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  Zusammenfassung / Abstract 

  i 

Z U S A M M E N F A S S U N G  /  A B S T R A C T  

Flugsteuerung mit großen Totzeiten und 
eingeschränkter sensorischer Rückmel-
dung ist kennzeichnend für zwei 
Beispielfälle: Flugfernsteuerung über 
Funkverbindungen mit großer Latenz 
sowie Flugsteuerung mittels einer 
Gehirn-Maschine Schnittstelle (brain-
machine interface, BMI). Diese Arbeit 
beschreibt und modelliert zunächst das 
bei großen Totzeiten typische, pulsartige 
Pilotenverhalten und stellt weiterhin ein 
darauf zugeschnittenes Flugsteuerungs-
system vor. Zum Abschluss werden einige 
Flugsimulator Experimente beschrieben, 
in denen die Modelle und das 
Flugsteuerungssystem evaluiert und 
Methoden aus der Luftfahrt in der BMI 
Steuerung angewandt werden. 

 Flight control with large time delays and 
reduced sensory feedback is characteristic 
for two example applications: remote 
flight control via high-latency radio links 
and on-board flight control using 
brain-machine interfaces (BMI). This 
thesis first describes and models the 
characteristic, pulse-like pilot behavior 
associated with large time delays. It then 
presents a flight control system tailored to 
this behavior. It concludes with the 
description of several flight simulator 
experiments, in which the models and the 
flight control system were evaluated and 
aerospace methods were applied to BMI 
control. 
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𝑉𝑐𝑙𝑖𝑚𝑏 Normal climb speed 𝑘𝑡 

𝑉𝐼𝐴𝑆 Indicated airspeed 𝑘𝑡 

𝑉𝑅 Takeoff rotation speed 𝑘𝑡 

𝑉𝑅𝐸𝐹 Reference approach speed 𝑘𝑡 

𝑉𝑆1 Stall speed in landing configuration 𝑘𝑡 

𝑉𝑇 Transition speed 𝑘𝑡 

𝑋 Dimensional derivative: longitudinal force  

𝑥 Coordinate system axis − 

𝑌 
Transfer function  

Dimensional derivative: lateral force  
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Latin Symbols (continued) 

Symbol Description Unit 

𝑌𝑎𝑐𝑡 Transfer function: actuator  

𝑌𝑐𝑓 Transfer function: command filter  

𝑌𝑑 Transfer function: display  

𝑌𝑑𝑚 Decision mapping element  

𝑌𝑓𝑠 Transfer function: feel system  

𝑌𝑖 Inceptor dynamics  

𝑌𝑝𝑓 Transfer function: proprioceptive feedback  

𝑦 
Coordinate system axis − 

System output  

𝑍 Dimensional derivative: vertical force  

𝑧 
Coordinate system axis − 

Z-transform variable − 

 

Greek Symbols 

Symbol Description Unit 

𝛼 Angle of attack 𝑟𝑎𝑑 

𝛽 Angle of sideslip 𝑟𝑎𝑑 

𝛾 Flight path climb angle 𝑟𝑎𝑑 

Δ Random BMI output variable − 

𝛿 Control input (e.g., inceptor displacement/force or BMI output) − 

𝜀𝐺̂𝐺 Estimation of sphericity according to Greenhouse and Geisser − 

𝜀𝐻̂𝐹 Estimation of sphericity according to Huynh and Feldt − 

𝜁 
Rudder deflection 𝑟𝑎𝑑 

Damping ratio − 

𝜂 Elevator deflection 𝑟𝑎𝑑 

Θ Pitch angle 𝑟𝑎𝑑 

𝜇 Mean value  

𝜇𝐾 Kinematic bank angle 𝑟𝑎𝑑 

𝜉 Aileron deflection 𝑟𝑎𝑑 

𝜎 Standard deviation  
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Greek Symbols (continued) 

Symbol Description Unit 

𝜏 Time delay 𝑠 

𝜏𝑠𝑝 Signal processing time delay 𝑠 

𝜏𝑣 Time delay of the visual system 𝑠 

Φ Bank angle 𝑟𝑎𝑑 

𝜑 Phase angle 
° 

(or 𝑟𝑎𝑑) 

𝜑𝑝𝑐 Pilot compensation parameter ° 

𝜒 Flight path course angle 𝑟𝑎𝑑 

Ψ Heading 𝑟𝑎𝑑 

𝜔 Frequency 
𝑟𝑎𝑑/𝑠 
(or 𝐻𝑧) 

𝜔𝑐 Crossover frequency 𝑟𝑎𝑑/𝑠 

𝜔̃ Normalized frequency 𝑟𝑎𝑑 

 

Subscripts 

Subscript Description 

0 Initial, reference or trim value 

𝑎 Aircraft 

𝑎𝑡𝑡 Attitude-related 

𝐵 Body-fixed coordinate system 

𝐵𝑊 Bandwidth (Criterion) 

𝑐𝑚𝑑 Command 

𝑑𝑒𝑚 Demand 

𝑓𝑖𝑙𝑡 Filter 

𝐾 Kinematic (coordinate system) 

𝐿 Lower 

𝑙𝑎𝑡 Lateral (motion) 

𝐿𝐶 Limit Cycle 

𝑙𝑖𝑚 Limit 

𝑙𝑜𝑛 Longitudinal (motion) 

𝑚𝑎𝑥 Maximum 

𝑚𝑖𝑛 Minimum 
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Subscripts (continued) 

Subscript Description 

𝑁 Negative user intention 

𝑛𝑚 Neuromuscular system 

𝑜𝑝𝑡 Optimum 

𝑃 Positive user intention 

𝑝 Pilot 

𝑠𝑠 Steady-state 

𝑡 Total 

𝑡𝑔𝑡 Target 

𝑈 Upper 

𝑍 Zero (neutral) user intention 

 

Acronyms 

Acronym Description 

ANOVA Analysis Of Variance 

APR Average Phase Rate 

BMI Brain-Machine Interface 

CHR Cooper-Harper Rating 

CNS Central Nervous System 

EASA European Aviation Safety Agency 

EEG Electroencephalography 

EVAR Error Variability 

EVS External Visual System 

FAA Federal Aviation Administration 

FSD Full-Scale Deflection 

FTD Flight Training Device 

HSS Half-Screen Size 

HSI Horizontal Situation Indicator 

HUD Head-Up Display 

IAS Indicated Airspeed 

LPD Landing Point Designator 

LOES Low-Order Equivalent System 
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Acronyms (continued) 

Acronym Description 

NASA National Aeronautics and Space Administration 

PIO Pilot-Induced Oscillation 

PSD Power Spectral Density 

RMSE Root Mean Square Error 

RPA Remotely Piloted Aircraft 

RPAS Remotely Piloted Aircraft System 

SIDM Système Intérimaire de Drones de Moyenne altitude longue endurance 

SMA Simple Moving Average 

SNR Signal-to-Noise Ratio 

STR Single-Trial Reliability 

TBI Time Between Inputs 

TLX Task Load Index 

TRI Turn Rate Index 

TUM Technical University of Munich 

UAV Unmanned Aerial Vehicle 
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1  I N T R O D U C T I O N  

1.1 Problem 

Humans may have mastered the art of flight about a century ago, but we are still designed 

by nature to stay on the ground. Only by using a complex technical apparatus can we 

safely lift our bodies off the soil and roam the atmosphere and space above. Apart from 

their ability to fly itself, aircraft also need to accommodate the pilots’ skills and limits. 

Considering the intricate nature of human flight, it is not surprising that advances in control 

and automation technology have been used to teach machines how to fly. Tasks that 

require an aircraft, but not a human pilot, can be accomplished by Unmanned Aerial 

Vehicles (UAVs). A UAV does not need any cockpit or life support systems and can 

therefore be constructed at a lighter weight and lower costs as compared to a manned 

aircraft [1]. Moreover, UAVs can operate for long periods of time without interruption and 

they can enter airspaces that are dangerous to humans. The loss of a UAV does not 

necessarily entail the loss of a human life, which makes UAVs more expendable than 

manned aircraft. 

Even though UAVs are unmanned, they are most often controlled by a remote human pilot. 

Fully autonomous systems are rare, and for many missions there will always be an interest 

to keep a human operator in the loop. In particular, missions where the unique human 

skill of obtaining situational awareness in an unknown or unpredicted environment and 

taking appropriate decisions is needed, cannot be accomplished by autonomous flying 

machines. One example for such a situation is flight testing, which is usually accomplished 

by a human pilot, even for UAVs that are designed for autonomous operation [2]. To 

emphasize the human-in-the-loop nature of a certain UAV, it is common to use the term 

Remotely Piloted Aircraft (RPA). A Remotely Piloted Aircraft System (RPAS) encompasses 

not only the aircraft itself, but also the ground control station, signal transmission links 

and other system elements associated with the operation of the remote aircraft. RPA pilots 

are often called, or even call themselves, operators, especially when the level of RPA 

autonomy is high, to distinguish them from pilots who fly manned aircraft. As one desired 

outcome of this thesis is to enable RPA control with low vehicle autonomy, the terms pilot 

and operator are used interchangeably, at least when referring to aircraft. As Figure 1.1 

indicates, an RPA can either be controlled by an external pilot who has direct visual contact 

with the vehicle, or by an internal pilot who operates the aircraft from within a ground 

control station. 
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Figure 1.1 – Illustration of possible forms of remote piloting activities 

One problem inherent to remote operation is that the pilot receives only reduced sensory 

feedback from the vehicle. In the case of RPA, visual feedback is often limited to outside 

observation of the vehicle, as long as it flies within the visual line-of-sight of an external 

pilot, or, in the case of long-distance remote operation, to the field of view of a camera 

mounted on the aircraft [3]. A major issue faced by external pilots which has caused 

several accidents is the reversal of lateral-directional controls when the aircraft is 

approaching the operator, as compared to the aircraft flying away from the operator [4]. 

Internal pilots, on the other hand, cannot simply turn their head to visually scan the 

surroundings of the RPA and they cannot rely on their ability to detect attitude variations 

through peripheral vision [5]. Visual cues may be limited, but vestibular feedback is even 

completely missing in RPA control, thus leading to an increased possibility of flight 

envelope excursions [5]. The olfactory, thermal and auditory channels, which contribute 

more to the pilot’s general situational awareness than to his flight control capabilities, are 

disconnected as well. Although proprioceptive feedback is felt when handling the inceptor 

of the ground control station, some characteristics of this feedback may be affected by 

time delay introduced by the communication link. It therefore exhibits minor differences 

to the proprioceptive feedback from onboard fly-by-wire control systems and major 

differences to that of mechanical control systems, as can be seen in Figure 1.5 and section 

2.2.2. Another major issue with remote aircraft control is that RPA operators tend to take 

more or higher risks than pilots of manned airplanes when maneuvering the vehicle and 

when making operational decisions, because they do not share the fate of the aircraft [6]. 

The operators’ impoverished sensory environment is a contributing factor to this excessive 

risk-taking behavior. 

Remote operation furthermore necessitates a communication link that enables uplink 

transmission of control signals and downlink transmission of feedback signals. While RPA 

control from within the visual line-of-sight can be accomplished with a direct radio link, 

remote control over larger distances requires more elaborate communication links that 

may comprise one or more satellites or ground-based relay stations [7]. These signal 

transmission paths often exhibit a significant amount of latency, caused not only by the 

large distances, but also by datalink electronics, encryption, compression, error correction, 

synchronization and computations [7]. The resulting round trip time delays can range from 

Remotely Piloted Aircraft

Ground Control Station
with Internal Pilot

Satellite

External Pilot
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under a second to values as high as six or eight seconds [8–10]. Most over-the-horizon 

RPA operations are handled with a geostationary satellite link, for which, according to 

Table 1.1, a total round trip time delay of at least 674.0 𝑚𝑠 is estimated [7]. A subject of 

the experiments presented in chapter 6 of this thesis, who has experience in operating 

RPA, explained that he usually experienced 3.2 𝑠 round trip latency when controlling the 

Harfang UAV (also known as système intérimaire de drones de moyenne altitude longue 

endurance or SIDM) [11] via satellite link. Values approaching six seconds have been 

reported for the low earth orbit, when multiple up-down links are employed [9]. When 

pilot-vehicle communication channels or some of their characteristics change during 

operation, time delays may vary. This is typically the case during control of fast travelling 

spacecraft or when communication is established via the internet. If this variation is large 

enough, it constitutes an additional nuisance for the human operator.  

Table 1.1 – Latency estimates for RPAS communication links, from [7] 

Source of 
Latency 

Line-of-Sight Communication Geostationary Satellite Relay 
Minimum [𝑚𝑠] Maximum [𝑚𝑠] Minimum [𝑚𝑠] Maximum [𝑚𝑠] 

Transceiver  40.0  300.0  80.0  300.0 
Transport  0.2  3.3  239.0  281.0 
Encryption  0.0  4.0  0.0  4.0 
Compression  0.0  375.0  0.0  375.0 
Error correction  0.0  1.5  0.0  1.5 
Synchronization  8.0  32.0  8.0  32.0 
Computations  10.0  30.0  10.0  30.0 

Uplink  58.2  370.8  337.0  648.5 
Downlink  58.2  745.8  337.0  1023.5 

Round trip total  116.4  1116.6  674.0  1672.0 
 

It is known that time delays degrade the performance of closed-loop control systems, 

reduce stability margins and can lead to instability. In combination with the impoverished 

sensory environment, they constitute a major cause for RPA incidents and accidents, 

which occur at much higher rates than in the domain of manned aircraft [4]. In a way, 

the delayed presentation of airplane reactions itself can be considered a form of sensory 

feedback reduction. Hence, time delays are usually avoided or at least reduced to an 

acceptable level. In RPA control, for example, it is quite common to have a local pilot 

within visual line-of-sight perform takeoff and landing with very little time delay and to 

operate the vehicle from afar with large time delays only during non-terminal flight phases 

that require less tracking precision (cf. section 2.1.2), or during ground movements, where 

terrain or buildings obstruct the direct line-of-sight. As a result, it is necessary to hand 

over control between operators. These handover procedures are associated with some 

risks, as vividly described in [12]. 

However, avoidance or reduction of signal transmission time delays may not always be 

possible. In some cases, like long-range flights into remote, dangerous or hostile areas, it 

may be difficult to deploy a local pilot and/or a local ground control station. Furthermore, 

system failures may prevent a successful handover from remote pilot to local pilot. If, in 
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this case, the flight control system is not laid out for operation through large time delays 

and with missing sensory feedback channels, a safe continuation of the flight is at risk. 

The ability of an RPAS to be safely and efficiently controlled in spite of large time delays 

and reduced sensory feedback would therefore constitute a major advantage over other 

systems. Established means to accomplish this goal as well as their shortcomings are 

outlined in the following section 1.2. 

Aviation evolves, however, not entirely towards unmanned systems. For some missions, a 

human pilot aboard the aircraft is irreplaceable. In many respects, human performance 

still is unmatched by computers. Moreover, flying is too much fun to leave it to the 

machines and be a mere spectator or passenger. Interestingly though, the future of 

manned aviation as envisioned by the European research project BRAINFLIGHT [13] holds 

similar challenges as those of RPA control pointed out above. The project’s long term 

vision was to enable control of aircraft via brain activity only, i.e., without the need for 

physical interaction with control inceptors. This would enable physically disabled people 

to fly and thereby enlarge access to aviation [14]. Not needing their hands to control the 

aircraft also means that pilots could manually operate other systems in flight. The whole 

concept could also be applied to other dynamic systems, facilitating different activities of 

work or daily life for all kinds of people. Needless to say, the prospect of using a so-called 

Brain-Machine Interface (BMI) to control aircraft or other machines and devices is certainly 

enticing for many in today’s technophile era. 

 
Figure 1.2 – Relation of the two problems stated to traditional flight control 

An obvious problem with BMI control is that the user does not perceive any haptic, tactile 

or proprioceptive feedback from control inceptors. Why proprioceptive inceptor feedback 

is of great importance in (flight) control is discussed in section 3.1.1 of this thesis. 

Furthermore, the algorithms that identify the user’s intent from his brain activity only do 

this with a certain degree of reliability. This translates to a very noisy control signal. 
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Filtering of the control signal introduces lags that add to the time delay caused by 

processing of the raw brain activity signals. Successful BMI control therefore requires a 

control system designed to make large time delays and missing proprioceptive feedback 

tolerable. 

The two examples of long-distance RPA control and BMI control discussed above show 

that flight control with large time delays and missing sensory feedback channels is an 

emerging, if not already immediate, problem. Figure 1.2 illustrates the two examples and 

relates them to conventional, onboard manual flight control. Note that the time delay of 

the BMI control system is split up into a signal processing delay within the BMI and a BMI 

output filtering delay, which is considered a part of the flight control system. 

1.2 State of the Art 

Tools and machines have been conceived and used by humans for millennia, but with the 

advent of digital computers and the following increase in computing power, the possible 

level of involvement of machines in control tasks has skyrocketed. Today, machines can 

have far more states than merely on and off and each and every state can be designed for 

a different distribution of tasks between human and machine. This fact led to the definition 

of several discrete levels of automation, into which systems or system states can be 

categorized. At a high level of automation, most tasks are accomplished by the machine, 

whereas at a low level of automation, the human operator is responsible for the majority 

of tasks. More generally, one could speak of a continuous, one-dimensional spectrum of 

automation degrees [15]. For the following analyses, Figure 1.3 has been derived from 

[15], locating different approaches to flight control within this spectrum. 

 
Figure 1.3 – The spectrum of automation [15] related to flight control 

The so-called stick and rudder flying is done without any assistance of the machine: pilots 

actuate the control surfaces with their hands and feet through inceptors and mechanical 

linkages. If a flight control computer is installed, the machine can provide various degrees 

of assistance. Control augmentation, for example, can be considered a rather low degree 

of automation, because it merely improves some manual handling characteristics. 

Autopilots, on the other hand, relieve human pilots from performing manual flight control. 

The degree of automation is therefore higher, with humans playing only a supervisory role. 

On the far right end of the spectrum, we find fully autonomous aircraft that accomplish a 

predefined mission without constant supervision. 

A common strategy to deal with time delays in human-closed control loops is to increase 

vehicle automation or autonomy, i.e., to move right in the spectrum of Figure 1.3. Instead 
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of resorting to a local pilot during terminal flight phases, it is possible to rely on an 

automatic takeoff and landing system. Nonterminal flight phases, too, are regularly flown 

at higher degrees of automation. RPA operators then merely state high-level goals – 

waypoints to follow or an area to observe – that are accomplished autonomously by the 

aircraft. The presence of time delays and the absence of some sensory feedback is less 

critical when higher-level goals are communicated instead of low-level control inputs, as 

section 2.2.1 explains. 

The strategy of increasing vehicle automation to mitigate issues associated with time 

delays and reduced sensory feedback, however, has its limitations. One problem with 

highly automated aircraft that has already been apparent for some years now is that pilots 

increasingly rely on automation and thereby become complacent and less and less 

proficient in low-level (manual) flight control [16, 17]. This may be acceptable as long as 

the automation systems function nominally. However, as soon as component failures occur 

in the automation systems that cause the control system to revert to a lower level of 

automation, the human pilots’ ability to fly the aircraft at this lower level of automation is 

needed. Similarly, spontaneous changes in the flight mission, such as evasive maneuvers, 

may require pilots to deliberately bypass any automated systems to react in an adequate 

timespan while maintaining situational awareness. Not only do pilots need to be able to 

perform low-level flight control, but the airplane’s control system must enable them to do 

so in the first place. It is exactly in the abovementioned, sudden non-normal situations 

that the flight control system must exhibit adequate handling qualities to support the pilot, 

who experiences great stress. A control system that is designed to operate at a high degree 

of automation to mitigate excessive time delays and missing feedback channels, however, 

may not even provide controllable handling qualities for a safe continuation of the flight or 

a safe landing once its functionality is degraded to lower degrees of automation. 

There are more disadvantages of high vehicle autonomy. Highly automated RPA control 

can prevent pilots from rapidly intervening when necessary [3] and it can produce 

degraded situational awareness as, for instance, pilots would not notice changes in 

handling qualities due to icing. Furthermore, the use of automation to compensate for 

human shortcomings does not completely solve the problem, as the automation itself can 

fail or introduce other problems for the crew, such as complicated and extremely time 

consuming flight planning processes [4]. Several accidents in which automation performed 

as designed, but failed to carry out the desired task because of imperfect implementation 

or an undetected malfunction, were due to the fact that developers were unable to predict 

all possible contingencies [12]. Indeed, handling rare or unplanned events and 

appropriately incorporating risk-based decision-making using uncertain and incomplete 

information still constitute challenges for UAV automation [18]. 

Automation also affects the freedom of movement of a vehicle. Non-automated systems 

already exhibit certain physical limits, but as soon as some automation is introduced, the 

operator’s freedom is additionally limited to a certain space designed by control engineers. 

In systems with high degrees of automation, excessive restrictions may occur. This may 

be the case in some RPAS and it is a major issue in BMI control. Consider the following 

method to cope with high uncertainties in BMI, proposed in [19] for BMI control of a 



Introduction 

  7 

wheelchair. Instead of commanding the movement itself of the wheelchair via a BMI, only 

the desired destination is communicated and the wheelchair moves on its own towards 

that destination. Obviously, destinations that have not been preprogrammed cannot be 

reached. 

All these examples show that the common approach of resorting to higher degrees of 

automation is, although successful in many respects, unsatisfactory. The experienced test 

pilot and engineer Rogers Smith claims that the best pilot-vehicle performance in manned 

aviation is attained through the balanced and synergetic use of skilled manual flight control 

together with automation systems [20]. Likewise, mixed or hybrid control approaches to 

UAV control are deemed favorable by other researchers [8]. It is certainly prudent to 

employ automation in situations where pilot errors easily result in accidents or significantly 

reduce operational performance. This already is common practice in manned aviation and 

it should be for unmanned aviation as well. Tasks that require high bandwidth and high 

precision, too, may need to be performed by automatic systems or a local pilot. Takeoff 

and landing are examples of such tasks. However, giving human pilots the ability to 

perform (flight) control at lower degrees of automation, even with large time delays and 

reduced sensory feedback, improves safety and effectiveness at least in some situations 

like automation failure and in unforeseen or rapidly changing environments. This is why 

this ability should be developed and advanced. 

Most of the research on large time delays in human-closed control loops with low 

automation degrees is done in the domain of haptic teleoperation. In haptic teleoperation, 

humans close the control loop in remote object manipulation tasks, sending haptic 

command signals and receiving haptic feedback signals [21]. Usually, a remote slave 

manipulator mimics the behavior of the master manipulator, which in turn takes into 

account the input torques from the slave [22]. This is illustrated by Figure 1.4. 

 
Figure 1.4 – Illustration of remote haptic teleoperation 

Here, the proprioceptive feedback loop, which is the fastest control loop involving the 

human operator (cf. section 3.1.2), comprises both master and slave manipulator. Time 

delays in the fast position/force control loop between master and slave manipulator easily 

destabilize the system. Part of haptic teleoperation research therefore aims at providing 
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stable master-slave control loops with high-bandwidth force feedback to accurately return 

the environment’s haptic characteristics, i.e., the shape and hardness of objects, to the 

user. The fact that haptic teleoperation is categorized into bilateral, shared and 

semiautonomous schemes [21] illustrates that in this domain, too, an increase in 

automation is considered a possible remedy for time delays. Of those three categories, 

bilateral teleoperation resembles the considered types of non-autonomous flight control 

most. It is important, however, to note the differences between haptic teleoperation and 

(remote) flight control with time delays. The aim of haptic teleoperation is to enable haptic 

interaction between the operator and the remote environment. Flight control with time 

delays, on the other hand, is not about interaction with the environment and does not 

involve a master-slave pair of control inceptors. As indicated by Figure 1.5, it is a kind of 

free-motion teleoperation. A known plant – the aircraft – is controlled such that the 

deviation from certain target parameters, like attitude or flight path, is minimized. In this 

case, control loops are either closed onboard the aircraft, or by the human pilot. The 

problem of finding a stable master-slave control loop is thus avoided and corresponding 

methods are inapplicable. Instead, previous research on human-closed control loops and 

free-motion teleoperation with large time delays is highly relevant. 

 
Figure 1.5 – Illustration of remote flight control 

An overview of about five decades of research in bilateral teleoperation is given in [22]. 

Initial experiments by Sheridian and Ferrell [23] and by Ferrell [24] identified and 

described a distinct operator behavior that is adopted in control tasks with time delays. 

This behavior, which they called move-and-wait strategy, is extensively described in 

section 3.2.2 of this thesis. Subsequent research in haptic teleoperation focused on 

introducing supervisory control with increasing autonomy of the remote system, but also 

led to the development of predictor displays [25, 26]. Such displays present a prediction 

of the remote system’s response before the delayed feedback of the actual system response 

and thereby reduce the apparent time delay. Predictor displays have been described for 

both visual and force feedback [9, 27], but their usage in teleoperation is often limited to 

free motion, due to the complexity of dynamic force and torque modeling during contact 

[28]. In parallel to the research on predictor displays, a function called “software jig” was 
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proposed [29] that implements movement constraints imposed by the task and thereby 

reduces the degrees of freedom the user needs to control. 

Those applications of bilateral teleoperation presented in [22] which are most relevant to 

the topic of this thesis are underwater vehicle operations, where the time delay problem 

is tackled by relying on supervisory control, and mobile robots that provide haptic feedback 

about real or virtual obstacles [30, 31]. A similar approach that uses haptic aids to support 

obstacle avoidance or gust rejection in UAV flight, but that neglects the time delay 

problem, is described in [32, 33]. The methods for obstacle avoidance force feedback 

could be used in flight control, either for actual obstacle avoidance, or as a type of flight 

director that directs the pilot’s control inputs during tracking tasks. However, obstacle 

avoidance tasks are rare in aviation and therefore not within the scope of this thesis, and 

the use of a flight director requires autopilot functionality or, in other words, a higher 

degree of automation. A flight director is indeed nothing else than a display of those 

command inputs that an autopilot would make to lower-level flight control loops. The only 

difference to actual autopilot control is that the human pilot makes those inputs, is thereby 

more involved in the flight control task, and retains the freedom to disregard the autopilot 

commands. 

Comparably few research activities take place in the domain of remote air- and spacecraft 

control or, more precisely, remote manual control of aerial or orbital vehicle movements. 

Although some propositions have been published on desirable UAV or RPA dynamic 

characteristics [1, 34, 35], none of them addresses the main issues of this thesis. 

Elsewhere, it has been shown that the abovementioned concept of predictor displays can 

be applied to remote spacecraft rendezvous and docking maneuvers to effectively increase 

success rate while reducing time and fuel required [36]. In [37], a predictive factor has 

been defined that indicates how well a spacecraft operator can cope with time delays. 

This factor depends on operator skill and time delay and is positively influenced by 

predictor displays. In aircraft control with negligible time delay, perspective flight path 

displays with a predictive capability have been shown to improve manual control 

performance [38, 39]. Such displays visualize the target flight path as a so-called tunnel 

in the sky and also feature a flight path predictor symbol that indicates the future position 

of the aircraft at a specified time ahead. Moreover, the cross section of the tunnel that the 

aircraft shall pass at that time is marked. The task of the pilot is to align the predictor 

symbol with the center of the marked tunnel cross section. By implementing an 

appropriate predictor law, near-optimal transfer characteristics from control input to 

predictor position can be achieved. Such a predictor law does not necessarily constitute a 

highly elaborate model of the aircraft’s dynamics. It can be as simple as a linear or 

quadratic Taylor polynomial approximation. However, when more states need to be 

predicted, like in the case of teleoperation with six or more degrees of freedom, the 

predictor model is necessarily more complex. The combination of flight path predictor and 

tunnel in the sky contributes to minimizing the predicted as well as the current path error, 

but it obviously requires a priori knowledge about the target flight path. If such knowledge 

is not available, target prediction cannot be provided. State prediction on its own, however, 

is already generally quite effective in supporting human performance, since it replaces a 

cognitive task with a simpler perceptual one [40]. 

Dynamic#_CTVL00159445f4adc98428688be4fc7bf951d25
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For RPA control with large time delays, a full state predictor relying on a virtual visual 

environment comparable to that of a flight simulator has been proposed [41], enabling 

compensation of the downlink latency. It is also possible to compensate the entire round 

trip latency [2], although it needs to be stressed that prediction inaccuracies due to 

disturbances and model errors increase with prediction time. An important limitation of 

predictor displays is the need for synchronization between predictor model and real 

system. When the real system did not exactly follow the prediction, as is usually the case 

due to various disturbances, and the prediction model is updated to the actual system 

state, transient movements of the predictor can occur. Depending on their magnitude, 

such transient movements can be quite confusing for the operator, as they do not conform 

with the expected, physical behavior of the system. 

In research on hypersonic aircraft control [42, 43], the problem of path-attitude 

decoupling was encountered, which manifests itself in lags as high as 20 𝑠 or more 

between attitude and flight path. For altitude tracking tasks, this problem was addressed 

by displaying vertical speed and vertical acceleration and instructing pilots to perform flight 

path control by immediately counteracting changes of these variables. This piloting 

technique is different from the conventional technique of adjusting the airplane’s attitude 

to produce the desired flight path changes (cf. section 3.1.2). By reducing the attention 

pilots devote to pitch attitude, the significance of path-attitude decoupling was reduced. 

Moreover, a predictor display proposed as additional mitigation strategy was shown to be 

an appropriate and efficient means to support the pilots’ control efforts [44]. 

Indeed, new control strategies may have to be found for flight control with large time 

delays [18]. Investigations into the capture of satellites using a remotely piloted orbital 

maneuvering vehicle [45] came to the conclusions that a lower control authority is 

desirable for remote operations due to the pilot’s reduced situational awareness. Since 

pilots controlled vehicle accelerations, control authority can be understood as the 

maximum translational and rotational acceleration producible with the inceptors. 

Moreover, “direct” acceleration control was preferred over “proportional” acceleration 

control as time delays increased from 2 𝑠 to 6 𝑠. Here, proportional control enabled pilots 

to command different levels of acceleration by varying inceptor deflection, whereas direct 

control simply caused appropriate thrusters to fire when the inceptor was moved out of 

detent [46]. Direct control thus effectively gave operators a choice of only three distinct 

control inputs: positive acceleration, negative acceleration and no acceleration. 

The problem of reduced sensory feedback in RPA control has already been identified by 

the aerospace research community [3, 18]. Different strategies have been proposed to 

either reintroduce or substitute selected sensory channels and thereby enhance the feeling 

of shared fate and improve flight control performance. One strategy to reinstate vestibular 

feedback is to put pilot (and ground control station) on a motion platform and use 

measurements from the real RPA to replicate the linear accelerations and rotations on the 

ground [6]. Like in a moving-base simulator, the motion feedback needs to be well 

synchronized with the visual feedback to prevent vertigo. Evidently, this approach results 

in a considerable increase in ground control station complexity, cost and maintenance 

effort. 
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Instead of reintroducing a certain feedback modality, it is well possible to substitute it with 

another. Information that cannot be transmitted in a non-visual sensory channel is often 

displayed visually, with the disadvantage of cluttering up the visual channel. An alternative 

way to compensate for the reduced sensory feedback in RPA control is the use of new 

presentation options [18] or multimodal information displays [3]. Such displays, which 

may comprise auditory and tactile cues, do not necessarily compensate the loss of one 

certain feedback channel. They more generally reduce cognitive-perceptual workload levels 

and thereby compensate for the increased workload associated with establishing 

situational awareness in an impoverished sensory environment. The method of distributing 

information on multiple sensory channels may increase the maximum overall information 

rate, but it comes with the risk of different channels competing with each other. Coning of 

attention can still occur – either onto one channel or onto one information within one 

channel. The examples of multimodal displays given in [3] only comprise event based 

alerts and annunciations, but continuous multimodal feedback for the flight control task is 

also possible. The use of tactile displays for onboard manual flight control has been 

investigated by several studies [47–50]. Their application to remote UAV control is 

deemed to potentially improve the operators’ situational awareness [51]. A more detailed 

analysis of sensory feedback channels and multimodal displays is provided in sections 

3.1.1 and 4.4. 

The state of the art in BMI control is that some systems enable users to select one item 

out of a given set, whereas others allow to communicate binary decisions. With such 

binary commands, one degree of freedom of a vehicle’s movement can be controlled. As 

mentioned earlier, BMI output signals are quite noisy, which is why extensive filtering is 

required to make the signals usable for communication or control. This generally makes 

continuous low-level control impractical and leaves high-level decision taking as the only 

option. So-called synchronous or cue-paced BMIs constitute an extreme case, since they 

only allow for communication in well-defined time frames [52]. Consider the BMI 

controlled car presented in [53] as an example. Upon reaching a crossroads, the user is 

prompted to decide on the direction to take. He then has a few seconds to communicate 

his intention via the BMI. The BMI neither considers the possibility that the user does not 

want to communicate at that moment, nor does it allow the user to communicate during 

the time between two crossroads. The P300 speller [54], too, is a synchronous BMI. It 

allows to spell a letter by focusing visual attention on it in a table of multiple letters, while 

each letter (or each group of letters) is intensified for a short time in random order. The 

time required to spell one single letter is fixed by the system and can be as high as 21.6 𝑠 

[54]. Asynchronous or self-paced BMIs, on the other hand, leave the decision on when 

and when not to communicate to the user [52]. They continuously monitor the user’s brain 

activity and look for certain intentions. An example application of an asynchronous BMI is 

the control of a quadcopter’s movement described in [55]. Here, binary decisions could 

be made in two degrees of freedom. Subjects had continuous low-level control of the 

quadcopter, commanding left/right and up/down movements as it slowly moved forward. 

This is the most similar approach to what is presented in this thesis. Another study related 

to BMI control of aircraft relied on the same basic BMI approach that enables binary 

decisions in one degree of freedom, but used it to successively specify segments of a 
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two-dimensional target path that a UAV would then automatically follow [56, 57]. A more 

detailed introduction to BMIs follows in section 3.4.1. 

The issues arising when proprioceptive feedback is missing have not yet been addressed. 

It exists in cases like BMI or speech control that are usually employed for higher-level, 

semiautonomous control. In such control systems, human-machine communication 

resembles verbal communication, so it does not necessarily require proprioceptive 

feedback, even if manual means of control are used, like the command line interface of a 

computer. BMIs mainly rely on visual displays, although some also provide tactile or 

auditory feedback [52]. 

1.3 Goals and Contributions 

1.3.1 Research Goals 

In one sentence, the aim of the research leading up to this thesis was to make low level, 

closed-loop flight control by a human pilot in the presence of large time delays and with 

missing sensory feedback channels safer, more effective and more efficient. The following 

paragraphs concretize this mission statement and provide some explanation. 

Low-level flight control is the act of controlling an airplane’s movement, i.e., flight path 

or, whenever necessary, attitude, throughout an exemplary reference flight mission. 

Closed-loop control is to be understood in the sense that the pilot continuously modifies 

his control input depending on the sensory feedback received to pursue his objectives. 

During open-loop control, on the other hand, control inputs are made entirely without 

relying on sensory perception of the target parameter. Driving a car along a winding road 

is an example of closed-loop control, whereas selecting a target altitude on an autopilot 

mode control panel constitutes open-loop control. Note that during closed-loop control, 

pilots may nevertheless use an open-loop control strategy. In this case, the result of each 

open-loop control input is assessed and, if necessary, corrected by another control input. 

It is assumed that the signal transmission or processing characteristics in the case of RPA 

or BMI control, respectively, do not noticeably change during one flight and that the time 

delay therefore is constant. A minimum time delay of 1 𝑠 is considered realistic given the 

state of the art in both RPA and BMI control. It corresponds, for instance, to a geostationary 

satellite link with at least some compression. Considering the maximum values in Table 

1.1 and the reports from the RPA-experienced experimental subject, a maximum time 

delay of about 3 𝑠 is considered, representing ultra-long-range remote control or extensively 

filtered BMI outputs. During RPA control, vestibular feedback is missing, and BMI control 

does not provide proprioceptive feedback. 

The time delay is considered to be effectively present in the control loop. This means that 

no efforts were made to reduce or eliminate the apparent time delay by introducing 

predictor displays or entire virtual environment displays. Although the implementation of 

predictors may be challenging, their effectiveness in mitigating time delay (by apparently 

reducing it) is quite straightforward. It has been proven in many studies and is therefore 
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not under scrutiny here. Instead, the effect that such predictor displays have on the pilots’ 

distribution of attention was investigated. 

It was clear from the beginning that an eventual handling improvement is necessarily 

limited in its extent. Conventional flight control will never be matched in performance when 

large time delays are present and sensory feedback channels are missing, much like a 

telephone conference around the globe will never adequately replace a face-to-face 

meeting. The research focus therefore was to make flying under these adverse 

circumstances safe. This means that a departure from a safe flight regime must be 

prevented, notably by ensuring stability of the control loop closed by the human pilot. 

Operational performance is important as well, but only the second priority. It is inevitably 

degraded with respect to that of onboard manual flight control. In the mission statement, 

the term effectiveness refers to the ability to accomplish operational goals, whereas 

efficiency is a measure of resources needed to accomplish those goals, such as pilot 

workload or time. Attempts were made to establish operational effectiveness and to 

improve operational efficiency by minimizing the additional pilot workload introduced by 

time delays and reduced sensory feedback. The first priority, however, was to provide 

safety. 

1.3.2 Contributions of this Thesis 

Throughout the thesis, remote flight control with large signal transmission latencies and 

BMI controlled flight serve as example applications. By working towards the goals 

described above, this thesis contributes to an increased independence from automation 

and/or local pilots in RPA control and to more application-driven BMI research. It also 

promotes a better understanding of human operator behavior when confronted with large 

time delays. The following paragraphs list and explain in detail the particular contributions 

of this thesis. 

Novel representations of the dynamic behavior of pilots 

The first major contribution is the analysis and modeling of the nonlinear pilot behavior 

that occurs during control of systems with large time delays. Although this specific, 

pulse-like behavior has been observed by many researchers, few efforts were made to 

describe or even model it. Section 3.2 of this thesis provides a survey of previous research 

on this issue which shows, that pulse-like behavior is long known as a strategy to control 

higher-order systems. In the control of systems with large time delays, a very similar 

behavior occurs and a hybrid open- / closed-loop control strategy is applied by operators. 

This thesis pieces these insights together to form an integral description of both the 

characteristic control strategy and the characteristic control activity of human operators in 

control tasks with large time delays. 

Established pilot models do not satisfyingly describe this behavior, since they are 

applicable either to flight control without time delays, where pilots behave quasi-linearly, 

or to control of higher-order systems, where they can still perform pure closed-loop control. 

Therefore, novel representations of the dynamic behavior of pilots are derived in section 

3.3. First, a control-theoretic model is presented that describes pure closed-loop tracking 
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of a stationary target in the presence of large time delays. Since it contains a nonlinear 

element, classical linear methods cannot be applied. A novel approach of pilot behavior 

analysis is therefore presented which makes use of the phase plane method. Based on 

this model, the implications of the characteristic pilot behavior on flight control system 

design are discussed. Furthermore, a second model is presented that extends the first 

model and thereby describes the hybrid open- / closed-loop control strategy observed 

during pursuit control with large time delays. This second model is validated by 

comparison with experimental data in section 6.5. 

A flight control system concept tailored to the pilots’ natural behavior 

Pilot models only constitute a mean to analyze the problem, or a tool in the process of 

finding a solution to it. Going one step further, chapter 4 of this thesis proposes a flight 

control system design that applies the insights gained from pilot modeling to address the 

problem of flight control with large time delays and reduced sensory feedback. The major 

innovation in this design is the decision to deliberately restrict pilot inputs by implementing 

an on-off control system. In a pilot-centered approach, this decision is derived from the 

characteristic behavior described and modeled in sections 3.2 and 3.3. It is furthermore 

shown in section 4.1 that similar control systems have already been implemented in 

various spacecraft, albeit for onboard manual control. 

Although some previous studies indicate that an on-off control system may indeed be 

better suited for control tasks with time delay than a value-continuous control system, a 

detailed experimental evaluation has not yet been done. Hence, in the research leading up 

to this thesis, a large-scale experimental comparison between the two control system types 

has been set up and conducted to gain quantitative insights into the advantages and 

disadvantages of each approach. Its results, presented in section 6.4, constitute another 

core contribution of this thesis. They shed light on how far pilot workload and task 

performance differ between continuous and on-off control. Moreover, the influence of 

varying control sensitivities was investigated for both types of control systems. Since most 

of the experiment’s subjects had never been exposed to the problem of (flight) control with 

large time delays before, insights were also advanced concerning the initial learning phase 

and the natural strategy to cope with the problem. 

As indicated in section 1.2, automation should be employed in situations where pilot errors 

significantly reduce operational performance or easily result in accidents. With the flight 

control approach proposed in this thesis, however, remote RPA pilots can take over control 

if system failures cause the control system to revert to a lower level of automation or if 

deemed necessary due to unanticipated circumstances, like, for instance, an impeding 

collision. Even if the proposed control system type will not enable picture-perfect landings, 

it will at least enable the remote pilot to end the flight in a desired area and thereby avoid 

harm to persons or damage to objects on the ground. With a conventional control system, 

on the other hand, pilots may more easily loose control in flight. Apart from RPA flight 

control, the findings of this thesis also contribute to RPA payload control and to 

teleoperation in general. 
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Application of methods from the aerospace domain in the realm of BMI 

BMI controlled flight is very far from actual application. Research activities on BMI control 

mainly focus on improving the algorithms that identify the user’s intention from the 

measured electromagnetic brain signals. Indeed, significant advances in this area are 

required to mature the technology. To implement suitable algorithms, traditional BMI 

research relies on neuroscience and, more rarely, on signal theory. Moreover, control 

schemes are usually open-loop. This thesis gives examples of how to employ tools and 

methods from the aerospace domain to closed-loop BMI control. Considering that 

controllability has been a major issue in aviation since its dawn, it seems foolish not to 

translate this hard-earned know-how to other problems of control. 

The experiments presented in chapter 5 are an example for how handling qualities 

research can be done in the field of BMI control. Instead of fixing a single BMI system 

design and then determining in an open-loop task how often the algorithm correctly 

classifies the users’ intention, various configurations were set up and the dynamic 

characteristics of the entire, closed control loop were systematically adapted to the 

subjects’ needs. Another substantial difference with respect to many BMI control studies 

is, that apart from objective performance metrics, subjective user comments were taken 

into account. Finally, experiment subjects were immerged in a highly realistic environment, 

namely a flight simulator, as opposed to the typical, rather functional laboratory 

environment. Human users behave differently whether they operate a desktop-computer 

simulation, a highly realistic simulator or the real system. A more application-driven 

approach therefore constitutes an important step from BMI research towards actual BMI 

products. 

Aerospace methods cannot replace neuroscience and signal theory in BMI research, but 

they complement the scientific toolbox. They cannot be used to improve the brain signal 

classification accuracy itself, but they are helpful in identifying suitable dynamic 

characteristics of the controlled system. In this regard, this thesis constitutes a starting 

point that hopefully acts as impetus towards the combined application of neuroscience, 

signal theory and aerospace engineering methods to the problem of BMI control. 

1.4 Outline 

Following this introductory chapter 1, some basic information about flight mechanics, 

flight control systems and handling qualities is provided in chapter 2. Then, chapter 3 

presents existing and novel pilot models and gives an introduction to BMIs. Chapter 4 

describes the flight control system design. Chapters 5 and 6 then compile results from 

several flight simulator experiments on BMI control and RPA control, respectively. Finally, 

concluding remarks and an outlook are given in chapter 7. A more detailed outline of the 

core chapters of this thesis is given by the following paragraphs. 

Chapter 2 starts off with the definition of a reference aircraft as the flight controller 

environment with certain sensors and control effectors. Furthermore, a flight mission and 

its different flight phases are outlined in section 2.1.2. They, too, serve as a reference for 

flight control system design. A brief analysis of flight mechanics follows in section 2.2.1, 
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as well as a look on the historic evolution of flight control systems and the resulting 

implications on aircraft handling and requirements in section 2.2.2. Then, methods for 

quantifying handling qualities and the concept of handling qualities criteria are presented 

in section 2.2.3. Chapter 2 concludes by outlining pilot-induced oscillations as 

manifestation of a major handling deficiency that is very relevant to the topic of this thesis 

and by describing two handling qualities criteria that aim at identifying this deficiency in 

a given control system. 

Chapter 3 begins with an introduction to the pilots’ input (sensor) and output (motor) 

channels and their characteristics relevant to flight control. Next, several established 

quasi-linear physiological and control-theoretic pilot models are presented in section 

3.1.2. In section 3.2.1, the effects of large time delays are examined, based on previous 

research in this field and using the pilot models presented before. A hybrid open- / 

closed-loop control strategy is described as natural operator behavior in section 3.2.2. The 

shortcomings of the quasi-linear models in describing this behavior are identified and a 

survey of alternative models is given in section 3.2.3. Then, in section 3.3.1, a new model 

is derived that describes closed-loop compensatory tracking of a stationary target with 

fixed-amplitude control inputs. This model is expanded in section 3.3.3 to describe pursuit 

tracking and the hybrid open- / closed-loop control strategy observed. In the last part of 

chapter 3, a more detailed introduction to BMIs is given and some challenges of BMI 

control are characterized using a control-theoretic BMI model. This model also serves as 

an illustration for the source and the level of time delays in BMI control. 

Based on the information collected in the first three chapters, a flight control system is 

designed in chapter 4 that addresses the given problem. The design process encompasses 

the entire chain from the inceptor or BMI through the flight control algorithms to the 

feedback mechanisms or displays. After delineating some design goals and basic design 

choices in section 4.1, section 4.2 describes the flight controller with its functions and 

shows the behavior of the implemented system. Then, suitable inceptor characteristics are 

identified and minimum and desired BMI performance outlined. Thoughts on displays 

relying on different possible sensory modalities conclude chapter 4. 

Chapters 5 and 6 describe the experimental evaluation of BMI control and manual remote 

flight control, respectively. They cover multiple human subject studies that have been 

conducted in flight simulators, each highlighting a different part of the problem or the 

proposed solution. BMI control and manual remote flight control were split up in separate 

experiments as well as in separate chapters of this thesis because the goals, the setup and 

the outcome of the experiments differed drastically. Although both example applications 

do have some similarities, BMI control is still in its infancy. Therefore, the experimental 

setup, the tasks and the results discussed in chapter 5 are of a more explorative nature. 

Chapter 6, on the other hand, starts off by listing several a-priori hypotheses that were 

tested in the experiments. After a description of the experimental setup and the tasks, the 

experiment results are discussed and related to the hypotheses. The BMI model defined 

in section 3.4.2 is validated in section 5.5, whereas section 6.5 determines whether the 

new pilot model from section 3.3.3 well describes the pilot behavior observed in the 

experiments on manual remote flight control. 
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2  H A N D L I N G  Q U A L I T I E S  

P R E L I M I N A R I E S  

2.1 Reference Configuration, Mission and Flight Phases 

According to Cooper and Harper [58], “handling qualities are those qualities or 

characteristics of an aircraft, that govern the ease and precision with which a pilot is able 

to perform the tasks required in support of an aircraft role.” As a result, a concise 

understanding of the aircraft and its role is required to conceive a flight control system that 

provides adequate handling qualities. The reference airplane and flight mission of this 

thesis are described in this section. 

2.1.1 Aircraft, Measurements and Estimations 

For several reasons, a light airplane is considered a suitable reference configuration for 

RPA and BMI control. First, it is similar in size and weight to many existing and possible 

future RPA which could benefit from the proposed approach. Second, BMI flight control 

could first find its application in light general aviation airplanes, since agile airplanes in 

military missions require a very high control system bandwidth that BMIs will not provide 

in a foreseeable future and airline operations with large transport aircraft extensively rely 

on automation. The reference airplane chosen is the Diamond DA42 [59]. A drawing of 

this twin piston engine airplane with four seats and a maximum takeoff mass of 1900 𝑘𝑔 

is shown in Figure 2.1. This airplane can be flown under visual and instrument flight rules 

by a single pilot. The certification basis is JAR-23, the predecessor document of CS-23 

[60]. The fact that an optionally piloted version of the DA42, which can be operated either 

as a manned aircraft or as an RPA, is available [61] emphasizes that this airplane is a 

suitable reference configuration for this thesis. 

The infrastructure of the Institute of Flight System Dynamics of the Technical University 

of Munich (TUM), where the research for thesis has been conducted, not only includes 

dynamic models of the DA42 implemented in MATLAB and Simulink [62, 63], but also a 

DA42 Flight Training Device (FTD) or – simply said – simulator. Details of the DA42 

simulator are given in section 5.1.2. The following paragraphs describe the airplane as 

the plant of the flight controller. The flight controller, which is presented in chapter 4, 

performs feedback control to shape the dynamic behavior of the entire augmented 

airplane, i.e., the combination of airframe and digital flight control algorithms. 
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Figure 2.1 – Sketch of the DA42, based on the maintenance manual [64] 

The performance attainable by feedback control not only depends on the physical 

characteristics of the plant, which are briefly outlined in section 2.2.1, but also to a large 

extent on the measurements available. As the research presented in this thesis relies on 

simulation rather than inflight experiments, any desired measurement could have been 

assumed to be perfectly available. It was, however, decided to restrict the measurements 

available to a realistic set that is readily available in the considered class of aircraft. 

Table 2.1 – Parameters assumed available from onboard sensor fusion 

Symbol Description 

𝑝 Roll rate 

𝑞 Pitch rate 

𝑟 Yaw rate 

Ψ Heading 

Θ Pitch angle 

Φ Bank angle 

(𝑛⃗ )𝐵 = (

𝑛𝑥
𝑛𝑦
𝑛𝑧
)

𝐵

 Load factor, noted in the body fixed frame 

𝜒𝐾 Kinematic course angle 

𝛾𝐾 Kinematic flight path climb angle 

𝑉𝐾 Absolute kinematic speed with respect to the rotating Earth 

𝑉𝐼𝐴𝑆 Indicated airspeed 

ℎ̇ Kinematic vertical speed 

ℎ𝐵 Barometric altitude 

ℎ𝑅 Height above terrain 

 

The reference airplane, for instance, is equipped by default with the Garmin G1000 

avionics suite [65]. Such systems normally comprise an air data computer that processes 

pressure measurements from the pitot-static system and also outside temperature 

measurements, an inertial measurement unit that senses the specific force and angular 
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rate of the aircraft body, a magnetometer to obtain information on magnetic heading, and 

a global navigation satellite system receiver. A data fusion algorithm combines the 

measurements from these various sources to obtain relevant aircraft state parameters with 

high accuracy. If such a system is combined with a radar altimeter, which is a standard 

instrument in large transport aircraft, but more costly to install, the set of parameters listed 

in Table 2.1 can be assumed available in the considered airplane class. It is furthermore 

assumed that the measurement or computation of these parameters is made with a 

sufficiently high quality. Sensor models were therefore not implemented, but the values of 

these parameters were taken directly from the simulation model instead. Note that the 

height above terrain, which is the only measurement contributed by the radar altimeter, is 

only required for attitude limitation in ground proximity (cf. section 4.2.2). More 

challenging measurements of, for example, the flow angles 𝛼 and 𝛽, are not employed. 

As can be seen in Table 2.1, the load factor is assumed to be available in the body-fixed 

frame (subscript 𝐵). To calculate the limit flight path climb angle, however, the flight 

control system requires the longitudinal load factor in the kinematic frame (𝑛𝑥)𝐾 (cf. 

section 4.2.2 and appendix A). The body-fixed frame has its origin at a reference point on 

the vehicle. Its 𝑥- and 𝑧-axes lie in the aircraft’s plane of symmetry, pointing forward and 

downward, respectively. The 𝑦-axis points right to form a right-hand coordinate system. 

The kinematic frame’s origin coincides with that of the body-fixed frame, but its 𝑥-axis is 

aligned with the kinematic velocity vector and its 𝑧-axis is parallel to the projection of the 

Earth’s local surface normal onto a plane perpendicular to the 𝑥-axis. The 𝑦-axis, again, 

forms a right-hand coordinate system with the other axes. 

An estimation of the longitudinal load factor in the kinematic frame (𝑛̂𝑥)𝐾, with the hat 

denoting estimated values, can be made based on the geometric relationship between the 

kinematic frame and the body-fixed frame. The rotation between these two frames is 

described by the three angles 𝛼𝐾 (kinematic angle of attack), 𝛽𝐾 (kinematic angle of 

sideslip) and 𝜇𝐾 (kinematic bank angle). According to [66], the rotation matrix from the 

kinematic frame to the body-fixed frame is defined by equation (2.1). 

𝑀𝐵𝐾 = [
1 0 0
0 cos 𝜇𝐾 sin 𝜇𝐾
0 − sin 𝜇𝑘 cos 𝜇𝑘

] [
cos 𝛼𝐾 0 − sin 𝛼𝐾
0 1 0

sin 𝛼𝐾 0 cos 𝛼𝑘

] [
cos 𝛽𝐾 −sin𝛽𝐾 0
sin 𝛽𝐾 cos 𝛽𝐾 0
0 0 1

] (2.1) 

By multiplying the inverted 𝑀𝐵𝐾 with the load factor in the body-fixed frame, the load 

factor in the kinematic frame can be obtained, as equation (2.2) shows. 

(

𝑛𝑥
𝑛𝑦
𝑛𝑧
)

𝐾

= 𝑀𝐵𝐾
−1 ⋅ (

𝑛𝑥
𝑛𝑦
𝑛𝑧
)

𝐵

 (2.2) 

During the reference flight mission (cf. section 2.1.2), the airplane normally operates close 

to straight, coordinated flight. Hence, it can be assumed that 𝛽𝐾, 𝜇𝐾 ≈ 0. This assumption 

inserted into equation (2.1) and then combined with equation (2.2) leads to equation 

(2.3). The required parameter (𝑛̂𝑥)𝐾 can be read from the first line of equation (2.3), 

which is explicitly written down in equation (2.4). 
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(

𝑛̂𝑥
𝑛̂𝑦
𝑛̂𝑧

)

𝐾

= [
cos 𝛼𝐾 0 sin 𝛼𝐾
0 1 0

− sin 𝛼𝐾 0 cos 𝛼𝑘

] ⋅ (

𝑛𝑥
𝑛𝑦
𝑛𝑧
)

𝐵

 (2.3) 

(𝑛̂𝑥)𝐾 = (𝑛𝑥)𝐵 ⋅ cos 𝛼̂𝐾 + (𝑛𝑧)𝐵 ⋅ sin 𝛼̂𝐾 (2.4) 

Note that to estimate the longitudinal load factor in the kinematic frame, an estimation of 

the kinematic angle of attack 𝛼̂𝐾 needs to be obtained in the first place. According to [66], 

this angle can be estimated as in equation (2.5) if Θ and 𝛾𝐾 are small, which is the case 

during the considered flight mission (cf. section 2.1.2). 

𝛼̂𝐾 = Θ− 𝛾𝐾 (2.5) 

Sensors and their measurements constitute but one interface between controller and 

environment. Another interface, which enables the controller to influence its environment, 

are the control effectors. Much like the quality of the measurements, the number, type 

and physical performance of the control effectors have a significant influence on the 

closed-loop control characteristics attainable. The flight controller presented in chapter 4 

actuates elevator, ailerons, rudder and thrust lever of the DA42 simulation model. The 

actuators that apply the commanded deflections as well as the control effectors themselves 

have certain physical limitations. To model these limitations, a generic actuator model 

from [66] is employed for the three control surfaces. This model is defined by the 

second-order transfer function of equation (2.6), where 𝑠 is the Laplace variable. According 

to [66], a frequency of 30 𝑟𝑎𝑑/𝑠 and a damping ratio of 0.7 are assumed. 

𝑌𝑎𝑐𝑡 =
1

(
𝑠
30)

2

+
2 ⋅ 0.7
30 ⋅ 𝑠 + 1

 (2.6) 

Control surface deflection rates are limited to an estimated value of ±30 °/𝑠 and the 

absolute deflection limits of the actual DA42 airplane apply. They were taken from [64] 

and are given in equations (2.7), (2.8) and (2.9) for elevator deflection 𝜂, aileron deflection 

𝜉 and rudder deflection 𝜁, respectively. 

−15° ≤ 𝜂 ≤ 13° (2.7) 

−20° ≤ 𝜉 ≤ 20° (2.8) 

−29° ≤ 𝜁 ≤ 27° (2.9) 

2.1.2 Mission and Flight Phases 

While the reference aircraft is defined in the preceding section, this section is dedicated 

to the definition and analysis of a reference flight mission. Such a reference flight mission 

shall represent the normal activities of both remotely piloted UAVs and BMI controlled 

general aviation airplanes. All these flights either travel between two aerodromes or depart 
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and arrive at one single aerodrome. Note that in the case of RPA flight, an aerodrome may 

consist of a simple makeshift landing strip. While travel is the only purpose in some general 

aviation missions, other flights require the airplane to stay for an extended period in a 

certain target area, where activities like aerial observation or photography take place. 

These latter activities are similar to those of RPA missions, where cameras or other sensors 

are used to make observations, or where the UAV acts as an airborne relay station. 

Flight missions consist of different flight phases, each of which is characterized by certain 

circumstances and goals (or tasks). Thus, each flight phase imposes different requirements 

on tracking precision of a certain tracking variable. Aerial refueling as an exemplary flight 

phase is characterized by close proximity to another aircraft and the goal to maintain a 

given relative position with high accuracy. Therefore, the pilot-aircraft system is required 

to track flight path-related variables with high precision. The U.S. Department of Defense’s 

handbook “Flying Qualities of Piloted Aircraft” (MIL-HDBK-1797) [67] defines different 

flight phase categories that group flight phases with similar requirements. Category A flight 

phases are nonterminal flight phases such as air-to-air combat, aerial refueling or close 

formation flying “that require rapid maneuvering, precision tracking, or precise flight-path 

control”. Note that here, the term tracking more specifically refers to attitude tracking. 

Category B flight phases are “nonterminal flight phases that are normally accomplished 

using gradual maneuvers and without precision tracking, although accurate flight-path 

control may be required”. Examples comprise climb and cruise. Finally, category C flight 

phases are terminal flight phases that are “normally accomplished using gradual 

maneuvers and usually require accurate flight-path control.” The fundamental difference 

between nonterminal and terminal flight phases is that the latter are characterized by 

ground proximity. When maneuvering close to the ground, flight path errors can easily 

result in a terrain collision. This is what makes accurate flight path control necessary 

during category C flight phases. 

It has to be noted that an attempt was made to translate this concept of flight phases, 

which had originally been developed for manned flight, to unmanned aviation [34]. The 

main difference to the flight phase category definitions stated above is that terminal flight 

phases are divided into two categories C and D to account for certain launch and recovery 

methods of unmanned aircraft. Since the reference airplane performs terminal flight 

phases much like a manned airplane, even if remotely controlled, this subdivision of 

terminal flight phases brings no benefit here. 

The reference flight mission inevitably includes the following terminal flight phases: 

takeoff, approach, landing and go-around. Furthermore, a climb phase is required to reach 

the operating altitude and a descent phase is required prior to commencing approach. 

During cruise, the airplane flies from the departure airport to the target area or the 

destination airport. Activities such as aerial observation are performed during a so-called 

loiter phase. Figure 2.2 illustrates this mission with all its flight phases and flight phase 

categories. Note that none of the flight phases is a category A flight phase. 

Like most general aviation missions, the reference flight mission requires the pilot to 

perform flight path tracking throughout the entire mission. The ability to precisely track a 

target attitude is only required during takeoff and landing, when an incorrect attitude in 
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ground proximity can lead to dangerous situations and accidents like tail strikes, wing 

strikes or nose wheel landings. In RPA missions, it may be required to point the payload 

(e.g., a camera) towards a certain direction while loitering. It is assumed that this is 

accomplished by the payload itself and does not require the airplane to adopt a precise 

target attitude. Furthermore, it is assumed that there is no crosswind component during 

terminal flight phases. Although this is not always the case in real world operations, this 

assumption helps establishing an appropriate scope for this thesis without preventing an 

extension by subsequent research. Moreover, in the case of RPA control, terminal flight 

phases would be flown by a remote pilot only during non-normal operations, where the 

aim may be to simply bring the aircraft down without causing damage to third parties. 

 
Figure 2.2 – Illustration of the reference flight mission 

2.2 Flight Mechanics and Flight Control 

2.2.1 Equations of Motion 

Assuming that an airplane is a rigid body, its dynamic behavior in three rotational and 

three translational degrees of freedom can be described by a set of 12 nonlinear equations 

of motion. These equations are basically identical for every conventional airplane and are 

derived and described in corresponding literature [66, 68, 69]. Each individual aircraft 

then is characterized by the external forces and moments acting on it. External forces and 

moments originate from mass, aerodynamics and thrust. Hence, the key components of 

any dynamic airplane model are mass model, aerodynamic model and thrust model. 

As mentioned in section 2.1.1, a nonlinear dynamic model of the Diamond DA42, 

implemented in MATLAB and Simulink, was available at TUM’s Institute of Flight System 

Dynamics [70]. By determining the stationary solutions of the model and linearizing it 

around these trim points, the analysis of airplane dynamics and the design of (linear) 

control algorithms is facilitated. In this section, the linear airplane behavior around straight 

and level flight is examined to illustrate several basic flight dynamic characteristics. Strictly 

speaking, this linearization is only valid for straight and level flight, but it also well 

represents aircraft states that are reasonably close to this trim state. It is therefore suited 

to describe the aircraft’s dynamic characteristics during the reference flight mission defined 

in section 2.1.2, which does not require large-amplitude maneuvering or extreme 

attitudes. When analyzing the aircraft behavior around straight and level flight, certain 

Departure
Aerodrome

Destination
Aerodrome

Takeoff

C
lim

b Cruise Loiter Cruise

D
es

ce
n
t

A
p
p
ro

a
ch Landing

or
Go-Around

C CB



Handling Qualities Preliminaries 

  23 

assumptions can be made that facilitate linearization. In particular, it is assumed that the 

body angular rates 𝑝, 𝑞 and 𝑟 as well as the angle of attack 𝛼, the angle of sideslip 𝛽, the 

pitch angle Θ, the flight path climb angle 𝛾 and the bank angle Φ are small. Finally, one 

additional simplification is made in that wind is neglected. (This is also the case in all 

other parts of this thesis unless stated otherwise.) As a result, kinematic and aerodynamic 

frame coincide and the associated subscripts are omitted. 

The linear equations of motion can, for example, be represented in the state space. It is 

then common to describe longitudinal and lateral-directional airplane dynamics in two 

separate state space representations [66], because they are normally well decoupled. 

