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Abstract
NADPH oxidases are important sources of reactive oxygen species (ROS) which act as sig-

naling molecules in the regulation of protein expression, cell proliferation, differentiation, mi-

gration and cell death. The NOX1 subunit is over-expressed in several cancers and NOX1

derived ROS have been repeatedly linked with tumorigenesis and tumor progression al-

though underlying pathways are ill defined. We engineered NOX1-depleted HepG2 hepato-

blastoma cells and employed differential display 2DE experiments in order to investigate

changes in NOX1-dependent protein expression profiles. A total of 17 protein functions

were identified to be dysregulated in NOX1-depleted cells. The proteomic results support a

connection between NOX1 and the Warburg effect and a role for NOX in the regulation of

glucose and glutamine metabolism as well as of lipid, protein and nucleotide synthesis in

hepatic tumor cells. Metabolic remodeling is a common feature of tumor cells and under-

standing the underlying mechanisms is essential for the development of new cancer treat-

ments. Our results reveal a manifold involvement of NOX1 in the metabolic remodeling of

hepatoblastoma cells towards a sustained production of building blocks required to maintain

a high proliferative rate, thus rendering NOX1 a potential target for cancer therapy.

Introduction
Reactive oxygen species (ROS) act as signaling molecules in the regulation of various physio-
logical and pathological processes in almost all tissues [1]. NADPH oxidases are important
sources of ROS which are involved as second messengers in the regulation of gene expression
as well as in cell proliferation, differentiation, migration and death. To date, 7 homologous
NADPH oxidase enzymes have been identified which mainly differ in the expression of the
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catalytic NOX subunits, termed NOX1 to NOX5, and DUOX1/2. NOX2 is identical to the pre-
viously characterized gp91phox protein of the leukocyte NADPH oxidase [2].

Among other pathologies, malignant transformation and tumor progression have been as-
sociated with dysregulated ROS production and members of the NOX family have been previ-
ously linked with different types of cancer [3,4]. In particular, NOX1 has been studied in
relation with oncogenic Ras transformation [5,6] and was shown to be involved in the regula-
tion of cell proliferation and migration (reviewed by [3,4]).

The NOX1 catalytic subunit of NADPH oxidase associates with the stabilizing subunit
p22phox, the activator subunit NOXA1 and the organizing subunit NOXO1, and requires
Rac1 for activation [7], but can also interact with p47phox and p67phox characteristically in-
volved in the NOX2-dependent NADPH oxidase [8]. The enzyme is involved in the signaling
cascades of several stimuli such as tumor necrosis factor (TNFα), platelet-derived growth factor
(PDGF), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF) and angioten-
sin-II (reviewed in [8]).

NOX1 has been reported to be over-expressed in colon [9], gastric [10], prostate [11], blad-
der [12], kidney [13], breast and ovarian cancer [14]. A correlation between NOX1 levels and
the tumor grade/stage was observed in bladder cancer, though not in colon cancer [15]. In Ras-
transformed cells, NOX1-induced Rho inactivation causes the disruption of actin stress fibers
and focal adhesions [16]. The mechanism underlying the Ras-dependent transcriptional activa-
tion of NOX1 involves the MEK-ERK-dependent phosphorylation of GATA-6 [17]. On the
other hand, NOX1 has been reported to impair acetylation of the tumor suppressor p53 and its
pro-apoptotic transcriptional activity through a mechanism involving SIRT1 deacetylase, thus
inhibiting apoptosis [18].

In human hepatoblastoma cells HepG2, NOX1 knockdown prevents autocrine growth
through decreasing EGFR and TGF-α in a p38 MAPK and AKT dependent manner [19]. In
order to gain insight into the role of NOX1 in hepatic tumors, we investigated the proteome of
HepG2 cells stably expressing shRNA against NOX1. We identified several protein functions
dysregulated in the presence of reduced NOX1 levels, providing interesting indications regard-
ing the involvement of NOX1 in the regulation of tumor cell metabolism.

Material and Methods

Biological material
Hepatoblastoma (HB) cells HepG2 (ATCCHB-8065) were maintained in DMEMmedium
(PAA, Coelbe, Germany) containing 4.5 g/l glucose, supplemented with 10% FCS (PAN Biotech,
Aidenbach, Germany), 100 U/ml penicillin (PAA) and 100 μg/ml streptomycin (PAA) in a hu-
midified incubator at 37°C and 5% CO2. Human hepatoma cells HuH-7 [20] were cultured in
DMEMmedium (Biochrom, Berlin, Germany) containing 4.5 g/l glucose and 580 mg/l stable L-
glutamine, supplemented with 10% FCS (PAN), 110 mg/l sodium pyruvate, 100 U/ml penicillin
and 100 μg/ml streptomycin (all PAA) in a humidified incubator at 37°C and 5% CO2.

In order to generate HepG2 cell lines with differential levels of NOX1, psiStrike (Promega,
Mannheim, Germany) plasmids encoding a specific short hairpin RNA against NOX1
(shNOX1) or a random control sequence (shCtr) [21] were used (shNOX1_I:ACCGCACCGGT-
CATTCTTTATATTTGTGTAGTATAAAGAATGACCGGTGCTTTTTC; shNOX1_II:
ACCGTTGGTCATGCAGCATTAATTTGTGTAGTTAATGCTGCATGACCAACTTTTTC, shCtr:
ACCGTCTCCGAACGTGTCACGTTTCAAGAGAACGTGACACGTTCGGAGAATTTTTC).

For generation of stable clones, HepG2 cells were transfected with shCtr or shNOX1_I
using Fugene HD transfection reagent (Roche, Penzberg, Germany). After 48 h cell culture
media was changed and geneticin (G418, 100 μg/ml, Life Technologies, Darmstadt, Germany)
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was added. After two weeks of selection in the presence of geneticin, single cell clones were es-
tablished by plating 10 μl cell suspension onto a 96 well plate at a concentration of 2 cells/ml.
Cell cultures derived from more than one colony were discarded. Cells were further cultivated
in standard DMEMmedium supplemented with geneticin.

