additional tools to interactively analyze big amounts of data. In general,
these techniques exploit the results of different automatic analysis processes and
generate interactive visualization that facilitate the understanding, reasoning and
decision making over large and complex datasets. Due to the nature, extension,
and complex composition of Earth Observation (EO) archives, they make perfect
candidates for the implementation of visual analytic techniques. Hence, this chapter
showcases some of the possibilities available when different data visualizations are
implemented.

The chapter firstly introduces the main data categories used for the visual rep-
resentations of the content of the EO archives, in Section 6.1. In Section 6.2, the
different EO archive data models used for the visual analyses are presented. Section
6.3 illustrates the content of the TerraSAR-X (TS-X) archive and presents different
visual representations resulting from the querying of the dataset. In Section 6.4
we introduce various visualizations of the Land Use/Cover Area frame Survey (LU-
CAS) dataset which use specific data from Germany. The analysis moves toward
the integration of databases which is showcased using the previous datasets, and
whose results are presented in Section 6.5. The chapter ends with the conclusion
statements of Section 6.6.

6.1 Data Categories

Remote sensing archives are usually composed of three main data categories: nu-
merical, semantic and statistical. Examples of numerical data are very diverse in EO
archives. Common numerical metadata related to the EO images are: acquisition
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time, file size, number of rows/columns, number of layers, ground range azimuth
resolution, and row/column pixel spacing among many others. Among the numer-
ical data, geospatial data have a special relevance in EO. In general, geospatial
data can be seen as a conglomerate of different data that contain locational infor-
mation or geographic data. These data go from classical ZIP codes or addresses
to geographical coordinates. Focusing in remote sensing, spaceborne and airborne
imagery includes geographical coordinates delimiting the extension of the captured
scene. Additionally, information detailing the spacecraft/aircraft position and in-
strument orientation (i.e., pitch, yaw and roll) during the acquisition is enclosed.
Concerning the positioning, the spaceborne images enclosed data defining the exact
orbital position of the satellite. For the airborne images the position is set via GPS.

Since 1995, when GPS started to be fully operational, the development of civilian
applications based on this global positioning system has reach unprecedented levels.
The integration of GPS receivers was initially limited to navigation devices but
it soon spread to more general use devices, such as cameras or telephones. This
proliferation of GPS compliant devices produces huge amount of geolocated data
that are enclosed in images, routes or interest points.

The semantic data are composed of categorical data which represent specific
characteristics that cannot be expressed simply using numeric values. Examples
of these data can be found directly on the EO image metadata, e.g., instrument
identifier, polarization, acquisition mode or product level. On the other hand, EO
archives also contain semantic data resulting from human annotation or machine
learning techniques. The generation of semantic annotations pursue different goals.
Some studies use them as the mean to perform detailed analyses of specific EO
images. Additionally, broader approaches make use of the semantics in order to fa-
cilitate the navigation and study of the EO archives. In any case, the used semantics
always implement an unequivocal interconnection method that make possible the
link between the different types of semantics. Possible interconnections methods go
from simple class hierarchies to more complex ontologies. The ontologies can define
in very high detail level the semantic frame of the study, and consequently, they
are not only able to provide the explicit information regarding the semantic data
instances but are also able to infer implicit information which is not specifically
introduced on it.

Finally, the last data category is the result of the statistical analysis of the
previous data types.

6.2 Data Models

A key aspect required for the generation of visual representation of heterogeneous
information is the definition and posterior integration of the data models. Data
models are a key tool for describing the data contained in the managed datasets.
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6.2. Data Models

In the following, we introduce the two data models used for the generation of the
visual representations. First we present the data model describing the TS-X data
which is followed by the data model used for describing the LUCAS dataset.

