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Abstract. Building Information Modeling promotes collaborative work in which models are edited 

and enhanced in parallel by domain experts. In this environment, revised and extended datasets 

have to be combined to an overall database. To perform this merging, duplicates have to be 

identified. This paper describes a novel, comprehensive approach for detecting equivalences in 

datasets of the Industry Foundation Classes (IFC), an open and full-fledged schema for building 

models. In contrast to available methods, the presented approach is independent of object 

identifiers. Instead, the detection of duplicates is performed on entity level considering spatial, 

semantic and relational aspects of the IFC data. 

1. Introduction 

The paradigms of Building Information Modeling (BIM) promote the use of comprehensive 

digital building representations. Instead of previously adopted approaches, which focus on 

pure geometric data, a BIM comprises not only the 3D shapes of elements and enclosed 

spaces, but also type information and the relationships between elements. Therefore, a BIM 

has the potential to serve as a data pool used by all participants involved in the design, 

construction and operation of a building. Despite the benefits of a BIM-based planning, there 

are still open questions in the field. In this contribution, we delve into methods of combining 

several submodels to an overall BIM model.  

The terminology we use is borrowed from textual comparison tools. For instance, these tools 

are employed for the management of source code which is concurrently edited by several 

developers. In this context, the process of creating one integrated dataset from changed files is 

referred to as merging. Here, textual data has to be classified as original, newly added or 

modified. Hence, the textual comparison tools can show all differences (also known as diffs) 

between two files. 

In a BIM environment, merging takes place as part of a distributed planning in which various 

project participants separately enhance their sections of the building model (Weise et al., 

2004). The workflow of one participant can be summarized as submodel extraction, model 

enhancement und submodel integration (Figure 1).  

 

Figure 1: Merging in a multi-disciplinary BIM-based planning process. 
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The last step of the workflow comprises the necessary merging of the current overall model 

with the modified submodel. As the working copy contains original elements, some of them 

will be represented twice, once in the overall model and once in the working copy. This is 

critical as these duplicates lead to erroneous computations in downstream application, e.g. in 

quantity take-offs or simulations. 

In the currently applied tools, the support for merging BIM data is limited. A manual solution 

is to tag the original entities at the time when domain specific enhancement starts. But this 

annotating demands a great amount of discipline of all involved editors, leads to recurrent 

manually work, is error-prone and hampers the editors in their actual tasks.  

On the other hand, the support of a high quality merging process for BIM data is important 

because of the specific conditions of collaboration in the construction industry. Despite the 

former aspiration of one central BIM model, the reality shows that even in midsize projects 

several interrelated models are produced. Additionally, projects are developed during 

complex design and planning phases, in which models are often significantly changed. 

Finally, there are a large number of contributors involved in the ongoing detailing of a model. 

Here, each domain focuses on different views of the model whereas the used subsets of 

entities intersect. 

The paper is structured as following. In the next section, related work is discussed. In 

Section 3 it is explained why a textual merging is not feasible. Instead, an entity-based 

approach is presented in Section 4, showing how doublets can be found by spatial, attributive 

and relational aspects of a model. The following section describes the prototypical 

implementation of the developed approach and presents a case study. Section 6 concludes this 

contribution and gives an outlook for further research. 

2. Related Work and State of the Art 

There are various applications for differencing and merging textual data. One of the best 

known tools is diff3 which is used e.g. in revision control systems (Smith, 1988; Khanna et 

al., 2007). For textual merging, algorithms are facilitated which compute the longest common 

subsequence to identify unchanged parts between documents (Hunt and MacIlroy, 1976).  

For differencing and merging of more structured data, various proposals are available in 

literature. In the domain of model-driven engineering, methods for merging are developed for 

the general Meta-Object Facility (MOF) and demonstrated for data of  the Unified Modeling 

Language (UML) (Alanen and Porres, 2003). For documents written in the Extensible 

Markup Language (XML), various merging algorithms are available which process the tree 

structure of this encoding (Lindholm, 2004; La Fontaine, 2002). An algorithm for merging 

graph-like structures is discussed in Zündorf et al., (2001).  