Sample preparation
Stable cell lines were grown to 80% confluence in 150 mm Petri dishes. Sample preparation
and protein extraction were optimized using non-transfected HepG2 cells. The optimizations
regarded cell harvesting (scraping vs. in situ lysis), cell disruption (freeze/thaw vs. tip sonica-
tion), and washing and lysis buffer. All chemicals were purchased from GE Healthcare (Mu-
nich, Germany) unless otherwise specified. Sample buffer components tested included the
reducing/oxidizing agent (DTT vs. HED), spermine (Sigma-Aldrich, Taufkirchen, Germany),
benzonase (Sigma-Aldrich), as well as the detergent assortment of the ProteoPrep detergent
sampler kit (Sigma-Aldrich). Following the optimized protocols, cells were washed three times
with Tris buffered sucrose solution containing protease and phosphatase inhibitors (2 mM
PMSF—Sigma-Aldrich, 1 mMNaF—Sigma-Aldrich and 0.2 mM Na3VO4—Merck, Darm-
stadt, Germany) and detached with a cell-scraper in the same buffer. Cells were pelleted, then
resuspended in 1 ml lysis buffer (7 M urea, 2 M thiourea, 4% CHAPS, 100 mM DTT, 25 mM
spermine and 0.5% Pharmalyte 3–10) and disrupted by tip sonication on ice (5 x 30 second cy-
cles 90% of time at 70% power). After 1 h incubation on ice, the protein extract was centrifuged
for 30 min at 40000 x g and 4°C and proteins were quantified using RC-DC Quant kit (Bio-
Rad, Munich, Germany).

Two-dimensional electrophoresis
Cells were allowed to accumulate mutations during at least 8 independent passages in order to
obtain samples approaching biological replicates. A pilot experiment was performed with 6
samples per gradient and power analysis was employed to calculate the optimal sample size. It
was estimated that 7 samples were necessary in order to reach an experimental power of 0.8 to
detect fold changes of 2 for 96% of the spots and fold changes of 1.5 for 72% of the spots at a p-
value threshold of 0.05. Thus, subsequent differential display 2DE experiments employed 7 bi-
ological replicates per cell line.

Samples were cup loaded (500 μg protein/strip) on 4–7 (24 cm) and 6–11 (18 cm) IPGs (GE
Healthcare) rehydrated over night with rehydration buffer (7 M urea, 2 M thiourea, 2%
CHAPS, 100 mMHED, 0.5% Pharmalyte 3–10, 0.002% bromophenolblue and 10% isopropa-
nol for basic IPGs) and focused on an Ettan IPHphor 3 Cup Loading Manifold (GE Healthcare)
for 64 kVhr and 50 kVhr, respectively. Strips were equilibrated prior to the second dimension
two times for 15 min under gentle shaking at room temperature in equilibration solution (50
mM Tris-HCl pH 8.8, 6 M urea, 10% SDS, 30% w/v glycerol, 0.002% bromophenolblue) con-
taining 2% DTT and 4% iodoacetamide, respectively. Equilibrated strips were sealed on top of
10% polyacrylamide gels with 0.5% low melting agarose solution. The second dimension was
run over night in an Ettan Dalt6 chamber (GE Healthcare). 2DE gels were stained with Ruthe-
nium (II) tris (bathophenantroline disulfonate) fluorescent stain (RubiLAB, Burgdorf, Switzer-
land) and documented with a Typhoon Trio+ scanner (GE Healthcare) at 100 μm resolution
under 610 nM emission, 532 nm laser, 600 V PTM.

Image and 2DE data analysis
2DE image analysis was performed with Progenesis SameSpots (Nonlinear Dynamics, Newcas-
tle upon Tyne, UK). Relevant spot parameters were exported and stored in an MS Access

NOX1 Supports the Metabolic Remodeling of HepG2 Cells

PLOS ONE | DOI:10.1371/journal.pone.0122002 March 25, 2015 3 / 22



database. Statistical analysis was performed on normalized spot volumes with R 2.14.0. [22]
using the following packages: RODBC [23], nlme [24], effects [25], lattice [26], Hmisc [27],
multcomp [28], ssize [29]. Normalization was visually checked by inspection of box-plot distri-
bution of normalized spot volumes among samples. Normalized spot volume distributions did
not differ between runs or edited vs. non-edited spots.

Differential expression was established based on statistically significant differences between
shNOX1 and shCtr cells (Welsch t-test p-values adjusted for false discovery rate, FDR) as well
as fold regulations exceeding the intrinsic spot characteristic biological variability [30], as
described below.

The level of intrinsic spot volume variation was assessed by non-parametric bootstrap (sam-
pling with repetition of 2 random samples of 6 to 7 biological replicate control samples, 1000
times per spot) and expressed as the 95% quantile of the distribution of fold differences be-
tween the two random samples. This represents the upper level of expected variance which nat-
urally appears in control samples for each spot. The intrinsic spot volume variance expressed
as the 95% quantile of the fold changes distribution was modeled using a glm with log trans-
formed average spot volume and spot position on the 2DE gel as predictors. The intrinsic levels
of variation in protein abundance thus predicted were used as thresholds for the selection of bi-
ologically relevant changes in protein abundance between control and NOX1 reduced samples.
Significant statistical differences in protein abundance were assessed using Welsch t-tests on
normalized spot volumes and reported as FDR adjusted p-values. Protein spots which simulta-
neously fulfilled both criteria were selected as differentially expressed and were further validat-
ed against non-transfected HepG2 control cells as well as against an independent shNOX1 line.

Mass spectrometry
Protein spots were excised from preparative 2DE gels loaded with 800 μg protein and stained
with Colloidal Coomassie G-250 staining according to Anderson [31]. The gel plugs were pre-
pared prior to MS analysis as previously described [30].