6.2.1 TerraSAR-X Data Model

The TS-X data model was originally designed for the system developed in the
TELEIOS project [201]. The multimodule system was presented in detail in [202,
203]. This system distinguishes three kinds of system users: the ground segment
system administrator (i.e., operator), the EO expert, and the end-user. Each user
profile will interact with the system in a different way and consequently the access
to the system is done using different set of modules. The data model designed for
the system, shown in Fig. 6.1, considers all the profiles, their specificities, needs and
constrains. EO Products usually are delivered in collections which are described
by the table collection in this specific data model. During the initial storage, table
ingestion describes some of the parameters needed for the processing of the images
in the collection. The processing starts extracting the metadata from the annotation
files and storing the information in metadata. Later, the images, which have been
ingested in the image table, are tiled in several patches and stored in patch. Once
the patches are created, several feature extraction methods are applied. The feature
extraction methods are represented with pink headers in the data model. Among
these, we can highlight the different Gabor features which are stored in features gafs
and features glc. By combining all the generated information, the system implements
different annotation tools that allow the user to generate semantic labels that are
stored in annotation and label, where the predefined taxonomy is stored, see Section
6.3.1. Finally, GeoNames [204] geographical database information is linked as aux-
iliary data for toponymical purposes, i.e., translation from geographical coordinates
to place names.

6.2.2 LUCAS Data Model

The initial LUCAS data model is presented in Section 4.2.3 but the inclusion of the
data mining methodology presented in Chapter 5 extended the scope of the managed
information. A detailed representation of the extended data model is shown in
Fig. 6.2. The table point mimics the content in which the European Commission
disseminate the LUCAS metadata. In general, elements of this table contain an
unequivocal point identifier, several geospatial data in the form of GPS coordinates
and codes referencing the administrative boundaries where they are located. The
administrative areas are defined table nuts-area using the Nomenclature of territorial
Units for Statistic (NUTS) [205] geocode standard. The EC defines NUTS levels
from level 1 to level 3, but it is common use to define a level 0 that indicates the
EU Member State. Thus, NUTS level 1 identify major socio-economic regions, 98 in
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Figure 6.1: Representation of the data model used for the description of the TerraSAR-X data.
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Figure 6.2: Representation of the data model used for the description of the LUCAS dataset.

the EU. Level 2 refers to basic administrative regions (e.g., Government regions in
Germany, autonomous communities and cities in Spain) which sum a total of 1,276.
Finally, EU recognizes a total of 1,342 small regions at NUTS level 3.

The patch table stores the information of every image in the archive. The table
contains information about the size of the photo and the URLs pointing to the
images in the data repository and the corresponding image thumbnail. The table
lucas-patch links the survey metadata in table point with the multimedia images
in table patch. The annotation table is the link between the images in patch table
with the semantic labels in label table and defines some specific quality parameters
regarding the annotation. Regarding the semantic concepts stored in table label,
they maintain the defined hierarchy by storing the corresponding parent and its
level in the hierarchy. Finally, the analysis table stores the results of the statistical
image analysis applied to the multitemporal LUCAS points along with other pre
processed information used in the data mining methodology presented in Chapter
5.

6.3 Analytics of the TerraSAR-X Archive

This section initially presents the content of the TS-X archive followed by visual
representations based on different visualization approaches and set of variables.
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Figure 6.3: Example of the semantic catalogue of TerraSAR-X dataset. From left to right the
second hierarchical level land cover are: high density residential area, industrial area, bridge, road,
stubble, crop, coniferous, tree, sand, beach, lake, and river.

6.3.1 TerraSAR-X Archive

The TS-X dataset is generated from a seed of 364 L1B products which includes
the image information along with 28490 metadata entries. The images are Radio-
metrically Enhanced (RE) Multilook Ground range Detected (MGD). The MGD
offers an optimization with respect to radiometry reducing the speckle (i.e., granu-
lar noise) and MGD provides square resolution cells. The imaging mode is spotlight
with a pixel spacing of 1.25 meters, and a resolution of 2.9 meters. The products
include ascending and descending orbits with single polarization captures, HH and
VV. The images are tiled to 160×160 pixel, resulting in a total of 406277 high reso-
lution patches. Before storing the patches, Gabor and Weber primitive features are
extracted. This features will be used in the posterior semantic annotation.