In the domain of 3D modelling, a system is presented that operates on the identifiers of 

meshes (Doboš and Steed, 2012). Also the BIM Server has the ability to check for duplicated 

entities by examine their object identifiers (Beetz et al., 2010). Later in this article, it is 

explained why this is not reliable if BIM-data is processed. More BIM-specific approaches 

are presented in Koch and Firmenich (2006, 2011). Here it is proposed to store all steps of 

operations in the model. This is beyond the scope of the current schemas and would require 

an extensive redesign of the transfer formats and all applied applications. In contrast, the 

approach which is described in this contribution can deal with the currently available Industry 

Foundation Classes (IFC). 
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To verify the spatial quality of BIM data, clash detection is employed (Tommelein and 

Gholami, 2012). Here, intersecting geometric representations of entities are reported. The 

implementation of clash detection is based on the identification of triangle intersections 

(Möller, 1997). Indeed, finding intersections can be used to identify doublings. But clashes do 

not indicate spatial duplicates by necessity as intersections can also occur in touching 

constellations. Thus, another geometrical examination is needed.  

Appropriate strategies for a reliable geometrical matching can be found in the field of 

mechanical engineering. Here, the identification of similar 3D shapes in a database of 

components is an ongoing research topic. To efficiently select parts in this repository, the user 

introduces a lookup mesh. In the query, similarities between the lookup mesh and the stored 

shapes are computed and the most similar entities are returned (Rea et al., 2005; Tangelder 

and Veltkamp, 2008).   

3. Textual Versus Entity-based Differencing 

Whereas textual comparison tools match paragraphs and search for added and removed words 

and tokens, the merge process in a BIM environment requires a different strategy. As 

BIM data is based on identifiable entities of the considered Universe of Discourse (UoD), the 

differencing and merging has to be performed on entity level. In this contribution, entities are 

represented as instances of the IFC4 schema (Liebich, 2013). 

To perform the merging, the changed entities of the current submodel have to be integrated in 

the overall model whereas certain entities supersede other entities. Three sets of IFC entities 

can be classified in the emerging overall model: 

1. Some entities are represented twice and match each other exactly. This comprises the 

entity’s attribute values, its use in relations as well as its geometric representation.  

2. Some entities are represented twice but do not match each other exactly as some or all 

of the following aspects have changed. 

a. The geometric representations of the entity pair differ. 

b. The attribute values of an examined entity pair differ. 

c. The use of the entities in relations differs. 

3. Some entities are added to the datasets independently and therefore have no matches. 

The recognition of spatial, attributive and relational differences between the datasets enables 

for a fine-grained merging during model integration. In the first case, which represents a 

complete match, duplicates can be eliminated automatically. This is also the group of entities 

we focus on in this contribution. The second and third cases may call for intervention by the 

end user, e.g. if conflicts emerge because of simultaneous editing.  

To extract the three types of differences, the identification of entities is required. In the IFC, 

entity identification is based on the GlobalId attribute with holds a unique string. However, 

there is a high risk of losing the GlobalId of an entity during processes of import, export and 

conversion. 

As an example for the weak support of consistent GlobalId handling, a minimalistic IFC file 

is exported from Autodesk Revit 2015 by use of the extended IFC exporter plug-in 

(Autodesk, 2016). In the first case, a single wall with an opening forms the dataset. For the 

second export, the opening is deleted and the plain wall is exported. A textual differencing of 
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the two files shows that the GlobalIds of the associated relationships get lost, although the 

entities reflect the identical, unchanged information ( 

Figure 2). Note, that the textual comparison can only help to identify differences in these 

minimalistic IFC files which approximately comprise 250 lines of code. Files in realistic 

productive scenarios contain about 10.000 – 1.000.000 lines of code and are thus by far too 

large for textual comparison.  