The mass spectrometric analysis of the samples was performed using a LTQ-FT Ultra mass
spectrometer (ThermoScientific, Dreieich, Germany). A nanoHPLC system consisting of UL-
TIMATE, SWITCHOS and FAMOS (Dionex, Idstein, Germany), equipped with a homemade
nano 5 μmC18 RP column (10 cm in length, 75 μm diameter) was connected online to the
mass spectrometer through a nanospray ion source. 15 μl of the tryptic digest (25 μl each) were
usually injected onto a C18 pre-concentration column. Automated trapping and desalting of
the sample was performed at a flow rate of 30 μl/min using water/0.05% formic acid as solvent.

Separation of the tryptic peptides was achieved with the following gradient of water/0.045%
formic acid (solvent A) and 80% acetonitrile/0.05% formic acid (solvent B) at a flow rate of 300
nL/min: holding 4% B for five minutes, followed by a linear gradient to 45% B within 30 min-
utes and linear increase to 95% solvent B in additional 5 minutes. The column was connected
to a stainless steel nanoemitter (Proxeon, Denmark)) and the eluent sprayed directly towards
the heated capillary of the mass spectrometer using a potential of 2300 V. A survey scan with a
resolution of 100,000 within the FT-ICR mass analyzer was combined with three data-
dependent MS/MS scans with dynamic exclusion for 30 s using CID within the linear ion-trap.

Thermo´s. raw files were sent to Mascot using LCQ-DTA software provided by Thermo.
MS spectra were searched against nrNCBI database (15 033 251 sequences; November 2011)
using MASCOT 2.2 (Matrix Science Ltd., London, UK). Mass tolerance for precursor ions was
set to 5ppm and for fragment ions to 0.6 Da; up to one missed cleavages were allowed; fixed
modification was carbamidomethylation of cysteine; the option “error tolerant search” was

NOX1 Supports the Metabolic Remodeling of HepG2 Cells

PLOS ONE | DOI:10.1371/journal.pone.0122002 March 25, 2015 4 / 22



enabled. MASCOT hits were considered confident when based on at least three MS/MS spectra
with peptide ions scores above 20 or two spectra with scores higher than 40.

Western Blot
Up to 50 μg of protein lysates were separated by SDS-PAGE on 10% polyacrylamide-gels as
previously described [32]. Primary antibodies were applied at a dilution of 1:1000 overnight at
4°C. Primary antibodies were acquired as follows: GDH1 (Abgent, Heidelberg, Germany),
UDPGP (Abnova, Heidelberg, Germany), Fascin (Abcam, Cambridge, UK), I2PP2A (SET pro-
tein, Santa Cruz Biotechnology, Heidelberg, Germany), HSPc71 (Cell Signaling, Danvers, MA,
United States), AFP (Proteintech Group, Manchester, United Kingdom), Acsl1 and HMGCS1
(Sigma Aldrich, Munich, Germany). Primary antibody against NOX1 was raised against the
NOX1 peptide H2N-CAESFEMWDDRDSH-CONH2, (Eurogentec, Cologne, Germany).

ROS production measurements
ROS production was determined using the cell permeant fluoroprobe 5-(and-6)-chloromethyl-
2’,7’-dichlorodihydrofluorescein diacetate acetyl ester (CM-H2DCFDA, Invitrogen, Darm-
stadt, Germany) as described before [32].

Glycogen assay
HepG2 cells were transiently with shRNA plasmids transfected using Fugene HD. Transfection
was carried out according to manufacturer’s instructions using 3 μg DNA and 9 μl Fugene per
6 cm dish. At 48 h after transfection cells were harvested. Each sample was performed in dupli-
cate. One replicate was used for protein isolation, and the second for glycogen assay. Protein
concentration was determined using Roti-Quant (Carl Roth, Karlsruhe, Germany). For glyco-
gen measurements, cells were homogenized in Milli-Q water and boiled for 5 min. After a
10 min centrifugation at 13,000 x g, glycogen levels were determined in the supernatant using
Glycogen Assay Kit (Sigma-Aldrich, Munich, Germany) according to
manufacturer’s instructions.

Data were analyzed using a linear mixed effect model [33] with the relative glycogen abun-
dance as dependent variable, clone (non-transfected HepG2 control vs. shCtr vs. shNOX1) as
predictor and replicate (N = 4) as random factor. In order to further test for group differences
we applied post-hoc comparisons between shCtr vs. non-transfected HepG2 control and shCtr
and shNOX1. To assess the correlation between glycogen and NOX1 levels we additionally
used shNOX_II and applied a linear mixed effect model [33] with Gaussian error distribution
and replicate as random factor (N = 4).

Measurement of metabolic activity
Metabolic activity of stable HepG2 clones was determined using AlamarBlue (Invitrogen).
HepG2 cells were seeded at a density of 250 cells/well in 96 well plates in the presence of Ala-
marBlue. AlamarBlue fluorescence was measured over a time period of one week in daily basis
in a microplate reader (Tecan, Crailsheim, Germany) at 555nm excitation and 585 nm emis-
sion wavelength. AlamarBlue fluorescence increases lineary with the availability of reduction
equivalents produced by the metabolism of cells therefore the slope is an indicator for the met-
abolic rate [34]. The difference in slopes between NOX1 depleted cells and control cells was
tested using a mixed effect model with replicate (N = 3) as random factor.
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Results

Protein expression changes in NOX1 reduced cells
In order to gain insight into the involvement of NOX1 in controlling cellular processes in
human hepatoblastoma cells, we used HepG2 cells stably expressing shRNA against NOX1 or
a control shRNA. Compared to cells expressing shCtr, cells expressing shNOX1 showed a 20%
reduction of NOX1 protein levels as determined by Western blot analysis (t13 = 1.96, p = 0.036,
Fig. 1).

Differences in ROS levels between NOX1 reduced HepG2 cells and control cells were mea-
sured as described in above and tested using a mixed effect model with cell type nested in repli-
cates (N = 3). Based on this model, we estimated a mean reduction in ROS levels by 13% in
NOX1 reduced cells compared to control cells (t5 = -2.944, p = 0.010) indicating that the reduc-
tion of NOX1 was functionally relevant (Fig. 1, right side). Levels of other NOX proteins such
as NOX2, NOX4 or NOX5, could not be detected or did not differ between control and NOX1
reduced cells (data not shown).