The semantic annotation process resulted in a total of 157661 annotations with
around 300 semantic labels. The annotation process followed the recommendations
described in [206], where the authors described via taxonomies the semantic classes
that can be successfully retrieved from TS-X products. A reduced representation of
the taxonomy is shown in Fig. 6.3. There, the semantic categories are divided in two
hierarchical levels. The top category describes generic land covers such as: Urban
Area, Transportation, Agriculture, Forest, Bare Ground, and Water Bodies. The
second hierarchical level defines more specific land covers like High Density Urban
Areas, Trees, Lakes or Crops. The Fig. 6.3 also shows some of the more common
low hierarchy classes including patch examples.

6.3.2 Visualizing EO Image Metadata

The EO product metadata are diverse. In this section we present two possible
representations of the stored metadata. The first case makes use of the available
geospatial information to represent the geographical distribution of the EO scenes in
the database. The second example uses various metadata related to the instrument
characteristics during the image acquisition and exploits the relationship between
them.
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Figure 6.4: Geographical distribution of the ingested TerraSAR-X scenes around the world. The
green points represent the localization of the scenes.

6.3.2.1 Geographical Distribution by Geospatial Metadata

A very efficient way to represent the content of archives containing geographical
information is by using the geospatial information to represent it over a digital map.
In Fig. 6.4 it is possible to see the geographical distribution of the ingested EO
scenes. The dataset contains scenes spread all over the world, including: Europe,
Asia, America and Africa. In this case, the way to query the archive is relatively
simple. Query 1 retrieves from the database the central latitude and longitude of
the images of all existing metadata table entries.

Query 1 Distribution of the image patches in the TerraSAR-X archive.

Input: −
Output: [scenecentercoord lat, scenecentercoord lon]

1: procedure Get latitude and longitude coordinates of the EO
products in the database

2: SELECT scenecentercoord lat, scenecentercoord lon FROM metadata

6.3.2.2 Relationship among the Instrument Metadata

A novel way to study the database content is representing it exploiting the rela-
tionship between the image resolution with the incidence angle and the number of
annotations. The Query 2 shows the procedure to query the TS-X database. The
basic parameters to query are the metadata entries referring to the looking direction
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of the instrument, i.e., incidence angle; and the resolution. The number of annota-
tions for every specific angle and resolution are counted with the addition on some
extra location information to help differentiate the origin location of the patches by
continent.

Query 2 Number of patches in the archive with specific incidence angle and reso-
lution combination.
Input: −
Output: [numberof of pathes, lookdirection, groundrangeresolution, continent]

1: procedure Count the number of image patches with specific inci-
dence angle and resolution in the database

2: SELECT Count(patchid), lookdirection, groundrangeresolution
3: FROM patch, metadata, continentinfo
4: WHERE(patch.lat, patch.lon) IN continentinfo.geometry

In Fig. 6.5, the query results are divided by continents and the total number of
annotations is represented by the size of the bubbles. Focusing on the results, we
can highlight the largest number of annotations for an unique incidence angle and
resolution corresponds to south America, with an angle between 22 and 24 degrees
and a resolution around 3 m. The scenes corresponding to Europa spread basically
around 34 and 50 degrees, while the scenes in Africa can be found at 40 to 42
degrees. Europa is the continent with more annotated scenes, followed by Asia. In
general, with this representation we can clearly notice the physical dependence of
the EO product resolution with the acquisition angle. The shallower the incidence
angle the better the obtained final resolution of the image.

6.3.3 Visualizing Semantics and Geospatial Data

The geospatial data can be a productive information source when generating visual
representations. By enhancing the use of geographical information it is possible to
generate various visualizations. The following examples showcase visualizations that
use geographic areas with different extensions (e.g. continent, Country, city, etc.)
in order to visualize the annotated semantic labels in the archive.