Equations (2.10) and (2.11) define the state vector of the longitudinal and 

lateral-directional state space, respectively. The longitudinal states are velocity, flight path 

climb angle, angle of attack, pitch rate and altitude. Lateral states are roll rate, yaw rate, 

bank angle, angle of sideslip and flight path course angle. Note that the states describing 

horizontal position are not included here, because they are irrelevant to the subsequent 

analyses. Moreover, the fact that the state variables actually describe deviations from trim 

values is not explicitly denoted in the following equations and diagrams. For example, with 

trim values denoted by a subscript 0, the state variable 𝑉 actually stands for 𝑉 − 𝑉0, which 

is common practice in control theory. 

𝑥 𝑙𝑜𝑛 = [𝑉 𝛾 𝛼 𝑞 ℎ]𝑇 (2.10) 

𝑥 𝑙𝑎𝑡 = [𝑝 𝑟 Φ 𝛽 χ]𝑇 (2.11) 

Equations (2.12) and (2.13) show the state space representations of the longitudinal and 

the lateral-directional motion, taken from [66]. Inputs to the longitudinal dynamics are 

elevator deflection 𝜂 and thrust lever position 𝛿𝑇. Inputs to the lateral-directional dynamics 

are aileron deflection 𝜉 and rudder deflection 𝜁. State and input matrices contain the 

so-called dimensional derivatives, which are related to airframe characteristics like the 

dimensionless aerodynamic derivatives, mass and inertia [66]. The variable 𝑔 is not a 

derivative, but stands for the Earth’s gravitational acceleration. Apart from the assumptions 

noted above, equations (2.12) and (2.13) furthermore assume Θ0 = 𝛼0 = 0 and neglect 

the very small derivatives. As a result, ℎ is decoupled from the other longitudinal states. 

𝑥 ̇𝑙𝑜𝑛 =

[
 
 
 
 
𝑋𝑉 −𝑔 𝑋𝛼 − 𝑔 0 0
−𝑍𝑉 0 −𝑍𝛼 0 0
𝑍𝑉 0 𝑍𝛼 1 0
𝑀𝑉 0 𝑀𝛼 𝑀𝑞 0

0 −𝑉0 0 0 0]
 
 
 
 

𝑥 𝑙𝑜𝑛 +

[
 
 
 
 
𝑋𝜂 𝑋𝛿𝑇
−𝑍𝜂 −𝑍𝛿𝑇
𝑍𝜂 𝑍𝛿𝑇
𝑀𝜂 𝑀𝛿𝑇
0 0 ]

 
 
 
 

[
𝜂
𝛿𝑇
] (2.12) 

𝑥 ̇𝑙𝑎𝑡 =

[
 
 
 
 
 
𝐿𝑝 𝐿𝑟 0 𝐿𝛽 0

𝑁𝑝 𝑁𝑟 0 𝑁𝛽 0

1 0 0 0 0
0 −1 𝑔/𝑉0 𝑌𝛽 0

0 0 𝑔/𝑉0 𝑌𝛽 0]
 
 
 
 
 

𝑥 𝑙𝑎𝑡 +

[
 
 
 
 
 
𝐿𝜉 𝐿𝜁
𝑁𝜉 𝑁𝜁
0 0
0 𝑌𝜁
0 𝑌𝜁 ]

 
 
 
 
 

[
𝜉
𝜁
] (2.13) 
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Eigenvalues and eigenvectors of each state matrix correspond to the eigenmotions of the 

respective system, i.e., those elementary motions that can be linearly combined to 

describe any possible system motion. In the longitudinal motion, the DA42 exhibits the 

typical eigenmotions of a conventional airplane. The well damped, high frequency short 

period mode and the lightly damped, low frequency phugoid. Given that the airplane is 

certified, the characteristics of these eigenmotions necessarily provide adequate handling 

qualities throughout the flight envelope. Similarly, the lateral-directional motion of the 

DA42 is characterized by the common eigenmotions of this type of airplane: roll mode and 

spiral mode – both of first order – and the second-order Dutch roll, which is a coupled 

yaw-roll oscillation. 

The physics behind the equations of motion can be well illustrated by signal flow charts, 

which are a graphical representation of the linearized equations of motion. Signal flow 

charts can also be seen as causal chains from control effector activity to corresponding 

aircraft reaction. Figure 2.3 shows such a chart of the constant speed approximation of 

the longitudinal motion. For the analysis of longitudinal handling qualities, which are 

primarily determined by the short period characteristics, the assumption of constant speed 

is often made to avoid interference of the phugoid dynamics [71]. This assumption holds 

for short time scales and in cases where an autothrottle system maintains airspeed with 

sufficiently high bandwidth. Like the linear equations of motion it is derived from, the 

signal flow chart of Figure 2.3 well describes operating points within a reasonable range 

around straight and level flight only. 

It can be seen that an elevator deflection causes a pitching moment and thus a pitch angle 

acceleration. The pitch rate then results in a change in angle of attack, which in turn 

produces a vertical load factor 𝑛𝑧 and a flight path climb angle rate 𝛾̇. The pitch angle is 

the sum of angle of attack and flight path climb angle. The vertical speed ℎ̇ resulting from 

𝛾 leads to a change in altitude. 

 
Figure 2.3 – Signal flow chart of the longitudinal motion, adapted from [66] 

Each of the four integrators apparent in Figure 2.3 introduces some phase delay and some 

high frequency attenuation. As a result, variables on the right of the signal flow chart 

change on larger time scales than variables on the left. Another characteristic of 

longitudinal airplane dynamics, which is not immediately apparent from Figure 2.3, but 

that can be derived from it, is that the flight path climb angle lags pitch attitude as in 

equation (2.14). 
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Θ = 𝛾 + 𝛼

= 𝛾 + (−
1

𝑍𝛼
) 𝛾̇

= (1 −
𝑠

𝑍𝛼
) 𝛾

 

⇒     
𝛾

Θ
=

1

𝑇Θ2 ⋅ 𝑠 + 1
          with   𝑇Θ2 = −

1

𝑍𝛼
 

(2.14) 

Figure 2.4 shows a signal flow chart of the lateral-directional airplane motion. Again, this 

chart only applies to operating points within a reasonable range around straight and level 

flight. Moreover, the influence of 𝑌𝜁 is not shown to improve readability. It can be seen 

that the roll and the yaw axis are strongly coupled. For instance, aileron deflections and 

rudder deflections produce both a roll moment and a yaw moment. Only by coordinated 

deflection of both control surfaces can pure roll or yaw moments be generated. These 

moments then cause a build-up of roll rate and yaw rate, respectively, which in turn lead 

to changes in bank angle and sideslip angle. At this point, the fundamental difference 

between roll axis and yaw axis is that virtually any bank angle can be achieved by 

appropriate control inputs, whereas the possible range of sideslip angles is effectively 

limited by the airplane’s directional stability, i.e., the weathervane effect that makes the 

airplane fly nose-first through the air. This effect is evidenced in Figure 2.4 by the sideslip 

feedback through 𝑁𝛽. Sideslip furthermore induces a side force, which, just like the bank 

angle, generates a flight path course angle rate 𝜒̇, which subsequently causes flight path 

course angle and heading Ψ to change. Without wind, flight path course angle and airplane 

heading only differ by the sideslip angle. 

 
Figure 2.4 – Signal flow chart of the lateral-directional motion, adapted from [66] 
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Again, several integrators introduce the low-pass characteristics typical for all physical 

systems. A consequence of the physical low-pass in both the longitudinal and the lateral 

motion is that the bandwidth of a control task is a function of the controlled variable. For 

instance, an altitude tracking task must exhibit a lower bandwidth than a pitch angle 

tracking task to be accomplishable with the same airplane. This fact provides a rationale 

for why automation mitigates the issue of large time delays. If those control tasks that take 

place on smaller time scales are automated and the human operator only communicates 

higher level goals to the machine, his interaction with the machine is scarce. Time delay 

and reduced sensory feedback are thus less critical. 

The analyses above provide insights into both the rotational and the translational degrees 

of freedom of the airplane. Sometimes, however, it is sufficient to approximate the airplane 

as a point mass 𝑚, which has only translational degrees of freedom. The rotational 

dynamics are then assumed to be fast enough to be neglected. Furthermore assuming 

symmetric flight, no wind, a small angle of attack and a thrust vector collinear with the 

speed vector, the point-mass airplane’s trajectory can be described by equations (2.15), 

(2.16) and (2.17) [66]. Here, 𝑇 denotes thrust, 𝐷 drag and 𝐿 lift. 

𝑉̇ =
𝑇 − 𝐷

𝑚
+ 𝑔 ⋅ sin 𝛾 (2.15) 

𝜒̇ =
𝐿 ⋅ sinΦ

𝑚 ⋅ 𝑉 ⋅ cos 𝛾
 (2.16) 

𝛾̇ =
𝐿 ⋅ cosΦ

𝑚 ⋅ 𝑉
−
𝑔

𝑉
cos 𝛾 (2.17) 

2.2.2 Flight Control Systems and Handling Qualities Implications 

The original DA42 airplane possesses a mechanical control system [72]. Displacements 

of the inceptors, namely a center stick and rudder pedals in this case, are translated to 

control surface movements by rods and wires. This type of control system exists since the 

early days of aviation and is still common in light aircraft operating today. In terms of 

handling qualities, the distinct characteristic of a mechanical control system is that it is 

reversible, meaning that forces are propagated both from the inceptor to the control 

surfaces and vice versa. Thus, the pilot can feel the aerodynamic forces acting on the 

control surface. 

As airplanes became faster and faster, control forces in mechanical control systems at 

some point became unacceptably high. Hydraulic actuators were introduced between 

inceptor and control surface to support the pilot, but this strategy made the flight control 

system irreversible. The forces that previously could be felt through a mechanical control 

system had to be replicated by a feel system, usually comprised of springs, dampers, 

added masses and other mechanical devices. The design and implementation of this 

sometimes complex feel system is necessary due to the importance of proprioceptive 

inceptor feedback, which is discussed in section 3.1.1. 
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Technological evolution did not stop with hydraulic control systems. Next came the 

introduction of digital flight control computers between inceptors and hydraulic actuators. 

The principal driver for this so-called fly-by-wire technology was the improvement of 

combat aircraft performance by reduced or even negative static stability of the airframe, 

but it later has also enhanced operational efficiency and safety in civil transport aviation 

[71]. Flight control algorithms deployed on digital flight control computers make use of 

various sensor feedbacks to close control loops. Pilots use their inceptors not to establish 

certain control surface deflections, but to generate reference values for these control loops. 

This type of flight control system is called maneuver demand system. 

Maneuver demand systems are characterized by the command variables, i.e., those 

variables for which reference values are generated by inceptor inputs. In a rate command 

system, for instance, a given inceptor input results in a defined angular rate of the vehicle. 

The choice of the command variables has an immense influence on aircraft handling and 

thereby on the pilot’s ability to safely and efficiently conduct the flight mission. As already 

noted in [73], a good choice enables fine tracking as well as gross maneuvering, 

contributes to the pilot’s awareness of envelope limits and establishes an adequate 

workload level. Most often, however, no single command variable can satisfy all these 

goals in all flight phases or in the whole flight envelope. Hence, it is common to designate 

different command variables to different flight phases or different regions of the flight 

envelope [71]. If those command variables chosen produce significantly different aircraft 

behavior and if command variable transition is implemented by a discrete switch, one 

would speak of control system modes and discrete mode transitions. The presence of 

modes adversely affects mental workload, since pilots need to be aware of the control 

system mode they are operating in. So-called mode confusions can act as a trigger for 

aircraft incidents and accidents [74]. Moreover, aircraft dynamics transitions are known 

to contribute to undesired pilot-aircraft oscillations that are described in detail in section 

2.2.4. For optimum handling qualities, aircraft behavior should appear consistent to the 

pilot. By implementing a smooth blending between command variables, it is possible to 

make transitions unnoticeable. The pilot is relieved from keeping track of modes and mode 

transitions. 

In the implementation of maneuver demand systems, it seems as if engineers had almost 

total freedom of how to shape an airplane’s response to control inputs, as long as they 

respect the physical constraints of the plant. However, as soon as a human pilot needs to 

safely fly the aircraft, some more restrictions apply. These restrictions stem from human 

control capabilities on the one hand, as can be seen from later sections of this thesis, and 

from pilot training on the other hand, as the following paragraphs explain. 

Pilots need training and they always will, even though efforts continue to minimize the 

amount of training required. During training, pilots acquire a certain understanding of how 

an airplane behaves. If they later are confronted with a behavior that is different from their 

expectations, they are surprised at least and deemed to produce a fatal accident at worst. 

Pilots usually gain the first couple of hours of flying experience in light airplanes with 

mechanical control systems. Only afterwards, they may transition to other airplanes with 

hydraulic or fly-by-wire control systems. Thus, the vast majority of airplanes exhibits more 
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or less the same behavior, which is that of conventional airplanes with mechanical control 

systems. Indeed, the same or very similar handling qualities requirements normally apply 

for any control system, be it reversible or irreversible. Providing similar handing qualities 

across an entire fleet of airplanes is Airbus’ strategy to minimize the training effort required 

to transition from one airplane type to another [75]. This does not mean that more exotic 

control system configurations are impractical. Such configurations, however, require 

different initial training or a greater amount of familiarization. Although it is perfectly valid 

to argue that RPA operators and also BMI pilots could be specifically trained for the control 

system they use, it needs to be acknowledged that this solution would produce specialists 

than cannot easily transition to other control system types, including the widespread 

mechanical type. Not knowing how an airplane behaves without digital control 

augmentation also results in a reduced ability to cope with control system failures. 

Considering its pivotal role for pilots, conventional airplane behavior and its implications 

on handling qualities need to be understood prior to flight control system design. According 

to [66], conventional behavior is essentially characterized by 

 the initial reaction to a control input, 

 the short-term pseudo steady-state behavior when a control input is constant and 

nonzero and 

 the steady-state behavior after the control input is terminated. 

For both the longitudinal and lateral-directional motion, these three characteristics can be 

read from the signal flow charts of Figure 2.3 and Figure 2.4, respectively. Equation (2.18) 

summarizes the conventional initial reaction to pitch (𝛿𝜂), roll (𝛿𝜉) and yaw (𝛿𝜁) control 

inputs, which in mechanical control systems are equivalent to elevator, aileron and rudder 

deflections. These control surface deflections generate moments, which are equivalent to 

angular accelerations. 

Initial reaction{

𝛿𝜂 ∝ 𝑞̇

𝛿𝜉 ∝ 𝑝̇

𝛿𝜁 ∝ 𝑟̇

 (2.18) 

Equation (2.19) defines the conventional short-term pseudo steady-state behavior from 

the pilot’s point of view when a control input is constant and nonzero. In the pitch axis, 

the control input is proportional to the resulting pitch rate, the change in angle of attack 

and, equivalently, in vertical load factor and flight path climb angle rate. Note that this is 

only valid in the short term, under the constant speed approximation. In the roll axis, the 

transfer function from aileron deflection to roll rate is a first-order lag, as evidenced by 

Figure 2.4. In the yaw axis, a constant control input generates a proportional angle of 

sideslip. 

Short-term pseudo steady-state behavior{

𝛿𝜂 ∝ 𝑞, 𝛼, 𝑛𝑧 , 𝛾̇

𝛿𝜉 ∝ 𝑝

𝛿𝜁 ∝ 𝛽

 (2.19) 
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Finally, equations (2.20), (2.21) and (2.22) reveal the idealized conventional steady-state 

behavior after a control input is terminated. Simply put, the airplane stabilizes at a new 

flight path climb angle, a new bank angle and at zero sideslip, respectively.  

𝛿𝜂 = 0 ⇒ {
𝑞, 𝛼, 𝑛𝑧 = 0
𝛾 = 𝑐𝑜𝑛𝑠𝑡.

𝛿𝜉 = 0 ⇒ {
𝑝 = 0
Φ = 𝑐𝑜𝑛𝑠𝑡.

𝛿𝜁 = 0 ⇒ 𝛽 = 0

 

(2.20) 

(2.21) 

(2.22) 

A more vivid illustration of conventional airplane behavior, similar to that given in [73], is 

shown in Figure 2.5. In these MATLAB-generated time history plots, it can be seen how 

relevant variables of the longitudinal and lateral motion evolve during and after a pitch or 

roll control singlet. 

 
Figure 2.5 – Illustration of conventional airplane responses, as in [73] 

It has to be stressed again that, like equations (2.19) and (2.20), these plots show an 

idealized, short-term behavior. For instance, a pitch control singlet will, in the long term, 

not lead to a persisting increase of the flight path climb angle, nor will in most airplanes 

the bank angle remain constant in the absence of lateral control inputs. To address the 
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sometimes rather counterintuitive long-term behavior of aircraft, suitable piloting strategies 

have been established. These strategies prescribe how to manage the short-term behavior 

to achieve a certain goal in the long term. It is shown in section 3.1.2 that this form of 

piloting can be seen as a cascade of control loops. The fact that the innermost loop always 

acts on the shortest time scale explains the importance of the (conventional) short-term 

dynamics described here. 

Two exemplary piloting strategies for the long-term longitudinal airplane motion shall be 

presented here. When flying an airplane like the reference aircraft on the front side of the 

power curve, i.e., at velocities greater than the speed where minimum power is required 

for horizontal flight, vertical flight path is normally controlled by pitch control inputs, and 

speed is controlled by thrust control inputs. During operation on the back side of the power 

curve, however, flight path should be controlled by thrust and speed by pitch. This back 

side technique can also be applied during operation on the front side, but applying the 

front side technique on the back side is not recommended, because the effect of pitch 

control on vertical flight path is effectively reversed: a nose-up control input ultimately 

makes the airplane descend more steeply [76, 77]. The piloting technique of adjusting 

airplane attitude to obtain a desired change in flight path is also not practical in hypersonic 

flight, as noted in section 1.2. Indeed, the piloting technique employed needs to match 

the airplane dynamics. Similarly, a suitable flight control system design for flight control 

with large time delays and reduced sensory feedback has to be complemented by an 

appropriate piloting technique. In this regard, finding suitable methods of UAV control 

during takeoff and landing constitutes a great challenge [3], for which some ideas are 

presented in [78]. 

An airplane’s long-term lateral behavior is mainly characterized, from a pilot’s point of 

view, by its spiral stability. Positive spiral stability is the tendency of a banked airplane to 

return to wings level flight. As the safety benefit of this behavior is not significant, 

certification authorities generally permit even slightly negative spiral stability. To maintain 

a steady-state turn in an airplane with positive or negative spiral stability, the pilot needs 

to apply correcting lateral control inputs. Thus, from a handling perspective, neutral spiral 

stability is desirable, as no lateral control inputs are required during a turn. Turning flight 

is also characterized by the amount of turn compensation required. Turn compensation is 

the application of longitudinal control inputs in a turn to increase lift and thereby 

compensate the reduction of that part of lift counteracting gravity due to the tilted lift 

vector. Pilots need to perform turn compensation in all conventional airplanes, which is 

why it also constitutes a part of conventional airplane behavior. Maneuver demand 

systems, however, can relieve the pilot from compensating turns to some extent or even 

completely. The fact that less pilot inputs are required is an advantage in terms of handling 

qualities. However, while automatic turn compensation may remain unnoticed in small 

turns, it produces a noticeably unnatural behavior in steep turns: lateral control inputs 

produce longitudinal airplane reactions. 

2.2.3 Handling Qualities Criteria and Requirements 

It is evident from the previous sections that an aircraft’s dynamic characteristics have 

enormous influence on its handling qualities. This is why control engineers, whose 
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perspective on aircraft handling is governed by plant dynamics, have been trying to identify 

those dynamic characteristics that promote good handling qualities. Various quantitative 

handling qualities criteria have been defined to assess or predict the handling qualities of 

a given aircraft or aircraft design. It has to be noted, however, that criteria suited for one 

case do not necessarily constitute a good model for another. This is not at all surprising, 

knowing that handling is intrinsically related to aircraft, mission and flight phase. The 

definition of flight phase and airplane categories is an attempt to account for these 

differences. 

The problem of finding quantitative criteria starts with the problem of how to quantify 

handling qualities. Since they cannot be measured in a mathematical way [71], efforts 

were made to quantify pilot opinions. An established tool for quantitative handling qualities 

evaluation by pilots is the Cooper-Harper rating scale [58], ranging from 1 (excellent 

handling) to 10 (uncontrollable). Obviously, subjective pilot ratings vary as a function of 

behavior, distractions, fatigue and other factors [79]. This means that a good mean 

Cooper-Harper rating (CHR) indicates that the handling qualities are most probably 

adequate, but may also, with some probability, be deficient. Statistical methods may be 

used to estimate this probability. 

The handbook MIL-HDBK-1797 [67], that also defines flight phase categories (cf. section 

2.1.2), groups CHRs into the following three handling qualities levels: 

 Level 1, “Satisfactory”, comprises CHR 1, 2 and 3. Handling qualities are clearly 

adequate for the mission flight phase. Desired performance is achievable with no 

more than minimal pilot compensation. 

 Level 2, “Acceptable”, comprises CHR 4, 5 and 6. Handling qualities are adequate 

to accomplish the mission flight phase, but some increase in pilot workload or some 

degradation in mission effectiveness, or both, exists. 

 Level 3, “Controllable”, comprises CHR 7, 8 and 9. Handling qualities are such 

that the aircraft can be controlled in the context of the mission flight phase, even 

though pilot workload is excessive or mission effectiveness is inadequate, or both. 

The pilot can transition from category A flight phase tasks to category B or C flight 

phases, and category B and C flight phase tasks can be completed. 

Note that a CHR of 10, i.e., uncontrollable handling characteristics, is not covered by 

these levels. Handling qualities criteria usually relate certain quantitative aircraft 

characteristics to one of these three handling qualities levels. Hence, they often serve as 

a basis for quantitative requirements on new aircraft designs. The handbook 

MIL-HDBK-1797 in fact is a guideline for the definition of handling related requirements. 

An attempt to transfer this guideline to the domain of unmanned aviation resulted in a 

similar document [34], which specifically focuses on RPA as opposed to autonomously 

acting UAV. This first step as well as later approaches, such as dynamic scaling of handling 

qualities established for large, manned aircraft to smaller UAVs [35], neither take into 

account the reduced sensory feedback, nor do they address the issue of large time delays. 

The idea to tailor flying qualities to sensor requirements instead of human capabilities [1], 

on the other hand, is suitable mainly for UAVs that operate at high levels of autonomy and 

is therefore also not transferrable to the problem of this thesis. 
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Many existing handling qualities requirements are based on the well-known conventional 

aircraft behavior described in the previous section. This is partly due to the fact that the 

underlying handling qualities criteria were obtained in experiments with mechanical or 

hydraulic control systems. Today’s digital flight control algorithms, however, usually 

introduce additional integrators and thereby increase the order of the aircraft dynamics 

apparent to the pilot. To apply the established criteria, especially those defined in the 

frequency domain, to such a higher-order flight control system, it is common to derive a 

low-order equivalent system (LOES), which is of the same order as the conventional 

airplane presented in section 2.2.1. In a LOES, higher-order system characteristics are 

represented by a so-called equivalent time delay. This time delay effectively lumps pure 

(signal processing) time delays with phase lags from additional integrators. This method 

can only be applied to reasonably classical designs [71]. Moreover, the differences 

between LOES and original higher-order system need to be smaller than the so-called 

maximum unnoticeable added dynamics [80], defined in the frequency domain. 

With regard to the topic of this thesis, it is interesting to note that the U.S. Department of 

Defense’s guidelines [67] only consider LOESs with an equivalent time delay of less than 

0.25 𝑠 controllable. In other words, flight control systems with time delays as large as 

those considered in this thesis are deemed uncontrollable. The validity of the approach of 

grouping lags and pure delays in a single equivalent time delay, however, is much 

disputed, because the effects of lags and (relatively small) pure time delays on handling 

qualities are slightly different [71]. Moreover, it has been noted that the allowable time 

delay appears to be a function of the shape of the aircraft response following the initial 

delay time [81]. This suggests that flight control systems with more than 0.25 𝑠 time delay 

may indeed be controllable. Nonetheless, the maximum controllable time delay stated in 

[67] is a suitable reference that puts the time delays considered in this thesis into 

perspective. 

Documents like MIL-HDBK-1797 are helpful in aircraft control system design, whether 

civil or military, especially because they provide guidance on how to obtain optimum 

handling. Apart from any requirements defined by the customer or the manufacturer itself, 

civil aircraft also have to comply with handling qualities requirements imposed by 

certifying authorities such as the European Aviation Safety Agency (EASA) or the U.S. 

Federal Aviation Administration (FAA) for certification. These regulations or specifications 

establish a certain minimum level of safety. This means that non-compliance with these 

requirements makes an aircraft unsafe to operate, whereas violations of more stringent 

customer requirements may merely compromise optimum mission performance. 

In the example cases of RPA and BMI control, some handling qualities criteria and 

requirements that are well-established for onboard manual control are void or not 

applicable. These are notably those that aim at ensuring adequate vestibular or 

proprioceptive feedback. When such vestibular or proprioceptive feedback contributes to 

flight safety or good handling, this contribution needs to be adequately substituted. This 

is especially the case with proprioceptive feedback, as can be seen in section 3.1.1. 

Furthermore, existing standards, guidelines and requirements are insufficient [18], 

because, being designed for onboard manual control, they do not take into account the 
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particular challenges of RPA or BMI control, such as for example the excessive risk-taking 

behavior and the generally reduced situational awareness of RPA pilots. 

2.2.4 Pilot-Induced Oscillations 

One problem known to occur sometimes when a pilot closes the flight control loop are 

“sustained or uncontrollable oscillations resulting from the efforts of the pilot to control the 

aircraft” [67, p. 25]. These oscillations are therefore referred to as pilot-induced 

oscillations (PIOs), although the pilots are not to blame for this handling qualities 

deficiency. In fact, PIOs are a manifestation of an unstable or marginally stable closed-loop 

coupling of pilot and aircraft dynamics that may occur even if the aircraft itself is a stable 

system. The term PIO also covers biodynamic coupling phenomena like roll ratchet, where 

control inputs are involuntary (cf. section 3.1.1). Oscillations that are not considered PIOs 

include stick pumping during the flare maneuver, pitch bobble and those oscillations 

resulting from overcontrol when flying an unfamiliar airplane [71]. 

PIOs are characterized by high and possibly diverging amplitudes. As a consequence, they 

are quite dangerous and can cause fatal accidents. McRuer [82] proposes three categories 

of PIOs. Category I PIOs are essentially linear. They are characterized by a high open-loop 

system gain that causes a significant reduction of the phase margin. Category II PIOs are 

quasi-linear and involve control surface rate or position limiting. These nonlinearities 

introduce an amplitude-dependent lag. Category III PIOs fundamentally depend on 

nonlinear transitions in airplane or pilot dynamics. They may be triggered, for instance, by 

control system mode changes. In fact, any type of PIO is normally set off by a trigger event. 

Instead of evading trigger events, however, certain flight control system characteristics 

should be avoided to prevent PIOs. 

Among the aircraft dynamic features that were found to contribute to PIOs are excessive 

lags, inadequate control sensitivities, control rate limiting and aircraft dynamics transitions 

[82]. In general, it can be said that these undesired characteristics cause aircraft and pilot 

dynamics to be mismatched or to easily become mismatched as pilot behavior varies. As 

can be seen in section 3.1.2 of this thesis, changes in pilot behavior are often 

accompanied by changes of the pilot-aircraft open-loop gain. Such changes cause the 

pilot-aircraft phase margin to vary or to be drastically reduced, especially when the phase 

curve is steep due to excessive phase lags. Since excessive phase lags cannot be prevented 

in the present case of flight control with large time delays, two corresponding handling 

qualities or PIO criteria are introduced in the following paragraphs. 

One handling qualities criterion that accounts for the influence of excessive phase lags on 

PIO criticality is the Bandwidth Criterion [67]. It defines bandwidth 𝜔𝐵𝑊 as the highest 

frequency at which the response of aircraft pitch attitude Θ to pilot control input (deflection 

𝛿𝜂 or force, as applicable) has both a phase margin of at least 45° and a gain margin of 

at least 6 𝑑𝐵. In other words, this is the highest bandwidth achievable by the pilot-aircraft 

system without compromising stability [71]. Figure 2.6 shows an exemplary Bode plot, 

where 𝜔𝐵𝑊,𝐺 is the highest frequency with a gain margin of 6 𝑑𝐵 and 𝜔𝐵𝑊,𝑃 is the highest 

frequency with a phase margin of 45°. 
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Figure 2.6 – Illustration of the Bandwidth Criterion’s bandwidth and phase rate 

Based on these two frequencies, bandwidth 𝜔𝐵𝑊 is defined as in equation (2.23). The 

second parameter of this criterion is the time delay 𝜏𝐵𝑊 defined by equation (2.24). It is 

a representation of the shape of the phase curve above the frequency 𝜔−180, i.e., the 

frequency where the phase angle attains −180°. Hence, the value of the numerator of 

equation (2.24) can also be read from Figure 2.6. Note that in equation (2.24) the unit 

of phase angles is [°], the unit of frequencies is [𝑟𝑎𝑑/𝑠] and the unit of 𝜏𝐵𝑊 is [𝑠]. 

𝜔𝐵𝑊 = min(𝜔𝐵𝑊,𝐺 , 𝜔𝐵𝑊,𝑃) (2.23) 

𝜏𝐵𝑊 =
−φ(2 ⋅ 𝜔−180) − 180°

2 ⋅ 𝜔−180
⋅
𝜋

180°
 [𝑠] (2.24) 

The Bandwidth Criterion defines two diagrams, for Category A and C flight phases, 

respectively, that relate combinations of 𝜔𝐵𝑊 and 𝜏𝐵𝑊 to handling qualities levels. These 

diagrams are shown in Figure 2.7. 

 
Figure 2.7 – Bandwidth Criterion diagrams of handling qualities levels, as in [67] 
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A third diagram for the Bandwidth Criterion has been proposed in [83]. It relates certain 

values of bandwidth and time delay to PIO susceptibility (Figure 2.8). Note that flight path 

bandwidth and pitch rate overshoot have been introduced as additional parameters. 

 
Figure 2.8 – Bandwidth Criterion diagram of PIO susceptibility, as in [83] 

A similar criterion is the Average Phase Rate (APR) Criterion proposed by Gibson [71]. 

APR is defined as in equation (2.25) for the phase curve of the transfer function from 

inceptor input (force or deflection) to pitch attitude. Note that the numerator of equation 

(2.25) is the same as in equation (2.24), which is also visualized in Figure 2.6. Note that 

the unit of frequencies here is [𝐻𝑧] and APR is thus measured in [°/𝐻𝑧]. 

APR =
−φ(2 ⋅ 𝜔−180) − 180°

𝜔−180
⋅ 2𝜋 (2.25) 

Again, a diagram is provided, relating combinations of 𝜔−180 and APR to handling qualities 

levels. Figure 2.9 shows this diagram. 

 
Figure 2.9 – APR Criterion diagram of handling qualities levels, as in [71] 
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Note that a level 1* region has been defined, which can be seen as an optimal or a design 

goal region. 

It can be noted that the right sides of equations (2.24) and (2.25) look similar. Indeed, 

when combining these two equations, equation (2.26) results, evidencing a proportional 

relationship between APR and the time delay parameter 𝜏𝐵𝑊 of the Bandwidth Criterion. 

APR = 720° ⋅ 𝜏𝐵𝑊 (2.26) 

The fundamental differences between the two criteria lie in the second parameter, 𝜔𝐵𝑊 or 

𝜔−180, and in the diagrams defining desired and acceptable parameter combinations. 
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3  A N A L Y S I S  A N D  M O D E L I N G  O F  

H U M A N  F L I G H T  C O N T R O L  

B E H A V I O R  

3.1 Pilot Modeling Basics and Quasi-Linear Behavior 

During non-autonomous flight, the pilot constitutes an integral part of the flight control 

loop. Hence, efforts have been made for decades to model the dynamic behavior of pilots. 

Some of these efforts were driven by the need for a tool that predicts the handling qualities 

of an aircraft design without requiring simulator or even inflight experiments. The models 

that have been developed can be categorized into physiological models, sensory models 

and control-theoretic models. This section presents some of these models in the context 

of quasi-linear pilot behavior. 

3.1.1 Physiological and Sensory Pilot Models 

Physiological models describe how human physiology is involved in the generation of 

control inputs. In manual flight control, every control intention has to be translated to a 

body movement by the neuromuscular system. To describe this process, neuromuscular 

models of different levels of detail and complexity have been developed. Duane McRuer, 

one of the pioneers of pilot modeling, proposed a third-order linear transfer function as 

neuromuscular system description [84], which is given by equation (3.1). 

𝑌𝑛𝑚 =
𝜔𝑛𝑚
2

(1 + 𝑇𝑛𝑚𝑠)(𝑠2 + 2𝜁𝑛𝑚𝜔𝑛𝑚𝑠 + 𝜔𝑛𝑚2 )
 (3.1) 

McRuer notes that this degree of model complexity is a minimum for physiological 

descriptions and is also often needed for the study of limb-manipulator system dynamics 

[85]. For other aspects of pilot-aircraft analyses, the details of the neuromuscular 

dynamics, which are pronounced mainly at higher frequencies, may be reduced. The result 

can be a first-order system or just a simple time delay [84, 85]. Ronald Hess, another 

early and leading pilot model researcher, models the neuromuscular system with a 

second-order transfer function [86]. Table 3.1 lists representative numerical values for the 

neuromuscular system parameters as stated in [84] and [86]. 
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Table 3.1 – Values for parameters of the neuromuscular system transfer function 

Source 𝑇𝑛𝑚 𝜔𝑛𝑚 𝜁𝑛𝑚 System Order 
McRuer [84] 0.1 𝑠 16.5 𝑟𝑎𝑑/𝑠 0.12 3rd order 
Hess [86] 0 10 𝑟𝑎𝑑/𝑠 0.707 2nd order 

 

Based on equation (3.1) and the values from Table 3.1, Bode plots of the proposed 

neuromuscular transfer function can were generated using MATLAB. Figure 3.1 shows 

these plots along with a Bode plot of a 0.13 𝑠 pure time delay. It can be noted that all 

three transfer functions are in good accordance for frequencies well below 10 𝑟𝑎𝑑/𝑠, which 

justifies the simplification to a single time delay for low frequencies mentioned above. 

 
Figure 3.1 – Bode plot comparison of different neuromuscular system models 

Apart from models of the neuromuscular system, biodynamic models constitute a type of 

physiological pilot models as well. They describe the human body’s reaction to vehicle 

accelerations, which sometimes cause involuntary control inputs. One example is the roll 

ratchet phenomenon, where the roll acceleration following a roll control input is so high 

that the pilot’s arm, due to its inertia, cannot follow the airplane’s movement and produces 

a counteracting control input. The problem of biodynamic coupling occurs mainly in highly 

dynamic, manually controlled manned airplanes and is therefore not further discussed in 

this thesis. 

Sensory pilot models reproduce the process of human perception of the vehicle’s state. 

They can be used to analyze the pilot’s ability to establish and maintain spatial orientation 

or to investigate spatial disorientation – a problem more likely to occur when sensory 

feedback is reduced, as is the case during RPA control [6]. Since the pilot’s senses strongly 

influence flight control performance, it is not surprising that sensory pilot models are often 
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included in control-theoretic pilot models. Human perception is supported by various 

senses, which shall be categorized into different sensory channels. Although pilots rely on 

all their many senses to establish situational awareness in flight and no sensory channel 

is completely dispensable or easily replaceable, those sensory channels depicted in Figure 

3.2 are more relevant to flight control than others. They are the visual, aural, 

proprioceptive and vestibular channel and they are discussed in detail in the next 

paragraphs. 

In every channel, information is transmitted along several dimensions. For instance, two 

sounds are discriminable by loudness or pitch and two symbols on a visual display by 

shape, color, size or brightness. In human-machine interface design, both the sensory 

channel and the stimulus dimension can be used to code information [87]. By relying on 

several channels and different dimensions, more information can be displayed 

simultaneously. Depending on other parameters like operator attention and workload, not 

all of the information displayed may be properly perceived and processed. 

 
Figure 3.2 – Illustration of the sensory channels most relevant to flight control 

The visual channel is very dominant in everyday life as well as during aircraft flight. Not 

only do pilots heavily rely on what they see, but most of the information they need is also 

presented visually. Visual cues can be found not only on cockpit instruments and displays, 

but also behind the windshield in the outside environment. The visual channel is so heavily 

used that pilots cannot perceive all the information presented within a reasonable amount 

of time. Therefore, they employ scanning techniques to gather visual information in a 

prioritized sequence. Coning of visual attention is obviously dangerous, as non-observed 

parameters may depart from a safe regime. When investigating the control-theoretic 

aspects of flight control, however, it is usually assumed that the pilot constantly monitors 

one certain parameter. The aim is to make this one task easily accomplishable, so that 

attention may indeed shift during actual airplane operations. 

Due to the high relevance of the visual channel, models of visual perception are included 

in virtually every control-theoretic pilot model. The most basic model consists of a simple 
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gain. A more elaborate model, which is taken from Hess’ structural pilot model [86], is 

shown in Figure 3.3. In this model, the visual perception of a parameter 𝑒 is always 

affected by the time delay 𝜏2. A switch, whose action is parameterized by the probability 

that it will be in the up position, separates two possible signal paths. Either the parameter 

𝑒 itself is perceived and multiplied by a gain 𝐾𝑒, or the rate of the parameter 𝑒̇ is derived 

and multiplied by a gain 𝐾𝑒̇. Derivation of the parameter requires some additional time 𝜏1. 

The time delay values proposed in [86] are 0.2 𝑠 for the sampling delay 𝜏1 and 0.075 𝑠 for 

the latency of the visual process 𝜏2. Similar ideas have also been published in [88]. 

 
Figure 3.3 – A control-theoretic model for visual perception, derived from [86] 

The aural channel, too, is heavily used in aviation. Pilots not only verbally communicate 

with air traffic controllers or with each other, they also hear annunciation and warning 

sounds and pay close attention to any change in the background noise, which might 

indicate a system malfunction. In military aviation, aural signals are extensively emitted 

by aircraft subsystems like the radar warning receiver, which indicates foreign radar 

sources. Gliders usually feature an aural indication of vertical speed or change in total 

energy, which consists of beeping sounds of varying pitch and pattern frequency. In the 

absence of such an indication, pilots can judge vertical speed from changes in ambient 

sound caused by air pressure changes [76]. This information is not used for pitch control, 

but to identify locations where updrafts can be used to gain energy. Aural cues for flight 

control are much rarer and so are control-theoretic models of aural perception. However, 

the simple model of visual perception given above (Figure 3.3) could also be applied to 

aural and tactile cues [86]. 

The vestibular system of the human inner ear senses linear and angular accelerations with 

the otoliths and the semicircular canals, respectively. Much like during inertial navigation, 

sensations from the vestibular system can be used to determine current linear and angular 

velocity, position and attitude. However, vestibular cues perceived in an aircraft can be 

extremely misleading, since the human vestibular system is only designed for ground 

operations like walking around and climbing a tree once in a while. Judging attitude or 

even position only from vestibular cues is practically impossible, as any passenger of a 

large transport airplane may notice when not seated near a window. Moreover, most 

sensory illusions in aviation involve the vestibular system, so one might guess that the 

absence of vestibular cues is not only tolerable, but even desirable. This is, however, not 

at all the case. The vestibular system provides valuable sensory cues to the pilot, 

increasing his situational awareness and the feeling of shared fate. A vivid example of how 

pilots rely on the sensation of vertical accelerations to judge approach speed is given in 

[76]. The same change in stick deflection and hence angle of attack produces different 

vertical accelerations at different airspeeds (cf. Figure 2.3). Instead of visually reading 
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their airspeed from an instrument, pilots can therefore feel for their airspeed by making 

small stick deflections. The perception of vertical load factor, which is required for this 

strategy, involves not only the vestibular system, but also the tactile feedback channel that 

is discussed at the end of this section. 

Proprioceptive feedback plays an important role in human-machine interaction and 

especially in manual flight control. Proprioception is the sense of the relative position of 

body parts and the forces applied by muscles [40]. It enables the pilot to feel inceptor 

displacements and forces. These displacements and forces constitute crucial cues on 

aircraft behavior and thus contribute immensely to the pilot’s situational awareness [73]. 

Proprioceptive cues from the inceptor are felt almost immediately when a control input is 

made, whereas any other aircraft reaction is slightly delayed due to the physical low-pass 

characteristics of aircraft and control system (cf. section 2.2.1). This explains why a 

proprioceptive feedback loop constitutes the innermost loop of some of the 

control-theoretic pilot models. 

In airplanes with mechanical control systems, static stability of the airframe, which is the 

tendency of an airplane to return to pitch equilibrium after a disturbance in angle of attack, 

results in speed stability. An airplane is said to exhibit positive stick fixed/free speed 

stability if increasingly forward inceptor displacement/force is required to increase speed 

from trim speed, or to maintain level flight as trim speed increases. In aircraft with powered 

controls, the control surfaces are not free to float when the inceptor is released and thus, 

stick fixed and stick free speed stability are equal. A direct result of positive speed stability 

is the phugoid motion, which due to its low frequency is readily and naturally compensated 

by pilots already on their first flight. Many pilots therefore have never experienced the 

phugoid motion. Some fly-by-wire airplanes, including most Airbus types, provide neutral 

speed stability over a wide range of the flight envelope, thus suppressing the phugoid. 

Pilots are thereby relieved from generating corrective control inputs. This directly 

corresponds to an improvement in handling qualities. However, when approaching the 

flight envelope limits in an aircraft with neutral speed stability, important proprioceptive 

cues are missing: it is possible to exceed minimum or maximum speed without a change 

in control force or displacement. 

In some airplanes that exhibit neutral speed stability in normal flight regimes, positive 

speed stability is introduced near the envelope borders, so that increasing force and 

displacement are necessary to approach or even transgress the limits. Another way to deal 

with this problem is to implement strong protections that actively prevent the pilot from 

exceeding envelope limits. The ‘natural’ feeling of speed stability, however, presents more 

intuitive cues to the pilot. The actions of a protection mechanism may not be transparent 

to the pilot and confusions may arise. Protection mechanisms may also be combined with 

proprioceptive cues. Stall protection, for example, is sometimes implemented in the form 

of a so-called stick pusher. Upon activation, this device generates a forward force on the 

inceptor, urging the pilot to make a nose-down control input. However, pilots often do the 

exact opposite upon their first encounter with a stick pusher event. Instinctively, they resist 

the force and pull the inceptor [89]. This is a vivid example for confusing or mismatched 

protection mechanisms or, more generally, aircraft dynamics. 
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Another airplane characteristic related to proprioceptive cues in flight is maneuver stability. 

Its definition is similar to that of speed stability. An airplane exhibits positive stick fixed/free 

maneuver stability if increasingly aft longitudinal inceptor displacement/force is required 

to increase the vertical load factor 𝑛𝑧. Stick free maneuver stability is also known by the 

name of “stick force per g”. In conventional airplanes with unpowered controls, its value 

varies little across the flight envelope [79]. In the case of powered controls, again, the 

distinction between stick fixed and stick free cannot be made. It is easy to imagine that in 

airplanes with low stick force per g, pilots can generate high load factors with very little 

physical effort. This excessive sensitivity and tendency to exceed the limit load factor is 

obviously undesired. High values of stick free maneuver stability, on the other hand, may 

lead to exaggerated physical demands on the pilot. 

The final example of a proprioceptive cue in flight control is inceptor damping. Every 

control system has physical limits in actuation rate. Driving one or more control surfaces 

into their rate limit is a known cause for PIOs. (Remember McRuer’s definition of 

Category II PIOs presented in section 2.2.4.) Digital flight control systems usually prevent 

the actual control surface rate limit from being reached, but this only moves the limit to 

the digital control algorithms. Other physical constraints may further reduce maximum 

maneuverability. For instance, if the lateral controller performs feedback control of the 

bank angle Φ, this bank angle control loop has a certain bandwidth. If the lateral command 

variable is roll rate 𝑝, from which a command filter generates the bank angle reference for 

the Φ loop, care must be taken to prevent pilot inputs that exceed the bandwidth of the 

Φ controller, as the phase margin would drop and a PIO would be likely to develop. A very 

effective way to prevent control inputs beyond a given frequency is to introduce appropriate 

damping to the inceptor. From the pilot’s point of view, the inceptor damping makes the 

maximum actuation rates or the maximum aircraft maneuverability perceivable in the 

proprioceptive channel, which is why it can also be seen as a very intuitive PIO prevention 

scheme. 

There is one sensory feedback channel that is still rarely employed for display design in 

aviation and therefore offers the possibility to present more information or to substitute 

other channels: the tactile channel. Tactile perception is the (passive) impression of touch 

or, more precisely, pressure and vibration. It needs to be distinguished from haptic 

perception, which is characterized by active exploration. A prominent example of tactile 

feedback in aviation is the inceptor vibration during low-speed buffeting. When airplanes 

approach stall and the airflow around the wings starts to separate, turbulent airflow often 

hits the elevator. With a reversible control system, these turbulences can be felt as 

vibrations in the inceptor that effectively act as a stall warning. In irreversible control 

systems, artificial vibrations of what is called a stick shaker are sometimes employed as a 

surrogate. Another sensation that can be considered a tactile cue is the feeling of being 

pushed down into the seat at higher load factors and of being lifted up at lower vertical 

load factors. In this case, tactile feedback enhances the perceptions of the vestibular 

system. Similarly, the pressure felt when applying a force to a control stick or yoke 

enhances the proprioceptive feedback perceived. 
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On top of these common tactile cues, tactile displays can be implemented to support flight 

control, flight guidance or other tasks. A tactile display is made up of several tactile 

actuators, so-called tactors, placed on the user’s body. Tactors come in a variety of forms 

and sizes and rely on electrical or, more often, electro-mechanical and mechanical 

principles [51]. Examples include rotating eccentric masses that produce vibrations, and 

pneumatic tubes that exert pressure. Information can be coded by location, intensity, 

duration or pattern of tactile cues. Several studies have shown the potential of tactile 

displays for flight control [47–50]. An overview over these studies is provided in section 

4.4. Finally, it has to be noted that even if the tactile channel can be used for additional 

information throughput, its capacity is limited as well. Effects of tactile clutter have been 

observed and reported for example in [49]. 

3.1.2 Linear Control-Theoretic Models 

Control-theoretic models model the pilot as a feedback controller. They often include 

(simple) sensory or biodynamic models, such as the neuromuscular transfer function 

mentioned above in equation (3.1). The general control behavior of pilots in flight path 

tracking tasks can be described by Gibson’s generic, dual-loop control-theoretic model 

[71], shown in Figure 3.4. It illustrates the piloting technique usually employed (on the 

front side of the power curve), which is to adjust the aircraft attitude such that a desired 

change in flight path results (cf. section 2.2.2). This technique is motivated by the fact 

that in most cases pilots can easily sense the vehicle’s attitude, but most of the time need 

to rely on aircraft instruments to obtain information on the flight path. Moreover, attitude 

reactions to control inputs are more immediate than flight path reactions (cf. section 

2.2.1), which facilitates closed-loop control. One challenge of flight without outside 

visibility is that aircraft attitude as well has to be determined with the help of instruments. 

This causes an increase in mental workload. When attitude tracking is performed instead 

of flight path control, the outer flight path loop shown in Figure 3.4 obviously is broken. 

 
Figure 3.4 – Basic dual-loop pilot model, adapted from Gibson [71] 

As already noted in section 2.2.2, flight path changes are not always accomplished by 

adopting a new attitude, but sometimes by varying thrust. Gibson’s basic dual-loop model 

cannot be applied in this case. There are other pilot models relying on cascaded control 

(Augmented) AircraftPilot

Aircraft 
Rotational 
Dynamics

Aircraft 
Translational 

Dynamics

Ta
rg

et
 A

tt
it
u
d
e

A
tt

it
u
d
e 

E
rr

o
r

Pilot Action on 
Attitude Error

Pilot Action on 
Path Error

P
a
th

 E
rr

o
r

D
es

ir
ed

 P
a
th

A
tt

it
u
d
e

P
a
th

C
o
n
tr

o
l 
A
ct

io
n

Attitude Loop

Flight Path Loop

− −



Analysis and Modeling of Human Flight Control Behavior 

44 

loops that could be applied in this case [90], but instead, a more detailed look shall be 

taken at single-loop models, since they constitute the basis for any multi-loop model. 

Most control-theoretic models describe compensatory tracking, where the pilot only 

perceives or only focuses on the error 𝑒 between tracking target 𝑢 and actual system output 

𝑦, as illustrated by Figure 3.5. Other forms of tracking are pursuit tracking, where the 

operator can distinguish between system input and system output and can therefore also 

include a feedforward element, and pre-cognitive tracking, where the pilot performs 

open-loop control, based on a high familiarity with the controlled system or with the 

system inputs [91]. Most pilot models describe compensatory tracking, which is justified 

by the fact that the other strategies also comprise it at least to some extent. Even during 

pre-cognitive tracking, occasional loop closures are required to eliminate residual errors. 

Operational flying tasks, on the other hand, rarely are purely compensatory and usually 

enable pilots to perform pursuit or pre-cognitive tracking. 

 
Figure 3.5 – Illustration of different tracking strategies 

A very basic compensatory pilot-aircraft model that has been defined by McRuer in 1965 

is the Crossover Model [84]. In his experiments, McRuer found that human operators 

generally adapt their behavior such that the open loop of human and machine could be 

described by equation (3.2) around the crossover frequency 𝜔𝑐. Here, 𝑌𝑝 and 𝑌𝑎 are the 

transfer functions of the pilot and the aircraft, respectively. 𝐾 is a simple gain, which 

incidentally equals 𝜔𝑐, and 𝜏 is the time delay introduced by the human pilot. 

𝑌𝑝 ⋅ 𝑌𝑎 ≈
𝐾

𝑠
𝑒− 𝑠 (3.2) 

The crossover frequency is the lowest frequency at which the open-loop gain drops below 

0 𝑑𝐵. During closed-loop control, it becomes the pilot-vehicle system bandwidth, i.e., the 

upper limit frequency until which the closed pilot-aircraft loop can follow a given task. 

High-precision tasks require a high pilot-aircraft bandwidth and therefore a high 𝜔𝑐. A low 

crossover frequency, on the other hand, indicates that the closed loop will be sluggish. 

In terms of handling qualities, it was found that pilots experience lowest workload when 

they can act as a gain only [71]. By inserting this information into equation (3.2), the 

optimum aircraft transfer function is easily obtained. As shown in equation (3.3), it is a 

simple integrator. Systems that follow this optimum transfer function, which produces a 

slope of −20 𝑑𝐵 per decade in the Bode magnitude plot, are often said to exhibit “𝐾/𝑠-like 

dynamics” or “integrator-like behavior.” 

𝑢 𝑦𝑒 𝑢 𝑦𝑦𝑢

Compensatory Tracking Pursuit Tracking Pre-Cognitive Tracking
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𝑌𝑎,𝑜𝑝𝑡 =
𝐾𝑎
𝑠

 (3.3) 

Since the aircraft gain 𝐾𝑎 can be assumed constant during short-term maneuvering, 𝜔𝑐 

only depends on the pilot gain. Pilots are indeed said to be “high-gain” or “low-gain”, 

depending on their aggressiveness in control tasks. While high-gain pilots may achieve 

better performance, they also risk to destabilize the system in a PIO, unless they reduce 

their gain as soon as they recognize diminishing stability margins. The best PIO recovery 

technique is to reduce the gain momentarily to zero, i.e., to open the loop by letting go of 

the inceptor. 

It needs to be stressed that the Crossover Model is only valid in the region around 

open-loop crossover. The open-loop transfer function may be very different from equation 

(3.2) in other frequency regions. Similarly, if the airplane transfer function differs from 

equation (3.3) in those other frequency regions, the airplane may still exhibit good 

handling qualities. 

A more descriptive linear pilot model has been proposed by Neal and Smith [92]. The 

so-called Neal-Smith model, given by equation (3.4), explicitly contains the pilot’s abilities 

to correct the error (gain 𝐾𝑝) and to quicken or smoothen the system response (lead 𝑇𝑝1 

and lag 𝑇𝑝2). It also accounts for the delay introduced by perception, decision and 

actuation. 

𝑌𝑝 = 𝐾𝑝
𝑇𝑝1𝑠 + 1

𝑇𝑝2𝑠 + 1
𝑒−0.3𝑠 (3.4) 

The model is designed for compensatory pitch attitude tracking tasks with conventional 

airplane dynamics. Its applicability to other tasks and other dynamic characteristics is 

therefore limited. The three model parameters 𝐾𝑝, 𝑇𝑝1 and 𝑇𝑝2 are tuned according to the 

following two rules. 

 The closed loop (pilot and aircraft) must have a bandwidth 𝜔−90 greater than 

1.5 𝑟𝑎𝑑/𝑠 for flight phase categories B and C and 2.5 𝑟𝑎𝑑/𝑠 for landing. Bandwidth 

𝜔−90 is defined as the frequency where the phase angle first reaches −90° (cf. 

Figure 3.6). 

 Closed-loop droop may not exceed 3 𝑑𝐵. Droop is the low-frequency drop in system 

gain (cf. Figure 3.6). This means that the closed-loop Bode magnitude plot may 

not cross the −3 𝑑𝐵 line before the first resonance peak. 

No limits are imposed on the model parameters. The model is intimately connected with 

a handling qualities criterion. The Neal-Smith Criterion’s parameters are the magnitude of 

the resonance (cf. Figure 3.6) and the pilot compensation defined by equation (3.5). 

𝜑𝑝𝑐 =    (
𝑇𝑝1𝑗𝜔−90 + 1

𝑇𝑝2𝑗𝜔−90 + 1
) (3.5) 
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Figure 3.6 – Illustration of some of the Neal-Smith Criterion parameters, as in [92] 

Figure 3.7 relates combinations of resonance and pilot compensation to handling qualities 

levels. It can be noted that small (absolute) values of both parameters are favorable. 

 
Figure 3.7 – Neal-Smith Criterion diagram of handling qualities levels, as in [92] 

Several modifications and extensions of the Neal-Smith pilot model and criterion have 

been proposed [67, 93], a further analysis of which is left out as it would not provide 

more insight to the problem of this thesis. Instead, another pilot model shall be discussed. 

While the previously presented models approach the problem top-down, Hess’s structural 

pilot model can be considered a bottom-up approach. Each relevant component of the 
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human pilot – most notably each relevant sensory channel – also constitutes a distinct 

part in the model. A first version of the model has been presented in [86]. The result of a 

later revision of the model [94] is shown in Figure 3.8. 

 
Figure 3.8 – Hess’ revised structural model as in [94] 

The model comprises several distinctive features. It explicitly contains the feel system (cf. 

section 2.2.2) and thereby acknowledges the importance of proprioceptive feedback from 

the inceptor. With the associated switch S3 in the up-position, the control system is 

force-sensing, and with the switch in the down-position, the control system is 

displacement-sensing. The innermost control loop indeed relies on proprioceptive 

feedback. It is the fastest loop and its characteristics are determined by the feel system 

and the vehicle dynamics. The form of 𝑌𝑝𝑓 is chosen such that the open loop from 𝑒 to 𝑦, 

with S1 and S2 in the down position and 𝐾𝐼𝑒 = 𝐾𝑦̇ = 𝐾𝑦̈ = 0, follows the dictates of the 

Crossover Model. In other words, 𝑌𝑝𝑓 needs to satisfy equation (3.6) for 𝜔 ≈ 𝜔𝑐 and 𝐾 

arbitrary [94]. 𝑌𝑝𝑓 can therefore be interpreted as an internal model of the controlled 

vehicle dynamics. 

𝑌𝑎(𝑗𝜔)

𝑌𝑝𝑓(𝑗𝜔)
≈
𝐾

𝑗𝜔
 (3.6) 

Hess furthermore proposes a vestibular feedback loop that allows either rate or 

acceleration cues to be used. The visual system part of the model is similar to that of 

Figure 3.3. Both the error and the error rate can be sensed, but instead of introducing an 

additional delay in the error rate perception path, a noise is added here. The integrator in 

the visual system describes the ability to accomplish low-frequency trim compensation. 

Switches S1 and S2 operate in unison, with the down position being the nominal case. 

Along with this revised structural pilot model, Hess proposes associated criteria to predict 

handling qualities and PIO criticality of a given configuration. Those criteria, for which he 

assumes 𝐾𝐼𝑒 = 𝐾𝑦̇ = 𝐾𝑦̈ = 0, are not discussed here, because they are ineffective in 
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treating control systems with large time delays. In fact, the tuning process of the model 

parameters does not take into account time delays, even if they are substituted by a Padé 

approximation. Thus, with the time delay values considered in this thesis, the closed loop 

of Figure 3.8 is normally unstable. 

3.2 Time Delays and Existing Models of Nonlinear Behavior 

3.2.1 The Effects of Large Time Delays 

A first analysis of the effect of large time delays can be done using the Crossover Model 

or, in other words, by assuming that the pilot-aircraft open loop satisfies equation (3.2) 

around the crossover frequency. If the airplane exhibits optimal 𝐾/𝑠 dynamics and the 

pilot acts as a simple gain, the maximum stable crossover frequency for a given time delay 

(pilot 𝜏𝑝 plus aircraft 𝜏𝑎) is equal to the gain margin of the system given in equation (3.7). 

𝑌𝑝 ⋅ 𝑌𝑎 =
1

𝑠
𝑒−( 𝑝+ 𝑎)𝑠 (3.7) 

For instance, the minimum aircraft time delay considered in this thesis (1 𝑠) combined 

with a pilot time delay of 0.2 𝑠, which is at the low end of the time delay estimations made 

in established pilot models [86, 92, 94], results in a maximum attainable crossover 

frequency of 1.31 𝑟𝑎𝑑/𝑠. Figure 3.9 shows how the maximum crossover frequency evolves 

with increasing combined pilot-aircraft time delay. 

 
Figure 3.9 – Crossover Model evaluation for different time delays 

As time delays increase, the maximum crossover frequency decreases. To counter this 

so-called crossover frequency regression, pilots could introduce lead, even though this is 

not what the Crossover Model postulates. Figure 3.10 shows the bode plot of a 𝐾/𝑠 aircraft 

Unified#_CTVL0018d4a9d3e46ce4bd2bf6526e1a1babf94
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with 1 𝑠 time delay along with the open loop bode plots of this aircraft model combined 

with two different pilot models, each with a time delay of 0.2 𝑠. A simple gain pilot 

achieves a maximum crossover frequency of 1.31 𝑟𝑎𝑑/𝑠, as already determined above, 

whereas the exemplary lead-lag pilot described by equation (3.8) pushes the crossover 

frequency to 2.07 𝑟𝑎𝑑/𝑠. 

𝑌𝑝 = 0.915
𝑠 + 1

0.1 ⋅ 𝑠 + 1
𝑒−0.2⋅𝑠 (3.8) 

Note that only the open loop of simple gain pilot and aircraft follows the Crossover Model 

in that it can be approximated by an integrator in the crossover region. The slope of the 

magnitude curve is −20 𝑑𝐵 per decade. When the pilot introduces lead, the magnitude 

curve is flattened, which introduces a new problem. Even a slight increase in pilot gain, 

which is quite probable due to the sluggish system response resulting from the generally 

low crossover frequency, causes a relatively dramatic increase of the crossover frequency. 

At the same time, the phase margin rapidly decreases, which results in a risk of PIOs. 

 
Figure 3.10 – Bode plot comparison of simple gain pilot and lead-lag pilot 

These two effects – excessive pilot lead generation and regression of the pilot-aircraft 

open-loop crossover frequency – have been observed by Hess in his experiments on the 

effects of time delays in manual control [95]. The measured values of pilot-aircraft 

bandwidth were considerably smaller than those derived here from the Crossover Model 

(cf. Figure 3.9), but they show the same trend. Hess also found that a controlled element 

with 𝐾/𝑠 dynamics and time delay is compensated much like 𝐾/𝑠2 dynamics without time 

delay, resulting in a magnitude curve flattened in the crossover region. Since this is not 

what the Crossover Model predicts, it is evident that the Crossover Model is not valid for 

control systems with large time delays, even though it well predicts the crossover frequency 
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regression. It is interesting to note that the largest time delay Hess used in these 

experiments was 0.381 𝑠. This value is far smaller than the delays sometimes found in 

RPA or BMI control, but it already makes some of the adverse effects of time delays 

apparent. 

Most pilot models do not take into account pure time delays that are present in the 

controlled system. This means that the pilot model parameters determined for a certain 

aircraft do not vary when time delays are introduced. Such pilot models, like the Crossover 

Model and Hess’ (revised) structural model, are therefore only valid for systems with 

negligible time delay. The delays considered here, however, are not at all negligible, which 

is why those pilot models and the handling qualities criteria derived from them are not 

suited for the present analysis. One exception is the Neal-Smith pilot model. Again 

considering a simple integrator with 1 𝑠 delay as controlled system, it is possible to achieve 

the desired Neal-Smith bandwidth 𝜔−90 of 1.5 𝑟𝑎𝑑/𝑠 (cf. section 3.1.2) with the pilot 

transfer function of equation (3.9). 

𝑌𝑝 = 0.39
2𝑠 + 1

0.15𝑠 + 1
𝑒−0.3𝑠 (3.9) 

It is no surprise that a considerable amount of lead is required. The pilot compensation as 

defined by equation (3.5) amounts to 54.9°. The peak gain of the closed loop is 10.5 𝑑𝐵. 

According to Figure 3.7, the system exhibits Level 3 handling qualities with a sluggish 

system response that is prone to PIO. Note that in this example, only the minimum 

Neal-Smith bandwidth has been achieved. Achieving higher bandwidths such as the 

2.5 𝑟𝑎𝑑/𝑠 imposed for the landing task would require even more lead. 

The high PIO risk caused by large time delays is also evidenced when applying Gibson’s 

APR Criterion to an exemplary aircraft transfer function that may comprise one integrator, 

but no leads or lags. For such an aircraft, the phase lag can be written as in equation 

(3.10). 

𝜑(𝜔) = (𝑘 − 𝜔 ⋅ 𝜏𝑎) ⋅
180°

𝜋
 

𝑘 = {
0 for proportional aircraft
−𝜋/2 for aircraft with integrator

 

(3.10) 

The APR is a function of the shape of the phase curve. Equation (3.11) shows that for the 

considered aircraft model, APR only depends on the time delay.  