Figure 2: Varying GlobalIds of unchanged entities in two IFC exports. 

To demonstrate the inadequacy of a textual comparison, a common IFC sample file is 

imported in Allplan 2016 and exported again (KIT, 2008). As the original file contains about 

50.000 IFC entities, the exported one is made of about 150.000 entities. The multiplication of 

entities can be explained because of the duplication of geometrical elements, e.g. 

IfcCartesianPoint instances. A textual comparison of the two files does not detect any 

identical part of the two datasets. Nevertheless, from the view of a domain expert, both sets 

represent the identical model. 

Thus, the matching of IFC files on a textual basis is not feasible. Furthermore, identifying 

entities by their GlobalIds is considered as unreliable. Other approaches for finding duplicates 

are necessary. To close this technology gap, a novel approach for matching IFC entities is 

presented next.  

4. An Entity-Centric Matching Approach  

All versions of the IFC schema are defined by use of the EXPRESS modelling language. The 

most central modelling elements of the language are the Entity and the Type. The first can be 

seen as a full-fledged object description, the latter depicts more simple types. Furthermore, 

there are elements for representing containers such as list and sets, enumerations and selection 

types. A detailed discussion of EXPRESS-based modelling is available in Schenck and 

Wilson (1994). 

Although the IFC contains about 650 different entity declarations, only subclasses of IfcRoot 

have an unambitious identity. Other entities must be referenced by rooted instances and 

cannot be stored independently. This modelling approach leads to an elementary consequence 

for the matching of IFC datasets. Searching duplicates of non-rooted objects is not feasible as 

these instances attain their semantics solely by references from rooted objects. Therefore, the 

matching between entities must start at rooted objects, which are traversed for all referenced 

entities.  

IfcRoot splits up in three subclasses. These are IfcObjectDefinition, IfcRelationship and 

IfcPropertyDefinition. The first one represents semantically described objects or processes on 

instance and type level. IfcRelationship is used to express entity-to-entity connections by 

explicitly instantiated objectified relationships. For example, this can indicate the spatial 

assignment of a wall to a storey or that a floor is covered by a specific coating. The 

#209= IFCRELDEFINESBYPROPERTIES('3uhd6lbe190x2omI6GDmTm',#41,$,$,(#110),#207); 

#217= IFCRELAGGREGATES('1F0zP3_s91Sgv41B5mmR_6',#41,$,$,#91,(#201)); 

#209= IFCRELDEFINESBYPROPERTIES('1qNfZoYpf52vnboENcp0uY',#41,$,$,(#110),#207); 

#217= IFCRELAGGREGATES('1OeBRZBMj68B3HEWkiN2IR',#41,$,$,#91,(#201)); 
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IfcPropertyDefinition stands in for pre- and user-defined semantically related sets of 

properties. Again, the concept of objectified relationships is used to establish the connection 

between an entity and a property set. A set can dynamically be attached to an entity by an 

IfcRelDefinesByProperties instance, subclass of IfcRelationship. Finally, a common type of 

some building element can be represented in the IFC schema by an IfcTypeObject object. The 

type comprises property sets and geometric representations which are reused by the linked 

entities. To establish the connection between elements and their IfcTypeObject, the 

IfcRelDefinesByType relationship is used. 

For the user, the concepts of types, property sets and objectified relationships are quite 

abstract. The most tangible objects are IfcObjects, subclass of IfcObjectDefinition which 

stand in e.g. for building elements, processes and actors. For a domain expert, these objects 

and their mutual relations represent the primary informative content of the model.  

Thus, from a user’s point of view, a differencing algorithm for IFC data should be based on 

comparing IfcObjects. Other entities e.g. instances of IfcPropertyDefinition, IfcRelationship 

and IfcTypeObject are examined indirectly by their interactions with IfcObjects. This is 

demonstrated in Figure 3. Property sets which are connected to an entity or its type object are 

considered as original entity attributes (a, b). Objectified relationships, subclasses of 

IfcRelationship are processed as attributes which holds between a pair of IfcObjects (c). 