6.3.3.1 Main Land Covers by Continent

As pointed out in Section 6.3.1, the TS-X database content is annotated using a
two level taxonomy of land cover concepts. These land cover annotations along
with the geographical locations can be used to analyzed the content of the archive.
By using the Query 3 we can obtain the distribution of the six main land cover
categories around the world: Urban Area, Agriculture, Water Bodies, Transportation,
Forest and Bare Ground. The obtained results are plotted in Fig. 6.6. The largest
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North America

Asia

Europe

South America

Central America

Africa

Figure 6.5: Incidence angle versus ground range resolution and total number of annotations per
continent used as test database.

land cover in the TS-X dataset corresponds to Bare Ground category in South
America. Europe stands out with the highest number of annotations of Forest
and Agriculture. North America has a big amount of Urban Area annotations. The
semantic annotations related to Africa are prolific in Urban Areas and Water Bodies.
Regarding the Asian continent, it is noticeable the high number of annotations
corresponding to Water Bodies semantic category. Besides, it is remarkable that
Agriculture is the semantic concept with smaller number of annotations.

Query 3 Number of patches in the database sorted by main land cover and conti-
nent.
Input: −
Output: [numberof of pathes, parentlabel, continent]

1: procedure Retrieve the image patches sorting them by their land
cover and geolocation

2: SELECT COUNT(patch id), parentlabel, continent
3: FROM patch, label, continentinfo
4: WHERE (patch.lat, patch.lon) IN continentinfo.geometry

6.3.3.2 Land Cover Distribution Around the World

From continental analysis we can reduce the scope to cities around the world. Thus,
just with small changes on Query 3 it is possible to produce Fig. 6.7 which shows a
comparison of some relevant land cover categories in different cities. Some remarks
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Figure 6.6: Distribution of the main land cover categories around the world.

that can be extracted from the representation include the fact that Madrid in Spain
has the highest number of elements annotated with the category Road, in contrast to
Bogota in Colombia which has the lowest. The semantic category Sand appears only
in cities of the middle east Countries like Saudi Arabia, Irak, and Iran. Besides, the
concept Forest appears to be highly annotated in Singapore and other neighboring
cities of Malaysia and Thailand. Skyscraper category is similarly distributed between
Ottawa in Canada, Kuala Lumpur in Malasia, and San Francisco in USA.

Continuing with the analysis of the semantic annotations in the database, it is
even possible to focus the study area in a way that we can produce analytics of land
cover distribution of some of the most important cities in Germany, see Fig. 6.8.
In this specific case the graphical representation is done using the tools provided by
Gephi [207]. The figure shows the distribution of the land cover in eleven German
cities; Berlin, Stuttgart, Oldenburg, Munich, Mannheim, Lindau, Kiel, Karlsruhe,
Cologne, Bremen, and Bonn. Each axis represents a city which extends in a spiral of
circles representing different land covers. The size of the circle represents the amount
of elements in the database and the color of the circles the highest hierarchical class
that the specific land cover belongs. The main land cover categories are listed in the
legend. The generated analytic has some interactive possibilities that allow the user
to visualize each circle information just by hovering the mouse cursor over specific
circles. An analysis of the image can provide some interesting information. For
example, Berlin is the city with the highest number of annotations corresponding
to Urban Area. Lindau posses the highest number of annotations with Water Body
but limited just to one type. On the other hand, Kiel has four different Water Body
classes and Oldenburg has no annotations related to water.
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ForestSkyscraper Road Stubble Sand

Figure 6.7: Distribution of different land covers over different cities in the world using TerraSAR-X
data.
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Figure 6.8: Distribution of Land Cover over Germany using TerraSAR-X data
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Figure 6.9: Distribution of the different land covers over Germany using LUCAS database

6.4 Analytics of the LUCAS Archive

The following discussion on the LUCAS survey dataset is focused on Germany. At
this point we employ some of the visualization capabilities offered by the system
presented in Chapter 4 which uses the query capabilities and the interactive statis-
tical graphic representations. By executing the Query 4 it is possible to represent
geographically the surveyed points and the annotated classes. This is exactly what
it is represented in Fig. 6.9, where we can observe the diversity of the semantic
catalog and its huge extension. The figure shows the last hierarchical level of the
classes with a total of 83 different land cover classes. The most common land covers
are Grassland, 29.66%, Common wheat 13.05% and Maize 9.75%.