APR =
𝜑(𝜔−180) − 𝜑(2𝜔−180)

𝜔−180
⋅ 2𝜋

=
(𝑘 − 𝜔−180𝜏𝑎) − (𝑘 − 2𝜔−180𝜏𝑎)

𝜔−180
⋅
180°

𝜋
⋅ 2𝜋

= 𝜏𝑎 ⋅ 360°

 (3.11) 

One second of time delay results in an APR of 360°/𝐻𝑧. This value is off the chart given 

in Figure 2.9. From equations (3.11) and (2.26), the following equation (3.12) can be 
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derived for the time delay parameter 𝜏𝐵𝑊 specified by the Bandwidth Criterion. Again, the 

values resulting from the time delays under consideration are far off the charts, both in 

terms of handling qualities levels (Figure 2.7) and PIO susceptibility (Figure 2.8). 

𝜏𝐵𝑊 = 0.5 ⋅ 𝜏𝑎 (3.12) 

The preceding analyses all assume a pure 𝐾/𝑠 airplane behavior, which constitutes an 

ideal best-case example. Real airplanes have additional dynamics, including additional 

lags that further deteriorate the situation. Based on the results above, an airplane or RPAS 

with at least 1 𝑠 time delay must be considered uncontrollable. This is probably the case 

if one would try to control such an RPAS the same way as a manned airplane, but human 

pilots being adaptive, they have strategies to cope with time delays. 

3.2.2 Highly Nonlinear Pilot Behavior 

The Bandwidth Criterion and Hess’ structural models well describe quasi-linear pilot 

behavior. However, when the controlled element dynamics significantly differ from the 

first-order 𝐾/𝑠 optimum, human control behavior can be highly nonlinear. For instance, 

Young and Meiry [96] observed a pulse-like control behavior in control experiments with 

higher-order systems such as a double-integrator with lag. This behavior is characterized 

by rapid movements of the control inceptor to a certain deflection, where it is held for a 

variable amount of time, followed by another fast movement back to the neutral position. 

Figure 3.11 shows a time history plot of the control activity observed. 

 
Figure 3.11 – Time history plot of pulse-like control activity from [96] 

The authors attributed this pulse-like operator behavior to the mental computation required 

for the task. In the control of higher-order systems, where the output depends on a multiple 

integral of the control input, the operator has to mentally perform those integrations to 

estimate the future effects of a present control input. If control inputs are time- and value-

continuous, this mental integration is a highly challenging task. Hess relies on his 

structural pilot model (cf. section 3.1.2) to demonstrate this effect [97]. Remember that 

in this model, the proprioceptive feedback loop is adapted to the controlled element 

dynamics. It can be derived from equation (3.6) that for zero-, first- and second-order 

controlled elements, the pilot differentiates, multiplies by a constant and integrates the 

force applied to the inceptor, respectively, so that the open loop follows the Crossover 

Model. Higher-order systems require multiple integrations. The considerable 

computational burden is caused by the fact that integration of muscle tension must be 

accomplished in higher levels of the nervous system [97]. By adopting a pulse-like 

behavior, the amplitude of the control input is more or less fixed. Instead of a full mental 

integration, operators only need to estimate the duration of their control inputs, which is 

a lot easier. 
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Figure 3.12 – Time history plot of pulse-like control activity, redrawn from [88] 

Another observation and analysis of pulse-like pilot outputs was made by McRuer et al. 

[88], who attributed it to the low frequency lead generation required when controlling 

higher-order systems. They also showed that the pulse-like behavior in this case, shown 

in Figure 3.12, is characterized by a bimodal distribution of the control inputs, like the 

one shown in Figure 3.13. 

 
Figure 3.13 – Bimodal distribution evidencing pulse-like control, redrawn from [88] 

It was already noted in section 3.2.1 that in Hess’ experiments on large time delays [95], 

operators compensated a controlled element with 𝐾/𝑠 dynamics and time delay much like 

𝐾/𝑠2 dynamics without time delay. This also meant that operators adopted the same 

pulse-like control behavior that had previously been associated with higher-order systems 
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control. In their experiments on hypersonic airplane control mentioned in section 1.2 [42, 

43], the experimenters provoked control behavior with large lead as well. Remember that 

flight path lags attitude with 20 𝑠 or more in hypersonic flight. The piloting technique 

therefore was to immediately and positively react to changes in vertical speed and vertical 

acceleration and was appropriately named “aggressive stick technique” by the pilots 

involved in the experiments. Figure 3.14 shows a comparison of control activity between 

the conventional piloting technique and the aggressive stick technique. While the 

conventional technique produces gradual inputs with some high-frequency noise, the 

aggressive stick technique can indeed be distinguished by a shift of control activity towards 

higher frequencies. 

 
Figure 3.14 – Comparison between piloting techniques, redrawn from [43] 

Control of a flexible system with up to 1 𝑠 time delay was investigated in [98]. Some of 

the subjects there adopted a pulse-like control behavior. The time history plot provided 

(cf. Figure 3.15) shows that the control pulses were made in quick succession, as if the 

control inputs observed by Young and Meiry and McRuer were broken down into multiple 

pulses. Here and in the above cases of higher-order systems or systems with large lags, 

the timespan between inputs is smaller than the time delay. This suggests that the 

pulse-like behavior had been induced primarily by the higher-order system characteristics. 

 
Figure 3.15 – Time history plot of pulse-like control activity, redrawn from [98] 
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A greater spacing between two consecutive, pulse-like control inputs, on the other hand, 

is an indication for a specific control strategy that humans naturally adopt when presented 

with large time delays. This control strategy is a hybrid open/closed-loop strategy, where 

operators make a brief command input, wait for the delayed system response, and repeat 

this process as required to accomplish the task given. Sheridan and Ferrell, who observed 

this strategy in remote manipulation experiments [23], described it and found the suitable 

name “move-and-wait strategy”. To visualize this strategy, think about how you adjust the 

temperature of a shower, where the temperature change lags the action on the faucet by 

a few seconds. 

In most teleoperation tasks, the move-and-wait strategy needs to be applied cautiously to 

avoid collision with the environment. Thus, the time required to reach a target state is 

higher as compared to the continuous control strategy. In flight control, on the other hand, 

overshoots are often less critical, which is why errors can be reduced more aggressively or 

quickly. Likewise, when engineering the damping ratio of an airplane eigenmotion, some 

overshoot is usually allowed so that the motion can be sufficiently quick. In any case, 

though, the move-and-wait strategy requires the pilot to wait. And after he is done waiting, 

he may notice that some more control inputs are necessary, which, alas, could have been 

made earlier, during the wait phase. To compensate for the thereby increased time to 

reach the target, pilots often apply large, pulse-like control inputs during the move phase. 

In other words, they generate lead. Figure 3.16 illustrates the benefit of this lead 

generation. Here, a continuous and a pulse-like control input of same maximum amplitude 

and same area are made to a simple integrator. With the pulse-like control input, the new 

system state is reached considerably quicker, almost twice as fast in this case. Like the 

pulse-like control inputs during control of higher order systems, the pulse-like control 

inputs that can be observed when operators apply the move-and-wait strategy are a 

manifestation of low-frequency lead generation. The control input amplitude distribution, 

however, is different: the operators’ inactivity during the wait phase causes a large peak 

at zero amplitude. 

 
Figure 3.16 – Maneuver comparison between continuous and pulse-like control 



Analysis and Modeling of Human Flight Control Behavior 

  55 

For small maneuvers that are shorter than the system’s time delay, the move-and-wait 

strategy needs to be purely open-loop, at least until the end of the wait phase. For larger 

maneuvers, the move-and-wait strategy really is a combination of closed-loop control with 

large pilot lead, as observed by Hess [95], alternating with open-loop wait phases that 

may contain occasional loop closures. The duration of each wait phase 𝑡𝑤 may differ 

slightly from the time delay inherent to the controlled system. This fact is modeled by 

equation (3.13). 

𝑡𝑤 = 𝜏 + Δ𝑡 (3.13) 

When undershooting or not noticeably overshooting the target, Δ𝑡 is positive. It then 

represents the time required for the pilot to assess the new system state. When 

overshooting the target, however, Δ𝑡 may be negative, as the overshoot can already be 

perceived before the system has settled at its new state. Indeed, the wait phase is 

closed-loop in this respect, at least to some extent. The problem when reducing the wait 

phase like this is that it is not clear just how large an opposite control input is needed to 

eliminate the overshoot. Thus, PIOs can easily develop, especially when the pilot is not 

familiar with the system. 

As the previous paragraphs show, highly nonlinear pulse-like behavior is natural to human 

operators when faced with higher-order systems or large time delays. Interestingly, this 

behavior also bears some resemblance to BMI control. In both cases, control inputs are 

(approximately) value-discrete, with not more than three discrete levels: positive, neutral 

and negative. The introduction to BMIs given in section 3.4.1 makes this similarity clearer. 

Since the quasi-linear control-theoretic pilot models presented above do not describe 

pulse-like behavior, the question arises whether other models exist that can be applied in 

this case. 

3.2.3 Models of Pulse-Like Control Behavior 

Pulse-like control behavior is relevant to flight control with large time delays and to control 

of higher-order systems, as the previous section explains. Most efforts to model this kind 

of behavior were motivated by the latter problem. McRuer et al. [88] noted that the 

pulse-like operator behavior they associated with low frequency lead generation cannot be 

adequately described by existing linear pilot models. They therefore proposed two new 

models deemed appropriate for this nonlinear control behavior. The first model, the 

so-called differential displacement model, is derived from a slightly different pulse-like 

behavior observed, where pulses are constant in duration, but vary in amplitude. Constant 

pulse width is accomplished in the model through sampling. The pulse amplitudes 𝐴 

produced by the model are proportional to the differential displacement 𝑑 of the sensed 

error 𝑒, i.e., the difference between current and preceding error sample. This relationship 

is shown in equation (3.14), where 𝑡0 in square brackets denotes the current sample and 

𝑡𝑠 the sampling time. 

𝐴[𝑡0] = 𝐾 ⋅ 𝑑[𝑡0]

= 𝐾 ⋅ (𝑒[𝑡0] − 𝑒[𝑡0 − 𝑡𝑠])
 (3.14) 
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Note that the differential error displacement 𝑑 divided by the constant sampling rate 𝑡𝑠 

would provide an estimation for error rate. The differential displacement model can 

therefore be considered a type of (visual) perception model. Like the measured control 

activity the model is derived from, the model outputs do not exhibit a bimodal distribution, 

but are instead of equal duration. A major shortcoming of the differential displacement 

model is that steady-state errors do not provoke any control activity. 

The second model proposed in [88] is called velocity-sensing model. As opposed to the 

differential displacement model, it is time-continuous. The visual process of error velocity 

sensing, i.e., derivation of the error 𝑒, is accompanied in this model by a time delay 𝜏𝑣, 

exactly like in Hess’ model of visual perception presented in section 3.1.1 and Figure 3.3. 

According to the velocity-sensing model, pilot control activity 𝛿 is proportional to the sign 

of the perceived error rate and further delayed by the neuromuscular system (𝜏𝑛𝑚). 

Equation (3.15) is a possible representation of the velocity-sensing model. Here, 𝑡 in round 

brackets denotes continuous time. 

𝛿(𝑡) = 𝐾 ⋅ s n(𝑒− 𝑣𝑠 ⋅ 𝑠 ⋅ 𝑒(𝑡)) ⋅ 𝑒− 𝑛𝑚𝑠 (3.15) 

Unlike the differential displacement model, the velocity-sensing model does produce a 

bimodal amplitude distribution of pilot control activity. However, it has the same major 

shortcoming of not explaining corrections of steady-state errors. It therefore also does not 

explain the pulse-like control behavior associated with the move-and-wait strategy. 

Hess proposed an extension to his dual-loop structural pilot model [99], a predecessor of 

his structural model [86], to describe pulse-like control behavior [97]. The model structure 

is shown in Figure 3.17. Note the input 𝑛𝑒, the injected error remnant. It represents the 

difference between the linear model and the not-exactly-linear behavior of the human 

operator and is often modeled as a colored noise. The parameter 𝑑, on the other hand, 

represents disturbances. The only modification Hess applied to his original model is the 

nonlinear element 𝑌𝑝  with the input 𝑐 and the output 𝑐′. 

 
Figure 3.17 – Hess’ pulsive control model as in [97] 
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Hess refrained from choosing relays or toggle nonlinearities as nonlinear element 𝑌𝑝𝑢, 

because he deemed the resulting control amplitude distributions, with nearly all control 

activity occurring at the relay limits, unrealistic. The characteristics of this nonlinear 

element as proposed by Hess are described by equation (3.16). 

𝑐̇′ = 0 for |𝑐̇|  𝑘1
𝑐′ = 𝑘2𝑐 for |𝑐̇| ≥ 𝑘1

 (3.16) 

Hess shows that pulse-like control time histories similar to those obtained in human 

subject experiments can be produced by choosing appropriate values of 𝑘1 and 𝑘2. 

However, this model, too, does not describe how pilots correct steady-state errors. Indeed, 

all models of pulse-like control presented above have been designed for the case of 

higher-order system control. This may be the reason why they all have some shortcomings 

when applied to the control of systems with large time delays. To address this issue, new 

pilot models are tailored to the problem of flight control with large time delays in the next 

section. 

3.3 New Pilot Models Describing Control with Large Time Delays 

As discussed above, the natural behavior of human operators when confronted with large 

time delays is to apply pulse-like control inputs and the move-and-wait strategy. The 

relevant pulse-like control behavior is characterized by (approximately) value-discrete 

control inputs that exhibit not more than three discrete levels (cf. section 3.2.2). It is 

therefore also similar to BMI control (cf. section 3.4). The three input levels shall be called 

“positive”, “neutral” and “negative”, but the reader can easily imagine that they could also 

stand for commands like “pitch up”, “maintain pitch attitude” and “pitch down”, 

respectively. This restriction of control inputs to three discrete amplitude levels constitutes 

a key characteristic of the following novel control-theoretic pilot models, where the three 

levels are represented by the numerical values +1, 0 and −1. 

The restriction of control inputs to three discrete amplitude levels can be done by the pilot 

himself, but also by the flight control system. If this is the case, the control system shall 

be called “on-off control system”, whereas those control systems that enable 

value-continuous control inputs shall be called “continuous control systems”. McRuer et 

al. [88] noted that the control of on-off control systems cannot be described with 

quasi-linear pilot models and that nonlinear control theory like the phase plane method 

could be used instead. Indeed, this approach is taken in the following section. 

3.3.1 Compensatory Tracking of a Stationary Target 

In a first, exploratory step, a new pilot model for compensatory tracking of a stationary 

target is defined, in some parts based on the established models described in previous 

sections. Figure 3.18 shows the proposed pilot model in an initial, generic form. Note that 

neither the aircraft nor any feedback loops are shown here. 
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Figure 3.18 – Generic form of the proposed compensatory pilot model 

The central nervous system (CNS), represented by some linear dynamics 𝑌𝑐𝑛𝑠, a time delay 

𝜏𝑐𝑛𝑠 and a nonlinear decision mapping function 𝑌𝑑𝑚, derives a control intention 𝑐 from a 

perceived tracking error 𝑒. This control intention, which according to equation (3.17) can 

take three different values, is then translated into a limb movement by the neuromuscular 

system, with its linear dynamics 𝑌𝑛𝑚. Finally, a certain inceptor characteristic 𝑌𝑖 maps the 

limb force (or movement) to a control action 𝛿 on the aircraft. This inceptor characteristic 

is comparable to the feel system of Hess’ structural model (cf. section 3.1.2). 

𝑐 ∈ {−1, 0, 1} (3.17) 

In the case of a continuous control system, 𝑌𝑖 is another linear transfer function, whereas 

the inceptor of an on-off control system exhibits the same three-level output characteristics 

as 𝑌𝑑𝑚. Regardless of control system type, the steady-state control action 𝛿 equals the 

steady-state control intention 𝑐. The neuromuscular dynamics 𝑌𝑛𝑚 in between merely 

introduce some lag. Hence, the generic model defined by Figure 3.18 can be simplified, 

as the following paragraph describes. 

For 𝑌𝑛𝑚, either of the two neuromuscular transfer functions presented in section 3.1.1 

could be employed. They are defined by equation (3.1) and the parameter values from 

Table 3.1. To further simplify the model, however, the approximation of the neuromuscular 

dynamics by a pure time delay, also presented in section 3.1.1, shall be used instead. 

This neuromuscular time delay 𝜏𝑛𝑚 can be added to the CNS time delay. The resulting 

overall pilot time delay 𝜏𝑝 is defined by equation (3.18). 

𝜏𝑝 = 𝜏𝑐𝑛𝑠 + 𝜏𝑛𝑚 (3.18) 

An additional simplification of the model can be achieved by neglecting the inceptor 

element. As stated above, this element simply reproduces the outputs of 𝑌𝑑𝑚. Assuming 

that 𝑌𝑖 introduces negligible lag, it is justifiable to only rely on 𝑌𝑑𝑚 to generate the control 

action. The resulting simplified model is shown in Figure 3.19. Here, control intention 𝑐 

does not explicitly appear anymore. Note that this model can be applied to both manual 

and BMI control. In the case of BMI control, 𝜏𝑛𝑚 must obviously be neglected and as a 

consequence, the pilot model’s output is the control intention 𝑐. A BMI model such as the 

one presented in section 3.4.2 then needs to describe how the BMI translates this control 

intention into a control action 𝛿. 
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Figure 3.19 – Simplified generic form of the proposed compensatory pilot model 

Next, the generic form of the decision mapping element 𝑌𝑑𝑚 shall be replaced by a specific 

mapping function that adequately describes how pilots derive their control intention from 

the perceived error. This function is chosen to be a deadband connected in series with a 

sign function, shown in Figure 3.20. As long as the error, filtered by the CNS, lies within 

the deadband, the pilot has no control intention. Corrective control inputs are intended 

while the error is outside the deadband. The size of the deadband thus represents the 

pilot’s desired steady-state precision. The deadband of the nonlinear decision mapping 

element can be defined in a normalized form, ranging from – 1 to +1. The effective 

deadband size, i.e., the actual desired tracking precision, then is the inverse of the 

steady-state gain of 𝑌𝑐𝑛𝑠. 

 
Figure 3.20 – Characteristics of the nonlinear decision mapping element 

The pilot model of Figure 3.19 shall now be combined with a generic plant model, 

consisting of a time delay 𝜏𝑎 and the linear aircraft transfer function 𝑌𝑎, to form a closed 

loop. The plant’s single time delay 𝜏𝑎 groups all delays occurring between control action 

and sensory feedback, notably including all signal processing and transmission delays. 

Figure 3.21 shows the resulting closed loop along with system input 𝑢, system output 𝑦, 

error 𝑒 and control action 𝛿. 

 
Figure 3.21 – Proposed compensatory control loop with pilot and aircraft 
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For an initial analysis, the CNS transfer function is assumed to consist of a single gain, as 

described by equation (3.19). The desired steady-state tracking precision is determined 

by this pilot gain only. The aircraft transfer function is chosen to be a pure integrator 

(equation (3.20)), which would be well controllable without the time delay. 

𝑌𝑐𝑛𝑠 = 𝐾𝑝 (3.19) 

𝑌𝑎 =
𝐾𝑎
𝑠

 (3.20) 

In a final step before actual analysis, the model is simplified by grouping both pilot and 

aircraft time delays in one total time delay 𝜏𝑡 (equation (3.21)), which may be positioned 

either before or after the decision mapping element. 

𝜏𝑡 = 𝜏𝑝 + 𝜏𝑎 (3.21) 

This nonlinear control loop can now be analyzed using the phase plane method, which is 

considered one of the most powerful methods for studying the behavior of (first- or 

second-order) nonlinear systems [100]. By applying this method, the following paragraphs 

derive a novel, intuitive representation of pilot behavior. This representation not only 

describes the nonlinear, pulse-like behavior that occurs during control of systems with 

large time delays, but it is also well suited to analyze the implications of this behavior on 

flight control performance. Moreover, the sometimes rather abstract effects of parameters 

like pilot gain or pilot lead become clearly visible in the following phase plane diagrams. 

First of all, some basic technical terms of the phase plane method need to be defined 

[100]. 

 A dynamic system is represented in phase space when it is described by its state 

and state derivative, e.g., position and velocity. For a first- or second-order system 

with one degree of freedom, the phase space is reduced to a phase plane. 

 The variation of the system’s state over time is described by trajectories in the 

phase plane. 

 A family of trajectories that completely defines the transient system behavior is 

called phase portrait. 

 The limit set of a trajectory is the state it reaches as time approaches ±  

 If the dynamic system contains a relay-type nonlinearity such as the decision 

mapping element here, the phase portrait can be complemented by so-called 

switching lines. When a trajectory crosses a switching line, the relay-type element 

changes its state, i.e., the value of its output. 

To analyze the nonlinear control loop under consideration, the evolution of the system 

output 𝑦 is described in the phase plane. For this analysis of stationary target tracking, 

the system input can be assumed constant zero and the initial system output variable 

nonzero, as in equation (3.22). 
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{

𝑢(𝑡) = 0 ∀ 𝑡 ≥ 0

𝑦(𝑡 = 0) = 𝑦0

𝑦̇(𝑡 = 0) = 0

 (3.22) 

In the phase plane, the system output 𝑦 is plotted along the abscissa, whereas its 

derivative, 𝑦̇, is plotted along the ordinate. Figure 3.22 shows an exemplary trajectory. 

The phase portrait of the system consists of two horizontal lines 𝑦̇ = 𝐾𝑎 and 𝑦̇ = −𝐾𝑎 and 

an infinite number of points along the abscissa. Within the effective deadband 

[−1/𝐾𝑝, 1/𝐾𝑝], these points are stationary trajectory end points or starting points 𝑦0. 

Outside the effective deadband, they either constitute trajectory starting points 𝑦0 or, in a 

special case that is discussed in one of the following paragraphs, waiting points. The 

example trajectory of Figure 3.22 is followed for all initial conditions 𝑦0  −1/𝐾𝑝. Note 

that this phase plane of the system output 𝑦 also illustrates the evolution of the error 𝑒, 

since a consequence of equation (3.22) is 𝑒 = −𝑦 and 𝑒̇ = −𝑦̇. 

 
Figure 3.22 – Compensatory control loop: example trajectory in the phase plane 

It can be seen that the switching lines divide the phase plane into three areas that 

correspond to the three possible values of control action 𝛿. The initial state of the example 

trajectory causes the pilot to make a positive control input to reduce the error. Because of 

this control input, the error then diminishes at a constant rate. As soon as the pilot 

perceives that the error is within the deadband, he terminates his input. Due to the time 

delay, however, his perception lags the actual system state and thus, switching to zero 

control activity does not occur on the boundary of the deadband, but 𝜏𝑡 after the deadband 

has been entered. Hence, the trajectory progresses through the deadband for a distance 

𝐾𝑎 ⋅ 𝜏𝑡 before terminating in a stationary point. In Figure 3.22, the effect of the time delay 

is graphically represented by the obliqueness of the switching lines. These lines lie at an 

angle of  t n(𝜏𝑡) in relation to the ordinate. 

In the example above, the slope of the switching lines is steep enough and the deadband 

is large enough for the system to reach a steady-state end point within the deadband. If 

the switching lines were shallower and/or the deadband smaller, it could happen that the 

trajectory progresses through the entire deadband before switching occurs. This is shown 

in Figure 3.23. Switching to zero control action occurs as the pilot perceives that the error 

has decreased below the deadband tolerance. Due to the time delay, however, the system 
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continues to move and ultimately moves beyond the opposite threshold of the deadband. 

As soon as the pilot perceives that, he applies an opposite control input. Next, the 

trajectory continues towards its starting point again until reaching another switching line, 

where the same events occur as before. This process may continue indefinitely in what is 

called a limit cycle. 

 
Figure 3.23 – Compensatory control loop: limit cycle in the phase plane 

Limit cycles are oscillations of fixed frequency and amplitude that sometimes occur in 

nonlinear dynamic systems. Everyday examples of limit cycles include the beating of the 

human heart and the squealing of chalk on a blackboard [100]. In the phase plane, limit 

cycles are apparent as closed trajectories that constitute limit sets of other trajectories. 

The control loop under consideration exhibits a limit cycle if equation (3.23) is satisfied, 

which can be derived from the geometry of the phase portrait. 

𝐾𝑝  
2

𝐾𝑎𝜏𝑡
 (3.23) 

As Figure 3.23 shows, the limit cycle is stable, since all initial conditions 𝑦0 ∉

[−1/𝐾𝑝, 1/𝐾𝑝] produce trajectories that end up in the limit cycle as 𝑡 → + . In each cycle 

there are two instants when no control input is made. These instants, during which 𝑦 is 

constant, are evidenced by waiting points in Figure 3.23. The time spent at one waiting 

point 𝑡𝑤 is the time required for the system to move through the deadband, since this is 

what the pilot perceives while not performing any control action (𝛿 = 0). The duration 𝑡𝑤 

is therefore defined by equation (3.24). 

𝑡𝑤 =
2

𝐾𝑝
⋅
1

𝐾𝑎
 (3.24) 

The amplitude of the limit cycle, i.e., 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛, can be geometrically determined and 

is given by equation (3.25). 

𝐴𝐿𝐶 = 2𝐾𝑎𝜏𝑡 −
2

𝐾𝑝
 (3.25) 
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The limit cycle period is the sum of the time required to perform a system movement with 

the amplitude 2𝐴𝐿𝐶 and of the time spent at the two waiting points 2𝑡𝑤. This information, 

combined with equations (3.24) and (3.25), results in equation (3.26). 

𝑇𝐿𝐶 =
2𝐴𝐿𝐶
𝐾𝑎

+ 2𝑡𝑤 = 4𝜏𝑡 −
4

𝐾𝑝𝐾𝑎
+

4

𝐾𝑝𝐾𝑎
= 4𝜏𝑡 (3.26) 

It is known that pilots also perceive the error rate and can thereby generate lead. This is 

effectively modeled in Hess’ structural model [86, 94] (cf. section 3.1.2), the differential 

displacement model and the velocity-sensing model [88] (cf. section 3.2.3). Therefore, 

instead of the simple gain used above, consider the CNS transfer function of equation 

(3.27), which is a combination of gain and lead. 

𝑌𝑐𝑛𝑠 = 𝐾𝑝(1 + 𝑇𝑝𝑠) (3.27) 

By varying the lead time constant 𝑇𝑝, the pilot has a direct influence on the slope of the 

switching lines, as evidenced by Figure 3.24. Their angle with respect to the vertical axis 

is  t n(𝜏𝑡 − 𝑇𝑝). 

 
Figure 3.24 – Influence of pilot lead on phase plane switching lines 

In this case with pilot lead, a limit cycle occurs if the inequality of equation (3.28) is 

satisfied. 

𝐾𝑝  
2

𝐾𝑎(𝜏𝑡 − 𝑇𝑝)
 (3.28) 

The amplitude of the resulting limit cycle then follows equation (3.29). 

𝐴𝐿𝐶 = 2𝐾𝑎(𝜏𝑡 − 𝑇𝑝) −
2

𝐾𝑝
 (3.29) 

Finally, the limit cycle period, shown in equation (3.30), can be derived again from the 

limit cycle amplitude (equation (3.29)) and the duration of the wait phases (equation 

(3.24)). 
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𝑇𝐿𝐶 = 4(𝜏𝑡 − 𝑇𝑝) (3.30) 

Note that equations (3.28) through (3.30) constitute a more general form of equations 

(3.23) through (3.26), which in turn represent the special case 𝑇𝑝 = 0. The lead time 

constant can be interpreted as an internal model of the time delay 𝜏𝑡, comparable to the 

idea of 𝑌𝑝𝑓 as an internal model of the controlled vehicle dynamics 𝑌𝑎 in Hess’ structural 

model (cf. section 3.1.2). It is naturally affected by estimation errors, which cause 

non-perfect pilot behavior. Moreover, even a perfectly estimated time delay in the form of 

a lead time constant would not eliminate the possibility of a limit cycle. An additional loop 

break is necessary for that, as the following sections show. Remember that the 

move-and-wait strategy really is a combination of closed-loop control with “excessive” lead 

as found by Hess [95] and occasional open-loop wait phases as described by Sheridan 

and Ferrell [23]. Note that the lead time constant is only excessive when compared to the 

theory of the Crossover Model. It may be not at all excessive when compared to the 

system’s time delay. 

The analyses above assume an ideal 𝐾/𝑠  controlled transfer function. Additional lags, 

which are usually present, have a detrimental effect which is evidenced in the phase plane 

by a distortion of the phase portrait. As an example, Figure 3.25 shows a qualitative phase 

plane plot of the same closed pilot-aircraft loop as above, but with the aircraft transfer 

function of equation (3.31). This transfer function is equivalent to the differential equation 

(3.32), from which the phase portrait equation (3.33) can be derived. 

𝑌𝑎 =
𝐾𝑎

𝑠(𝑇𝑎𝑠 + 1)
 (3.31) 

𝑦̇ + 𝑇𝑎𝑦̈ = 𝛿𝐾𝑎 (3.32) 

𝑑𝑦̇

𝑑𝑦
=
𝑑𝑦̇

𝑑𝑡

𝑑𝑡

𝑑𝑦
=
𝑦̈

𝑦̇
=
1

𝑇𝑎
(
𝛿𝐾𝑎
𝑦̇
− 1) =

{
 

 
1

𝑇𝑎
(
±𝐾𝑎
𝑦̇
− 1) for 𝛿 = ±1

−
1

𝑇𝑎
for 𝛿 = 0

 (3.33) 

Upon initiation of a nonzero control input (𝛿 ≠ 0), the system velocity 𝑦̇ = 𝐾𝑎 is not 

attained immediately, like in the cases without lag, but is approached asymptotically. 

Hence, the trajectories during any nonzero control input still intersect the abscissa at right 

angles, but are curved clockwise. Switching to zero control activity (𝛿 = 0) is again delayed 

by the time delay 𝜏𝑡 and when it occurs, the system still continues to move because of the 

lag. As a result, the waiting points degenerate into oblique lines with a constant slope of 

−1/𝑇𝑎, which is evidenced by equation (3.33). (One may in fact see it the other way 

around: these oblique lines degenerate into waiting points when no lags are present.) If 

pilot gain, time delay and lag time constant are small enough, the oblique section of the 

trajectory ends on the abscissa and a desired end state is reached. However, the fact that 

the system continues to move after a control input is terminated, which is reflected by the 

obliqueness of the lines in the region of zero control action, makes an involuntary excursion 
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of the effective deadband more likely. Such an excursion is, again, only perceived after the 

time delay 𝜏𝑡 and then triggers an opposing control input. A limit cycle like the one shown 

in Figure 3.25 may develop. Of course, the pilot can correct for this adverse effect of 

system lags by further increasing his lead time constant 𝑇𝑝, but only at the cost of even 

higher mental workload. 

 
Figure 3.25 – Influence of aircraft lags on the phase portrait, derived from [100] 

Lags and time delays within the controlled system indeed both have a delaying effect on 

the perceived system response. To successfully control systems with large time delays 

and/or large lags, operators must think ahead. An adequate control system design might 

support the pilot in controlling such difficult systems. The following section explores this 

possibility, based on the pilot model and the findings described above. 

3.3.2 Implications on Flight Control System Design 

Consider closed-loop control with large time delays as described by the model of the 

preceding section 3.3.1. If a limit cycle does not exist, the aircraft’s state 𝑦 always 

converges to a stationary value within the desired tolerance, represented by the effective 

deadband. This is a desirable behavior. The occurrence of a limit cycle, however, is not 

desirable. In fact, the limit cycle described above is a PIO and, as such, an unwanted 

handling qualities deficiency. It is potentially dangerous, especially in ground proximity or 

near the flight envelope boundaries. A limit cycle occurs when one or more of the 

parameters time delay 𝜏𝑡, aircraft gain 𝐾𝑎 and pilot gain 𝐾𝑝 are too large. The first question 

is now, whether the occurrence of a limit cycle can be avoided or even prevented by control 

engineering. 

Since the time delay 𝜏𝑡 is given and the pilot gain 𝐾𝑝 varies, as noted above, with the 

desired precision, the aircraft gain 𝐾𝑎 constitutes the only design parameter. However, 

trying to prevent limit cycle occurrence by choosing a small aircraft gain is impractical for 

two reasons. First, an excessively small aircraft gain results in insufficient control authority 

or maneuverability. Second, there is no practical upper limit for the pilot gain and the 

system may therefore exhibit limit cycles regardless of the aircraft gain value chosen. 

Hence, limit cycles cannot be prevented by control engineering. Flight control system 

design choices nonetheless influence the handling characteristics. It was noted at the 
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beginning of section 3.3 that the restriction of control inputs to three discrete amplitude 

levels can be done by the pilot himself, but also by the flight control system. The above 

pilot model can now be used to explore the differences between on-off control systems 

and continuous control systems. 

The decision mapping element of Figure 3.20 can be applied to both control system types. 

For an on-off control system, possible input amplitudes are indeed fixed by design. Using 

a continuous control system, however, only the maximum input amplitude is fixed, which 

shall be characterized by |𝛿| = 1. As a result, the two nonzero decision mapping levels 

may take other values within [−1,+1], but it is assumed that their value does not change 

while control intention is nonzero. In other words, the pilot has an additional degree of 

freedom which shall be called input aggressiveness. Variations of this aggressiveness 

directly affect the open-loop gain (cf. section 3.1.2). When the controlled system exhibits 

excessive phase lags, high open-loop gains can destabilize the closed control loop. Even 

small disturbances can cause pilot corrections that are excessive in aggressiveness and 

thus trigger a PIO. The resulting limit cycle amplitude varies with pilot gain and 

aggressiveness, but is, according to equation (3.25), always smaller than 2𝐾𝑎𝜏𝑡. Note that 

with a continuous control system, the PIO may start off at a small amplitude which then 

diverges and reaches a maximum when the pilot makes stop to stop control inputs. If, on 

the other hand, a PIO develops with an on-off control system, the amplitude is not 

divergent, but more or less fixed from the beginning. In this case, too, it is always smaller 

than 2𝐾𝑎𝜏𝑡. Regardless of the control system type, the limit cycles’ period only depends 

on the total time delay and therefore cannot be altered by control engineering. The time 

delay introduced by the pilot may vary, but only to a negligible degree. As a result, the 

limit cycles’ period is primarily determined by the controlled system’s time delay. For the 

time delay values under consideration, limit cycle periods are greater than about four 

seconds. 

Since the magnitude of the aircraft’s reaction to a given control input is governed by the 

gain 𝐾𝑎, this gain can also be referred to as the control sensitivity. When fixing the control 

sensitivity 𝐾𝑎 of either control system type, maneuverability and PIO criticality have to be 

traded off against each other as described above. In both cases, higher values of 𝐾𝑎 result 

in higher maneuverability and, at the same time, higher PIO criticality. As the control 

sensitivity of a continuous control system is reduced, it becomes more similar to an on-off 

control system, because pilots will, in an attempt to speed up the system response, start 

to displace the inceptor to its limit position, defined by |𝛿| = 1, for every input they make. 

In terms of limit cycle amplitude, a continuous control system is then equivalent to an 

on-off control system, provided they employ the same control sensitivity 𝐾𝑎. 

In terms of workload and performance, on the other hand, the on-off control system may 

have an advantage, since it increases the predictability of the aircraft response. It was 

noted previously that pilots apply pulse-like control inputs to reduce mental workload. 

With the control amplitudes fixed by design, pilots are relieved from manually generating 

pulse-like control inputs. Once they are familiar with the invariant control amplitudes, they 

only need to estimate control input duration to predict the airplane response. As a result, 

they can precisely fly maneuvers in an open-loop fashion. This form of pre-cognitive 
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tracking only requires the pilot to perceive his control input. It is especially valuable if 

feedback from the vehicle is delayed to an extent even greater than the duration of the 

desired maneuver. In this case, where the pilot can only rely on the open-loop part of the 

move-and-wait strategy, the ability to perform pre-cognitive control greatly reduces the 

time required to reach the target state. Since the move-and-wait strategy cannot be 

described with the compensatory tracking model presented in section 3.3.1, that model 

is extended in the following section to a dual-mode pursuit tracking model, which in turn 

constitutes a more complete description of pilot behavior during control tasks with large 

time delays. 

3.3.3 A Dual-Mode Pursuit Tracking Model 

As noted in the previous section, it is likely that pilots perform pre-cognitive tracking at 

least to some degree. Furthermore, compensatory tracking tasks are not directly 

representative for operational maneuvers [101]. Therefore, the model for compensatory 

tracking presented above, although well describing some basic characteristics, is 

insufficient. This section presents a dual-mode pursuit tracking model that combines the 

above closed-loop model with a model of the open-loop move-and-wait strategy to 

adequately describe the operator behavior during control tasks with large time delays. 

The controlled system is assumed to comprise one and only one pure integrator, time 

delays and, possibly, lags. All time delays shall be grouped in one single parameter 𝜏𝑎, 

whereas the remaining linear dynamics can be described by equation (3.34), where (… ) 

stands for one or more lags of the form (1 + 𝑇𝑠) or (1 + 2𝜁𝑠/𝜔 + 𝑠2/𝜔2). Systems with 

more than one pure integrator are not considered here, because higher-order flying tasks 

such as altitude or ground path tracking are usually accomplished by closing multiple, 

cascaded control loops (cf. Figure 3.4), the innermost of which controls a single-integrator 

system. 

𝑌𝑎 =
𝐾𝑎

𝑠 ⋅ (… )
 (3.34) 

When performing pursuit tracking, pilots rely on both the system output 𝑦 and the system 

input 𝑢 to derive appropriate control inputs (cf. Figure 3.5). In this present case, they use 

this information to decide whether to open or close the loop and whether to move or to 

wait. Since these three choices – closed-loop control, move phase and wait phase – can 

be seen as distinct operator states, the pilot can, to some extent, be described by a state 

machine, whose output is a control intention 𝑐. Figure 3.26 shows a diagram of the 

proposed state machine, whose development was guided by previously reported 

observations of human operator behavior and the author’s own experience in flight control 

with large time delays. Care was taken to introduce as few states, transitions and 

parameters as possible. The result is a novel, highly general and intuitive description of 

operator behavior during control tasks with large time delays. 

While the following paragraphs give a more vivid illustration of the state machine by 

describing the states and transitions in narrative form, Figure 3.26 provides a formalized 

definition of the state machine. Here, each box represents a state and each arrow a 
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transition. States are characterized by the actions that take place upon entry into the state, 

which are marked by the word “entry”, and the actions that occur while the state is active, 

which are marked by the word “during”. Initial states can be recognized by a transition 

originating from a black dot. A transition condition is noted next to each non-initial 

transition. Transitions are triggered as soon as the corresponding condition is satisfied. 

Rhombs indicate junctions of transitions. The conditions of transitions departing any state 

or junction are mutually exclusive, so that transition triggering is unambiguous. Beyond 

that, the conditions of those transitions departing a junction are collectively exhaustive, so 

that the transit character of junctions is ensured. 

 
Figure 3.26 – State machine of the dual-mode pursuit tracking model 

The initial operator state is “Idle”. When in this state, the pilot observes the error 𝑒, but 

does not have any control intention, i.e., 𝑐 = 0. As soon as the error exceeds a certain 

tolerable value 𝑒𝑡𝑜𝑙, the pilot decides whether to perform closed-loop control or to make 

an open-loop move. Suppose the error is so small that the control input needs to be shorter 

than the total time delay. This is the case if equation (3.35) is satisfied, where 𝑦̇𝑠𝑠 is the 

steady-state system velocity during a positive control input. 

|𝑒| ≤ 𝑦̇𝑠𝑠𝜏𝑡 (3.35) 

The operator then needs to rely on the open-loop move-and-wait strategy. Note that 𝑦̇𝑠𝑠 =

𝐾𝑎 when an on-off control system, characterized by 𝛿 ∈ {−1,0,1}, is employed and 0 ≤

𝑦̇𝑠𝑠 ≤ 𝐾𝑎 in the case of a continuous control system with 𝛿 ∈ [−1,1]. Like the control 

sensitivity 𝐾𝑎, the value 𝑦̇𝑠𝑠 is a measure for the magnitude of the aircraft’s reaction to a 
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control input. However, 𝑦̇𝑠𝑠 already takes into account the actual size of the control input 

and shall therefore be called effective reaction magnitude. Of course, pilots do not have 

perfect knowledge of the effective reaction magnitude 𝑦̇𝑠𝑠 or the total time delay 𝜏𝑡. 

Moreover, being aware of their imperfect knowledge and of possibly excessive overshoots 

in case closed-loop control is attempted by mistake, operators probably tend to make 

open-loop moves. Therefore, the condition for the state transition is formulated as in 

equation (3.36), where a factor 𝑘𝑦̇  1 is added to the product of estimated reaction 

magnitude 𝑦̇ 𝑠𝑠 and 𝜏𝑡. It is assumed here that 𝑘𝑦̇ = 1.1. 

|𝑒| ≤ 𝑘𝑦̇𝑦̇ 𝑠𝑠𝜏𝑡 (3.36) 

The operator now enters the “Open-Loop Move” state, which in turn is composed of two 

states. The initial state “Begin Move” starts the maneuver by generating an appropriate 

control intention 𝑐 ∈ {−1, 1} to reduce the perceived error. Moreover, the duration of the 

move phase 𝑡𝑚 is computed as in equation (3.37). Once this duration is over, the operator 

transitions to the “Wait” state. 

𝑡𝑚 =
|𝑒|

𝑦̇ 𝑠𝑠
 (3.37) 

It may happen, though, that the system input 𝑢 shifts during the move phase. If such a 

shift is larger than the tolerance 𝑒𝑡𝑜𝑙, the pilot transitions to the “Modify Move” state, 

where he re-computes 𝑡𝑚 accordingly. If the target has shifted such that the error has 

been reduced, 𝑡𝑚 is reduced as well to avoid overshooting the target. Similarly, if the target 

has shifted the other way, the move phase is prolonged. 

Once transitioned to the “Wait” state, the operator terminates his control intention (𝑐 = 0) 

and waits for the system to settle. The duration of the wait phase is governed by equation 

(3.38). It is the sum of the total time delay 𝜏𝑡 and another delay Δ𝑡𝑤 that models the time 

the operator needs to assess the outcome. 

𝑡𝑤 = 𝜏𝑡 + Δ𝑡𝑤 (3.38) 

Total time delay is in turn defined by equation (3.39) as the sum of all pure time delays 

and equivalent time delays. The pure time delays are 𝜏𝑐𝑛𝑠 within the CNS (cf. Figure 3.28) 

and 𝜏𝑎 within the controlled system, whereas the equivalent time delays are 𝜏𝑛𝑚 for the 

neuromuscular system (cf. section 3.1.1) and 𝜏𝑙𝑎𝑔𝑠 for any lags that may be present in 

the aircraft transfer function. 

 
Figure 3.27 – Illustration of time delay values in the system’s step response 
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The parameter 𝜏𝑙𝑎𝑔𝑠 can be geometrically determined from the step response plot of 𝑌𝑎, 

as shown in Figure 3.27. 

𝜏𝑡 = 𝜏𝑐𝑛𝑠 + 𝜏𝑛𝑚 + 𝜏𝑎 + 𝜏𝑙𝑎𝑔𝑠 (3.39) 

Furthermore, it is assumed that Δ𝑡𝑤 equals 𝜏𝑐𝑛𝑠 (equation (3.40)). Thus, equation (3.38) 

can be rewritten as in equation (3.41). Note that neither the total time delay nor the wait 

phase duration need to be estimated by the pilot. The pilot simply waits for the system to 

settle, which always takes the time 𝜏𝑡, and assesses the outcome within the duration Δ𝑡𝑤. 

Δ𝑡𝑤 = 𝜏𝑐𝑛𝑠 (3.40) 

𝑡𝑤 = 2𝜏𝑐𝑛𝑠 + 𝜏𝑛𝑚 + 𝜏𝑎 + 𝜏𝑙𝑎𝑔𝑠 (3.41) 

During the wait phase, the pilot observes the system input 𝑢. If a shift occurs in 𝑢 that is 

larger than 𝑒𝑡𝑜𝑙, he interrupts the wait phase. The change in 𝑢 may have been so small 

that equation (3.36) is satisfied and a transition to the “Interrupt Wait” state occurs. Here, 

another brief open-loop movement is commanded to follow 𝑢. Then, the pilot transitions 

to the “Wait” state again. If, on the other hand, the wait phase is interrupted due to a 

large shift in 𝑢 that causes equation (3.36) to be violated, the operator transitions to the 

“Closed-Loop Control” state. While in this state, the state machine feeds through a 

closed-loop control intention (𝑐 = 𝑐𝐶𝐿), which is determined outside the state machine. 

The transition back to the “Wait” state occurs as soon as 𝑐𝐶𝐿 changes its sign or becomes 

zero. It is exactly this loop break that prevents the occurrence of limit cycles. If, at the end 

of the wait phase, the error is tolerably small, the operator becomes idle. If a larger residual 

error remains, he starts off again by deciding between closed-loop control and an 

open-loop move. 

Now that the state machine as the core of the pursuit tracking model is defined, it needs 

to be embedded in a suitable control architecture. Most notably, the closed-loop control 

intention 𝑐𝐶𝐿 needs to be generated and the output of the state machine 𝑐 needs to be 

translated into a control input to the aircraft. The resulting model, which comprises both 

pilot and aircraft, is shown in Figure 3.28. Note that some of the elements of the 

compensatory tracking model presented in section 3.3.1 can be found here again. The 

model of Figure 3.28 is only applicable to on-off control systems, but a variant describing 

control with continuous control systems is given later in this section. 

First, the signal path from control intention 𝑐 to control action 𝛿 is described. The control 

intention from the state machine 𝑐 first passes the CNS’s time delay 𝜏𝑐𝑛𝑠, which is set to 

0.2 𝑠 here. This value is slightly higher than those proposed elsewhere [86], to account 

for the increased mental load induced by switching between operator states. The delayed 

control intention is then translated to a limb force by the neuromuscular system. In this 

process, it is first multiplied by 1 + 𝑛𝑛𝑚, where 𝑛𝑛𝑚 is a zero-mean noise with a power 

spectral density (PSD) 𝑆𝑛𝑛𝑛𝑚 to be specified. This noise can be compared to the 

output-injected remnant of a quasi-linear model, such as the one in Hess’ initial version 

of the structural model [86]. Here, however, the noise is multiplicative, like, for instance, 
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in the model of visual perception proposed in [102]. Thus, the noise power in the motor 

system scales with the control intention, which is a concept that contributed to the 

prediction of arm movements described in [103]. For 𝑌𝑛𝑚, Hess’ second-order transfer 

function [86] (cf. section 3.1.1) shall be used. Due to its unitary gain and given that 𝑐 ∈
[−1,1], its output can be considered a normalized limb force. 

 
Figure 3.28 – Dual-mode pursuit tracking model, on-off control system 

Figure 3.29 visualizes the effect of the multiplicative noise and the neuromuscular transfer 

function upon a control intention singlet. Both the noise 𝑛𝑛𝑚 and the low-pass effect of 

𝑌𝑛𝑚 can be recognized. 

 
Figure 3.29 – Effects of the proposed pilot model’s neuromuscular system 
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The equivalent delay of the neuromuscular system 𝜏𝑛𝑚, which appears in equations (3.39) 

and (3.41), shall be defined as the 50% rise time of 𝑌𝑛𝑚. In other words, this definition 

says that the step response of 𝑌𝑛𝑚 reaches half of the step input’s value after 𝜏𝑛𝑚. Using 

the definition of 𝑌𝑛𝑚 chosen above, the value of 𝜏𝑛𝑚 can be determined to be 0.14 𝑠. This 

value is slightly higher than that given in section 3.1.1, which is due to the fact that it is 

derived only from Hess’ neuromuscular transfer function, whereas the smaller value from 

section 3.1.1 approximates both Hess’ and McRuer’s transfer functions at the same time. 

The inceptor finally translates the normalized limb force into a control action 𝛿. The 

inceptor model here can be compared to the feel system in Hess’ structural model (cf. 

section 3.1.2), with the difference that both force- and deflection-sensing control systems 

can be described by the same model structure due to the absence of a proprioceptive 

control loop. Given that an on-off control system is modeled here, the inceptor needs to 

exhibit the three-level output characteristic that is typical for this control system type. The 

inceptor mapping function is given by Figure 3.30. The threshold of switching between 

the “on” state and the “off” state is chosen to be halfway between neutral and limit inceptor 

input, i.e., halfway between 0 and ±1, so that switching always occurs at the same time 

after a change in control intention, regardless of the direction of change. 

 
Figure 3.30 – Inceptor mapping function 

Next, the signal path from error 𝑒 to closed-loop control intention 𝑐𝐶𝐿 is described. Here, 

the compensatory tracking model of section 3.3.1 is employed. It is assumed that the pilot 

can derive the error rate and thereby generate lead, but that error derivation also introduces 

an additional zero-mean noise 𝑛𝑒̇ with a PSD denoted 𝑆𝑛𝑛 ̇. This assumption is in line with 

established pilot models. The lead time constant 𝐾𝑒̇ can be interpreted as an internal 

model of the time delay (cf. section 3.3.1). It is therefore assumed that 𝐾𝑒̇ satisfies 

equation (3.42). The noise 𝑛𝑒̇ represents estimation errors of both the error rate and the 

time delay. It ultimately causes the cancellation of the total time delay 𝜏𝑡 by the lead time 

constant 𝐾𝑒̇ to be non-perfect. 

𝐾𝑒̇ = 𝜏𝑡 (3.42) 

Like in section 3.3.1, the pilot gain 𝐾𝑝, which amplifies the sum of error and derived error, 

effectively represents the inverse of the desired accuracy. Therefore, it can be related to 

the parameter 𝑒𝑡𝑜𝑙, as shown by equation (3.43). 
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𝐾𝑝 =
1

𝑒𝑡𝑜𝑙
 (3.43) 

The subsequent decision mapping element has the same characteristic as the one 

employed in the compensatory tracking model of section 3.3.1. This characteristic is 

shown in Figure 3.20. The decision mapping element then feeds 𝑐𝐶𝐿 to the state machine. 

Finally, the way some state machine inputs are generated requires further explanation. 

First, the task not always specifies the tolerated error 𝑒𝑡𝑜𝑙. It is assumed that pilots then 

strive to attain the smallest 𝑒𝑡𝑜𝑙 that is practically achievable. Given that control inputs are 

of fixed magnitude, this value can in fact be related to the effective reaction magnitude 𝑦̇𝑠𝑠 

via the minimum move time 𝑡𝑚,𝑚𝑖𝑛, as described by equation (3.44). This minimum move 

time is equivalent to the shortest control input that can be made with the inceptor and is 

assumed to be 0.15 𝑠. 

𝑒𝑡𝑜𝑙 = 𝑦̇𝑠𝑠 ⋅ 𝑡𝑚,𝑚𝑖𝑛 (3.44) 

Second, an estimation of the effective reaction magnitude 𝑦̇ 𝑠𝑠 is used in the state machine 

to compute the move phase duration. As Figure 3.28 shows, this estimation is obtained 

by adding a noise 𝑛𝑦̇   to the actual value of the effective reaction magnitude. This 

zero-mean noise with a PSD 𝑆𝑛𝑛 ̇ represents the fact that the pilot’s internal model of the 

reaction magnitude is imperfect. Hence, it is comparable to the additive noise 𝑛𝑒̇ on the 

derived error, which describes inaccuracies of the pilot’s internal model of the total time 

delay. The total time delay 𝜏𝑡 used in the state machine, on the other hand, does not need 

to be disturbed by noise, because it is either multiplied by 𝑦̇ 𝑠𝑠 and 𝑘𝑦̇, which already 

account for the pilot’s uncertainty, or it is introduced as a part of wait phase duration 𝑡𝑤, 

which is not estimated by the pilot and therefore not affected by estimation errors. 

Regarding the overall structure of the proposed pilot model, which is motivated by 

previously reported observations of human operator behavior and the authors own 

experience, it can be noted that it does not contain proprioceptive or vestibular feedback 

loops. On the one hand, such feedbacks are not required to describe the operator behavior 

under consideration. On the other hand, their absence means that the model is applicable 

to both RPA and BMI control. To apply the above model, which in this form is suited only 

for manual control of on-off control systems, to BMI control, the neuromuscular system 

and the inceptor need to be replaced by a suitable BMI model, like the one presented in 

section 3.4.2 of this thesis. 

A variant of the above model, which is detailed in the following paragraphs, describes 

manual control with a continuous control system. The structure of this variant is shown in 

Figure 3.31. There are only two modifications with respect to Figure 3.28: the gain 𝐾𝑎𝑔𝑔 

is introduced to the CNS and a different inceptor characteristic is employed. The parameter 

𝐾𝑎𝑔𝑔 describes the input aggressiveness, which is presented in section 3.3.2 as an 

additional degree of freedom available to the pilot. It is constrained as in equation (3.45). 
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0 ≤ 𝐾𝑎𝑔𝑔 ≤ 1 (3.45) 

When the pilot operates at maximum aggressiveness, i.e., 𝐾𝑎𝑔𝑔 = 1, he makes control 

inputs with the maximum possible magnitude. It is assumed that 𝐾𝑎𝑔𝑔 does not change 

during a control input, but that the pilot may change aggressiveness between control 

inputs. This assumption is justified by the observations of pulse-like behavior shown in 

section 3.2.2. Variations in aggressiveness effectively modify the steady-state system 

velocity 𝑦̇𝑠𝑠 during a control input, as equation (3.46) shows. A change of 𝐾𝑎𝑔𝑔 thus not 

only affects the functioning of the state machine, but also leads to a change in 𝑒𝑡𝑜𝑙, 

governed by equation (3.44). This is quite logical: small control amplitudes are employed 

during fine tracking, where the desired accuracy is highest. 

𝑦̇𝑠𝑠 = 𝐾𝑎𝑔𝑔 ⋅ 𝐾𝑎 (3.46) 

The inceptor of the continuous control system is a feedthrough combined with a saturation 

that represents maximum and minimum inceptor deflections. The saturation ensures that 

𝛿 ∈ [−1,1]. 

 
Figure 3.31 – Dual-mode pursuit tracking model, continuous control system 

Apart from the changes in the model structure discussed above, only one of the parameters 

needs to be modified so that the model describes manual control with a continuous control 

system. Section 3.3.2 noted that an on-off control system, with its fixed control 

amplitudes, facilitates familiarization with these amplitudes. If, on the other hand, 

pulse-like control inputs are made with a continuous control system, it is more difficult to 

familiarize with the system’s response, because the amplitude of two control inputs is 

Neuro-
muscular
System

AircraftInceptor

Central Nervous System

State 
Machine

𝑌𝑎
−

𝑦𝑒

𝑒−  𝑛 𝑠

 𝑠

𝑛𝑒̇

𝛿

𝐾𝑎

𝜏𝑡

𝑛𝑦̇  

𝑒𝑡𝑜𝑙

𝑦̇ 𝑠𝑠

𝑐

𝑐𝐶𝐿

𝐾𝑒̇

𝐾𝑝

𝑡𝑚,𝑚𝑖𝑛

𝐾𝑎𝑔𝑔

𝑢
𝑒− 𝑎𝑠𝑌𝑛𝑚 𝐾𝑎𝑔𝑔

1 + 𝑛𝑛𝑚

𝑦̇𝑠𝑠



Analysis and Modeling of Human Flight Control Behavior 

  75 

never exactly equal. An increased power of the noise 𝑛𝑦̇   shall reflect the reduced 

familiarity with the effective reaction magnitude when using a continuous control system. 

To finalize the model description, the noise spectra need to be defined. First, consider the 

noise in the neuromuscular system. It passes the neuromuscular transfer function 𝑌𝑛𝑚 with 

its physical low-pass characteristics before appearing as a disturbance in the force applied 

to the inceptor. Hence, 𝑛𝑛𝑚 can be considered a white noise with zero mean, like the 

motor noise in [103]. If also the same 1% coefficient of variation is chosen as in [103], 

one obtains the noise PSD defined by equation (3.47), which is constant across all 

frequencies. Note that Figure 3.29 and Figure 3.32 have been created using this noise 

spectrum. 

𝑆𝑛𝑛𝑛𝑚 = 10
−4 (3.47) 

The noises 𝑛𝑒̇ and 𝑛𝑦̇   mainly describe errors in perception. Therefore, the model of visual 

perception affected by noise presented in [102] shall be used as a reference. There, a 

white noise is passed through a first-order low-pass filter with a time constant of 0.5 𝑠. 

Likewise, measurements of human operator remnants also often exhibit first-order 

characteristics [86, 104]. Each of the noises 𝑛𝑒̇ and 𝑛𝑦̇   is therefore assumed to resemble 

a first-order process with a time constant of 0.5 𝑠. The power of the visual perception noise 

proposed in [102] scales with the perceived parameter. Similarly, the power of 𝑛𝑦̇   is 

hypothesized to scale with 𝐾𝑎. An additional scaling factor 𝑘𝑛 ̇ is to be determined 

empirically. Equation (3.48) defines the resulting PSD of 𝑛𝑦̇  . 

𝑆𝑛𝑛 ̇(𝜔) =
𝑘𝑛 ̇ ⋅ 𝐾𝑎

0.5𝑗𝜔 + 1
 (3.48) 

The power of 𝑛𝑒̇, on the other hand, is hypothesized to scale with 𝐾𝑎 ⋅ 𝜏𝑎. The additional 

factor 𝜏𝑎 is introduced because it is assumed that applying the correct amount of lead 

becomes more difficult as the time delay increases. The PSD of 𝑛𝑒̇ is thus defined by 

equation (3.49). The additional scaling factor 𝑘𝑛 ̇ has to be determined empirically. 

𝑆𝑛𝑛 ̇(𝜔) =
𝑘𝑛 ̇ ⋅ 𝐾𝑎 ⋅ 𝜏𝑎

0.5𝑗𝜔 + 1
 (3.49) 

The definition of the noise spectra finally concludes the model description. The structure 

and the parameters defined above together completely describe the proposed dual-mode 

pursuit tracking model. The model parameters can be categorized into dependent 

parameters such as 𝑒𝑡𝑜𝑙, whose value can be derived from other quantities, and 

independent parameters like 𝑘𝑦̇. Only the independent parameters, which are listed in 

Table 3.2, constitute degrees of freedom for fitting the model to experimental data. Based 

on previous research or good engineering judgement, four of these independent 

parameters, namely 𝜏𝑐𝑛𝑠, 𝑌𝑛𝑚, 𝑡𝑚,𝑚𝑖𝑛 and 𝑘𝑦̇, are fixed a priori. Therefore, the model is 

fitted to experimental data in section 6.5 by only varying the two noise parameters and, 

in case of a continuous control system, the input aggressiveness. 
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Table 3.2 – Independent parameters of the dual-loop pursuit tracking model 

Symbol Description Value 
𝜏𝑐𝑛𝑠 CNS time delay 0.2 𝑠 

𝑌𝑛𝑚 Neuromuscular transfer function 
100

𝑠2 + 2 ⋅ 0.707 ⋅ 10 ⋅ 𝑠 + 100
 

𝑡𝑚,𝑚𝑖𝑛 Minimum duration of a control input 0.15 𝑠 

𝑘𝑦̇ 
Factor describing the preference for 
open-loop control 

1.1 

𝐾𝑎𝑔𝑔 
Pilot aggressiveness 
(continuous control system only) 

To be determined empirically 𝑘𝑛 ̇ Scale factor of the noise 𝑛𝑒̇ 

𝑘𝑛 ̇ Scale factor of the noise 𝑛𝑦̇   

 

Now that a version of the pilot model for each control system type is defined, the 

differences between on-off control systems and continuous control systems can be 

analyzed. First, the inceptor characteristic determines how the neuromuscular noise is 

propagated to the controlled system. The feedthrough inceptor characteristics of the 

continuous control system let the noise pass. With the on-off control system, on the other 

hand, the neuromuscular noise has almost no effect on the control input 𝛿. This is 

illustrated by Figure 3.32. 

 
Figure 3.32 – The effect of control system type on neuromuscular noise rejection 

Here, the same control intention singlet is passed through the neuromuscular system and 

then either fed through by the continuous inceptor or mapped by the on-off inceptor. It 

can be seen that with the on-off control system, only the equivalent time delay of the 

neuromuscular system affects the signal, whereas the continuous control system also 

propagates the output-injected noise. Note that the saturation of control action 𝛿 at +1 is 

neglected here. This can be justified in case the two control systems have different gains 
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𝐾𝑎,𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 = 𝑘 ⋅ 𝐾𝑎,𝑜𝑛−𝑜𝑓𝑓 with 𝑘  1, which would enable both larger and smaller 

control inputs with the continuous control system as compared to the fixed on-off control 

magnitude. For the present analysis, this factor 𝑘 can be moved from the aircraft to the 

inceptor, which then has a slope of 𝑘 and saturation limits at ±𝑘. If, at the same time, 

𝐾𝑎𝑔𝑔 = 1/𝑘, the pilot produces a nominal 𝛿 = 1 with either control system. 

The second and probably more important difference between the control system types is 

the power of the noise 𝑛𝑦̇  . As discussed above, it is larger in case of a continuous control 

system, because the pilots’ familiarity with the effective reaction magnitude is reduced. As 

a result, the duration of the move phases is more inaccurate, leading to larger over- or 

undershoots and an overall poorer tracking performance. With any control system, 

familiarity can be gained through training. This means that after extensive training, pilots 

may achieve a similar level of familiarity with the effective reaction magnitude using either 

control system type. Equivalently, the power of the noise 𝑛𝑦̇   would then be similar 

between control system types and the difference in performance negligible. 

Regardless of the type of control system employed, the aircraft transfer function 𝑌𝑎 should 

contain as few lags as possible. In the pilot model above, those lags are grouped in the 

equivalent time delay 𝜏𝑙𝑎𝑔𝑠 and thereby cause the duration of the wait phase to increase. 

As a result, any given maneuver takes longer to accomplish. A lightly damped aircraft 

response as the other extreme is undesirable as well, because overshoots and oscillations 

make the system’s steady state difficult to predict and pilots may thus apply unnecessary 

or incorrect control inputs before the system has settled. Alternatively, they can wait for 

the system to settle, which, again, prolongs the wait phase. Generally, the controlled 

system (without the time delay) should satisfy established handling qualities criteria or 

requirements to ensure an adequate response also in case large delays are present. 