Following 2DE separation of proteins isolated from these cell lines, a total of 2222 and 1601
protein spots were identified on the 4–7 and 6–11 IPGs, respectively. Of those, 29 and 16, re-
spectively, had significantly different expression levels in NOX1 reduced cells compared to
control cells at a fold difference exceeding the intrinsic level of biological variation as described
in above. After validation against the non-transfected (wild type) HepG2 cells, 16 spots from
the acidic gradient and 14 from the basic gradient were selected as dysregulated in NOX1 re-
duced cells (Fig. 2). Of them, 26 were more abundant in control cells while 4 were more abun-
dant in NOX1 reduced cells. The dependence of the abundance of these proteins upon NOX1
protein levels was found highly significant for both up-regulated and down-regulated proteins
(t47 = -4.97, p<0.001 and t311 = 7.27, p<0.001 respectively) (Fig. 3).

Identification of differentially expressed proteins
Protein spots identified as differentially expressed between NOX1 reduced cells and control
cells were excised from both gels and analyzed by tandem mass spectrometry as described
above. Valid identifications were obtained for 27 of the 30 analyzed spots (Table 1 and S1
Table). Eighteen spots were mixtures of two to eight proteins and were further investigated as
described previously [35]. A comparison of spectral counts and spectral abundance factors [36]
of the hit lists obtained for each spot from NOX1 reduced and control samples enabled the
identification of regulated proteins in 14 of these spots (S1 Table). Further validation by West-
ern blot was performed as described in above for the major hits in the four remaining spots.
The major protein components of the spots for which the MS analysis was successful in only
one of the samples and of the spots for which protein regulation according to spectral counts
and spectral abundance factors were in disagreement with the spot regulation apparent from
the 2DE gel were also validated by Western blot analysis. Of the eight protein functions verified
by Western blot, seven were validated (Fig. 4) and one (heat shock protein cognate 71)
was invalidated.

Spots 1–4 represent most likely isoforms of the same protein as suggested by their appear-
ance on the 2DE gel (Fig. 2). Although no identification was obtained for the spots excised
from control gels, on which all four spots had higher volumes, the same protein (SET) was
identified in all spots excised from NOX1 reduced gels, suggesting an up-regulation of the pro-
tein in these cells. Western blot analysis confirmed that SET protein is up regulated in NOX1
reduced samples (Fig. 4), indicating that the major component of spots 1–4 responsible for the
apparent down regulation of this protein spot has not been identified.
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Altogether 17 protein functions were identified as differentially expressed between NOX1
reduced and control cells.

Profiling of regulated proteins
The 17 differentially expressed proteins were functionally classified into proteins involved in
cellular metabolism (7 functions), protein synthesis and turnover (3 functions), intra- and ex-
tracellular transport (4 functions), cytoskeleton organization (1 function), DNA replication
and repair (1 function) and detoxification (1 function) (S1 Fig.). Protein localization was dis-
tributed as follows: 2 extracellular, 3 associated to the plasma membrane, 6 cytoplasmic, 4 mi-
tochondrial and 2 intra nuclear (S2 Fig.).

Glycogen levels and metabolic activity in NOX1 reduced cells
One of the enzymes which increased in abundance in NOX1 reduced cells is UTP-glucose-
1-phosphate uridylyltransferase (UDPGP, EC = 2.7.7.9), suggesting an involvement of NOX1
in modulating glycogen biosynthesis in HepG2 cells. This protein was also increased in HuH-7

Fig 1. NOX1 and ROS levels are decreased in HepG2 cells expressing shNOX1.NOX1 levels were determined by Western blot analysis in HepG2 cells
stably expressing shRNA against NOX1 or a control shRNA. The image exemplifies a representative NOX1Western blot. Relative protein expression is
expressed as ratio between theWestern blot intensity and total protein content of the sample determined from the PonceauS staining (left). Differences
between groups were assessed usingWelsch t-test (NshCtr = 8, NshNOX1 = 7). The dependence of the abundance of the dysregulated proteins upon NOX1
protein levels was tested in a mixed effect model with spot ID as random factor. ROS production was measured using CM-H2DCFDA assay (right).
Differences in ROS levels between NOX1 reduced HepG2 cells and control cells were tested in a mixed effect model with cell type nested in replicates
(N = 3).

doi:10.1371/journal.pone.0122002.g001
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liver tumor cells transiently transfected with two different shRNAs against NOX1 compared to
control cells (S3 Fig.).

In order to verify that the differential regulation of UDPGP actually translated into differ-
ences in the levels of glycogen, we measured the glycogen content of HepG2 cells transiently
transfected with two different shRNAs against NOX1 or with control shRNA. The glycogen
content of NOX1 reduced cells was elevated 2.7 (z = 2.037, p = 0.021) and 2 fold (z = 2.761,
p = 0.003), respectively as compared to control cells (Fig. 5). In addition, overall metabolic ac-
tivity was determined using the Alamar Blue assay [34]. Compared to control cells, metabolic
activity was decreased in NOX1 reduced HepG2 cells. (S4 Fig.).

Discussion
The NADPH oxidase subunit NOX1 has been related to tumor biology in several cancer enti-
ties [3,5,6]. However, the pathways which are controlled by NOX1 in tumor cells are not well
defined. In this study we aimed to identify cellular processes dependent on the presence of
NOX1 in HepG2 cells. Using differential display 2DE followed by MS/MS analysis we identi-
fied 17 protein functions which were dependent on the level of NOX1 expression. Several of
them were involved in glucose, glutamine, lipid and nucleotide metabolism, providing support
for a possible role of NOX1 in metabolic remodeling of hepatic tumor cells.