 

Figure 3: IfcObject instances interact with property sets, type objects and inter-entity relations which 

makes the class the appropriate starting point in the developed matching algorithm.  

In the following the developed matching approach is presented. It comprises two steps. In the 

first one, the comparison of geometric representations is used to identify duplicates. In the 

next step, a semantical matching can find attributive modifications of already matched 

geometrical entities. The semantical matching is also necessary to recognise doublets of non-

geometrical entities such as tasks or processes. 

4.1 Geometrical Matching 

In a BIM dataset, the semantics of an entity are strongly influenced by the entity’s geometric 

representation and the resulting interactions with other spatial objects. Therefore, processing 

geometric shapes is an essential part in the proposed IFC differencing and merging.  

The geometry of IFC entities can be expressed through several modelling approaches. There 

are data structures for procedural geometry such as lofts and sweeps. In addition, constructive 

solid geometry (CSG) can be facilitated. Finally, for static and unmodifiable spatial entities, 

an explicit boundary representation (B-Rep) can be used. A B-Rep structure can also be 

produced from procedural geometry and CSG. Thus, a matching for all variants of geometric 

modelling in the IFC can be based on processing the B-Reps of entities.  

However, the creation of B-Rep structures from procedural geometry and CSG is ambiguous 

in concern of their tessellations. This means that various triangle meshes can be produced 
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from one procedural geometry or CSG. Thus, a geometry-based identification must be 

independent from the actual triangulation which can differ in each BIM tool. Only the 

permanent information about the entity’s boundary should be considered.  

Therefore, approaches for 3D database lookup are adjusted for a spatial BIM matching. In 

contrast to geometric database lookups, the comparison of shapes should not be invariant to 

linear transformations such as transition, rotation and scaling. These operations change the 

semantics of entities in a building model. Instead, the shape matching is performed on 

globally oriented representations.  

In the suggested processing, sample points are distributed on the surface of an entity. For each 

sample point, the minimal distance to another meshes is computed (Figure 4). To speed up 

this computation, an upper bound of distance dmax is introduced and the triangles of entities 

are indexed in R*-Trees (Beckmann et al., 1990). By extending the bounding box of an entity 

with dmax, corresponding candidate meshes can be found (a). In the next step, an extended 

triangle box is used in the candidate’s tree to identify triangle candidates (b). These triangles 

are then examined for distances to the sample points on the original triangle (c). Finally, the 

minimal distance found for each sample point is stored. 

 

Figure 4: Matching geometric representations by using sample points and  

computations of minimal point/triangle distance (2D view for simplicity).  

If all sample points are verified for lying on triangles of the second mesh, a geometric 

duplicate is identified. In contrast to clash detection, the presented method matches all surface 

areas of two entities. In addition, the method can identify the most similar shape in a group of 

candidates. The number of used sample points can be adjusted which enables for a trade-off 

between the robustness of the algorithm against its runtime. 

The presented matching on geometry level is performed for all IfcObject instances which 

offer a geometric representation. During a pre-processing step, the necessary B-Rep structures 

are computed. After the geometric matching has been executed, the semantic matching is 

invoked. Accordingly, in the semantic matching, links to geometric representations are not 

considered. 

4.2 Semantic Matching 

In computer science, two equality comparisons are common. The first one is called value 

equality, also known as equivalence. This means that the actual values of two variables are 

equal. The second equality determines if two variables point to the same address in memory. 

This type of equality check is called reference equality, or identity (Albahari and Albahari, 

2012). 