3.4 BMI Modeling 

3.4.1 An Introduction to BMIs 

A concise definition of BMIs, which are also often referred to as Brain-Computer Interfaces 

or BCIs, is given by Graimann et al. [52]: BMIs process electroencephalography (EEG) 

measurements of the brain’s electrical activity in real time to detect brain patterns that 

reflect the user’s intent. More concrete, a BMI is a type of neuroprosthesis that enables 

communication with the environment while bypassing the body’s normal efferent 

pathways. This is illustrated by Figure 3.33. To operate a machine, humans usually move 

or apply forces with hands or feet. The muscle activity is commanded by the CNS through 

efferent nerves. When a BMI is used, these efferent nerves are bypassed. It has to be 

emphasized that the BMI communication pathway is unidirectional, whereas the efferent 

muscle activity is paired with the sense of proprioception. This means that even though 

BMI control bypasses the efferent pathways, the user has to rely on his senses and the 

afferent nerves to obtain feedback on his control activity. 
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Figure 3.33 – Afferent and efferent pathways and the BMI pathway 

EEG technology already existed in the 1920s and the first BMI was described in 1964 

[52], but the computer performance required for adequate online EEG signal processing 

only became available or affordable some decades later. In recent years, BMI research has 

advanced with big steps and has led to successful control of prostheses [105, 106], cars 

[53], quadcopters [55] and simulated airplanes [57, 107]. 

The concept of brain control may still sound mystic to many, but the secret of BMIs really 

lies in very down-to-earth signal processing. As illustrated by Figure 3.34, it starts with 

the acquisition of EEG signals, which are subsequently amplified and preprocessed. The 

final steps of feature extraction and classification constitute the core of any BMI and result 

in an output signal that, ideally, reflects the user’s intent. 

 
Figure 3.34 – Steps of BMI signal processing 

Due to its noisy nature, the BMI output signal is usually filtered. Moreover, the output 

signal is normally presented to the user on a visual or other display to compensate for the 

unidirectional nature of the BMI pathway. It has to be stressed, however, that any filtering 

or feedback occurring after classification are not considered part of the BMI in the scope 

of this thesis. The BMI community usually considers all elements from EEG signal 

acquisition to user feedback part of the BMI. This definition is motivated by the fact that 

all these elements are required for the human operator to learn how to use the BMI. It is, 

however, not practical in the present case. The following paragraphs provide a more 

detailed description of the five BMI elements from Figure 3.34. 

EEG signals can be acquired in different ways. The best signal quality is achieved with 

intracranial electrodes. However, this invasive method requires brain surgery, which is 

unacceptable for most potential users. Far more suited for a broad application of BMIs are 

Afferent Nerves

Sensory Receptors

Sense Organs

Efferent Nerves

Muscles

Glands

Brain-Machine
Interface

CNS

Classification
Feature

Extraction
PreprocessingAmplification

EEG Signal 
Acquisition



Analysis and Modeling of Human Flight Control Behavior 

  79 

non-invasive EEG systems, which use electrode caps or nets placed on the user’s scalp.  

The number of electrodes employed depends on the required spatial resolution and can 

range from a single one to over 256. Electrodes are either wet or dry. Wet electrodes are 

more common in research applications, because they generally offer a better signal quality 

[108]. Their application is, however, somewhat cumbersome. Beneath each electrode, 

the user’s skin is prepared by light abrasion and an electrolyte gel is applied to reduce 

impedance [14]. This set-up process takes some time, depending on the number of 

electrodes used. After the cap is removed, the subject’s head is still full of gel that needs 

to be washed out. Dry electrodes, on the other hand, are far easier to handle. Some 

consumer EEG systems look like headsets and comprise one or more dry electrodes [109, 

110]. After the EEG signals have been captured by the electrodes, they are amplified. To 

achieve a high suppression of interference, pre-amplification can already be done at the 

electrode itself. Such electrodes are called active electrodes. The preprocessing stage is 

responsible for improving the signal-to-noise ratio (SNR). It usually employs low-pass or 

notch filters to suppress power supply noise and noise in frequency bands that do not 

contain EEG activity. Feature extraction and classification are the heart of every BMI. The 

signal processing done in these two stages is closely related to the approach the user has 

to take to issue commands. This is best illustrated by a description of two exemplary types 

of BMI. 

The so-called Motor Imagery BMIs rely on the fact that when an individual imagines 

performing a movement of his body, the event-related desynchronization of the motor 

rhythm is similar to when the movement is actually performed [107, 111]. Feature 

extraction comprises localization of this event-related desynchronization on the scalp, 

which depends on the part of the body whose movement is imagined. Classification is 

done based on the outcome of this localization. For instance, if the user imagines a 

movement of his left/right hand or arm, relevant neuronal activity appears in distinct 

regions of the right/left [sic!] brain hemisphere. The feature extraction and classification 

algorithms detect this activity and thereby recognize the body part involved in the imagined 

movement. For this approach to work, the classifier needs to be trained for each user and 

each session. This machine learning process is based on a recording of EEG signals taken 

prior to each session, during which the user imagines the relevant movements. 

In a different approach called Operant BMI, feature extraction consists in determining the 

power in different frequency bands. Classification then associates different power 

distributions with different user intentions. This approach is different to most other 

approaches in that it does not rely on machine learning, but on user training. Indeed, the 

user needs to learn how to generate the brain activity that the BMI can correctly classify. 

This is similar to learning how to play a musical instrument. An immediate feedback of 

control activity and a motivating task are key prerequisites for successful user training. At 

first, the BMI output appears to be random to the user, but through positive reinforcement, 

the user can ultimately find a strategy to influence the BMI output and thereby accomplish 

the given task. 

It is common to all existing BMI approaches that the classification output matches the 

user’s intention only with a certain probability, which is sometimes referred to as the 

Emotiv#_CTVL001f7fb2969f406494e80e40b1158d62619
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Single-Trial Reliability (STR). Typical STR values attainable with the BMI approaches 

existing today are  80% (cf. section 5.5) and progress towards higher values is slow. It 

is important to note that the STR also depends on the human-machine adaptation, i.e., 

the quality of the machine learning result or the user’s learning progress. This means that 

the same BMI algorithms usually yield different STRs for different users and different 

sessions. A strategy to increase reliability is to rely on several subsequent trials, i.e., BMI 

outputs, when estimating the user’s intention [112, 113]. In other words, a low-pass filter 

can be applied. When designing such a low-pass filter, the potential increase in reliability 

has to be traded off against the amount of unwanted lags introduced to the control system. 

3.4.2 A Simple BMI Model 

It was noted earlier that analyses of the pilot-aircraft dynamic system often rely on pilot 

models. Existing pilot models make certain assumptions on the pilot’s afferent and efferent 

pathways, which are not all valid in case of BMI control. The neuromuscular system, for 

instance, is not involved anymore. Instead, the BMI is introduced with its own dynamic 

characteristics. To illustrate some of those characteristics, to develop an understanding of 

their effects on control performance and to relate BMI control to the overarching topic of 

flight control with large time delays, a simple BMI model is set up in this section. A 

top-down modeling approach is taken, regarding the whole chain from user intention to 

BMI output as a whole instead of modeling each part of the chain – brain dynamics, EEG 

sensors and each BMI component – separately and assembling them bottom up. A 

restriction to one degree of freedom is justified given the single-axis nature of most pilot 

models and the current state of the art in BMIs. Like in section 3.3, it is assumed that the 

user intention can be either positive, noted 𝑃, neutral, noted 𝑍 for zero, or negative, noted 

𝑁. These intentions can also be represented numerically as in equation (3.17). 

BMI signal processing is digital. Thus, the output signal is necessarily time- and 

value-discrete. Value quantization can usually be neglected, considering that common 

coding precisions such as, for instance, single floating-point precision, are high enough 

and cover large ranges of values. BMI output sampling times 𝑡𝑠, however, can be as high 

as 0.25 𝑠, which is why the time-discrete nature of the output has to be taken into account. 

Like a real BMI, the BMI dynamic model has the user intention 𝑐, defined by equation 

(3.17), as input. The model output is the BMI control action 𝛿𝐵𝑀𝐼 ∈ ℝ. Ideally, if the BMI 

would operate without uncertainty or latency, it would map inputs to outputs as described 

by equation (3.50). 

𝛿𝐵𝑀𝐼 = 𝑐 (3.50) 

However, the BMI classifies the user’s intention only with a certain reliability. This 

characteristic can be modeled as a mapping from user intention to a random variable with 

a certain probability density function. As a first guess, the probability density function can 

be assumed to be a Gaussian distribution, defined by the two parameters mean 𝜇 and 

variance 𝜎2. Equation (3.51) shows the resulting mapping from the three user intentions 

to three random variables Δ𝑃, Δ𝑍 and Δ𝑁. 
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𝛿𝐵𝑀𝐼 = {

Δ𝑃 ∼ 𝒩(𝜇𝑃, 𝜎𝑃
2) for 𝑐 = 1

Δ𝑍 ∼ 𝒩(𝜇𝑍, 𝜎𝑍
2) for 𝑐 = 0

Δ𝑁 ∼ 𝒩(𝜇𝑁, 𝜎𝑁
2) for 𝑐 = −1

 (3.51) 

Furthermore, it is assumed that the BMI is not biased and that its output variance is 

independent from the user input. These assumptions are represented by the following set 

of equations (3.52). 

𝜇𝑍 = 0

𝜇𝑁 = −𝜇𝑃

𝜎𝑃
2 = 𝜎𝑍

2 = 𝜎𝑁
2

 (3.52) 

Experience has shown that the assumption of an unbiased BMI is not always valid (cf. 

chapter 5). It is, however, justifiable for the purposes of this model. Inserting the 

information from equation (3.52) into equation (3.51), the following equation (3.53) is 

obtained. 

𝛿𝐵𝑀𝐼 = {

Δ𝑃 ∼ 𝒩(𝜇, 𝜎
2) for 𝑐 = 1

Δ𝑍 ∼ 𝒩(0, 𝜎
2) for 𝑐 = 0

Δ𝑁 ∼ 𝒩(−𝜇, 𝜎
2) for 𝑐 = −1

 (3.53) 

Remember that any filtering after classification is not considered part of the BMI. It is 

therefore assumed that feature extraction and classification in BMIs is done in a way that 

each sample is independent from all previous samples. As a result, the BMI output can be 

modeled as a zero-mean white noise 𝑛𝐵𝑀𝐼 with shifting bias. The user intention is reflected 

by this bias. A true white noise exhibits infinite energy, which is not physically possible, 

but the noise considered here as BMI output is time-discrete and thus band-limited and 

of finite energy. Equation (3.54) defines the resulting BMI model, with 𝑡0 in square 

brackets indicating the current sample. Note that the model includes a constant time delay 

𝜏𝑠𝑝 that represents the signal processing latency. This latency is difficult to quantify, but 

the sampling time 𝑡𝑠 constitutes a good estimate for its minimum value.  

𝛿𝐵𝑀𝐼[𝑡0] = 𝜇 ⋅ s n(𝑐[𝑡0 − 𝜏𝑠𝑝]) + 𝑛𝐵𝑀𝐼[𝑡0] (3.54) 

One might argue that the nature of the underlying brain processes could introduce some 

dependence between consecutive samples. One possible approach to address this issue is 

to low-pass filter the control intention 𝑐, which is the input to the proposed model. This 

would reflect at least the time required by the user to translate a changing control intention 

to a change in brain activity. 

The idea to model a BMI as a communication channel with additive Gaussian noise has 

also been presented in [114] and [115]. Interestingly, the concept of this model bears 

some resemblance to existing quasi-linear pilot models, like Hess’ models presented in 

earlier sections. The resemblance lies in the added noise. The noise injected into 
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quasi-linear pilot models represents the remnant, i.e., the nonlinear part of the human 

behavior. If the BMI model of equation (3.54) is combined with existing pilot models, it 

has to be inserted between pilot and aircraft. The form of the model is that of a delay, a 

sign function and a gain, followed by additive noise. This structure, shown in Figure 3.35, 

indeed resembles that of neuromuscular system, inceptor and output-injected remnant. As 

opposed to the noise 𝑛𝑛𝑚 of Figure 3.28 and Figure 3.31, which is still passed through 

the inceptor mapping function, the BMI noise affects the controlled system directly. More 

importantly, 𝑛𝐵𝑀𝐼 has much more power than typical remnants. It is indeed the main 

hindrance to successful BMI control, as the following paragraphs demonstrate. 

 
Figure 3.35 – Block diagram of the proposed BMI model 

The BMI model given by equation (3.54) permits further analyses of some BMI 

characteristics. Without making any assumptions on the controlled system, the STR can 

be defined as the percentage of positive/negative BMI outputs during positive/negative user 

intention. Following this definition, the STR can be computed as in equation (3.55), where 

e f is the so-called error function. 

STR =
1

2
(1 − e f (

−𝜇

𝜎√2
)) (3.55) 

The definition above does not take into account neutral user intention. This would require 

an assumption on BMI signal mapping in the first place, which is considered a variable 

element of the controlled system. STR as defined by equation (3.55) is a suitable metric 

that characterizes the BMI alone. Another suitable metric is the SNR of the BMI output, 

which can be determined using the following equation (3.56). 

SNR =
𝜎𝑠𝑖𝑔𝑛𝑎𝑙
2

𝜎𝑛𝑜𝑖𝑠𝑒
2 =

𝜇2

𝜎2
 (3.56) 

Both STR and SNR improve as the parameter 𝜇 increases and the variance 𝜎2 of the noise 

decreases. It is also evident that a nonzero 𝜇 is required for STRs greater than 50% 

(chance) and SNRs greater than 0. The relation between STR and SNR is in fact fixed for 

Gaussian distributions with arbitrary 𝜇 ≥ 0 and 𝜎  0. In this case, equation (3.56) can 

be inserted into equation (3.55) to obtain equation (3.57). 

STR =
1

2
(1 − e f (−√

SNR

2
)) (3.57) 

Figure 3.36 illustrates the relation between STR and SNR for relevant STR values. Note 

the small SNR values. 

𝑛𝐵𝑀𝐼

𝑐 𝛿𝐵𝑀𝐼𝜇𝑒−  𝑝𝑠
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Figure 3.36 – Relation between SNR and STR 

As described in section 3.4.1, the performance of any type of BMI control system depends 

on the quality of the mutual adaptation between human and BMI. In those cases where 

user training plays the leading part and machine learning is negligible, the proposed 

equation (3.57) models not only the BMI itself, but also to some extent the user’s 

performance. STR and SNR thus become human performance metrics or measures of 

training success. In addition to metrics like Fitts’ index of performance [116] or, more 

generally, the information transfer rate, which is usually measured in bits per second and 

often employed for BMI communication or target acquisition tasks, the SNR may be a 

valuable performance indicator for tracking tasks with asynchronous BMIs. 

With STRs still well below 100% in current BMI systems and the resulting poor SNR, what 

can be done to improve reliability? If the user’s intention can indeed be read from the 

mean value of the BMI output signal, a first attempt would be to employ a moving average 

filter. An nth-order simple moving average (SMA) filter can be defined by the discrete 

transfer function given in equation (3.58), where 𝑧 is the Z-transform variable. 

𝐻𝑛(𝑧) =
1

𝑛 + 1
∑𝑧−𝑘
𝑛

𝑘=0

 (3.58) 

Such a low-pass filter evidently produces phase lag. The phase lag introduced by an 

nth-order simple moving average filter with sampling time 𝑡𝑠 can be derived given that 

equation (3.59) holds for |𝑧|  1. The product 𝑡𝑠𝜔 is the normalized frequency 𝜔̃. 

𝑧 = 𝑒𝑗𝑡 𝜔 = 𝑒𝑗𝜔̃ (3.59) 
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Using equation (3.59), equation (3.58) can be rewritten so that amplitude 𝐴 and phase 

𝜑 of the discrete transfer function explicitly appear (equation (3.60)). 

𝐻𝑛(𝑗𝜔̃) =
1

𝑛 + 1
∑𝑒−𝑘𝑗𝜔̃
𝑛

𝑘=0

=

=
1

𝑛 + 1
(1 + 𝑒−𝑗𝜔̃ + 𝑒−2𝑗𝜔̃ +⋯+ 𝑒−𝑛𝑗𝜔̃) =

=
𝑒−

𝑛
2
𝑗𝜔̃

𝑛 + 1
(𝑒−(0−

𝑛
2
)𝑗𝜔̃ + 𝑒−(1−

𝑛
2
)𝑗𝜔̃ +⋯+ 𝑒−(

𝑛
2
−1)𝑗𝜔̃ + 𝑒−(

𝑛
2
−0)𝑗𝜔̃) =

=
𝑒−

𝑛
2
𝑗𝜔̃

𝑛 + 1
(𝑒

𝑛
2
𝑗𝜔̃ + 𝑒−

𝑛
2
𝑗𝜔̃⏟        

=2cos(
𝑛
2
𝜔̃)

+ 𝑒(1−
𝑛
2
)𝑗𝜔̃ + 𝑒−(1−

𝑛
2
)𝑗𝜔̃⏟              

=2cos((
𝑛
2
−1)𝜔̃)

+⋯ +1⏟
if 𝑛 even

) =

= 𝐴(𝜔̃) ⋅ 𝑒−
𝑛
2
𝑗𝜔̃

= 𝐴(𝜔̃) ⋅ 𝑒𝑗⋅𝜑(𝜔̃)

 (3.60) 

As a result, the phase lag of an nth-order simple moving average filter with sampling time 

𝑇𝑠 can be written as in equation (3.61). Note that this equation only holds for frequencies 

below the smallest frequency where 𝐴(𝜔̃) changes sign. The unit of 𝜑𝑆𝑀𝐴 is [𝑟𝑎𝑑] here. 

𝜑𝑆𝑀𝐴(𝜔) = −
𝑛 ⋅ 𝑡𝑠
2

𝜔 (3.61) 

Remember that the phase lag introduced by a pure time delay 𝜏, too, varies linearly with 

frequency. More exactly, it is defined by equation (3.62). Note that here, the unit of 𝜑  is 
[𝑟𝑎𝑑] as well. 

𝜑 (𝜔) = −𝜏 ⋅ 𝜔 (3.62) 

Both equations (3.61) and (3.62) can be combined to obtain the value of pure time delay 

that produces the same amount of phase lag as an nth-order simple moving average filter 

with sampling time 𝑡𝑠. This, as it shall be called, filtering time delay 𝜏𝑓𝑖𝑙𝑡, which is given 

by equation (3.63), is helpful in relating the effects of BMI signal filtering to the effects of 

communication latencies in the case of RPA. 

𝜏𝑓𝑖𝑙𝑡 =
𝑛 ⋅ 𝑡𝑠
2

 (3.63) 

The total time delay apparent during BMI control is the sum of signal processing delay and 

filtering delay, as equation (3.64) indicates. Note that the breakdown of the total BMI 

delay into two separate delays is also apparent in the block diagram of Figure 1.2. 

𝜏𝐵𝑀𝐼 = 𝜏𝑠𝑝 + 𝜏𝑓𝑖𝑙𝑡 (3.64) 

To get an idea about possible values of this BMI time delay, consider a BMI with a 

sampling time 𝑡𝑠 = 0.25 𝑠. The noise introduced by the BMI is assumed white, i.e., its 
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components are equally distributed across the frequency spectrum from zero to the Nyquist 

frequency. To identify a stationary user intention with high reliability, a filter of fairly high 

order could be chosen. Suppose, however, that some target tracking is to be performed. 

The filter therefore needs to let some more frequencies pass. In the experiments described 

in chapter 5, a low-pass filter is employed which is comparable to an 8th order SMA filter. 

In this case, the filtering time delay resulting from equation (3.63) is 1.0 𝑠. Adding this 

delay to the sampling time of 0.25 𝑠, which is chosen here as an estimate for the signal 

processing time delay, a total 𝜏𝐵𝑀𝐼 of 1.25 𝑠 results. This result is in the range of time 

delay values considered in this thesis. 

Consider that a BMI replaces the neuromuscular system, whose characteristics are 

described in section 3.1.1. This means that the time delay of about 0.13 𝑠 inherent to the 

neuromuscular system is not an issue anymore. However, the BMI reintroduces 

considerable lags. For a BMI to outperform the neuromuscular system in this regard, it 

would have to operate, for example, at 10 𝐻𝑧 and provide highly reliable outputs without 

filtering. Such a level of performance is still far from reality. 
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4  F L I G H T  C O N T R O L  S Y S T E M  

D E S I G N  

A flight control system encompasses the entire chain from the inceptor (or BMI) through 

the flight control algorithms and the airplane dynamics to the feedback mechanisms or 

displays. From the pilot’s point of view, this ensemble of augmented aircraft dynamics and 

human machine interfaces constitutes the controlled system. Establishing good handling 

qualities for this controlled system is one aim of flight control system design. In the scope 

of this thesis, the aircraft dynamics are considered given, thus leaving inceptor (or BMI), 

flight control algorithms and displays as the only elements that can be modified in the 

design process. The flight control system design process described in this chapter is guided 

by the information about aircraft and pilot as the two given elements, provided in previous 

chapters. Figure 4.1 illustrates the interrelations between the elements of the flight control 

system and the pilot. 

 
Figure 4.1 – Pilot and controlled system. Pilot and aircraft are considered given. 

The pilot exerts control via the inceptors or the BMI, and in turn receives a feedback of his 

control activity (e.g., proprioceptive inceptor feedback). When onboard the aircraft, the 

pilot also perceives sensory cues from vehicle movement or engine noise. In any case, 

displays may provide additional feedback either of the aircraft state or of other parameters 

computed by the flight control algorithms. The flight control algorithms furthermore derive 

the control effector activities required to follow the inceptor or BMI inputs using aircraft 

measurements. 

Controlled System

Inceptor or BMI
Flight Control 
Algorithms

Aircraft
Feedback
(Displays)

Pilot
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This chapter, which is in parts based on what the author has already presented in [73, 

117, 118], first analyzes existing requirements and elicits some high-level design goals 

on the three elements to be laid out. Moreover, basic design choices are made based on 

these goals and the information presented in preceding chapters of this thesis. Handling 

implications of these choices are discussed as well. In a second step, the flight controller 

is laid out. The focus here is on the choice of command variables and on the protection 

mechanisms layout. The actual controller implementation and performance is only briefly 

described, since these control engineering aspects are not relevant to this thesis. Indeed, 

the controller is based on the dynamic model of the DA42 to obtain realistic simulations, 

but it is not meant to be applied in a real airplane. Third, a suitable inceptor dynamic 

design is elaborated and desirable BMI characteristics outlined. Finally, some 

considerations on sensory feedback are presented. 

4.1 Design Goals, Basic Design Choices and Implications 

Based on the information collected in the preceding chapters, high-level goals for the flight 

control system are now derived and basic design choices made. Goals are defined verbally 

and qualitatively only and shall not be confused with requirements. For actual 

implementation in a real airplane, those goals would need to be broken down to 

requirements on item level and these would need to be quantitative. This process is beyond 

the scope of this thesis. 

For both example applications, the flight control system obviously cannot be purely 

mechanical or hydraulic. It needs some digital flight control algorithms that translate BMI 

output or remote control signal to control surface deflections. Hence, a maneuver demand 

system can readily be implemented instead of a direct mapping of pilot inputs to control 

surface deflections. Indeed, only a prudent choice of command variables may provide 

controllable handling qualities. Section 3.2.1 describes that time delays cause a crossover 

frequency regression of the open pilot-aircraft loop and section 3.4 explains why only low 

bandwidth control is possible with BMIs. Both facts result in the aim to choose command 

variables that vary on larger time scales. Thus, disturbances on small time scales are 

rejected by the flight controller, which itself does not have to deal with excessive time 

delays. The implementation of this design goal shall, however, not result in an excessively 

high degree of automation, as this would oppose the aim of this thesis to enable lower-level 

flight control, as defined in section 1.3.1. The choice of command variables shall also 

enable the pilot to conduct the mission described in section 2.1.2 with all its flight phases. 

Given that crosswinds during takeoff and landing are not considered, it can be assumed 

that the pilot does not need to make directional control inputs at all. This means that only 

a longitudinal and a lateral command variable need to be defined. In this case, coordinated 

flight needs to be ensured by the flight control algorithms. Airspeed control shall be 

performed via an autothrottle system that acquires and maintains the desired indicated 

airspeed (IAS). Another design goal is to facilitate pilot transition between the proposed 

flight control system and other manned or unmanned airplanes. Hence, the airplane’s 

reactions to control inputs shall be of the same order as with the conventional behavior 

described in section 2.2.2. Furthermore, the control algorithms shall be designed to avoid 

Scenarios#_CTVL001b1d3eb947bc3405893596f2755890b38
Scenarios#_CTVL001b1d3eb947bc3405893596f2755890b38
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excessive lags between control input and command variable reaction, since these lags 

would prolong the wait phase (cf. section 3.3.3). 

The BMI shall enable asynchronous control and thereby target tracking in two degrees of 

freedom. For each degree of freedom, it shall be possible to issue three control input levels: 

positive, neutral and negative. This performance is close to what has already been 

achieved with the current state of the art. However, it certainly seems that this three-level 

control capability constitutes a major restriction for flight control. Section 3.3.2, though, 

describes how the deliberate restriction of (manual) control inputs to few discrete levels 

may be beneficial in the case of flight control with large time delays. To recapitulate the 

previous analyses and findings, first recall that pilots adopt a pulse-like control behavior 

when facing large time delays (cf. section 3.2.2). The control inputs resulting from this 

behavior are actually similar to the three-level BMI inputs. Given that this pulse-like control 

behavior reduces mental workload and is adopted naturally, it may be helpful if the flight 

control system would support this strategy. When using, for example, an on-off control 

system with three discrete control input levels (positive, neutral and negative), the pilot is 

relieved from manually generating pulse-like control inputs with a continuous inceptor. 

Moreover, predictability is increased as the control input amplitude is indeed fixed (cf. 

sections 3.3.2). Pilots can quickly familiarize with the fixed aircraft reaction magnitude 

and can then fly certain maneuvers only by estimating the duration of their control inputs 

(cf. section 3.3.3). The highly predictable nature of the airplane’s response gives pilots a 

pre-cognitive ability that is helpful for prolonged maneuvers and even more for maneuvers 

that are shorter than the time delay itself. In the latter case, pilots can only rely on the 

open-loop move-and-wait strategy. Relying on pre-cognitive tracking, chances are high 

that they only need to make one single move to reach a target. Furthermore, overshoots 

are generally less critical in flight control than in teleoperation tasks and control inputs can 

therefore be more aggressive (cf. section 3.2.2). By combining the move-and-wait strategy 

with more aggressive control inputs and pre-cognitive tracking, the time to reach a target 

state is greatly reduced. 

Interestingly, the proposed on-off control system is similar to some control laws used for 

manual spacecraft control. This is probably due to the fact that manned spacecraft usually 

rely on reaction control systems with constant-thrust jets as control effectors. To generate 

forces and moments, one or more jets can be fired or, in other words, turned on and off 

again. Table 4.1 and the following paragraph show that manned spacecraft always offered 

a wide range of different control modes, including continuous control similar to airplane 

control, on-off control modes like the one chosen in this thesis and also pulse control, 

where both amplitude and duration of every control input are fixed. In the latter case, the 

human pilot can accomplish maneuvers by counting the pulses, which is even less 

mentally demanding than estimating control input duration. As section 3.2.2 points out, 

operators tend to use continuous controllers in an on-off manner when controlling higher 

order systems or systems with time delay. It is therefore not surprising that operators have 

been observed applying pulsed inputs, i.e., inputs of constant duration to on-off controllers, 

both in [96] and in the experiments described in chapter 6. 
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The Mercury spacecraft offered three control laws for attitude control [119]. The so-called 

“fly-by-wire mode” implemented on-off control of the low/high torque jets for small/large 

inceptor inputs. In the “manual proportional control mode” the jet vanes were opened to 

an extent proportional to the inceptor deflection. Finally, there was a “rate command 

mode” similar to that known from airplane flight control systems. The Gemini spacecraft, 

too, featured three different control laws for attitude control, including a “rate control 

mode” and a so-called “direct mode” similar to Mercury’s fly-by-wire mode [120]. The 

third mode, “pulse control”, delivered one thruster pulse for each inceptor deflection out 

of the deadband. Of those three modes, the direct mode was intended for standby or 

emergency control only. Translational control of the Gemini spacecraft was done using an 

on-off control system. The Apollo Lunar Module employed a rate control attitude hold 

system as major attitude control mode and a secondary, minimum impulse mode that was 

similar to Gemini’s pulse control mode [121]. To change the predicted location of 

touchdown, indicated by the landing point designator (LPD), astronauts could 

incrementally shift its downrange and lateral location in a pulse-control manner [122]. 

During final lunar descent, rate of descent too was controlled incrementally with discrete 

hand controller clicks. After the first landings had been accomplished, an advanced 

configuration of the so-called P66 control algorithm was implemented that allowed pilots 

to command incremental changes in horizontal velocity as well [122]. Pulse control was 

also employed by the National Aeronautics and Space Administration (NASA) on the Space 

Shuttle Orbiter and constitutes the baseline response type planned for their Orion and 

Altair spacecraft [123]. 

Table 4.1 – Example implementations of different control system types in spacecraft 

Control System Type Exemplary Spacecraft Control Modes 

Continuous control 

 Mercury “manual proportional mode” 
 Mercury “rate command mode” 
 Gemini attitude control “rate command mode” 
 Apollo Lunar Module “rate command attitude hold” 

On-off control 
 Mercury “fly-by-wire mode” 
 Gemini attitude control “direct mode” 
 Gemini translational control 

Pulse control 

 Gemini attitude control “pulse mode” 
 Apollo Lunar Module attitude “minimum impulse mode” 
 Apollo Lunar Module LPD and rate of descent control 
 Apollo Lunar Module P66 advanced configuration 
 Space Shuttle Orbiter 
 Orion and Altair baseline 

 

Some studies have investigated the effect of different control modes on manned spacecraft 

handling. The results of these studies are not directly transferrable to the present problem 

of large time delays, but they prove that implementing a non-continuous control mode is 

a valid approach in aerospace vehicle control. To determine required handling qualities for 

the Apollo Lunar Module, Cheatham and Hackler conducted piloted simulations of the 

lunar landing with different control system characteristics [124]. They concluded that 



Flight Control System Design 

  91 

direct on-off thruster control exhibits inadequate handling qualities, rendering it acceptable 

only for emergency operations. They note, however, that they had obtained only extremely 

limited data and that their conclusion must not be transferred to other tasks than the lunar 

landing. The advanced P66 mode was never used in flight, but simulations indicated that 

precise landings could be achieved using this mode in conjunction with the LPD and a 

function to null horizontal velocity [125]. This landing strategy was in fact based on 

suggestions from Apollo 16 commander John Young. For NASA’s future Orion and Altair 

spacecraft, the influence of different translational and rotational control modes on handling 

qualities during docking has been investigated in [123] and [126]. According to [123], 

the most promising configuration for translational control is pulse control with acceleration 

type vehicle dynamics. On-off control with acceleration type vehicle dynamics produced 

slightly higher workload, but still outperformed the highly automated control systems that 

provided either on-off or proportional control with integrator like dynamics. For rotational 

control [126], the main advantage of on-off rate control over pulse control of rate 

increments was found to be a lower physical workload. Research on satellite capture using 

a remotely piloted orbital vehicle found that pilots prefer on-off acceleration control over 

continuous acceleration control as time delays increase [45]. 

All in all, the investigations cited above show that on-off control has its limitations, notably 

when it comes to higher bandwidth tasks such as attitude control during the Apollo lunar 

landing. They also suggest that a pulse controller could enable even better performance. 

However, since a pulse control system does not exhibit the usual mapping of control input 

to aircraft reaction described in section 2.2.2, it is not in line with the aim to facilitate 

pilot transition between the proposed flight control system and other manned or unmanned 

airplanes and is therefore not considered. The proposed on-off control system can be seen 

as a favorable compromise between continuous and pulse control. 

The following list sums up the high-level goals and design choices for the controller. 

 An on-off control system with 2 degrees of freedom shall be implemented that gives 

the pilot control over the longitudinal and the lateral airplane motion. 

 The controller shall ensure coordinated flight, i.e., 𝑛𝑦 = 0 

 An autothrottle system shall maintain the desired IAS 

 Command variables shall be chosen that vary on a larger time scale. 

 The mission described in section 2.1.2 shall be accomplishable. 

 The airplane’s reactions to control inputs shall be of the same order as with the 

conventional behavior described in section 2.2.2. 

 The reaction of command variables shall not excessively lag the control inputs 

Now that several design choices concerning the flight controller have been made, the 

design space of the inceptor needs to be narrowed down as well. For intuitive handling, 

the inceptor characteristics should reflect the controlled system’s dynamic characteristics. 

In this present case, the on-off nature of the flight control system shall be apparent to the 

pilot through the inceptor. The inceptor shall also facilitate transition between different 

RPA and also manned aircraft. In the case of BMI control, the desired BMI performance 

stated in a previous paragraph, namely asynchronous control in two degrees of freedom, 

obviously replaces the inceptor design goals. 
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The third element of the flight control system, complementing controller and inceptor (or 

BMI), is pilot feedback. While some sensory feedback is inherently present, at least in the 

case of on-board manned flight control, some additional displays can be designed as 

required. For instance, a video feed from the RPA shall be available, covering at least the 

forward field of view. Apart from the usual cockpit instruments showing airspeed, altitude, 

etc., the display of additional parameters like the flight path vector may be helpful, 

depending on the choice of command variables and on whether or not those parameters 

can be easily perceived by the pilot. There is no doubt that predictor displays improve RPA 

handling, which is why such displays should be implemented for any operational system. 

Their positive effect is based on an apparent reduction of the time delay. In this thesis, 

however, time delays are assumed to be effectively present in the control loop (cf. section 

1.3.1). Therefore, predictor display implementation is not further discussed. 

In the scope of this thesis, the flight control system is only used in simulation experiments. 

Thus, the flight control system does not need to be certified. Moreover, the example 

applications either do not require (civil) certification or are not certifiable by today’s 

standards. Nonetheless, a brief analysis of certification specifications is useful to derive 

further design goals. Remember that non-compliance with these specifications means that 

the required minimum level of safety is not met and that the concerned aircraft is unsafe 

to operate (cf. section 2.2.3). In Europe, EASA’s CS-23 [60] apply to the reference aircraft. 

Within subpart B “Flight”, relevant specification paragraphs have been identified. Table 

4.2 lists them along with a brief description and possible implications for the two example 

applications. 

Table 4.2 – Relevant paragraphs from EASA CS-23 

Paragraph(s) Description Implications 
CS 23.143 
CS 23.145 
CS 23.147 
CS 23.149 
CS 23.153 
CS 23.161 
CS 23.177 

Specify maximum control forces Void in the case of BMI control. 

CS 23.155 
Specifies limitations on stick 
force per g (maneuver stability) 

Void in the case of BMI control. 
Effectiveness for RPA control with 
large time delays is questionable. 

CS 23.171 
CS 23.173 
CS 23.175 

Specify limitations on speed 
stability 

Not satisfied if flight control system 
provides neutral speed stability. 

CS 23.201 
CS 23.203 

Describe controllability during 
stall and stall recovery 

The performance of both BMI 
control and RPA control with large 
time delays most likely is 
insufficient for stall recovery. 
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It can be seen that several paragraphs, notably all that are related to control forces or 

displacements, are void in the case of BMI control. These paragraphs mostly aim at 

establishing situational awareness through proprioceptive feedback or at preventing 

excessive pilot inputs. Limitations on maneuver stability may not be effective in preventing 

excessive structural loads also in the case of RPA control with large time delays. Even if a 

certain force is generated based on the current inceptor deflection and the latest aircraft 

state received, the resulting command will only become effective after a considerable 

timespan. By then, the aircraft state will have changed and pilot command may be in fact 

excessive. Another three paragraphs of CS-23 impose positive speed stability to establish 

appropriate speed awareness. Depending on the choice of command variables (cf. section 

4.2.1), this requirement may be violated. In stalls and spins, certification specifications 

require docile handling qualities. However, a stall in even a very docile airplane possibly 

cannot be recovered with BMI control or RPA control with large time delays, because the 

necessary control inputs need to be well-coordinated and often quite rapid. 

The result of the above analysis applies not only to the EASA CS, but to established 

regulations worldwide. For example, some of the corresponding FAA regulations have been 

identified in [18] as possibly inapplicable to RPA control. It is certainly no surprise that 

the two example applications are in dissonance with some existing requirements. On the 

other hand, even airliners flying today do not satisfy all the original certification 

specifications. For instance, Airbus fly-by-wire airplanes provide neutral speed stability in 

some major modes of the flight control system [127, 128]. Certifying authorities can 

permit non-compliance with the original specifications under the condition that so-called 

special conditions are satisfied. These special conditions can be seen as replacement 

paragraphs for the original certification specifications that ensure an equivalent level of 

safety. Similarly, the following paragraph presents ideas of how to provide an equivalent 

level of safety in the case of the two example applications. 

The most striking problem is that control inputs cannot be limited by inceptor forces in the 

case of BMI control. Furthermore, situational awareness is diminished in both example 

applications because either vestibular or proprioceptive feedback is missing. The ability to 

return to a safe flight envelope after stall is also greatly reduced. The proprioceptive 

inceptor feedback felt in case of RPA control with large time delays is either decoupled 

from the actual aircraft state or delayed. Its contribution to handling and safety is therefore 

limited. An effective and proven way to mitigate these issues is to implement protection 

mechanisms and limitations within the control system. If the stick force per g cannot be 

implemented or designed to effectively prevent excessive structural loads, as it is the case 

for BMI control and possibly also for RPA control [18], the vertical load factor can be 

limited in the flight control algorithms. Similarly, a low-speed and a high-speed protection 

can be implemented to mitigate reduced speed awareness resulting from neutral speed 

stability. Attitude upsets and stalls that may be difficult or impossible to recover from can 

be prevented by control system limitations. Inadvertent wingtip strikes could be avoided 

by further limiting permitted attitudes in ground proximity. In a move that goes beyond the 

scope of this thesis, a terrain protection could be implemented that prevents controlled 

flight into terrain, thereby mitigating navigation issues rather than flight control issues. 

Although protection mechanisms and limitations can make an airplane’s behavior 



Flight Control System Design 

94 

non-conventional and therefore rather counterintuitive, their effectiveness in keeping the 

airplane safely aloft is more important here. 

4.2 Controller Design 

4.2.1 Command Variables 

A prudent choice of command variables is the first step towards good aircraft handling. 

The selection process is supported by experience with various configurations, like outlined 

for example in [71], by the theory of flight mechanics described in section 2.2 and by the 

analyses presented in chapter 3. The signal flow charts of Figure 2.3 and Figure 2.4 give 

a first idea on what parameters could be chosen as command variables in the longitudinal 

and the lateral motion, respectively. The body rates 𝑞 and 𝑝 are frequent choices and so 

are 𝑛𝑧 and 𝛼 in the longitudinal motion, but it is also common to choose a combination of 

multiple parameters as command variables. A prominent example is the C* (pronounced 

“C star”) variable, which is defined by equation (4.1). 

C* = 𝑛𝑧 + 𝑘𝑞 ⋅ 𝑞 (4.1) 

Most maneuver demand systems, such as that of the Airbus A320 [59] and the Eurofighter 

Typhoon [59], are to some extent based on the C* parameter [66]. The weighing factor 

𝑘𝑞 is normally chosen as 12.4 𝑠 [93], so that pitch rate and load factor equally contribute 

to the parameter at a velocity of 122 𝑚/𝑠. This value results from the constant speed 

approximation of the longitudinal motion (cf. Figure 2.3), which, for a steady-state pitch 

rate 𝑞𝑠𝑠, predicts a steady-state 𝛾̇𝑠𝑠 of the same magnitude and hence a corresponding 

load factor, as given by equation (4.2). At lower speeds, a C* demand system is similar 

to a pitch rate demand system, whereas at higher speeds, it resembles a load factor 

demand system.  

𝑞𝑠𝑠 = 𝛾̇𝑠𝑠 =
𝑔

𝑉0
⋅ 𝑛𝑧,𝑠𝑠 (4.2) 

The reference flight mission described in section 2.1.2, which shall be accomplishable 

with the final choice of command variables, requires the pilot to control the airplane’s 

flight path in most flight phases. Only during takeoff and landing, when an incorrect 

attitude in ground proximity can lead to dangerous situations and accidents like tail strikes, 

wing strikes or nose wheel landings, attitude control is required. To account for the reduced 

pilot-vehicle bandwidth, command variables should be chosen that vary on a larger time 

scale. All in all, variables associated with the airplane’s translational dynamics, i.e., flight 

path variables (cf. Figure 2.3 and Figure 2.4), seem therefore suitable. Another design 

goal is to conserve the conventional order of airplane reactions to control inputs. An 

appropriate choice that satisfies these constraints would be a flight path demand system 

with 𝛾̇ and 𝜒̈ as the command variables in the longitudinal and lateral motion. 

Previous research on the choice of command variables for the longitudinal motion of a 

transport aircraft has shown that a 𝛾̇ control systems produces a very low workload level 
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when compared to pitch rate or C* control [129]. The authors noted that control activity 

was lowest with the 𝛾̇ command system and that control inputs in fact were pulse-like 

with long stretches of inactivity between them. As a result, however, the concern grew 

that pilots could be less aware of the fact that the airplane was controlled manually. In 

the present case of flight control with large time delays, on the other hand, every additional 

decrease in workload is welcome. Moreover, pulse-like control is expected and even 

promoted by the on-off control system. The workload growth caused by the time delay and 

the reduced sensory feedback may again increase pilot activity and thereby awareness of 

being in (manual) control. 

The choice of 𝛾̇ and 𝜒̈ as command variables results in an effective decoupling of horizontal 

and vertical airplane motion. This decoupling is comparable to the idea of a “software jig” 

for teleoperation with time delays [29] (cf. section 1.2) and is therefore considered 

beneficial in the present case. It also makes the airplane response more predictable, since 

a given lateral or longitudinal control input always results in the same amount of change 

in turn rate or flight path climb angle. Conventional airplanes, on the other hand, do not 

exhibit decoupled horizontal and vertical motions. Thus, pilots are used to applying 

longitudinal control inputs in a turn to compensate for the tilt of the lift vector (cf. section 

2.2.2). Moreover, when they do apply longitudinal control inputs in a turn, these have no 

effect on the bank angle of the airplane. With the proposed flight path demand system, 

however, a turn does not require longitudinal control inputs. More than that, longitudinal 

control inputs in a turn cause the bank angle to change in an effort to maintain the turn 

rate. This behavior is very unconventional and may therefore confuse pilots. In the 

considered applications, however, this unconventional behavior is perceived only after 

some delay. Its adverse effects are therefore deemed less important than the beneficial 

effect of horizontal-vertical decoupling. 

A flight path demand system may be well suited for most flight phases, but attitude-related 

command variables are likely better suited for takeoff and landing, when attitude control 

is needed. It is of course possible to implement dedicated modes for terminal and 

non-terminal flight phases. For optimum handling qualities, however, modes and mode 

transitions should be made unnoticeable for the pilot, so that the behavior of the airplane 

seems consistent (cf. section 2.2.2). Hence, a blending between command variables shall 

be implemented. A suitable attitude-related command variable in the vertical motion that 

corresponds to 𝛾̇ is pitch angle rate Θ̇, which is equivalent to pitch rate 𝑞 in wings level 

flight. In the horizontal motion, the flight control system could blend from 𝜒̈ to Ψ̈ or even 

Ψ̇ to facilitate the de-crab maneuver that may be required in crosswind landings. Since 

the reference flight mission explicitly excludes crosswind landings, command variable 

blending in the horizontal motion is only implemented here for the sake of consistency. To 

actually fly takeoffs and landings, the flight control system would have to include even 

more modifications that are beyond the scope of this thesis. Summing up, the command 

variables of the lateral and the longitudinal axis 𝐶𝑙𝑎𝑡 and 𝐶𝑙𝑜𝑛 are defined by equation 

(4.3). The two blending functions 𝑓𝑙𝑎𝑡 and 𝑓𝑙𝑜𝑛 are responsible for a seamless transition 

between attitude control and flight path control.  
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𝐶𝑙𝑎𝑡 = 𝑓𝑙𝑎𝑡 ⋅ 𝜒̈ + (1 − 𝑓𝑙𝑎𝑡) ⋅ Ψ̈ 

𝐶𝑙𝑜𝑛 = 𝑓𝑙𝑜𝑛 ⋅ 𝛾̇ + (1 − 𝑓𝑙𝑜𝑛) ⋅ Θ̇ 
(4.3) 

The two flight phases where attitude control is needed, namely takeoff and landing, are 

characterized by ground proximity, but also by low airspeed. Hence, it makes sense to 

provide attitude control at low airspeeds and flight path control at high airspeeds, with a 

regime of mixed attitude and flight path control in between. Lateral and longitudinal 

command variables are blended simultaneously, so that the airplane’s behavior is coherent 

in all axes. Equation (4.4) defines the blending functions 𝑓𝑙𝑎𝑡 and 𝑓𝑙𝑜𝑛, based on the 

indicated airspeed 𝑉𝐼𝐴𝑆 and the upper and lower transition speeds 𝑉𝑇,𝑈 and 𝑉𝑇,𝐿.  

𝑓𝑙𝑎𝑡 = 𝑓𝑙𝑜𝑛 =

{
 

 
1, 𝑉𝐼𝐴𝑆  𝑉𝑇,𝑈

𝑉𝐼𝐴𝑆 − 𝑉𝑇,𝐿
𝑉𝑇,𝑈 − 𝑉𝑇,𝐿

, 𝑉𝑇,𝐿 ≤ 𝑉𝐼𝐴𝑆 ≤ 𝑉𝑇,𝑈

0, 𝑉𝐼𝐴𝑆  𝑉𝑇,𝐿

 (4.4) 

The upper transition speed should be chosen slower than normal speeds during approach 

and initial climb. The lower transition speed should be at least a few knots slower than 

the upper transition speed, but not much slower than takeoff rotation speed or stall speed 

in landing configuration. Values of these characteristic speeds pertaining to the DA42, 

taken from [72], along with the resulting choice of transition speeds are given in Table 

4.3. This design with flight path-related command variables at high speeds and 

attitude-related command variables at low speeds is similar to the C* control law. Here, 

however, the transition between the two regimes takes place in a narrow range of 

airspeeds. Moreover, the transition speed range is adapted to the reference aircraft and 

therefore slower than that of the C* parameter. 

Table 4.3 – DA42 characteristic speeds from [72] and chosen transition speeds 

Symbol Description Value [𝑘𝑡] 
𝑉𝑅𝐸𝐹  Reference approach speed (IAS) 84 
𝑉𝑐𝑙𝑖𝑚𝑏  Climb speed (IAS) 83…90 
𝑉𝑅  Takeoff rotation speed (IAS) 76 
𝑉𝑆1  Stall speed in landing configuration (IAS) 69 
𝑉𝑇,𝑈  Upper transition speed chosen (IAS) 80 

𝑉𝑇,𝐿  Lower transition speed chosen (IAS) 75 

 

4.2.2 Limitations, Protection Mechanisms and Supporting Functions 

The analysis of existing certification specifications presented in section 4.1 indicates that 

limits and protection mechanisms need to be implemented in the flight controller to ensure 

adherence to a safe flight envelope. Moreover, the time delay values considered in this 

thesis can cause pronounced overshoots, possibly leading to upset flight states that are 

difficult to recover from. In addition to that, reduced sensory feedback means that the pilot 
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is deprived of some important cues on the state of the airplane and may therefore misjudge 

states or maneuvers and is also inclined to take more risks (cf. section 1.1). 

A safe flight envelope is limited by a certain minimum and maximum load factor, a 

maximum airspeed and a maximum angle of attack. The latter is often translated to a 

minimum airspeed. This translation is motivated by the fact that most airplanes do not 

provide an angle of attack indication to the pilot. It has to be noted that it is only valid for 

straight and level flight and at a given vehicle mass. Load factor limitation can be achieved 

implicitly by limiting the longitudinal control sensitivity, i.e., the value of 𝐶𝑙𝑜𝑛 

corresponding to the maximum possible control input amplitude. The longitudinal 

command variable 𝐶𝑙𝑜𝑛 is then further limited to protect against excursions in airspeed 

and angle of attack. In an approach similar to that presented in [130], speed protection 

is accomplished by dynamic limits on the kinematic flight path climb angle 𝛾. 

The point-mass equation (2.15) effectively relates the specific excess force, i.e., 

(𝑇 − 𝐷)/𝑚𝑔, to kinematic acceleration 𝑉̇𝐾 and flight path climb angle 𝛾. Given that the 

specific excess force equals the longitudinal load factor in the kinematic frame (𝑛𝑥)𝐾, 

equation (2.15) can be rewritten as in equation (4.5). 

(𝑛𝑥)𝐾 =
𝑉̇𝐾
𝑔
+ sin(𝛾) (4.5) 

To protect against speed excursions, one possible strategy is to limit 𝑉̇𝐾 as a linear function 

of the difference between limit IAS and current IAS (equation (4.6)). 

𝑉̇𝐾,𝑚𝑎𝑥 = 𝑘 ⋅ (𝑉𝐼𝐴𝑆,𝑚𝑎𝑥 − 𝑉𝐼𝐴𝑆)

𝑉̇𝐾,𝑚𝑖𝑛 = 𝑘 ⋅ (𝑉𝐼𝐴𝑆,𝑚𝑖𝑛 − 𝑉𝐼𝐴𝑆)
 (4.6) 

Equation (4.6) can then be combined with equation (4.5) to derive corresponding limits 

on 𝛾, as equation (4.7) shows. For implementation in the flight controller, (𝑛𝑥)𝐾 is 

replaced by its estimated value (𝑛̂𝑥)𝐾 (cf. section 2.1.1). 

𝛾𝑙𝑖𝑚,𝑈 =  sin ((𝑛𝑥)𝐾 −
𝑉̇𝐾,𝑚𝑖𝑛
𝑔

)

𝛾𝑙𝑖𝑚,𝐿 =  sin ((𝑛𝑥)𝐾 −
𝑉̇𝐾,𝑚𝑎𝑥
𝑔

)

 (4.7) 

Apart from an effective protection against speed and load factor excursions, a protection 

against extreme attitudes needs to be implemented, too. Hence, the pitch angle is limited 

to values Θ ∈ [−10°, 20°] and the bank angle Φ is not allowed to exceed ±45°. Beyond a 

bank angle of ±30°, spiral stability is introduced that brings the airplane back to ±30° of 

bank when there is no control input. To avoid wingtip strikes and extreme attitudes in 

ground proximity, the permissible bank angle range Φ𝑚𝑎𝑥,𝑎𝑡𝑡 is further narrowed at low 

heights, linearly from ±45° at 41 𝑚 above ground to ±20° at 15 𝑚 above ground and 

linearly again to 0° upon ground contact. 
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Dynamic bank angle limits are also used to prioritize vertical control over horizontal 

control. Assuming 𝛾̇ = 0, equation (4.8) can be derived from the point-mass equation 

(2.17). The left side of equation (4.8) is the vertical load factor in the aerodynamic frame 
(𝑛𝑧)𝐴. If wind is neglected, (𝑛𝑧)𝐴 = (𝑛𝑧)𝐾, and if furthermore the angle of attack is 

assumed small, (𝑛𝑧)𝐾 ≈ (𝑛𝑧)𝐵. Any longitudinal pilot command produces an additional 

vertical load factor Δ𝑛𝑧,𝑐𝑚𝑑 in the body-fixed frame, which explicitly appears in the flight 

controller structure (cf. appendix A). To avoid excessive structural loads, the sum of the 

vertical load factors in the body-fixed frame must be smaller than the limit load factor. In 

other words, equation (4.9) must be satisfied. 

𝐿

𝑚𝑔
=
cos 𝛾

cosΦ
 (4.8) 

cos 𝛾

cosΦ
+ Δ𝑛𝑧,𝑐𝑚𝑑 ≤ 𝑛𝑧,𝑚𝑎𝑥 (4.9) 

Given that the climb angle and the additional vertical load factor are to be prioritized, a 

bank angle limit can be derived from equation (4.9). This limit is defined by equation 

(4.10). The overall bank angle limit is then defined by equation (4.11). 

Φ𝑚𝑎𝑥,𝑛𝑧 =  cos (
cos 𝛾

𝑛𝑧,𝑚𝑎𝑥 − Δ𝑛𝑧,𝑐𝑚𝑑
) (4.10) 

Φ𝑙𝑖𝑚 = ±min(Φ𝑚𝑎𝑥,𝑎𝑡𝑡, Φ𝑚𝑎𝑥,𝑛𝑧) (4.11) 

The bank angle limits are also translated to turn rate limits in the lateral controller. The 

relationship between bank angle and turn rate is taken from the equations of motion 

linearized around straight and level flight (cf. section 2.2.1). The resulting turn rate 

limitation is given by equation (4.12). 

𝜒̇𝑙𝑖𝑚 = ±
𝑔

𝑉𝐾
t n(min(Φ𝑚𝑎𝑥,𝑎𝑡𝑡, Φ𝑚𝑎𝑥,𝑛𝑧)) (4.12) 

Limitations and protection mechanisms help to avoid departure from a safe flight envelope. 

Beyond that, supporting functions are implemented that help acquire and maintain 

common steady-state flight conditions. A so-called altitude hold mode becomes active 

when no longitudinal control input is made and vertical speed is small. Upon activation, 

an altitude setpoint value is generated such that the aircraft can approach it 

non-periodically with small command inputs, so that the mode transition is barely noticed 

by the pilot. The altitude is now held until the pilot makes a longitudinal control input. In 

this case, the altitude autopilot is immediately disconnected and the pilot can maneuver 

normally. Like the altitude hold mode in the vertical motion, there is a path straightener 

function in the horizontal motion. It engages when no lateral control input is made and 

the commanded turn rate is approximately zero, and then acquires and maintains zero 

turn rate, i.e., straight flight. From the pilot’s point of view, this function behaves like a 

wings leveler. Similarly, if no lateral control input is made and the commanded turn rate 
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is close to the standard turn rate, the standard rate turn hold mode engages. As soon as 

the pilot makes a lateral control input, the path straightener or the standard turn rate hold 

mode are immediately disconnected and the pilot can maneuver normally. Apart from 

moderately helping the pilot accomplishing standard maneuvers, the altitude hold mode 

and the path straightener could also be used to bring the airplane back from any situation 

to straight and level flight. Section 4.3.1 explores this option. 

4.2.3 Controller Implementation 

With the desired controller characteristics and functionalities defined in the previous 

sections, the implementation of the control algorithms is discussed here. Controller 

implementation was done as a means to achieve a realistic simulation environment, but 

not for deployment in a real aircraft. The result should be seen as a prototype, produced 

in an informal design process that is only briefly described here. Block diagrams that 

illustrate the controller layout in detail are given in appendix A. It can be seen there, that 

only the measurements and estimations defined in section 2.1.1 were used. This controller 

layout was implemented in Simulink. Hence, interfacing controller and simulation model 

was straightforward. Gains were tuned by pole placement for one single operating point 

representative for the flight mission. This operating point was chosen to be straight and 

level flight at a true airspeed of 55 𝑚/𝑠, a density altitude of 1500 𝑚, with a mass of 

1626 𝑘𝑔 and with the center of gravity at 2.42 𝑚. Figure 4.2 relates this operating point 

to the reference airplane’s operational limitations [72]. Note that density altitude 

represents air density and equivalent airspeed is a measure of dynamic pressure. 

Maximum altitude is not clearly defined for the aircraft. Maximum airspeed depicted here 

is the maximum structural cruising speed. By finding a relatively robust set of gains, it was 

possible to obtain a controller that provides stability and adequate performance in a 

sufficiently large range of speeds and altitudes around this design operating point. 

 
Figure 4.2 – Operating point for controller gains tuning 

Prior to gain tuning, the nonlinear airplane model without actuators was linearized in the 

chosen operating point. In the longitudinal motion, the phugoid poles were removed from 

the linearized model to obtain the constant speed approximation. This was justified by the 
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later addition of the autothrottle. Each actuator was then modeled by the second-order 

linear transfer function of equation (2.7). Furthermore, a fourth-order Padé approximation 

of a 0.03 𝑠 time delay was added in each axis, representing lags and time delays of the 

digital flight control system. In the lateral-directional controller, a control allocation and a 

cross-feed were added based on the linear aircraft dynamics illustrated by Figure 2.4  to 

improve the decoupling of roll and yaw axis. The control allocation, shown in Figure A.9, 

aims at producing pure roll or yaw moments by deflecting ailerons and rudder in a 

coordinated manner. The cross-feeds of 𝑝 to 𝜁 and 𝑟 to 𝜉 effectively cancel 𝐿𝑟 and 𝑁𝑝. The 

resulting longitudinal and lateral airplane models were then augmented for 

output-feedback pole placement. Poles were placed such that each control loop had a gain 

margin of at least 6 𝑑𝐵 and a phase margin of at least 45°. At the same time, efforts were 

made to minimize the lag between control inputs and command variables, as one design 

goal dictated. The parameter 𝜏𝑙𝑎𝑔𝑠 defined by Figure 3.27 (cf. section 3.3.3) can indeed 

be used as a handling qualities criterion when applied to the 𝛾 response to a step in 𝛿𝑙𝑜𝑛 

[71]. This so-called flight path delay is a time domain handling qualities criterion and as 

such can be applied to augmented and unaugmented aircraft alike. Limit values on flight 

path delay are derived from another well-established criterion: the Control Anticipation 

Parameter [67]. Those limit values were used as guidance here. For a subsequent analysis 

of the control algorithms, the linear model of airplane plus actuator was combined with a 

pure time delay instead of the Padé approximation. Then, all loops were closed with the 

previously determined gains. The reaction of the closed-loop system to step inputs was 

simulated to check whether the command variables evolved as desired and whether the 

actuators commands were within their position and rate limits. 

It can be seen in appendix A that, for 𝑉𝐼𝐴𝑆  𝑉𝑇,𝑈, the lateral outer control loop in fact 

controls 𝜒 and the longitudinal outer control loop controls 𝛾. Command filters shape the 

transfers 𝛿𝑙𝑎𝑡 → 𝜒𝑐𝑚𝑑 and 𝛿𝑙𝑜𝑛 → 𝛾𝑐𝑚𝑑 in a way that, from the pilot’s point of view, the 

command variables are 𝜒̈ and 𝛾̇. The steady-state gain of these command filters, which 

corresponds to the control sensitivity, was set to 2°/𝑠 in the vertical motion and 2°/𝑠2 in 

the horizontal motion. This choice was based on good engineering judgement and on the 

finding that a lower control authority is desirable for remote operations due to the pilot’s 

reduced situational awareness [45]. To find out whether the control sensitivity values 

chosen are indeed suitable, the value of longitudinal control sensitivity was varied in the 

experiments described in chapter 6. 

Section 3.3.1 discusses the effect of control sensitivity on the likeliness of PIOs when 

applying pulse-like control to transfer functions with one and only one pure integrator. For 

this specific flight control system, the same analysis can now be made for the transfers 

𝛿𝑙𝑜𝑛 → 𝛾 and 𝛿𝑙𝑎𝑡 → 𝜒̇. It is furthermore assumed that the pilot does not introduce any 

lead. According to equation (3.23), a limit cycle is then unlikely to occur if the pilot’s 

tolerance in target tracking is greater than ±𝐾𝑎𝜏𝑡/2. Moreover, the maximum limit cycle 

amplitude as predicted by equation (3.25) is 2𝐾𝑎𝜏𝑡 and, according to equation (3.26), 

the limit cycle period is 4𝜏𝑡. That the thereby predicted values indeed closely match values 

measured in experiments is shown in section 6.4.1. Table 4.4 lists several relevant 

combinations of total time delay and control sensitivity and the resulting limit cycle 

characteristics of the longitudinal motion 𝛿𝑙𝑜𝑛 → 𝛾. For instance, with the control 
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sensitivity as chosen above and a total time delay of 2 𝑠, a limit cycle is unlikely if the 

tolerance in 𝛾 is greater than 2°. If, with this configuration, a limit cycle of maximum 

amplitude occurs, 𝛾 varies by 8°. The same values, but with control sensitivity expressed 

in [°/𝑠2] and target tolerance and maximum limit cycle amplitude expressed in [°/𝑠], apply 

to the lateral motion 𝛿𝑙𝑎𝑡 → 𝜒̇. 

Table 4.4 – Possible limit cycle characteristics in 𝜸 

Total time 
delay 

Control 
Sensitivity 

Minimum Target Tolerance 
with Limit Cycle Unlikely 

Maximum Limit 
Cycle Amplitude 

Limit Cycle 
Period 

𝜏𝑡 𝐾𝑎 ±𝐾𝑎𝜏𝑡/2 2𝐾𝑎𝜏𝑡 4𝜏𝑡 
 1 𝑠 2°/𝑠 ±1° 4° 4 𝑠 

2 𝑠 

0.5°/𝑠 ±0.5° 2° 

8 𝑠 
2°/𝑠 ±2° 8° 
3.5°/𝑠 ±3.5° 14° 
5°/𝑠 ±5° 20° 

3 𝑠 2°/𝑠 ±3° 12° 12 𝑠 
 

The values in Table 4.4 well illustrate why smaller control sensitivities are desirable in 

case of large time delays. For any sensitivity and time delay value shown, the target 

tolerance would need to be unpractically high to render the occurrence of limit cycle PIOs 

unlikely. Imagine an accuracy in 𝛾 of ±2° during a landing approach with a nominal glide 

slope 𝛾 = −3°. Like in section 3.3.2, it can be seen here again that preventing PIOs by 

implementing small control sensitivities is not practical. Smaller sensitivities are 

nonetheless preferable, because maximum PIO amplitudes can be quite brutal otherwise. 

A PIO of 20° in 𝛾, for instance, not only causes the trajectory to oscillate through a wide 

altitude band, but also brings the airplane close to its physical limitations. The same 

observations generally hold for control of the lateral motion, although the additional pure 

integrator in the controlled system 𝛿𝑙𝑎𝑡 → 𝜒 makes control even more difficult. 

 
Figure 4.3 – Step responses of the nonlinear augmented airplane 

For a final analysis of the augmented airplane, a simulation of the nonlinear airplane with 

all control loops closed is done. Figure 4.3 shows the evolution of 𝛾 and Ψ̇ in response to 

a longitudinal and a lateral step input, respectively. Note that Ψ̇ is equal to 𝜒̇ here, because 
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the simulation did not involve wind. It can be seen that after an initial lag, 𝛾 and Ψ̇ progress 

linearly, as expected given that step inputs have been applied to the command variables 

𝛾̇𝑐𝑚𝑑 and 𝜒̈𝑐𝑚𝑑. Towards the end of each time history plot, the limitation or protection 

mechanisms engage that ultimately inhibit any further increase in flight path climb angle 

or turn rate. The initial lag in each response can be seen as an additional time delay 𝜏𝑙𝑎𝑔𝑠, 

which further complicates control (cf. section 3.3.3). Here, it amounts to roughly 0.8 𝑠 in 

the longitudinal motion and 0.5 𝑠 in the lateral motion. The more immediate attitude 

changes of the airplane, however, partly compensate these lags, because they help pilots 

to predict the flight path. 