Fig 2. 2DEmap displaying proteins differentially expressed in control vs. NOX1 reduced HepG2 cells. Empty arrows denote up-regulated protein
functions, filled arrows denote down-regulated protein functions. White arrows denote differentially regulated but un-identified protein spots.

doi:10.1371/journal.pone.0122002.g002
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NOX1 and tumor specific metabolic remodeling
Tumor cells are known to exhibit a metabolic shift towards increased glycolysis with most of
the resulting pyruvate being converted to lactate, even under aerobic conditions, while the tri-
carboxylic acid (TCA) cycle and the oxidative phosphorylation activity are reduced. This phe-
notype is known as the Warburg effect [37]. Tumor cell metabolic remodeling also includes
increased lipid synthesis and decoupling of glucose and glutamine utilization yielding to a sus-
tained production of amino acids and nucleotides, aimed to support an increased proliferation
rate [38]. In this study, 2DE-based proteomic profiling of HepG2 cells indicated that NOX1
controls several proteins relevant for regulating glucose and glutamine metabolism as well as
lipid and nucleotide synthesis, providing support for a regulatory function of NOX1 in hepatic
tumor metabolism.

Glucose metabolism
To increase the availability of glucose for glycolysis, tumor cells typically inhibit glucose storage
into glycogen. Our results showed that a decrease in NOX1 expression induces in both HepG2
and HuH-7 cells an increase in the abundance of UTP-glucose-1-phosphate uridylyltransferase
(UDPGP, EC = 2.7.7.9) (Fig. 4 and S3 Fig.), which catalyzes the synthesis of UDP glucose, a
glucosyl donor and direct precursor for glycogen biosynthesis (Fig. 6). UDPGP has previously
been found down regulated in hepatocellular carcinoma (HCC) as compared to normal liver

Fig 3. Abundance of differentially expressed proteins depends upon NOX1 relative expression (plotted are 95% CI).

doi:10.1371/journal.pone.0122002.g003
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Table 1. Protein functions dysregulated in NOX1 reduced cells.

Spot Best
homologue

Gene Accession
number

shNOX1
regulation

(2DE)

Total
score

Matched
spectra

Unique
peptindes

Sequence
coverage

WB
validation

Protein name Abbrev. Fold p valuea Fold p valueb

1 Protein SET SET SET Q01105 0.5 0.008 138 11 5 20% 1.4 0.001

2 Protein SET SET SET Q01105 0.4 0.001 91 10 5 22%

3 Protein SET SET SET Q01105 0.3 0.003 48 4 3 14%

4 Protein SET SET SET Q01105 0.3 0.007 53 5 3 14%

5 Methylosome protein 50 MEP50 WDR77 Q9BQA1 0.5 0.048 184 17 5 19%

6 Methylosome protein 50 MEP50 WDR77 Q9BQA1 0.6 0.002 723 59 11 44%

8 Proteasome activator
PA28 subunit beta

PA28b PSME2 Q9UL46 0.5 0.001 453 52 12 41%

9 Annexin A3 Annexin A3 ANXA3 P12429 0.5 0.023 919 100 16 50%

11 Hydroxymethylglutaryl-
CoA synthase, cytoplasmic

HMG-CoA
synthase

HMGCS1 Q01581 0.6 0.023 843 63 21 49% 0.5 0.007

12 Alpha-fetoprotein
precursor

Alpha-
fetoprotein

AFP P02771 0.6 0.044 3672 395 40 75% 0.6 0.037

13 Phosphoenolpyruvate
carboxykinase [GTP],
mitochondrial

PEPCK-M PCK2 Q16822 0.5 0.007 384 28 9 16%

Serum albumin Serum
albumin

ALB P02768 61 6 5 8%

14 Serum Albumin Serum
albumin

ALB P02768 0.5 0.000 967 152 32 54%

16 Serum Albumin Serum
albumin

ALB P02768 0.5 0.001 2741 425 45 71%

17 Elongation factor 2 EF2 EEF2 P13639 0.6 0.007 675 67 30 36%

18 Long chain fatty acid-CoA
ligase 1 (Acsl1)

Acsl1 ACSL1 P33121 2.6 0.002 587 46 14 26% 9.8 0.037

19 Phosphoenolpyruvate
carboxykinase [GTP],
mitochondrial

PEPCK-M PCK2 Q16822 0.4 0.024 142 4 3 5%

20 Phosphoenolpyruvate
carboxykinase [GTP],
mitochondrial

PEPCK-M PCK2 Q16822 0.5 0.002 1201 61 15 24%

21 Fascin Fascin, p55 FSCN1 Q16658 2.3 0.001 11324 770 31 62% 1.3 0.027

Glutamate dehydrogenase
1, mitochondrial

GDH1 GLUD1 P00367 417 95 21 41% 1.4 0.006

22 Fascin Fascin, p55 FSCN1 Q16658 2.1 0.001 9861 593 37 74%

Glutamate dehydrogenase
1, mitochondrial

GDH1 GLUD1 P00367 180 30 15 29%

23 UTP—glucose-
1-phosphate
uridylyltransferase

UDPGP UGP2 Q16851 1.7 0.007 2302 161 18 38% 2.2 0.000

Fascin Fascin, p55 FSCN1 Q16658 244 38 7 15%

24 Aspartate
aminotransferase,
cytoplasmatic

cAspAT GOT1 P17174 0.5 0.001 10141 736 41 77%

25 Guanosine
monophosphate reductase
2

GMP
reductase

GMPR2 Q6PKC0 0.6 0.027 750 86 19 53%

26 Annexin A2 isoform 2 Annexin A2 ANXA2 P07355 0.3 0.002 2994 227 31 77%

(Continued)
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tissue [39], while low glycogen content has been associated in hepatoblastoma (HB) with rapid
tumor growth [40] and poor outcome [41]. Indeed, reduction of NOX1 enhanced glycogen lev-
els in shNOX1 cells (Fig. 5). In support, NOX3, another NOX homologue, has previously been
shown to mediate a decrease in glycogen levels in response to TNF-α in HepG2 cells [42] and
NOX suppression was shown to decrease glucose uptake and lactate generation in pancreatic
tumor cells [43]. Collectively these data indicate that NOX1 has a role in limiting glycogen syn-
thesis in hepatic tumors implicitly increasing glucose availability for glycolysis.