Query 4 LUCAS survey points in a Country

Input: country
Ouput: [label.name, latitude, longitude]

1: procedure Filter the points by geographic location
2: SELECT label.name, latitude, longitude
3: FROM point, label
4: WHERE nuts0 = country

It is also possible to analyze LUCAS database content dividing the study in
regions and changing the visualization concept. Hence, using Query 5 it is possible
to obtain the distribution per year of the main land covers for any major socio-
economic region. In comparison to the queries performed over the TS-X archive,
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the LUCAS dataset land cover hierarchy is more complex regarding the number
of levels. Thus, it requires recursive queries in order to obtain the parent labels
representing the top in the land cover hierarchy. Furthermore, the query is divided
in different procedures in order to produce the final answer.

The results of the query are shown in Fig. 6.10, where 16 German states are listed
along the percentage of each LUCAS main class using the 2009 data. Analysing the
figure, we can observe how Cropland, Woodland and Grassland are the more common
land covers in Germany. Exceptions to this are the city states of Berlin, Bremen
and Hamburg, where due to the limited extension of land the biggest percentage is
assigned to Artificial land.

Query 5 Distribution of main land covers in the hierarchy of major socio-economic
regions for an specific year

Input: [interest region], year
Output: Distribution = [interest region, parent land cover, value]

1: procedure Filter the points by year and location
2: SELECT land cover, region FROM point
3: WHERE region IN [interest region] AND survey date IN year

1: procedure Obtain the parent land cover of the all retrieved in-
stances

1: procedure Generate the statistics for every possible combination
of land cover the points

6.5 Joint Analytics of LUCAS and TerraSAR-X

In this section we present the available geospatial information from different cities,
linking the information of LUCAS with the TS-X archive. For the generation of
this visualization, the semantic annotations from both databases are parsed to a
common land cover semantic, allowing the data integration and comparison. The re-
quired queries are modifications of the ones presented in Query 3, for the Terrasar-X
dataset; and Query 5, for the LUCAS dataset.The resulting visualization is presented
in Fig. 6.11. There, the inner circle colours correspond to different German cities:
Stuttgart, Karlsruhe, Berlin, Bremen, and Cologne. The middle circle colors corre-
spond to the data source of the information, as explained above, LUCAS or TS-X
databases. Finally, the outer circle colours represents the general Land cover classes
defined for this visualization: Artificial Land, Agriculture, Forest, Bareground, and
Water.

Analysing the visualization is clear that the elements belonging to the LUCAS
database are more common in general, with a predominance of elements corre-
sponding to Agriculture, Forest and in a lesser amount to Artificial Land. As in
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Figure 6.10: LUCAS Data analytics. Each axis corresponds to one of the 16 German states and
show the percentage of each LUCAS main class using the 2009 data. We can observe how Cropland,
Woodland and Grassland are the more common land covers in Germany. The city states of Berlin,
Bremen and Hamburg appear as an exception due to their limited extension of land, where the
most common land cover is Artificial land.
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Figure 6.11: LUCAS and TerraSAR-X Data analytics. Available geospatial information of different
cities joining the information from LUCAS database and a database containing TerraSAR-X EO
product semantic annotations. The inner circle elements correspond to different German cities.
The middle circle elements correspond to the different data sources. The outer circle elements
represent the different Land cover classes.

the previous example, the differences between the city states and the others can be
easily detected. For Berlin and Bremen, the available LUCAS data are limited and
most of the TS-X patches belong to Artificial Land. For all the others, with a longer
extension in terrain, much more LUCAS data are available in comparison to TS-X.