4.3 Human Control Input Interfaces 

To fly the airplane augmented by the flight controller described above, the human pilot 

needs some interface to generate control inputs with. The conventional form of this 

interface is a manual control inceptor. Such a device shall be used here in the case of RPA 

control. In the case of BMI control, on the other hand, the BMI plays the role of this control 

input interface. This section describes adequate and desirable characteristics of the 

inceptor and the BMI. 

4.3.1 Inceptor Characteristics 

By assuming that RPA operators are specifically trained to fly a certain RPA and do not 

need to transition to other types or even to manned airplanes, one would obtain complete 

freedom for inceptor design. However, one design goal stated in section 4.1 is to facilitate 

exactly this transition between different RPA and also manned aircraft. Hence, one of the 

classical inceptor designs – yoke, center stick or sidestick – should be chosen. Such a 

choice also emphasizes the fact that an actual aircraft is being controlled, thus potentially 

reducing the risk of reckless flying. A sidestick is preferred over a center stick or a yoke 

because it leaves space in front of the pilot, which can be used for displays and 

kneeboards. Yoke and center stick may be better suited for mechanical control systems, 

where large displacements are required to actually deflect the control surfaces. A maneuver 

demand system like the one implemented here, on the other hand, can be easily controlled 

using a small stick-shaped inceptor with comparatively little travel [71]. 

Another design goal stated in section 4.1 says that the inceptor characteristics apparent 

to the pilot should match the controlled system’s dynamic characteristics for intuitive 

handling. Here, this means that the value-discrete control inputs that the flight control 

system enables the pilot to make should be perceivable through the inceptor. One possible 

approach is to associate discrete inceptor deflections with the discrete control inputs. In 

this case, the pilot input to the inceptor is a certain force applied by hand and arm. The 

resulting deflection follows the force-deflection characteristic shown, in a general form, in 

Figure 4.4. When small control forces are applied, the inceptor practically does not move, 

but when a certain breakout force is exceeded, the inceptor snaps into its limit position. 

To bring the stick back to neutral, it is sufficient to ease off the force up to the point where 

the stick snaps to zero deflection. The inceptor output can then be associated with its 

deflection, as the dashed lines and the grey area in Figure 4.4 indicate. The individual 
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lines of the force-deflection curve are all oblique. On the one hand, the obliqueness 

accounts for elasticity in the inceptor. On the other hand, the force-deflection curve may 

need to be sufficiently smooth for practical implementation in an active sidestick to prevent 

limit cycles of the limb-inceptor system. 

Inceptors for spacecraft offering similar control laws could not all exhibit such a 

force-deflection characteristic, because they were sometimes used for a variety of control 

laws, including such that enable value-continuous control. In some cases, however, 

inceptor characteristics were similar to those described here. For instance, the rate of 

descent switch used in the Apollo Lunar Module is described as “a three position toggle 

with a spring to return to detent” [122]. 

 
Figure 4.4 – Inceptor force-deflection characteristic 

The idea of the proposed inceptor characteristic could be extended to multiple control 

input levels. For each additional level, another step can easily be added to the curve of 

Figure 4.4. Another possible extension of the proposed design would be to provide buttons 

that cause the airplane to return to straight and/or level flight. The functionality is already 

implemented in the form of path straightener and altitude autopilot. Although the main 

purpose of these buttons would be to provide a simple means to recover from unsafe flight 

conditions like PIOs, pilots would most certainly find them convenient in many other 

situations as well. They would therefore have an effect on piloting techniques. 

A major issue with the proposed design of flight control system and inceptor is, that it 

does not provide the tactile and proprioceptive cues of conventional airplane flight, which 

are usually required by certification specifications (cf. section 4.1). Most notably, speed 

and maneuver stability are both neutral. This means that on the one hand, airspeed 

changes have no influences on stick deflections and forces. On the other hand, stick 

deflections and forces are always the same for a given 𝛾̇, although the resulting load factor 

changes with speed, as equation (4.2) indicates. There are certified control systems in 

operation today that provide neutral speed stability [127, 128], but they rely on protection 

mechanisms to ensure an equivalent level of safety. A more intuitive way could be to 

mimic stick fixed speed stability with a technical system, just like inceptor vibrations of an 

incipient stall are mimicked by a stick shaker. For instance, it is possible to reintroduce a 

proprioceptive feedback on airspeed by shifting the neutral position of the stick fore and 

aft for high and low airspeeds, respectively. Similarly, stick free maneuver stability, or the 

right amount of stick force per g, could be implemented by varying the breakout force with 
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airspeed. It must be stressed, however, that higher frequency adjustments of inceptor 

characteristics depending on the RPA state are impractical in the case of large time delays. 

The resulting changes in characteristics are very likely to be misleading, since they occur 

with a delay. More drastic even, any high-frequency force feedback loop would likely 

become unstable. This is in fact the very problem of remote haptic teleoperation (cf. 

section 1.2). 

For the experiments described in chapter 6, the force-deflection characteristic of Figure 

4.4 was implemented in an active sidestick manufactured by Wittenstein AG [131]. 

Guidance for the quantification of the breakout forces in this specific case was not 

available. The well-known pitch rate sensitivity criterion [132], for instance, had been 

developed for value-continuous pitch rate demand systems of fighter airplanes. The 

present case of RPA control employs an on-off flight path angle rate demand system and 

the occurring phase delays are far off the chart of the pitch rate sensitivity criterion. 

Breakout forces were therefore tuned based on the judgement of the author as a pilot. For 

lateral stick movements, a breakout force of 6.406 𝑁 was fixed whereas longitudinal stick 

deflections required a force greater than 8.341 𝑁. The odd numbers are the result of 

various conversions within the active sidestick control software. The fact that lateral control 

forces in the sidestick are lower than longitudinal forces is supported by relevant aerospace 

and human factors standards [60, 133]. Accounting for the possibility that control forces 

slightly mismatched the airplane’s reaction was one reason why control sensitivity was 

varied during the experiments described in chapter 6. Online changes of the stick’s 

characteristics were not possible. Therefore, the neutral position shift and the breakout 

force variation discussed above were not implemented. 

4.3.2 Brain-Machine Interface Characteristics 

In the case of BMI control, the inceptor is obviously replaced by an EEG cap and the 

amplifiers and computers required for signal processing. To enable continuous tracking of 

a target parameter – be it attitude, flight path or any other parameter – the BMI needs to 

be asynchronous. For successful control, the STR needs to be well above 50%. A good 

SNR is obviously desirable. The experiments presented in chapter 5 were conducted either 

with an Operant BMI or with a Motor Imagery BMI, but other approaches may as well 

yield good results. From an operational point of view, however, the Operant BMI is superior 

to those types of BMIs that mainly rely on machine learning, as the following exemplary 

fictive scenarios illustrate. 

Imagine an airplane whose left and right movements are controlled through a Motor 

Imagery BMI. Before each flight, the BMI algorithms need to be adapted to the pilot, which 

takes a couple of minutes. Then, during flight, the pilot needs to imagine movements of 

his left hand to turn left, or movements of his right hand to turn right. Now imagine the 

same airplane, employing an Operant BMI instead. The pilot has been trained to generate 

the required brain activity in a flight simulator. Thus, he associates this brain activity with 

airplane movements. No machine learning session is required prior to a flight. When flying, 

the pilot naturally generates the brain activity required to turn left or right, because BMI 

control of the airplane has been learned and automatized like a physical skill. In this 

second scenario, recurrent machine training sessions are made void at the expense of 
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initial pilot training time. More important, BMI control is comparable to a physical skill, 

whereas in the first scenario, it requires some cognitive effort. 

Unfortunately, all BMI approaches still require considerable mental effort and there is still 

a long way to go before reality can only remotely approach these fictive scenarios. They 

nevertheless clearly illustrate the advantage of BMI approaches that rely on user training. 

While the inceptor characteristics of section 4.3.1 could be implemented more or less as 

desired, the actual BMI performance in the experiments described in chapter 5 fell short 

of the desired performance described here and in section 4.1. For instance, only one 

degree of freedom could be controlled. Section 5.1.2 elaborates on the actual BMI 

characteristics in the experiments. 

4.4 Sensory Feedback 

Section 3.1.1 already discussed the importance of vestibular and proprioceptive feedback 

for flight control. For both example applications – remote flight control with large time 

delays and BMI control – a strategy needs to be found that mitigates the disruption of one 

of these channels. Vestibular feedback can be partially restored by placing the ground 

control station on a motion platform [6]. This approach, which is also mentioned in section 

1.2, is quite straightforward and actually similar to that of moving-base flight simulators, 

but it has the disadvantage of largely increasing ground control station complexity and 

cost. The complexity lies not only in the moving parts of the motion platform, but also in 

the algorithms that replicate the vestibular sensations of the RPA’s linear and angular 

accelerations with the restricted translations and rotations of the motion platform. An 

alternative approach to restoring vestibular feedback would be to substitute it. In this case, 

the information normally conveyed though the vestibular channel would have to be 

presented in a different sensory channel. Both the visual and the aural channel are heavily 

used in flight, as the overview over the major sensory channels in section 3.1.1 describes. 

Presenting additional information in those channels further increases the likeliness of 

information being missed. The tactile channel, on the other hand, seems to offer a suitable 

alternative for information throughput. A similar argument can be made in the case of 

missing proprioceptive feedback. Reinstating proprioceptive feedback would undermine 

the original idea of hands-free flight. It is certainly possible to display information on BMI 

outputs visually, as is the case in many BMI research setups, including that described in 

chapter 5, but it is not desirable due to the same reason stated above. Again, tactile 

feedback could be a suitable replacement. 

Although not widely used yet, tactile feedback in flight control tasks has already been 

subject to research. Several studies have investigated the use of vibro-tactile displays on 

the pilot’s torso in helicopter flight control tasks [49, 50]. The focus was on landing 

performance in degraded visual environments such as brownout or whiteout (i.e., when 

sand or snow is stirred up and obscures outside visibility), or when wearing night vision 

goggles. In those situations it is difficult for the pilot to sense helicopter motion, which is 

why unwanted drift motions and position errors are more likely to occur. In a fixed-base 

simulator study [49] a 64-tactor display conveyed information either on the desired 

direction of motion only (towards the target position), or on both desired and current 
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direction of motion. It was found that the display improved hovering performance, i.e., the 

position error, for both flight with night vision goggles and flight in full-vision daylight 

conditions. Results also indicate that displaying both desired and current direction of 

motion clutters up the tactile display and thus claims more of the pilot’s higher mental 

processing resources. In another study [50], 52 tactors on a test pilot’s torso displayed 

altitude and groundspeed vector during inflight experiments of a helicopter landing 

maneuver. Again, the tactile display improved the pilot’s performance. The maneuver was 

accomplished faster, more accurate and with less mental effort than without tactile 

support. Another helicopter flight test with tactile feedback, described by McGrath [48], 

was actually preceded by experiments with a fixed-wing airplane. In those experiments, a 

pilot flew various maneuvers, including aerobatic maneuvers, without any visual cues from 

instruments or the outside environment, but with the help of a vibro-tactile torso display. 

The display consisted of 20 tactors and presented information on the airplane attitude. All 

maneuvers were successfully accomplished, which shows that a tactile display can 

effectively communicate attitude information. McGrath concludes that a tactile display of 

attitude potentially allows pilots to concentrate on other visual tasks while maintaining 

spatial orientation, thereby increasing situational awareness and reducing workload. 

Moreover, pilot comments indicated that the tactile attitude display helped reducing 

common sensory illusions like vertigo or tumbling sensations. Further laboratory and 

inflight experiments on tactile attitude displays are described in [47], where subjects 

succeeded in capturing pitch and roll attitudes with an accuracy of about 5°, relying on 

tactile cues alone. Moreover, the authors propose tactile displays as an alternative to 

moving-base simulators with their inherent deficiencies described above. A technical 

report on tactile displays [51] mentions that their application to UAV operations could be 

beneficial. Among the four application areas identified is navigation and vehicle control 

information. The report furthermore acknowledges the possibility to reduce the demand 

on the RPA pilots’ visual perception by providing tactile feedback and refers to a study 

that investigated tactile displays during the landing phase of a UAV. This study indicates 

that tactile feedback possibly reduces the amount of training required for novice pilots and 

that tactile cues may be useful for operational UAV pilots. 

Summing up, the idea is to substitute the missing vestibular or proprioceptive feedback 

with a suitable tactile display. In the case of RPA control, where vestibular feedback is 

missing, a first guess would be to display the RPA attitude. Since the attitude can already 

be perceived visually, even on remote computer screens, it may be more interesting to 

display flight path variables. A study investigating the effect of various visual displays on 

workload and performance with a flight path demand system [134] supports the approach 

of displaying the flight path. The authors found that situational awareness was improved 

in this case. As mentioned earlier, instead of reinstating missing sensory feedback, it is 

possible to generally increase the pilot’s situational awareness and thereby free up mental 

resources that can be used to cope with the reduced sensory feedback. This means that a 

tactile flight path display can also help in the case of BMI control, where proprioceptive 

feedback is missing. On the other hand, the missing proprioceptive (or vestibular) feedback 

is also compensated to some extent by the limitations and protection mechanisms of the 

flight controller. Thus, another purpose of a tactile display could be to increase awareness 
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with respect to these limitations and protection mechanisms. For instance, the known 

vibrations prior to stall (cf. section 3.1.1) could be replicated by vibro-tactile cues on the 

tactile display. A prototype tactile display feeding back 𝛾 and 𝜒 has been designed and 

implemented in project BRAINFLIGHT. It comprised 16 tactors placed around the waist. 

Initial experiments with the display have been performed in the same flight simulator 

where BMI controlled flight was later tested (cf. section 5.1.2). Two pilots used the display 

and commented on it, indicating that a tactile flight path display could be useful. 

Unfortunately, there was no occasion for further investigations. 

In addition to the tactile display and standard visual cues, visual predictor displays can be 

implemented to reduce the apparent time delay. Indeed, this should be done, as the 

plethora of positive experience with predictor displays indicates (cf. section 1.2). While 

the effect of predictors is experimentally analyzed in section 6.4.3, their detailed design is 

not within the scope of this thesis. One design issue, however, needs to be addressed 

here. In the case of RPA control with signal transmission latency, an undelayed control 

signal is available for prediction. In case of BMI control, on the other hand, the very control 

signal is already delayed. How can a prediction be done in this case? The key to a possible 

solution is that, according to section 3.4 and Figure 1.2, the delay in BMI control 

originates from two sources: signal processing and filtering. As a result, the raw, unfiltered 

BMI output can be used to make a prediction. An actual prediction, extrapolating future 

system outputs, is unadvisable because of the noisy nature of the signal. Instead, a simple 

display of this signal can already be used by the human operator for prediction. It can in 

fact be seen as a replacement of proprioceptive feedback. As such, it could also be 

interesting to show it on the tactile display instead of a visual display. Whether the tactile 

display of a highly noisy signal can adequately convey information without distracting the 

pilot, however, is questionable. Summing up, Figure 4.5 relates the proposed sensory 

feedback design to the problem stated in section 1.1 by complementing Figure 1.2 with 

the proposed feedback flows and channels. 

 
Figure 4.5 – Sensory feedback design proposed for the example applications 
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5  E X P E R I M E N T A L  E V A L U A T I O N  

O F  B M I  C O N T R O L L E D  F L I G H T  

So far, this thesis approached the topic of flight control with large time delays and reduced 

sensory feedback from a theoretical point of view. Beyond that, this and the following 

chapter describe experimental evaluations of some of the proposed concepts and theories. 

Involving the human user at an early stage of research and development is highly important 

to ultimately avoid a mismatched man-machine interplay. More than interviews and 

discussions with pilots, experimental evaluations using flight simulators played an 

important role in the research leading up to this thesis. Indeed, the various simulator 

experiments contributed immensely to the final picture of the problem and the possible 

solutions presented. 

The first step was to combine the flight controller described in chapter 4 with a BMI to 

fine-tune the system so that control was possible. Moreover, the initial aim was to get a 

better understanding of how such a BMI (flight) control system could be improved. 

Fortunately, it was possible to conduct multiple experimental campaigns with a Motor 

Imagery BMI and an Operant BMI, which enabled an initial investigation on the 

performance of BMI controlled flight and the validation of the BMI model presented in 

section 3.4.2. The major challenge of the BMI experiments was that the control 

performance varied a lot between subjects and generally was a lot worse than in manual 

control. This had been expected and the experiments were planned accordingly. 

Nonetheless, the experiments on BMI controlled flight had a more explorative character, 

since parameters had to be tuned and some tasks or evaluation methods proved 

inapplicable. It also has to be stressed again that today’s BMIs with their limited reliability 

were not seen as suitable flight control interfaces. Instead, the experiments aimed at 

applying methods from the aerospace domain to BMI control in general. The following 

sections describe the experiences reported in [107, 135, 136] in a consolidated and 

extended manner. 

Brain#_CTVL001f45f9ca0d429465d82c3e7f3a2a16695
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5.1 Experimental Setup 

5.1.1 Participants 

For the experimental campaign with the Motor Imagery BMI, seven male participants 

volunteered, six of whom had experience in piloting real airplanes. The seventh subject 

was merely familiar with the theory of flight and knew how to read the relevant aircraft 

instruments. Generally, all these seven participants, who are listed in Table 5.1, had 

different levels and types of flight experience. The reason for inviting participants with 

different backgrounds to the experiments was to obtain opinions from a broad spectrum 

of pilots. Moreover, it was hoped that they would achieve a similarly broad spectrum of 

BMI control performance. None of the participants had ever used any type of BMI before. 

Table 5.1 – List of participants of the experiments with Motor Imagery BMI control 

Subject No. Age Hours Flown Status / Experience 
M1 23 100 Student pilot (airline) 
M2 30 4300 Airline pilot (Embraer E-Jet family [59]) 
M3 29 120 Private pilot 
M4 52 270 Private pilot 
M5 26 120 Student pilot (airline) 
M6 32 1100 Former military pilot (PA-200 Tornado [137]) 
M7 27 none none 

 

For experiments with the Operant BMI, on the other hand, the group of possible 

participants was much more restricted. As described in section 3.4.1, the Operant BMI 

required some user training. With the BMI and the flight simulator usually not co-located, 

but a 3-hour flight apart, it was difficult to train subjects over several sessions and have 

the same subjects fly in the simulator. Therefore the researchers, who traveled between 

the two locations anyway, also played the role of experimental subjects. Subject O1 was 

a BMI researcher and private pilot who was initially naïve to the tasks defined and could 

therefore be treated like an uninvolved subject. Furthermore, the author had the 

opportunity to train with the Operant BMI a couple of times. For later experiments (cf. 

section 5.5), he flew in the simulator several times as subject O2. At this point, subject 

O1 was already far better trained. The data gathered in this experiment is only used for 

BMI model validation here. Not distinguishing between subjects and experimenters is 

obviously undesirable. What would usually be considered a major flaw, can be justified 

only by the explorative nature of the experiments, which therefore has to be stressed again 

at this point. 

5.1.2 Flight Simulator and Brain-Machine Interface 

The tests were performed in the DA42 simulator at TUM’s Institute of Flight System 

Dynamics. This fixed-base simulator was built by the aircraft manufacturer with original 

aircraft components. The highly realistic cockpit environment is complemented by a 

three-channel External Visual System (EVS) that projects the simulated outside world on 

a 180° cylindrical screen. Together with the flight dynamics model, this simulator is 
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certifiable up to FTD level 5 as defined by the FAA [138]. For the experiments, the 

simulated flight dynamics were complemented by the flight controller described in chapter 

4. A sketch of the simulator as it was set up for the experiments is shown in Figure 5.1. 

Details on the displays are given in section 5.1.3. 

The BMIs ran on a different computer and transmitted their output signals via an Ethernet 

connection to the flight controller. The time delay introduced by this signal transmission 

was not quantified, since its contribution to the total time delay was deemed negligible 

compared to the delays inherent to BMI signal processing (and filtering). Both BMIs 

enabled binary control in only one degree of freedom. This means that users could actively 

try to either produce positive or negative BMI outputs. In the absence of a specific user 

intention, the BMIs would produce outputs with approximately zero mean and thereby 

provide the third, neutral control amplitude level. 

 
Figure 5.1 – Cockpit of the DA42 simulator as set up for the experiments 

It was decided to apply the one degree of freedom to lateral control of the airplane, instead 

of longitudinal control. Thus, control was expected to be more intuitive with the Motor 

Imagery BMI, which usually relies on imagined movements of the left and right hand or 

arm. Furthermore, maneuvers were expected to be largely erroneous and while the 

simulated airplane was free to move horizontally, its vertical movements were restricted 

to the half-space above the simulated ground, which could have led to rather demotivating 

terminations of flight. Indeed, the Motor Imagery BMI distinguished imagined movements 

of the left hand or arm from that of the right hand or arm. On top of that, it also recognized 

imagined movements of the feet. Of these three types of movements, those two that had 

the best cross-validation estimate were selected for each session. Thus, some subjects in 

fact had to imagine movements of their feet and of one of their hands to steer the airplane. 

Each BMI provided a single floating-point precision number as output. The output of the 

Motor Imagery BMI was truncated to [−1,1], whereas the output of the Operant BMI was 

only bounded by the limits of data type encoding. Another difference was in the sampling 

time. The Motor Imagery BMI provided an output at 10 𝐻𝑧, whereas the Operant BMI 

produced its output at 4 𝐻𝑧. In both cases, the BMI output underwent some processing 
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on the receiving side, i.e., at the flight controller input. This is illustrated in Figure 5.2. 

Note that the control inputs ultimately act on a 𝜒 control loop (also cf. appendix A, Figure 

A.6). The command filter initially produced the 𝜒̈ command system described in section 

4.2.1, but was then varied in the experiments. The Motor Imagery BMI output was merely 

mapped before entering the command filter, whereas the signal of the Operant BMI was 

also filtered before mapping. Mapping always constrained the BMI control action 𝛿𝐵𝑀𝐼 to 

𝛿𝐵𝑀𝐼
′ ∈ [−1,1]. For the subjects, it was important to receive undelayed feedback from the 

BMI as the most direct way for them to recognize whether they produced correct outputs. 

Such an undelayed BMI feedback is also proposed in section 4.4 and Figure 4.5. In case 

of the Motor Imagery BMI, the mapped BMI output was presented to the pilot, because 

the mapping function did not introduce any delay. In case of the Operant BMI, on the 

other hand, visual feedback of the raw output was presented to avoid any lags or delays 

between BMI signal generation and BMI signal feedback caused by filtering. 

 
Figure 5.2 – Signal processing for Motor Imagery and Operant BMI 

Both filter and mapping function were varied throughout the experiments to find an optimal 

configuration. For the initial experiments, which employed the Motor Imagery BMI, the 

filtering required to obtain information from the noisy BMI output was achieved only by 

the physical low-pass characteristics of the airplane. This somewhat brute method seemed 

most promising at the beginning, as it does not introduce any additional lags. According 

to section 3.4.2, the filtering time delay is thus 𝜏𝑓𝑖𝑙𝑡 = 0 and, as a result, the BMI time 

delay 𝜏𝐵𝑀𝐼 is reduced (equation (3.64)). By minimizing the time delay introduced by the 

BMI, the problem of large time delays is mitigated. 

5.1.3 Displays 

Only visual displays were employed in the experiments on BMI control. The two displays 

of the simulator’s integrated flight instrument and avionics system were substituted by one 

single, custom display that had been specifically tailored for the experiments. Further 

visual cues were presented by the EVS and the four standby instruments (airspeed 

indicator, attitude indicator, altimeter and magnetic compass). A sketch of the display 
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setup is shown in Figure 5.1, whereas Figure 5.3 shows an actual photo of the DA42 

simulator’s cockpit as it appeared for the subjects. 

The custom display, which can be seen in Figure 5.3 and more clearly in Figure 5.4, was 

similar in appearance to the original display of the airplane. The entire background was 

dedicated to an artificial horizon, whereas attitude indicator, airspeed indicator, altimeter 

and heading indicator were grouped in the standard T arrangement in the foreground. 

Vertical speed was displayed next to altitude and lateral acceleration was presented by a 

left- and right-moving bar below the bank angle indicator. The display was complemented 

by a flight path climb angle indicator in the form of a rear-view airplane symbol, an 

indication of the autothrottle target speed below the airspeed indication, a horizontal 

situation indicator (HSI) and, in the case an instrument landing approach was flown, a 

glide slope indicator next to the altitude reading. Current turn rate was shown by a magenta 

arc around the compass rose. 

 
Figure 5.3 – Photo of the DA42 simulator cockpit setup with custom display 

The central part of Figure 5.4 shows the display in its basic configuration. In this case, 

the airplane is in coordinated and level flight, pitched up by about 2.5°, banked 25° to the 

right, at an altitude of 5000 𝑓𝑡 and an airspeed of 120 𝑘𝑡. It passes through heading 244° 

at positive, larger-than-standard turn rate. Around the central part of Figure 5.4, all 

BMI- and task-related elements can be seen. In the top left corner of the display, the visual 

feedback of the BMI output was given. The Motor Imagery BMI output (after command 

mapping, cf. Figure 5.2) was visualized by six balls. Left and right movements of the top 

ball indicated the current output, whereas the movement of each following ball was 



Experimental Evaluation of BMI Controlled Flight 

114 

delayed by 0.2 𝑠 with respect to the preceding one. Thus, the pilot could perceive a 

command history of 1 𝑠. The Operant BMI output (before filtering, cf. Figure 5.2) was 

presented differently, because the subject’s operant BMI training consisted in controlling 

the vertical movement of a ball with tail on a computer screen. With the tail visualizing 

previous outputs, the training display bore some resemblance to a flying ball. To facilitate 

transition between the Operant BMI training task and flight control in the simulator, the 

same symbology was used here. Up and down movements of the ball indicated the current 

Operant BMI output, whereas the ball’s tail indicated previous outputs until 1.5 𝑠 into the 

past. Up/down movements of the ball were associated with left/right movements of the 

airplane. The two dashed and two solid white lines shown on the Operant BMI feedback 

indicated certain BMI output values that only had a meaning in the BMI training task. At 

later stages of the Operant BMI experiments, the BMI output feedback was moved to the 

lower left part of the display to facilitate concurrent observation of the HSI. 

 
Figure 5.4 – Custom DA42 display: basic version, BMI- and task-related elements 

The display furthermore showed several task-related elements that can also be seen in 

Figure 5.4. During tasks 0, 1 and 2, a heading bug was shown and during task 3, a course 

deviation bar within the HSI indicated the deviation from the (offset) localizer track. Both 

the heading bug and the course deviation bar changed color, depending on the tracking 

performance. When the tracking error was within the desired performance, the symbols 

were green, whereas yellow color indicated an error within adequate performance. The 

symbols were red otherwise, i.e., when tracking performance was less-than-adequate. 

Initially, this color code was designed to help subjects assessing their own performance 

for application of the CHR scale [70]. Although the idea to collect CHRs was abandoned, 

the colors of the target symbols still retained their purpose of motivating the subjects to 

achieve desired or at least adequate performance. 

Operant BMI
Feedback

Motor
Imagery BMI
Feedback

Heading Bug

Course Deviation Bar

Basic Display
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5.2 Tasks and Briefing 

Task design was approached with the methods of handling evaluation established in the 

aerospace domain in mind. This novel approach to BMI testing was expected to yield a 

highly realistic experimental setting and thus results that are relevant for actual BMI 

application. Designing realistic tasks for the experiments on BMI controlled flight was a 

challenge due to the fact that control performance was uncertain and expected to be a lot 

poorer than with manual control. The first decision, already described in section 5.1.2, 

was to perform lateral control. Tasks of different levels of difficulty were then designed to 

address a wide range of possible performance levels. Efforts were made to design 

operationally meaningful tasks, since the participants were not trained test pilots and 

generally not familiar with pure tracking tasks. Furthermore, tasks generally progressed 

and terminated regardless of performance. Thus, subjects that performed poorly would not 

get stuck in a task. 

Speed control was accomplished entirely by the autothrottle system. During tasks 0, 1 

and 2, the vertical motion was controlled by the altitude hold mode already incorporated 

in the flight control system. For task 3, a simple autopilot was implemented that tracked 

the glideslope and also initiated a flare manoeuver to give the pilots the cues they were 

used to in this flight phase. 

Pilot briefings were given orally at the beginning of each session, guided by previously 

compiled notes. Subjects were introduced to EEG and BMIs and received instructions on 

how to use them in combination with the flight controller. The functionalities of the flight 

control system (altitude hold, path straightener, standard rate turn hold and bank angle 

protection) were explained, the tasks were outlined and all display elements were 

described. 

5.2.1 Task 0 – Training 

This preparatory task, which had been derived from Task 1, was intended to give subjects 

some time to familiarize with the BMI control system. A sequence of different target 

headings was indicated by the heading bug. As equation (5.1) indicates, the value of each 

new target heading Ψ𝑡𝑔𝑡 was the sum of the current heading at the moment of the target 

change 𝑡𝑐ℎ and the corresponding step from the predefined sequence given in Table 5.2. 

This method to compute target headings was chosen to avoid that changes in target 

heading reduced or even eliminated the tracking error, which was expected to be large at 

least in some cases. 

Ψ𝑡𝑔𝑡 = Ψ(𝑡𝑐ℎ) + ΔΨ𝑡𝑔𝑡 (5.1) 

The sequence of steps comprised an equal number of left and right turns with increasing 

size. Each change in target heading was accompanied by an acoustic signal. 

Table 5.2 – Sequence of heading target steps for task 0 

Step No. 1 2 3 4 5 6 7 8 9 10 
Step ΔΨ𝑡𝑔𝑡 20° −20° 30° −30° 45° −45° 100° −100° 160° −160° 
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The time between targets 𝑡𝑏𝑡 was fixed as in equation (5.2). It allowed for target 

acquisition with standard turn rate (3°/𝑠) as well as for turn initiation, turn termination 

and about one minute of tracking. This choice resulted in a total task duration of about 15 

minutes. 

𝑡𝑏𝑡 =
ΔΨ𝑡𝑔𝑡

3°/𝑠
+ 63𝑠 (5.2) 

In fact, the task can be seen as being composed of two sub-tasks, namely heading 

acquisition and heading tracking. To acquire a target heading, pilots were advised to turn 

with standard rate of turn. For heading tracking, desired performance was defined as a 

heading error of less than 5°, which equals the heading tolerance defined in [139] for an 

instrument rating flight test. A heading error of less than 10°, which is required for private 

and commercial pilot license flight tests [139], was considered adequate tracking 

performance. This definition was mentioned during subject briefing and applied to the 

color code implemented for some of the task-related display elements. It would also have 

been required for an application of the CHR scale. 

5.2.2 Task 1 – Turns 

The motivation behind task 1 was to put the subjects into an operational setting and at 

the same time obtain a reproducible mission that enables an investigation of control 

performance. Hence, a sequence of target headings was given, like, for instance, during 

radar vectoring. Subsequent evaluation was facilitated by the well-defined sequence of 

targets. The only differences between task 0 and task 1 were the heading steps’ direction 

and size. In task 1, the sequence of steps listed in Table 5.3 was presented. In this case, 

the sequence was random-appearing, but again comprised an equal number of left and 

right turns. The first two steps were given for initial familiarization, whereas steps three 

through ten were used for evaluation. 

Table 5.3 – Sequence of heading target steps for task 1 

 Familiari-
zation 

Turns for Evaluation 

Step No. 1 2 3 4 5 6 7 8 9 10 
Step ΔΨ𝑡𝑔𝑡 40° −20° −45° 30° −100° 160° 45° 100° −30° −160° 

 

5.2.3 Task 2 – Heading Bug Tracking 

Task 2 investigated tracking performance with a continuously moving target. Subjects were 

thereby confronted with a higher level of difficulty than in tasks 0 and 1. At the same time, 

this task was designed to explore the bandwidth of BMI control. Like in the previous tasks, 

the target was symbolized by the heading bug. Its movements were determined by a 

predefined, random-appearing forcing function. The design of the forcing function was 

guided by the recommendations in [84]. As shown by equation (5.3), it was composed of 

10 sine waves of different frequencies and amplitudes. 
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Ψ𝑡𝑔𝑡(𝑡) =∑𝐴𝑖 ⋅ sin(𝜔𝑖 ⋅ 𝑡)

10

𝑖=1

 (5.3) 

Table 5.4 lists the parameters of the 10 component oscillations. Since the task duration 

was set to 300 𝑠, the frequencies of the forcing function components had to be integer 

multiples of 1/300 𝐻𝑧, so that an integer number of periods of each component would fit 

into the task duration and averaging errors would thereby be minimized. While respecting 

this constraint, component frequencies were chosen to be approximately logarithmically 

spaced. Component amplitudes and cut-off frequency were chosen based on the initial 

command filter configuration (see equation (5.4)) and good engineering judgement. 

Table 5.4 – Task 2 forcing function components 

 Frequencies 
𝜔𝑖 [𝐻𝑧] 

Frequencies 
𝜔𝑖 [𝑟𝑎𝑑/𝑠] 

Amplitudes 
𝐴𝑖  [°] 

 

 1 / 300 0.0209 5  
 2 / 300 0.0419 5  
 3 / 300 0.0628 5  
 4 / 300 0.0838 5  
 7 / 300 0.147 5  
 12 / 300 0.251 5  
 21 / 300 0.440 0.5  
 34 / 300 0.712 0.5  
 57 / 300 1.19 0.5  
 95 / 300 1.99 0.5  

 

A time history plot of the forcing function is shown in Figure 5.5. Note how all components 

fit into the task duration by integer multiples, evidenced by zero-crossings of the forcing 

function at 0 𝑠, 150 𝑠 and 300 𝑠. Finally, desired and adequate performance were defined 

like in tasks 0 and 1. 

 
Figure 5.5 – Time history plot of the forcing function of Task 2 
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5.2.4 Task 3 – Approach 

The third and final task was a landing approach with offset localizer. Its design was 

inspired by a task described in [93] and put the subjects into a very realistic, stressful and 

challenging scenario. As the sketch of the approach trajectory given in Figure 5.6 shows, 

the localizer track was offset from the runway centerline by 1 dot on the HSI (cf. Figure 

5.4), which corresponds to half of the course deviation bar’s Full-Scale Deflection (𝐹𝑆𝐷) 

or approximately 1.3°. At the beginning of the task, the aircraft was positioned at a distance 

of 7 𝑁𝑀 to the runway threshold and 1 𝑁𝑀 to the left of the extended runway centerline. 

Its heading intersected the offset localizer track at an angle of 45°. Outside visibility was 

nil above 500 𝑓𝑡 above ground and 10 𝑘𝑚 below. Throughout the approach, glide path 

and airspeed were automatically controlled to provide the familiar cues of a normal landing 

approach. 

 
Figure 5.6 – Sketch of the approach flown in task 3 

The first part of the task was to intercept the offset localizer and then track it down to 

simulated cloud break. As there were no outside visual references, it was not apparent to 

the pilot that the localizer was offset. However, since pilots generally flew this task more 

than one time, they were told that the localizer could be offset to the left, to the right, or 

not at all. Upon cloud break, the runway became visible. The pilots were instructed to 

then ignore their navigation instruments and to continue the approach only by outside 

visual references. Since the first part of the approach had been offset, the pilots were 

forced to conduct a sidestep manoeuver. After that, they had to track the runway 

centerline, since they had been instructed to touch down as close to it as possible. The 

simulation ended a few meters above ground. 

Again, desired and adequate performance had to be defined. Like in the requirements for 

a successful instrument rating flight test [139], adequate performance for localizer tracking 

was defined as the half-scale deflection (0.5 𝐹𝑆𝐷) of the course deviation bar. Desired 

performance was chosen to be 0.25 𝐹𝑆𝐷. A definition of desired and adequate centerline 

tracking performance would have been required only for an application of the CHR and is 

therefore not given here. 
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5.3 BMI Control System Tuning 

Not only the task design, but also the initial testing phase was inspired by methods 

established in the aerospace domain. The first experimental sessions with each type of 

BMI were dedicated to control system tuning, where subjects played the role of evaluation 

pilots. Relying on the subjects’ comments on handling and based on the flight control 

performance achieved, various parameters of the control system were adjusted after each 

run to obtain better performance and lower workload in the next run and, ultimately, a 

control system well adapted to the pilots. The following sections not only present the final 

control system configurations, but also report the tuning efforts, including all unsuccessful 

configurations. For better readability and comparability of the following figures, the colors 

red, blue and yellow are associated with particular subjects. The color grey is employed 

for all other subjects. 

5.3.1 Motor Imagery BMI 

The first experiments employed the Motor Imagery BMI and started off with subject M1 

as single participant in three sessions that took place across two days and aimed at tuning 

the mapping function and the command filter. In these rather informal sessions, the 

subject began multiple runs of task 1 to assess each configuration. Later, he also 

performed tasks 2 and 3. Initially, the mapping function was chosen to simply feed through 

the BMI output. The command filter was a double-integrator that changed the turn rate 

by 1.5 °/𝑠 during each second the (mapped) BMI output was at its maximum level, i.e., 
|𝛿𝐵𝑀𝐼| = 1. This command filter, named command filter A, is defined by equation (5.4). 

𝑌𝑐𝑓,𝐴 =
1.5° ⋅ 𝜋/180°

𝑠2
=
0.02618

𝑠2
 (5.4) 

During the first runs, the subject was able to initiate turns, but did not succeed in trying 

to terminate them. The left plot of Figure 5.7 is a good example for this problem: the lines 

of constant slope indicate that the aircraft flew at the turn rate limit for a prolonged time. 

Therefore, a small amount of spiral stability was introduced, which, according to the 

subject, improved the situation. To further facilitate straight flight, a deadzone was 

introduced as mapping function after a couple of runs. BMI outputs between −0.4 and 

+0.4 were mapped to zero, whereas all other values were fed through. Next, instead of 

merely relying on weak spiral stability, it was decided to use an altogether different 

approach. Controlling the double-integrator seemed too challenging, which is why one of 

the command filter’s poles was changed from a pure integrator to a first-order lag. The 

resulting command filter B is given by equation (5.5). With this filter in use, steady-state 

turns required a constant, nonzero control input. 

𝑌𝑐𝑓,𝐵 =
𝐾𝐵

(𝑇𝐵𝑠 + 1)𝑠
=

0.1

(3.820𝑠 + 1)𝑠
 (5.5) 

Performance seemed to be similarly inadequate with either command filter A and B (cf. 

Figure 5.7), but command filter B received more favorable comments from subject M1. It 

was therefore decided to let all other subjects test both command filters, together with the 
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same deadzone-type mapping function. At the same time, the idea to collect CHRs was 

abandoned. It was clear by now that the previously defined desired performance and even 

the adequate performance would be hard to achieve. Hence, only a small portion of the 

CHR scale was expected to be relevant, namely Level 3 handling qualities or a CHR of 

10. Combined with the fact that the experimental subjects were not trained to use the 

CHR scale, the resulting CHRs would not have provided useful insights. Finally, task 0 

was derived from task 1, so that subjects could familiarize with BMI control and each 

command filter before the actual experimental tasks 1, 2 and 3. 

 
Figure 5.7 – Comparison of command filters: task 1, subject M1 

The remainder of the experiments with the Motor Imagery BMI, namely the tests with 

subjects M2 through M7, followed a fixed procedure. After the initial briefing, the EEG cap 

was applied to the subject, who then took the left seat inside the cockpit. For the next 20 

minutes, brain activity was recorded during imagined movements of the left hand, the 

right hand and the feet [135]. This data was then used to train the BMI algorithm. The 

pair of imagined movements that promised the best cross-validation was selected for the 

experiments. The subject then performed tasks 0 through 3 with one command filter and, 

after a pause, again with the other command filter. Half of the subjects M2 through M7 

started with command filter A, the other half with command filter B. In total, an 

experimental session took about 4 hours. The outcome of this first experimental campaign 

is reported in section 5.4.2. 

5.3.2 Operant BMI 

All following experimental campaigns applied the Operant BMI. The first campaign, 

comprising five sessions in three consecutive days, again started with system tuning. 

Subject O1 performed tasks 0 and 1 in the first sessions and flew the other tasks only in 

the last two sessions. Initially, the control system configuration was based on the 

experience gained with the Motor Imagery BMI. Hence, the BMI output was not filtered, 

but fed directly to the mapping function. Moreover, command filter B was used initially, 

because it promised better results due to its single-integrator characteristics. Since the 

outputs of the Operant BMI were much smaller than those of the Motor Imagery BMI, the 

command filter gain was increased by a factor of 3 to 𝐾𝐵 = 0.3. With the command filter 
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set to a promising configuration, the mapping function was the only element that was 

tuned initially. Its first configuration was a three-level mapping like the one shown in Figure 

3.30, but with a deadzone within ±0.23. This value was chosen because it was the target 

threshold that had to be reached during BMI user training. While performing tasks 0 and 

1, it was difficult for the subject to maintain turns, so the deadzone size was reduced to 

±0.18 and a linear mapping was implemented outside the deadzone, with the input to the 

command filter 𝛿𝐵𝑀𝐼
′  still limited to [−1,1]. Subject O1 still did not have control, also after 

varying the slope of the linear mapping segments. The left part of Figure 5.8 shows an 

exemplary time history. The subject reported that control felt sluggish. 

Hence, command filter A was applied, with the gain tripled so that 𝐾𝐴 = 0.07854. This 

configuration felt much better to the subject, although the sensitivity seemed excessive 

from the experimenters’ point of view and the performance was still not comparable to 

what had been achieved with the Motor Imagery BMI. The value of 𝐾𝐴 was therefore 

reduced to 2/3 and 1/3 of its initial value. Moreover, the path straightener was turned off, 

as it seemed to hinder the subject from initiating turns. Results were still not satisfying 

(cf. right part of Figure 5.8, where 𝐾𝐴 = 0.02618), but the subject reported that it felt 

better. He also stated that he focused so much on the brain signal feedback that he had 

difficulties in observing the heading bug. The brain signal feedback was therefore moved 

to the lower part of the display, next to the HSI. 

The fact that subject O1 relied a lot on the visual brain signal display shows, on the one 

hand, that the undelayed BMI feedback proposed in section 4.4 and Figure 4.5 indeed is 

a suitable aid. On the other hand, it is also a fine example for the challenges of missing 

proprioceptive inceptor feedback. To obtain the required information on their control 

inputs, subjects had to devote a considerable amount of attention to the visual display 

implemented. If the same information had been displayed in a different sensory channel, 

this problem may have been mitigated, but still not altogether solved. Ideally, both the 

inceptor deflections and the inceptor forces as the two major proprioceptive sensations 

would be substituted by a suitable display. 

 
Figure 5.8 – Tasks 0 and 1, flown by subject O1 during system tuning 
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In an attempt to find a compromise between the sluggish response of command filter B 

and the overly sensitive response of command filter A, command filter B was employed 

again, but with a smaller time constant 𝑇𝐵 = 1.5. The left part of Figure 5.9 shows the 

results of task 0 with this configuration. It can be seen that the subject was able to perform 

at least the right turns quite well. The right part of Figure 5.9 shows a recording that was 

made in a different session with the same configuration. During this run, the parameter 

𝐾𝐵 was slightly increased to 0.13 at 240 𝑠 and 𝑇𝐵 was further lowered to 1.2 at 420 𝑠. 

After this test run, the subject reported to feel in control. It can also be seen in the right 

part of Figure 5.9 that he consistently steered the aircraft towards the target heading. 

 
Figure 5.9 – Task 0 flown with a suitable configuration of command filter B 

Finally, another attempt was made to reduce jitter while maintaining the responsiveness 

of the system. The BMI output was filtered by the low-pass filter described by equation 

(5.6). The deadzone of the subsequent mapping function was removed entirely. Instead, 

a cubic mapping function was used that assigned an output of ±1 to an input of ±0.15. 

The output 𝛿𝐵𝑀𝐼
′ , again, was restricted to [−1,1]. 

𝑌𝑓𝑖𝑙𝑡 =
1

𝑠 + 1
 (5.6) 

The resulting configuration of BMI output filtering, cubic mapping and command filter B 

with 𝐾𝐵 = 0.13 and 𝑇𝐵 = 1.2 shall be called configuration C. The subject reported in 

session 4 that it felt “perfect”. It has to be noted, however, that considerable lags were 

introduced together with the low-pass filter of equation (5.6). As section 3.4.2 discussed, 

these lags can also be seen as an equivalent filtering time delay 𝜏𝑓𝑖𝑙𝑡. To estimate the value 

of this parameter, Figure 5.10 shows the Bode diagram of 𝑌𝑓𝑖𝑙𝑡 together with that of an 

8th order SMA filter and that of a 1 𝑠 pure time delay. It can be seen that, for frequencies 

below the cutoff frequency (1 𝑟𝑎𝑑/𝑠), the phase curves agree well. Thus, it can be 

concluded that a filtering time delay of approximately 1 𝑠 was introduced. Nonetheless, 

subject O1 made positive comments on configuration C. It was therefore decided that he 

would perform all tasks 0 through 3 with it. The performance in these experimental runs 

is analyzed in the following section 5.4. 
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Figure 5.10 – Frequency-domain comparison of filters and a pure time delay 

5.4 BMI Flight Control Performance 

5.4.1 Performance Metrics and Baseline Performance 

To objectively evaluate the subjects’ performance in tasks 1 through 3, suitable, 

quantitative performance metrics have to be defined first. For task 1, the two sub-tasks 

heading acquisition and heading tracking are analyzed separately. To quantify heading 

acquisition performance, the Turn Rate Index (TRI) defined by equation (5.7) is used. It 

relates the average turn rate to the standard turn rate. Here, average turn rate is defined 

as the heading change necessary to achieve desired performance, divided by the time 

required for this maneuver Δ𝑡𝑡𝑔𝑡 minus 2.5 𝑠 to account for reaction time and turn 

initialization. TRI values close to 1 indicate that turns have been flown approximately as 

instructed, namely at standard rate. 

TRI =
|ΔΨtgt| − 5°

Δ𝑡𝑡𝑔𝑡 − 2.5𝑠
⋅
1

3°/𝑠
 (5.7) 

Heading acquisition performance is also characterized by the overshoot produced upon 

capturing the target. In this case, overshoot is defined as the value of the heading error at 

the first moment that the turn rate becomes zero after the heading has crossed the 

threshold to the desired region around Ψ𝑡𝑔𝑡. Overshoot could therefore be negative, but 

not smaller than −5°. An overshoot within [−5°, 5°] indicates that the turn has been 

stopped within the desired region. 

Heading tracking is evaluated only across the tracking segment of each target. This 

segment begins at the moment the heading crosses the threshold to the desired region 
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around Ψ𝑡𝑔𝑡 and ends as soon as the target changes again. Across each tracking segment, 

the Root Mean Square Error (RMSE) can be computed as in equation (5.8), with the error 

𝑒 = Ψ −Ψ𝑡𝑔𝑡 in this case and with 𝑁 denoting the number of samples. A good tracking 

performance is indicated by low RMSE values. 

RMSE = √
1

𝑁
∑𝑒𝑖

2

𝑁

𝑖=1

 (5.8) 

The RMSE can be misleading in that large errors that persist for only a short time have 

little influence on the overall RMSE. Therefore, the maximum error during tracking is taken 

as an additional measure of performance. Note that due to the definition of the tracking 

segment, the maximum error cannot be smaller than the desired performance threshold, 

i.e., 5° in the case of task 1. 

Low values of maximum error and RMSE can be produced either by a small and rather 

constant residual error or by continuing oscillations around the target. The second case is 

less desirable from the pilot’s point of view, because it requires permanent control activity. 

Therefore, as proposed in [70], Error Variability (EVAR) is introduced as a parameter that 

indicates oscillations of the error. It is defined by equation (5.9). 

EVAR =
1

𝑁 − 1
∑|𝑒𝑖+1 − 𝑒𝑖|

𝑁−1

𝑖=1

 (5.9) 

The performance in task 2 can be quantified by heading RMSE, EVAR and maximum error 

as well. In task 3, performance is analyzed separately for localizer-guided approach and 

the sidestep manoeuver. For both localizer and centerline acquisition, overshoot is defined 

as for heading acquisition in tasks 0 and 1. The tracking segment, again, begins at the 

moment the error crosses the threshold to the desired region. The localizer tracking 

segment ends with the transition to visual approach at cloud break and the centerline 

tracking segment ends with the recording. Tracking RMSE, EVAR and maximum error are 

evaluated for both tracking segments. Due to the definition of the tracking segments, 

maximum localizer and centerline error cannot be smaller than 0.25 𝐹𝑆𝐷 and 8.23 𝑚, 

respectively. 

Apart from quantitative performance metrics, a baseline performance is required to which 

the experimental results with BMI control can be related to. To obtain this baseline, subject 

M7 was invited a second time, several months after his BMI control session, to perform 

the same tasks 0 through 3 using conventional, manual control. Subject M7 was chosen 

simply due to his availability. In this manual control session, longitudinal control was 

accomplished again by the combination of autothrottle, altitude hold mode and autopilot 

described above. In the horizontal motion, however, subject M7 manually controlled the 

unaugmented aircraft, because the unaugmented airplane in combination with the 

simulated control forces was known to have adequate handling qualities for manual 

control. The suitability of the BMI flight controller for on-board manual control, on the 
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other hand, was uncertain at that point. When flying the unaugmented airplane, lateral 

center stick inputs correspond to aileron deflections and pedal inputs deflect the rudder. 

While a detailed evaluation of manual control performance is provided together with an 

evaluation of other configurations in section 5.4.2, the following figures already present 

the time history plots and approach trajectories for later reference. Figure 5.11 shows 

tasks 1 and 2 as flown manually by pilot M7. Remember that the first two steps in task 

1 were dedicated to familiarization and only the last eight steps were evaluated. 

 
Figure 5.11 – Time history plots of tasks 1 and 2, manual control 

Figure 5.12 illustrates manual control performance during task 3. The localizer tracking 

error over time, shown on the left plot, is quickly reduced during acquisition and then held 

at a low level throughout the rest of the instrument approach. The sidestep maneuver, 

visible in the right plot showing the airplane’s horizontal trajectory, contains some 

overshoot and subsequent oscillation. Nonetheless, the centerline tracking error was small 

and ultimately, i.e., above the runway, stationary. 

 
Figure 5.12 – Evolution of tracking errors during task 3, manual control 

5.4.2 Comparison of Different Configurations 

During BMI control system tuning, several possibly suitable configurations of command 

filtering and mapping were identified. Moreover, the experimental campaigns comprised 
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multiple subjects who attempted BMI control. The performance of these various 

combinations of subjects and control system configurations, including manual control, are 

compared with each other in this section. It can already be said that those control system 

configurations deemed suitable for control with a Motor Imagery BMI, namely 

configurations A and B, proved unsuccessful for Operant BMI control, at least for subject 

O1 (cf. section 5.3.2). Whether the Operant BMI control configuration C enables 

successful control with a Motor Imagery BMI could not be tested. 

The experiments with the Motor Imagery BMI revealed large differences in performance 

between subject pilots. Subjects M4 and M6 did not have control. Subject M4 flew in 

circles, whereas subject M6 performed undirected manoeuvers. As a result, both sessions 

were terminated after only a couple of training runs. Subjects M2 and M5 generally did 

not perform well. However, they sometimes managed to acquire and track a heading target 

during task 0 or 1. Figure 5.13 shows example plots of subject M2. It can be seen that 

he was rather successful in task 0 with configuration B, whereas he mostly turned left 

during task 1 with command filter A. He then completely lost control during task 3, when 

he seemed to be stressed and quickly got frustrated. Indeed, task 3 aimed at generating 

more stress to investigate performance under realistic, operational conditions. Although it 

is not possible to pinpoint the cause for subject M2 losing control, it is safe to say that 

BMI control performance varied within a relatively short time frame. This is obviously 

undesirable. 

 
Figure 5.13 – Exemplary time history plots of subject M2 

Subjects M3 and M7 performed noticeably better than all others. This is already apparent 

from the time history plots of subject M3 in task 1, shown in Figure 5.14. It can be seen 

here that every target was reached. While heading control was highly oscillatory with 

command filter A, command filter B enabled tracking with less jitter. The cause for the 

oscillations lies in the nature of this subject’s BMI outputs, as section 5.5 illustrates. 

Unfortunately, the duration of task 1 with command filter A was shorter than normal due 

to an erroneous task setting. All targets were presented, but the tracking phases were 

shorter. As a result, the comparability of these tracking phases with those of other runs is 

reduced. 
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Figure 5.14 – Time history plots of subject M3 in task 1 

Next, Figure 5.15 shows how subject M7 performed in task 1 with each configuration A 

and B. It can be seen quite clearly that, in general, the system outputs were less oscillatory 

than those of subject M3. With command filter A, subject M7 reached every target, but 

using command filter B, one target was just not reached. It can be noted that heading 

control was comparatively sluggish with command filter B. 

 

 
Figure 5.15 – Time history plots of subject M7 in task 1 

Task 2 was indeed more challenging for the subjects. Figure 5.16 shows that even 

subjects M3 and M7, who generally outperformed all others, had difficulties following the 

moving target. As opposed to other subjects, they managed to stay close to the target, but 

only subject M7 with command filter B was able to actually track the target. 
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Figure 5.16 – Time history plots of subjects M3 and M7 in task 2 

Task 3, being again more challenging, was rarely flown with acceptable performance and 

even more rarely accomplished in its entirety. One notable exception was the second try 

of subject M3, who in this case used configuration B. As Figure 5.17 shows, he 

successfully tracked the offset localizer and subsequently managed to fly the sidestep 

maneuver. The trajectory is quite oscillatory, but it generally complies with the adequate 

performance thresholds and finally ends over the runway, close to the runway centerline. 

 

 
Figure 5.17 – Evolution of tracking errors during task 3, subject M3, configuration B 

Due to his generally outstanding performance, subject M3 was invited for a second, more 

informal experimental session on the following day. In this second session, similar BMI 

outputs and similar performance could be observed. Apart from a few training runs, tasks 

1 and 2 were performed a second time with command filter B. Moreover, several additional 

attempts to steer the airplane onto the runway in task 3 were made. Subject M7, who 

also performed comparatively well, was also keen to achieve a landing on the runway, 

which is why his single experimental session with BMI control was prolonged by another 

three tries at task 3. Figure 5.18 shows all trajectories of subject M3 and M7 during task 

3 using BMI control. Note that most trajectories strayed off course sooner or later, although 

many headed for the runway for quite some time. It can be seen again here that heading 
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control with configuration B was sluggish for subject M7. With configuration A, on the 

other hand, subject M7, too, reached the runway once, even though he had grossly 

departed the target approach track before. 

 

 
Figure 5.18 – Horizontal trajectories during task 3, subjects M3 and M7 

After this qualitative description of performance with the Motor Imagery BMI, the same 

overview is now given over the Operant BMI experiments. As described in section 5.3.2, 

it took until the 4th session of subject O1 to find a suitable configuration for control with 

the Operant BMI, namely configuration C. The subject then started off again with task 0 

and proceeded with tasks 1, 2 and 3. Like subject M3 and M7, subject O1 then flew task 

3 several more times during a 5th session in an attempt to successfully steer the airplane 

to the runway. Task 2 was also flown a second time in the 5th session. 

First, Figure 5.19 illustrates tracking performance in tasks 0 and 1. Again, short-term 

variations in BMI control performance can be noted. While some targets were tracked 

quite accurately, others were not even reached. In earlier sessions it was noted that using 

configuration C, turns were generally flown slower than standard rate. Instead of increasing 

an aircraft gain and thereby compromising controllability, the time between targets was 

increased to re-establish an adequate duration of tracking segments. This was done by 

scaling the denominator of the right side of equation (5.2), which stands for the expected 

turn rate, down from 3°/𝑠 (standard rate) to 1.5°/𝑠. This explains the longer duration of 

tasks 0 and 1 in Figure 5.19 when compared to the same tasks performed in the context 

of the Motor Imagery BMI experiments. 



Experimental Evaluation of BMI Controlled Flight 

130 

 
Figure 5.19 – Time history plots of subject O1 in tasks 0 and 1 

Next, Figure 5.20 shows how subject O1 tracked the target heading in his two attempts 

at task 2. Like subjects M3 and M7, he managed to maintain the approximate direction 

of the target. Moreover, each run exhibits phases where the target is tracked quite 

accurately. These phases may indicate a temporary improvement in controllability, but 

they may as well be due to chance. 

 

 
Figure 5.20 – Time history plot of subject O1 in task 2 

Subject O1’s four attempts at task 3 are shown in Figure 5.21. Localizer tracking was 

generally unsuccessful and all trajectories ended up grossly misaligned with the runway 

centerline. Interestingly, however, subject O1 achieved the closest approach to the runway 

in a flight that first deviated by almost 10 𝑘𝑚 from the extended runway centerline. 
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Figure 5.21 – Horizontal trajectories during task 3, subject O1 

Now that the qualitative overview of performance with both the Motor Imagery and the 

Operant BMI is concluded, the different configurations are quantiatively compared in the 

following paragraphs, using the performance metrics defined in section 5.4.1. First, 

performance in task 1 is analyzed, which can be described by TRI, overshoot, RMSE, 

EVAR and maximum error. Figure 5.22 compares the first parameter, TRI, between 

subjects and configurations. Remember that TRI values close to 1 indicate that turns have 

been flown approximately as instructed, namely at standard rate. The value of 𝑛 shown 

above each box in Figure 5.22 indicates how many of the eight target steps were reached. 

The boxes below visualize the distribution of TRI across these 𝑛 steps. Each box indicates 

the 1st, 2nd and 3rd quartile of the data, whereas the mean value is designated by a cross 

symbol. In all box plots shown in this thesis, data points outside 1.5 times the interquartile 

range are marked by a circle as outliers. Whiskers extend to the most extreme data value 

that is not an outlier. 

 
Figure 5.22 – Task 1 TRI comparison of different configurations 

It is evident from Figure 5.22 that subject M7 with manual control turned at standard rate 

with the highest accuracy and consistency. Using BMI control, each subject produced a 

comparatively wide range of TRI values, which indicates a much less consistent 
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performance or, in other words, a lack of controllability. Subject M3 tended to turn faster 

than subject M7, which can be explained by the fact that subject M3 produced BMI 

outputs of limit amplitude (𝛿𝐵𝑀𝐼 = ±1) more often than subject M7 (cf. section 5.5). 

Similarly, both of these subjects turned faster with configuration A than with configuration 

B, which in turn is due to the characteristics of the flight control system configurations. 

With command filter B, a maximum turn rate of 0.1 𝑟𝑎𝑑/𝑠 could be achieved if BMI 

outputs were always correct. For STR  1, the effective maximum turn rate was smaller. 

Using command filter A, on the other hand, subjects could initiate and maintain a turn 

with a greater turn rate despite their noisy control signals, especially during long turns. 

Little by little, they would increase the turn rate until reaching the bank angle limit. Thus, 

the strategy of initiating and maintaining a turn by constantly communicating a 

positive/negative intention indeed could have been the same for both configurations. In 

this case, the bank angle limitation would have been utilized as a support for turning flight. 

Note that to stop a turn, the two configurations A and B called for different strategies. 

Using configuration B, it was enough to communicate neutral intention, whereas with 

configuration A, subjects had to actively decrease the turn rate by communicating opposite 

intention. Looking at Figure 5.22, it is also interesting to note how TRI values differed 

between the two sessions of subject M3. This again shows that performance can vary from 

session to session, at least when using a Motor Imagery BMI. Subject O1 with 

configuration C achieved comparatively consistent TRI values, but generally turned at a 

slow average rate. 

 
Figure 5.23 – Task 1 overshoot comparison of different configurations 

The second parameter that describes target acquisition performance is heading overshoot. 

The distribution of overshoots is shown in Figure 5.23. Again, manual control enabled the 

best and most consistent performance, but subject O1 with configuration C achieved 

similarly accurate acquisition maneuvers. This is in good agreement with the observation 

that turns were slow for this subject and configuration. It seems that it was more difficult 

to initiate and maintain a turn for subject O1 with configuration C than to fly straight. In 

other words, there was a tendency for the mapped BMI control action 𝛿𝐵𝑀𝐼
′  to be 0 in this 

case. The overshoot values of subject M7 varied a little more than those of subject O1, 

but the largest variance of overshoot values was produced by subject M3. The largest 
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absolute heading overshoots occurred when subjects M3 and M7 used configuration A. 

This is probably due to the fact that with this configuration, an established turn rate had 

to be actively reduced. To account for the noisy BMI outputs, pilots had to start this 

reduction some time before reaching target. If a subject did not introduce a sufficient 

amount of lead, a large overshoot occurred. 

After the analysis of target acquisition, a look is taken at target tracking performance during 

task 1. It has to be noted again at this point that not all tracking segments had the same 

duration. As mentioned above, subject M3 with configuration A experienced shorter 

tracking segments. Moreover, subject M7 with configuration B achieved rather low TRI 

values, which in turn shortened his tracking phases. Similarly low TRI values were 

observed for subject O1, but in his case, the task duration was adapted. 

As first performance metric of target tracking, heading RMSE is shown in Figure 5.24. 

Like in the preceding analyses, manual control excels in accuracy and consistency. Slightly 

larger and more variable RMSE values were produced with configuration B. The second 

session of subject M3 is an exception here, as it produced the largest average RMSE value. 

Note that at the same time, only four out of eight targets were reached. This again well 

illustrates possible variations in performance. RMSE values achieved with configurations 

A and C are similar and, apart from subject M3’s second session, highest. 

 
Figure 5.24 – Task 1 RMSE comparison of different configurations 

Next, Figure 5.25 shows the distributions of maximum heading error. Here, basically the 

same observations can be made as for heading RMSE. Additionally, it can be noted that 

the maximum errors produced by subject M7 with configuration B were consistently small 

and always within the adequate performance boundaries (±10°). 
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Figure 5.25 – Task 1 maximum error comparison of different configurations 

To conclude the analysis of target tracking during task 1, Figure 5.26 shows the 

distributions of heading EVAR. It is no surprise that manual control enabled the lowest 

and most consistent EVAR values. Like the TRI values, EVAR values tended to be higher 

for subject M3 than for subject M7, which is again due to the nature of the BMI outputs 

produced (cf. section 5.5). Likewise, both of these subjects produced higher EVAR values 

with configuration A than with configuration B. The second run of subject M3 again stands 

out here, with larger EVAR values than with the same configuration in the first session. 