Reduction of NOX1 also decreased the expression of mitochondrial phosphoenolpyruvate
carboxykinase (PEPCK-M, EC = 4.1.1.32) which converts oxaloacetic acid (OAA) to phospho-
enolpyruvate (PEP) thus re-channeling the mitochondrial intermediates of the TCA cycle into
the cytosolic pool of glycolytic intermediates. Although PEPCK-M has been found down regu-
lated in HCC [44], most tumor cell lines express the enzyme [45] and increased PEPCK-M ac-
tivity has been observed in lung cancer cells which were proposed to use this reaction to
replenish the cellular PEP pool from the lactate accumulated as a result of glycolysis [46]. PEP
can then be directed for example towards the pentose phosphate pathway, for NADPH genera-
tion and nucleotide synthesis (Fig. 6). Recently, PEPCK-M up-regulation has been shown to
promote metabolic adaptation to nutrient availability in cancer cells as a novel pro-survival
mechanism [45] and our results suggest an involvement of NOX1 in mediating this regulation.

Glutamine metabolism
In addition to glucose metabolism, our results suggest an involvement of NOX1 in regulating
glutamine metabolism in HepG2 cells. We found that NOX1 levels were inversely correlated to
the levels of mitochondrial glutamate dehydrogenase (GDH1, EC = 1.4.1.3) in HepG2 and
HuH-7 cells (S3 Fig.). This may result in limited oxidative phosphorylation since GDH1 is re-
sponsible for the oxidative deamination of glutamate allowing for the use of glutamate and glu-
tamine as substrates for ATP production in oxidative phosphorylation (Fig. 6). In line,
previous reports showed that glutamate metabolism is often dysregulated in hepatoma [47],
and the levels of mitochondrial GDH1 are decreased as compared to normal liver and inversely
correlated with tumor aggressiveness [47,48].

In both normal and tumor cells, glutaminolysis provides nitrogen for the synthesis of pu-
rines, pyrimidines and non-essential amino acids as well as NADPH required for fatty acid

Table 1. (Continued)

Spot Best
homologue

Gene Accession
number

shNOX1
regulation

(2DE)

Total
score

Matched
spectra

Unique
peptindes

Sequence
coverage

WB
validation

Protein name Abbrev. Fold p valuea Fold p valueb

27 Dicarbonyl reductase
HEP27

HEP27 DHRS2 Q13268 0.5 0.002 530 39 20 68%

28 Dicarbonyl reductase
HEP27

HEP27 DHRS2 Q13268 0.5 0.004 8124 441 32 85%

29 Dicarbonyl reductase
HEP27

HEP27 DHRS2 Q13268 0.4 0.001 5456 304 22 69%

30 Dicarbonyl reductase
HEP27

HEP27 DHRS2 Q13268 0.4 0.000 10917 711 47 87%

a adjusted for FDR,
b one tailed Welch t test for unequal variance.

doi:10.1371/journal.pone.0122002.t001
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synthesis and maintenance of the cell’s redox state. Although the pathway is typically up-regu-
lated in cancer cells in order to support sustained energy production and biosynthesis, our re-
sults suggest that NOX1 acts to inhibit anaplerosis and redirect glutamate from the TCA cycle
towards conversion to aspartate (Fig. 6). In line with our findings, a non-canonical K-Ras-de-
pendent pathway of glutamine metabolism has been recently described in human pancreatic
ductal adenocarcinoma cells, where glutamine is converted to glutamate in the mitochondria,
which instead of fueling the TCA cycle is converted to aspartate [49]. The aspartate is trans-
ported to the cytoplasm and converted to OAA then to malate and finally to pyruvate while

Fig 4. Western blot validation of NOX1 regulated proteins. The major components of the 2DE spots which
contained complex proteins mixtures were subjected to validation throughWestern blot analysis. Seven of
the proteins were confirmed to be differentially expressed in control vs. NOX1 reduced HepG2 cells. Plotted
are the mean and SEM of WB intensities normalized to the total protein content of the sample determined
from the PonceauS staining. SET—protein SET, HMGC—HMG-CoA-synthase, AFP—Alpha-fetoprotein,
Acsl1—Long chain fatty acid-CoA ligase, GDH1—Glutamate dehydrogenase 1, UDPGP—UTP-glucose-
1-phosphate uridylyltransferase. Statistical results are presented in Table 1.

doi:10.1371/journal.pone.0122002.g004
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also generating NADPH [49]. In support, our analysis showed that NOX1 levels were positively
correlated to cytosolic aspartate aminotransferase (cAspAT, EC = 2.6.1.1) which converts cyto-
solic aspartate into OAA supporting a non-canonical metabolic transformation of glutamine
similar to the one described in pancreatic cells (Fig. 6). Our results suggest that HepG2 cells un-
dergo a reprogramming of glutamine metabolism and NOX1 plays a role in this process by reg-
ulating the abundance of two of the key enzymes.

Nucleotide synthesis
We further found that NOX1 levels were correlated with the abundance of GMP reductase 2
(GMPR2, EC = 1.7.1.7.), which catalyzes the NADPH-dependent irreversible deamination of
GMP to IMP. By reconverting GMP and AMP to inosine monophosphate (IMP) which is a
precursor of both nucleotides, cells can maintain the intracellular balance of adenine and gua-
nine nucleotides and our result suggests that NOX1 is involved in regulating this balance
(Fig. 6). Another way in which NOX1 may support nucleotide synthesis is by increasing the
availability of precursors for the pentose phosphate pathway through the inhibition of glycogen
synthesis and the conversion of lactate and TCA cycle intermediates into PEP (see above).
Both of these two mechanisms mediated by NOX1 are synergic with the AMP and GMP feed-
back inhibition mechanisms which regulate the biosynthesis of purine nucleotides. Thus, since
ATP is required for the conversion of IMP to GMP, the lower concentration of ATP caused in

Fig 5. NOX1 regulates glycogen content in HepG2 cells.Glycogen levels were assessed in HepG2 transiently transfected with two shRNAs against
NOX1 or with control shRNA. NOX1 reduced HepG2 cells produce more glycogen than shCtr expressing cells (right). Differences in glycogen levels were
tested in a linear mixed effect model with cell line as predictor and replicate (N = 4) as random factor (one-tailed post-hoc z test). NOX1 depletion was
confirmed beWestern blot analysis (left).

doi:10.1371/journal.pone.0122002.g005
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tumor cells by the reduced utilization of glucose in the TCA cycle, will also promote AMP over
GMP synthesis. Collectively, all these mechanisms will operate to restore ATP levels and rees-
tablish the cellular balance between ATP and GTP, which is frequently disturbed in
tumor cells.