In IFC modelling, the worldwide unique GlobalId value forms the identity of an entity and 

thus can be used for checking a specific kind of reference equality between two instances. If 
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this kind of equality would be robust, it would be an appropriate basis for matching and 

differencing between IFC datasets. Actually, it had the potential for extracting a change 

history for entities. But, as explained in Section 3, GlobalIds are often handled inconsistently 

during import/export steps. A hypothesis of this contribution is that differencing and matching 

on reference level is not necessary for an IFC merge. Instead, an approach based on the 

former described spatial comparison in combination with equivalence checks is proposed.   

In the following subsection, the algorithmic approach for semantic matching is depicted. The 

algorithm for finding duplicates on the semantical level iterates through all IfcObjects of the 

two IFC datasets under examination. For each IfcObject pair the ValueEquality function is 

called. In this process, attributes with simple types and references to other entities are 

recursively compared. The two overloaded ValueEquality functions are stated in Figure 5. 

 

Figure 5: The two overloads of the ValueEqual function. 

 

For example, an IfcBuilding is a subclass of IfcObject and accordingly an evaluated entity. 

Figure 6 shows two IfcBuilding instances. The recursive ValueEquality function traverses 

both object structures and yields a difference in the Description attribute of the 

IfcOrganization entity. 

 

Figure 6: Two IfcBuilding instances which are not value equal because of a  

difference in the referenced IfcOrganization entity. 

Algorithm bool ValueEquality (Entity entityA, Entity entityB) 
 if TypeOf(entityA) != TypeOf(entityB) 
  return false 

foreach attributeA of entityA.AttributesWithoutGlobalId 
 attributeB = entityB.FindAttribute (attributeA) 
 if ! ValueEquality(attributeA, attributeB) 
  return false 

foreach referenceA of entityA.References 
 referenceB = entityB.FindReference (referenceA) 
 if ! ValueEquality(referenceA, referenceB) 
  return false 

Algorithm bool ValueEquality (Attribute attributeA, Attribute attributeB) 
 if TypeOf(attributeA) != TypeOf(attributeB) 
  return false 

 return attributeA == attributeB 
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5. Prototypical Implementation and Case Study 

The presented approach of an IFC merging is evaluated in a C# implementation. As a case 

study, two data sets of an office building are compared (Figure 7). The original data is taken 

from KIT (2008). The first set comprises 458 spatial building elements and 17732 IFC entities 

in total (a). In the second set, 283 instances of IfcDoor and IfcWindow are added which 

extends the number of IFC entities to 22982 (b). In the initial geometrical matching, all 

duplicates of the doubled building elements are identified. Figure 7c shows the resulting diff 

between data set a) and b). 

 

 

Figure 7: Two IFC data sets and their computed geometrical differences. 

The following semantic processing matches entities without geometry representations. In the 

sample data, these are instances of spatial structures such as IfcSite and IfcBuildingStorey. In 

addition, correlating type objects such as IfcWallType and IfcRailingType instances are 

recognised.  

The prototype showed that the computational accuracy of the geometrical matching is high. 

The divergences between actual matching entities were in the range of 1E-4 and 1E-6 

millimetres. The computation of the example takes about 25 seconds in the single threaded 

prototype on a standard workstation. 

6. Summary and Outlook 

This contribution demonstrates a novel approach for file based collaborative work in a BIM 

environment. Here, submodels with overlapping entity sets have to be merged to an overall 

model. Instead of relying on the matching of object identifiers, the presented method is based 

on a two-level processing. In the first step, geometrically matching entities are identified. 

Then, a sematic matching is used to link entities which are equivalent. Instead of a time 

consuming and error-prone manual investigation of model differences, the method helps to 

produce high quality overall models more efficiently. 

There are various research questions emerging. The most centric one is dealing with a 

matching algorithm based on a similarity metric. This is necessary when entities without 

geometrical representation have changed slightly. Here, the presented approach will not find 

duplicates. With a metric, the semantically most similar entity can be identified. Finally, more 
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research is necessary to extend the method and handle more complex scenarios such as a three 

way diff with simultaneous modifications, additions and deletions in the entity sets. 
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