Subject O1 with configuration C achieved average EVAR values. 

 
Figure 5.26 – Task 1 EVAR comparison of different configurations 

After the detailed comparison of performance in task 1, task 2 is evaluated next. As 

mentioned in section 5.2.3, it was planned to compute the pilot-aircraft bandwidth based 

on the recordings of task 2. However, it became evident during post-processing of the data 

that the transfer from tracking error to aircraft heading was dominated by the nonlinearity 

of the BMI. The measure of coherence [70], which should be approximately 1 for results 

to be valid, was generally smaller than 1. Hence, values of pilot-aircraft bandwidth are not 

reported here. Instead, Figure 5.27 shows the RMSE achieved in each case during task 

2. Here, very similar observations like for the RMSE in task 1 can be made. Again, subject 
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M7 with configuration B delivered the best performance after manual control. The poor 

performance of subject M3 in his second session stands out, but otherwise configuration 

B enabled better performance than configurations A and C. 

 
Figure 5.27 – Task 2 RMSE comparison of different configurations 

The maximum heading errors of the task 2 runs under consideration, shown in Figure 

5.28, well agree with the corresponding RMSE values shown in Figure 5.27. This means 

that subjects who produced larger average errors also produced larger maximum errors. 

 
Figure 5.28 – Task 2 maximum error comparison of different configurations 

The comparison of heading EVAR, shown in Figure 5.29, concludes the analysis of task 

2. Due to the nature of BMI outputs, EVAR values tended to be higher for subject M3 than 

for subject M7. This was already observed in task 1. The greater EVAR values produced 

with configuration A as compared to configuration B in task 2 also well agree with the 

findings from task 1. Subject O1 with configuration C again achieved average EVAR values. 

It is quite striking in task 2, however, that the EVAR achieved with manual control is not 

noticeably smaller than all other EVARs, but instead similar to the EVAR subject M7 

achieved with configuration B. 
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Figure 5.29 – Task 2 EVAR comparison of different configurations 

Finally, for task 3, a meaningful quantitative comparison cannot be made, because the 

subjects’ performance was generally poor. 

All in all, it can be concluded that some subjects were able to perform closed-loop control 

of the horizontal airplane motion in a realistic environment, using a BMI and the flight 

control system described in chapter 4 (or variations thereof). The performance of manual 

control, however, was not matched by far and some subjects did not have control at all. 

The main reason for this expected shortcoming is that controllability requires sufficiently 

reliable BMI outputs in the first place. The experiments have shown that significant 

improvements of the algorithms that identify the user’s intention from the measured 

electromagnetic brain signals are a prerequisite for BMI controlled flight in particular or for 

any closed-loop control application of BMIs in general. Another major problem 

encountered was that BMI control performance strongly varied not only between subjects, 

but also between sessions, runs and sometimes even within a run. Biases, which occurred 

from time to time, also hindered or even prevented control. All these issues will have to 

be mitigated. Controllability and handling, however, not only depend on the BMI 

characteristics, but are also influenced by the plant dynamics. This is evident from the 

tuning efforts and the comparison between control system configurations. 

The comparison between configurations A and B showed that the control of a single pure 

integrator is easier and allows more precise tracking than control of a double pure 

integrator. This finding is supported by objective as well as subjective measures. For 

configuration B, subject comments were more favorable and overshoot, RMSE, EVAR and 

maximum error all tended to be lower. This is not surprising in the light of previous 

research. Remember, for instance, that the optimum transfer function predicted by the 

Crossover Model is a simple integrator and that higher-order controlled system dynamics 

cause pulse-like operator behavior (cf. chapter 3). In any case, the filtering and mapping 

algorithms must be adapted to each subject and BMI, possibly even to each session. Here, 

agility can be traded off against stability. A control system configuration that enables fast 

changes of the controlled parameter makes it difficult to keep this same parameter 

constant. Regardless of the control system configuration used, protections are necessary 

to prevent dangerous system outputs. In the experiments, the protections within the flight 
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control system effectively prevented upset attitudes and flight envelope excursions, but it 

is suspected that in some cases the bank angle limitation was misused as a supportive 

feature in turning flight. 

Another aspect to be noted is that those subjects who had control reported that they had 

to constantly anticipate the airplane movements to successfully track target headings or 

ground tracks. This corresponds to the extensive lead generation expected in this case of 

large time delays. Interestingly, however, only subject O1 faced any filtering time delay 

originating from the flight control system. According to section 3.4.2 and equation (3.64), 

all other subjects would thus have experienced a comparatively minuscule time delay 

𝜏𝐵𝑀𝐼 = 𝜏𝑠𝑝 ≈ 𝑡𝑠 = 0.1 𝑠. The observations on the BMI output spectrum made in the 

following section 5.5, however, provide an explanation for the subjects’ comments on lead 

generation. Subjects furthermore stated that they had to concentrate a lot on generating 

the required brain activity. Prior to an actual application of closed-loop BMI control in the 

context of a more complex task environment such as that of an airplane pilot or merely 

that of a car driver, this problem will have to be overcome. In addition to the high 

concentration required to generate the brain activity, subjects also felt that they allocated 

a lot of attention on the visual BMI feedback. Thus, not much more information could be 

perceived visually. However, even if the BMI output were to be conveyed in a different 

sensory channel, the amount of attention devoted to this feedback would not be available 

for other displays. Finally, those subjects who used the Motor Imagery BMI and who 

imagined hand or arm movements to turn in one direction and feet movements to turn in 

another direction noted that this mapping of imagined body movements and airplane 

reactions is not intuitive and thus adds mental workload. This underscores that those types 

of BMIs that rely on user training are better suited for an operational application, as section 

4.3.2 already noted. 

In conclusion, it can be said that even though control was possible for some subjects, it 

came at the cost of extreme mental workload. This workload has to be reduced and, at 

the same time, BMI output reliability has to be improved on the way towards operational 

application of BMIs in closed-loop control tasks. In any case, plant dynamics need to be 

adapted to the BMI. In this process, the experiences reported in this thesis can be used 

as a point of reference. An effective means to substitute the undelayed cues of 

proprioceptive feedback still has to be found, since a simple visual display proved 

unsatisfactory. 

5.5 Experimental BMI Model Validation 

To be able to validate the BMI model proposed in section 3.4.2, additional experiments 

were conducted with the operant BMI and subjects O1 and O2. Task and system dynamics 

had to be chosen in a way that the user intention during the task would be implicitly given. 

Therefore, task 1 was selected and the transfer function from the filtered and mapped BMI 

input to airplane heading Ψ was simply modeled by equation (5.10). If, in this case, the 

error in Ψ lies within a tolerance deadband, defined by the task, the user’s intention can 

be assumed neutral. If the signed error is greater/smaller than the upper/lower deadband 
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limit, user intention implicitly is negative/positive. Thereby, the probable user intention at 

every time step can be determined during post-processing. 

𝑌Ψ𝛿𝐵𝑀𝐼′ =
0.1

(1.5𝑠 + 1)𝑠
 (5.10) 

Subject O1 performed 12 runs in 2 sessions, whereas subject O2 performed 9 runs in 2 

sessions. BMI filtering and mapping was altered between the runs, but it never changed 

the integrator-with-lags dynamics of the open loop given by equation (5.10). With the user 

intention thus identifiable at every time step, BMI outputs were grouped into those that 

occurred during positive, neutral and negative intention. To validate the assumptions 

behind the BMI model of section 3.4.2, the BMI outputs of all runs of each single subject 

were analyzed as a whole, as the following paragraphs describe. It has to be noted that 

the results may therefore be slightly distorted, because subjects advanced their training 

with each run. 

The first assumption of the BMI model, namely that the BMI output is a random variable 

drawn from a Gaussian distribution, can be tested using Lilliefors’ test of normality [140]. 

When applied across all runs of each subject, but for each intention separately, this test 

shows that BMI outputs indeed are normally distributed. This result is supported by the 

fact that skewness is always close to 0 and kurtosis is approximately 3 in all cases. Figure 

5.30 well illustrates the similarity between the Operant BMI output amplitude distributions 

obtained from one run of subject O1 and Gaussian distributions with equal 𝜇 and 𝜎2. 

 
Figure 5.30 – Exemplary Operant BMI output amplitude distributions 

The second assumption that the BMI model is based on states that 𝜎𝑃
2 = 𝜎𝑍

2 = 𝜎𝑁
2. This 

assumption, which by the appearance of the distributions in Figure 5.30 seems to hold, 

can be broken down into 𝜎𝑃
2 = 𝜎𝑁

2, 𝜎𝑃
2 = 𝜎𝑍

2 and 𝜎𝑍
2 = 𝜎𝑁

2. Subsequent two-tailed, 

dependent t-tests for each subject across all runs indicate, after Bonferroni correction, that 

the alternative hypotheses (𝜎𝑃
2 ≠ 𝜎𝑁

2, 𝜎𝑃
2 ≠ 𝜎𝑍

2 and 𝜎𝑍
2 ≠ 𝜎𝑁

2) cannot be confirmed. 

Corresponding t-values, which are given in Table 5.5, are quite small, especially for subject 

O1. Hence, the assumption 𝜎𝑃
2 = 𝜎𝑍

2 = 𝜎𝑁
2 is likely valid, even though the null hypotheses 

𝜎𝑃
2 = 𝜎𝑁

2, 𝜎𝑃
2 = 𝜎𝑍

2 and 𝜎𝑍
2 = 𝜎𝑁

2 were not accepted, but only not rejected. The third 

assumption behind the BMI model is that the mean value for neutral intention 𝜇𝑍 = 0. For 
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each subject, a two-tailed, dependent t-test across all runs shows that the alternative 

hypothesis 𝜇𝑍 ≠ 0 cannot be confirmed. Considering the small t-values (𝑡(1) = 0.08649 

for subject O1 and 𝑡(1) = 0.6864 for subject O2), the assumption 𝜇𝑍 = 0 can be 

considered valid. The fourth and final assumption of the BMI model, 𝜇𝑃 = −𝜇𝑁, can be 

tested with a two-tailed, dependent t-test for each subject across all runs as well. The 

resulting t-values  (𝑡(1) = 0.5725 for subject O1 and 𝑡(1) = 0.5198 for subject O2) show 

that the alternative hypothesis 𝜇𝑃 ≠ −𝜇𝑁 cannot be confirmed and that the assumption 

𝜇𝑃 = −𝜇𝑁 is likely valid. However, the right plot of Figure 5.13 and the STR variations 

illustrated by Figure 5.31 indicate that a bias can indeed occur in individual runs. 

Generally, the data of well-trained subject O1 seem to better support the assumptions 

behind the BMI model than the data of novice subject O2. 

Table 5.5 – Some quantitative statistical results for BMI model validation 

Alternative 
Hypothesis 

𝑡(1) 
Subject O1 Subject O2 

𝜎𝑃
2 ≠ 𝜎𝑁

2 0.3191 1.158 

𝜎𝑃
2 ≠ 𝜎𝑂

2 0.03499 0.9544 

𝜎𝑂
2 ≠ 𝜎𝑁

2 0.7983 0.8292 
 

Apart from testing the BMI model assumptions, the task design also allows to measure 

the STR. Like in section 3.4.2, this is done without making any assumption on BMI output 

mapping. Hence, positive/negative STR can be obtained by computing the percentage of 

BMI output samples that had a positive/negative sign during positive/negative intention. 

Figure 5.31 shows the resulting positive and negative STRs along with the overall STR, 

i.e., the arithmetic mean of positive and negative STR, for each run of subject O1. It can 

be seen that the overall STR varied slightly across runs. Variations in STR during positive 

and negative intention were even more pronounced. Large differences between positive 

and negative STR indicate a strong bias towards one direction. Ideally, BMI outputs have 

little bias, such as those of runs 6 through 9, and at the same time a large overall STR, 

which makes runs 6 through 8 preferable over run 9. 

 
Figure 5.31 – Variations in measured STR for subject O1 
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Apart from the STR, the values of the parameters 𝜇𝑃, 𝜇𝑁, 𝜎𝑃
2, 𝜎𝑍

2 and 𝜎𝑁
2 can be determined 

empirically from the grouped BMI outputs. The BMI model parameters 𝜇 and 𝜎2 can then 

be fitted to the experimental data using equations (5.11) and (5.12). 

𝜇 =
𝜇𝑃 + |𝜇𝑁|

2
 (5.11) 

𝜎2 =
𝜎𝑃
2 + 𝜎𝑍

2 + 𝜎𝑁
2

3
 (5.12) 

To obtain more insight into the quality of the model, the measured overall STR, averaged 

across all runs of a subject, can be compared to the STR of the BMI model fitted to those 

same measurements. Table 5.6 lists both the measured STRs and the model STRs, as 

well as the SNRs determined from the model parameters 𝜇 and 𝜎2. Measured STRs and 

model STRs agree very well. Note their very low values, which are also reflected by small 

SNRs and an apparent similarity of all three distributions in Figure 5.30. It can be seen 

that subject O1 achieves better STR and SNR values than subject O2, which is in good 

accordance with the fact that he had a lot more training. It has to be noted that in several 

runs of subject O2, STR was below 50%, which means that control was effectively inverted 

in those cases. On average, it seems that subject O2 indeed had no control at all. Note 

that the model STR and SNR values in Table 5.6 do not satisfy equation (3.57), because 

they are mean values across all runs of each subject. A slight distortion occurs because 

the averaging operation is linear, whereas equation (3.57) is nonlinear. 

Table 5.6 – Comparison of measured STR, model STR and model SNR 

BMI Type Subject Mean Measured STR Mean Model STR Mean Model SNR 

Operant 
O1 60.92% 60.52% 0.1004 
O2 52.17% 52.88% 0.05911 

Motor 
Imagery 

M3 73.55% 74.39% 0.4906 
M6 47.73% 48.42% not applicable 
M7 72.94% 72.12% 0.3466 

 

In a second step, the proposed BMI model is applied to the Motor Imagery BMI. From the 

experiments made, those runs of task 0 or 1 with command filter B allow to determine 

the probable user intention, using the same method as discussed above. The subsequent 

determination of 𝜇𝑃, 𝜇𝑍, 𝜇𝑁, 𝜎𝑃
2, 𝜎𝑍

2 and 𝜎𝑁
2, however, has to be done differently in some 

cases. Remember that the Motor Imagery BMI produced outputs within [−1,1]. This would 

pose no problem if the majority of any amplitude distribution fits into this range. Otherwise, 

the distribution is truncated and, as a consequence, the variance changes. Indeed, all 

Motor Imagery BMI subjects produced truncated BMI output amplitude distributions. 

Figure 5.32 shows an example of subject M3, which constitutes an extreme case. (Note 

the logarithmic ordinate scale!) The method to fit Gaussian distributions to the measured 

distributions is therefore as follows. If the probability for the amplitude −1 and that for the 

amplitude +1 are both smaller than 0.1, mean and variance are determined as above for 
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the Operant BMI. The Gaussian distribution is then truncated to [−1,1], like the data it is 

derived from. If the measured probability for the amplitude −1 or that for the amplitude 

+1 is higher than 0.1, mean and variance are chosen such that the probabilities of the 

output amplitudes −1 and +1 are reproduced once the Gaussian amplitude distribution is 

truncated. 

 
Figure 5.32 – Exemplary output amplitude distributions of subject M3 

Subject M3 always produced outputs like the ones shown in Figure 5.32, although with 

slightly less truncation in his second session. This type of quasi-binary output was in fact 

the cause for the oscillatory nature of his flights, reported in section 5.4.2. The Gaussian 

distributions in Figure 5.32 were fitted to the extreme values of the measured distributions, 

which is why they perfectly agree. In between the extremes, measured and Gaussian 

distribution seem to disagree. However, due to the fact that the probabilities in this range 

are negligibly small when compared to the probabilities at −1 and +1 amplitude, this 

disagreement is irrelevant. The fact that subject M3 had control is already qualitatively 

apparent in Figure 5.32: for negative/positive intention, the probability for an output of −1 

is much higher/lower than for an output of +1. For neutral intention, these two 

probabilities are similar. 

 
Figure 5.33 – Exemplary output amplitude distributions of subject M7 

The BMI output amplitude distributions of subject M7 were not as heavily truncated. 

Examples are shown in Figure 5.33. Here, only the Gaussian distribution for negative user 



Experimental Evaluation of BMI Controlled Flight 

142 

intention was fitted to the probabilities at −1 and +1 amplitude, whereas the two other 

truncated Gaussian distributions have the same mean and variance as the respective 

measured distribution. For all three intentions, the truncated Gaussian distributions agree 

well with the measured distributions. Like above, it can be seen qualitatively from Figure 

5.33 that subject M7 had control. 

As mentioned above, not all subjects in the Motor Imagery BMI experiments had control. 

The BMI output amplitude distributions of subject M6, who did not have control, are 

shown in Figure 5.34. Here again, all three Gaussian distributions were fitted to the 

respective extreme values. The fact that all three distributions look alike already implies 

that control was impossible. 

 
Figure 5.34 – Exemplary output amplitude distributions of subject M6 

Having fitted Gaussian distributions to each intention of each subject, equations (5.11) 

and (5.12) can again be used to obtain the BMI model parameters for each subject and 

each run. The resulting mean model STRs and SNRs across all runs of each subject are 

reported in Table 5.6, along with the measured STRs. Like for the Operant BMI, 

measurements and model do well agree. Note that subjects M3 and M7 achieved much 

better STR and SNR values than subject O1, which well agrees with the findings of section 

5.4.2. Since the STR of subject M6 is below 50%, a SNR cannot be computed. The STR 

values of subjects M6 and O2 are all similarly close to 50%, indicating that they did not 

have control. 

It is interesting to note that in case of subject M3, machine learning produced a 

cross-validation estimate of 95% [135], whereas the actual STR during the experiment 

was only 73.55%. This important insight puts cross-validation estimates generally into 

perspective. There are various possible explanations for this discrepancy, including a 

variation of the subject’s strategy and a change in the subject’s general state. For instance, 

the data for machine learning was obtained while the subject was still relaxed, whereas 

the actual experiment put him into a more stressful situation. 

When comparing the SNR and STR values in this section with the quantitative analysis of 

subject performance in the previous section 5.4.2, it can be seen that higher SNR or STR 

values correspond to an overall better performance, which perfectly makes sense. 

Nonetheless, a subject and BMI that achieve a high STR/SNR do not perform similarly 
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well with any type of controlled system. The controlled system’s dynamics, too, influence 

task performance, as can be seen in section 5.4. 

The last test of the BMI model concerns the PSD of BMI outputs. Figure 5.35 shows the 

PSDs estimated from BMI outputs of subjects M3, M7 and M6 on the left and of subject 

O1 on the right. It can be seen that the spectra are not constant across all frequencies up 

to the Nyquist frequency, but that higher frequencies are attenuated, especially in the case 

of the Motor Imagery BMI. This means that the assumption that each BMI output sample 

is independent from all previous samples is incorrect. This is a deficiency of the simple 

BMI model presented in section 3.4.2. A correction of this deficiency could possibly be 

achieved by introducing a suitable low-pass filter into the model. The location of the poles 

of this low-pass filter then constitute additional degrees of freedom that can be used to fit 

the BMI model to experimental data. Note that this observation explains the fact that some 

subjects of the Motor Imagery BMI experiments stated that they had to anticipate the 

airplane movements a lot, even though the BMI output was not processed by a dedicated 

filter in the flight control system and thus, no additional lags were introduced. 

 
Figure 5.35 – Estimated PSDs of BMI outputs 

Summing up, it can be said that the concept of the BMI model presented in section 3.4.2, 

which was tested against experiments with two different types of BMIs, is generally valid. 

Changes in user intention indeed cause shifts of the mean BMI output, but do not 

significantly affect the variance of the signal. A BMI output can therefore be seen as a 

noise with shifting mean. It is valid to assume that this noise is Gaussian. However, the 

noise is not exactly white, because some high frequency attenuation is present. This means 

that two consecutive BMI output samples are not independent. The metrics associated 

with the BMI model, namely STR and SNR, were found to be a suitable quantification of 

the control performance of a subject-BMI combination. Problems with the application of 

the model arise when STR is below chance (50%), which is the case for subjects who do 

not (yet) have control. 
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6  E X P E R I M E N T A L  E V A L U A T I O N  

O F  M A N U A L  R E M O T E  F L I G H T  

C O N T R O L  

The experiments on BMI controlled flight were of highly explorative nature and faced 

several challenges beyond the problem of flight control with large time delays and reduced 

sensory feedback. It was therefore imperative to conduct another test campaign that would 

thoroughly evaluate the proposed flight control system in the scope of manual remote flight 

control. Some preliminary experiments aimed at comparing on-off control to continuous 

control [118], but they had several shortcomings. First, only two subjects were invited, 

which did not allow for a really meaningful interpretation of the results. Second and even 

more important, the inceptor characteristics were not as described in section 4.3.1, 

because the experiments were set up in the DA42 flight simulator, where only the force 

gradient of the control stick could be varied. Since these preliminary experiments pale in 

comparison to the later, larger-scale test campaign, they are not discussed here at all. 

As opposed to the experiments on BMI control, which were used to tune the system and 

explore some of its characteristics, one important aim of the test campaign on manual 

remote flight control was to confirm or disprove certain hypotheses. These hypotheses 

stem from previous parts of this thesis and are detailed in the following section. Beyond 

that, the experiments investigated the role of control sensitivities in control with large time 

delays, evaluated some of the flight control system features and generally compared 

workload and performance under various circumstances. They also explored the approach 

of naïve subjects to the problem and collected data for pilot model validation. 

6.1 Hypotheses 

In section 4.1, it is hypothesized that restricting manual control inputs to few discrete 

amplitude levels, i.e., implementing an on-off control system instead of a continuous 

control system, is beneficial in the case of flight control with large time delays. What does 

beneficial mean in this case? First, remember that fixing the control input amplitude 

renders the airplane response more predictable and thereby makes pre-cognitive control 

easier (cf. section 3.3.2). This directly corresponds to a handling improvement, because 
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less mental effort is required to predict the airplane’s response to control inputs. Hence, 

the first hypothesis can be formulated as follows: 

Hypothesis 1: 

“Workload is less with an on-off control system as 

compared to a continuous control system.” 

Second, implementing an on-off control system is hypothetically beneficial because it helps 

pilots apply the pulse-like control strategy they naturally adopt when confronted with large 

time delays. This also means that they can find this strategy sooner than with a continuous 

control system. The second hypothesis therefore reads: 

Hypothesis 2: 

“Pilots naïve to flight control with large time delays find 

an appropriate control strategy quicker with an on-off 

control system than with a continuous control system.” 

The previous hypotheses claim that an on-off control system has advantages in workload 

and training time, but what about performance? The restriction in maneuverability that is 

inevitably introduced with an on-off control system is actually rather minuscule. As soon 

as at least one integrator is between the on-off control input and the system output under 

consideration, the only restriction is that a certain speed of movement is prescribed. 

Although this restriction evidently influences the maximum agility and also the size of the 

smallest possible movement, it does not prevent the operator from reaching any desired 

system output. Moreover, the improved predictability given by an on-off control system 

reduces the time required to familiarize with the system’s dynamics and thereby 

accelerates the transition from compensatory or pursuit tracking to pre-cognitive tracking, 

which enables precise control with little workload. This combination of slightly reduced 

maneuverability and greatly improved handling leads to the conclusion that an on-off 

control system can be expected to enable at least the same, if not better performance than 

a continuous control system. This expectation is formulated as follows by the third 

hypothesis: 

Hypothesis 3: 

“Performance with an on-off control system is 

comparable or better than performance with a 

continuous control system.” 

Although the design of predictor algorithms and displays is not within the scope of this 

thesis, their effect on human-machine interaction is investigated here. The large number 

of previous studies on predictor displays (cf. section 1.2) already proved that they can 
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reduce workload and improve performance. The fourth and fifth hypotheses are therefore 

no surprise: 

Hypothesis 4: 

“Predictor displays reduce workload.” 

Hypothesis 5: 

“Predictor displays improve performance.” 

Apart from these already well-proven statements, another effect of predictor displays were 

suspected. Predictor displays usually add one or more symbols on an already existing 

visual display. The advantages of predictor displays therefore come at the price of 

increased clutter in the visual channel. Moreover, since a predictor symbol is crucial for 

flight control, it necessarily constitutes one of the primary display elements from the pilot’s 

point of view. Hence, the sixth and final hypothesis can be stated as follows: 

Hypothesis 6: 

“Visual predictor displays bind a significant amount of 

visual attention.” 

Other, already existing visual cues would need to compete with the predictors and would 

therefore receive less attention, should this last hypothesis be confirmed. Apart from the 

five formal hypotheses, the following Figure 6.1 illustrates the qualitative expectations 

concerning workload and performance for the four possible combinations of control system 

and predictor. It thereby visualizes some of the above hypotheses. Moreover, it shows that 

the beneficial effects of the on-off control system were expected to be less pronounced 

when a predictor display is provided. 

 
Figure 6.1 – Expected workload and performance for different configurations 

Low WorkloadHigh Workload

Poor Performance

Good Performance

Continuous

On-Off

Continuous,
with Predictor

On-Off,
with Predictor
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6.2 Experimental Setup 

6.2.1 Participants 

A total of 18 unpaid volunteers participated in the experiments. All of them were male 

pilots, but they had very different backgrounds and experience. The detailed information 

on the subjects given in Table 6.1 reveals that large spectra were covered in terms of age, 

hours flown and type of flying experience. (Table 6.1 also lists the sequence of 

experimental runs. An explanation of this sequence follows in section 6.3.) Student pilots, 

glider pilots and private pilots participated as well as commercial pilots, an airline transport 

pilot, a former military pilot and an RPAS pilot. Among the airplanes flown by those pilots 

are gliders, light single- and multi-engine piston airplanes, light turbine airplanes, the 

Cessna Citation [59], the Bombardier Challenger [59], the Airbus A320 [59], the Boeing 

737 [59], the PA-200 Tornado [137], a French version of the Hunter UAV [141], the 

SIDM UAV [11] and the Tracker UAV [142]. Note that hours flown in simulators are not 

included, mainly because this parameter is difficult to quantify, since even aviation 

enthusiasts usually do not log their flights in a desktop computer simulation. However, 

some subjects indicated that they had considerable simulator experience. This experience 

may have helped them in the experiments, especially if it covered aircraft augmented by 

digital flight control laws. Of the 18 subjects, 15 had never performed (flight) control with 

large time delays as defined in this thesis and were naïve to the move-and-wait strategy. 

The RPAS pilot obviously had some experience with time delays. Two other subjects had 

already participated in the preliminary experiments [118] and therefore not only knew 

about possible piloting strategies, but also about on-off control. 

Figure 6.2 provides more insight into the distribution of age and experience across all 

subjects. Remember that in all box plots shown, data points outside 1.5 times the 

interquartile range are marked by a circle as outliers. Whiskers extend to the most extreme 

data value that is not an outlier. The mean value is designated by a cross symbol. 

 
Figure 6.2 – Distribution of age and experience across all subjects  
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It can be seen that although most subjects were rather young and had little experience in 

real airplanes, most of the relevant spectrum of ages and hours flown was covered. Hence, 

ratings and opinions could be gathered from many types of pilots. However, since some 

pilot types were represented by a single person only, it is not advisable to compare the 

ratings or the performance of those different types of pilots. Instead, the whole sample of 

pilots was analyzed as a whole. From a statistical point of view, the sample size of 18 is 

small. When compared to the number of pilots in other handling qualities studies, 

however, it is relatively high. For instance, Hodgkinson mentions a minimum of three 

evaluation pilots and an optimum of seven [79]. Evaluation pilots in that case are test 

pilots who are trained for control system evaluation. Those pilots would use the long 

established CHR scale in the evaluation process. Due to their training and their experience, 

they would produce rather consistent ratings. Instead of relying on test pilots, the 

experiments described here had to make do with a sample of professional and leisure 

pilots who were neither trained to evaluate control systems, nor to apply the CHR scale. 

This was addressed by inviting a larger number of subjects and also by other decisions on 

experiment design, as the following sections show. 

6.2.2 Flight Simulator and Inceptor 

The experiments on manual remote flight control required a simulation model of the 

Diamond DA42 plus flight controller and an inceptor with the characteristics described in 

section 4.3.1. A cockpit was not required, so the experiments could have taken place on 

a regular desktop computer. However, the desired inceptor characteristics were achieved 

with an active sidestick mounted in the cockpit of the so-called Research Flight Simulator 

at TUM’s Institute of Flight System Dynamics, and since any simulation model can be 

used in this simulator, the decision was made to conduct the experiments there. 

Since most of the simulator elements have been custom-built by institute staff and 

students, it is highly customizable. Its cockpit resembles that of a large transport airplane 

with two seats side by side and sidesticks on the outboard side of each seat. Four large 

screens inside the cockpit show customizable displays and a 180° EVS had been 

implemented. To imitate the restricted field of view common to RPAS, two of the three 

projectors of the EVS were turned off. The remaining projection showed the forward view 

from the aircraft with a field of view of approximately 50° by 50°. To implement a 

head-up-display (HUD), an additional projector was installed between the cockpit and the 

cylindrical projection screen. Due to the small distance between the screen and this 

projector, it produced a rather small landscape format projection of approximately 10° by 

18°, as seen by the pilot. The projector itself could not be seen from the pilot’s station. 

Figure 6.3 shows a sketch of the simulator setup. 

The sidestick characteristics for on-off control are described in section 4.3.1 of this thesis. 

For continuous control, the default force gradients of 2 𝑁/° laterally and 3.336 𝑁/° 

longitudinally were used. With a limit deflection of 10.5° in both axes, the resulting 

maximum control forces were 21 𝑁 in the lateral axis and 35.03 𝑁 in the longitudinal axis. 

Throughout the experiments, control sensitivity of the continuous control system was 2.5 

times as high as the control sensitivity of the on-off control system. Thus, the continuous 

control system gave pilots the possibility to produce both smaller and larger aircraft 
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reactions as compared to the fixed amplitude of the on-off control system. With both the 

control sensitivity and the control forces higher for the continuous control system than for 

the on-off control system, the same force applied to either control system resulted in a 

similar airplane reaction. 

In preliminary tests with this setup for continuous control, it was found that inaccuracies 

in the force applied by hand to the inceptor together with the time delay led to large 

disturbances in the airplane’s reactions. For instance, if during a lateral control input the 

stick was inadvertently also slightly pushed or pulled, a longitudinal reaction would follow. 

The pilot would recognize his involuntary control input only after the large time delay and 

by then, the disturbance would have grown considerably. To prevent this type of 

disturbance, the deadzone in both axes was successively increased until the effect did not 

occur anymore. The detrimental effect of deadzones on handling qualities is known [143], 

but it was deemed much less critical in the case of systems with large time delays and 

the pulse-like control behavior associated with it. 

 
Figure 6.3 – Cockpit of the Research Flight Simulator as set up for the experiments 

6.2.3 Displays 

Only visual displays were used in the experiments on manual remote flight control. EVS 

and HUD were active only during tasks B, C and D. During those tasks, all screens inside 

the cockpit were turned off or covered. During task A, a single screen in front of the pilot 

showed a tracking display, which is depicted in Figure 6.4. For better readability on printed 

paper, black and white colors have been inverted in this figure. The cross in the 

background was provided for orientation. The green ball represented the tracking target, 

which had to be acquired with the airplane symbol. A tracking score was indicated by the 

height of the large, vertical bars on each side of the display. The contour of their maximum 

size is shown in white (black in Figure 6.4). Tracking performance was indicated by the 

color of the airplane symbol and the two bars. Red color indicated a large tracking error, 

i.e., offset between airplane symbol and target ball. Yellow color indicated a small but still 

excessive error and green color indicated a negligibly small error. 

Left Seat 
(occupied 
by subject)

Tracking
Display

Sidestick

Right Seat

180 Cylindrical Screen
(relevant part shown)

~18 

Head-Up Display

~50 

Projected Outside View
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Figure 6.4 – Tracking display (black and white colors inverted) 

During tasks B, C and D, a HUD was shown whose appearance differed between the tasks, 

although some elements remained the same. Figure 6.5 shows the configuration for task 

B. For the sake of readability on printed paper, the background is white and all HUD 

elements are drawn in black here, whereas in the actual HUD all symbols were lime-green, 

with high contrast against the simulated outside view. 

 
Figure 6.5 – HUD with tracking target (no background shown) 

Both the target ball and the airplane symbol from the tracking display (Figure 6.4) can be 

found again on the HUD. Here, they represent target/current flight path climb angle. Some 

other elements are similar to the display of the experiments on BMI control (Figure 5.4). 

In the background, a horizon line and a pitch/climb angle scale with marks at each 5° can 

be seen. The horizontal bar with a bend represents the airplane’s nose and indicates the 
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pitch angle. The curved scale on top shows 5°, 10° and 15° bank angle. The bar below 

the bank angle indicator indicates lateral acceleration. Altitude and vertical speed are 

shown on the right and airspeed and autothrottle target speed are shown on the left. If the 

HUD appeared as in Figure 6.5, the airplane was in a coordinated 5° banked right turn 

with a pitch angle of 2°, descending at −2° and −200 𝑓𝑡/𝑚𝑖𝑛 through an altitude of 

7340 𝑓𝑡 above mean sea level. The autothrottle held 110 𝑘𝑡 indicated airspeed and the 

target flight path climb angle was 0°. 

Figure 6.6 shows the HUD as it appeared in tasks C and D. A first thing to notice is that 

the target ball is not shown. A compass rose is introduced instead, with a heading 

indication inside. An arc along the compass rose’s circumference indicates the current turn 

rate. Two large radial marks intersect this arc at the standard turn rate. The triangle inside 

the compass rose indicates the target heading, whereas the current heading can be read 

beneath the outside triangle on top of the compass rose. The target altitude is shown in a 

bracket next to the altitude indication. The bracket moves so that it aligned with the 

top/bottom end of the vertical speed strip when the airplane is below/above the target 

altitude by 500 𝑓𝑡 or more. When current altitude equals target altitude, the bracket 

embraces the altitude indication box and the target altitude reading disappears behind. 

 
Figure 6.6 – HUD with compass rose, target altitude, target heading and predictors 

The two dotted symbols were only shown during task D. They are predictors of flight path 

climb angle, bank angle and turn rate. The dotted cross can be understood as predicted 

position and tilt of the airplane symbol. It thereby indicates future flight path climb angle 

and future bank angle. The dotted arc around the compass rose corresponds to the 

predicted turn rate. The HUD as shown in Figure 6.6 indicates a target altitude of 7400 𝑓𝑡 

and a target heading of 352°. Current heading is 82° and current turn rate is 3°/𝑠 (standard 

turn rate) to the right. Predicted flight path climb angle is −1°, predicted bank angle is 

−2.5° (i.e., to the left) and predicted turn rate is −1.5°/𝑠 (i.e., to the left). 
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To give an impression of the visual environment during the experiments, Figure 6.7 shows 

a photo taken from the position where subjects sat in the Research Flight Simulator. In 

this photo, the EVS is active and the HUD is in the configuration of task C. Note that the 

HUD was well readable, even though in the photo its size may seem small and its content 

blurry. At the lower left end of the photo, the upper half of the display used during task A 

can be seen. 

 
Figure 6.7 – Photo illustrating the visual cues during task C 

6.2.4 Data Collection 

During the experiments, all relevant states of the simulation model were logged, along 

with inceptor deflections and all task-related variables, such as target altitudes. Subjects 

were given an experiment handbook (cf. appendix B) that contained instructions, 

questionnaires and rating scales. This handbook was given out in four parts (pages 1-7, 

8-17, 18-21 and 22-26) to ensure that subjects 

 would not browse the entire handbook at an early stage of the session and thereby 

obtain information from later sections that would facilitate or otherwise influence 

their performance in earlier tasks of the experiment, 

 had a clear understanding of the current task and not get confused by future tasks, 

 filled out the correct rating scales and questionnaires. 
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The questionnaires and rating scales aimed at capturing subjective pilot opinions. A few 

open questions had to be answered in the form of written free text. Other questionnaires 

had the formalized form of binary checkboxes or of discrete scales. In addition to that, the 

task load index (TLX) developed by NASA [144] was used as a metric for subjective pilot 

workload. Like in the experiments on BMI controlled flight described in chapter 5, the 

commonly used CHR scale was considered unsuitable. First, flight control with large time 

delays would always produce inadequate handling qualities as defined on the CHR scale. 

Hence, only a small range of CHRs could effectively be used, thus reducing possible 

differences between the examined configurations and hindering quantitative comparison. 

Second, the subjects were pilots but not test pilots and therefore only familiar with a very 

limited number of airplanes and normally completely unfamiliar with the CHR scale and 

its application. As a result, CHR ratings could be invalid [70]. The TLX, on the other hand, 

can be applied in a variety of situations by unprepared subjects. The TLX manual advises, 

however, to let subjects practice using the rating scale with a few tasks [145]. 

The English version of the experiment handbook, which also contained the original, English 

version of the TLX, was given to the only French subject (no. 17), who also fluently spoke 

English. All other subjects were German and were provided with a German version of the 

handbook that also contained a translation of the TLX, which was based on that given in 

[146]. Unfortunately, thorough literature research did not confirm the statements found in 

some sources, saying that this translation has been validated. (The TLX itself, of course, 

is validated.) The questionnaires and rating scales were filled out immediately after 

completion of a run, usually inside the cockpit and sometimes, for example between tasks, 

on a desk next to it. Finally, oral comments of the subjects and any exceptionalities were 

documented in an experiment log. 

6.3 Tasks and Briefing 

The primary aim of task design was to enable an investigation that helps to ultimately 

confirm or disprove the hypotheses from section 6.1. Moreover, several other aspects, 

such as the influence of control sensitivity, were chosen to be investigated, so 

corresponding tasks or task elements had to be added. All in all, four tasks were set up 

for this purpose, which covered different situations from laboratory-type tracking to 

operational flight maneuvers. In all these tasks, a constant time delay 𝜏𝑎 = 2 𝑠 was 

introduced between the simulation model and the visualization on the displays and the 

EVS to simulate the overall time delay inherent to the controlled system. 

To gain insights into the initial learning phase, subjects had to be naïve with respect to 

possible piloting strategies in the first task. With the subjects initially naïve, a very poor 

performance was expected at the beginning of the experiment. Therefore, it was decided 

to start off with a simple integrator as controlled system, which is known to be easily 

controllable, at least without delay. The display, too, was kept simple (cf. section 6.2.3 

and Figure 6.4). After task A, all subjects were briefed about the move-and-wait strategy, 

even if they had naturally applied it themselves until then. Next, task B confronted the 

subjects with the longitudinal dynamics of the augmented airplane, which can be 

described as integrator-like with lags. They had to perform flight path tracking with 
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different control sensitivities. EVS and HUD provided an already more complex visual 

feedback. A break after task B allowed subjects to take a brief rest. Then, task C put them 

into an operational setting with target altitudes, headings and tracks, thereby introducing 

two-axis control and increasing the order of the controlled system in each axis to a double-

integrator and, in the case of ground track following, even a triple-integrator. Finally, task 

D repeated task C, but subjects were provided with predictor symbols on the HUD. None 

of the previous tasks featured these predictor symbols as not to reduce the apparent time 

delay. Moreover, the effect of the predictor symbols can thus be investigated by comparing 

tasks C and D. 

The sequence of experimental runs for each subject can be seen in Table 6.1, where each 

run is represented either by two letters or by two letters and a number. The first letter of 

each run indicates the task. The last letter is either “c” for continuous control or “o” for 

on-off control. Since task B was flown with different control sensitivities, an additional 

number indicates the sensitivity level in this case. Tasks A, C and D were each flown once 

with every type of control system. Counterbalancing between subjects was therefore 

straightforward: half of them started with the continuous control system whereas the other 

half started with the on-off control system. Task B had to be flown once with each of the 

eight possible combinations of control sensitivity level and control system type. Runs were 

counterbalanced between subjects such that the order was random, under the conditions 

that the same control sensitivity level would not appear twice in a row and that the control 

system type would change after each one or two runs. Moreover, the last run of task A 

and the first run of task B as well as the last run of task B and the first run of task C were 

chosen to differ in control system type. In total, a session took between 2 and 2.5 hours, 

depending on how long subjects took to fill out the questionnaires and on how long they 

chose the break to be. Beverages and snacks were available throughout the session. 

6.3.1 Task A – Generic Tracking 

The aim of this first task was to confront subjects with the unfamiliar situation of flight 

control with large time delays to be able to investigate how they would react to this initial 

exposure. In fact, this situation is quite similar to that of a UAV operator who usually only 

observes the highly autonomous system and who, due to an unforeseen event, has to 

suddenly take over manual control. In this situation, the operator is not well accustomed 

to flight control with large time delays and likely experiences high stress. Implementing a 

realistic, operational task, however, would necessarily be more complex from the subjects’ 

point of view and would nonetheless not generate nearly as much stress as the actual 

real-life operation. Instead, a generic task was implemented and gamified to incite the 

subjects and generate stress. Prior to performing their first run, subjects received no 

instructions on suitable piloting strategies, but were only introduced to the task and 

instructed about a constant time delay in the order of seconds (cf. appendix B). As Table 

6.1 shows, half of the subjects started with continuous control, whereas the other half 

began with using the on-off control system. 

The task was to align airplane symbol and target ball shown on the tracking display (cf. 

Figure 6.4). Only this display was shown, while EVS and HUD were turned off during this 

task. The transfer function between sidestick inputs and the airplane symbol was a simple 
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integrator. Such a system would be easily controllable without time delay. Control 

sensitivity 𝐾𝑎 was chosen so that a constant input with the on-off control system would 

move the airplane symbol from one end of the screen to the other end in 6.667 𝑠. As 

mentioned in section 6.2.2, control sensitivity was 2.5 times as high with the continuous 

control system. Thus, with a maximum control input amplitude applied to the continuous 

control system, the same maneuver would take 2.667 𝑠. When describing control 

sensitivity in units of half-screen size (𝐻𝑆𝑆) per second, it would be 𝐾𝑎 = 0.3 𝐻𝑆𝑆/𝑠 for 

on-off control and 𝐾𝑎 = 0.75 𝐻𝑆𝑆/𝑠 for continuous control. To prepare the subjects for the 

following tasks, they were told that the airplane symbol behaved like the flight path of a 

real airplane at high speeds: with the display appearing as in Figure 6.4, they had to push 

the sidestick forward to make the airplane symbol move downwards on the screen.  

Table 6.2 – List of task A tracking target steps 

Step No. Δ𝑢 [𝐻𝑆𝑆] Step No. Δ𝑢 [𝐻𝑆𝑆] Step No. Δ𝑢 [𝐻𝑆𝑆] Step No. Δ𝑢 [𝐻𝑆𝑆] 
1 +0.8 6 +1.0 11 +0.3 16 −0.9 
2 −0.7 7 −1.6 12 −0.5 17 −0.1 
3 −1.0 8 +0.7 13 +0.9 18 +0.3 
4 +1.6 9 +0.6 14 −0.4 19 +0.4 
5 −0.8 10 −0.6 15 +0.5 20 +0.1 

Step sizes constrained, cf. equation (6.2) Step sizes not constrained 
 

During the run, the target ball jumped to different positions on the vertical axis and waited 

there until the airplane symbol followed before jumping anew. When the tracking error 

was negligibly small, as defined by equation (6.1) and as indicated to the subjects by the 

green color of airplane symbol and score bars, no further correction was required and after 

5 𝑠, the target ball jumped to the next position. The limit tolerance above which, according 

to equation (3.23), a limit cycle is unlikely, is 0.3 𝐻𝑆𝑆 in the case of on-off control and 

0.75 𝐻𝑆𝑆 in the case of continuous control and full inceptor deflections. This means that 

PIOs can be expected unless the pilots introduce significant lead or make very cautious 

movements, i.e., short inputs with the on-off control system or small-amplitude inputs 

(|𝛿|  0.067 so that 𝑦̇𝑠𝑠  0.05 𝐻𝑆𝑆) with the continuous control system. 

𝑒 ≤ 𝑒𝑡𝑜𝑙 = 0.05 𝐻𝑆𝑆 (6.1) 

The target always followed the same, random-appearing sequence of steps given in Table 

6.2. The size and number of upward (positive) and downward (negative) steps was the 

same. At the beginning of the task, the steps were large enough to allow the subjects to 

make and hold a control input until the airplane’s delayed reaction could be perceived 

without risking to overshoot the target. In other words, they could initially perform 

closed-loop control. Equation (6.2) quantifies this step size constraint, where Δ𝑢 is the 

target step amplitude, 𝐾𝑎 the control sensitivity and 𝜏𝑎 the 2 𝑠 delay. 

|Δ𝑢| ≥ 𝜏𝑎 ⋅ 𝐾𝑎 (6.2) 



Experimental Evaluation of Manual Remote Flight Control 

158 

Steps presented later in the task were not constrained. Indeed, small steps were introduced 

on purpose to force the subjects to terminate some of their control inputs before they could 

even perceive any reaction. While large steps (as defined by equation (6.2)) can be 

accomplished by estimating the future system state based on the current system behavior, 

the small steps force subjects to perform a very pure form of the move-and-wait strategy, 

where the estimation of the future system output can only be based on previous 

experience.  

Subjects were told that they were given an initial score that would decrease as long as the 

error was excessive (yellow or red color). The score, which was represented by the height 

of the two bars, was depleted after 20 𝑠 of excessive error and topped up again at the 

beginning of each new target. The sole aim of this score was to generate stress. 

Since the target waited for the pilot to follow, the duration of the task varied depending on 

the pilot’s performance. The time to complete the task was therefore identified as a 

suitable measure of performance. The theoretical minimum completion time was 161.5 𝑠 

for continuous control and 186.2 𝑠 for on-off control. The difference is due to the fact that 

full sidestick deflections with continuous control produced larger reactions than the 

fixed-amplitude outputs of the on-off control system. The theoretical minimum completion 

time is achieved when at each moment a new target is given, a full deflection control input 

is made immediately and for the exact duration that reduces the error not completely, but 

only just to the acceptable value 𝑒𝑡𝑜𝑙. 

6.3.2 Task B – Flight Path Tracking 

Task B was designed to obtain insights into the effects of control sensitivity and to find out 

whether the initial choices of control sensitivity (cf. section 4.2.3) and of control forces 

(cf. section 4.3.1), fell in a suitable region. In this task, subjects controlled the DA42 

simulation model, augmented with the flight controller proposed in chapter 4 of this thesis. 

Lateral command inputs were ignored, so that the airplane maintained straight flight while 

the subjects controlled the flight path climb angle 𝛾 only. Since the command variable of 

the longitudinal motion is 𝛾̇, the airplane symbol on the HUD behaved very similar to that 

on the tracking display of the previous task A. Instead of a simple integrator, however, the 

subjects had to control an integrator with some additional dynamics (mainly lags), which 

can be considered more challenging due to 𝜏𝑙𝑎𝑔𝑠  0. The tracking display was turned off, 

while HUD and EVS were shown instead. 

Like task A, task B was a tracking task. This time, however, the target flight path, 

represented by the target ball, followed a predefined forcing function. In an approach 

similar to that presented in [70], the random-appearing Θ tracking sequence defined in 

[67] was low-pass filtered following equation (2.14) to obtain a suitable 𝛾 forcing function. 

The value for the low-pass filter time constant 𝑇Θ2 was derived from a linear model of the 

bare DA42 at the operating point that was also used for gains tuning of the controller (cf. 

section 4.2.3). Furthermore, the original Θ forcing function was extended by an initial 

singlet for familiarization and a plateau at the end. After preliminary tests had shown that 

the resulting forcing function was too fast to be followed with 2 𝑠 simulated delay, it was 

stretched to double the time span. Figure 6.8 shows original, extended and final forcing 
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function. It can be seen that the final forcing function also comprised shorter steps that 

provoked subjects not to wait for the system to settle after their control input, but to directly 

ensue with another input. 

 
Figure 6.8 – Construction of the 𝜸 forcing function 

Shortly after the initial singlet, manual control was inhibited and 𝛾 was automatically 

nulled. Upon the beginning of the actual tracking sequence that was used for evaluation, 

manual control was enabled again. (More exactly, control was inhibited between 24 𝑠 and 

40 𝑠 into the task, so that subjects had 10 𝑠 to track each step of the initial singlet.) This 

way, the initial conditions for evaluation were identical for each subject and in each run. 

To prevent subjects from using landmarks in the simulated outside view to memorize the 

forcing function, the aircraft, which always departed from the same initial position, was 

set on a random heading for each run. 

As discussed in section 4.2.3, the baseline sensitivity was chosen to be 2°/𝑠, based on 

good engineering judgement. Here, this baseline value of the longitudinal control sensitivity 

applies to the on-off control system, whereas the sensitivity of the continuous control 

system is again 2.5 times as high (cf. section 6.2.2). In task B, four different, equally 

spaced levels of sensitivity were tested, which are listed in Table 6.3. 

Table 6.3 – Control sensitivity levels in task B 

Sensitivity Level S1 S2 S3 S4 
Longitudinal 𝐾𝑎 with On-Off Control 0.5°/𝑠  2°/𝑠  3.5°/𝑠  5°/𝑠  
Longitudinal 𝐾𝑎 with Continuous Control 1.25°/𝑠  5°/𝑠  8.75°/𝑠  12.5°/𝑠  

 

Sensitivity levels S1 and S4 constitute extremes that were included to produce a wide 

range of ratings and thereby facilitate subsequent analysis, as recommended in [79]. The 

altitude hold mode was permanently deactivated during task B, so that it could not 

interfere with target tracking. Limitations and protections, however, were armed to prevent 
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demotivating crashes and the associated reduction of data available for evaluation. They 

would only become active during extreme excursions from the target flight path. 

6.3.3 Task C – Approach 

After two laboratory-type tracking tasks, task C first placed subjects into an operational 

setting, namely a daylight approach to a large airport. This task again raised the level of 

difficulty, including higher-order tracking tasks in two axes. It also aimed at producing 

elevated pilot gains, requiring a swing-over maneuver during final approach in ground 

proximity. Simulated weather was fair, with no clouds, a visibility of 20 𝑁𝑀, no wind and 

light turbulences. These turbulences were simulated with a von Kármán spectrum as 

specified in [67]. The approach pattern is illustrated by Figure 6.9. 

 
Figure 6.9 – Sketch of the approach flown in tasks C and D 

At each of the positions 1 through 6, prerecorded announcements were played that 

specified new target parameters or maneuvers and thereby guided the pilots through the 

approach. Table 6.4 gives a definition of each position and lists the corresponding 

announcements. It can be seen that the maneuvers increased in difficulty throughout the 

task, so that for subjects with normal performance it would be easy in the beginning and 

slightly beyond their capabilities at the end. The first maneuver was a pure altitude change, 

followed by a pure heading change as second maneuver. In the first run of task C, this 

was the first time that each subject made lateral control inputs. At that moment, they had 

to transfer their experience from the longitudinal axis to the lateral axis. After that, a 

combined altitude and heading change was commanded. Next, the target heading was 

replaced by a target ground track, making horizontal tracking more difficult. The end of 

the approach was characterized by combined horizontal-vertical tracking and a swing-over 

maneuver that aimed at provoking high pilot gains. 

Target altitude and heading were not only announced, but also shown on the HUD. Prior 

to their first approach, subjects were instructed to always maintain altitude between 

position 4 and 5 and to perform lateral guidance visually. At position 5, the heading target 

disappeared from the HUD and the ball, known from task B as target, fell through the 

display a couple of times before disappearing again. This meant to complement the 

announcement with a visual cue on the HUD, just like at all previous positions. Similarly, 
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the ball appeared again at position 6, flashing several times inside the airplane symbol 

before disappearing again. The simulation was stopped several meters above ground, if a 

considerable length of the runway had been overflown or if a subject was not properly in 

control and therefore deviated extremely from the prescribed trajectory. Subjects were 

instructed to start a flare on short final, which should result in level flight slightly above 

the runway. It has to be stressed here that the aim of the task was not to demonstrate 

landing performance. Swing-over and short final approach were only means to provoke 

increases in pilot gains. Similarly, the simulated light turbulence was rather a stressor than 

an actual source for error, since the onboard flight control system countered most of the 

disturbances. In the case of glide slope, localizer and centerline tracking, however, the 

turbulence did cause minor errors that had to be corrected by the subject pilots. 

Table 6.4 – List of positions and announcements during tasks C and D 

Position Definition Announcement 
1 15 𝑠 after beginning Descend one thousand five hundred feet! 

2 
Less than 24° deviation 
from runway 05L localizer 

Turn left heading one four zero! 

3 
Less than 9.9° deviation  
from runway 05L localizer 

Turn left heading zero eight zero! 
Descend one thousand two hundred feet! 

4 
Less than 1.5° deviation 
from runway 05L localizer 

Turn left, runway heading zero five three! 
Cleared visual approach runway zero five 
left! 

5 
Zero-crossing of runway 05L 
glide slope error 

Start descent! 

6 
Less than 4000 𝑚 distance 
from runway 05L threshold 

Swing over runway zero five right! 
Cleared to land runway zero five right! 

 

In task C as well as in task D, the baseline control sensitivity defined in section 4.2.3 was 

used in both axes. Again, these baseline values of control sensitivity apply to the on-off 

control system, whereas the sensitivities of the continuous control system are 2.5 times 

as high (cf. section 6.2.2). 

6.3.4 Task D – Approach with Predictors 

The final task D was not an individual task in the strict sense, but a variation of task C. 

Subjects had to fly the same landing approach under the same conditions. The only 

difference was that two predictor symbols were introduced to the HUD (cf. section 6.2.3). 

These symbols indicated predicted values of 𝛾, Θ and 𝜒̇. Instead of implementing a 

prediction algorithm for this task, the reference values of the corresponding flight controller 

loops were fed to the display. This perfect prediction was only possible because the time 

delay had been introduced artificially between simulation and visualization. Real 

predictors, on the other hand, necessarily exhibit some imperfections like transient 

movements caused by model updates. The configuration examined in task D must 

therefore be considered an ideal case, which is nevertheless suitable for investigating the 

general effect of predictors. This investigation can be done by comparing data from tasks 
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C and D. Given that task C always preceded task D, any difference between the two is 

partly due to learning. At this final stage of the experimental session, the effect of learning 

was expected to be minor as compared to the effect of the predictors. The deliberate 

decision to let pilots fly with predictors only during the final two runs was made because 

it was expected that after subjects had once experienced the highly beneficial effects of 

predictors, they would be biased against all other configurations in their opinion and 

possibly also in their performance. 

6.4 Experiment Evaluation 

For the following evaluations, the recorded simulation data was processed using MATLAB. 

The results from this data processing as well as all the questionnaire entries were entered 

into Microsoft Excel [147] sheets, where statistical analysis was performed. Statistical 

computations were verified and complemented using SPSS [148] or MATLAB. Table 6.5 

lists all factors and factor levels defined for the statistical analysis of each task. With the 

exception of factor Group, which is a between-subject factor, all factors are within-subject 

factors. When an analysis of variance (ANOVA) was performed, data was positively 

checked for normality (Lilliefors-test [140]) and homoscedasticity (test according to 

O’Brien [149]), unless stated otherwise. As most factors have only two levels, sphericity 

is automatically satisfied. In task B, two estimates of sphericity were obtained: 𝜀𝐺̂𝐺 

according to Greenhouse and Geisser [150] and 𝜀𝐻̂𝐹 according to Huynh and Feldt [151]. 

If 𝜀𝐺̂𝐺  0.75, degrees of freedom were corrected by multiplication with 𝜀𝐺̂𝐺, whereas if 

0.75 ≤ 𝜀𝐺̂𝐺  1, the degrees of freedom were multiplied with 𝜀𝐻̂𝐹. All t-tests presented are 

one-sided, because the hypotheses from section 6.1 all specify a direction. In all box plots 

shown, data points outside 1.5 times the interquartile range are marked by a circle as 

outliers. Whiskers extend to the most extreme data value that is not an outlier and the 

mean value is designated by a cross symbol. 

Table 6.5 – Factors and factor levels for statistical analysis 

Task Factor 1 Factor 1 Levels Factor 2 Factor 2 Levels 

A Control System 
 Continuous 
 On-off 

Group 
 First run: Ac 
 First run: Ao 

B Control System 
 Continuous 
 On-off 

Sensitivity 

 S1 
 S2 
 S3 
 S4 

C and D Control System 
 Continuous 
 On-off 

Predictors 
 With predictors 
 Without predictors 
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6.4.1 Initial Exposure and Learning 

In task A, most subjects were confronted with the problem of flight control with large time 

delays for the first time. Thus, an analysis of the data gathered with this task should 

provide some insights into the pilots’ behavior during initial exposure and the initial 

learning phase. Since subjects 3 and 4 already took part in preliminary simulator 

experiments on pulse-like control [118], they were excluded from task A here. Subject 17 

was familiar with RPAS operations through large time delays, but it was uncertain whether 

he had already consciously employed pulse-like control inputs or the move-and-wait 

strategy. He therefore began with task A like all other subjects, who confirmed that they 

had no experience in flight control with large time delays. For the following analyses, the 

16 subjects who completed task A need to be categorized into two groups of 8 subjects: 

those who started with the continuous control system and those who started with the 

on-off control system. This categorization ensures that the effects of the initially steep 

learning curve do not amplify or weaken any effects that the different control system types 

may have. This section first analyzes some global workload and performance metrics, then 

takes a detailed look at the subjects’ behavior throughout task A and finally presents the 

pilots’ subjective opinion and self-assessments. 

The primary source of information about pilot workload is the TLX rating, which quantifies 

the pilots’ subjective impression of workload. It would be useful, however, to back up this 

information by an objective measure. A suitable parameter for this purpose is control 

energy as defined by equation (6.3), where 𝛿𝑖 is a sample of the pilot’s control input, 𝑡𝑠 

the sampling time and 𝑁 the number of samples in a recording. Since two different control 

system types with different control sensitivities 𝐾𝑎 are to be evaluated, it is necessary to 

include 𝐾𝑎 into the equation as well. Moreover, the absolute value of 𝛿 appears here 

instead of its square as not to overly penalize large-amplitude inputs and thereby possibly 

the pulse-like control strategy. 

𝐸𝑐𝑡𝑙 = 𝐾𝑎 ⋅ 𝑡𝑠 ⋅∑|𝛿𝑖|

𝑁

𝑖=1

 (6.3) 

Every maneuver and every task require a certain minimum control energy, which can be 

created either by brief and large, or by prolonged and small control inputs. If pilots generate 

more control energy, they simply work more than they need to. This can happen when a 

tracking target is initially overshot, when oscillations around the target occur or when 

large-amplitude maneuvers are chosen to complete the higher-order tracking tasks in parts 

C and D. In any case, a higher control energy indicates that pilots are physically, and 

therefore very likely also mentally more involved in the control task. In the case of on-off 

control, control energy is equivalent to control activity, since |𝛿| = 1 whenever an input is 

made and 0 otherwise. 

Box plots of TLX ratings and control energy are shown in Figure 6.10. Initially, the TLX 

ratings of the first two runs, i.e., of task A, were only meant to familiarize subjects with 

the rating scale. After data analysis, however, they were found to be worth mentioning, 
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even though the subjects’ little experience with the TLX scale and also the learning process 

may have slightly distorted the results. 

 
Figure 6.10 – Box plots of TLX ratings and control energy in task A 

A mixed ANOVA was computed across the data of task A. Numerical results are given in 

Table 6.6. It can be seen that mean TLX ratings for the on-off control system are 

significantly lower than for the continuous control system. Rating differences between the 

two groups of subjects and the interaction Control System   Group are not significant. 

Regarding control energy, it has to be noted that the data failed the Lilliefors-test for 

normality. Here, neither the differences between subject groups, nor those between control 

system types are significant. The interaction Control System   Group, on the other hand, 

is significant. Figure 6.10 clearly indicates that those subjects who started the experiment 

with continuous control produced much less control energy in the second run, i.e., with 

on-off control, whereas the other subject group already started at a low level of control 

energy that did not decrease much in their second run. This is already a first indication for 

a steeper learning curve with on-off control, as compared to continuous control. 

Table 6.6 – Quantitative statistical results for TLX ratings and control energy, task A 

Factor TLX Rating Control Energy 
Control system 𝐹(1,14) = 6.427 𝑝  0.05 𝐹(1,14) = 1.177 𝑝 = 0.2962 
Group 𝐹(1,14) = 0.7859 𝑝 = 0.3903 𝐹(1,14) = 0.8207 𝑝 = 0.3803 
Control system 
  Group 

𝐹(1,14) = 0.1176 𝑝 = 0.7367 𝐹(1,14) = 5.266 𝑝  0.05 

 

As mentioned in section 6.3.1, the subjects’ performance in task A can be quantified by 

the time they required to complete the task. This time shall be called completion time. 

Since the theoretical minimum completion time differed between the control system types, 

completion time was also normalized, i.e., divided by the respective theoretical minimum. 

Box plots of both completion time and normalized completion time can be seen in Figure 

6.11. 
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Figure 6.11 – Box plots of normalized completion time and completion time (task A) 

In both cases, a mixed ANOVA was performed, even though the data was not normally 

distributed. Results are listed in Table 6.7. The difference in normalized completion time 

between continuous control and on-off control is highly significant. Moreover, there is a 

significant interaction between group and control system, whereas the difference between 

groups is not significant. Subsequent t-tests for each subject group individually showed 

that the improvement in normalized completion time of 0.8, i.e., 80 percentage points, 

within the group that started with continuous control is highly significant. Again, like the 

differences in control energy discussed above, this is a strong indicator in favor of the 

hypothesis that pilots learn quicker how to tackle the problem of time delays when using 

an on-off control system. 

The analysis of normalized completion time shows that the on-off control system enables 

better performance in terms of target acquisition than the continuous control system and 

that it probably shortens the learning phase. However, this type of control system faces 

skepticism from pilots (cf. section 6.4.5), because it seems to restrict the airplane’s 

maneuverability and to thereby decrease the maximum possible performance. Indeed, the 

maximum rate of movement of the airplane symbol (i.e., the control sensitivity) was lower 

and the minimum theoretical completion time was greater for the on-off control system. 