Lipid metabolism
Tumor cells frequently have dysregulated lipid metabolism due to enhanced fatty acid and
lipid biosynthesis on the one hand and augmented β-oxidation of fatty acids for energy produc-
tion on the other hand [50]. Our study shows that reduced NOX1 levels result in diminished
levels of cytosolic hydroxymethylglutaryl-CoA synthase (HMG-CoA synthase, EC = 2.3.3.10).
Thus, NOX1 may contribute to remodeling of lipid metabolism in hepatic tumor cells since
HMG-CoA synthase catalyzes the second step of the mevalonate biosynthesis, leading to lipid,
steroid (including cholesterol) and isoprenoid biosynthesis. Increased levels of mevalonate
have been observed in several tumor cell lines to be associated with increased cellular prolifera-
tion and tumor growth [51], and altered levels of HMG-CoA synthase have been described in
in HCC [52]. Liver tumor cells have also been shown to contain higher levels of cholesterol as

Fig 6. Overview of the metabolic pathways regulated by NOX1. Proteins differentially expressed in control vs. NOX1 reduced HepG2 cells are involved in
glucose, glutamine, nucleotide and lipid metabolism. α-KG—α-ketoglutarate, OAA—oxaloacetic acid, PEP—phosphoenolpyruvate, TAG—triacylglycerol,
TCA cycle—tricarboxylic acid cycle.

doi:10.1371/journal.pone.0122002.g006
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compared to normal liver tissue [52,53]. Moreover, cholesterol rich rafts are critical for recep-
tor triggered intracellular signaling, and cholesterol depletion results in Akt inactivation and
apoptosis [51].

We also found that NOX1 protein levels were inversely correlated with the levels of long
chain fatty acid-CoA ligase 1 (Acsl1, EC = 6.2.1.3). This enzyme facilitates the uptake and cata-
lyzes the activation of C10-C22 fatty acids which are needed for lipid biosynthesis, but also for
lipid degradation and energy production via beta-oxidation [54]. There is mixed evidence re-
garding the destination of the Acsl1-activated fatty acids in liver cells. Although the loss of
Acsl1 from mouse liver impairs both triglyceride synthesis and beta-oxidation [55], overex-
pression of the enzyme in HepG2 cells and rat liver enhances triglyceride synthesis without al-
tering fatty acid oxidation [56]. Interestingly, in humans its expression is lower in HCC as
compared to normal liver [57] suggesting a role in the tumor-specific remodeling of
lipid metabolism.

NOX1 and protein synthesis and turnover
Tumor cells have increased rates of protein synthesis and turnover and our results suggest that
NOX1 might play a role in controlling these processes in hepatic tumor cells. Among the pro-
teins whose abundances were correlated with the abundance of NOX1 was the elongation fac-
tor 2 (EF2). This protein catalyzes the GTP-dependent ribosomal translocation of the nascent
protein chain during translation. Its expression is tightly regulated during the cell cycle and has
been reported to increase in different cancers [58]. Interestingly, EF2 is inactivated upon phos-
phorylation by EF2 kinase, a process promoted by oxidative stress, whereby protein synthesis
is completely halted [59]. However, our 2DE data showed that EF2 in NOX1 levels were posi-
tively correlated, suggesting that NOX1 supports protein synthesis and might play a role in the
regulation of cell cycle progression.

The reduction of NOX1 levels also reduced the expression of Mep50(p44), a WD-repeat
containing steroid receptor co-activator involved in the regulation of androgen receptor (AR)
and estrogen receptor (ER) target genes [60] and a component of the 20S protein arginine
methyltransferase complex (methylosome), which is involved in the assembly of the spliceo-
some [61]. Mep50 function is regulated by its subcellular localization, which exhibits cell type
specific changes during development and tumorigenesis [60,62], but the specific role of Mep50
in liver and hepatoblastoma remains unclear.

NOX1 expression was also correlated with the expression of the SET protein, a member of
the INHAT (inhibitor of histone acetyltransferase) complex that binds un- or hypo-acetylated
histones preventing their acetylation. Recently, the protein has been shown to inhibit p53 acet-
ylation and thus to induce cellular proliferation and to block p53-mediated cell cycle arrest and
apoptosis in response to cellular stress [63]. SET protein is a member of the SET complex, in-
volved in the regulation of gene expression, DNA replication and repair, and cellular response
to oxidative stress. The complex is ubiquitously expressed and up-regulated in ovarian cancer
[64] and HCC [65]. In HCC, accumulation of SET protein has been correlated with low surviv-
al [66]. Further investigations are required in order to explain the roles of the SET protein in
HepG2 cells and its regulation by NOX1.

Finally, the abundance of the PA28β proteasome activator was correlated with that of
NOX1. This protein is part of the 11S regulatory particle of the immunoproteasome which
plays an important role in antitumor immunity due to its enhanced antigen generating capacity
[67]. The immunoproteasome is also involved in the efficient degradation of oxidatively dam-
aged proteins and thus in the maintenance of protein homeostasis and the preservation of cell
viability under cytokine induced oxidative stress conditions [68].
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Other protein functions
Two members of the annexin family (A2 and A3), both known to be over-expressed in many
cancers including HCC [69–71], were reduced in NOX1 depleted HepG2 cells. Annexin A2
has various functions, including exocytosis, endocytosis and membrane trafficking, cell divi-
sion and proliferation [72]. It has previously been linked to cholesterol metabolism [73] and its
association to the membrane is cholesterol dependent [74], which is in line with our supposi-
tion that NOX1 may support cholesterol synthesis (see the chapter on lipid metabolism).
Annexin A2 overexpression and phosphorylation has been related to malignant transforma-
tion, progression and differentiation in HCC [75]. Conversely, reduced annexin A2 expression
decreases proliferation and induces apoptosis [76], possibly through a p53 related mechanism
[77]. Extracellular annexin A2 has been shown to mediate the degradation of the extracellular
matrix and to promote angiogenesis and tumor growth [72]. Since annexin A2 can be up-regu-
lated by H2O2 [76] our study suggests that NOX1 might induce annexin A2 via a ROS-depen-
dent mechanism and thus control cell proliferation.