6.6 Conclusions

In this chapter we have presented firstly the main data categories that comprise the
remote sensing archives. After that we have introduced the data models used for
defining the TS-X dataset and LUCAS dataset. Next, along with a short descrip-
tion of the TS-X archive content, we introduced some visual analytics generated
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after performing some semantic queries of TS-X image content. The visual repre-
sentations showcase some of possible query approaches focusing the studies from
big geographical regions to smaller regions, i.e., cities. Besides, we introduced some
interactive analytics regarding LUCAS dataset. Using the integration capabilities
and interactive visualization tools of the system presented in Chapter 4, we analyzed
the presence of the main land cover in each German region. Finally, we introduced a
visual representation that joints the previous datasets and compares their content.
As a closing remark we can conclude that visual analytics provide very powerful
tools that help the user by: 1) summarizing the query results, 2) inferring new in-
formation, and 3) improving the general understanding of the content of the image
archives.
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7

Summary, Conclusions and Future
Works

7.1 Summary and Conclusions

The actual and future space Earth Observation (EO) missions along with other EO
initiatives will continue to evolve and to provide great amount of heterogeneous data.
The diversity of EO data includes: images (e.g., satellite or airborne), maps, seman-
tic labels, and various metadata among others. For a more efficient exploitation of
these data, we have presented different data mining tools, techniques, algorithms
and concepts running on systems that promote the data integration. The outcome
of this thesis validates the proposed approaches, confirming their capability of quick
extracting valuable information for a better understanding of EO data. These ap-
proaches, at different degrees, rely mainly on data analytics and system engineering
disciplines. More specifically, the research scope covers data integration, fusion,
mining and visualization of heterogeneous content.

Our main contributions for fusing heterogeneous EO are introduced with the
novel Heterogeneous Data Mining (HDM) concept. HDM enhances the original
Knowledge-driven Information Mining (KIM) in two different ways. First, by in-
troducing a faster active learning algorithm which shifts the required statistical
independence from the features to the posterior probabilities. Second, by linking an
external data infrastructure which allows the inclusion of information independent of
the image content in the learning process, e.g., information extracted from maps in
Geographical Information Systems (GIS). HDM obtains a remarkable speed-up that
allows us to overcome KIM’s two-model limitation in the learning, and therefore, en-
ables the introduction of new feature models in the learning stage and the definition
of more complex user semantics. The carried out tests quantified the performance
of our algorithm obtaining accelerations of various orders of magnitude in compari-
son to the previous one. In addition, the extension of the assumption of statistical
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independence in the learning algorithm from features to posterior probabilities did
not introduce biases in the learning process.

Along with the learning algorithm, we introduced a probabilistic search method
based on the distances between the elements in the database. This search method
computes the distance among the posterior probabilities of the query image and the
image Bag of Words (BoW) in the database. The obtained performance is optimum
for weakly defined labels, but it cannot totally replace the retrieval method based
on total posterior probabilities. In contrast to the presented probabilistic search,
the posterior probability retrieval is capable of yielding the tiles with a higher prob-
ability of containing the required user semantics. Furthermore, the scalar ranking
used by the posterior probability method performs faster for scenarios where several
feature models are taken into account in the learning process. On the contrary,
the computation cost of the probabilistic retrieval increases with each extra feature
model.

The data integration aspect of the work is covered all along the thesis, but it
takes special significance with the definition of the multilayer system architecture
for heterogeneous geospatial data analytics. Under the scope of this system we suc-
cessfully integrate information from EO products, cartographic products and in-situ
data. The implemented server-client prototype integrates several web technologies
that balance the complex and heavy processes toward the server. In this way, it
is possible to run the lightweight client in a great variety devices with HTML-5
compatibility, e.g., laptops, tablets or phones. In the multilayer architecture the ini-
tial layers read the original data and perform the required transformations to make
the data integration viable. Once transformed, the data are linked and stored in a
geographical database or in a system repository. The link among the data allows
the top layer to exploit the database capabilities in order to perform geographical
queries over the stored data. At the same time, the top layer also implements all
the communication protocols to the linked third party services and the server logic
that interacts with the user via graphical interfaces. The data integration capabil-
ities offered by the proposed system have proven their utility by helping to get a
better understanding of EO images for expert and non-expert users. Furthermore,
exploiting the in-situ information, the system can define optimal datasets, as well
as ground truth information for change detection on EO image time series.