To find out what influence this restriction had, data from the (non-normalized) completion 

time are analyzed and compared to the results above. Interestingly, there is neither a 

significant difference between the control system types, nor between the groups. The 

interaction between group and control system, however, is significant. T-tests for each 

subject group individually indicate that only the reduction in completion time within the 

group that started with continuous control is significant. While mean normalized 

completion time has been reduced by 36% in this case, completion time dropped by only 

22%. This means that the restriction in maneuverability introduced by the on-off control 

system is noticeable, but outweighed by the positive effects on workload and learning – at 

least in this initial phase. 
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Table 6.7 – Quantitative statistical results for (normalized) completion time in task A 

Factor Normalized Completion Time Completion Time 
Control System 𝐹(1,14) = 9.271 𝑝  0.01 𝐹(1,14) = 1.038 𝑝 = 0.3256 

Group 
𝐹(1,14) =
= 0.03954 

𝑝 = 0.8452 
𝐹(1,14) =
= 0.006425 

𝑝 = 0.9372 

Control System 
  Group 

𝐹(1,14) = 6.680 𝑝  0.05 𝐹(1,14) = 6.549 𝑝  0.05 

Control System, 
First Run: Ac 

𝑡(7) = 4.221 𝑝  0.01 𝑡(7) = 2.974 𝑝  0.05 

Control System, 
First Run: Ao 

𝑡(7) = 0.3089 𝑝 = 0.3832 𝑡(7) = −0.9642 𝑝 = 0.8165 

 

In all three objective parameters – control energy, completion time and normalized 

completion time – it can be seen that the variance of the data points appears to be smaller 

for on-off control than for continuous control (cf. Figure 6.10 and Figure 6.11). Likewise, 

regarding each control system type individually, variance appears to be smaller when it is 

used in the second run. This indicates that the subjects’ behavior and performance was 

generally more consistent with on-off control than with continuous control and that it got 

more consistent as they learned. The most consistent performance across subjects is 

observed in the case of on-off control as the second run. 

 
Figure 6.12 – Time history plots of run Ac, subject 1 

After this global analysis of task A, which already revealed some interesting results, a more 

detailed look is now taken at the subjects’ behavior throughout the task. Take for instance 

the time history plots of the first run of subject 1 (Ac, cf. Table 6.1), given in Figure 6.12. 

Using the continuous control system, the subject started off with a pronounced PIO, which 
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is evident from the 180° phase shift between sidestick input and system output. This was 

expected (cf. section 6.3.1). The period of the PIO amounts to approximately 10 𝑠, which 

is slightly higher than the 8 𝑠 predicted by the compensatory pilot model without lead (cf. 

equation (3.26)). This difference is due to the fact that the amplitude of each single control 

input was not constant, but varied more or less drastically. The amplitude of the first PIO 

cycle is about 2.7 and thus slightly below the maximum of 3.0 predicted by equation 

(3.25). These observations indicate that subject 1 started off with a high pilot gain, high 

input aggressiveness and almost no lead. After about 50 𝑠, however, he managed to stop 

the PIO. He then continued for a few seconds struggling to reach the target, but once he 

got this first one, he managed to reach the rest comparatively quickly and without much 

overshoots or oscillations. 

The difference in performance between the first target and all other targets is due to a 

change in control strategy. This change is evidenced qualitatively by the appearance of 

control inputs in Figure 6.12, which start to become pulse-like at around 𝑡 = 95 𝑠. A 

quantitative measure for this change in strategy is the time between control inputs (TBI), 

which is depicted in Figure 6.13 for the same run. 

 
Figure 6.13 – TBI in run Ac, subject 1 

The TBI is very low in the beginning of the run, indicating that the subject is moving the 

control stick almost continuously, without stopping at neutral for long. Then, the TBI 

gradually becomes longer until, after the 38th input, it is consistently greater than 2 𝑠. In 

other words, the subject has adopted the move-and-wait strategy, with all wait phases at 

least as long as the time delay, which was 2 𝑠 in this experiment. Accompanying the 

move-and-wait strategy is an increase in control amplitudes. As described in section 3.2.2, 

these pulse-like inputs can be seen as an attempt to compensate for the increased time to 

reach the target caused by the wait phases. 

The first run of subject 1 described above is characteristic for the initial behavior of most 

subjects. It occurred with both control system types, as the following example of subject 

6 shows. Figure 6.14 shows time history plots of his first run, which he performed using 

the on-off control system. Again, the run starts with a PIO, whose period of approximately 

12 𝑠 is larger than the predicted 8 𝑠 (cf. equation (3.26)) because control inputs were 

intermittent in the beginning. The initial PIO amplitude of about 1.1 is slightly below the 

maximum of 1.2 predicted by equation (3.25). Like subject 1, subject 6 seems to have 
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applied a high pilot gain and almost no lead in the beginning. After 2.5 cycles, however, 

the PIO is stopped and after a few more control inputs, a consistent and effective behavior 

is adopted. 

 
Figure 6.14 – Time history plots of run Ao, subject 6 

Like in the case of the continuous control system, the strategy change is evidenced 

quantitatively by an increase in TBI (cf. Figure 6.15). 

 
Figure 6.15 – TBI in run Ao, subject 6 

Only few subjects started their first run with a suitable control strategy. Subject 7, for 

instance, began with cautious inputs to the continuous control system and with a high 

TBI, thereby successfully avoiding PIOs. After two targets, his inputs became pulse-like – 

again probably to accelerate the system response. Subject 18, who started with the on-off 

control system, also naturally employed the move-and-wait strategy right from the 

beginning. The third and final subject to start with a suitable control strategy was subject 

17, who was familiar with RPAS control through time delay. It can be concluded that he 
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knew about the move-and-wait strategy. Since his first run was with the continuous control 

system, the effect of his prior knowledge about a suitable control strategy may attenuate 

the expected positive effect of the on-off control system. It is therefore possible to include 

subject 17 in the analysis without introducing a bias towards the hypotheses of section 

6.1. 

Some other subjects managed to adopt the move-and-wait strategy right after the first or 

second input. In the second run, almost all subjects used this strategy from the start. 

Another type of strategy change is noteworthy at this point. Some subjects deliberately 

made pulsed inputs of short duration and with equally short TBI at some time during task 

A. Subject 5, for example, briefly produced this kind of inputs, which can be seen in Figure 

6.16 at around 𝑡 = 150 𝑠. 

 
Figure 6.16 – Time history plots of run Ao, subject 5 

Pulsed inputs have the advantage that the system reaction can be estimated by counting 

the pulses, which is still easier than estimating the duration of an input (cf. section 4.1). 

However, such inputs again increase the time required to reach a target, which is 

evidenced by the shallower slope of system output 𝑦 following these inputs. Given that 

subject 5 returned to applying pulse-like inputs of variable duration, it seems that for him, 

this disadvantage of pulsed inputs outweighed the associated reduction of mental load. 

His strategy change can also be seen in the TBI plot of Figure 6.17, where the pulsed 

inputs can be recognized by the very small TBI value of multiple inputs in a row. 



Experimental Evaluation of Manual Remote Flight Control 

170 

 
Figure 6.17 – TBI in run Ao, subject 5 

All in all, pulsed control inputs were rarely employed and subjects always returned to 

pulse-like control. To test hypothesis 2, a quantitative criterion must be found that allows 

to find the time of the strategy change towards the move-and-wait strategy, associated 

with either pulse-like or pulsed control. A suitable assumption is that the move-and-wait 

strategy can be considered adopted when, for the first time in a run, 3 out of 4 consecutive 

TBIs are larger than 2 𝑠. Note that this method does not work for subject 9, who started 

run Ao with pulsed inputs and thereby produced small TBI values at the beginning. In this 

case, the time until strategy change was manually corrected to 0. Figure 6.18 shows the 

resulting box plots of the time until strategy change. 

 
Figure 6.18 – Box plots of time until strategy change in task A 

A mixed ANOVA was computed across the time until strategy change in task A. The data 

was not normally distributed, thus compromising the validity of the results shown in Table 

6.8. The difference in mean time until strategy change between control system types is 

not significant, but there tends to be a noticeable difference between groups. The 

interaction Control System   Group is strong. Together with Figure 6.18, this again 

indicates that an on-off control system expedites the subjects’ learning process. 
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Table 6.8 – Quantitative statistical results for time until strategy change in task A 

Factor 𝐹(1,14) 𝑝 
Control System 0.5786 0.4595 
Group 3.749  0.1 
Control System   
Group 

10.05  0.01 

 

The objective measures and the TLX ratings presented in the preceding part of this section 

can be complemented by pilot opinions to obtain a better insight into subjective aspects. 

Apart from the TLX scales, the experiment handbook therefore contained additional 

questions that were answered on scales or in the form of free text (cf. appendix B). After 

each run of task A, three questions addressed the familiarization with the time delay, the 

learning of a strategy to cope with it and the role of the control system in this strategy. 

Figure 6.19 shows the answers of all 16 subjects of task A to the first question. They 

indicate how the subjects themselves estimated the time they had needed to find a suitable 

control strategy. Interestingly, there are no clear distinctions between control system types 

or subject groups. In the group that started with the continuous control system, however, 

subjects tended to think that they found a strategy quicker with the on-off control system. 

Pilots generally estimated that they found a suitable strategy quite early in the run, 

probably because they had to find the strategy already to reach the first target and it still 

took them quite some time to reach all the other targets afterwards. 

 
Figure 6.19 – Self-assessments on piloting strategy 

It had already been expected that the answers to the first question might be somewhat 

unclear due to the many possible interpretations, which are partly induced by the decision 

not to brief the subjects on possible control strategies before or during task A. Therefore, 

another question tried to approach the same aspect from a different angle. Figure 6.20 

shows how subjects estimated the time they had required to get accustomed to the amount 

of latency in the controlled system. Here, the result looks more like the data from the 

objective measures shown above. There seems to be no difference between control 

systems in the group of subjects who started with on-off control. Those subjects who 

started with continuous control, however, noted that they initially had trouble familiarizing 
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with the controlled system’s delay. This observation supports the objective findings 

presented above and thereby hypothesis 2. 

 
Figure 6.20 – Self-assessments on latency estimation 

A third question directly asked the subjects whether they thought that the control system 

supported or hindered their control strategy. The results, shown in Figure 6.21, are 

unclear. This may again be due to various interpretations of the word “strategy”. 

 
Figure 6.21 – Pilot ratings on control system support 

All in all, taking into account the objective measures, the TLX ratings and the 

self-assessments, there is strong evidence that pilots naïve to flight control with large time 

delays find an appropriate control strategy quicker with an on-off control system than with 

a continuous control system. Hypothesis 2 can thus be confirmed. While the objective 

measures provide quite strong indications, the subjects’ own self-assessments on this 

matter is not as clear, but tends to support this finding. 

6.4.2 Tracking and the Influence of Control Sensitivity 

In this section, the analysis of task B reveals the tracking performance achievable with a 

time delay of 2 𝑠. Moreover, differences between control system types and control 

sensitivity levels are exposed, thus providing insights into the suitability of on-off control 

and into the influence of control sensitivity on workload and performance. Ultimately, the 

choice of control sensitivity level S2 as baseline can thereby be evaluated. Task B was 

different from task A in that all subjects had some experience controlling a system with 
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large time delays and therefore knew about possible piloting strategies, most notably the 

move-and-wait strategy. This was also ensured by the debriefing of task A (cf. appendix 

B). Furthermore, counterbalancing of experimental runs (cf. section 6.3) mitigated the 

effects of learning. Thus, no distinction is made between groups of subjects in the following 

analyses. 

First, Figure 6.22 shows the box plots of TLX ratings in task B. The boxes show how the 

subjects evaluated the workload experienced with each configuration. 

 
Figure 6.22 – Box plots of TLX ratings in task B 

The results of a two-way repeated-measures ANOVA across this data, which are 

summarized in Table 6.9, indicate that TLX ratings were significantly smaller when 

subjects used the on-off control system. Looking at Figure 6.22, it can be seen that this 

is especially the case for sensitivity levels S2 and S3. The ANOVA furthermore indicates 

that there are significant differences in TLX ratings between sensitivity levels, whereas the 

interaction Control System   Sensitivity is not significant. An evaluation of the contrasts 

of factor Sensitivity shows that TLX ratings of sensitivity level S2 were significantly lower 

than those of sensitivity levels S3 and S4. All in all, these results indicate that subjects 

experience less workload when using the on-off control system as compared to the 

continuous control system and that the sensitivity level S2 is preferable over all other levels 

in terms of workload. 

Table 6.9 – Quantitative statistical results for TLX ratings in task B 

Factor 𝐹 𝑝 
Control System 𝐹(1,17) = 5.396  0.05 
Sensitivity 𝐹(2.100,35.70) = 5.116  0.05 
Control System   
Sensitivity 

𝐹(2.649,45.03) = 2.002 0.1338 

 

Like in task A, the TLX ratings obtained can be complemented by the measure of control 

energy. Figure 6.23 shows the box plots of control energy in task B. Remember that, 
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according to equation (6.3), control sensitivity 𝐾𝑎 is a factor in the computation of control 

energy. While 𝐾𝑎 increased by a factor of 10 between sensitivity levels S1 and S4, the 

increase in control energy was less pronounced. This shows that subjects adapted their 

behavior to the control sensitivity, accelerating slow system responses and moderating fast 

system responses. 

 
Figure 6.23 – Box plots of control energy in task B 

Although the data failed the Lilliefors-test for normality and O’Brien’s test for 

homoscedasticity, a two-way repeated-measures ANOVA was conducted to obtain 

quantitative indications. Its results, listed in Table 6.10, show that the difference in control 

energy between control system types is not significant. Moreover, there is no significant 

interaction Control System   Sensitivity. The differences between sensitivity levels, 

however, are highly significant. More exactly, all contrasts with the exception of S3 vs. S4 

are highly significant. The measurements of control energy agree with the TLX ratings in 

that sensitivity levels S3 and S4 are less preferable. However, while control energy is 

smallest with sensitivity level S1, TLX ratings are smallest with level S2. This may be due 

to the fact that the slow system response with level S1 effectively prevented larger control 

energies and thereby also required considerable pilot compensation which had a negative 

effect on perceived workload. 

Table 6.10 – Quantitative statistical results for control energy in task B 

Factor 𝐹 𝑝 
Control System 𝐹(1,17) = 1.326 0.2654 
Sensitivity 𝐹(2.001,34.02) = 16.49  0.01 
Control System   
Sensitivity 

𝐹(1.675,28.48) = 1.201 0.3134 

 

After the analysis of TLX ratings and control energy as measures of workload, tracking 

performance is analyzed in the following paragraphs. Box plots of the first evaluation 

parameter, tracking RMSE, are shown in Figure 6.24. 
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Figure 6.24 – Box plots of tracking RMSE in task B 

The RMSE data, too, proved to be non-normal and heteroscedastic, but a two-way 

repeated-measures ANOVA was computed nonetheless. The results, listed in Table 6.11, 

indicate that the difference between control systems as well as differences between 

sensitivity levels and the interaction Control System   Sensitivity are all significant. 

Generally, subjects produced smaller RMSE values with the on-off control system as 

compared to the continuous control system. In the case of sensitivity level S1, however, 

performance with the on-off control system was poorer than with the continuous control 

system. The reason for this observation may be that the slow system response, which 

greatly restricted the tracking bandwidth, could be accelerated more easily with the 

continuous control system and its higher value of 𝐾𝑎 by increasing input aggressiveness 

and thereby the effective reaction magnitude (cf. sections 6.2.2 and 3.3.3). An analysis 

of the contrasts between sensitivity levels shows that RMSE values were significantly lower 

with level S2 than with each other level. This indicates that S2 is the most preferable 

sensitivity level not only in terms of workload, but also in terms of performance. 

Table 6.11 – Quantitative statistical results for RMSE in task B 

Factor 𝐹 𝑝 
Control System 𝐹(1,17) = 11.53  0.01 
Sensitivity 𝐹(2.126,36.14) = 4.416  0.05 
Control System   
Sensitivity 

𝐹(2.149,36.53) = 10.98  0.01 

 

It is also interesting to compare the RMSE values observed here with values attainable 

without time delays in the controlled system. This can be done by taking a look at the 

experiments reported in [70], which were conducted in the DA42 simulator of TUM’s 

Institute of Flight System Dynamics and which employed the same airplane simulation 

model combined with a rate-command/attitude-hold flight controller. As mentioned in 

section 6.3.2, the construction of the forcing function of task B followed the approach 

presented in [70]. The only difference is that here, in the case of large time delays, the 
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forcing function was finally stretched by a factor of 2. The RMSE values in both 

experiments are similar, although both larger and smaller values were produced here, 

where subjects controlled the airplane with a 2 𝑠 time delay. The fact that performance is 

similar if, in the case of 2 𝑠 time delay, the task is slowed down by a factor of 2 indicates 

that the pilot-vehicle bandwidth is effectively halved. At the same time, it can be noted 

that the decision to stretch the forcing function by a factor of 2 established a suitable level 

of task difficulty. 

Finally, as the second tracking performance metric, EVAR is shown in Figure 6.25. The 

appearance of these box plots is strikingly similar to those of control energy, shown in 

Figure 6.23. This is not surprising, because in the present case of a non-oscillating target, 

a higher amount of control energy is indicative for oscillations around the target, i.e., 

oscillations of the error, as mentioned in section 6.4.1. 

 
Figure 6.25 – Box plots of tracking EVAR in task B 

The EVAR data, too, fails the Lilliefors-test for normality and O’Brien’s test for 

homoscedasticity. The two-way repeated-measures ANOVA conducted over the EVAR data 

produces similar results as the ANOVA of the control energy data reported above. As shown 

in Table 6.12, only the differences between control sensitivity levels are highly significant. 

More exactly, all contrasts with the exception of S3 vs. S4 are highly significant. Thus, the 

same conclusions can be drawn as above: sensitivity levels S3 and S4 are less preferable 

and sensitivity level S1 effectively prevented oscillations. 

Table 6.12 – Quantitative statistical results for EVAR in task B 

Factor 𝐹 𝑝 
Control System 𝐹(1,17) = 1.440 0.2465 
Sensitivity 𝐹(1.766,30.02) = 22.36  0.01 
Control System   
Sensitivity 

𝐹(2.079,35.34) = 1.457 0.2466 
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All in all, it can be said that an extremely low control sensitivity, such as level S1, prevents 

oscillations, but at the same time compromises tracking performance due to the restricted 

maneuverability. The resulting pilot compensation adversely affects workload. Extremely 

high control sensitivities, on the other hand, such as that of level S4, promote oscillations 

around the tracking target and thereby also deteriorate tracking performance. To moderate 

the system response and to prevent oscillations, pilots again have to apply considerable 

compensation, which leads to an increase in workload. These findings are in line with the 

thoughts on trading maneuverability against PIO criticality formulated in section 3.3.2. 

According to the results from task B, the baseline control sensitivity level S2 seems to be 

well chosen. It enabled the best tracking performance and, at the same time, produced 

the lowest workload. Tracking accuracy with 2 𝑠 time delay is generally less consistent 

than without time delay. RMSE values similar to those achieved without time delay can 

be achieved with 2 𝑠 time delay if the same task performed at half the pace. 

6.4.3 Operational Context and Predictors 

Evaluation of the data gathered with tasks C and D sheds light on how the flight control 

configurations under scrutiny influence workload and performance in an operational 

context. Furthermore, by examining the differences between tasks C and D, the effect of 

predictors can be studied. Since task C always preceded task D, learning effects may have 

diluted or strengthened any effects that the predictors might have had. Considering that 

these were the final tasks of the session, it is assumed that the learning curve was rather 

flat and that most of the effects are due to the presence or absence of predictors. Hence, 

the second factor for statistical analysis is Predictors instead of Task (cf. Table 6.5), which 

would be more precise but less easy to read. Nonetheless, the possible falsification caused 

by learning shall be kept in mind when reading the following paragraphs. 

The first aspect to be analyzed is workload. Figure 6.26 shows the box plots of TLX ratings 

for all four configurations under scrutiny, which are an indication of how pilots perceived 

workload. 

 
Figure 6.26 – Box plots of TLX ratings in tasks C and D 

A two-way repeated-measures ANOVA across this data indicates that there is a trend for 

mean TLX ratings to be lower for on-off control than for continuous control. In other words, 
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many subjects perceived a lower level of workload when using on-off type control. This 

observation holds for both configurations with predictors and without predictors. Mean 

TLX difference between continuous control and on-off control is 9.1 without predictors and 

thus slightly greater than with predictors, where it is 8.2. It has to be noted, however, that 

there were four subjects who consistently reported higher TLX values for on-off control as 

compared to continuous control. This indicates that at least for some pilots, continuous 

control may be preferable in terms of workload. When comparing the configurations with 

and without predictors, i.e., tasks C and D, Figure 6.26 and the ANOVA results show that 

TLX ratings are significantly lower when predictors are present. Table 6.13 summarizes 

the quantitative results of the ANOVA. 

Table 6.13 – Quantitative statistical results for TLX ratings in tasks C and D 

Factor 𝐹(1,17) 𝑝 
Control System 3.648  0.1 
Predictors 29.63  0.01 
Control System   
Predictors 

0.05790 0.8127 

 

To back up these subjective ratings on workload, control energy is analyzed once again. 

Figure 6.27 illustrates the control energy of both longitudinal and lateral sidestick 

movements. Since both the Lilliefors-test for normality and O’Brien’s test for 

homoscedasticity failed, an ANOVA was not performed here. It can be seen quite clearly, 

however, that lateral control activity is much lower with the on-off control system than 

with the continuous control system. The presence of predictors seems to have a similar, 

although slightly weaker effect. Longitudinal control energy, on the other hand, seems to 

be similar between control system types, but is also noticeably reduced with predictors. 

These observations taken together are in good agreement with the TLX ratings. Pilots may 

have noticed the positive effects of the on-off control system in the lateral axis, but they 

may not have seen a similar improvement in the longitudinal axis. Predictors, on the other 

hand, had a noticeable beneficial effect in both axes. 

 
Figure 6.27 – Box plots of control energy in tasks C and D 
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To analyze the subjects’ performance during tasks C and D, appropriate evaluation 

segments need to be defined first. Table 6.14 sums up these segments, which are 

described in detail in the remainder of this paragraph. Between positions 1 and 3, the 

pilots’ task was to descend to and maintain 1500 𝑓𝑡. No instruction was given on how 

quick to descend, so the beginning of evaluation segment I is defined as the first moment 

when the airplane descends below 1600 𝑓𝑡. This segment ends at position 3. Likewise, 

evaluation segment II with a heading target of 140° starts when the airplane first passes 

150° and ends at position 3. Two additional segments can be defined in the same way for 

the altitude and heading targets between positions 3 and 4. Between positions 4 and 6, 

subjects had to align the airplane with the runway. At these distances to the runway, an 

angular deviation is far easier to perceive and also more relevant than a linear deviation. 

Hence, angular localizer deviation is evaluated instead of linear centerline error in segment 

V. Between positions 6 and the end of the recording, a segment VI can be defined where 

glideslope tracking is analyzed. As soon as the runway 05R centerline tracking error 

decreases below 250 𝑚, the last evaluation segment begins. Here, linear centerline error 

is evaluated. The last segment ends with the recording. 

Table 6.14 – Definition of evaluation segments for tasks C and D 

Segment 
No. 

Parameter / Target Segment Start Segment End 

I Altitude: 1500 𝑓𝑡 After position 1, error  100 𝑓𝑡 Position 3 
II Heading: 140° After position 2, error  10° Position 3 
III Altitude: 1200 𝑓𝑡 After position 3, error  100 𝑓𝑡 Position 4 
IV Heading: 080° After position 3, error  10° Position 4 
V Runway 05L Localizer Position 4 Position 6 
VI Runway 05R 

Glide Slope 
Position 6 End of recording 

VII Runway 05R 
Centerline 

After position 6, error  250 𝑚 End of recording 

 

Considering that the task description said that altitude had to be maintained between 

positions 4 and 5, it should be possible to evaluate altitude tracking along this segment. 

However, many subjects intentionally started their descent right after position 4, ignoring 

the instructions to maintain altitude. Admittedly, the task design or the instructions are to 

blame for this problem. Because of the two following other problems, segments V, VI and 

VII are analyzed across 17 subjects instead of all 18 participants. First, position 4 was 

indicated much too late for subject 9 in run Dc due to a technical problem, which adversely 

affected his localizer tracking performance. Moreover, the same subject entered a severe 

and sustained lateral PIO in run Cc, so that the run was terminated before position 6. The 

rest of the task simply seemed not accomplishable for the subject. For these two reasons, 

subject 9 is not taken into account for evaluation segments V, VI and VII. 

The first parameter under scrutiny in the analysis of task performance is altitude. RMSE 

and EVAR were computed for both segments I and II combined, as in equations (6.4) and 
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(6.5). This combined evaluation is in fact equivalent to an averaging operation that weighs 

RMSEs and EVARs of each segment by its length. 

RMSE1,2 = √
1

𝑁1 + 𝑁2
(∑𝑒𝑖

2

𝑁 

𝑖=1

+∑𝑒𝑗
2

𝑁 

𝑖=1

)

= √
𝑁1

𝑁1 +𝑁2
RMSE1

2
+

𝑁2
𝑁1 + 𝑁2

RMSE2
2

 (6.4) 

EVAR1,2 =
1

(𝑁1 − 1) + (𝑁2 − 1)
(∑ |𝑒𝑖+1 − 𝑒𝑖|

𝑁 −1

𝑖=1

+ ∑ |𝑒𝑖+1 − 𝑒𝑖|

𝑁 −1

𝑖=1

)

=
(𝑁1 − 1)

(𝑁1 − 1) + (𝑁2 − 1)
EVAR1

2 +
(𝑁2 − 1)

(𝑁1 − 1) + (𝑁2 − 1)
EVAR2

2

 (6.5) 

It has to be noted at this point that both RMSE and EVAR are to some extent influenced 

by the simulated turbulence. This means that their absolute value is not a good indication 

for flight control performance. However, since all subjects and all runs were affected by 

the same amount of turbulence, differences between configurations may be interpreted. 

Box plots of altitude RMSE and EVAR are depicted in Figure 6.28. 

 
Figure 6.28 – Box plots of performance in altitude tracking 

A two-way repeated-measures ANOVA was computed for both altitude RMSE and EVAR, 

even though the Lilliefors-test for normality failed. The ANOVA’s quantitative results are 

summarized in Table 6.15. Differences between continuous control and on-off control are 

neither significant in altitude RMSE, nor in altitude EVAR. A t-test for the configurations 

with predictors, however, indicates that subjects achieved significantly smaller RMSEs 

and EVARs with on-off control than with continuous control in this case. (This result has 

to be put into perspective, though, because the interaction Control System   Predictors is 

not significant in either RMSE or EVAR.) Concerning predictors as the second factor of the 
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ANOVA, results indicate that both mean altitude RMSE and EVAR are significantly lower 

with predictors as compared to the configurations without predictors. Given that the data 

is not normally distributed and the sample size is small, some skepticism of these results 

is advisable. It is, however, quite striking that the data points in the case of on-off control 

with predictors are closer together than those of any other configuration. This indicates a 

rather consistent performance between subjects in this particular case. 

Table 6.15 – Quantitative statistical results for altitude tracking 

Factor Altitude RMSE Altitude EVAR 
Control System 𝐹(1,17) = 1.137 𝑝 = 0.3012 𝐹(1,17) = 0.1453 𝑝 = 0.7078 
Predictors 𝐹(1,17) = 6.668 𝑝  0.05 𝐹(1,17) = 6.299 𝑝  0.05 
Control System 
  Predictors 

𝐹(1,17) = 0.5887 𝑝 = 0.4535 𝐹(1,17) = 0.6796 𝑝 = 0.4211 

Control System, 
With Predictors 

𝑡(17) = 1.862 𝑝  0.05 𝑡(17) = 1.989 𝑝  0.05 

 

The same observation concerning the consistency of data points can also be made in 

Figure 6.29, which shows box plots of heading tracking RMSE and EVAR. Again, two 

evaluation segments were combined for evaluation using equations (6.4) and (6.5), 

namely segments II and IV. 

 
Figure 6.29 – Box plots of performance in heading tracking 

Here, the data fails the Lilliefors-test for normality, too. Moreover, homoscedasticity is 

weak (𝑝 = 0.07482) for heading EVAR. Nonetheless, a two-way repeated-measures 

ANOVA was computed for both heading RMSE and EVAR. Results (cf. Table 6.16) show 

that mean heading RMSE is significantly lower with on-off control as compared to 

continuous control. This improvement in mean performance caused by the on-off control 

system is not only greater without predictors (2.165° difference as compared to 1.008°), 

but, as t-tests for configurations with and without predictors individually indicate, also 

more pronounced. Furthermore, heading EVAR tends to be lower with on-off control as 

compared to continuous control. When comparing configurations with and without 
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predictors, it can be seen that both mean heading RMSE and EVAR are significantly lower 

when predictors are present. It has to be stressed again, though, that not all requirements 

for the ANOVA are met. 

Table 6.16 – Quantitative statistical results for heading tracking 

Factor Heading RMSE Heading EVAR 
Control System 𝐹(1,17) = 5.459 𝑝  0.05 𝐹(1,17) = 3.582 𝑝  0.1 
Predictors 𝐹(1,17) = 9.157 𝑝  0.01 𝐹(1,17) = 52.98 𝑝  0.01 
Control System   
Predictors 

𝐹(1,17) = 5.617 𝑝  0.05 𝐹(1,17) = 2.957 𝑝 = 0.1037 

Control System, 
Without Predictors 

𝑡(17) = 3.131 𝑝  0.01   

Control System, 
With Predictors 

𝑡(17) = 1.344 𝑝  0.1   

 

Over the next evaluation segment V, tracking of the runway 05L localizer can be examined. 

Box plots of the subjects’ tracking performance are shown in Figure 6.30. 

 
Figure 6.30 – Box plots of performance in localizer tracking 

For both localizer RMSE and EVAR, a two-way repeated-measures ANOVA was computed. 

Quantitative results are shown in Table 6.17. Here, the Lilliefors-test for normality failed 

and homoscedasticity is low (𝑝 = 0.08932) for localizer RMSE, which again compromises 

the validity of the ANOVA results. Mean localizer RMSE tends to be lower with on-off 

control as compared to continuous control. T-tests for configurations with and without 

predictors individually show that this apparent performance improvement is more 

pronounced when predictors are not present. Differences between control systems in 

localizer EVAR are not significant. The effect of predictors, on the other hand, is again 

clearly discernible. Their presence significantly reduces both mean localizer RMSE and 

EVAR. 
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Table 6.17 – Quantitative statistical results for localizer tracking 

Factor 
Runway 05L Localizer RMSE Runway 05L Localizer EVAR 

𝐹 or 𝑡 𝑝 𝐹 or 𝑡 𝑝 
Control System 𝐹(1,16) = 3.251  0.1 𝐹(1,16) = 1.992 0.1773 
Predictors 𝐹(1,16) = 11.28  0.01 𝐹(1,16) = 32.48  0.01 
Control System   
Predictors 

𝐹(1,16) = 1.536 0.2331 𝐹(1,16) = 0.003892 0.9510 

Control System, 
Without Predictors 

𝑡(16) = 1.682  0.1   

Control System, 
With Predictors 

𝑡(16) = 0.6644 0.2580   

 

In the horizontal plane, localizer tracking during segment V is followed by centerline 

tracking during segment VII. Figure 6.31 depicts box plots of the pilots’ centerline RMSE 

and EVAR. 

 
Figure 6.31 – Box plots of performance in centerline tracking, runway 05R 

A two-way repeated-measures ANOVA was computed for both centerline RMSE and EVAR, 

even though the Lilliefors-test failed for centerline RMSE and the centerline EVAR data 

cannot be considered homoscedastic. The results listed in Table 6.18 indicate that both 

metrics do not significantly differ between on-off control and continuous control. The 

predictors, on the other hand, do seem to have an effect. Mean centerline RMSE tends to 

be lower when predictors are present. Mean centerline EVAR even is significantly lower 

with predictors as compared to configurations without predictors. 

Table 6.18 – Quantitative statistical results for centerline tracking 

Factor 
Runway 05R Centerline RMSE Runway 05R Centerline EVAR 

𝐹(1,16) 𝑝 𝐹(1,16) 𝑝 
Control System 0.4787 0.4989 0.0005899 0.9809 
Predictors 3.238  0.1 10.25  0.01 
Control System   
Predictors 

3.652  0.1 0.5396 0.4732 
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Figure 6.32 illustrates all subjects’ horizontal trajectories during final approach. 

Remember that the swing-over command was given at a distance of 4000 𝑚 from the 

threshold. Instead of showing all individual trajectories, the plots only show five 

characteristic lines. The minimum/maximum lines constitute the outer limits, within which 

all trajectories lie. Half of the trajectories lies between the 25%/75% quantile lines and a 

quarter lies each above and below. Finally, the 50% quantile line separates all trajectories 

in two halves. A first glance at the plots already reveals that excursions from an ideal 

maneuver are much greater in the cases without predictors. Generally, performance is 

more consistent between subjects with predictors. This qualitative observation is in 

accordance with the quantitative results above. The plots in Figure 6.32 also show that 

the lateral deviation from runway centerline is, in all configurations, still considerably high 

at the end of some trajectories. In other words, many subjects missed the 45 𝑚-wide 

runway. 

 
Figure 6.32 – Centerline tracking errors during the swing-over maneuver 
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Finally, glide slope tracking during segment VI is analyzed. Box plots of glide slope RMSE 

and EVAR across all subject are depicted in Figure 6.33. 

 
Figure 6.33 – Box plots of performance in glide slope tracking, runway 05R 

The data of glide slope RMSE and EVAR fails the Lilliefors-test. Moreover, 

homoscedasticity is weak (𝑝 = 0.09168) for glide slope EVAR and cannot be assumed for 

the RMSE. Therefore, the results of the two-way repeated-measures ANOVA, which are 

listed in Table 6.19, have only limited validity. The visual appearance of Figure 6.33 and 

the ANOVA results indicate that there is no significant difference between continuous 

control and on-off control in both glide slope RMSE and glide slope EVAR. Similarly, 

predictors do not seem to have an effect on glide slope RMSE. Glide slope EVAR, on the 

other hand, is significantly lower when predictors are present. The data points in Figure 

6.33 also appear to be more consistent in those cases with predictors. 

Table 6.19 – Quantitative statistical results for glide slope tracking 

Factor 
Rwy. 05R Glide Slope RMSE Rwy. 05R Glide Slope EVAR 

𝐹(1,16) 𝑝 𝐹(1,16) 𝑝 
Control system 0.05629 0.8155 1.328 0.2661 
Predictors 0.8171 0.3795 10.08  0.01 

 

Figure 6.34 illustrates the vertical trajectories of all subjects. Note that the abscissa here 

indicates the distance to the aiming point, i.e., the point where the glide slope intersects 

the ground, not the distance to the threshold. The first feature to notice is that excursions 

from the nominal glide slope are, by far, largest in the case of continuous control without 

predictors. The trajectories in Figure 6.34 seem more consistent when predictors are 

present, which well corresponds to the consistency of data points in Figure 6.33. In all 

four configurations, however, many trajectories end up high above the runway or come in 

very low on final approach. Together with the observation that subjects often missed the 

runway laterally (cf. Figure 6.32), a rather disappointing picture concerning the actual 

landing performance emerges. Indeed, only very few runs ended a few meters above the 
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runway and in an attitude suitable for landing. This fact shows how very difficult it is to 

perform high-bandwidth tasks with 2 𝑠 time delay. 

 
Figure 6.34 – Glide slope tracking errors during final approach (with swing-over) 

All in all, concluding the evaluation results of flight control in an operational context with 

and without predictors gathered up to this point, it can be said that subjects performed at 

least as well with the on-off control system as with the continuous control system. In some 

cases, performance was even better when using on-off control. Thus, hypothesis 3 can be 

accepted: performance with an on-off control system is comparable or better than 

performance with a continuous control system. Regarding pilot workload in tasks C and 

D, the effect of control system type is not very clear. It seems, though, that on-off control 

positively affects the metrics of perceived and measured workload. Also looking at the 

observations from the preceding sections 6.4.1 and 6.4.2, it can be concluded that 

hypothesis 1 can be accepted: workload is less with an on-off control system as compared 

to a continuous control system. Another thought on the influence of control system type 

on workload mentioned in section 3.3.3 and also backed up by pilot opinion (cf. section 
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6.4.5) is, that the beneficial effect of an on-off control system becomes weaker as pilots 

become more familiar with flight control with large time delays. The predictors’ positive 

effect on workload and performance, on the other hand, is quite pronounced. This finding 

is backed up by pilot ratings of the predictors, produced after each run of task D on a 

five-point scale between “very annoying” and “very helpful”. Figure 6.35 shows all the 

subjects’ ratings of the predictors. The subjects generally agreed that the predictors are 

quite helpful, regardless of the control system employed. Based on these ratings and the 

objective measures above, hypotheses 4 and 5 can be accepted, even though the 

predictors’ positive effect on workload and performance may have been strengthened by 

learning. Predictor displays reduce workload and improve performance. This corresponds 

to what previous studies have found. 

 
Figure 6.35 – Mean pilot ratings for predictors 

Interestingly, however, subject 15 reported that the reason for the severe PIOs encountered 

during and after the swing-over maneuver was due to his focused attention on the 

predictors. Indeed, the (visual) attention required to use a predictor possibly is a 

shortcoming of this approach to tackle time delays. To get more insight into this matter, 

subjects were asked to estimate how much attention they had devoted to the HUD. Figure 

6.36 shows the resulting ratings. 

 
Figure 6.36 – Mean subjective amount of attention on the HUD 

Across these ratings, a two-way repeated-measures ANOVA was conducted, whose 

quantitative results are listed in Table 6.20. While there is no significant difference 
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between continuous and on-off control, subjects felt that they allocated significantly more 

attention to the HUD when predictors were presented. The findings of the ANOVA may be 

compromised by the fact that ratings were not normally distributed, which is a 

consequence of the discrete-scale questionnaire design (cf. appendix B). Therefore, a sign 

test was additionally performed. Of the 36 differences in rated attention on the HUD 

between task C and D, 24 were positive (more attention on the HUD in task D), 10 were 

neutral and 1 was negative (less attention on the HUD in task D), yielding a significant 

effect between the two tasks in the sign test and backing up the findings from the ANOVA.  

Table 6.20 – Quantitative statistical results for amount of attention on the HUD 

Factor 𝐹(1,17) 𝑝 
Control system 0.2742 0.3927 
Predictors 23.61  0.01 

 

It can be noted that the subjective attention on the HUD is high in both cases. This is 

partly due to the fact that it is possible to, as one subject put it, see through the HUD and 

thereby almost permanently look at it. Moreover, there were no other displays or visual 

tasks to work with. All in all, hypothesis 6 may be accepted based on this data, although 

more experimental research is necessary to obtain deeper insights into this matter. 

6.4.4 Conclusion on Hypotheses 

Most of the statistical analyses presented in the previous sections are related to the 

hypotheses formulated in section 6.1. Hence, the preceding sections also interpret the 

outcome of these analyses in the context of the top-level hypotheses and indicate whether 

each hypothesis can be accepted or whether it must be rejected. Considering that the 

hypotheses were the main driver behind the experiments presented, this section 

recapitulates their outcome in a compact and concise manner. It can therefore be 

understood as the concluding counterpart to section 6.1. Table 6.21 lists all hypotheses 

and their respective outcome. Based on the experiments made, all six a priori hypotheses 

can be accepted. 

Table 6.21 – Summary of hypotheses outcome 

N° Hypothesis Outcome 
1 Workload is less with an on-off control system as compared 

to a continuous control system. 
Accepted 

2 Pilots naïve to flight control with large time delays find an 
appropriate control strategy quicker with an on-off control 
system than with a continuous control system. 

Accepted 

3 Performance with an on-off control system is comparable or 
better than performance with a continuous control system. 

Accepted 

4 Predictor displays reduce workload. Accepted 
5 Predictor displays improve performance. Accepted 
6 Visual predictor displays bind a significant amount of visual 

attention. 
Accepted 
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Apart from the six hypotheses, section 6.1 also formulates the qualitative expectations 

concerning workload and performance for the four possible combinations of control system 

type and predictor displays. The following Figure 6.37 qualitatively relates the four 

configurations of tasks C and D in terms of workload and performance and thereby 

represents the actual experimental results, as opposed to the prior expectations. It has to 

be stressed, however, that this simplified, qualitative sketch should be understood as a 

graphic summary and must not be interpreted like the quantitative plots of other sections. 

 
Figure 6.37 – Qualitative differences in actual workload and performance 

The sketch shows that, departing from continuous control without predictors as the 

baseline, gains in workload and performance can be achieved with predictor displays and 

with an on-off control system alike, although these gains are higher with predictors. This 

fact corresponds to what had been expected. Quite unexpectedly, though, there is a 

considerable difference between the continuous control system with predictors and the 

on-off control system with predictors. This means that the beneficial effects of the both 

elements can be combined. At the same time, the difference between the continuous 

control system with predictors and the on-off control system without predictors is smaller 

than expected. 

6.4.5 Pilot Opinion 

Apart from the various objective measures of performance and the formalized 

quantification of workload in the form of the TLX, the pilots’ subjective opinion is an 

important element to consider. Therefore, the experiment handbook contained additional 

questions that were answered on scales or in the form of free text. The self-assessments 

related to learning are analyzed above in section 6.4.1 and questions concerning the 

predictors and attention on the HUD are presented in section 6.4.3, whereas this section 

covers all the following other questions. In tasks C and D, pilots were asked to rate the 

various control system functions. Moreover, the pilots’ preference between continuous 

control and on-off control was recorded at three instances. On the final page of the 

experiment handbook, they had the possibility to elaborate on the two control system types 

and any other aspect of the control system or the experiments. 

Low WorkloadHigh Workload

Poor Performance

Good Performance

Continuous

On-Off

On-Off,
with Predictor

Continuous,
with Predictor
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Figure 6.38 – Pilot ratings of the altitude hold function 

First, ratings of the four flight controller functions (Altitude Hold, Path Straightener, 

Standard Rate Turn Hold and Protections) are analyzed. Those ratings were produced after 

each run of tasks C and D on a five-point scale between “very annoying” and “very helpful”. 

They also had the option to check “function was not observed or was not active”. Figure 

6.38, Figure 6.39, Figure 6.40 and Figure 6.41 show the resulting ratings, taking into 

account only valid answers on the five-point scale. The number of valid answers is 

indicated next to each group of ratings by the value of 𝑛. 

 
Figure 6.39 – Pilot ratings of the path straightener function 

The three functions Altitude Hold, Path Straightener and Standard Rate Turn Hold were 

active in all runs of all subjects for at least a couple of seconds. Thus, the value of 𝑛 in 

these cases is equal to the number of subjects who correctly recognized that the functions 

had been active (“correct hits”). The other 18 − 𝑛 subjects did not notice the functions 

(“misses”). It can be seen that the three functions Altitude Hold, Path Straightener and 

Standard Rate Turn Hold were generally rated rather helpful, without notable differences 

between control systems or tasks. The number of misses is noteworthy only in case of the 

Standard Rate Turn Hold function, which may be due to the fact that a constant altitude 

and a wings level attitude are easier to recognize than a constant, standard turn rate. Valid 

ratings of the protections were scarce and do not permit any conclusions. On the one hand, 

the protections’ activity was missed in a total of 17 runs. On the other hand, five ratings 
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were given after runs where none of the protections was active (“false alarms”) and 

therefore have to be considered invalid. 

 
Figure 6.40 – Pilot ratings of the standard rate turn hold function 

The fact that the protections often acted without the subjects noticing it, which is indicated 

by the large number of misses, can be good and bad. On the one hand, it shows that the 

protections do not suddenly take over control, thus possibly confusing pilots, but blend in 

rather seamlessly with the airplane’s behavior. On the other hand, the subject’s lack of 

awareness with respect to protections is in fact a lack of situational awareness that can 

lead to inadequate decisions and control inputs that may further deteriorate the situation. 

The fact that false alarms occurred in the rating of protection mechanisms shows that 

some pilots already felt restricted by the flight control system without protections. This 

may be due to delayed aircraft reactions not being associated with control inputs. 

 
Figure 6.41 – Pilot ratings of the protections 

Subjective opinions were not only gathered about the predictors, but also about the control 

system types. At three times during an experimental session, subjects were asked to state 

which control system type they preferred. After task C and after task D, they had to decide 

whether they liked the configuration of the task’s first run or that of the second run better. 

(Note that some of the subjects started off with continuous control, whereas others began 

with on-off control, as indicated in Table 6.1.) At the end of the session, they were asked 

about their overall preference between continuous control and on-off control. Figure 6.42 

shows the results. 
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Figure 6.42 – Pilot preference for either control system type 

Surprisingly, there seems to be no clear preference. In the operational scenario of tasks C 

and D, the same number of subjects voted for on-off control as for continuous control. 

Interestingly however, the presence of predictors did not seem to change the pilots’ opinion 

in this regard. Overall preference is slightly in favor of on-off control, but still very balanced. 

Some subjects indicated in verbal comments or written notes that their preference would 

change under certain circumstances. Two pilots said that they preferred a different control 

system type for the final approach than for the initial approach. However, they had 

opposing views. While subject 2 said he would prefer continuous control during the 

swing-over, subject 3 reported that continuous control only worked for him during initial 

approach. A very interesting comment was made by subject 5, who said he would change 

his preference towards on-off control if there was another task apart from flying. Subject 

17 had difficulties with the deadzone of the sidestick in its continuous control 

configuration. He therefore indicated that his preference would rather be with continuous 

control if the deadzone was reduced. This comment shows that the inceptor characteristics 

of the continuous control system mismatched this particular pilot, who interestingly was 

the only subject with RPAS experience. Finally, subject 13 made an honest comment that 

is very valuable, because it reveals the mindset of some pilots: he said that he marked 

continuous control as his preferred type only because he was a pilot. On-off control, from 

his point of view, is only good for video games and not how airplanes ought to be flown. 

This attitude is comparable to that of the fist astronauts in the 1950s and 1960s, who 

had been recruited from the pilot elite and wanted to fly spacecraft the same way they 

flew airplanes [152]. They nevertheless ended up landing on the moon not only with 

massive computer support, but also with incremental, pulse-type control of sink rate (cf. 

section 4.1). This very well illustrates that every new technology has to surmount not only 

technical, but also societal challenges. 

More insight into pilot preferences and the suitability of either control system type is gained 

by the following evaluation of the subjects’ free text comments. These comments have 

mostly been given in the form of bullet points, in German language and often in an informal 

way, sometimes not using the proper technical terms. Therefore, they have been rewritten 

for better readability, then categorized and listed in Table 6.22, Table 6.23, Table 6.24 

and Table 6.25. Due to the fact that one single comment can be assigned to more than 

one of the following categories, some comments appear repeatedly, under multiple 

headlines. Identical comments within one category, however, stem from different subjects. 

Of course, all subjects did not always agree. Individual comments that differ from the 

opinion of the majority are distinguished by italic letters.  



Experimental Evaluation of Manual Remote Flight Control 

  193 

T
a
b
le

 6
.2

2
 –

 R
ew

ri
tt

en
 p

il
o
t 

co
m

m
en

ts
 r

el
a
te

d
 t

o
 p

re
d
ic

to
rs

 a
n
d
 w

o
rk

lo
a
d
 

D
o
 

yo
u
 

h
a
ve

 
a
n
y 

fu
rt

h
er

 
re

m
a
rk

s 
or

 
su

gg
es

ti
o
n
s 

fo
r 

im
p
ro

ve
m

en
t?

 

P
re

d
ic

to
rs

 


 

P
re

d
ic

to
rs

 a
re

 v
er

y 
h
el

p
fu

l 

 

P
re

d
ic

to
rs

 a
re

 e
xt

re
m

el
y 

h
el

p
fu

l 

 

P
re

d
ic

to
r 

is
 w

el
l 
su

it
ed

 f
or

 d
o
w

n
w

in
d
 a

n
d
 b

a
se

 l
eg

, 
b
u
t 

a
n
n
oy

in
g 

d
u
ri
n
g 

fi
n
al

 a
p
p
ro

a
ch

. 

 

P
os

si
b
ly

 s
h
ow

 g
lid

e 
p
at

h
 a

n
d
 l
oc

a
liz

er
 i
n
st

ea
d
 o

f 
p
re

d
ic

to
r 


 

M
a
ke

 t
h
e 

d
ot

s 
of

 t
h
e 

p
re

d
ic

to
rs

 l
a
rg

er
 

(e
sp

ec
ia

lly
 h

ea
d
in

g)
 


 

M
a
ke

 t
u
rn

 r
at

e 
p
re

d
ic

to
r 

b
et

te
r 

re
a
d
a
b
le

 
(i
n
cr

ea
se

 d
is

ta
n
ce

 f
ro

m
 t
u
rn

 r
a
te

 i
n
d
ic

a
to

r)
 


 

L
a
te

ra
l 
p
re

d
ic

to
r 

(t
u
rn

) 
d
if
fi
cu

lt
 t

o 
re

a
d
. 
S
u
gg

es
ti
o
n
: 

p
re

d
ic

to
r 

a
b
o
ve

 t
u
rn

 r
a
te

 i
n
d
ic

a
to

r,
 o

r 
a
s 

a
 l
a
te

ra
lly

 
m

o
vi

n
g 

ve
rt

ic
a
l 
b
a
r 


 

H
u
m

a
n
-m

a
ch

in
e 

in
te

rf
a
ce

 m
u
st

 b
e 

a
d
a
p
te

d
 (

H
U

D
 a

n
d
 

p
re

d
ic

to
r 

sy
m

b
o
ls

) 

W
or

kl
oa

d
 


 

F
ly

in
g 

is
 n

ot
 t

h
e 

on
ly

 t
as

k!
 (

P
a
yl

oa
d
s,

 t
a
xi

…
) 

In
 w

h
ic

h
 s

it
u
a
ti
o
n
s 

d
o
 y

o
u
 t

h
in

k 
a
n
 o

n
-o

ff
 c

o
n
tr

ol
 s

ys
te

m
 i

s 
m

o
re

 
h
el

p
fu

l 
or

 
b
et

te
r 

su
it
ed

 
th

a
n
 

a 
co

n
ti
n
u
ou

s 
co

n
tr

ol
 s

ys
te

m
? 


 

W
h
e
n
 p

re
d
ic

to
rs

 a
re

 
a
va

il
a
b
le

, 
on

-o
ff

 c
on

tr
ol

 i
s 

e
a
si

e
r 

a
n
d
 m

or
e
 p

re
ci

se
. 


 

W
h
en

 p
re

d
ic

to
rs

 a
re

 n
o
t 

a
va

ila
b
le

 


 

M
u
lt
ip

le
 s

im
u
lt
an

eo
u
s 

ta
rg

et
s 


 

W
h
en

 t
h
er

e 
a
re

 o
th

er
 t

a
sk

s 
th

a
n
 f
ly

in
g 


 

In
 m

or
e 

co
m

p
le

x 
ta

sk
s 


 

M
u
lt
ip

le
 a

xe
s 

si
m

u
lt
a
n
eo

u
sl

y 

In
 w

h
ic

h
 s

it
u
a
ti
o
n
s 

d
o
 y

o
u
 t
h
in

k 
a 

co
n
ti
n
u
ou

s 
co

n
tr

ol
 s

ys
te

m
 is

 m
o
re

 
h
el

p
fu

l 
or

 
b
et

te
r 

su
it
ed

 
th

a
n
 a

n
 

on
-o

ff
 c

on
tr

ol
 s

ys
te

m
? 


 

In
 c

om
b
in

a
ti
on

 
w

it
h
 p

re
d
ic

to
rs

 

 

W
h
en

 a
 p

re
d
ic

to
r 

is
 a

va
ila

b
le

 

 

W
h
en

 p
re

d
ic

to
rs

 
a
re

 a
va

ila
b
le

 

 

W
h
en

 p
re

d
ic

to
rs

 
a
re

 a
va

ila
b
le

 


 

W
h
en

 f
ly

in
g 

is
 t
h
e 

on
ly

 t
a
sk

 

 

W
a
s 

m
or

e 
co

n
ve

n
ie

n
t 

w
h
en

 
co

n
tr

ol
lin

g 
on

e 
a
xi

s 



Experimental Evaluation of Manual Remote Flight Control 

194 

First, Table 6.22 summarizes comments related to predictors and workload. It can be seen 

that generally, the continuous control system is preferred when predictors are available, 

when flying is the only task or when the flying task is sufficiently simple. The subjects’ 

remarks show that the appearance of the predictors could be improved in many respects. 

Nonetheless, there is a general agreement that predictors are very helpful, which 

underscores the positive ratings shown in Figure 6.35. 

Table 6.23 – Rewritten pilot comments related to latency, precision and flight phase 

In which situations do you think a 
continuous control system is more helpful or 
better suited than an on-off control system? 

In which situations do you think an on-off 
control system is more helpful or better 
suited than a continuous control system? 

Latency 

 Without time delay 
 With little time delay 

 With large latency, on-off control is 
more effective. 

 When latencies are extreme (higher 
even than in the experiment) 

 

Precision 

 When fine-tracking needs to be 
performed 

 Precise flight maneuvers 
 During landing, to be able to make 

precise control inputs 
 Precise flight maneuvers 
 Generally better, because more fine 

corrections are possible 
 When less accurate and precise 

control inputs are required 
 Fine-tracking 
 Precise flying 
 For accurate guidance needing small 

corrections (taxi, payload piloting, 
air-to-air refueling, emergency landing) 

 

 When predictors are available, 
on-off control is easier and more 
precise. 

Flight Phase 

 When small corrections are necessary 
(e.g., during landing) 

 In “agile” situations (e.g., swing-over), 
where quick changes are required 

 Flare 
 During landing, to be able to make 

precise control inputs 
 Approach 

 “Simple” flight phases like straight 
flight or standard turns 

 Turns, climb / descent 
 Cruise flight / level flight 
 Final approach and landing 
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Next, Table 6.23 lists comments related to latency, precision and flight phase. Several 

pilot comments appreciate the usefulness of on-off control in the presence of large time 

delays. Below, plenty of comments state that the continuous control system is better suited 

for precision maneuvers, whereas only two comments oppose this majority opinion. The 

quantitative performance metrics that led to the confirmation of hypothesis 3 in section 

6.4.3 are in opposition to this general belief. Here again, some trained pilots seem to be 

biased against the new, unconventional type of control system. Acceptance for on-off 

control may not be high among airplane pilots. The last section of Table 6.23 lists the 

flight-phase dependent preferences expressed by some subjects. The majority of 

comments here favor continuous control in high-bandwidth flight phases, or consider 

on-off control more suitable for category C flight phases. This subjective impression can 

be neither supported nor opposed by objective measures. From the performance metrics 

analyzed in tasks C and D, however, it seems that there is indeed a difference between 

flight phases. While the on-off control system allowed better performance in some cases 

during initial approach, it seemed to be no different than the continuous control system 

during final approach (cf. section 6.4.3). 

Table 6.24 – Rewritten pilot comments related to other aspects 

In which situations do you think a 
continuous control system is more helpful or 
better suited than an on-off control system? 

In which situations do you think an on-off 
control system is more helpful or better 
suited than a continuous control system? 

Control Amplitudes 

 When many small corrections are 
necessary (e.g., during landing) 

 In “agile” situations (e.g., swing-over), 
where quick changes are required 

 Reactions can be made quicker (e.g., 
evasive maneuvers) 

 When very different amplitudes are 
required 

 Large amplitudes 
 When the pilot wants to follow a 

(target) trajectory without large 
control inputs (stationary flight) 

Task and Target Type 

 One-dimensional tracking of a slowly 
moving target 

 Tracking tasks A, B 
 Continuous tracking of continuous 

deviations 

 Step-changes in target parameters 
 Step-changes 

General / Other 

 Generally better, because finer 
corrections are possible 

 In all situations except for when a 
predictor is available or in “agile” 
situations (e.g., swing-over) 

 Virtually never 
 Hard to say 
 In situations prone to oversteering 
 Most of all during the initial phase 
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All remaining categories of comments are listed in Table 6.24. Those comments related 

to control amplitudes are rather inconsistent. It seems that many different opinions exist 

about which control system type is better suited for large inputs or quick maneuvers. The 

statement that continuous control is preferable when different control input amplitudes are 

required is, of course, correct. In what situations they are required, however, is a question 

that remains unanswered. The fact that the theoretical minimum completion time of task 

A as described in section 6.4.1 is increased with on-off control shows that, depending on 

the actual control sensitivity, a continuous control system may indeed enable larger control 

amplitudes and thereby faster maneuvers. 

Pilot comments categorized as related to task and target type show that continuous control 

is favored for (continuous) tracking tasks and on-off control when following target steps. 

This may be due to the fact that the ramp in task B’s forcing function (cf. Figure 6.8) was 

more difficult to follow with 𝛾̇ fixed by the on-off control system. This is indeed a valid 

point. Most of the remaining comments in Table 6.24 express general preferences that are 

inconsistent.  One noteworthy pilot comment states that on-off control may be better suited 

during the initial (training) phase. 

Table 6.25 – Rewritten pilot remarks and suggestions 

Do you have any further remarks or suggestions for improvements? 

Training 

 Guess: continuous control requires more training, but then enables more precise 
control 

 After some more training, continuous control will probably enable better 
performance, because on-off control requires more constant attention (counting) 

Other Remarks 

 For both continuous and on-off control system, the control sensitivity has a large 
influence on handling. What sensitivity is appropriate depends on the situation. 

 The (“haptic”) control feel of the continuous control system is more comfortable. 
 Deadzone must be eliminated or reduced (stick) 
 Apart from the final approach, I was satisfied with the run with continuous control 

system + predictor. 
 Good way to go! 

Suggestions 

 May on-off control with two reaction intensities make sense? 
 On-off control with two intensities 
 Wings-level button would be helpful 
 Make it possible to affect longitudinal and lateral motion separately 

 

Two of the further remarks and suggestions, listed in Table 6.25, express similar opinions. 

Indeed, the suspicion that on-off control brings the most advantage in the learning phase 

and becomes less beneficial as pilots learn to fly with large time delays is backed up by 

the quantitative evaluation of workload and performance from task A through task D. 
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Notable other remarks concern the suitability of control sensitivity levels, an issue that is 

explored in section 6.4.2, and the control feel of the inceptor, indicating that the on-off 

inceptor characteristics as implemented in the active sidestick can be improved. 

Furthermore, the deadzone in the continuous sidestick characteristics was too large for 

one subject, as a previous paragraph also mentions. 

The subjects’ suggestion to implement on-off control with more than one amplitude level 

shows that this idea, also presented in section 4.3.1, may have potential. The same 

paragraph in section 4.3.1 also proposes buttons that cause the airplane to return to 

straight and/or level flight – a concept that can be found again as a suggestion here in 

Table 6.25. The final comment about the possibility to separately control longitudinal and 

lateral motion was made, as the subject orally confirmed, because he involuntarily 

produced control inputs in one axis while he made a deliberate input in the other axis 

using the continuous control system. This problem had been observed in preliminary tests 

and the sidestick’s dead zone had been increased as a consequence (cf. section 6.2.2). It 

seems, though, that this solution was not sufficient for this particular subject. Considering 

that another subject complained about the large deadzone, it can be concluded that 

involuntary cross-channel control inputs in the case of a continuous control system should 

not be prevented with a large deadzone. Instead, the inceptor position could be varied, so 

that the pilot’s limb can easily perform pure lateral and pure longitudinal movements. 

Another option is to implement a noticeable breakout force. Incidentally, this would make 

the continuous control inceptor feel a little more like the on-off control inceptor. 

6.5 Experimental Pilot Model Validation 

In the final part of this chapter, recordings from the experiments on manual remote flight 

control are used to validate the dual-mode pursuit tracking pilot model presented in section 

3.3.3 of this thesis. In section 6.5.1, the model is first applied to task A to showcase and 

evaluate some basic characteristics and the effect of parameter variations. Then, 

parameters are fitted to the experimental data from task A and the ability of the model to 

replicate the human control behavior in a pure pursuit tracking task is assessed. In section 

6.5.2, the model is applied to task B and again fitted to experimental data to obtain more 

insight into the validity of the model for different types of tracking tasks and control 

sensitivities. Prior to any simulation or application, the pilot model was implemented in 

MATLAB, Simulink and Stateflow [153]. Interfacing with the airplane and task 

simulations, which had been implemented in the same environment, was therefore 

straightforward. 

6.5.1 Pure Pursuit Tracking 

For an initial model analysis, the two noises 𝑛𝑒̇ and 𝑛𝑦̇   are suppressed. Hence, the only 

human imperfections modelled are the CNS’s time delay and the neuromuscular system 

with its lags and noise. With this setting, the correct functioning of the state machine can 

be verified and an upper bound for task performance can be obtained. Then, each of the 

noises 𝑛𝑒̇ and 𝑛𝑦̇   is activated separately to analyze their effects. The last steps consist in 

fitting the model to experimental data and assessing the validity of the model. 
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Figure 6.43 shows a simulation of the pilot model performing task A with the on-off control 

system, with both noises 𝑛𝑒̇ and 𝑛𝑦̇   suppressed. The first plot shows system input and 

output and thereby illustrates tracking performance. The plot furthermore lists three 

relevant quantitative metrics of the task: completion time, normalized completion time 

and control energy. The values of these metrics are all smaller than those achieved by 

human subjects (cf. section 6.4.1). Interestingly, however, even with the noises 𝑛𝑒̇ and 

𝑛𝑦̇   inhibited, the pilot model does not achieve the theoretical minimum completion time. 

This can be explained by the fact that the model comprises additional time delays 𝜏𝑐𝑛𝑠 

and 𝜏𝑛𝑚 that prolong task execution. Moreover, the computation of the move phase 

duration aims at exactly reaching the target, whereas task completion time could be further 

reduced by acquiring only the tolerance threshold. Generally, it can be seen that the model 

not only achieves stable target tracking, like a human pilot, but also correctly reproduces 

optimum performance. 

The second plot shows the control action 𝛿 produced by the model. The qualitative 

appearance of the plot indicates that the model produces control actions that are 

achievable by a human pilot. Neither the time between control inputs nor the control 

inputs themselves are too short. Control activity is generally realistic. By comparing the 

first and the second plot, it can be seen that every target is acquired by one single control 

input. This is in line with the very small control energy produced and the overall good 

performance achieved by the model. 

The third plot in Figure 6.43 reveals the behavior of the model’s state machine by showing 

the state activity over time. Each line corresponds to one of the six states: Idle (I), Move 

(M), Modify Move (MM), Interrupt Wait (IW), Wait (W) and Closed-Loop Control (CL). 