Annexin A3 is necessary for DNA synthesis in cultured hepatocytes [78] and is part of the
signaling cascade involved in liver regeneration [79]. The protein has been associated with
tumor progression in lung adenocarcinoma [80]. Importantly, similarly to annexin A2,
annexin A3, has been shown to act as an angiogenic mediator by inducing VEGF production
through the HIF-1 pathway [81]. Since ROS derived from NADPH oxidases have been shown
to increase VEGF, the HIF-1 pathway and angiogenesis [82], induction of annexin A2 and/or
annexin A3 by NOX1 might contribute to these responses.

NOX1 levels were further correlated with the levels of albumin, the most abundant protein
in the adult serum. Albumin plays a role in maintaining the redox balance and can scavenge
ROS and RNS thus leading to inhibition of apoptosis and activation of the Akt pathway
[83,84]. Both HCCs and HBs (including HepG2 cells) produce less albumin than normal
human liver [85,86]. In cancer patients (including HCC) low serum albumin predicts a poor
response to treatment and poor survival [87] and a large proportion of HCC patients have ROS
damaged serum albumin [88].

NOX1 levels were also correlated with the levels of α-fetoprotein (AFP), a major serum pro-
tein produced by the fetal liver which is repressed upon hepatocyte maturation but reactivated
in liver malignancies [89]. In HCC, AFP serum levels correlate directly with disease progres-
sion and aggressiveness [90] and inversely with the degree of cell differentiation [90,91]. In HB
on the other hand, low AFP levels are associated with poor response to chemotherapy and
poor prognosis [90]. The decrease of AFP levels in NOX1 depleted HepG2 cells, known to be
AFP positive [92], suggests an involvement of NOX1 in cell differentiation [93]. Although
there is a large variation in AFP and albumin production among HCCs and HBs [94], the ex-
pression levels of the two proteins are inversely correlated in hepatocytes during development,
and malignant transformation typically reverses their normal ratio by increasing AFP levels
and decreasing albumin levels. However, NOX1 apparently supports the expression of both
proteins in HepG2 cells, paralleling previous observations in HCC [95].

NOX1 reduced cells expressed increased levels of fascin, an actin bundling protein with an
important role in cell adhesion, motility and migration [96]. Fascin is weakly expressed in nor-
mal liver [97] but over-expressed during malignant transformation and progression in several
cancers, including HCC [98,99] and HB [100]. The protein has been associated with tumor ag-
gressiveness [98] and is a significant indicator of poor prognosis in HCC [99]. The protein can
increase the invasiveness of several HCC cell lines, although not of the HCC line Hep3B or of
the HB line HepG2 [100]. In colon adenocarcinoma cells NOX1 was shown to act as a switch
between random and directional migration and to control the directionality of cell migration
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[101,102]. Interestingly, this mechanism involved α3β1 integrin, whose interaction with the ex-
tracellular matrix proteins induces the formation of fascin micro spikes and cell scattering
[103].

Our investigations also showed that NOX1 levels are positively correlated with the levels of
Hep27 (EC = 1.1.1.184), a NADPH-dependent dicarbonyl reductase initially isolated from
growth-arrested HepG2 cells [104]. Hep27 functions as a reactive alpha-carbonyl scavenging
enzyme [105] with a protective role against oxidative stress [106]. The mature mitochondrial
Hep27 can be partially translocated to the nucleus where it binds Mdm2 promoting p53 stabili-
zation [107].

Conclusion
Cells undergoing malignant transformation experience extensive metabolic remodeling
(known as Warburg effect) designed to support the characteristically high proliferation rates
[38]. The proteomic profiling of NOX1 depleted HepG2 cells suggested that NOX1 mediates
the remodeling of the cellular metabolism such as to allow available resources to be diverted to-
wards biosynthesis of building blocks required for cell growth. Thus, our results show that
NOX1 is involved in the regulation of glucose and glutamine utilization as well as lipid, protein
and nucleotide synthesis. Further protein functions dysregulated upon the depletion of NOX1
also support previous reports on the role of this enzyme in regulating tumor growth.

Supporting Information
S1 Table. Proteins dysregulated in NOX1 depleted HepG2 cells. Details are provided on the
MS identification of the differentially expressed proteins including accession numbers, pre-
dicted and experimental MW and pI, sequence coverage, peptide sequences and
MASCOT scores.
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S1 Fig. Functional classification of proteins. Proteins dysregulated in shNOX1 HepG2 cells
have been classified according to their cellular function.
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S2 Fig. Protein localisation. Proteins dysregulated in shNOX1 HepG2 cells have been classi-
fied according to their cellular localisation.
(PDF)

S3 Fig. Western blot analysis of NOX1 depleted Huh7 cells. NOX1 depleted Huh7 cells ex-
press lower levels of UDPGP and GDH1 as compared to control cells. Protein abundance was
determined by Western blot analysis in Huh7 cells expressing shNOX1 plasmid or a control
shRNA.
(PDF)

S4 Fig. Metabolic activity of NOX1 depleted HepG2 cells. NOX1 depleted HepG2 cells dis-
play lower metabolic rates as compared to control cells. AlamarBlue fluorescence assay was
performed over a time course of 6 days. The difference in slopes between NOX1 depleted cells
and control cells was tested using a mixed effect model with replicate (N = 3) as random factor.
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