The integration of in-situ Land Use/Cover Area frame Survey (LUCAS) data
gave rise to its analysis via data mining procedures. Analyses of the acquired mul-
titemporal LUCAS data had shown a very high variability in the land covers, which
exceeded experts’ expectations. Thus, we performed a deeper analysis of the LU-
CAS surveys aiming to differentiate the real land cover changes from the potential
inaccuracies introduced during the acquisition of the data. Our analysis proposes a
data mining methodology that takes advantage of the new heterogeneous geospatial
data analytics system introduced in this thesis. Divided in three different steps, the
methodology is able to successfully filter false land cover changes. The first step
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refines the database query processes mapping the changes in the land cover class
hierarchy, excluding the points that only present land cover changes due to the hi-
erarchy’s modification. The second step analyses the in-situ images, computes the
similarity among the multitemporal images of each survey point, and then, gener-
ates a ranking of the points based on the computed similarity values. The last step
requires the user interaction and includes on map data visualization and filtering
tools. With the help of these tools and a small investment in manpower and time,
the filtering reviewing task is performed. The final data mining procedure results in
a clear reduction in the total number of land cover changes, validating the presented
methodology and tools for the assurance of the in-situ recorded land cover changes.

Finally, we focused our efforts in the visualization of heterogeneous EO data.
In order to generate visualizations that facilitate the data understanding of the EO
information, it is necessary to combine the results obtained from automatic analysis
methodologies with interactive visualization tools. These tools allow the analysis of
massive amounts of information in real-time, and in consequence, they provide the
means to navigate, understand and exploit the data more efficiently.

We presented data models of two different EO systems that are queried to gen-
erate visual analytics. First, we performed queries to the TerraSAR-X content com-
bining different image metadata. Some of those metadata are used directly on the
visualization (e.g., incidence angle) but others like the location (i.e. latitude and
longitude) need to be processed in order to infer their corresponding geographical
regions (e.g., continent, country or city). Secondly, we developed some interactive
analytics that query the LUCAS dataset visualizing the division of the main land
covers in a country. In line with the rest of the thesis, and using the integration
capabilities and interactive visualization tools of the proposed geospatial analytic
system, we introduced a novel visual representation that joints the previous datasets.
In general, the presented visual analytics help the user summarizing the query re-
sults, inferring new information, and improving the general understanding of the
content of the image archives.

7.2 Future Works

A clear further step is the addition of more data mining and machine learning tools
based on in-situ and EO imagery fusion. This step will integrate and extend the
HDM concept within the presented geospatial analytic system. In this way the
system will be able to integrate and fuse the information obtained from in-situ
sources with the maps and the EO products for machine learning purposes.

The algorithm acceleration obtained with the proposed HDM concept opens new
ways for knowledge-driven information mining systems to Big Data scenarios. In
this regard, the introduction of additional models based on heterogeneous sources
should be followed by intensive validation tests over larger datasets which would

105



7. Summary, Conclusions and Future Works

include a wide variety of images from different sensors, scenarios and third party
data sources.

Future developments may address LUCAS information and the presented data
mining methodology for the quality control of the recorded data. Works in this
specific topic could target the enhancement of the methodology via the inclusion of
interactive graphical visualizations allowing a better comprehension of the mistakes
done on every specific land cover change.
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Acronyms

AL Active Learning.
ARVI Atmospherically Resistant Vegetation Indexes.

B Blue spectral band.
BoW Bag of Words.

CBIR Content-Based Image Retrieval.

DoG Diference of Gaussians.

EC European Commission.
EO Earth Observation.
EU European Union.
EVI Enhanced Vegetation Index.

FrFT Fractional Fourier Transform.

G Green spectral band.
GARI Green Atmospherically Resilient Index.
GEMI Global Environmental Monitoring Index.
GeoIRIS Geospatial Information Retrieval and Indexing System.
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GFD Gabor Feature Descriptor.
GFD Generic Fourier Descriptors.
GIS Geographical Information Systems.
GLCM Gray Level Co-occurrence Matrix.
GLDH Gray Level Difference Histograms.
GMRF Gaussian Markov Random Fields.
GPP Gross Primary Production.
GPS Global Positioning System.
GRF Gibbs Random Fields.
GUI Graphic User Interface.