State transitions can be recognized by grey vertical lines. On the right abscissa, the amount 

of time spent in each state during the entire simulation is indicated in percent. Note that 

the states Modify Move and Interrupt Wait did not occur at all in this simulation. This is 

in accordance with the design of task A, where the target only moves 5 𝑠 after the tolerance 

band has been reached (cf. section 6.3.1). As a result, the target only moves when the 

state machine is in the Idle state. Thus, transitions into the states Modify Move and 

Interrupt Wait cannot be triggered (cf. Figure 3.26). The wait phases in Figure 6.43 all 

have the same duration 𝑡𝑤 = 2.54 𝑠, because they are never interrupted. A final aspect to 

note in Figure 6.43 is that most targets are acquired using the move-and-wait strategy 

and that target acquisition in this case is almost flawless, with the exception of slight 

inaccuracies introduced by the neuromuscular system dynamics. When closed-loop control 

is performed, on the other hand, the model does not aim for zero error, but for the tolerance 

band, which is indeed acquired in an equally accurate manner. This minor difference 

between move-and-wait strategy and closed-loop control is only relevant for large values 

of 𝑒𝑡𝑜𝑙 and could then be corrected by increasing the value of 𝐾𝑝. 
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Figure 6.43 – Pilot model simulation: task A, on-off control, minimum noise 

Next, Figure 6.44 shows a simulation of task A performed by the pilot model using a 

continuous control system and applying maximum input aggressiveness. Here, several new 

observations can be made. First, it is apparent that closed-loop control never occurs. This 

is due to the fact that, with 𝐾𝑎𝑔𝑔 = 1, the effective reaction magnitude 𝑦̇ 𝑠𝑠 is so large that 

for every target step, 𝑒 ≤ 𝑘𝑦̇ ⋅ 𝑦̇ 𝑠𝑠 ⋅ 𝜏𝑡. Thus, the state machine cannot transition to the 

Closed-Loop Control state (cf. section 3.3.3). Since, in the simulation shown in Figure 

6.44, every target is acquired using the move-and-wait strategy, the model aimed for zero 

error in those cases where, in the simulation shown in Figure 6.43, it only aimed for the 

tolerance band while performing closed-loop control. As a result, the value of control 

energy is slightly larger in Figure 6.44. Finally, the neuromuscular system dynamics, 

including the noise, can be recognized in the plot of control action of Figure 6.44. 
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Figure 6.44 – Pilot model simulation: task A, continuous control, minimum noise 

After the analysis of pilot model simulations without the noises 𝑛𝑒̇ and 𝑛𝑦̇, the effect of 

each of these noises shall now be illustrated by simulations with extreme values of 𝑘𝑛 ̇ 

and 𝑘𝑛 ̇. Figure 6.45 shows the simulation time histories of the pilot model in task A, 

using the continuous control system and applying an input aggressiveness 𝐾𝑎𝑔𝑔 = 0.4. The 

noise 𝑛𝑦̇ is still suppressed, but 𝑘𝑛 ̇, on the other hand, is set to a value of 0.2. Due to the 

smaller input aggressiveness as compared to the simulation shown in Figure 6.44, 

closed-loop control does occur for larger target steps. Moreover, the neuromuscular noise 

is more clearly visible in Figure 6.45 than in Figure 6.44 and the completion time is 

prolonged. In fact, the value of 𝐾𝑎𝑔𝑔 here exactly cancels the difference in control 

sensitivity between the continuous control system and the on-off control system. As a 

result, the completion time would resemble that of the simulation shown in Figure 6.43 if 

𝑛𝑒̇ would be suppressed. Without the noise 𝑛𝑦̇, the move-and-wait strategy is flawlessly 

applied. Closed-loop control, on the other hand, is affected by the extreme noise 𝑛𝑒̇. Thus, 

under- and overshoots occur frequently, further prolonging the task completion time and 

increasing the control energy. Note that at 𝑡 = 183 𝑠, a control input is applied in the 

wrong direction, away from the target. This shows that the noise power is not only extreme, 

but already excessive. 
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Figure 6.45 – Pilot model simulation: task A, continuous control, extreme noise 𝒏𝒚̇ 

Next, the effects of the noise 𝑛𝑦̇ are illustrated. Figure 6.46 shows a simulation of the 

pilot model using on-off control and, again, performing task A. Here, 𝑛𝑒̇ is suppressed, 

whereas 𝑘𝑛 ̇ = 0.1 is chosen. The most obvious effect of the noise 𝑛𝑦̇ is that large under- 

and overshoots occur when the move-and-wait strategy is applied. Another effect, which 

is more difficult to see in Figure 6.46, is that closed-loop control is sometimes not 

employed, even though the error would be large enough. This is the case at 𝑡 = 65 𝑠. 

Similarly, closed-loop control is sometimes erroneously attempted. This can be observed 

at 𝑡 = 115 𝑠 and at 𝑡 = 152 𝑠, where the error is so small that the move-and-wait strategy 

would have to be applied. As a consequence, large overshoots occur. Note that in these 

cases the duration of the Closed-Loop Control state is exactly 𝜏𝑡, because closed-loop 

control is not affected by noise and therefore flawlessly executed. As soon as the delayed 

system reaction is “perceived” by the model, the lead time constant causes the decision 

mapping element to switch (cf. Figure 3.28, Figure 3.31 and Figure 3.20) and thus, the 

transition to the Wait state is triggered. Finally, the large increases in tracking error that 

the model produces at 𝑡 = 155 𝑠 and 𝑡 = 262 𝑠 confirm that 𝑘𝑛 ̇ = 0.1 is already an 

extreme value. 
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Figure 6.46 – Pilot model simulation: task A, on-off control, extreme noise 𝒏𝒆̇ 

The previous paragraphs have shown that the implementation of the pilot model behaves 

as expected and that the model successfully accomplishes task A with human-like control 

activity. Moreover, the effects of the noises 𝑛𝑒̇ and 𝑛𝑦̇ have been illustrated. In the 

following paragraphs, the model is fitted to experimental data to obtain suitable values for 

𝑘𝑛 ̇, 𝑘𝑛 ̇ and 𝐾𝑎𝑔𝑔 and to more thoroughly assess the validity of the model. 

Since the model was not designed to describe learning, the second run of each subject, 

during which the change in control behavior due to learning was certainly less important 

than in the first run, shall serve as a reference. The process of fitting the three model 

parameters to the experimental data was chosen as follows. First, 𝑘𝑛 ̇ and 𝑘𝑛 ̇ are varied 

so that completion time and control energy of the pilot model simulation, using on-off 

control, are similar to the values achieved by the experiment subjects. Note that it is not 

necessary to take the normalized completion time parameter into account, since 

completion time and normalized completion time are equivalent if only one control system 

type is used. The resulting value of 𝑘𝑛 ̇ can also be employed with the continuous control 

system. The parameter 𝑘𝑛 ̇, on the other hand, may differ between control system types, 

since the power of 𝑛𝑦̇ is hypothesized to be larger in the case a continuous control system 

is used (cf. section 3.3.3). Hence, the second step consists in varying 𝐾𝑎𝑔𝑔 and 𝑘𝑛 ̇ to 
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match completion time and control energy of the pilot model simulation, using continuous 

control, with the values achieved in the experiments. 

Suitable values of 𝑘𝑛 ̇ and 𝑘𝑦̇ were expected to lie between 0 and the extreme values 

illustrated above, i.e., 0.2 for 𝑘𝑛 ̇ and 0.1 for 𝑘𝑦̇. These ranges of values were discretized 

with a sample spacing of 0.01, resulting in 21 values of 𝑘𝑛 ̇ and 11 values of 𝑘𝑦̇. It was 

planned to then perform pilot model simulations for all 231 parameter value combinations. 

However, a simulation with 𝑘𝑛 ̇ = 0.17 did not terminate within a reasonable amount of 

time, which indicates that this parameter value is already excessive. With the range of 

possible 𝑘𝑛 ̇ values reduced, 187 simulations were executed in total. The resulting values 

of completion time and control energy are illustrated by Figure 6.47. 

 
Figure 6.47 – Metrics of pilot model simulations, task A, on-off control 

It can be seen that completion time increases with both parameters 𝑘𝑛 ̇ and 𝑘𝑛 ̇. In Figure 

6.47, it is therefore lowest for 𝑘𝑛 ̇ , 𝑘𝑛 ̇ ≈ 0. Changes in completion time across both model 

parameters are quite smooth. Changes in control energy, on the other hand, are less 

smooth. This difference can be explained by the fact that both undershooting and 

overshooting the target equally prolongs the completion time, whereas only overshoots 

increase the control energy required to reach the target. Due to the nondeterministic nature 

of the noises, the model produces a different number (and size) of overshoots and thus a 

different amount of control energy in two different simulations with similar completion 

time, even if the same model parameter values are employed. 

It can also be noted that control energy mainly varies with 𝑘𝑛 ̇ or, in other words, that the 

value of 𝑘𝑛 ̇ has little influence on control energy. This leads to the conclusion that, when 
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closed-loop control is applied, undershoots occur more frequently than overshoots. One 

possible reason for this imbalance is the shape of the noise spectrum 𝑆𝑛𝑛 ̇. The noise has 

zero mean, so both increases and decreases of the perceived error rate by the noise are 

equally probable. A decrease causes a late transition to the Wait state and thereby an 

overshoot, whereas an increase causes premature transitioning. It thus seems that similar 

numbers of over- and undershoots should occur. However, if the noise spectrum contains 

too much high frequency components, the sign of 𝑛𝑒̇ changes relatively often and, as a 

result, the perceived error rate is increased and decreased in quick succession. In a 

prolonged phase of closed-loop control, it is highly probable that the perceived error rate 

is increased at some moment, thus causing premature transitioning even if the error rate 

was decreased by the noise for most of the time. It can thus be concluded that the noise 

spectrum 𝑆𝑛𝑛 ̇ should have a lower cutoff frequency than the one chosen, so that it 

contains less high frequency components. 

To identify suitable values of 𝑘𝑛 ̇ and 𝑘𝑛 ̇ despite the sudden changes in control energy 

between neighboring simulation data points, the data points are averaged. In Figure 6.48, 

every point indicates the average completion time or control energy of the respective 

(𝑘𝑛 ̇|𝑘𝑛 ̇) data point and the 8 neighboring data points. For instance, the completion time 

at point (0.02|0.02) in Figure 6.48 is the average completion time of the points 
(0.01|0.01), (0.01|0.02), (0.01|0.03), (0.02|0.01), (0.02|0.02), (0.02|0.03), (0.03|0.01), 
(0.03|0.02) and (0.03|0.03) of Figure 6.47. Figure 6.48 also shows contour lines, which 

are drawn at the 1st, 2nd and 3rd quartile level of the experimental data (cf. Figure 6.10 

and Figure 6.11). 

 
Figure 6.48 – Averaged metrics of pilot model simulations, task A, on-off control 
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Only few points lie well within both sets of contour lines. Considering that a simulation 

with 𝑘𝑛 ̇ = 0.17 did not terminate, those points in the upper range of 𝑘𝑛 ̇ values seem too 

extreme. In the range of moderate 𝑘𝑛 ̇ values, the point that fits best to both sets of contour 

lines is (0.03|0.09). A comparison of experimental run Ao of subject 7, who achieved 

average completion time and control energy values, with a pilot model simulation with 

𝑘𝑛 ̇ = 0.03 and 𝑘𝑛 ̇ = 0.09 is shown in Figure 6.49. The general appearance of both time 

history plots is very similar. This indicates that the model indeed well describes on-off 

control in task A. One notable difference, however, is that the tracking performance of 

subject 7 seems to improve along the run, whereas the model’s performance is rather 

constant. This shows that subject 7 still learned and confirms again that the model does 

not describe learning. 

 
Figure 6.49 – Comparison of pilot model simulation and experimental run Ao 

For the following analysis of continuous control during task A, the value of 𝑘𝑛 ̇ = 0.09 

remains unchanged. This time, however, 𝐾𝑎𝑔𝑔 and 𝑘𝑛 ̇ are varied to match completion 

time and control energy of the pilot model simulation with the values achieved in the 

experiments. First simulations, which employed similar 𝑘𝑛 ̇ values as above, produced 

very poor task performance, indicating an excessive 𝑛𝑦̇ power. It was suspected that this 

was due to the factor 𝐾𝑎 in the numerator of 𝑆𝑛𝑛 ̇, which was 2.5 times as large for the 

continuous control system as compared to the on-off control system. It was thus decided 

to retry the simulations with a different definition of the noise spectrum 𝑆𝑛𝑛 ̇. This 

definition, which is given by equation (6.6), only differs from the original definition (cf. 

equation (3.48)) in the additional factor 𝐾𝑎𝑔𝑔 for continuous control systems. 
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𝑆𝑛𝑛 ̇(𝜔) =
𝑘𝑛 ̇ ⋅ 𝑦̇𝑠𝑠

0.5𝑗𝜔 + 1
=

{
 
 

 
 
𝑘𝑛 ̇ ⋅ 𝐾𝑎

0.5𝑗𝜔 + 1
for on-off control systems

𝑘𝑛 ̇ ⋅ 𝐾𝑎𝑔𝑔 ⋅ 𝐾𝑎

0.5𝑗𝜔 + 1
for continuous control systems

 (6.6) 

Using the spectrum defined by equation (6.6), a total of 110 simulations were performed 

to identify suitable values of 𝐾𝑎𝑔𝑔 and 𝑘𝑛 ̇. For 𝑘𝑛 ̇, the same 11 values were selected as 

above for the on-off control system. For 𝐾𝑎𝑔𝑔, 10 evenly spaced values between 0.1 and 

1 were chosen. Figure 6.50 illustrates the simulation results of all parameter value 

combinations. In addition to the values of completion time and control energy resulting 

from each simulation, contour lines are shown like in Figure 6.48. These contour lines 

originate from the same averaging operation described above. They again indicate the 1st, 

2nd and 3rd quartile level of the corresponding experimental data (cf. Figure 6.10 and 

Figure 6.11). 

 
Figure 6.50 – Metrics of pilot model simulations, task A, continuous control 

Here, it can be seen that completion time initially reduces with increasing input 

aggressiveness, which makes perfect sense given that a larger value of 𝐾𝑎𝑔𝑔 enables the 

model to reach every target more quickly. At high values of 𝐾𝑎𝑔𝑔, however, completion 

time increases again due to the corresponding increase in 𝑛𝑦̇ power. Likewise, control 

energy increases with 𝐾𝑎𝑔𝑔, but also with 𝑘𝑛 ̇, because both parameters are factors in the 

noise spectrum 𝑆𝑛𝑛 ̇. The selection of a suitable pair of parameter values is 

straightforward. The point that is closest to the intersection of both 2nd quartile contour 

lines is (0.04|0.5). Note that this value of 𝐾𝑎𝑔𝑔 almost exactly cancels the difference in 

control sensitivity between the continuous control system and the on-off control system. 

Equation (6.7) recapitulates the 𝑛𝑦̇ noise spectra found suitable for task A. Note that the 

noise power is indeed larger if a continuous control system is employed instead of an on-off 

control system, as hypothesized in section 3.3.3. 
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𝑆𝑛𝑛 ̇(𝜔) =

{
 
 

 
 

0.009

0.5𝑗𝜔 + 1
task A, on-off control system

0.015

0.5𝑗𝜔 + 1
task A, continuous control system

 (6.7) 

Figure 6.51 shows the time histories of a pilot model simulation with the selected 

parameter values next to those of an average experimental run, performed by subject 6. 

As expected, completion time and control energy of simulation and experiment are very 

similar. Beyond that, it can be seen that subject 6 often made larger but shorter control 

inputs than the model. This indicates that the 𝐾𝑎𝑔𝑔 value chosen is too small. Simply 

increasing this value, however, would not improve the match between model and reality. 

Subject 6 effectively varied 𝐾𝑎𝑔𝑔 between control inputs. As apparent from Figure 6.51, 

his strategy for target acquisition was to make a first input with high aggressiveness and 

then successively decrease 𝐾𝑎𝑔𝑔 to approach the target more and more cautiously. With 

this strategy, subject 6 produced few overshoots and little control energy, but required 

more time to acquire each target. The pilot model does not describe this strategy. 

Extending it by a model for variations in aggressiveness could solve this issue. 

 
Figure 6.51 – Comparison of pilot model simulation and experimental run Ac 
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All in all, it can be said that the dual-mode pursuit tracking pilot model presented in 

section 3.3.3 well describes pure pursuit target tracking tasks like task A. In simulations, 

the model achieves similar performance and produces similar control activity like human 

subjects. Model fitting showed that the power of 𝑛𝑦̇ is indeed higher if a continuous control 

system is employed instead of an on-off control system, thus validating the description of 

differences between control system types given in section 3.3.3. The initial definition of 

the noise spectrum 𝑆𝑛𝑛 ̇ was corrected to better describe changes of the noise power due 

to variations in control sensitivity and input aggressiveness. Remaining minor 

shortcomings of the proposed model, which can easily be corrected in the future, are the 

excessively high cutoff frequency of the noise spectrum 𝑆𝑛𝑛 ̇ and the inability to describe 

the strategy of approaching a target with decreasing input aggressiveness. Effects of time 

delay variations, most notably those on 𝑆𝑛𝑛 ̇, could not be validated due to the absence of 

experimental data for 𝜏𝑎 values different from 2 𝑠. 

6.5.2 Pursuit and Pre-Cognitive Tracking 

This section describes the application of the dual-mode pursuit tracking model proposed 

in section 3.3.3 to task B. This application is more explorative than pilot model simulations 

with task A, because task B is not a pure pursuit tracking task. To some degree, experiment 

subjects were able to perform pre-cognitive tracking in the sense that future tracking 

targets were predictable. This was, for instance, the case during the two ramps included 

in the forcing function (cf. Figure 6.8). Moreover, the fact that a Θ forcing function was 

low-pass filtered to obtain a 𝛾 forcing function meant that the initial rate of change 𝛾̇𝑡𝑔𝑡 

following a step in the original Θ forcing function could be used to predict the steady-state 

target change Δ𝛾𝑡𝑔𝑡,𝑠𝑠. The model, as it is described in section 3.3.3, was not designed to 

describe this kind of pre-cognitive tracking. It is therefore not expected to correctly describe 

all aspects of the experimental runs of task B. 

First, the model is applied to on-off control of task B with sensitivity level S2, i.e., the 

baseline sensitivity level. Then, continuous control of the same task and sensitivity level is 

investigated. An outlook is then given on the application of the model to all other 

combinations of control system type and sensitivity level. Since a tolerable error was not 

defined for task B, the value of the model parameter 𝑒𝑡𝑜𝑙 is derived from equation (3.44). 

To obtain accurate comparisons between model and experiments, the model simulation 

was interfaced not only with the same task, but also with the same airplane and flight 

controller simulation model as employed in the experiments. The value of the parameter 

𝜏𝑙𝑎𝑔𝑠 ≈ 0.8 𝑠 can therefore be taken from section 4.2.3. Using equation (3.39), a total 

time delay 𝜏𝑡 = 3.14 𝑠 can be computed. 

As a first guess, the same values of the independent model parameters 𝑘𝑛 ̇, 𝑘𝑛 ̇ and 𝐾𝑎𝑔𝑔 

could be used as for task A. However, initial simulations of experimental run B2o found 

the resulting power of 𝑛𝑦̇ to be excessive. Therefore, the range of 𝑘𝑛 ̇ values considered 

was chosen one order of magnitude smaller than the range chosen for task A. Likewise, 

the range of values considered for 𝑘𝑛 ̇ was enlarged, since it was uncertain whether the 

power of 𝑛𝑒̇ really scaled with 𝐾𝑎, as assumed by equation (3.49). Figure 6.52 shows the 
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319 parameter value combinations considered and illustrates the values of RMSE, EVAR 

and control energy obtained from simulations with each combination. Again, contour lines 

indicate the 1st, 2nd and 3rd quartile level of the corresponding experimental data (cf. Figure 

6.23, Figure 6.24 and Figure 6.25). 

 
Figure 6.52 – Metrics of pilot model simulations, task B2, on-off control 

First, it has to be noted that no contour lines are shown on the RMSE plot. This is due to 

the fact that all RMSE values obtained from simulations are higher than those obtained in 

experiments. Furthermore, it can be seen that, like for task A, the parameter 𝑘𝑛 ̇ has little 

influence on the performance metrics, even though a much wider range of values was 

simulated here. One possible reason for this observation is described in the following 

paragraph. Regarding the contour plots of EVAR and control energy in Figure 6.52, it 

seems valid to employ the same 𝑘𝑛 ̇ value for task B as for task A, namely 0.09 and to 

choose 𝑘𝑛 ̇ = 0.004. 

A comparison between a pilot model simulation with the parameter values selected above 

and the experimental run B2o of subject 8, who achieved average RMSE, EVAR and 

control energy values, is given by Figure 6.53. Although EVAR and control energy of 

simulation and experiment are similar, the RMSE value is much higher for the simulation. 
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During some phases of the task, simulation and experiment produced similar system 

outputs 𝛾, although the simulation seems to generally lag behind the experiment. This can 

be explained by the fact that the human operator, as opposed to the pilot model, was able 

to act pre-cognitively. This can also explain the smaller RMSE achieved in the experiments. 

At some moments, the model produced control inputs that led the aircraft away from the 

target. Most of these hiccups can be explained by changes in 𝛾𝑡𝑔𝑡 during the 2 𝑠 simulated 

signal transmission time delay and could therefore have been produced by a human 

operator as well. The most extreme case at around 𝑡 = 81 𝑠 occurs while the model is in 

the Closed-Loop Control state. This state is entered erroneously at this point due to the 

noise 𝑛𝑦̇, since the minimum error required for transitioning into the Closed-Loop Control 

state is, according to equation (3.35), 6.28°. The fact that closed-loop control occurred 

only once erroneously explains why the value of 𝑘𝑛 ̇ has not much influence on the 

performance metrics. 

 
Figure 6.53 – Comparison of pilot model simulation and experimental run B2o 

A major difference of the model behavior in run B2o as compared to its behavior when 

applied to task A is that the states Modify Move and Interrupt Wait are entered. In fact, 

the state machine spent more time in these states than in the Move state. The reason for 

this is that 𝛾𝑡𝑔𝑡 remained constant only for brief periods of time during task B. A varying 



Experimental Evaluation of Manual Remote Flight Control 

  211 

target may cause the pilot model to make a control input, transition to the Wait state and, 

as the target continues to move, transition to the Interrupt Wait state before entering the 

Wait state again. For rather slow but prolonged target variations, this cycle may be 

repeated many times. This behavior can be observed quite often in Figure 6.53, especially 

during the ramps of the forcing function. Repeated switching between the states Wait and 

Interrupt Wait can also be recognized by the pulsed appearance of control inputs. Some 

of these pulses are quite short, but they are never shorter than the minimum input duration 

𝑡𝑚,𝑚𝑖𝑛 = 0.15 𝑠 assumed in section 3.3.3. The human subject generally did not employ 

pulsed control inputs, but many of his inputs are similar to the sum of the model’s pulses 

and thus produce a similar system reaction. Interestingly, though, the pulse control 

strategy is applied by subject 8 during the target ramps, most notably between 𝑡 = 131 𝑠 

and 𝑡 = 141 𝑠. A major flaw associated with repeated switching between the states Wait 

and Interrupt Wait is that the model performs pure open-loop control during this time. 

Thus, tracking errors due to imprecise estimations 𝑦̇ 𝑠𝑠 accumulate as the switching 

between Wait and Interrupt Wait continues, until the condition for a transition to the 

Closed-Loop Control state is satisfied (cf. Figure 3.26). During the simulation shown in 

Figure 6.53, however, the Move state is still entered often enough to prevent 

disproportionate tracking errors. 

The fact that the 𝑘𝑛 ̇ values suitable for run B2o are one order of magnitude smaller than 

those suitable for run Ao indicates that the numerator of the noise spectrum 𝑆𝑛𝑛 ̇ needs 

to be modified once again to describe how changes in control sensitivity affect the power 

of 𝑛𝑦̇. Instead of a linear variation with 𝑦̇𝑠𝑠, an exponential variation is proposed here. The 

numerator of 𝑆𝑛𝑛 ̇ thus reads 𝑘𝑛 ̇
′ ⋅ (𝑦̇𝑠𝑠)

𝑘, with an exponent 𝑘 to be specified. This 

exponent 𝑘 as well as the modified scaling factor 𝑘𝑛 ̇
′  can be derived from the system of 

equations (6.8), which is based on the values of 𝑘𝑛 ̇ and 𝐾𝑎 of the runs Ao and B2o. 

𝑘𝑛 ̇
′ ⋅ (𝐾𝑎,𝐴𝑜)

𝑘
= 𝑘𝑛 ̇,𝐴𝑜 ⋅ 𝐾𝑎,𝐴𝑜

𝑘𝑛 ̇
′ ⋅ (𝐾𝑎,𝐵2𝑜)

𝑘
= 𝑘𝑛 ̇,𝐵2𝑜 ⋅ 𝐾𝑎,𝐵2𝑜

 (6.8) 

The system of equations (6.8) can easily be solved for both variables 𝑘 and 𝑘𝑛 ̇
′ . The 

symbolic and numeric solutions are given by equation (6.9). 

𝑘 =  n (
𝑘𝑛 ̇,𝐵2𝑜 ⋅ 𝐾𝑎,𝐵2𝑜

𝑘𝑛 ̇,𝐴𝑜 ⋅ 𝐾𝑎,𝐴𝑜
) ⋅ ( n (

𝐾𝑎,𝐵2𝑜
𝐾𝑎,𝐴𝑜

))

−1

 = 1.937

𝑘𝑛 ̇
′ = 𝑘𝑛 ̇,𝐴𝑜 ⋅ (𝐾𝑎,𝐴𝑜)

1−𝑘
= 0.09266

 (6.9) 

The definition of the noise spectrum 𝑆𝑛𝑛 ̇ can now be corrected accordingly. Equation 

(6.10) provides the new definition. With this new definition, the above matching of the 

model with experimental data from task Ao and task B2o results in one single parameter 

value 𝑘𝑛 ̇
′ = 0.09266. Likewise, the corresponding value of 𝑘𝑛 ̇

′  for run Ac can be found to 

be 0.1002. For the following analyses, it is assumed that the definition of 𝑆𝑛𝑛 ̇ by equation 
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(6.10) correctly describes variations in noise power due to changes in control sensitivity 

and control input aggressiveness and that only a single value of 𝑘𝑛 ̇
′  can thus be used for 

each control system type. These values are summed up by equation (6.11). 

𝑆𝑛𝑛 ̇(𝜔) =
𝑘𝑛 ̇
′ ⋅ (𝑦̇𝑠𝑠)

1.937

0.5𝑗𝜔 + 1
 (6.10) 

𝑘𝑛 ̇
′ = {

0.09266 for on-off control systems
0.1002 for continuous control systems

 (6.11) 

Next, the pilot model’s performance in run B2c is analyzed. Figure 6.54 shows a 

comparison between model simulation and experiment for this run. 

 
Figure 6.54 – Comparison of pilot model simulation and experimental run B2c 

The same factor 𝐾𝑎𝑔𝑔 = 0.5 was used as for task A. This choice seems suitable, given that 

simulated and experimental control actions are similar in amplitude. The value of 𝑘𝑛 ̇ =

0.09 was chosen to remain unchanged for all remaining analyses. In Figure 6.54, similar 

observations can be made as in Figure 6.53. Again, EVAR and control energy are 

comparable between simulation and experiment, but the RMSE is worse for the simulation. 
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The pulsed control inputs due to repeated switching between the states Wait and Interrupt 

Wait can be observed again. This time, however, a large error accumulated at the end of 

the first ramp, at around 𝑡 = 60 𝑠. According to equation (3.35), the minimum error 

required for transitioning into the CL state for this run and these model parameters is 

7.85°. It is therefore no surprise that closed-loop control practically never occurred. In this 

case, the value of 𝑘𝑛 ̇ indeed has no influence at all on tracking performance. 

Based on the observations from the above simulations of task B with control sensitivity 

level S2, it can be expected that closed-loop control does not occur at all for control 

sensitivity levels S3 and S4. Indeed, the pilot model simulation of run B3o, which is 

compared to a representative experimental run in Figure 6.55, shows that the CL state 

was never entered. Apart from that, similar observations can be made as for the 

simulations of sensitivity level S2. Control energy and EVAR produced by the model are 

slightly smaller than the experimental values, whereas RMSE is much larger for the 

simulation. The model produces pulsed control inputs by repeatedly switching between 

the states Wait and Interrupt Wait. The 𝛾 output of simulation and experiment are similar 

in some phases, but the simulation tends to lag behind the experiment. 

 
Figure 6.55 – Comparison of pilot model simulation and experimental run B3o  
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For the simulation of run B3c, which is illustrated in Figure 6.56, the same input 

aggressiveness 𝐾𝑎𝑔𝑔 = 0.5 was chosen as for all previous simulations. This choice seems 

suitable, given that the control actions of the pilot model and of subject 11 are similar in 

amplitude. As expected, the model did not enter the CL state in this run. In this run B3c, 

simulation and experiment exhibit similar RMSE values, but EVAR and control energy are 

smaller for the simulation. Subject 11 indeed produced large oscillations and thus large 

EVAR and control energy values between 𝑡 = 20 𝑠 and 𝑡 = 40 𝑠. Generally, though, the 

same problem can be observed as in all above cases of task B: simulation and experiment 

never agree in all three performance metrics. 

 
Figure 6.56 – Comparison of pilot model simulation and experimental run B3c 
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Figure 6.57 compares a model simulation and an average experimental run of task B with 

on-off control and the highest control sensitivity S4. Due to the high control sensitivity, 

control inputs are rare and brief. Here, none of the performance metrics matches between 

simulation and experiment. Similar to the cases above, the pilot model produces an 

excessive RMSE, but too little control energy and EVAR. 

 
Figure 6.57 – Comparison of pilot model simulation and experimental run B4o 
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Next, Figure 6.58 shows time histories of a pilot model simulation and of subject 5’s 

experimental run B4c. Instead of using the same 𝐾𝑎𝑔𝑔 value as in all previous simulations, 

𝐾𝑎𝑔𝑔 = 0.3 was chosen for this high sensitivity level, based on the control inputs recorded 

during the experiment. Due to the reduced 𝑦̇𝑠𝑠, control inputs are a little more frequent 

here than in run B4o. Like in run B4o, the simulation’s EVAR and control energy are 

smaller, but RMSE is higher than that of subject 5. 

 
Figure 6.58 – Comparison of pilot model simulation and experimental run B4c 
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The final control sensitivity level to be investigated is S1. Time histories of both a model 

simulation and a representative experimental run B1o are shown in Figure 6.59. The 

model achieves a similar EVAR value as subject 14, but a lower control energy and a 

higher RMSE. Due to the small control sensitivity, closed-loop control appears more often 

than in any of the previous runs of task B. It has to be noted, though, that the Closed-Loop 

Control state is always entered from the Wait state, because the model spent remarkably 

little time, namely only the first couple of seconds, in the Idle state. This observation 

supports the interpretation of the lower control energies but worse TLX ratings of sensitivity 

level S1 as compared to sensitivity level S2 given in section 6.4.2. Figure 6.59 also 

uncovers another flaw of the model when applied to tasks that enable pre-cognitive 

tracking. The repeated switching between the states Wait and Interrupt Wait during the 

ramp in 𝛾𝑡𝑔𝑡 produces a smaller average 𝑦̇𝑠𝑠 than if a constant control input would be 

applied. This effectively further reduces the ability to track the changes of 𝛾𝑡𝑔𝑡. In general, 

the pilot model produces the most excessive tracking errors in this run of task B. This is 

mostly due to the fact that the phases of closed-loop control always ended prematurely, 

which indicates that the power of 𝑛𝑒̇ was excessive. 

 
Figure 6.59 – Comparison of pilot model simulation and experimental run B1o 



Experimental Evaluation of Manual Remote Flight Control 

218 

Given that that the power of 𝑛𝑒̇ with 𝑘𝑛 ̇ = 0.09 was excessive for run B1o, another 

simulation of this run was performed with 𝑘𝑛 ̇ = 0.0033. This value of 𝑘𝑛 ̇ was obtained 

by assuming that, similar to the power of 𝑛𝑦̇, the power of 𝑛𝑒̇ scales with (𝐾𝑎𝜏𝑎)
1.937. 

Figure 6.60 shows the corresponding simulation along with the representative run of 

subject 14. Here, model and experiment agree much better than in Figure 6.59, even 

though the same problems described for all previous runs persist. As a result, it can be 

suspected that 𝑆𝑛𝑛 ̇ follows equation (6.12), with a time constant 𝑇 to be specified. 

𝑆𝑛𝑛 ̇(𝜔) =
0.1452 ⋅ (𝐾𝑎𝜏𝑎)

1.937

T ⋅ 𝑗𝜔 + 1
 (6.12) 

To more precisely define this noise spectrum, more experiments are required that let 

subjects (and the model) perform closed-loop control at different levels of control sensitivity 

and time delay. 

 
Figure 6.60 – Comparison of alternative model simulation and experimental run B1o 

A comparison between model and experiment for the only remaining run of task B, namely 

B1c, is shown in Figure 6.61. Like for the run B4c, it was suspected that the control input 

aggressiveness would have to be adjusted for the extreme value of control sensitivity of 
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run B1c. Here, a value 𝐾𝑎𝑔𝑔 = 1 was chosen, based on the appearance of the subject’s 

control inputs. Like in most of the runs discussed above, simulation and experiment 

produced similar EVAR and control energy values, the RMSE value resulting from the 

simulation is larger. However, the similarity between simulated and experimental system 

output 𝛾, as well as between simulated and experimental control action 𝛿 is remarkable 

during some phases of the run. The high control aggressiveness causes 𝑦̇𝑠𝑠 to be higher 

here than for run B1o, which is shown in Figure 6.59. As a result, closed-loop control 

appears less frequently and the original, excessive value of 𝑘𝑛 ̇ does not adversely affect 

model performance. 

 
Figure 6.61 – Comparison of pilot model simulation and experimental run B1c 

Summing up, it can be said that the dual-mode pursuit tracking pilot model presented in 

section 3.3.3 describes combined pursuit and pre-cognitive tracking with restricted 

validity. The model is able to accomplish task B using the same aircraft and flight controller 

as employed in the experiments without grossly excessive tracking errors for most of the 

four levels of sensitivity defined. Only in run B1o, large tracking errors occur due to an 

excessive power of 𝑛𝑒̇. The performance metrics resulting from the simulation generally 

never matched those from the experiments all at the same time. For most runs, similar 

values of control energy and EVAR could be achieved, but the RMSE value almost always 
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exceeded that of the corresponding experimental runs. This can be explained by the fact 

that the task design allowed subjects to predict future values of 𝛾𝑡𝑔𝑡 and to thereby perform 

pre-cognitive control, whereas the model is restricted to pursuit control by design. 

The definition of the noise spectrum 𝑆𝑛𝑛 ̇ was modified once again to better describe 

changes of the noise power due to variations in control sensitivity. The final definition, 

given by equation (6.10), was derived from runs Ao and B2o. Corresponding values of 

𝑘𝑛 ̇
′ , given by equation (6.11), were derived from runs Ao, Ac and B2o. The resulting noise 

spectra seemed to well describe not only the runs used to derive their definition, but also 

all remaining runs of task B. 

A remaining major flaw of the model when applied to a combined pursuit and pre-cognitive 

tracking task is the repeated switching between states Wait and Interrupt Wait that often 

occurs. This behavior is rarely observed with human operators. Moreover, while switching 

between the states Wait and Interrupt Wait, the model performs pure open-loop control. 

During this time, tracking errors due to imprecise estimations 𝑦̇ 𝑠𝑠 accumulate until the 

error threshold for transitioning to the Closed-Loop control state is reached. As a result, 

errors can grow excessively, which, for instance, is the case for the simulation of run B2c 

(cf. Figure 6.54). Like in task A, effects of time delay variations, most notably those on 

𝑆𝑛𝑛 ̇, could not be validated due to the absence of experimental data for 𝜏𝑎 values different 

from 2 𝑠. 
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7  C O N C L U S I O N S  A N D  

P E R S P E C T I V E  

The aim of the research leading up to this thesis was to make low level, closed-loop flight 

control by a human pilot in the presence of large time delays and with missing sensory 

feedback channels safer, more effective and more efficient (cf. section 1.3.1). To achieve 

these goals, human operator behavior during control of systems with large time delays 

was analyzed in a first step. Previous research on this matter was summed up and the 

findings of various researchers were related to each other to produce a holistic picture: 

large time delays in an unfamiliar system are tackled by applying the move-and-wait 

strategy, whereas the often co-occurring pulse-like control behavior is a form of 

low-frequency lead generation that, at the same time, makes the system response more 

predictable. Existing quasi-linear pilot models and models of pulse-like control behavior 

were presented, but found to be either inapplicable to or insufficient for the description of 

pulse-like control behavior associated with large time delays in the controlled system. 

The novel representations of pulse-like pilot behavior derived and described in section 3.3 

are therefore a major contribution of this thesis. The first model, describing compensatory 

tracking of a stationary target, allows an intuitive analysis of the nonlinear pilot-aircraft 

control loop in the phase plane. Using this model, the influence of desired tracking 

accuracy, control sensitivity, time delay and pilot lead on maneuverability and control loop 

stability were illustrated. Moreover, the idea to restrict control input amplitudes to three 

discrete levels by design was introduced and the expected differences between such an 

on-off control system and a continuous control system were described. The compensatory 

pilot model was then extended to describe dual-mode pursuit tracking, i.e., the hybrid 

open- / closed-loop move-and-wait strategy. As the central element of this second model, 

a state machine describes the pilot’s choice when to move, when to wait and when to 

perform true closed-loop control. Most of the independent model parameters were fixed a 

priori, so that only three parameters remained to be determined empirically. This new 

model was also used to illustrate some of the differences between continuous control 

systems and on-off control systems. 

Based on the insights into human operator behavior and handling qualities implications 

gained from previous research and the new pilot models (even though they had not been 

validated at this point), a flight control system was tailored to the problem of flight control 
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with large time delays and reduced sensory feedback. Summing up, the following features 

and design characteristics were proposed: 

 An on-off control system derived from the pulse-like pilot behavior, which facilitates 

control of systems with large time delays by making the system response more 

predictable. 

 For manual control, an inceptor force-deflection characteristic that reflects the 

on-off nature of the control system by discrete deflections and thus makes control 

inputs easily perceivable through the proprioceptive and the tactile channel. 

 A choice of command variables that is adequate for conducting the reference flight 

mission and at the same time accounts for the reduced pilot-aircraft bandwidth. 

 Protection mechanisms that re-establish an adequate level of safety in the case of 

missing sensory feedback channels. 

 A visual predictor display that reduces the apparent time delay. 

 Multimodal displays, possibly exploiting the tactile channel, that mitigate the 

problem of reduced sensory feedback. 

Except for the multimodal displays, these design characteristics were implemented in a 

prototypical flight control system and in a flight simulator for subsequent experiments on 

manual remote flight control and on BMI controlled flight. 

Concerning BMI control, which, like long-range RPA control, is affected by large time 

delays, it has to be noted that the BMI characteristics effectively prevent pulse-like control 

input characteristics: the noise present in the BMI control channel would heavily distort 

any pulse-like control intention. Furthermore, it is impossible to apply the move-and-wait 

strategy, because even in the absence of any control intention, i.e., when the BMI output 

should be zero, the noise is still present. The time delay introduced by BMI output filtering 

is quantified by equation (3.63) for the particular case of an SMA filter. One subject of the 

experiments presented in chapter 5 faced a filtering time delay of approximately 1 𝑠. Like 

the similarly large signal transmission time delays in manual remote flight control, this 

filtering delay requires pilots to anticipate the aircraft movements and to generate lead. 

However, the prediction of future system outputs is more difficult with BMI control due to 

the fact that a permanent noise prevents both the move-and-wait strategy and pulse-like 

control inputs. The high workload due to lead generation was indeed reported by the 

experiment subjects. Interestingly, it was even reported when no BMI output filtering was 

employed. This can be explained by the fact that in these cases, the BMI output spectrum 

was not white but exhibited low-pass characteristics, as described in section 5.5. 

Speaking of noise when referring to unreliable BMI outputs is a concept that has already 

been presented elsewhere, but section 3.4.2 additionally identifies the SNR as a 

performance metric of the subject-BMI system, which is related to the STR. Experimental 

data obtained with two different types of BMIs is used in section 5.5 to confirm that BMI 

outputs can indeed be described by a Gaussian noise of constant variance, whose mean 

value changes with the user intention. The validity of this simple BMI is, however, 

compromised when the STR is close to or even below chance (50%), which is the case 

for subjects who do not (yet) have control. Moreover, the model does not describe 

time-varying BMI characteristics and biases towards one user intention. Unfortunately, the 
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BMI model also cannot be used to predict BMI output characteristics of a given 

subject-BMI combination. Instead, the values of the model parameters must be derived 

from experimental data. However, reference values from past experiments can be used to 

get an idea of possible BMI control performance. This information is valuable when a 

control system is to be adapted or when the suitability of closed-loop BMI control for a 

given task has to be assessed. Possible future improvements of the BMI output model 

include the description of biases and of the time-varying nature of BMI characteristics. The 

model’s quantification of BMI control performance could also be used to derive a model 

for learning or, more exactly, for the subject-BMI adaptation over time. 

The explorative experiments on BMI control presented in chapter 5 investigated 

closed-loop BMI control with two different types of BMIs. In an approach unusual for BMI 

research, methods of handling qualities evaluation established in the aerospace domain 

were applied in the course of experiment set up, implementation and evaluation. This 

application-driven approach yielded realistic and operationally relevant tasks and a highly 

realistic experimental environment. The experiment results are therefore more relevant for 

actual BMI application than if they had been obtained in a laboratory environment with 

artificial tasks. Designing realistic tasks for the experiments on BMI controlled flight was 

a challenge due to the fact that control performance was uncertain and expected to be a 

lot poorer than with manual control. The fact that the easiest task was readily 

accomplished by several subjects, whereas the most difficult task was barely 

accomplishable even for the best performing subjects shows that a suitable range of 

difficulties was presented. Another distinctive feature of the experiments are the tuning 

efforts described in section 5.3, during which special attention was given to subjective 

comments of the experiment participants. These efforts aimed at identifying suitable 

dynamic plant characteristics and suitable filtering and mapping functions for each 

subject. These efforts, as well as the subsequent comparison of different control system 

configurations confirm that controllability and handling not only depend on the BMI 

characteristics, but are also influenced by the plant dynamics. 

The way the experiments were set up, conducted and evaluated can serve as an example 

for similar studies in the future. Moreover, the experiment results reported in this thesis, 

including the description of both suitable and unsuitable configurations, can provide 

guidance for future BMI control system designs. Section 5.4.2 notes that control of a single 

pure integrator is easier and allows more precise tracking than control of a double pure 

integrator. Generally, agility can be traded off against stability. A control system 

configuration that enables fast changes of the controlled parameter makes it difficult to 

keep this same parameter constant. However, controllability requires sufficiently reliable 

BMI outputs in the first place. Hence, some subjects did not have control at all. Others 

were able to perform closed-loop BMI control of the horizontal airplane motion with 

acceptable accuracy, using the flight control system described in chapter 4. As expected, 

however, the performance of manual control was not matched by far. Moreover, subjects 

reported that BMI control produces an extreme mental workload. The following list sums 

up the major challenges for BMI application identified. 

 



Conclusions and Perspective 

224 

 Significant improvements in BMI reliability are required for closed-loop BMI control. 

 Biases and variations of BMI control performance between sessions, runs and 

within a run must be minimized. 

 The mental effort needed to generate the required brain activity must be reduced. 

 The amount of attention that is dedicated to the (visual) BMI feedback must be 

reduced to free up resources for the high-level task and possible secondary tasks. 

 Generation of brain signals must be intuitive. For instance, imagining feet 

movements to turn left is unacceptable. 

Finally, an effective means to substitute the undelayed cues of proprioceptive feedback 

still has to be found, since the simple visual display proved unsatisfactory. 

In another experimental campaign, the flight control system designed and implemented 

was applied to remote manual flight control with a time delay of 2 𝑠. With a total of 18 

subject pilots, these experiments were large in comparison to other handling qualities 

studies. The design of this campaign mainly aimed at comparing the on-off with the 

continuous control system type and at investigating the initial learning phase when 

controlling systems with large time delays. However, it also allowed to assess the 

suitability of different levels of control sensitivity and to obtain insights into the strengths 

and weaknesses of some of the proposed flight control system concepts. Six a-priori 

hypotheses were formulated in section 6.1, which were all confirmed by the subsequent 

experiments. It can thus be said that 

 pilots naïve to flight control with large time delays find an appropriate control 

strategy quicker with an on-off control system than with a continuous control 

system 

and that, as long as pilots have not yet accumulated a lot of experience in controlling 

systems with large time delays, 

 workload is less with an on off control system as compared to a continuous control 

system, 

 performance with an on-off control system is comparable or better than 

performance with a continuous control system and 

 visual predictor displays reduce workload and improve performance, but also bind 

a significant amount of visual attention. 

Increasing familiarity with the controlled system, including the time delay, is expected to 

weaken the positive effects of on-off control, so that continuous control ultimately becomes 

preferable. It has to be noted, however, that increased familiarity can only be achieved by 

frequent exposure to lower-level manual flight control with large time delays, either in a 

simulated training scenario or in actual flight operations. The experiments also showed 

that, although the inceptor characteristics implemented in the simulator’s sidestick were 

not optimal, the general concept of reflecting the on-off nature of the control system by 

discrete inceptor deflections is suitable. In the case of a continuous control system, it was 

found that involuntary cross-channel control inputs can easily occur in the presence of 

large time delays. To prevent such cross-channel inputs, a larger breakout force of the 

inceptor is better suited than a larger deadzone in each axis, because it provides an 
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immediate tactile/proprioceptive cue to the pilot. The position and orientation of the 

inceptor with respect to the pilot can also be optimized in this respect. Finally, the 

protection mechanisms proved helpful in preventing extreme flight conditions and the 

proposed flight controller functions, namely Altitude Hold, Path Straightener and Standard 

Rate Turn Hold, were generally rated helpful. 

The flight control system as presented in chapter 4 and flown in the experiments comprises 

feedback control algorithms and thus effectively establishes a higher level of automation 

as compared to unaugmented aircraft, with the associated drawbacks (cf. section 1.2). 

However, being located approximately in the middle of the spectrum of automation shown 

in Figure 1.3, it still involves the pilot to a considerable degree. The experiments have 

shown that, with a round-trip delay of 2 𝑠, this concept may be adequate for nonterminal 

flight phases, but that landings have a low success rate. Other schemes of UAV control 

therefore seem more promising. Indeed, automation should be employed in situations 

where pilot errors significantly reduce operational performance or easily result in accidents 

(cf. section 1.2). In the case of unanticipated events like automation failures or evasive 

maneuvers, however, remote operators may need to take over control on a lower level of 

automation. At this moment (where predictors may also not be available), the beneficial 

effects of on-off control are most pronounced, because pilots are hardly familiar with 

control on this lower, non-normal level of automation. Moreover, the advantages of on-off 

control over continuous control can be expected to be effective at many different levels of 

automation, i.e., with many different command variables. Such an on-off control system 

for non-normal operations may not enable picture-perfect landings, but it helps preventing 

loss of control in flight. If, for landing, attempts to re-establish a suitable degree of 

automation or to transfer control to a local pilot fail, the remote operator can at least end 

the flight in a desired area and thereby avoid harm to persons or damage to objects on the 

ground. 

One concept that was outlined, but unfortunately could not be implemented and tested, 

is that of a tactile or multimodal display which conveys information of flight-control related 

variables. Such a display is hoped to increase the pilot’s situational awareness and thereby 

free up mental resources that can then be allocated to coping with the reduced sensory 

feedback. Detailed design and implementation of such displays and, most of all, 

investigations into their effectiveness therefore constitute important goals for future work. 

Likewise, the amount of attention devoted by pilots to predictor displays should be 

quantified objectively, since the experiments presented in this thesis only relied on 

subjective pilot ratings in that respect. Some predictor display designs, possibly using a 

different stimulus dimension or even a different sensory channel than the one presented 

in this thesis, may require more pilot attention than others. Furthermore, the experiments 

did not comprise secondary tasks that concurred with the observation of the predictor 

symbols. Future investigations could provide better insights into the effectiveness of 

different predictor designs in operational environments. 

This thesis discusses flight control with time delays in the range of 1…3 𝑠, but the 

experiments on manual remote flight control only covered the single time delay value of 

2 𝑠. Although the findings of the experiments are valid for the considered range of time 
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delays and probably for larger values as well, it may be interesting to investigate, in a 

future study, how task performance and workload are affected by time delay variations. 

More importantly, additional research is required on human operator behavior and possible 

control system concepts for time delay values smaller than 1 𝑠, i.e., in a grey area between 

negligible time delays and large time delays. For instance, neither the smallest time delay 

value at which pulse-like operator behavior first occurs, nor the minimum time delay for 

which on-off control has advantages over continuous control are known at this point. It is 

also imaginable that altogether different concepts are better suited for this range of time 

delay values. 

For the large time delay values considered in this thesis, the concept of a pulse control 

system, which is presented in section 4.1, may also be suitable, but due to the rather 

unconventional handling characteristics of such a system, an on-off control system was 

preferred for implementation and testing. Interestingly, however, some subjects of the 

experiments presented in chapter 6 applied pulsed inputs with the on-off control system. 

To assess whether further improvements in workload and controllability can be achieved 

by implementing a pulse control system, a similar study could be performed in the future 

that compares a pulse control system with a continuous control system and/or an on-off 

control system. 

The experimental data from the human subject study presented in chapter 6 of this thesis 

was also used to validate the novel pilot models proposed in section 3.3. It was confirmed 

that the new compensatory tracking model correctly predicts the period and maximum 

amplitude of possibly occurring limit cycles, regardless of the control system type 

employed. This new model can thereby contribute to estimating the worst case of PIO in 

a given system. For validation of the novel dual-mode pursuit tracking model, suitable 

values of the three remaining independent model parameters were determined by 

matching the quantitative performance metrics of model simulations with results from the 

experiments. It was shown that the model well describes pure pursuit tracking like the 

tracking of stationary targets in task A, but that it has several shortcomings in describing 

combined pursuit and pre-cognitive tracking as in task B. In task A, the model achieves a 

similar performance and produces similar control activity like human subjects. In task B, 

on the other hand, the performance metrics resulting from the simulation generally never 

match those from the experiments all at the same time. In most cases, the simulation 

seems to lag behind the experiment and thus, the tracking error is larger. This can be 

explained by the fact that the task design allowed subjects to predict future target values 

and to thereby perform pre-cognitive control, whereas the model is restricted to pursuit 

control by design. Another flaw of the model when applied to a combined pursuit and 

pre-cognitive tracking task is that prolonged phases of pure open-loop control can occur, 

during which pulsed control inputs are made. 

The assumption made in section 3.3.3 that the power of 𝑛𝑦̇ is higher if a continuous 

control system is employed instead of an on-off control system was validated by model 

fitting to task A. This fact provides an explanation for the advantage of on-off control over 

continuous control, at least for subjects with little training. The initial definition of the 

noise spectrum 𝑆𝑛𝑛 ̇ was modified twice during model validation to more accurately 
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describe changes of the noise power due to variations in control sensitivity. The final 

definition seemed to well describe a variety of control sensitivity settings. 

Remaining shortcomings of the proposed dual-mode pursuit tracking model are the 

excessively high cutoff frequency of the noise spectrum 𝑆𝑛𝑛 ̇ and the model’s inability to 

describe the strategy of approaching a target with decreasing input aggressiveness. To find 

a suitable definition of 𝑆𝑛𝑛 ̇, more data on closed-loop control with large time delays needs 

to be gathered in additional experiments that not only vary the system’s control sensitivity, 

but also its time delay. Data from the same experiments could also be used to assess 

whether the final form of 𝑆𝑛𝑛 ̇ presented in this thesis is indeed valid. Moreover, the 

dual-mode pursuit tracking pilot model should be extended by a model that describes 

variations in input aggressiveness. Possible future work also includes the validation of the 

proposed model against a pure pursuit tracking task with a continuously moving target, 

like task 2 of the experiments on BMI control. Furthermore, an attempt at extending the 

model to describe pre-cognitive tracking as well is imaginable. The ultimate goal would be 

to derive a handling qualities metric from the model, which predicts the suitability of a 

given combination of control system type, augmented aircraft dynamics and time delay for 

a certain task. The description and evaluation of the pilot model in this thesis constitutes 

a first, large step in this direction. 

Summing up, it can be said that important progress was made towards the research goals 

of improving safety, effectiveness and efficiency of flight control with large time delays and 

reduced sensory feedback (cf. section 1.3.1). In the case of BMI control, more 

application-driven research and development was promoted. Safety, effectiveness and 

efficiency of BMI control are still far too inadequate for most applications, but some means 

of improvement have been identified, such as suitable dynamic plant characteristics or 

protection mechanisms. Concerning RPAS operations, the proposed flight control concepts 

can contribute to a safe continuation of the flight after adverse events. Admittedly, a lot of 

PIOs occurred in the experiments, but on-off control, possibly combined with protection 

mechanisms or even predictors, promotes controlled flight. Effectiveness may be improved 

in that minor system failures do not require a precautionary termination of the mission. If, 

for instance, a UAV needs to revert to some lower-level remote flight control law, the 

improvements in safety described above may allow the human operator to resume the 

mission with an acceptable risk. At the same time, the human operator’s workload in this 

situation is reduced by the concepts presented in this thesis and thus, mission efficiency 

is improved. Finally, the novel models of pilot dynamic behavior developed and presented 

in this thesis provide a thorough explanation of human operator behavior during control of 

systems with large time delays and thereby lay the foundation for further progress towards 

optimal controllability and handling of such systems. 
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A .  F L I G H T  C O N T R O L L E R  L A Y O U T  

The structure of the prototypical flight controller presented in chapter 4, which is illustrated 

by the following figures, can be divided into three parts: longitudinal controller, autothrottle 

and lateral controller. These controllers are comprised of cascaded feedback loops and the 

following descriptions go from the outermost loop to the innermost loop. Starting with the 

longitudinal controller, Figure A.1 shows the feedback loops and switching structure of the 

Altitude Hold mode. If the control input 𝛿𝑙𝑜𝑛 is larger than a threshold set to ±0.05, the 

Altitude Hold mode is inactive and 𝛿𝑙𝑜𝑛 is multiplied by the longitudinal control sensitivity 

𝐾𝑎,𝑙𝑜𝑛 to obtain the reference value of the longitudinal command variable 𝐶𝑙𝑜𝑛,𝑑𝑒𝑚. If, on 

the other hand, |𝛿𝑙𝑜𝑛|  0.05 and, at the same time, |ℎ̇|  0.508 𝑚/𝑠 (i.e., 100 𝑓𝑡/𝑚𝑖𝑛), 

the vertical speed loop and the altitude loop are closed, so that the reference altitude is 

maintained. Upon switching, a setpoint altitude value is generated that can be reached 

aperiodically. 

 
Figure A.1 – Altitude hold mode structure 

Next, Figure A.2 shows the outer control loop of the longitudinal controller. Before 

comparison of nominal and actual value, the command variable is integrated. A 

feedforward gain ℎ𝑙𝑜𝑛 accelerates the system response. Note that the limitations of Θ and 

𝛾 (cf. section 4.2.2) are implemented in this loop. Since these saturation-type 

nonlinearities are located downstream of an integrator, an anti-windup structure with gain 

𝐾𝐴𝑊 is set up. The outcome of the longitudinal outer loop is a command in load factor 

change Δ𝑛𝑧,𝑐𝑚𝑑. 

𝐾𝑎,𝑙𝑜𝑛
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Figure A.2 – Longitudinal outer control loop structure 

The commanded load factor change Δ𝑛𝑧,𝑐𝑚𝑑 is the input of the longitudinal inner loop, 

whose structure is shown in Figure A.3. The feedback Δ𝑛𝑧 follows equation (A.1), where 

1/ cosΦ approximates the load factor required in a steady-state turn [66]. 

Δ𝑛𝑧 = (𝑛𝑧)𝐵 − 1/ cosΦ (A.1) 

Θ̇ = 𝑞 ⋅ cosΦ − 𝑟 ⋅ sinΦ (A.2) 

Given that the longitudinal controller does not control the airplane’s motion in its plane of 

symmetry, but the motion in the vertical plane, Θ̇ is fed back instead of 𝑞. The value of Θ̇ 

can be computed from 𝑞, 𝑟 and Φ as shown by equation (A.2) [66]. 

 
Figure A.3 – Longitudinal inner control loop structure 

It may be noted that the controller layout propagates steps from longitudinal pilot inputs 

to the elevator actuator. However, the actuator model prevented actual step deflections of 

the control surface and beyond that, the controller gains were tuned such that the steps 

commanded at the actuator level were rather small. In the final configuration, they were 

always smaller than 0.77°. 
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Figure A.4 shows the structure of the autothrottle control loop. A proportional-integral 

controller acts on the error between demanded and measured IAS and generates a 

reference longitudinal load factor. Thrust lever commands are restricted and an 

anti-windup feedback 𝐾𝐴𝑊 prevents integrator windup. 

 
Figure A.4 – Autothrottle structure 

Continuing with the lateral controller, Figure A.5 shows the structure of the turn rate hold 

mode. If the control input 𝛿𝑙𝑎𝑡 is larger than a threshold set to ±0.05, the turn rate hold 

mode is inactive and 𝛿𝑙𝑎𝑡 is multiplied by the lateral control sensitivity 𝐾𝑎,𝑙𝑎𝑡 to obtain the 

longitudinal command variable 𝐶𝑙𝑎𝑡. This variable is then integrated and subsequently 

limited to the upper and lower turn rate limits (cf. equation (4.12)), so that the integrated 

lateral command variable 𝐶𝑙𝑎𝑡,𝑖𝑛𝑡 is obtained, which can be seen as a commanded turn 

rate. Integrator windup is prevented by a feedback structure with anti-windup gain 𝑘𝐴𝑊. 

Moreover, a bank angle feedback with a deadband of ±𝜋/6  introduces spiral stability for 

bank angles beyond ±30°. The bank angle limitation gain 𝐾𝐵𝐴𝐿 follows equation (A.3) and 

thereby effectively restricts bank angles to the permissible attitude range 

[−Φ𝑚𝑎𝑥,𝑎𝑡𝑡, Φ𝑚𝑎𝑥,𝑎𝑡𝑡]. 

𝐾𝐵𝐴𝐿 =
1

Φ𝑚𝑎𝑥,𝑎𝑡𝑡 − 𝜋/6
 (A.3) 

If equation (A.4) is satisfied, i.e., if both control input and commanded turn rate are small, 

the upper switch in the structure of Figure A.5 is closed and as a result, zero turn rate is 

established and maintained. If, on the other hand, equation (A.5) is satisfied, i.e., if the 

control input is small and the commanded turn rate is approximately standard turn rate 

(𝜋/60𝑠) in either direction, both switches in Figure A.5 are closed to maintain standard 

turn rate. To achieve this, the value of the factor 𝐾𝑆𝑇 equals the standard turn rate. 

{
|𝛿𝑙𝑎𝑡|  0.05

|𝐶𝑙𝑎𝑡,𝑖𝑛𝑡|  𝜋/360𝑠
 (A.4) 

{
|𝛿𝑙𝑎𝑡|  0.05

||𝐶𝑙𝑎𝑡,𝑖𝑛𝑡| − 𝜋/60𝑠|  𝜋/360𝑠
 (A.5) 

𝐾𝑉

𝐾𝐼𝑉

𝑉𝑑𝑒𝑚

 
−

𝑛̂𝑥 𝐾

𝑉𝐼𝐴𝑆

𝐾𝑛 

1

0

𝛿𝑇

−
𝐾𝐴𝑊

−
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Figure A.5 – Turn rate hold mode structure 

Next, Figure A.6 shows the structure of the lateral outer control loop. Since a bank angle 

command is generated for the inner loop, the bank angle limits from equation (4.11) are 

enforced here. However, no anti-windup scheme is needed, because the bank angle 

limitation is already implicitly applied by the bank angle feedback and the turn rate 

limitation in the structure of Figure A.5. 

 
Figure A.6 – Lateral outer control loop structure 

The lateral inner control loops structure is shown in Figure A.7. A proportional bank angle 

controller generates a roll rate command, which is fed to a proportional-integral roll rate 

controller. The feedback of yaw rate aims at canceling 𝐿𝑟. 

 
Figure A.7 – Lateral inner control loops structure 
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Figure A.8 shows the structure of the directional inner control loops, which is similar to 

that of the lateral inner control loops. Remember that, according to the design goals 

formulated in section 4.1, 𝑛𝑦,𝑐𝑚𝑑 = 0. A proportional 𝑛𝑦 controller generates a yaw rate 

command, which is fed to a proportional-integral yaw rate controller. 

𝑟Ψ̇ ≈ Ψ̇ ⋅ cosΦ ⋅ cos Θ =
𝑔

𝑉𝐾
⋅ sinΦ ⋅ cos Θ (A.6) 

To prevent the yaw rate controller from interfering with turning flight, an estimation of the 

turn-induced yaw rate is fed back as well. According to [66], yaw rate during a turn with 

Θ̇ = 0 can be approximated as in equation (A.6). The feedback of roll rate aims at 

canceling 𝑁𝑝. 

 
Figure A.8 – Directional inner control loops structure 

Finally, the lateral-directional control allocation is shown in Figure A.9. It accounts for the 

cross-coupling effects 𝑁𝜉 and 𝐿𝜁 and derives appropriate aileron and rudder deflections to 

generate the commanded rate accelerations. 

 
Figure A.9 – Lateral-directional control allocation structure 
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B .  H A N D B O O K  F O R  E X P E R I M E N T S  

O N  M A N U A L  R E M O T E  F L I G H T  

C O N T R O L  

The following pages show the English version of the experimental handbook that was used 

during the experiments on manual remote flight control. An equivalent German version, 

which is not shown here, had been compiled for German subjects. The handbook was 

handed out to each subject in four parts. The first part, comprising pages 1 through 7, 

introduced the subjects to the experiments in general, demanded some personal 

information that subjects agreed to provide and presented the TLX rating scale. Then, a 

description of task A was provided, followed by the associated rating scales. The second 

part, namely pages 8 through 17, started with a debriefing on task A that familiarized the 

subject pilots with possible control strategies to make sure that everyone had the same 

information for the following tasks. After that, task B was introduced and the TLX rating 

scales for all runs of task B were provided. The third part comprised pages 18 through 21 

and contained the information and rating scales related to task C. The fourth and last part, 

ranging from page 22 to page 26, then provided the same content for task D and 

additionally concluded the session with some final questions. 
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