HDM Heterogeneous Data Mining.
HF Haralick Features.
HSV Hue-Saturation-Lightness.
HTML Hyper Text Markup Language.

I3KR Intelligent Interactive Knowledge Retrieval.
IIM Image Information Mining.
IIM-TS Image Information Mining in Time Series.
InSAR Interferometric SAR.
IR InfraRed.
IRS Information Retrieval Systems.

KIM Knowledge-driven Information Mining.

LAN Local Area Network.
LBP Local Binary Pattern.
LDA Latent Dirichlet Allocation.
LSI Latent Semantic Indexing.
LUCAS Land Use/Cover Area frame Survey.

MARS Multimedia Analysis and Retrieval System.
MEA Multi-sensor Evolution Analysis.
MFT Matched Fourier Transform.
MGD Multilook Ground range Detected.
MIRS Multimedia Information Retrieval Systems.
MODIS Moderate Resolution Imaging Spectroradiometer.
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NCD Normalized Compression Distance.
NIR Near-InfraRed.
NUTS Nomenclature of territorial Units for Statistic.
NVDI Normalized Difference Vegetation Index.

OS Operative Systems.

pLSA probabilistic Latent Semantic Analysis.
PNG Portable Network Graphics.
PolSAR Polarimetric SAR.
PPM Posterior Probability Map.

QbE Query by Example.
QBIC Query By Image Content.
QbK Query by Keyword.
QMF Quadrature Mirror Filter.

R Red spectral band.
RE Radiometrically Enhanced.
RF Relevance Feedback.
RGB Red-Green-Blue.
RVI Ratio Vegetation Index.

SAR Synthetic Aperture Radar.
SAVI Soil Adjusted Vegetation Index.
SI Semantic Index.
SIFT Scale-Invariant Feature Transform.
SOM Self-Organizing Maps.
SQL Standard Query Language.
SR Simple Ratio.
STFT Short Time Fourier Transform.
SVG Scalable Vector Graphic.
SWIR Short-Wavelength Infrared.

TMS Tile Map Services.
TS-X TerraSAR-X.
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UI User Interface.
URL Uniform Resource Locator.

VARIgreen Visible Atmospherically Resistant Index Green.
VIg Vegetation Index green.
VQ Vector Quantization.

WebGL Web Graphic Library.
WLAN Wireless Local Area Network.
WLD Weber Local Descriptor.
WMS Web Map Service.
WV-2 WorldView-2.
WWW World-Wide Web.
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List of Symbols

Caero Aerosol resistance coefficients.
D Data source.
G Gain factor.
L User defined semantic label.
Lcba Canopy background adjustment factor.
Lsoil Soil-adjustment factor.
M Segmants of the histogram.
Natm Atmospherically corrected surface reflectances.
Ni Number of occurrences of ωi.
O Complexity.
R SIFT region size.
T Set of user provided positive training data.
Φ Dominant orientations.
α Hyperparameter vector representing the user interaction.
¬L Not user defined semantic label.
ω Words.
ωRGB Dictionary obtained from RGB features.
ωWLD Dictionary obtained from WLD features.
ωi Combined dictionary.
φ Parametrized multinomial distribution of T .
θ Extracted features.

113



θSIFT SIFT orientations.
ζ Differential excitations.
c Model indentifier.
d Distance.
dCh Chebychev distance.
dE Euclidian distance.
dJSD Jensen-Shannon Divergence.
dKLS Kullback-Leibler symmetric variant distance.
dKL Kullback-Leibler distance.
dM Manhattan distance.
dn Individual pixels in D.
k Training iteration.
n Number of operations.
p(L|D) Posterior probability of a label in the image data.
p(L|dn) Posterior probability of a label in image data pixel.
p(ωRGB|D) Probability of ωRGB within the given the image data.
p(ωWLD|D) Probability of ωWLD within the given image data.
p(ωi) Prior probability of the words.
p(ωi|D) Occurrences of the words within the given image data.
p(ωi|L) Probabilistic link of the words with a label.
p(ωi|¬L) Probability of the words outside the user define label.
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